memory: emif: Fix the lpmode timeout calculation
[linux-block.git] / drivers / memory / emif.c
CommitLineData
7ec94453
A
1/*
2 * EMIF driver
3 *
4 * Copyright (C) 2012 Texas Instruments, Inc.
5 *
6 * Aneesh V <aneesh@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
06303c2e 13#include <linux/err.h>
7ec94453
A
14#include <linux/kernel.h>
15#include <linux/reboot.h>
16#include <linux/platform_data/emif_plat.h>
17#include <linux/io.h>
18#include <linux/device.h>
19#include <linux/platform_device.h>
20#include <linux/interrupt.h>
21#include <linux/slab.h>
e6b42eb6 22#include <linux/of.h>
aac10aaa 23#include <linux/debugfs.h>
7ec94453
A
24#include <linux/seq_file.h>
25#include <linux/module.h>
26#include <linux/list.h>
a93de288 27#include <linux/spinlock.h>
7ec94453
A
28#include <memory/jedec_ddr.h>
29#include "emif.h"
e6b42eb6 30#include "of_memory.h"
7ec94453
A
31
32/**
33 * struct emif_data - Per device static data for driver's use
34 * @duplicate: Whether the DDR devices attached to this EMIF
35 * instance are exactly same as that on EMIF1. In
36 * this case we can save some memory and processing
37 * @temperature_level: Maximum temperature of LPDDR2 devices attached
38 * to this EMIF - read from MR4 register. If there
39 * are two devices attached to this EMIF, this
40 * value is the maximum of the two temperature
41 * levels.
42 * @node: node in the device list
43 * @base: base address of memory-mapped IO registers.
44 * @dev: device pointer.
a93de288
A
45 * @addressing table with addressing information from the spec
46 * @regs_cache: An array of 'struct emif_regs' that stores
47 * calculated register values for different
48 * frequencies, to avoid re-calculating them on
49 * each DVFS transition.
50 * @curr_regs: The set of register values used in the last
51 * frequency change (i.e. corresponding to the
52 * frequency in effect at the moment)
7ec94453 53 * @plat_data: Pointer to saved platform data.
aac10aaa 54 * @debugfs_root: dentry to the root folder for EMIF in debugfs
e6b42eb6 55 * @np_ddr: Pointer to ddr device tree node
7ec94453
A
56 */
57struct emif_data {
58 u8 duplicate;
59 u8 temperature_level;
a93de288 60 u8 lpmode;
7ec94453 61 struct list_head node;
a93de288 62 unsigned long irq_state;
7ec94453
A
63 void __iomem *base;
64 struct device *dev;
a93de288
A
65 const struct lpddr2_addressing *addressing;
66 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
67 struct emif_regs *curr_regs;
7ec94453 68 struct emif_platform_data *plat_data;
aac10aaa 69 struct dentry *debugfs_root;
e6b42eb6 70 struct device_node *np_ddr;
7ec94453
A
71};
72
73static struct emif_data *emif1;
a93de288
A
74static spinlock_t emif_lock;
75static unsigned long irq_state;
76static u32 t_ck; /* DDR clock period in ps */
7ec94453
A
77static LIST_HEAD(device_list);
78
e5445ee6 79#ifdef CONFIG_DEBUG_FS
aac10aaa
A
80static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
81 struct emif_regs *regs)
82{
83 u32 type = emif->plat_data->device_info->type;
84 u32 ip_rev = emif->plat_data->ip_rev;
85
86 seq_printf(s, "EMIF register cache dump for %dMHz\n",
87 regs->freq/1000000);
88
89 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
90 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
91 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
92 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
93
94 if (ip_rev == EMIF_4D) {
95 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
96 regs->read_idle_ctrl_shdw_normal);
97 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
98 regs->read_idle_ctrl_shdw_volt_ramp);
99 } else if (ip_rev == EMIF_4D5) {
100 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
101 regs->dll_calib_ctrl_shdw_normal);
102 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
103 regs->dll_calib_ctrl_shdw_volt_ramp);
104 }
105
106 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
107 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
108 regs->ref_ctrl_shdw_derated);
109 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
110 regs->sdram_tim1_shdw_derated);
111 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
112 regs->sdram_tim3_shdw_derated);
113 }
114}
115
116static int emif_regdump_show(struct seq_file *s, void *unused)
117{
118 struct emif_data *emif = s->private;
119 struct emif_regs **regs_cache;
120 int i;
121
122 if (emif->duplicate)
123 regs_cache = emif1->regs_cache;
124 else
125 regs_cache = emif->regs_cache;
126
127 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
128 do_emif_regdump_show(s, emif, regs_cache[i]);
129 seq_printf(s, "\n");
130 }
131
132 return 0;
133}
134
135static int emif_regdump_open(struct inode *inode, struct file *file)
136{
137 return single_open(file, emif_regdump_show, inode->i_private);
138}
139
140static const struct file_operations emif_regdump_fops = {
141 .open = emif_regdump_open,
142 .read = seq_read,
143 .release = single_release,
144};
145
146static int emif_mr4_show(struct seq_file *s, void *unused)
147{
148 struct emif_data *emif = s->private;
149
150 seq_printf(s, "MR4=%d\n", emif->temperature_level);
151 return 0;
152}
153
154static int emif_mr4_open(struct inode *inode, struct file *file)
155{
156 return single_open(file, emif_mr4_show, inode->i_private);
157}
158
159static const struct file_operations emif_mr4_fops = {
160 .open = emif_mr4_open,
161 .read = seq_read,
162 .release = single_release,
163};
164
165static int __init_or_module emif_debugfs_init(struct emif_data *emif)
166{
167 struct dentry *dentry;
168 int ret;
169
170 dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
e5445ee6
AL
171 if (!dentry) {
172 ret = -ENOMEM;
aac10aaa
A
173 goto err0;
174 }
175 emif->debugfs_root = dentry;
176
177 dentry = debugfs_create_file("regcache_dump", S_IRUGO,
178 emif->debugfs_root, emif, &emif_regdump_fops);
e5445ee6
AL
179 if (!dentry) {
180 ret = -ENOMEM;
aac10aaa
A
181 goto err1;
182 }
183
184 dentry = debugfs_create_file("mr4", S_IRUGO,
185 emif->debugfs_root, emif, &emif_mr4_fops);
e5445ee6
AL
186 if (!dentry) {
187 ret = -ENOMEM;
aac10aaa
A
188 goto err1;
189 }
190
191 return 0;
192err1:
193 debugfs_remove_recursive(emif->debugfs_root);
194err0:
195 return ret;
196}
197
198static void __exit emif_debugfs_exit(struct emif_data *emif)
199{
200 debugfs_remove_recursive(emif->debugfs_root);
201 emif->debugfs_root = NULL;
202}
e5445ee6
AL
203#else
204static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
205{
206 return 0;
207}
208
209static inline void __exit emif_debugfs_exit(struct emif_data *emif)
210{
211}
212#endif
aac10aaa 213
a93de288
A
214/*
215 * Calculate the period of DDR clock from frequency value
216 */
217static void set_ddr_clk_period(u32 freq)
218{
219 /* Divide 10^12 by frequency to get period in ps */
220 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
221}
222
98231c4f
A
223/*
224 * Get bus width used by EMIF. Note that this may be different from the
225 * bus width of the DDR devices used. For instance two 16-bit DDR devices
226 * may be connected to a given CS of EMIF. In this case bus width as far
227 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
228 */
229static u32 get_emif_bus_width(struct emif_data *emif)
