Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[linux-2.6-block.git] / drivers / media / dvb-frontends / dib0090.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
03245a5e
OG
2/*
3 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
4 *
5 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
6 *
03245a5e
OG
7 * This code is more or less generated from another driver, please
8 * excuse some codingstyle oddities.
03245a5e
OG
9 */
10
4bd1a8dd
MCC
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
03245a5e 13#include <linux/kernel.h>
5a0e3ad6 14#include <linux/slab.h>
03245a5e 15#include <linux/i2c.h>
79fcce32 16#include <linux/mutex.h>
03245a5e 17
fada1935 18#include <media/dvb_frontend.h>
03245a5e
OG
19
20#include "dib0090.h"
21#include "dibx000_common.h"
22
23static int debug;
24module_param(debug, int, 0644);
25MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
26
4bd1a8dd
MCC
27#define dprintk(fmt, arg...) do { \
28 if (debug) \
29 printk(KERN_DEBUG pr_fmt("%s: " fmt), \
30 __func__, ##arg); \
03245a5e
OG
31} while (0)
32
28fafca7 33#define CONFIG_SYS_DVBT
03245a5e
OG
34#define CONFIG_SYS_ISDBT
35#define CONFIG_BAND_CBAND
36#define CONFIG_BAND_VHF
37#define CONFIG_BAND_UHF
38#define CONFIG_DIB0090_USE_PWM_AGC
39
40#define EN_LNA0 0x8000
41#define EN_LNA1 0x4000
42#define EN_LNA2 0x2000
43#define EN_LNA3 0x1000
44#define EN_MIX0 0x0800
45#define EN_MIX1 0x0400
46#define EN_MIX2 0x0200
47#define EN_MIX3 0x0100
48#define EN_IQADC 0x0040
49#define EN_PLL 0x0020
50#define EN_TX 0x0010
51#define EN_BB 0x0008
52#define EN_LO 0x0004
53#define EN_BIAS 0x0001
54
55#define EN_IQANA 0x0002
56#define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
57#define EN_CRYSTAL 0x0002
58
59#define EN_UHF 0x22E9
60#define EN_VHF 0x44E9
61#define EN_LBD 0x11E9
62#define EN_SBD 0x44E9
63#define EN_CAB 0x88E9
64
28fafca7
OG
65/* Calibration defines */
66#define DC_CAL 0x1
67#define WBD_CAL 0x2
68#define TEMP_CAL 0x4
69#define CAPTRIM_CAL 0x8
70
71#define KROSUS_PLL_LOCKED 0x800
72#define KROSUS 0x2
73
74/* Use those defines to identify SOC version */
75#define SOC 0x02
76#define SOC_7090_P1G_11R1 0x82
77#define SOC_7090_P1G_21R1 0x8a
78#define SOC_8090_P1G_11R1 0x86
79#define SOC_8090_P1G_21R1 0x8e
80
81/* else use thos ones to check */
82#define P1A_B 0x0
83#define P1C 0x1
84#define P1D_E_F 0x3
85#define P1G 0x7
86#define P1G_21R2 0xf
87
88#define MP001 0x1 /* Single 9090/8096 */
89#define MP005 0x4 /* Single Sband */
90#define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */
91#define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
92
03245a5e
OG
93#define pgm_read_word(w) (*w)
94
95struct dc_calibration;
96
97struct dib0090_tuning {
98 u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
99 u8 switch_trim;
100 u8 lna_tune;
28fafca7 101 u16 lna_bias;
03245a5e
OG
102 u16 v2i;
103 u16 mix;
104 u16 load;
105 u16 tuner_enable;
106};
107
108struct dib0090_pll {
109 u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
110 u8 vco_band;
111 u8 hfdiv_code;
112 u8 hfdiv;
113 u8 topresc;
114};
115
28fafca7
OG
116struct dib0090_identity {
117 u8 version;
118 u8 product;
119 u8 p1g;
120 u8 in_soc;
121};
122
03245a5e
OG
123struct dib0090_state {
124 struct i2c_adapter *i2c;
125 struct dvb_frontend *fe;
126 const struct dib0090_config *config;
127
128 u8 current_band;
03245a5e
OG
129 enum frontend_tune_state tune_state;
130 u32 current_rf;
131
132 u16 wbd_offset;
133 s16 wbd_target; /* in dB */
134
135 s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */
136 s16 current_gain; /* keeps the currently programmed gain */
137 u8 agc_step; /* new binary search */
138
139 u16 gain[2]; /* for channel monitoring */
140
141 const u16 *rf_ramp;
142 const u16 *bb_ramp;
143
144 /* for the software AGC ramps */
145 u16 bb_1_def;
146 u16 rf_lt_def;
147 u16 gain_reg[4];
148
149 /* for the captrim/dc-offset search */
150 s8 step;
151 s16 adc_diff;
152 s16 min_adc_diff;
153
154 s8 captrim;
155 s8 fcaptrim;
156
157 const struct dc_calibration *dc;
158 u16 bb6, bb7;
159
160 const struct dib0090_tuning *current_tune_table_index;
161 const struct dib0090_pll *current_pll_table_index;
162
163 u8 tuner_is_tuned;
164 u8 agc_freeze;
165
28fafca7
OG
166 struct dib0090_identity identity;
167
168 u32 rf_request;
169 u8 current_standard;
170
171 u8 calibrate;
172 u32 rest;
173 u16 bias;
174 s16 temperature;
175
176 u8 wbd_calibration_gain;
177 const struct dib0090_wbd_slope *current_wbd_table;
178 u16 wbdmux;
5a0deeed
OG
179
180 /* for the I2C transfer */
181 struct i2c_msg msg[2];
182 u8 i2c_write_buffer[3];
183 u8 i2c_read_buffer[2];
79fcce32 184 struct mutex i2c_buffer_lock;
28fafca7
OG
185};
186
187struct dib0090_fw_state {
188 struct i2c_adapter *i2c;
189 struct dvb_frontend *fe;
190 struct dib0090_identity identity;
191 const struct dib0090_config *config;
5a0deeed
OG
192
193 /* for the I2C transfer */
194 struct i2c_msg msg;
195 u8 i2c_write_buffer[2];
196 u8 i2c_read_buffer[2];
79fcce32 197 struct mutex i2c_buffer_lock;
03245a5e
OG
198};
199
200static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
201{
79fcce32
PB
202 u16 ret;
203
204 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
4bd1a8dd 205 dprintk("could not acquire lock\n");
79fcce32
PB
206 return 0;
207 }
208
5a0deeed
OG
209 state->i2c_write_buffer[0] = reg;
210
211 memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
212 state->msg[0].addr = state->config->i2c_address;
213 state->msg[0].flags = 0;
214 state->msg[0].buf = state->i2c_write_buffer;
215 state->msg[0].len = 1;
216 state->msg[1].addr = state->config->i2c_address;
217 state->msg[1].flags = I2C_M_RD;
218 state->msg[1].buf = state->i2c_read_buffer;
219 state->msg[1].len = 2;
220
221 if (i2c_transfer(state->i2c, state->msg, 2) != 2) {
4bd1a8dd 222 pr_warn("DiB0090 I2C read failed\n");
79fcce32
PB
223 ret = 0;
224 } else
225 ret = (state->i2c_read_buffer[0] << 8)
226 | state->i2c_read_buffer[1];
5a0deeed 227
79fcce32
PB
228 mutex_unlock(&state->i2c_buffer_lock);
229 return ret;
03245a5e
OG
230}
231
232static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
233{
79fcce32
PB
234 int ret;
235
236 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
4bd1a8dd 237 dprintk("could not acquire lock\n");
79fcce32
PB
238 return -EINVAL;
239 }
240
5a0deeed
OG
241 state->i2c_write_buffer[0] = reg & 0xff;
242 state->i2c_write_buffer[1] = val >> 8;
243 state->i2c_write_buffer[2] = val & 0xff;
244
245 memset(state->msg, 0, sizeof(struct i2c_msg));
246 state->msg[0].addr = state->config->i2c_address;
247 state->msg[0].flags = 0;
248 state->msg[0].buf = state->i2c_write_buffer;
249 state->msg[0].len = 3;
250
251 if (i2c_transfer(state->i2c, state->msg, 1) != 1) {
4bd1a8dd 252 pr_warn("DiB0090 I2C write failed\n");
79fcce32
PB
253 ret = -EREMOTEIO;
254 } else
255 ret = 0;
256
257 mutex_unlock(&state->i2c_buffer_lock);
258 return ret;
28fafca7
OG
259}
260
261static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
262{
79fcce32
PB
263 u16 ret;
264
265 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
4bd1a8dd 266 dprintk("could not acquire lock\n");
79fcce32
PB
267 return 0;
268 }
269
5a0deeed
OG
270 state->i2c_write_buffer[0] = reg;
271
272 memset(&state->msg, 0, sizeof(struct i2c_msg));
273 state->msg.addr = reg;
274 state->msg.flags = I2C_M_RD;
275 state->msg.buf = state->i2c_read_buffer;
276 state->msg.len = 2;
277 if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
4bd1a8dd 278 pr_warn("DiB0090 I2C read failed\n");
79fcce32
PB
279 ret = 0;
280 } else
281 ret = (state->i2c_read_buffer[0] << 8)
282 | state->i2c_read_buffer[1];
283
284 mutex_unlock(&state->i2c_buffer_lock);
285 return ret;
28fafca7
OG
286}
287
288static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val)
289{
79fcce32
PB
290 int ret;
291
292 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
4bd1a8dd 293 dprintk("could not acquire lock\n");
79fcce32
PB
294 return -EINVAL;
295 }
296
5a0deeed
OG
297 state->i2c_write_buffer[0] = val >> 8;
298 state->i2c_write_buffer[1] = val & 0xff;
299
300 memset(&state->msg, 0, sizeof(struct i2c_msg));
301 state->msg.addr = reg;
302 state->msg.flags = 0;
303 state->msg.buf = state->i2c_write_buffer;
304 state->msg.len = 2;
305 if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
4bd1a8dd 306 pr_warn("DiB0090 I2C write failed\n");
79fcce32
PB
307 ret = -EREMOTEIO;
308 } else
309 ret = 0;
310
311 mutex_unlock(&state->i2c_buffer_lock);
312 return ret;
03245a5e
OG
313}
314
315#define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
316#define ADC_TARGET -220
317#define GAIN_ALPHA 5
318#define WBD_ALPHA 6
319#define LPF 100
320static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
321{
322 do {
323 dib0090_write_reg(state, r++, *b++);
324 } while (--c);
325}
326
28fafca7 327static int dib0090_identify(struct dvb_frontend *fe)
03245a5e
OG
328{
329 struct dib0090_state *state = fe->tuner_priv;
330 u16 v;
28fafca7 331 struct dib0090_identity *identity = &state->identity;
03245a5e
OG
332
333 v = dib0090_read_reg(state, 0x1a);
334
28fafca7
OG
335 identity->p1g = 0;
336 identity->in_soc = 0;
337
4bd1a8dd 338 dprintk("Tuner identification (Version = 0x%04x)\n", v);
03245a5e
OG
339
340 /* without PLL lock info */
28fafca7 341 v &= ~KROSUS_PLL_LOCKED;
03245a5e 342
28fafca7
OG
343 identity->version = v & 0xff;
344 identity->product = (v >> 8) & 0xf;
345
346 if (identity->product != KROSUS)
347 goto identification_error;
348
349 if ((identity->version & 0x3) == SOC) {
350 identity->in_soc = 1;
351 switch (identity->version) {
352 case SOC_8090_P1G_11R1:
4bd1a8dd 353 dprintk("SOC 8090 P1-G11R1 Has been detected\n");
28fafca7
OG
354 identity->p1g = 1;
355 break;
356 case SOC_8090_P1G_21R1:
4bd1a8dd 357 dprintk("SOC 8090 P1-G21R1 Has been detected\n");
28fafca7
OG
358 identity->p1g = 1;
359 break;
360 case SOC_7090_P1G_11R1:
4bd1a8dd 361 dprintk("SOC 7090 P1-G11R1 Has been detected\n");
28fafca7
OG
362 identity->p1g = 1;
363 break;
364 case SOC_7090_P1G_21R1:
4bd1a8dd 365 dprintk("SOC 7090 P1-G21R1 Has been detected\n");
28fafca7
OG
366 identity->p1g = 1;
367 break;
368 default:
369 goto identification_error;
370 }
371 } else {
372 switch ((identity->version >> 5) & 0x7) {
373 case MP001:
4bd1a8dd 374 dprintk("MP001 : 9090/8096\n");
28fafca7
OG
375 break;
376 case MP005:
4bd1a8dd 377 dprintk("MP005 : Single Sband\n");
28fafca7
OG
378 break;
379 case MP008:
4bd1a8dd 380 dprintk("MP008 : diversity VHF-UHF-LBAND\n");
28fafca7
OG
381 break;
382 case MP009:
4bd1a8dd 383 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n");
28fafca7
OG
384 break;
385 default:
386 goto identification_error;
387 }
388
389 switch (identity->version & 0x1f) {
390 case P1G_21R2:
4bd1a8dd 391 dprintk("P1G_21R2 detected\n");
28fafca7
OG
392 identity->p1g = 1;
393 break;
394 case P1G:
4bd1a8dd 395 dprintk("P1G detected\n");
28fafca7
OG
396 identity->p1g = 1;
397 break;
398 case P1D_E_F:
4bd1a8dd 399 dprintk("P1D/E/F detected\n");
28fafca7
OG
400 break;
401 case P1C:
4bd1a8dd 402 dprintk("P1C detected\n");
28fafca7
OG
403 break;
404 case P1A_B:
4bd1a8dd 405 dprintk("P1-A/B detected: driver is deactivated - not available\n");
28fafca7
OG
406 goto identification_error;
407 break;
408 default:
409 goto identification_error;
410 }
03245a5e
OG
411 }
412
28fafca7
OG
413 return 0;
414
b4d6046e 415identification_error:
28fafca7
OG
416 return -EIO;
417}
418
419static int dib0090_fw_identify(struct dvb_frontend *fe)
420{
421 struct dib0090_fw_state *state = fe->tuner_priv;
422 struct dib0090_identity *identity = &state->identity;
423
424 u16 v = dib0090_fw_read_reg(state, 0x1a);
425 identity->p1g = 0;
426 identity->in_soc = 0;
427
4bd1a8dd 428 dprintk("FE: Tuner identification (Version = 0x%04x)\n", v);
28fafca7
OG
429
430 /* without PLL lock info */
431 v &= ~KROSUS_PLL_LOCKED;
432
433 identity->version = v & 0xff;
434 identity->product = (v >> 8) & 0xf;
435
436 if (identity->product != KROSUS)
437 goto identification_error;
438
28fafca7
OG
439 if ((identity->version & 0x3) == SOC) {
440 identity->in_soc = 1;
441 switch (identity->version) {
442 case SOC_8090_P1G_11R1:
4bd1a8dd 443 dprintk("SOC 8090 P1-G11R1 Has been detected\n");
28fafca7
OG
444 identity->p1g = 1;
445 break;
446 case SOC_8090_P1G_21R1:
4bd1a8dd 447 dprintk("SOC 8090 P1-G21R1 Has been detected\n");
28fafca7
OG
448 identity->p1g = 1;
449 break;
450 case SOC_7090_P1G_11R1:
4bd1a8dd 451 dprintk("SOC 7090 P1-G11R1 Has been detected\n");
28fafca7
OG
452 identity->p1g = 1;
453 break;
454 case SOC_7090_P1G_21R1:
4bd1a8dd 455 dprintk("SOC 7090 P1-G21R1 Has been detected\n");
28fafca7
OG
456 identity->p1g = 1;
457 break;
458 default:
459 goto identification_error;
460 }
461 } else {
462 switch ((identity->version >> 5) & 0x7) {
463 case MP001:
4bd1a8dd 464 dprintk("MP001 : 9090/8096\n");
28fafca7
OG
465 break;
466 case MP005:
4bd1a8dd 467 dprintk("MP005 : Single Sband\n");
28fafca7
OG
468 break;
469 case MP008:
4bd1a8dd 470 dprintk("MP008 : diversity VHF-UHF-LBAND\n");
28fafca7
OG
471 break;
472 case MP009:
4bd1a8dd 473 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n");
28fafca7
OG
474 break;
475 default:
476 goto identification_error;
477 }
478
479 switch (identity->version & 0x1f) {
480 case P1G_21R2:
4bd1a8dd 481 dprintk("P1G_21R2 detected\n");
28fafca7
OG
482 identity->p1g = 1;
483 break;
484 case P1G:
4bd1a8dd 485 dprintk("P1G detected\n");
28fafca7
OG
486 identity->p1g = 1;
487 break;
488 case P1D_E_F:
4bd1a8dd 489 dprintk("P1D/E/F detected\n");
28fafca7
OG
490 break;
491 case P1C:
4bd1a8dd 492 dprintk("P1C detected\n");
28fafca7
OG
493 break;
494 case P1A_B:
4bd1a8dd 495 dprintk("P1-A/B detected: driver is deactivated - not available\n");
28fafca7
OG
496 goto identification_error;
497 break;
498 default:
499 goto identification_error;
500 }
501 }
502
503 return 0;
504
b4d6046e 505identification_error:
f1ed3219 506 return -EIO;
03245a5e
OG
507}
508
509static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
510{
511 struct dib0090_state *state = fe->tuner_priv;
28fafca7 512 u16 PllCfg, i, v;
03245a5e
OG
513
514 HARD_RESET(state);
28fafca7 515 dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
aedabf7a
OG
516 if (cfg->in_soc)
517 return;
03245a5e 518
aedabf7a
OG
519 dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */
520 /* adcClkOutRatio=8->7, release reset */
521 dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
522 if (cfg->clkoutdrive != 0)
523 dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
524 | (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
525 else
526 dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
527 | (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
28fafca7
OG
528
529 /* Read Pll current config * */
530 PllCfg = dib0090_read_reg(state, 0x21);
531
532 /** Reconfigure PLL if current setting is different from default setting **/
533 if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc)
534 && !cfg->io.pll_bypass) {
535
536 /* Set Bypass mode */
537 PllCfg |= (1 << 15);
538 dib0090_write_reg(state, 0x21, PllCfg);
539
540 /* Set Reset Pll */
541 PllCfg &= ~(1 << 13);
542 dib0090_write_reg(state, 0x21, PllCfg);
543
544 /*** Set new Pll configuration in bypass and reset state ***/
545 PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
546 dib0090_write_reg(state, 0x21, PllCfg);
547
548 /* Remove Reset Pll */
549 PllCfg |= (1 << 13);
550 dib0090_write_reg(state, 0x21, PllCfg);
551
552 /*** Wait for PLL lock ***/
553 i = 100;
554 do {
555 v = !!(dib0090_read_reg(state, 0x1a) & 0x800);
556 if (v)
557 break;
558 } while (--i);
559
560 if (i == 0) {
4bd1a8dd 561 dprintk("Pll: Unable to lock Pll\n");
28fafca7
OG
562 return;
563 }
564
565 /* Finally Remove Bypass mode */
566 PllCfg &= ~(1 << 15);
567 dib0090_write_reg(state, 0x21, PllCfg);
568 }
569
570 if (cfg->io.pll_bypass) {
571 PllCfg |= (cfg->io.pll_bypass << 15);
572 dib0090_write_reg(state, 0x21, PllCfg);
573 }
574}
575
576static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
577{
578 struct dib0090_fw_state *state = fe->tuner_priv;
579 u16 PllCfg;
580 u16 v;
581 int i;
582
4bd1a8dd 583 dprintk("fw reset digital\n");
28fafca7
OG
584 HARD_RESET(state);
585
586 dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
587 dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */
588
589 dib0090_fw_write_reg(state, 0x20,
590 ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv);
591
592 v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0);
03245a5e 593 if (cfg->clkoutdrive != 0)
28fafca7 594 v |= cfg->clkoutdrive << 5;
03245a5e 595 else
28fafca7
OG
596 v |= 7 << 5;
597
598 v |= 2 << 10;
599 dib0090_fw_write_reg(state, 0x23, v);
600
601 /* Read Pll current config * */
602 PllCfg = dib0090_fw_read_reg(state, 0x21);
603
604 /** Reconfigure PLL if current setting is different from default setting **/
605 if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) {
03245a5e 606
28fafca7
OG
607 /* Set Bypass mode */
608 PllCfg |= (1 << 15);
609 dib0090_fw_write_reg(state, 0x21, PllCfg);
03245a5e 610
28fafca7
OG
611 /* Set Reset Pll */
612 PllCfg &= ~(1 << 13);
613 dib0090_fw_write_reg(state, 0x21, PllCfg);
614
615 /*** Set new Pll configuration in bypass and reset state ***/
616 PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
617 dib0090_fw_write_reg(state, 0x21, PllCfg);
618
619 /* Remove Reset Pll */
620 PllCfg |= (1 << 13);
621 dib0090_fw_write_reg(state, 0x21, PllCfg);
622
623 /*** Wait for PLL lock ***/
624 i = 100;
625 do {
626 v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800);
627 if (v)
628 break;
629 } while (--i);
630
631 if (i == 0) {
4bd1a8dd 632 dprintk("Pll: Unable to lock Pll\n");
28fafca7
OG
633 return -EIO;
634 }
635
636 /* Finally Remove Bypass mode */
637 PllCfg &= ~(1 << 15);
638 dib0090_fw_write_reg(state, 0x21, PllCfg);
639 }
640
641 if (cfg->io.pll_bypass) {
642 PllCfg |= (cfg->io.pll_bypass << 15);
643 dib0090_fw_write_reg(state, 0x21, PllCfg);
644 }
645
646 return dib0090_fw_identify(fe);
03245a5e
OG
647}
648
649static int dib0090_wakeup(struct dvb_frontend *fe)
650{
651 struct dib0090_state *state = fe->tuner_priv;
652 if (state->config->sleep)
653 state->config->sleep(fe, 0);
28fafca7
OG
654
655 /* enable dataTX in case we have been restarted in the wrong moment */
656 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
03245a5e
OG
657 return 0;
658}
659
660static int dib0090_sleep(struct dvb_frontend *fe)
661{
662 struct dib0090_state *state = fe->tuner_priv;
663 if (state->config->sleep)
664 state->config->sleep(fe, 1);
665 return 0;
666}
667
43e3e6d9 668void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
03245a5e
OG
669{
670 struct dib0090_state *state = fe->tuner_priv;
671 if (fast)
9c783036 672 dib0090_write_reg(state, 0x04, 0);
03245a5e 673 else
9c783036 674 dib0090_write_reg(state, 0x04, 1);
03245a5e 675}
28fafca7 676
03245a5e 677EXPORT_SYMBOL(dib0090_dcc_freq);
9c783036 678
28fafca7 679static const u16 bb_ramp_pwm_normal_socs[] = {
aedabf7a
OG
680 550, /* max BB gain in 10th of dB */
681 (1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
28fafca7 682 440,
aedabf7a
OG
683 (4 << 9) | 0, /* BB_RAMP3 = 26dB */
684 (0 << 9) | 208, /* BB_RAMP4 */
685 (4 << 9) | 208, /* BB_RAMP5 = 29dB */
686 (0 << 9) | 440, /* BB_RAMP6 */
28fafca7
OG
687};
688
aedabf7a
OG
689static const u16 rf_ramp_pwm_cband_7090p[] = {
690 280, /* max RF gain in 10th of dB */
691 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
692 504, /* ramp_max = maximum X used on the ramp */
693 (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
694 (0 << 10) | 504, /* RF_RAMP6, LNA 1 */
695 (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
696 (0 << 10) | 364, /* RF_RAMP8, LNA 2 */
697 (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
698 (0 << 10) | 228, /* GAIN_4_2, LNA 3 */
699 (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
700 (0 << 10) | 109, /* RF_RAMP4, LNA 4 */
28fafca7
OG
701};
702
aedabf7a
OG
703static const u16 rf_ramp_pwm_cband_7090e_sensitivity[] = {
704 186, /* max RF gain in 10th of dB */
705 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
706 746, /* ramp_max = maximum X used on the ramp */
707 (10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */
708 (0 << 10) | 746, /* RF_RAMP6, LNA 1 */
