Merge tag 'for-linus-5.4-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / media / dvb-frontends / mb86a20s.c
CommitLineData
50acfb2b 1// SPDX-License-Identifier: GPL-2.0-only
b9ede79a
MCC
2/*
3 * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
4 *
37e59f87 5 * Copyright (C) 2010-2013 Mauro Carvalho Chehab
b9ede79a 6 * Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
b9ede79a
MCC
7 */
8
9#include <linux/kernel.h>
10#include <asm/div64.h>
11
fada1935 12#include <media/dvb_frontend.h>
b9ede79a
MCC
13#include "mb86a20s.h"
14
4f62a20d
MCC
15#define NUM_LAYERS 3
16
04fa725e
MCC
17enum mb86a20s_bandwidth {
18 MB86A20S_13SEG = 0,
19 MB86A20S_13SEG_PARTIAL = 1,
20 MB86A20S_1SEG = 2,
21 MB86A20S_3SEG = 3,
22};
23
ce08131c 24static u8 mb86a20s_subchannel[] = {
04fa725e
MCC
25 0xb0, 0xc0, 0xd0, 0xe0,
26 0xf0, 0x00, 0x10, 0x20,
27};
28
b9ede79a
MCC
29struct mb86a20s_state {
30 struct i2c_adapter *i2c;
31 const struct mb86a20s_config *config;
09b6d21e 32 u32 last_frequency;
b9ede79a
MCC
33
34 struct dvb_frontend frontend;
c736a5f2 35
768e6dad 36 u32 if_freq;
04fa725e
MCC
37 enum mb86a20s_bandwidth bw;
38 bool inversion;
39 u32 subchannel;
768e6dad 40
4f62a20d 41 u32 estimated_rate[NUM_LAYERS];
0921ecfd 42 unsigned long get_strength_time;
d01a8ee3 43
c736a5f2 44 bool need_init;
b9ede79a
MCC
45};
46
47struct regdata {
48 u8 reg;
49 u8 data;
50};
51
d01a8ee3
MCC
52#define BER_SAMPLING_RATE 1 /* Seconds */
53
b9ede79a
MCC
54/*
55 * Initialization sequence: Use whatevere default values that PV SBTVD
56 * does on its initialisation, obtained via USB snoop
57 */
768e6dad 58static struct regdata mb86a20s_init1[] = {
b9ede79a
MCC
59 { 0x70, 0x0f },
60 { 0x70, 0xff },
61 { 0x08, 0x01 },
17e67d4c 62 { 0x50, 0xd1 }, { 0x51, 0x20 },
768e6dad
MCC
63};
64
65static struct regdata mb86a20s_init2[] = {
505a0ea7
MCC
66 { 0x50, 0xd1 }, { 0x51, 0x22 },
67 { 0x39, 0x01 },
68 { 0x71, 0x00 },
b9ede79a 69 { 0x3b, 0x21 },
505a0ea7 70 { 0x3c, 0x3a },
b9ede79a 71 { 0x01, 0x0d },
505a0ea7 72 { 0x04, 0x08 }, { 0x05, 0x05 },
a7025edf 73 { 0x04, 0x0e }, { 0x05, 0x00 },
505a0ea7
MCC
74 { 0x04, 0x0f }, { 0x05, 0x14 },
75 { 0x04, 0x0b }, { 0x05, 0x8c },
a7025edf 76 { 0x04, 0x00 }, { 0x05, 0x00 },
505a0ea7
MCC
77 { 0x04, 0x01 }, { 0x05, 0x07 },
78 { 0x04, 0x02 }, { 0x05, 0x0f },
79 { 0x04, 0x03 }, { 0x05, 0xa0 },
a7025edf
MCC
80 { 0x04, 0x09 }, { 0x05, 0x00 },
81 { 0x04, 0x0a }, { 0x05, 0xff },
505a0ea7 82 { 0x04, 0x27 }, { 0x05, 0x64 },
a7025edf 83 { 0x04, 0x28 }, { 0x05, 0x00 },
505a0ea7
MCC
84 { 0x04, 0x1e }, { 0x05, 0xff },
85 { 0x04, 0x29 }, { 0x05, 0x0a },
86 { 0x04, 0x32 }, { 0x05, 0x0a },
a7025edf
MCC
87 { 0x04, 0x14 }, { 0x05, 0x02 },
88 { 0x04, 0x04 }, { 0x05, 0x00 },
89 { 0x04, 0x05 }, { 0x05, 0x22 },
90 { 0x04, 0x06 }, { 0x05, 0x0e },
91 { 0x04, 0x07 }, { 0x05, 0xd8 },
92 { 0x04, 0x12 }, { 0x05, 0x00 },
93 { 0x04, 0x13 }, { 0x05, 0xff },
09b6d21e
MCC
94
95 /*
96 * On this demod, when the bit count reaches the count below,
97 * it collects the bit error count. The bit counters are initialized
98 * to 65535 here. This warrants that all of them will be quickly
99 * calculated when device gets locked. As TMCC is parsed, the values
d01a8ee3 100 * will be adjusted later in the driver's code.
09b6d21e
MCC
101 */
102 { 0x52, 0x01 }, /* Turn on BER before Viterbi */
103 { 0x50, 0xa7 }, { 0x51, 0x00 },
a7025edf
MCC
104 { 0x50, 0xa8 }, { 0x51, 0xff },
105 { 0x50, 0xa9 }, { 0x51, 0xff },
09b6d21e 106 { 0x50, 0xaa }, { 0x51, 0x00 },
a7025edf
MCC
107 { 0x50, 0xab }, { 0x51, 0xff },
108 { 0x50, 0xac }, { 0x51, 0xff },
09b6d21e 109 { 0x50, 0xad }, { 0x51, 0x00 },
a7025edf
MCC
110 { 0x50, 0xae }, { 0x51, 0xff },
111 { 0x50, 0xaf }, { 0x51, 0xff },
09b6d21e 112
d9b6f08a
MCC
113 /*
114 * On this demod, post BER counts blocks. When the count reaches the
115 * value below, it collects the block error count. The block counters
116 * are initialized to 127 here. This warrants that all of them will be
117 * quickly calculated when device gets locked. As TMCC is parsed, the
118 * values will be adjusted later in the driver's code.
119 */
120 { 0x5e, 0x07 }, /* Turn on BER after Viterbi */
121 { 0x50, 0xdc }, { 0x51, 0x00 },
122 { 0x50, 0xdd }, { 0x51, 0x7f },
123 { 0x50, 0xde }, { 0x51, 0x00 },
124 { 0x50, 0xdf }, { 0x51, 0x7f },
125 { 0x50, 0xe0 }, { 0x51, 0x00 },
126 { 0x50, 0xe1 }, { 0x51, 0x7f },
593ae89a
MCC
127
128 /*
129 * On this demod, when the block count reaches the count below,
130 * it collects the block error count. The block counters are initialized
131 * to 127 here. This warrants that all of them will be quickly
132 * calculated when device gets locked. As TMCC is parsed, the values
133 * will be adjusted later in the driver's code.
