Merge tag 'for-6.16-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 6 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 7 *
16a53ecc
N
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
1da177e4
LT
11 */
12
ae3c20cc
N
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 27 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
1da177e4 37
bff61975 38#include <linux/blkdev.h>
f6705578 39#include <linux/kthread.h>
f701d589 40#include <linux/raid/pq.h>
91c00924 41#include <linux/async_tx.h>
056075c7 42#include <linux/module.h>
07a3b417 43#include <linux/async.h>
bff61975 44#include <linux/seq_file.h>
36d1c647 45#include <linux/cpu.h>
5a0e3ad6 46#include <linux/slab.h>
8bda470e 47#include <linux/ratelimit.h>
851c30c9 48#include <linux/nodemask.h>
3f07c014 49
a9add5d9 50#include <trace/events/block.h>
aaf9f12e 51#include <linux/list_sort.h>
a9add5d9 52
43b2e5d8 53#include "md.h"
bff61975 54#include "raid5.h"
54071b38 55#include "raid0.h"
935fe098 56#include "md-bitmap.h"
ff875738 57#include "raid5-log.h"
72626685 58
394ed8e4
SL
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
851c30c9
SL
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
7e55c60a
LG
64#define RAID5_MAX_REQ_STRIPES 256
65
8e0e99ba
N
66static bool devices_handle_discard_safely = false;
67module_param(devices_handle_discard_safely, bool, 0644);
68MODULE_PARM_DESC(devices_handle_discard_safely,
69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 70static struct workqueue_struct *raid5_wq;
1da177e4 71
b42cd7b3
YK
72static void raid5_quiesce(struct mddev *mddev, int quiesce);
73
d1688a6d 74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19 75{
c911c46c 76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
db298e19
N
77 return &conf->stripe_hashtbl[hash];
78}
1da177e4 79
c911c46c 80static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
566c09c5 81{
c911c46c 82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
566c09c5
SL
83}
84
85static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
4631f39f 86 __acquires(&conf->device_lock)
566c09c5
SL
87{
88 spin_lock_irq(conf->hash_locks + hash);
89 spin_lock(&conf->device_lock);
90}
91
92static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
4631f39f 93 __releases(&conf->device_lock)
566c09c5
SL
94{
95 spin_unlock(&conf->device_lock);
96 spin_unlock_irq(conf->hash_locks + hash);
97}
98
99static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
4631f39f 100 __acquires(&conf->device_lock)
566c09c5
SL
101{
102 int i;
3d05f3ae 103 spin_lock_irq(conf->hash_locks);
566c09c5
SL
104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 spin_lock(&conf->device_lock);
107}
108
109static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
4631f39f 110 __releases(&conf->device_lock)
566c09c5
SL
111{
112 int i;
113 spin_unlock(&conf->device_lock);
3d05f3ae
JC
114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 spin_unlock(conf->hash_locks + i);
116 spin_unlock_irq(conf->hash_locks);
566c09c5
SL
117}
118
d0dabf7e
N
119/* Find first data disk in a raid6 stripe */
120static inline int raid6_d0(struct stripe_head *sh)
121{
67cc2b81
N
122 if (sh->ddf_layout)
123 /* ddf always start from first device */
124 return 0;
125 /* md starts just after Q block */
d0dabf7e
N
126 if (sh->qd_idx == sh->disks - 1)
127 return 0;
128 else
129 return sh->qd_idx + 1;
130}
16a53ecc
N
131static inline int raid6_next_disk(int disk, int raid_disks)
132{
133 disk++;
134 return (disk < raid_disks) ? disk : 0;
135}
a4456856 136
d0dabf7e
N
137/* When walking through the disks in a raid5, starting at raid6_d0,
138 * We need to map each disk to a 'slot', where the data disks are slot
139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140 * is raid_disks-1. This help does that mapping.
141 */
67cc2b81
N
142static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 int *count, int syndrome_disks)
d0dabf7e 144{
6629542e 145 int slot = *count;
67cc2b81 146
e4424fee 147 if (sh->ddf_layout)
6629542e 148 (*count)++;
d0dabf7e 149 if (idx == sh->pd_idx)
67cc2b81 150 return syndrome_disks;
d0dabf7e 151 if (idx == sh->qd_idx)
67cc2b81 152 return syndrome_disks + 1;
e4424fee 153 if (!sh->ddf_layout)
6629542e 154 (*count)++;
d0dabf7e
N
155 return slot;
156}
157
2314c2e3 158static void print_raid5_conf(struct r5conf *conf);
1da177e4 159
600aa109
DW
160static int stripe_operations_active(struct stripe_head *sh)
161{
162 return sh->check_state || sh->reconstruct_state ||
163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165}
166
535ae4eb
SL
167static bool stripe_is_lowprio(struct stripe_head *sh)
168{
169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 !test_bit(STRIPE_R5C_CACHING, &sh->state);
172}
173
851c30c9 174static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
4631f39f 175 __must_hold(&sh->raid_conf->device_lock)
851c30c9
SL
176{
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
bfc90cb0 179 int thread_cnt;
851c30c9
SL
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
194 group->stripes_cnt++;
195 sh->group = group;
851c30c9
SL
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
bfc90cb0
SL
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
851c30c9
SL
219}
220
566c09c5
SL
221static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
4631f39f 223 __must_hold(&conf->device_lock)
1da177e4 224{
1e6d690b
SL
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
4eb788df
SL
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
a39f7afd 235 /*
5ddf0440
SL
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
a39f7afd 241 */
5ddf0440
SL
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
a39f7afd
SL
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
1e6d690b 249
4eb788df
SL
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 253 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 260 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
851c30c9
SL
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
4eb788df
SL
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
1e6d690b
SL
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 294 r5c_check_cached_full_stripe(conf);
03b047f4
SL
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
1e6d690b 301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
302 }
303 }
1da177e4
LT
304 }
305}
d0dabf7e 306
566c09c5
SL
307static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
4631f39f 309 __must_hold(&conf->device_lock)
4eb788df
SL
310{
311 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
312 do_release_stripe(conf, sh, temp_inactive_list);
313}
314
315/*
316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317 *
318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319 * given time. Adding stripes only takes device lock, while deleting stripes
320 * only takes hash lock.
321 */
322static void release_inactive_stripe_list(struct r5conf *conf,
323 struct list_head *temp_inactive_list,
324 int hash)
325{
326 int size;
6ab2a4b8 327 bool do_wakeup = false;
566c09c5
SL
328 unsigned long flags;
329
330 if (hash == NR_STRIPE_HASH_LOCKS) {
331 size = NR_STRIPE_HASH_LOCKS;
332 hash = NR_STRIPE_HASH_LOCKS - 1;
333 } else
334 size = 1;
335 while (size) {
336 struct list_head *list = &temp_inactive_list[size - 1];
337
338 /*
6d036f7d 339 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
340 * remove stripes from the list
341 */
342 if (!list_empty_careful(list)) {
343 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
344 if (list_empty(conf->inactive_list + hash) &&
345 !list_empty(list))
346 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 347 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 348 do_wakeup = true;
566c09c5
SL
349 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 }
351 size--;
352 hash--;
353 }
354
355 if (do_wakeup) {
6ab2a4b8 356 wake_up(&conf->wait_for_stripe);
b1b46486
YL
357 if (atomic_read(&conf->active_stripes) == 0)
358 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
359 if (conf->retry_read_aligned)
360 md_wakeup_thread(conf->mddev->thread);
361 }
4eb788df
SL
362}
363
566c09c5
SL
364static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
4631f39f 366 __must_hold(&conf->device_lock)
773ca82f 367{
eae8263f 368 struct stripe_head *sh, *t;
773ca82f
SL
369 int count = 0;
370 struct llist_node *head;
371
372 head = llist_del_all(&conf->released_stripes);
d265d9dc 373 head = llist_reverse_order(head);
eae8263f 374 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
375 int hash;
376
773ca82f
SL
377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 smp_mb();
379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 /*
381 * Don't worry the bit is set here, because if the bit is set
382 * again, the count is always > 1. This is true for
383 * STRIPE_ON_UNPLUG_LIST bit too.
384 */
566c09c5
SL
385 hash = sh->hash_lock_index;
386 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
387 count++;
388 }
389
390 return count;
391}
392
6d036f7d 393void raid5_release_stripe(struct stripe_head *sh)
1da177e4 394{
d1688a6d 395 struct r5conf *conf = sh->raid_conf;
1da177e4 396 unsigned long flags;
566c09c5
SL
397 struct list_head list;
398 int hash;
773ca82f 399 bool wakeup;
16a53ecc 400
cf170f3f
ES
401 /* Avoid release_list until the last reference.
402 */
403 if (atomic_add_unless(&sh->count, -1, 1))
404 return;
405
ad4068de 406 if (unlikely(!conf->mddev->thread) ||
407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
408 goto slow_path;
409 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 if (wakeup)
411 md_wakeup_thread(conf->mddev->thread);
412 return;
413slow_path:
773ca82f 414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
685dbcaa 415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
566c09c5
SL
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
08edaaa6 419 spin_unlock_irqrestore(&conf->device_lock, flags);
566c09c5 420 release_inactive_stripe_list(conf, &list, hash);
4eb788df 421 }
1da177e4
LT
422}
423
fccddba0 424static inline void remove_hash(struct stripe_head *sh)
1da177e4 425{
45b4233c
DW
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
1da177e4 428
fccddba0 429 hlist_del_init(&sh->hash);
1da177e4
LT
430}
431
d1688a6d 432static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 433{
fccddba0 434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 435
45b4233c
DW
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
1da177e4 438
fccddba0 439 hlist_add_head(&sh->hash, hp);
1da177e4
LT
440}
441
1da177e4 442/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 443static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
444{
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
447
566c09c5 448 if (list_empty(conf->inactive_list + hash))
1da177e4 449 goto out;
566c09c5 450 first = (conf->inactive_list + hash)->next;
1da177e4
LT
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
453 remove_hash(sh);
454 atomic_inc(&conf->active_stripes);
566c09c5 455 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
458out:
459 return sh;
460}
461
046169f0
YY
462#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
463static void free_stripe_pages(struct stripe_head *sh)
1da177e4 464{
046169f0 465 int i;
1da177e4 466 struct page *p;
046169f0
YY
467
468 /* Have not allocate page pool */
469 if (!sh->pages)
470 return;
471
472 for (i = 0; i < sh->nr_pages; i++) {
473 p = sh->pages[i];
474 if (p)
475 put_page(p);
476 sh->pages[i] = NULL;
477 }
478}
479
480static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481{
482 int i;
483 struct page *p;
484
485 for (i = 0; i < sh->nr_pages; i++) {
486 /* The page have allocated. */
487 if (sh->pages[i])
488 continue;
489
490 p = alloc_page(gfp);
491 if (!p) {
492 free_stripe_pages(sh);
493 return -ENOMEM;
494 }
495 sh->pages[i] = p;
496 }
497 return 0;
498}
499
500static int
501init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502{
503 int nr_pages, cnt;
504
505 if (sh->pages)
506 return 0;
507
508 /* Each of the sh->dev[i] need one conf->stripe_size */
509 cnt = PAGE_SIZE / conf->stripe_size;
510 nr_pages = (disks + cnt - 1) / cnt;
511
512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 if (!sh->pages)
514 return -ENOMEM;
515 sh->nr_pages = nr_pages;
516 sh->stripes_per_page = cnt;
517 return 0;
518}
519#endif
520
521static void shrink_buffers(struct stripe_head *sh)
522{
1da177e4 523 int i;
e4e11e38 524 int num = sh->raid_conf->pool_size;
1da177e4 525
046169f0 526#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
e4e11e38 527 for (i = 0; i < num ; i++) {
046169f0
YY
528 struct page *p;
529
d592a996 530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
531 p = sh->dev[i].page;
532 if (!p)
533 continue;
534 sh->dev[i].page = NULL;
2d1f3b5d 535 put_page(p);
1da177e4 536 }
046169f0
YY
537#else
538 for (i = 0; i < num; i++)
539 sh->dev[i].page = NULL;
540 free_stripe_pages(sh); /* Free pages */
541#endif
1da177e4
LT
542}
543
a9683a79 544static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
545{
546 int i;
e4e11e38 547 int num = sh->raid_conf->pool_size;
1da177e4 548
046169f0 549#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
e4e11e38 550 for (i = 0; i < num; i++) {
1da177e4
LT
551 struct page *page;
552
a9683a79 553 if (!(page = alloc_page(gfp))) {
1da177e4
LT
554 return 1;
555 }
556 sh->dev[i].page = page;
d592a996 557 sh->dev[i].orig_page = page;
7aba13b7 558 sh->dev[i].offset = 0;
1da177e4 559 }
046169f0
YY
560#else
561 if (alloc_stripe_pages(sh, gfp))
562 return -ENOMEM;
3418d036 563
046169f0
YY
564 for (i = 0; i < num; i++) {
565 sh->dev[i].page = raid5_get_dev_page(sh, i);
566 sh->dev[i].orig_page = sh->dev[i].page;
567 sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 }
569#endif
1da177e4
LT
570 return 0;
571}
572
d1688a6d 573static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 574 struct stripe_head *sh);
1da177e4 575
b5663ba4 576static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 577{
d1688a6d 578 struct r5conf *conf = sh->raid_conf;
566c09c5 579 int i, seq;
1da177e4 580
78bafebd
ES
581 BUG_ON(atomic_read(&sh->count) != 0);
582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 583 BUG_ON(stripe_operations_active(sh));
59fc630b 584 BUG_ON(sh->batch_head);
d84e0f10 585
45b4233c 586 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 587 (unsigned long long)sector);
566c09c5
SL
588retry:
589 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 590 sh->generation = conf->generation - previous;
b5663ba4 591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 592 sh->sector = sector;
911d4ee8 593 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
594 sh->state = 0;
595
7ecaa1e6 596 for (i = sh->disks; i--; ) {
1da177e4
LT
597 struct r5dev *dev = &sh->dev[i];
598
d84e0f10 599 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 600 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 601 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 602 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 603 dev->read, dev->towrite, dev->written,
1da177e4 604 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 605 WARN_ON(1);
1da177e4
LT
606 }
607 dev->flags = 0;
27a4ff8f 608 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4 609 }
566c09c5
SL
610 if (read_seqcount_retry(&conf->gen_lock, seq))
611 goto retry;
7a87f434 612 sh->overwrite_disks = 0;
1da177e4 613 insert_hash(conf, sh);
851c30c9 614 sh->cpu = smp_processor_id();
da41ba65 615 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
616}
617
d1688a6d 618static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 619 short generation)
1da177e4
LT
620{
621 struct stripe_head *sh;
622
45b4233c 623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 625 if (sh->sector == sector && sh->generation == generation)
1da177e4 626 return sh;
45b4233c 627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
628 return NULL;
629}
630
1baa1126
LG
631static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 sector_t sector, short generation, int hash)
633{
634 int inc_empty_inactive_list_flag;
635 struct stripe_head *sh;
636
637 sh = __find_stripe(conf, sector, generation);
638 if (!sh)
639 return NULL;
640
641 if (atomic_inc_not_zero(&sh->count))
642 return sh;
643
644 /*
645 * Slow path. The reference count is zero which means the stripe must
646 * be on a list (sh->lru). Must remove the stripe from the list that
647 * references it with the device_lock held.
648 */
649
650 spin_lock(&conf->device_lock);
651 if (!atomic_read(&sh->count)) {
652 if (!test_bit(STRIPE_HANDLE, &sh->state))
653 atomic_inc(&conf->active_stripes);
654 BUG_ON(list_empty(&sh->lru) &&
655 !test_bit(STRIPE_EXPANDING, &sh->state));
656 inc_empty_inactive_list_flag = 0;
657 if (!list_empty(conf->inactive_list + hash))
658 inc_empty_inactive_list_flag = 1;
659 list_del_init(&sh->lru);
660 if (list_empty(conf->inactive_list + hash) &&
661 inc_empty_inactive_list_flag)
662 atomic_inc(&conf->empty_inactive_list_nr);
663 if (sh->group) {
664 sh->group->stripes_cnt--;
665 sh->group = NULL;
666 }
667 }
668 atomic_inc(&sh->count);
669 spin_unlock(&conf->device_lock);
670
671 return sh;
672}
673
674806d6
N
674/*
675 * Need to check if array has failed when deciding whether to:
676 * - start an array
677 * - remove non-faulty devices
678 * - add a spare
679 * - allow a reshape
680 * This determination is simple when no reshape is happening.
681 * However if there is a reshape, we need to carefully check
682 * both the before and after sections.
683 * This is because some failed devices may only affect one
684 * of the two sections, and some non-in_sync devices may
685 * be insync in the section most affected by failed devices.
4631f39f
LG
686 *
687 * Most calls to this function hold &conf->device_lock. Calls
688 * in raid5_run() do not require the lock as no other threads
689 * have been started yet.
674806d6 690 */
2e38a37f 691int raid5_calc_degraded(struct r5conf *conf)
674806d6 692{
908f4fbd 693 int degraded, degraded2;
674806d6 694 int i;
674806d6 695
674806d6
N
696 degraded = 0;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
ad860670
YK
698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699
e5c86471 700 if (rdev && test_bit(Faulty, &rdev->flags))
ad860670 701 rdev = READ_ONCE(conf->disks[i].replacement);
674806d6
N
702 if (!rdev || test_bit(Faulty, &rdev->flags))
703 degraded++;
704 else if (test_bit(In_sync, &rdev->flags))
705 ;
706 else
707 /* not in-sync or faulty.
708 * If the reshape increases the number of devices,
709 * this is being recovered by the reshape, so
710 * this 'previous' section is not in_sync.
711 * If the number of devices is being reduced however,
712 * the device can only be part of the array if
713 * we are reverting a reshape, so this section will
714 * be in-sync.
715 */
716 if (conf->raid_disks >= conf->previous_raid_disks)
717 degraded++;
718 }
908f4fbd
N
719 if (conf->raid_disks == conf->previous_raid_disks)
720 return degraded;
908f4fbd 721 degraded2 = 0;
674806d6 722 for (i = 0; i < conf->raid_disks; i++) {
ad860670
YK
723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724
e5c86471 725 if (rdev && test_bit(Faulty, &rdev->flags))
ad860670 726 rdev = READ_ONCE(conf->disks[i].replacement);
674806d6 727 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 728 degraded2++;
674806d6
N
729 else if (test_bit(In_sync, &rdev->flags))
730 ;
731 else
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
736 */
737 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 738 degraded2++;
674806d6 739 }
908f4fbd
N
740 if (degraded2 > degraded)
741 return degraded2;
742 return degraded;
743}
744
57668f0a 745static bool has_failed(struct r5conf *conf)
908f4fbd 746{
57668f0a 747 int degraded = conf->mddev->degraded;
908f4fbd 748
57668f0a
MT
749 if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 return true;
908f4fbd 751
57668f0a
MT
752 if (conf->mddev->reshape_position != MaxSector)
753 degraded = raid5_calc_degraded(conf);
754
755 return degraded > conf->max_degraded;
674806d6
N
756}
757
df6b0e20
LG
758enum stripe_result {
759 STRIPE_SUCCESS = 0,
760 STRIPE_RETRY,
761 STRIPE_SCHEDULE_AND_RETRY,
762 STRIPE_FAIL,
41425f96 763 STRIPE_WAIT_RESHAPE,
df6b0e20
LG
764};
765
766struct stripe_request_ctx {
767 /* a reference to the last stripe_head for batching */
768 struct stripe_head *batch_last;
769
770 /* first sector in the request */
771 sector_t first_sector;
772
773 /* last sector in the request */
774 sector_t last_sector;
775
776 /*
777 * bitmap to track stripe sectors that have been added to stripes
778 * add one to account for unaligned requests
779 */
780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781
782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783 bool do_flush;
784};
785
3514da58
LG
786/*
787 * Block until another thread clears R5_INACTIVE_BLOCKED or
788 * there are fewer than 3/4 the maximum number of active stripes
789 * and there is an inactive stripe available.
790 */
791static bool is_inactive_blocked(struct r5conf *conf, int hash)
792{
3514da58
LG
793 if (list_empty(conf->inactive_list + hash))
794 return false;
795
796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797 return true;
798
f9287c3e
LG
799 return (atomic_read(&conf->active_stripes) <
800 (conf->max_nr_stripes * 3 / 4));
3514da58
LG
801}
802
2f2d51ef 803struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
20313b1b 804 struct stripe_request_ctx *ctx, sector_t sector,
2f2d51ef 805 unsigned int flags)
1da177e4
LT
806{
807 struct stripe_head *sh;
c911c46c 808 int hash = stripe_hash_locks_hash(conf, sector);
2f2d51ef 809 int previous = !!(flags & R5_GAS_PREVIOUS);
1da177e4 810
45b4233c 811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 812
566c09c5 813 spin_lock_irq(conf->hash_locks + hash);
1da177e4 814
b6d56144 815 for (;;) {
2f2d51ef 816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
b6d56144
LG
817 /*
818 * Must release the reference to batch_last before
819 * waiting, on quiesce, otherwise the batch_last will
820 * hold a reference to a stripe and raid5_quiesce()
821 * will deadlock waiting for active_stripes to go to
822 * zero.
823 */
824 if (ctx && ctx->batch_last) {
825 raid5_release_stripe(ctx->batch_last);
826 ctx->batch_last = NULL;
827 }
828
829 wait_event_lock_irq(conf->wait_for_quiescent,
830 !conf->quiesce,
831 *(conf->hash_locks + hash));
20313b1b
LG
832 }
833
b6d56144
LG
834 sh = find_get_stripe(conf, sector, conf->generation - previous,
835 hash);
836 if (sh)
837 break;
838
839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 sh = get_free_stripe(conf, hash);
841 if (sh) {
842 r5c_check_stripe_cache_usage(conf);
843 init_stripe(sh, sector, previous);
844 atomic_inc(&sh->count);
845 break;
846 }
20313b1b 847
b6d56144
LG
848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 set_bit(R5_ALLOC_MORE, &conf->cache_state);
850 }
1baa1126 851
2f2d51ef 852 if (flags & R5_GAS_NOBLOCK)
b6d56144 853 break;
5165ed40 854
b6d56144
LG
855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 r5l_wake_reclaim(conf->log, 0);
2fd7b0f6
DJ
857
858 /* release batch_last before wait to avoid risk of deadlock */
859 if (ctx && ctx->batch_last) {
860 raid5_release_stripe(ctx->batch_last);
861 ctx->batch_last = NULL;
862 }
863
b6d56144
LG
864 wait_event_lock_irq(conf->wait_for_stripe,
865 is_inactive_blocked(conf, hash),
866 *(conf->hash_locks + hash));
867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
5165ed40
LG
868 }
869
566c09c5 870 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
871 return sh;
872}
873
7a87f434 874static bool is_full_stripe_write(struct stripe_head *sh)
875{
876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
878}
879
59fc630b 880static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
368ecade
CH
881 __acquires(&sh1->stripe_lock)
882 __acquires(&sh2->stripe_lock)
59fc630b 883{
59fc630b 884 if (sh1 > sh2) {
3d05f3ae 885 spin_lock_irq(&sh2->stripe_lock);
59fc630b 886 spin_lock_nested(&sh1->stripe_lock, 1);
887 } else {
3d05f3ae 888 spin_lock_irq(&sh1->stripe_lock);
59fc630b 889 spin_lock_nested(&sh2->stripe_lock, 1);
890 }
891}
892
893static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
368ecade
CH
894 __releases(&sh1->stripe_lock)
895 __releases(&sh2->stripe_lock)
59fc630b 896{
897 spin_unlock(&sh1->stripe_lock);
3d05f3ae 898 spin_unlock_irq(&sh2->stripe_lock);
59fc630b 899}
900
901/* Only freshly new full stripe normal write stripe can be added to a batch list */
902static bool stripe_can_batch(struct stripe_head *sh)
903{
9c3e333d
SL
904 struct r5conf *conf = sh->raid_conf;
905
e254de6b 906 if (raid5_has_log(conf) || raid5_has_ppl(conf))
9c3e333d 907 return false;
59fc630b 908 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
cd5fc653 909 is_full_stripe_write(sh);
59fc630b 910}
911
912/* we only do back search */
3312e6c8
LG
913static void stripe_add_to_batch_list(struct r5conf *conf,
914 struct stripe_head *sh, struct stripe_head *last_sh)
59fc630b 915{
916 struct stripe_head *head;
917 sector_t head_sector, tmp_sec;
918 int hash;
919 int dd_idx;
920
59fc630b 921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 tmp_sec = sh->sector;
923 if (!sector_div(tmp_sec, conf->chunk_sectors))
924 return;
c911c46c 925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
59fc630b 926
3312e6c8
LG
927 if (last_sh && head_sector == last_sh->sector) {
928 head = last_sh;
929 atomic_inc(&head->count);
930 } else {
931 hash = stripe_hash_locks_hash(conf, head_sector);
932 spin_lock_irq(conf->hash_locks + hash);
933 head = find_get_stripe(conf, head_sector, conf->generation,
934 hash);
935 spin_unlock_irq(conf->hash_locks + hash);
936 if (!head)
937 return;
938 if (!stripe_can_batch(head))
939 goto out;
940 }
59fc630b 941
942 lock_two_stripes(head, sh);
943 /* clear_batch_ready clear the flag */
944 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 goto unlock_out;
946
947 if (sh->batch_head)
948 goto unlock_out;
949
950 dd_idx = 0;
951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952 dd_idx++;
1eff9d32 953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 955 goto unlock_out;
956
957 if (head->batch_head) {
958 spin_lock(&head->batch_head->batch_lock);
959 /* This batch list is already running */
960 if (!stripe_can_batch(head)) {
961 spin_unlock(&head->batch_head->batch_lock);
962 goto unlock_out;
963 }
3664847d
SL
964 /*
965 * We must assign batch_head of this stripe within the
966 * batch_lock, otherwise clear_batch_ready of batch head
967 * stripe could clear BATCH_READY bit of this stripe and
968 * this stripe->batch_head doesn't get assigned, which
969 * could confuse clear_batch_ready for this stripe
970 */
971 sh->batch_head = head->batch_head;
59fc630b 972
973 /*
974 * at this point, head's BATCH_READY could be cleared, but we
975 * can still add the stripe to batch list
976 */
977 list_add(&sh->batch_list, &head->batch_list);
978 spin_unlock(&head->batch_head->batch_lock);
59fc630b 979 } else {
980 head->batch_head = head;
981 sh->batch_head = head->batch_head;
982 spin_lock(&head->batch_lock);
983 list_add_tail(&sh->batch_list, &head->batch_list);
984 spin_unlock(&head->batch_lock);
985 }
986
987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 if (atomic_dec_return(&conf->preread_active_stripes)
989 < IO_THRESHOLD)
990 md_wakeup_thread(conf->mddev->thread);
991
2b6b2457
N
992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 int seq = sh->bm_seq;
994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 sh->batch_head->bm_seq > seq)
996 seq = sh->batch_head->bm_seq;
997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 sh->batch_head->bm_seq = seq;
999 }
1000
59fc630b 1001 atomic_inc(&sh->count);
1002unlock_out:
1003 unlock_two_stripes(head, sh);
1004out:
6d036f7d 1005 raid5_release_stripe(head);
59fc630b 1006}
1007
05616be5
N
1008/* Determine if 'data_offset' or 'new_data_offset' should be used
1009 * in this stripe_head.
1010 */
1011static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012{
1013 sector_t progress = conf->reshape_progress;
1014 /* Need a memory barrier to make sure we see the value
1015 * of conf->generation, or ->data_offset that was set before
1016 * reshape_progress was updated.
1017 */
1018 smp_rmb();
1019 if (progress == MaxSector)
1020 return 0;
1021 if (sh->generation == conf->generation - 1)
1022 return 0;
1023 /* We are in a reshape, and this is a new-generation stripe,
1024 * so use new_data_offset.
1025 */
1026 return 1;
1027}
1028
aaf9f12e 1029static void dispatch_bio_list(struct bio_list *tmp)
765d704d 1030{
765d704d
SL
1031 struct bio *bio;
1032
aaf9f12e 1033 while ((bio = bio_list_pop(tmp)))
ed00aabd 1034 submit_bio_noacct(bio);
aaf9f12e
SL
1035}
1036
4f0f586b
ST
1037static int cmp_stripe(void *priv, const struct list_head *a,
1038 const struct list_head *b)
aaf9f12e
SL
1039{
1040 const struct r5pending_data *da = list_entry(a,
1041 struct r5pending_data, sibling);
1042 const struct r5pending_data *db = list_entry(b,
1043 struct r5pending_data, sibling);
1044 if (da->sector > db->sector)
1045 return 1;
1046 if (da->sector < db->sector)
1047 return -1;
1048 return 0;
1049}
1050
1051static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 struct bio_list *list)
1053{
1054 struct r5pending_data *data;
1055 struct list_head *first, *next = NULL;
1056 int cnt = 0;
1057
1058 if (conf->pending_data_cnt == 0)
1059 return;
1060
1061 list_sort(NULL, &conf->pending_list, cmp_stripe);
1062
1063 first = conf->pending_list.next;
1064
1065 /* temporarily move the head */
1066 if (conf->next_pending_data)
1067 list_move_tail(&conf->pending_list,
1068 &conf->next_pending_data->sibling);
1069
1070 while (!list_empty(&conf->pending_list)) {
1071 data = list_first_entry(&conf->pending_list,
1072 struct r5pending_data, sibling);
1073 if (&data->sibling == first)
1074 first = data->sibling.next;
1075 next = data->sibling.next;
1076
1077 bio_list_merge(list, &data->bios);
1078 list_move(&data->sibling, &conf->free_list);
1079 cnt++;
1080 if (cnt >= target)
1081 break;
1082 }
1083 conf->pending_data_cnt -= cnt;
1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085
1086 if (next != &conf->pending_list)
1087 conf->next_pending_data = list_entry(next,
1088 struct r5pending_data, sibling);
1089 else
1090 conf->next_pending_data = NULL;
1091 /* list isn't empty */
1092 if (first != &conf->pending_list)
1093 list_move_tail(&conf->pending_list, first);
1094}
1095
1096static void flush_deferred_bios(struct r5conf *conf)
1097{
1098 struct bio_list tmp = BIO_EMPTY_LIST;
1099
1100 if (conf->pending_data_cnt == 0)
765d704d
SL
1101 return;
1102
765d704d 1103 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
1106 spin_unlock(&conf->pending_bios_lock);
1107
aaf9f12e 1108 dispatch_bio_list(&tmp);
765d704d
SL
1109}
1110
aaf9f12e
SL
1111static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 struct bio_list *bios)
765d704d 1113{
aaf9f12e
SL
1114 struct bio_list tmp = BIO_EMPTY_LIST;
1115 struct r5pending_data *ent;
1116
765d704d 1117 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
1118 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119 sibling);
1120 list_move_tail(&ent->sibling, &conf->pending_list);
1121 ent->sector = sector;
1122 bio_list_init(&ent->bios);
1123 bio_list_merge(&ent->bios, bios);
1124 conf->pending_data_cnt++;
1125 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127
765d704d 1128 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
1129
1130 dispatch_bio_list(&tmp);
765d704d
SL
1131}
1132
6712ecf8 1133static void
4246a0b6 1134raid5_end_read_request(struct bio *bi);
6712ecf8 1135static void
4246a0b6 1136raid5_end_write_request(struct bio *bi);
91c00924 1137
c4e5ac0a 1138static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 1139{
d1688a6d 1140 struct r5conf *conf = sh->raid_conf;
91c00924 1141 int i, disks = sh->disks;
59fc630b 1142 struct stripe_head *head_sh = sh;
aaf9f12e 1143 struct bio_list pending_bios = BIO_EMPTY_LIST;
03a6b195 1144 struct r5dev *dev;
aaf9f12e 1145 bool should_defer;
91c00924
DW
1146
1147 might_sleep();
1148
ff875738
AP
1149 if (log_stripe(sh, s) == 0)
1150 return;
1e6d690b 1151
aaf9f12e 1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1e6d690b 1153
91c00924 1154 for (i = disks; i--; ) {
a9010741
BVA
1155 enum req_op op;
1156 blk_opf_t op_flags = 0;
9a3e1101 1157 int replace_only = 0;
977df362
N
1158 struct bio *bi, *rbi;
1159 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 1160
1161 sh = head_sh;
e9c7469b 1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1163 op = REQ_OP_WRITE;
e9c7469b 1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1165 op_flags = REQ_FUA;
9e444768 1166 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1167 op = REQ_OP_DISCARD;
e9c7469b 1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1169 op = REQ_OP_READ;
9a3e1101
N
1170 else if (test_and_clear_bit(R5_WantReplace,
1171 &sh->dev[i].flags)) {
796a5cf0 1172 op = REQ_OP_WRITE;
9a3e1101
N
1173 replace_only = 1;
1174 } else
91c00924 1175 continue;
bc0934f0 1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1177 op_flags |= REQ_SYNC;
91c00924 1178
59fc630b 1179again:
03a6b195
CH
1180 dev = &sh->dev[i];
1181 bi = &dev->req;
1182 rbi = &dev->rreq; /* For writing to replacement */
91c00924 1183
ad860670
YK
1184 rdev = conf->disks[i].rdev;
1185 rrdev = conf->disks[i].replacement;
796a5cf0 1186 if (op_is_write(op)) {
9a3e1101
N
1187 if (replace_only)
1188 rdev = NULL;
dd054fce
N
1189 if (rdev == rrdev)
1190 /* We raced and saw duplicates */
1191 rrdev = NULL;
9a3e1101 1192 } else {
59fc630b 1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1194 rdev = rrdev;
1195 rrdev = NULL;
1196 }
977df362 1197
91c00924
DW
1198 if (rdev && test_bit(Faulty, &rdev->flags))
1199 rdev = NULL;
1200 if (rdev)
1201 atomic_inc(&rdev->nr_pending);
977df362
N
1202 if (rrdev && test_bit(Faulty, &rrdev->flags))
1203 rrdev = NULL;
1204 if (rrdev)
1205 atomic_inc(&rrdev->nr_pending);
91c00924 1206
73e92e51 1207 /* We have already checked bad blocks for reads. Now
977df362
N
1208 * need to check for writes. We never accept write errors
1209 * on the replacement, so we don't to check rrdev.
73e92e51 1210 */
796a5cf0 1211 while (op_is_write(op) && rdev &&
73e92e51 1212 test_bit(WriteErrorSeen, &rdev->flags)) {
3a0f007b
YK
1213 int bad = rdev_has_badblock(rdev, sh->sector,
1214 RAID5_STRIPE_SECTORS(conf));
73e92e51
N
1215 if (!bad)
1216 break;
1217
1218 if (bad < 0) {
1219 set_bit(BlockedBadBlocks, &rdev->flags);
1220 if (!conf->mddev->external &&
2953079c 1221 conf->mddev->sb_flags) {
73e92e51
N
1222 /* It is very unlikely, but we might
1223 * still need to write out the
1224 * bad block log - better give it
1225 * a chance*/
1226 md_check_recovery(conf->mddev);
1227 }
1850753d 1228 /*
1229 * Because md_wait_for_blocked_rdev
1230 * will dec nr_pending, we must
1231 * increment it first.
