Linux 6.10-rc6
[linux-2.6-block.git] / drivers / media / rc / rc-main.c
CommitLineData
20835280
MCC
1// SPDX-License-Identifier: GPL-2.0
2// rc-main.c - Remote Controller core module
3//
4// Copyright (C) 2009-2010 by Mauro Carvalho Chehab
ef53a115 5
d3d96820
MCC
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
6bda9644 8#include <media/rc-core.h>
8ca01d4f 9#include <linux/bsearch.h>
631493ec
MCC
10#include <linux/spinlock.h>
11#include <linux/delay.h>
882ead32 12#include <linux/input.h>
153a60bb 13#include <linux/leds.h>
5a0e3ad6 14#include <linux/slab.h>
fcb13097 15#include <linux/idr.h>
bc2a6c57 16#include <linux/device.h>
7a707b89 17#include <linux/module.h>
f62de675 18#include "rc-core-priv.h"
ef53a115 19
b3074c0a
DH
20/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21#define IR_TAB_MIN_SIZE 256
22#define IR_TAB_MAX_SIZE 8192
f6fc5049 23
d57ea877
SY
24static const struct {
25 const char *name;
26 unsigned int repeat_period;
27 unsigned int scancode_bits;
28} protocols[] = {
28492256
SY
29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
6d741bfe 31 [RC_PROTO_RC5] = { .name = "rc-5",
28492256 32 .scancode_bits = 0x1f7f, .repeat_period = 114 },
6d741bfe 33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
28492256 34 .scancode_bits = 0x1f7f3f, .repeat_period = 114 },
6d741bfe 35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
28492256 36 .scancode_bits = 0x2fff, .repeat_period = 114 },
6d741bfe 37 [RC_PROTO_JVC] = { .name = "jvc",
28492256 38 .scancode_bits = 0xffff, .repeat_period = 125 },
6d741bfe 39 [RC_PROTO_SONY12] = { .name = "sony-12",
28492256 40 .scancode_bits = 0x1f007f, .repeat_period = 100 },
6d741bfe 41 [RC_PROTO_SONY15] = { .name = "sony-15",
28492256 42 .scancode_bits = 0xff007f, .repeat_period = 100 },
6d741bfe 43 [RC_PROTO_SONY20] = { .name = "sony-20",
28492256 44 .scancode_bits = 0x1fff7f, .repeat_period = 100 },
6d741bfe 45 [RC_PROTO_NEC] = { .name = "nec",
28492256 46 .scancode_bits = 0xffff, .repeat_period = 110 },
6d741bfe 47 [RC_PROTO_NECX] = { .name = "nec-x",
28492256 48 .scancode_bits = 0xffffff, .repeat_period = 110 },
6d741bfe 49 [RC_PROTO_NEC32] = { .name = "nec-32",
28492256 50 .scancode_bits = 0xffffffff, .repeat_period = 110 },
6d741bfe 51 [RC_PROTO_SANYO] = { .name = "sanyo",
28492256 52 .scancode_bits = 0x1fffff, .repeat_period = 125 },
6d741bfe 53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
53932760 54 .scancode_bits = 0xffffff, .repeat_period = 100 },
6d741bfe 55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
28492256 56 .scancode_bits = 0x1fffff, .repeat_period = 100 },
6d741bfe 57 [RC_PROTO_RC6_0] = { .name = "rc-6-0",
28492256 58 .scancode_bits = 0xffff, .repeat_period = 114 },
6d741bfe 59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
28492256 60 .scancode_bits = 0xfffff, .repeat_period = 114 },
6d741bfe 61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
28492256 62 .scancode_bits = 0xffffff, .repeat_period = 114 },
6d741bfe 63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
28492256 64 .scancode_bits = 0xffffffff, .repeat_period = 114 },
6d741bfe 65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
28492256 66 .scancode_bits = 0xffff7fff, .repeat_period = 114 },
6d741bfe 67 [RC_PROTO_SHARP] = { .name = "sharp",
28492256
SY
68 .scancode_bits = 0x1fff, .repeat_period = 125 },
69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
447dcc0c 71 [RC_PROTO_IMON] = { .name = "imon",
28492256 72 .scancode_bits = 0x7fffffff, .repeat_period = 114 },
721074b0
PL
73 [RC_PROTO_RCMM12] = { .name = "rc-mm-12",
74 .scancode_bits = 0x00000fff, .repeat_period = 114 },
75 [RC_PROTO_RCMM24] = { .name = "rc-mm-24",
76 .scancode_bits = 0x00ffffff, .repeat_period = 114 },
77 [RC_PROTO_RCMM32] = { .name = "rc-mm-32",
78 .scancode_bits = 0xffffffff, .repeat_period = 114 },
17287692 79 [RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
d57ea877 80};
a374fef4 81
4c7b355d 82/* Used to keep track of known keymaps */
631493ec
MCC
83static LIST_HEAD(rc_map_list);
84static DEFINE_SPINLOCK(rc_map_lock);
153a60bb 85static struct led_trigger *led_feedback;
631493ec 86
fcb13097
DH
87/* Used to keep track of rc devices */
88static DEFINE_IDA(rc_ida);
89
d100e659 90static struct rc_map_list *seek_rc_map(const char *name)
631493ec 91{
d100e659 92 struct rc_map_list *map = NULL;
631493ec
MCC
93
94 spin_lock(&rc_map_lock);
95 list_for_each_entry(map, &rc_map_list, list) {
96 if (!strcmp(name, map->map.name)) {
97 spin_unlock(&rc_map_lock);
98 return map;
99 }
100 }
101 spin_unlock(&rc_map_lock);
102
103 return NULL;
104}
105
d100e659 106struct rc_map *rc_map_get(const char *name)
631493ec
MCC
107{
108
d100e659 109 struct rc_map_list *map;
631493ec
MCC
110
111 map = seek_rc_map(name);
2ff56fad 112#ifdef CONFIG_MODULES
631493ec 113 if (!map) {
8ea5488a 114 int rc = request_module("%s", name);
631493ec 115 if (rc < 0) {
d3d96820 116 pr_err("Couldn't load IR keymap %s\n", name);
631493ec
MCC
117 return NULL;
118 }
119 msleep(20); /* Give some time for IR to register */
120
121 map = seek_rc_map(name);
122 }
123#endif
124 if (!map) {
d3d96820 125 pr_err("IR keymap %s not found\n", name);
631493ec
MCC
126 return NULL;
127 }
128
129 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
130
131 return &map->map;
132}
d100e659 133EXPORT_SYMBOL_GPL(rc_map_get);
631493ec 134
d100e659 135int rc_map_register(struct rc_map_list *map)
631493ec
MCC
136{
137 spin_lock(&rc_map_lock);
138 list_add_tail(&map->list, &rc_map_list);
139 spin_unlock(&rc_map_lock);
140 return 0;
141}
d100e659 142EXPORT_SYMBOL_GPL(rc_map_register);
631493ec 143
d100e659 144void rc_map_unregister(struct rc_map_list *map)
631493ec
MCC
145{
146 spin_lock(&rc_map_lock);
147 list_del(&map->list);
148 spin_unlock(&rc_map_lock);
149}
d100e659 150EXPORT_SYMBOL_GPL(rc_map_unregister);
631493ec
MCC
151
152
2f4f58d6 153static struct rc_map_table empty[] = {
631493ec
MCC
154 { 0x2a, KEY_COFFEE },
155};
156
d100e659 157static struct rc_map_list empty_map = {
631493ec 158 .map = {
6d741bfe
SY
159 .scan = empty,
160 .size = ARRAY_SIZE(empty),
161 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
162 .name = RC_MAP_EMPTY,
631493ec
MCC
163 }
164};
165
e6c6d7d4
SY
166/**
167 * scancode_to_u64() - converts scancode in &struct input_keymap_entry
168 * @ke: keymap entry containing scancode to be converted.
169 * @scancode: pointer to the location where converted scancode should
170 * be stored.
171 *
172 * This function is a version of input_scancode_to_scalar specialized for
173 * rc-core.
174 */
175static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode)
176{
177 switch (ke->len) {
178 case 1:
179 *scancode = *((u8 *)ke->scancode);
180 break;
181
182 case 2:
183 *scancode = *((u16 *)ke->scancode);
184 break;
185
186 case 4:
187 *scancode = *((u32 *)ke->scancode);
188 break;
189
190 case 8:
191 *scancode = *((u64 *)ke->scancode);
192 break;
193
194 default:
195 return -EINVAL;
196 }
197
198 return 0;
199}
200
9f470095
DT
201/**
202 * ir_create_table() - initializes a scancode table
1f17f684 203 * @dev: the rc_dev device
b088ba65 204 * @rc_map: the rc_map to initialize
9f470095 205 * @name: name to assign to the table
6d741bfe 206 * @rc_proto: ir type to assign to the new table
9f470095 207 * @size: initial size of the table
9f470095 208 *
b088ba65 209 * This routine will initialize the rc_map and will allocate
d8b4b582 210 * memory to hold at least the specified number of elements.
f67f366c
MCC
211 *
212 * return: zero on success or a negative error code
9f470095 213 */
1f17f684 214static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
6d741bfe 215 const char *name, u64 rc_proto, size_t size)
9f470095 216{
d54fc3bb
HV
217 rc_map->name = kstrdup(name, GFP_KERNEL);
218 if (!rc_map->name)
219 return -ENOMEM;
6d741bfe 220 rc_map->rc_proto = rc_proto;
2f4f58d6
MCC
221 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
222 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
b088ba65 223 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
d54fc3bb
HV
224 if (!rc_map->scan) {
225 kfree(rc_map->name);
226 rc_map->name = NULL;
9f470095 227 return -ENOMEM;
d54fc3bb 228 }
9f470095 229
1f17f684
SY
230 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
231 rc_map->size, rc_map->alloc);
9f470095
DT
232 return 0;
233}
234
235/**
236 * ir_free_table() - frees memory allocated by a scancode table
b088ba65 237 * @rc_map: the table whose mappings need to be freed
9f470095
DT
238 *
239 * This routine will free memory alloctaed for key mappings used by given
240 * scancode table.