134 */
135 { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */
136 { 0x50, 0xb2 }, { 0x51, 0x00 },
137 { 0x50, 0xb3 }, { 0x51, 0x7f },
138 { 0x50, 0xb4 }, { 0x51, 0x00 },
139 { 0x50, 0xb5 }, { 0x51, 0x7f },
140 { 0x50, 0xb6 }, { 0x51, 0x00 },
141 { 0x50, 0xb7 }, { 0x51, 0x7f },
25188bd0
MCC
142
143 { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */
09b6d21e
MCC
144 { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */
145 { 0x45, 0x04 }, /* CN symbol 4 */
25188bd0 146 { 0x48, 0x04 }, /* CN manual mode */
505a0ea7 147 { 0x50, 0xd5 }, { 0x51, 0x01 },
a7025edf
MCC
148 { 0x50, 0xd6 }, { 0x51, 0x1f },
149 { 0x50, 0xd2 }, { 0x51, 0x03 },
505a0ea7 150 { 0x50, 0xd7 }, { 0x51, 0x3f },
b9ede79a 151 { 0x1c, 0x01 },
505a0ea7
MCC
152 { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
153 { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
154 { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
155 { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
156 { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
157 { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
158 { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
159 { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
160 { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
161 { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
162 { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
163 { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
164 { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
165 { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
166 { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
167 { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
168 { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
169 { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
170 { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
171 { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
172 { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
173 { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
174 { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
175 { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
176 { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
a7025edf
MCC
177 { 0x50, 0x1e }, { 0x51, 0x5d },
178 { 0x50, 0x22 }, { 0x51, 0x00 },
179 { 0x50, 0x23 }, { 0x51, 0xc8 },
180 { 0x50, 0x24 }, { 0x51, 0x00 },
181 { 0x50, 0x25 }, { 0x51, 0xf0 },
182 { 0x50, 0x26 }, { 0x51, 0x00 },
183 { 0x50, 0x27 }, { 0x51, 0xc3 },
184 { 0x50, 0x39 }, { 0x51, 0x02 },
505a0ea7 185 { 0x50, 0xd5 }, { 0x51, 0x01 },
b9ede79a
MCC
186 { 0xd0, 0x00 },
187};
188
189static struct regdata mb86a20s_reset_reception[] = {
190 { 0x70, 0xf0 },
191 { 0x70, 0xff },
192 { 0x08, 0x01 },
193 { 0x08, 0x00 },
194};
195
d9b6f08a
MCC
196static struct regdata mb86a20s_per_ber_reset[] = {
197 { 0x53, 0x00 }, /* pre BER Counter reset */
09b6d21e 198 { 0x53, 0x07 },
09b6d21e 199
d9b6f08a
MCC
200 { 0x5f, 0x00 }, /* post BER Counter reset */
201 { 0x5f, 0x07 },
202
09b6d21e
MCC
203 { 0x50, 0xb1 }, /* PER Counter reset */
204 { 0x51, 0x07 },
205 { 0x51, 0x00 },
206};
207
dd4493ef
MCC
208/*
209 * I2C read/write functions and macros
210 */
211
b9ede79a 212static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
09b6d21e 213 u8 i2c_addr, u8 reg, u8 data)
b9ede79a
MCC
214{
215 u8 buf[] = { reg, data };
216 struct i2c_msg msg = {
217 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
218 };
219 int rc;
220
221 rc = i2c_transfer(state->i2c, &msg, 1);
222 if (rc != 1) {
f66d81b5
MCC
223 dev_err(&state->i2c->dev,
224 "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
225 __func__, rc, reg, data);
b9ede79a
MCC
226 return rc;
227 }
228
229 return 0;
230}
231
232static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
233 u8 i2c_addr, struct regdata *rd, int size)
234{
235 int i, rc;
236
237 for (i = 0; i < size; i++) {
238 rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
239 rd[i].data);
240 if (rc < 0)
241 return rc;
242 }
243 return 0;
244}
245
246static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
247 u8 i2c_addr, u8 reg)
248{
249 u8 val;
250 int rc;
251 struct i2c_msg msg[] = {
252 { .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
253 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
254 };
255
256 rc = i2c_transfer(state->i2c, msg, 2);
257
258 if (rc != 2) {
f66d81b5
MCC
259 dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
260 __func__, reg, rc);
261 return (rc < 0) ? rc : -EIO;
b9ede79a
MCC
262 }
263
264 return val;
265}
266
267#define mb86a20s_readreg(state, reg) \
268 mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
269#define mb86a20s_writereg(state, reg, val) \
270 mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
271#define mb86a20s_writeregdata(state, regdata) \
272 mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
273 regdata, ARRAY_SIZE(regdata))
274
09b6d21e
MCC
275/*
276 * Ancillary internal routines (likely compiled inlined)
277 *
278 * The functions below assume that gateway lock has already obtained
279 */
280
0df289a2 281static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
b9ede79a
MCC
282{
283 struct mb86a20s_state *state = fe->demodulator_priv;
dd4493ef 284 int val;
b9ede79a 285
dd4493ef 286 *status = 0;
b9ede79a 287
eca2d34b 288 val = mb86a20s_readreg(state, 0x0a);
dd4493ef
MCC
289 if (val < 0)
290 return val;
68541cda 291
eca2d34b 292 val &= 0xf;
dd4493ef
MCC
293 if (val >= 2)
294 *status |= FE_HAS_SIGNAL;
b9ede79a 295
dd4493ef
MCC
296 if (val >= 4)
297 *status |= FE_HAS_CARRIER;
7572f9c5 298
dd4493ef
MCC
299 if (val >= 5)
300 *status |= FE_HAS_VITERBI;
7572f9c5 301
dd4493ef
MCC
302 if (val >= 7)
303 *status |= FE_HAS_SYNC;
68541cda 304
dafb65fb
MCC
305 /*
306 * Actually, on state S8, it starts receiving TS, but the TS
307 * output is only on normal state after the transition to S9.
308 */
309 if (val >= 9)
dd4493ef
MCC
310 *status |= FE_HAS_LOCK;
311
f66d81b5
MCC
312 dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
313 __func__, *status, val);
dd4493ef 314
15b1c5a0 315 return val;
b9ede79a
MCC
316}
317
09b6d21e 318static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
b9ede79a
MCC
319{
320 struct mb86a20s_state *state = fe->demodulator_priv;
0921ecfd 321 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
09b6d21e 322 int rc;
b9ede79a 323 unsigned rf_max, rf_min, rf;
68541cda 324
0921ecfd
MCC
325 if (state->get_strength_time &&
326 (!time_after(jiffies, state->get_strength_time)))
327 return c->strength.stat[0].uvalue;
328
329 /* Reset its value if an error happen */
330 c->strength.stat[0].uvalue = 0;
331
b9ede79a
MCC
332 /* Does a binary search to get RF strength */
333 rf_max = 0xfff;
334 rf_min = 0;
335 do {
336 rf = (rf_max + rf_min) / 2;
09b6d21e
MCC
337 rc = mb86a20s_writereg(state, 0x04, 0x1f);
338 if (rc < 0)
339 return rc;
340 rc = mb86a20s_writereg(state, 0x05, rf >> 8);
341 if (rc < 0)
342 return rc;
343 rc = mb86a20s_writereg(state, 0x04, 0x20);
344 if (rc < 0)
345 return rc;
dad78c56 346 rc = mb86a20s_writereg(state, 0x05, rf);
09b6d21e
MCC
347 if (rc < 0)
348 return rc;
b9ede79a 349
09b6d21e
MCC
350 rc = mb86a20s_readreg(state, 0x02);
351 if (rc < 0)
352 return rc;
353 if (rc & 0x08)
b9ede79a
MCC
354 rf_min = (rf_max + rf_min) / 2;
355 else
356 rf_max = (rf_max + rf_min) / 2;
357 if (rf_max - rf_min < 4) {
09b6d21e
MCC
358 rf = (rf_max + rf_min) / 2;
359
360 /* Rescale it from 2^12 (4096) to 2^16 */
0921ecfd
MCC
361 rf = rf << (16 - 12);
362 if (rf)
363 rf |= (1 << 12) - 1;
364
f66d81b5
MCC
365 dev_dbg(&state->i2c->dev,
366 "%s: signal strength = %d (%d < RF=%d < %d)\n",
367 __func__, rf, rf_min, rf >> 4, rf_max);
0921ecfd
MCC
368 c->strength.stat[0].uvalue = rf;
369 state->get_strength_time = jiffies +
370 msecs_to_jiffies(1000);
371 return 0;
b9ede79a
MCC
372 }
373 } while (1);
b9ede79a
MCC
374}
375
959a119f
MCC
376static int mb86a20s_get_modulation(struct mb86a20s_state *state,
377 unsigned layer)
378{
379 int rc;
380 static unsigned char reg[] = {
381 [0] = 0x86, /* Layer A */
382 [1] = 0x8a, /* Layer B */
383 [2] = 0x8e, /* Layer C */
384 };
385
82033bc5 386 if (layer >= ARRAY_SIZE(reg))
959a119f
MCC
387 return -EINVAL;
388 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
389 if (rc < 0)
390 return rc;
391 rc = mb86a20s_readreg(state, 0x6e);
392 if (rc < 0)
393 return rc;
04585921 394 switch ((rc >> 4) & 0x07) {
959a119f
MCC
395 case 0:
396 return DQPSK;
397 case 1:
398 return QPSK;
399 case 2:
400 return QAM_16;
401 case 3:
402 return QAM_64;
403 default:
404 return QAM_AUTO;
405 }
406}
407
408static int mb86a20s_get_fec(struct mb86a20s_state *state,
409 unsigned layer)
410{
411 int rc;
412
413 static unsigned char reg[] = {
414 [0] = 0x87, /* Layer A */
415 [1] = 0x8b, /* Layer B */
416 [2] = 0x8f, /* Layer C */
417 };
418
82033bc5 419 if (layer >= ARRAY_SIZE(reg))
959a119f
MCC
420 return -EINVAL;
421 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
422 if (rc < 0)
423 return rc;
424 rc = mb86a20s_readreg(state, 0x6e);
425 if (rc < 0)
426 return rc;
04585921 427 switch ((rc >> 4) & 0x07) {
959a119f
MCC
428 case 0:
429 return FEC_1_2;
430 case 1:
431 return FEC_2_3;
432 case 2:
433 return FEC_3_4;
434 case 3:
435 return FEC_5_6;
436 case 4:
437 return FEC_7_8;
438 default:
439 return FEC_AUTO;
440 }
441}
442
443static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
444 unsigned layer)
445{
446 int rc;
4247368b
MCC
447 int interleaving[] = {
448 0, 1, 2, 4, 8
449 };
959a119f
MCC
450
451 static unsigned char reg[] = {
452 [0] = 0x88, /* Layer A */
453 [1] = 0x8c, /* Layer B */
454 [2] = 0x90, /* Layer C */
455 };
456
82033bc5 457 if (layer >= ARRAY_SIZE(reg))
959a119f
MCC
458 return -EINVAL;
459 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
460 if (rc < 0)
461 return rc;
462 rc = mb86a20s_readreg(state, 0x6e);
463 if (rc < 0)
464 return rc;
04585921 465
4247368b 466 return interleaving[(rc >> 4) & 0x07];
959a119f
MCC
467}
468
469static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
470 unsigned layer)
471{
472 int rc, count;
959a119f
MCC
473 static unsigned char reg[] = {
474 [0] = 0x89, /* Layer A */
475 [1] = 0x8d, /* Layer B */
476 [2] = 0x91, /* Layer C */
477 };
478
f66d81b5
MCC
479 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
480
82033bc5 481 if (layer >= ARRAY_SIZE(reg))
959a119f 482 return -EINVAL;
f66d81b5 483
959a119f
MCC
484 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
485 if (rc < 0)
486 return rc;
487 rc = mb86a20s_readreg(state, 0x6e);
488 if (rc < 0)
489 return rc;
490 count = (rc >> 4) & 0x0f;
491
f66d81b5
MCC
492 dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
493
959a119f
MCC
494 return count;
495}
496
a77cfcac
MCC
497static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
498{
f66d81b5 499 struct mb86a20s_state *state = fe->demodulator_priv;
a77cfcac
MCC
500 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
501
f66d81b5
MCC
502 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
503
a77cfcac
MCC
504 /* Fixed parameters */
505 c->delivery_system = SYS_ISDBT;
506 c->bandwidth_hz = 6000000;
507
508 /* Initialize values that will be later autodetected */
509 c->isdbt_layer_enabled = 0;
510 c->transmission_mode = TRANSMISSION_MODE_AUTO;
511 c->guard_interval = GUARD_INTERVAL_AUTO;
512 c->isdbt_sb_mode = 0;
513 c->isdbt_sb_segment_count = 0;
514}
515
d01a8ee3
MCC
516/*
517 * Estimates the bit rate using the per-segment bit rate given by
518 * ABNT/NBR 15601 spec (table 4).