1232 */
1233 atomic_inc(&rdev->nr_pending);
73e92e51
N
1234 md_wait_for_blocked_rdev(rdev, conf->mddev);
1235 } else {
1236 /* Acknowledged bad block - skip the write */
1237 rdev_dec_pending(rdev, conf->mddev);
1238 rdev = NULL;
1239 }
1240 }
1241
91c00924 1242 if (rdev) {
2b7497f0
DW
1243 set_bit(STRIPE_IO_STARTED, &sh->state);
1244
03a6b195 1245 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
796a5cf0 1246 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1247 ? raid5_end_write_request
1248 : raid5_end_read_request;
1249 bi->bi_private = sh;
1250
6296b960 1251 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1252 __func__, (unsigned long long)sh->sector,
1eff9d32 1253 bi->bi_opf, i);
91c00924 1254 atomic_inc(&sh->count);
59fc630b 1255 if (sh != head_sh)
1256 atomic_inc(&head_sh->count);
05616be5 1257 if (use_new_offset(conf, sh))
4f024f37 1258 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1259 + rdev->new_data_offset);
1260 else
4f024f37 1261 bi->bi_iter.bi_sector = (sh->sector
05616be5 1262 + rdev->data_offset);
59fc630b 1263 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1264 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1265
d592a996
SL
1266 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1267 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1268
1269 if (!op_is_write(op) &&
1270 test_bit(R5_InJournal, &sh->dev[i].flags))
1271 /*
1272 * issuing read for a page in journal, this
1273 * must be preparing for prexor in rmw; read
1274 * the data into orig_page
1275 */
1276 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1277 else
1278 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1279 bi->bi_vcnt = 1;
c911c46c 1280 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
7aba13b7 1281 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
c911c46c 1282 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
37c61ff3
SL
1283 /*
1284 * If this is discard request, set bi_vcnt 0. We don't
1285 * want to confuse SCSI because SCSI will replace payload
1286 */
796a5cf0 1287 if (op == REQ_OP_DISCARD)
37c61ff3 1288 bi->bi_vcnt = 0;
977df362
N
1289 if (rrdev)
1290 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a 1291
c396b90e 1292 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
aaf9f12e
SL
1293 if (should_defer && op_is_write(op))
1294 bio_list_add(&pending_bios, bi);
1295 else
ed00aabd 1296 submit_bio_noacct(bi);
977df362
N
1297 }
1298 if (rrdev) {
977df362
N
1299 set_bit(STRIPE_IO_STARTED, &sh->state);
1300
03a6b195 1301 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
796a5cf0 1302 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1303 rbi->bi_end_io = raid5_end_write_request;
1304 rbi->bi_private = sh;
1305
6296b960 1306 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1307 "replacement disc %d\n",
1308 __func__, (unsigned long long)sh->sector,
1eff9d32 1309 rbi->bi_opf, i);
977df362 1310 atomic_inc(&sh->count);
59fc630b 1311 if (sh != head_sh)
1312 atomic_inc(&head_sh->count);
05616be5 1313 if (use_new_offset(conf, sh))
4f024f37 1314 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1315 + rrdev->new_data_offset);
1316 else
4f024f37 1317 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1318 + rrdev->data_offset);
d592a996
SL
1319 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1320 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1321 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1322 rbi->bi_vcnt = 1;
c911c46c 1323 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
7aba13b7 1324 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
c911c46c 1325 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
37c61ff3
SL
1326 /*
1327 * If this is discard request, set bi_vcnt 0. We don't
1328 * want to confuse SCSI because SCSI will replace payload
1329 */
796a5cf0 1330 if (op == REQ_OP_DISCARD)
37c61ff3 1331 rbi->bi_vcnt = 0;
c396b90e 1332 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
aaf9f12e
SL
1333 if (should_defer && op_is_write(op))
1334 bio_list_add(&pending_bios, rbi);
1335 else
ed00aabd 1336 submit_bio_noacct(rbi);
977df362
N
1337 }
1338 if (!rdev && !rrdev) {
6296b960 1339 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1340 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1341 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1342 set_bit(STRIPE_HANDLE, &sh->state);
1343 }
59fc630b 1344
1345 if (!head_sh->batch_head)
1346 continue;
1347 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1348 batch_list);
1349 if (sh != head_sh)
1350 goto again;
91c00924 1351 }
aaf9f12e
SL
1352
1353 if (should_defer && !bio_list_empty(&pending_bios))
1354 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1355}
1356
1357static struct dma_async_tx_descriptor *
d592a996 1358async_copy_data(int frombio, struct bio *bio, struct page **page,
248728dd 1359 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1360 struct stripe_head *sh, int no_skipcopy)
91c00924 1361{
7988613b
KO
1362 struct bio_vec bvl;
1363 struct bvec_iter iter;
91c00924 1364 struct page *bio_page;
91c00924 1365 int page_offset;
a08abd8c 1366 struct async_submit_ctl submit;
0403e382 1367 enum async_tx_flags flags = 0;
c911c46c 1368 struct r5conf *conf = sh->raid_conf;
91c00924 1369
4f024f37
KO
1370 if (bio->bi_iter.bi_sector >= sector)
1371 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1372 else
4f024f37 1373 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1374
0403e382
DW
1375 if (frombio)
1376 flags |= ASYNC_TX_FENCE;
1377 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1378
7988613b
KO
1379 bio_for_each_segment(bvl, bio, iter) {
1380 int len = bvl.bv_len;
91c00924
DW
1381 int clen;
1382 int b_offset = 0;
1383
1384 if (page_offset < 0) {
1385 b_offset = -page_offset;
1386 page_offset += b_offset;
1387 len -= b_offset;
1388 }
1389
c911c46c
YY
1390 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1391 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
91c00924
DW
1392 else
1393 clen = len;
1394
1395 if (clen > 0) {
7988613b
KO
1396 b_offset += bvl.bv_offset;
1397 bio_page = bvl.bv_page;
d592a996 1398 if (frombio) {
c911c46c 1399 if (conf->skip_copy &&
d592a996 1400 b_offset == 0 && page_offset == 0 &&
c911c46c 1401 clen == RAID5_STRIPE_SIZE(conf) &&
1e6d690b 1402 !no_skipcopy)
d592a996
SL
1403 *page = bio_page;
1404 else
248728dd 1405 tx = async_memcpy(*page, bio_page, page_offset + poff,
a08abd8c 1406 b_offset, clen, &submit);
d592a996
SL
1407 } else
1408 tx = async_memcpy(bio_page, *page, b_offset,
248728dd 1409 page_offset + poff, clen, &submit);
91c00924 1410 }
a08abd8c
DW
1411 /* chain the operations */
1412 submit.depend_tx = tx;
1413
91c00924
DW
1414 if (clen < len) /* hit end of page */
1415 break;
1416 page_offset += len;
1417 }
1418
1419 return tx;
1420}
1421
1422static void ops_complete_biofill(void *stripe_head_ref)
1423{
1424 struct stripe_head *sh = stripe_head_ref;
e4d84909 1425 int i;
c911c46c 1426 struct r5conf *conf = sh->raid_conf;
91c00924 1427
e46b272b 1428 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1429 (unsigned long long)sh->sector);
1430
1431 /* clear completed biofills */
1432 for (i = sh->disks; i--; ) {
1433 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1434
1435 /* acknowledge completion of a biofill operation */
e4d84909
DW
1436 /* and check if we need to reply to a read request,
1437 * new R5_Wantfill requests are held off until
83de75cc 1438 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1439 */
1440 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1441 struct bio *rbi, *rbi2;
91c00924 1442
91c00924
DW
1443 BUG_ON(!dev->read);
1444 rbi = dev->read;
1445 dev->read = NULL;
4f024f37 1446 while (rbi && rbi->bi_iter.bi_sector <
c911c46c
YY
1447 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1448 rbi2 = r5_next_bio(conf, rbi, dev->sector);
016c76ac 1449 bio_endio(rbi);
91c00924
DW
1450 rbi = rbi2;
1451 }
1452 }
1453 }
83de75cc 1454 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1455
e4d84909 1456 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1457 raid5_release_stripe(sh);
91c00924
DW
1458}
1459
1460static void ops_run_biofill(struct stripe_head *sh)
1461{
1462 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1463 struct async_submit_ctl submit;
91c00924 1464 int i;
c911c46c 1465 struct r5conf *conf = sh->raid_conf;
91c00924 1466
59fc630b 1467 BUG_ON(sh->batch_head);
e46b272b 1468 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1469 (unsigned long long)sh->sector);
1470
1471 for (i = sh->disks; i--; ) {
1472 struct r5dev *dev = &sh->dev[i];
1473 if (test_bit(R5_Wantfill, &dev->flags)) {
1474 struct bio *rbi;
b17459c0 1475 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1476 dev->read = rbi = dev->toread;
1477 dev->toread = NULL;
b17459c0 1478 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1479 while (rbi && rbi->bi_iter.bi_sector <
c911c46c 1480 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
d592a996 1481 tx = async_copy_data(0, rbi, &dev->page,
248728dd 1482 dev->offset,
1e6d690b 1483 dev->sector, tx, sh, 0);
c911c46c 1484 rbi = r5_next_bio(conf, rbi, dev->sector);
91c00924
DW
1485 }
1486 }
1487 }
1488
1489 atomic_inc(&sh->count);
a08abd8c
DW
1490 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1491 async_trigger_callback(&submit);
91c00924
DW
1492}
1493
4e7d2c0a 1494static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1495{
4e7d2c0a 1496 struct r5dev *tgt;
91c00924 1497
4e7d2c0a
DW
1498 if (target < 0)
1499 return;
91c00924 1500
4e7d2c0a 1501 tgt = &sh->dev[target];
91c00924
DW
1502 set_bit(R5_UPTODATE, &tgt->flags);
1503 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1504 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1505}
1506
ac6b53b6 1507static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1508{
1509 struct stripe_head *sh = stripe_head_ref;
91c00924 1510
e46b272b 1511 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1512 (unsigned long long)sh->sector);
1513
ac6b53b6 1514 /* mark the computed target(s) as uptodate */
4e7d2c0a 1515 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1516 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1517
ecc65c9b
DW
1518 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1519 if (sh->check_state == check_state_compute_run)
1520 sh->check_state = check_state_compute_result;
91c00924 1521 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1522 raid5_release_stripe(sh);
91c00924
DW
1523}
1524
d6f38f31 1525/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4 1526static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
d6f38f31 1527{
b330e6a4 1528 return percpu->scribble + i * percpu->scribble_obj_size;
46d5b785 1529}
1530
1531/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4
KO
1532static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1533 struct raid5_percpu *percpu, int i)
46d5b785 1534{
b330e6a4 1535 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
d6f38f31
DW
1536}
1537
7aba13b7
YY
1538/*
1539 * Return a pointer to record offset address.
1540 */
1541static unsigned int *
1542to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1543{
1544 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1545}
1546
d6f38f31
DW
1547static struct dma_async_tx_descriptor *
1548ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1549{
91c00924 1550 int disks = sh->disks;
46d5b785 1551 struct page **xor_srcs = to_addr_page(percpu, 0);
7aba13b7 1552 unsigned int *off_srcs = to_addr_offs(sh, percpu);
91c00924
DW
1553 int target = sh->ops.target;
1554 struct r5dev *tgt = &sh->dev[target];
1555 struct page *xor_dest = tgt->page;
7aba13b7 1556 unsigned int off_dest = tgt->offset;
91c00924
DW
1557 int count = 0;
1558 struct dma_async_tx_descriptor *tx;
a08abd8c 1559 struct async_submit_ctl submit;
91c00924
DW
1560 int i;
1561
59fc630b 1562 BUG_ON(sh->batch_head);
1563
91c00924 1564 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1565 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1566 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1567
7aba13b7
YY
1568 for (i = disks; i--; ) {
1569 if (i != target) {
1570 off_srcs[count] = sh->dev[i].offset;
91c00924 1571 xor_srcs[count++] = sh->dev[i].page;
7aba13b7
YY
1572 }
1573 }
91c00924
DW
1574
1575 atomic_inc(&sh->count);
1576
0403e382 1577 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1578 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1579 if (unlikely(count == 1))
7aba13b7 1580 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
c911c46c 1581 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924 1582 else
a7c224a8 1583 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 1584 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924 1585
91c00924
DW
1586 return tx;
1587}
1588
ac6b53b6
DW
1589/* set_syndrome_sources - populate source buffers for gen_syndrome
1590 * @srcs - (struct page *) array of size sh->disks
d69454bc 1591 * @offs - (unsigned int) array of offset for each page
ac6b53b6
DW
1592 * @sh - stripe_head to parse
1593 *
1594 * Populates srcs in proper layout order for the stripe and returns the
1595 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1596 * destination buffer is recorded in srcs[count] and the Q destination
1597 * is recorded in srcs[count+1]].
1598 */
584acdd4 1599static int set_syndrome_sources(struct page **srcs,
d69454bc 1600 unsigned int *offs,
584acdd4
MS
1601 struct stripe_head *sh,
1602 int srctype)
ac6b53b6
DW
1603{
1604 int disks = sh->disks;
1605 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1606 int d0_idx = raid6_d0(sh);
1607 int count;
1608 int i;
1609
1610 for (i = 0; i < disks; i++)
5dd33c9a 1611 srcs[i] = NULL;
ac6b53b6
DW
1612
1613 count = 0;
1614 i = d0_idx;
1615 do {
1616 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1617 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1618
584acdd4
MS
1619 if (i == sh->qd_idx || i == sh->pd_idx ||
1620 (srctype == SYNDROME_SRC_ALL) ||
1621 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1622 (test_bit(R5_Wantdrain, &dev->flags) ||
1623 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1624 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1625 (dev->written ||
1626 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1627 if (test_bit(R5_InJournal, &dev->flags))
1628 srcs[slot] = sh->dev[i].orig_page;
1629 else
1630 srcs[slot] = sh->dev[i].page;
d69454bc
YY
1631 /*
1632 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1633 * not shared page. In that case, dev[i].offset
1634 * is 0.
1635 */
1636 offs[slot] = sh->dev[i].offset;
1e6d690b 1637 }
ac6b53b6
DW
1638 i = raid6_next_disk(i, disks);
1639 } while (i != d0_idx);
ac6b53b6 1640
e4424fee 1641 return syndrome_disks;
ac6b53b6
DW
1642}
1643
1644static struct dma_async_tx_descriptor *
1645ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1646{
1647 int disks = sh->disks;
46d5b785 1648 struct page **blocks = to_addr_page(percpu, 0);
a7c224a8 1649 unsigned int *offs = to_addr_offs(sh, percpu);
ac6b53b6
DW
1650 int target;
1651 int qd_idx = sh->qd_idx;
1652 struct dma_async_tx_descriptor *tx;
1653 struct async_submit_ctl submit;
1654 struct r5dev *tgt;
1655 struct page *dest;
a7c224a8 1656 unsigned int dest_off;
ac6b53b6
DW
1657 int i;
1658 int count;
1659
59fc630b 1660 BUG_ON(sh->batch_head);
ac6b53b6
DW
1661 if (sh->ops.target < 0)
1662 target = sh->ops.target2;
1663 else if (sh->ops.target2 < 0)
1664 target = sh->ops.target;
91c00924 1665 else
ac6b53b6
DW
1666 /* we should only have one valid target */
1667 BUG();
1668 BUG_ON(target < 0);
1669 pr_debug("%s: stripe %llu block: %d\n",
1670 __func__, (unsigned long long)sh->sector, target);
1671
1672 tgt = &sh->dev[target];
1673 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1674 dest = tgt->page;
a7c224a8 1675 dest_off = tgt->offset;
ac6b53b6
DW
1676
1677 atomic_inc(&sh->count);
1678
1679 if (target == qd_idx) {
d69454bc 1680 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1681 blocks[count] = NULL; /* regenerating p is not necessary */
1682 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1683 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1684 ops_complete_compute, sh,
46d5b785 1685 to_addr_conv(sh, percpu, 0));
d69454bc 1686 tx = async_gen_syndrome(blocks, offs, count+2,
c911c46c 1687 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
ac6b53b6
DW
1688 } else {
1689 /* Compute any data- or p-drive using XOR */
1690 count = 0;
1691 for (i = disks; i-- ; ) {
1692 if (i == target || i == qd_idx)
1693 continue;
a7c224a8 1694 offs[count] = sh->dev[i].offset;
ac6b53b6
DW
1695 blocks[count++] = sh->dev[i].page;
1696 }
1697
0403e382
DW
1698 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1699 NULL, ops_complete_compute, sh,
46d5b785 1700 to_addr_conv(sh, percpu, 0));
a7c224a8 1701 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
c911c46c 1702 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
ac6b53b6 1703 }
91c00924 1704
91c00924
DW
1705 return tx;
1706}
1707
ac6b53b6
DW
1708static struct dma_async_tx_descriptor *
1709ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1710{
1711 int i, count, disks = sh->disks;
1712 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1713 int d0_idx = raid6_d0(sh);
1714 int faila = -1, failb = -1;
1715 int target = sh->ops.target;
1716 int target2 = sh->ops.target2;
1717 struct r5dev *tgt = &sh->dev[target];
1718 struct r5dev *tgt2 = &sh->dev[target2];
1719 struct dma_async_tx_descriptor *tx;
46d5b785 1720 struct page **blocks = to_addr_page(percpu, 0);
a7c224a8 1721 unsigned int *offs = to_addr_offs(sh, percpu);
ac6b53b6
DW
1722 struct async_submit_ctl submit;
1723
59fc630b 1724 BUG_ON(sh->batch_head);
ac6b53b6
DW
1725 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1726 __func__, (unsigned long long)sh->sector, target, target2);
1727 BUG_ON(target < 0 || target2 < 0);
1728 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1729 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1730
6c910a78 1731 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1732 * slot number conversion for 'faila' and 'failb'
1733 */
a7c224a8
YY
1734 for (i = 0; i < disks ; i++) {
1735 offs[i] = 0;
5dd33c9a 1736 blocks[i] = NULL;
a7c224a8 1737 }
ac6b53b6
DW
1738 count = 0;
1739 i = d0_idx;
1740 do {
1741 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1742
a7c224a8 1743 offs[slot] = sh->dev[i].offset;
ac6b53b6
DW
1744 blocks[slot] = sh->dev[i].page;
1745
1746 if (i == target)
1747 faila = slot;
1748 if (i == target2)
1749 failb = slot;
1750 i = raid6_next_disk(i, disks);
1751 } while (i != d0_idx);
ac6b53b6
DW
1752
1753 BUG_ON(faila == failb);
1754 if (failb < faila)
1755 swap(faila, failb);
1756 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1757 __func__, (unsigned long long)sh->sector, faila, failb);
1758
1759 atomic_inc(&sh->count);
1760
1761 if (failb == syndrome_disks+1) {
1762 /* Q disk is one of the missing disks */
1763 if (faila == syndrome_disks) {
1764 /* Missing P+Q, just recompute */
0403e382
DW
1765 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1766 ops_complete_compute, sh,
46d5b785 1767 to_addr_conv(sh, percpu, 0));
d69454bc 1768 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
c911c46c
YY
1769 RAID5_STRIPE_SIZE(sh->raid_conf),
1770 &submit);
ac6b53b6
DW
1771 } else {
1772 struct page *dest;
a7c224a8 1773 unsigned int dest_off;
ac6b53b6
DW
1774 int data_target;
1775 int qd_idx = sh->qd_idx;
1776
1777 /* Missing D+Q: recompute D from P, then recompute Q */
1778 if (target == qd_idx)
1779 data_target = target2;
1780 else
1781 data_target = target;
1782
1783 count = 0;
1784 for (i = disks; i-- ; ) {
1785 if (i == data_target || i == qd_idx)
1786 continue;
a7c224a8 1787 offs[count] = sh->dev[i].offset;
ac6b53b6
DW
1788 blocks[count++] = sh->dev[i].page;
1789 }
1790 dest = sh->dev[data_target].page;
a7c224a8 1791 dest_off = sh->dev[data_target].offset;
0403e382
DW
1792 init_async_submit(&submit,
1793 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1794 NULL, NULL, NULL,
46d5b785 1795 to_addr_conv(sh, percpu, 0));
a7c224a8 1796 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
c911c46c 1797 RAID5_STRIPE_SIZE(sh->raid_conf),
ac6b53b6
DW
1798 &submit);
1799
d69454bc 1800 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
0403e382
DW
1801 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1802 ops_complete_compute, sh,
46d5b785 1803 to_addr_conv(sh, percpu, 0));
d69454bc 1804 return async_gen_syndrome(blocks, offs, count+2,
c911c46c
YY
1805 RAID5_STRIPE_SIZE(sh->raid_conf),
1806 &submit);
ac6b53b6 1807 }
ac6b53b6 1808 } else {
6c910a78
DW
1809 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1810 ops_complete_compute, sh,
46d5b785 1811 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1812 if (failb == syndrome_disks) {
1813 /* We're missing D+P. */
1814 return async_raid6_datap_recov(syndrome_disks+2,
c911c46c
YY
1815 RAID5_STRIPE_SIZE(sh->raid_conf),
1816 faila,
4f86ff55 1817 blocks, offs, &submit);
6c910a78
DW
1818 } else {
1819 /* We're missing D+D. */
1820 return async_raid6_2data_recov(syndrome_disks+2,
c911c46c
YY
1821 RAID5_STRIPE_SIZE(sh->raid_conf),
1822 faila, failb,
4f86ff55 1823 blocks, offs, &submit);
6c910a78 1824 }
ac6b53b6
DW
1825 }
1826}
1827
91c00924
DW
1828static void ops_complete_prexor(void *stripe_head_ref)
1829{
1830 struct stripe_head *sh = stripe_head_ref;
1831
e46b272b 1832 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1833 (unsigned long long)sh->sector);
1e6d690b
SL
1834
1835 if (r5c_is_writeback(sh->raid_conf->log))
1836 /*
1837 * raid5-cache write back uses orig_page during prexor.
1838 * After prexor, it is time to free orig_page
1839 */
1840 r5c_release_extra_page(sh);
91c00924
DW
1841}
1842
1843static struct dma_async_tx_descriptor *
584acdd4
MS
1844ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1845 struct dma_async_tx_descriptor *tx)
91c00924 1846{
91c00924 1847 int disks = sh->disks;
46d5b785 1848 struct page **xor_srcs = to_addr_page(percpu, 0);
a7c224a8 1849 unsigned int *off_srcs = to_addr_offs(sh, percpu);
91c00924 1850 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1851 struct async_submit_ctl submit;
91c00924
DW
1852
1853 /* existing parity data subtracted */
a7c224a8 1854 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
91c00924
DW
1855 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1856
59fc630b 1857 BUG_ON(sh->batch_head);
e46b272b 1858 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1859 (unsigned long long)sh->sector);
1860
1861 for (i = disks; i--; ) {
1862 struct r5dev *dev = &sh->dev[i];
1863 /* Only process blocks that are known to be uptodate */
a7c224a8
YY
1864 if (test_bit(R5_InJournal, &dev->flags)) {
1865 /*
1866 * For this case, PAGE_SIZE must be equal to 4KB and
1867 * page offset is zero.
1868 */
1869 off_srcs[count] = dev->offset;
1e6d690b 1870 xor_srcs[count++] = dev->orig_page;
a7c224a8
YY
1871 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1872 off_srcs[count] = dev->offset;
91c00924 1873 xor_srcs[count++] = dev->page;
a7c224a8 1874 }
91c00924
DW
1875 }
1876
0403e382 1877 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1878 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a7c224a8 1879 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 1880 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924
DW
1881
1882 return tx;
1883}
1884
584acdd4
MS
1885static struct dma_async_tx_descriptor *
1886ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1887 struct dma_async_tx_descriptor *tx)
1888{
1889 struct page **blocks = to_addr_page(percpu, 0);
d69454bc 1890 unsigned int *offs = to_addr_offs(sh, percpu);
584acdd4
MS
1891 int count;
1892 struct async_submit_ctl submit;
1893
1894 pr_debug("%s: stripe %llu\n", __func__,
1895 (unsigned long long)sh->sector);
1896
d69454bc 1897 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
584acdd4
MS
1898
1899 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1900 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
d69454bc 1901 tx = async_gen_syndrome(blocks, offs, count+2,
c911c46c 1902 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
584acdd4
MS
1903
1904 return tx;
1905}
1906
91c00924 1907static struct dma_async_tx_descriptor *
d8ee0728 1908ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1909{
1e6d690b 1910 struct r5conf *conf = sh->raid_conf;
91c00924 1911 int disks = sh->disks;
d8ee0728 1912 int i;
59fc630b 1913 struct stripe_head *head_sh = sh;
91c00924 1914
e46b272b 1915 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1916 (unsigned long long)sh->sector);
1917
1918 for (i = disks; i--; ) {
59fc630b 1919 struct r5dev *dev;
91c00924 1920 struct bio *chosen;
91c00924 1921
59fc630b 1922 sh = head_sh;
1923 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1924 struct bio *wbi;
1925
59fc630b 1926again:
1927 dev = &sh->dev[i];
1e6d690b
SL
1928 /*
1929 * clear R5_InJournal, so when rewriting a page in
1930 * journal, it is not skipped by r5l_log_stripe()
1931 */
1932 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1933 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1934 chosen = dev->towrite;
1935 dev->towrite = NULL;
7a87f434 1936 sh->overwrite_disks = 0;
91c00924
DW
1937 BUG_ON(dev->written);
1938 wbi = dev->written = chosen;
b17459c0 1939 spin_unlock_irq(&sh->stripe_lock);
d592a996 1940 WARN_ON(dev->page != dev->orig_page);
91c00924 1941
4f024f37 1942 while (wbi && wbi->bi_iter.bi_sector <
c911c46c 1943 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1eff9d32 1944 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1945 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1946 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1947 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1948 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1949 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1950 else {
1951 tx = async_copy_data(1, wbi, &dev->page,
248728dd 1952 dev->offset,
1e6d690b
SL
1953 dev->sector, tx, sh,
1954 r5c_is_writeback(conf->log));
1955 if (dev->page != dev->orig_page &&
1956 !r5c_is_writeback(conf->log)) {
d592a996
SL
1957 set_bit(R5_SkipCopy, &dev->flags);
1958 clear_bit(R5_UPTODATE, &dev->flags);
1959 clear_bit(R5_OVERWRITE, &dev->flags);
1960 }
1961 }
c911c46c 1962 wbi = r5_next_bio(conf, wbi, dev->sector);
91c00924 1963 }
59fc630b 1964
1965 if (head_sh->batch_head) {
1966 sh = list_first_entry(&sh->batch_list,
1967 struct stripe_head,
1968 batch_list);
1969 if (sh == head_sh)
1970 continue;
1971 goto again;
1972 }
91c00924
DW
1973 }
1974 }
1975
1976 return tx;
1977}
1978
ac6b53b6 1979static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1980{
1981 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1982 int disks = sh->disks;
1983 int pd_idx = sh->pd_idx;
1984 int qd_idx = sh->qd_idx;
1985 int i;
9e444768 1986 bool fua = false, sync = false, discard = false;
91c00924 1987
e46b272b 1988 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1989 (unsigned long long)sh->sector);
1990
bc0934f0 1991 for (i = disks; i--; ) {
e9c7469b 1992 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1993 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1994 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1995 }
e9c7469b 1996
91c00924
DW
1997 for (i = disks; i--; ) {
1998 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1999
e9c7469b 2000 if (dev->written || i == pd_idx || i == qd_idx) {
235b6003 2001 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
9e444768 2002 set_bit(R5_UPTODATE, &dev->flags);
235b6003
N
2003 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2004 set_bit(R5_Expanded, &dev->flags);
2005 }
e9c7469b
TH
2006 if (fua)
2007 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
2008 if (sync)
2009 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 2010 }
91c00924
DW
2011 }
2012
d8ee0728
DW
2013 if (sh->reconstruct_state == reconstruct_state_drain_run)
2014 sh->reconstruct_state = reconstruct_state_drain_result;
2015 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2016 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2017 else {
2018 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2019 sh->reconstruct_state = reconstruct_state_result;
2020 }
91c00924
DW
2021
2022 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2023 raid5_release_stripe(sh);
91c00924
DW
2024}
2025
2026static void
ac6b53b6
DW
2027ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2028 struct dma_async_tx_descriptor *tx)
91c00924 2029{
91c00924 2030 int disks = sh->disks;
59fc630b 2031 struct page **xor_srcs;
7aba13b7 2032 unsigned int *off_srcs;
a08abd8c 2033 struct async_submit_ctl submit;
59fc630b 2034 int count, pd_idx = sh->pd_idx, i;
91c00924 2035 struct page *xor_dest;
7aba13b7 2036 unsigned int off_dest;
d8ee0728 2037 int prexor = 0;
91c00924 2038 unsigned long flags;
59fc630b 2039 int j = 0;
2040 struct stripe_head *head_sh = sh;
2041 int last_stripe;
91c00924 2042
e46b272b 2043 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2044 (unsigned long long)sh->sector);
2045
620125f2
SL
2046 for (i = 0; i < sh->disks; i++) {
2047 if (pd_idx == i)
2048 continue;
2049 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2050 break;
2051 }
2052 if (i >= sh->disks) {
2053 atomic_inc(&sh->count);
620125f2
SL
2054 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2055 ops_complete_reconstruct(sh);
2056 return;
2057 }
59fc630b 2058again:
2059 count = 0;
2060 xor_srcs = to_addr_page(percpu, j);
7aba13b7 2061 off_srcs = to_addr_offs(sh, percpu);
91c00924
DW
2062 /* check if prexor is active which means only process blocks
2063 * that are part of a read-modify-write (written)
2064 */
59fc630b 2065 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 2066 prexor = 1;
7aba13b7 2067 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
91c00924
DW
2068 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2069 for (i = disks; i--; ) {
2070 struct r5dev *dev = &sh->dev[i];
1e6d690b 2071 if (head_sh->dev[i].written ||
7aba13b7
YY
2072 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2073 off_srcs[count] = dev->offset;
91c00924 2074 xor_srcs[count++] = dev->page;
7aba13b7 2075 }
91c00924
DW
2076 }
2077 } else {
2078 xor_dest = sh->dev[pd_idx].page;
7aba13b7 2079 off_dest = sh->dev[pd_idx].offset;
91c00924
DW
2080 for (i = disks; i--; ) {
2081 struct r5dev *dev = &sh->dev[i];
7aba13b7
YY
2082 if (i != pd_idx) {
2083 off_srcs[count] = dev->offset;
91c00924 2084 xor_srcs[count++] = dev->page;
7aba13b7 2085 }
91c00924
DW
2086 }
2087 }
2088
91c00924
DW
2089 /* 1/ if we prexor'd then the dest is reused as a source
2090 * 2/ if we did not prexor then we are redoing the parity
2091 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2092 * for the synchronous xor case
2093 */
59fc630b 2094 last_stripe = !head_sh->batch_head ||
2095 list_first_entry(&sh->batch_list,
2096 struct stripe_head, batch_list) == head_sh;
2097 if (last_stripe) {
2098 flags = ASYNC_TX_ACK |
2099 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2100
2101 atomic_inc(&head_sh->count);
2102 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2103 to_addr_conv(sh, percpu, j));
2104 } else {
2105 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2106 init_async_submit(&submit, flags, tx, NULL, NULL,
2107 to_addr_conv(sh, percpu, j));
2108 }
91c00924 2109
a08abd8c 2110 if (unlikely(count == 1))
7aba13b7 2111 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
c911c46c 2112 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
a08abd8c 2113 else
a7c224a8 2114 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 2115 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
59fc630b 2116 if (!last_stripe) {
2117 j++;
2118 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2119 batch_list);
2120 goto again;
2121 }
91c00924
DW
2122}
2123
ac6b53b6
DW
2124static void
2125ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2126 struct dma_async_tx_descriptor *tx)
2127{
2128 struct async_submit_ctl submit;
59fc630b 2129 struct page **blocks;
d69454bc 2130 unsigned int *offs;
59fc630b 2131 int count, i, j = 0;
2132 struct stripe_head *head_sh = sh;
2133 int last_stripe;
584acdd4
MS
2134 int synflags;
2135 unsigned long txflags;
ac6b53b6
DW
2136
2137 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2138
620125f2
SL
2139 for (i = 0; i < sh->disks; i++) {
2140 if (sh->pd_idx == i || sh->qd_idx == i)
2141 continue;
2142 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2143 break;
2144 }
2145 if (i >= sh->disks) {
2146 atomic_inc(&sh->count);
620125f2
SL
2147 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2148 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2149 ops_complete_reconstruct(sh);
2150 return;
2151 }
2152
59fc630b 2153again:
2154 blocks = to_addr_page(percpu, j);
d69454bc 2155 offs = to_addr_offs(sh, percpu);
584acdd4
MS
2156
2157 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2158 synflags = SYNDROME_SRC_WRITTEN;
2159 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2160 } else {
2161 synflags = SYNDROME_SRC_ALL;
2162 txflags = ASYNC_TX_ACK;
2163 }
2164
d69454bc 2165 count = set_syndrome_sources(blocks, offs, sh, synflags);
59fc630b 2166 last_stripe = !head_sh->batch_head ||
2167 list_first_entry(&sh->batch_list,
2168 struct stripe_head, batch_list) == head_sh;
2169
2170 if (last_stripe) {
2171 atomic_inc(&head_sh->count);
584acdd4 2172 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 2173 head_sh, to_addr_conv(sh, percpu, j));
2174 } else
2175 init_async_submit(&submit, 0, tx, NULL, NULL,
2176 to_addr_conv(sh, percpu, j));
d69454bc 2177 tx = async_gen_syndrome(blocks, offs, count+2,
c911c46c 2178 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
59fc630b 2179 if (!last_stripe) {
2180 j++;
2181 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2182 batch_list);
2183 goto again;
2184 }
91c00924
DW
2185}
2186
2187static void ops_complete_check(void *stripe_head_ref)
2188{
2189 struct stripe_head *sh = stripe_head_ref;
91c00924 2190
e46b272b 2191 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2192 (unsigned long long)sh->sector);
2193
ecc65c9b 2194 sh->check_state = check_state_check_result;
91c00924 2195 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2196 raid5_release_stripe(sh);
91c00924
DW
2197}
2198
ac6b53b6 2199static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 2200{
91c00924 2201 int disks = sh->disks;
ac6b53b6
DW
2202 int pd_idx = sh->pd_idx;
2203 int qd_idx = sh->qd_idx;
2204 struct page *xor_dest;
a7c224a8 2205 unsigned int off_dest;
46d5b785 2206 struct page **xor_srcs = to_addr_page(percpu, 0);
a7c224a8 2207 unsigned int *off_srcs = to_addr_offs(sh, percpu);
91c00924 2208 struct dma_async_tx_descriptor *tx;
a08abd8c 2209 struct async_submit_ctl submit;
ac6b53b6
DW
2210 int count;
2211 int i;
91c00924 2212
e46b272b 2213 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2214 (unsigned long long)sh->sector);
2215
59fc630b 2216 BUG_ON(sh->batch_head);
ac6b53b6
DW
2217 count = 0;
2218 xor_dest = sh->dev[pd_idx].page;
a7c224a8
YY
2219 off_dest = sh->dev[pd_idx].offset;
2220 off_srcs[count] = off_dest;
ac6b53b6 2221 xor_srcs[count++] = xor_dest;
91c00924 2222 for (i = disks; i--; ) {
ac6b53b6
DW
2223 if (i == pd_idx || i == qd_idx)
2224 continue;
a7c224a8 2225 off_srcs[count] = sh->dev[i].offset;
ac6b53b6 2226 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2227 }
2228
d6f38f31 2229 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2230 to_addr_conv(sh, percpu, 0));
a7c224a8 2231 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 2232 RAID5_STRIPE_SIZE(sh->raid_conf),
a08abd8c 2233 &sh->ops.zero_sum_result, &submit);
91c00924 2234
91c00924 2235 atomic_inc(&sh->count);
a08abd8c
DW
2236 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2237 tx = async_trigger_callback(&submit);
91c00924
DW
2238}
2239
ac6b53b6
DW
2240static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2241{
46d5b785 2242 struct page **srcs = to_addr_page(percpu, 0);
d69454bc 2243 unsigned int *offs = to_addr_offs(sh, percpu);
ac6b53b6
DW
2244 struct async_submit_ctl submit;
2245 int count;
2246
2247 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2248 (unsigned long long)sh->sector, checkp);
2249
59fc630b 2250 BUG_ON(sh->batch_head);
d69454bc 2251 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2252 if (!checkp)
2253 srcs[count] = NULL;
91c00924 2254
91c00924 2255 atomic_inc(&sh->count);
ac6b53b6 2256 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2257 sh, to_addr_conv(sh, percpu, 0));
d69454bc 2258 async_syndrome_val(srcs, offs, count+2,
c911c46c 2259 RAID5_STRIPE_SIZE(sh->raid_conf),
d69454bc 2260 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
91c00924
DW
2261}
2262
51acbcec 2263static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2264{
2265 int overlap_clear = 0, i, disks = sh->disks;
2266 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2267 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2268 int level = conf->level;
d6f38f31 2269 struct raid5_percpu *percpu;
91c00924 2270
770b1d21
DB
2271 local_lock(&conf->percpu->lock);
2272 percpu = this_cpu_ptr(conf->percpu);
83de75cc 2273 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2274 ops_run_biofill(sh);
2275 overlap_clear++;
2276 }
2277
7b3a871e 2278 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2279 if (level < 6)
2280 tx = ops_run_compute5(sh, percpu);
2281 else {
2282 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2283 tx = ops_run_compute6_1(sh, percpu);
2284 else
2285 tx = ops_run_compute6_2(sh, percpu);
2286 }
2287 /* terminate the chain if reconstruct is not set to be run */
2288 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2289 async_tx_ack(tx);
2290 }
91c00924 2291
584acdd4
MS
2292 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2293 if (level < 6)
2294 tx = ops_run_prexor5(sh, percpu, tx);
2295 else
2296 tx = ops_run_prexor6(sh, percpu, tx);
2297 }
91c00924 2298
ae1713e2
AP
2299 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2300 tx = ops_run_partial_parity(sh, percpu, tx);
2301
600aa109 2302 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2303 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2304 overlap_clear++;
2305 }
2306
ac6b53b6
DW
2307 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2308 if (level < 6)
2309 ops_run_reconstruct5(sh, percpu, tx);
2310 else
2311 ops_run_reconstruct6(sh, percpu, tx);
2312 }
91c00924 2313
ac6b53b6
DW
2314 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2315 if (sh->check_state == check_state_run)
2316 ops_run_check_p(sh, percpu);
2317 else if (sh->check_state == check_state_run_q)
2318 ops_run_check_pq(sh, percpu, 0);
2319 else if (sh->check_state == check_state_run_pq)
2320 ops_run_check_pq(sh, percpu, 1);
2321 else
2322 BUG();
2323 }
91c00924 2324
770b1d21 2325 if (overlap_clear && !sh->batch_head) {
91c00924
DW
2326 for (i = disks; i--; ) {
2327 struct r5dev *dev = &sh->dev[i];
2328 if (test_and_clear_bit(R5_Overlap, &dev->flags))
e6a03207 2329 wake_up_bit(&dev->flags, R5_Overlap);
91c00924 2330 }
770b1d21
DB
2331 }
2332 local_unlock(&conf->percpu->lock);
91c00924
DW
2333}
2334
845b9e22
AP
2335static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2336{
046169f0
YY
2337#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2338 kfree(sh->pages);
2339#endif
845b9e22
AP
2340 if (sh->ppl_page)
2341 __free_page(sh->ppl_page);
2342 kmem_cache_free(sc, sh);
2343}
2344
5f9d1fde 2345static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
845b9e22 2346 int disks, struct r5conf *conf)
f18c1a35
N
2347{
2348 struct stripe_head *sh;
2349
2350 sh = kmem_cache_zalloc(sc, gfp);
2351 if (sh) {
2352 spin_lock_init(&sh->stripe_lock);
2353 spin_lock_init(&sh->batch_lock);
2354 INIT_LIST_HEAD(&sh->batch_list);
2355 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2356 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2357 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2358 atomic_set(&sh->count, 1);
845b9e22 2359 sh->raid_conf = conf;
a39f7afd 2360 sh->log_start = MaxSector;
845b9e22
AP
2361
2362 if (raid5_has_ppl(conf)) {
2363 sh->ppl_page = alloc_page(gfp);
2364 if (!sh->ppl_page) {
2365 free_stripe(sc, sh);
046169f0 2366 return NULL;
845b9e22
AP
2367 }
2368 }
046169f0
YY
2369#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2370 if (init_stripe_shared_pages(sh, conf, disks)) {
2371 free_stripe(sc, sh);
2372 return NULL;
2373 }
2374#endif
f18c1a35
N
2375 }
2376 return sh;
2377}
486f0644 2378static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2379{
2380 struct stripe_head *sh;
f18c1a35 2381
845b9e22 2382 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
3f294f4f
N
2383 if (!sh)
2384 return 0;
6ce32846 2385
a9683a79 2386 if (grow_buffers(sh, gfp)) {
e4e11e38 2387 shrink_buffers(sh);
845b9e22 2388 free_stripe(conf->slab_cache, sh);
3f294f4f
N
2389 return 0;
2390 }
486f0644
N
2391 sh->hash_lock_index =
2392 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2393 /* we just created an active stripe so... */
3f294f4f 2394 atomic_inc(&conf->active_stripes);
59fc630b 2395
6d036f7d 2396 raid5_release_stripe(sh);
dfd2bf43 2397 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
3f294f4f
N
2398 return 1;
2399}
2400
d1688a6d 2401static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2402{
e18b890b 2403 struct kmem_cache *sc;
53b8d89d 2404 size_t namelen = sizeof(conf->cache_name[0]);
5e5e3e78 2405 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2406
176df894 2407 if (mddev_is_dm(conf->mddev))
53b8d89d 2408 snprintf(conf->cache_name[0], namelen,
176df894 2409 "raid%d-%p", conf->level, conf->mddev);
f4be6b43 2410 else
53b8d89d 2411 snprintf(conf->cache_name[0], namelen,
176df894 2412 "raid%d-%s", conf->level, mdname(conf->mddev));
53b8d89d 2413 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
f4be6b43 2414
ad01c9e3
N
2415 conf->active_name = 0;
2416 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2f088dfc 2417 struct_size_t(struct stripe_head, dev, devs),
20c2df83 2418 0, 0, NULL);
1da177e4
LT
2419 if (!sc)
2420 return 1;
2421 conf->slab_cache = sc;
ad01c9e3 2422 conf->pool_size = devs;
486f0644
N
2423 while (num--)
2424 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2425 return 1;
486f0644 2426
1da177e4
LT
2427 return 0;
2428}
29269553 2429
d6f38f31 2430/**
7f8a30e5
CL
2431 * scribble_alloc - allocate percpu scribble buffer for required size
2432 * of the scribble region
2aada5b1
DLM
2433 * @percpu: from for_each_present_cpu() of the caller
2434 * @num: total number of disks in the array
2435 * @cnt: scribble objs count for required size of the scribble region
d6f38f31 2436 *
7f8a30e5 2437 * The scribble buffer size must be enough to contain:
d6f38f31
DW
2438 * 1/ a struct page pointer for each device in the array +2
2439 * 2/ room to convert each entry in (1) to its corresponding dma
2440 * (dma_map_page()) or page (page_address()) address.
