PM / AVS: rockchip-io: add io selectors and supplies for rk3399
[linux-2.6-block.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf 26#include <linux/fs.h>
d98a5384 27#include <linux/of.h>
f864c46a 28#include <linux/of_irq.h>
3df57bcf
MN
29#include <linux/platform_device.h>
30#include <linux/uaccess.h>
31#include <linux/mfd/core.h>
73180f85 32#include <linux/mfd/dbx500-prcmu.h>
3a8e39c9 33#include <linux/mfd/abx500/ab8500.h>
1032fbfd
BJ
34#include <linux/regulator/db8500-prcmu.h>
35#include <linux/regulator/machine.h>
c280f45f 36#include <linux/cpufreq.h>
b3aac62b 37#include <linux/platform_data/ux500_wdt.h>
55b175d7 38#include <linux/platform_data/db8500_thermal.h>
73180f85 39#include "dbx500-prcmu-regs.h"
3df57bcf 40
3df57bcf
MN
41/* Index of different voltages to be used when accessing AVSData */
42#define PRCM_AVS_BASE 0x2FC
43#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56
57#define PRCM_AVS_VOLTAGE 0
58#define PRCM_AVS_VOLTAGE_MASK 0x3f
59#define PRCM_AVS_ISSLOWSTARTUP 6
60#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61#define PRCM_AVS_ISMODEENABLE 7
62#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63
64#define PRCM_BOOT_STATUS 0xFFF
65#define PRCM_ROMCODE_A2P 0xFFE
66#define PRCM_ROMCODE_P2A 0xFFD
67#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68
69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
79
80/* Req Mailboxes */
81#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
87
88/* Ack Mailboxes */
89#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96/* Mailbox 0 headers */
97#define MB0H_POWER_STATE_TRANS 0
98#define MB0H_CONFIG_WAKEUPS_EXE 1
99#define MB0H_READ_WAKEUP_ACK 3
100#define MB0H_CONFIG_WAKEUPS_SLEEP 4
101
102#define MB0H_WAKEUP_EXE 2
103#define MB0H_WAKEUP_SLEEP 5
104
105/* Mailbox 0 REQs */
106#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
112
113/* Mailbox 0 ACKs */
114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122/* Mailbox 1 headers */
123#define MB1H_ARM_APE_OPP 0x0
124#define MB1H_RESET_MODEM 0x2
125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 128#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
129
130/* Mailbox 1 Requests */
131#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 133#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
134#define PLL_SOC0_OFF 0x1
135#define PLL_SOC0_ON 0x2
a592c2e2
MN
136#define PLL_SOC1_OFF 0x4
137#define PLL_SOC1_ON 0x8
3df57bcf
MN
138
139/* Mailbox 1 ACKs */
140#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144
145/* Mailbox 2 headers */
146#define MB2H_DPS 0x0
147#define MB2H_AUTO_PWR 0x1
148
149/* Mailbox 2 REQs */
150#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
160
161/* Mailbox 2 ACKs */
162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163#define HWACC_PWR_ST_OK 0xFE
164
165/* Mailbox 3 headers */
166#define MB3H_ANC 0x0
167#define MB3H_SIDETONE 0x1
168#define MB3H_SYSCLK 0xE
169
170/* Mailbox 3 Requests */
171#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178
179/* Mailbox 4 headers */
180#define MB4H_DDR_INIT 0x0
181#define MB4H_MEM_ST 0x1
182#define MB4H_HOTDOG 0x12
183#define MB4H_HOTMON 0x13
184#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
185#define MB4H_A9WDOG_CONF 0x16
186#define MB4H_A9WDOG_EN 0x17
187#define MB4H_A9WDOG_DIS 0x18
188#define MB4H_A9WDOG_LOAD 0x19
189#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
190
191/* Mailbox 4 Requests */
192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200#define HOTMON_CONFIG_LOW BIT(0)
201#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
202#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206#define A9WDOG_AUTO_OFF_EN BIT(7)
207#define A9WDOG_AUTO_OFF_DIS 0
208#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
209
210/* Mailbox 5 Requests */
211#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
7a4f2609
LW
215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
3df57bcf
MN
217#define PRCMU_I2C_STOP_EN BIT(3)
218
219/* Mailbox 5 ACKs */
220#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222#define I2C_WR_OK 0x1
223#define I2C_RD_OK 0x2
224
225#define NUM_MB 8
226#define MBOX_BIT BIT
227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229/*
230 * Wakeups/IRQs
231 */
232
233#define WAKEUP_BIT_RTC BIT(0)
234#define WAKEUP_BIT_RTT0 BIT(1)
235#define WAKEUP_BIT_RTT1 BIT(2)
236#define WAKEUP_BIT_HSI0 BIT(3)
237#define WAKEUP_BIT_HSI1 BIT(4)
238#define WAKEUP_BIT_CA_WAKE BIT(5)
239#define WAKEUP_BIT_USB BIT(6)
240#define WAKEUP_BIT_ABB BIT(7)
241#define WAKEUP_BIT_ABB_FIFO BIT(8)
242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
243#define WAKEUP_BIT_CA_SLEEP BIT(10)
244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246#define WAKEUP_BIT_ANC_OK BIT(13)
247#define WAKEUP_BIT_SW_ERROR BIT(14)
248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249#define WAKEUP_BIT_ARM BIT(17)
250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253#define WAKEUP_BIT_GPIO0 BIT(23)
254#define WAKEUP_BIT_GPIO1 BIT(24)
255#define WAKEUP_BIT_GPIO2 BIT(25)
256#define WAKEUP_BIT_GPIO3 BIT(26)
257#define WAKEUP_BIT_GPIO4 BIT(27)
258#define WAKEUP_BIT_GPIO5 BIT(28)
259#define WAKEUP_BIT_GPIO6 BIT(29)
260#define WAKEUP_BIT_GPIO7 BIT(30)
261#define WAKEUP_BIT_GPIO8 BIT(31)
262
b58d12fe
MN
263static struct {
264 bool valid;
265 struct prcmu_fw_version version;
266} fw_info;
267
f3f1f0a1
LJ
268static struct irq_domain *db8500_irq_domain;
269
3df57bcf
MN
270/*
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
273 *
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
277 */
55b175d7 278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
3df57bcf 279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
55b175d7
AB
280
281#define IRQ_PRCMU_RTC 0
282#define IRQ_PRCMU_RTT0 1
283#define IRQ_PRCMU_RTT1 2
284#define IRQ_PRCMU_HSI0 3
285#define IRQ_PRCMU_HSI1 4
286#define IRQ_PRCMU_CA_WAKE 5
287#define IRQ_PRCMU_USB 6
288#define IRQ_PRCMU_ABB 7
289#define IRQ_PRCMU_ABB_FIFO 8
290#define IRQ_PRCMU_ARM 9
291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292#define IRQ_PRCMU_GPIO0 11
293#define IRQ_PRCMU_GPIO1 12
294#define IRQ_PRCMU_GPIO2 13
295#define IRQ_PRCMU_GPIO3 14
296#define IRQ_PRCMU_GPIO4 15
297#define IRQ_PRCMU_GPIO5 16
298#define IRQ_PRCMU_GPIO6 17
299#define IRQ_PRCMU_GPIO7 18
300#define IRQ_PRCMU_GPIO8 19
301#define IRQ_PRCMU_CA_SLEEP 20
302#define IRQ_PRCMU_HOTMON_LOW 21
303#define IRQ_PRCMU_HOTMON_HIGH 22
304#define NUM_PRCMU_WAKEUPS 23
305
3df57bcf
MN
306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 IRQ_ENTRY(RTC),
308 IRQ_ENTRY(RTT0),
309 IRQ_ENTRY(RTT1),
310 IRQ_ENTRY(HSI0),
311 IRQ_ENTRY(HSI1),
312 IRQ_ENTRY(CA_WAKE),
313 IRQ_ENTRY(USB),
314 IRQ_ENTRY(ABB),
315 IRQ_ENTRY(ABB_FIFO),
316 IRQ_ENTRY(CA_SLEEP),
317 IRQ_ENTRY(ARM),
318 IRQ_ENTRY(HOTMON_LOW),
319 IRQ_ENTRY(HOTMON_HIGH),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 IRQ_ENTRY(GPIO0),
322 IRQ_ENTRY(GPIO1),
323 IRQ_ENTRY(GPIO2),
324 IRQ_ENTRY(GPIO3),
325 IRQ_ENTRY(GPIO4),
326 IRQ_ENTRY(GPIO5),
327 IRQ_ENTRY(GPIO6),
328 IRQ_ENTRY(GPIO7),
329 IRQ_ENTRY(GPIO8)
330};
331
332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 WAKEUP_ENTRY(RTC),
336 WAKEUP_ENTRY(RTT0),
337 WAKEUP_ENTRY(RTT1),
338 WAKEUP_ENTRY(HSI0),
339 WAKEUP_ENTRY(HSI1),
340 WAKEUP_ENTRY(USB),
341 WAKEUP_ENTRY(ABB),
342 WAKEUP_ENTRY(ABB_FIFO),
343 WAKEUP_ENTRY(ARM)
344};
345
346/*
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * the request data.
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
353 */
354static struct {
355 spinlock_t lock;
356 spinlock_t dbb_irqs_lock;
357 struct work_struct mask_work;
358 struct mutex ac_wake_lock;
359 struct completion ac_wake_work;
360 struct {
361 u32 dbb_irqs;
362 u32 dbb_wakeups;
363 u32 abb_events;
364 } req;
365} mb0_transfer;
366
367/*
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
4d64d2e3 371 * @ape_opp: The current APE OPP.
3df57bcf
MN
372 * @ack: Reply ("acknowledge") data.