519 */
520static u32 isdbt_rate[3][5][4] = {
521 { /* DQPSK/QPSK */
522 { 280850, 312060, 330420, 340430 }, /* 1/2 */
523 { 374470, 416080, 440560, 453910 }, /* 2/3 */
524 { 421280, 468090, 495630, 510650 }, /* 3/4 */
525 { 468090, 520100, 550700, 567390 }, /* 5/6 */
526 { 491500, 546110, 578230, 595760 }, /* 7/8 */
527 }, { /* QAM16 */
528 { 561710, 624130, 660840, 680870 }, /* 1/2 */
529 { 748950, 832170, 881120, 907820 }, /* 2/3 */
530 { 842570, 936190, 991260, 1021300 }, /* 3/4 */
531 { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */
532 { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */
533 }, { /* QAM64 */
534 { 842570, 936190, 991260, 1021300 }, /* 1/2 */
535 { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
536 { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
537 { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
538 { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
539 }
540};
541
542static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
0562aef2 543 u32 modulation, u32 forward_error_correction,
277bfd2f 544 u32 guard_interval,
d01a8ee3
MCC
545 u32 segment)
546{
547 struct mb86a20s_state *state = fe->demodulator_priv;
548 u32 rate;
0562aef2 549 int mod, fec, guard;
d01a8ee3
MCC
550
551 /*
277bfd2f 552 * If modulation/fec/guard is not detected, the default is
d01a8ee3
MCC
553 * to consider the lowest bit rate, to avoid taking too long time
554 * to get BER.
555 */
556 switch (modulation) {
557 case DQPSK:
558 case QPSK:
559 default:
0562aef2 560 mod = 0;
d01a8ee3
MCC
561 break;
562 case QAM_16:
0562aef2 563 mod = 1;
d01a8ee3
MCC
564 break;
565 case QAM_64:
0562aef2 566 mod = 2;
d01a8ee3
MCC
567 break;
568 }
569
0562aef2 570 switch (forward_error_correction) {
d01a8ee3
MCC
571 default:
572 case FEC_1_2:
573 case FEC_AUTO:
0562aef2 574 fec = 0;
d01a8ee3
MCC
575 break;
576 case FEC_2_3:
0562aef2 577 fec = 1;
d01a8ee3
MCC
578 break;
579 case FEC_3_4:
0562aef2 580 fec = 2;
d01a8ee3
MCC
581 break;
582 case FEC_5_6:
0562aef2 583 fec = 3;
d01a8ee3
MCC
584 break;
585 case FEC_7_8:
0562aef2 586 fec = 4;
d01a8ee3
MCC
587 break;
588 }
589
277bfd2f 590 switch (guard_interval) {
d01a8ee3
MCC
591 default:
592 case GUARD_INTERVAL_1_4:
0562aef2 593 guard = 0;
d01a8ee3
MCC
594 break;
595 case GUARD_INTERVAL_1_8:
0562aef2 596 guard = 1;
d01a8ee3
MCC
597 break;
598 case GUARD_INTERVAL_1_16:
0562aef2 599 guard = 2;
d01a8ee3
MCC
600 break;
601 case GUARD_INTERVAL_1_32:
0562aef2 602 guard = 3;
d01a8ee3
MCC
603 break;
604 }
605
606 /* Samples BER at BER_SAMPLING_RATE seconds */
0562aef2 607 rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
d01a8ee3
MCC
608
609 /* Avoids sampling too quickly or to overflow the register */
610 if (rate < 256)
611 rate = 256;
612 else if (rate > (1 << 24) - 1)
613 rate = (1 << 24) - 1;
614
615 dev_dbg(&state->i2c->dev,
616 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
0562aef2
MCC
617 __func__, 'A' + layer,
618 segment * isdbt_rate[mod][fec][guard]/1000,
d01a8ee3
MCC
619 rate, rate);
620
b1f89331 621 state->estimated_rate[layer] = rate;
d01a8ee3
MCC
622}
623
7c61d80a 624static int mb86a20s_get_frontend(struct dvb_frontend *fe)
b9ede79a 625{
959a119f 626 struct mb86a20s_state *state = fe->demodulator_priv;
a77cfcac 627 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
5cb88ca8 628 int layer, rc;
b9ede79a 629
f66d81b5
MCC
630 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
631
a77cfcac
MCC
632 /* Reset frontend cache to default values */
633 mb86a20s_reset_frontend_cache(fe);
959a119f 634
959a119f
MCC
635 /* Check for partial reception */
636 rc = mb86a20s_writereg(state, 0x6d, 0x85);
a77cfcac
MCC
637 if (rc < 0)
638 return rc;
639 rc = mb86a20s_readreg(state, 0x6e);
640 if (rc < 0)
641 return rc;
642 c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
959a119f
MCC
643
644 /* Get per-layer data */
a77cfcac 645
5cb88ca8 646 for (layer = 0; layer < NUM_LAYERS; layer++) {
f66d81b5 647 dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
5cb88ca8 648 __func__, 'A' + layer);
f66d81b5 649
5cb88ca8 650 rc = mb86a20s_get_segment_count(state, layer);
a77cfcac 651 if (rc < 0)
f66d81b5 652 goto noperlayer_error;
d01a8ee3 653 if (rc >= 0 && rc < 14) {
5cb88ca8 654 c->layer[layer].segment_count = rc;
d01a8ee3 655 } else {
5cb88ca8
MCC
656 c->layer[layer].segment_count = 0;
657 state->estimated_rate[layer] = 0;
959a119f 658 continue;
a77cfcac 659 }
5cb88ca8
MCC
660 c->isdbt_layer_enabled |= 1 << layer;
661 rc = mb86a20s_get_modulation(state, layer);
a77cfcac 662 if (rc < 0)
f66d81b5
MCC
663 goto noperlayer_error;
664 dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
665 __func__, rc);
5cb88ca8
MCC
666 c->layer[layer].modulation = rc;
667 rc = mb86a20s_get_fec(state, layer);
a77cfcac 668 if (rc < 0)
f66d81b5
MCC
669 goto noperlayer_error;
670 dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
671 __func__, rc);
5cb88ca8
MCC
672 c->layer[layer].fec = rc;
673 rc = mb86a20s_get_interleaving(state, layer);
a77cfcac 674 if (rc < 0)
f66d81b5
MCC
675 goto noperlayer_error;
676 dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
677 __func__, rc);
5cb88ca8
MCC
678 c->layer[layer].interleaving = rc;
679 mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
680 c->layer[layer].fec,
277bfd2f 681 c->guard_interval,
5cb88ca8 682 c->layer[layer].segment_count);
959a119f
MCC
683 }
684
959a119f 685 rc = mb86a20s_writereg(state, 0x6d, 0x84);
a77cfcac
MCC
686 if (rc < 0)
687 return rc;
688 if ((rc & 0x60) == 0x20) {
689 c->isdbt_sb_mode = 1;
959a119f 690 /* At least, one segment should exist */
a77cfcac
MCC
691 if (!c->isdbt_sb_segment_count)
692 c->isdbt_sb_segment_count = 1;
693 }
959a119f
MCC
694
695 /* Get transmission mode and guard interval */
959a119f 696 rc = mb86a20s_readreg(state, 0x07);
a77cfcac
MCC
697 if (rc < 0)
698 return rc;
276dfc4b 699 c->transmission_mode = TRANSMISSION_MODE_AUTO;
a77cfcac 700 if ((rc & 0x60) == 0x20) {
276dfc4b
MCC
701 /* Only modes 2 and 3 are supported */
702 switch ((rc >> 2) & 0x03) {
a77cfcac
MCC
703 case 1:
704 c->transmission_mode = TRANSMISSION_MODE_4K;
705 break;
706 case 2:
707 c->transmission_mode = TRANSMISSION_MODE_8K;
708 break;
959a119f 709 }
a77cfcac 710 }
276dfc4b 711 c->guard_interval = GUARD_INTERVAL_AUTO;
a77cfcac 712 if (!(rc & 0x10)) {
276dfc4b 713 /* Guard interval 1/32 is not supported */
a77cfcac
MCC
714 switch (rc & 0x3) {
715 case 0:
716 c->guard_interval = GUARD_INTERVAL_1_4;
717 break;
718 case 1:
719 c->guard_interval = GUARD_INTERVAL_1_8;
720 break;
721 case 2:
722 c->guard_interval = GUARD_INTERVAL_1_16;
723 break;
959a119f
MCC
724 }
725 }
09b6d21e 726 return 0;
959a119f 727
f66d81b5 728noperlayer_error:
b9ede79a 729
09b6d21e
MCC
730 /* per-layer info is incomplete; discard all per-layer */
731 c->isdbt_layer_enabled = 0;
732
733 return rc;
734}
735
736static int mb86a20s_reset_counters(struct dvb_frontend *fe)
737{
738 struct mb86a20s_state *state = fe->demodulator_priv;
739 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
740 int rc, val;
741
742 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
743
744 /* Reset the counters, if the channel changed */
745 if (state->last_frequency != c->frequency) {
09b6d21e
MCC
746 memset(&c->cnr, 0, sizeof(c->cnr));
