memory: omap-gpmc: Fix build error without CONFIG_OF
[linux-block.git] / drivers / memory / emif.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
7ec94453
A
2/*
3 * EMIF driver
4 *
5 * Copyright (C) 2012 Texas Instruments, Inc.
6 *
7 * Aneesh V <aneesh@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
7ec94453 9 */
06303c2e 10#include <linux/err.h>
7ec94453
A
11#include <linux/kernel.h>
12#include <linux/reboot.h>
13#include <linux/platform_data/emif_plat.h>
14#include <linux/io.h>
15#include <linux/device.h>
16#include <linux/platform_device.h>
17#include <linux/interrupt.h>
18#include <linux/slab.h>
e6b42eb6 19#include <linux/of.h>
aac10aaa 20#include <linux/debugfs.h>
7ec94453
A
21#include <linux/seq_file.h>
22#include <linux/module.h>
23#include <linux/list.h>
a93de288 24#include <linux/spinlock.h>
2553e32a 25#include <linux/pm.h>
5ec47cda 26
7ec94453 27#include "emif.h"
5ec47cda 28#include "jedec_ddr.h"
e6b42eb6 29#include "of_memory.h"
7ec94453
A
30
31/**
32 * struct emif_data - Per device static data for driver's use
33 * @duplicate: Whether the DDR devices attached to this EMIF
34 * instance are exactly same as that on EMIF1. In
35 * this case we can save some memory and processing
36 * @temperature_level: Maximum temperature of LPDDR2 devices attached
37 * to this EMIF - read from MR4 register. If there
38 * are two devices attached to this EMIF, this
39 * value is the maximum of the two temperature
40 * levels.
41 * @node: node in the device list
42 * @base: base address of memory-mapped IO registers.
43 * @dev: device pointer.
a93de288
A
44 * @addressing table with addressing information from the spec
45 * @regs_cache: An array of 'struct emif_regs' that stores
46 * calculated register values for different
47 * frequencies, to avoid re-calculating them on
48 * each DVFS transition.
49 * @curr_regs: The set of register values used in the last
50 * frequency change (i.e. corresponding to the
51 * frequency in effect at the moment)
7ec94453 52 * @plat_data: Pointer to saved platform data.
aac10aaa 53 * @debugfs_root: dentry to the root folder for EMIF in debugfs
e6b42eb6 54 * @np_ddr: Pointer to ddr device tree node
7ec94453
A
55 */
56struct emif_data {
57 u8 duplicate;
58 u8 temperature_level;
a93de288 59 u8 lpmode;
7ec94453 60 struct list_head node;
a93de288 61 unsigned long irq_state;
7ec94453
A
62 void __iomem *base;
63 struct device *dev;
a93de288
A
64 const struct lpddr2_addressing *addressing;
65 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
66 struct emif_regs *curr_regs;
7ec94453 67 struct emif_platform_data *plat_data;
aac10aaa 68 struct dentry *debugfs_root;
e6b42eb6 69 struct device_node *np_ddr;
7ec94453
A
70};
71
72static struct emif_data *emif1;
a93de288
A
73static spinlock_t emif_lock;
74static unsigned long irq_state;
75static u32 t_ck; /* DDR clock period in ps */
7ec94453
A
76static LIST_HEAD(device_list);
77
e5445ee6 78#ifdef CONFIG_DEBUG_FS
aac10aaa
A
79static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
80 struct emif_regs *regs)
81{
82 u32 type = emif->plat_data->device_info->type;
83 u32 ip_rev = emif->plat_data->ip_rev;
84
85 seq_printf(s, "EMIF register cache dump for %dMHz\n",
86 regs->freq/1000000);
87
88 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
89 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
90 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
91 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
92
93 if (ip_rev == EMIF_4D) {
94 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95 regs->read_idle_ctrl_shdw_normal);
96 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 regs->read_idle_ctrl_shdw_volt_ramp);
98 } else if (ip_rev == EMIF_4D5) {
99 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100 regs->dll_calib_ctrl_shdw_normal);
101 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102 regs->dll_calib_ctrl_shdw_volt_ramp);
103 }
104
105 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
106 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107 regs->ref_ctrl_shdw_derated);
108 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109 regs->sdram_tim1_shdw_derated);
110 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111 regs->sdram_tim3_shdw_derated);
112 }
113}
114
115static int emif_regdump_show(struct seq_file *s, void *unused)
116{
117 struct emif_data *emif = s->private;
118 struct emif_regs **regs_cache;
119 int i;
120
121 if (emif->duplicate)
122 regs_cache = emif1->regs_cache;
123 else
124 regs_cache = emif->regs_cache;
125
126 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
127 do_emif_regdump_show(s, emif, regs_cache[i]);
d363a88b 128 seq_putc(s, '\n');
aac10aaa
A
129 }
130
131 return 0;
132}
133
134static int emif_regdump_open(struct inode *inode, struct file *file)
135{
136 return single_open(file, emif_regdump_show, inode->i_private);
137}
138
139static const struct file_operations emif_regdump_fops = {
140 .open = emif_regdump_open,
141 .read = seq_read,
142 .release = single_release,
143};
144
145static int emif_mr4_show(struct seq_file *s, void *unused)
146{
147 struct emif_data *emif = s->private;
148
149 seq_printf(s, "MR4=%d\n", emif->temperature_level);
150 return 0;
151}
152
153static int emif_mr4_open(struct inode *inode, struct file *file)
154{
155 return single_open(file, emif_mr4_show, inode->i_private);
156}
157
158static const struct file_operations emif_mr4_fops = {
159 .open = emif_mr4_open,
160 .read = seq_read,
161 .release = single_release,
162};
163
164static int __init_or_module emif_debugfs_init(struct emif_data *emif)
165{
166 struct dentry *dentry;
167 int ret;
168
169 dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
e5445ee6
AL
170 if (!dentry) {
171 ret = -ENOMEM;
aac10aaa
A
172 goto err0;
173 }
174 emif->debugfs_root = dentry;
175
176 dentry = debugfs_create_file("regcache_dump", S_IRUGO,
177 emif->debugfs_root, emif, &emif_regdump_fops);
e5445ee6
AL
178 if (!dentry) {
179 ret = -ENOMEM;
aac10aaa
A
180 goto err1;
181 }
182
183 dentry = debugfs_create_file("mr4", S_IRUGO,
184 emif->debugfs_root, emif, &emif_mr4_fops);
e5445ee6
AL
185 if (!dentry) {
186 ret = -ENOMEM;
aac10aaa
A
187 goto err1;
188 }
189
190 return 0;
191err1:
192 debugfs_remove_recursive(emif->debugfs_root);
193err0:
194 return ret;
195}
196
197static void __exit emif_debugfs_exit(struct emif_data *emif)
198{
199 debugfs_remove_recursive(emif->debugfs_root);
200 emif->debugfs_root = NULL;
201}
e5445ee6
AL
202#else
203static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
204{
205 return 0;
206}
207
208static inline void __exit emif_debugfs_exit(struct emif_data *emif)
209{
210}
211#endif
aac10aaa 212
a93de288
A
213/*
214 * Calculate the period of DDR clock from frequency value
215 */
216static void set_ddr_clk_period(u32 freq)
217{
218 /* Divide 10^12 by frequency to get period in ps */
219 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
220}
221
98231c4f
A
222/*
223 * Get bus width used by EMIF. Note that this may be different from the
224 * bus width of the DDR devices used. For instance two 16-bit DDR devices
225 * may be connected to a given CS of EMIF. In this case bus width as far
226 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
227 */
228static u32 get_emif_bus_width(struct emif_data *emif)
229{
230 u32 width;
231 void __iomem *base = emif->base;
232
233 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
234 >> NARROW_MODE_SHIFT;
235 width = width == 0 ? 32 : 16;
236
237 return width;
238}
239
a93de288
A
240/*
241 * Get the CL from SDRAM_CONFIG register
242 */
243static u32 get_cl(struct emif_data *emif)
244{
245 u32 cl;
246 void __iomem *base = emif->base;
247
248 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
249
250 return cl;
251}
252
253static void set_lpmode(struct emif_data *emif, u8 lpmode)
254{
255 u32 temp;
256 void __iomem *base = emif->base;
257
f02503b2
GS
258 /*
259 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
260 * Efficient
261 *
262 * i743 DESCRIPTION:
263 * The EMIF supports power-down state for low power. The EMIF
264 * automatically puts the SDRAM into power-down after the memory is
265 * not accessed for a defined number of cycles and the
266 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
267 * As the EMIF supports automatic output impedance calibration, a ZQ
268 * calibration long command is issued every time it exits active
269 * power-down and precharge power-down modes. The EMIF waits and
270 * blocks any other command during this calibration.