241 */
b088ba65 242static void ir_free_table(struct rc_map *rc_map)
9f470095 243{
b088ba65 244 rc_map->size = 0;
d54fc3bb 245 kfree(rc_map->name);
c183d358 246 rc_map->name = NULL;
b088ba65
MCC
247 kfree(rc_map->scan);
248 rc_map->scan = NULL;
9f470095
DT
249}
250
7fee03e4 251/**
b3074c0a 252 * ir_resize_table() - resizes a scancode table if necessary
1f17f684 253 * @dev: the rc_dev device
b088ba65 254 * @rc_map: the rc_map to resize
9f470095 255 * @gfp_flags: gfp flags to use when allocating memory
7fee03e4 256 *
b088ba65 257 * This routine will shrink the rc_map if it has lots of
b3074c0a 258 * unused entries and grow it if it is full.
f67f366c
MCC
259 *
260 * return: zero on success or a negative error code
7fee03e4 261 */
1f17f684
SY
262static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
263 gfp_t gfp_flags)
7fee03e4 264{
b088ba65 265 unsigned int oldalloc = rc_map->alloc;
b3074c0a 266 unsigned int newalloc = oldalloc;
2f4f58d6
MCC
267 struct rc_map_table *oldscan = rc_map->scan;
268 struct rc_map_table *newscan;
b3074c0a 269
b088ba65 270 if (rc_map->size == rc_map->len) {
b3074c0a 271 /* All entries in use -> grow keytable */
b088ba65 272 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
b3074c0a 273 return -ENOMEM;
7fee03e4 274
b3074c0a 275 newalloc *= 2;
1f17f684 276 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
b3074c0a 277 }
7fee03e4 278
b088ba65 279 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
b3074c0a
DH
280 /* Less than 1/3 of entries in use -> shrink keytable */
281 newalloc /= 2;
1f17f684 282 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
b3074c0a 283 }
7fee03e4 284
b3074c0a
DH
285 if (newalloc == oldalloc)
286 return 0;
7fee03e4 287
9f470095 288 newscan = kmalloc(newalloc, gfp_flags);
1f17f684 289 if (!newscan)
b3074c0a 290 return -ENOMEM;
7fee03e4 291
2f4f58d6 292 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
b088ba65
MCC
293 rc_map->scan = newscan;
294 rc_map->alloc = newalloc;
2f4f58d6 295 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
b3074c0a
DH
296 kfree(oldscan);
297 return 0;
7fee03e4
MCC
298}
299
f6fc5049 300/**
9f470095 301 * ir_update_mapping() - set a keycode in the scancode->keycode table
d8b4b582 302 * @dev: the struct rc_dev device descriptor
b088ba65 303 * @rc_map: scancode table to be adjusted
9f470095 304 * @index: index of the mapping that needs to be updated
f67f366c 305 * @new_keycode: the desired keycode
9f470095 306 *
d8b4b582 307 * This routine is used to update scancode->keycode mapping at given
9f470095 308 * position.
f67f366c
MCC
309 *
310 * return: previous keycode assigned to the mapping
311 *
9f470095 312 */
d8b4b582 313static unsigned int ir_update_mapping(struct rc_dev *dev,
b088ba65 314 struct rc_map *rc_map,
9f470095
DT
315 unsigned int index,
316 unsigned int new_keycode)
317{
b088ba65 318 int old_keycode = rc_map->scan[index].keycode;
05f0edad 319 int i;
9f470095
DT
320
321 /* Did the user wish to remove the mapping? */
322 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
e6c6d7d4 323 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n",
1f17f684 324 index, rc_map->scan[index].scancode);
b088ba65
MCC
325 rc_map->len--;
326 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
2f4f58d6 327 (rc_map->len - index) * sizeof(struct rc_map_table));
9f470095 328 } else {
e6c6d7d4 329 dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n",
1f17f684
SY
330 index,
331 old_keycode == KEY_RESERVED ? "New" : "Replacing",
332 rc_map->scan[index].scancode, new_keycode);
b088ba65 333 rc_map->scan[index].keycode = new_keycode;
05f0edad 334 __set_bit(new_keycode, dev->input_dev->keybit);
9f470095
DT
335 }
336
337 if (old_keycode != KEY_RESERVED) {
05f0edad
SY
338 /* A previous mapping was updated... */
339 __clear_bit(old_keycode, dev->input_dev->keybit);
340 /* ... but another scancode might use the same keycode */
341 for (i = 0; i < rc_map->len; i++) {
342 if (rc_map->scan[i].keycode == old_keycode) {
343 __set_bit(old_keycode, dev->input_dev->keybit);
344 break;
345 }
346 }
347
9f470095 348 /* Possibly shrink the keytable, failure is not a problem */
1f17f684 349 ir_resize_table(dev, rc_map, GFP_ATOMIC);
9f470095
DT
350 }
351
352 return old_keycode;
353}
354
355/**
4c7b355d 356 * ir_establish_scancode() - set a keycode in the scancode->keycode table
d8b4b582 357 * @dev: the struct rc_dev device descriptor
b088ba65 358 * @rc_map: scancode table to be searched
9f470095
DT
359 * @scancode: the desired scancode
360 * @resize: controls whether we allowed to resize the table to
25985edc 361 * accommodate not yet present scancodes
f6fc5049 362 *
b088ba65 363 * This routine is used to locate given scancode in rc_map.
9f470095
DT
364 * If scancode is not yet present the routine will allocate a new slot
365 * for it.
f67f366c
MCC
366 *
367 * return: index of the mapping containing scancode in question
368 * or -1U in case of failure.
f6fc5049 369 */
d8b4b582 370static unsigned int ir_establish_scancode(struct rc_dev *dev,
b088ba65 371 struct rc_map *rc_map,
e6c6d7d4 372 u64 scancode, bool resize)
f6fc5049 373{
b3074c0a 374 unsigned int i;
9dfe4e83
MCC
375
376 /*
377 * Unfortunately, some hardware-based IR decoders don't provide
378 * all bits for the complete IR code. In general, they provide only
379 * the command part of the IR code. Yet, as it is possible to replace
380 * the provided IR with another one, it is needed to allow loading
d8b4b582
DH
381 * IR tables from other remotes. So, we support specifying a mask to
382 * indicate the valid bits of the scancodes.
9dfe4e83 383 */
9d2f1d3c
DH
384 if (dev->scancode_mask)
385 scancode &= dev->scancode_mask;
b3074c0a
DH
386
387 /* First check if we already have a mapping for this ir command */
b088ba65
MCC
388 for (i = 0; i < rc_map->len; i++) {
389 if (rc_map->scan[i].scancode == scancode)
9f470095
DT
390 return i;
391
b3074c0a 392 /* Keytable is sorted from lowest to highest scancode */
b088ba65 393 if (rc_map->scan[i].scancode >= scancode)
b3074c0a 394 break;
b3074c0a 395 }
f6fc5049 396
9f470095 397 /* No previous mapping found, we might need to grow the table */
b088ba65 398 if (rc_map->size == rc_map->len) {
1f17f684 399 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
9f470095
DT
400 return -1U;
401 }
35438946 402
9f470095 403 /* i is the proper index to insert our new keycode */
b088ba65
MCC
404 if (i < rc_map->len)
405 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
2f4f58d6 406 (rc_map->len - i) * sizeof(struct rc_map_table));
b088ba65
MCC
407 rc_map->scan[i].scancode = scancode;
408 rc_map->scan[i].keycode = KEY_RESERVED;
409 rc_map->len++;
f6fc5049 410
9f470095 411 return i;
f6fc5049
MCC
412}
413
ef53a115 414/**
b3074c0a 415 * ir_setkeycode() - set a keycode in the scancode->keycode table
d8b4b582 416 * @idev: the struct input_dev device descriptor
f67f366c
MCC
417 * @ke: Input keymap entry
418 * @old_keycode: result
ef53a115 419 *
b3074c0a 420 * This routine is used to handle evdev EVIOCSKEY ioctl.
f67f366c
MCC
421 *
422 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
ef53a115 423 */
d8b4b582 424static int ir_setkeycode(struct input_dev *idev,
9f470095
DT
425 const struct input_keymap_entry *ke,
426 unsigned int *old_keycode)
ef53a115 427{
d8b4b582 428 struct rc_dev *rdev = input_get_drvdata(idev);
b088ba65 429 struct rc_map *rc_map = &rdev->rc_map;
9f470095 430 unsigned int index;
e6c6d7d4 431 u64 scancode;
dea8a39f 432 int retval = 0;
9f470095 433 unsigned long flags;
ef53a115 434
b088ba65 435 spin_lock_irqsave(&rc_map->lock, flags);
9f470095
DT
436
437 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
438 index = ke->index;
b088ba65 439 if (index >= rc_map->len) {
9f470095
DT
440 retval = -EINVAL;
441 goto out;
442 }
443 } else {
e6c6d7d4 444 retval = scancode_to_u64(ke, &scancode);
9f470095
DT
445 if (retval)
446 goto out;
447
b088ba65
MCC
448 index = ir_establish_scancode(rdev, rc_map, scancode, true);
449 if (index >= rc_map->len) {
9f470095
DT
450 retval = -ENOMEM;
451 goto out;
452 }
453 }
454
b088ba65 455 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
9f470095
DT
456
457out:
b088ba65 458 spin_unlock_irqrestore(&rc_map->lock, flags);
9f470095 459 return retval;
e97f4677
MCC
460}
461
462/**
b3074c0a 463 * ir_setkeytable() - sets several entries in the scancode->keycode table
d8b4b582 464 * @dev: the struct rc_dev device descriptor
b088ba65 465 * @from: the struct rc_map to copy entries from
e97f4677 466 *
b3074c0a 467 * This routine is used to handle table initialization.