2441 *
2442 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2443 * calculate over all devices (not just the data blocks), using zeros in place
2444 * of the P and Q blocks.
2445 */
b330e6a4 2446static int scribble_alloc(struct raid5_percpu *percpu,
ba54d4d4 2447 int num, int cnt)
d6f38f31 2448{
b330e6a4 2449 size_t obj_size =
7aba13b7
YY
2450 sizeof(struct page *) * (num + 2) +
2451 sizeof(addr_conv_t) * (num + 2) +
2452 sizeof(unsigned int) * (num + 2);
b330e6a4 2453 void *scribble;
d6f38f31 2454
ba54d4d4
CL
2455 /*
2456 * If here is in raid array suspend context, it is in memalloc noio
2457 * context as well, there is no potential recursive memory reclaim
2458 * I/Os with the GFP_KERNEL flag.
2459 */
2460 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
b330e6a4
KO
2461 if (!scribble)
2462 return -ENOMEM;
2463
2464 kvfree(percpu->scribble);
2465
2466 percpu->scribble = scribble;
2467 percpu->scribble_obj_size = obj_size;
2468 return 0;
d6f38f31
DW
2469}
2470
738a2738
N
2471static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2472{
2473 unsigned long cpu;
2474 int err = 0;
2475
b42cd7b3 2476 /* Never shrink. */
27a353c0
SL
2477 if (conf->scribble_disks >= new_disks &&
2478 conf->scribble_sectors >= new_sectors)
2479 return 0;
b42cd7b3
YK
2480
2481 raid5_quiesce(conf->mddev, true);
252034e0 2482 cpus_read_lock();
b330e6a4 2483
738a2738
N
2484 for_each_present_cpu(cpu) {
2485 struct raid5_percpu *percpu;
738a2738
N
2486
2487 percpu = per_cpu_ptr(conf->percpu, cpu);
b330e6a4 2488 err = scribble_alloc(percpu, new_disks,
c911c46c 2489 new_sectors / RAID5_STRIPE_SECTORS(conf));
b330e6a4 2490 if (err)
738a2738 2491 break;
738a2738 2492 }
b330e6a4 2493
252034e0 2494 cpus_read_unlock();
b42cd7b3
YK
2495 raid5_quiesce(conf->mddev, false);
2496
27a353c0
SL
2497 if (!err) {
2498 conf->scribble_disks = new_disks;
2499 conf->scribble_sectors = new_sectors;
2500 }
738a2738
N
2501 return err;
2502}
2503
d1688a6d 2504static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2505{
2506 /* Make all the stripes able to hold 'newsize' devices.
2507 * New slots in each stripe get 'page' set to a new page.
2508 *
2509 * This happens in stages:
2510 * 1/ create a new kmem_cache and allocate the required number of
2511 * stripe_heads.
83f0d77a 2512 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2513 * to the new stripe_heads. This will have the side effect of
2514 * freezing the array as once all stripe_heads have been collected,
2515 * no IO will be possible. Old stripe heads are freed once their
2516 * pages have been transferred over, and the old kmem_cache is
2517 * freed when all stripes are done.
2518 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2519 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2520 * 4/ allocate new pages for the new slots in the new stripe_heads.
2521 * If this fails, we don't bother trying the shrink the
2522 * stripe_heads down again, we just leave them as they are.
2523 * As each stripe_head is processed the new one is released into
2524 * active service.
2525 *
2526 * Once step2 is started, we cannot afford to wait for a write,
2527 * so we use GFP_NOIO allocations.
2528 */
2529 struct stripe_head *osh, *nsh;
2530 LIST_HEAD(newstripes);
2531 struct disk_info *ndisks;
2214c260 2532 int err = 0;
e18b890b 2533 struct kmem_cache *sc;
ad01c9e3 2534 int i;
566c09c5 2535 int hash, cnt;
ad01c9e3 2536
2214c260 2537 md_allow_write(conf->mddev);
2a2275d6 2538
ad01c9e3
N
2539 /* Step 1 */
2540 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2f088dfc 2541 struct_size_t(struct stripe_head, dev, newsize),
20c2df83 2542 0, 0, NULL);
ad01c9e3
N
2543 if (!sc)
2544 return -ENOMEM;
2545
2d5b569b
N
2546 /* Need to ensure auto-resizing doesn't interfere */
2547 mutex_lock(&conf->cache_size_mutex);
2548
ad01c9e3 2549 for (i = conf->max_nr_stripes; i; i--) {
845b9e22 2550 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
ad01c9e3
N
2551 if (!nsh)
2552 break;
2553
ad01c9e3
N
2554 list_add(&nsh->lru, &newstripes);
2555 }
2556 if (i) {
2557 /* didn't get enough, give up */
2558 while (!list_empty(&newstripes)) {
2559 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2560 list_del(&nsh->lru);
845b9e22 2561 free_stripe(sc, nsh);
ad01c9e3
N
2562 }
2563 kmem_cache_destroy(sc);
2d5b569b 2564 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2565 return -ENOMEM;
2566 }
2567 /* Step 2 - Must use GFP_NOIO now.
2568 * OK, we have enough stripes, start collecting inactive
2569 * stripes and copying them over
2570 */
566c09c5
SL
2571 hash = 0;
2572 cnt = 0;
ad01c9e3 2573 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2574 lock_device_hash_lock(conf, hash);
6ab2a4b8 2575 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2576 !list_empty(conf->inactive_list + hash),
2577 unlock_device_hash_lock(conf, hash),
2578 lock_device_hash_lock(conf, hash));
2579 osh = get_free_stripe(conf, hash);
2580 unlock_device_hash_lock(conf, hash);
f18c1a35 2581
f16acaf3
YY
2582#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2583 for (i = 0; i < osh->nr_pages; i++) {
2584 nsh->pages[i] = osh->pages[i];
2585 osh->pages[i] = NULL;
2586 }
2587#endif
d592a996 2588 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2589 nsh->dev[i].page = osh->dev[i].page;
d592a996 2590 nsh->dev[i].orig_page = osh->dev[i].page;
7aba13b7 2591 nsh->dev[i].offset = osh->dev[i].offset;
d592a996 2592 }
566c09c5 2593 nsh->hash_lock_index = hash;
845b9e22 2594 free_stripe(conf->slab_cache, osh);
566c09c5
SL
2595 cnt++;
2596 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2597 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2598 hash++;
2599 cnt = 0;
2600 }
ad01c9e3
N
2601 }
2602 kmem_cache_destroy(conf->slab_cache);
2603
2604 /* Step 3.
2605 * At this point, we are holding all the stripes so the array
2606 * is completely stalled, so now is a good time to resize
d6f38f31 2607 * conf->disks and the scribble region
ad01c9e3 2608 */
6396bb22 2609 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
ad01c9e3 2610 if (ndisks) {
d7bd398e 2611 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2612 ndisks[i] = conf->disks[i];
d7bd398e
SL
2613
2614 for (i = conf->pool_size; i < newsize; i++) {
2615 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2616 if (!ndisks[i].extra_page)
2617 err = -ENOMEM;
2618 }
2619
2620 if (err) {
2621 for (i = conf->pool_size; i < newsize; i++)
2622 if (ndisks[i].extra_page)
2623 put_page(ndisks[i].extra_page);
2624 kfree(ndisks);
2625 } else {
2626 kfree(conf->disks);
2627 conf->disks = ndisks;
2628 }
ad01c9e3
N
2629 } else
2630 err = -ENOMEM;
2631
583da48e
DY
2632 conf->slab_cache = sc;
2633 conf->active_name = 1-conf->active_name;
2634
ad01c9e3
N
2635 /* Step 4, return new stripes to service */
2636 while(!list_empty(&newstripes)) {
2637 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2638 list_del_init(&nsh->lru);
d6f38f31 2639
f16acaf3
YY
2640#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2641 for (i = 0; i < nsh->nr_pages; i++) {
2642 if (nsh->pages[i])
2643 continue;
2644 nsh->pages[i] = alloc_page(GFP_NOIO);
2645 if (!nsh->pages[i])
2646 err = -ENOMEM;
2647 }
2648
2649 for (i = conf->raid_disks; i < newsize; i++) {
2650 if (nsh->dev[i].page)
2651 continue;
2652 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2653 nsh->dev[i].orig_page = nsh->dev[i].page;
2654 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2655 }
2656#else
ad01c9e3
N
2657 for (i=conf->raid_disks; i < newsize; i++)
2658 if (nsh->dev[i].page == NULL) {
2659 struct page *p = alloc_page(GFP_NOIO);
2660 nsh->dev[i].page = p;
d592a996 2661 nsh->dev[i].orig_page = p;
7aba13b7 2662 nsh->dev[i].offset = 0;
ad01c9e3
N
2663 if (!p)
2664 err = -ENOMEM;
2665 }
f16acaf3 2666#endif
6d036f7d 2667 raid5_release_stripe(nsh);
ad01c9e3
N
2668 }
2669 /* critical section pass, GFP_NOIO no longer needed */
2670
6e9eac2d
N
2671 if (!err)
2672 conf->pool_size = newsize;
b44c018c
SL
2673 mutex_unlock(&conf->cache_size_mutex);
2674
ad01c9e3
N
2675 return err;
2676}
1da177e4 2677
486f0644 2678static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2679{
2680 struct stripe_head *sh;
49895bcc 2681 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2682
566c09c5
SL
2683 spin_lock_irq(conf->hash_locks + hash);
2684 sh = get_free_stripe(conf, hash);
2685 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2686 if (!sh)
2687 return 0;
78bafebd 2688 BUG_ON(atomic_read(&sh->count));
e4e11e38 2689 shrink_buffers(sh);
845b9e22 2690 free_stripe(conf->slab_cache, sh);
3f294f4f 2691 atomic_dec(&conf->active_stripes);
dfd2bf43 2692 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
3f294f4f
N
2693 return 1;
2694}
2695
d1688a6d 2696static void shrink_stripes(struct r5conf *conf)
3f294f4f 2697{
486f0644
N
2698 while (conf->max_nr_stripes &&
2699 drop_one_stripe(conf))
2700 ;
3f294f4f 2701
644df1a8 2702 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2703 conf->slab_cache = NULL;
2704}
2705
4246a0b6 2706static void raid5_end_read_request(struct bio * bi)
1da177e4 2707{
99c0fb5f 2708 struct stripe_head *sh = bi->bi_private;
d1688a6d 2709 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2710 int disks = sh->disks, i;
dd054fce 2711 struct md_rdev *rdev = NULL;
05616be5 2712 sector_t s;
1da177e4
LT
2713
2714 for (i=0 ; i<disks; i++)
2715 if (bi == &sh->dev[i].req)
2716 break;
2717
4246a0b6 2718 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2719 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2720 bi->bi_status);
1da177e4
LT
2721 if (i == disks) {
2722 BUG();
6712ecf8 2723 return;
1da177e4 2724 }
14a75d3e 2725 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2726 /* If replacement finished while this request was outstanding,
2727 * 'replacement' might be NULL already.
2728 * In that case it moved down to 'rdev'.
2729 * rdev is not removed until all requests are finished.
2730 */
ad860670 2731 rdev = conf->disks[i].replacement;
dd054fce 2732 if (!rdev)
ad860670 2733 rdev = conf->disks[i].rdev;
1da177e4 2734
05616be5
N
2735 if (use_new_offset(conf, sh))
2736 s = sh->sector + rdev->new_data_offset;
2737 else
2738 s = sh->sector + rdev->data_offset;
4e4cbee9 2739 if (!bi->bi_status) {
1da177e4 2740 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2741 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2742 /* Note that this cannot happen on a
2743 * replacement device. We just fail those on
2744 * any error
2745 */
cc6167b4 2746 pr_info_ratelimited(
913cce5a 2747 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
c911c46c 2748 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
05616be5 2749 (unsigned long long)s,
913cce5a 2750 rdev->bdev);
c911c46c 2751 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
4e5314b5
N
2752 clear_bit(R5_ReadError, &sh->dev[i].flags);
2753 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2754 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2755 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2756
86aa1397
SL
2757 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2758 /*
2759 * end read for a page in journal, this
2760 * must be preparing for prexor in rmw
2761 */
2762 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2763
14a75d3e
N
2764 if (atomic_read(&rdev->read_errors))
2765 atomic_set(&rdev->read_errors, 0);
1da177e4 2766 } else {
ba22dcbf 2767 int retry = 0;
2e8ac303 2768 int set_bad = 0;
d6950432 2769
1da177e4 2770 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
b76b4715
NC
2771 if (!(bi->bi_status == BLK_STS_PROTECTION))
2772 atomic_inc(&rdev->read_errors);
14a75d3e 2773 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4 2774 pr_warn_ratelimited(
913cce5a 2775 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
14a75d3e 2776 mdname(conf->mddev),
05616be5 2777 (unsigned long long)s,
913cce5a 2778 rdev->bdev);
2e8ac303 2779 else if (conf->mddev->degraded >= conf->max_degraded) {
2780 set_bad = 1;
cc6167b4 2781 pr_warn_ratelimited(
913cce5a 2782 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
8bda470e 2783 mdname(conf->mddev),
05616be5 2784 (unsigned long long)s,
913cce5a 2785 rdev->bdev);
2e8ac303 2786 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2787 /* Oh, no!!! */
2e8ac303 2788 set_bad = 1;
cc6167b4 2789 pr_warn_ratelimited(
913cce5a 2790 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
8bda470e 2791 mdname(conf->mddev),
05616be5 2792 (unsigned long long)s,
913cce5a 2793 rdev->bdev);
2e8ac303 2794 } else if (atomic_read(&rdev->read_errors)
0009fad0
NC
2795 > conf->max_nr_stripes) {
2796 if (!test_bit(Faulty, &rdev->flags)) {
2797 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2798 mdname(conf->mddev),
2799 atomic_read(&rdev->read_errors),
2800 conf->max_nr_stripes);
913cce5a
CH
2801 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2802 mdname(conf->mddev), rdev->bdev);
0009fad0
NC
2803 }
2804 } else
ba22dcbf 2805 retry = 1;
edfa1f65
BY
2806 if (set_bad && test_bit(In_sync, &rdev->flags)
2807 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2808 retry = 1;
ba22dcbf 2809 if (retry)
143f6e73
XN
2810 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2811 set_bit(R5_ReadError, &sh->dev[i].flags);
2812 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
3f9e7c14 2813 set_bit(R5_ReadError, &sh->dev[i].flags);
2814 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2815 } else
2816 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2817 else {
4e5314b5
N
2818 clear_bit(R5_ReadError, &sh->dev[i].flags);
2819 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2820 if (!(set_bad
2821 && test_bit(In_sync, &rdev->flags)
2822 && rdev_set_badblocks(
c911c46c 2823 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2e8ac303 2824 md_error(conf->mddev, rdev);
ba22dcbf 2825 }
1da177e4 2826 }
14a75d3e 2827 rdev_dec_pending(rdev, conf->mddev);
03a6b195 2828 bio_uninit(bi);
1da177e4
LT
2829 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2830 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2831 raid5_release_stripe(sh);
1da177e4
LT
2832}
2833
4246a0b6 2834static void raid5_end_write_request(struct bio *bi)
1da177e4 2835{
99c0fb5f 2836 struct stripe_head *sh = bi->bi_private;
d1688a6d 2837 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2838 int disks = sh->disks, i;
3f649ab7 2839 struct md_rdev *rdev;
977df362 2840 int replacement = 0;
1da177e4 2841
977df362
N
2842 for (i = 0 ; i < disks; i++) {
2843 if (bi == &sh->dev[i].req) {
ad860670 2844 rdev = conf->disks[i].rdev;
1da177e4 2845 break;
977df362
N
2846 }
2847 if (bi == &sh->dev[i].rreq) {
ad860670 2848 rdev = conf->disks[i].replacement;
dd054fce
N
2849 if (rdev)
2850 replacement = 1;
2851 else
2852 /* rdev was removed and 'replacement'
2853 * replaced it. rdev is not removed
2854 * until all requests are finished.
2855 */
ad860670 2856 rdev = conf->disks[i].rdev;
977df362
N
2857 break;
2858 }
2859 }
4246a0b6 2860 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2861 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2862 bi->bi_status);
1da177e4
LT
2863 if (i == disks) {
2864 BUG();
6712ecf8 2865 return;
1da177e4
LT
2866 }
2867
977df362 2868 if (replacement) {
4e4cbee9 2869 if (bi->bi_status)
977df362 2870 md_error(conf->mddev, rdev);
3a0f007b
YK
2871 else if (rdev_has_badblock(rdev, sh->sector,
2872 RAID5_STRIPE_SECTORS(conf)))
977df362
N
2873 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2874 } else {
4e4cbee9 2875 if (bi->bi_status) {
977df362
N
2876 set_bit(WriteErrorSeen, &rdev->flags);
2877 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2878 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2879 set_bit(MD_RECOVERY_NEEDED,
2880 &rdev->mddev->recovery);
3a0f007b
YK
2881 } else if (rdev_has_badblock(rdev, sh->sector,
2882 RAID5_STRIPE_SECTORS(conf))) {
977df362 2883 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2884 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2885 /* That was a successful write so make
2886 * sure it looks like we already did
2887 * a re-write.
2888 */
2889 set_bit(R5_ReWrite, &sh->dev[i].flags);
2890 }
977df362
N
2891 }
2892 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2893
4e4cbee9 2894 if (sh->batch_head && bi->bi_status && !replacement)
72ac7330 2895 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2896
03a6b195 2897 bio_uninit(bi);
977df362
N
2898 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2899 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2900 set_bit(STRIPE_HANDLE, &sh->state);
59fc630b 2901
2902 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2903 raid5_release_stripe(sh->batch_head);
10421247 2904 raid5_release_stripe(sh);
1da177e4
LT
2905}
2906
849674e4 2907static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2908{
d1688a6d 2909 struct r5conf *conf = mddev->private;
908f4fbd 2910 unsigned long flags;
0c55e022 2911 pr_debug("raid456: error called\n");
1da177e4 2912
913cce5a
CH
2913 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2914 mdname(mddev), rdev->bdev);
57668f0a 2915
908f4fbd 2916 spin_lock_irqsave(&conf->device_lock, flags);
57668f0a
MT
2917 set_bit(Faulty, &rdev->flags);
2918 clear_bit(In_sync, &rdev->flags);
2919 mddev->degraded = raid5_calc_degraded(conf);
fb73b357 2920
57668f0a
MT
2921 if (has_failed(conf)) {
2922 set_bit(MD_BROKEN, &conf->mddev->flags);
fb73b357 2923 conf->recovery_disabled = mddev->recovery_disabled;
57668f0a
MT
2924
2925 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2926 mdname(mddev), mddev->degraded, conf->raid_disks);
2927 } else {
2928 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2929 mdname(mddev), conf->raid_disks - mddev->degraded);
fb73b357
MT
2930 }
2931
908f4fbd
N
2932 spin_unlock_irqrestore(&conf->device_lock, flags);
2933 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2934
de393cde 2935 set_bit(Blocked, &rdev->flags);
2953079c
SL
2936 set_mask_bits(&mddev->sb_flags, 0,
2937 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
70d466f7 2938 r5c_update_on_rdev_error(mddev, rdev);
16a53ecc 2939}
1da177e4
LT
2940
2941/*
2942 * Input: a 'big' sector number,
2943 * Output: index of the data and parity disk, and the sector # in them.
2944 */
6d036f7d
SL
2945sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2946 int previous, int *dd_idx,
2947 struct stripe_head *sh)
1da177e4 2948{
6e3b96ed 2949 sector_t stripe, stripe2;
35f2a591 2950 sector_t chunk_number;
1da177e4 2951 unsigned int chunk_offset;
911d4ee8 2952 int pd_idx, qd_idx;
67cc2b81 2953 int ddf_layout = 0;
1da177e4 2954 sector_t new_sector;
e183eaed
N
2955 int algorithm = previous ? conf->prev_algo
2956 : conf->algorithm;
09c9e5fa
AN
2957 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2958 : conf->chunk_sectors;
112bf897
N
2959 int raid_disks = previous ? conf->previous_raid_disks
2960 : conf->raid_disks;
2961 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2962
2963 /* First compute the information on this sector */
2964
2965 /*
2966 * Compute the chunk number and the sector offset inside the chunk
2967 */
2968 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2969 chunk_number = r_sector;
1da177e4
LT
2970
2971 /*
2972 * Compute the stripe number
2973 */
35f2a591
N
2974 stripe = chunk_number;
2975 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2976 stripe2 = stripe;
1da177e4
LT
2977 /*
2978 * Select the parity disk based on the user selected algorithm.
2979 */
84789554 2980 pd_idx = qd_idx = -1;
16a53ecc
N
2981 switch(conf->level) {
2982 case 4:
911d4ee8 2983 pd_idx = data_disks;
16a53ecc
N
2984 break;
2985 case 5:
e183eaed 2986 switch (algorithm) {
1da177e4 2987 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2988 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2989 if (*dd_idx >= pd_idx)
1da177e4
LT
2990 (*dd_idx)++;
2991 break;
2992 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2993 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2994 if (*dd_idx >= pd_idx)
1da177e4
LT
2995 (*dd_idx)++;
2996 break;
2997 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2998 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2999 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
3000 break;
3001 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 3002 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 3003 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 3004 break;
99c0fb5f
N
3005 case ALGORITHM_PARITY_0:
3006 pd_idx = 0;
3007 (*dd_idx)++;
3008 break;
3009 case ALGORITHM_PARITY_N:
3010 pd_idx = data_disks;
3011 break;
1da177e4 3012 default:
99c0fb5f 3013 BUG();
16a53ecc
N
3014 }
3015 break;
3016 case 6:
3017
e183eaed 3018 switch (algorithm) {
16a53ecc 3019 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 3020 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
3021 qd_idx = pd_idx + 1;
3022 if (pd_idx == raid_disks-1) {
99c0fb5f 3023 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
3024 qd_idx = 0;
3025 } else if (*dd_idx >= pd_idx)
16a53ecc
N
3026 (*dd_idx) += 2; /* D D P Q D */
3027 break;
3028 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 3029 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
3030 qd_idx = pd_idx + 1;
3031 if (pd_idx == raid_disks-1) {
99c0fb5f 3032 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
3033 qd_idx = 0;
3034 } else if (*dd_idx >= pd_idx)
16a53ecc
N
3035 (*dd_idx) += 2; /* D D P Q D */
3036 break;
3037 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 3038 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
3039 qd_idx = (pd_idx + 1) % raid_disks;
3040 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
3041 break;
3042 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 3043 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
3044 qd_idx = (pd_idx + 1) % raid_disks;
3045 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 3046 break;
99c0fb5f
N
3047
3048 case ALGORITHM_PARITY_0:
3049 pd_idx = 0;
3050 qd_idx = 1;
3051 (*dd_idx) += 2;
3052 break;
3053 case ALGORITHM_PARITY_N:
3054 pd_idx = data_disks;
3055 qd_idx = data_disks + 1;
3056 break;
3057
3058 case ALGORITHM_ROTATING_ZERO_RESTART:
3059 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3060 * of blocks for computing Q is different.
3061 */
6e3b96ed 3062 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
3063 qd_idx = pd_idx + 1;
3064 if (pd_idx == raid_disks-1) {
3065 (*dd_idx)++; /* Q D D D P */
3066 qd_idx = 0;
3067 } else if (*dd_idx >= pd_idx)
3068 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 3069 ddf_layout = 1;
99c0fb5f
N
3070 break;
3071
3072 case ALGORITHM_ROTATING_N_RESTART:
3073 /* Same a left_asymmetric, by first stripe is
3074 * D D D P Q rather than
3075 * Q D D D P
3076 */
6e3b96ed
N
3077 stripe2 += 1;
3078 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
3079 qd_idx = pd_idx + 1;
3080 if (pd_idx == raid_disks-1) {
3081 (*dd_idx)++; /* Q D D D P */
3082 qd_idx = 0;
3083 } else if (*dd_idx >= pd_idx)
3084 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 3085 ddf_layout = 1;
99c0fb5f
N
3086 break;
3087
3088 case ALGORITHM_ROTATING_N_CONTINUE:
3089 /* Same as left_symmetric but Q is before P */
6e3b96ed 3090 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
3091 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3092 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 3093 ddf_layout = 1;
99c0fb5f
N
3094 break;
3095
3096 case ALGORITHM_LEFT_ASYMMETRIC_6:
3097 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 3098 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3099 if (*dd_idx >= pd_idx)
3100 (*dd_idx)++;
3101 qd_idx = raid_disks - 1;
3102 break;
3103
3104 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 3105 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3106 if (*dd_idx >= pd_idx)
3107 (*dd_idx)++;
3108 qd_idx = raid_disks - 1;
3109 break;
3110
3111 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 3112 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3113 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3114 qd_idx = raid_disks - 1;
3115 break;
3116
3117 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 3118 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3119 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3120 qd_idx = raid_disks - 1;
3121 break;
3122
3123 case ALGORITHM_PARITY_0_6:
3124 pd_idx = 0;
3125 (*dd_idx)++;
3126 qd_idx = raid_disks - 1;
3127 break;
3128
16a53ecc 3129 default:
99c0fb5f 3130 BUG();
16a53ecc
N
3131 }
3132 break;
1da177e4
LT
3133 }
3134
911d4ee8
N
3135 if (sh) {
3136 sh->pd_idx = pd_idx;
3137 sh->qd_idx = qd_idx;
67cc2b81 3138 sh->ddf_layout = ddf_layout;
911d4ee8 3139 }
1da177e4
LT
3140 /*
3141 * Finally, compute the new sector number
3142 */
3143 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3144 return new_sector;
3145}
3146
6d036f7d 3147sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 3148{
d1688a6d 3149 struct r5conf *conf = sh->raid_conf;
b875e531
N
3150 int raid_disks = sh->disks;
3151 int data_disks = raid_disks - conf->max_degraded;
1da177e4 3152 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
3153 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3154 : conf->chunk_sectors;
e183eaed
N
3155 int algorithm = previous ? conf->prev_algo
3156 : conf->algorithm;
1da177e4
LT
3157 sector_t stripe;
3158 int chunk_offset;
35f2a591
N
3159 sector_t chunk_number;
3160 int dummy1, dd_idx = i;
1da177e4 3161 sector_t r_sector;
911d4ee8 3162 struct stripe_head sh2;
1da177e4
LT
3163
3164 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3165 stripe = new_sector;
1da177e4 3166
16a53ecc
N
3167 if (i == sh->pd_idx)
3168 return 0;
3169 switch(conf->level) {
3170 case 4: break;
3171 case 5:
e183eaed 3172 switch (algorithm) {
1da177e4
LT
3173 case ALGORITHM_LEFT_ASYMMETRIC:
3174 case ALGORITHM_RIGHT_ASYMMETRIC:
3175 if (i > sh->pd_idx)
3176 i--;
3177 break;
3178 case ALGORITHM_LEFT_SYMMETRIC:
3179 case ALGORITHM_RIGHT_SYMMETRIC:
3180 if (i < sh->pd_idx)
3181 i += raid_disks;
3182 i -= (sh->pd_idx + 1);
3183 break;
99c0fb5f
N
3184 case ALGORITHM_PARITY_0:
3185 i -= 1;
3186 break;
3187 case ALGORITHM_PARITY_N:
3188 break;
1da177e4 3189 default:
99c0fb5f 3190 BUG();
16a53ecc
N
3191 }
3192 break;
3193 case 6:
d0dabf7e 3194 if (i == sh->qd_idx)
16a53ecc 3195 return 0; /* It is the Q disk */
e183eaed 3196 switch (algorithm) {
16a53ecc
N
3197 case ALGORITHM_LEFT_ASYMMETRIC:
3198 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
3199 case ALGORITHM_ROTATING_ZERO_RESTART:
3200 case ALGORITHM_ROTATING_N_RESTART:
3201 if (sh->pd_idx == raid_disks-1)
3202 i--; /* Q D D D P */
16a53ecc
N
3203 else if (i > sh->pd_idx)
3204 i -= 2; /* D D P Q D */
3205 break;
3206 case ALGORITHM_LEFT_SYMMETRIC:
3207 case ALGORITHM_RIGHT_SYMMETRIC:
3208 if (sh->pd_idx == raid_disks-1)
3209 i--; /* Q D D D P */
3210 else {
3211 /* D D P Q D */
3212 if (i < sh->pd_idx)
3213 i += raid_disks;
3214 i -= (sh->pd_idx + 2);
3215 }
3216 break;
99c0fb5f
N
3217 case ALGORITHM_PARITY_0:
3218 i -= 2;
3219 break;
3220 case ALGORITHM_PARITY_N:
3221 break;
3222 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 3223 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
3224 if (sh->pd_idx == 0)
3225 i--; /* P D D D Q */
e4424fee
N
3226 else {
3227 /* D D Q P D */
3228 if (i < sh->pd_idx)
3229 i += raid_disks;
3230 i -= (sh->pd_idx + 1);
3231 }
99c0fb5f
N
3232 break;
3233 case ALGORITHM_LEFT_ASYMMETRIC_6:
3234 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3235 if (i > sh->pd_idx)
3236 i--;
3237 break;
3238 case ALGORITHM_LEFT_SYMMETRIC_6:
3239 case ALGORITHM_RIGHT_SYMMETRIC_6:
3240 if (i < sh->pd_idx)
3241 i += data_disks + 1;
3242 i -= (sh->pd_idx + 1);
3243 break;
3244 case ALGORITHM_PARITY_0_6:
3245 i -= 1;
3246 break;
16a53ecc 3247 default:
99c0fb5f 3248 BUG();
16a53ecc
N
3249 }
3250 break;
1da177e4
LT
3251 }
3252
3253 chunk_number = stripe * data_disks + i;
35f2a591 3254 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3255
112bf897 3256 check = raid5_compute_sector(conf, r_sector,
784052ec 3257 previous, &dummy1, &sh2);
911d4ee8
N
3258 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3259 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3260 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3261 mdname(conf->mddev));
1da177e4
LT
3262 return 0;
3263 }
3264 return r_sector;
3265}
3266
07e83364
SL
3267/*
3268 * There are cases where we want handle_stripe_dirtying() and
3269 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3270 *
3271 * This function checks whether we want to delay the towrite. Specifically,
3272 * we delay the towrite when:
3273 *
3274 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3275 * stripe has data in journal (for other devices).