271 * The EMIF does not allow selective disabling of ZQ calibration upon
272 * exit of power-down mode. Due to very short periods of power-down
273 * cycles, ZQ calibration overhead creates bandwidth issues and
274 * increases overall system power consumption. On the other hand,
275 * issuing ZQ calibration long commands when exiting self-refresh is
276 * still required.
277 *
278 * WORKAROUND
279 * Because there is no power consumption benefit of the power-down due
280 * to the calibration and there is a performance risk, the guideline
281 * is to not allow power-down state and, therefore, to not have set
282 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
283 */
284 if ((emif->plat_data->ip_rev == EMIF_4D) &&
ec6652bd 285 (lpmode == EMIF_LP_MODE_PWR_DN)) {
f02503b2 286 WARN_ONCE(1,
28dc76f1 287 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
f02503b2
GS
288 /* rollback LP_MODE to Self-refresh mode */
289 lpmode = EMIF_LP_MODE_SELF_REFRESH;
290 }
291
a93de288
A
292 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
293 temp &= ~LP_MODE_MASK;
294 temp |= (lpmode << LP_MODE_SHIFT);
295 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
296}
297
298static void do_freq_update(void)
299{
300 struct emif_data *emif;
301
302 /*
303 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
304 *
305 * i728 DESCRIPTION:
306 * The EMIF automatically puts the SDRAM into self-refresh mode
307 * after the EMIF has not performed accesses during
308 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
309 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
310 * to 0x2. If during a small window the following three events
311 * occur:
312 * - The SR_TIMING counter expires
313 * - And frequency change is requested
314 * - And OCP access is requested
315 * Then it causes instable clock on the DDR interface.
316 *
317 * WORKAROUND
318 * To avoid the occurrence of the three events, the workaround
319 * is to disable the self-refresh when requesting a frequency
320 * change. Before requesting a frequency change the software must
321 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
322 * frequency change has been done, the software can reprogram
323 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
324 */
325 list_for_each_entry(emif, &device_list, node) {
326 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
327 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
328 }
329
330 /*
331 * TODO: Do FREQ_UPDATE here when an API
332 * is available for this as part of the new
333 * clock framework
334 */
335
336 list_for_each_entry(emif, &device_list, node) {
337 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
338 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
339 }
340}
341
342/* Find addressing table entry based on the device's type and density */
343static const struct lpddr2_addressing *get_addressing_table(
344 const struct ddr_device_info *device_info)
345{
346 u32 index, type, density;
347
348 type = device_info->type;
349 density = device_info->density;
350
351 switch (type) {
352 case DDR_TYPE_LPDDR2_S4:
353 index = density - 1;
354 break;
355 case DDR_TYPE_LPDDR2_S2:
356 switch (density) {
357 case DDR_DENSITY_1Gb:
358 case DDR_DENSITY_2Gb:
359 index = density + 3;
360 break;
361 default:
362 index = density - 1;
363 }
364 break;
365 default:
366 return NULL;
367 }
368
369 return &lpddr2_jedec_addressing_table[index];
370}
371
372/*
373 * Find the the right timing table from the array of timing
374 * tables of the device using DDR clock frequency
375 */
376static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
377 u32 freq)
378{
379 u32 i, min, max, freq_nearest;
380 const struct lpddr2_timings *timings = NULL;
381 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
382 struct device *dev = emif->dev;
383
384 /* Start with a very high frequency - 1GHz */
385 freq_nearest = 1000000000;
386
387 /*
388 * Find the timings table such that:
389 * 1. the frequency range covers the required frequency(safe) AND
390 * 2. the max_freq is closest to the required frequency(optimal)
391 */
392 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
393 max = timings_arr[i].max_freq;
394 min = timings_arr[i].min_freq;
395 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
396 freq_nearest = max;
397 timings = &timings_arr[i];
398 }
399 }
400
401 if (!timings)
402 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
403 __func__, freq);
404
405 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
406 __func__, freq, freq_nearest);
407
408 return timings;
409}
410
411static u32 get_sdram_ref_ctrl_shdw(u32 freq,
412 const struct lpddr2_addressing *addressing)
413{
414 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
415
416 /* Scale down frequency and t_refi to avoid overflow */
417 freq_khz = freq / 1000;
418 t_refi = addressing->tREFI_ns / 100;
419
420 /*
421 * refresh rate to be set is 'tREFI(in us) * freq in MHz
422 * division by 10000 to account for change in units
423 */
424 val = t_refi * freq_khz / 10000;
425 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
426
427 return ref_ctrl_shdw;
428}
429
430static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
431 const struct lpddr2_min_tck *min_tck,
432 const struct lpddr2_addressing *addressing)
433{
434 u32 tim1 = 0, val = 0;
435
436 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
437 tim1 |= val << T_WTR_SHIFT;
438
439 if (addressing->num_banks == B8)
440 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
441 else
442 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
443 tim1 |= (val - 1) << T_RRD_SHIFT;
444
445 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
446 tim1 |= val << T_RC_SHIFT;
447
448 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
449 tim1 |= (val - 1) << T_RAS_SHIFT;
450
451 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
452 tim1 |= val << T_WR_SHIFT;
453
454 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
455 tim1 |= val << T_RCD_SHIFT;
456
457 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
458 tim1 |= val << T_RP_SHIFT;
459
460 return tim1;
461}
462
463static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
464 const struct lpddr2_min_tck *min_tck,
465 const struct lpddr2_addressing *addressing)
466{
467 u32 tim1 = 0, val = 0;
468
469 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
470 tim1 = val << T_WTR_SHIFT;
471
472 /*
473 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
474 * to tFAW for de-rating
475 */
476 if (addressing->num_banks == B8) {
477 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
478 } else {
479 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
480 val = max(min_tck->tRRD, val) - 1;
481 }
482 tim1 |= val << T_RRD_SHIFT;
483
484 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