f67f366c
MCC
468 *
469 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
e97f4677 470 */
e6c6d7d4 471static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from)
e97f4677 472{
b088ba65 473 struct rc_map *rc_map = &dev->rc_map;
9f470095
DT
474 unsigned int i, index;
475 int rc;
476
1f17f684
SY
477 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
478 from->size);
9f470095
DT
479 if (rc)
480 return rc;
481
b3074c0a 482 for (i = 0; i < from->size; i++) {
b088ba65 483 index = ir_establish_scancode(dev, rc_map,
9f470095 484 from->scan[i].scancode, false);
b088ba65 485 if (index >= rc_map->len) {
9f470095 486 rc = -ENOMEM;
b3074c0a 487 break;
9f470095
DT
488 }
489
b088ba65 490 ir_update_mapping(dev, rc_map, index,
9f470095 491 from->scan[i].keycode);
e97f4677 492 }
9f470095
DT
493
494 if (rc)
b088ba65 495 ir_free_table(rc_map);
9f470095 496
b3074c0a 497 return rc;
ef53a115
MCC
498}
499
8ca01d4f
TM
500static int rc_map_cmp(const void *key, const void *elt)
501{
e6c6d7d4 502 const u64 *scancode = key;
8ca01d4f
TM
503 const struct rc_map_table *e = elt;
504
505 if (*scancode < e->scancode)
506 return -1;
507 else if (*scancode > e->scancode)
508 return 1;
509 return 0;
510}
511
9f470095
DT
512/**
513 * ir_lookup_by_scancode() - locate mapping by scancode
b088ba65 514 * @rc_map: the struct rc_map to search
9f470095 515 * @scancode: scancode to look for in the table
9f470095
DT
516 *
517 * This routine performs binary search in RC keykeymap table for
518 * given scancode.
f67f366c
MCC
519 *
520 * return: index in the table, -1U if not found
9f470095 521 */
b088ba65 522static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
e6c6d7d4 523 u64 scancode)
9f470095 524{
8ca01d4f
TM
525 struct rc_map_table *res;
526
527 res = bsearch(&scancode, rc_map->scan, rc_map->len,
528 sizeof(struct rc_map_table), rc_map_cmp);
529 if (!res)
530 return -1U;
531 else
532 return res - rc_map->scan;
9f470095
DT
533}
534
ef53a115 535/**
b3074c0a 536 * ir_getkeycode() - get a keycode from the scancode->keycode table
d8b4b582 537 * @idev: the struct input_dev device descriptor
f67f366c 538 * @ke: Input keymap entry
ef53a115 539 *
b3074c0a 540 * This routine is used to handle evdev EVIOCGKEY ioctl.
f67f366c
MCC
541 *
542 * return: always returns zero.
ef53a115 543 */
d8b4b582 544static int ir_getkeycode(struct input_dev *idev,
9f470095 545 struct input_keymap_entry *ke)
ef53a115 546{
d8b4b582 547 struct rc_dev *rdev = input_get_drvdata(idev);
b088ba65 548 struct rc_map *rc_map = &rdev->rc_map;
2f4f58d6 549 struct rc_map_table *entry;
9f470095
DT
550 unsigned long flags;
551 unsigned int index;
e6c6d7d4 552 u64 scancode;
9f470095 553 int retval;
ef53a115 554
b088ba65 555 spin_lock_irqsave(&rc_map->lock, flags);
9f470095
DT
556
557 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
558 index = ke->index;
559 } else {
e6c6d7d4 560 retval = scancode_to_u64(ke, &scancode);
9f470095
DT
561 if (retval)
562 goto out;
563
b088ba65 564 index = ir_lookup_by_scancode(rc_map, scancode);
9f470095
DT
565 }
566
54e74b87
DT
567 if (index < rc_map->len) {
568 entry = &rc_map->scan[index];
569
570 ke->index = index;
571 ke->keycode = entry->keycode;
572 ke->len = sizeof(entry->scancode);
573 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
54e74b87
DT
574 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
575 /*
576 * We do not really know the valid range of scancodes
577 * so let's respond with KEY_RESERVED to anything we
578 * do not have mapping for [yet].
579 */
580 ke->index = index;
581 ke->keycode = KEY_RESERVED;
582 } else {
9f470095
DT
583 retval = -EINVAL;
584 goto out;
e97f4677
MCC
585 }
586
47c5ba53
DT
587 retval = 0;
588
9f470095 589out:
b088ba65 590 spin_unlock_irqrestore(&rc_map->lock, flags);
9f470095 591 return retval;
ef53a115
MCC
592}
593
594/**
ca86674b 595 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
d8b4b582
DH
596 * @dev: the struct rc_dev descriptor of the device
597 * @scancode: the scancode to look for
ef53a115 598 *
d8b4b582
DH
599 * This routine is used by drivers which need to convert a scancode to a
600 * keycode. Normally it should not be used since drivers should have no
601 * interest in keycodes.
f67f366c
MCC
602 *
603 * return: the corresponding keycode, or KEY_RESERVED
ef53a115 604 */
e6c6d7d4 605u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode)
ef53a115 606{
b088ba65 607 struct rc_map *rc_map = &dev->rc_map;
9f470095
DT
608 unsigned int keycode;
609 unsigned int index;
610 unsigned long flags;
611
b088ba65 612 spin_lock_irqsave(&rc_map->lock, flags);
9f470095 613
b088ba65
MCC
614 index = ir_lookup_by_scancode(rc_map, scancode);
615 keycode = index < rc_map->len ?
616 rc_map->scan[index].keycode : KEY_RESERVED;
9f470095 617
b088ba65 618 spin_unlock_irqrestore(&rc_map->lock, flags);
ef53a115 619
35438946 620 if (keycode != KEY_RESERVED)
e6c6d7d4 621 dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n",
1f17f684 622 dev->device_name, scancode, keycode);
9f470095 623
b3074c0a 624 return keycode;
ef53a115 625}
ca86674b 626EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
ef53a115 627
6660de56 628/**
62c65031 629 * ir_do_keyup() - internal function to signal the release of a keypress
d8b4b582 630 * @dev: the struct rc_dev descriptor of the device
98c32bcd 631 * @sync: whether or not to call input_sync
6660de56 632 *
62c65031
DH
633 * This function is used internally to release a keypress, it must be
634 * called with keylock held.
a374fef4 635 */
98c32bcd 636static void ir_do_keyup(struct rc_dev *dev, bool sync)
a374fef4 637{
d8b4b582 638 if (!dev->keypressed)
a374fef4
DH
639 return;
640
1f17f684 641 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
fb7ccc61 642 del_timer(&dev->timer_repeat);
d8b4b582 643 input_report_key(dev->input_dev, dev->last_keycode, 0);
153a60bb 644 led_trigger_event(led_feedback, LED_OFF);
98c32bcd
JW
645 if (sync)
646 input_sync(dev->input_dev);
d8b4b582 647 dev->keypressed = false;
a374fef4 648}
62c65031
DH
649
650/**
ca86674b 651 * rc_keyup() - signals the release of a keypress
d8b4b582 652 * @dev: the struct rc_dev descriptor of the device
62c65031
DH
653 *
654 * This routine is used to signal that a key has been released on the
655 * remote control.
656 */
ca86674b 657void rc_keyup(struct rc_dev *dev)
62c65031
DH
658{
659 unsigned long flags;
62c65031 660
d8b4b582 661 spin_lock_irqsave(&dev->keylock, flags);
98c32bcd 662 ir_do_keyup(dev, true);
d8b4b582 663 spin_unlock_irqrestore(&dev->keylock, flags);
62c65031 664}
ca86674b 665EXPORT_SYMBOL_GPL(rc_keyup);
a374fef4
DH
666
667/**
668 * ir_timer_keyup() - generates a keyup event after a timeout
f67f366c
MCC
669 *
670 * @t: a pointer to the struct timer_list
a374fef4
DH
671 *
672 * This routine will generate a keyup event some time after a keydown event
673 * is generated when no further activity has been detected.
6660de56 674 */
b17ec78a 675static void ir_timer_keyup(struct timer_list *t)
6660de56 676{
b17ec78a 677 struct rc_dev *dev = from_timer(dev, t, timer_keyup);
a374fef4
DH
678 unsigned long flags;
679
680 /*
681 * ir->keyup_jiffies is used to prevent a race condition if a
682 * hardware interrupt occurs at this point and the keyup timer
683 * event is moved further into the future as a result.
684 *
685 * The timer will then be reactivated and this function called
686 * again in the future. We need to exit gracefully in that case
687 * to allow the input subsystem to do its auto-repeat magic or
688 * a keyup event might follow immediately after the keydown.
689 */
d8b4b582
DH
690 spin_lock_irqsave(&dev->keylock, flags);
691 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
98c32bcd 692 ir_do_keyup(dev, true);
d8b4b582 693 spin_unlock_irqrestore(&dev->keylock, flags);
a374fef4
DH
694}
695
57c642cb
SY
696/**
697 * ir_timer_repeat() - generates a repeat event after a timeout
698 *
699 * @t: a pointer to the struct timer_list
700 *
701 * This routine will generate a soft repeat event every REP_PERIOD
702 * milliseconds.
703 */
704static void ir_timer_repeat(struct timer_list *t)
705{
706 struct rc_dev *dev = from_timer(dev, t, timer_repeat);
707 struct input_dev *input = dev->input_dev;
708 unsigned long flags;
709
710 spin_lock_irqsave(&dev->keylock, flags);
711 if (dev->keypressed) {
712 input_event(input, EV_KEY, dev->last_keycode, 2);
713 input_sync(input);
714 if (input->rep[REP_PERIOD])
715 mod_timer(&dev->timer_repeat, jiffies +
716 msecs_to_jiffies(input->rep[REP_PERIOD]));
717 }
718 spin_unlock_irqrestore(&dev->keylock, flags);
719}
720
f5dbee6e
SY
721static unsigned int repeat_period(int protocol)
722{
723 if (protocol >= ARRAY_SIZE(protocols))
724 return 100;
725
726 return protocols[protocol].repeat_period;
727}
728
a374fef4 729/**
ca86674b 730 * rc_repeat() - signals that a key is still pressed
d8b4b582 731 * @dev: the struct rc_dev descriptor of the device
a374fef4
DH
732 *
733 * This routine is used by IR decoders when a repeat message which does
734 * not include the necessary bits to reproduce the scancode has been
735 * received.