230{
231 u32 width;
232 void __iomem *base = emif->base;
233
234 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
235 >> NARROW_MODE_SHIFT;
236 width = width == 0 ? 32 : 16;
237
238 return width;
239}
240
a93de288
A
241/*
242 * Get the CL from SDRAM_CONFIG register
243 */
244static u32 get_cl(struct emif_data *emif)
245{
246 u32 cl;
247 void __iomem *base = emif->base;
248
249 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
250
251 return cl;
252}
253
254static void set_lpmode(struct emif_data *emif, u8 lpmode)
255{
256 u32 temp;
257 void __iomem *base = emif->base;
258
259 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
260 temp &= ~LP_MODE_MASK;
261 temp |= (lpmode << LP_MODE_SHIFT);
262 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
263}
264
265static void do_freq_update(void)
266{
267 struct emif_data *emif;
268
269 /*
270 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
271 *
272 * i728 DESCRIPTION:
273 * The EMIF automatically puts the SDRAM into self-refresh mode
274 * after the EMIF has not performed accesses during
275 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
276 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
277 * to 0x2. If during a small window the following three events
278 * occur:
279 * - The SR_TIMING counter expires
280 * - And frequency change is requested
281 * - And OCP access is requested
282 * Then it causes instable clock on the DDR interface.
283 *
284 * WORKAROUND
285 * To avoid the occurrence of the three events, the workaround
286 * is to disable the self-refresh when requesting a frequency
287 * change. Before requesting a frequency change the software must
288 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
289 * frequency change has been done, the software can reprogram
290 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
291 */
292 list_for_each_entry(emif, &device_list, node) {
293 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
294 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
295 }
296
297 /*
298 * TODO: Do FREQ_UPDATE here when an API
299 * is available for this as part of the new
300 * clock framework
301 */
302
303 list_for_each_entry(emif, &device_list, node) {
304 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
305 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
306 }
307}
308
309/* Find addressing table entry based on the device's type and density */
310static const struct lpddr2_addressing *get_addressing_table(
311 const struct ddr_device_info *device_info)
312{
313 u32 index, type, density;
314
315 type = device_info->type;
316 density = device_info->density;
317
318 switch (type) {
319 case DDR_TYPE_LPDDR2_S4:
320 index = density - 1;
321 break;
322 case DDR_TYPE_LPDDR2_S2:
323 switch (density) {
324 case DDR_DENSITY_1Gb:
325 case DDR_DENSITY_2Gb:
326 index = density + 3;
327 break;
328 default:
329 index = density - 1;
330 }
331 break;
332 default:
333 return NULL;
334 }
335
336 return &lpddr2_jedec_addressing_table[index];
337}
338
339/*
340 * Find the the right timing table from the array of timing
341 * tables of the device using DDR clock frequency
342 */
343static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
344 u32 freq)
345{
346 u32 i, min, max, freq_nearest;
347 const struct lpddr2_timings *timings = NULL;
348 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
349 struct device *dev = emif->dev;
350
351 /* Start with a very high frequency - 1GHz */
352 freq_nearest = 1000000000;
353
354 /*
355 * Find the timings table such that:
356 * 1. the frequency range covers the required frequency(safe) AND
357 * 2. the max_freq is closest to the required frequency(optimal)
358 */
359 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
360 max = timings_arr[i].max_freq;
361 min = timings_arr[i].min_freq;
362 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
363 freq_nearest = max;
364 timings = &timings_arr[i];
365 }
366 }
367
368 if (!timings)
369 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
370 __func__, freq);
371
372 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
373 __func__, freq, freq_nearest);
374
375 return timings;
376}
377
378static u32 get_sdram_ref_ctrl_shdw(u32 freq,
379 const struct lpddr2_addressing *addressing)
380{
381 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
382
383 /* Scale down frequency and t_refi to avoid overflow */
384 freq_khz = freq / 1000;
385 t_refi = addressing->tREFI_ns / 100;
386
387 /*
388 * refresh rate to be set is 'tREFI(in us) * freq in MHz
389 * division by 10000 to account for change in units
390 */
391 val = t_refi * freq_khz / 10000;
392 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
393
394 return ref_ctrl_shdw;
395}
396
397static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
398 const struct lpddr2_min_tck *min_tck,
399 const struct lpddr2_addressing *addressing)
400{
401 u32 tim1 = 0, val = 0;
402
403 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
404 tim1 |= val << T_WTR_SHIFT;
405
406 if (addressing->num_banks == B8)
407 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
408 else
409 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
410 tim1 |= (val - 1) << T_RRD_SHIFT;
411
412 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
413 tim1 |= val << T_RC_SHIFT;
414
415 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
416 tim1 |= (val - 1) << T_RAS_SHIFT;
417
418 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
419 tim1 |= val << T_WR_SHIFT;
420
421 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
422 tim1 |= val << T_RCD_SHIFT;
423
424 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
425 tim1 |= val << T_RP_SHIFT;
426
427 return tim1;
428}
429
430static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
431 const struct lpddr2_min_tck *min_tck,
432 const struct lpddr2_addressing *addressing)
433{
434 u32 tim1 = 0, val = 0;
435
436 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
437 tim1 = val << T_WTR_SHIFT;
438
439 /*
440 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
441 * to tFAW for de-rating
442 */
443 if (addressing->num_banks == B8) {
444 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
445 } else {
446 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
447 val = max(min_tck->tRRD, val) - 1;
448 }
449 tim1 |= val << T_RRD_SHIFT;
450
451 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
452 tim1 |= (val - 1) << T_RC_SHIFT;
453
454 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
455 val = max(min_tck->tRASmin, val) - 1;
456 tim1 |= val << T_RAS_SHIFT;
457
458 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
459 tim1 |= val << T_WR_SHIFT;
460
461 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
462 tim1 |= (val - 1) << T_RCD_SHIFT;
463
464 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
465 tim1 |= (val - 1) << T_RP_SHIFT;
466
467 return tim1;
468}
469
470static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
471 const struct lpddr2_min_tck *min_tck,
472 const struct lpddr2_addressing *addressing,
473 u32 type)
474{
475 u32 tim2 = 0, val = 0;
476
477 val = min_tck->tCKE - 1;