485 tim1 |= (val - 1) << T_RC_SHIFT;
486
487 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
488 val = max(min_tck->tRASmin, val) - 1;
489 tim1 |= val << T_RAS_SHIFT;
490
491 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
492 tim1 |= val << T_WR_SHIFT;
493
494 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
495 tim1 |= (val - 1) << T_RCD_SHIFT;
496
497 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
498 tim1 |= (val - 1) << T_RP_SHIFT;
499
500 return tim1;
501}
502
503static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
504 const struct lpddr2_min_tck *min_tck,
505 const struct lpddr2_addressing *addressing,
506 u32 type)
507{
508 u32 tim2 = 0, val = 0;
509
510 val = min_tck->tCKE - 1;
511 tim2 |= val << T_CKE_SHIFT;
512
513 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
514 tim2 |= val << T_RTP_SHIFT;
515
516 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
517 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
518 tim2 |= val << T_XSNR_SHIFT;
519
520 /* XSRD same as XSNR for LPDDR2 */
521 tim2 |= val << T_XSRD_SHIFT;
522
523 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
524 tim2 |= val << T_XP_SHIFT;
525
526 return tim2;
527}
528
529static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
530 const struct lpddr2_min_tck *min_tck,
531 const struct lpddr2_addressing *addressing,
532 u32 type, u32 ip_rev, u32 derated)
533{
534 u32 tim3 = 0, val = 0, t_dqsck;
535
536 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
537 val = val > 0xF ? 0xF : val;
538 tim3 |= val << T_RAS_MAX_SHIFT;
539
540 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
541 tim3 |= val << T_RFC_SHIFT;
542
543 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
544 timings->tDQSCK_max_derated : timings->tDQSCK_max;
545 if (ip_rev == EMIF_4D5)
546 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
547 else
548 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
549
550 tim3 |= val << T_TDQSCKMAX_SHIFT;
551
552 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
553 tim3 |= val << ZQ_ZQCS_SHIFT;
554
555 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
556 val = max(min_tck->tCKESR, val) - 1;
557 tim3 |= val << T_CKESR_SHIFT;
558
559 if (ip_rev == EMIF_4D5) {
560 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
561
562 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
563 tim3 |= val << T_PDLL_UL_SHIFT;
564 }
565
566 return tim3;
567}
568
98231c4f
A
569static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
570 bool cs1_used, bool cal_resistors_per_cs)
571{
572 u32 zq = 0, val = 0;
573
574 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
575 zq |= val << ZQ_REFINTERVAL_SHIFT;
576
577 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
578 zq |= val << ZQ_ZQCL_MULT_SHIFT;
579
580 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
581 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
582
583 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
584
585 if (cal_resistors_per_cs)
586 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
587 else
588 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
589
590 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
591
592 val = cs1_used ? 1 : 0;
593 zq |= val << ZQ_CS1EN_SHIFT;
594
595 return zq;
596}
597
598static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
599 const struct emif_custom_configs *custom_configs, bool cs1_used,
600 u32 sdram_io_width, u32 emif_bus_width)
601{
602 u32 alert = 0, interval, devcnt;
603
604 if (custom_configs && (custom_configs->mask &
605 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
606 interval = custom_configs->temp_alert_poll_interval_ms;
607 else
608 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
609
610 interval *= 1000000; /* Convert to ns */
611 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
612 alert |= (interval << TA_REFINTERVAL_SHIFT);
613
614 /*
615 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
616 * also to this form and subtract to get TA_DEVCNT, which is
617 * in log2(x) form.
618 */
619 emif_bus_width = __fls(emif_bus_width) - 1;
620 devcnt = emif_bus_width - sdram_io_width;
621 alert |= devcnt << TA_DEVCNT_SHIFT;
622
623 /* DEVWDT is in 'log2(x) - 3' form */
624 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
625
626 alert |= 1 << TA_SFEXITEN_SHIFT;
627 alert |= 1 << TA_CS0EN_SHIFT;
628 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
629
630 return alert;
631}
632
a93de288
A
633static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
634{
635 u32 idle = 0, val = 0;
636
637 /*
638 * Maximum value in normal conditions and increased frequency
639 * when voltage is ramping
640 */
641 if (volt_ramp)
642 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
643 else
644 val = 0x1FF;
645
646 /*
647 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
648 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
649 */
650 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
651 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
652
653 return idle;
654}
655
656static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
657{
658 u32 calib = 0, val = 0;
659
660 if (volt_ramp == DDR_VOLTAGE_RAMPING)
661 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
662 else
663 val = 0; /* Disabled when voltage is stable */
664
665 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
666 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
667
668 return calib;
669}
670
671static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
672 u32 freq, u8 RL)
673{
674 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
675
676 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
677 phy |= val << READ_LATENCY_SHIFT_4D;
678
679 if (freq <= 100000000)
680 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
681 else if (freq <= 200000000)
682 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
683 else
684 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
685
686 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
687
688 return phy;
689}
690
691static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
692{
693 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
694
695 /*
696 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
697 * half-delay is not needed else set half-delay
698 */
699 if (freq >= 265000000 && freq < 267000000)
700 half_delay = 0;
701 else
702 half_delay = 1;
703
704 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
705 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
706 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
707
708 return phy;
709}
710
711static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
712{
713 u32 fifo_we_slave_ratio;
714
715 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