373 */
374static struct {
375 struct mutex lock;
376 struct completion work;
4d64d2e3 377 u8 ape_opp;
3df57bcf
MN
378 struct {
379 u8 header;
380 u8 arm_opp;
381 u8 ape_opp;
382 u8 ape_voltage_status;
383 } ack;
384} mb1_transfer;
385
386/*
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
394 */
395static struct {
396 struct mutex lock;
397 struct completion work;
398 spinlock_t auto_pm_lock;
399 bool auto_pm_enabled;
400 struct {
401 u8 status;
402 } ack;
403} mb2_transfer;
404
405/*
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
410 */
411static struct {
412 spinlock_t lock;
413 struct mutex sysclk_lock;
414 struct completion sysclk_work;
415} mb3_transfer;
416
417/*
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
421 */
422static struct {
423 struct mutex lock;
424 struct completion work;
425} mb4_transfer;
426
427/*
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
432 */
433static struct {
434 struct mutex lock;
435 struct completion work;
436 struct {
437 u8 status;
438 u8 value;
439 } ack;
440} mb5_transfer;
441
442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444/* Spinlocks */
b4a6dbd5 445static DEFINE_SPINLOCK(prcmu_lock);
3df57bcf 446static DEFINE_SPINLOCK(clkout_lock);
3df57bcf
MN
447
448/* Global var to runtime determine TCDM base for v2 or v1 */
449static __iomem void *tcdm_base;
b047d981 450static __iomem void *prcmu_base;
3df57bcf
MN
451
452struct clk_mgt {
b047d981 453 u32 offset;
3df57bcf 454 u32 pllsw;
6b6fae2b
MN
455 int branch;
456 bool clk38div;
457};
458
459enum {
460 PLL_RAW,
461 PLL_FIX,
462 PLL_DIV
3df57bcf
MN
463};
464
465static DEFINE_SPINLOCK(clk_mgt_lock);
466
6b6fae2b
MN
467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
6746f232 469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499};
500
501struct dsiclk {
502 u32 divsel_mask;
503 u32 divsel_shift;
504 u32 divsel;
505};
506
507static struct dsiclk dsiclk[2] = {
508 {
509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 },
513 {
514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 }
518};
519
520struct dsiescclk {
521 u32 en;
522 u32 div_mask;
523 u32 div_shift;
524};
525
526static struct dsiescclk dsiescclk[3] = {
527 {
528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 },
532 {
533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 },
537 {
538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 }
3df57bcf
MN
542};
543
20aee5b6 544
3df57bcf
MN
545/*
546* Used by MCDE to setup all necessary PRCMU registers
547*/
548#define PRCMU_RESET_DSIPLL 0x00004000
549#define PRCMU_UNCLAMP_DSIPLL 0x00400800
550
551#define PRCMU_CLK_PLL_DIV_SHIFT 0
552#define PRCMU_CLK_PLL_SW_SHIFT 5
553#define PRCMU_CLK_38 (1 << 9)
554#define PRCMU_CLK_38_SRC (1 << 10)
555#define PRCMU_CLK_38_DIV (1 << 11)
556
557/* PLLDIV=12, PLLSW=4 (PLLDDR) */
558#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559
3df57bcf
MN
560/* DPI 50000000 Hz */
561#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564
565/* D=101, N=1, R=4, SELDIV2=0 */
566#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567
3df57bcf
MN
568#define PRCMU_ENABLE_PLLDSI 0x00000001
569#define PRCMU_DISABLE_PLLDSI 0x00000000
570#define PRCMU_RELEASE_RESET_DSS 0x0000400C
571#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572/* ESC clk, div0=1, div1=1, div2=3 */
573#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575#define PRCMU_DSI_RESET_SW 0x00000007
576
577#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578
73180f85 579int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
580{
581 int i;
3df57bcf
MN
582
583 /* Clear DSIPLL_RESETN */
c553b3ca 584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 585 /* Unclamp DSIPLL in/out */
c553b3ca 586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 587
3df57bcf 588 /* Set DSI PLL FREQ */
c72fe851 589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 591 /* Enable Escape clocks */
c553b3ca 592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
593
594 /* Start DSI PLL */
c553b3ca 595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 596 /* Reset DSI PLL */
c553b3ca 597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 598 for (i = 0; i < 10; i++) {
c553b3ca 599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
600 == PRCMU_PLLDSI_LOCKP_LOCKED)
601 break;
602 udelay(100);
603 }
604 /* Set DSIPLL_RESETN */
c553b3ca 605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
606 return 0;
607}
608
73180f85 609int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
610{
611 /* Disable dsi pll */
c553b3ca 612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 613 /* Disable escapeclock */
c553b3ca 614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
615 return 0;
616}
617
73180f85 618int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
619{
620 unsigned long flags;
3df57bcf
MN
621
622 spin_lock_irqsave(&clk_mgt_lock, flags);
623
624 /* Grab the HW semaphore. */
c553b3ca 625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
626 cpu_relax();
627
b047d981
LW
628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
3df57bcf
MN
631
632 /* Release the HW semaphore. */
c553b3ca 633 writel(0, PRCM_SEM);
3df57bcf
MN
634
635 spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637 return 0;
638}
639
b4a6dbd5
MN
640u32 db8500_prcmu_read(unsigned int reg)
641{
b047d981 642 return readl(prcmu_base + reg);
b4a6dbd5
MN
643}
644
645void db8500_prcmu_write(unsigned int reg, u32 value)
3df57bcf 646{
3df57bcf
MN
647 unsigned long flags;
648
b4a6dbd5 649 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 650 writel(value, (prcmu_base + reg));
b4a6dbd5 651 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
652}
653
b4a6dbd5 654void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
3df57bcf 655{
b4a6dbd5 656 u32 val;
3df57bcf
MN
657 unsigned long flags;
658
b4a6dbd5 659 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 660 val = readl(prcmu_base + reg);
b4a6dbd5 661 val = ((val & ~mask) | (value & mask));
b047d981 662 writel(val, (prcmu_base + reg));
b4a6dbd5 663 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
664}
665
b58d12fe
MN
666struct prcmu_fw_version *prcmu_get_fw_version(void)
667{
668 return fw_info.valid ? &fw_info.version : NULL;
669}
670
3df57bcf
MN
671bool prcmu_has_arm_maxopp(void)
672{
673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675}
676
3df57bcf
MN
677/**
678 * prcmu_set_rc_a2p - This function is used to run few power state sequences
679 * @val: Value to be set, i.e. transition requested
680 * Returns: 0 on success, -EINVAL on invalid argument
681 *
682 * This function is used to run the following power state sequences -
683 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684 */
685int prcmu_set_rc_a2p(enum romcode_write val)
686{
687 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
688 return -EINVAL;
689 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
690 return 0;
691}
692
693/**
694 * prcmu_get_rc_p2a - This function is used to get power state sequences
695 * Returns: the power transition that has last happened
696 *
697 * This function can return the following transitions-
698 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
699 */
700enum romcode_read prcmu_get_rc_p2a(void)
701{
702 return readb(tcdm_base + PRCM_ROMCODE_P2A);
703}
704
705/**
706 * prcmu_get_current_mode - Return the current XP70 power mode
707 * Returns: Returns the current AP(ARM) power mode: init,
708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
709 */
710enum ap_pwrst prcmu_get_xp70_current_state(void)
711{
712 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
713}
714
715/**
716 * prcmu_config_clkout - Configure one of the programmable clock outputs.
717 * @clkout: The CLKOUT number (0 or 1).
718 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
719 * @div: The divider to be applied.
720 *
721 * Configures one of the programmable clock outputs (CLKOUTs).
722 * @div should be in the range [1,63] to request a configuration, or 0 to
723 * inform that the configuration is no longer requested.
724 */
725int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
726{
727 static int requests[2];
728 int r = 0;
729 unsigned long flags;
730 u32 val;
731 u32 bits;
732 u32 mask;
733 u32 div_mask;
734
735 BUG_ON(clkout > 1);
736 BUG_ON(div > 63);
737 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
738
739 if (!div && !requests[clkout])
740 return -EINVAL;
741
742 switch (clkout) {
743 case 0:
744 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
745 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
746 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
747 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
748 break;
749 case 1:
750 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
751 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
752 PRCM_CLKOCR_CLK1TYPE);
753 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
754 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
755 break;
756 }
757 bits &= mask;
758
759 spin_lock_irqsave(&clkout_lock, flags);
760
c553b3ca 761 val = readl(PRCM_CLKOCR);
3df57bcf
MN
762 if (val & div_mask) {
763 if (div) {
764 if ((val & mask) != bits) {
765 r = -EBUSY;
766 goto unlock_and_return;
767 }
768 } else {
769 if ((val & mask & ~div_mask) != bits) {
770 r = -EINVAL;
771 goto unlock_and_return;
772 }
773 }
774 }
c553b3ca 775 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
776 requests[clkout] += (div ? 1 : -1);
777
778unlock_and_return:
779 spin_unlock_irqrestore(&clkout_lock, flags);
780
781 return r;
782}
783
73180f85 784int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
785{
786 unsigned long flags;
787
788 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
789
790 spin_lock_irqsave(&mb0_transfer.lock, flags);
791
c553b3ca 792 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
793 cpu_relax();
794
795 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
796 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
797 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
798 writeb((keep_ulp_clk ? 1 : 0),
799 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
800 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 801 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
802
803 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
804
805 return 0;
806}
807
4d64d2e3
MN
808u8 db8500_prcmu_get_power_state_result(void)
809{
810 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
811}
812
3df57bcf
MN
813/* This function should only be called while mb0_transfer.lock is held. */
814static void config_wakeups(void)
815{
816 const u8 header[2] = {
817 MB0H_CONFIG_WAKEUPS_EXE,
818 MB0H_CONFIG_WAKEUPS_SLEEP
819 };
820 static u32 last_dbb_events;
821 static u32 last_abb_events;
822 u32 dbb_events;
823 u32 abb_events;
824 unsigned int i;
825
826 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
827 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
828
829 abb_events = mb0_transfer.req.abb_events;
830
831 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
832 return;
833
834 for (i = 0; i < 2; i++) {
c553b3ca 835 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
836 cpu_relax();
837 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
838 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
839 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 840 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
841 }
842 last_dbb_events = dbb_events;
843 last_abb_events = abb_events;
844}
845
73180f85 846void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
847{
848 unsigned long flags;
849 u32 bits;
850 int i;
851
852 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
853
854 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
855 if (wakeups & BIT(i))
856 bits |= prcmu_wakeup_bit[i];
857 }
858
859 spin_lock_irqsave(&mb0_transfer.lock, flags);
860
861 mb0_transfer.req.dbb_wakeups = bits;
862 config_wakeups();
863
864 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
865}
866
73180f85 867void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
868{
869 unsigned long flags;
870
871 spin_lock_irqsave(&mb0_transfer.lock, flags);
872
873 mb0_transfer.req.abb_events = abb_events;
874 config_wakeups();
875
876 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
877}
878
73180f85 879void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
880{
881 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
882 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
883 else
884 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
885}
886
887/**
73180f85 888 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
889 * @opp: The new ARM operating point to which transition is to be made
890 * Returns: 0 on success, non-zero on failure
891 *
892 * This function sets the the operating point of the ARM.
893 */
73180f85 894int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
895{
896 int r;
897
898 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
899 return -EINVAL;
900
901 r = 0;
902
903 mutex_lock(&mb1_transfer.lock);
904
c553b3ca 905 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
906 cpu_relax();
907
908 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
909 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
910 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
911
c553b3ca 912 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
913 wait_for_completion(&mb1_transfer.work);
914
915 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
916 (mb1_transfer.ack.arm_opp != opp))
917 r = -EIO;
918
919 mutex_unlock(&mb1_transfer.lock);
920
921 return r;
922}
923
924/**
73180f85 925 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
926 *
927 * Returns: the current ARM OPP
928 */
73180f85 929int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
930{
931 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
932}
933
934/**
0508901c 935 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
936 *
937 * Returns: the current DDR OPP
938 */
0508901c 939int db8500_prcmu_get_ddr_opp(void)
3df57bcf 940{
c553b3ca 941 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
942}
943
944/**
0508901c 945 * db8500_set_ddr_opp - set the appropriate DDR OPP
3df57bcf
MN
946 * @opp: The new DDR operating point to which transition is to be made
947 * Returns: 0 on success, non-zero on failure
948 *
949 * This function sets the operating point of the DDR.