478 tim2 |= val << T_CKE_SHIFT;
479
480 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
481 tim2 |= val << T_RTP_SHIFT;
482
483 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
484 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
485 tim2 |= val << T_XSNR_SHIFT;
486
487 /* XSRD same as XSNR for LPDDR2 */
488 tim2 |= val << T_XSRD_SHIFT;
489
490 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
491 tim2 |= val << T_XP_SHIFT;
492
493 return tim2;
494}
495
496static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
497 const struct lpddr2_min_tck *min_tck,
498 const struct lpddr2_addressing *addressing,
499 u32 type, u32 ip_rev, u32 derated)
500{
501 u32 tim3 = 0, val = 0, t_dqsck;
502
503 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
504 val = val > 0xF ? 0xF : val;
505 tim3 |= val << T_RAS_MAX_SHIFT;
506
507 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
508 tim3 |= val << T_RFC_SHIFT;
509
510 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
511 timings->tDQSCK_max_derated : timings->tDQSCK_max;
512 if (ip_rev == EMIF_4D5)
513 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
514 else
515 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
516
517 tim3 |= val << T_TDQSCKMAX_SHIFT;
518
519 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
520 tim3 |= val << ZQ_ZQCS_SHIFT;
521
522 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
523 val = max(min_tck->tCKESR, val) - 1;
524 tim3 |= val << T_CKESR_SHIFT;
525
526 if (ip_rev == EMIF_4D5) {
527 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
528
529 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
530 tim3 |= val << T_PDLL_UL_SHIFT;
531 }
532
533 return tim3;
534}
535
98231c4f
A
536static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
537 bool cs1_used, bool cal_resistors_per_cs)
538{
539 u32 zq = 0, val = 0;
540
541 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
542 zq |= val << ZQ_REFINTERVAL_SHIFT;
543
544 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
545 zq |= val << ZQ_ZQCL_MULT_SHIFT;
546
547 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
548 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
549
550 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
551
552 if (cal_resistors_per_cs)
553 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
554 else
555 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
556
557 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
558
559 val = cs1_used ? 1 : 0;
560 zq |= val << ZQ_CS1EN_SHIFT;
561
562 return zq;
563}
564
565static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
566 const struct emif_custom_configs *custom_configs, bool cs1_used,
567 u32 sdram_io_width, u32 emif_bus_width)
568{
569 u32 alert = 0, interval, devcnt;
570
571 if (custom_configs && (custom_configs->mask &
572 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
573 interval = custom_configs->temp_alert_poll_interval_ms;
574 else
575 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
576
577 interval *= 1000000; /* Convert to ns */
578 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
579 alert |= (interval << TA_REFINTERVAL_SHIFT);
580
581 /*
582 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
583 * also to this form and subtract to get TA_DEVCNT, which is
584 * in log2(x) form.
585 */
586 emif_bus_width = __fls(emif_bus_width) - 1;
587 devcnt = emif_bus_width - sdram_io_width;
588 alert |= devcnt << TA_DEVCNT_SHIFT;
589
590 /* DEVWDT is in 'log2(x) - 3' form */
591 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
592
593 alert |= 1 << TA_SFEXITEN_SHIFT;
594 alert |= 1 << TA_CS0EN_SHIFT;
595 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
596
597 return alert;
598}
599
a93de288
A
600static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
601{
602 u32 idle = 0, val = 0;
603
604 /*
605 * Maximum value in normal conditions and increased frequency
606 * when voltage is ramping
607 */
608 if (volt_ramp)
609 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
610 else
611 val = 0x1FF;
612
613 /*
614 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
615 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
616 */
617 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
618 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
619
620 return idle;
621}
622
623static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
624{
625 u32 calib = 0, val = 0;
626
627 if (volt_ramp == DDR_VOLTAGE_RAMPING)
628 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
629 else
630 val = 0; /* Disabled when voltage is stable */
631
632 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
633 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
634
635 return calib;
636}
637
638static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
639 u32 freq, u8 RL)
640{
641 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
642
643 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
644 phy |= val << READ_LATENCY_SHIFT_4D;
645
646 if (freq <= 100000000)
647 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
648 else if (freq <= 200000000)
649 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
650 else
651 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
652
653 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
654
655 return phy;
656}
657
658static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
659{
660 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
661
662 /*
663 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
664 * half-delay is not needed else set half-delay
665 */
666 if (freq >= 265000000 && freq < 267000000)
667 half_delay = 0;
668 else
669 half_delay = 1;
670
671 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
672 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
673 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
674
675 return phy;
676}
677
678static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
679{
680 u32 fifo_we_slave_ratio;
681
682 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
683 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
684
685 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
686 fifo_we_slave_ratio << 22;
687}
688
689static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
690{
691 u32 fifo_we_slave_ratio;
692
693 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
694 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
695
696 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
697 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
698}
699
700static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
701{
702 u32 fifo_we_slave_ratio;
703
704 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
705 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
706
707 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
708 fifo_we_slave_ratio << 13;
709}
710
711static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
712{
713 u32 pwr_mgmt_ctrl = 0, timeout;
714 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
715 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
716 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