736 */
ca86674b 737void rc_repeat(struct rc_dev *dev)
a374fef4
DH
738{
739 unsigned long flags;
06b83158 740 unsigned int timeout = usecs_to_jiffies(dev->timeout) +
f5dbee6e 741 msecs_to_jiffies(repeat_period(dev->last_protocol));
b66218fd
SY
742 struct lirc_scancode sc = {
743 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
744 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
745 .flags = LIRC_SCANCODE_FLAG_REPEAT |
746 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
747 };
6660de56 748
e5bb9d3d 749 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
75992a44 750 lirc_scancode_event(dev, &sc);
a374fef4 751
b66218fd 752 spin_lock_irqsave(&dev->keylock, flags);
6660de56 753
e6c6d7d4
SY
754 if (dev->last_scancode <= U32_MAX) {
755 input_event(dev->input_dev, EV_MSC, MSC_SCAN,
756 dev->last_scancode);
757 input_sync(dev->input_dev);
758 }
265a2988 759
b66218fd 760 if (dev->keypressed) {
28492256 761 dev->keyup_jiffies = jiffies + timeout;
b66218fd
SY
762 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
763 }
a374fef4 764
d8b4b582 765 spin_unlock_irqrestore(&dev->keylock, flags);
6660de56 766}
ca86674b 767EXPORT_SYMBOL_GPL(rc_repeat);
6660de56
MCC
768
769/**
62c65031 770 * ir_do_keydown() - internal function to process a keypress
d8b4b582 771 * @dev: the struct rc_dev descriptor of the device
120703f9 772 * @protocol: the protocol of the keypress
62c65031
DH
773 * @scancode: the scancode of the keypress
774 * @keycode: the keycode of the keypress
775 * @toggle: the toggle value of the keypress
6660de56 776 *
62c65031
DH
777 * This function is used internally to register a keypress, it must be
778 * called with keylock held.
6660de56 779 */
6d741bfe 780static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
e6c6d7d4 781 u64 scancode, u32 keycode, u8 toggle)
6660de56 782{
99b0f3c9 783 bool new_event = (!dev->keypressed ||
120703f9 784 dev->last_protocol != protocol ||
99b0f3c9 785 dev->last_scancode != scancode ||
120703f9 786 dev->last_toggle != toggle);
de142c32
SY
787 struct lirc_scancode sc = {
788 .scancode = scancode, .rc_proto = protocol,
b464763c
MM
789 .flags = (toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) |
790 (!new_event ? LIRC_SCANCODE_FLAG_REPEAT : 0),
de142c32
SY
791 .keycode = keycode
792 };
793
e5bb9d3d 794 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
75992a44 795 lirc_scancode_event(dev, &sc);
6660de56 796
98c32bcd
JW
797 if (new_event && dev->keypressed)
798 ir_do_keyup(dev, false);
6660de56 799
e6c6d7d4
SY
800 if (scancode <= U32_MAX)
801 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
a374fef4 802
b66218fd
SY
803 dev->last_protocol = protocol;
804 dev->last_scancode = scancode;
805 dev->last_toggle = toggle;
806 dev->last_keycode = keycode;
807
98c32bcd
JW
808 if (new_event && keycode != KEY_RESERVED) {
809 /* Register a keypress */
810 dev->keypressed = true;
98c32bcd 811
e6c6d7d4 812 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
1f17f684 813 dev->device_name, keycode, protocol, scancode);
98c32bcd 814 input_report_key(dev->input_dev, keycode, 1);
70a2f912
JH
815
816 led_trigger_event(led_feedback, LED_FULL);
98c32bcd 817 }
ed4d3876 818
57c642cb
SY
819 /*
820 * For CEC, start sending repeat messages as soon as the first
821 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
822 * is non-zero. Otherwise, the input layer will generate repeat
823 * messages.
824 */
825 if (!new_event && keycode != KEY_RESERVED &&
826 dev->allowed_protocols == RC_PROTO_BIT_CEC &&
827 !timer_pending(&dev->timer_repeat) &&
828 dev->input_dev->rep[REP_PERIOD] &&
829 !dev->input_dev->rep[REP_DELAY]) {
830 input_event(dev->input_dev, EV_KEY, keycode, 2);
831 mod_timer(&dev->timer_repeat, jiffies +
832 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
833 }
834
d8b4b582 835 input_sync(dev->input_dev);
62c65031 836}
6660de56 837
62c65031 838/**
ca86674b 839 * rc_keydown() - generates input event for a key press
d8b4b582 840 * @dev: the struct rc_dev descriptor of the device
120703f9
DH
841 * @protocol: the protocol for the keypress
842 * @scancode: the scancode for the keypress
62c65031
DH
843 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
844 * support toggle values, this should be set to zero)
845 *
d8b4b582
DH
846 * This routine is used to signal that a key has been pressed on the
847 * remote control.
62c65031 848 */
e6c6d7d4 849void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode,
6d741bfe 850 u8 toggle)
62c65031
DH
851{
852 unsigned long flags;
ca86674b 853 u32 keycode = rc_g_keycode_from_table(dev, scancode);
62c65031 854
d8b4b582 855 spin_lock_irqsave(&dev->keylock, flags);
120703f9 856 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
62c65031 857
d8b4b582 858 if (dev->keypressed) {
06b83158 859 dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) +
f5dbee6e 860 msecs_to_jiffies(repeat_period(protocol));
d8b4b582 861 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
62c65031 862 }
d8b4b582 863 spin_unlock_irqrestore(&dev->keylock, flags);
6660de56 864}
ca86674b 865EXPORT_SYMBOL_GPL(rc_keydown);
6660de56 866
62c65031 867/**
ca86674b 868 * rc_keydown_notimeout() - generates input event for a key press without
62c65031 869 * an automatic keyup event at a later time
d8b4b582 870 * @dev: the struct rc_dev descriptor of the device
120703f9
DH
871 * @protocol: the protocol for the keypress
872 * @scancode: the scancode for the keypress
62c65031
DH
873 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
874 * support toggle values, this should be set to zero)
875 *
d8b4b582 876 * This routine is used to signal that a key has been pressed on the
ca86674b 877 * remote control. The driver must manually call rc_keyup() at a later stage.
62c65031 878 */
6d741bfe 879void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
e6c6d7d4 880 u64 scancode, u8 toggle)
62c65031
DH
881{
882 unsigned long flags;
ca86674b 883 u32 keycode = rc_g_keycode_from_table(dev, scancode);
62c65031 884
d8b4b582 885 spin_lock_irqsave(&dev->keylock, flags);
120703f9 886 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
d8b4b582 887 spin_unlock_irqrestore(&dev->keylock, flags);
62c65031 888}
ca86674b 889EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
62c65031 890
49a4b36a 891/**
6b514c4a
SY
892 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
893 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
49a4b36a
SY
894 * @proto: protocol
895 * @scancode: scancode
896 */
897bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
898{
899 switch (proto) {
6b514c4a
SY
900 /*
901 * NECX has a 16-bit address; if the lower 8 bits match the upper
902 * 8 bits inverted, then the address would match regular nec.
903 */
49a4b36a
SY
904 case RC_PROTO_NECX:
905 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
906 return false;
907 break;
6b514c4a
SY
908 /*
909 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
910 * of the command match the upper 8 bits inverted, then it would
911 * be either NEC or NECX.
912 */
49a4b36a 913 case RC_PROTO_NEC32:
6b514c4a 914 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
49a4b36a
SY
915 return false;
916 break;
6b514c4a
SY
917 /*
918 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
919 * is regular mode-6a 32 bit
920 */
49a4b36a
SY
921 case RC_PROTO_RC6_MCE:
922 if ((scancode & 0xffff0000) != 0x800f0000)
923 return false;
924 break;
925 case RC_PROTO_RC6_6A_32:
926 if ((scancode & 0xffff0000) == 0x800f0000)
927 return false;
928 break;
929 default:
930 break;
931 }
932
933 return true;
934}
935
b590c0bf
SY
936/**
937 * rc_validate_filter() - checks that the scancode and mask are valid and
938 * provides sensible defaults
f423ccc1 939 * @dev: the struct rc_dev descriptor of the device
b590c0bf 940 * @filter: the scancode and mask
f67f366c
MCC
941 *
942 * return: 0 or -EINVAL if the filter is not valid
b590c0bf 943 */
f423ccc1 944static int rc_validate_filter(struct rc_dev *dev,
b590c0bf
SY
945 struct rc_scancode_filter *filter)
946{
d57ea877 947 u32 mask, s = filter->data;
6d741bfe 948 enum rc_proto protocol = dev->wakeup_protocol;
b590c0bf 949
d57ea877 950 if (protocol >= ARRAY_SIZE(protocols))
2168b416
SY
951 return -EINVAL;
952
d57ea877
SY
953 mask = protocols[protocol].scancode_bits;
954
49a4b36a
SY
955 if (!rc_validate_scancode(protocol, s))
956 return -EINVAL;
b590c0bf 957
d57ea877
SY
958 filter->data &= mask;
959 filter->mask &= mask;
b590c0bf 960
f423ccc1
JH
961 /*
962 * If we have to raw encode the IR for wakeup, we cannot have a mask
963 */
d57ea877 964 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
f423ccc1
JH
965 return -EINVAL;
966
b590c0bf
SY
967 return 0;
968}
969
8b2ff320
SK
970int rc_open(struct rc_dev *rdev)
971{
972 int rval = 0;
973
974 if (!rdev)
975 return -EINVAL;
976
977 mutex_lock(&rdev->lock);
c73bbaa4 978
cb84343f
SY
979 if (!rdev->registered) {
980 rval = -ENODEV;
981 } else {
982 if (!rdev->users++ && rdev->open)
983 rval = rdev->open(rdev);
8b2ff320 984
cb84343f
SY
985 if (rval)
986 rdev->users--;
987 }
8b2ff320
SK
988
989 mutex_unlock(&rdev->lock);
990
991 return rval;
992}
8b2ff320 993
d8b4b582 994static int ir_open(struct input_dev *idev)
ef53a115 995{
d8b4b582 996 struct rc_dev *rdev = input_get_drvdata(idev);
75543cce 997
8b2ff320
SK
998 return rc_open(rdev);
999}
1000
1001void rc_close(struct rc_dev *rdev)
1002{
1003 if (rdev) {
1004 mutex_lock(&rdev->lock);
1005
cb84343f 1006 if (!--rdev->users && rdev->close && rdev->registered)
8b2ff320
SK
1007 rdev->close(rdev);
1008
1009 mutex_unlock(&rdev->lock);
1010 }
ef53a115 1011}
d4b778d3 1012
d8b4b582 1013static void ir_close(struct input_dev *idev)
f6fc5049 1014{
d8b4b582 1015 struct rc_dev *rdev = input_get_drvdata(idev);
8b2ff320 1016 rc_close(rdev);
f6fc5049 1017}
f6fc5049 1018
bc2a6c57 1019/* class for /sys/class/rc */
ff62b8e6 1020static char *rc_devnode(const struct device *dev, umode_t *mode)
bc2a6c57
MCC
1021{
1022 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
1023}
1024
40fc5325 1025static struct class rc_class = {
bc2a6c57 1026 .name = "rc",
40fc5325 1027 .devnode = rc_devnode,
bc2a6c57
MCC
1028};
1029
c003ab1b
DH
1030/*
1031 * These are the protocol textual descriptions that are
1032 * used by the sysfs protocols file. Note that the order
1033 * of the entries is relevant.