28dc76f1 716 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
a93de288
A
717
718 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
719 fifo_we_slave_ratio << 22;
720}
721
722static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
723{
724 u32 fifo_we_slave_ratio;
725
726 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
28dc76f1 727 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
a93de288
A
728
729 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
730 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
731}
732
733static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
734{
735 u32 fifo_we_slave_ratio;
736
737 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
28dc76f1 738 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
a93de288
A
739
740 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
741 fifo_we_slave_ratio << 13;
742}
743
744static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
745{
746 u32 pwr_mgmt_ctrl = 0, timeout;
747 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
748 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
749 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
750 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
25aaacd2
NM
751 u32 mask;
752 u8 shift;
a93de288
A
753
754 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
755
756 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
757 lpmode = cust_cfgs->lpmode;
758 timeout_perf = cust_cfgs->lpmode_timeout_performance;
759 timeout_pwr = cust_cfgs->lpmode_timeout_power;
760 freq_threshold = cust_cfgs->lpmode_freq_threshold;
761 }
762
763 /* Timeout based on DDR frequency */
764 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
765
0a5f19cf
LV
766 /*
767 * The value to be set in register is "log2(timeout) - 3"
768 * if timeout < 16 load 0 in register
769 * if timeout is not a power of 2, round to next highest power of 2
770 */
a93de288
A
771 if (timeout < 16) {
772 timeout = 0;
773 } else {
a93de288 774 if (timeout & (timeout - 1))
0a5f19cf
LV
775 timeout <<= 1;
776 timeout = __fls(timeout) - 3;
a93de288
A
777 }
778
779 switch (lpmode) {
780 case EMIF_LP_MODE_CLOCK_STOP:
25aaacd2
NM
781 shift = CS_TIM_SHIFT;
782 mask = CS_TIM_MASK;
a93de288
A
783 break;
784 case EMIF_LP_MODE_SELF_REFRESH:
785 /* Workaround for errata i735 */
786 if (timeout < 6)
787 timeout = 6;
788
25aaacd2
NM
789 shift = SR_TIM_SHIFT;
790 mask = SR_TIM_MASK;
a93de288
A
791 break;
792 case EMIF_LP_MODE_PWR_DN:
25aaacd2
NM
793 shift = PD_TIM_SHIFT;
794 mask = PD_TIM_MASK;
a93de288
A
795 break;
796 case EMIF_LP_MODE_DISABLE:
797 default:
25aaacd2
NM
798 mask = 0;
799 shift = 0;
800 break;
801 }
802 /* Round to maximum in case of overflow, BUT warn! */
803 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
804 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
805 lpmode,
806 timeout_perf,
807 timeout_pwr,
808 freq_threshold);
809 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
810 timeout, mask >> shift);
811 timeout = mask >> shift;
a93de288
A
812 }
813
25aaacd2
NM
814 /* Setup required timing */
815 pwr_mgmt_ctrl = (timeout << shift) & mask;
816 /* setup a default mask for rest of the modes */
817 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
818 ~mask;
819
a93de288
A
820 /* No CS_TIM in EMIF_4D5 */
821 if (ip_rev == EMIF_4D5)
822 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
823
824 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
825
826 return pwr_mgmt_ctrl;
827}
828
68b4aee3
A
829/*
830 * Get the temperature level of the EMIF instance:
831 * Reads the MR4 register of attached SDRAM parts to find out the temperature
832 * level. If there are two parts attached(one on each CS), then the temperature
833 * level for the EMIF instance is the higher of the two temperatures.
834 */
835static void get_temperature_level(struct emif_data *emif)
836{
837 u32 temp, temperature_level;
838 void __iomem *base;
839
840 base = emif->base;
841
842 /* Read mode register 4 */
843 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
844 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
845 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
846 MR4_SDRAM_REF_RATE_SHIFT;
847
848 if (emif->plat_data->device_info->cs1_used) {
849 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
850 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
851 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
852 >> MR4_SDRAM_REF_RATE_SHIFT;
853 temperature_level = max(temp, temperature_level);
854 }
855
856 /* treat everything less than nominal(3) in MR4 as nominal */
857 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
858 temperature_level = SDRAM_TEMP_NOMINAL;
859
860 /* if we get reserved value in MR4 persist with the existing value */
861 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
862 emif->temperature_level = temperature_level;
863}
864
a93de288
A
865/*
866 * Program EMIF shadow registers that are not dependent on temperature
867 * or voltage
868 */
869static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
870{
871 void __iomem *base = emif->base;
872
873 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
874 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
9ea03dec
A
875 writel(regs->pwr_mgmt_ctrl_shdw,
876 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
a93de288
A
877
878 /* Settings specific for EMIF4D5 */
879 if (emif->plat_data->ip_rev != EMIF_4D5)
880 return;
881 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
882 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
883 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
884}
885
886/*
887 * When voltage ramps dll calibration and forced read idle should
888 * happen more often
889 */
890static void setup_volt_sensitive_regs(struct emif_data *emif,
891 struct emif_regs *regs, u32 volt_state)
892{
893 u32 calib_ctrl;
894 void __iomem *base = emif->base;
895
896 /*
897 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
898 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
899 * is an alias of the respective read_idle_ctrl_shdw_* (members of
900 * a union). So, the below code takes care of both cases
901 */
902 if (volt_state == DDR_VOLTAGE_RAMPING)
903 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
904 else
905 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
906
907 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
908}
909
910/*
911 * setup_temperature_sensitive_regs() - set the timings for temperature
912 * sensitive registers. This happens once at initialisation time based
913 * on the temperature at boot time and subsequently based on the temperature
914 * alert interrupt. Temperature alert can happen when the temperature
915 * increases or drops. So this function can have the effect of either
916 * derating the timings or going back to nominal values.