717 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
718
719 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
720
721 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
722 lpmode = cust_cfgs->lpmode;
723 timeout_perf = cust_cfgs->lpmode_timeout_performance;
724 timeout_pwr = cust_cfgs->lpmode_timeout_power;
725 freq_threshold = cust_cfgs->lpmode_freq_threshold;
726 }
727
728 /* Timeout based on DDR frequency */
729 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
730
0a5f19cf
LV
731 /*
732 * The value to be set in register is "log2(timeout) - 3"
733 * if timeout < 16 load 0 in register
734 * if timeout is not a power of 2, round to next highest power of 2
735 */
a93de288
A
736 if (timeout < 16) {
737 timeout = 0;
738 } else {
a93de288 739 if (timeout & (timeout - 1))
0a5f19cf
LV
740 timeout <<= 1;
741 timeout = __fls(timeout) - 3;
a93de288
A
742 }
743
744 switch (lpmode) {
745 case EMIF_LP_MODE_CLOCK_STOP:
746 pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
747 SR_TIM_MASK | PD_TIM_MASK;
748 break;
749 case EMIF_LP_MODE_SELF_REFRESH:
750 /* Workaround for errata i735 */
751 if (timeout < 6)
752 timeout = 6;
753
754 pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
755 CS_TIM_MASK | PD_TIM_MASK;
756 break;
757 case EMIF_LP_MODE_PWR_DN:
758 pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
759 CS_TIM_MASK | SR_TIM_MASK;
760 break;
761 case EMIF_LP_MODE_DISABLE:
762 default:
763 pwr_mgmt_ctrl = CS_TIM_MASK |
764 PD_TIM_MASK | SR_TIM_MASK;
765 }
766
767 /* No CS_TIM in EMIF_4D5 */
768 if (ip_rev == EMIF_4D5)
769 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
770
771 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
772
773 return pwr_mgmt_ctrl;
774}
775
68b4aee3
A
776/*
777 * Get the temperature level of the EMIF instance:
778 * Reads the MR4 register of attached SDRAM parts to find out the temperature
779 * level. If there are two parts attached(one on each CS), then the temperature
780 * level for the EMIF instance is the higher of the two temperatures.
781 */
782static void get_temperature_level(struct emif_data *emif)
783{
784 u32 temp, temperature_level;
785 void __iomem *base;
786
787 base = emif->base;
788
789 /* Read mode register 4 */
790 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
791 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
792 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
793 MR4_SDRAM_REF_RATE_SHIFT;
794
795 if (emif->plat_data->device_info->cs1_used) {
796 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
797 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
798 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
799 >> MR4_SDRAM_REF_RATE_SHIFT;
800 temperature_level = max(temp, temperature_level);
801 }
802
803 /* treat everything less than nominal(3) in MR4 as nominal */
804 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
805 temperature_level = SDRAM_TEMP_NOMINAL;
806
807 /* if we get reserved value in MR4 persist with the existing value */
808 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
809 emif->temperature_level = temperature_level;
810}
811
a93de288
A
812/*
813 * Program EMIF shadow registers that are not dependent on temperature
814 * or voltage
815 */
816static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
817{
818 void __iomem *base = emif->base;
819
820 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
821 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
822
823 /* Settings specific for EMIF4D5 */
824 if (emif->plat_data->ip_rev != EMIF_4D5)
825 return;
826 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
827 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
828 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
829}
830
831/*
832 * When voltage ramps dll calibration and forced read idle should
833 * happen more often
834 */
835static void setup_volt_sensitive_regs(struct emif_data *emif,
836 struct emif_regs *regs, u32 volt_state)
837{
838 u32 calib_ctrl;
839 void __iomem *base = emif->base;
840
841 /*
842 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
843 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
844 * is an alias of the respective read_idle_ctrl_shdw_* (members of
845 * a union). So, the below code takes care of both cases
846 */
847 if (volt_state == DDR_VOLTAGE_RAMPING)
848 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
849 else
850 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
851
852 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
853}
854
855/*
856 * setup_temperature_sensitive_regs() - set the timings for temperature
857 * sensitive registers. This happens once at initialisation time based
858 * on the temperature at boot time and subsequently based on the temperature
859 * alert interrupt. Temperature alert can happen when the temperature
860 * increases or drops. So this function can have the effect of either
861 * derating the timings or going back to nominal values.
862 */
863static void setup_temperature_sensitive_regs(struct emif_data *emif,
864 struct emif_regs *regs)
865{
866 u32 tim1, tim3, ref_ctrl, type;
867 void __iomem *base = emif->base;
868 u32 temperature;
869
870 type = emif->plat_data->device_info->type;
871
872 tim1 = regs->sdram_tim1_shdw;
873 tim3 = regs->sdram_tim3_shdw;
874 ref_ctrl = regs->ref_ctrl_shdw;
875
876 /* No de-rating for non-lpddr2 devices */
877 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
878 goto out;
879
880 temperature = emif->temperature_level;
881 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
882 ref_ctrl = regs->ref_ctrl_shdw_derated;
883 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
884 tim1 = regs->sdram_tim1_shdw_derated;
885 tim3 = regs->sdram_tim3_shdw_derated;
886 ref_ctrl = regs->ref_ctrl_shdw_derated;
887 }
888
889out:
890 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
891 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
892 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
893}
894
68b4aee3
A
895static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
896{
897 u32 old_temp_level;
898 irqreturn_t ret = IRQ_HANDLED;
899
900 spin_lock_irqsave(&emif_lock, irq_state);
901 old_temp_level = emif->temperature_level;
902 get_temperature_level(emif);
903
904 if (unlikely(emif->temperature_level == old_temp_level)) {
905 goto out;
906 } else if (!emif->curr_regs) {
907 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
908 goto out;
909 }
910
911 if (emif->temperature_level < old_temp_level ||
912 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
913 /*
914 * Temperature coming down - defer handling to thread OR
915 * Temperature far too high - do kernel_power_off() from
916 * thread context
917 */
918 ret = IRQ_WAKE_THREAD;
919 } else {
920 /* Temperature is going up - handle immediately */
921 setup_temperature_sensitive_regs(emif, emif->curr_regs);
922 do_freq_update();
923 }
924
925out:
926 spin_unlock_irqrestore(&emif_lock, irq_state);
927 return ret;
928}
929
930static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
931{
932 u32 interrupts;
933 struct emif_data *emif = dev_id;
934 void __iomem *base = emif->base;
935 struct device *dev = emif->dev;