3276 *
3277 * In this case, when reading data for the non-overwrite dev, it is
3278 * necessary to handle complex rmw of write back cache (prexor with
3279 * orig_page, and xor with page). To keep read path simple, we would
3280 * like to flush data in journal to RAID disks first, so complex rmw
3281 * is handled in the write patch (handle_stripe_dirtying).
3282 *
39b99586
SL
3283 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3284 *
3285 * It is important to be able to flush all stripes in raid5-cache.
3286 * Therefore, we need reserve some space on the journal device for
3287 * these flushes. If flush operation includes pending writes to the
3288 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3289 * for the flush out. If we exclude these pending writes from flush
3290 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3291 * Therefore, excluding pending writes in these cases enables more
3292 * efficient use of the journal device.
3293 *
3294 * Note: To make sure the stripe makes progress, we only delay
3295 * towrite for stripes with data already in journal (injournal > 0).
3296 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3297 * no_space_stripes list.
3298 *
70d466f7
SL
3299 * 3. during journal failure
3300 * In journal failure, we try to flush all cached data to raid disks
3301 * based on data in stripe cache. The array is read-only to upper
3302 * layers, so we would skip all pending writes.
3303 *
07e83364 3304 */
39b99586
SL
3305static inline bool delay_towrite(struct r5conf *conf,
3306 struct r5dev *dev,
3307 struct stripe_head_state *s)
07e83364 3308{
39b99586
SL
3309 /* case 1 above */
3310 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3311 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3312 return true;
3313 /* case 2 above */
3314 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3315 s->injournal > 0)
3316 return true;
70d466f7
SL
3317 /* case 3 above */
3318 if (s->log_failed && s->injournal)
3319 return true;
39b99586 3320 return false;
07e83364
SL
3321}
3322
600aa109 3323static void
c0f7bddb 3324schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3325 int rcw, int expand)
e33129d8 3326{
584acdd4 3327 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3328 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3329 int level = conf->level;
e33129d8
DW
3330
3331 if (rcw) {
1e6d690b
SL
3332 /*
3333 * In some cases, handle_stripe_dirtying initially decided to
3334 * run rmw and allocates extra page for prexor. However, rcw is
3335 * cheaper later on. We need to free the extra page now,
3336 * because we won't be able to do that in ops_complete_prexor().
3337 */
3338 r5c_release_extra_page(sh);
e33129d8
DW
3339
3340 for (i = disks; i--; ) {
3341 struct r5dev *dev = &sh->dev[i];
3342
39b99586 3343 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3344 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3345 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3346 if (!expand)
3347 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3348 s->locked++;
1e6d690b
SL
3349 } else if (test_bit(R5_InJournal, &dev->flags)) {
3350 set_bit(R5_LOCKED, &dev->flags);
3351 s->locked++;
e33129d8
DW
3352 }
3353 }
ce7d363a
N
3354 /* if we are not expanding this is a proper write request, and
3355 * there will be bios with new data to be drained into the
3356 * stripe cache
3357 */
3358 if (!expand) {
3359 if (!s->locked)
3360 /* False alarm, nothing to do */
3361 return;
3362 sh->reconstruct_state = reconstruct_state_drain_run;
3363 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3364 } else
3365 sh->reconstruct_state = reconstruct_state_run;
3366
3367 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3368
c0f7bddb 3369 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3370 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3371 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3372 } else {
3373 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3374 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3375 BUG_ON(level == 6 &&
3376 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3377 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3378
e33129d8
DW
3379 for (i = disks; i--; ) {
3380 struct r5dev *dev = &sh->dev[i];
584acdd4 3381 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3382 continue;
3383
e33129d8
DW
3384 if (dev->towrite &&
3385 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3386 test_bit(R5_Wantcompute, &dev->flags))) {
3387 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3388 set_bit(R5_LOCKED, &dev->flags);
3389 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3390 s->locked++;
1e6d690b
SL
3391 } else if (test_bit(R5_InJournal, &dev->flags)) {
3392 set_bit(R5_LOCKED, &dev->flags);
3393 s->locked++;
e33129d8
DW
3394 }
3395 }
ce7d363a
N
3396 if (!s->locked)
3397 /* False alarm - nothing to do */
3398 return;
3399 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3400 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3401 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3402 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3403 }
3404
c0f7bddb 3405 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3406 * are in flight
3407 */
3408 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3409 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3410 s->locked++;
e33129d8 3411
c0f7bddb
YT
3412 if (level == 6) {
3413 int qd_idx = sh->qd_idx;
3414 struct r5dev *dev = &sh->dev[qd_idx];
3415
3416 set_bit(R5_LOCKED, &dev->flags);
3417 clear_bit(R5_UPTODATE, &dev->flags);
3418 s->locked++;
3419 }
3420
845b9e22 3421 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3418d036
AP
3422 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3423 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3424 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3425 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3426
600aa109 3427 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3428 __func__, (unsigned long long)sh->sector,
600aa109 3429 s->locked, s->ops_request);
e33129d8 3430}
16a53ecc 3431
4ad1d984
LG
3432static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3433 int dd_idx, int forwrite)
1da177e4 3434{
d1688a6d 3435 struct r5conf *conf = sh->raid_conf;
4ad1d984 3436 struct bio **bip;
1da177e4 3437
4ad1d984
LG
3438 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3439 bi->bi_iter.bi_sector, sh->sector);
1da177e4 3440
59fc630b 3441 /* Don't allow new IO added to stripes in batch list */
3442 if (sh->batch_head)
4ad1d984
LG
3443 return true;
3444
3445 if (forwrite)
1da177e4 3446 bip = &sh->dev[dd_idx].towrite;
4ad1d984 3447 else
1da177e4 3448 bip = &sh->dev[dd_idx].toread;
4ad1d984 3449
4f024f37
KO
3450 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3451 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
4ad1d984
LG
3452 return true;
3453 bip = &(*bip)->bi_next;
1da177e4 3454 }
4ad1d984 3455
4f024f37 3456 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
4ad1d984 3457 return true;
1da177e4 3458
3418d036
AP
3459 if (forwrite && raid5_has_ppl(conf)) {
3460 /*
3461 * With PPL only writes to consecutive data chunks within a
3462 * stripe are allowed because for a single stripe_head we can
3463 * only have one PPL entry at a time, which describes one data
e6a03207 3464 * range. Not really an overlap, but R5_Overlap can be
3418d036
AP
3465 * used to handle this.
3466 */
3467 sector_t sector;
3468 sector_t first = 0;
3469 sector_t last = 0;
3470 int count = 0;
3471 int i;
3472
3473 for (i = 0; i < sh->disks; i++) {
3474 if (i != sh->pd_idx &&
3475 (i == dd_idx || sh->dev[i].towrite)) {
3476 sector = sh->dev[i].sector;
3477 if (count == 0 || sector < first)
3478 first = sector;
3479 if (sector > last)
3480 last = sector;
3481 count++;
3482 }
3483 }
3484
3485 if (first + conf->chunk_sectors * (count - 1) != last)
4ad1d984
LG
3486 return true;
3487 }
3488
3489 return false;
3490}
3491
3492static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3493 int dd_idx, int forwrite, int previous)
3494{
3495 struct r5conf *conf = sh->raid_conf;
3496 struct bio **bip;
3497 int firstwrite = 0;
3498
3499 if (forwrite) {
3500 bip = &sh->dev[dd_idx].towrite;
3501 if (!*bip)
3502 firstwrite = 1;
3503 } else {
3504 bip = &sh->dev[dd_idx].toread;
3418d036
AP
3505 }
3506
4ad1d984
LG
3507 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3508 bip = &(*bip)->bi_next;
3509
da41ba65 3510 if (!forwrite || previous)
3511 clear_bit(STRIPE_BATCH_READY, &sh->state);
3512
78bafebd 3513 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3514 if (*bip)
3515 bi->bi_next = *bip;
3516 *bip = bi;
016c76ac 3517 bio_inc_remaining(bi);
49728050 3518 md_write_inc(conf->mddev, bi);
72626685 3519
1da177e4
LT
3520 if (forwrite) {
3521 /* check if page is covered */
3522 sector_t sector = sh->dev[dd_idx].sector;
3523 for (bi=sh->dev[dd_idx].towrite;
c911c46c 3524 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
4f024f37 3525 bi && bi->bi_iter.bi_sector <= sector;
c911c46c 3526 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3527 if (bio_end_sector(bi) >= sector)
3528 sector = bio_end_sector(bi);
1da177e4 3529 }
c911c46c 3530 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
7a87f434 3531 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3532 sh->overwrite_disks++;
1da177e4 3533 }
cbe47ec5 3534
df1b620a
LG
3535 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3536 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3537 sh->dev[dd_idx].sector);
cbe47ec5 3538
cd5fc653
YK
3539 if (conf->mddev->bitmap && firstwrite && !sh->batch_head) {
3540 sh->bm_seq = conf->seq_flush+1;
3541 set_bit(STRIPE_BIT_DELAY, &sh->state);
cbe47ec5 3542 }
4ad1d984 3543}
59fc630b 3544
4ad1d984
LG
3545/*
3546 * Each stripe/dev can have one or more bios attached.
3547 * toread/towrite point to the first in a chain.
3548 * The bi_next chain must be in order.
3549 */
3550static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3551 int dd_idx, int forwrite, int previous)
3552{
3553 spin_lock_irq(&sh->stripe_lock);
1da177e4 3554
4ad1d984
LG
3555 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3556 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3557 spin_unlock_irq(&sh->stripe_lock);
3558 return false;
3559 }
3560
3561 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
b17459c0 3562 spin_unlock_irq(&sh->stripe_lock);
4ad1d984 3563 return true;
1da177e4
LT
3564}
3565
d1688a6d 3566static void end_reshape(struct r5conf *conf);
29269553 3567
d1688a6d 3568static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3569 struct stripe_head *sh)
ccfcc3c1 3570{
784052ec 3571 int sectors_per_chunk =
09c9e5fa 3572 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3573 int dd_idx;
2d2063ce 3574 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3575 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3576
112bf897
N
3577 raid5_compute_sector(conf,
3578 stripe * (disks - conf->max_degraded)
b875e531 3579 *sectors_per_chunk + chunk_offset,
112bf897 3580 previous,
911d4ee8 3581 &dd_idx, sh);
ccfcc3c1
N
3582}
3583
a4456856 3584static void
d1688a6d 3585handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3586 struct stripe_head_state *s, int disks)
a4456856
DW
3587{
3588 int i;
59fc630b 3589 BUG_ON(sh->batch_head);
a4456856
DW
3590 for (i = disks; i--; ) {
3591 struct bio *bi;
a4456856
DW
3592
3593 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
ad860670
YK
3594 struct md_rdev *rdev = conf->disks[i].rdev;
3595
f5b67ae8
N
3596 if (rdev && test_bit(In_sync, &rdev->flags) &&
3597 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3598 atomic_inc(&rdev->nr_pending);
3599 else
3600 rdev = NULL;
7f0da59b
N
3601 if (rdev) {
3602 if (!rdev_set_badblocks(
3603 rdev,
3604 sh->sector,
c911c46c 3605 RAID5_STRIPE_SECTORS(conf), 0))
7f0da59b
N
3606 md_error(conf->mddev, rdev);
3607 rdev_dec_pending(rdev, conf->mddev);
3608 }
a4456856 3609 }
b17459c0 3610 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3611 /* fail all writes first */
3612 bi = sh->dev[i].towrite;
3613 sh->dev[i].towrite = NULL;
7a87f434 3614 sh->overwrite_disks = 0;
b17459c0 3615 spin_unlock_irq(&sh->stripe_lock);
a4456856 3616
ff875738 3617 log_stripe_write_finished(sh);
0576b1c6 3618
a4456856 3619 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
e6a03207 3620 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
a4456856 3621
4f024f37 3622 while (bi && bi->bi_iter.bi_sector <
c911c46c
YY
3623 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3624 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3625
49728050 3626 md_write_end(conf->mddev);
6308d8e3 3627 bio_io_error(bi);
a4456856
DW
3628 bi = nextbi;
3629 }
3630 /* and fail all 'written' */
3631 bi = sh->dev[i].written;
3632 sh->dev[i].written = NULL;
d592a996
SL
3633 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3634 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3635 sh->dev[i].page = sh->dev[i].orig_page;
3636 }
3637
4f024f37 3638 while (bi && bi->bi_iter.bi_sector <
c911c46c
YY
3639 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3640 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3641
49728050 3642 md_write_end(conf->mddev);
6308d8e3 3643 bio_io_error(bi);
a4456856
DW
3644 bi = bi2;
3645 }
3646
b5e98d65
DW
3647 /* fail any reads if this device is non-operational and
3648 * the data has not reached the cache yet.
3649 */
3650 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3651 s->failed > conf->max_degraded &&
b5e98d65
DW
3652 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3653 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3654 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3655 bi = sh->dev[i].toread;
3656 sh->dev[i].toread = NULL;
143c4d05 3657 spin_unlock_irq(&sh->stripe_lock);
a4456856 3658 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
e6a03207 3659 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
ebda780b
SL
3660 if (bi)
3661 s->to_read--;
4f024f37 3662 while (bi && bi->bi_iter.bi_sector <
c911c46c 3663 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
a4456856 3664 struct bio *nextbi =
c911c46c 3665 r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3666
6308d8e3 3667 bio_io_error(bi);
a4456856
DW
3668 bi = nextbi;
3669 }
3670 }
8cfa7b0f
N
3671 /* If we were in the middle of a write the parity block might
3672 * still be locked - so just clear all R5_LOCKED flags
3673 */
3674 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3675 }
ebda780b
SL
3676 s->to_write = 0;
3677 s->written = 0;
a4456856 3678
8b3e6cdc
DW
3679 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3680 if (atomic_dec_and_test(&conf->pending_full_writes))
3681 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3682}
3683
7f0da59b 3684static void
d1688a6d 3685handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3686 struct stripe_head_state *s)
3687{
3688 int abort = 0;
3689 int i;
3690
59fc630b 3691 BUG_ON(sh->batch_head);
7f0da59b 3692 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd 3693 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
e6a03207 3694 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
7f0da59b 3695 s->syncing = 0;
9a3e1101 3696 s->replacing = 0;
7f0da59b 3697 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3698 * Don't even need to abort as that is handled elsewhere
3699 * if needed, and not always wanted e.g. if there is a known
3700 * bad block here.
9a3e1101 3701 * For recover/replace we need to record a bad block on all
7f0da59b
N
3702 * non-sync devices, or abort the recovery
3703 */
18b9837e
N
3704 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3705 /* During recovery devices cannot be removed, so
3706 * locking and refcounting of rdevs is not needed
3707 */
3708 for (i = 0; i < conf->raid_disks; i++) {
ad860670
YK
3709 struct md_rdev *rdev = conf->disks[i].rdev;
3710
18b9837e
N
3711 if (rdev
3712 && !test_bit(Faulty, &rdev->flags)
3713 && !test_bit(In_sync, &rdev->flags)
3714 && !rdev_set_badblocks(rdev, sh->sector,
c911c46c 3715 RAID5_STRIPE_SECTORS(conf), 0))
18b9837e 3716 abort = 1;
ad860670
YK
3717 rdev = conf->disks[i].replacement;
3718
18b9837e
N
3719 if (rdev
3720 && !test_bit(Faulty, &rdev->flags)
3721 && !test_bit(In_sync, &rdev->flags)
3722 && !rdev_set_badblocks(rdev, sh->sector,
c911c46c 3723 RAID5_STRIPE_SECTORS(conf), 0))
18b9837e
N
3724 abort = 1;
3725 }
3726 if (abort)
3727 conf->recovery_disabled =
3728 conf->mddev->recovery_disabled;
7f0da59b 3729 }
c911c46c 3730 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
7f0da59b
N
3731}
3732
9a3e1101
N
3733static int want_replace(struct stripe_head *sh, int disk_idx)
3734{
3735 struct md_rdev *rdev;
3736 int rv = 0;
3f232d6a 3737
ad860670 3738 rdev = sh->raid_conf->disks[disk_idx].replacement;
9a3e1101
N
3739 if (rdev
3740 && !test_bit(Faulty, &rdev->flags)
3741 && !test_bit(In_sync, &rdev->flags)
3742 && (rdev->recovery_offset <= sh->sector
3743 || rdev->mddev->recovery_cp <= sh->sector))
3744 rv = 1;
9a3e1101
N
3745 return rv;
3746}
3747
2c58f06e
N
3748static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3749 int disk_idx, int disks)
a4456856 3750{
5599becc 3751 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3752 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3753 &sh->dev[s->failed_num[1]] };
ea664c82 3754 int i;
45a4d8fd 3755 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
5599becc 3756
a79cfe12
N
3757
3758 if (test_bit(R5_LOCKED, &dev->flags) ||
3759 test_bit(R5_UPTODATE, &dev->flags))
3760 /* No point reading this as we already have it or have
3761 * decided to get it.
3762 */
3763 return 0;
3764
3765 if (dev->toread ||
3766 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3767 /* We need this block to directly satisfy a request */
3768 return 1;
3769
3770 if (s->syncing || s->expanding ||
3771 (s->replacing && want_replace(sh, disk_idx)))
3772 /* When syncing, or expanding we read everything.
3773 * When replacing, we need the replaced block.
3774 */
3775 return 1;
3776
3777 if ((s->failed >= 1 && fdev[0]->toread) ||
3778 (s->failed >= 2 && fdev[1]->toread))
3779 /* If we want to read from a failed device, then
3780 * we need to actually read every other device.
3781 */
3782 return 1;
3783
a9d56950
N
3784 /* Sometimes neither read-modify-write nor reconstruct-write
3785 * cycles can work. In those cases we read every block we
3786 * can. Then the parity-update is certain to have enough to
3787 * work with.
3788 * This can only be a problem when we need to write something,
3789 * and some device has failed. If either of those tests
3790 * fail we need look no further.
3791 */
3792 if (!s->failed || !s->to_write)
3793 return 0;
3794
3795 if (test_bit(R5_Insync, &dev->flags) &&
3796 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3797 /* Pre-reads at not permitted until after short delay
3798 * to gather multiple requests. However if this
3560741e 3799 * device is no Insync, the block could only be computed
a9d56950
N
3800 * and there is no need to delay that.
3801 */
3802 return 0;
ea664c82 3803
36707bb2 3804 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3805 if (fdev[i]->towrite &&
3806 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3807 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3808 /* If we have a partial write to a failed
3809 * device, then we will need to reconstruct
3810 * the content of that device, so all other
3811 * devices must be read.
3812 */
3813 return 1;
45a4d8fd
CP
3814
3815 if (s->failed >= 2 &&
3816 (fdev[i]->towrite ||
3817 s->failed_num[i] == sh->pd_idx ||
3818 s->failed_num[i] == sh->qd_idx) &&
3819 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3820 /* In max degraded raid6, If the failed disk is P, Q,
3821 * or we want to read the failed disk, we need to do
3822 * reconstruct-write.
3823 */
3824 force_rcw = true;
ea664c82
N
3825 }
3826
45a4d8fd
CP
3827 /* If we are forced to do a reconstruct-write, because parity
3828 * cannot be trusted and we are currently recovering it, there
3829 * is extra need to be careful.
ea664c82
N
3830 * If one of the devices that we would need to read, because
3831 * it is not being overwritten (and maybe not written at all)
3832 * is missing/faulty, then we need to read everything we can.
3833 */
45a4d8fd 3834 if (!force_rcw &&
ea664c82
N
3835 sh->sector < sh->raid_conf->mddev->recovery_cp)
3836 /* reconstruct-write isn't being forced */
3837 return 0;
36707bb2 3838 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3839 if (s->failed_num[i] != sh->pd_idx &&
3840 s->failed_num[i] != sh->qd_idx &&
3841 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3842 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3843 return 1;
3844 }
3845
2c58f06e
N
3846 return 0;
3847}
3848
ba02684d
SL
3849/* fetch_block - checks the given member device to see if its data needs
3850 * to be read or computed to satisfy a request.
3851 *
3852 * Returns 1 when no more member devices need to be checked, otherwise returns
3853 * 0 to tell the loop in handle_stripe_fill to continue
3854 */
2c58f06e
N
3855static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3856 int disk_idx, int disks)
3857{
3858 struct r5dev *dev = &sh->dev[disk_idx];
3859
3860 /* is the data in this block needed, and can we get it? */
3861 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3862 /* we would like to get this block, possibly by computing it,
3863 * otherwise read it if the backing disk is insync
3864 */
3865 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3866 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3867 BUG_ON(sh->batch_head);
7471fb77
N
3868
3869 /*
3870 * In the raid6 case if the only non-uptodate disk is P
3871 * then we already trusted P to compute the other failed
3872 * drives. It is safe to compute rather than re-read P.
3873 * In other cases we only compute blocks from failed
3874 * devices, otherwise check/repair might fail to detect
3875 * a real inconsistency.
3876 */
3877
5599becc 3878 if ((s->uptodate == disks - 1) &&
7471fb77 3879 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3880 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3881 disk_idx == s->failed_num[1])))) {
5599becc
YT
3882 /* have disk failed, and we're requested to fetch it;
3883 * do compute it
a4456856 3884 */
5599becc
YT
3885 pr_debug("Computing stripe %llu block %d\n",
3886 (unsigned long long)sh->sector, disk_idx);
3887 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3888 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3889 set_bit(R5_Wantcompute, &dev->flags);
3890 sh->ops.target = disk_idx;
3891 sh->ops.target2 = -1; /* no 2nd target */
3892 s->req_compute = 1;
93b3dbce
N
3893 /* Careful: from this point on 'uptodate' is in the eye
3894 * of raid_run_ops which services 'compute' operations
3895 * before writes. R5_Wantcompute flags a block that will
3896 * be R5_UPTODATE by the time it is needed for a
3897 * subsequent operation.
3898 */
5599becc
YT
3899 s->uptodate++;
3900 return 1;
3901 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3902 /* Computing 2-failure is *very* expensive; only
3903 * do it if failed >= 2
3904 */
3905 int other;
3906 for (other = disks; other--; ) {
3907 if (other == disk_idx)
3908 continue;
3909 if (!test_bit(R5_UPTODATE,
3910 &sh->dev[other].flags))
3911 break;
a4456856 3912 }
5599becc
YT
3913 BUG_ON(other < 0);
3914 pr_debug("Computing stripe %llu blocks %d,%d\n",
3915 (unsigned long long)sh->sector,
3916 disk_idx, other);
3917 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3918 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3919 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3920 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3921 sh->ops.target = disk_idx;
3922 sh->ops.target2 = other;
3923 s->uptodate += 2;
3924 s->req_compute = 1;
3925 return 1;
3926 } else if (test_bit(R5_Insync, &dev->flags)) {
3927 set_bit(R5_LOCKED, &dev->flags);
3928 set_bit(R5_Wantread, &dev->flags);
3929 s->locked++;
3930 pr_debug("Reading block %d (sync=%d)\n",
3931 disk_idx, s->syncing);
a4456856
DW
3932 }
3933 }
5599becc
YT
3934
3935 return 0;
3936}
3937
2aada5b1 3938/*
93b3dbce 3939 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3940 */
93b3dbce
N
3941static void handle_stripe_fill(struct stripe_head *sh,
3942 struct stripe_head_state *s,
3943 int disks)
5599becc
YT
3944{
3945 int i;
3946
3947 /* look for blocks to read/compute, skip this if a compute
3948 * is already in flight, or if the stripe contents are in the
3949 * midst of changing due to a write
3950 */
3951 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3952 !sh->reconstruct_state) {
3953
3954 /*
3955 * For degraded stripe with data in journal, do not handle
3956 * read requests yet, instead, flush the stripe to raid
3957 * disks first, this avoids handling complex rmw of write
3958 * back cache (prexor with orig_page, and then xor with
3959 * page) in the read path
3960 */
e2eed85b 3961 if (s->to_read && s->injournal && s->failed) {
07e83364
SL
3962 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3963 r5c_make_stripe_write_out(sh);
3964 goto out;
3965 }
3966
5599becc 3967 for (i = disks; i--; )
93b3dbce 3968 if (fetch_block(sh, s, i, disks))
5599becc 3969 break;
07e83364
SL
3970 }
3971out:
a4456856
DW
3972 set_bit(STRIPE_HANDLE, &sh->state);
3973}
3974
787b76fa
N
3975static void break_stripe_batch_list(struct stripe_head *head_sh,
3976 unsigned long handle_flags);
1fe797e6 3977/* handle_stripe_clean_event
a4456856
DW
3978 * any written block on an uptodate or failed drive can be returned.
3979 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3980 * never LOCKED, so we don't need to test 'failed' directly.
3981 */
d1688a6d 3982static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3983 struct stripe_head *sh, int disks)
a4456856
DW
3984{
3985 int i;
3986 struct r5dev *dev;
f8dfcffd 3987 int discard_pending = 0;
59fc630b 3988 struct stripe_head *head_sh = sh;
3989 bool do_endio = false;
a4456856
DW
3990
3991 for (i = disks; i--; )
3992 if (sh->dev[i].written) {
3993 dev = &sh->dev[i];
3994 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3995 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3996 test_bit(R5_Discard, &dev->flags) ||
3997 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3998 /* We can return any write requests */
3999 struct bio *wbi, *wbi2;
45b4233c 4000 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
4001 if (test_and_clear_bit(R5_Discard, &dev->flags))
4002 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
4003 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4004 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 4005 }
59fc630b 4006 do_endio = true;
4007
4008returnbi:
4009 dev->page = dev->orig_page;
a4456856
DW
4010 wbi = dev->written;
4011 dev->written = NULL;
4f024f37 4012 while (wbi && wbi->bi_iter.bi_sector <
c911c46c
YY
4013 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4014 wbi2 = r5_next_bio(conf, wbi, dev->sector);
49728050 4015 md_write_end(conf->mddev);
016c76ac 4016 bio_endio(wbi);
a4456856
DW
4017 wbi = wbi2;
4018 }
cd5fc653 4019
59fc630b 4020 if (head_sh->batch_head) {
4021 sh = list_first_entry(&sh->batch_list,
4022 struct stripe_head,
4023 batch_list);
4024 if (sh != head_sh) {
4025 dev = &sh->dev[i];
4026 goto returnbi;
4027 }
4028 }
4029 sh = head_sh;
4030 dev = &sh->dev[i];
f8dfcffd
N
4031 } else if (test_bit(R5_Discard, &dev->flags))
4032 discard_pending = 1;
4033 }
f6bed0ef 4034
ff875738 4035 log_stripe_write_finished(sh);
0576b1c6 4036
f8dfcffd
N
4037 if (!discard_pending &&
4038 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 4039 int hash;
f8dfcffd
N
4040 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4041 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4042 if (sh->qd_idx >= 0) {
4043 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4044 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4045 }
4046 /* now that discard is done we can proceed with any sync */
4047 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
4048 /*
4049 * SCSI discard will change some bio fields and the stripe has
4050 * no updated data, so remove it from hash list and the stripe
4051 * will be reinitialized
4052 */
59fc630b 4053unhash:
b8a9d66d
RG
4054 hash = sh->hash_lock_index;
4055 spin_lock_irq(conf->hash_locks + hash);
d47648fc 4056 remove_hash(sh);
b8a9d66d 4057 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 4058 if (head_sh->batch_head) {
4059 sh = list_first_entry(&sh->batch_list,
4060 struct stripe_head, batch_list);
4061 if (sh != head_sh)
4062 goto unhash;
4063 }
59fc630b 4064 sh = head_sh;
4065
f8dfcffd
N
4066 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4067 set_bit(STRIPE_HANDLE, &sh->state);
4068
4069 }
8b3e6cdc
DW
4070
4071 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4072 if (atomic_dec_and_test(&conf->pending_full_writes))
4073 md_wakeup_thread(conf->mddev->thread);
59fc630b 4074
787b76fa
N
4075 if (head_sh->batch_head && do_endio)
4076 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
4077}
4078
86aa1397
SL
4079/*
4080 * For RMW in write back cache, we need extra page in prexor to store the
4081 * old data. This page is stored in dev->orig_page.
4082 *
4083 * This function checks whether we have data for prexor. The exact logic
4084 * is:
4085 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4086 */
4087static inline bool uptodate_for_rmw(struct r5dev *dev)
4088{
4089 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4090 (!test_bit(R5_InJournal, &dev->flags) ||
4091 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4092}
4093
d7bd398e
SL
4094static int handle_stripe_dirtying(struct r5conf *conf,
4095 struct stripe_head *sh,
4096 struct stripe_head_state *s,
4097 int disks)
a4456856
DW
4098{
4099 int rmw = 0, rcw = 0, i;
a7854487
AL
4100 sector_t recovery_cp = conf->mddev->recovery_cp;
4101
584acdd4 4102 /* Check whether resync is now happening or should start.
a7854487
AL
4103 * If yes, then the array is dirty (after unclean shutdown or
4104 * initial creation), so parity in some stripes might be inconsistent.
4105 * In this case, we need to always do reconstruct-write, to ensure
4106 * that in case of drive failure or read-error correction, we
4107 * generate correct data from the parity.
4108 */
584acdd4 4109 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
4110 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4111 s->failed == 0)) {
a7854487 4112 /* Calculate the real rcw later - for now make it
c8ac1803
N
4113 * look like rcw is cheaper
4114 */
4115 rcw = 1; rmw = 2;
584acdd4
MS
4116 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4117 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 4118 (unsigned long long)sh->sector);
c8ac1803 4119 } else for (i = disks; i--; ) {
a4456856
DW
4120 /* would I have to read this buffer for read_modify_write */
4121 struct r5dev *dev = &sh->dev[i];
39b99586 4122 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 4123 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 4124 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 4125 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 4126 !(uptodate_for_rmw(dev) ||
f38e1219 4127 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
4128 if (test_bit(R5_Insync, &dev->flags))
4129 rmw++;
4130 else
4131 rmw += 2*disks; /* cannot read it */
4132 }
4133 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
4134 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4135 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 4136 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 4137 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 4138 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
4139 if (test_bit(R5_Insync, &dev->flags))
4140 rcw++;
a4456856
DW
4141 else
4142 rcw += 2*disks;
4143 }
4144 }
1e6d690b 4145
39b99586
SL
4146 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4147 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 4148 set_bit(STRIPE_HANDLE, &sh->state);
41257580 4149 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 4150 /* prefer read-modify-write, but need to get some data */
28be4fd3
CH
4151 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4152 sh->sector, rmw);
4153
a4456856
DW
4154 for (i = disks; i--; ) {
4155 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
4156 if (test_bit(R5_InJournal, &dev->flags) &&
4157 dev->page == dev->orig_page &&
4158 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4159 /* alloc page for prexor */
d7bd398e
SL
4160 struct page *p = alloc_page(GFP_NOIO);
4161
4162 if (p) {
4163 dev->orig_page = p;
4164 continue;
4165 }
4166
4167 /*
4168 * alloc_page() failed, try use
4169 * disk_info->extra_page
4170 */
4171 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4172 &conf->cache_state)) {
4173 r5c_use_extra_page(sh);
4174 break;
4175 }
1e6d690b 4176
d7bd398e
SL
4177 /* extra_page in use, add to delayed_list */
4178 set_bit(STRIPE_DELAYED, &sh->state);
4179 s->waiting_extra_page = 1;
4180 return -EAGAIN;
1e6d690b 4181 }
d7bd398e 4182 }
1e6d690b 4183
d7bd398e
SL
4184 for (i = disks; i--; ) {
4185 struct r5dev *dev = &sh->dev[i];
39b99586 4186 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
4187 i == sh->pd_idx || i == sh->qd_idx ||
4188 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 4189 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 4190 !(uptodate_for_rmw(dev) ||
1e6d690b 4191 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 4192 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
4193 if (test_bit(STRIPE_PREREAD_ACTIVE,
4194 &sh->state)) {
4195 pr_debug("Read_old block %d for r-m-w\n",
4196 i);
a4456856
DW
4197 set_bit(R5_LOCKED, &dev->flags);
4198 set_bit(R5_Wantread, &dev->flags);
4199 s->locked++;
e3914d59 4200 } else
a4456856 4201 set_bit(STRIPE_DELAYED, &sh->state);
a4456856
DW
4202 }
4203 }
a9add5d9 4204 }
41257580 4205 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 4206 /* want reconstruct write, but need to get some data */
a9add5d9 4207 int qread =0;
c8ac1803 4208 rcw = 0;
a4456856
DW
4209 for (i = disks; i--; ) {
4210 struct r5dev *dev = &sh->dev[i];
4211 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 4212 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 4213 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 4214 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
4215 test_bit(R5_Wantcompute, &dev->flags))) {
4216 rcw++;
67f45548
N
4217 if (test_bit(R5_Insync, &dev->flags) &&
4218 test_bit(STRIPE_PREREAD_ACTIVE,
4219 &sh->state)) {
45b4233c 4220 pr_debug("Read_old block "
a4456856
DW
4221 "%d for Reconstruct\n", i);
4222 set_bit(R5_LOCKED, &dev->flags);
4223 set_bit(R5_Wantread, &dev->flags);
4224 s->locked++;
a9add5d9 4225 qread++;
e3914d59 4226 } else
a4456856 4227 set_bit(STRIPE_DELAYED, &sh->state);
a4456856
DW
4228 }
4229 }
176df894 4230 if (rcw && !mddev_is_dm(conf->mddev))
396799eb
CH
4231 blk_add_trace_msg(conf->mddev->gendisk->queue,
4232 "raid5 rcw %llu %d %d %d",
4233 (unsigned long long)sh->sector, rcw, qread,
4234 test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 4235 }
b1b02fe9
N
4236
4237 if (rcw > disks && rmw > disks &&
4238 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4239 set_bit(STRIPE_DELAYED, &sh->state);
4240
a4456856
DW
4241 /* now if nothing is locked, and if we have enough data,
4242 * we can start a write request
4243 */
f38e1219
DW
4244 /* since handle_stripe can be called at any time we need to handle the
4245 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4246 * subsequent call wants to start a write request. raid_run_ops only
4247 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4248 * simultaneously. If this is not the case then new writes need to be
4249 * held off until the compute completes.