1034 */
53df8777 1035static const struct {
bc2a6c57 1036 u64 type;
53df8777 1037 const char *name;
9f0bf366 1038 const char *module_name;
bc2a6c57 1039} proto_names[] = {
6d741bfe
SY
1040 { RC_PROTO_BIT_NONE, "none", NULL },
1041 { RC_PROTO_BIT_OTHER, "other", NULL },
1042 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
1043 { RC_PROTO_BIT_RC5 |
1044 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
1045 { RC_PROTO_BIT_NEC |
1046 RC_PROTO_BIT_NECX |
1047 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
1048 { RC_PROTO_BIT_RC6_0 |
1049 RC_PROTO_BIT_RC6_6A_20 |
1050 RC_PROTO_BIT_RC6_6A_24 |
1051 RC_PROTO_BIT_RC6_6A_32 |
1052 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
1053 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
1054 { RC_PROTO_BIT_SONY12 |
1055 RC_PROTO_BIT_SONY15 |
1056 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
1057 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
1058 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
1059 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
1060 { RC_PROTO_BIT_MCIR2_KBD |
1061 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
1062 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
1063 { RC_PROTO_BIT_CEC, "cec", NULL },
447dcc0c 1064 { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" },
721074b0
PL
1065 { RC_PROTO_BIT_RCMM12 |
1066 RC_PROTO_BIT_RCMM24 |
1067 RC_PROTO_BIT_RCMM32, "rc-mm", "ir-rcmm-decoder" },
17287692 1068 { RC_PROTO_BIT_XBOX_DVD, "xbox-dvd", NULL },
bc2a6c57
MCC
1069};
1070
bc2a6c57 1071/**
ab88c66d
JH
1072 * struct rc_filter_attribute - Device attribute relating to a filter type.
1073 * @attr: Device attribute.
1074 * @type: Filter type.
1075 * @mask: false for filter value, true for filter mask.
1076 */
1077struct rc_filter_attribute {
1078 struct device_attribute attr;
1079 enum rc_filter_type type;
1080 bool mask;
1081};
1082#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1083
ab88c66d
JH
1084#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1085 struct rc_filter_attribute dev_attr_##_name = { \
1086 .attr = __ATTR(_name, _mode, _show, _store), \
1087 .type = (_type), \
1088 .mask = (_mask), \
1089 }
1090
1091/**
0751d33c 1092 * show_protocols() - shows the current IR protocol(s)
d8b4b582 1093 * @device: the device descriptor
da6e162d 1094 * @mattr: the device attribute struct
bc2a6c57
MCC
1095 * @buf: a pointer to the output buffer
1096 *
1097 * This routine is a callback routine for input read the IR protocol type(s).
04ad3011 1098 * it is triggered by reading /sys/class/rc/rc?/protocols.
bc2a6c57
MCC
1099 * It returns the protocol names of supported protocols.
1100 * Enabled protocols are printed in brackets.
08aeb7c9 1101 *
18726a34
DH
1102 * dev->lock is taken to guard against races between
1103 * store_protocols and show_protocols.
bc2a6c57 1104 */
d8b4b582 1105static ssize_t show_protocols(struct device *device,
bc2a6c57
MCC
1106 struct device_attribute *mattr, char *buf)
1107{
d8b4b582 1108 struct rc_dev *dev = to_rc_dev(device);
bc2a6c57
MCC
1109 u64 allowed, enabled;
1110 char *tmp = buf;
1111 int i;
1112
08aeb7c9
JW
1113 mutex_lock(&dev->lock);
1114
0751d33c
SY
1115 enabled = dev->enabled_protocols;
1116 allowed = dev->allowed_protocols;
1117 if (dev->raw && !allowed)
1118 allowed = ir_raw_get_allowed_protocols();
bc2a6c57 1119
da6e162d
DH
1120 mutex_unlock(&dev->lock);
1121
1f17f684
SY
1122 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1123 __func__, (long long)allowed, (long long)enabled);
bc2a6c57
MCC
1124
1125 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1126 if (allowed & enabled & proto_names[i].type)
1127 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1128 else if (allowed & proto_names[i].type)
1129 tmp += sprintf(tmp, "%s ", proto_names[i].name);
c003ab1b
DH
1130
1131 if (allowed & proto_names[i].type)
1132 allowed &= ~proto_names[i].type;
bc2a6c57
MCC
1133 }
1134
a60d64b1
SY
1135#ifdef CONFIG_LIRC
1136 if (dev->driver_type == RC_DRIVER_IR_RAW)
275ddb40 1137 tmp += sprintf(tmp, "[lirc] ");
a60d64b1 1138#endif
275ddb40 1139
bc2a6c57
MCC
1140 if (tmp != buf)
1141 tmp--;
1142 *tmp = '\n';
08aeb7c9 1143
bc2a6c57
MCC
1144 return tmp + 1 - buf;
1145}
1146
1147/**
da6e162d 1148 * parse_protocol_change() - parses a protocol change request
1f17f684 1149 * @dev: rc_dev device
da6e162d
DH
1150 * @protocols: pointer to the bitmask of current protocols
1151 * @buf: pointer to the buffer with a list of changes
bc2a6c57 1152 *
da6e162d
DH
1153 * Writing "+proto" will add a protocol to the protocol mask.
1154 * Writing "-proto" will remove a protocol from protocol mask.
bc2a6c57
MCC
1155 * Writing "proto" will enable only "proto".
1156 * Writing "none" will disable all protocols.
da6e162d 1157 * Returns the number of changes performed or a negative error code.
bc2a6c57 1158 */
1f17f684
SY
1159static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1160 const char *buf)
bc2a6c57 1161{
bc2a6c57 1162 const char *tmp;
da6e162d
DH
1163 unsigned count = 0;
1164 bool enable, disable;
bc2a6c57 1165 u64 mask;
da6e162d 1166 int i;
bc2a6c57 1167
da6e162d 1168 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
bc2a6c57
MCC
1169 if (!*tmp)
1170 break;
1171
1172 if (*tmp == '+') {
1173 enable = true;
1174 disable = false;
1175 tmp++;
1176 } else if (*tmp == '-') {
1177 enable = false;
1178 disable = true;
1179 tmp++;
1180 } else {
1181 enable = false;
1182 disable = false;
1183 }
1184
c003ab1b
DH
1185 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1186 if (!strcasecmp(tmp, proto_names[i].name)) {
1187 mask = proto_names[i].type;
1188 break;
bc2a6c57 1189 }
bc2a6c57
MCC
1190 }
1191
c003ab1b 1192 if (i == ARRAY_SIZE(proto_names)) {
275ddb40
DH
1193 if (!strcasecmp(tmp, "lirc"))
1194 mask = 0;
1195 else {
1f17f684
SY
1196 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1197 tmp);
275ddb40
DH
1198 return -EINVAL;
1199 }
c003ab1b
DH
1200 }
1201
1202 count++;
1203
bc2a6c57 1204 if (enable)
da6e162d 1205 *protocols |= mask;
bc2a6c57 1206 else if (disable)
da6e162d 1207 *protocols &= ~mask;
bc2a6c57 1208 else
da6e162d 1209 *protocols = mask;
bc2a6c57
MCC
1210 }
1211
1212 if (!count) {
1f17f684 1213 dev_dbg(&dev->dev, "Protocol not specified\n");
da6e162d
DH
1214 return -EINVAL;
1215 }
1216
1217 return count;
1218}
1219
0d39ab0b 1220void ir_raw_load_modules(u64 *protocols)
9f0bf366
HK
1221{
1222 u64 available;
1223 int i, ret;
1224
1225 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
6d741bfe
SY
1226 if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1227 proto_names[i].type & (RC_PROTO_BIT_OTHER |
1228 RC_PROTO_BIT_UNKNOWN))
9f0bf366
HK
1229 continue;
1230
1231 available = ir_raw_get_allowed_protocols();
1232 if (!(*protocols & proto_names[i].type & ~available))
1233 continue;
1234
1235 if (!proto_names[i].module_name) {
1236 pr_err("Can't enable IR protocol %s\n",
1237 proto_names[i].name);
1238 *protocols &= ~proto_names[i].type;
1239 continue;
1240 }
1241
1242 ret = request_module("%s", proto_names[i].module_name);
1243 if (ret < 0) {
1244 pr_err("Couldn't load IR protocol module %s\n",
1245 proto_names[i].module_name);
1246 *protocols &= ~proto_names[i].type;
1247 continue;
1248 }
1249 msleep(20);
1250 available = ir_raw_get_allowed_protocols();
1251 if (!(*protocols & proto_names[i].type & ~available))
1252 continue;
1253
8caebcdc 1254 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
9f0bf366
HK
1255 proto_names[i].module_name,
1256 proto_names[i].name);
1257 *protocols &= ~proto_names[i].type;
1258 }
1259}
1260
da6e162d
DH
1261/**
1262 * store_protocols() - changes the current/wakeup IR protocol(s)
1263 * @device: the device descriptor
1264 * @mattr: the device attribute struct
1265 * @buf: a pointer to the input buffer
1266 * @len: length of the input buffer
1267 *
1268 * This routine is for changing the IR protocol type.
04ad3011 1269 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
da6e162d
DH
1270 * See parse_protocol_change() for the valid commands.
1271 * Returns @len on success or a negative error code.