917 */
918static void setup_temperature_sensitive_regs(struct emif_data *emif,
919 struct emif_regs *regs)
920{
921 u32 tim1, tim3, ref_ctrl, type;
922 void __iomem *base = emif->base;
923 u32 temperature;
924
925 type = emif->plat_data->device_info->type;
926
927 tim1 = regs->sdram_tim1_shdw;
928 tim3 = regs->sdram_tim3_shdw;
929 ref_ctrl = regs->ref_ctrl_shdw;
930
931 /* No de-rating for non-lpddr2 devices */
932 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
933 goto out;
934
935 temperature = emif->temperature_level;
936 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
937 ref_ctrl = regs->ref_ctrl_shdw_derated;
938 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
939 tim1 = regs->sdram_tim1_shdw_derated;
940 tim3 = regs->sdram_tim3_shdw_derated;
941 ref_ctrl = regs->ref_ctrl_shdw_derated;
942 }
943
944out:
945 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
946 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
947 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
948}
949
68b4aee3
A
950static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
951{
952 u32 old_temp_level;
953 irqreturn_t ret = IRQ_HANDLED;
f91a595d 954 struct emif_custom_configs *custom_configs;
68b4aee3
A
955
956 spin_lock_irqsave(&emif_lock, irq_state);
957 old_temp_level = emif->temperature_level;
958 get_temperature_level(emif);
959
960 if (unlikely(emif->temperature_level == old_temp_level)) {
961 goto out;
962 } else if (!emif->curr_regs) {
963 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
964 goto out;
965 }
966
f91a595d
NM
967 custom_configs = emif->plat_data->custom_configs;
968
969 /*
970 * IF we detect higher than "nominal rating" from DDR sensor
971 * on an unsupported DDR part, shutdown system
972 */
973 if (custom_configs && !(custom_configs->mask &
974 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
975 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
976 dev_err(emif->dev,
28dc76f1 977 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
f91a595d
NM
978 __func__, emif->temperature_level);
979 /*
980 * Temperature far too high - do kernel_power_off()
981 * from thread context
982 */
983 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
984 ret = IRQ_WAKE_THREAD;
985 goto out;
986 }
987 }
988
68b4aee3
A
989 if (emif->temperature_level < old_temp_level ||
990 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
991 /*
992 * Temperature coming down - defer handling to thread OR
993 * Temperature far too high - do kernel_power_off() from
994 * thread context
995 */
996 ret = IRQ_WAKE_THREAD;
997 } else {
998 /* Temperature is going up - handle immediately */
999 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1000 do_freq_update();
1001 }
1002
1003out:
1004 spin_unlock_irqrestore(&emif_lock, irq_state);
1005 return ret;
1006}
1007
1008static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1009{
1010 u32 interrupts;
1011 struct emif_data *emif = dev_id;
1012 void __iomem *base = emif->base;
1013 struct device *dev = emif->dev;
1014 irqreturn_t ret = IRQ_HANDLED;
1015
1016 /* Save the status and clear it */
1017 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1018 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1019
1020 /*
1021 * Handle temperature alert
1022 * Temperature alert should be same for all ports
1023 * So, it's enough to process it only for one of the ports
1024 */
1025 if (interrupts & TA_SYS_MASK)
1026 ret = handle_temp_alert(base, emif);
1027
1028 if (interrupts & ERR_SYS_MASK)
1029 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1030
1031 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1032 /* Save the status and clear it */
1033 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1034 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1035
1036 if (interrupts & ERR_LL_MASK)
1037 dev_err(dev, "Access error from LL port - %x\n",
1038 interrupts);
1039 }
1040
1041 return ret;
1042}
1043
1044static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1045{
1046 struct emif_data *emif = dev_id;
1047
1048 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1049 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
2553e32a
NM
1050
1051 /* If we have Power OFF ability, use it, else try restarting */
1052 if (pm_power_off) {
1053 kernel_power_off();
1054 } else {
1055 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1056 kernel_restart("SDRAM Over-temp Emergency restart");
1057 }
68b4aee3
A
1058 return IRQ_HANDLED;
1059 }
1060
1061 spin_lock_irqsave(&emif_lock, irq_state);
1062
1063 if (emif->curr_regs) {
1064 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1065 do_freq_update();
1066 } else {
1067 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1068 }
1069
1070 spin_unlock_irqrestore(&emif_lock, irq_state);
1071
1072 return IRQ_HANDLED;
1073}
1074
1075static void clear_all_interrupts(struct emif_data *emif)
1076{
1077 void __iomem *base = emif->base;
1078
1079 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1080 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1081 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1082 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1083 base + EMIF_LL_OCP_INTERRUPT_STATUS);
1084}
1085
1086static void disable_and_clear_all_interrupts(struct emif_data *emif)
1087{
1088 void __iomem *base = emif->base;
1089
1090 /* Disable all interrupts */
1091 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1092 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1093 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1094 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1095 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1096
1097 /* Clear all interrupts */
1098 clear_all_interrupts(emif);
1099}
1100
1101static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1102{
1103 u32 interrupts, type;
1104 void __iomem *base = emif->base;
1105
1106 type = emif->plat_data->device_info->type;
1107
1108 clear_all_interrupts(emif);
1109
1110 /* Enable interrupts for SYS interface */
1111 interrupts = EN_ERR_SYS_MASK;
1112 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1113 interrupts |= EN_TA_SYS_MASK;
1114 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1115
1116 /* Enable interrupts for LL interface */
1117 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1118 /* TA need not be enabled for LL */
1119 interrupts = EN_ERR_LL_MASK;
1120 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1121 }
1122
1123 /* setup IRQ handlers */
1124 return devm_request_threaded_irq(emif->dev, irq,
1125 emif_interrupt_handler,
1126 emif_threaded_isr,
1127 0, dev_name(emif->dev),
1128 emif);
1129
1130}
1131
98231c4f
A
1132static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1133{
1134 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1135 void __iomem *base = emif->base;
1136 const struct lpddr2_addressing *addressing;
1137 const struct ddr_device_info *device_info;
1138
1139 device_info = emif->plat_data->device_info;
1140 addressing = get_addressing_table(device_info);
1141
1142 /*
1143 * Init power management settings
1144 * We don't know the frequency yet. Use a high frequency
1145 * value for a conservative timeout setting
1146 */
1147 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1148 emif->plat_data->ip_rev);
1149 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1150 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1151
1152 /* Init ZQ calibration settings */
1153 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1154 device_info->cal_resistors_per_cs);
1155 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1156
1157 /* Check temperature level temperature level*/
1158 get_temperature_level(emif);
1159 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1160 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1161
1162 /* Init temperature polling */
1163 temp_alert_cfg = get_temp_alert_config(addressing,
1164 emif->plat_data->custom_configs, device_info->cs1_used,
1165 device_info->io_width, get_emif_bus_width(emif));
1166 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1167
1168 /*
1169 * Program external PHY control registers that are not frequency
1170 * dependent
1171 */
1172 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1173 return;
1174 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1175 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1176 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1177 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1178 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1179 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1180 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1181 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1182 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1183 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1184 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1185 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1186 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1187 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1188 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1189 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1190 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1191 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1192 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1193 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1194 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1195}