747 memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
748 memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
d9b6f08a
MCC
749 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
750 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
09b6d21e
MCC
751 memset(&c->block_error, 0, sizeof(c->block_error));
752 memset(&c->block_count, 0, sizeof(c->block_count));
753
754 state->last_frequency = c->frequency;
755 }
756
757 /* Clear status for most stats */
758
d9b6f08a
MCC
759 /* BER/PER counter reset */
760 rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
09b6d21e
MCC
761 if (rc < 0)
762 goto err;
763
764 /* CNR counter reset */
765 rc = mb86a20s_readreg(state, 0x45);
766 if (rc < 0)
767 goto err;
768 val = rc;
769 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
770 if (rc < 0)
771 goto err;
772 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
773 if (rc < 0)
774 goto err;
775
776 /* MER counter reset */
777 rc = mb86a20s_writereg(state, 0x50, 0x50);
778 if (rc < 0)
779 goto err;
780 rc = mb86a20s_readreg(state, 0x51);
781 if (rc < 0)
782 goto err;
783 val = rc;
784 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
785 if (rc < 0)
786 goto err;
787 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
788 if (rc < 0)
789 goto err;
790
149d518a 791 goto ok;
09b6d21e 792err:
149d518a
MCC
793 dev_err(&state->i2c->dev,
794 "%s: Can't reset FE statistics (error %d).\n",
795 __func__, rc);
796ok:
a77cfcac 797 return rc;
09b6d21e
MCC
798}
799
ad0abbf1
MCC
800static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
801 unsigned layer,
802 u32 *error, u32 *count)
149d518a
MCC
803{
804 struct mb86a20s_state *state = fe->demodulator_priv;
ad0abbf1 805 int rc, val;
149d518a
MCC
806
807 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
808
4f62a20d 809 if (layer >= NUM_LAYERS)
149d518a
MCC
810 return -EINVAL;
811
812 /* Check if the BER measures are already available */
813 rc = mb86a20s_readreg(state, 0x54);
814 if (rc < 0)
815 return rc;
816
817 /* Check if data is available for that layer */
818 if (!(rc & (1 << layer))) {
819 dev_dbg(&state->i2c->dev,
ad0abbf1 820 "%s: preBER for layer %c is not available yet.\n",
149d518a
MCC
821 __func__, 'A' + layer);
822 return -EBUSY;
823 }
824
825 /* Read Bit Error Count */
826 rc = mb86a20s_readreg(state, 0x55 + layer * 3);
827 if (rc < 0)
828 return rc;
829 *error = rc << 16;
830 rc = mb86a20s_readreg(state, 0x56 + layer * 3);
831 if (rc < 0)
832 return rc;
833 *error |= rc << 8;
834 rc = mb86a20s_readreg(state, 0x57 + layer * 3);
835 if (rc < 0)
836 return rc;
837 *error |= rc;
838
839 dev_dbg(&state->i2c->dev,
840 "%s: bit error before Viterbi for layer %c: %d.\n",
841 __func__, 'A' + layer, *error);
842
843 /* Read Bit Count */
844 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
845 if (rc < 0)
846 return rc;
847 rc = mb86a20s_readreg(state, 0x51);
848 if (rc < 0)
849 return rc;
850 *count = rc << 16;
851 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
852 if (rc < 0)
853 return rc;
854 rc = mb86a20s_readreg(state, 0x51);
855 if (rc < 0)
856 return rc;
857 *count |= rc << 8;
858 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
859 if (rc < 0)
860 return rc;
861 rc = mb86a20s_readreg(state, 0x51);
862 if (rc < 0)
863 return rc;
864 *count |= rc;
865
866 dev_dbg(&state->i2c->dev,
867 "%s: bit count before Viterbi for layer %c: %d.\n",
868 __func__, 'A' + layer, *count);
869
870
d01a8ee3
MCC
871 /*
872 * As we get TMCC data from the frontend, we can better estimate the
873 * BER bit counters, in order to do the BER measure during a longer
874 * time. Use those data, if available, to update the bit count
875 * measure.
876 */
877
878 if (state->estimated_rate[layer]
879 && state->estimated_rate[layer] != *count) {
880 dev_dbg(&state->i2c->dev,
ad0abbf1 881 "%s: updating layer %c preBER counter to %d.\n",
d01a8ee3 882 __func__, 'A' + layer, state->estimated_rate[layer]);
ad0abbf1
MCC
883
884 /* Turn off BER before Viterbi */
885 rc = mb86a20s_writereg(state, 0x52, 0x00);
886
887 /* Update counter for this layer */
d01a8ee3
MCC
888 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
889 if (rc < 0)
890 return rc;
891 rc = mb86a20s_writereg(state, 0x51,
892 state->estimated_rate[layer] >> 16);
893 if (rc < 0)
894 return rc;
895 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
896 if (rc < 0)
897 return rc;
898 rc = mb86a20s_writereg(state, 0x51,
899 state->estimated_rate[layer] >> 8);
900 if (rc < 0)
901 return rc;
902 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
903 if (rc < 0)
904 return rc;
905 rc = mb86a20s_writereg(state, 0x51,
906 state->estimated_rate[layer]);
907 if (rc < 0)
908 return rc;
ad0abbf1
MCC
909
910 /* Turn on BER before Viterbi */
911 rc = mb86a20s_writereg(state, 0x52, 0x01);
912
913 /* Reset all preBER counters */
914 rc = mb86a20s_writereg(state, 0x53, 0x00);
915 if (rc < 0)
916 return rc;
917 rc = mb86a20s_writereg(state, 0x53, 0x07);
918 } else {
919 /* Reset counter to collect new data */
920 rc = mb86a20s_readreg(state, 0x53);
921 if (rc < 0)
922 return rc;
923 val = rc;
924 rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
925 if (rc < 0)
926 return rc;
927 rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
d01a8ee3
MCC
928 }
929
d9b6f08a
MCC
930 return rc;
931}
932
933static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
934 unsigned layer,
935 u32 *error, u32 *count)
936{
937 struct mb86a20s_state *state = fe->demodulator_priv;
938 u32 counter, collect_rate;
939 int rc, val;
940
941 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
942
4f62a20d 943 if (layer >= NUM_LAYERS)
d9b6f08a
MCC
944 return -EINVAL;
945
946 /* Check if the BER measures are already available */
947 rc = mb86a20s_readreg(state, 0x60);
948 if (rc < 0)
949 return rc;
950
951 /* Check if data is available for that layer */
952 if (!(rc & (1 << layer))) {
953 dev_dbg(&state->i2c->dev,
954 "%s: post BER for layer %c is not available yet.\n",
955 __func__, 'A' + layer);
956 return -EBUSY;
957 }
d01a8ee3 958
d9b6f08a
MCC
959 /* Read Bit Error Count */
960 rc = mb86a20s_readreg(state, 0x64 + layer * 3);
961 if (rc < 0)
962 return rc;
963 *error = rc << 16;
964 rc = mb86a20s_readreg(state, 0x65 + layer * 3);
965 if (rc < 0)
966 return rc;
967 *error |= rc << 8;
968 rc = mb86a20s_readreg(state, 0x66 + layer * 3);
969 if (rc < 0)
970 return rc;
971 *error |= rc;
972
973 dev_dbg(&state->i2c->dev,
974 "%s: post bit error for layer %c: %d.\n",
975 __func__, 'A' + layer, *error);
976
977 /* Read Bit Count */
978 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
979 if (rc < 0)
980 return rc;
981 rc = mb86a20s_readreg(state, 0x51);
982 if (rc < 0)
983 return rc;
984 counter = rc << 8;
985 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
986 if (rc < 0)
987 return rc;
988 rc = mb86a20s_readreg(state, 0x51);
989 if (rc < 0)
990 return rc;
991 counter |= rc;
992 *count = counter * 204 * 8;
993
994 dev_dbg(&state->i2c->dev,
995 "%s: post bit count for layer %c: %d.\n",
996 __func__, 'A' + layer, *count);
997
998 /*
999 * As we get TMCC data from the frontend, we can better estimate the
1000 * BER bit counters, in order to do the BER measure during a longer
1001 * time. Use those data, if available, to update the bit count
1002 * measure.
