[media] vb2-dma-sg: move dma_(un)map_sg here
[linux-2.6-block.git] / drivers / media / pci / tw68 / tw68-video.c
CommitLineData
5740f4e7
HV
1/*
2 * tw68 functions to handle video data
3 *
4 * Much of this code is derived from the cx88 and sa7134 drivers, which
5 * were in turn derived from the bt87x driver. The original work was by
6 * Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab,
7 * Hans Verkuil, Andy Walls and many others. Their work is gratefully
8 * acknowledged. Full credit goes to them - any problems within this code
9 * are mine.
10 *
e15d1c12
HV
11 * Copyright (C) 2009 William M. Brack
12 *
13 * Refactored and updated to the latest v4l core frameworks:
14 *
15 * Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl>
5740f4e7
HV
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
5740f4e7
HV
26 */
27
28#include <linux/module.h>
29#include <media/v4l2-common.h>
e15d1c12
HV
30#include <media/v4l2-event.h>
31#include <media/videobuf2-dma-sg.h>
5740f4e7
HV
32
33#include "tw68.h"
34#include "tw68-reg.h"
35
5740f4e7
HV
36/* ------------------------------------------------------------------ */
37/* data structs for video */
38/*
39 * FIXME -
40 * Note that the saa7134 has formats, e.g. YUV420, which are classified
41 * as "planar". These affect overlay mode, and are flagged with a field
42 * ".planar" in the format. Do we need to implement this in this driver?
43 */
e15d1c12 44static const struct tw68_format formats[] = {
5740f4e7
HV
45 {
46 .name = "15 bpp RGB, le",
47 .fourcc = V4L2_PIX_FMT_RGB555,
48 .depth = 16,
49 .twformat = ColorFormatRGB15,
50 }, {
51 .name = "15 bpp RGB, be",
52 .fourcc = V4L2_PIX_FMT_RGB555X,
53 .depth = 16,
54 .twformat = ColorFormatRGB15 | ColorFormatBSWAP,
55 }, {
56 .name = "16 bpp RGB, le",
57 .fourcc = V4L2_PIX_FMT_RGB565,
58 .depth = 16,
59 .twformat = ColorFormatRGB16,
60 }, {
61 .name = "16 bpp RGB, be",
62 .fourcc = V4L2_PIX_FMT_RGB565X,
63 .depth = 16,
64 .twformat = ColorFormatRGB16 | ColorFormatBSWAP,
65 }, {
66 .name = "24 bpp RGB, le",
67 .fourcc = V4L2_PIX_FMT_BGR24,
68 .depth = 24,
69 .twformat = ColorFormatRGB24,
70 }, {
71 .name = "24 bpp RGB, be",
72 .fourcc = V4L2_PIX_FMT_RGB24,
73 .depth = 24,
74 .twformat = ColorFormatRGB24 | ColorFormatBSWAP,
75 }, {
76 .name = "32 bpp RGB, le",
77 .fourcc = V4L2_PIX_FMT_BGR32,
78 .depth = 32,
79 .twformat = ColorFormatRGB32,
80 }, {
81 .name = "32 bpp RGB, be",
82 .fourcc = V4L2_PIX_FMT_RGB32,
83 .depth = 32,
84 .twformat = ColorFormatRGB32 | ColorFormatBSWAP |
85 ColorFormatWSWAP,
86 }, {
87 .name = "4:2:2 packed, YUYV",
88 .fourcc = V4L2_PIX_FMT_YUYV,
89 .depth = 16,
90 .twformat = ColorFormatYUY2,
91 }, {
92 .name = "4:2:2 packed, UYVY",
93 .fourcc = V4L2_PIX_FMT_UYVY,
94 .depth = 16,
95 .twformat = ColorFormatYUY2 | ColorFormatBSWAP,
96 }
97};
98#define FORMATS ARRAY_SIZE(formats)
99
100#define NORM_625_50 \
101 .h_delay = 3, \
102 .h_delay0 = 133, \
103 .h_start = 0, \
104 .h_stop = 719, \
105 .v_delay = 24, \
106 .vbi_v_start_0 = 7, \
107 .vbi_v_stop_0 = 22, \
108 .video_v_start = 24, \
109 .video_v_stop = 311, \
110 .vbi_v_start_1 = 319
111
112#define NORM_525_60 \
113 .h_delay = 8, \
114 .h_delay0 = 138, \
115 .h_start = 0, \
116 .h_stop = 719, \
117 .v_delay = 22, \
118 .vbi_v_start_0 = 10, \
119 .vbi_v_stop_0 = 21, \
120 .video_v_start = 22, \
121 .video_v_stop = 262, \
122 .vbi_v_start_1 = 273
123
124/*
125 * The following table is searched by tw68_s_std, first for a specific
126 * match, then for an entry which contains the desired id. The table
127 * entries should therefore be ordered in ascending order of specificity.