1196
7ec94453
A
1197static void get_default_timings(struct emif_data *emif)
1198{
1199 struct emif_platform_data *pd = emif->plat_data;
1200
1201 pd->timings = lpddr2_jedec_timings;
1202 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1203
1204 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1205}
1206
1207static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1208 u32 ip_rev, struct device *dev)
1209{
1210 int valid;
1211
1212 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1213 type == DDR_TYPE_LPDDR2_S2)
1214 && (density >= DDR_DENSITY_64Mb
1215 && density <= DDR_DENSITY_8Gb)
1216 && (io_width >= DDR_IO_WIDTH_8
1217 && io_width <= DDR_IO_WIDTH_32);
1218
1219 /* Combinations of EMIF and PHY revisions that we support today */
1220 switch (ip_rev) {
1221 case EMIF_4D:
1222 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1223 break;
1224 case EMIF_4D5:
1225 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1226 break;
1227 default:
1228 valid = 0;
1229 }
1230
1231 if (!valid)
1232 dev_err(dev, "%s: invalid DDR details\n", __func__);
1233 return valid;
1234}
1235
1236static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1237 struct device *dev)
1238{
1239 int valid = 1;
1240
1241 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1242 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1243 valid = cust_cfgs->lpmode_freq_threshold &&
1244 cust_cfgs->lpmode_timeout_performance &&
1245 cust_cfgs->lpmode_timeout_power;
1246
1247 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1248 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1249
1250 if (!valid)
1251 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1252
1253 return valid;
1254}
1255
e6b42eb6
A
1256#if defined(CONFIG_OF)
1257static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1258 struct emif_data *emif)
1259{
1260 struct emif_custom_configs *cust_cfgs = NULL;
1261 int len;
f57f27bc 1262 const __be32 *lpmode, *poll_intvl;
e6b42eb6
A
1263
1264 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1265 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1266
1267 if (lpmode || poll_intvl)
1268 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1269 GFP_KERNEL);
1270
1271 if (!cust_cfgs)
1272 return;
1273
1274 if (lpmode) {
1275 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
f57f27bc 1276 cust_cfgs->lpmode = be32_to_cpup(lpmode);
e6b42eb6
A
1277 of_property_read_u32(np_emif,
1278 "low-power-mode-timeout-performance",
1279 &cust_cfgs->lpmode_timeout_performance);
1280 of_property_read_u32(np_emif,
1281 "low-power-mode-timeout-power",
1282 &cust_cfgs->lpmode_timeout_power);
1283 of_property_read_u32(np_emif,
1284 "low-power-mode-freq-threshold",
1285 &cust_cfgs->lpmode_freq_threshold);
1286 }
1287
1288 if (poll_intvl) {
1289 cust_cfgs->mask |=
1290 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
f57f27bc
LV
1291 cust_cfgs->temp_alert_poll_interval_ms =
1292 be32_to_cpup(poll_intvl);
e6b42eb6
A
1293 }
1294
f91a595d
NM
1295 if (of_find_property(np_emif, "extended-temp-part", &len))
1296 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1297
e6b42eb6
A
1298 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1299 devm_kfree(emif->dev, cust_cfgs);
1300 return;
1301 }
1302
1303 emif->plat_data->custom_configs = cust_cfgs;
1304}
1305
1306static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1307 struct device_node *np_ddr,
1308 struct ddr_device_info *dev_info)
1309{
1310 u32 density = 0, io_width = 0;
1311 int len;
1312
1313 if (of_find_property(np_emif, "cs1-used", &len))
1314 dev_info->cs1_used = true;
1315
1316 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1317 dev_info->cal_resistors_per_cs = true;
1318
28dc76f1 1319 if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
e6b42eb6 1320 dev_info->type = DDR_TYPE_LPDDR2_S4;
28dc76f1 1321 else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
e6b42eb6
A
1322 dev_info->type = DDR_TYPE_LPDDR2_S2;
1323
1324 of_property_read_u32(np_ddr, "density", &density);
1325 of_property_read_u32(np_ddr, "io-width", &io_width);
1326
1327 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1328 if (density & (density - 1))
1329 dev_info->density = 0;
1330 else
1331 dev_info->density = __fls(density) - 5;
1332
1333 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1334 if (io_width & (io_width - 1))
1335 dev_info->io_width = 0;
1336 else
1337 dev_info->io_width = __fls(io_width) - 1;
1338}
1339
1340static struct emif_data * __init_or_module of_get_memory_device_details(
1341 struct device_node *np_emif, struct device *dev)
1342{
1343 struct emif_data *emif = NULL;
1344 struct ddr_device_info *dev_info = NULL;
1345 struct emif_platform_data *pd = NULL;
1346 struct device_node *np_ddr;
1347 int len;
1348
1349 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1350 if (!np_ddr)
1351 goto error;
1352 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1353 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1354 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1355
1356 if (!emif || !pd || !dev_info) {
1357 dev_err(dev, "%s: Out of memory!!\n",
1358 __func__);
1359 goto error;
1360 }
1361
1362 emif->plat_data = pd;
1363 pd->device_info = dev_info;
1364 emif->dev = dev;
1365 emif->np_ddr = np_ddr;
1366 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1367
1368 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1369 emif->plat_data->ip_rev = EMIF_4D;
1370 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1371 emif->plat_data->ip_rev = EMIF_4D5;
1372
1373 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1374
1375 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1376 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1377
1378 of_get_ddr_info(np_emif, np_ddr, dev_info);
1379 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1380 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1381 emif->dev)) {
1382 dev_err(dev, "%s: invalid device data!!\n", __func__);
1383 goto error;
1384 }
1385 /*
1386 * For EMIF instances other than EMIF1 see if the devices connected
1387 * are exactly same as on EMIF1(which is typically the case). If so,
1388 * mark it as a duplicate of EMIF1. This will save some memory and
1389 * computation.
1390 */
1391 if (emif1 && emif1->np_ddr == np_ddr) {
1392 emif->duplicate = true;
1393 goto out;
1394 } else if (emif1) {
1395 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1396 __func__);
1397 }
1398
1399 of_get_custom_configs(np_emif, emif);
1400 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1401 emif->plat_data->device_info->type,
1402 &emif->plat_data->timings_arr_size);
1403
1404 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1405 goto out;
1406
1407error:
1408 return NULL;
1409out:
1410 return emif;
1411}
1412
1413#else
1414
1415static struct emif_data * __init_or_module of_get_memory_device_details(
1416 struct device_node *np_emif, struct device *dev)
1417{
1418 return NULL;
1419}
1420#endif
1421
7ec94453
A
1422static struct emif_data *__init_or_module get_device_details(
1423 struct platform_device *pdev)
1424{
1425 u32 size;
1426 struct emif_data *emif = NULL;
1427 struct ddr_device_info *dev_info;
1428 struct emif_custom_configs *cust_cfgs;
1429 struct emif_platform_data *pd;
1430 struct device *dev;
1431 void *temp;
1432
1433 pd = pdev->dev.platform_data;
1434 dev = &pdev->dev;
1435
1436 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1437 pd->device_info->density, pd->device_info->io_width,
1438 pd->phy_type, pd->ip_rev, dev))) {
1439 dev_err(dev, "%s: invalid device data\n", __func__);
1440 goto error;
1441 }
1442
1443 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1444 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1445 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1446
1447 if (!emif || !pd || !dev_info) {
1448 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1449 goto error;
1450 }
1451
1452 memcpy(temp, pd, sizeof(*pd));
1453 pd = temp;
1454 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1455
1456 pd->device_info = dev_info;
1457 emif->plat_data = pd;
1458 emif->dev = dev;
1459 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1460
1461 /*
1462 * For EMIF instances other than EMIF1 see if the devices connected
1463 * are exactly same as on EMIF1(which is typically the case). If so,
1464 * mark it as a duplicate of EMIF1 and skip copying timings data.
1465 * This will save some memory and some computation later.