950 */
7a4f2609 951static bool enable_set_ddr_opp;
0508901c 952int db8500_prcmu_set_ddr_opp(u8 opp)
3df57bcf
MN
953{
954 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
955 return -EINVAL;
956 /* Changing the DDR OPP can hang the hardware pre-v21 */
7a4f2609 957 if (enable_set_ddr_opp)
c553b3ca 958 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
959
960 return 0;
961}
6b6fae2b 962
4d64d2e3
MN
963/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
964static void request_even_slower_clocks(bool enable)
965{
b047d981 966 u32 clock_reg[] = {
4d64d2e3
MN
967 PRCM_ACLK_MGT,
968 PRCM_DMACLK_MGT
969 };
970 unsigned long flags;
971 unsigned int i;
972
973 spin_lock_irqsave(&clk_mgt_lock, flags);
974
975 /* Grab the HW semaphore. */
976 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
977 cpu_relax();
978
979 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
980 u32 val;
981 u32 div;
982
b047d981 983 val = readl(prcmu_base + clock_reg[i]);
4d64d2e3
MN
984 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
985 if (enable) {
986 if ((div <= 1) || (div > 15)) {
987 pr_err("prcmu: Bad clock divider %d in %s\n",
988 div, __func__);
989 goto unlock_and_return;
990 }
991 div <<= 1;
992 } else {
993 if (div <= 2)
994 goto unlock_and_return;
995 div >>= 1;
996 }
997 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
998 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
b047d981 999 writel(val, prcmu_base + clock_reg[i]);
4d64d2e3
MN
1000 }
1001
1002unlock_and_return:
1003 /* Release the HW semaphore. */
1004 writel(0, PRCM_SEM);
1005
1006 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1007}
1008
3df57bcf 1009/**
0508901c 1010 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
1011 * @opp: The new APE operating point to which transition is to be made
1012 * Returns: 0 on success, non-zero on failure
1013 *
1014 * This function sets the operating point of the APE.
1015 */
0508901c 1016int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
1017{
1018 int r = 0;
1019
4d64d2e3
MN
1020 if (opp == mb1_transfer.ape_opp)
1021 return 0;
1022
3df57bcf
MN
1023 mutex_lock(&mb1_transfer.lock);
1024
4d64d2e3
MN
1025 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1026 request_even_slower_clocks(false);
1027
1028 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1029 goto skip_message;
1030
c553b3ca 1031 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1032 cpu_relax();
1033
1034 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1035 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
4d64d2e3
MN
1036 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1037 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
3df57bcf 1038
c553b3ca 1039 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1040 wait_for_completion(&mb1_transfer.work);
1041
1042 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1043 (mb1_transfer.ack.ape_opp != opp))
1044 r = -EIO;
1045
4d64d2e3
MN
1046skip_message:
1047 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1048 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1049 request_even_slower_clocks(true);
1050 if (!r)
1051 mb1_transfer.ape_opp = opp;
1052
3df57bcf
MN
1053 mutex_unlock(&mb1_transfer.lock);
1054
1055 return r;
1056}
1057
1058/**
0508901c 1059 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1060 *
1061 * Returns: the current APE OPP
1062 */
0508901c 1063int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1064{
1065 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1066}
1067
1068/**
686f871b 1069 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
3df57bcf
MN
1070 * @enable: true to request the higher voltage, false to drop a request.
1071 *
1072 * Calls to this function to enable and disable requests must be balanced.
1073 */
686f871b 1074int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
3df57bcf
MN
1075{
1076 int r = 0;
1077 u8 header;
1078 static unsigned int requests;
1079
1080 mutex_lock(&mb1_transfer.lock);
1081
1082 if (enable) {
1083 if (0 != requests++)
1084 goto unlock_and_return;
1085 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1086 } else {
1087 if (requests == 0) {
1088 r = -EIO;
1089 goto unlock_and_return;
1090 } else if (1 != requests--) {
1091 goto unlock_and_return;
1092 }
1093 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1094 }
1095
c553b3ca 1096 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1097 cpu_relax();
1098
1099 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1100
c553b3ca 1101 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1102 wait_for_completion(&mb1_transfer.work);
1103
1104 if ((mb1_transfer.ack.header != header) ||
1105 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1106 r = -EIO;
1107
1108unlock_and_return:
1109 mutex_unlock(&mb1_transfer.lock);
1110
1111 return r;
1112}
1113
1114/**
1115 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1116 *
1117 * This function releases the power state requirements of a USB wakeup.
1118 */
1119int prcmu_release_usb_wakeup_state(void)
1120{
1121 int r = 0;
1122
1123 mutex_lock(&mb1_transfer.lock);
1124
c553b3ca 1125 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1126 cpu_relax();
1127
1128 writeb(MB1H_RELEASE_USB_WAKEUP,
1129 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1130
c553b3ca 1131 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1132 wait_for_completion(&mb1_transfer.work);
1133
1134 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1135 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1136 r = -EIO;
1137
1138 mutex_unlock(&mb1_transfer.lock);
1139
1140 return r;
1141}
1142
0837bb72
MN
1143static int request_pll(u8 clock, bool enable)
1144{
1145 int r = 0;
1146
6b6fae2b
MN
1147 if (clock == PRCMU_PLLSOC0)
1148 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1149 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1150 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1151 else
1152 return -EINVAL;
1153
1154 mutex_lock(&mb1_transfer.lock);
1155
1156 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1157 cpu_relax();
1158
1159 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1160 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1161
1162 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1163 wait_for_completion(&mb1_transfer.work);
1164
1165 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1166 r = -EIO;
1167
1168 mutex_unlock(&mb1_transfer.lock);
1169
1170 return r;
1171}
1172
3df57bcf 1173/**
73180f85 1174 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1175 * @epod_id: The EPOD to set
1176 * @epod_state: The new EPOD state
1177 *
1178 * This function sets the state of a EPOD (power domain). It may not be called
1179 * from interrupt context.
1180 */
73180f85 1181int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1182{
1183 int r = 0;
1184 bool ram_retention = false;
1185 int i;
1186
1187 /* check argument */
1188 BUG_ON(epod_id >= NUM_EPOD_ID);
1189
1190 /* set flag if retention is possible */
1191 switch (epod_id) {
1192 case EPOD_ID_SVAMMDSP:
1193 case EPOD_ID_SIAMMDSP:
1194 case EPOD_ID_ESRAM12:
1195 case EPOD_ID_ESRAM34:
1196 ram_retention = true;
1197 break;
1198 }
1199
1200 /* check argument */
1201 BUG_ON(epod_state > EPOD_STATE_ON);
1202 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1203
1204 /* get lock */
1205 mutex_lock(&mb2_transfer.lock);
1206
1207 /* wait for mailbox */
c553b3ca 1208 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1209 cpu_relax();
1210
1211 /* fill in mailbox */
1212 for (i = 0; i < NUM_EPOD_ID; i++)
1213 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1214 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1215
1216 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1217
c553b3ca 1218 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1219
1220 /*
1221 * The current firmware version does not handle errors correctly,
1222 * and we cannot recover if there is an error.
1223 * This is expected to change when the firmware is updated.
1224 */
1225 if (!wait_for_completion_timeout(&mb2_transfer.work,
1226 msecs_to_jiffies(20000))) {
1227 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1228 __func__);
1229 r = -EIO;
1230 goto unlock_and_return;
1231 }
1232
1233 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1234 r = -EIO;
1235
1236unlock_and_return:
1237 mutex_unlock(&mb2_transfer.lock);
1238 return r;
1239}
1240
1241/**
1242 * prcmu_configure_auto_pm - Configure autonomous power management.
1243 * @sleep: Configuration for ApSleep.
1244 * @idle: Configuration for ApIdle.
1245 */
1246void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1247 struct prcmu_auto_pm_config *idle)
1248{
1249 u32 sleep_cfg;
1250 u32 idle_cfg;
1251 unsigned long flags;
e3726fcf 1252
3df57bcf 1253 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1254
3df57bcf
MN
1255 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1256 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1257 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1258 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1259 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1260 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1261
3df57bcf
MN
1262 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1263 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1264 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1265 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1266 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1267 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1268
3df57bcf 1269 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1270
3df57bcf
MN
1271 /*
1272 * The autonomous power management configuration is done through
1273 * fields in mailbox 2, but these fields are only used as shared
1274 * variables - i.e. there is no need to send a message.
1275 */
1276 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1277 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1278
3df57bcf
MN
1279 mb2_transfer.auto_pm_enabled =
1280 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1281 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1282 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1283 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1284
3df57bcf
MN
1285 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1286}
1287EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1288
3df57bcf
MN
1289bool prcmu_is_auto_pm_enabled(void)
1290{
1291 return mb2_transfer.auto_pm_enabled;
1292}
e0befb23 1293
3df57bcf
MN
1294static int request_sysclk(bool enable)
1295{
1296 int r;
1297 unsigned long flags;
e3726fcf 1298
3df57bcf 1299 r = 0;
e3726fcf 1300
3df57bcf 1301 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1302
3df57bcf 1303 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1304
c553b3ca 1305 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1306 cpu_relax();
e0befb23 1307
3df57bcf 1308 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1309
3df57bcf 1310 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1311 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1312
3df57bcf
MN
1313 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1314
1315 /*
1316 * The firmware only sends an ACK if we want to enable the
1317 * SysClk, and it succeeds.