1003 */
1004
1005 if (!state->estimated_rate[layer])
1006 goto reset_measurement;
1007
1008 collect_rate = state->estimated_rate[layer] / 204 / 8;
1009 if (collect_rate < 32)
1010 collect_rate = 32;
1011 if (collect_rate > 65535)
1012 collect_rate = 65535;
1013 if (collect_rate != counter) {
1014 dev_dbg(&state->i2c->dev,
1015 "%s: updating postBER counter on layer %c to %d.\n",
1016 __func__, 'A' + layer, collect_rate);
1017
1018 /* Turn off BER after Viterbi */
1019 rc = mb86a20s_writereg(state, 0x5e, 0x00);
1020
1021 /* Update counter for this layer */
1022 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1023 if (rc < 0)
1024 return rc;
1025 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1026 if (rc < 0)
1027 return rc;
1028 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1029 if (rc < 0)
1030 return rc;
1031 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1032 if (rc < 0)
1033 return rc;
1034
1035 /* Turn on BER after Viterbi */
1036 rc = mb86a20s_writereg(state, 0x5e, 0x07);
1037
1038 /* Reset all preBER counters */
1039 rc = mb86a20s_writereg(state, 0x5f, 0x00);
1040 if (rc < 0)
1041 return rc;
1042 rc = mb86a20s_writereg(state, 0x5f, 0x07);
1043
1044 return rc;
1045 }
1046
1047reset_measurement:
149d518a 1048 /* Reset counter to collect new data */
ad0abbf1
MCC
1049 rc = mb86a20s_readreg(state, 0x5f);
1050 if (rc < 0)
1051 return rc;
1052 val = rc;
1053 rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
149d518a
MCC
1054 if (rc < 0)
1055 return rc;
d9b6f08a 1056 rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
149d518a 1057
ad0abbf1 1058 return rc;
149d518a
MCC
1059}
1060
593ae89a
MCC
1061static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1062 unsigned layer,
1063 u32 *error, u32 *count)
1064{
1065 struct mb86a20s_state *state = fe->demodulator_priv;
313cf4ef 1066 int rc, val;
593ae89a
MCC
1067 u32 collect_rate;
1068 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1069
4f62a20d 1070 if (layer >= NUM_LAYERS)
593ae89a
MCC
1071 return -EINVAL;
1072
1073 /* Check if the PER measures are already available */
1074 rc = mb86a20s_writereg(state, 0x50, 0xb8);
1075 if (rc < 0)
1076 return rc;
1077 rc = mb86a20s_readreg(state, 0x51);
1078 if (rc < 0)
1079 return rc;
1080
1081 /* Check if data is available for that layer */
1082
1083 if (!(rc & (1 << layer))) {
1084 dev_dbg(&state->i2c->dev,
1085 "%s: block counts for layer %c aren't available yet.\n",
1086 __func__, 'A' + layer);
1087 return -EBUSY;
1088 }
1089
1090 /* Read Packet error Count */
1091 rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1092 if (rc < 0)
1093 return rc;
1094 rc = mb86a20s_readreg(state, 0x51);
1095 if (rc < 0)
1096 return rc;
1097 *error = rc << 8;
1098 rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1099 if (rc < 0)
1100 return rc;
1101 rc = mb86a20s_readreg(state, 0x51);
1102 if (rc < 0)
1103 return rc;
1104 *error |= rc;
d56e326f 1105 dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
593ae89a
MCC
1106 __func__, 'A' + layer, *error);
1107
1108 /* Read Bit Count */
1109 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1110 if (rc < 0)
1111 return rc;
1112 rc = mb86a20s_readreg(state, 0x51);
1113 if (rc < 0)
1114 return rc;
1115 *count = rc << 8;
1116 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1117 if (rc < 0)
1118 return rc;
1119 rc = mb86a20s_readreg(state, 0x51);
1120 if (rc < 0)
1121 return rc;
1122 *count |= rc;
1123
1124 dev_dbg(&state->i2c->dev,
1125 "%s: block count for layer %c: %d.\n",
1126 __func__, 'A' + layer, *count);
1127
1128 /*
1129 * As we get TMCC data from the frontend, we can better estimate the
1130 * BER bit counters, in order to do the BER measure during a longer
1131 * time. Use those data, if available, to update the bit count
1132 * measure.
1133 */
1134
1135 if (!state->estimated_rate[layer])
1136 goto reset_measurement;
1137
1138 collect_rate = state->estimated_rate[layer] / 204 / 8;
593ae89a
MCC
1139 if (collect_rate < 32)
1140 collect_rate = 32;
1141 if (collect_rate > 65535)
1142 collect_rate = 65535;
1143
1144 if (collect_rate != *count) {
1145 dev_dbg(&state->i2c->dev,
1146 "%s: updating PER counter on layer %c to %d.\n",
1147 __func__, 'A' + layer, collect_rate);
313cf4ef
MCC
1148
1149 /* Stop PER measurement */
1150 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1151 if (rc < 0)
1152 return rc;
1153 rc = mb86a20s_writereg(state, 0x51, 0x00);
1154 if (rc < 0)
1155 return rc;
1156
1157 /* Update this layer's counter */
593ae89a
MCC
1158 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1159 if (rc < 0)
1160 return rc;
1161 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1162 if (rc < 0)
1163 return rc;
1164 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1165 if (rc < 0)
1166 return rc;
1167 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1168 if (rc < 0)
1169 return rc;
313cf4ef
MCC
1170
1171 /* start PER measurement */
1172 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1173 if (rc < 0)
1174 return rc;
1175 rc = mb86a20s_writereg(state, 0x51, 0x07);
1176 if (rc < 0)
1177 return rc;
1178
1179 /* Reset all counters to collect new data */
1180 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1181 if (rc < 0)
1182 return rc;
1183 rc = mb86a20s_writereg(state, 0x51, 0x07);
1184 if (rc < 0)
1185 return rc;
1186 rc = mb86a20s_writereg(state, 0x51, 0x00);
1187
1188 return rc;
593ae89a
MCC
1189 }
1190
1191reset_measurement:
1192 /* Reset counter to collect new data */
1193 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1194 if (rc < 0)
1195 return rc;
313cf4ef 1196 rc = mb86a20s_readreg(state, 0x51);
593ae89a
MCC
1197 if (rc < 0)
1198 return rc;
313cf4ef
MCC
1199 val = rc;
1200 rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
593ae89a
MCC
1201 if (rc < 0)
1202 return rc;
313cf4ef 1203 rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
593ae89a 1204
313cf4ef 1205 return rc;
593ae89a
MCC
1206}
1207
25188bd0
MCC
1208struct linear_segments {
1209 unsigned x, y;
1210};
1211
1212/*
1213 * All tables below return a dB/1000 measurement
1214 */
1215
ce08131c 1216static const struct linear_segments cnr_to_db_table[] = {
25188bd0
MCC
1217 { 19648, 0},
1218 { 18187, 1000},
1219 { 16534, 2000},
1220 { 14823, 3000},
1221 { 13161, 4000},
1222 { 11622, 5000},
1223 { 10279, 6000},
1224 { 9089, 7000},
1225 { 8042, 8000},
1226 { 7137, 9000},
1227 { 6342, 10000},
1228 { 5641, 11000},
1229 { 5030, 12000},
1230 { 4474, 13000},
1231 { 3988, 14000},
1232 { 3556, 15000},
1233 { 3180, 16000},
1234 { 2841, 17000},
1235 { 2541, 18000},
1236 { 2276, 19000},
1237 { 2038, 20000},
1238 { 1800, 21000},
1239 { 1625, 22000},
1240 { 1462, 23000},
1241 { 1324, 24000},
1242 { 1175, 25000},
1243 { 1063, 26000},
1244 { 980, 27000},
1245 { 907, 28000},
1246 { 840, 29000},
1247 { 788, 30000},
1248};
1249
ce08131c 1250static const struct linear_segments cnr_64qam_table[] = {
25188bd0
MCC
1251 { 3922688, 0},
1252 { 3920384, 1000},
1253 { 3902720, 2000},
1254 { 3894784, 3000},
1255 { 3882496, 4000},
1256 { 3872768, 5000},
1257 { 3858944, 6000},
1258 { 3851520, 7000},
1259 { 3838976, 8000},
1260 { 3829248, 9000},
1261 { 3818240, 10000},
1262 { 3806976, 11000},
1263 { 3791872, 12000},
1264 { 3767040, 13000},
1265 { 3720960, 14000},
1266 { 3637504, 15000},
1267 { 3498496, 16000},
1268 { 3296000, 17000},
1269 { 3031040, 18000},
1270 { 2715392, 19000},
1271 { 2362624, 20000},
1272 { 1963264, 21000},
1273 { 1649664, 22000},
1274 { 1366784, 23000},
1275 { 1120768, 24000},
1276 { 890880, 25000},
1277 { 723456, 26000},
1278 { 612096, 27000},
1279 { 518912, 28000},
1280 { 448256, 29000},
1281 { 388864, 30000},
1282};
1283
ce08131c 1284static const struct linear_segments cnr_16qam_table[] = {
25188bd0
MCC
1285 { 5314816, 0},
1286 { 5219072, 1000},
1287 { 5118720, 2000},
1288 { 4998912, 3000},
1289 { 4875520, 4000},
1290 { 4736000, 5000},
1291 { 4604160, 6000},
1292 { 4458752, 7000},
1293 { 4300288, 8000},
1294 { 4092928, 9000},
1295 { 3836160, 10000},
1296 { 3521024, 11000},
1297 { 3155968, 12000},
1298 { 2756864, 13000},
1299 { 2347008, 14000},
1300 { 1955072, 15000},
1301 { 1593600, 16000},
1302 { 1297920, 17000},
1303 { 1043968, 18000},
1304 { 839680, 19000},
1305 { 672256, 20000},
1306 { 523008, 21000},
1307 { 424704, 22000},
1308 { 345088, 23000},
1309 { 280064, 24000},
1310 { 221440, 25000},
1311 { 179712, 26000},
1312 { 151040, 27000},
1313 { 128512, 28000},
1314 { 110080, 29000},
1315 { 95744, 30000},
1316};
1317
ce08131c 1318static const struct linear_segments cnr_qpsk_table[] = {
25188bd0
MCC
1319 { 2834176, 0},
1320 { 2683648, 1000},
1321 { 2536960, 2000},
1322 { 2391808, 3000},
1323 { 2133248, 4000},
1324 { 1906176, 5000},
1325 { 1666560, 6000},
1326 { 1422080, 7000},
1327 { 1189632, 8000},
1328 { 976384, 9000},
1329 { 790272, 10000},
1330 { 633344, 11000},
1331 { 505600, 12000},
1332 { 402944, 13000},
1333 { 320768, 14000},
1334 { 255488, 15000},
1335 { 204032, 16000},
1336 { 163072, 17000},
1337 { 130304, 18000},
1338 { 105216, 19000},
1339 { 83456, 20000},
1340 { 65024, 21000},
1341 { 52480, 22000},
1342 { 42752, 23000},
1343 { 34560, 24000},
1344 { 27136, 25000},
1345 { 22016, 26000},
1346 { 18432, 27000},
1347 { 15616, 28000},
1348 { 13312, 29000},
1349 { 11520, 30000},
1350};
1351
ce08131c 1352static u32 interpolate_value(u32 value, const struct linear_segments *segments,
25188bd0
MCC
1353 unsigned len)
1354{
1355 u64 tmp64;
1356 u32 dx, dy;
1357 int i, ret;
1358
1359 if (value >= segments[0].x)
1360 return segments[0].y;
1361 if (value < segments[len-1].x)
1362 return segments[len-1].y;
1363
1364 for (i = 1; i < len - 1; i++) {
1365 /* If value is identical, no need to interpolate */
1366 if (value == segments[i].x)
1367 return segments[i].y;
1368 if (value > segments[i].x)
1369 break;
1370 }
1371
1372 /* Linear interpolation between the two (x,y) points */
1373 dy = segments[i].y - segments[i - 1].y;
1374 dx = segments[i - 1].x - segments[i].x;
1375 tmp64 = value - segments[i].x;
1376 tmp64 *= dy;
1377 do_div(tmp64, dx);
1378 ret = segments[i].y - tmp64;
1379
1380 return ret;
1381}
1382
1383static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1384{
1385 struct mb86a20s_state *state = fe->demodulator_priv;
1386 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1387 u32 cnr_linear, cnr;
1388 int rc, val;