709 (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
710 (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
711 (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
712 (0 << 10) | 345, /* GAIN_4_2, LNA 3 */
713 (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
714 (0 << 10) | 200, /* RF_RAMP4, LNA 4 */
6724a2f4
OG
715};
716
aedabf7a
OG
717static const u16 rf_ramp_pwm_cband_7090e_aci[] = {
718 86, /* max RF gain in 10th of dB */
719 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
720 345, /* ramp_max = maximum X used on the ramp */
721 (0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */
722 (0 << 10) | 0, /* RF_RAMP6, LNA 1 */
723 (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
724 (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
725 (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
726 (0 << 10) | 345, /* GAIN_4_2, LNA 3 */
727 (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
728 (0 << 10) | 200, /* RF_RAMP4, LNA 4 */
6724a2f4
OG
729};
730
28fafca7 731static const u16 rf_ramp_pwm_cband_8090[] = {
aedabf7a
OG
732 345, /* max RF gain in 10th of dB */
733 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
734 1000, /* ramp_max = maximum X used on the ramp */
735 (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
736 (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */
737 (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
738 (0 << 10) | 772, /* RF_RAMP6, LNA 2 */
739 (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
740 (0 << 10) | 496, /* RF_RAMP8, LNA 3 */
741 (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
742 (0 << 10) | 200, /* GAIN_4_2, LNA 4 */
28fafca7
OG
743};
744
745static const u16 rf_ramp_pwm_uhf_7090[] = {
aedabf7a
OG
746 407, /* max RF gain in 10th of dB */
747 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
748 529, /* ramp_max = maximum X used on the ramp */
749 (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
750 (0 << 10) | 176, /* RF_RAMP4, LNA 1 */
751 (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
752 (0 << 10) | 529, /* RF_RAMP6, LNA 2 */
753 (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
754 (0 << 10) | 400, /* RF_RAMP8, LNA 3 */
755 (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
756 (0 << 10) | 316, /* GAIN_4_2, LNA 4 */
28fafca7
OG
757};
758
759static const u16 rf_ramp_pwm_uhf_8090[] = {
aedabf7a
OG
760 388, /* max RF gain in 10th of dB */
761 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
762 1008, /* ramp_max = maximum X used on the ramp */
763 (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
764 (0 << 10) | 369, /* RF_RAMP4, LNA 1 */
765 (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
766 (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */
767 (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
768 (0 << 10) | 809, /* RF_RAMP8, LNA 3 */
769 (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
770 (0 << 10) | 659, /* GAIN_4_2, LNA 4 */
28fafca7
OG
771};
772
aedabf7a
OG
773/* GENERAL PWM ramp definition for all other Krosus */
774static const u16 bb_ramp_pwm_normal[] = {
775 500, /* max BB gain in 10th of dB */
776 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
777 400,
778 (2 << 9) | 0, /* BB_RAMP3 = 21dB */
779 (0 << 9) | 168, /* BB_RAMP4 */
780 (2 << 9) | 168, /* BB_RAMP5 = 29dB */
781 (0 << 9) | 400, /* BB_RAMP6 */
03245a5e
OG
782};
783
cf47faca
MCC
784#if 0
785/* Currently unused */
aedabf7a
OG
786static const u16 bb_ramp_pwm_boost[] = {
787 550, /* max BB gain in 10th of dB */
788 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
789 440,
790 (2 << 9) | 0, /* BB_RAMP3 = 26dB */
791 (0 << 9) | 208, /* BB_RAMP4 */
792 (2 << 9) | 208, /* BB_RAMP5 = 29dB */
793 (0 << 9) | 440, /* BB_RAMP6 */
28fafca7 794};
cf47faca 795#endif
28fafca7 796
aedabf7a
OG
797static const u16 rf_ramp_pwm_cband[] = {
798 314, /* max RF gain in 10th of dB */
799 33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
800 1023, /* ramp_max = maximum X used on the ramp */
801 (8 << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */
802 (0 << 10) | 1023, /* RF_RAMP4, LNA 1 */
803 (15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */
804 (0 << 10) | 742, /* RF_RAMP6, LNA 2 */
805 (9 << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */
806 (0 << 10) | 468, /* RF_RAMP8, LNA 3 */
807 (9 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
808 (0 << 10) | 233, /* GAIN_4_2, LNA 4 */
03245a5e
OG
809};
810
811static const u16 rf_ramp_pwm_vhf[] = {
aedabf7a
OG
812 398, /* max RF gain in 10th of dB */
813 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
814 954, /* ramp_max = maximum X used on the ramp */
815 (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
816 (0 << 10) | 290, /* RF_RAMP4, LNA 1 */
817 (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
818 (0 << 10) | 954, /* RF_RAMP6, LNA 2 */
819 (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
820 (0 << 10) | 699, /* RF_RAMP8, LNA 3 */
821 (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
822 (0 << 10) | 580, /* GAIN_4_2, LNA 4 */
03245a5e
OG
823};
824
825static const u16 rf_ramp_pwm_uhf[] = {
aedabf7a
OG
826 398, /* max RF gain in 10th of dB */
827 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
828 954, /* ramp_max = maximum X used on the ramp */
829 (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
830 (0 << 10) | 290, /* RF_RAMP4, LNA 1 */
831 (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
832 (0 << 10) | 954, /* RF_RAMP6, LNA 2 */
833 (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
834 (0 << 10) | 699, /* RF_RAMP8, LNA 3 */
835 (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
836 (0 << 10) | 580, /* GAIN_4_2, LNA 4 */
03245a5e
OG
837};
838
cf47faca
MCC
839#if 0
840/* Currently unused */
aedabf7a
OG
841static const u16 rf_ramp_pwm_sband[] = {
842 253, /* max RF gain in 10th of dB */
843 38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
844 961,
845 (4 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */
846 (0 << 10) | 508, /* RF_RAMP4, LNA 1 */
847 (9 << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */
848 (0 << 10) | 961, /* RF_RAMP6, LNA 2 */
849 (0 << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */
850 (0 << 10) | 0, /* RF_RAMP8, LNA 3 */
851 (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
852 (0 << 10) | 0, /* GAIN_4_2, LNA 4 */
03245a5e 853};
cf47faca 854#endif
03245a5e
OG
855
856struct slope {
28fafca7
OG
857 s16 range;
858 s16 slope;
03245a5e
OG
859};
860static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
861{
862 u8 i;
863 u16 rest;
864 u16 ret = 0;
865 for (i = 0; i < num; i++) {
866 if (val > slopes[i].range)
867 rest = slopes[i].range;
868 else
869 rest = val;
870 ret += (rest * slopes[i].slope) / slopes[i].range;
871 val -= rest;
872 }
873 return ret;
874}
875
876static const struct slope dib0090_wbd_slopes[3] = {
877 {66, 120}, /* -64,-52: offset - 65 */
878 {600, 170}, /* -52,-35: 65 - 665 */
879 {170, 250}, /* -45,-10: 665 - 835 */
880};
881
882static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
883{
884 wbd &= 0x3ff;
885 if (wbd < state->wbd_offset)
886 wbd = 0;
887 else
888 wbd -= state->wbd_offset;
889 /* -64dB is the floor */
890 return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
891}
892
893static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
894{
895 u16 offset = 250;
896
897 /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
898
899 if (state->current_band == BAND_VHF)
900 offset = 650;
901#ifndef FIRMWARE_FIREFLY
902 if (state->current_band == BAND_VHF)
903 offset = state->config->wbd_vhf_offset;
904 if (state->current_band == BAND_CBAND)
905 offset = state->config->wbd_cband_offset;
906#endif
907
908 state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
4bd1a8dd 909 dprintk("wbd-target: %d dB\n", (u32) state->wbd_target);
03245a5e
OG
910}
911
912static const int gain_reg_addr[4] = {
913 0x08, 0x0a, 0x0f, 0x01
914};
915
916static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
917{
918 u16 rf, bb, ref;
919 u16 i, v, gain_reg[4] = { 0 }, gain;
920 const u16 *g;
921
922 if (top_delta < -511)
923 top_delta = -511;
924 if (top_delta > 511)
925 top_delta = 511;
926
927 if (force) {
928 top_delta *= (1 << WBD_ALPHA);
929 gain_delta *= (1 << GAIN_ALPHA);
930 }
931
932 if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */
933 state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
934 else
935 state->rf_gain_limit += top_delta;
936
937 if (state->rf_gain_limit < 0) /*underflow */
938 state->rf_gain_limit = 0;
939
940 /* use gain as a temporary variable and correct current_gain */
941 gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
942 if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */
943 state->current_gain = gain;
944 else
945 state->current_gain += gain_delta;
946 /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
947 if (state->current_gain < 0)
948 state->current_gain = 0;
949
950 /* now split total gain to rf and bb gain */
951 gain = state->current_gain >> GAIN_ALPHA;
952
953 /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
954 if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
955 rf = state->rf_gain_limit >> WBD_ALPHA;
956 bb = gain - rf;
957 if (bb > state->bb_ramp[0])
958 bb = state->bb_ramp[0];
959 } else { /* high signal level -> all gains put on RF */
960 rf = gain;
961 bb = 0;
962 }
963
964 state->gain[0] = rf;
965 state->gain[1] = bb;
966
967 /* software ramp */
968 /* Start with RF gains */
969 g = state->rf_ramp + 1; /* point on RF LNA1 max gain */
970 ref = rf;
971 for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
972 if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
973 v = 0; /* force the gain to write for the current amp to be null */
974 else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */
975 v = g[2]; /* force this amp to be full gain */
976 else /* compute the value to set to this amp because we are somewhere in his range */
977 v = ((ref - (g[1] - g[0])) * g[2]) / g[0];
978
979 if (i == 0) /* LNA 1 reg mapping */
980 gain_reg[0] = v;