128 */
e15d1c12 129static const struct tw68_tvnorm tvnorms[] = {
5740f4e7 130 {
5740f4e7
HV
131 .name = "PAL", /* autodetect */
132 .id = V4L2_STD_PAL,
133 NORM_625_50,
134
135 .sync_control = 0x18,
136 .luma_control = 0x40,
137 .chroma_ctrl1 = 0x81,
138 .chroma_gain = 0x2a,
139 .chroma_ctrl2 = 0x06,
140 .vgate_misc = 0x1c,
141 .format = VideoFormatPALBDGHI,
5740f4e7
HV
142 }, {
143 .name = "NTSC",
144 .id = V4L2_STD_NTSC,
145 NORM_525_60,
146
147 .sync_control = 0x59,
148 .luma_control = 0x40,
149 .chroma_ctrl1 = 0x89,
150 .chroma_gain = 0x2a,
151 .chroma_ctrl2 = 0x0e,
152 .vgate_misc = 0x18,
153 .format = VideoFormatNTSC,
5740f4e7
HV
154 }, {
155 .name = "SECAM",
156 .id = V4L2_STD_SECAM,
157 NORM_625_50,
158
159 .sync_control = 0x18,
160 .luma_control = 0x1b,
161 .chroma_ctrl1 = 0xd1,
162 .chroma_gain = 0x80,
163 .chroma_ctrl2 = 0x00,
164 .vgate_misc = 0x1c,
165 .format = VideoFormatSECAM,
5740f4e7
HV
166 }, {
167 .name = "PAL-M",
168 .id = V4L2_STD_PAL_M,
169 NORM_525_60,
170
171 .sync_control = 0x59,
172 .luma_control = 0x40,
173 .chroma_ctrl1 = 0xb9,
174 .chroma_gain = 0x2a,
175 .chroma_ctrl2 = 0x0e,
176 .vgate_misc = 0x18,
177 .format = VideoFormatPALM,
5740f4e7
HV
178 }, {
179 .name = "PAL-Nc",
180 .id = V4L2_STD_PAL_Nc,
181 NORM_625_50,
182
183 .sync_control = 0x18,
184 .luma_control = 0x40,
185 .chroma_ctrl1 = 0xa1,
186 .chroma_gain = 0x2a,
187 .chroma_ctrl2 = 0x06,
188 .vgate_misc = 0x1c,
189 .format = VideoFormatPALNC,
5740f4e7
HV
190 }, {
191 .name = "PAL-60",
192 .id = V4L2_STD_PAL_60,
193 .h_delay = 186,
194 .h_start = 0,
195 .h_stop = 719,
196 .v_delay = 26,
197 .video_v_start = 23,
198 .video_v_stop = 262,
199 .vbi_v_start_0 = 10,
200 .vbi_v_stop_0 = 21,
201 .vbi_v_start_1 = 273,
202
203 .sync_control = 0x18,
204 .luma_control = 0x40,
205 .chroma_ctrl1 = 0x81,
206 .chroma_gain = 0x2a,
207 .chroma_ctrl2 = 0x06,
208 .vgate_misc = 0x1c,
209 .format = VideoFormatPAL60,
5740f4e7
HV
210 }
211};
212#define TVNORMS ARRAY_SIZE(tvnorms)
213
e15d1c12 214static const struct tw68_format *format_by_fourcc(unsigned int fourcc)
5740f4e7
HV
215{
216 unsigned int i;
217
218 for (i = 0; i < FORMATS; i++)
219 if (formats[i].fourcc == fourcc)
220 return formats+i;
221 return NULL;
222}
223
5740f4e7
HV
224
225/* ------------------------------------------------------------------ */
226/*
227 * Note that the cropping rectangles are described in terms of a single
228 * frame, i.e. line positions are only 1/2 the interlaced equivalent
229 */
e15d1c12 230static void set_tvnorm(struct tw68_dev *dev, const struct tw68_tvnorm *norm)
5740f4e7 231{
5740f4e7 232 if (norm != dev->tvnorm) {
e15d1c12
HV
233 dev->width = 720;
234 dev->height = (norm->id & V4L2_STD_525_60) ? 480 : 576;
5740f4e7
HV
235 dev->tvnorm = norm;
236 tw68_set_tvnorm_hw(dev);
237 }
238}
239
5740f4e7
HV
240/*
241 * tw68_set_scale
242 *
243 * Scaling and Cropping for video decoding
244 *
245 * We are working with 3 values for horizontal and vertical - scale,
246 * delay and active.
247 *
248 * HACTIVE represent the actual number of pixels in the "usable" image,
249 * before scaling. HDELAY represents the number of pixels skipped
250 * between the start of the horizontal sync and the start of the image.
251 * HSCALE is calculated using the formula
e15d1c12 252 * HSCALE = (HACTIVE / (#pixels desired)) * 256
5740f4e7
HV
253 *
254 * The vertical registers are similar, except based upon the total number
255 * of lines in the image, and the first line of the image (i.e. ignoring
256 * vertical sync and VBI).
257 *
258 * Note that the number of bytes reaching the FIFO (and hence needing
259 * to be processed by the DMAP program) is completely dependent upon
260 * these values, especially HSCALE.