936 irqreturn_t ret = IRQ_HANDLED;
937
938 /* Save the status and clear it */
939 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
940 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
941
942 /*
943 * Handle temperature alert
944 * Temperature alert should be same for all ports
945 * So, it's enough to process it only for one of the ports
946 */
947 if (interrupts & TA_SYS_MASK)
948 ret = handle_temp_alert(base, emif);
949
950 if (interrupts & ERR_SYS_MASK)
951 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
952
953 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
954 /* Save the status and clear it */
955 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
956 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
957
958 if (interrupts & ERR_LL_MASK)
959 dev_err(dev, "Access error from LL port - %x\n",
960 interrupts);
961 }
962
963 return ret;
964}
965
966static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
967{
968 struct emif_data *emif = dev_id;
969
970 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
971 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
972 kernel_power_off();
973 return IRQ_HANDLED;
974 }
975
976 spin_lock_irqsave(&emif_lock, irq_state);
977
978 if (emif->curr_regs) {
979 setup_temperature_sensitive_regs(emif, emif->curr_regs);
980 do_freq_update();
981 } else {
982 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
983 }
984
985 spin_unlock_irqrestore(&emif_lock, irq_state);
986
987 return IRQ_HANDLED;
988}
989
990static void clear_all_interrupts(struct emif_data *emif)
991{
992 void __iomem *base = emif->base;
993
994 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
995 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
996 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
997 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
998 base + EMIF_LL_OCP_INTERRUPT_STATUS);
999}
1000
1001static void disable_and_clear_all_interrupts(struct emif_data *emif)
1002{
1003 void __iomem *base = emif->base;
1004
1005 /* Disable all interrupts */
1006 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1007 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1008 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1009 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1010 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1011
1012 /* Clear all interrupts */
1013 clear_all_interrupts(emif);
1014}
1015
1016static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1017{
1018 u32 interrupts, type;
1019 void __iomem *base = emif->base;
1020
1021 type = emif->plat_data->device_info->type;
1022
1023 clear_all_interrupts(emif);
1024
1025 /* Enable interrupts for SYS interface */
1026 interrupts = EN_ERR_SYS_MASK;
1027 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1028 interrupts |= EN_TA_SYS_MASK;
1029 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1030
1031 /* Enable interrupts for LL interface */
1032 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1033 /* TA need not be enabled for LL */
1034 interrupts = EN_ERR_LL_MASK;
1035 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1036 }
1037
1038 /* setup IRQ handlers */
1039 return devm_request_threaded_irq(emif->dev, irq,
1040 emif_interrupt_handler,
1041 emif_threaded_isr,
1042 0, dev_name(emif->dev),
1043 emif);
1044
1045}
1046
98231c4f
A
1047static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1048{
1049 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1050 void __iomem *base = emif->base;
1051 const struct lpddr2_addressing *addressing;
1052 const struct ddr_device_info *device_info;
1053
1054 device_info = emif->plat_data->device_info;
1055 addressing = get_addressing_table(device_info);
1056
1057 /*
1058 * Init power management settings
1059 * We don't know the frequency yet. Use a high frequency
1060 * value for a conservative timeout setting
1061 */
1062 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1063 emif->plat_data->ip_rev);
1064 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1065 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1066
1067 /* Init ZQ calibration settings */
1068 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1069 device_info->cal_resistors_per_cs);
1070 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1071
1072 /* Check temperature level temperature level*/
1073 get_temperature_level(emif);
1074 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1075 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1076
1077 /* Init temperature polling */
1078 temp_alert_cfg = get_temp_alert_config(addressing,
1079 emif->plat_data->custom_configs, device_info->cs1_used,
1080 device_info->io_width, get_emif_bus_width(emif));
1081 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1082
1083 /*
1084 * Program external PHY control registers that are not frequency
1085 * dependent
1086 */
1087 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1088 return;
1089 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1090 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1091 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1092 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1093 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1094 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1095 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1096 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1097 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1098 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1099 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1100 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1101 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1102 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1103 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1104 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1105 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1106 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1107 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1108 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1109 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1110}
1111
7ec94453
A
1112static void get_default_timings(struct emif_data *emif)
1113{
1114 struct emif_platform_data *pd = emif->plat_data;
1115
1116 pd->timings = lpddr2_jedec_timings;
1117 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1118
1119 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1120}
1121
1122static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1123 u32 ip_rev, struct device *dev)
1124{
1125 int valid;
1126
1127 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1128 type == DDR_TYPE_LPDDR2_S2)
1129 && (density >= DDR_DENSITY_64Mb
1130 && density <= DDR_DENSITY_8Gb)
1131 && (io_width >= DDR_IO_WIDTH_8
1132 && io_width <= DDR_IO_WIDTH_32);
1133
1134 /* Combinations of EMIF and PHY revisions that we support today */
1135 switch (ip_rev) {
1136 case EMIF_4D:
1137 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1138 break;
1139 case EMIF_4D5:
1140 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1141 break;
1142 default:
1143 valid = 0;
1144 }