1466 */
1467 emif->duplicate = emif1 && (memcmp(dev_info,
1468 emif1->plat_data->device_info,
1469 sizeof(struct ddr_device_info)) == 0);
1470
1471 if (emif->duplicate) {
1472 pd->timings = NULL;
1473 pd->min_tck = NULL;
1474 goto out;
1475 } else if (emif1) {
1476 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1477 __func__);
1478 }
1479
1480 /*
1481 * Copy custom configs - ignore allocation error, if any, as
1482 * custom_configs is not very critical
1483 */
1484 cust_cfgs = pd->custom_configs;
1485 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1486 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1487 if (temp)
1488 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1489 else
1490 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1491 __LINE__);
1492 pd->custom_configs = temp;
1493 }
1494
1495 /*
1496 * Copy timings and min-tck values from platform data. If it is not
1497 * available or if memory allocation fails, use JEDEC defaults
1498 */
1499 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1500 if (pd->timings) {
1501 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1502 if (temp) {
36caf3e5 1503 memcpy(temp, pd->timings, size);
7ec94453
A
1504 pd->timings = temp;
1505 } else {
1506 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1507 __LINE__);
1508 get_default_timings(emif);
1509 }
1510 } else {
1511 get_default_timings(emif);
1512 }
1513
1514 if (pd->min_tck) {
1515 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1516 if (temp) {
1517 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1518 pd->min_tck = temp;
1519 } else {
1520 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1521 __LINE__);
1522 pd->min_tck = &lpddr2_jedec_min_tck;
1523 }
1524 } else {
1525 pd->min_tck = &lpddr2_jedec_min_tck;
1526 }
1527
1528out:
1529 return emif;
1530
1531error:
1532 return NULL;
1533}
1534
1535static int __init_or_module emif_probe(struct platform_device *pdev)
1536{
1537 struct emif_data *emif;
1538 struct resource *res;
68b4aee3 1539 int irq;
7ec94453 1540
e6b42eb6
A
1541 if (pdev->dev.of_node)
1542 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1543 else
1544 emif = get_device_details(pdev);
1545
7ec94453
A
1546 if (!emif) {
1547 pr_err("%s: error getting device data\n", __func__);
1548 goto error;
1549 }
1550
7ec94453 1551 list_add(&emif->node, &device_list);
a93de288 1552 emif->addressing = get_addressing_table(emif->plat_data->device_info);
7ec94453
A
1553
1554 /* Save pointers to each other in emif and device structures */
1555 emif->dev = &pdev->dev;
1556 platform_set_drvdata(pdev, emif);
1557
1558 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
06303c2e
TR
1559 emif->base = devm_ioremap_resource(emif->dev, res);
1560 if (IS_ERR(emif->base))
7ec94453 1561 goto error;
7ec94453 1562
68b4aee3 1563 irq = platform_get_irq(pdev, 0);
e79f3849 1564 if (irq < 0)
68b4aee3 1565 goto error;
68b4aee3 1566
98231c4f 1567 emif_onetime_settings(emif);
aac10aaa 1568 emif_debugfs_init(emif);
68b4aee3
A
1569 disable_and_clear_all_interrupts(emif);
1570 setup_interrupts(emif, irq);
1571
a93de288
A
1572 /* One-time actions taken on probing the first device */
1573 if (!emif1) {
1574 emif1 = emif;
1575 spin_lock_init(&emif_lock);
1576
1577 /*
1578 * TODO: register notifiers for frequency and voltage
1579 * change here once the respective frameworks are
1580 * available
1581 */
1582 }
1583
68b4aee3
A
1584 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1585 __func__, emif->base, irq);
7ec94453
A
1586
1587 return 0;
1588error:
1589 return -ENODEV;
1590}
1591
aac10aaa
A
1592static int __exit emif_remove(struct platform_device *pdev)
1593{
1594 struct emif_data *emif = platform_get_drvdata(pdev);
1595
1596 emif_debugfs_exit(emif);
1597
1598 return 0;
1599}
1600
68b4aee3
A
1601static void emif_shutdown(struct platform_device *pdev)
1602{
1603 struct emif_data *emif = platform_get_drvdata(pdev);
1604
1605 disable_and_clear_all_interrupts(emif);
1606}
1607
a93de288
A
1608static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1609 struct emif_regs *regs)
1610{
faee19ec 1611 u32 ip_rev, phy_type;
a93de288
A
1612 u32 cl, type;
1613 const struct lpddr2_timings *timings;
1614 const struct lpddr2_min_tck *min_tck;
1615 const struct ddr_device_info *device_info;
1616 const struct lpddr2_addressing *addressing;
1617 struct emif_data *emif_for_calc;
1618 struct device *dev;
a93de288
A
1619
1620 dev = emif->dev;
1621 /*
1622 * If the devices on this EMIF instance is duplicate of EMIF1,
1623 * use EMIF1 details for the calculation
1624 */
1625 emif_for_calc = emif->duplicate ? emif1 : emif;
1626 timings = get_timings_table(emif_for_calc, freq);
1627 addressing = emif_for_calc->addressing;
1628 if (!timings || !addressing) {
1629 dev_err(dev, "%s: not enough data available for %dHz",
1630 __func__, freq);
1631 return -1;
1632 }
1633
1634 device_info = emif_for_calc->plat_data->device_info;
1635 type = device_info->type;
a93de288
A
1636 ip_rev = emif_for_calc->plat_data->ip_rev;
1637 phy_type = emif_for_calc->plat_data->phy_type;
1638
1639 min_tck = emif_for_calc->plat_data->min_tck;
a93de288
A
1640
1641 set_ddr_clk_period(freq);
1642
1643 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1644 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1645 addressing);
1646 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1647 addressing, type);
1648 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1649 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1650
1651 cl = get_cl(emif);
1652
1653 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1654 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1655 timings, freq, cl);
1656 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1657 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1658 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1659 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1660 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1661 } else {
1662 return -1;
1663 }
1664
1665 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1666 regs->pwr_mgmt_ctrl_shdw =
1667 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1668 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1669
1670 if (ip_rev & EMIF_4D) {
1671 regs->read_idle_ctrl_shdw_normal =
1672 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1673
1674 regs->read_idle_ctrl_shdw_volt_ramp =
1675 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1676 } else if (ip_rev & EMIF_4D5) {
1677 regs->dll_calib_ctrl_shdw_normal =
1678 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1679
1680 regs->dll_calib_ctrl_shdw_volt_ramp =
1681 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1682 }
1683
1684 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1685 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1686 addressing);
1687
1688 regs->sdram_tim1_shdw_derated =
1689 get_sdram_tim_1_shdw_derated(timings, min_tck,
1690 addressing);
1691
1692 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1693 min_tck, addressing, type, ip_rev,
1694 EMIF_DERATED_TIMINGS);
1695 }
1696
1697 regs->freq = freq;
1698
1699 return 0;
1700}
1701
1702/*
1703 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1704 * given frequency(freq):
1705 *
1706 * As an optimisation, every EMIF instance other than EMIF1 shares the
1707 * register cache with EMIF1 if the devices connected on this instance
1708 * are same as that on EMIF1(indicated by the duplicate flag)
1709 *
1710 * If we do not have an entry corresponding to the frequency given, we
1711 * allocate a new entry and calculate the values
1712 *
1713 * Upon finding the right reg dump, save it in curr_regs. It can be
1714 * directly used for thermal de-rating and voltage ramping changes.