1272 *
18726a34
DH
1273 * dev->lock is taken to guard against races between
1274 * store_protocols and show_protocols.
da6e162d
DH
1275 */
1276static ssize_t store_protocols(struct device *device,
1277 struct device_attribute *mattr,
1278 const char *buf, size_t len)
1279{
1280 struct rc_dev *dev = to_rc_dev(device);
da6e162d 1281 u64 *current_protocols;
da6e162d 1282 struct rc_scancode_filter *filter;
da6e162d
DH
1283 u64 old_protocols, new_protocols;
1284 ssize_t rc;
1285
1f17f684 1286 dev_dbg(&dev->dev, "Normal protocol change requested\n");
0751d33c
SY
1287 current_protocols = &dev->enabled_protocols;
1288 filter = &dev->scancode_filter;
da6e162d 1289
0751d33c 1290 if (!dev->change_protocol) {
1f17f684 1291 dev_dbg(&dev->dev, "Protocol switching not supported\n");
da6e162d
DH
1292 return -EINVAL;
1293 }
1294
1295 mutex_lock(&dev->lock);
a2e2d73f
SY
1296 if (!dev->registered) {
1297 mutex_unlock(&dev->lock);
1298 return -ENODEV;
1299 }
da6e162d
DH
1300
1301 old_protocols = *current_protocols;
1302 new_protocols = old_protocols;
1f17f684 1303 rc = parse_protocol_change(dev, &new_protocols, buf);
da6e162d
DH
1304 if (rc < 0)
1305 goto out;
1306
a86d6df8
SY
1307 if (dev->driver_type == RC_DRIVER_IR_RAW)
1308 ir_raw_load_modules(&new_protocols);
1309
0751d33c 1310 rc = dev->change_protocol(dev, &new_protocols);
da6e162d 1311 if (rc < 0) {
1f17f684
SY
1312 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1313 (long long)new_protocols);
08aeb7c9 1314 goto out;
bc2a6c57
MCC
1315 }
1316
983c5bd2
JH
1317 if (new_protocols != old_protocols) {
1318 *current_protocols = new_protocols;
1f17f684
SY
1319 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1320 (long long)new_protocols);
bc2a6c57
MCC
1321 }
1322
6bea25af 1323 /*
983c5bd2
JH
1324 * If a protocol change was attempted the filter may need updating, even
1325 * if the actual protocol mask hasn't changed (since the driver may have
1326 * cleared the filter).
6bea25af
JH
1327 * Try setting the same filter with the new protocol (if any).
1328 * Fall back to clearing the filter.
1329 */
0751d33c 1330 if (dev->s_filter && filter->mask) {
da6e162d 1331 if (new_protocols)
0751d33c 1332 rc = dev->s_filter(dev, filter);
da6e162d
DH
1333 else
1334 rc = -1;
6bea25af 1335
da6e162d
DH
1336 if (rc < 0) {
1337 filter->data = 0;
1338 filter->mask = 0;
0751d33c 1339 dev->s_filter(dev, filter);
da6e162d 1340 }
6bea25af
JH
1341 }
1342
da6e162d 1343 rc = len;
08aeb7c9
JW
1344
1345out:
1346 mutex_unlock(&dev->lock);
da6e162d 1347 return rc;
bc2a6c57
MCC
1348}
1349
00942d1a
JH
1350/**
1351 * show_filter() - shows the current scancode filter value or mask
1352 * @device: the device descriptor
1353 * @attr: the device attribute struct
1354 * @buf: a pointer to the output buffer
1355 *
1356 * This routine is a callback routine to read a scancode filter value or mask.
04ad3011 1357 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
00942d1a
JH
1358 * It prints the current scancode filter value or mask of the appropriate filter
1359 * type in hexadecimal into @buf and returns the size of the buffer.
1360 *
1361 * Bits of the filter value corresponding to set bits in the filter mask are
1362 * compared against input scancodes and non-matching scancodes are discarded.
1363 *
18726a34 1364 * dev->lock is taken to guard against races between
00942d1a
JH
1365 * store_filter and show_filter.
1366 */
1367static ssize_t show_filter(struct device *device,
1368 struct device_attribute *attr,
1369 char *buf)
1370{
1371 struct rc_dev *dev = to_rc_dev(device);
1372 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
da6e162d 1373 struct rc_scancode_filter *filter;
00942d1a
JH
1374 u32 val;
1375
c73bbaa4 1376 mutex_lock(&dev->lock);
c73bbaa4 1377
da6e162d 1378 if (fattr->type == RC_FILTER_NORMAL)
c5540fbb 1379 filter = &dev->scancode_filter;
da6e162d 1380 else
c5540fbb 1381 filter = &dev->scancode_wakeup_filter;
da6e162d 1382
da6e162d
DH
1383 if (fattr->mask)
1384 val = filter->mask;
00942d1a 1385 else
da6e162d 1386 val = filter->data;
00942d1a
JH
1387 mutex_unlock(&dev->lock);
1388
1389 return sprintf(buf, "%#x\n", val);
1390}
1391
1392/**
1393 * store_filter() - changes the scancode filter value
1394 * @device: the device descriptor
1395 * @attr: the device attribute struct
1396 * @buf: a pointer to the input buffer
1397 * @len: length of the input buffer
1398 *
1399 * This routine is for changing a scancode filter value or mask.
04ad3011 1400 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
00942d1a
JH
1401 * Returns -EINVAL if an invalid filter value for the current protocol was
1402 * specified or if scancode filtering is not supported by the driver, otherwise
1403 * returns @len.
1404 *
1405 * Bits of the filter value corresponding to set bits in the filter mask are
1406 * compared against input scancodes and non-matching scancodes are discarded.
1407 *
18726a34 1408 * dev->lock is taken to guard against races between
00942d1a
JH
1409 * store_filter and show_filter.
1410 */
1411static ssize_t store_filter(struct device *device,
1412 struct device_attribute *attr,
da6e162d 1413 const char *buf, size_t len)
00942d1a
JH
1414{
1415 struct rc_dev *dev = to_rc_dev(device);
1416 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
da6e162d 1417 struct rc_scancode_filter new_filter, *filter;
00942d1a
JH
1418 int ret;
1419 unsigned long val;
23c843b5 1420 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
00942d1a 1421
00942d1a
JH
1422 ret = kstrtoul(buf, 0, &val);
1423 if (ret < 0)
1424 return ret;
1425
da6e162d
DH
1426 if (fattr->type == RC_FILTER_NORMAL) {
1427 set_filter = dev->s_filter;
c5540fbb 1428 filter = &dev->scancode_filter;
da6e162d
DH
1429 } else {
1430 set_filter = dev->s_wakeup_filter;
c5540fbb 1431 filter = &dev->scancode_wakeup_filter;
da6e162d
DH
1432 }
1433
99b0f3c9
DH
1434 if (!set_filter)
1435 return -EINVAL;
00942d1a
JH
1436
1437 mutex_lock(&dev->lock);
a2e2d73f
SY
1438 if (!dev->registered) {
1439 mutex_unlock(&dev->lock);
1440 return -ENODEV;
1441 }
00942d1a 1442
da6e162d 1443 new_filter = *filter;
00942d1a 1444 if (fattr->mask)
da6e162d 1445 new_filter.mask = val;
00942d1a 1446 else
da6e162d 1447 new_filter.data = val;
23c843b5 1448
0751d33c 1449 if (fattr->type == RC_FILTER_WAKEUP) {
b590c0bf
SY
1450 /*
1451 * Refuse to set a filter unless a protocol is enabled
1452 * and the filter is valid for that protocol
1453 */
6d741bfe 1454 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
f423ccc1 1455 ret = rc_validate_filter(dev, &new_filter);
b590c0bf 1456 else
0751d33c 1457 ret = -EINVAL;
b590c0bf
SY
1458
1459 if (ret != 0)
0751d33c 1460 goto unlock;
0751d33c
SY
1461 }
1462
1463 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1464 val) {
6bea25af
JH
1465 /* refuse to set a filter unless a protocol is enabled */
1466 ret = -EINVAL;
1467 goto unlock;
1468 }
23c843b5 1469
da6e162d 1470 ret = set_filter(dev, &new_filter);
99b0f3c9
DH
1471 if (ret < 0)
1472 goto unlock;
00942d1a 1473
da6e162d 1474 *filter = new_filter;
00942d1a
JH
1475
1476unlock:
1477 mutex_unlock(&dev->lock);
da6e162d 1478 return (ret < 0) ? ret : len;
00942d1a
JH
1479}
1480
0751d33c
SY
1481/**
1482 * show_wakeup_protocols() - shows the wakeup IR protocol
1483 * @device: the device descriptor
1484 * @mattr: the device attribute struct
1485 * @buf: a pointer to the output buffer
1486 *
1487 * This routine is a callback routine for input read the IR protocol type(s).
04ad3011 1488 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
0751d33c
SY
1489 * It returns the protocol names of supported protocols.
1490 * The enabled protocols are printed in brackets.
1491 *
18726a34
DH
1492 * dev->lock is taken to guard against races between
1493 * store_wakeup_protocols and show_wakeup_protocols.
0751d33c
SY
1494 */
1495static ssize_t show_wakeup_protocols(struct device *device,
1496 struct device_attribute *mattr,
1497 char *buf)
1498{
1499 struct rc_dev *dev = to_rc_dev(device);
1500 u64 allowed;
6d741bfe 1501 enum rc_proto enabled;
0751d33c
SY
1502 char *tmp = buf;
1503 int i;
1504
0751d33c
SY
1505 mutex_lock(&dev->lock);
1506
1507 allowed = dev->allowed_wakeup_protocols;
1508 enabled = dev->wakeup_protocol;
1509
1510 mutex_unlock(&dev->lock);
1511
1f17f684
SY
1512 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1513 __func__, (long long)allowed, enabled);
0751d33c 1514
d57ea877 1515 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
0751d33c
SY
1516 if (allowed & (1ULL << i)) {
1517 if (i == enabled)
d57ea877 1518 tmp += sprintf(tmp, "[%s] ", protocols[i].name);
0751d33c 1519 else
d57ea877 1520 tmp += sprintf(tmp, "%s ", protocols[i].name);
0751d33c
SY
1521 }
1522 }
1523
1524 if (tmp != buf)
1525 tmp--;
1526 *tmp = '\n';
1527
1528 return tmp + 1 - buf;
1529}
1530
1531/**
1532 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1533 * @device: the device descriptor
1534 * @mattr: the device attribute struct
1535 * @buf: a pointer to the input buffer
1536 * @len: length of the input buffer
1537 *
1538 * This routine is for changing the IR protocol type.
04ad3011 1539 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
0751d33c
SY
1540 * Returns @len on success or a negative error code.
1541 *
18726a34
DH
1542 * dev->lock is taken to guard against races between
1543 * store_wakeup_protocols and show_wakeup_protocols.