4250 */
976ea8d4
DW
4251 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4252 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4253 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4254 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4255 return 0;
a4456856
DW
4256}
4257
d1688a6d 4258static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4259 struct stripe_head_state *s, int disks)
4260{
ecc65c9b 4261 struct r5dev *dev = NULL;
bd2ab670 4262
59fc630b 4263 BUG_ON(sh->batch_head);
a4456856 4264 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4265
ecc65c9b
DW
4266 switch (sh->check_state) {
4267 case check_state_idle:
4268 /* start a new check operation if there are no failures */
bd2ab670 4269 if (s->failed == 0) {
bd2ab670 4270 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4271 sh->check_state = check_state_run;
4272 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4273 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4274 s->uptodate--;
ecc65c9b 4275 break;
bd2ab670 4276 }
f2b3b44d 4277 dev = &sh->dev[s->failed_num[0]];
df561f66 4278 fallthrough;
ecc65c9b
DW
4279 case check_state_compute_result:
4280 sh->check_state = check_state_idle;
4281 if (!dev)
4282 dev = &sh->dev[sh->pd_idx];
4283
4284 /* check that a write has not made the stripe insync */
4285 if (test_bit(STRIPE_INSYNC, &sh->state))
4286 break;
c8894419 4287
a4456856 4288 /* either failed parity check, or recovery is happening */
a4456856
DW
4289 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4290 BUG_ON(s->uptodate != disks);
4291
4292 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4293 s->locked++;
a4456856 4294 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4295
a4456856 4296 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4297 break;
4298 case check_state_run:
4299 break; /* we will be called again upon completion */
4300 case check_state_check_result:
4301 sh->check_state = check_state_idle;
4302
4303 /* if a failure occurred during the check operation, leave
4304 * STRIPE_INSYNC not set and let the stripe be handled again
4305 */
4306 if (s->failed)
4307 break;
4308
4309 /* handle a successful check operation, if parity is correct
4310 * we are done. Otherwise update the mismatch count and repair
4311 * parity if !MD_RECOVERY_CHECK
4312 */
ad283ea4 4313 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4314 /* parity is correct (on disc,
4315 * not in buffer any more)
4316 */
4317 set_bit(STRIPE_INSYNC, &sh->state);
4318 else {
c911c46c 4319 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
e1539036 4320 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
ecc65c9b
DW
4321 /* don't try to repair!! */
4322 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4323 pr_warn_ratelimited("%s: mismatch sector in range "
4324 "%llu-%llu\n", mdname(conf->mddev),
4325 (unsigned long long) sh->sector,
4326 (unsigned long long) sh->sector +
c911c46c 4327 RAID5_STRIPE_SECTORS(conf));
e1539036 4328 } else {
ecc65c9b 4329 sh->check_state = check_state_compute_run;
976ea8d4 4330 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4331 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4332 set_bit(R5_Wantcompute,
4333 &sh->dev[sh->pd_idx].flags);
4334 sh->ops.target = sh->pd_idx;
ac6b53b6 4335 sh->ops.target2 = -1;
ecc65c9b
DW
4336 s->uptodate++;
4337 }
4338 }
4339 break;
4340 case check_state_compute_run:
4341 break;
4342 default:
cc6167b4 4343 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4344 __func__, sh->check_state,
4345 (unsigned long long) sh->sector);
4346 BUG();
a4456856
DW
4347 }
4348}
4349
d1688a6d 4350static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4351 struct stripe_head_state *s,
f2b3b44d 4352 int disks)
a4456856 4353{
a4456856 4354 int pd_idx = sh->pd_idx;
34e04e87 4355 int qd_idx = sh->qd_idx;
d82dfee0 4356 struct r5dev *dev;
a4456856 4357
59fc630b 4358 BUG_ON(sh->batch_head);
a4456856
DW
4359 set_bit(STRIPE_HANDLE, &sh->state);
4360
4361 BUG_ON(s->failed > 2);
d82dfee0 4362
a4456856
DW
4363 /* Want to check and possibly repair P and Q.
4364 * However there could be one 'failed' device, in which
4365 * case we can only check one of them, possibly using the
4366 * other to generate missing data
4367 */
4368
d82dfee0
DW
4369 switch (sh->check_state) {
4370 case check_state_idle:
4371 /* start a new check operation if there are < 2 failures */
f2b3b44d 4372 if (s->failed == s->q_failed) {
d82dfee0 4373 /* The only possible failed device holds Q, so it
a4456856
DW
4374 * makes sense to check P (If anything else were failed,
4375 * we would have used P to recreate it).
4376 */
d82dfee0 4377 sh->check_state = check_state_run;
a4456856 4378 }
f2b3b44d 4379 if (!s->q_failed && s->failed < 2) {
d82dfee0 4380 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4381 * anything, so it makes sense to check it
4382 */
d82dfee0
DW
4383 if (sh->check_state == check_state_run)
4384 sh->check_state = check_state_run_pq;
4385 else
4386 sh->check_state = check_state_run_q;
a4456856 4387 }
a4456856 4388
d82dfee0
DW
4389 /* discard potentially stale zero_sum_result */
4390 sh->ops.zero_sum_result = 0;
a4456856 4391
d82dfee0
DW
4392 if (sh->check_state == check_state_run) {
4393 /* async_xor_zero_sum destroys the contents of P */
4394 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4395 s->uptodate--;
a4456856 4396 }
d82dfee0
DW
4397 if (sh->check_state >= check_state_run &&
4398 sh->check_state <= check_state_run_pq) {
4399 /* async_syndrome_zero_sum preserves P and Q, so
4400 * no need to mark them !uptodate here
4401 */
4402 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4403 break;
a4456856
DW
4404 }
4405
d82dfee0
DW
4406 /* we have 2-disk failure */
4407 BUG_ON(s->failed != 2);
df561f66 4408 fallthrough;
d82dfee0
DW
4409 case check_state_compute_result:
4410 sh->check_state = check_state_idle;
a4456856 4411
d82dfee0
DW
4412 /* check that a write has not made the stripe insync */
4413 if (test_bit(STRIPE_INSYNC, &sh->state))
4414 break;
a4456856
DW
4415
4416 /* now write out any block on a failed drive,
d82dfee0 4417 * or P or Q if they were recomputed
a4456856 4418 */
b2176a1d 4419 dev = NULL;
a4456856 4420 if (s->failed == 2) {
f2b3b44d 4421 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4422 s->locked++;
4423 set_bit(R5_LOCKED, &dev->flags);
4424 set_bit(R5_Wantwrite, &dev->flags);
4425 }
4426 if (s->failed >= 1) {
f2b3b44d 4427 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4428 s->locked++;
4429 set_bit(R5_LOCKED, &dev->flags);
4430 set_bit(R5_Wantwrite, &dev->flags);
4431 }
d82dfee0 4432 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4433 dev = &sh->dev[pd_idx];
4434 s->locked++;
4435 set_bit(R5_LOCKED, &dev->flags);
4436 set_bit(R5_Wantwrite, &dev->flags);
4437 }
d82dfee0 4438 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4439 dev = &sh->dev[qd_idx];
4440 s->locked++;
4441 set_bit(R5_LOCKED, &dev->flags);
4442 set_bit(R5_Wantwrite, &dev->flags);
4443 }
b2176a1d
NC
4444 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4445 "%s: disk%td not up to date\n",
4446 mdname(conf->mddev),
4447 dev - (struct r5dev *) &sh->dev)) {
4448 clear_bit(R5_LOCKED, &dev->flags);
4449 clear_bit(R5_Wantwrite, &dev->flags);
4450 s->locked--;
4451 }
a4456856
DW
4452
4453 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4454 break;
4455 case check_state_run:
4456 case check_state_run_q:
4457 case check_state_run_pq:
4458 break; /* we will be called again upon completion */
4459 case check_state_check_result:
4460 sh->check_state = check_state_idle;
4461
4462 /* handle a successful check operation, if parity is correct
4463 * we are done. Otherwise update the mismatch count and repair
4464 * parity if !MD_RECOVERY_CHECK
4465 */
4466 if (sh->ops.zero_sum_result == 0) {
a25d8c32
SL
4467 /* both parities are correct */
4468 if (!s->failed)
4469 set_bit(STRIPE_INSYNC, &sh->state);
4470 else {
4471 /* in contrast to the raid5 case we can validate
4472 * parity, but still have a failure to write
4473 * back
4474 */
4475 sh->check_state = check_state_compute_result;
4476 /* Returning at this point means that we may go
4477 * off and bring p and/or q uptodate again so
4478 * we make sure to check zero_sum_result again
4479 * to verify if p or q need writeback
4480 */
4481 }
d82dfee0 4482 } else {
c911c46c 4483 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
e1539036 4484 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
d82dfee0
DW
4485 /* don't try to repair!! */
4486 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4487 pr_warn_ratelimited("%s: mismatch sector in range "
4488 "%llu-%llu\n", mdname(conf->mddev),
4489 (unsigned long long) sh->sector,
4490 (unsigned long long) sh->sector +
c911c46c 4491 RAID5_STRIPE_SECTORS(conf));
e1539036 4492 } else {
d82dfee0
DW
4493 int *target = &sh->ops.target;
4494
4495 sh->ops.target = -1;
4496 sh->ops.target2 = -1;
4497 sh->check_state = check_state_compute_run;
4498 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4499 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4500 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4501 set_bit(R5_Wantcompute,
4502 &sh->dev[pd_idx].flags);
4503 *target = pd_idx;
4504 target = &sh->ops.target2;
4505 s->uptodate++;
4506 }
4507 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4508 set_bit(R5_Wantcompute,
4509 &sh->dev[qd_idx].flags);
4510 *target = qd_idx;
4511 s->uptodate++;
4512 }
4513 }
4514 }
4515 break;
4516 case check_state_compute_run:
4517 break;
4518 default:
cc6167b4
N
4519 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4520 __func__, sh->check_state,
4521 (unsigned long long) sh->sector);
d82dfee0 4522 BUG();
a4456856
DW
4523 }
4524}
4525
d1688a6d 4526static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4527{
4528 int i;
4529
4530 /* We have read all the blocks in this stripe and now we need to
4531 * copy some of them into a target stripe for expand.
4532 */
f0a50d37 4533 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4534 BUG_ON(sh->batch_head);
a4456856
DW
4535 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4536 for (i = 0; i < sh->disks; i++)
34e04e87 4537 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4538 int dd_idx, j;
a4456856 4539 struct stripe_head *sh2;
a08abd8c 4540 struct async_submit_ctl submit;
a4456856 4541
6d036f7d 4542 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4543 sector_t s = raid5_compute_sector(conf, bn, 0,
4544 &dd_idx, NULL);
2f2d51ef
LG
4545 sh2 = raid5_get_active_stripe(conf, NULL, s,
4546 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
a4456856
DW
4547 if (sh2 == NULL)
4548 /* so far only the early blocks of this stripe
4549 * have been requested. When later blocks
4550 * get requested, we will try again
4551 */
4552 continue;
4553 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4554 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4555 /* must have already done this block */
6d036f7d 4556 raid5_release_stripe(sh2);
a4456856
DW
4557 continue;
4558 }
f0a50d37
DW
4559
4560 /* place all the copies on one channel */
a08abd8c 4561 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4562 tx = async_memcpy(sh2->dev[dd_idx].page,
7aba13b7
YY
4563 sh->dev[i].page, sh2->dev[dd_idx].offset,
4564 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
a08abd8c 4565 &submit);
f0a50d37 4566
a4456856
DW
4567 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4568 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4569 for (j = 0; j < conf->raid_disks; j++)
4570 if (j != sh2->pd_idx &&
86c374ba 4571 j != sh2->qd_idx &&
a4456856
DW
4572 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4573 break;
4574 if (j == conf->raid_disks) {
4575 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4576 set_bit(STRIPE_HANDLE, &sh2->state);
4577 }
6d036f7d 4578 raid5_release_stripe(sh2);
f0a50d37 4579
a4456856 4580 }
a2e08551 4581 /* done submitting copies, wait for them to complete */
749586b7 4582 async_tx_quiesce(&tx);
a4456856 4583}
1da177e4
LT
4584
4585/*
4586 * handle_stripe - do things to a stripe.
4587 *
9a3e1101
N
4588 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4589 * state of various bits to see what needs to be done.
1da177e4 4590 * Possible results:
9a3e1101
N
4591 * return some read requests which now have data
4592 * return some write requests which are safely on storage
1da177e4
LT
4593 * schedule a read on some buffers
4594 * schedule a write of some buffers
4595 * return confirmation of parity correctness
4596 *
1da177e4 4597 */
a4456856 4598
acfe726b 4599static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4600{
d1688a6d 4601 struct r5conf *conf = sh->raid_conf;
f416885e 4602 int disks = sh->disks;
474af965
N
4603 struct r5dev *dev;
4604 int i;
9a3e1101 4605 int do_recovery = 0;
1da177e4 4606
acfe726b
N
4607 memset(s, 0, sizeof(*s));
4608
dabc4ec6 4609 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4610 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4611 s->failed_num[0] = -1;
4612 s->failed_num[1] = -1;
6e74a9cf 4613 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4614
acfe726b 4615 /* Now to look around and see what can be done */
16a53ecc 4616 for (i=disks; i--; ) {
3cb03002 4617 struct md_rdev *rdev;
31c176ec 4618 int is_bad = 0;
acfe726b 4619
16a53ecc 4620 dev = &sh->dev[i];
1da177e4 4621
45b4233c 4622 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4623 i, dev->flags,
4624 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4625 /* maybe we can reply to a read
4626 *
4627 * new wantfill requests are only permitted while
4628 * ops_complete_biofill is guaranteed to be inactive
4629 */
4630 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4631 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4632 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4633
16a53ecc 4634 /* now count some things */
cc94015a
N
4635 if (test_bit(R5_LOCKED, &dev->flags))
4636 s->locked++;
4637 if (test_bit(R5_UPTODATE, &dev->flags))
4638 s->uptodate++;
2d6e4ecc 4639 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4640 s->compute++;
4641 BUG_ON(s->compute > 2);
2d6e4ecc 4642 }
1da177e4 4643
acfe726b 4644 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4645 s->to_fill++;
acfe726b 4646 else if (dev->toread)
cc94015a 4647 s->to_read++;
16a53ecc 4648 if (dev->towrite) {
cc94015a 4649 s->to_write++;
16a53ecc 4650 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4651 s->non_overwrite++;
16a53ecc 4652 }
a4456856 4653 if (dev->written)
cc94015a 4654 s->written++;
14a75d3e
N
4655 /* Prefer to use the replacement for reads, but only
4656 * if it is recovered enough and has no bad blocks.
4657 */
ad860670 4658 rdev = conf->disks[i].replacement;
14a75d3e 4659 if (rdev && !test_bit(Faulty, &rdev->flags) &&
c911c46c 4660 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
3a0f007b
YK
4661 !rdev_has_badblock(rdev, sh->sector,
4662 RAID5_STRIPE_SECTORS(conf)))
14a75d3e
N
4663 set_bit(R5_ReadRepl, &dev->flags);
4664 else {
e6030cb0 4665 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4666 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4667 else
4668 clear_bit(R5_NeedReplace, &dev->flags);
ad860670 4669 rdev = conf->disks[i].rdev;
14a75d3e
N
4670 clear_bit(R5_ReadRepl, &dev->flags);
4671 }
9283d8c5
N
4672 if (rdev && test_bit(Faulty, &rdev->flags))
4673 rdev = NULL;
31c176ec 4674 if (rdev) {
3a0f007b
YK
4675 is_bad = rdev_has_badblock(rdev, sh->sector,
4676 RAID5_STRIPE_SECTORS(conf));
649bfec6 4677 if (s->blocked_rdev == NULL) {
31c176ec 4678 if (is_bad < 0)
649bfec6
YK
4679 set_bit(BlockedBadBlocks, &rdev->flags);
4680 if (rdev_blocked(rdev)) {
4681 s->blocked_rdev = rdev;
4682 atomic_inc(&rdev->nr_pending);
4683 }
31c176ec 4684 }
6bfe0b49 4685 }
415e72d0
N
4686 clear_bit(R5_Insync, &dev->flags);
4687 if (!rdev)
4688 /* Not in-sync */;
31c176ec
N
4689 else if (is_bad) {
4690 /* also not in-sync */
18b9837e
N
4691 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4692 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4693 /* treat as in-sync, but with a read error
4694 * which we can now try to correct
4695 */
4696 set_bit(R5_Insync, &dev->flags);
4697 set_bit(R5_ReadError, &dev->flags);
4698 }
4699 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4700 set_bit(R5_Insync, &dev->flags);
c911c46c 4701 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
415e72d0 4702 /* in sync if before recovery_offset */
30d7a483
N
4703 set_bit(R5_Insync, &dev->flags);
4704 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4705 test_bit(R5_Expanded, &dev->flags))
4706 /* If we've reshaped into here, we assume it is Insync.
4707 * We will shortly update recovery_offset to make
4708 * it official.
4709 */
4710 set_bit(R5_Insync, &dev->flags);
4711
1cc03eb9 4712 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4713 /* This flag does not apply to '.replacement'
4714 * only to .rdev, so make sure to check that*/
ad860670
YK
4715 struct md_rdev *rdev2 = conf->disks[i].rdev;
4716
14a75d3e
N
4717 if (rdev2 == rdev)
4718 clear_bit(R5_Insync, &dev->flags);
4719 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4720 s->handle_bad_blocks = 1;
14a75d3e 4721 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4722 } else
4723 clear_bit(R5_WriteError, &dev->flags);
4724 }
1cc03eb9 4725 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4726 /* This flag does not apply to '.replacement'
4727 * only to .rdev, so make sure to check that*/
ad860670
YK
4728 struct md_rdev *rdev2 = conf->disks[i].rdev;
4729
14a75d3e 4730 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4731 s->handle_bad_blocks = 1;
14a75d3e 4732 atomic_inc(&rdev2->nr_pending);
b84db560
N
4733 } else
4734 clear_bit(R5_MadeGood, &dev->flags);
4735 }
977df362 4736 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
ad860670
YK
4737 struct md_rdev *rdev2 = conf->disks[i].replacement;
4738
977df362
N
4739 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4740 s->handle_bad_blocks = 1;
4741 atomic_inc(&rdev2->nr_pending);
4742 } else
4743 clear_bit(R5_MadeGoodRepl, &dev->flags);
4744 }
415e72d0 4745 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4746 /* The ReadError flag will just be confusing now */
4747 clear_bit(R5_ReadError, &dev->flags);
4748 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4749 }
415e72d0
N
4750 if (test_bit(R5_ReadError, &dev->flags))
4751 clear_bit(R5_Insync, &dev->flags);
4752 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4753 if (s->failed < 2)
4754 s->failed_num[s->failed] = i;
4755 s->failed++;
9a3e1101
N
4756 if (rdev && !test_bit(Faulty, &rdev->flags))
4757 do_recovery = 1;
d63e2fc8 4758 else if (!rdev) {
ad860670 4759 rdev = conf->disks[i].replacement;
d63e2fc8
BC
4760 if (rdev && !test_bit(Faulty, &rdev->flags))
4761 do_recovery = 1;
4762 }
415e72d0 4763 }
2ded3703
SL
4764
4765 if (test_bit(R5_InJournal, &dev->flags))
4766 s->injournal++;
1e6d690b
SL
4767 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4768 s->just_cached++;
1da177e4 4769 }
9a3e1101
N
4770 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4771 /* If there is a failed device being replaced,
4772 * we must be recovering.
4773 * else if we are after recovery_cp, we must be syncing
c6d2e084 4774 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4775 * else we can only be replacing
4776 * sync and recovery both need to read all devices, and so
4777 * use the same flag.
4778 */
4779 if (do_recovery ||
c6d2e084 4780 sh->sector >= conf->mddev->recovery_cp ||
4781 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4782 s->syncing = 1;
4783 else
4784 s->replacing = 1;
4785 }
cc94015a
N
4786}
4787
cb9902db
GJ
4788/*
4789 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4790 * a head which can now be handled.
4791 */
59fc630b 4792static int clear_batch_ready(struct stripe_head *sh)
4793{
4794 struct stripe_head *tmp;
4795 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4796 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4797 spin_lock(&sh->stripe_lock);
4798 if (!sh->batch_head) {
4799 spin_unlock(&sh->stripe_lock);
4800 return 0;
4801 }
4802
4803 /*
4804 * this stripe could be added to a batch list before we check
4805 * BATCH_READY, skips it
4806 */
4807 if (sh->batch_head != sh) {
4808 spin_unlock(&sh->stripe_lock);
4809 return 1;
4810 }
4811 spin_lock(&sh->batch_lock);
4812 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4813 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4814 spin_unlock(&sh->batch_lock);
4815 spin_unlock(&sh->stripe_lock);
4816
4817 /*
4818 * BATCH_READY is cleared, no new stripes can be added.
4819 * batch_list can be accessed without lock
4820 */
4821 return 0;
4822}
4823
3960ce79
N
4824static void break_stripe_batch_list(struct stripe_head *head_sh,
4825 unsigned long handle_flags)
72ac7330 4826{
4e3d62ff 4827 struct stripe_head *sh, *next;
72ac7330 4828 int i;
4829
bb27051f
N
4830 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4831
72ac7330 4832 list_del_init(&sh->batch_list);
4833
fb3229d5 4834 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4835 (1 << STRIPE_SYNCING) |
4836 (1 << STRIPE_REPLACED) |
1b956f7a
N
4837 (1 << STRIPE_DELAYED) |
4838 (1 << STRIPE_BIT_DELAY) |
4839 (1 << STRIPE_FULL_WRITE) |
4840 (1 << STRIPE_BIOFILL_RUN) |
4841 (1 << STRIPE_COMPUTE_RUN) |
1b956f7a
N
4842 (1 << STRIPE_DISCARD) |
4843 (1 << STRIPE_BATCH_READY) |
cd5fc653 4844 (1 << STRIPE_BATCH_ERR)),
fb3229d5
SL
4845 "stripe state: %lx\n", sh->state);
4846 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4847 (1 << STRIPE_REPLACED)),
4848 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4849
4850 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4851 (1 << STRIPE_PREREAD_ACTIVE) |
184a09eb 4852 (1 << STRIPE_ON_UNPLUG_LIST)),
1b956f7a
N
4853 head_sh->state & (1 << STRIPE_INSYNC));
4854
72ac7330 4855 sh->check_state = head_sh->check_state;
4856 sh->reconstruct_state = head_sh->reconstruct_state;
448ec638
AC
4857 spin_lock_irq(&sh->stripe_lock);
4858 sh->batch_head = NULL;
4859 spin_unlock_irq(&sh->stripe_lock);
fb642b92
N
4860 for (i = 0; i < sh->disks; i++) {
4861 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
e6a03207 4862 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
72ac7330 4863 sh->dev[i].flags = head_sh->dev[i].flags &
4864 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4865 }
3960ce79
N
4866 if (handle_flags == 0 ||
4867 sh->state & handle_flags)
4868 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4869 raid5_release_stripe(sh);
72ac7330 4870 }
fb642b92
N
4871 spin_lock_irq(&head_sh->stripe_lock);
4872 head_sh->batch_head = NULL;
4873 spin_unlock_irq(&head_sh->stripe_lock);
4874 for (i = 0; i < head_sh->disks; i++)
4875 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
e6a03207 4876 wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
3960ce79
N
4877 if (head_sh->state & handle_flags)
4878 set_bit(STRIPE_HANDLE, &head_sh->state);
72ac7330 4879}
4880
cc94015a
N
4881static void handle_stripe(struct stripe_head *sh)
4882{
4883 struct stripe_head_state s;
d1688a6d 4884 struct r5conf *conf = sh->raid_conf;
3687c061 4885 int i;
84789554
N
4886 int prexor;
4887 int disks = sh->disks;
474af965 4888 struct r5dev *pdev, *qdev;
cc94015a
N
4889
4890 clear_bit(STRIPE_HANDLE, &sh->state);
a377a472
GJ
4891
4892 /*
4893 * handle_stripe should not continue handle the batched stripe, only
4894 * the head of batch list or lone stripe can continue. Otherwise we
4895 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4896 * is set for the batched stripe.
4897 */
4898 if (clear_batch_ready(sh))
4899 return;
4900
257a4b42 4901 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4902 /* already being handled, ensure it gets handled
4903 * again when current action finishes */
4904 set_bit(STRIPE_HANDLE, &sh->state);
4905 return;
4906 }
4907
4e3d62ff 4908 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4909 break_stripe_batch_list(sh, 0);
72ac7330 4910
dabc4ec6 4911 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd 4912 spin_lock(&sh->stripe_lock);
5ddf0440
SL
4913 /*
4914 * Cannot process 'sync' concurrently with 'discard'.
4915 * Flush data in r5cache before 'sync'.
4916 */
4917 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4918 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4919 !test_bit(STRIPE_DISCARD, &sh->state) &&
f8dfcffd
N
4920 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4921 set_bit(STRIPE_SYNCING, &sh->state);
4922 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4923 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4924 }
4925 spin_unlock(&sh->stripe_lock);
cc94015a
N
4926 }
4927 clear_bit(STRIPE_DELAYED, &sh->state);
4928
4929 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4930 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4931 (unsigned long long)sh->sector, sh->state,
4932 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4933 sh->check_state, sh->reconstruct_state);
3687c061 4934
acfe726b 4935 analyse_stripe(sh, &s);
c5a31000 4936
b70abcb2
SL
4937 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4938 goto finish;
4939
16d997b7
N
4940 if (s.handle_bad_blocks ||
4941 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4942 set_bit(STRIPE_HANDLE, &sh->state);
4943 goto finish;
4944 }
4945
474af965
N
4946 if (unlikely(s.blocked_rdev)) {
4947 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4948 s.replacing || s.to_write || s.written) {
474af965
N
4949 set_bit(STRIPE_HANDLE, &sh->state);
4950 goto finish;
4951 }
4952 /* There is nothing for the blocked_rdev to block */
4953 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4954 s.blocked_rdev = NULL;
4955 }
4956
4957 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4958 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4959 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4960 }
4961
4962 pr_debug("locked=%d uptodate=%d to_read=%d"
4963 " to_write=%d failed=%d failed_num=%d,%d\n",
4964 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4965 s.failed_num[0], s.failed_num[1]);
70d466f7
SL
4966 /*
4967 * check if the array has lost more than max_degraded devices and,
474af965 4968 * if so, some requests might need to be failed.
70d466f7
SL
4969 *
4970 * When journal device failed (log_failed), we will only process
4971 * the stripe if there is data need write to raid disks
474af965 4972 */
70d466f7
SL
4973 if (s.failed > conf->max_degraded ||
4974 (s.log_failed && s.injournal == 0)) {
9a3f530f
N
4975 sh->check_state = 0;
4976 sh->reconstruct_state = 0;
626f2092 4977 break_stripe_batch_list(sh, 0);
9a3f530f 4978 if (s.to_read+s.to_write+s.written)
bd83d0a2 4979 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4980 if (s.syncing + s.replacing)
9a3f530f
N
4981 handle_failed_sync(conf, sh, &s);
4982 }
474af965 4983
84789554
N
4984 /* Now we check to see if any write operations have recently
4985 * completed
4986 */
4987 prexor = 0;
4988 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4989 prexor = 1;
4990 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4991 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4992 sh->reconstruct_state = reconstruct_state_idle;
4993
4994 /* All the 'written' buffers and the parity block are ready to
4995 * be written back to disk
4996 */
9e444768
SL
4997 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4998 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4999 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
5000 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5001 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
5002 for (i = disks; i--; ) {
5003 struct r5dev *dev = &sh->dev[i];
5004 if (test_bit(R5_LOCKED, &dev->flags) &&
5005 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
5006 dev->written || test_bit(R5_InJournal,
5007 &dev->flags))) {
84789554
N
5008 pr_debug("Writing block %d\n", i);
5009 set_bit(R5_Wantwrite, &dev->flags);
5010 if (prexor)
5011 continue;
9c4bdf69
N
5012 if (s.failed > 1)
5013 continue;
84789554
N
5014 if (!test_bit(R5_Insync, &dev->flags) ||
5015 ((i == sh->pd_idx || i == sh->qd_idx) &&
5016 s.failed == 0))
5017 set_bit(STRIPE_INSYNC, &sh->state);
5018 }
5019 }
5020 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5021 s.dec_preread_active = 1;
5022 }
5023
ef5b7c69
N
5024 /*
5025 * might be able to return some write requests if the parity blocks
5026 * are safe, or on a failed drive
5027 */
5028 pdev = &sh->dev[sh->pd_idx];
5029 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5030 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5031 qdev = &sh->dev[sh->qd_idx];
5032 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5033 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5034 || conf->level < 6;
5035
5036 if (s.written &&
5037 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5038 && !test_bit(R5_LOCKED, &pdev->flags)
5039 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5040 test_bit(R5_Discard, &pdev->flags))))) &&
5041 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5042 && !test_bit(R5_LOCKED, &qdev->flags)
5043 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5044 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 5045 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 5046
1e6d690b 5047 if (s.just_cached)
bd83d0a2 5048 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 5049 log_stripe_write_finished(sh);
1e6d690b 5050
ef5b7c69
N
5051 /* Now we might consider reading some blocks, either to check/generate
5052 * parity, or to satisfy requests
5053 * or to load a block that is being partially written.
5054 */
5055 if (s.to_read || s.non_overwrite
a1c6ae3d 5056 || (s.to_write && s.failed)
ef5b7c69
N
5057 || (s.syncing && (s.uptodate + s.compute < disks))
5058 || s.replacing
5059 || s.expanding)
5060 handle_stripe_fill(sh, &s, disks);
5061
2ded3703
SL
5062 /*
5063 * When the stripe finishes full journal write cycle (write to journal
5064 * and raid disk), this is the clean up procedure so it is ready for
5065 * next operation.
5066 */
5067 r5c_finish_stripe_write_out(conf, sh, &s);
5068
5069 /*
5070 * Now to consider new write requests, cache write back and what else,
5071 * if anything should be read. We do not handle new writes when:
84789554
N
5072 * 1/ A 'write' operation (copy+xor) is already in flight.
5073 * 2/ A 'check' operation is in flight, as it may clobber the parity
5074 * block.
2ded3703 5075 * 3/ A r5c cache log write is in flight.
84789554 5076 */
2ded3703
SL
5077
5078 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5079 if (!r5c_is_writeback(conf->log)) {
5080 if (s.to_write)
5081 handle_stripe_dirtying(conf, sh, &s, disks);
5082 } else { /* write back cache */
5083 int ret = 0;
5084
5085 /* First, try handle writes in caching phase */
5086 if (s.to_write)
5087 ret = r5c_try_caching_write(conf, sh, &s,
5088 disks);
5089 /*
5090 * If caching phase failed: ret == -EAGAIN
5091 * OR
5092 * stripe under reclaim: !caching && injournal
5093 *
5094 * fall back to handle_stripe_dirtying()
5095 */
5096 if (ret == -EAGAIN ||
5097 /* stripe under reclaim: !caching && injournal */
5098 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
5099 s.injournal > 0)) {
5100 ret = handle_stripe_dirtying(conf, sh, &s,
5101 disks);
5102 if (ret == -EAGAIN)
5103 goto finish;
5104 }
2ded3703
SL
5105 }
5106 }
84789554
N
5107
5108 /* maybe we need to check and possibly fix the parity for this stripe
5109 * Any reads will already have been scheduled, so we just see if enough
5110 * data is available. The parity check is held off while parity
5111 * dependent operations are in flight.
5112 */
5113 if (sh->check_state ||
5114 (s.syncing && s.locked == 0 &&
5115 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5116 !test_bit(STRIPE_INSYNC, &sh->state))) {
5117 if (conf->level == 6)
5118 handle_parity_checks6(conf, sh, &s, disks);
5119 else
5120 handle_parity_checks5(conf, sh, &s, disks);
5121 }
c5a31000 5122
f94c0b66
N
5123 if ((s.replacing || s.syncing) && s.locked == 0
5124 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5125 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
5126 /* Write out to replacement devices where possible */
5127 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
5128 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5129 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
5130 set_bit(R5_WantReplace, &sh->dev[i].flags);
5131 set_bit(R5_LOCKED, &sh->dev[i].flags);
5132 s.locked++;
5133 }
f94c0b66
N
5134 if (s.replacing)
5135 set_bit(STRIPE_INSYNC, &sh->state);
5136 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
5137 }
5138 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 5139 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 5140 test_bit(STRIPE_INSYNC, &sh->state)) {
c911c46c 5141 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
c5a31000 5142 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd 5143 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
e6a03207 5144 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
c5a31000
N
5145 }
5146
5147 /* If the failed drives are just a ReadError, then we might need
5148 * to progress the repair/check process
5149 */
5150 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5151 for (i = 0; i < s.failed; i++) {
5152 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5153 if (test_bit(R5_ReadError, &dev->flags)
5154 && !test_bit(R5_LOCKED, &dev->flags)
5155 && test_bit(R5_UPTODATE, &dev->flags)
5156 ) {
5157 if (!test_bit(R5_ReWrite, &dev->flags)) {
5158 set_bit(R5_Wantwrite, &dev->flags);
5159 set_bit(R5_ReWrite, &dev->flags);
3a31cf3d 5160 } else
c5a31000
N
5161 /* let's read it back */
5162 set_bit(R5_Wantread, &dev->flags);
3a31cf3d
GJ
5163 set_bit(R5_LOCKED, &dev->flags);
5164 s.locked++;
c5a31000
N
5165 }
5166 }
5167
3687c061
N
5168 /* Finish reconstruct operations initiated by the expansion process */
5169 if (sh->reconstruct_state == reconstruct_state_result) {
5170 struct stripe_head *sh_src
2f2d51ef
LG
5171 = raid5_get_active_stripe(conf, NULL, sh->sector,
5172 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5173 R5_GAS_NOQUIESCE);
3687c061
N
5174 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5175 /* sh cannot be written until sh_src has been read.