1318 */
1319 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1320 msecs_to_jiffies(20000))) {
1321 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1322 __func__);
1323 r = -EIO;
1324 }
1325
1326 mutex_unlock(&mb3_transfer.sysclk_lock);
1327
1328 return r;
1329}
1330
1331static int request_timclk(bool enable)
1332{
1333 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1334
1335 if (!enable)
1336 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1337 writel(val, PRCM_TCR);
3df57bcf
MN
1338
1339 return 0;
1340}
1341
6b6fae2b 1342static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1343{
1344 u32 val;
1345 unsigned long flags;
1346
1347 spin_lock_irqsave(&clk_mgt_lock, flags);
1348
1349 /* Grab the HW semaphore. */
c553b3ca 1350 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1351 cpu_relax();
1352
b047d981 1353 val = readl(prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1354 if (enable) {
1355 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1356 } else {
1357 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1358 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1359 }
b047d981 1360 writel(val, prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1361
1362 /* Release the HW semaphore. */
c553b3ca 1363 writel(0, PRCM_SEM);
3df57bcf
MN
1364
1365 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1366
1367 return 0;
1368}
1369
0837bb72
MN
1370static int request_sga_clock(u8 clock, bool enable)
1371{
1372 u32 val;
1373 int ret;
1374
1375 if (enable) {
1376 val = readl(PRCM_CGATING_BYPASS);
1377 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1378 }
1379
6b6fae2b 1380 ret = request_clock(clock, enable);
0837bb72
MN
1381
1382 if (!ret && !enable) {
1383 val = readl(PRCM_CGATING_BYPASS);
1384 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1385 }
1386
1387 return ret;
1388}
1389
6b6fae2b
MN
1390static inline bool plldsi_locked(void)
1391{
1392 return (readl(PRCM_PLLDSI_LOCKP) &
1393 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1394 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1395 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1396 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1397}
1398
1399static int request_plldsi(bool enable)
1400{
1401 int r = 0;
1402 u32 val;
1403
1404 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1405 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1406 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1407
1408 val = readl(PRCM_PLLDSI_ENABLE);
1409 if (enable)
1410 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1411 else
1412 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1413 writel(val, PRCM_PLLDSI_ENABLE);
1414
1415 if (enable) {
1416 unsigned int i;
1417 bool locked = plldsi_locked();
1418
1419 for (i = 10; !locked && (i > 0); --i) {
1420 udelay(100);
1421 locked = plldsi_locked();
1422 }
1423 if (locked) {
1424 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1425 PRCM_APE_RESETN_SET);
1426 } else {
1427 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1428 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1429 PRCM_MMIP_LS_CLAMP_SET);
1430 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1431 writel(val, PRCM_PLLDSI_ENABLE);
1432 r = -EAGAIN;
1433 }
1434 } else {
1435 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1436 }
1437 return r;
1438}
1439
1440static int request_dsiclk(u8 n, bool enable)
1441{
1442 u32 val;
1443
1444 val = readl(PRCM_DSI_PLLOUT_SEL);
1445 val &= ~dsiclk[n].divsel_mask;
1446 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1447 dsiclk[n].divsel_shift);
1448 writel(val, PRCM_DSI_PLLOUT_SEL);
1449 return 0;
1450}
1451
1452static int request_dsiescclk(u8 n, bool enable)
1453{
1454 u32 val;
1455
1456 val = readl(PRCM_DSITVCLK_DIV);
1457 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1458 writel(val, PRCM_DSITVCLK_DIV);
1459 return 0;
1460}
1461
3df57bcf 1462/**
73180f85 1463 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1464 * @clock: The clock for which the request is made.
1465 * @enable: Whether the clock should be enabled (true) or disabled (false).
1466 *
1467 * This function should only be used by the clock implementation.
1468 * Do not use it from any other place!
1469 */
73180f85 1470int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1471{
6b6fae2b 1472 if (clock == PRCMU_SGACLK)
0837bb72 1473 return request_sga_clock(clock, enable);
6b6fae2b
MN
1474 else if (clock < PRCMU_NUM_REG_CLOCKS)
1475 return request_clock(clock, enable);
1476 else if (clock == PRCMU_TIMCLK)
3df57bcf 1477 return request_timclk(enable);
6b6fae2b
MN
1478 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1479 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1480 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1481 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1482 else if (clock == PRCMU_PLLDSI)
1483 return request_plldsi(enable);
1484 else if (clock == PRCMU_SYSCLK)
3df57bcf 1485 return request_sysclk(enable);
6b6fae2b 1486 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1487 return request_pll(clock, enable);
6b6fae2b
MN
1488 else
1489 return -EINVAL;
1490}
1491
1492static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1493 int branch)
1494{
1495 u64 rate;
1496 u32 val;
1497 u32 d;
1498 u32 div = 1;
1499
1500 val = readl(reg);
1501
1502 rate = src_rate;
1503 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1504
1505 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1506 if (d > 1)
1507 div *= d;
1508
1509 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1510 if (d > 1)
1511 div *= d;
1512
1513 if (val & PRCM_PLL_FREQ_SELDIV2)
1514 div *= 2;
1515
1516 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1517 (val & PRCM_PLL_FREQ_DIV2EN) &&
1518 ((reg == PRCM_PLLSOC0_FREQ) ||
20aee5b6 1519 (reg == PRCM_PLLARM_FREQ) ||
6b6fae2b
MN
1520 (reg == PRCM_PLLDDR_FREQ))))
1521 div *= 2;
1522
1523 (void)do_div(rate, div);
1524
1525 return (unsigned long)rate;
1526}
1527
1528#define ROOT_CLOCK_RATE 38400000
1529
1530static unsigned long clock_rate(u8 clock)
1531{
1532 u32 val;
1533 u32 pllsw;
1534 unsigned long rate = ROOT_CLOCK_RATE;
1535
b047d981 1536 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1537
1538 if (val & PRCM_CLK_MGT_CLK38) {
1539 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1540 rate /= 2;
1541 return rate;
1542 }
1543
1544 val |= clk_mgt[clock].pllsw;
1545 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1546
1547 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1548 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1549 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1550 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1551 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1552 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1553 else
1554 return 0;
1555
1556 if ((clock == PRCMU_SGACLK) &&
1557 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1558 u64 r = (rate * 10);
1559
1560 (void)do_div(r, 25);
1561 return (unsigned long)r;
1562 }
1563 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1564 if (val)
1565 return rate / val;
1566 else
1567 return 0;
1568}
20aee5b6 1569
b2302c87 1570static unsigned long armss_rate(void)
20aee5b6
MJ
1571{
1572 u32 r;
1573 unsigned long rate;
1574
1575 r = readl(PRCM_ARM_CHGCLKREQ);
1576
1577 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1578 /* External ARMCLKFIX clock */
1579
1580 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1581
1582 /* Check PRCM_ARM_CHGCLKREQ divider */
1583 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1584 rate /= 2;
1585
1586 /* Check PRCM_ARMCLKFIX_MGT divider */
1587 r = readl(PRCM_ARMCLKFIX_MGT);
1588 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1589 rate /= r;
1590
1591 } else {/* ARM PLL */
1592 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1593 }
1594
b2302c87 1595 return rate;
20aee5b6 1596}
6b6fae2b
MN
1597
1598static unsigned long dsiclk_rate(u8 n)
1599{
1600 u32 divsel;
1601 u32 div = 1;
1602
1603 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1604 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1605
1606 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1607 divsel = dsiclk[n].divsel;
e9d7b4b5
UH
1608 else
1609 dsiclk[n].divsel = divsel;
6b6fae2b
MN
1610
1611 switch (divsel) {
1612 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1613 div *= 2;
1614 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1615 div *= 2;
1616 case PRCM_DSI_PLLOUT_SEL_PHI:
1617 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1618 PLL_RAW) / div;
e62ccf3a 1619 default:
6b6fae2b 1620 return 0;
e62ccf3a 1621 }
6b6fae2b
MN
1622}
1623
1624static unsigned long dsiescclk_rate(u8 n)
1625{
1626 u32 div;
1627
1628 div = readl(PRCM_DSITVCLK_DIV);
1629 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1630 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1631}
1632
1633unsigned long prcmu_clock_rate(u8 clock)
1634{
e62ccf3a 1635 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1636 return clock_rate(clock);
1637 else if (clock == PRCMU_TIMCLK)
1638 return ROOT_CLOCK_RATE / 16;
1639 else if (clock == PRCMU_SYSCLK)
1640 return ROOT_CLOCK_RATE;
1641 else if (clock == PRCMU_PLLSOC0)
1642 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1643 else if (clock == PRCMU_PLLSOC1)
1644 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
20aee5b6
MJ
1645 else if (clock == PRCMU_ARMSS)
1646 return armss_rate();
6b6fae2b
MN
1647 else if (clock == PRCMU_PLLDDR)
1648 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1649 else if (clock == PRCMU_PLLDSI)
1650 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1651 PLL_RAW);
1652 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1653 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1654 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1655 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1656 else
1657 return 0;
1658}
1659
1660static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1661{
1662 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1663 return ROOT_CLOCK_RATE;
1664 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1665 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1666 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1667 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1668 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1669 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1670 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1671 else
1672 return 0;
1673}
1674
1675static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1676{
1677 u32 div;
1678
1679 div = (src_rate / rate);
1680 if (div == 0)
1681 return 1;
1682 if (rate < (src_rate / div))
1683 div++;
1684 return div;
1685}
1686
1687static long round_clock_rate(u8 clock, unsigned long rate)
1688{
1689 u32 val;
1690 u32 div;
1691 unsigned long src_rate;
1692 long rounded_rate;
1693
b047d981 1694 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1695 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1696 clk_mgt[clock].branch);
1697 div = clock_divider(src_rate, rate);
1698 if (val & PRCM_CLK_MGT_CLK38) {
1699 if (clk_mgt[clock].clk38div) {
1700 if (div > 2)
1701 div = 2;
1702 } else {
1703 div = 1;
1704 }
1705 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1706 u64 r = (src_rate * 10);
1707
1708 (void)do_div(r, 25);
1709 if (r <= rate)
1710 return (unsigned long)r;
1711 }
1712 rounded_rate = (src_rate / min(div, (u32)31));
1713
1714 return rounded_rate;
1715}
1716
b2302c87
UH
1717/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1718static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
50701588
VK
1719 { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1720 { .frequency = 400000, .driver_data = ARM_50_OPP,},
1721 { .frequency = 800000, .driver_data = ARM_100_OPP,},
b2302c87
UH
1722 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1723 { .frequency = CPUFREQ_TABLE_END,},
1724};
1725
1726static long round_armss_rate(unsigned long rate)
1727{
fdb56c45 1728 struct cpufreq_frequency_table *pos;
b2302c87 1729 long freq = 0;
b2302c87
UH
1730
1731 /* cpufreq table frequencies is in KHz. */
1732 rate = rate / 1000;
1733
1734 /* Find the corresponding arm opp from the cpufreq table. */
fdb56c45
SK
1735 cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1736 freq = pos->frequency;
b2302c87
UH
1737 if (freq == rate)
1738 break;
b2302c87
UH
1739 }
1740
1741 /* Return the last valid value, even if a match was not found. */
1742 return freq * 1000;
1743}
1744
6b6fae2b
MN
1745#define MIN_PLL_VCO_RATE 600000000ULL
1746#define MAX_PLL_VCO_RATE 1680640000ULL
1747
1748static long round_plldsi_rate(unsigned long rate)
1749{
1750 long rounded_rate = 0;
1751 unsigned long src_rate;
1752 unsigned long rem;
1753 u32 r;
1754
1755 src_rate = clock_rate(PRCMU_HDMICLK);
1756 rem = rate;
1757
1758 for (r = 7; (rem > 0) && (r > 0); r--) {
1759 u64 d;
1760
1761 d = (r * rate);
1762 (void)do_div(d, src_rate);
1763 if (d < 6)
1764 d = 6;
1765 else if (d > 255)
1766 d = 255;
1767 d *= src_rate;
1768 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1769 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1770 continue;
1771 (void)do_div(d, r);
1772 if (rate < d) {
1773 if (rounded_rate == 0)
1774 rounded_rate = (long)d;