261 *
262 * Parameters:
e15d1c12
HV
263 * @dev pointer to the device structure, needed for
264 * getting current norm (as well as debug print)
265 * @width actual image width (from user buffer)
266 * @height actual image height
267 * @field indicates Top, Bottom or Interlaced
5740f4e7
HV
268 */
269static int tw68_set_scale(struct tw68_dev *dev, unsigned int width,
270 unsigned int height, enum v4l2_field field)
271{
e15d1c12 272 const struct tw68_tvnorm *norm = dev->tvnorm;
5740f4e7
HV
273 /* set individually for debugging clarity */
274 int hactive, hdelay, hscale;
275 int vactive, vdelay, vscale;
276 int comb;
277
278 if (V4L2_FIELD_HAS_BOTH(field)) /* if field is interlaced */
279 height /= 2; /* we must set for 1-frame */
280
e15d1c12
HV
281 pr_debug("%s: width=%d, height=%d, both=%d\n"
282 " tvnorm h_delay=%d, h_start=%d, h_stop=%d, "
283 "v_delay=%d, v_start=%d, v_stop=%d\n" , __func__,
5740f4e7 284 width, height, V4L2_FIELD_HAS_BOTH(field),
e15d1c12
HV
285 norm->h_delay, norm->h_start, norm->h_stop,
286 norm->v_delay, norm->video_v_start,
287 norm->video_v_stop);
5740f4e7
HV
288
289 switch (dev->vdecoder) {
290 case TW6800:
e15d1c12 291 hdelay = norm->h_delay0;
5740f4e7
HV
292 break;
293 default:
e15d1c12 294 hdelay = norm->h_delay;
5740f4e7
HV
295 break;
296 }
e15d1c12
HV
297
298 hdelay += norm->h_start;
299 hactive = norm->h_stop - norm->h_start + 1;
5740f4e7
HV
300
301 hscale = (hactive * 256) / (width);
302
e15d1c12
HV
303 vdelay = norm->v_delay;
304 vactive = ((norm->id & V4L2_STD_525_60) ? 524 : 624) / 2 - norm->video_v_start;
5740f4e7
HV
305 vscale = (vactive * 256) / height;
306
e15d1c12 307 pr_debug("%s: %dx%d [%s%s,%s]\n", __func__,
5740f4e7
HV
308 width, height,
309 V4L2_FIELD_HAS_TOP(field) ? "T" : "",
310 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
311 v4l2_norm_to_name(dev->tvnorm->id));
e15d1c12 312 pr_debug("%s: hactive=%d, hdelay=%d, hscale=%d; "
5740f4e7
HV
313 "vactive=%d, vdelay=%d, vscale=%d\n", __func__,
314 hactive, hdelay, hscale, vactive, vdelay, vscale);
315
316 comb = ((vdelay & 0x300) >> 2) |
317 ((vactive & 0x300) >> 4) |
318 ((hdelay & 0x300) >> 6) |
319 ((hactive & 0x300) >> 8);
e15d1c12 320 pr_debug("%s: setting CROP_HI=%02x, VDELAY_LO=%02x, "
5740f4e7
HV
321 "VACTIVE_LO=%02x, HDELAY_LO=%02x, HACTIVE_LO=%02x\n",
322 __func__, comb, vdelay, vactive, hdelay, hactive);
323 tw_writeb(TW68_CROP_HI, comb);
324 tw_writeb(TW68_VDELAY_LO, vdelay & 0xff);
325 tw_writeb(TW68_VACTIVE_LO, vactive & 0xff);
326 tw_writeb(TW68_HDELAY_LO, hdelay & 0xff);
327 tw_writeb(TW68_HACTIVE_LO, hactive & 0xff);
328
329 comb = ((vscale & 0xf00) >> 4) | ((hscale & 0xf00) >> 8);
e15d1c12 330 pr_debug("%s: setting SCALE_HI=%02x, VSCALE_LO=%02x, "
5740f4e7
HV
331 "HSCALE_LO=%02x\n", __func__, comb, vscale, hscale);
332 tw_writeb(TW68_SCALE_HI, comb);
333 tw_writeb(TW68_VSCALE_LO, vscale);
334 tw_writeb(TW68_HSCALE_LO, hscale);
335
336 return 0;
337}
338
339/* ------------------------------------------------------------------ */
340
e15d1c12
HV
341int tw68_video_start_dma(struct tw68_dev *dev, struct tw68_buf *buf)
342{
5740f4e7 343 /* Set cropping and scaling */
e15d1c12 344 tw68_set_scale(dev, dev->width, dev->height, dev->field);
5740f4e7
HV
345 /*
346 * Set start address for RISC program. Note that if the DMAP
347 * processor is currently running, it must be stopped before
348 * a new address can be set.
349 */
350 tw_clearl(TW68_DMAC, TW68_DMAP_EN);
91f96e8b 351 tw_writel(TW68_DMAP_SA, buf->dma);
5740f4e7
HV
352 /* Clear any pending interrupts */
353 tw_writel(TW68_INTSTAT, dev->board_virqmask);
354 /* Enable the risc engine and the fifo */
e15d1c12 355 tw_andorl(TW68_DMAC, 0xff, dev->fmt->twformat |
5740f4e7
HV
356 ColorFormatGamma | TW68_DMAP_EN | TW68_FIFO_EN);
357 dev->pci_irqmask |= dev->board_virqmask;
358 tw_setl(TW68_INTMASK, dev->pci_irqmask);
359 return 0;
360}
361
362/* ------------------------------------------------------------------ */
5740f4e7 363
e15d1c12
HV
364/* calc max # of buffers from size (must not exceed the 4MB virtual
365 * address space per DMA channel) */
366static int tw68_buffer_count(unsigned int size, unsigned int count)
5740f4e7 367{
e15d1c12 368 unsigned int maxcount;
5740f4e7 369
947b38bb 370 maxcount = (4 * 1024 * 1024) / roundup(size, PAGE_SIZE);
e15d1c12
HV
371 if (count > maxcount)
372 count = maxcount;
373 return count;
5740f4e7
HV
374}
375
e15d1c12
HV
376/* ------------------------------------------------------------- */
377/* vb2 queue operations */
5740f4e7 378
e15d1c12
HV
379static int tw68_queue_setup(struct vb2_queue *q, const struct v4l2_format *fmt,
380 unsigned int *num_buffers, unsigned int *num_planes,
381 unsigned int sizes[], void *alloc_ctxs[])
5740f4e7 382{
e15d1c12
HV
383 struct tw68_dev *dev = vb2_get_drv_priv(q);
384 unsigned tot_bufs = q->num_buffers + *num_buffers;
5740f4e7 385
e15d1c12 386 sizes[0] = (dev->fmt->depth * dev->width * dev->height) >> 3;
0c3a14c1 387 alloc_ctxs[0] = dev->alloc_ctx;
e15d1c12
HV
388 /*
389 * We allow create_bufs, but only if the sizeimage is the same as the
390 * current sizeimage. The tw68_buffer_count calculation becomes quite
391 * difficult otherwise.
392 */
393 if (fmt && fmt->fmt.pix.sizeimage < sizes[0])
394 return -EINVAL;
395 *num_planes = 1;
396 if (tot_bufs < 2)
397 tot_bufs = 2;
398 tot_bufs = tw68_buffer_count(sizes[0], tot_bufs);
399 *num_buffers = tot_bufs - q->num_buffers;
5740f4e7 400
5740f4e7 401 return 0;
5740f4e7
HV
402}
403
404/*
e15d1c12
HV
405 * The risc program for each buffers works as follows: it starts with a simple
406 * 'JUMP to addr + 8', which is effectively a NOP. Then the program to DMA the
407 * buffer follows and at the end we have a JUMP back to the start + 8 (skipping
408 * the initial JUMP).