5176 * so arrange for sh to be delayed a little
5177 */
5178 set_bit(STRIPE_DELAYED, &sh->state);
5179 set_bit(STRIPE_HANDLE, &sh->state);
5180 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5181 &sh_src->state))
5182 atomic_inc(&conf->preread_active_stripes);
6d036f7d 5183 raid5_release_stripe(sh_src);
3687c061
N
5184 goto finish;
5185 }
5186 if (sh_src)
6d036f7d 5187 raid5_release_stripe(sh_src);
3687c061
N
5188
5189 sh->reconstruct_state = reconstruct_state_idle;
5190 clear_bit(STRIPE_EXPANDING, &sh->state);
5191 for (i = conf->raid_disks; i--; ) {
5192 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5193 set_bit(R5_LOCKED, &sh->dev[i].flags);
5194 s.locked++;
5195 }
5196 }
f416885e 5197
3687c061
N
5198 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5199 !sh->reconstruct_state) {
5200 /* Need to write out all blocks after computing parity */
5201 sh->disks = conf->raid_disks;
5202 stripe_set_idx(sh->sector, conf, 0, sh);
5203 schedule_reconstruction(sh, &s, 1, 1);
5204 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5205 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5206 atomic_dec(&conf->reshape_stripes);
6f039cc4 5207 wake_up(&conf->wait_for_reshape);
c911c46c 5208 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
3687c061
N
5209 }
5210
5211 if (s.expanding && s.locked == 0 &&
5212 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5213 handle_stripe_expansion(conf, sh);
16a53ecc 5214
3687c061 5215finish:
6bfe0b49 5216 /* wait for this device to become unblocked */
5f066c63
N
5217 if (unlikely(s.blocked_rdev)) {
5218 if (conf->mddev->external)
5219 md_wait_for_blocked_rdev(s.blocked_rdev,
5220 conf->mddev);
5221 else
5222 /* Internal metadata will immediately
5223 * be written by raid5d, so we don't
5224 * need to wait here.
5225 */
5226 rdev_dec_pending(s.blocked_rdev,
5227 conf->mddev);
5228 }
6bfe0b49 5229
bc2607f3
N
5230 if (s.handle_bad_blocks)
5231 for (i = disks; i--; ) {
3cb03002 5232 struct md_rdev *rdev;
bc2607f3
N
5233 struct r5dev *dev = &sh->dev[i];
5234 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5235 /* We own a safe reference to the rdev */
ad860670 5236 rdev = conf->disks[i].rdev;
bc2607f3 5237 if (!rdev_set_badblocks(rdev, sh->sector,
c911c46c 5238 RAID5_STRIPE_SECTORS(conf), 0))
bc2607f3
N
5239 md_error(conf->mddev, rdev);
5240 rdev_dec_pending(rdev, conf->mddev);
5241 }
b84db560 5242 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
ad860670 5243 rdev = conf->disks[i].rdev;
b84db560 5244 rdev_clear_badblocks(rdev, sh->sector,
c911c46c 5245 RAID5_STRIPE_SECTORS(conf), 0);
b84db560
N
5246 rdev_dec_pending(rdev, conf->mddev);
5247 }
977df362 5248 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
ad860670 5249 rdev = conf->disks[i].replacement;
dd054fce
N
5250 if (!rdev)
5251 /* rdev have been moved down */
ad860670 5252 rdev = conf->disks[i].rdev;
977df362 5253 rdev_clear_badblocks(rdev, sh->sector,
c911c46c 5254 RAID5_STRIPE_SECTORS(conf), 0);
977df362
N
5255 rdev_dec_pending(rdev, conf->mddev);
5256 }
bc2607f3
N
5257 }
5258
6c0069c0
YT
5259 if (s.ops_request)
5260 raid_run_ops(sh, s.ops_request);
5261
f0e43bcd 5262 ops_run_io(sh, &s);
16a53ecc 5263
c5709ef6 5264 if (s.dec_preread_active) {
729a1866 5265 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5266 * is waiting on a flush, it won't continue until the writes
729a1866
N
5267 * have actually been submitted.
5268 */
5269 atomic_dec(&conf->preread_active_stripes);
5270 if (atomic_read(&conf->preread_active_stripes) <
5271 IO_THRESHOLD)
5272 md_wakeup_thread(conf->mddev->thread);
5273 }
5274
257a4b42 5275 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5276}
5277
d1688a6d 5278static void raid5_activate_delayed(struct r5conf *conf)
4631f39f 5279 __must_hold(&conf->device_lock)
16a53ecc
N
5280{
5281 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5282 while (!list_empty(&conf->delayed_list)) {
5283 struct list_head *l = conf->delayed_list.next;
5284 struct stripe_head *sh;
5285 sh = list_entry(l, struct stripe_head, lru);
5286 list_del_init(l);
5287 clear_bit(STRIPE_DELAYED, &sh->state);
5288 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5289 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5290 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5291 raid5_wakeup_stripe_thread(sh);
16a53ecc 5292 }
482c0834 5293 }
16a53ecc
N
5294}
5295
566c09c5 5296static void activate_bit_delay(struct r5conf *conf,
4631f39f
LG
5297 struct list_head *temp_inactive_list)
5298 __must_hold(&conf->device_lock)
16a53ecc 5299{
16a53ecc
N
5300 struct list_head head;
5301 list_add(&head, &conf->bitmap_list);
5302 list_del_init(&conf->bitmap_list);
5303 while (!list_empty(&head)) {
5304 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5305 int hash;
16a53ecc
N
5306 list_del_init(&sh->lru);
5307 atomic_inc(&sh->count);
566c09c5
SL
5308 hash = sh->hash_lock_index;
5309 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5310 }
5311}
5312
fd01b88c 5313static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5314{
3cb5edf4 5315 struct r5conf *conf = mddev->private;
10433d04 5316 sector_t sector = bio->bi_iter.bi_sector;
3cb5edf4 5317 unsigned int chunk_sectors;
aa8b57aa 5318 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5319
3cb5edf4 5320 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5321 return chunk_sectors >=
5322 ((sector & (chunk_sectors - 1)) + bio_sectors);
5323}
5324
46031f9a
RBJ
5325/*
5326 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5327 * later sampled by raid5d.
5328 */
d1688a6d 5329static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5330{
5331 unsigned long flags;
5332
5333 spin_lock_irqsave(&conf->device_lock, flags);
5334
5335 bi->bi_next = conf->retry_read_aligned_list;
5336 conf->retry_read_aligned_list = bi;
5337
5338 spin_unlock_irqrestore(&conf->device_lock, flags);
5339 md_wakeup_thread(conf->mddev->thread);
5340}
5341
0472a42b
N
5342static struct bio *remove_bio_from_retry(struct r5conf *conf,
5343 unsigned int *offset)
46031f9a
RBJ
5344{
5345 struct bio *bi;
5346
5347 bi = conf->retry_read_aligned;
5348 if (bi) {
0472a42b 5349 *offset = conf->retry_read_offset;
46031f9a
RBJ
5350 conf->retry_read_aligned = NULL;
5351 return bi;
5352 }
5353 bi = conf->retry_read_aligned_list;
5354 if(bi) {
387bb173 5355 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5356 bi->bi_next = NULL;
0472a42b 5357 *offset = 0;
46031f9a
RBJ
5358 }
5359
5360 return bi;
5361}
5362
f679623f
RBJ
5363/*
5364 * The "raid5_align_endio" should check if the read succeeded and if it
5365 * did, call bio_endio on the original bio (having bio_put the new bio
5366 * first).
5367 * If the read failed..
5368 */
4246a0b6 5369static void raid5_align_endio(struct bio *bi)
f679623f 5370{
05048cbc
YK
5371 struct bio *raid_bi = bi->bi_private;
5372 struct md_rdev *rdev = (void *)raid_bi->bi_next;
5373 struct mddev *mddev = rdev->mddev;
5374 struct r5conf *conf = mddev->private;
4e4cbee9 5375 blk_status_t error = bi->bi_status;
46031f9a 5376
f679623f 5377 bio_put(bi);
46031f9a 5378 raid_bi->bi_next = NULL;
46031f9a
RBJ
5379 rdev_dec_pending(rdev, conf->mddev);
5380
9b81c842 5381 if (!error) {
4246a0b6 5382 bio_endio(raid_bi);
46031f9a 5383 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5384 wake_up(&conf->wait_for_quiescent);
6712ecf8 5385 return;
46031f9a
RBJ
5386 }
5387
45b4233c 5388 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5389
5390 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5391}
5392
7ef6b12a 5393static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5394{
d1688a6d 5395 struct r5conf *conf = mddev->private;
e82ed3a4 5396 struct bio *align_bio;
3cb03002 5397 struct md_rdev *rdev;
3a0f007b
YK
5398 sector_t sector, end_sector;
5399 int dd_idx;
97ae2725 5400 bool did_inc;
f679623f
RBJ
5401
5402 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5403 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5404 return 0;
5405 }
f679623f 5406
e82ed3a4
CH
5407 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5408 &dd_idx, NULL);
8557dc27 5409 end_sector = sector + bio_sectors(raid_bio);
e82ed3a4 5410
e82ed3a4 5411 if (r5c_big_stripe_cached(conf, sector))
ad860670 5412 return 0;
e82ed3a4 5413
ad860670 5414 rdev = conf->disks[dd_idx].replacement;
671488cc
N
5415 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5416 rdev->recovery_offset < end_sector) {
ad860670 5417 rdev = conf->disks[dd_idx].rdev;
e82ed3a4 5418 if (!rdev)
ad860670 5419 return 0;
e82ed3a4 5420 if (test_bit(Faulty, &rdev->flags) ||
671488cc 5421 !(test_bit(In_sync, &rdev->flags) ||
e82ed3a4 5422 rdev->recovery_offset >= end_sector))
ad860670 5423 return 0;
671488cc 5424 }
03b047f4 5425
e82ed3a4 5426 atomic_inc(&rdev->nr_pending);
e82ed3a4 5427
3a0f007b 5428 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
e82ed3a4 5429 rdev_dec_pending(rdev, mddev);
03b047f4
SL
5430 return 0;
5431 }
5432
05048cbc 5433 md_account_bio(mddev, &raid_bio);
1147f58e 5434 raid_bio->bi_next = (void *)rdev;
1147f58e 5435
05048cbc
YK
5436 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5437 &mddev->bio_set);
e82ed3a4 5438 align_bio->bi_end_io = raid5_align_endio;
05048cbc 5439 align_bio->bi_private = raid_bio;
e82ed3a4
CH
5440 align_bio->bi_iter.bi_sector = sector;
5441
e82ed3a4
CH
5442 /* No reshape active, so we can trust rdev->data_offset */
5443 align_bio->bi_iter.bi_sector += rdev->data_offset;
31c176ec 5444
97ae2725
GO
5445 did_inc = false;
5446 if (conf->quiesce == 0) {
5447 atomic_inc(&conf->active_aligned_reads);
5448 did_inc = true;
5449 }
5450 /* need a memory barrier to detect the race with raid5_quiesce() */
5451 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5452 /* quiesce is in progress, so we need to undo io activation and wait
5453 * for it to finish
5454 */
5455 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5456 wake_up(&conf->wait_for_quiescent);
5457 spin_lock_irq(&conf->device_lock);
5458 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5459 conf->device_lock);
5460 atomic_inc(&conf->active_aligned_reads);
5461 spin_unlock_irq(&conf->device_lock);
5462 }
387bb173 5463
c396b90e 5464 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
e82ed3a4
CH
5465 submit_bio_noacct(align_bio);
5466 return 1;
f679623f
RBJ
5467}
5468
7ef6b12a
ML
5469static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5470{
5471 struct bio *split;
dd7a8f5d
N
5472 sector_t sector = raid_bio->bi_iter.bi_sector;
5473 unsigned chunk_sects = mddev->chunk_sectors;
5474 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
7ef6b12a 5475
dd7a8f5d
N
5476 if (sectors < bio_sectors(raid_bio)) {
5477 struct r5conf *conf = mddev->private;
afeee514 5478 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
dd7a8f5d 5479 bio_chain(split, raid_bio);
ed00aabd 5480 submit_bio_noacct(raid_bio);
dd7a8f5d
N
5481 raid_bio = split;
5482 }
7ef6b12a 5483
dd7a8f5d
N
5484 if (!raid5_read_one_chunk(mddev, raid_bio))
5485 return raid_bio;
7ef6b12a
ML
5486
5487 return NULL;
5488}
5489
8b3e6cdc
DW
5490/* __get_priority_stripe - get the next stripe to process
5491 *
5492 * Full stripe writes are allowed to pass preread active stripes up until
5493 * the bypass_threshold is exceeded. In general the bypass_count
5494 * increments when the handle_list is handled before the hold_list; however, it
5495 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5496 * stripe with in flight i/o. The bypass_count will be reset when the
5497 * head of the hold_list has changed, i.e. the head was promoted to the
5498 * handle_list.
5499 */
851c30c9 5500static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4631f39f 5501 __must_hold(&conf->device_lock)
8b3e6cdc 5502{
535ae4eb 5503 struct stripe_head *sh, *tmp;
851c30c9 5504 struct list_head *handle_list = NULL;
535ae4eb 5505 struct r5worker_group *wg;
70d466f7
SL
5506 bool second_try = !r5c_is_writeback(conf->log) &&
5507 !r5l_log_disk_error(conf);
5508 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5509 r5l_log_disk_error(conf);
851c30c9 5510
535ae4eb
SL
5511again:
5512 wg = NULL;
5513 sh = NULL;
851c30c9 5514 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5515 handle_list = try_loprio ? &conf->loprio_list :
5516 &conf->handle_list;
851c30c9 5517 } else if (group != ANY_GROUP) {
535ae4eb
SL
5518 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5519 &conf->worker_groups[group].handle_list;
bfc90cb0 5520 wg = &conf->worker_groups[group];
851c30c9
SL
5521 } else {
5522 int i;
5523 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5524 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5525 &conf->worker_groups[i].handle_list;
bfc90cb0 5526 wg = &conf->worker_groups[i];
851c30c9
SL
5527 if (!list_empty(handle_list))
5528 break;
5529 }
5530 }
8b3e6cdc
DW
5531
5532 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5533 __func__,
851c30c9 5534 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5535 list_empty(&conf->hold_list) ? "empty" : "busy",
5536 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5537
851c30c9
SL
5538 if (!list_empty(handle_list)) {
5539 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5540
5541 if (list_empty(&conf->hold_list))
5542 conf->bypass_count = 0;
5543 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5544 if (conf->hold_list.next == conf->last_hold)
5545 conf->bypass_count++;
5546 else {
5547 conf->last_hold = conf->hold_list.next;
5548 conf->bypass_count -= conf->bypass_threshold;
5549 if (conf->bypass_count < 0)
5550 conf->bypass_count = 0;
5551 }
5552 }
5553 } else if (!list_empty(&conf->hold_list) &&
5554 ((conf->bypass_threshold &&
5555 conf->bypass_count > conf->bypass_threshold) ||
5556 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5557
5558 list_for_each_entry(tmp, &conf->hold_list, lru) {
5559 if (conf->worker_cnt_per_group == 0 ||
5560 group == ANY_GROUP ||
5561 !cpu_online(tmp->cpu) ||
5562 cpu_to_group(tmp->cpu) == group) {
5563 sh = tmp;
5564 break;
5565 }
5566 }
5567
5568 if (sh) {
5569 conf->bypass_count -= conf->bypass_threshold;
5570 if (conf->bypass_count < 0)
5571 conf->bypass_count = 0;
5572 }
bfc90cb0 5573 wg = NULL;
851c30c9
SL
5574 }
5575
535ae4eb
SL
5576 if (!sh) {
5577 if (second_try)
5578 return NULL;
5579 second_try = true;
5580 try_loprio = !try_loprio;
5581 goto again;
5582 }
8b3e6cdc 5583
bfc90cb0
SL
5584 if (wg) {
5585 wg->stripes_cnt--;
5586 sh->group = NULL;
5587 }
8b3e6cdc 5588 list_del_init(&sh->lru);
c7a6d35e 5589 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5590 return sh;
5591}
f679623f 5592
8811b596
SL
5593struct raid5_plug_cb {
5594 struct blk_plug_cb cb;
5595 struct list_head list;
566c09c5 5596 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5597};
5598
5599static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5600{
5601 struct raid5_plug_cb *cb = container_of(
5602 blk_cb, struct raid5_plug_cb, cb);
5603 struct stripe_head *sh;
5604 struct mddev *mddev = cb->cb.data;
5605 struct r5conf *conf = mddev->private;
a9add5d9 5606 int cnt = 0;
566c09c5 5607 int hash;
8811b596
SL
5608
5609 if (cb->list.next && !list_empty(&cb->list)) {
5610 spin_lock_irq(&conf->device_lock);
5611 while (!list_empty(&cb->list)) {
5612 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5613 list_del_init(&sh->lru);
5614 /*
5615 * avoid race release_stripe_plug() sees
5616 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5617 * is still in our list
5618 */
4e857c58 5619 smp_mb__before_atomic();
8811b596 5620 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5621 /*
5622 * STRIPE_ON_RELEASE_LIST could be set here. In that
5623 * case, the count is always > 1 here
5624 */
566c09c5
SL
5625 hash = sh->hash_lock_index;
5626 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5627 cnt++;
8811b596
SL
5628 }
5629 spin_unlock_irq(&conf->device_lock);
5630 }
566c09c5
SL
5631 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5632 NR_STRIPE_HASH_LOCKS);
176df894 5633 if (!mddev_is_dm(mddev))
396799eb 5634 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
8811b596
SL
5635 kfree(cb);
5636}
5637
5638static void release_stripe_plug(struct mddev *mddev,
5639 struct stripe_head *sh)
5640{
5641 struct blk_plug_cb *blk_cb = blk_check_plugged(
5642 raid5_unplug, mddev,
5643 sizeof(struct raid5_plug_cb));
5644 struct raid5_plug_cb *cb;
5645
5646 if (!blk_cb) {
6d036f7d 5647 raid5_release_stripe(sh);
8811b596
SL
5648 return;
5649 }
5650
5651 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5652
566c09c5
SL
5653 if (cb->list.next == NULL) {
5654 int i;
8811b596 5655 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5656 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5657 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5658 }
8811b596
SL
5659
5660 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5661 list_add_tail(&sh->lru, &cb->list);
5662 else
6d036f7d 5663 raid5_release_stripe(sh);
8811b596
SL
5664}
5665
620125f2
SL
5666static void make_discard_request(struct mddev *mddev, struct bio *bi)
5667{
5668 struct r5conf *conf = mddev->private;
5669 sector_t logical_sector, last_sector;
5670 struct stripe_head *sh;
620125f2
SL
5671 int stripe_sectors;
5672
bf2c411b
VV
5673 /* We need to handle this when io_uring supports discard/trim */
5674 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5675 return;
5676
620125f2
SL
5677 if (mddev->reshape_position != MaxSector)
5678 /* Skip discard while reshape is happening */
5679 return;
5680
c911c46c 5681 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
b0f01ecf 5682 last_sector = bio_end_sector(bi);
620125f2
SL
5683
5684 bi->bi_next = NULL;
620125f2
SL
5685
5686 stripe_sectors = conf->chunk_sectors *
5687 (conf->raid_disks - conf->max_degraded);
5688 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5689 stripe_sectors);
5690 sector_div(last_sector, stripe_sectors);
5691
5692 logical_sector *= conf->chunk_sectors;
5693 last_sector *= conf->chunk_sectors;
5694
5695 for (; logical_sector < last_sector;
c911c46c 5696 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
620125f2
SL
5697 DEFINE_WAIT(w);
5698 int d;
5699 again:
2f2d51ef 5700 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
f8dfcffd
N
5701 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5702 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5703 raid5_release_stripe(sh);
e6a03207
AP
5704 wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
5705 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5706 goto again;
5707 }
5708 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5709 spin_lock_irq(&sh->stripe_lock);
5710 for (d = 0; d < conf->raid_disks; d++) {
5711 if (d == sh->pd_idx || d == sh->qd_idx)
5712 continue;
5713 if (sh->dev[d].towrite || sh->dev[d].toread) {
5714 set_bit(R5_Overlap, &sh->dev[d].flags);
5715 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5716 raid5_release_stripe(sh);
e6a03207
AP
5717 wait_on_bit(&sh->dev[d].flags, R5_Overlap,
5718 TASK_UNINTERRUPTIBLE);
620125f2
SL
5719 goto again;
5720 }
5721 }
f8dfcffd 5722 set_bit(STRIPE_DISCARD, &sh->state);
7a87f434 5723 sh->overwrite_disks = 0;
620125f2
SL
5724 for (d = 0; d < conf->raid_disks; d++) {
5725 if (d == sh->pd_idx || d == sh->qd_idx)
5726 continue;
5727 sh->dev[d].towrite = bi;
5728 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5729 bio_inc_remaining(bi);
49728050 5730 md_write_inc(mddev, bi);
7a87f434 5731 sh->overwrite_disks++;
620125f2
SL
5732 }
5733 spin_unlock_irq(&sh->stripe_lock);
5734 if (conf->mddev->bitmap) {
620125f2
SL
5735 sh->bm_seq = conf->seq_flush + 1;
5736 set_bit(STRIPE_BIT_DELAY, &sh->state);
5737 }
5738
5739 set_bit(STRIPE_HANDLE, &sh->state);
5740 clear_bit(STRIPE_DELAYED, &sh->state);
5741 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5742 atomic_inc(&conf->preread_active_stripes);
5743 release_stripe_plug(mddev, sh);
5744 }
5745
016c76ac 5746 bio_endio(bi);
620125f2
SL
5747}
5748
a8bb304c
LG
5749static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5750 sector_t reshape_sector)
5751{
5752 return mddev->reshape_backwards ? sector < reshape_sector :
5753 sector >= reshape_sector;
5754}
5755
486f6055
LG
5756static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5757 sector_t max, sector_t reshape_sector)
5758{
5759 return mddev->reshape_backwards ? max < reshape_sector :
5760 min >= reshape_sector;
5761}
5762
5763static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5764 struct stripe_head *sh)
5765{
5766 sector_t max_sector = 0, min_sector = MaxSector;
5767 bool ret = false;
5768 int dd_idx;
5769
5770 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
c467e97f 5771 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
486f6055
LG
5772 continue;
5773
5774 min_sector = min(min_sector, sh->dev[dd_idx].sector);
c467e97f 5775 max_sector = max(max_sector, sh->dev[dd_idx].sector);
486f6055
LG
5776 }
5777
5778 spin_lock_irq(&conf->device_lock);
5779
5780 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5781 conf->reshape_progress))
5782 /* mismatch, need to try again */
5783 ret = true;
5784
5785 spin_unlock_irq(&conf->device_lock);
5786
5787 return ret;
5788}
5789
7e55c60a
LG
5790static int add_all_stripe_bios(struct r5conf *conf,
5791 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5792 struct bio *bi, int forwrite, int previous)
5793{
5794 int dd_idx;
7e55c60a
LG
5795
5796 spin_lock_irq(&sh->stripe_lock);
5797
5798 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5799 struct r5dev *dev = &sh->dev[dd_idx];
5800
5801 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5802 continue;
5803
5804 if (dev->sector < ctx->first_sector ||
5805 dev->sector >= ctx->last_sector)
5806 continue;
5807
5808 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5809 set_bit(R5_Overlap, &dev->flags);
e6a03207
AP
5810 spin_unlock_irq(&sh->stripe_lock);
5811 raid5_release_stripe(sh);
5812 /* release batch_last before wait to avoid risk of deadlock */
5813 if (ctx->batch_last) {
5814 raid5_release_stripe(ctx->batch_last);
5815 ctx->batch_last = NULL;
5816 }
5817 md_wakeup_thread(conf->mddev->thread);
5818 wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
5819 return 0;
7e55c60a
LG
5820 }
5821 }
5822
7e55c60a
LG
5823 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5824 struct r5dev *dev = &sh->dev[dd_idx];
5825
5826 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5827 continue;
5828
5829 if (dev->sector < ctx->first_sector ||
5830 dev->sector >= ctx->last_sector)
5831 continue;
5832
5833 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5834 clear_bit((dev->sector - ctx->first_sector) >>
5835 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5836 }
5837
7e55c60a 5838 spin_unlock_irq(&sh->stripe_lock);
e6a03207 5839 return 1;
7e55c60a
LG
5840}
5841
25b3a823
BM
5842enum reshape_loc {
5843 LOC_NO_RESHAPE,
5844 LOC_AHEAD_OF_RESHAPE,
5845 LOC_INSIDE_RESHAPE,
5846 LOC_BEHIND_RESHAPE,
5847};
5848
5849static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5850 struct r5conf *conf, sector_t logical_sector)
5851{
5852 sector_t reshape_progress, reshape_safe;
1320fe87
YK
5853
5854 if (likely(conf->reshape_progress == MaxSector))
5855 return LOC_NO_RESHAPE;
25b3a823
BM
5856 /*
5857 * Spinlock is needed as reshape_progress may be
5858 * 64bit on a 32bit platform, and so it might be
5859 * possible to see a half-updated value
5860 * Of course reshape_progress could change after
5861 * the lock is dropped, so once we get a reference
5862 * to the stripe that we think it is, we will have
5863 * to check again.
5864 */
5865 spin_lock_irq(&conf->device_lock);
5866 reshape_progress = conf->reshape_progress;
5867 reshape_safe = conf->reshape_safe;
5868 spin_unlock_irq(&conf->device_lock);
5869 if (reshape_progress == MaxSector)
5870 return LOC_NO_RESHAPE;
5871 if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5872 return LOC_AHEAD_OF_RESHAPE;
5873 if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5874 return LOC_INSIDE_RESHAPE;
5875 return LOC_BEHIND_RESHAPE;
5876}
5877
9c89f604
YK
5878static void raid5_bitmap_sector(struct mddev *mddev, sector_t *offset,
5879 unsigned long *sectors)
5880{
5881 struct r5conf *conf = mddev->private;
5882 sector_t start = *offset;
5883 sector_t end = start + *sectors;
5884 sector_t prev_start = start;
5885 sector_t prev_end = end;
5886 int sectors_per_chunk;
5887 enum reshape_loc loc;
5888 int dd_idx;
5889
5890 sectors_per_chunk = conf->chunk_sectors *
5891 (conf->raid_disks - conf->max_degraded);
5892 start = round_down(start, sectors_per_chunk);
5893 end = round_up(end, sectors_per_chunk);
5894
5895 start = raid5_compute_sector(conf, start, 0, &dd_idx, NULL);
5896 end = raid5_compute_sector(conf, end, 0, &dd_idx, NULL);
5897
5898 /*
5899 * For LOC_INSIDE_RESHAPE, this IO will wait for reshape to make
5900 * progress, hence it's the same as LOC_BEHIND_RESHAPE.
5901 */
5902 loc = get_reshape_loc(mddev, conf, prev_start);
5903 if (likely(loc != LOC_AHEAD_OF_RESHAPE)) {
5904 *offset = start;
5905 *sectors = end - start;
5906 return;
5907 }
5908
5909 sectors_per_chunk = conf->prev_chunk_sectors *
5910 (conf->previous_raid_disks - conf->max_degraded);
5911 prev_start = round_down(prev_start, sectors_per_chunk);
5912 prev_end = round_down(prev_end, sectors_per_chunk);
5913
5914 prev_start = raid5_compute_sector(conf, prev_start, 1, &dd_idx, NULL);
5915 prev_end = raid5_compute_sector(conf, prev_end, 1, &dd_idx, NULL);
5916
5917 /*
5918 * for LOC_AHEAD_OF_RESHAPE, reshape can make progress before this IO
5919 * is handled in make_stripe_request(), we can't know this here hence
5920 * we set bits for both.
5921 */
5922 *offset = min(start, prev_start);
5923 *sectors = max(end, prev_end) - *offset;
5924}
5925
f4aec6a0
LG
5926static enum stripe_result make_stripe_request(struct mddev *mddev,
5927 struct r5conf *conf, struct stripe_request_ctx *ctx,
4f354560 5928 sector_t logical_sector, struct bio *bi)
f4aec6a0
LG
5929{
5930 const int rw = bio_data_dir(bi);
5931 enum stripe_result ret;
5932 struct stripe_head *sh;
1320fe87 5933 enum reshape_loc loc;
f4aec6a0 5934 sector_t new_sector;
2f2d51ef 5935 int previous = 0, flags = 0;
4f354560
LG
5936 int seq, dd_idx;
5937
5938 seq = read_seqcount_begin(&conf->gen_lock);
1320fe87
YK
5939 loc = get_reshape_loc(mddev, conf, logical_sector);
5940 if (loc == LOC_INSIDE_RESHAPE) {
5941 ret = STRIPE_SCHEDULE_AND_RETRY;
5942 goto out;
f4aec6a0 5943 }
1320fe87
YK
5944 if (loc == LOC_AHEAD_OF_RESHAPE)
5945 previous = 1;
f4aec6a0
LG
5946
5947 new_sector = raid5_compute_sector(conf, logical_sector, previous,
5948 &dd_idx, NULL);
5949 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5950 new_sector, logical_sector);
5951
2f2d51ef
LG
5952 if (previous)
5953 flags |= R5_GAS_PREVIOUS;
5954 if (bi->bi_opf & REQ_RAHEAD)
5955 flags |= R5_GAS_NOBLOCK;
5956 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
f4aec6a0
LG
5957 if (unlikely(!sh)) {
5958 /* cannot get stripe, just give-up */
5959 bi->bi_status = BLK_STS_IOERR;
5960 return STRIPE_FAIL;
5961 }
5962
486f6055
LG
5963 if (unlikely(previous) &&
5964 stripe_ahead_of_reshape(mddev, conf, sh)) {
f4aec6a0 5965 /*
486f6055 5966 * Expansion moved on while waiting for a stripe.
f4aec6a0
LG
5967 * Expansion could still move past after this
5968 * test, but as we are holding a reference to
5969 * 'sh', we know that if that happens,
5970 * STRIPE_EXPANDING will get set and the expansion
5971 * won't proceed until we finish with the stripe.
5972 */
486f6055
LG
5973 ret = STRIPE_SCHEDULE_AND_RETRY;
5974 goto out_release;
f4aec6a0
LG
5975 }
5976
5977 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5978 /* Might have got the wrong stripe_head by accident */
5979 ret = STRIPE_RETRY;
5980 goto out_release;
5981 }
5982
e6a03207 5983 if (test_bit(STRIPE_EXPANDING, &sh->state)) {
f4aec6a0
LG
5984 md_wakeup_thread(mddev->thread);
5985 ret = STRIPE_SCHEDULE_AND_RETRY;
5986 goto out_release;
5987 }
5988
e6a03207
AP
5989 if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5990 ret = STRIPE_RETRY;
5991 goto out;
5992 }
5993
3312e6c8
LG
5994 if (stripe_can_batch(sh)) {
5995 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
5996 if (ctx->batch_last)
5997 raid5_release_stripe(ctx->batch_last);
5998 atomic_inc(&sh->count);
5999 ctx->batch_last = sh;
6000 }
f4aec6a0
LG
6001
6002 if (ctx->do_flush) {
6003 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6004 /* we only need flush for one stripe */
6005 ctx->do_flush = false;
6006 }
6007
6008 set_bit(STRIPE_HANDLE, &sh->state);
6009 clear_bit(STRIPE_DELAYED, &sh->state);
6010 if ((!sh->batch_head || sh == sh->batch_head) &&
6011 (bi->bi_opf & REQ_SYNC) &&
6012 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6013 atomic_inc(&conf->preread_active_stripes);
6014
6015 release_stripe_plug(mddev, sh);
6016 return STRIPE_SUCCESS;
6017
6018out_release:
6019 raid5_release_stripe(sh);
41425f96
YK
6020out:
6021 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6022 bi->bi_status = BLK_STS_RESOURCE;
6023 ret = STRIPE_WAIT_RESHAPE;
6024 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6025 }
f4aec6a0
LG
6026 return ret;
6027}
6028
fc05e06e
JK
6029/*
6030 * If the bio covers multiple data disks, find sector within the bio that has
6031 * the lowest chunk offset in the first chunk.
6032 */
6033static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6034 struct bio *bi)
6035{
6036 int sectors_per_chunk = conf->chunk_sectors;
6037 int raid_disks = conf->raid_disks;
6038 int dd_idx;
6039 struct stripe_head sh;
6040 unsigned int chunk_offset;
6041 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6042 sector_t sector;
6043
6044 /* We pass in fake stripe_head to get back parity disk numbers */
6045 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6046 chunk_offset = sector_div(sector, sectors_per_chunk);
6047 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6048 return r_sector;
6049 /*
6050 * Bio crosses to the next data disk. Check whether it's in the same
6051 * chunk.
6052 */
6053 dd_idx++;
6054 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6055 dd_idx++;
6056 if (dd_idx >= raid_disks)
6057 return r_sector;
6058 return r_sector + sectors_per_chunk - chunk_offset;
6059}
6060
cc27b0c7 6061static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 6062{
ee1aa06b 6063 DEFINE_WAIT_FUNC(wait, woken_wake_function);
0e4aac73 6064 bool on_wq;
d1688a6d 6065 struct r5conf *conf = mddev->private;
7e55c60a 6066 sector_t logical_sector;
f4aec6a0 6067 struct stripe_request_ctx ctx = {};
a362357b 6068 const int rw = bio_data_dir(bi);
f4aec6a0 6069 enum stripe_result res;
b9f91d80 6070 int s, stripe_cnt;
1da177e4 6071
1eff9d32 6072 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
1532d9e8 6073 int ret = log_handle_flush_request(conf, bi);
828cbe98
SL
6074
6075 if (ret == 0)
cc27b0c7 6076 return true;
828cbe98 6077 if (ret == -ENODEV) {
775d7831
DJ
6078 if (md_flush_request(mddev, bi))
6079 return true;
828cbe98
SL
6080 }
6081 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
6082 /*
6083 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6084 * we need to flush journal device
6085 */
f4aec6a0 6086 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
6087 }
6088
03e792ea 6089 md_write_start(mddev, bi);
9ffc8f7c
EM
6090 /*
6091 * If array is degraded, better not do chunk aligned read because
6092 * later we might have to read it again in order to reconstruct
6093 * data on failed drives.
6094 */
6095 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
6096 mddev->reshape_position == MaxSector) {
6097 bi = chunk_aligned_read(mddev, bi);
6098 if (!bi)
cc27b0c7 6099 return true;
7ef6b12a 6100 }
52488615 6101
796a5cf0 6102 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2 6103 make_discard_request(mddev, bi);
cc27b0c7
N
6104 md_write_end(mddev);
6105 return true;
620125f2
SL
6106 }
6107
c911c46c 6108 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
7e55c60a
LG
6109 ctx.first_sector = logical_sector;
6110 ctx.last_sector = bio_end_sector(bi);
1da177e4 6111 bi->bi_next = NULL;
06d91a5f 6112
b9f91d80
LG
6113 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6114 RAID5_STRIPE_SECTORS(conf));
6115 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
7e55c60a 6116
df1b620a
LG
6117 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6118 bi->bi_iter.bi_sector, ctx.last_sector);
6119
bf2c411b
VV
6120 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6121 if ((bi->bi_opf & REQ_NOWAIT) &&
25b3a823 6122 get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
bf2c411b
VV
6123 bio_wouldblock_error(bi);
6124 if (rw == WRITE)
6125 md_write_end(mddev);
6126 return true;
6127 }
1147f58e 6128 md_account_bio(mddev, &bi);
ee1aa06b 6129
fc05e06e
JK
6130 /*
6131 * Lets start with the stripe with the lowest chunk offset in the first
6132 * chunk. That has the best chances of creating IOs adjacent to
6133 * previous IOs in case of sequential IO and thus creates the most
6134 * sequential IO pattern. We don't bother with the optimization when
6135 * reshaping as the performance benefit is not worth the complexity.