1775 break;
1776 }
1777 if ((rate - d) < rem) {
1778 rem = (rate - d);
1779 rounded_rate = (long)d;
1780 }
1781 }
1782 return rounded_rate;
1783}
1784
1785static long round_dsiclk_rate(unsigned long rate)
1786{
1787 u32 div;
1788 unsigned long src_rate;
1789 long rounded_rate;
1790
1791 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1792 PLL_RAW);
1793 div = clock_divider(src_rate, rate);
1794 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1795
1796 return rounded_rate;
1797}
1798
1799static long round_dsiescclk_rate(unsigned long rate)
1800{
1801 u32 div;
1802 unsigned long src_rate;
1803 long rounded_rate;
1804
1805 src_rate = clock_rate(PRCMU_TVCLK);
1806 div = clock_divider(src_rate, rate);
1807 rounded_rate = (src_rate / min(div, (u32)255));
1808
1809 return rounded_rate;
1810}
1811
1812long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1813{
1814 if (clock < PRCMU_NUM_REG_CLOCKS)
1815 return round_clock_rate(clock, rate);
b2302c87
UH
1816 else if (clock == PRCMU_ARMSS)
1817 return round_armss_rate(rate);
6b6fae2b
MN
1818 else if (clock == PRCMU_PLLDSI)
1819 return round_plldsi_rate(rate);
1820 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1821 return round_dsiclk_rate(rate);
1822 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1823 return round_dsiescclk_rate(rate);
1824 else
1825 return (long)prcmu_clock_rate(clock);
1826}
1827
1828static void set_clock_rate(u8 clock, unsigned long rate)
1829{
1830 u32 val;
1831 u32 div;
1832 unsigned long src_rate;
1833 unsigned long flags;
1834
1835 spin_lock_irqsave(&clk_mgt_lock, flags);
1836
1837 /* Grab the HW semaphore. */
1838 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1839 cpu_relax();
1840
b047d981 1841 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1842 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1843 clk_mgt[clock].branch);
1844 div = clock_divider(src_rate, rate);
1845 if (val & PRCM_CLK_MGT_CLK38) {
1846 if (clk_mgt[clock].clk38div) {
1847 if (div > 1)
1848 val |= PRCM_CLK_MGT_CLK38DIV;
1849 else
1850 val &= ~PRCM_CLK_MGT_CLK38DIV;
1851 }
1852 } else if (clock == PRCMU_SGACLK) {
1853 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1854 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1855 if (div == 3) {
1856 u64 r = (src_rate * 10);
1857
1858 (void)do_div(r, 25);
1859 if (r <= rate) {
1860 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1861 div = 0;
1862 }
1863 }
1864 val |= min(div, (u32)31);
1865 } else {
1866 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1867 val |= min(div, (u32)31);
1868 }
b047d981 1869 writel(val, prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1870
1871 /* Release the HW semaphore. */
1872 writel(0, PRCM_SEM);
1873
1874 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1875}
1876
b2302c87
UH
1877static int set_armss_rate(unsigned long rate)
1878{
fdb56c45 1879 struct cpufreq_frequency_table *pos;
b2302c87
UH
1880
1881 /* cpufreq table frequencies is in KHz. */
1882 rate = rate / 1000;
1883
1884 /* Find the corresponding arm opp from the cpufreq table. */
fdb56c45
SK
1885 cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1886 if (pos->frequency == rate)
b2302c87 1887 break;
b2302c87 1888
fdb56c45 1889 if (pos->frequency != rate)
b2302c87
UH
1890 return -EINVAL;
1891
1892 /* Set the new arm opp. */
fdb56c45 1893 return db8500_prcmu_set_arm_opp(pos->driver_data);
b2302c87
UH
1894}
1895
6b6fae2b
MN
1896static int set_plldsi_rate(unsigned long rate)
1897{
1898 unsigned long src_rate;
1899 unsigned long rem;
1900 u32 pll_freq = 0;
1901 u32 r;
1902
1903 src_rate = clock_rate(PRCMU_HDMICLK);
1904 rem = rate;
1905
1906 for (r = 7; (rem > 0) && (r > 0); r--) {
1907 u64 d;
1908 u64 hwrate;
1909
1910 d = (r * rate);
1911 (void)do_div(d, src_rate);
1912 if (d < 6)
1913 d = 6;
1914 else if (d > 255)
1915 d = 255;
1916 hwrate = (d * src_rate);
1917 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1918 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1919 continue;
1920 (void)do_div(hwrate, r);
1921 if (rate < hwrate) {
1922 if (pll_freq == 0)
1923 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1924 (r << PRCM_PLL_FREQ_R_SHIFT));
1925 break;
1926 }
1927 if ((rate - hwrate) < rem) {
1928 rem = (rate - hwrate);
1929 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1930 (r << PRCM_PLL_FREQ_R_SHIFT));
1931 }
1932 }
1933 if (pll_freq == 0)
1934 return -EINVAL;
1935
1936 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1937 writel(pll_freq, PRCM_PLLDSI_FREQ);
1938
1939 return 0;
1940}
1941
1942static void set_dsiclk_rate(u8 n, unsigned long rate)
1943{
1944 u32 val;
1945 u32 div;
1946
1947 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1948 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1949
1950 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1951 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1952 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1953
1954 val = readl(PRCM_DSI_PLLOUT_SEL);
1955 val &= ~dsiclk[n].divsel_mask;
1956 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1957 writel(val, PRCM_DSI_PLLOUT_SEL);
1958}
1959
1960static void set_dsiescclk_rate(u8 n, unsigned long rate)
1961{
1962 u32 val;
1963 u32 div;
1964
1965 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1966 val = readl(PRCM_DSITVCLK_DIV);
1967 val &= ~dsiescclk[n].div_mask;
1968 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1969 writel(val, PRCM_DSITVCLK_DIV);
1970}
1971
1972int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1973{
1974 if (clock < PRCMU_NUM_REG_CLOCKS)
1975 set_clock_rate(clock, rate);
b2302c87
UH
1976 else if (clock == PRCMU_ARMSS)
1977 return set_armss_rate(rate);
6b6fae2b
MN
1978 else if (clock == PRCMU_PLLDSI)
1979 return set_plldsi_rate(rate);
1980 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1981 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1982 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1983 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1984 return 0;
3df57bcf
MN
1985}
1986
73180f85 1987int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
1988{
1989 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1990 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1991 return -EINVAL;
1992
1993 mutex_lock(&mb4_transfer.lock);
1994
c553b3ca 1995 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1996 cpu_relax();
1997
1998 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1999 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2000 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2001 writeb(DDR_PWR_STATE_ON,
2002 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2003 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2004
c553b3ca 2005 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2006 wait_for_completion(&mb4_transfer.work);
2007
2008 mutex_unlock(&mb4_transfer.lock);
2009
2010 return 0;
2011}
2012
0508901c 2013int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
2014{
2015 mutex_lock(&mb4_transfer.lock);
2016
c553b3ca 2017 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2018 cpu_relax();
2019
2020 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2021 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2022
c553b3ca 2023 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2024 wait_for_completion(&mb4_transfer.work);
2025
2026 mutex_unlock(&mb4_transfer.lock);
2027
2028 return 0;
2029}
2030
0508901c 2031int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2032{
2033 mutex_lock(&mb4_transfer.lock);
2034
c553b3ca 2035 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2036 cpu_relax();
2037
2038 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2039 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2040 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2041 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2042 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2043
c553b3ca 2044 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2045 wait_for_completion(&mb4_transfer.work);
2046
2047 mutex_unlock(&mb4_transfer.lock);
2048
2049 return 0;
2050}
26716ce1 2051EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
3df57bcf
MN
2052
2053static int config_hot_period(u16 val)
2054{
2055 mutex_lock(&mb4_transfer.lock);
2056
c553b3ca 2057 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2058 cpu_relax();
2059
2060 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2061 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2062
c553b3ca 2063 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2064 wait_for_completion(&mb4_transfer.work);
2065
2066 mutex_unlock(&mb4_transfer.lock);
2067
2068 return 0;
2069}
2070
0508901c 2071int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2072{
2073 if (cycles32k == 0xFFFF)
2074 return -EINVAL;
2075
2076 return config_hot_period(cycles32k);
2077}
26716ce1 2078EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
3df57bcf 2079
0508901c 2080int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2081{
2082 return config_hot_period(0xFFFF);
2083}
26716ce1 2084EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
3df57bcf 2085
84165b80
JA
2086static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2087{
2088
2089 mutex_lock(&mb4_transfer.lock);
2090
2091 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2092 cpu_relax();
2093
2094 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2095 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2096 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2097 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2098
2099 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2100
2101 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2102 wait_for_completion(&mb4_transfer.work);
2103
2104 mutex_unlock(&mb4_transfer.lock);
2105
2106 return 0;
2107
2108}
2109
0508901c 2110int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2111{
2112 BUG_ON(num == 0 || num > 0xf);
2113 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2114 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2115 A9WDOG_AUTO_OFF_DIS);
2116}
6f8cfa99 2117EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
84165b80 2118
0508901c 2119int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2120{
2121 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2122}
6f8cfa99 2123EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
84165b80 2124
0508901c 2125int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2126{
2127 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2128}
6f8cfa99 2129EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
84165b80 2130
0508901c 2131int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2132{
2133 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2134}
6f8cfa99 2135EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
84165b80
JA
2136
2137/*
2138 * timeout is 28 bit, in ms.
2139 */
0508901c 2140int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80 2141{
84165b80
JA
2142 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2143 (id & A9WDOG_ID_MASK) |
2144 /*
2145 * Put the lowest 28 bits of timeout at
2146 * offset 4. Four first bits are used for id.
2147 */
2148 (u8)((timeout << 4) & 0xf0),
2149 (u8)((timeout >> 4) & 0xff),
2150 (u8)((timeout >> 12) & 0xff),
2151 (u8)((timeout >> 20) & 0xff));
2152}
6f8cfa99 2153EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
84165b80 2154
e3726fcf
LW
2155/**
2156 * prcmu_abb_read() - Read register value(s) from the ABB.
2157 * @slave: The I2C slave address.
2158 * @reg: The (start) register address.
2159 * @value: The read out value(s).
2160 * @size: The number of registers to read.
2161 *
2162 * Reads register value(s) from the ABB.
2163 * @size has to be 1 for the current firmware version.
2164 */
2165int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2166{
2167 int r;
2168
2169 if (size != 1)
2170 return -EINVAL;
2171
3df57bcf 2172 mutex_lock(&mb5_transfer.lock);
e3726fcf 2173
c553b3ca 2174 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2175 cpu_relax();
2176
3c3e4898 2177 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2178 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2179 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2180 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2181 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2182
c553b3ca 2183 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2184
e3726fcf 2185 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2186 msecs_to_jiffies(20000))) {
2187 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2188 __func__);
e3726fcf 2189 r = -EIO;
3df57bcf
MN
2190 } else {
2191 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2192 }
3df57bcf 2193
e3726fcf
LW
2194 if (!r)
2195 *value = mb5_transfer.ack.value;
2196
e3726fcf 2197 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2198
e3726fcf
LW
2199 return r;
2200}
e3726fcf
LW
2201
2202/**
3c3e4898 2203 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
e3726fcf
LW
2204 * @slave: The I2C slave address.
2205 * @reg: The (start) register address.
2206 * @value: The value(s) to write.
3c3e4898 2207 * @mask: The mask(s) to use.
e3726fcf
LW
2208 * @size: The number of registers to write.
2209 *
3c3e4898
MN
2210 * Writes masked register value(s) to the ABB.