0751d33c
SY
1544 */
1545static ssize_t store_wakeup_protocols(struct device *device,
1546 struct device_attribute *mattr,
1547 const char *buf, size_t len)
1548{
1549 struct rc_dev *dev = to_rc_dev(device);
3d351531 1550 enum rc_proto protocol = RC_PROTO_UNKNOWN;
0751d33c
SY
1551 ssize_t rc;
1552 u64 allowed;
1553 int i;
1554
0751d33c 1555 mutex_lock(&dev->lock);
a2e2d73f
SY
1556 if (!dev->registered) {
1557 mutex_unlock(&dev->lock);
1558 return -ENODEV;
1559 }
0751d33c
SY
1560
1561 allowed = dev->allowed_wakeup_protocols;
1562
3d351531 1563 if (!sysfs_streq(buf, "none")) {
d57ea877 1564 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
0751d33c 1565 if ((allowed & (1ULL << i)) &&
d57ea877 1566 sysfs_streq(buf, protocols[i].name)) {
0751d33c
SY
1567 protocol = i;
1568 break;
1569 }
1570 }
1571
d57ea877 1572 if (i == ARRAY_SIZE(protocols)) {
0751d33c
SY
1573 rc = -EINVAL;
1574 goto out;
1575 }
f423ccc1
JH
1576
1577 if (dev->encode_wakeup) {
1578 u64 mask = 1ULL << protocol;
1579
1580 ir_raw_load_modules(&mask);
1581 if (!mask) {
1582 rc = -EINVAL;
1583 goto out;
1584 }
1585 }
0751d33c
SY
1586 }
1587
1588 if (dev->wakeup_protocol != protocol) {
1589 dev->wakeup_protocol = protocol;
1f17f684 1590 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
0751d33c 1591
6d741bfe 1592 if (protocol == RC_PROTO_RC6_MCE)
0751d33c
SY
1593 dev->scancode_wakeup_filter.data = 0x800f0000;
1594 else
1595 dev->scancode_wakeup_filter.data = 0;
1596 dev->scancode_wakeup_filter.mask = 0;
1597
1598 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1599 if (rc == 0)
1600 rc = len;
1601 } else {
1602 rc = len;
1603 }
1604
1605out:
1606 mutex_unlock(&dev->lock);
1607 return rc;
1608}
1609
d8b4b582
DH
1610static void rc_dev_release(struct device *device)
1611{
47cae1e1
MK
1612 struct rc_dev *dev = to_rc_dev(device);
1613
1614 kfree(dev);
d8b4b582
DH
1615}
1616
162736b0 1617static int rc_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
bc2a6c57 1618{
d8b4b582 1619 struct rc_dev *dev = to_rc_dev(device);
4f0835d6 1620 int ret = 0;
bc2a6c57 1621
4f0835d6 1622 mutex_lock(&dev->lock);
bc2a6c57 1623
4f0835d6
SY
1624 if (!dev->registered)
1625 ret = -ENODEV;
1626 if (ret == 0 && dev->rc_map.name)
1627 ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
1628 if (ret == 0 && dev->driver_name)
1629 ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
1630 if (ret == 0 && dev->device_name)
1631 ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
1632
1633 mutex_unlock(&dev->lock);
1634
1635 return ret;
bc2a6c57
MCC
1636}
1637
1638/*
1639 * Static device attribute struct with the sysfs attributes for IR's
1640 */
6d75db30
SY
1641static struct device_attribute dev_attr_ro_protocols =
1642__ATTR(protocols, 0444, show_protocols, NULL);
1643static struct device_attribute dev_attr_rw_protocols =
1644__ATTR(protocols, 0644, show_protocols, store_protocols);
0751d33c
SY
1645static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1646 store_wakeup_protocols);
00942d1a
JH
1647static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1648 show_filter, store_filter, RC_FILTER_NORMAL, false);
1649static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1650 show_filter, store_filter, RC_FILTER_NORMAL, true);
1651static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1652 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1653static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1654 show_filter, store_filter, RC_FILTER_WAKEUP, true);
bc2a6c57 1655
6d75db30
SY
1656static struct attribute *rc_dev_rw_protocol_attrs[] = {
1657 &dev_attr_rw_protocols.attr,
99b0f3c9
DH
1658 NULL,
1659};
1660
6d75db30
SY
1661static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1662 .attrs = rc_dev_rw_protocol_attrs,
1663};
1664
1665static struct attribute *rc_dev_ro_protocol_attrs[] = {
1666 &dev_attr_ro_protocols.attr,
1667 NULL,
1668};
1669
1670static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1671 .attrs = rc_dev_ro_protocol_attrs,
99b0f3c9
DH
1672};
1673
99b0f3c9 1674static struct attribute *rc_dev_filter_attrs[] = {
00942d1a
JH
1675 &dev_attr_filter.attr.attr,
1676 &dev_attr_filter_mask.attr.attr,
bc2a6c57
MCC
1677 NULL,
1678};
1679
db68102c 1680static const struct attribute_group rc_dev_filter_attr_grp = {
99b0f3c9 1681 .attrs = rc_dev_filter_attrs,
bc2a6c57
MCC
1682};
1683
99b0f3c9
DH
1684static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1685 &dev_attr_wakeup_filter.attr.attr,
1686 &dev_attr_wakeup_filter_mask.attr.attr,
0751d33c 1687 &dev_attr_wakeup_protocols.attr,
99b0f3c9
DH
1688 NULL,
1689};
1690
db68102c 1691static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
99b0f3c9 1692 .attrs = rc_dev_wakeup_filter_attrs,
bc2a6c57
MCC
1693};
1694
f03f02f9 1695static const struct device_type rc_dev_type = {
d8b4b582 1696 .release = rc_dev_release,
bc2a6c57
MCC
1697 .uevent = rc_dev_uevent,
1698};
1699
0f7499fd 1700struct rc_dev *rc_allocate_device(enum rc_driver_type type)
bc2a6c57 1701{
d8b4b582 1702 struct rc_dev *dev;
bc2a6c57 1703
d8b4b582
DH
1704 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1705 if (!dev)
1706 return NULL;
1707
d34aee10
AS
1708 if (type != RC_DRIVER_IR_RAW_TX) {
1709 dev->input_dev = input_allocate_device();
1710 if (!dev->input_dev) {
1711 kfree(dev);
1712 return NULL;
1713 }
1714
1715 dev->input_dev->getkeycode = ir_getkeycode;
1716 dev->input_dev->setkeycode = ir_setkeycode;
1717 input_set_drvdata(dev->input_dev, dev);
d8b4b582 1718
28492256 1719 dev->timeout = IR_DEFAULT_TIMEOUT;
b17ec78a 1720 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
57c642cb 1721 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
d8b4b582 1722
d34aee10
AS
1723 spin_lock_init(&dev->rc_map.lock);
1724 spin_lock_init(&dev->keylock);
1725 }
08aeb7c9 1726 mutex_init(&dev->lock);
bc2a6c57 1727
d8b4b582 1728 dev->dev.type = &rc_dev_type;
40fc5325 1729 dev->dev.class = &rc_class;
d8b4b582
DH
1730 device_initialize(&dev->dev);
1731
0f7499fd
AS
1732 dev->driver_type = type;
1733
d8b4b582
DH
1734 __module_get(THIS_MODULE);
1735 return dev;
1736}
1737EXPORT_SYMBOL_GPL(rc_allocate_device);
1738
1739void rc_free_device(struct rc_dev *dev)
bc2a6c57 1740{
b05681b9
MCC
1741 if (!dev)
1742 return;
1743
3dd94f00 1744 input_free_device(dev->input_dev);
b05681b9
MCC
1745
1746 put_device(&dev->dev);
1747
47cae1e1
MK
1748 /* kfree(dev) will be called by the callback function
1749 rc_dev_release() */
1750
b05681b9 1751 module_put(THIS_MODULE);
d8b4b582
DH
1752}
1753EXPORT_SYMBOL_GPL(rc_free_device);
1754
ddbf7d5a
HK
1755static void devm_rc_alloc_release(struct device *dev, void *res)
1756{
1757 rc_free_device(*(struct rc_dev **)res);
1758}
1759
0f7499fd
AS
1760struct rc_dev *devm_rc_allocate_device(struct device *dev,
1761 enum rc_driver_type type)
ddbf7d5a
HK
1762{
1763 struct rc_dev **dr, *rc;
1764
1765 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1766 if (!dr)
1767 return NULL;
1768
0f7499fd 1769 rc = rc_allocate_device(type);
ddbf7d5a
HK
1770 if (!rc) {
1771 devres_free(dr);
1772 return NULL;
1773 }
1774
1775 rc->dev.parent = dev;
1776 rc->managed_alloc = true;
1777 *dr = rc;
1778 devres_add(dev, dr);
1779
1780 return rc;
1781}
1782EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1783
f56928ab 1784static int rc_prepare_rx_device(struct rc_dev *dev)
d8b4b582 1785{
fcb13097 1786 int rc;
7ff2c2bc 1787 struct rc_map *rc_map;
6d741bfe 1788 u64 rc_proto;
bc2a6c57 1789
7ff2c2bc 1790 if (!dev->map_name)
d8b4b582 1791 return -EINVAL;
bc2a6c57 1792
d100e659 1793 rc_map = rc_map_get(dev->map_name);
b088ba65 1794 if (!rc_map)
d100e659 1795 rc_map = rc_map_get(RC_MAP_EMPTY);
b088ba65 1796 if (!rc_map || !rc_map->scan || rc_map->size == 0)
d8b4b582
DH
1797 return -EINVAL;
1798
7ff2c2bc
AS
1799 rc = ir_setkeytable(dev, rc_map);
1800 if (rc)
1801 return rc;
1802
6d741bfe 1803 rc_proto = BIT_ULL(rc_map->rc_proto);
7ff2c2bc 1804
831c4c81
SY
1805 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1806 dev->enabled_protocols = dev->allowed_protocols;
1807
a86d6df8
SY
1808 if (dev->driver_type == RC_DRIVER_IR_RAW)
1809 ir_raw_load_modules(&rc_proto);
1810
41380868 1811 if (dev->change_protocol) {
6d741bfe 1812 rc = dev->change_protocol(dev, &rc_proto);
7ff2c2bc
AS
1813 if (rc < 0)
1814 goto out_table;
6d741bfe 1815 dev->enabled_protocols = rc_proto;
7ff2c2bc
AS
1816 }
1817
0ac5a603 1818 /* Keyboard events */
d8b4b582
DH
1819 set_bit(EV_KEY, dev->input_dev->evbit);
1820 set_bit(EV_REP, dev->input_dev->evbit);
1821 set_bit(EV_MSC, dev->input_dev->evbit);
1822 set_bit(MSC_SCAN, dev->input_dev->mscbit);
fec225a0 1823
0ac5a603 1824 /* Pointer/mouse events */
ce819649 1825 set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
0ac5a603
SY
1826 set_bit(EV_REL, dev->input_dev->evbit);
1827 set_bit(REL_X, dev->input_dev->relbit);
1828 set_bit(REL_Y, dev->input_dev->relbit);
1829
d8b4b582
DH
1830 if (dev->open)
1831 dev->input_dev->open = ir_open;
1832 if (dev->close)
1833 dev->input_dev->close = ir_close;
1834
b2aceb73
DH
1835 dev->input_dev->dev.parent = &dev->dev;
1836 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1837 dev->input_dev->phys = dev->input_phys;
518f4b26 1838 dev->input_dev->name = dev->device_name;
b2aceb73 1839
f56928ab
DH
1840 return 0;
1841
1842out_table:
1843 ir_free_table(&dev->rc_map);
1844
1845 return rc;
1846}
1847
1848static int rc_setup_rx_device(struct rc_dev *dev)
1849{
1850 int rc;
1851
b2aceb73
DH
1852 /* rc_open will be called here */
1853 rc = input_register_device(dev->input_dev);
1854 if (rc)
f56928ab 1855 return rc;
b2aceb73 1856
7ff2c2bc
AS
1857 /*
1858 * Default delay of 250ms is too short for some protocols, especially
1859 * since the timeout is currently set to 250ms. Increase it to 500ms,
1860 * to avoid wrong repetition of the keycodes. Note that this must be
1861 * set after the call to input_register_device().