409 *
410 * This is the program of the first buffer to be queued if the active list is
411 * empty and it just keeps DMAing this buffer without generating any interrupts.
412 *
413 * If a new buffer is added then the initial JUMP in the program generates an
414 * interrupt as well which signals that the previous buffer has been DMAed
415 * successfully and that it can be returned to userspace.
416 *
417 * It also sets the final jump of the previous buffer to the start of the new
418 * buffer, thus chaining the new buffer into the DMA chain. This is a single
419 * atomic u32 write, so there is no race condition.
5740f4e7 420 *
e15d1c12
HV
421 * The end-result of all this that you only get an interrupt when a buffer
422 * is ready, so the control flow is very easy.
5740f4e7 423 */
e15d1c12 424static void tw68_buf_queue(struct vb2_buffer *vb)
5740f4e7 425{
e15d1c12
HV
426 struct vb2_queue *vq = vb->vb2_queue;
427 struct tw68_dev *dev = vb2_get_drv_priv(vq);
428 struct tw68_buf *buf = container_of(vb, struct tw68_buf, vb);
429 struct tw68_buf *prev;
430 unsigned long flags;
431
432 spin_lock_irqsave(&dev->slock, flags);
5740f4e7 433
e15d1c12
HV
434 /* append a 'JUMP to start of buffer' to the buffer risc program */
435 buf->jmp[0] = cpu_to_le32(RISC_JUMP);
436 buf->jmp[1] = cpu_to_le32(buf->dma + 8);
437
438 if (!list_empty(&dev->active)) {
439 prev = list_entry(dev->active.prev, struct tw68_buf, list);
440 buf->cpu[0] |= cpu_to_le32(RISC_INT_BIT);
441 prev->jmp[1] = cpu_to_le32(buf->dma);
442 }
443 list_add_tail(&buf->list, &dev->active);
444 spin_unlock_irqrestore(&dev->slock, flags);
5740f4e7
HV
445}
446
447/*
e15d1c12 448 * buffer_prepare
5740f4e7 449 *
e15d1c12
HV
450 * Set the ancilliary information into the buffer structure. This
451 * includes generating the necessary risc program if it hasn't already
452 * been done for the current buffer format.
453 * The structure fh contains the details of the format requested by the
454 * user - type, width, height and #fields. This is compared with the
455 * last format set for the current buffer. If they differ, the risc
456 * code (which controls the filling of the buffer) is (re-)generated.
5740f4e7 457 */
e15d1c12 458static int tw68_buf_prepare(struct vb2_buffer *vb)
5740f4e7 459{
e15d1c12
HV
460 struct vb2_queue *vq = vb->vb2_queue;
461 struct tw68_dev *dev = vb2_get_drv_priv(vq);
5740f4e7 462 struct tw68_buf *buf = container_of(vb, struct tw68_buf, vb);
e15d1c12
HV
463 struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0);
464 unsigned size, bpl;
5740f4e7 465
e15d1c12
HV
466 size = (dev->width * dev->height * dev->fmt->depth) >> 3;
467 if (vb2_plane_size(vb, 0) < size)
468 return -EINVAL;
469 vb2_set_plane_payload(vb, 0, size);
5740f4e7 470
e15d1c12
HV
471 bpl = (dev->width * dev->fmt->depth) >> 3;
472 switch (dev->field) {
473 case V4L2_FIELD_TOP:
474 tw68_risc_buffer(dev->pci, buf, dma->sgl,
475 0, UNSET, bpl, 0, dev->height);
5740f4e7 476 break;
e15d1c12
HV
477 case V4L2_FIELD_BOTTOM:
478 tw68_risc_buffer(dev->pci, buf, dma->sgl,
479 UNSET, 0, bpl, 0, dev->height);
5740f4e7 480 break;
e15d1c12
HV
481 case V4L2_FIELD_SEQ_TB:
482 tw68_risc_buffer(dev->pci, buf, dma->sgl,
483 0, bpl * (dev->height >> 1),
484 bpl, 0, dev->height >> 1);
5740f4e7 485 break;
e15d1c12
HV
486 case V4L2_FIELD_SEQ_BT:
487 tw68_risc_buffer(dev->pci, buf, dma->sgl,
488 bpl * (dev->height >> 1), 0,
489 bpl, 0, dev->height >> 1);
5740f4e7 490 break;
e15d1c12 491 case V4L2_FIELD_INTERLACED:
5740f4e7 492 default:
e15d1c12
HV
493 tw68_risc_buffer(dev->pci, buf, dma->sgl,
494 0, bpl, bpl, bpl, dev->height >> 1);
495 break;
5740f4e7
HV
496 }
497 return 0;
498}
499
e15d1c12
HV
500static void tw68_buf_finish(struct vb2_buffer *vb)
501{
502 struct vb2_queue *vq = vb->vb2_queue;
503 struct tw68_dev *dev = vb2_get_drv_priv(vq);
e15d1c12
HV
504 struct tw68_buf *buf = container_of(vb, struct tw68_buf, vb);
505
e15d1c12
HV
506 pci_free_consistent(dev->pci, buf->size, buf->cpu, buf->dma);
507}
508
509static int tw68_start_streaming(struct vb2_queue *q, unsigned int count)
510{
511 struct tw68_dev *dev = vb2_get_drv_priv(q);
512 struct tw68_buf *buf =
513 container_of(dev->active.next, struct tw68_buf, list);
514
515 dev->seqnr = 0;
516 tw68_video_start_dma(dev, buf);
517 return 0;
518}
519
520static void tw68_stop_streaming(struct vb2_queue *q)
5740f4e7 521{
e15d1c12
HV
522 struct tw68_dev *dev = vb2_get_drv_priv(q);
523
524 /* Stop risc & fifo */