2211 * For each @value, only the bits set to 1 in the corresponding @mask
2212 * will be written. The other bits are not changed.
e3726fcf
LW
2213 * @size has to be 1 for the current firmware version.
2214 */
3c3e4898 2215int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
e3726fcf
LW
2216{
2217 int r;
2218
2219 if (size != 1)
2220 return -EINVAL;
2221
3df57bcf 2222 mutex_lock(&mb5_transfer.lock);
e3726fcf 2223
c553b3ca 2224 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2225 cpu_relax();
2226
3c3e4898 2227 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2228 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2229 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2230 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2231 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2232
c553b3ca 2233 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2234
e3726fcf 2235 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2236 msecs_to_jiffies(20000))) {
2237 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2238 __func__);
e3726fcf 2239 r = -EIO;
3df57bcf
MN
2240 } else {
2241 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2242 }
e3726fcf 2243
e3726fcf 2244 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2245
e3726fcf
LW
2246 return r;
2247}
e3726fcf 2248
3c3e4898
MN
2249/**
2250 * prcmu_abb_write() - Write register value(s) to the ABB.
2251 * @slave: The I2C slave address.
2252 * @reg: The (start) register address.
2253 * @value: The value(s) to write.
2254 * @size: The number of registers to write.
2255 *
2256 * Writes register value(s) to the ABB.
2257 * @size has to be 1 for the current firmware version.
2258 */
2259int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2260{
2261 u8 mask = ~0;
2262
2263 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2264}
2265
3df57bcf
MN
2266/**
2267 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2268 */
5261e101 2269int prcmu_ac_wake_req(void)
e0befb23 2270{
3df57bcf 2271 u32 val;
5261e101 2272 int ret = 0;
e0befb23 2273
3df57bcf 2274 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2275
c553b3ca 2276 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2277 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2278 goto unlock_and_return;
e0befb23 2279
3df57bcf 2280 atomic_set(&ac_wake_req_state, 1);
e0befb23 2281
5261e101
AM
2282 /*
2283 * Force Modem Wake-up before hostaccess_req ping-pong.
2284 * It prevents Modem to enter in Sleep while acking the hostaccess
2285 * request. The 31us delay has been calculated by HWI.
2286 */
2287 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2288 writel(val, PRCM_HOSTACCESS_REQ);
2289
2290 udelay(31);
2291
2292 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2293 writel(val, PRCM_HOSTACCESS_REQ);
e0befb23 2294
3df57bcf 2295 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2296 msecs_to_jiffies(5000))) {
57265bc1 2297 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e 2298 __func__);
5261e101 2299 ret = -EFAULT;
3df57bcf 2300 }
e0befb23 2301
3df57bcf
MN
2302unlock_and_return:
2303 mutex_unlock(&mb0_transfer.ac_wake_lock);
5261e101 2304 return ret;
e0befb23
MP
2305}
2306
2307/**
3df57bcf 2308 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2309 */
ffb01160 2310void prcmu_ac_sleep_req(void)
e0befb23 2311{
3df57bcf
MN
2312 u32 val;
2313
2314 mutex_lock(&mb0_transfer.ac_wake_lock);
2315
c553b3ca 2316 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2317 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2318 goto unlock_and_return;
2319
2320 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2321 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2322
2323 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2324 msecs_to_jiffies(5000))) {
57265bc1 2325 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2326 __func__);
2327 }
2328
2329 atomic_set(&ac_wake_req_state, 0);
2330
2331unlock_and_return:
2332 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2333}
e0befb23 2334
73180f85 2335bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2336{
3df57bcf 2337 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2338}
e0befb23
MP
2339
2340/**
73180f85 2341 * db8500_prcmu_system_reset - System reset
e0befb23 2342 *
73180f85 2343 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2344 * fires interrupt to fw
e0befb23 2345 */
73180f85 2346void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2347{
3df57bcf 2348 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2349 writel(1, PRCM_APE_SOFTRST);
e0befb23 2350}
e0befb23 2351
597045de
SR
2352/**
2353 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2354 *
2355 * Retrieves the reset reason code stored by prcmu_system_reset() before
2356 * last restart.
2357 */
2358u16 db8500_prcmu_get_reset_code(void)
2359{
2360 return readw(tcdm_base + PRCM_SW_RST_REASON);
2361}
2362
e0befb23 2363/**
0508901c 2364 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2365 */
0508901c 2366void db8500_prcmu_modem_reset(void)
e0befb23 2367{
3df57bcf
MN
2368 mutex_lock(&mb1_transfer.lock);
2369
c553b3ca 2370 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2371 cpu_relax();
2372
2373 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2374 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2375 wait_for_completion(&mb1_transfer.work);
2376
2377 /*
2378 * No need to check return from PRCMU as modem should go in reset state
2379 * This state is already managed by upper layer
2380 */
2381
2382 mutex_unlock(&mb1_transfer.lock);
e0befb23 2383}
e0befb23 2384
3df57bcf 2385static void ack_dbb_wakeup(void)
e0befb23 2386{
3df57bcf
MN
2387 unsigned long flags;
2388
2389 spin_lock_irqsave(&mb0_transfer.lock, flags);
2390
c553b3ca 2391 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2392 cpu_relax();
2393
2394 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2395 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2396
2397 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2398}
e0befb23 2399
3df57bcf 2400static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2401{
3df57bcf
MN
2402 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2403 header, n);
e0befb23
MP
2404}
2405
3df57bcf 2406static bool read_mailbox_0(void)
e3726fcf 2407{
3df57bcf
MN
2408 bool r;
2409 u32 ev;
2410 unsigned int n;
2411 u8 header;
2412
2413 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2414 switch (header) {
2415 case MB0H_WAKEUP_EXE:
2416 case MB0H_WAKEUP_SLEEP:
2417 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2418 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2419 else
2420 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2421
2422 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2423 complete(&mb0_transfer.ac_wake_work);
2424 if (ev & WAKEUP_BIT_SYSCLK_OK)
2425 complete(&mb3_transfer.sysclk_work);
2426
2427 ev &= mb0_transfer.req.dbb_irqs;
2428
2429 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2430 if (ev & prcmu_irq_bit[n])
89d9b1c9 2431 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
3df57bcf
MN
2432 }
2433 r = true;
2434 break;
2435 default:
2436 print_unknown_header_warning(0, header);
2437 r = false;
2438 break;
2439 }
c553b3ca 2440 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2441 return r;
e3726fcf
LW
2442}
2443
3df57bcf 2444static bool read_mailbox_1(void)
e3726fcf 2445{
3df57bcf
MN
2446 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2447 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2448 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2449 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2450 PRCM_ACK_MB1_CURRENT_APE_OPP);
2451 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2452 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2453 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2454 complete(&mb1_transfer.work);
3df57bcf 2455 return false;
e3726fcf
LW
2456}
2457
3df57bcf 2458static bool read_mailbox_2(void)
e3726fcf 2459{
3df57bcf 2460 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2461 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2462 complete(&mb2_transfer.work);
2463 return false;
e3726fcf
LW
2464}
2465
3df57bcf 2466static bool read_mailbox_3(void)
e3726fcf 2467{
c553b3ca 2468 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2469 return false;
e3726fcf
LW
2470}
2471
3df57bcf 2472static bool read_mailbox_4(void)
e3726fcf 2473{
3df57bcf
MN
2474 u8 header;
2475 bool do_complete = true;
2476
2477 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2478 switch (header) {
2479 case MB4H_MEM_ST:
2480 case MB4H_HOTDOG:
2481 case MB4H_HOTMON:
2482 case MB4H_HOT_PERIOD:
a592c2e2
MN
2483 case MB4H_A9WDOG_CONF:
2484 case MB4H_A9WDOG_EN:
2485 case MB4H_A9WDOG_DIS:
2486 case MB4H_A9WDOG_LOAD:
2487 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2488 break;
2489 default:
2490 print_unknown_header_warning(4, header);
2491 do_complete = false;
2492 break;
2493 }
2494
c553b3ca 2495 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2496
2497 if (do_complete)
2498 complete(&mb4_transfer.work);
2499
2500 return false;
e3726fcf
LW
2501}
2502
3df57bcf 2503static bool read_mailbox_5(void)
e3726fcf 2504{
3df57bcf
MN
2505 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2506 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2507 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2508 complete(&mb5_transfer.work);
3df57bcf 2509 return false;
e3726fcf
LW
2510}
2511
3df57bcf 2512static bool read_mailbox_6(void)
e3726fcf 2513{
c553b3ca 2514 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2515 return false;
e3726fcf
LW
2516}
2517
3df57bcf 2518static bool read_mailbox_7(void)
e3726fcf 2519{
c553b3ca 2520 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2521 return false;
e3726fcf
LW
2522}
2523
3df57bcf 2524static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2525 read_mailbox_0,
2526 read_mailbox_1,
2527 read_mailbox_2,
2528 read_mailbox_3,
2529 read_mailbox_4,
2530 read_mailbox_5,
2531 read_mailbox_6,
2532 read_mailbox_7
2533};
2534
2535static irqreturn_t prcmu_irq_handler(int irq, void *data)
2536{
2537 u32 bits;
2538 u8 n;
3df57bcf 2539 irqreturn_t r;
e3726fcf 2540
c553b3ca 2541 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2542 if (unlikely(!bits))
2543 return IRQ_NONE;
2544
3df57bcf 2545 r = IRQ_HANDLED;
e3726fcf
LW
2546 for (n = 0; bits; n++) {
2547 if (bits & MBOX_BIT(n)) {
2548 bits -= MBOX_BIT(n);
3df57bcf
MN
2549 if (read_mailbox[n]())
2550 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2551 }
2552 }
3df57bcf
MN
2553 return r;
2554}
2555
2556static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2557{
2558 ack_dbb_wakeup();
e3726fcf
LW
2559 return IRQ_HANDLED;
2560}
2561
3df57bcf
MN
2562static void prcmu_mask_work(struct work_struct *work)
2563{
2564 unsigned long flags;
2565
2566 spin_lock_irqsave(&mb0_transfer.lock, flags);
2567
2568 config_wakeups();
2569
2570 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2571}
2572
2573static void prcmu_irq_mask(struct irq_data *d)
2574{
2575 unsigned long flags;
2576
2577 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2578