981 else if (i == 1) /* LNA 2 reg mapping */
982 gain_reg[0] |= v << 7;
983 else if (i == 2) /* LNA 3 reg mapping */
984 gain_reg[1] = v;
985 else if (i == 3) /* LNA 4 reg mapping */
986 gain_reg[1] |= v << 7;
987 else if (i == 4) /* CBAND LNA reg mapping */
988 gain_reg[2] = v | state->rf_lt_def;
989 else if (i == 5) /* BB gain 1 reg mapping */
990 gain_reg[3] = v << 3;
991 else if (i == 6) /* BB gain 2 reg mapping */
992 gain_reg[3] |= v << 8;
993
994 g += 3; /* go to next gain bloc */
995
996 /* When RF is finished, start with BB */
997 if (i == 4) {
998 g = state->bb_ramp + 1; /* point on BB gain 1 max gain */
999 ref = bb;
1000 }
1001 }
1002 gain_reg[3] |= state->bb_1_def;
1003 gain_reg[3] |= ((bb % 10) * 100) / 125;
1004
1005#ifdef DEBUG_AGC
4bd1a8dd 1006 dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x\n", rf, bb, rf + bb,
03245a5e
OG
1007 gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
1008#endif
1009
1010 /* Write the amplifier regs */
1011 for (i = 0; i < 4; i++) {
1012 v = gain_reg[i];
1013 if (force || state->gain_reg[i] != v) {
1014 state->gain_reg[i] = v;
1015 dib0090_write_reg(state, gain_reg_addr[i], v);
1016 }
1017 }
1018}
1019
1020static void dib0090_set_boost(struct dib0090_state *state, int onoff)
1021{
1022 state->bb_1_def &= 0xdfff;
1023 state->bb_1_def |= onoff << 13;
1024}
1025
1026static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
1027{
1028 state->rf_ramp = cfg;
1029}
1030
1031static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
1032{
1033 state->rf_ramp = cfg;
1034
1035 dib0090_write_reg(state, 0x2a, 0xffff);
1036
4bd1a8dd 1037 dprintk("total RF gain: %ddB, step: %d\n", (u32) cfg[0], dib0090_read_reg(state, 0x2a));
03245a5e
OG
1038
1039 dib0090_write_regs(state, 0x2c, cfg + 3, 6);
1040 dib0090_write_regs(state, 0x3e, cfg + 9, 2);
1041}
1042
1043static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
1044{
1045 state->bb_ramp = cfg;
1046 dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
1047}
1048
1049static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
1050{
1051 state->bb_ramp = cfg;
1052
1053 dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
1054
1055 dib0090_write_reg(state, 0x33, 0xffff);
4bd1a8dd 1056 dprintk("total BB gain: %ddB, step: %d\n", (u32) cfg[0], dib0090_read_reg(state, 0x33));
03245a5e
OG
1057 dib0090_write_regs(state, 0x35, cfg + 3, 4);
1058}
1059
1060void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
1061{
1062 struct dib0090_state *state = fe->tuner_priv;
6c0943cd
HV
1063 const u16 *bb_ramp = bb_ramp_pwm_normal; /* default baseband config */
1064 const u16 *rf_ramp = NULL;
aedabf7a 1065 u8 en_pwm_rf_mux = 1;
03245a5e 1066
aedabf7a 1067 /* reset the AGC */
03245a5e 1068 if (state->config->use_pwm_agc) {
03245a5e 1069 if (state->current_band == BAND_CBAND) {
28fafca7 1070 if (state->identity.in_soc) {
6c0943cd 1071 bb_ramp = bb_ramp_pwm_normal_socs;
28fafca7 1072 if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
6c0943cd 1073 rf_ramp = rf_ramp_pwm_cband_8090;
aedabf7a 1074 else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) {
6724a2f4
OG
1075 if (state->config->is_dib7090e) {
1076 if (state->rf_ramp == NULL)
6c0943cd 1077 rf_ramp = rf_ramp_pwm_cband_7090e_sensitivity;
6724a2f4 1078 else
6c0943cd 1079 rf_ramp = state->rf_ramp;
6724a2f4 1080 } else
6c0943cd 1081 rf_ramp = rf_ramp_pwm_cband_7090p;
6724a2f4 1082 }
aedabf7a 1083 } else
6c0943cd 1084 rf_ramp = rf_ramp_pwm_cband;
03245a5e 1085 } else
aedabf7a
OG
1086
1087 if (state->current_band == BAND_VHF) {
1088 if (state->identity.in_soc) {
6c0943cd 1089 bb_ramp = bb_ramp_pwm_normal_socs;
aedabf7a
OG
1090 /* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */
1091 } else
6c0943cd 1092 rf_ramp = rf_ramp_pwm_vhf;
aedabf7a
OG
1093 } else if (state->current_band == BAND_UHF) {
1094 if (state->identity.in_soc) {
6c0943cd 1095 bb_ramp = bb_ramp_pwm_normal_socs;
aedabf7a 1096 if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
6c0943cd 1097 rf_ramp = rf_ramp_pwm_uhf_8090;
aedabf7a 1098 else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
6c0943cd 1099 rf_ramp = rf_ramp_pwm_uhf_7090;
aedabf7a 1100 } else
6c0943cd 1101 rf_ramp = rf_ramp_pwm_uhf;
28fafca7 1102 }
aedabf7a
OG
1103 if (rf_ramp)
1104 dib0090_set_rframp_pwm(state, rf_ramp);
1105 dib0090_set_bbramp_pwm(state, bb_ramp);
1106
1107 /* activate the ramp generator using PWM control */
57bcbde9 1108 if (state->rf_ramp)
4bd1a8dd 1109 dprintk("ramp RF gain = %d BAND = %s version = %d\n",
e76bea9a
MCC
1110 state->rf_ramp[0],
1111 (state->current_band == BAND_CBAND) ? "CBAND" : "NOT CBAND",
1112 state->identity.version & 0x1f);
1113
5848adbe 1114 if (rf_ramp && ((state->rf_ramp && state->rf_ramp[0] == 0) ||
e76bea9a
MCC
1115 (state->current_band == BAND_CBAND &&
1116 (state->identity.version & 0x1f) <= P1D_E_F))) {
4bd1a8dd 1117 dprintk("DE-Engage mux for direct gain reg control\n");
aedabf7a 1118 en_pwm_rf_mux = 0;
03245a5e 1119 } else
4bd1a8dd 1120 dprintk("Engage mux for PWM control\n");
03245a5e 1121
aedabf7a 1122 dib0090_write_reg(state, 0x32, (en_pwm_rf_mux << 12) | (en_pwm_rf_mux << 11));
03245a5e 1123
aedabf7a
OG
1124 /* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/
1125 if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
1126 dib0090_write_reg(state, 0x04, 3);
1127 else
1128 dib0090_write_reg(state, 0x04, 1);
1129 dib0090_write_reg(state, 0x39, (1 << 10)); /* 0 gain by default */
03245a5e
OG
1130 }
1131}
03245a5e 1132EXPORT_SYMBOL(dib0090_pwm_gain_reset);
9c783036 1133
2e802861
OG
1134void dib0090_set_dc_servo(struct dvb_frontend *fe, u8 DC_servo_cutoff)
1135{
1136 struct dib0090_state *state = fe->tuner_priv;
1137 if (DC_servo_cutoff < 4)
1138 dib0090_write_reg(state, 0x04, DC_servo_cutoff);
1139}
1140EXPORT_SYMBOL(dib0090_set_dc_servo);
1141
28fafca7
OG
1142static u32 dib0090_get_slow_adc_val(struct dib0090_state *state)
1143{
1144 u16 adc_val = dib0090_read_reg(state, 0x1d);
b4d6046e 1145 if (state->identity.in_soc)
28fafca7 1146 adc_val >>= 2;
28fafca7
OG
1147 return adc_val;
1148}
1149
03245a5e
OG
1150int dib0090_gain_control(struct dvb_frontend *fe)
1151{
1152 struct dib0090_state *state = fe->tuner_priv;
1153 enum frontend_tune_state *tune_state = &state->tune_state;
1154 int ret = 10;
1155
1156 u16 wbd_val = 0;
1157 u8 apply_gain_immediatly = 1;
1158 s16 wbd_error = 0, adc_error = 0;
1159
1160 if (*tune_state == CT_AGC_START) {
1161 state->agc_freeze = 0;
1162 dib0090_write_reg(state, 0x04, 0x0);
1163
1164#ifdef CONFIG_BAND_SBAND
1165 if (state->current_band == BAND_SBAND) {
1166 dib0090_set_rframp(state, rf_ramp_sband);
1167 dib0090_set_bbramp(state, bb_ramp_boost);
1168 } else
1169#endif
1170#ifdef CONFIG_BAND_VHF
28fafca7 1171 if (state->current_band == BAND_VHF && !state->identity.p1g) {
aedabf7a
OG
1172 dib0090_set_rframp(state, rf_ramp_pwm_vhf);
1173 dib0090_set_bbramp(state, bb_ramp_pwm_normal);
03245a5e
OG
1174 } else
1175#endif
1176#ifdef CONFIG_BAND_CBAND
28fafca7 1177 if (state->current_band == BAND_CBAND && !state->identity.p1g) {
aedabf7a
OG
1178 dib0090_set_rframp(state, rf_ramp_pwm_cband);
1179 dib0090_set_bbramp(state, bb_ramp_pwm_normal);
03245a5e
OG
1180 } else
1181#endif
28fafca7 1182 if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) {
aedabf7a
OG
1183 dib0090_set_rframp(state, rf_ramp_pwm_cband_7090p);
1184 dib0090_set_bbramp(state, bb_ramp_pwm_normal_socs);
28fafca7 1185 } else {
aedabf7a
OG
1186 dib0090_set_rframp(state, rf_ramp_pwm_uhf);
1187 dib0090_set_bbramp(state, bb_ramp_pwm_normal);
03245a5e
OG
1188 }
1189
1190 dib0090_write_reg(state, 0x32, 0);
1191 dib0090_write_reg(state, 0x39, 0);
1192
1193 dib0090_wbd_target(state, state->current_rf);
1194
1195 state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
1196 state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;
1197
1198 *tune_state = CT_AGC_STEP_0;
1199 } else if (!state->agc_freeze) {
28fafca7 1200 s16 wbd = 0, i, cnt;
03245a5e
OG
1201
1202 int adc;
28fafca7 1203 wbd_val = dib0090_get_slow_adc_val(state);
03245a5e 1204
28fafca7
OG
1205 if (*tune_state == CT_AGC_STEP_0)
1206 cnt = 5;
1207 else
1208 cnt = 1;
1209
1210 for (i = 0; i < cnt; i++) {
1211 wbd_val = dib0090_get_slow_adc_val(state);
1212 wbd += dib0090_wbd_to_db(state, wbd_val);
1213 }
1214 wbd /= cnt;
03245a5e
OG
1215 wbd_error = state->wbd_target - wbd;
1216
1217 if (*tune_state == CT_AGC_STEP_0) {
28fafca7 1218 if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) {
03245a5e
OG
1219#ifdef CONFIG_BAND_CBAND
1220 /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
1221 u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
1222 if (state->current_band == BAND_CBAND && ltg2) {
1223 ltg2 >>= 1;
1224 state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */
1225 }
1226#endif
1227 } else {
1228 state->agc_step = 0;
1229 *tune_state = CT_AGC_STEP_1;
1230 }
1231 } else {
1232 /* calc the adc power */
1233 adc = state->config->get_adc_power(fe);
1234 adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */
1235
1236 adc_error = (s16) (((s32) ADC_TARGET) - adc);
1237#ifdef CONFIG_STANDARD_DAB
1238 if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
28fafca7 1239 adc_error -= 10;
03245a5e
OG
1240#endif
1241#ifdef CONFIG_STANDARD_DVBT
1242 if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
28fafca7 1243 (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
03245a5e
OG
1244 adc_error += 60;
1245#endif
1246#ifdef CONFIG_SYS_ISDBT
1247 if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
28fafca7
OG
1248 0)
1249 &&
1250 ((state->fe->dtv_property_cache.layer[0].modulation ==
1251 QAM_64)
1252 || (state->fe->dtv_property_cache.
1253 layer[0].modulation == QAM_16)))
1254 ||
1255 ((state->fe->dtv_property_cache.layer[1].segment_count >
1256 0)
1257 &&
1258 ((state->fe->dtv_property_cache.layer[1].modulation ==
1259 QAM_64)
1260 || (state->fe->dtv_property_cache.
1261 layer[1].modulation == QAM_16)))
1262 ||
1263 ((state->fe->dtv_property_cache.layer[2].segment_count >
1264 0)
1265 &&
1266 ((state->fe->dtv_property_cache.layer[2].modulation ==
1267 QAM_64)
1268 || (state->fe->dtv_property_cache.