525 tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN);
526 while (!list_empty(&dev->active)) {
527 struct tw68_buf *buf =
528 container_of(dev->active.next, struct tw68_buf, list);
5740f4e7 529
e15d1c12
HV
530 list_del(&buf->list);
531 vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR);
532 }
5740f4e7
HV
533}
534
e15d1c12
HV
535static struct vb2_ops tw68_video_qops = {
536 .queue_setup = tw68_queue_setup,
537 .buf_queue = tw68_buf_queue,
538 .buf_prepare = tw68_buf_prepare,
539 .buf_finish = tw68_buf_finish,
540 .start_streaming = tw68_start_streaming,
541 .stop_streaming = tw68_stop_streaming,
542 .wait_prepare = vb2_ops_wait_prepare,
543 .wait_finish = vb2_ops_wait_finish,
544};
545
546/* ------------------------------------------------------------------ */
547
548static int tw68_s_ctrl(struct v4l2_ctrl *ctrl)
5740f4e7 549{
e15d1c12
HV
550 struct tw68_dev *dev =
551 container_of(ctrl->handler, struct tw68_dev, hdl);
5740f4e7 552
e15d1c12 553 switch (ctrl->id) {
5740f4e7 554 case V4L2_CID_BRIGHTNESS:
e15d1c12 555 tw_writeb(TW68_BRIGHT, ctrl->val);
5740f4e7
HV
556 break;
557 case V4L2_CID_HUE:
e15d1c12 558 tw_writeb(TW68_HUE, ctrl->val);
5740f4e7
HV
559 break;
560 case V4L2_CID_CONTRAST:
e15d1c12 561 tw_writeb(TW68_CONTRAST, ctrl->val);
5740f4e7
HV
562 break;
563 case V4L2_CID_SATURATION:
e15d1c12
HV
564 tw_writeb(TW68_SAT_U, ctrl->val);
565 tw_writeb(TW68_SAT_V, ctrl->val);
5740f4e7
HV
566 break;
567 case V4L2_CID_COLOR_KILLER:
e15d1c12 568 if (ctrl->val)
5740f4e7
HV
569 tw_andorb(TW68_MISC2, 0xe0, 0xe0);
570 else
571 tw_andorb(TW68_MISC2, 0xe0, 0x00);
572 break;
573 case V4L2_CID_CHROMA_AGC:
e15d1c12 574 if (ctrl->val)
5740f4e7
HV
575 tw_andorb(TW68_LOOP, 0x30, 0x20);
576 else
577 tw_andorb(TW68_LOOP, 0x30, 0x00);
578 break;
5740f4e7 579 }
e15d1c12 580 return 0;
5740f4e7
HV
581}
582
e15d1c12 583/* ------------------------------------------------------------------ */
5740f4e7 584
e15d1c12
HV
585/*
586 * Note that this routine returns what is stored in the fh structure, and
587 * does not interrogate any of the device registers.
588 */
589static int tw68_g_fmt_vid_cap(struct file *file, void *priv,
590 struct v4l2_format *f)
591{
592 struct tw68_dev *dev = video_drvdata(file);
5740f4e7 593
e15d1c12
HV
594 f->fmt.pix.width = dev->width;
595 f->fmt.pix.height = dev->height;
596 f->fmt.pix.field = dev->field;
597 f->fmt.pix.pixelformat = dev->fmt->fourcc;
5740f4e7 598 f->fmt.pix.bytesperline =
e15d1c12 599 (f->fmt.pix.width * (dev->fmt->depth)) >> 3;
5740f4e7
HV
600 f->fmt.pix.sizeimage =
601 f->fmt.pix.height * f->fmt.pix.bytesperline;
602 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
e15d1c12 603 f->fmt.pix.priv = 0;
5740f4e7
HV
604 return 0;
605}
606
607static int tw68_try_fmt_vid_cap(struct file *file, void *priv,
608 struct v4l2_format *f)
609{
e15d1c12
HV
610 struct tw68_dev *dev = video_drvdata(file);
611 const struct tw68_format *fmt;
5740f4e7 612 enum v4l2_field field;
e15d1c12 613 unsigned int maxh;
5740f4e7 614
5740f4e7
HV
615 fmt = format_by_fourcc(f->fmt.pix.pixelformat);
616 if (NULL == fmt)
617 return -EINVAL;
618
619 field = f->fmt.pix.field;
e15d1c12 620 maxh = (dev->tvnorm->id & V4L2_STD_525_60) ? 480 : 576;
5740f4e7 621
5740f4e7
HV
622 switch (field) {
623 case V4L2_FIELD_TOP:
624 case V4L2_FIELD_BOTTOM:
625 break;
626 case V4L2_FIELD_INTERLACED:
e15d1c12
HV
627 case V4L2_FIELD_SEQ_BT:
628 case V4L2_FIELD_SEQ_TB:
5740f4e7
HV
629 maxh = maxh * 2;
630 break;
631 default:
e15d1c12
HV
632 field = (f->fmt.pix.height > maxh / 2)
633 ? V4L2_FIELD_INTERLACED
634 : V4L2_FIELD_BOTTOM;
635 break;
5740f4e7
HV
636 }
637
638 f->fmt.pix.field = field;
639 if (f->fmt.pix.width < 48)
640 f->fmt.pix.width = 48;
641 if (f->fmt.pix.height < 32)
642 f->fmt.pix.height = 32;
e15d1c12
HV
643 if (f->fmt.pix.width > 720)
644 f->fmt.pix.width = 720;
5740f4e7
HV
645 if (f->fmt.pix.height > maxh)
646 f->fmt.pix.height = maxh;
647 f->fmt.pix.width &= ~0x03;
648 f->fmt.pix.bytesperline =
649 (f->fmt.pix.width * (fmt->depth)) >> 3;
650 f->fmt.pix.sizeimage =
651 f->fmt.pix.height * f->fmt.pix.bytesperline;
e15d1c12 652 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
5740f4e7
HV
653 return 0;
654}
655
656/*
657 * Note that tw68_s_fmt_vid_cap sets the information into the fh structure,
658 * and it will be used for all future new buffers. However, there could be
659 * some number of buffers on the "active" chain which will be filled before
660 * the change takes place.