f3f1f0a1 2579 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2580
2581 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2582
2583 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2584 schedule_work(&mb0_transfer.mask_work);
2585}
2586
2587static void prcmu_irq_unmask(struct irq_data *d)
2588{
2589 unsigned long flags;
2590
2591 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2592
f3f1f0a1 2593 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2594
2595 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2596
2597 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2598 schedule_work(&mb0_transfer.mask_work);
2599}
2600
2601static void noop(struct irq_data *d)
2602{
2603}
2604
2605static struct irq_chip prcmu_irq_chip = {
2606 .name = "prcmu",
2607 .irq_disable = prcmu_irq_mask,
2608 .irq_ack = noop,
2609 .irq_mask = prcmu_irq_mask,
2610 .irq_unmask = prcmu_irq_unmask,
2611};
2612
05ec260e 2613static __init char *fw_project_name(u32 project)
b58d12fe
MN
2614{
2615 switch (project) {
2616 case PRCMU_FW_PROJECT_U8500:
2617 return "U8500";
05ec260e
LW
2618 case PRCMU_FW_PROJECT_U8400:
2619 return "U8400";
b58d12fe
MN
2620 case PRCMU_FW_PROJECT_U9500:
2621 return "U9500";
05ec260e
LW
2622 case PRCMU_FW_PROJECT_U8500_MBB:
2623 return "U8500 MBB";
2624 case PRCMU_FW_PROJECT_U8500_C1:
2625 return "U8500 C1";
2626 case PRCMU_FW_PROJECT_U8500_C2:
2627 return "U8500 C2";
2628 case PRCMU_FW_PROJECT_U8500_C3:
2629 return "U8500 C3";
2630 case PRCMU_FW_PROJECT_U8500_C4:
2631 return "U8500 C4";
2632 case PRCMU_FW_PROJECT_U9500_MBL:
2633 return "U9500 MBL";
2634 case PRCMU_FW_PROJECT_U8500_MBL:
2635 return "U8500 MBL";
2636 case PRCMU_FW_PROJECT_U8500_MBL2:
2637 return "U8500 MBL2";
5f96a1a6 2638 case PRCMU_FW_PROJECT_U8520:
05ec260e 2639 return "U8520 MBL";
1927ddf6
BJ
2640 case PRCMU_FW_PROJECT_U8420:
2641 return "U8420";
05ec260e
LW
2642 case PRCMU_FW_PROJECT_U9540:
2643 return "U9540";
2644 case PRCMU_FW_PROJECT_A9420:
2645 return "A9420";
2646 case PRCMU_FW_PROJECT_L8540:
2647 return "L8540";
2648 case PRCMU_FW_PROJECT_L8580:
2649 return "L8580";
b58d12fe
MN
2650 default:
2651 return "Unknown";
2652 }
2653}
2654
f3f1f0a1
LJ
2655static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2656 irq_hw_number_t hwirq)
2657{
2658 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2659 handle_simple_irq);
f3f1f0a1
LJ
2660
2661 return 0;
2662}
2663
7ce7b26f 2664static const struct irq_domain_ops db8500_irq_ops = {
89d9b1c9
LW
2665 .map = db8500_irq_map,
2666 .xlate = irq_domain_xlate_twocell,
f3f1f0a1
LJ
2667};
2668
f864c46a 2669static int db8500_irq_init(struct device_node *np)
f3f1f0a1 2670{
89d9b1c9 2671 int i;
a7238e43 2672
a7238e43 2673 db8500_irq_domain = irq_domain_add_simple(
f864c46a 2674 np, NUM_PRCMU_WAKEUPS, 0,
a7238e43 2675 &db8500_irq_ops, NULL);
f3f1f0a1
LJ
2676
2677 if (!db8500_irq_domain) {
2678 pr_err("Failed to create irqdomain\n");
2679 return -ENOSYS;
2680 }
2681
89d9b1c9
LW
2682 /* All wakeups will be used, so create mappings for all */
2683 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2684 irq_create_mapping(db8500_irq_domain, i);
2685
f3f1f0a1
LJ
2686 return 0;
2687}
2688
05ec260e
LW
2689static void dbx500_fw_version_init(struct platform_device *pdev,
2690 u32 version_offset)
fcbd458e 2691{
05ec260e
LW
2692 struct resource *res;
2693 void __iomem *tcpm_base;
741cdecf 2694 u32 version;
3df57bcf 2695
05ec260e
LW
2696 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2697 "prcmu-tcpm");
2698 if (!res) {
2699 dev_err(&pdev->dev,
2700 "Error: no prcmu tcpm memory region provided\n");
2701 return;
2702 }
2703 tcpm_base = ioremap(res->start, resource_size(res));
741cdecf
LJ
2704 if (!tcpm_base) {
2705 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2706 return;
fcbd458e 2707 }
741cdecf
LJ
2708
2709 version = readl(tcpm_base + version_offset);
2710 fw_info.version.project = (version & 0xFF);
2711 fw_info.version.api_version = (version >> 8) & 0xFF;
2712 fw_info.version.func_version = (version >> 16) & 0xFF;
2713 fw_info.version.errata = (version >> 24) & 0xFF;
2714 strncpy(fw_info.version.project_name,
2715 fw_project_name(fw_info.version.project),
2716 PRCMU_FW_PROJECT_NAME_LEN);
2717 fw_info.valid = true;
2718 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2719 fw_info.version.project_name,
2720 fw_info.version.project,
2721 fw_info.version.api_version,
2722 fw_info.version.func_version,
2723 fw_info.version.errata);
2724 iounmap(tcpm_base);
05ec260e 2725}
e0befb23 2726
9a47a8dc 2727void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
05ec260e 2728{
9a47a8dc
LW
2729 /*
2730 * This is a temporary remap to bring up the clocks. It is
2731 * subsequently replaces with a real remap. After the merge of
2732 * the mailbox subsystem all of this early code goes away, and the
2733 * clock driver can probe independently. An early initcall will
2734 * still be needed, but it can be diverted into drivers/clk/ux500.
2735 */
2736 prcmu_base = ioremap(phy_base, size);
2737 if (!prcmu_base)
2738 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2739
3df57bcf
MN
2740 spin_lock_init(&mb0_transfer.lock);
2741 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2742 mutex_init(&mb0_transfer.ac_wake_lock);
2743 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2744 mutex_init(&mb1_transfer.lock);
2745 init_completion(&mb1_transfer.work);
4d64d2e3 2746 mb1_transfer.ape_opp = APE_NO_CHANGE;
3df57bcf
MN
2747 mutex_init(&mb2_transfer.lock);
2748 init_completion(&mb2_transfer.work);
2749 spin_lock_init(&mb2_transfer.auto_pm_lock);
2750 spin_lock_init(&mb3_transfer.lock);
2751 mutex_init(&mb3_transfer.sysclk_lock);
2752 init_completion(&mb3_transfer.sysclk_work);
2753 mutex_init(&mb4_transfer.lock);
2754 init_completion(&mb4_transfer.work);
e3726fcf
LW
2755 mutex_init(&mb5_transfer.lock);
2756 init_completion(&mb5_transfer.work);
2757
3df57bcf 2758 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
3df57bcf
MN
2759}
2760
0508901c 2761static void __init init_prcm_registers(void)
d65e12d7
MN
2762{
2763 u32 val;
2764
2765 val = readl(PRCM_A9PL_FORCE_CLKEN);
2766 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2767 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2768 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2769}
2770
1032fbfd
BJ
2771/*
2772 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2773 */
2774static struct regulator_consumer_supply db8500_vape_consumers[] = {
2775 REGULATOR_SUPPLY("v-ape", NULL),
2776 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2777 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2778 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2779 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
ae840635 2780 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
1032fbfd
BJ
2781 /* "v-mmc" changed to "vcore" in the mainline kernel */
2782 REGULATOR_SUPPLY("vcore", "sdi0"),
2783 REGULATOR_SUPPLY("vcore", "sdi1"),
2784 REGULATOR_SUPPLY("vcore", "sdi2"),
2785 REGULATOR_SUPPLY("vcore", "sdi3"),
2786 REGULATOR_SUPPLY("vcore", "sdi4"),
2787 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2788 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2789 /* "v-uart" changed to "vcore" in the mainline kernel */
2790 REGULATOR_SUPPLY("vcore", "uart0"),
2791 REGULATOR_SUPPLY("vcore", "uart1"),
2792 REGULATOR_SUPPLY("vcore", "uart2"),
2793 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
992b133a 2794 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
bc367481 2795 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
1032fbfd
BJ
2796};
2797
2798static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1032fbfd
BJ
2799 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2800 /* AV8100 regulator */
2801 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2802};
2803
2804static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
992b133a 2805 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
624e87c2
BJ
2806 REGULATOR_SUPPLY("vsupply", "mcde"),
2807};
2808
2809/* SVA MMDSP regulator switch */
2810static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2811 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2812};
2813
2814/* SVA pipe regulator switch */
2815static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2816 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2817};
2818
2819/* SIA MMDSP regulator switch */
2820static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2821 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2822};
2823
2824/* SIA pipe regulator switch */
2825static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2826 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2827};
2828
2829static struct regulator_consumer_supply db8500_sga_consumers[] = {
2830 REGULATOR_SUPPLY("v-mali", NULL),
2831};
2832
2833/* ESRAM1 and 2 regulator switch */
2834static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2835 REGULATOR_SUPPLY("esram12", "cm_control"),
2836};
2837
2838/* ESRAM3 and 4 regulator switch */
2839static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2840 REGULATOR_SUPPLY("v-esram34", "mcde"),
2841 REGULATOR_SUPPLY("esram34", "cm_control"),
992b133a 2842 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
1032fbfd
BJ
2843};
2844
2845static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2846 [DB8500_REGULATOR_VAPE] = {
2847 .constraints = {
2848 .name = "db8500-vape",
2849 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1e45860f 2850 .always_on = true,
1032fbfd
BJ
2851 },
2852 .consumer_supplies = db8500_vape_consumers,
2853 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2854 },
2855 [DB8500_REGULATOR_VARM] = {
2856 .constraints = {
2857 .name = "db8500-varm",
2858 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2859 },
2860 },
2861 [DB8500_REGULATOR_VMODEM] = {
2862 .constraints = {
2863 .name = "db8500-vmodem",
2864 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865 },
2866 },
2867 [DB8500_REGULATOR_VPLL] = {
2868 .constraints = {
2869 .name = "db8500-vpll",
2870 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2871 },
2872 },
2873 [DB8500_REGULATOR_VSMPS1] = {
2874 .constraints = {
2875 .name = "db8500-vsmps1",
2876 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2877 },
2878 },
2879 [DB8500_REGULATOR_VSMPS2] = {
2880 .constraints = {
2881 .name = "db8500-vsmps2",
2882 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2883 },
2884 .consumer_supplies = db8500_vsmps2_consumers,
2885 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2886 },
2887 [DB8500_REGULATOR_VSMPS3] = {
2888 .constraints = {
2889 .name = "db8500-vsmps3",
2890 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891 },
2892 },
2893 [DB8500_REGULATOR_VRF1] = {
2894 .constraints = {
2895 .name = "db8500-vrf1",
2896 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2897 },
2898 },
2899 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
992b133a 2900 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2901 .constraints = {
2902 .name = "db8500-sva-mmdsp",
2903 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904 },
624e87c2
BJ
2905 .consumer_supplies = db8500_svammdsp_consumers,