1269 layer[2].modulation == QAM_16)))
1270 )
1271 )
03245a5e
OG
1272 adc_error += 60;
1273#endif
1274
1275 if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */
7aa92c42 1276 if (abs(adc_error) < 50 || state->agc_step++ > 5) {
03245a5e
OG
1277
1278#ifdef CONFIG_STANDARD_DAB
1279 if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
1280 dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
1281 dib0090_write_reg(state, 0x04, 0x0);
1282 } else
1283#endif
1284 {
1285 dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
1286 dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
1287 }
1288
1289 *tune_state = CT_AGC_STOP;
1290 }
1291 } else {
1292 /* everything higher than or equal to CT_AGC_STOP means tracking */
1293 ret = 100; /* 10ms interval */
1294 apply_gain_immediatly = 0;
1295 }
1296 }
1297#ifdef DEBUG_AGC
1298 dprintk
28fafca7 1299 ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
b4d6046e 1300 (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
28fafca7 1301 (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
03245a5e
OG
1302#endif
1303 }
1304
1305 /* apply gain */
1306 if (!state->agc_freeze)
1307 dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
1308 return ret;
1309}
28fafca7 1310
03245a5e 1311EXPORT_SYMBOL(dib0090_gain_control);
9c783036 1312
03245a5e
OG
1313void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
1314{
1315 struct dib0090_state *state = fe->tuner_priv;
1316 if (rf)
1317 *rf = state->gain[0];
1318 if (bb)
1319 *bb = state->gain[1];
1320 if (rf_gain_limit)
1321 *rf_gain_limit = state->rf_gain_limit;
1322 if (rflt)
1323 *rflt = (state->rf_lt_def >> 10) & 0x7;
1324}
28fafca7 1325
03245a5e 1326EXPORT_SYMBOL(dib0090_get_current_gain);
9c783036 1327
6724a2f4 1328u16 dib0090_get_wbd_target(struct dvb_frontend *fe)
03245a5e 1329{
28fafca7
OG
1330 struct dib0090_state *state = fe->tuner_priv;
1331 u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000;
1332 s32 current_temp = state->temperature;
1333 s32 wbd_thot, wbd_tcold;
1334 const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
1335
1336 while (f_MHz > wbd->max_freq)
1337 wbd++;
1338
4bd1a8dd 1339 dprintk("using wbd-table-entry with max freq %d\n", wbd->max_freq);
28fafca7
OG
1340
1341 if (current_temp < 0)
1342 current_temp = 0;
1343 if (current_temp > 128)
1344 current_temp = 128;
1345
28fafca7
OG
1346 state->wbdmux &= ~(7 << 13);
1347 if (wbd->wbd_gain != 0)
1348 state->wbdmux |= (wbd->wbd_gain << 13);
1349 else
b4d6046e 1350 state->wbdmux |= (4 << 13);
28fafca7
OG
1351
1352 dib0090_write_reg(state, 0x10, state->wbdmux);
1353
28fafca7
OG
1354 wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6);
1355 wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6);
1356
28fafca7
OG
1357 wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7;
1358
b4d6046e 1359 state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold);
4bd1a8dd
MCC
1360 dprintk("wbd-target: %d dB\n", (u32) state->wbd_target);
1361 dprintk("wbd offset applied is %d\n", wbd_tcold);
28fafca7
OG
1362
1363 return state->wbd_offset + wbd_tcold;
03245a5e 1364}
6724a2f4 1365EXPORT_SYMBOL(dib0090_get_wbd_target);
28fafca7 1366
6724a2f4
OG
1367u16 dib0090_get_wbd_offset(struct dvb_frontend *fe)
1368{
1369 struct dib0090_state *state = fe->tuner_priv;
1370 return state->wbd_offset;
1371}
03245a5e 1372EXPORT_SYMBOL(dib0090_get_wbd_offset);
9c783036 1373
6724a2f4
OG
1374int dib0090_set_switch(struct dvb_frontend *fe, u8 sw1, u8 sw2, u8 sw3)
1375{
1376 struct dib0090_state *state = fe->tuner_priv;
1377
1378 dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xfff8)
1379 | ((sw3 & 1) << 2) | ((sw2 & 1) << 1) | (sw1 & 1));
1380
1381 return 0;
1382}
1383EXPORT_SYMBOL(dib0090_set_switch);
1384
1385int dib0090_set_vga(struct dvb_frontend *fe, u8 onoff)
1386{
1387 struct dib0090_state *state = fe->tuner_priv;
1388
1389 dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x7fff)
1390 | ((onoff & 1) << 15));
1391 return 0;
1392}
1393EXPORT_SYMBOL(dib0090_set_vga);
1394
1395int dib0090_update_rframp_7090(struct dvb_frontend *fe, u8 cfg_sensitivity)
1396{
1397 struct dib0090_state *state = fe->tuner_priv;
1398
1399 if ((!state->identity.p1g) || (!state->identity.in_soc)
1400 || ((state->identity.version != SOC_7090_P1G_21R1)
1401 && (state->identity.version != SOC_7090_P1G_11R1))) {
4bd1a8dd 1402 dprintk("%s() function can only be used for dib7090P\n", __func__);
6724a2f4
OG
1403 return -ENODEV;
1404 }
1405
1406 if (cfg_sensitivity)
6c0943cd 1407 state->rf_ramp = rf_ramp_pwm_cband_7090e_sensitivity;
6724a2f4 1408 else
6c0943cd 1409 state->rf_ramp = rf_ramp_pwm_cband_7090e_aci;
6724a2f4
OG
1410 dib0090_pwm_gain_reset(fe);
1411
1412 return 0;
1413}
1414EXPORT_SYMBOL(dib0090_update_rframp_7090);
1415
03245a5e
OG
1416static const u16 dib0090_defaults[] = {
1417
1418 25, 0x01,
1419 0x0000,
1420 0x99a0,
1421 0x6008,
1422 0x0000,
28fafca7 1423 0x8bcb,
03245a5e
OG
1424 0x0000,
1425 0x0405,
1426 0x0000,
1427 0x0000,
1428 0x0000,
1429 0xb802,
1430 0x0300,
1431 0x2d12,
1432 0xbac0,
1433 0x7c00,
1434 0xdbb9,
1435 0x0954,
1436 0x0743,
1437 0x8000,
1438 0x0001,
1439 0x0040,
1440 0x0100,
1441 0x0000,
1442 0xe910,
1443 0x149e,
1444
1445 1, 0x1c,
1446 0xff2d,
1447
1448 1, 0x39,
1449 0x0000,
1450
03245a5e
OG
1451 2, 0x1e,
1452 0x07FF,
1453 0x0007,
1454
1455 1, 0x24,
1456 EN_UHF | EN_CRYSTAL,
1457
1458 2, 0x3c,
1459 0x3ff,
1460 0x111,
1461 0
1462};
1463
28fafca7 1464static const u16 dib0090_p1g_additionnal_defaults[] = {
28fafca7
OG
1465 1, 0x05,
1466 0xabcd,
03245a5e 1467
28fafca7
OG
1468 1, 0x11,
1469 0x00b4,
03245a5e 1470
28fafca7
OG
1471 1, 0x1c,
1472 0xfffd,
1473
1474 1, 0x40,
1475 0x108,
1476 0
1477};
1478
1479static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n)
1480{
1481 u16 l, r;
03245a5e 1482
03245a5e
OG
1483 l = pgm_read_word(n++);
1484 while (l) {
1485 r = pgm_read_word(n++);
1486 do {
03245a5e
OG
1487 dib0090_write_reg(state, r, pgm_read_word(n++));
1488 r++;
1489 } while (--l);
1490 l = pgm_read_word(n++);
1491 }
28fafca7
OG
1492}
1493
1494#define CAP_VALUE_MIN (u8) 9
1495#define CAP_VALUE_MAX (u8) 40
1496#define HR_MIN (u8) 25
1497#define HR_MAX (u8) 40
1498#define POLY_MIN (u8) 0
1499#define POLY_MAX (u8) 8
1500
a685dbbc 1501static void dib0090_set_EFUSE(struct dib0090_state *state)
28fafca7 1502{
b4d6046e
OG
1503 u8 c, h, n;
1504 u16 e2, e4;
1505 u16 cal;
1506
1507 e2 = dib0090_read_reg(state, 0x26);
1508 e4 = dib0090_read_reg(state, 0x28);
1509
1510 if ((state->identity.version == P1D_E_F) ||
1511 (state->identity.version == P1G) || (e2 == 0xffff)) {
1512
1513 dib0090_write_reg(state, 0x22, 0x10);
1514 cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff;
1515
1516 if ((cal < 670) || (cal == 1023))
1517 cal = 850;
1518 n = 165 - ((cal * 10)>>6) ;
1519 e2 = e4 = (3<<12) | (34<<6) | (n);
1520 }
1521
1522 if (e2 != e4)
1523 e2 &= e4; /* Remove the redundancy */
1524
1525 if (e2 != 0xffff) {
1526 c = e2 & 0x3f;
1527 n = (e2 >> 12) & 0xf;
1528 h = (e2 >> 6) & 0x3f;
1529
1530 if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
1531 c = 32;
aedabf7a
OG
1532 else
1533 c += 14;
b4d6046e
OG
1534 if ((h >= HR_MAX) || (h <= HR_MIN))
1535 h = 34;
1536 if ((n >= POLY_MAX) || (n <= POLY_MIN))
1537 n = 3;
1538
751dc8c7
MCC
1539 dib0090_write_reg(state, 0x13, (h << 10));
1540 e2 = (n << 11) | ((h >> 2)<<6) | c;
1541 dib0090_write_reg(state, 0x2, e2); /* Load the BB_2 */
b4d6046e 1542 }
28fafca7
OG
1543}
1544
1545static int dib0090_reset(struct dvb_frontend *fe)
1546{
1547 struct dib0090_state *state = fe->tuner_priv;
1548
1549 dib0090_reset_digital(fe, state->config);
1550 if (dib0090_identify(fe) < 0)
1551 return -EIO;
1552
1553#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
1554 if (!(state->identity.version & 0x1)) /* it is P1B - reset is already done */
1555 return 0;
1556#endif
1557
1558 if (!state->identity.in_soc) {
1559 if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2)
1560 dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL));
1561 else
1562 dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL));
1563 }
1564
1565 dib0090_set_default_config(state, dib0090_defaults);
1566
b4d6046e
OG
1567 if (state->identity.in_soc)
1568 dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */
28fafca7
OG
1569
1570 if (state->identity.p1g)
1571 dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults);
1572
b4d6046e
OG
1573 /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
1574 if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc))
1575 dib0090_set_EFUSE(state);
03245a5e
OG
1576
1577 /* Congigure in function of the crystal */
2e802861
OG
1578 if (state->config->force_crystal_mode != 0)
1579 dib0090_write_reg(state, 0x14,
1580 state->config->force_crystal_mode & 3);
1581 else if (state->config->io.clock_khz >= 24000)
28fafca7 1582 dib0090_write_reg(state, 0x14, 1);
03245a5e 1583 else
28fafca7 1584 dib0090_write_reg(state, 0x14, 2);
4bd1a8dd 1585 dprintk("Pll lock : %d\n", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);
03245a5e 1586
28fafca7 1587 state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
03245a5e
OG
1588
1589 return 0;
1590}
1591
9c783036 1592#define steps(u) (((u) > 15) ? ((u)-16) : (u))
03245a5e
OG
1593#define INTERN_WAIT 10
1594static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1595{
1596 int ret = INTERN_WAIT * 10;
1597
1598 switch (*tune_state) {
1599 case CT_TUNER_STEP_2:
1600 /* Turns to positive */
1601 dib0090_write_reg(state, 0x1f, 0x7);
1602 *tune_state = CT_TUNER_STEP_3;
1603 break;
1604
1605 case CT_TUNER_STEP_3:
1606 state->adc_diff = dib0090_read_reg(state, 0x1d);
1607
1608 /* Turns to negative */
1609 dib0090_write_reg(state, 0x1f, 0x4);
1610 *tune_state = CT_TUNER_STEP_4;
1611 break;
1612
1613 case CT_TUNER_STEP_4:
1614 state->adc_diff -= dib0090_read_reg(state, 0x1d);
1615 *tune_state = CT_TUNER_STEP_5;
1616 ret = 0;
1617 break;
1618
1619 default:
1620 break;
1621 }
1622
1623 return ret;
1624}
1625
1626struct dc_calibration {
28fafca7
OG
1627 u8 addr;
1628 u8 offset;
1629 u8 pga:1;
1630 u16 bb1;
1631 u8 i:1;
03245a5e
OG
1632};
1633
1634static const struct dc_calibration dc_table[] = {
1635 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1636 {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
1637 {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
1638 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1639 {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
1640 {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
1641 {0},
1642};
1643
28fafca7
OG
1644static const struct dc_calibration dc_p1g_table[] = {
1645 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1646 /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
b4d6046e
OG
1647 {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
1648 {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
28fafca7 1649 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
b4d6046e
OG
1650 {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
1651 {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
28fafca7
OG
1652 {0},
1653};
1654
03245a5e
OG
1655static void dib0090_set_trim(struct dib0090_state *state)
1656{
1657 u16 *val;
1658
1659 if (state->dc->addr == 0x07)
1660 val = &state->bb7;
1661 else
1662 val = &state->bb6;
1663
1664 *val &= ~(0x1f << state->dc->offset);
1665 *val |= state->step << state->dc->offset;
1666
1667 dib0090_write_reg(state, state->dc->addr, *val);
1668}
1669
1670static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1671{
1672 int ret = 0;
28fafca7 1673 u16 reg;
03245a5e
OG
1674
1675 switch (*tune_state) {
03245a5e 1676 case CT_TUNER_START:
28fafca7 1677 dprintk("Start DC offset calibration");
03245a5e
OG
1678
1679 /* force vcm2 = 0.8V */