6136 */
0e4aac73 6137 if (likely(conf->reshape_progress == MaxSector)) {
fc05e06e 6138 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
0e4aac73
AP
6139 on_wq = false;
6140 } else {
6f039cc4 6141 add_wait_queue(&conf->wait_for_reshape, &wait);
0e4aac73
AP
6142 on_wq = true;
6143 }
fc05e06e
JK
6144 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6145
7e55c60a 6146 while (1) {
f4aec6a0 6147 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
4f354560 6148 bi);
41425f96 6149 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
27fb7010 6150 break;
3bddb7f8 6151
f4aec6a0 6152 if (res == STRIPE_RETRY)
0a2d1694 6153 continue;
27fb7010 6154
f4aec6a0 6155 if (res == STRIPE_SCHEDULE_AND_RETRY) {
0e4aac73 6156 WARN_ON_ONCE(!on_wq);
3312e6c8
LG
6157 /*
6158 * Must release the reference to batch_last before
6159 * scheduling and waiting for work to be done,
6160 * otherwise the batch_last stripe head could prevent
6161 * raid5_activate_delayed() from making progress
6162 * and thus deadlocking.
6163 */
6164 if (ctx.batch_last) {
6165 raid5_release_stripe(ctx.batch_last);
6166 ctx.batch_last = NULL;
6167 }
6168
ee1aa06b
LG
6169 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6170 MAX_SCHEDULE_TIMEOUT);
0a2d1694 6171 continue;
1da177e4 6172 }
0a2d1694 6173
fc05e06e 6174 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
b9f91d80 6175 if (s == stripe_cnt)
7e55c60a
LG
6176 break;
6177
6178 logical_sector = ctx.first_sector +
6179 (s << RAID5_STRIPE_SHIFT(conf));
1da177e4 6180 }
0e4aac73 6181 if (unlikely(on_wq))
6f039cc4 6182 remove_wait_queue(&conf->wait_for_reshape, &wait);
7c13edc8 6183
3312e6c8
LG
6184 if (ctx.batch_last)
6185 raid5_release_stripe(ctx.batch_last);
6186
49728050
N
6187 if (rw == WRITE)
6188 md_write_end(mddev);
41425f96
YK
6189 if (res == STRIPE_WAIT_RESHAPE) {
6190 md_free_cloned_bio(bi);
6191 return false;
6192 }
6193
016c76ac 6194 bio_endio(bi);
cc27b0c7 6195 return true;
1da177e4
LT
6196}
6197
fd01b88c 6198static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 6199
fd01b88c 6200static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 6201{
52c03291
N
6202 /* reshaping is quite different to recovery/resync so it is
6203 * handled quite separately ... here.
6204 *
6205 * On each call to sync_request, we gather one chunk worth of
6206 * destination stripes and flag them as expanding.
6207 * Then we find all the source stripes and request reads.
6208 * As the reads complete, handle_stripe will copy the data
6209 * into the destination stripe and release that stripe.
6210 */
d1688a6d 6211 struct r5conf *conf = mddev->private;
1da177e4 6212 struct stripe_head *sh;
db0505d3 6213 struct md_rdev *rdev;
ccfcc3c1 6214 sector_t first_sector, last_sector;
f416885e
N
6215 int raid_disks = conf->previous_raid_disks;
6216 int data_disks = raid_disks - conf->max_degraded;
6217 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
6218 int i;
6219 int dd_idx;
c8f517c4 6220 sector_t writepos, readpos, safepos;
ec32a2bd 6221 sector_t stripe_addr;
7a661381 6222 int reshape_sectors;
ab69ae12 6223 struct list_head stripes;
92140480 6224 sector_t retn;
52c03291 6225
fef9c61f
N
6226 if (sector_nr == 0) {
6227 /* If restarting in the middle, skip the initial sectors */
2c810cdd 6228 if (mddev->reshape_backwards &&
fef9c61f
N
6229 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6230 sector_nr = raid5_size(mddev, 0, 0)
6231 - conf->reshape_progress;
6cbd8148
N
6232 } else if (mddev->reshape_backwards &&
6233 conf->reshape_progress == MaxSector) {
6234 /* shouldn't happen, but just in case, finish up.*/
6235 sector_nr = MaxSector;
2c810cdd 6236 } else if (!mddev->reshape_backwards &&
fef9c61f
N
6237 conf->reshape_progress > 0)
6238 sector_nr = conf->reshape_progress;
f416885e 6239 sector_div(sector_nr, new_data_disks);
fef9c61f 6240 if (sector_nr) {
8dee7211 6241 mddev->curr_resync_completed = sector_nr;
e1a86dbb 6242 sysfs_notify_dirent_safe(mddev->sysfs_completed);
fef9c61f 6243 *skipped = 1;
92140480
N
6244 retn = sector_nr;
6245 goto finish;
fef9c61f 6246 }
52c03291
N
6247 }
6248
7a661381
N
6249 /* We need to process a full chunk at a time.
6250 * If old and new chunk sizes differ, we need to process the
6251 * largest of these
6252 */
3cb5edf4
N
6253
6254 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 6255
b5254dd5
N
6256 /* We update the metadata at least every 10 seconds, or when
6257 * the data about to be copied would over-write the source of
6258 * the data at the front of the range. i.e. one new_stripe
6259 * along from reshape_progress new_maps to after where
6260 * reshape_safe old_maps to
52c03291 6261 */
fef9c61f 6262 writepos = conf->reshape_progress;
f416885e 6263 sector_div(writepos, new_data_disks);
c8f517c4
N
6264 readpos = conf->reshape_progress;
6265 sector_div(readpos, data_disks);
fef9c61f 6266 safepos = conf->reshape_safe;
f416885e 6267 sector_div(safepos, data_disks);
2c810cdd 6268 if (mddev->reshape_backwards) {
305a5170
YK
6269 if (WARN_ON(writepos < reshape_sectors))
6270 return MaxSector;
6271
c74c0d76 6272 writepos -= reshape_sectors;
c8f517c4 6273 readpos += reshape_sectors;
7a661381 6274 safepos += reshape_sectors;
fef9c61f 6275 } else {
7a661381 6276 writepos += reshape_sectors;
c74c0d76
N
6277 /* readpos and safepos are worst-case calculations.
6278 * A negative number is overly pessimistic, and causes
6279 * obvious problems for unsigned storage. So clip to 0.
6280 */
ed37d83e
N
6281 readpos -= min_t(sector_t, reshape_sectors, readpos);
6282 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 6283 }
52c03291 6284
b5254dd5
N
6285 /* Having calculated the 'writepos' possibly use it
6286 * to set 'stripe_addr' which is where we will write to.
6287 */
6288 if (mddev->reshape_backwards) {
305a5170
YK
6289 if (WARN_ON(conf->reshape_progress == 0))
6290 return MaxSector;
6291
b5254dd5 6292 stripe_addr = writepos;
305a5170
YK
6293 if (WARN_ON((mddev->dev_sectors &
6294 ~((sector_t)reshape_sectors - 1)) -
6295 reshape_sectors - stripe_addr != sector_nr))
6296 return MaxSector;
b5254dd5 6297 } else {
305a5170
YK
6298 if (WARN_ON(writepos != sector_nr + reshape_sectors))
6299 return MaxSector;
6300
b5254dd5
N
6301 stripe_addr = sector_nr;
6302 }
6303
c8f517c4
N
6304 /* 'writepos' is the most advanced device address we might write.
6305 * 'readpos' is the least advanced device address we might read.
6306 * 'safepos' is the least address recorded in the metadata as having
6307 * been reshaped.
b5254dd5
N
6308 * If there is a min_offset_diff, these are adjusted either by
6309 * increasing the safepos/readpos if diff is negative, or
6310 * increasing writepos if diff is positive.
6311 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
6312 * ensure safety in the face of a crash - that must be done by userspace
6313 * making a backup of the data. So in that case there is no particular
6314 * rush to update metadata.
6315 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6316 * update the metadata to advance 'safepos' to match 'readpos' so that
6317 * we can be safe in the event of a crash.
6318 * So we insist on updating metadata if safepos is behind writepos and
6319 * readpos is beyond writepos.
6320 * In any case, update the metadata every 10 seconds.
6321 * Maybe that number should be configurable, but I'm not sure it is
6322 * worth it.... maybe it could be a multiple of safemode_delay???
6323 */
b5254dd5
N
6324 if (conf->min_offset_diff < 0) {
6325 safepos += -conf->min_offset_diff;
6326 readpos += -conf->min_offset_diff;
6327 } else
6328 writepos += conf->min_offset_diff;
6329
2c810cdd 6330 if ((mddev->reshape_backwards
c8f517c4
N
6331 ? (safepos > writepos && readpos < writepos)
6332 : (safepos < writepos && readpos > writepos)) ||
6333 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291 6334 /* Cannot proceed until we've updated the superblock... */
6f039cc4 6335 wait_event(conf->wait_for_reshape,
c91abf5a
N
6336 atomic_read(&conf->reshape_stripes)==0
6337 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6338 if (atomic_read(&conf->reshape_stripes) != 0)
6339 return 0;
fef9c61f 6340 mddev->reshape_position = conf->reshape_progress;
75d3da43 6341 mddev->curr_resync_completed = sector_nr;
db0505d3
N
6342 if (!mddev->reshape_backwards)
6343 /* Can update recovery_offset */
6344 rdev_for_each(rdev, mddev)
6345 if (rdev->raid_disk >= 0 &&
6346 !test_bit(Journal, &rdev->flags) &&
6347 !test_bit(In_sync, &rdev->flags) &&
6348 rdev->recovery_offset < sector_nr)
6349 rdev->recovery_offset = sector_nr;
6350
c8f517c4 6351 conf->reshape_checkpoint = jiffies;
2953079c 6352 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 6353 md_wakeup_thread(mddev->thread);
2953079c 6354 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
6355 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6356 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6357 return 0;
52c03291 6358 spin_lock_irq(&conf->device_lock);
fef9c61f 6359 conf->reshape_safe = mddev->reshape_position;
52c03291 6360 spin_unlock_irq(&conf->device_lock);
6f039cc4 6361 wake_up(&conf->wait_for_reshape);
e1a86dbb 6362 sysfs_notify_dirent_safe(mddev->sysfs_completed);
52c03291
N
6363 }
6364
ab69ae12 6365 INIT_LIST_HEAD(&stripes);
c911c46c 6366 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
52c03291 6367 int j;
a9f326eb 6368 int skipped_disk = 0;
2f2d51ef
LG
6369 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6370 R5_GAS_NOQUIESCE);
52c03291
N
6371 set_bit(STRIPE_EXPANDING, &sh->state);
6372 atomic_inc(&conf->reshape_stripes);
6373 /* If any of this stripe is beyond the end of the old
6374 * array, then we need to zero those blocks
6375 */
6376 for (j=sh->disks; j--;) {
6377 sector_t s;
6378 if (j == sh->pd_idx)
6379 continue;
f416885e 6380 if (conf->level == 6 &&
d0dabf7e 6381 j == sh->qd_idx)
f416885e 6382 continue;
6d036f7d 6383 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 6384 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 6385 skipped_disk = 1;
52c03291
N
6386 continue;
6387 }
c911c46c 6388 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
52c03291
N
6389 set_bit(R5_Expanded, &sh->dev[j].flags);
6390 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6391 }
a9f326eb 6392 if (!skipped_disk) {
52c03291
N
6393 set_bit(STRIPE_EXPAND_READY, &sh->state);
6394 set_bit(STRIPE_HANDLE, &sh->state);
6395 }
ab69ae12 6396 list_add(&sh->lru, &stripes);
52c03291
N
6397 }
6398 spin_lock_irq(&conf->device_lock);
2c810cdd 6399 if (mddev->reshape_backwards)
7a661381 6400 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 6401 else
7a661381 6402 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
6403 spin_unlock_irq(&conf->device_lock);
6404 /* Ok, those stripe are ready. We can start scheduling
6405 * reads on the source stripes.
6406 * The source stripes are determined by mapping the first and last
6407 * block on the destination stripes.
6408 */
52c03291 6409 first_sector =
ec32a2bd 6410 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 6411 1, &dd_idx, NULL);
52c03291 6412 last_sector =
0e6e0271 6413 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 6414 * new_data_disks - 1),
911d4ee8 6415 1, &dd_idx, NULL);
58c0fed4
AN
6416 if (last_sector >= mddev->dev_sectors)
6417 last_sector = mddev->dev_sectors - 1;
52c03291 6418 while (first_sector <= last_sector) {
2f2d51ef
LG
6419 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6420 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
52c03291
N
6421 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6422 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 6423 raid5_release_stripe(sh);
c911c46c 6424 first_sector += RAID5_STRIPE_SECTORS(conf);
52c03291 6425 }
ab69ae12
N
6426 /* Now that the sources are clearly marked, we can release
6427 * the destination stripes
6428 */
6429 while (!list_empty(&stripes)) {
6430 sh = list_entry(stripes.next, struct stripe_head, lru);
6431 list_del_init(&sh->lru);
6d036f7d 6432 raid5_release_stripe(sh);
ab69ae12 6433 }
c6207277
N
6434 /* If this takes us to the resync_max point where we have to pause,
6435 * then we need to write out the superblock.
6436 */
7a661381 6437 sector_nr += reshape_sectors;
92140480
N
6438 retn = reshape_sectors;
6439finish:
c5e19d90
N
6440 if (mddev->curr_resync_completed > mddev->resync_max ||
6441 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 6442 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277 6443 /* Cannot proceed until we've updated the superblock... */
6f039cc4 6444 wait_event(conf->wait_for_reshape,
c91abf5a
N
6445 atomic_read(&conf->reshape_stripes) == 0
6446 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6447 if (atomic_read(&conf->reshape_stripes) != 0)
6448 goto ret;
fef9c61f 6449 mddev->reshape_position = conf->reshape_progress;
75d3da43 6450 mddev->curr_resync_completed = sector_nr;
db0505d3
N
6451 if (!mddev->reshape_backwards)
6452 /* Can update recovery_offset */
6453 rdev_for_each(rdev, mddev)
6454 if (rdev->raid_disk >= 0 &&
6455 !test_bit(Journal, &rdev->flags) &&
6456 !test_bit(In_sync, &rdev->flags) &&
6457 rdev->recovery_offset < sector_nr)
6458 rdev->recovery_offset = sector_nr;
c8f517c4 6459 conf->reshape_checkpoint = jiffies;
2953079c 6460 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
6461 md_wakeup_thread(mddev->thread);
6462 wait_event(mddev->sb_wait,
2953079c 6463 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
6464 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6465 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6466 goto ret;
c6207277 6467 spin_lock_irq(&conf->device_lock);
fef9c61f 6468 conf->reshape_safe = mddev->reshape_position;
c6207277 6469 spin_unlock_irq(&conf->device_lock);
6f039cc4 6470 wake_up(&conf->wait_for_reshape);
e1a86dbb 6471 sysfs_notify_dirent_safe(mddev->sysfs_completed);
c6207277 6472 }
c91abf5a 6473ret:
92140480 6474 return retn;
52c03291
N
6475}
6476
849674e4 6477static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
bc49694a 6478 sector_t max_sector, int *skipped)
52c03291 6479{
d1688a6d 6480 struct r5conf *conf = mddev->private;
52c03291 6481 struct stripe_head *sh;
57dab0bd 6482 sector_t sync_blocks;
fe6a19d4 6483 bool still_degraded = false;
16a53ecc 6484 int i;
1da177e4 6485
72626685 6486 if (sector_nr >= max_sector) {
1da177e4 6487 /* just being told to finish up .. nothing much to do */
cea9c228 6488
29269553
N
6489 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6490 end_reshape(conf);
6491 return 0;
6492 }
72626685
N
6493
6494 if (mddev->curr_resync < max_sector) /* aborted */
1415f402
YK
6495 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
6496 &sync_blocks);
16a53ecc 6497 else /* completed sync */
72626685 6498 conf->fullsync = 0;
077b18ab 6499 mddev->bitmap_ops->close_sync(mddev);
72626685 6500
1da177e4
LT
6501 return 0;
6502 }
ccfcc3c1 6503
64bd660b 6504 /* Allow raid5_quiesce to complete */
6f039cc4 6505 wait_event(conf->wait_for_reshape, conf->quiesce != 2);
64bd660b 6506
52c03291
N
6507 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6508 return reshape_request(mddev, sector_nr, skipped);
f6705578 6509
c6207277
N
6510 /* No need to check resync_max as we never do more than one
6511 * stripe, and as resync_max will always be on a chunk boundary,
6512 * if the check in md_do_sync didn't fire, there is no chance
6513 * of overstepping resync_max here
6514 */
6515
16a53ecc 6516 /* if there is too many failed drives and we are trying
1da177e4
LT
6517 * to resync, then assert that we are finished, because there is
6518 * nothing we can do.
6519 */
3285edf1 6520 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6521 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6522 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6523 *skipped = 1;
1da177e4
LT
6524 return rv;
6525 }
6f608040 6526 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6527 !conf->fullsync &&
fe6a19d4
YK
6528 !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6529 true) &&
c911c46c 6530 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
72626685 6531 /* we can skip this block, and probably more */
83c3e5e1 6532 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
72626685 6533 *skipped = 1;
c911c46c
YY
6534 /* keep things rounded to whole stripes */
6535 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
72626685 6536 }
1da177e4 6537
15db1eca 6538 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
b47490c9 6539
2f2d51ef
LG
6540 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6541 R5_GAS_NOBLOCK);
1da177e4 6542 if (sh == NULL) {
2f2d51ef 6543 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
1da177e4 6544 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6545 * is trying to get access
1da177e4 6546 */
66c006a5 6547 schedule_timeout_uninterruptible(1);
1da177e4 6548 }
16a53ecc 6549 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6550 * Note in case of > 1 drive failures it's possible we're rebuilding
6551 * one drive while leaving another faulty drive in array.
16a53ecc 6552 */
16d9cfab 6553 for (i = 0; i < conf->raid_disks; i++) {
ad860670 6554 struct md_rdev *rdev = conf->disks[i].rdev;
16d9cfab
EM
6555
6556 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
fe6a19d4 6557 still_degraded = true;
16d9cfab 6558 }
16a53ecc 6559
fe6a19d4
YK
6560 mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6561 still_degraded);
16a53ecc 6562
83206d66 6563 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6564 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6565
6d036f7d 6566 raid5_release_stripe(sh);
1da177e4 6567
c911c46c 6568 return RAID5_STRIPE_SECTORS(conf);
1da177e4
LT
6569}
6570
0472a42b
N
6571static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6572 unsigned int offset)
46031f9a
RBJ
6573{
6574 /* We may not be able to submit a whole bio at once as there
6575 * may not be enough stripe_heads available.
6576 * We cannot pre-allocate enough stripe_heads as we may need
6577 * more than exist in the cache (if we allow ever large chunks).
6578 * So we do one stripe head at a time and record in
6579 * ->bi_hw_segments how many have been done.
6580 *
6581 * We *know* that this entire raid_bio is in one chunk, so
6582 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6583 */
6584 struct stripe_head *sh;
911d4ee8 6585 int dd_idx;
46031f9a
RBJ
6586 sector_t sector, logical_sector, last_sector;
6587 int scnt = 0;
46031f9a
RBJ
6588 int handled = 0;
6589
4f024f37 6590 logical_sector = raid_bio->bi_iter.bi_sector &
c911c46c 6591 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
112bf897 6592 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6593 0, &dd_idx, NULL);
f73a1c7d 6594 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6595
6596 for (; logical_sector < last_sector;
c911c46c
YY
6597 logical_sector += RAID5_STRIPE_SECTORS(conf),
6598 sector += RAID5_STRIPE_SECTORS(conf),
387bb173 6599 scnt++) {
46031f9a 6600
0472a42b 6601 if (scnt < offset)
46031f9a
RBJ
6602 /* already done this stripe */
6603 continue;
6604
2f2d51ef
LG
6605 sh = raid5_get_active_stripe(conf, NULL, sector,
6606 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
46031f9a
RBJ
6607 if (!sh) {
6608 /* failed to get a stripe - must wait */
46031f9a 6609 conf->retry_read_aligned = raid_bio;
0472a42b 6610 conf->retry_read_offset = scnt;
46031f9a
RBJ
6611 return handled;
6612 }
6613
da41ba65 6614 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6615 raid5_release_stripe(sh);
387bb173 6616 conf->retry_read_aligned = raid_bio;
0472a42b 6617 conf->retry_read_offset = scnt;
387bb173
NB
6618 return handled;
6619 }
6620
3f9e7c14 6621 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6622 handle_stripe(sh);
6d036f7d 6623 raid5_release_stripe(sh);
46031f9a
RBJ
6624 handled++;
6625 }
016c76ac
N
6626
6627 bio_endio(raid_bio);
6628
46031f9a 6629 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6630 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6631 return handled;
6632}
6633
bfc90cb0 6634static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6635 struct r5worker *worker,
6636 struct list_head *temp_inactive_list)
4631f39f 6637 __must_hold(&conf->device_lock)
46a06401
SL
6638{
6639 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6640 int i, batch_size = 0, hash;
6641 bool release_inactive = false;
46a06401
SL
6642
6643 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6644 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6645 batch[batch_size++] = sh;
6646
566c09c5
SL
6647 if (batch_size == 0) {
6648 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6649 if (!list_empty(temp_inactive_list + i))
6650 break;
a8c34f91
SL
6651 if (i == NR_STRIPE_HASH_LOCKS) {
6652 spin_unlock_irq(&conf->device_lock);
1532d9e8 6653 log_flush_stripe_to_raid(conf);
a8c34f91 6654 spin_lock_irq(&conf->device_lock);
566c09c5 6655 return batch_size;
a8c34f91 6656 }
566c09c5
SL
6657 release_inactive = true;
6658 }
46a06401
SL
6659 spin_unlock_irq(&conf->device_lock);
6660
566c09c5
SL
6661 release_inactive_stripe_list(conf, temp_inactive_list,
6662 NR_STRIPE_HASH_LOCKS);
6663
a8c34f91 6664 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6665 if (release_inactive) {
6666 spin_lock_irq(&conf->device_lock);
6667 return 0;
6668 }
6669
46a06401
SL
6670 for (i = 0; i < batch_size; i++)
6671 handle_stripe(batch[i]);
ff875738 6672 log_write_stripe_run(conf);
46a06401
SL
6673
6674 cond_resched();
6675
6676 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6677 for (i = 0; i < batch_size; i++) {
6678 hash = batch[i]->hash_lock_index;
6679 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6680 }
46a06401
SL
6681 return batch_size;
6682}
46031f9a 6683
851c30c9
SL
6684static void raid5_do_work(struct work_struct *work)
6685{
6686 struct r5worker *worker = container_of(work, struct r5worker, work);
6687 struct r5worker_group *group = worker->group;
6688 struct r5conf *conf = group->conf;
16d997b7 6689 struct mddev *mddev = conf->mddev;
851c30c9
SL
6690 int group_id = group - conf->worker_groups;
6691 int handled;
6692 struct blk_plug plug;
6693
6694 pr_debug("+++ raid5worker active\n");
6695
6696 blk_start_plug(&plug);
6697 handled = 0;
6698 spin_lock_irq(&conf->device_lock);
6699 while (1) {
6700 int batch_size, released;
6701
566c09c5 6702 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6703
566c09c5
SL
6704 batch_size = handle_active_stripes(conf, group_id, worker,
6705 worker->temp_inactive_list);
bfc90cb0 6706 worker->working = false;
851c30c9
SL
6707 if (!batch_size && !released)
6708 break;
6709 handled += batch_size;
16d997b7
N
6710 wait_event_lock_irq(mddev->sb_wait,
6711 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6712 conf->device_lock);
851c30c9
SL
6713 }
6714 pr_debug("%d stripes handled\n", handled);
6715
6716 spin_unlock_irq(&conf->device_lock);
7e96d559 6717
9c72a18e
SL
6718 flush_deferred_bios(conf);
6719
6720 r5l_flush_stripe_to_raid(conf->log);
6721
7e96d559 6722 async_tx_issue_pending_all();
851c30c9
SL
6723 blk_finish_plug(&plug);
6724
6725 pr_debug("--- raid5worker inactive\n");
6726}
6727
1da177e4
LT
6728/*
6729 * This is our raid5 kernel thread.
6730 *
6731 * We scan the hash table for stripes which can be handled now.
6732 * During the scan, completed stripes are saved for us by the interrupt
6733 * handler, so that they will not have to wait for our next wakeup.
6734 */
4ed8731d 6735static void raid5d(struct md_thread *thread)
1da177e4 6736{
4ed8731d 6737 struct mddev *mddev = thread->mddev;
d1688a6d 6738 struct r5conf *conf = mddev->private;
1da177e4 6739 int handled;
e1dfa0a2 6740 struct blk_plug plug;
1da177e4 6741
45b4233c 6742 pr_debug("+++ raid5d active\n");
1da177e4
LT
6743
6744 md_check_recovery(mddev);
1da177e4 6745
e1dfa0a2 6746 blk_start_plug(&plug);
1da177e4
LT
6747 handled = 0;
6748 spin_lock_irq(&conf->device_lock);
6749 while (1) {
46031f9a 6750 struct bio *bio;
773ca82f 6751 int batch_size, released;
0472a42b 6752 unsigned int offset;
773ca82f 6753
151f66bb
YK
6754 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6755 break;
6756
566c09c5 6757 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6758 if (released)
6759 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6760
0021b7bc 6761 if (
7c13edc8
N
6762 !list_empty(&conf->bitmap_list)) {
6763 /* Now is a good time to flush some bitmap updates */
6764 conf->seq_flush++;
700e432d 6765 spin_unlock_irq(&conf->device_lock);
3c9883e7 6766 mddev->bitmap_ops->unplug(mddev, true);
700e432d 6767 spin_lock_irq(&conf->device_lock);
7c13edc8 6768 conf->seq_write = conf->seq_flush;
566c09c5 6769 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6770 }
0021b7bc 6771 raid5_activate_delayed(conf);
72626685 6772
0472a42b 6773 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6774 int ok;
6775 spin_unlock_irq(&conf->device_lock);
0472a42b 6776 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6777 spin_lock_irq(&conf->device_lock);
6778 if (!ok)
6779 break;
6780 handled++;
6781 }
6782
566c09c5
SL
6783 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6784 conf->temp_inactive_list);
773ca82f 6785 if (!batch_size && !released)
1da177e4 6786 break;
46a06401 6787 handled += batch_size;
1da177e4 6788
2953079c 6789 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6790 spin_unlock_irq(&conf->device_lock);
de393cde 6791 md_check_recovery(mddev);
46a06401
SL
6792 spin_lock_irq(&conf->device_lock);
6793 }
1da177e4 6794 }
45b4233c 6795 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6796
6797 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6798 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6799 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6800 grow_one_stripe(conf, __GFP_NOWARN);
6801 /* Set flag even if allocation failed. This helps
6802 * slow down allocation requests when mem is short
6803 */
6804 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6805 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6806 }
1da177e4 6807
765d704d
SL
6808 flush_deferred_bios(conf);
6809
0576b1c6
SL
6810 r5l_flush_stripe_to_raid(conf->log);
6811
c9f21aaf 6812 async_tx_issue_pending_all();
e1dfa0a2 6813 blk_finish_plug(&plug);
1da177e4 6814
45b4233c 6815 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6816}
6817
3f294f4f 6818static ssize_t
fd01b88c 6819raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6820{
7b1485ba
N
6821 struct r5conf *conf;
6822 int ret = 0;
6823 spin_lock(&mddev->lock);
6824 conf = mddev->private;
96de1e66 6825 if (conf)
edbe83ab 6826 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6827 spin_unlock(&mddev->lock);
6828 return ret;
3f294f4f
N
6829}
6830
c41d4ac4 6831int
fd01b88c 6832raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6833{
483cbbed 6834 int result = 0;
d1688a6d 6835 struct r5conf *conf = mddev->private;
b5470dc5 6836
c41d4ac4 6837 if (size <= 16 || size > 32768)
3f294f4f 6838 return -EINVAL;
486f0644 6839
dfd2bf43 6840 WRITE_ONCE(conf->min_nr_stripes, size);
2d5b569b 6841 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6842 while (size < conf->max_nr_stripes &&
6843 drop_one_stripe(conf))
6844 ;
2d5b569b 6845 mutex_unlock(&conf->cache_size_mutex);
486f0644 6846
2214c260 6847 md_allow_write(mddev);
486f0644 6848
2d5b569b 6849 mutex_lock(&conf->cache_size_mutex);
486f0644 6850 while (size > conf->max_nr_stripes)
483cbbed 6851 if (!grow_one_stripe(conf, GFP_KERNEL)) {
dfd2bf43 6852 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
483cbbed 6853 result = -ENOMEM;
486f0644 6854 break;
483cbbed 6855 }
2d5b569b 6856 mutex_unlock(&conf->cache_size_mutex);
486f0644 6857
483cbbed 6858 return result;
c41d4ac4
N
6859}
6860EXPORT_SYMBOL(raid5_set_cache_size);
6861
6862static ssize_t
fd01b88c 6863raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6864{
6791875e 6865 struct r5conf *conf;
c41d4ac4
N
6866 unsigned long new;
6867 int err;
6868
6869 if (len >= PAGE_SIZE)
6870 return -EINVAL;
b29bebd6 6871 if (kstrtoul(page, 10, &new))
c41d4ac4 6872 return -EINVAL;
6791875e 6873 err = mddev_lock(mddev);
c41d4ac4
N
6874 if (err)
6875 return err;
6791875e
N
6876 conf = mddev->private;
6877 if (!conf)
6878 err = -ENODEV;
6879 else
6880 err = raid5_set_cache_size(mddev, new);
6881 mddev_unlock(mddev);
6882
6883 return err ?: len;
3f294f4f 6884}
007583c9 6885
96de1e66
N
6886static struct md_sysfs_entry
6887raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6888 raid5_show_stripe_cache_size,
6889 raid5_store_stripe_cache_size);
3f294f4f 6890
d06f191f
MS
6891static ssize_t
6892raid5_show_rmw_level(struct mddev *mddev, char *page)
6893{
6894 struct r5conf *conf = mddev->private;
6895 if (conf)
6896 return sprintf(page, "%d\n", conf->rmw_level);
6897 else
6898 return 0;
6899}
6900
6901static ssize_t
6902raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6903{
6904 struct r5conf *conf = mddev->private;
6905 unsigned long new;
6906
6907 if (!conf)
6908 return -ENODEV;
6909
6910 if (len >= PAGE_SIZE)
6911 return -EINVAL;
6912
6913 if (kstrtoul(page, 10, &new))
6914 return -EINVAL;
6915
6916 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6917 return -EINVAL;
6918
6919 if (new != PARITY_DISABLE_RMW &&
6920 new != PARITY_ENABLE_RMW &&
6921 new != PARITY_PREFER_RMW)
6922 return -EINVAL;
6923
6924 conf->rmw_level = new;
6925 return len;
6926}
6927
6928static struct md_sysfs_entry
6929raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6930 raid5_show_rmw_level,
6931 raid5_store_rmw_level);
6932
3b5408b9
YY
6933static ssize_t
6934raid5_show_stripe_size(struct mddev *mddev, char *page)
6935{
6936 struct r5conf *conf;
6937 int ret = 0;
6938
6939 spin_lock(&mddev->lock);
6940 conf = mddev->private;
6941 if (conf)
6942 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6943 spin_unlock(&mddev->lock);
6944 return ret;
6945}
6946
6947#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6948static ssize_t
6949raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6950{
6951 struct r5conf *conf;
6952 unsigned long new;
6953 int err;
38912584 6954 int size;
3b5408b9
YY
6955
6956 if (len >= PAGE_SIZE)
6957 return -EINVAL;
6958 if (kstrtoul(page, 10, &new))
6959 return -EINVAL;
6960
6961 /*
6962 * The value should not be bigger than PAGE_SIZE. It requires to
6af10a33
YY
6963 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6964 * of two.