1145
1146 if (!valid)
1147 dev_err(dev, "%s: invalid DDR details\n", __func__);
1148 return valid;
1149}
1150
1151static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1152 struct device *dev)
1153{
1154 int valid = 1;
1155
1156 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1157 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1158 valid = cust_cfgs->lpmode_freq_threshold &&
1159 cust_cfgs->lpmode_timeout_performance &&
1160 cust_cfgs->lpmode_timeout_power;
1161
1162 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1163 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1164
1165 if (!valid)
1166 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1167
1168 return valid;
1169}
1170
e6b42eb6
A
1171#if defined(CONFIG_OF)
1172static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1173 struct emif_data *emif)
1174{
1175 struct emif_custom_configs *cust_cfgs = NULL;
1176 int len;
1177 const int *lpmode, *poll_intvl;
1178
1179 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1180 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1181
1182 if (lpmode || poll_intvl)
1183 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1184 GFP_KERNEL);
1185
1186 if (!cust_cfgs)
1187 return;
1188
1189 if (lpmode) {
1190 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1191 cust_cfgs->lpmode = *lpmode;
1192 of_property_read_u32(np_emif,
1193 "low-power-mode-timeout-performance",
1194 &cust_cfgs->lpmode_timeout_performance);
1195 of_property_read_u32(np_emif,
1196 "low-power-mode-timeout-power",
1197 &cust_cfgs->lpmode_timeout_power);
1198 of_property_read_u32(np_emif,
1199 "low-power-mode-freq-threshold",
1200 &cust_cfgs->lpmode_freq_threshold);
1201 }
1202
1203 if (poll_intvl) {
1204 cust_cfgs->mask |=
1205 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1206 cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl;
1207 }
1208
1209 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1210 devm_kfree(emif->dev, cust_cfgs);
1211 return;
1212 }
1213
1214 emif->plat_data->custom_configs = cust_cfgs;
1215}
1216
1217static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1218 struct device_node *np_ddr,
1219 struct ddr_device_info *dev_info)
1220{
1221 u32 density = 0, io_width = 0;
1222 int len;
1223
1224 if (of_find_property(np_emif, "cs1-used", &len))
1225 dev_info->cs1_used = true;
1226
1227 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1228 dev_info->cal_resistors_per_cs = true;
1229
1230 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1231 dev_info->type = DDR_TYPE_LPDDR2_S4;
1232 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1233 dev_info->type = DDR_TYPE_LPDDR2_S2;
1234
1235 of_property_read_u32(np_ddr, "density", &density);
1236 of_property_read_u32(np_ddr, "io-width", &io_width);
1237
1238 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1239 if (density & (density - 1))
1240 dev_info->density = 0;
1241 else
1242 dev_info->density = __fls(density) - 5;
1243
1244 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1245 if (io_width & (io_width - 1))
1246 dev_info->io_width = 0;
1247 else
1248 dev_info->io_width = __fls(io_width) - 1;
1249}
1250
1251static struct emif_data * __init_or_module of_get_memory_device_details(
1252 struct device_node *np_emif, struct device *dev)
1253{
1254 struct emif_data *emif = NULL;
1255 struct ddr_device_info *dev_info = NULL;
1256 struct emif_platform_data *pd = NULL;
1257 struct device_node *np_ddr;
1258 int len;
1259
1260 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1261 if (!np_ddr)
1262 goto error;
1263 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1264 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1265 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1266
1267 if (!emif || !pd || !dev_info) {
1268 dev_err(dev, "%s: Out of memory!!\n",
1269 __func__);
1270 goto error;
1271 }
1272
1273 emif->plat_data = pd;
1274 pd->device_info = dev_info;
1275 emif->dev = dev;
1276 emif->np_ddr = np_ddr;
1277 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1278
1279 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1280 emif->plat_data->ip_rev = EMIF_4D;
1281 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1282 emif->plat_data->ip_rev = EMIF_4D5;
1283
1284 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1285
1286 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1287 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1288
1289 of_get_ddr_info(np_emif, np_ddr, dev_info);
1290 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1291 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1292 emif->dev)) {
1293 dev_err(dev, "%s: invalid device data!!\n", __func__);
1294 goto error;
1295 }
1296 /*
1297 * For EMIF instances other than EMIF1 see if the devices connected
1298 * are exactly same as on EMIF1(which is typically the case). If so,
1299 * mark it as a duplicate of EMIF1. This will save some memory and
1300 * computation.
1301 */
1302 if (emif1 && emif1->np_ddr == np_ddr) {
1303 emif->duplicate = true;
1304 goto out;
1305 } else if (emif1) {
1306 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1307 __func__);
1308 }
1309
1310 of_get_custom_configs(np_emif, emif);
1311 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1312 emif->plat_data->device_info->type,
1313 &emif->plat_data->timings_arr_size);
1314
1315 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1316 goto out;
1317
1318error:
1319 return NULL;
1320out:
1321 return emif;
1322}
1323
1324#else
1325
1326static struct emif_data * __init_or_module of_get_memory_device_details(
1327 struct device_node *np_emif, struct device *dev)
1328{
1329 return NULL;
1330}
1331#endif
1332
7ec94453
A
1333static struct emif_data *__init_or_module get_device_details(
1334 struct platform_device *pdev)
1335{
1336 u32 size;
1337 struct emif_data *emif = NULL;
1338 struct ddr_device_info *dev_info;
1339 struct emif_custom_configs *cust_cfgs;
1340 struct emif_platform_data *pd;
1341 struct device *dev;
1342 void *temp;
1343
1344 pd = pdev->dev.platform_data;
1345 dev = &pdev->dev;
1346
1347 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1348 pd->device_info->density, pd->device_info->io_width,
1349 pd->phy_type, pd->ip_rev, dev))) {
1350 dev_err(dev, "%s: invalid device data\n", __func__);
1351 goto error;
1352 }
1353
1354 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1355 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1356 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1357
1358 if (!emif || !pd || !dev_info) {
1359 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1360 goto error;
1361 }
1362
1363 memcpy(temp, pd, sizeof(*pd));
1364 pd = temp;
1365 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1366
1367 pd->device_info = dev_info;
1368 emif->plat_data = pd;
1369 emif->dev = dev;
1370 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1371
1372 /*
1373 * For EMIF instances other than EMIF1 see if the devices connected
1374 * are exactly same as on EMIF1(which is typically the case). If so,
1375 * mark it as a duplicate of EMIF1 and skip copying timings data.
1376 * This will save some memory and some computation later.