1680 state->bb6 = 0;
1681 state->bb7 = 0x040d;
1682
28fafca7
OG
1683 /* the LNA AND LO are off */
1684 reg = dib0090_read_reg(state, 0x24) & 0x0ffb; /* shutdown lna and lo */
1685 dib0090_write_reg(state, 0x24, reg);
1686
1687 state->wbdmux = dib0090_read_reg(state, 0x10);
b4d6046e
OG
1688 dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3);
1689 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
28fafca7 1690
03245a5e
OG
1691 state->dc = dc_table;
1692
28fafca7
OG
1693 if (state->identity.p1g)
1694 state->dc = dc_p1g_table;
03245a5e
OG
1695
1696 /* fall through */
03245a5e 1697 case CT_TUNER_STEP_0:
4bd1a8dd
MCC
1698 dprintk("Start/continue DC calibration for %s path\n",
1699 (state->dc->i == 1) ? "I" : "Q");
03245a5e
OG
1700 dib0090_write_reg(state, 0x01, state->dc->bb1);
1701 dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));
1702
1703 state->step = 0;
03245a5e 1704 state->min_adc_diff = 1023;
03245a5e
OG
1705 *tune_state = CT_TUNER_STEP_1;
1706 ret = 50;
1707 break;
1708
1709 case CT_TUNER_STEP_1:
1710 dib0090_set_trim(state);
03245a5e
OG
1711 *tune_state = CT_TUNER_STEP_2;
1712 break;
1713
1714 case CT_TUNER_STEP_2:
1715 case CT_TUNER_STEP_3:
1716 case CT_TUNER_STEP_4:
1717 ret = dib0090_get_offset(state, tune_state);
1718 break;
1719
1720 case CT_TUNER_STEP_5: /* found an offset */
4bd1a8dd 1721 dprintk("adc_diff = %d, current step= %d\n", (u32) state->adc_diff, state->step);
28fafca7
OG
1722 if (state->step == 0 && state->adc_diff < 0) {
1723 state->min_adc_diff = -1023;
4bd1a8dd 1724 dprintk("Change of sign of the minimum adc diff\n");
28fafca7
OG
1725 }
1726
4bd1a8dd 1727 dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d\n", state->adc_diff, state->min_adc_diff, state->step);
03245a5e
OG
1728
1729 /* first turn for this frequency */
1730 if (state->step == 0) {
1731 if (state->dc->pga && state->adc_diff < 0)
1732 state->step = 0x10;
1733 if (state->dc->pga == 0 && state->adc_diff > 0)
1734 state->step = 0x10;
1735 }
1736
28fafca7
OG
1737 /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
1738 if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) {
1739 /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
03245a5e 1740 state->step++;
b4d6046e 1741 state->min_adc_diff = state->adc_diff;
03245a5e
OG
1742 *tune_state = CT_TUNER_STEP_1;
1743 } else {
03245a5e 1744 /* the minimum was what we have seen in the step before */
7aa92c42 1745 if (abs(state->adc_diff) > abs(state->min_adc_diff)) {
4bd1a8dd 1746 dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step\n", state->adc_diff, state->min_adc_diff);
28fafca7
OG
1747 state->step--;
1748 }
03245a5e 1749
28fafca7 1750 dib0090_set_trim(state);
4bd1a8dd 1751 dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd\n", state->dc->addr, state->adc_diff, state->step);
03245a5e
OG
1752
1753 state->dc++;
1754 if (state->dc->addr == 0) /* done */
1755 *tune_state = CT_TUNER_STEP_6;
1756 else
1757 *tune_state = CT_TUNER_STEP_0;
1758
1759 }
1760 break;
1761
1762 case CT_TUNER_STEP_6:
b4d6046e 1763 dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
03245a5e
OG
1764 dib0090_write_reg(state, 0x1f, 0x7);
1765 *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
28fafca7 1766 state->calibrate &= ~DC_CAL;
03245a5e
OG
1767 default:
1768 break;
1769 }
1770 return ret;
1771}
1772
1773static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1774{
28fafca7
OG
1775 u8 wbd_gain;
1776 const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
1777
03245a5e
OG
1778 switch (*tune_state) {
1779 case CT_TUNER_START:
28fafca7
OG
1780 while (state->current_rf / 1000 > wbd->max_freq)
1781 wbd++;
1782 if (wbd->wbd_gain != 0)
1783 wbd_gain = wbd->wbd_gain;
1784 else {
1785 wbd_gain = 4;
1786#if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1787 if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND))
1788 wbd_gain = 2;
1789#endif
1790 }
03245a5e 1791
28fafca7
OG
1792 if (wbd_gain == state->wbd_calibration_gain) { /* the WBD calibration has already been done */
1793 *tune_state = CT_TUNER_START;
1794 state->calibrate &= ~WBD_CAL;
1795 return 0;
1796 }
1797
b4d6046e 1798 dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3));
28fafca7 1799
b4d6046e 1800 dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1)));
03245a5e 1801 *tune_state = CT_TUNER_STEP_0;
28fafca7 1802 state->wbd_calibration_gain = wbd_gain;
03245a5e 1803 return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
28fafca7 1804
03245a5e 1805 case CT_TUNER_STEP_0:
28fafca7 1806 state->wbd_offset = dib0090_get_slow_adc_val(state);
4bd1a8dd 1807 dprintk("WBD calibration offset = %d\n", state->wbd_offset);
03245a5e 1808 *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
28fafca7 1809 state->calibrate &= ~WBD_CAL;
03245a5e 1810 break;
28fafca7 1811
03245a5e
OG
1812 default:
1813 break;
1814 }
1815 return 0;
1816}
1817
1818static void dib0090_set_bandwidth(struct dib0090_state *state)
1819{
1820 u16 tmp;
1821
1822 if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
1823 tmp = (3 << 14);
1824 else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
1825 tmp = (2 << 14);
1826 else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
1827 tmp = (1 << 14);
1828 else
1829 tmp = (0 << 14);
1830
1831 state->bb_1_def &= 0x3fff;
1832 state->bb_1_def |= tmp;
1833
1834 dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */
28fafca7
OG
1835
1836 dib0090_write_reg(state, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
1837 dib0090_write_reg(state, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
1838 if (state->identity.in_soc) {
1839 dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
1840 } else {
1841 dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */
1842 dib0090_write_reg(state, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
1843 }
03245a5e
OG
1844}
1845
1846static const struct dib0090_pll dib0090_pll_table[] = {
1847#ifdef CONFIG_BAND_CBAND
1848 {56000, 0, 9, 48, 6},
1849 {70000, 1, 9, 48, 6},
1850 {87000, 0, 8, 32, 4},
1851 {105000, 1, 8, 32, 4},
1852 {115000, 0, 7, 24, 6},
1853 {140000, 1, 7, 24, 6},
1854 {170000, 0, 6, 16, 4},
1855#endif
1856#ifdef CONFIG_BAND_VHF
1857 {200000, 1, 6, 16, 4},
1858 {230000, 0, 5, 12, 6},
1859 {280000, 1, 5, 12, 6},
1860 {340000, 0, 4, 8, 4},
1861 {380000, 1, 4, 8, 4},
1862 {450000, 0, 3, 6, 6},
1863#endif
1864#ifdef CONFIG_BAND_UHF
1865 {580000, 1, 3, 6, 6},
1866 {700000, 0, 2, 4, 4},
1867 {860000, 1, 2, 4, 4},
1868#endif
1869#ifdef CONFIG_BAND_LBAND
1870 {1800000, 1, 0, 2, 4},
1871#endif
1872#ifdef CONFIG_BAND_SBAND
1873 {2900000, 0, 14, 1, 4},
1874#endif
1875};
1876
1877static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {
1878
1879#ifdef CONFIG_BAND_CBAND
1880 {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1881 {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1882 {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1883#endif
1884#ifdef CONFIG_BAND_UHF
1885 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1886 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1887 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1888 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1889 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1890 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1891#endif
1892#ifdef CONFIG_BAND_LBAND
1893 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1894 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1895 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1896#endif
1897#ifdef CONFIG_BAND_SBAND
1898 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1899 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1900#endif
1901};
1902
1903static const struct dib0090_tuning dib0090_tuning_table[] = {
1904
1905#ifdef CONFIG_BAND_CBAND
1906 {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1907#endif
1908#ifdef CONFIG_BAND_VHF
1909 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1910 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1911 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1912#endif
1913#ifdef CONFIG_BAND_UHF
1914 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1915 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1916 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1917 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1918 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1919 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1920#endif
1921#ifdef CONFIG_BAND_LBAND
1922 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1923 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1924 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1925#endif
1926#ifdef CONFIG_BAND_SBAND
1927 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1928 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1929#endif
1930};
1931
28fafca7 1932static const struct dib0090_tuning dib0090_p1g_tuning_table[] = {
28fafca7 1933#ifdef CONFIG_BAND_CBAND
b4d6046e 1934 {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB},
28fafca7
OG
1935#endif
1936#ifdef CONFIG_BAND_VHF
b4d6046e
OG
1937 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1938 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1939 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
28fafca7
OG
1940#endif
1941#ifdef CONFIG_BAND_UHF
b4d6046e
OG
1942 {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1943 {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1944 {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1945 {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1946 {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1947 {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1948 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
28fafca7
OG
1949#endif
1950#ifdef CONFIG_BAND_LBAND
b4d6046e
OG
1951 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1952 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1953 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
28fafca7
OG
1954#endif
1955#ifdef CONFIG_BAND_SBAND
b4d6046e
OG
1956 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1957 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
28fafca7
OG
1958#endif
1959};
1960
1961static const struct dib0090_pll dib0090_p1g_pll_table[] = {
1962#ifdef CONFIG_BAND_CBAND
b4d6046e
OG
1963 {57000, 0, 11, 48, 6},
1964 {70000, 1, 11, 48, 6},
1965 {86000, 0, 10, 32, 4},
1966 {105000, 1, 10, 32, 4},
1967 {115000, 0, 9, 24, 6},
1968 {140000, 1, 9, 24, 6},
1969 {170000, 0, 8, 16, 4},
28fafca7
OG
1970#endif
1971#ifdef CONFIG_BAND_VHF
b4d6046e
OG
1972 {200000, 1, 8, 16, 4},
1973 {230000, 0, 7, 12, 6},
1974 {280000, 1, 7, 12, 6},
1975 {340000, 0, 6, 8, 4},
1976 {380000, 1, 6, 8, 4},
1977 {455000, 0, 5, 6, 6},
28fafca7
OG
1978#endif
1979#ifdef CONFIG_BAND_UHF
b4d6046e
OG
1980 {580000, 1, 5, 6, 6},
1981 {680000, 0, 4, 4, 4},
1982 {860000, 1, 4, 4, 4},
28fafca7
OG
1983#endif
1984#ifdef CONFIG_BAND_LBAND
b4d6046e 1985 {1800000, 1, 2, 2, 4},
28fafca7
OG
1986#endif
1987#ifdef CONFIG_BAND_SBAND
b4d6046e 1988 {2900000, 0, 1, 1, 6},
28fafca7
OG
1989#endif
1990};
1991
1992static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = {
28fafca7 1993#ifdef CONFIG_BAND_CBAND
b4d6046e
OG
1994 {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
1995 {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
1996 {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
28fafca7
OG
1997#endif
1998#ifdef CONFIG_BAND_UHF
b4d6046e
OG
1999 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2000 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2001 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2002 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2003 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2004 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