661 */
662static int tw68_s_fmt_vid_cap(struct file *file, void *priv,
663 struct v4l2_format *f)
664{
e15d1c12 665 struct tw68_dev *dev = video_drvdata(file);
5740f4e7
HV
666 int err;
667
5740f4e7
HV
668 err = tw68_try_fmt_vid_cap(file, priv, f);
669 if (0 != err)
670 return err;
671
e15d1c12
HV
672 dev->fmt = format_by_fourcc(f->fmt.pix.pixelformat);
673 dev->width = f->fmt.pix.width;
674 dev->height = f->fmt.pix.height;
675 dev->field = f->fmt.pix.field;
5740f4e7
HV
676 return 0;
677}
678
679static int tw68_enum_input(struct file *file, void *priv,
680 struct v4l2_input *i)
681{
e15d1c12 682 struct tw68_dev *dev = video_drvdata(file);
5740f4e7
HV
683 unsigned int n;
684
685 n = i->index;
e15d1c12 686 if (n >= TW68_INPUT_MAX)
5740f4e7 687 return -EINVAL;
5740f4e7 688 i->index = n;
e15d1c12
HV
689 i->type = V4L2_INPUT_TYPE_CAMERA;
690 snprintf(i->name, sizeof(i->name), "Composite %d", n);
691
5740f4e7 692 /* If the query is for the current input, get live data */
e15d1c12 693 if (n == dev->input) {
5740f4e7
HV
694 int v1 = tw_readb(TW68_STATUS1);
695 int v2 = tw_readb(TW68_MVSN);
696
697 if (0 != (v1 & (1 << 7)))
698 i->status |= V4L2_IN_ST_NO_SYNC;
699 if (0 != (v1 & (1 << 6)))
700 i->status |= V4L2_IN_ST_NO_H_LOCK;
701 if (0 != (v1 & (1 << 2)))
702 i->status |= V4L2_IN_ST_NO_SIGNAL;
703 if (0 != (v1 & 1 << 1))
704 i->status |= V4L2_IN_ST_NO_COLOR;
705 if (0 != (v2 & (1 << 2)))
706 i->status |= V4L2_IN_ST_MACROVISION;
707 }
e15d1c12 708 i->std = video_devdata(file)->tvnorms;
5740f4e7
HV
709 return 0;
710}
711
712static int tw68_g_input(struct file *file, void *priv, unsigned int *i)
713{
e15d1c12 714 struct tw68_dev *dev = video_drvdata(file);
5740f4e7 715
e15d1c12 716 *i = dev->input;
5740f4e7
HV
717 return 0;
718}
719
720static int tw68_s_input(struct file *file, void *priv, unsigned int i)
721{
e15d1c12 722 struct tw68_dev *dev = video_drvdata(file);
5740f4e7 723
e15d1c12 724 if (i >= TW68_INPUT_MAX)
5740f4e7 725 return -EINVAL;
e15d1c12
HV
726 dev->input = i;
727 tw_andorb(TW68_INFORM, 0x03 << 2, dev->input << 2);
5740f4e7
HV
728 return 0;
729}
730
731static int tw68_querycap(struct file *file, void *priv,
732 struct v4l2_capability *cap)
733{
e15d1c12 734 struct tw68_dev *dev = video_drvdata(file);
5740f4e7 735
5740f4e7 736 strcpy(cap->driver, "tw68");
e15d1c12 737 strlcpy(cap->card, "Techwell Capture Card",
5740f4e7
HV
738 sizeof(cap->card));
739 sprintf(cap->bus_info, "PCI:%s", pci_name(dev->pci));
e15d1c12 740 cap->device_caps =
5740f4e7 741 V4L2_CAP_VIDEO_CAPTURE |
5740f4e7 742 V4L2_CAP_READWRITE |
e15d1c12 743 V4L2_CAP_STREAMING;
5740f4e7 744
e15d1c12 745 cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
5740f4e7
HV
746 return 0;
747}
748
e15d1c12 749static int tw68_s_std(struct file *file, void *priv, v4l2_std_id id)
5740f4e7 750{
e15d1c12 751 struct tw68_dev *dev = video_drvdata(file);
5740f4e7 752 unsigned int i;
5740f4e7 753
e15d1c12
HV
754 if (vb2_is_busy(&dev->vidq))
755 return -EBUSY;
5740f4e7
HV
756
757 /* Look for match on complete norm id (may have mult bits) */
758 for (i = 0; i < TVNORMS; i++) {
e15d1c12 759 if (id == tvnorms[i].id)
5740f4e7
HV
760 break;
761 }
762
763 /* If no exact match, look for norm which contains this one */
e15d1c12
HV
764 if (i == TVNORMS) {
765 for (i = 0; i < TVNORMS; i++)
766 if (id & tvnorms[i].id)
5740f4e7 767 break;
e15d1c12 768 }
5740f4e7
HV
769 /* If still not matched, give up */
770 if (i == TVNORMS)
771 return -EINVAL;
772
5740f4e7 773 set_tvnorm(dev, &tvnorms[i]); /* do the actual setting */
5740f4e7
HV
774 return 0;
775}
776
5740f4e7
HV
777static int tw68_g_std(struct file *file, void *priv, v4l2_std_id *id)
778{
e15d1c12 779 struct tw68_dev *dev = video_drvdata(file);
5740f4e7 780
5740f4e7
HV
781 *id = dev->tvnorm->id;
782 return 0;
783}
784
5740f4e7
HV
785static int tw68_enum_fmt_vid_cap(struct file *file, void *priv,
786 struct v4l2_fmtdesc *f)
787{
5740f4e7
HV
788 if (f->index >= FORMATS)
789 return -EINVAL;
790
791 strlcpy(f->description, formats[f->index].name,
792 sizeof(f->description));
793
794 f->pixelformat = formats[f->index].fourcc;
795
796 return 0;
797}
798
5740f4e7
HV
799/*
800 * Used strictly for internal development and debugging, this routine
801 * prints out the current register contents for the tw68xx device.