1389
1390 /* Check if CNR is available */
1391 rc = mb86a20s_readreg(state, 0x45);
1392 if (rc < 0)
1393 return rc;
1394
1395 if (!(rc & 0x40)) {
d56e326f 1396 dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
25188bd0
MCC
1397 __func__);
1398 return -EBUSY;
1399 }
1400 val = rc;
1401
1402 rc = mb86a20s_readreg(state, 0x46);
1403 if (rc < 0)
1404 return rc;
1405 cnr_linear = rc << 8;
1406
1407 rc = mb86a20s_readreg(state, 0x46);
1408 if (rc < 0)
1409 return rc;
1410 cnr_linear |= rc;
1411
1412 cnr = interpolate_value(cnr_linear,
1413 cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1414
1415 c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1416 c->cnr.stat[0].svalue = cnr;
1417
1418 dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1419 __func__, cnr / 1000, cnr % 1000, cnr_linear);
1420
1421 /* CNR counter reset */
1422 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1423 if (rc < 0)
1424 return rc;
1425 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1426
1427 return rc;
1428}
1429
593ae89a 1430static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
25188bd0
MCC
1431{
1432 struct mb86a20s_state *state = fe->demodulator_priv;
1433 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1434 u32 mer, cnr;
5cb88ca8 1435 int rc, val, layer;
ce08131c 1436 const struct linear_segments *segs;
25188bd0
MCC
1437 unsigned segs_len;
1438
1439 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1440
1441 /* Check if the measures are already available */
1442 rc = mb86a20s_writereg(state, 0x50, 0x5b);
1443 if (rc < 0)
1444 return rc;
1445 rc = mb86a20s_readreg(state, 0x51);
1446 if (rc < 0)
1447 return rc;
1448
1449 /* Check if data is available */
1450 if (!(rc & 0x01)) {
d56e326f 1451 dev_dbg(&state->i2c->dev,
25188bd0
MCC
1452 "%s: MER measures aren't available yet.\n", __func__);
1453 return -EBUSY;
1454 }
1455
1456 /* Read all layers */
5cb88ca8
MCC
1457 for (layer = 0; layer < NUM_LAYERS; layer++) {
1458 if (!(c->isdbt_layer_enabled & (1 << layer))) {
1459 c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
25188bd0
MCC
1460 continue;
1461 }
1462
5cb88ca8 1463 rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
25188bd0
MCC
1464 if (rc < 0)
1465 return rc;
1466 rc = mb86a20s_readreg(state, 0x51);
1467 if (rc < 0)
1468 return rc;
1469 mer = rc << 16;
5cb88ca8 1470 rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
25188bd0
MCC
1471 if (rc < 0)
1472 return rc;
1473 rc = mb86a20s_readreg(state, 0x51);
1474 if (rc < 0)
1475 return rc;
1476 mer |= rc << 8;
5cb88ca8 1477 rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
25188bd0
MCC
1478 if (rc < 0)
1479 return rc;
1480 rc = mb86a20s_readreg(state, 0x51);
1481 if (rc < 0)
1482 return rc;
1483 mer |= rc;
1484
5cb88ca8 1485 switch (c->layer[layer].modulation) {
25188bd0
MCC
1486 case DQPSK:
1487 case QPSK:
1488 segs = cnr_qpsk_table;
1489 segs_len = ARRAY_SIZE(cnr_qpsk_table);
1490 break;
1491 case QAM_16:
1492 segs = cnr_16qam_table;
1493 segs_len = ARRAY_SIZE(cnr_16qam_table);
1494 break;
1495 default:
1496 case QAM_64:
1497 segs = cnr_64qam_table;
1498 segs_len = ARRAY_SIZE(cnr_64qam_table);
1499 break;
1500 }
1501 cnr = interpolate_value(mer, segs, segs_len);
1502
5cb88ca8
MCC
1503 c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1504 c->cnr.stat[1 + layer].svalue = cnr;
25188bd0
MCC
1505
1506 dev_dbg(&state->i2c->dev,
1507 "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
5cb88ca8 1508 __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
25188bd0
MCC
1509
1510 }
1511
1512 /* Start a new MER measurement */
1513 /* MER counter reset */
1514 rc = mb86a20s_writereg(state, 0x50, 0x50);
1515 if (rc < 0)
1516 return rc;
1517 rc = mb86a20s_readreg(state, 0x51);
1518 if (rc < 0)
1519 return rc;
1520 val = rc;
1521
1522 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1523 if (rc < 0)
1524 return rc;
1525 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1526 if (rc < 0)
1527 return rc;
1528
1529 return 0;
1530}
1531
09b6d21e
MCC
1532static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1533{
1534 struct mb86a20s_state *state = fe->demodulator_priv;
1535 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
5cb88ca8 1536 int layer;
09b6d21e
MCC
1537
1538 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
a77cfcac 1539
09b6d21e
MCC
1540 /* Fill the length of each status counter */
1541
1542 /* Only global stats */
1543 c->strength.len = 1;
1544
1545 /* Per-layer stats - 3 layers + global */
4f62a20d
MCC
1546 c->cnr.len = NUM_LAYERS + 1;
1547 c->pre_bit_error.len = NUM_LAYERS + 1;
1548 c->pre_bit_count.len = NUM_LAYERS + 1;
1549 c->post_bit_error.len = NUM_LAYERS + 1;
1550 c->post_bit_count.len = NUM_LAYERS + 1;
1551 c->block_error.len = NUM_LAYERS + 1;
1552 c->block_count.len = NUM_LAYERS + 1;
09b6d21e
MCC
1553
1554 /* Signal is always available */
1555 c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1556 c->strength.stat[0].uvalue = 0;
1557
1558 /* Put all of them at FE_SCALE_NOT_AVAILABLE */
5cb88ca8
MCC
1559 for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1560 c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1561 c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1562 c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1563 c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1564 c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1565 c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1566 c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
09b6d21e 1567 }
b9ede79a
MCC
1568}
1569
15b1c5a0 1570static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
149d518a
MCC
1571{
1572 struct mb86a20s_state *state = fe->demodulator_priv;
1573 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
5cb88ca8 1574 int rc = 0, layer;
149d518a
MCC
1575 u32 bit_error = 0, bit_count = 0;
1576 u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
d9b6f08a 1577 u32 t_post_bit_error = 0, t_post_bit_count = 0;
593ae89a
MCC
1578 u32 block_error = 0, block_count = 0;
1579 u32 t_block_error = 0, t_block_count = 0;
d9b6f08a
MCC
1580 int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1581 int per_layers = 0;
149d518a 1582
25188bd0
MCC
1583 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1584
1585 mb86a20s_get_main_CNR(fe);
1586
149d518a 1587 /* Get per-layer stats */
593ae89a 1588 mb86a20s_get_blk_error_layer_CNR(fe);
25188bd0 1589
15b1c5a0
MCC
1590 /*
1591 * At state 7, only CNR is available
1592 * For BER measures, state=9 is required
1593 * FIXME: we may get MER measures with state=8
1594 */
1595 if (status_nr < 9)
1596 return 0;
1597
5cb88ca8
MCC
1598 for (layer = 0; layer < NUM_LAYERS; layer++) {
1599 if (c->isdbt_layer_enabled & (1 << layer)) {
149d518a
MCC
1600 /* Layer is active and has rc segments */
1601 active_layers++;
1602
149d518a 1603 /* Handle BER before vterbi */
5cb88ca8 1604 rc = mb86a20s_get_pre_ber(fe, layer,
ad0abbf1 1605 &bit_error, &bit_count);
149d518a 1606 if (rc >= 0) {
5cb88ca8
MCC
1607 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1608 c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1609 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1610 c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
149d518a
MCC
1611 } else if (rc != -EBUSY) {
1612 /*
1613 * If an I/O error happened,
1614 * measures are now unavailable
1615 */
5cb88ca8
MCC
1616 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1617 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
149d518a
MCC
1618 dev_err(&state->i2c->dev,
1619 "%s: Can't get BER for layer %c (error %d).\n",
5cb88ca8 1620 __func__, 'A' + layer, rc);
149d518a 1621 }
5cb88ca8 1622 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
d9b6f08a
MCC
1623 pre_ber_layers++;
1624
1625 /* Handle BER post vterbi */
5cb88ca8 1626 rc = mb86a20s_get_post_ber(fe, layer,
d9b6f08a
MCC
1627 &bit_error, &bit_count);
1628 if (rc >= 0) {
5cb88ca8
MCC
1629 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1630 c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1631 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1632 c->post_bit_count.stat[1 + layer].uvalue += bit_count;
d9b6f08a
MCC
1633 } else if (rc != -EBUSY) {
1634 /*
1635 * If an I/O error happened,
1636 * measures are now unavailable
1637 */
5cb88ca8
MCC
1638 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1639 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
d9b6f08a
MCC
1640 dev_err(&state->i2c->dev,
1641 "%s: Can't get BER for layer %c (error %d).\n",
5cb88ca8 1642 __func__, 'A' + layer, rc);
d9b6f08a 1643 }
5cb88ca8 1644 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
d9b6f08a 1645 post_ber_layers++;
149d518a 1646
593ae89a 1647 /* Handle Block errors for PER/UCB reports */
5cb88ca8 1648 rc = mb86a20s_get_blk_error(fe, layer,
593ae89a
MCC
1649 &block_error,
1650 &block_count);
1651 if (rc >= 0) {
5cb88ca8
MCC
1652 c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1653 c->block_error.stat[1 + layer].uvalue += block_error;
1654 c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1655 c->block_count.stat[1 + layer].uvalue += block_count;
593ae89a
MCC
1656 } else if (rc != -EBUSY) {
1657 /*
1658 * If an I/O error happened,
1659 * measures are now unavailable
1660 */
5cb88ca8
MCC
1661 c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1662 c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
593ae89a
MCC
1663 dev_err(&state->i2c->dev,
1664 "%s: Can't get PER for layer %c (error %d).\n",
5cb88ca8 1665 __func__, 'A' + layer, rc);
593ae89a
MCC
1666
1667 }
5cb88ca8 1668 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
593ae89a
MCC
1669 per_layers++;
1670
d9b6f08a 1671 /* Update total preBER */
5cb88ca8
MCC
1672 t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1673 t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
593ae89a 1674
d9b6f08a 1675 /* Update total postBER */
5cb88ca8
MCC
1676 t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1677 t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
d9b6f08a 1678
593ae89a 1679 /* Update total PER */
5cb88ca8
MCC
1680 t_block_error += c->block_error.stat[1 + layer].uvalue;
1681 t_block_count += c->block_count.stat[1 + layer].uvalue;
149d518a
MCC
1682 }
1683 }
1684
1685 /*
1686 * Start showing global count if at least one error count is
1687 * available.