1377 */
1378 emif->duplicate = emif1 && (memcmp(dev_info,
1379 emif1->plat_data->device_info,
1380 sizeof(struct ddr_device_info)) == 0);
1381
1382 if (emif->duplicate) {
1383 pd->timings = NULL;
1384 pd->min_tck = NULL;
1385 goto out;
1386 } else if (emif1) {
1387 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1388 __func__);
1389 }
1390
1391 /*
1392 * Copy custom configs - ignore allocation error, if any, as
1393 * custom_configs is not very critical
1394 */
1395 cust_cfgs = pd->custom_configs;
1396 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1397 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1398 if (temp)
1399 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1400 else
1401 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1402 __LINE__);
1403 pd->custom_configs = temp;
1404 }
1405
1406 /*
1407 * Copy timings and min-tck values from platform data. If it is not
1408 * available or if memory allocation fails, use JEDEC defaults
1409 */
1410 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1411 if (pd->timings) {
1412 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1413 if (temp) {
1414 memcpy(temp, pd->timings, sizeof(*pd->timings));
1415 pd->timings = temp;
1416 } else {
1417 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1418 __LINE__);
1419 get_default_timings(emif);
1420 }
1421 } else {
1422 get_default_timings(emif);
1423 }
1424
1425 if (pd->min_tck) {
1426 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1427 if (temp) {
1428 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1429 pd->min_tck = temp;
1430 } else {
1431 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1432 __LINE__);
1433 pd->min_tck = &lpddr2_jedec_min_tck;
1434 }
1435 } else {
1436 pd->min_tck = &lpddr2_jedec_min_tck;
1437 }
1438
1439out:
1440 return emif;
1441
1442error:
1443 return NULL;
1444}
1445
1446static int __init_or_module emif_probe(struct platform_device *pdev)
1447{
1448 struct emif_data *emif;
1449 struct resource *res;
68b4aee3 1450 int irq;
7ec94453 1451
e6b42eb6
A
1452 if (pdev->dev.of_node)
1453 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1454 else
1455 emif = get_device_details(pdev);
1456
7ec94453
A
1457 if (!emif) {
1458 pr_err("%s: error getting device data\n", __func__);
1459 goto error;
1460 }
1461
7ec94453 1462 list_add(&emif->node, &device_list);
a93de288 1463 emif->addressing = get_addressing_table(emif->plat_data->device_info);
7ec94453
A
1464
1465 /* Save pointers to each other in emif and device structures */
1466 emif->dev = &pdev->dev;
1467 platform_set_drvdata(pdev, emif);
1468
1469 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1470 if (!res) {
1471 dev_err(emif->dev, "%s: error getting memory resource\n",
1472 __func__);
1473 goto error;
1474 }
1475
06303c2e
TR
1476 emif->base = devm_ioremap_resource(emif->dev, res);
1477 if (IS_ERR(emif->base))
7ec94453 1478 goto error;
7ec94453 1479
68b4aee3
A
1480 irq = platform_get_irq(pdev, 0);
1481 if (irq < 0) {
1482 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1483 __func__, irq);
1484 goto error;
1485 }
1486
98231c4f 1487 emif_onetime_settings(emif);
aac10aaa 1488 emif_debugfs_init(emif);
68b4aee3
A
1489 disable_and_clear_all_interrupts(emif);
1490 setup_interrupts(emif, irq);
1491
a93de288
A
1492 /* One-time actions taken on probing the first device */
1493 if (!emif1) {
1494 emif1 = emif;
1495 spin_lock_init(&emif_lock);
1496
1497 /*
1498 * TODO: register notifiers for frequency and voltage
1499 * change here once the respective frameworks are
1500 * available
1501 */
1502 }
1503
68b4aee3
A
1504 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1505 __func__, emif->base, irq);
7ec94453
A
1506
1507 return 0;
1508error:
1509 return -ENODEV;
1510}
1511
aac10aaa
A
1512static int __exit emif_remove(struct platform_device *pdev)
1513{
1514 struct emif_data *emif = platform_get_drvdata(pdev);
1515
1516 emif_debugfs_exit(emif);
1517
1518 return 0;
1519}
1520
68b4aee3
A
1521static void emif_shutdown(struct platform_device *pdev)
1522{
1523 struct emif_data *emif = platform_get_drvdata(pdev);
1524
1525 disable_and_clear_all_interrupts(emif);
1526}
1527
a93de288
A
1528static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1529 struct emif_regs *regs)
1530{
1531 u32 cs1_used, ip_rev, phy_type;
1532 u32 cl, type;
1533 const struct lpddr2_timings *timings;
1534 const struct lpddr2_min_tck *min_tck;
1535 const struct ddr_device_info *device_info;
1536 const struct lpddr2_addressing *addressing;
1537 struct emif_data *emif_for_calc;
1538 struct device *dev;
1539 const struct emif_custom_configs *custom_configs;
1540
1541 dev = emif->dev;
1542 /*
1543 * If the devices on this EMIF instance is duplicate of EMIF1,
1544 * use EMIF1 details for the calculation
1545 */
1546 emif_for_calc = emif->duplicate ? emif1 : emif;
1547 timings = get_timings_table(emif_for_calc, freq);
1548 addressing = emif_for_calc->addressing;
1549 if (!timings || !addressing) {
1550 dev_err(dev, "%s: not enough data available for %dHz",
1551 __func__, freq);
1552 return -1;
1553 }
1554
1555 device_info = emif_for_calc->plat_data->device_info;
1556 type = device_info->type;
1557 cs1_used = device_info->cs1_used;
1558 ip_rev = emif_for_calc->plat_data->ip_rev;
1559 phy_type = emif_for_calc->plat_data->phy_type;
1560
1561 min_tck = emif_for_calc->plat_data->min_tck;
1562 custom_configs = emif_for_calc->plat_data->custom_configs;
1563
1564 set_ddr_clk_period(freq);
1565
1566 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1567 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1568 addressing);
1569 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1570 addressing, type);
1571 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1572 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1573
1574 cl = get_cl(emif);
1575
1576 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1577 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1578 timings, freq, cl);
1579 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1580 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1581 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1582 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1583 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1584 } else {
1585 return -1;
1586 }
1587
1588 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1589 regs->pwr_mgmt_ctrl_shdw =
1590 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1591 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1592
1593 if (ip_rev & EMIF_4D) {
1594 regs->read_idle_ctrl_shdw_normal =
1595 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1596
1597 regs->read_idle_ctrl_shdw_volt_ramp =
1598 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1599 } else if (ip_rev & EMIF_4D5) {
1600 regs->dll_calib_ctrl_shdw_normal =
1601 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1602
1603 regs->dll_calib_ctrl_shdw_volt_ramp =
1604 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1605 }
1606
1607 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1608 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1609 addressing);
1610
1611 regs->sdram_tim1_shdw_derated =
1612 get_sdram_tim_1_shdw_derated(timings, min_tck,
1613 addressing);
1614
1615 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1616 min_tck, addressing, type, ip_rev,
1617 EMIF_DERATED_TIMINGS);
1618 }
1619
1620 regs->freq = freq;
1621
1622 return 0;
1623}
1624
1625/*
1626 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1627 * given frequency(freq):
1628 *
1629 * As an optimisation, every EMIF instance other than EMIF1 shares the
1630 * register cache with EMIF1 if the devices connected on this instance
1631 * are same as that on EMIF1(indicated by the duplicate flag)
1632 *
1633 * If we do not have an entry corresponding to the frequency given, we
1634 * allocate a new entry and calculate the values
1635 *
1636 * Upon finding the right reg dump, save it in curr_regs. It can be
1637 * directly used for thermal de-rating and voltage ramping changes.