802 */
803static void tw68_dump_regs(struct tw68_dev *dev)
804{
805 unsigned char line[80];
806 int i, j, k;
807 unsigned char *cptr;
808
e15d1c12 809 pr_info("Full dump of TW68 registers:\n");
5740f4e7
HV
810 /* First we do the PCI regs, 8 4-byte regs per line */
811 for (i = 0; i < 0x100; i += 32) {
812 cptr = line;
813 cptr += sprintf(cptr, "%03x ", i);
814 /* j steps through the next 4 words */
815 for (j = i; j < i + 16; j += 4)
816 cptr += sprintf(cptr, "%08x ", tw_readl(j));
817 *cptr++ = ' ';
818 for (; j < i + 32; j += 4)
819 cptr += sprintf(cptr, "%08x ", tw_readl(j));
820 *cptr++ = '\n';
821 *cptr = 0;
e15d1c12 822 pr_info("%s", line);
5740f4e7
HV
823 }
824 /* Next the control regs, which are single-byte, address mod 4 */
825 while (i < 0x400) {
826 cptr = line;
827 cptr += sprintf(cptr, "%03x ", i);
828 /* Print out 4 groups of 4 bytes */
829 for (j = 0; j < 4; j++) {
830 for (k = 0; k < 4; k++) {
831 cptr += sprintf(cptr, "%02x ",
832 tw_readb(i));
833 i += 4;
834 }
835 *cptr++ = ' ';
836 }
837 *cptr++ = '\n';
838 *cptr = 0;
e15d1c12 839 pr_info("%s", line);
5740f4e7
HV
840 }
841}
842
843static int vidioc_log_status(struct file *file, void *priv)
844{
e15d1c12 845 struct tw68_dev *dev = video_drvdata(file);
5740f4e7
HV
846
847 tw68_dump_regs(dev);
e15d1c12 848 return v4l2_ctrl_log_status(file, priv);
5740f4e7
HV
849}
850
e15d1c12 851#ifdef CONFIG_VIDEO_ADV_DEBUG
5740f4e7
HV
852static int vidioc_g_register(struct file *file, void *priv,
853 struct v4l2_dbg_register *reg)
854{
e15d1c12 855 struct tw68_dev *dev = video_drvdata(file);
5740f4e7 856
5740f4e7
HV
857 if (reg->size == 1)
858 reg->val = tw_readb(reg->reg);
859 else
860 reg->val = tw_readl(reg->reg);
861 return 0;
862}
863
864static int vidioc_s_register(struct file *file, void *priv,
e15d1c12 865 const struct v4l2_dbg_register *reg)
5740f4e7 866{
e15d1c12 867 struct tw68_dev *dev = video_drvdata(file);
5740f4e7 868
5740f4e7
HV
869 if (reg->size == 1)
870 tw_writeb(reg->reg, reg->val);
871 else
872 tw_writel(reg->reg & 0xffff, reg->val);
873 return 0;
874}
875#endif
876
e15d1c12
HV
877static const struct v4l2_ctrl_ops tw68_ctrl_ops = {
878 .s_ctrl = tw68_s_ctrl,
879};
880
5740f4e7
HV
881static const struct v4l2_file_operations video_fops = {
882 .owner = THIS_MODULE,
e15d1c12
HV
883 .open = v4l2_fh_open,
884 .release = vb2_fop_release,
885 .read = vb2_fop_read,
886 .poll = vb2_fop_poll,
887 .mmap = vb2_fop_mmap,
888 .unlocked_ioctl = video_ioctl2,
5740f4e7
HV
889};
890
891static const struct v4l2_ioctl_ops video_ioctl_ops = {
892 .vidioc_querycap = tw68_querycap,
893 .vidioc_enum_fmt_vid_cap = tw68_enum_fmt_vid_cap,
e15d1c12
HV
894 .vidioc_reqbufs = vb2_ioctl_reqbufs,
895 .vidioc_create_bufs = vb2_ioctl_create_bufs,
896 .vidioc_querybuf = vb2_ioctl_querybuf,
897 .vidioc_qbuf = vb2_ioctl_qbuf,
898 .vidioc_dqbuf = vb2_ioctl_dqbuf,
5740f4e7
HV
899 .vidioc_s_std = tw68_s_std,
900 .vidioc_g_std = tw68_g_std,
901 .vidioc_enum_input = tw68_enum_input,
902 .vidioc_g_input = tw68_g_input,
903 .vidioc_s_input = tw68_s_input,
e15d1c12
HV
904 .vidioc_streamon = vb2_ioctl_streamon,
905 .vidioc_streamoff = vb2_ioctl_streamoff,
5740f4e7
HV
906 .vidioc_g_fmt_vid_cap = tw68_g_fmt_vid_cap,
907 .vidioc_try_fmt_vid_cap = tw68_try_fmt_vid_cap,
908 .vidioc_s_fmt_vid_cap = tw68_s_fmt_vid_cap,
5740f4e7 909 .vidioc_log_status = vidioc_log_status,
e15d1c12
HV
910 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
911 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
912#ifdef CONFIG_VIDEO_ADV_DEBUG
5740f4e7
HV
913 .vidioc_g_register = vidioc_g_register,
914 .vidioc_s_register = vidioc_s_register,
915#endif
916};
917
e15d1c12 918static struct video_device tw68_video_template = {
5740f4e7
HV
919 .name = "tw68_video",
920 .fops = &video_fops,
921 .ioctl_ops = &video_ioctl_ops,
e15d1c12 922 .release = video_device_release_empty,
5740f4e7 923 .tvnorms = TW68_NORMS,
5740f4e7
HV
924};
925
e15d1c12
HV
926/* ------------------------------------------------------------------ */
927/* exported stuff */
5740f4e7
HV
928void tw68_set_tvnorm_hw(struct tw68_dev *dev)