28fafca7
OG
2005#endif
2006#ifdef CONFIG_BAND_LBAND
b4d6046e
OG
2007 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2008 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2009 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
28fafca7
OG
2010#endif
2011#ifdef CONFIG_BAND_SBAND
b4d6046e
OG
2012 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
2013 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
28fafca7
OG
2014#endif
2015};
2016
2017static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = {
28fafca7 2018#ifdef CONFIG_BAND_CBAND
28fafca7 2019 {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
b4d6046e 2020 {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
28fafca7
OG
2021 {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2022 {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2023#endif
2024};
2025
6724a2f4
OG
2026static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity[] = {
2027#ifdef CONFIG_BAND_CBAND
2028 { 300000, 0 , 3, 0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2029 { 380000, 0 , 10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2030 { 600000, 0 , 10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB },
2031 { 660000, 0 , 5, 0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB },
2032 { 720000, 0 , 5, 0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB },
2033 { 860000, 0 , 4, 0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB },
2034#endif
2035};
2036
2037int dib0090_update_tuning_table_7090(struct dvb_frontend *fe,
2038 u8 cfg_sensitivity)
2039{
2040 struct dib0090_state *state = fe->tuner_priv;
2041 const struct dib0090_tuning *tune =
2042 dib0090_tuning_table_cband_7090e_sensitivity;
6e4e4447 2043 static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci[] = {
6724a2f4
OG
2044 { 300000, 0 , 3, 0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2045 { 650000, 0 , 4, 0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB },
2046 { 860000, 0 , 5, 0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB },
2047 };
2048
2049 if ((!state->identity.p1g) || (!state->identity.in_soc)
2050 || ((state->identity.version != SOC_7090_P1G_21R1)
2051 && (state->identity.version != SOC_7090_P1G_11R1))) {
4bd1a8dd 2052 dprintk("%s() function can only be used for dib7090\n", __func__);
6724a2f4
OG
2053 return -ENODEV;
2054 }
2055
2056 if (cfg_sensitivity)
2057 tune = dib0090_tuning_table_cband_7090e_sensitivity;
2058 else
2059 tune = dib0090_tuning_table_cband_7090e_aci;
2060
2061 while (state->rf_request > tune->max_freq)
2062 tune++;
2063
2064 dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x8000)
2065 | (tune->lna_bias & 0x7fff));
2066 dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xf83f)
2067 | ((tune->lna_tune << 6) & 0x07c0));
2068 return 0;
2069}
2070EXPORT_SYMBOL(dib0090_update_tuning_table_7090);
2071
28fafca7
OG
2072static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state)
2073{
2074 int ret = 0;
2075 u16 lo4 = 0xe900;
2076
2077 s16 adc_target;
2078 u16 adc;
2079 s8 step_sign;
2080 u8 force_soft_search = 0;
2081
2082 if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
2083 force_soft_search = 1;
2084
2085 if (*tune_state == CT_TUNER_START) {
4bd1a8dd
MCC
2086 dprintk("Start Captrim search : %s\n",
2087 (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO");
28fafca7
OG
2088 dib0090_write_reg(state, 0x10, 0x2B1);
2089 dib0090_write_reg(state, 0x1e, 0x0032);
2090
2091 if (!state->tuner_is_tuned) {
2092 /* prepare a complete captrim */
2093 if (!state->identity.p1g || force_soft_search)
2094 state->step = state->captrim = state->fcaptrim = 64;
2095
2096 state->current_rf = state->rf_request;
2097 } else { /* we are already tuned to this frequency - the configuration is correct */
2098 if (!state->identity.p1g || force_soft_search) {
2099 /* do a minimal captrim even if the frequency has not changed */
2100 state->step = 4;
2101 state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
2102 }
2103 }
b4d6046e 2104 state->adc_diff = 3000;
28fafca7
OG
2105 *tune_state = CT_TUNER_STEP_0;
2106
2107 } else if (*tune_state == CT_TUNER_STEP_0) {
2108 if (state->identity.p1g && !force_soft_search) {
b4d6046e 2109 u8 ratio = 31;
28fafca7
OG
2110
2111 dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1);
2112 dib0090_read_reg(state, 0x40);
28fafca7
OG
2113 ret = 50;
2114 } else {
2115 state->step /= 2;
2116 dib0090_write_reg(state, 0x18, lo4 | state->captrim);
2117
2118 if (state->identity.in_soc)
2119 ret = 25;
2120 }
2121 *tune_state = CT_TUNER_STEP_1;
2122
2123 } else if (*tune_state == CT_TUNER_STEP_1) {
2124 if (state->identity.p1g && !force_soft_search) {
2125 dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0);
2126 dib0090_read_reg(state, 0x40);
2127
2128 state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F;
4bd1a8dd 2129 dprintk("***Final Captrim= 0x%x\n", state->fcaptrim);
28fafca7
OG
2130 *tune_state = CT_TUNER_STEP_3;
2131
2132 } else {
2133 /* MERGE for all krosus before P1G */
2134 adc = dib0090_get_slow_adc_val(state);
4bd1a8dd 2135 dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV\n", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024);
28fafca7
OG
2136
2137 if (state->rest == 0 || state->identity.in_soc) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
2138 adc_target = 200;
2139 } else
2140 adc_target = 400;
2141
2142 if (adc >= adc_target) {
2143 adc -= adc_target;
2144 step_sign = -1;
2145 } else {
2146 adc = adc_target - adc;
2147 step_sign = 1;
2148 }
2149
2150 if (adc < state->adc_diff) {
4bd1a8dd 2151 dprintk("CAPTRIM=%d is closer to target (%d/%d)\n", (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
28fafca7
OG
2152 state->adc_diff = adc;
2153 state->fcaptrim = state->captrim;
28fafca7
OG
2154 }
2155
2156 state->captrim += step_sign * state->step;
2157 if (state->step >= 1)
2158 *tune_state = CT_TUNER_STEP_0;
2159 else
2160 *tune_state = CT_TUNER_STEP_2;
2161
b4d6046e 2162 ret = 25;
28fafca7
OG
2163 }
2164 } else if (*tune_state == CT_TUNER_STEP_2) { /* this step is only used by krosus < P1G */
2165 /*write the final cptrim config */
2166 dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);
2167
2168 *tune_state = CT_TUNER_STEP_3;
2169
2170 } else if (*tune_state == CT_TUNER_STEP_3) {
2171 state->calibrate &= ~CAPTRIM_CAL;
2172 *tune_state = CT_TUNER_STEP_0;
2173 }
2174
2175 return ret;
2176}
2177
2178static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state)
2179{
2180 int ret = 15;
2181 s16 val;
2182
28fafca7
OG
2183 switch (*tune_state) {
2184 case CT_TUNER_START:
2185 state->wbdmux = dib0090_read_reg(state, 0x10);
b4d6046e 2186 dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3));
28fafca7
OG
2187
2188 state->bias = dib0090_read_reg(state, 0x13);
b4d6046e 2189 dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8));
28fafca7
OG
2190
2191 *tune_state = CT_TUNER_STEP_0;
2192 /* wait for the WBDMUX to switch and for the ADC to sample */
2193 break;
2194
2195 case CT_TUNER_STEP_0:
b4d6046e
OG
2196 state->adc_diff = dib0090_get_slow_adc_val(state);
2197 dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8));
28fafca7
OG
2198 *tune_state = CT_TUNER_STEP_1;
2199 break;
2200
2201 case CT_TUNER_STEP_1:
b4d6046e
OG
2202 val = dib0090_get_slow_adc_val(state);
2203 state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55;
28fafca7 2204
4bd1a8dd 2205 dprintk("temperature: %d C\n", state->temperature - 30);
28fafca7
OG
2206
2207 *tune_state = CT_TUNER_STEP_2;
2208 break;
2209
2210 case CT_TUNER_STEP_2:
28fafca7
OG
2211 dib0090_write_reg(state, 0x13, state->bias);
2212 dib0090_write_reg(state, 0x10, state->wbdmux); /* write back original WBDMUX */
2213
2214 *tune_state = CT_TUNER_START;
2215 state->calibrate &= ~TEMP_CAL;
2216 if (state->config->analog_output == 0)
b4d6046e 2217 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
28fafca7
OG
2218
2219 break;
2220
2221 default:
2222 ret = 0;
2223 break;
2224 }
2225 return ret;
2226}
2227
03245a5e
OG
2228#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2229static int dib0090_tune(struct dvb_frontend *fe)
2230{
2231 struct dib0090_state *state = fe->tuner_priv;
2232 const struct dib0090_tuning *tune = state->current_tune_table_index;
2233 const struct dib0090_pll *pll = state->current_pll_table_index;
2234 enum frontend_tune_state *tune_state = &state->tune_state;
2235
28fafca7 2236 u16 lo5, lo6, Den, tmp;
03245a5e 2237 u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
03245a5e
OG
2238 int ret = 10; /* 1ms is the default delay most of the time */
2239 u8 c, i;
2240
28fafca7 2241 /************************* VCO ***************************/
03245a5e
OG
2242 /* Default values for FG */
2243 /* from these are needed : */
2244 /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
2245
28fafca7
OG
2246 /* in any case we first need to do a calibration if needed */
2247 if (*tune_state == CT_TUNER_START) {
2248 /* deactivate DataTX before some calibrations */
2249 if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL))
2250 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
b4d6046e
OG
2251 else
2252 /* Activate DataTX in case a calibration has been done before */
2253 if (state->config->analog_output == 0)
2254 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
28fafca7 2255 }
03245a5e 2256
28fafca7
OG
2257 if (state->calibrate & DC_CAL)
2258 return dib0090_dc_offset_calibration(state, tune_state);
2259 else if (state->calibrate & WBD_CAL) {
b4d6046e 2260 if (state->current_rf == 0)
28fafca7 2261 state->current_rf = state->fe->dtv_property_cache.frequency / 1000;
28fafca7
OG
2262 return dib0090_wbd_calibration(state, tune_state);
2263 } else if (state->calibrate & TEMP_CAL)
2264 return dib0090_get_temperature(state, tune_state);
2265 else if (state->calibrate & CAPTRIM_CAL)
2266 return dib0090_captrim_search(state, tune_state);
03245a5e 2267
28fafca7
OG
2268 if (*tune_state == CT_TUNER_START) {
2269 /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
2270 if (state->config->use_pwm_agc && state->identity.in_soc) {
2271 tmp = dib0090_read_reg(state, 0x39);
2272 if ((tmp >> 10) & 0x1)
b4d6046e 2273 dib0090_write_reg(state, 0x39, tmp & ~(1 << 10));
28fafca7 2274 }
03245a5e 2275
28fafca7
OG
2276 state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000);
2277 state->rf_request =
2278 state->fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
2279 BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->
2280 freq_offset_khz_vhf);
2281
2282 /* in ISDB-T 1seg we shift tuning frequency */
2283 if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1
2284 && state->fe->dtv_property_cache.isdbt_partial_reception == 0)) {
2285 const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if;
2286 u8 found_offset = 0;
2287 u32 margin_khz = 100;
2288
2289 if (LUT_offset != NULL) {
2290 while (LUT_offset->RF_freq != 0xffff) {
2291 if (((state->rf_request > (LUT_offset->RF_freq - margin_khz))
2292 && (state->rf_request < (LUT_offset->RF_freq + margin_khz)))
2293 && LUT_offset->std == state->fe->dtv_property_cache.delivery_system) {
2294 state->rf_request += LUT_offset->offset_khz;
2295 found_offset = 1;
2296 break;
2297 }
2298 LUT_offset++;
2299 }
03245a5e 2300 }
28fafca7
OG
2301
2302 if (found_offset == 0)
2303 state->rf_request += 400;
03245a5e 2304 }
28fafca7
OG
2305 if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) {
2306 state->tuner_is_tuned = 0;
2307 state->current_rf = 0;
2308 state->current_standard = 0;
03245a5e 2309
28fafca7
OG
2310 tune = dib0090_tuning_table;
2311 if (state->identity.p1g)
2312 tune = dib0090_p1g_tuning_table;
03245a5e 2313