2906 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2907 },
2908 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2909 .constraints = {
2910 /* "ret" means "retention" */
2911 .name = "db8500-sva-mmdsp-ret",
2912 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913 },
2914 },
2915 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
992b133a 2916 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2917 .constraints = {
2918 .name = "db8500-sva-pipe",
2919 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 },
624e87c2
BJ
2921 .consumer_supplies = db8500_svapipe_consumers,
2922 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2923 },
2924 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
992b133a 2925 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2926 .constraints = {
2927 .name = "db8500-sia-mmdsp",
2928 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929 },
624e87c2
BJ
2930 .consumer_supplies = db8500_siammdsp_consumers,
2931 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2932 },
2933 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2934 .constraints = {
2935 .name = "db8500-sia-mmdsp-ret",
2936 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 },
2938 },
2939 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
992b133a 2940 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2941 .constraints = {
2942 .name = "db8500-sia-pipe",
2943 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944 },
624e87c2
BJ
2945 .consumer_supplies = db8500_siapipe_consumers,
2946 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2947 },
2948 [DB8500_REGULATOR_SWITCH_SGA] = {
2949 .supply_regulator = "db8500-vape",
2950 .constraints = {
2951 .name = "db8500-sga",
2952 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953 },
624e87c2
BJ
2954 .consumer_supplies = db8500_sga_consumers,
2955 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2956
1032fbfd
BJ
2957 },
2958 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2959 .supply_regulator = "db8500-vape",
2960 .constraints = {
2961 .name = "db8500-b2r2-mcde",
2962 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2963 },
2964 .consumer_supplies = db8500_b2r2_mcde_consumers,
2965 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2966 },
2967 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
992b133a
BJ
2968 /*
2969 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2970 * no need to hold Vape
2971 */
1032fbfd
BJ
2972 .constraints = {
2973 .name = "db8500-esram12",
2974 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2975 },
624e87c2
BJ
2976 .consumer_supplies = db8500_esram12_consumers,
2977 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2978 },
2979 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2980 .constraints = {
2981 .name = "db8500-esram12-ret",
2982 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2983 },
2984 },
2985 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
992b133a
BJ
2986 /*
2987 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2988 * no need to hold Vape
2989 */
1032fbfd
BJ
2990 .constraints = {
2991 .name = "db8500-esram34",
2992 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2993 },
624e87c2
BJ
2994 .consumer_supplies = db8500_esram34_consumers,
2995 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
2996 },
2997 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2998 .constraints = {
2999 .name = "db8500-esram34-ret",
3000 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3001 },
3002 },
3003};
3004
b3aac62b
FB
3005static struct ux500_wdt_data db8500_wdt_pdata = {
3006 .timeout = 600, /* 10 minutes */
3007 .has_28_bits_resolution = true,
3008};
55b175d7
AB
3009/*
3010 * Thermal Sensor
3011 */
3012
3013static struct resource db8500_thsens_resources[] = {
3014 {
3015 .name = "IRQ_HOTMON_LOW",
3016 .start = IRQ_PRCMU_HOTMON_LOW,
3017 .end = IRQ_PRCMU_HOTMON_LOW,
3018 .flags = IORESOURCE_IRQ,
3019 },
3020 {
3021 .name = "IRQ_HOTMON_HIGH",
3022 .start = IRQ_PRCMU_HOTMON_HIGH,
3023 .end = IRQ_PRCMU_HOTMON_HIGH,
3024 .flags = IORESOURCE_IRQ,
3025 },
3026};
3027
3028static struct db8500_thsens_platform_data db8500_thsens_data = {
3029 .trip_points[0] = {
3030 .temp = 70000,
3031 .type = THERMAL_TRIP_ACTIVE,
3032 .cdev_name = {
3033 [0] = "thermal-cpufreq-0",
3034 },
3035 },
3036 .trip_points[1] = {
3037 .temp = 75000,
3038 .type = THERMAL_TRIP_ACTIVE,
3039 .cdev_name = {
3040 [0] = "thermal-cpufreq-0",
3041 },
3042 },
3043 .trip_points[2] = {
3044 .temp = 80000,
3045 .type = THERMAL_TRIP_ACTIVE,
3046 .cdev_name = {
3047 [0] = "thermal-cpufreq-0",
3048 },
3049 },
3050 .trip_points[3] = {
3051 .temp = 85000,
3052 .type = THERMAL_TRIP_CRITICAL,
3053 },
3054 .num_trips = 4,
3055};
b3aac62b 3056
5ac98553 3057static const struct mfd_cell common_prcmu_devs[] = {
d98a5384
LJ
3058 {
3059 .name = "ux500_wdt",
3060 .platform_data = &db8500_wdt_pdata,
3061 .pdata_size = sizeof(db8500_wdt_pdata),
3062 .id = -1,
3063 },
3064};
3065
5ac98553 3066static const struct mfd_cell db8500_prcmu_devs[] = {
3df57bcf
MN
3067 {
3068 .name = "db8500-prcmu-regulators",
5d90322b 3069 .of_compatible = "stericsson,db8500-prcmu-regulator",
1ed7891f
MW
3070 .platform_data = &db8500_regulators,
3071 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
3072 },
3073 {
84c7c20f
LJ
3074 .name = "cpufreq-ux500",
3075 .of_compatible = "stericsson,cpufreq-ux500",
c280f45f
UH
3076 .platform_data = &db8500_cpufreq_table,
3077 .pdata_size = sizeof(db8500_cpufreq_table),
3df57bcf 3078 },
8025395f
LW
3079 {
3080 .name = "cpuidle-dbx500",
3081 .of_compatible = "stericsson,cpuidle-dbx500",
3082 },
6d11d135 3083 {
55b175d7
AB
3084 .name = "db8500-thermal",
3085 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3086 .resources = db8500_thsens_resources,
3087 .platform_data = &db8500_thsens_data,
a3ef0deb 3088 .pdata_size = sizeof(db8500_thsens_data),
6d11d135 3089 },
3df57bcf
MN
3090};
3091
c280f45f
UH
3092static void db8500_prcmu_update_cpufreq(void)
3093{
3094 if (prcmu_has_arm_maxopp()) {
3095 db8500_cpufreq_table[3].frequency = 1000000;
50701588 3096 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
c280f45f
UH
3097 }
3098}
3099
55b175d7 3100static int db8500_prcmu_register_ab8500(struct device *parent,
f864c46a 3101 struct ab8500_platform_data *pdata)
55b175d7 3102{
f864c46a
LW
3103 struct device_node *np;
3104 struct resource ab8500_resource;
5785a97e 3105 const struct mfd_cell ab8500_cell = {
55b175d7
AB
3106 .name = "ab8500-core",
3107 .of_compatible = "stericsson,ab8500",
3108 .id = AB8500_VERSION_AB8500,
3109 .platform_data = pdata,
3110 .pdata_size = sizeof(struct ab8500_platform_data),
3111 .resources = &ab8500_resource,
3112 .num_resources = 1,
3113 };
3114
f864c46a
LW
3115 if (!parent->of_node)
3116 return -ENODEV;
3117
3118 /* Look up the device node, sneak the IRQ out of it */
3119 for_each_child_of_node(parent->of_node, np) {
3120 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3121 break;
3122 }
3123 if (!np) {
3124 dev_info(parent, "could not find AB8500 node in the device tree\n");
3125 return -ENODEV;
3126 }
3127 of_irq_to_resource_table(np, &ab8500_resource, 1);
3128
55b175d7
AB
3129 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3130}
3131
3df57bcf
MN
3132/**
3133 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3134 *
3135 */
f791be49 3136static int db8500_prcmu_probe(struct platform_device *pdev)
3df57bcf 3137{
ca7edd16 3138 struct device_node *np = pdev->dev.of_node;
05ec260e 3139 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
55b175d7 3140 int irq = 0, err = 0;
05ec260e 3141 struct resource *res;
3df57bcf 3142
b047d981
LW
3143 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3144 if (!res) {
3145 dev_err(&pdev->dev, "no prcmu memory region provided\n");
6bdf891a 3146 return -EINVAL;
b047d981
LW
3147 }
3148 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3149 if (!prcmu_base) {
3150 dev_err(&pdev->dev,
3151 "failed to ioremap prcmu register memory\n");
6bdf891a 3152 return -ENOMEM;
b047d981 3153 }
0508901c 3154 init_prcm_registers();
05ec260e
LW
3155 dbx500_fw_version_init(pdev, pdata->version_offset);
3156 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3157 if (!res) {
3158 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
6bdf891a 3159 return -EINVAL;
05ec260e
LW
3160 }
3161 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3162 resource_size(res));
51a7e02b
PG
3163 if (!tcdm_base) {
3164 dev_err(&pdev->dev,
3165 "failed to ioremap prcmu-tcdm register memory\n");
6bdf891a 3166 return -ENOMEM;
51a7e02b 3167 }
05ec260e 3168
e3726fcf 3169 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 3170 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf 3171
05ec260e
LW
3172 irq = platform_get_irq(pdev, 0);
3173 if (irq <= 0) {
3174 dev_err(&pdev->dev, "no prcmu irq provided\n");
6bdf891a 3175 return irq;
05ec260e 3176 }
ca7edd16
LJ
3177
3178 err = request_threaded_irq(irq, prcmu_irq_handler,
3179 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3df57bcf
MN
3180 if (err < 0) {
3181 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
6bdf891a 3182 return err;
3df57bcf
MN
3183 }
3184
f864c46a 3185 db8500_irq_init(np);
3a8e39c9 3186
7a4f2609 3187 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3df57bcf 3188
c280f45f
UH
3189 db8500_prcmu_update_cpufreq();
3190
d98a5384
LJ
3191 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3192 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
5d90322b
LJ
3193 if (err) {
3194 pr_err("prcmu: Failed to add subdevices\n");
3195 return err;
ca7edd16 3196 }
e3726fcf 3197
d98a5384
LJ
3198 /* TODO: Remove restriction when clk definitions are available. */
3199 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3200 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3201 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3202 db8500_irq_domain);
3203 if (err) {
3204 mfd_remove_devices(&pdev->dev);
3205 pr_err("prcmu: Failed to add subdevices\n");
6bdf891a 3206 return err;
d98a5384
LJ
3207 }
3208 }
3209
f864c46a 3210 err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata);
55b175d7
AB
3211 if (err) {
3212 mfd_remove_devices(&pdev->dev);
3213 pr_err("prcmu: Failed to add ab8500 subdevice\n");
6bdf891a 3214 return err;
55b175d7
AB
3215 }
3216
ca7edd16 3217 pr_info("DB8500 PRCMU initialized\n");
3df57bcf
MN
3218 return err;
3219}
3c144762
LJ
3220static const struct of_device_id db8500_prcmu_match[] = {
3221 { .compatible = "stericsson,db8500-prcmu"},
3222 { },
3223};
3df57bcf
MN
3224
3225static struct platform_driver db8500_prcmu_driver = {
3226 .driver = {
3227 .name = "db8500-prcmu",
3c144762 3228 .of_match_table = db8500_prcmu_match,
3df57bcf 3229 },
9fc63f67 3230 .probe = db8500_prcmu_probe,
3df57bcf
MN
3231};
3232
3233static int __init db8500_prcmu_init(void)
3234{
9fc63f67 3235 return platform_driver_register(&db8500_prcmu_driver);
e3726fcf
LW
3236}
3237
a661aca4 3238core_initcall(db8500_prcmu_init);
3df57bcf
MN
3239
3240MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3241MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3242MODULE_LICENSE("GPL v2");