929{
930 tw_andorb(TW68_SDT, 0x07, dev->tvnorm->format);
5740f4e7
HV
931}
932
933int tw68_video_init1(struct tw68_dev *dev)
934{
e15d1c12
HV
935 struct v4l2_ctrl_handler *hdl = &dev->hdl;
936
937 v4l2_ctrl_handler_init(hdl, 6);
938 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
939 V4L2_CID_BRIGHTNESS, -128, 127, 1, 20);
940 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
941 V4L2_CID_CONTRAST, 0, 255, 1, 100);
942 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
943 V4L2_CID_SATURATION, 0, 255, 1, 128);
944 /* NTSC only */
945 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
946 V4L2_CID_HUE, -128, 127, 1, 0);
947 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
948 V4L2_CID_COLOR_KILLER, 0, 1, 1, 0);
949 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
950 V4L2_CID_CHROMA_AGC, 0, 1, 1, 1);
951 if (hdl->error) {
952 v4l2_ctrl_handler_free(hdl);
953 return hdl->error;
954 }
955 dev->v4l2_dev.ctrl_handler = hdl;
956 v4l2_ctrl_handler_setup(hdl);
5740f4e7
HV
957 return 0;
958}
959
e15d1c12 960int tw68_video_init2(struct tw68_dev *dev, int video_nr)
5740f4e7 961{
e15d1c12
HV
962 int ret;
963
5740f4e7 964 set_tvnorm(dev, &tvnorms[0]);
5740f4e7 965
e15d1c12
HV
966 dev->fmt = format_by_fourcc(V4L2_PIX_FMT_BGR24);
967 dev->width = 720;
968 dev->height = 576;
969 dev->field = V4L2_FIELD_INTERLACED;
970
971 INIT_LIST_HEAD(&dev->active);
972 dev->vidq.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
973 dev->vidq.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
974 dev->vidq.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ | VB2_DMABUF;
975 dev->vidq.ops = &tw68_video_qops;
976 dev->vidq.mem_ops = &vb2_dma_sg_memops;
977 dev->vidq.drv_priv = dev;
978 dev->vidq.gfp_flags = __GFP_DMA32;
979 dev->vidq.buf_struct_size = sizeof(struct tw68_buf);
980 dev->vidq.lock = &dev->lock;
981 dev->vidq.min_buffers_needed = 2;
982 ret = vb2_queue_init(&dev->vidq);
983 if (ret)
984 return ret;
985 dev->vdev = tw68_video_template;
986 dev->vdev.v4l2_dev = &dev->v4l2_dev;
987 dev->vdev.lock = &dev->lock;
988 dev->vdev.queue = &dev->vidq;
989 video_set_drvdata(&dev->vdev, dev);
990 return video_register_device(&dev->vdev, VFL_TYPE_GRABBER, video_nr);
5740f4e7
HV
991}
992
993/*
994 * tw68_irq_video_done
995 */
996void tw68_irq_video_done(struct tw68_dev *dev, unsigned long status)
997{
998 __u32 reg;
999
1000 /* reset interrupts handled by this routine */
1001 tw_writel(TW68_INTSTAT, status);
1002 /*
1003 * Check most likely first
1004 *
1005 * DMAPI shows we have reached the end of the risc code
1006 * for the current buffer.
1007 */
1008 if (status & TW68_DMAPI) {
e15d1c12
HV
1009 struct tw68_buf *buf;
1010
5740f4e7 1011 spin_lock(&dev->slock);
e15d1c12
HV
1012 buf = list_entry(dev->active.next, struct tw68_buf, list);
1013 list_del(&buf->list);
5740f4e7 1014 spin_unlock(&dev->slock);
e15d1c12
HV
1015 v4l2_get_timestamp(&buf->vb.v4l2_buf.timestamp);
1016 buf->vb.v4l2_buf.field = dev->field;
1017 buf->vb.v4l2_buf.sequence = dev->seqnr++;
1018 vb2_buffer_done(&buf->vb, VB2_BUF_STATE_DONE);
5740f4e7
HV
1019 status &= ~(TW68_DMAPI);
1020 if (0 == status)
1021 return;
1022 }
e15d1c12
HV
1023 if (status & (TW68_VLOCK | TW68_HLOCK))
1024 dev_dbg(&dev->pci->dev, "Lost sync\n");
1025 if (status & TW68_PABORT)
1026 dev_err(&dev->pci->dev, "PABORT interrupt\n");
1027 if (status & TW68_DMAPERR)
1028 dev_err(&dev->pci->dev, "DMAPERR interrupt\n");
5740f4e7
HV
1029 /*
1030 * On TW6800, FDMIS is apparently generated if video input is switched
1031 * during operation. Therefore, it is not enabled for that chip.
1032 */
e15d1c12
HV
1033 if (status & TW68_FDMIS)
1034 dev_dbg(&dev->pci->dev, "FDMIS interrupt\n");
1035 if (status & TW68_FFOF) {
1036 /* probably a logic error */
5740f4e7
HV
1037 reg = tw_readl(TW68_DMAC) & TW68_FIFO_EN;
1038 tw_clearl(TW68_DMAC, TW68_FIFO_EN);
e15d1c12 1039 dev_dbg(&dev->pci->dev, "FFOF interrupt\n");
5740f4e7
HV
1040 tw_setl(TW68_DMAC, reg);
1041 }
1042 if (status & TW68_FFERR)
e15d1c12 1043 dev_dbg(&dev->pci->dev, "FFERR interrupt\n");
5740f4e7 1044}