28fafca7 2314 tmp = (state->identity.version >> 5) & 0x7;
03245a5e 2315
28fafca7
OG
2316 if (state->identity.in_soc) {
2317 if (state->config->force_cband_input) { /* Use the CBAND input for all band */
2318 if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF
2319 || state->current_band & BAND_UHF) {
2320 state->current_band = BAND_CBAND;
6724a2f4
OG
2321 if (state->config->is_dib7090e)
2322 tune = dib0090_tuning_table_cband_7090e_sensitivity;
2323 else
2324 tune = dib0090_tuning_table_cband_7090;
28fafca7
OG
2325 }
2326 } else { /* Use the CBAND input for all band under UHF */
2327 if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) {
2328 state->current_band = BAND_CBAND;
6724a2f4
OG
2329 if (state->config->is_dib7090e)
2330 tune = dib0090_tuning_table_cband_7090e_sensitivity;
2331 else
2332 tune = dib0090_tuning_table_cband_7090;
28fafca7
OG
2333 }
2334 }
2335 } else
2336 if (tmp == 0x4 || tmp == 0x7) {
2337 /* CBAND tuner version for VHF */
2338 if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) {
2339 state->current_band = BAND_CBAND; /* Force CBAND */
2340
2341 tune = dib0090_tuning_table_fm_vhf_on_cband;
2342 if (state->identity.p1g)
2343 tune = dib0090_p1g_tuning_table_fm_vhf_on_cband;
2344 }
2345 }
03245a5e 2346
28fafca7
OG
2347 pll = dib0090_pll_table;
2348 if (state->identity.p1g)
2349 pll = dib0090_p1g_pll_table;
03245a5e 2350
28fafca7
OG
2351 /* Look for the interval */
2352 while (state->rf_request > tune->max_freq)
2353 tune++;
2354 while (state->rf_request > pll->max_freq)
2355 pll++;
03245a5e 2356
28fafca7
OG
2357 state->current_tune_table_index = tune;
2358 state->current_pll_table_index = pll;
03245a5e 2359
28fafca7 2360 dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
03245a5e 2361
28fafca7 2362 VCOF_kHz = (pll->hfdiv * state->rf_request) * 2;
03245a5e 2363
b4d6046e 2364 FREF = state->config->io.clock_khz;
28fafca7
OG
2365 if (state->config->fref_clock_ratio != 0)
2366 FREF /= state->config->fref_clock_ratio;
03245a5e
OG
2367
2368 FBDiv = (VCOF_kHz / pll->topresc / FREF);
b4d6046e 2369 Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
03245a5e
OG
2370
2371 if (Rest < LPF)
2372 Rest = 0;
2373 else if (Rest < 2 * LPF)
2374 Rest = 2 * LPF;
2375 else if (Rest > (FREF - LPF)) {
2376 Rest = 0;
2377 FBDiv += 1;
b4d6046e 2378 } else if (Rest > (FREF - 2 * LPF))
03245a5e
OG
2379 Rest = FREF - 2 * LPF;
2380 Rest = (Rest * 6528) / (FREF / 10);
28fafca7 2381 state->rest = Rest;
03245a5e 2382
28fafca7
OG
2383 /* external loop filter, otherwise:
2384 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
2385 * lo6 = 0x0e34 */
2386
2387 if (Rest == 0) {
2388 if (pll->vco_band)
2389 lo5 = 0x049f;
28fafca7
OG
2390 else
2391 lo5 = 0x041f;
2392 } else {
2393 if (pll->vco_band)
2394 lo5 = 0x049e;
2395 else if (state->config->analog_output)
2396 lo5 = 0x041d;
2397 else
2398 lo5 = 0x041c;
2399 }
2400
2401 if (state->identity.p1g) { /* Bias is done automatically in P1G */
2402 if (state->identity.in_soc) {
2403 if (state->identity.version == SOC_8090_P1G_11R1)
2404 lo5 = 0x46f;
2405 else
2406 lo5 = 0x42f;
2407 } else
b4d6046e 2408 lo5 = 0x42c;
28fafca7
OG
2409 }
2410
2411 lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */
2412
28fafca7
OG
2413 if (!state->config->io.pll_int_loop_filt) {
2414 if (state->identity.in_soc)
2415 lo6 = 0xff98;
2416 else if (state->identity.p1g || (Rest == 0))
2417 lo6 = 0xfff8;
2418 else
2419 lo6 = 0xff28;
2420 } else
b4d6046e 2421 lo6 = (state->config->io.pll_int_loop_filt << 3);
03245a5e 2422
28fafca7 2423 Den = 1;
03245a5e
OG
2424
2425 if (Rest > 0) {
87c01486 2426 lo6 |= (1 << 2) | 2;
03245a5e
OG
2427 Den = 255;
2428 }
03245a5e 2429 dib0090_write_reg(state, 0x15, (u16) FBDiv);
28fafca7
OG
2430 if (state->config->fref_clock_ratio != 0)
2431 dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio);
2432 else
2433 dib0090_write_reg(state, 0x16, (Den << 8) | 1);
03245a5e 2434 dib0090_write_reg(state, 0x17, (u16) Rest);
03245a5e 2435 dib0090_write_reg(state, 0x19, lo5);
03245a5e
OG
2436 dib0090_write_reg(state, 0x1c, lo6);
2437
2438 lo6 = tune->tuner_enable;
2439 if (state->config->analog_output)
2440 lo6 = (lo6 & 0xff9f) | 0x2;
2441
28fafca7 2442 dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL);
03245a5e 2443
03245a5e 2444 }
03245a5e 2445
28fafca7
OG
2446 state->current_rf = state->rf_request;
2447 state->current_standard = state->fe->dtv_property_cache.delivery_system;
03245a5e
OG
2448
2449 ret = 20;
868c9a17 2450 state->calibrate = CAPTRIM_CAL; /* captrim search now */
28fafca7 2451 }
03245a5e 2452
28fafca7
OG
2453 else if (*tune_state == CT_TUNER_STEP_0) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
2454 const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
03245a5e 2455
28fafca7
OG
2456 while (state->current_rf / 1000 > wbd->max_freq)
2457 wbd++;
03245a5e 2458
28fafca7 2459 dib0090_write_reg(state, 0x1e, 0x07ff);
4bd1a8dd
MCC
2460 dprintk("Final Captrim: %d\n", (u32) state->fcaptrim);
2461 dprintk("HFDIV code: %d\n", (u32) pll->hfdiv_code);
2462 dprintk("VCO = %d\n", (u32) pll->vco_band);
2463 dprintk("VCOF in kHz: %d ((%d*%d) << 1))\n", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request);
2464 dprintk("REFDIV: %d, FREF: %d\n", (u32) 1, (u32) state->config->io.clock_khz);
2465 dprintk("FBDIV: %d, Rest: %d\n", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
2466 dprintk("Num: %d, Den: %d, SD: %d\n", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8),
28fafca7 2467 (u32) dib0090_read_reg(state, 0x1c) & 0x3);
03245a5e 2468
28fafca7
OG
2469#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2470 c = 4;
b4d6046e 2471 i = 3;
03245a5e 2472
b4d6046e 2473 if (wbd->wbd_gain != 0)
28fafca7 2474 c = wbd->wbd_gain;
03245a5e 2475
28fafca7
OG
2476 state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1));
2477 dib0090_write_reg(state, 0x10, state->wbdmux);
03245a5e 2478
28fafca7 2479 if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) {
4bd1a8dd 2480 dprintk("P1G : The cable band is selected and lna_tune = %d\n", tune->lna_tune);
28fafca7
OG
2481 dib0090_write_reg(state, 0x09, tune->lna_bias);
2482 dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim));
2483 } else
2484 dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias);
03245a5e 2485
03245a5e
OG
2486 dib0090_write_reg(state, 0x0c, tune->v2i);
2487 dib0090_write_reg(state, 0x0d, tune->mix);
2488 dib0090_write_reg(state, 0x0e, tune->load);
28fafca7 2489 *tune_state = CT_TUNER_STEP_1;
03245a5e 2490
28fafca7 2491 } else if (*tune_state == CT_TUNER_STEP_1) {
03245a5e
OG
2492 /* initialize the lt gain register */
2493 state->rf_lt_def = 0x7c00;
03245a5e
OG
2494
2495 dib0090_set_bandwidth(state);
2496 state->tuner_is_tuned = 1;
28fafca7 2497
b4d6046e
OG
2498 state->calibrate |= WBD_CAL;
2499 state->calibrate |= TEMP_CAL;
03245a5e
OG
2500 *tune_state = CT_TUNER_STOP;
2501 } else
2502 ret = FE_CALLBACK_TIME_NEVER;
2503 return ret;
2504}
2505
f2709c20
MCC
2506static void dib0090_release(struct dvb_frontend *fe)
2507{
2508 kfree(fe->tuner_priv);
2509 fe->tuner_priv = NULL;
2510}
2511
03245a5e
OG
2512enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
2513{
2514 struct dib0090_state *state = fe->tuner_priv;
2515
2516 return state->tune_state;
2517}
28fafca7 2518
03245a5e
OG
2519EXPORT_SYMBOL(dib0090_get_tune_state);
2520
2521int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
2522{
2523 struct dib0090_state *state = fe->tuner_priv;
2524
2525 state->tune_state = tune_state;
2526 return 0;
2527}
28fafca7 2528
03245a5e
OG
2529EXPORT_SYMBOL(dib0090_set_tune_state);
2530
2531static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
2532{
2533 struct dib0090_state *state = fe->tuner_priv;
2534
2535 *frequency = 1000 * state->current_rf;
2536 return 0;
2537}
2538
14d24d14 2539static int dib0090_set_params(struct dvb_frontend *fe)
03245a5e
OG
2540{
2541 struct dib0090_state *state = fe->tuner_priv;
28fafca7 2542 u32 ret;
03245a5e
OG
2543
2544 state->tune_state = CT_TUNER_START;
2545
2546 do {
2547 ret = dib0090_tune(fe);
0de04ca1 2548 if (ret == FE_CALLBACK_TIME_NEVER)
03245a5e 2549 break;
0de04ca1
MCC
2550
2551 /*
2552 * Despite dib0090_tune returns time at a 0.1 ms range,
2553 * the actual sleep time depends on CONFIG_HZ. The worse case
2554 * is when CONFIG_HZ=100. In such case, the minimum granularity
2555 * is 10ms. On some real field tests, the tuner sometimes don't
2556 * lock when this timer is lower than 10ms. So, enforce a 10ms
2557 * granularity and use usleep_range() instead of msleep().
2558 */
2559 ret = 10 * (ret + 99)/100;
2560 usleep_range(ret * 1000, (ret + 1) * 1000);
03245a5e
OG
2561 } while (state->tune_state != CT_TUNER_STOP);
2562
2563 return 0;
2564}
2565
2566static const struct dvb_tuner_ops dib0090_ops = {
2567 .info = {
2568 .name = "DiBcom DiB0090",
a3f90c75
MCC
2569 .frequency_min_hz = 45 * MHz,
2570 .frequency_max_hz = 860 * MHz,
2571 .frequency_step_hz = 1 * kHz,
03245a5e 2572 },
f2709c20 2573 .release = dib0090_release,
03245a5e
OG
2574
2575 .init = dib0090_wakeup,
2576 .sleep = dib0090_sleep,
2577 .set_params = dib0090_set_params,
2578 .get_frequency = dib0090_get_frequency,
2579};
2580
28fafca7
OG
2581static const struct dvb_tuner_ops dib0090_fw_ops = {
2582 .info = {
2583 .name = "DiBcom DiB0090",
a3f90c75
MCC
2584 .frequency_min_hz = 45 * MHz,
2585 .frequency_max_hz = 860 * MHz,
2586 .frequency_step_hz = 1 * kHz,
28fafca7 2587 },
f2709c20 2588 .release = dib0090_release,
28fafca7
OG
2589
2590 .init = NULL,
2591 .sleep = NULL,
2592 .set_params = NULL,
2593 .get_frequency = NULL,
2594};
2595
2596static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = {
2597 {470, 0, 250, 0, 100, 4},
2598 {860, 51, 866, 21, 375, 4},
b4d6046e
OG
2599 {1700, 0, 800, 0, 850, 4},
2600 {2900, 0, 250, 0, 100, 6},
28fafca7
OG
2601 {0xFFFF, 0, 0, 0, 0, 0},
2602};
2603
03245a5e
OG
2604struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
2605{
2606 struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
2607 if (st == NULL)
2608 return NULL;
2609
2610 st->config = config;
2611 st->i2c = i2c;
2612 st->fe = fe;
79fcce32 2613 mutex_init(&st->i2c_buffer_lock);
03245a5e
OG
2614 fe->tuner_priv = st;
2615
28fafca7
OG
2616 if (config->wbd == NULL)
2617 st->current_wbd_table = dib0090_wbd_table_default;
2618 else
2619 st->current_wbd_table = config->wbd;
2620
03245a5e
OG
2621 if (dib0090_reset(fe) != 0)
2622 goto free_mem;
2623
4bd1a8dd 2624 pr_info("DiB0090: successfully identified\n");
03245a5e
OG
2625 memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));
2626
2627 return fe;
2628 free_mem:
2629 kfree(st);
2630 fe->tuner_priv = NULL;
2631 return NULL;
2632}
28fafca7 2633
03245a5e
OG
2634EXPORT_SYMBOL(dib0090_register);
2635
28fafca7
OG
2636struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
2637{
2638 struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL);
2639 if (st == NULL)
2640 return NULL;
2641
2642 st->config = config;
2643 st->i2c = i2c;
2644 st->fe = fe;
79fcce32 2645 mutex_init(&st->i2c_buffer_lock);
28fafca7
OG
2646 fe->tuner_priv = st;
2647
2648 if (dib0090_fw_reset_digital(fe, st->config) != 0)
2649 goto free_mem;
2650
4bd1a8dd 2651 dprintk("DiB0090 FW: successfully identified\n");
28fafca7
OG
2652 memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops));
2653
2654 return fe;
b4d6046e 2655free_mem:
28fafca7
OG
2656 kfree(st);
2657 fe->tuner_priv = NULL;
2658 return NULL;
2659}
28fafca7
OG
2660EXPORT_SYMBOL(dib0090_fw_register);
2661
99e44da7
PB
2662MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
2663MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>");
03245a5e
OG
2664MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
2665MODULE_LICENSE("GPL");