1638 */
1639static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1640{
1641 int i;
1642 struct emif_regs **regs_cache;
1643 struct emif_regs *regs = NULL;
1644 struct device *dev;
1645
1646 dev = emif->dev;
1647 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1648 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1649 return emif->curr_regs;
1650 }
1651
1652 if (emif->duplicate)
1653 regs_cache = emif1->regs_cache;
1654 else
1655 regs_cache = emif->regs_cache;
1656
1657 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1658 if (regs_cache[i]->freq == freq) {
1659 regs = regs_cache[i];
1660 dev_dbg(dev,
1661 "%s: reg dump found in reg cache for %u Hz\n",
1662 __func__, freq);
1663 break;
1664 }
1665 }
1666
1667 /*
1668 * If we don't have an entry for this frequency in the cache create one
1669 * and calculate the values
1670 */
1671 if (!regs) {
1672 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1673 if (!regs)
1674 return NULL;
1675
1676 if (get_emif_reg_values(emif, freq, regs)) {
1677 devm_kfree(emif->dev, regs);
1678 return NULL;
1679 }
1680
1681 /*
1682 * Now look for an un-used entry in the cache and save the
1683 * newly created struct. If there are no free entries
1684 * over-write the last entry
1685 */
1686 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1687 ;
1688
1689 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1690 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1691 __func__);
1692 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1693 devm_kfree(emif->dev, regs_cache[i]);
1694 }
1695 regs_cache[i] = regs;
1696 }
1697
1698 return regs;
1699}
1700
1701static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1702{
1703 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1704 volt_state);
1705
1706 if (!emif->curr_regs) {
1707 dev_err(emif->dev,
1708 "%s: volt-notify before registers are ready: %d\n",
1709 __func__, volt_state);
1710 return;
1711 }
1712
1713 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1714}
1715
1716/*
1717 * TODO: voltage notify handling should be hooked up to
1718 * regulator framework as soon as the necessary support
1719 * is available in mainline kernel. This function is un-used
1720 * right now.
1721 */
1722static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1723{
1724 struct emif_data *emif;
1725
1726 spin_lock_irqsave(&emif_lock, irq_state);
1727
1728 list_for_each_entry(emif, &device_list, node)
1729 do_volt_notify_handling(emif, volt_state);
1730 do_freq_update();
1731
1732 spin_unlock_irqrestore(&emif_lock, irq_state);
1733}
1734
1735static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1736{
1737 struct emif_regs *regs;
1738
1739 regs = get_regs(emif, new_freq);
1740 if (!regs)
1741 return;
1742
1743 emif->curr_regs = regs;
1744
1745 /*
1746 * Update the shadow registers:
1747 * Temperature and voltage-ramp sensitive settings are also configured
1748 * in terms of DDR cycles. So, we need to update them too when there
1749 * is a freq change
1750 */
1751 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1752 __func__, new_freq);
1753 setup_registers(emif, regs);
1754 setup_temperature_sensitive_regs(emif, regs);
1755 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1756
1757 /*
1758 * Part of workaround for errata i728. See do_freq_update()
1759 * for more details
1760 */
1761 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1762 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1763}
1764
1765/*
1766 * TODO: frequency notify handling should be hooked up to
1767 * clock framework as soon as the necessary support is
1768 * available in mainline kernel. This function is un-used
1769 * right now.
1770 */
1771static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1772{
1773 struct emif_data *emif;
1774
1775 /*
1776 * NOTE: we are taking the spin-lock here and releases it
1777 * only in post-notifier. This doesn't look good and
1778 * Sparse complains about it, but this seems to be
1779 * un-avoidable. We need to lock a sequence of events
1780 * that is split between EMIF and clock framework.
1781 *
1782 * 1. EMIF driver updates EMIF timings in shadow registers in the
1783 * frequency pre-notify callback from clock framework
1784 * 2. clock framework sets up the registers for the new frequency
1785 * 3. clock framework initiates a hw-sequence that updates
1786 * the frequency EMIF timings synchronously.
1787 *
1788 * All these 3 steps should be performed as an atomic operation
1789 * vis-a-vis similar sequence in the EMIF interrupt handler
1790 * for temperature events. Otherwise, there could be race
1791 * conditions that could result in incorrect EMIF timings for
1792 * a given frequency
1793 */
1794 spin_lock_irqsave(&emif_lock, irq_state);
1795
1796 list_for_each_entry(emif, &device_list, node)
1797 do_freq_pre_notify_handling(emif, new_freq);
1798}
1799
1800static void do_freq_post_notify_handling(struct emif_data *emif)
1801{
1802 /*
1803 * Part of workaround for errata i728. See do_freq_update()
1804 * for more details
1805 */
1806 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1807 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1808}
1809
1810/*
1811 * TODO: frequency notify handling should be hooked up to
1812 * clock framework as soon as the necessary support is
1813 * available in mainline kernel. This function is un-used
1814 * right now.
1815 */
1816static void __attribute__((unused)) freq_post_notify_handling(void)
1817{
1818 struct emif_data *emif;
1819
1820 list_for_each_entry(emif, &device_list, node)
1821 do_freq_post_notify_handling(emif);
1822
1823 /*
1824 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1825 * for more details
1826 */
1827 spin_unlock_irqrestore(&emif_lock, irq_state);
1828}
1829
e6b42eb6
A
1830#if defined(CONFIG_OF)
1831static const struct of_device_id emif_of_match[] = {
1832 { .compatible = "ti,emif-4d" },
1833 { .compatible = "ti,emif-4d5" },
1834 {},
1835};
1836MODULE_DEVICE_TABLE(of, emif_of_match);
1837#endif
1838
7ec94453 1839static struct platform_driver emif_driver = {
aac10aaa 1840 .remove = __exit_p(emif_remove),
68b4aee3 1841 .shutdown = emif_shutdown,
7ec94453
A
1842 .driver = {
1843 .name = "emif",
e6b42eb6 1844 .of_match_table = of_match_ptr(emif_of_match),
7ec94453
A
1845 },
1846};
1847
7a4541a6 1848module_platform_driver_probe(emif_driver, emif_probe);
7ec94453 1849
7ec94453
A
1850MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1851MODULE_LICENSE("GPL");
1852MODULE_ALIAS("platform:emif");
1853MODULE_AUTHOR("Texas Instruments Inc");