1688 */
d9b6f08a 1689 if (pre_ber_layers) {
149d518a
MCC
1690 /*
1691 * At least one per-layer BER measure was read. We can now
1692 * calculate the total BER
1693 *
1694 * Total Bit Error/Count is calculated as the sum of the
1695 * bit errors on all active layers.
1696 */
1697 c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1698 c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1699 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1700 c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
f67102c4
MCC
1701 } else {
1702 c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1703 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
149d518a
MCC
1704 }
1705
d9b6f08a
MCC
1706 /*
1707 * Start showing global count if at least one error count is
1708 * available.
1709 */
1710 if (post_ber_layers) {
1711 /*
1712 * At least one per-layer BER measure was read. We can now
1713 * calculate the total BER
1714 *
1715 * Total Bit Error/Count is calculated as the sum of the
1716 * bit errors on all active layers.
1717 */
1718 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1719 c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1720 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1721 c->post_bit_count.stat[0].uvalue = t_post_bit_count;
f67102c4
MCC
1722 } else {
1723 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1724 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
d9b6f08a
MCC
1725 }
1726
593ae89a
MCC
1727 if (per_layers) {
1728 /*
1729 * At least one per-layer UCB measure was read. We can now
1730 * calculate the total UCB
1731 *
1732 * Total block Error/Count is calculated as the sum of the
1733 * block errors on all active layers.
1734 */
1735 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1736 c->block_error.stat[0].uvalue = t_block_error;
1737 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1738 c->block_count.stat[0].uvalue = t_block_count;
f67102c4
MCC
1739 } else {
1740 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1741 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
593ae89a
MCC
1742 }
1743
149d518a
MCC
1744 return rc;
1745}
09b6d21e
MCC
1746
1747/*
1748 * The functions below are called via DVB callbacks, so they need to
1749 * properly use the I2C gate control
1750 */
1751
dd4493ef
MCC
1752static int mb86a20s_initfe(struct dvb_frontend *fe)
1753{
1754 struct mb86a20s_state *state = fe->demodulator_priv;
768e6dad 1755 u64 pll;
0e4bbedd 1756 u32 fclk;
dd4493ef 1757 int rc;
04fa725e 1758 u8 regD5 = 1, reg71, reg09 = 0x3a;
dd4493ef 1759
f66d81b5 1760 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
dd4493ef
MCC
1761
1762 if (fe->ops.i2c_gate_ctrl)
1763 fe->ops.i2c_gate_ctrl(fe, 0);
1764
1765 /* Initialize the frontend */
768e6dad 1766 rc = mb86a20s_writeregdata(state, mb86a20s_init1);
dd4493ef
MCC
1767 if (rc < 0)
1768 goto err;
1769
04fa725e
MCC
1770 if (!state->inversion)
1771 reg09 |= 0x04;
1772 rc = mb86a20s_writereg(state, 0x09, reg09);
1773 if (rc < 0)
1774 goto err;
1775 if (!state->bw)
1776 reg71 = 1;
1777 else
1778 reg71 = 0;
1779 rc = mb86a20s_writereg(state, 0x39, reg71);
1780 if (rc < 0)
1781 goto err;
1782 rc = mb86a20s_writereg(state, 0x71, state->bw);
1783 if (rc < 0)
1784 goto err;
1785 if (state->subchannel) {
1786 rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1787 if (rc < 0)
1788 goto err;
1789 }
1790
0e4bbedd
MCC
1791 fclk = state->config->fclk;
1792 if (!fclk)
1793 fclk = 32571428;
1794
768e6dad
MCC
1795 /* Adjust IF frequency to match tuner */
1796 if (fe->ops.tuner_ops.get_if_frequency)
1797 fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1798
1799 if (!state->if_freq)
1800 state->if_freq = 3300000;
1801
0e4bbedd
MCC
1802 pll = (((u64)1) << 34) * state->if_freq;
1803 do_div(pll, 63 * fclk);
1804 pll = (1 << 25) - pll;
1805 rc = mb86a20s_writereg(state, 0x28, 0x2a);
1806 if (rc < 0)
1807 goto err;
1808 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1809 if (rc < 0)
1810 goto err;
1811 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1812 if (rc < 0)
1813 goto err;
1814 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1815 if (rc < 0)
1816 goto err;
1817 dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1818 __func__, fclk, state->if_freq, (long long)pll);
1819
768e6dad
MCC
1820 /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1821 pll = state->if_freq * 1677721600L;
1822 do_div(pll, 1628571429L);
1823 rc = mb86a20s_writereg(state, 0x28, 0x20);
1824 if (rc < 0)
1825 goto err;
1826 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1827 if (rc < 0)
1828 goto err;
1829 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1830 if (rc < 0)
1831 goto err;
1832 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1833 if (rc < 0)
1834 goto err;
0e4bbedd 1835 dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
768e6dad
MCC
1836 __func__, state->if_freq, (long long)pll);
1837
9d32069f 1838 if (!state->config->is_serial)
dd4493ef
MCC
1839 regD5 &= ~1;
1840
9d32069f
MCC
1841 rc = mb86a20s_writereg(state, 0x50, 0xd5);
1842 if (rc < 0)
1843 goto err;
1844 rc = mb86a20s_writereg(state, 0x51, regD5);
1845 if (rc < 0)
1846 goto err;
dd4493ef 1847
768e6dad
MCC
1848 rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1849 if (rc < 0)
1850 goto err;
1851
1852
dd4493ef
MCC
1853err:
1854 if (fe->ops.i2c_gate_ctrl)
1855 fe->ops.i2c_gate_ctrl(fe, 1);
1856
1857 if (rc < 0) {
1858 state->need_init = true;
f66d81b5
MCC
1859 dev_info(&state->i2c->dev,
1860 "mb86a20s: Init failed. Will try again later\n");
dd4493ef
MCC
1861 } else {
1862 state->need_init = false;
f66d81b5 1863 dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
dd4493ef
MCC
1864 }
1865 return rc;
1866}
1867
1868static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1869{
1870 struct mb86a20s_state *state = fe->demodulator_priv;
dd4493ef 1871 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
04fa725e 1872 int rc, if_freq;
f66d81b5 1873 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
dd4493ef 1874
04fa725e
MCC
1875 if (!c->isdbt_layer_enabled)
1876 c->isdbt_layer_enabled = 7;
1877
1878 if (c->isdbt_layer_enabled == 1)
1879 state->bw = MB86A20S_1SEG;
1880 else if (c->isdbt_partial_reception)
1881 state->bw = MB86A20S_13SEG_PARTIAL;
1882 else
1883 state->bw = MB86A20S_13SEG;
1884
1885 if (c->inversion == INVERSION_ON)
1886 state->inversion = true;
1887 else
1888 state->inversion = false;
1889
1890 if (!c->isdbt_sb_mode) {
1891 state->subchannel = 0;
1892 } else {
41c6e9dd 1893 if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
04fa725e
MCC
1894 c->isdbt_sb_subchannel = 0;
1895
1896 state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1897 }
1898
dd4493ef
MCC
1899 /*
1900 * Gate should already be opened, but it doesn't hurt to
1901 * double-check
1902 */
1903 if (fe->ops.i2c_gate_ctrl)
1904 fe->ops.i2c_gate_ctrl(fe, 1);
dd4493ef
MCC
1905 fe->ops.tuner_ops.set_params(fe);
1906
a78b41d5 1907 if (fe->ops.tuner_ops.get_if_frequency)
768e6dad
MCC
1908 fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1909
dd4493ef
MCC
1910 /*
1911 * Make it more reliable: if, for some reason, the initial
1912 * device initialization doesn't happen, initialize it when
1913 * a SBTVD parameters are adjusted.