1862 */
57c642cb
SY
1863 if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1864 dev->input_dev->rep[REP_DELAY] = 0;
1865 else
1866 dev->input_dev->rep[REP_DELAY] = 500;
7ff2c2bc
AS
1867
1868 /*
1869 * As a repeat event on protocols like RC-5 and NEC take as long as
1870 * 110/114ms, using 33ms as a repeat period is not the right thing
1871 * to do.
1872 */
1873 dev->input_dev->rep[REP_PERIOD] = 125;
1874
7ff2c2bc 1875 return 0;
7ff2c2bc
AS
1876}
1877
1878static void rc_free_rx_device(struct rc_dev *dev)
1879{
f56928ab 1880 if (!dev)
7ff2c2bc
AS
1881 return;
1882
f56928ab
DH
1883 if (dev->input_dev) {
1884 input_unregister_device(dev->input_dev);
1885 dev->input_dev = NULL;
1886 }
7ff2c2bc 1887
f56928ab 1888 ir_free_table(&dev->rc_map);
7ff2c2bc
AS
1889}
1890
1891int rc_register_device(struct rc_dev *dev)
1892{
7ff2c2bc
AS
1893 const char *path;
1894 int attr = 0;
1895 int minor;
1896 int rc;
1897
1898 if (!dev)
1899 return -EINVAL;
1900
cd54ff93 1901 minor = ida_alloc_max(&rc_ida, RC_DEV_MAX - 1, GFP_KERNEL);
fcb13097
DH
1902 if (minor < 0)
1903 return minor;
1904
1905 dev->minor = minor;
1906 dev_set_name(&dev->dev, "rc%u", dev->minor);
1907 dev_set_drvdata(&dev->dev, dev);
587d1b06 1908
99b0f3c9 1909 dev->dev.groups = dev->sysfs_groups;
6d75db30
SY
1910 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1911 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1912 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1913 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
99b0f3c9 1914 if (dev->s_filter)
120703f9 1915 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
99b0f3c9
DH
1916 if (dev->s_wakeup_filter)
1917 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
99b0f3c9
DH
1918 dev->sysfs_groups[attr++] = NULL;
1919
a60d64b1 1920 if (dev->driver_type == RC_DRIVER_IR_RAW) {
f56928ab
DH
1921 rc = ir_raw_event_prepare(dev);
1922 if (rc < 0)
1923 goto out_minor;
1924 }
1925
1926 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1927 rc = rc_prepare_rx_device(dev);
1928 if (rc)
1929 goto out_raw;
1930 }
1931
896111dc
SY
1932 dev->registered = true;
1933
d8b4b582
DH
1934 rc = device_add(&dev->dev);
1935 if (rc)
f56928ab 1936 goto out_rx_free;
bc2a6c57 1937
d8b4b582 1938 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
4dc0e908 1939 dev_info(&dev->dev, "%s as %s\n",
518f4b26 1940 dev->device_name ?: "Unspecified device", path ?: "N/A");
bc2a6c57
MCC
1941 kfree(path);
1942
080d89f5 1943 /*
86541f04 1944 * once the input device is registered in rc_setup_rx_device,
080d89f5
SY
1945 * userspace can open the input device and rc_open() will be called
1946 * as a result. This results in driver code being allowed to submit
1947 * keycodes with rc_keydown, so lirc must be registered first.
1948 */
62d6f199 1949 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
75992a44 1950 rc = lirc_register(dev);
d8b4b582 1951 if (rc < 0)
080d89f5
SY
1952 goto out_dev;
1953 }
1954
1955 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1956 rc = rc_setup_rx_device(dev);
1957 if (rc)
1958 goto out_lirc;
d8b4b582
DH
1959 }
1960
a60d64b1
SY
1961 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1962 rc = ir_raw_event_register(dev);
1963 if (rc < 0)
080d89f5 1964 goto out_rx;
a60d64b1
SY
1965 }
1966
1f17f684
SY
1967 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1968 dev->driver_name ? dev->driver_name : "unknown");
d8b4b582 1969
bc2a6c57 1970 return 0;
d8b4b582 1971
080d89f5
SY
1972out_rx:
1973 rc_free_rx_device(dev);
a60d64b1 1974out_lirc:
62d6f199 1975 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
75992a44 1976 lirc_unregister(dev);
d8b4b582
DH
1977out_dev:
1978 device_del(&dev->dev);
f56928ab
DH
1979out_rx_free:
1980 ir_free_table(&dev->rc_map);
1981out_raw:
1982 ir_raw_event_free(dev);
1983out_minor:
cd54ff93 1984 ida_free(&rc_ida, minor);
d8b4b582 1985 return rc;
bc2a6c57 1986}
d8b4b582 1987EXPORT_SYMBOL_GPL(rc_register_device);
bc2a6c57 1988
ddbf7d5a
HK
1989static void devm_rc_release(struct device *dev, void *res)
1990{
1991 rc_unregister_device(*(struct rc_dev **)res);
1992}
1993
1994int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1995{
1996 struct rc_dev **dr;
1997 int ret;
1998
1999 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
2000 if (!dr)
2001 return -ENOMEM;
2002
2003 ret = rc_register_device(dev);
2004 if (ret) {
2005 devres_free(dr);
2006 return ret;
2007 }
2008
2009 *dr = dev;
2010 devres_add(parent, dr);
2011
2012 return 0;
2013}
2014EXPORT_SYMBOL_GPL(devm_rc_register_device);
2015
d8b4b582 2016void rc_unregister_device(struct rc_dev *dev)
bc2a6c57 2017{
d8b4b582
DH
2018 if (!dev)
2019 return;
bc2a6c57 2020
d8b4b582
DH
2021 if (dev->driver_type == RC_DRIVER_IR_RAW)
2022 ir_raw_event_unregister(dev);
2023
8d406881
SY
2024 del_timer_sync(&dev->timer_keyup);
2025 del_timer_sync(&dev->timer_repeat);
2026
7790e81f 2027 mutex_lock(&dev->lock);
8e782fcf
SY
2028 if (dev->users && dev->close)
2029 dev->close(dev);
7790e81f
SY
2030 dev->registered = false;
2031 mutex_unlock(&dev->lock);
2032
4f0835d6
SY
2033 rc_free_rx_device(dev);
2034
7790e81f
SY
2035 /*
2036 * lirc device should be freed with dev->registered = false, so
2037 * that userspace polling will get notified.
2038 */
62d6f199 2039 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
75992a44 2040 lirc_unregister(dev);
a60d64b1 2041
b05681b9 2042 device_del(&dev->dev);
d8b4b582 2043
cd54ff93 2044 ida_free(&rc_ida, dev->minor);
fcb13097 2045
ddbf7d5a
HK
2046 if (!dev->managed_alloc)
2047 rc_free_device(dev);
bc2a6c57 2048}
b05681b9 2049
d8b4b582 2050EXPORT_SYMBOL_GPL(rc_unregister_device);
bc2a6c57
MCC
2051
2052/*
2053 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2054 */
2055
6bda9644 2056static int __init rc_core_init(void)
bc2a6c57 2057{
40fc5325 2058 int rc = class_register(&rc_class);
bc2a6c57 2059 if (rc) {
d3d96820 2060 pr_err("rc_core: unable to register rc class\n");
bc2a6c57
MCC
2061 return rc;
2062 }
2063
a60d64b1
SY
2064 rc = lirc_dev_init();
2065 if (rc) {
2066 pr_err("rc_core: unable to init lirc\n");
2067 class_unregister(&rc_class);
3b4cfc69 2068 return rc;
a60d64b1
SY
2069 }
2070
153a60bb 2071 led_trigger_register_simple("rc-feedback", &led_feedback);
d100e659 2072 rc_map_register(&empty_map);
f09f9f93
HV
2073#ifdef CONFIG_MEDIA_CEC_RC
2074 rc_map_register(&cec_map);
2075#endif
bc2a6c57
MCC
2076
2077 return 0;
2078}
2079
6bda9644 2080static void __exit rc_core_exit(void)
bc2a6c57 2081{
a60d64b1 2082 lirc_dev_exit();
40fc5325 2083 class_unregister(&rc_class);
153a60bb 2084 led_trigger_unregister_simple(led_feedback);
f09f9f93
HV
2085#ifdef CONFIG_MEDIA_CEC_RC
2086 rc_map_unregister(&cec_map);
2087#endif
d100e659 2088 rc_map_unregister(&empty_map);
bc2a6c57
MCC
2089}
2090
e76d4ce4 2091subsys_initcall(rc_core_init);
6bda9644 2092module_exit(rc_core_exit);
bc2a6c57 2093
37e59f87 2094MODULE_AUTHOR("Mauro Carvalho Chehab");
20835280 2095MODULE_LICENSE("GPL v2");