1715 */
1716static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1717{
1718 int i;
1719 struct emif_regs **regs_cache;
1720 struct emif_regs *regs = NULL;
1721 struct device *dev;
1722
1723 dev = emif->dev;
1724 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1725 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1726 return emif->curr_regs;
1727 }
1728
1729 if (emif->duplicate)
1730 regs_cache = emif1->regs_cache;
1731 else
1732 regs_cache = emif->regs_cache;
1733
1734 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1735 if (regs_cache[i]->freq == freq) {
1736 regs = regs_cache[i];
1737 dev_dbg(dev,
1738 "%s: reg dump found in reg cache for %u Hz\n",
1739 __func__, freq);
1740 break;
1741 }
1742 }
1743
1744 /*
1745 * If we don't have an entry for this frequency in the cache create one
1746 * and calculate the values
1747 */
1748 if (!regs) {
1749 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1750 if (!regs)
1751 return NULL;
1752
1753 if (get_emif_reg_values(emif, freq, regs)) {
1754 devm_kfree(emif->dev, regs);
1755 return NULL;
1756 }
1757
1758 /*
1759 * Now look for an un-used entry in the cache and save the
1760 * newly created struct. If there are no free entries
1761 * over-write the last entry
1762 */
1763 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1764 ;
1765
1766 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1767 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1768 __func__);
1769 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1770 devm_kfree(emif->dev, regs_cache[i]);
1771 }
1772 regs_cache[i] = regs;
1773 }
1774
1775 return regs;
1776}
1777
1778static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1779{
1780 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1781 volt_state);
1782
1783 if (!emif->curr_regs) {
1784 dev_err(emif->dev,
1785 "%s: volt-notify before registers are ready: %d\n",
1786 __func__, volt_state);
1787 return;
1788 }
1789
1790 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1791}
1792
1793/*
1794 * TODO: voltage notify handling should be hooked up to
1795 * regulator framework as soon as the necessary support
1796 * is available in mainline kernel. This function is un-used
1797 * right now.
1798 */
1799static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1800{
1801 struct emif_data *emif;
1802
1803 spin_lock_irqsave(&emif_lock, irq_state);
1804
1805 list_for_each_entry(emif, &device_list, node)
1806 do_volt_notify_handling(emif, volt_state);
1807 do_freq_update();
1808
1809 spin_unlock_irqrestore(&emif_lock, irq_state);
1810}
1811
1812static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1813{
1814 struct emif_regs *regs;
1815
1816 regs = get_regs(emif, new_freq);
1817 if (!regs)
1818 return;
1819
1820 emif->curr_regs = regs;
1821
1822 /*
1823 * Update the shadow registers:
1824 * Temperature and voltage-ramp sensitive settings are also configured
1825 * in terms of DDR cycles. So, we need to update them too when there
1826 * is a freq change
1827 */
1828 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1829 __func__, new_freq);
1830 setup_registers(emif, regs);
1831 setup_temperature_sensitive_regs(emif, regs);
1832 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1833
1834 /*
1835 * Part of workaround for errata i728. See do_freq_update()
1836 * for more details
1837 */
1838 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1839 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1840}
1841
1842/*
1843 * TODO: frequency notify handling should be hooked up to
1844 * clock framework as soon as the necessary support is
1845 * available in mainline kernel. This function is un-used
1846 * right now.
1847 */
1848static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1849{
1850 struct emif_data *emif;
1851
1852 /*
1853 * NOTE: we are taking the spin-lock here and releases it
1854 * only in post-notifier. This doesn't look good and
1855 * Sparse complains about it, but this seems to be
1856 * un-avoidable. We need to lock a sequence of events
1857 * that is split between EMIF and clock framework.
1858 *
1859 * 1. EMIF driver updates EMIF timings in shadow registers in the
1860 * frequency pre-notify callback from clock framework
1861 * 2. clock framework sets up the registers for the new frequency
1862 * 3. clock framework initiates a hw-sequence that updates
1863 * the frequency EMIF timings synchronously.
1864 *
1865 * All these 3 steps should be performed as an atomic operation
1866 * vis-a-vis similar sequence in the EMIF interrupt handler
1867 * for temperature events. Otherwise, there could be race
1868 * conditions that could result in incorrect EMIF timings for
1869 * a given frequency
1870 */
1871 spin_lock_irqsave(&emif_lock, irq_state);
1872
1873 list_for_each_entry(emif, &device_list, node)
1874 do_freq_pre_notify_handling(emif, new_freq);
1875}
1876
1877static void do_freq_post_notify_handling(struct emif_data *emif)
1878{
1879 /*
1880 * Part of workaround for errata i728. See do_freq_update()
1881 * for more details
1882 */
1883 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1884 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1885}
1886
1887/*
1888 * TODO: frequency notify handling should be hooked up to
1889 * clock framework as soon as the necessary support is
1890 * available in mainline kernel. This function is un-used
1891 * right now.
1892 */
1893static void __attribute__((unused)) freq_post_notify_handling(void)
1894{
1895 struct emif_data *emif;
1896
1897 list_for_each_entry(emif, &device_list, node)
1898 do_freq_post_notify_handling(emif);
1899
1900 /*
1901 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1902 * for more details
1903 */
1904 spin_unlock_irqrestore(&emif_lock, irq_state);
1905}
1906
e6b42eb6
A
1907#if defined(CONFIG_OF)
1908static const struct of_device_id emif_of_match[] = {
1909 { .compatible = "ti,emif-4d" },
1910 { .compatible = "ti,emif-4d5" },
1911 {},
1912};
1913MODULE_DEVICE_TABLE(of, emif_of_match);
1914#endif
1915
7ec94453 1916static struct platform_driver emif_driver = {
aac10aaa 1917 .remove = __exit_p(emif_remove),
68b4aee3 1918 .shutdown = emif_shutdown,
7ec94453
A
1919 .driver = {
1920 .name = "emif",
e6b42eb6 1921 .of_match_table = of_match_ptr(emif_of_match),
7ec94453
A
1922 },
1923};
1924
7a4541a6 1925module_platform_driver_probe(emif_driver, emif_probe);
7ec94453 1926
7ec94453
A
1927MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1928MODULE_LICENSE("GPL");
1929MODULE_ALIAS("platform:emif");
1930MODULE_AUTHOR("Texas Instruments Inc");