1914 *
1915 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1916 * the agc callback logic is not called during DVB attach time,
1917 * causing mb86a20s to not be initialized with Kworld SBTVD.
1918 * So, this hack is needed, in order to make Kworld SBTVD to work.
768e6dad
MCC
1919 *
1920 * It is also needed to change the IF after the initial init.
a78b41d5
MCC
1921 *
1922 * HACK: Always init the frontend when set_frontend is called:
1923 * it was noticed that, on some devices, it fails to lock on a
1924 * different channel. So, it is better to reset everything, even
1925 * wasting some time, than to loose channel lock.
dd4493ef 1926 */
a78b41d5 1927 mb86a20s_initfe(fe);
dd4493ef
MCC
1928
1929 if (fe->ops.i2c_gate_ctrl)
1930 fe->ops.i2c_gate_ctrl(fe, 0);
d01a8ee3 1931
dd4493ef 1932 rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
09b6d21e 1933 mb86a20s_reset_counters(fe);
3a2e4751 1934 mb86a20s_stats_not_ready(fe);
d01a8ee3 1935
dd4493ef
MCC
1936 if (fe->ops.i2c_gate_ctrl)
1937 fe->ops.i2c_gate_ctrl(fe, 1);
1938
1939 return rc;
1940}
1941
09b6d21e 1942static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
0df289a2 1943 enum fe_status *status)
d36e418a 1944{
09b6d21e 1945 struct mb86a20s_state *state = fe->demodulator_priv;
15b1c5a0 1946 int rc, status_nr;
d36e418a 1947
09b6d21e 1948 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
d36e418a
MCC
1949
1950 if (fe->ops.i2c_gate_ctrl)
1951 fe->ops.i2c_gate_ctrl(fe, 0);
1952
09b6d21e 1953 /* Get lock */
15b1c5a0
MCC
1954 status_nr = mb86a20s_read_status(fe, status);
1955 if (status_nr < 7) {
09b6d21e
MCC
1956 mb86a20s_stats_not_ready(fe);
1957 mb86a20s_reset_frontend_cache(fe);
1958 }
15b1c5a0 1959 if (status_nr < 0) {
149d518a
MCC
1960 dev_err(&state->i2c->dev,
1961 "%s: Can't read frontend lock status\n", __func__);
19157003 1962 rc = status_nr;
09b6d21e 1963 goto error;
149d518a 1964 }
09b6d21e
MCC
1965
1966 /* Get signal strength */
1967 rc = mb86a20s_read_signal_strength(fe);
1968 if (rc < 0) {
149d518a
MCC
1969 dev_err(&state->i2c->dev,
1970 "%s: Can't reset VBER registers.\n", __func__);
09b6d21e
MCC
1971 mb86a20s_stats_not_ready(fe);
1972 mb86a20s_reset_frontend_cache(fe);
149d518a
MCC
1973
1974 rc = 0; /* Status is OK */
09b6d21e
MCC
1975 goto error;
1976 }
09b6d21e 1977
15b1c5a0 1978 if (status_nr >= 7) {
09b6d21e
MCC
1979 /* Get TMCC info*/
1980 rc = mb86a20s_get_frontend(fe);
149d518a
MCC
1981 if (rc < 0) {
1982 dev_err(&state->i2c->dev,
1983 "%s: Can't get FE TMCC data.\n", __func__);
1984 rc = 0; /* Status is OK */
1985 goto error;
1986 }
1987
1988 /* Get statistics */
15b1c5a0 1989 rc = mb86a20s_get_stats(fe, status_nr);
149d518a
MCC
1990 if (rc < 0 && rc != -EBUSY) {
1991 dev_err(&state->i2c->dev,
1992 "%s: Can't get FE statistics.\n", __func__);
1993 rc = 0;
09b6d21e 1994 goto error;
149d518a
MCC
1995 }
1996 rc = 0; /* Don't return EBUSY to userspace */
09b6d21e 1997 }
149d518a 1998 goto ok;
09b6d21e 1999
149d518a 2000error:
09b6d21e 2001 mb86a20s_stats_not_ready(fe);
d36e418a 2002
149d518a 2003ok:
d36e418a
MCC
2004 if (fe->ops.i2c_gate_ctrl)
2005 fe->ops.i2c_gate_ctrl(fe, 1);
149d518a 2006
09b6d21e
MCC
2007 return rc;
2008}
2009
2010static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2011 u16 *strength)
2012{
2013 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2014
2015
2016 *strength = c->strength.stat[0].uvalue;
d36e418a 2017
09b6d21e 2018 return 0;
d36e418a
MCC
2019}
2020
b9ede79a 2021static int mb86a20s_tune(struct dvb_frontend *fe,
7e072221 2022 bool re_tune,
b9ede79a
MCC
2023 unsigned int mode_flags,
2024 unsigned int *delay,
0df289a2 2025 enum fe_status *status)
b9ede79a 2026{
f66d81b5 2027 struct mb86a20s_state *state = fe->demodulator_priv;
b9ede79a
MCC
2028 int rc = 0;
2029
f66d81b5 2030 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
b9ede79a 2031
7e072221 2032 if (re_tune)
2d76e22b 2033 rc = mb86a20s_set_frontend(fe);
b9ede79a
MCC
2034
2035 if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
09b6d21e 2036 mb86a20s_read_status_and_stats(fe, status);
b9ede79a
MCC
2037
2038 return rc;
2039}
2040
2041static void mb86a20s_release(struct dvb_frontend *fe)
2042{
2043 struct mb86a20s_state *state = fe->demodulator_priv;
2044
f66d81b5 2045 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
b9ede79a
MCC
2046
2047 kfree(state);
2048}
2049
8d718e53 2050static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
dafb65fb 2051{
4a3fad70 2052 return DVBFE_ALGO_HW;
dafb65fb
MCC
2053}
2054
bd336e63 2055static const struct dvb_frontend_ops mb86a20s_ops;
b9ede79a
MCC
2056
2057struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2058 struct i2c_adapter *i2c)
2059{
f66d81b5 2060 struct mb86a20s_state *state;
b9ede79a
MCC
2061 u8 rev;
2062
f167e302
MCC
2063 dev_dbg(&i2c->dev, "%s called.\n", __func__);
2064
b9ede79a 2065 /* allocate memory for the internal state */
2d3da59f 2066 state = kzalloc(sizeof(*state), GFP_KERNEL);
c38e8657 2067 if (!state)
9722e569 2068 return NULL;
b9ede79a
MCC
2069
2070 /* setup the state */
2071 state->config = config;
2072 state->i2c = i2c;
2073
2074 /* create dvb_frontend */
2075 memcpy(&state->frontend.ops, &mb86a20s_ops,
2076 sizeof(struct dvb_frontend_ops));
2077 state->frontend.demodulator_priv = state;
2078
2079 /* Check if it is a mb86a20s frontend */
2080 rev = mb86a20s_readreg(state, 0);
9722e569
ME
2081 if (rev != 0x13) {
2082 kfree(state);
f167e302 2083 dev_dbg(&i2c->dev,
f66d81b5 2084 "Frontend revision %d is unknown - aborting.\n",
b9ede79a 2085 rev);
9722e569 2086 return NULL;
b9ede79a
MCC
2087 }
2088
9722e569 2089 dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
b9ede79a 2090 return &state->frontend;
b9ede79a
MCC
2091}
2092EXPORT_SYMBOL(mb86a20s_attach);
2093
bd336e63 2094static const struct dvb_frontend_ops mb86a20s_ops = {
2d76e22b 2095 .delsys = { SYS_ISDBT },
b9ede79a
MCC
2096 /* Use dib8000 values per default */
2097 .info = {
2098 .name = "Fujitsu mb86A20s",
04fa725e 2099 .caps = FE_CAN_RECOVER |
b9ede79a
MCC
2100 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2101 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2102 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2103 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2104 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
2105 /* Actually, those values depend on the used tuner */
f1b1eabf
MCC
2106 .frequency_min_hz = 45 * MHz,
2107 .frequency_max_hz = 864 * MHz,
2108 .frequency_stepsize_hz = 62500,
b9ede79a
MCC
2109 },
2110
2111 .release = mb86a20s_release,
2112
2113 .init = mb86a20s_initfe,
2d76e22b 2114 .set_frontend = mb86a20s_set_frontend,
09b6d21e
MCC
2115 .read_status = mb86a20s_read_status_and_stats,
2116 .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
b9ede79a 2117 .tune = mb86a20s_tune,
dafb65fb 2118 .get_frontend_algo = mb86a20s_get_frontend_algo,
b9ede79a
MCC
2119};
2120
2121MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
37e59f87 2122MODULE_AUTHOR("Mauro Carvalho Chehab");
b9ede79a 2123MODULE_LICENSE("GPL");