3b5408b9 6965 */
6af10a33
YY
6966 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6967 new > PAGE_SIZE || new == 0 ||
6968 new != roundup_pow_of_two(new))
3b5408b9
YY
6969 return -EINVAL;
6970
e28ca92f 6971 err = mddev_suspend_and_lock(mddev);
3b5408b9
YY
6972 if (err)
6973 return err;
6974
6975 conf = mddev->private;
6976 if (!conf) {
6977 err = -ENODEV;
6978 goto out_unlock;
6979 }
6980
6981 if (new == conf->stripe_size)
6982 goto out_unlock;
6983
6984 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6985 conf->stripe_size, new);
6986
61c90765
YK
6987 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6988 mddev->reshape_position != MaxSector || mddev->sysfs_active) {
38912584
YY
6989 err = -EBUSY;
6990 goto out_unlock;
6991 }
6992
38912584
YY
6993 mutex_lock(&conf->cache_size_mutex);
6994 size = conf->max_nr_stripes;
6995
6996 shrink_stripes(conf);
6997
3b5408b9
YY
6998 conf->stripe_size = new;
6999 conf->stripe_shift = ilog2(new) - 9;
7000 conf->stripe_sectors = new >> 9;
38912584
YY
7001 if (grow_stripes(conf, size)) {
7002 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7003 mdname(mddev));
7004 err = -ENOMEM;
7005 }
7006 mutex_unlock(&conf->cache_size_mutex);
3b5408b9
YY
7007
7008out_unlock:
e28ca92f 7009 mddev_unlock_and_resume(mddev);
3b5408b9
YY
7010 return err ?: len;
7011}
7012
7013static struct md_sysfs_entry
7014raid5_stripe_size = __ATTR(stripe_size, 0644,
7015 raid5_show_stripe_size,
7016 raid5_store_stripe_size);
7017#else
7018static struct md_sysfs_entry
7019raid5_stripe_size = __ATTR(stripe_size, 0444,
7020 raid5_show_stripe_size,
7021 NULL);
7022#endif
d06f191f 7023
8b3e6cdc 7024static ssize_t
fd01b88c 7025raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 7026{
7b1485ba
N
7027 struct r5conf *conf;
7028 int ret = 0;
7029 spin_lock(&mddev->lock);
7030 conf = mddev->private;
8b3e6cdc 7031 if (conf)
7b1485ba
N
7032 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7033 spin_unlock(&mddev->lock);
7034 return ret;
8b3e6cdc
DW
7035}
7036
7037static ssize_t
fd01b88c 7038raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 7039{
6791875e 7040 struct r5conf *conf;
4ef197d8 7041 unsigned long new;
6791875e
N
7042 int err;
7043
8b3e6cdc
DW
7044 if (len >= PAGE_SIZE)
7045 return -EINVAL;
b29bebd6 7046 if (kstrtoul(page, 10, &new))
8b3e6cdc 7047 return -EINVAL;
6791875e
N
7048
7049 err = mddev_lock(mddev);
7050 if (err)
7051 return err;
7052 conf = mddev->private;
7053 if (!conf)
7054 err = -ENODEV;
edbe83ab 7055 else if (new > conf->min_nr_stripes)
6791875e
N
7056 err = -EINVAL;
7057 else
7058 conf->bypass_threshold = new;
7059 mddev_unlock(mddev);
7060 return err ?: len;
8b3e6cdc
DW
7061}
7062
7063static struct md_sysfs_entry
7064raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7065 S_IRUGO | S_IWUSR,
7066 raid5_show_preread_threshold,
7067 raid5_store_preread_threshold);
7068
d592a996
SL
7069static ssize_t
7070raid5_show_skip_copy(struct mddev *mddev, char *page)
7071{
7b1485ba
N
7072 struct r5conf *conf;
7073 int ret = 0;
7074 spin_lock(&mddev->lock);
7075 conf = mddev->private;
d592a996 7076 if (conf)
7b1485ba
N
7077 ret = sprintf(page, "%d\n", conf->skip_copy);
7078 spin_unlock(&mddev->lock);
7079 return ret;
d592a996
SL
7080}
7081
7082static ssize_t
7083raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7084{
6791875e 7085 struct r5conf *conf;
d592a996 7086 unsigned long new;
6791875e
N
7087 int err;
7088
d592a996
SL
7089 if (len >= PAGE_SIZE)
7090 return -EINVAL;
d592a996
SL
7091 if (kstrtoul(page, 10, &new))
7092 return -EINVAL;
7093 new = !!new;
6791875e 7094
e28ca92f 7095 err = mddev_suspend_and_lock(mddev);
6791875e
N
7096 if (err)
7097 return err;
7098 conf = mddev->private;
7099 if (!conf)
7100 err = -ENODEV;
7101 else if (new != conf->skip_copy) {
396799eb 7102 struct request_queue *q = mddev->gendisk->queue;
1a02f3a7 7103 struct queue_limits lim = queue_limits_start_update(q);
1cb039f3 7104
6791875e
N
7105 conf->skip_copy = new;
7106 if (new)
1a02f3a7 7107 lim.features |= BLK_FEAT_STABLE_WRITES;
6791875e 7108 else
1a02f3a7
CH
7109 lim.features &= ~BLK_FEAT_STABLE_WRITES;
7110 err = queue_limits_commit_update(q, &lim);
6791875e 7111 }
e28ca92f 7112 mddev_unlock_and_resume(mddev);
6791875e 7113 return err ?: len;
d592a996
SL
7114}
7115
7116static struct md_sysfs_entry
7117raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7118 raid5_show_skip_copy,
7119 raid5_store_skip_copy);
7120
3f294f4f 7121static ssize_t
fd01b88c 7122stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 7123{
d1688a6d 7124 struct r5conf *conf = mddev->private;
96de1e66
N
7125 if (conf)
7126 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7127 else
7128 return 0;
3f294f4f
N
7129}
7130
96de1e66
N
7131static struct md_sysfs_entry
7132raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 7133
b721420e
SL
7134static ssize_t
7135raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7136{
7b1485ba
N
7137 struct r5conf *conf;
7138 int ret = 0;
7139 spin_lock(&mddev->lock);
7140 conf = mddev->private;
b721420e 7141 if (conf)
7b1485ba
N
7142 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7143 spin_unlock(&mddev->lock);
7144 return ret;
b721420e
SL
7145}
7146
60aaf933 7147static int alloc_thread_groups(struct r5conf *conf, int cnt,
7148 int *group_cnt,
60aaf933 7149 struct r5worker_group **worker_groups);
b721420e
SL
7150static ssize_t
7151raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7152{
6791875e 7153 struct r5conf *conf;
7d5d7b50 7154 unsigned int new;
b721420e 7155 int err;
60aaf933 7156 struct r5worker_group *new_groups, *old_groups;
d2c9ad41 7157 int group_cnt;
b721420e
SL
7158
7159 if (len >= PAGE_SIZE)
7160 return -EINVAL;
7d5d7b50
SL
7161 if (kstrtouint(page, 10, &new))
7162 return -EINVAL;
7163 /* 8192 should be big enough */
7164 if (new > 8192)
b721420e
SL
7165 return -EINVAL;
7166
e28ca92f 7167 err = mddev_suspend_and_lock(mddev);
6791875e
N
7168 if (err)
7169 return err;
fa1944bb
XN
7170 raid5_quiesce(mddev, true);
7171
6791875e
N
7172 conf = mddev->private;
7173 if (!conf)
7174 err = -ENODEV;
7175 else if (new != conf->worker_cnt_per_group) {
6791875e
N
7176 old_groups = conf->worker_groups;
7177 if (old_groups)
7178 flush_workqueue(raid5_wq);
d206dcfa 7179
d2c9ad41 7180 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6791875e
N
7181 if (!err) {
7182 spin_lock_irq(&conf->device_lock);
7183 conf->group_cnt = group_cnt;
d2c9ad41 7184 conf->worker_cnt_per_group = new;
6791875e
N
7185 conf->worker_groups = new_groups;
7186 spin_unlock_irq(&conf->device_lock);
b721420e 7187
6791875e
N
7188 if (old_groups)
7189 kfree(old_groups[0].workers);
7190 kfree(old_groups);
7191 }
b721420e 7192 }
fa1944bb
XN
7193
7194 raid5_quiesce(mddev, false);
e28ca92f 7195 mddev_unlock_and_resume(mddev);
b721420e 7196
6791875e 7197 return err ?: len;
b721420e
SL
7198}
7199
7200static struct md_sysfs_entry
7201raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7202 raid5_show_group_thread_cnt,
7203 raid5_store_group_thread_cnt);
7204
007583c9 7205static struct attribute *raid5_attrs[] = {
3f294f4f
N
7206 &raid5_stripecache_size.attr,
7207 &raid5_stripecache_active.attr,
8b3e6cdc 7208 &raid5_preread_bypass_threshold.attr,
b721420e 7209 &raid5_group_thread_cnt.attr,
d592a996 7210 &raid5_skip_copy.attr,
d06f191f 7211 &raid5_rmw_level.attr,
3b5408b9 7212 &raid5_stripe_size.attr,
2c7da14b 7213 &r5c_journal_mode.attr,
a596d086 7214 &ppl_write_hint.attr,
3f294f4f
N
7215 NULL,
7216};
c32dc040 7217static const struct attribute_group raid5_attrs_group = {
007583c9
N
7218 .name = NULL,
7219 .attrs = raid5_attrs,
3f294f4f
N
7220};
7221
d2c9ad41 7222static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
60aaf933 7223 struct r5worker_group **worker_groups)
851c30c9 7224{
566c09c5 7225 int i, j, k;
851c30c9
SL
7226 ssize_t size;
7227 struct r5worker *workers;
7228
851c30c9 7229 if (cnt == 0) {
60aaf933 7230 *group_cnt = 0;
7231 *worker_groups = NULL;
851c30c9
SL
7232 return 0;
7233 }
60aaf933 7234 *group_cnt = num_possible_nodes();
851c30c9 7235 size = sizeof(struct r5worker) * cnt;
6396bb22
KC
7236 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7237 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7238 GFP_NOIO);
60aaf933 7239 if (!*worker_groups || !workers) {
851c30c9 7240 kfree(workers);
60aaf933 7241 kfree(*worker_groups);
851c30c9
SL
7242 return -ENOMEM;
7243 }
7244
60aaf933 7245 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
7246 struct r5worker_group *group;
7247
0c775d52 7248 group = &(*worker_groups)[i];
851c30c9 7249 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 7250 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
7251 group->conf = conf;
7252 group->workers = workers + i * cnt;
7253
7254 for (j = 0; j < cnt; j++) {
566c09c5
SL
7255 struct r5worker *worker = group->workers + j;
7256 worker->group = group;
7257 INIT_WORK(&worker->work, raid5_do_work);
7258
7259 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7260 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
7261 }
7262 }
7263
7264 return 0;
7265}
7266
7267static void free_thread_groups(struct r5conf *conf)
7268{
7269 if (conf->worker_groups)
7270 kfree(conf->worker_groups[0].workers);
7271 kfree(conf->worker_groups);
7272 conf->worker_groups = NULL;
7273}
7274
80c3a6ce 7275static sector_t
fd01b88c 7276raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 7277{
d1688a6d 7278 struct r5conf *conf = mddev->private;
80c3a6ce
DW
7279
7280 if (!sectors)
7281 sectors = mddev->dev_sectors;
5e5e3e78 7282 if (!raid_disks)
7ec05478 7283 /* size is defined by the smallest of previous and new size */
5e5e3e78 7284 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 7285
3cb5edf4
N
7286 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7287 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
7288 return sectors * (raid_disks - conf->max_degraded);
7289}
7290
789b5e03
ON
7291static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7292{
7293 safe_put_page(percpu->spare_page);
789b5e03 7294 percpu->spare_page = NULL;
b330e6a4 7295 kvfree(percpu->scribble);
789b5e03
ON
7296 percpu->scribble = NULL;
7297}
7298
7299static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7300{
b330e6a4 7301 if (conf->level == 6 && !percpu->spare_page) {
789b5e03 7302 percpu->spare_page = alloc_page(GFP_KERNEL);
b330e6a4
KO
7303 if (!percpu->spare_page)
7304 return -ENOMEM;
7305 }
7306
7307 if (scribble_alloc(percpu,
7308 max(conf->raid_disks,
7309 conf->previous_raid_disks),
7310 max(conf->chunk_sectors,
7311 conf->prev_chunk_sectors)
c911c46c 7312 / RAID5_STRIPE_SECTORS(conf))) {
789b5e03
ON
7313 free_scratch_buffer(conf, percpu);
7314 return -ENOMEM;
7315 }
7316
770b1d21 7317 local_lock_init(&percpu->lock);
789b5e03
ON
7318 return 0;
7319}
7320
29c6d1bb 7321static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 7322{
29c6d1bb
SAS
7323 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7324
7325 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7326 return 0;
7327}
36d1c647 7328
29c6d1bb
SAS
7329static void raid5_free_percpu(struct r5conf *conf)
7330{
36d1c647
DW
7331 if (!conf->percpu)
7332 return;
7333
29c6d1bb 7334 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
7335 free_percpu(conf->percpu);
7336}
7337
d1688a6d 7338static void free_conf(struct r5conf *conf)
95fc17aa 7339{
d7bd398e
SL
7340 int i;
7341
ff875738
AP
7342 log_exit(conf);
7343
86298d8b 7344 shrinker_free(conf->shrinker);
851c30c9 7345 free_thread_groups(conf);
95fc17aa 7346 shrink_stripes(conf);
36d1c647 7347 raid5_free_percpu(conf);
d7bd398e
SL
7348 for (i = 0; i < conf->pool_size; i++)
7349 if (conf->disks[i].extra_page)
7350 put_page(conf->disks[i].extra_page);
95fc17aa 7351 kfree(conf->disks);
afeee514 7352 bioset_exit(&conf->bio_split);
95fc17aa 7353 kfree(conf->stripe_hashtbl);
aaf9f12e 7354 kfree(conf->pending_data);
95fc17aa
DW
7355 kfree(conf);
7356}
7357
29c6d1bb 7358static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 7359{
29c6d1bb 7360 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
7361 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7362
29c6d1bb 7363 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
7364 pr_warn("%s: failed memory allocation for cpu%u\n",
7365 __func__, cpu);
29c6d1bb 7366 return -ENOMEM;
36d1c647 7367 }
29c6d1bb 7368 return 0;
36d1c647 7369}
36d1c647 7370
d1688a6d 7371static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 7372{
789b5e03 7373 int err = 0;
36d1c647 7374
789b5e03
ON
7375 conf->percpu = alloc_percpu(struct raid5_percpu);
7376 if (!conf->percpu)
36d1c647 7377 return -ENOMEM;
789b5e03 7378
29c6d1bb 7379 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
7380 if (!err) {
7381 conf->scribble_disks = max(conf->raid_disks,
7382 conf->previous_raid_disks);
7383 conf->scribble_sectors = max(conf->chunk_sectors,
7384 conf->prev_chunk_sectors);
7385 }
36d1c647
DW
7386 return err;
7387}
7388
edbe83ab
N
7389static unsigned long raid5_cache_scan(struct shrinker *shrink,
7390 struct shrink_control *sc)
7391{
86298d8b 7392 struct r5conf *conf = shrink->private_data;
2d5b569b
N
7393 unsigned long ret = SHRINK_STOP;
7394
7395 if (mutex_trylock(&conf->cache_size_mutex)) {
7396 ret= 0;
49895bcc
N
7397 while (ret < sc->nr_to_scan &&
7398 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
7399 if (drop_one_stripe(conf) == 0) {
7400 ret = SHRINK_STOP;
7401 break;
7402 }
7403 ret++;
7404 }
7405 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
7406 }
7407 return ret;
7408}
7409
7410static unsigned long raid5_cache_count(struct shrinker *shrink,
7411 struct shrink_control *sc)
7412{
86298d8b 7413 struct r5conf *conf = shrink->private_data;
dfd2bf43
GDH
7414 int max_stripes = READ_ONCE(conf->max_nr_stripes);
7415 int min_stripes = READ_ONCE(conf->min_nr_stripes);
edbe83ab 7416
dfd2bf43 7417 if (max_stripes < min_stripes)
edbe83ab
N
7418 /* unlikely, but not impossible */
7419 return 0;
dfd2bf43 7420 return max_stripes - min_stripes;
edbe83ab
N
7421}
7422
d1688a6d 7423static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 7424{
d1688a6d 7425 struct r5conf *conf;
5e5e3e78 7426 int raid_disk, memory, max_disks;
3cb03002 7427 struct md_rdev *rdev;
1da177e4 7428 struct disk_info *disk;
0232605d 7429 char pers_name[6];
566c09c5 7430 int i;
d2c9ad41 7431 int group_cnt;
60aaf933 7432 struct r5worker_group *new_group;
8fbcba6b 7433 int ret = -ENOMEM;
1da177e4 7434
91adb564
N
7435 if (mddev->new_level != 5
7436 && mddev->new_level != 4
7437 && mddev->new_level != 6) {
cc6167b4
N
7438 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7439 mdname(mddev), mddev->new_level);
91adb564 7440 return ERR_PTR(-EIO);
1da177e4 7441 }
91adb564
N
7442 if ((mddev->new_level == 5
7443 && !algorithm_valid_raid5(mddev->new_layout)) ||
7444 (mddev->new_level == 6
7445 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
7446 pr_warn("md/raid:%s: layout %d not supported\n",
7447 mdname(mddev), mddev->new_layout);
91adb564 7448 return ERR_PTR(-EIO);
99c0fb5f 7449 }
91adb564 7450 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
7451 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7452 mdname(mddev), mddev->raid_disks);
91adb564 7453 return ERR_PTR(-EINVAL);
4bbf3771
N
7454 }
7455
664e7c41
AN
7456 if (!mddev->new_chunk_sectors ||
7457 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7458 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
7459 pr_warn("md/raid:%s: invalid chunk size %d\n",
7460 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 7461 return ERR_PTR(-EINVAL);
f6705578
N
7462 }
7463
d1688a6d 7464 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 7465 if (conf == NULL)
1da177e4 7466 goto abort;
c911c46c 7467
e2368582
YY
7468#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7469 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7470 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7471 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7472#endif
aaf9f12e
SL
7473 INIT_LIST_HEAD(&conf->free_list);
7474 INIT_LIST_HEAD(&conf->pending_list);
6396bb22
KC
7475 conf->pending_data = kcalloc(PENDING_IO_MAX,
7476 sizeof(struct r5pending_data),
7477 GFP_KERNEL);
aaf9f12e
SL
7478 if (!conf->pending_data)
7479 goto abort;
7480 for (i = 0; i < PENDING_IO_MAX; i++)
7481 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 7482 /* Don't enable multi-threading by default*/
d2c9ad41 7483 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
60aaf933 7484 conf->group_cnt = group_cnt;
d2c9ad41 7485 conf->worker_cnt_per_group = 0;
60aaf933 7486 conf->worker_groups = new_group;
7487 } else
851c30c9 7488 goto abort;
f5efd45a 7489 spin_lock_init(&conf->device_lock);
0a87b25f 7490 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
2d5b569b 7491 mutex_init(&conf->cache_size_mutex);
8fbcba6b 7492
b1b46486 7493 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 7494 init_waitqueue_head(&conf->wait_for_stripe);
6f039cc4 7495 init_waitqueue_head(&conf->wait_for_reshape);
f5efd45a 7496 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 7497 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
7498 INIT_LIST_HEAD(&conf->hold_list);
7499 INIT_LIST_HEAD(&conf->delayed_list);
7500 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 7501 init_llist_head(&conf->released_stripes);
f5efd45a
DW
7502 atomic_set(&conf->active_stripes, 0);
7503 atomic_set(&conf->preread_active_stripes, 0);
7504 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
7505 spin_lock_init(&conf->pending_bios_lock);
7506 conf->batch_bio_dispatch = true;
7507 rdev_for_each(rdev, mddev) {
7508 if (test_bit(Journal, &rdev->flags))
7509 continue;
10f0d2a5 7510 if (bdev_nonrot(rdev->bdev)) {
765d704d
SL
7511 conf->batch_bio_dispatch = false;
7512 break;
7513 }
7514 }
7515
f5efd45a 7516 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 7517 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
7518
7519 conf->raid_disks = mddev->raid_disks;
7520 if (mddev->reshape_position == MaxSector)
7521 conf->previous_raid_disks = mddev->raid_disks;
7522 else
f6705578 7523 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 7524 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 7525
6396bb22 7526 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
b55e6bfc 7527 GFP_KERNEL);
d7bd398e 7528
b55e6bfc
N
7529 if (!conf->disks)
7530 goto abort;
9ffae0cf 7531
d7bd398e
SL
7532 for (i = 0; i < max_disks; i++) {
7533 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7534 if (!conf->disks[i].extra_page)
7535 goto abort;
7536 }
7537
afeee514
KO
7538 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7539 if (ret)
dd7a8f5d 7540 goto abort;
1da177e4
LT
7541 conf->mddev = mddev;
7542
5f7ef487
DC
7543 ret = -ENOMEM;
7544 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7545 if (!conf->stripe_hashtbl)
1da177e4 7546 goto abort;
1da177e4 7547
566c09c5
SL
7548 /* We init hash_locks[0] separately to that it can be used
7549 * as the reference lock in the spin_lock_nest_lock() call
7550 * in lock_all_device_hash_locks_irq in order to convince
7551 * lockdep that we know what we are doing.
7552 */
7553 spin_lock_init(conf->hash_locks);
7554 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7555 spin_lock_init(conf->hash_locks + i);
7556
7557 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7558 INIT_LIST_HEAD(conf->inactive_list + i);
7559
7560 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7561 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7562
1e6d690b
SL
7563 atomic_set(&conf->r5c_cached_full_stripes, 0);
7564 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7565 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7566 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
7567 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7568 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 7569
36d1c647 7570 conf->level = mddev->new_level;
46d5b785 7571 conf->chunk_sectors = mddev->new_chunk_sectors;
8fbcba6b
LG
7572 ret = raid5_alloc_percpu(conf);
7573 if (ret)
36d1c647
DW
7574 goto abort;
7575
0c55e022 7576 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 7577
8fbcba6b 7578 ret = -EIO;
dafb20fa 7579 rdev_for_each(rdev, mddev) {
1da177e4 7580 raid_disk = rdev->raid_disk;
5e5e3e78 7581 if (raid_disk >= max_disks
f2076e7d 7582 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
7583 continue;
7584 disk = conf->disks + raid_disk;
7585
17045f52
N
7586 if (test_bit(Replacement, &rdev->flags)) {
7587 if (disk->replacement)
7588 goto abort;
2314c2e3 7589 disk->replacement = rdev;
17045f52
N
7590 } else {
7591 if (disk->rdev)
7592 goto abort;
2314c2e3 7593 disk->rdev = rdev;
17045f52 7594 }
1da177e4 7595
b2d444d7 7596 if (test_bit(In_sync, &rdev->flags)) {
913cce5a
CH
7597 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7598 mdname(mddev), rdev->bdev, raid_disk);
d6b212f4 7599 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
7600 /* Cannot rely on bitmap to complete recovery */
7601 conf->fullsync = 1;
1da177e4
LT
7602 }
7603
91adb564 7604 conf->level = mddev->new_level;
584acdd4 7605 if (conf->level == 6) {
16a53ecc 7606 conf->max_degraded = 2;
584acdd4
MS
7607 if (raid6_call.xor_syndrome)
7608 conf->rmw_level = PARITY_ENABLE_RMW;
7609 else
7610 conf->rmw_level = PARITY_DISABLE_RMW;
7611 } else {
16a53ecc 7612 conf->max_degraded = 1;
584acdd4
MS
7613 conf->rmw_level = PARITY_ENABLE_RMW;
7614 }
91adb564 7615 conf->algorithm = mddev->new_layout;
fef9c61f 7616 conf->reshape_progress = mddev->reshape_position;
e183eaed 7617 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7618 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7619 conf->prev_algo = mddev->layout;
5cac6bcb
N
7620 } else {
7621 conf->prev_chunk_sectors = conf->chunk_sectors;
7622 conf->prev_algo = conf->algorithm;
e183eaed 7623 }
1da177e4 7624
edbe83ab 7625 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7626 if (mddev->reshape_position != MaxSector) {
7627 int stripes = max_t(int,
c911c46c
YY
7628 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7629 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
ad5b0f76
SL
7630 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7631 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7632 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7633 mdname(mddev), conf->min_nr_stripes);
7634 }
edbe83ab 7635 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7636 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7637 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7638 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7639 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7640 mdname(mddev), memory);
8fbcba6b 7641 ret = -ENOMEM;
91adb564
N
7642 goto abort;
7643 } else
cc6167b4 7644 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7645 /*
7646 * Losing a stripe head costs more than the time to refill it,
7647 * it reduces the queue depth and so can hurt throughput.
7648 * So set it rather large, scaled by number of devices.
7649 */
86298d8b
QZ
7650 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7651 if (!conf->shrinker) {
7652 ret = -ENOMEM;
7653 pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
cc6167b4 7654 mdname(mddev));
6a0f53ff
CY
7655 goto abort;
7656 }
1da177e4 7657
86298d8b
QZ
7658 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7659 conf->shrinker->scan_objects = raid5_cache_scan;
7660 conf->shrinker->count_objects = raid5_cache_count;
7661 conf->shrinker->batch = 128;
7662 conf->shrinker->private_data = conf;
7663
7664 shrinker_register(conf->shrinker);
7665
0232605d 7666 sprintf(pers_name, "raid%d", mddev->new_level);
44693154
YK
7667 rcu_assign_pointer(conf->thread,
7668 md_register_thread(raid5d, mddev, pers_name));
91adb564 7669 if (!conf->thread) {
cc6167b4
N
7670 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7671 mdname(mddev));
8fbcba6b 7672 ret = -ENOMEM;
16a53ecc
N
7673 goto abort;
7674 }
91adb564
N
7675
7676 return conf;
7677
7678 abort:
8fbcba6b 7679 if (conf)
95fc17aa 7680 free_conf(conf);
8fbcba6b 7681 return ERR_PTR(ret);
91adb564
N
7682}
7683
c148ffdc
N
7684static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7685{
7686 switch (algo) {
7687 case ALGORITHM_PARITY_0:
7688 if (raid_disk < max_degraded)
7689 return 1;
7690 break;
7691 case ALGORITHM_PARITY_N:
7692 if (raid_disk >= raid_disks - max_degraded)
7693 return 1;
7694 break;
7695 case ALGORITHM_PARITY_0_6:
f72ffdd6 7696 if (raid_disk == 0 ||
c148ffdc
N
7697 raid_disk == raid_disks - 1)
7698 return 1;
7699 break;
7700 case ALGORITHM_LEFT_ASYMMETRIC_6:
7701 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7702 case ALGORITHM_LEFT_SYMMETRIC_6:
7703 case ALGORITHM_RIGHT_SYMMETRIC_6:
7704 if (raid_disk == raid_disks - 1)
7705 return 1;
7706 }
7707 return 0;
7708}
7709
f63f1735 7710static int raid5_set_limits(struct mddev *mddev)
16ef5101 7711{
f63f1735
CH
7712 struct r5conf *conf = mddev->private;
7713 struct queue_limits lim;
7714 int data_disks, stripe;
7715 struct md_rdev *rdev;
7716
7717 /*
7718 * The read-ahead size must cover two whole stripes, which is
7719 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7720 */
7721 data_disks = conf->previous_raid_disks - conf->max_degraded;
7722
7723 /*
7724 * We can only discard a whole stripe. It doesn't make sense to
7725 * discard data disk but write parity disk
7726 */
7727 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7728
573d5abf 7729 md_init_stacking_limits(&lim);
f63f1735
CH
7730 lim.io_min = mddev->chunk_sectors << 9;
7731 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7d4dec52 7732 lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
f63f1735
CH
7733 lim.discard_granularity = stripe;
7734 lim.max_write_zeroes_sectors = 0;
c6e56cf6 7735 mddev_stack_rdev_limits(mddev, &lim, 0);
f63f1735
CH
7736 rdev_for_each(rdev, mddev)
7737 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7738 mddev->gendisk->disk_name);
7739
7740 /*
7741 * Zeroing is required for discard, otherwise data could be lost.
7742 *
7743 * Consider a scenario: discard a stripe (the stripe could be
7744 * inconsistent if discard_zeroes_data is 0); write one disk of the
7745 * stripe (the stripe could be inconsistent again depending on which
7746 * disks are used to calculate parity); the disk is broken; The stripe
7747 * data of this disk is lost.
7748 *
7749 * We only allow DISCARD if the sysadmin has confirmed that only safe
7750 * devices are in use by setting a module parameter. A better idea
7751 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7752 * required to be safe.
7753 */
7754 if (!devices_handle_discard_safely ||
7755 lim.max_discard_sectors < (stripe >> 9) ||
7756 lim.discard_granularity < stripe)
7757 lim.max_hw_discard_sectors = 0;
7758
7759 /*
7760 * Requests require having a bitmap for each stripe.
7761 * Limit the max sectors based on this.
7762 */
7763 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7764
7765 /* No restrictions on the number of segments in the request */
7766 lim.max_segments = USHRT_MAX;
7767
396799eb 7768 return queue_limits_set(mddev->gendisk->queue, &lim);
16ef5101
CH
7769}
7770
849674e4 7771static int raid5_run(struct mddev *mddev)
91adb564 7772{
d1688a6d 7773 struct r5conf *conf;
c148ffdc 7774 int dirty_parity_disks = 0;
3cb03002 7775 struct md_rdev *rdev;
713cf5a6 7776 struct md_rdev *journal_dev = NULL;
c148ffdc 7777 sector_t reshape_offset = 0;
c567c86b 7778 int i;
b5254dd5
N
7779 long long min_offset_diff = 0;
7780 int first = 1;
f63f1735 7781 int ret = -EIO;
91adb564 7782
8c6ac868 7783 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7784 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7785 mdname(mddev));
b5254dd5
N
7786
7787 rdev_for_each(rdev, mddev) {
7788 long long diff;
713cf5a6 7789
f2076e7d 7790 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7791 journal_dev = rdev;
f2076e7d
SL
7792 continue;
7793 }
b5254dd5
N
7794 if (rdev->raid_disk < 0)
7795 continue;
7796 diff = (rdev->new_data_offset - rdev->data_offset);
7797 if (first) {
7798 min_offset_diff = diff;
7799 first = 0;
7800 } else if (mddev->reshape_backwards &&
7801 diff < min_offset_diff)
7802 min_offset_diff = diff;
7803 else if (!mddev->reshape_backwards &&
7804 diff > min_offset_diff)
7805 min_offset_diff = diff;
7806 }
7807
230b55fa
N
7808 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7809 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7810 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7811 mdname(mddev));
c567c86b 7812 return -EINVAL;
230b55fa
N
7813 }
7814
91adb564
N
7815 if (mddev->reshape_position != MaxSector) {
7816 /* Check that we can continue the reshape.
b5254dd5
N
7817 * Difficulties arise if the stripe we would write to
7818 * next is at or after the stripe we would read from next.
7819 * For a reshape that changes the number of devices, this
7820 * is only possible for a very short time, and mdadm makes
7821 * sure that time appears to have past before assembling
7822 * the array. So we fail if that time hasn't passed.
7823 * For a reshape that keeps the number of devices the same
7824 * mdadm must be monitoring the reshape can keeping the
7825 * critical areas read-only and backed up. It will start
7826 * the array in read-only mode, so we check for that.
91adb564
N
7827 */
7828 sector_t here_new, here_old;
7829 int old_disks;
18b00334 7830 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7831 int chunk_sectors;
7832 int new_data_disks;
91adb564 7833
713cf5a6 7834 if (journal_dev) {
cc6167b4
N
7835 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7836 mdname(mddev));
c567c86b 7837 return -EINVAL;
713cf5a6
SL
7838 }
7839
88ce4930 7840 if (mddev->new_level != mddev->level) {
cc6167b4
N
7841 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7842 mdname(mddev));
c567c86b 7843 return -EINVAL;
91adb564 7844 }
91adb564
N
7845 old_disks = mddev->raid_disks - mddev->delta_disks;
7846 /* reshape_position must be on a new-stripe boundary, and one
7847 * further up in new geometry must map after here in old
7848 * geometry.
05256d98
N
7849 * If the chunk sizes are different, then as we perform reshape
7850 * in units of the largest of the two, reshape_position needs
7851 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7852 */
7853 here_new = mddev->reshape_position;
05256d98
N
7854 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7855 new_data_disks = mddev->raid_disks - max_degraded;
7856 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7857 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7858 mdname(mddev));
c567c86b 7859 return -EINVAL;
91adb564 7860 }
05256d98 7861 reshape_offset = here_new * chunk_sectors;
91adb564
N
7862 /* here_new is the stripe we will write to */
7863 here_old = mddev->reshape_position;
05256d98 7864 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7865 /* here_old is the first stripe that we might need to read
7866 * from */
67ac6011
N
7867 if (mddev->delta_disks == 0) {
7868 /* We cannot be sure it is safe to start an in-place
b5254dd5 7869 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7870 * and taking constant backups.
7871 * mdadm always starts a situation like this in
7872 * readonly mode so it can take control before
7873 * allowing any writes. So just check for that.
7874 */
b5254dd5
N
7875 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7876 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7877 /* not really in-place - so OK */;
7878 else if (mddev->ro == 0) {
cc6167b4
N
7879 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7880 mdname(mddev));
c567c86b 7881 return -EINVAL;
67ac6011 7882 }
2c810cdd 7883 } else if (mddev->reshape_backwards
05256d98
N
7884 ? (here_new * chunk_sectors + min_offset_diff <=
7885 here_old * chunk_sectors)
7886 : (here_new * chunk_sectors >=
7887 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7888 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7889 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7890 mdname(mddev));
c567c86b 7891 return -EINVAL;
91adb564 7892 }
cc6167b4 7893 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7894 /* OK, we should be able to continue; */
7895 } else {
7896 BUG_ON(mddev->level != mddev->new_level);
7897 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7898 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7899 BUG_ON(mddev->delta_disks != 0);
1da177e4 7900 }
91adb564 7901
3418d036
AP
7902 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7903 test_bit(MD_HAS_PPL, &mddev->flags)) {
7904 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7905 mdname(mddev));
7906 clear_bit(MD_HAS_PPL, &mddev->flags);
ddc08823 7907 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
3418d036
AP
7908 }
7909
245f46c2
N
7910 if (mddev->private == NULL)
7911 conf = setup_conf(mddev);
7912 else
7913 conf = mddev->private;
7914
c567c86b
YK
7915 if (IS_ERR(conf))
7916 return PTR_ERR(conf);
91adb564 7917
486b0f7b
SL
7918 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7919 if (!journal_dev) {
cc6167b4
N
7920 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7921 mdname(mddev));
486b0f7b
SL
7922 mddev->ro = 1;
7923 set_disk_ro(mddev->gendisk, 1);
7924 } else if (mddev->recovery_cp == MaxSector)
7925 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7926 }
7927
b5254dd5 7928 conf->min_offset_diff = min_offset_diff;
44693154
YK
7929 rcu_assign_pointer(mddev->thread, conf->thread);
7930 rcu_assign_pointer(conf->thread, NULL);
91adb564
N
7931 mddev->private = conf;
7932
17045f52
N
7933 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7934 i++) {
ad860670 7935 rdev = conf->disks[i].rdev;
17045f52 7936 if (!rdev)
c148ffdc 7937 continue;
ad860670 7938 if (conf->disks[i].replacement &&
17045f52
N
7939 conf->reshape_progress != MaxSector) {
7940 /* replacements and reshape simply do not mix. */
cc6167b4 7941 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7942 goto abort;
7943 }
7bc43612 7944 if (test_bit(In_sync, &rdev->flags))
2f115882 7945 continue;
c148ffdc
N
7946 /* This disc is not fully in-sync. However if it
7947 * just stored parity (beyond the recovery_offset),
7948 * when we don't need to be concerned about the
7949 * array being dirty.
7950 * When reshape goes 'backwards', we never have
7951 * partially completed devices, so we only need
7952 * to worry about reshape going forwards.
7953 */
7954 /* Hack because v0.91 doesn't store recovery_offset properly. */
7955 if (mddev->major_version == 0 &&
7956 mddev->minor_version > 90)
7957 rdev->recovery_offset = reshape_offset;
5026d7a9 7958
c148ffdc
N
7959 if (rdev->recovery_offset < reshape_offset) {
7960 /* We need to check old and new layout */
7961 if (!only_parity(rdev->raid_disk,
7962 conf->algorithm,
7963 conf->raid_disks,
7964 conf->max_degraded))
7965 continue;
7966 }
7967 if (!only_parity(rdev->raid_disk,
7968 conf->prev_algo,
7969 conf->previous_raid_disks,
7970 conf->max_degraded))
7971 continue;
7972 dirty_parity_disks++;
7973 }
91adb564 7974
17045f52
N
7975 /*
7976 * 0 for a fully functional array, 1 or 2 for a degraded array.
7977 */
2e38a37f 7978 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7979
674806d6 7980 if (has_failed(conf)) {
cc6167b4 7981 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7982 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7983 goto abort;
7984 }
7985
91adb564 7986 /* device size must be a multiple of chunk size */
c5eec74f 7987 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
91adb564
N
7988 mddev->resync_max_sectors = mddev->dev_sectors;
7989
c148ffdc 7990 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7991 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7992 if (test_bit(MD_HAS_PPL, &mddev->flags))
7993 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7994 mdname(mddev));
7995 else if (mddev->ok_start_degraded)
cc6167b4
N
7996 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7997 mdname(mddev));
6ff8d8ec 7998 else {
cc6167b4
N
7999 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8000 mdname(mddev));
6ff8d8ec
N
8001 goto abort;
8002 }
1da177e4
LT
8003 }
8004
cc6167b4
N
8005 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8006 mdname(mddev), conf->level,
8007 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8008 mddev->new_layout);
1da177e4
LT
8009
8010 print_raid5_conf(conf);
8011
fef9c61f 8012 if (conf->reshape_progress != MaxSector) {
fef9c61f 8013 conf->reshape_safe = conf->reshape_progress;
f6705578
N
8014 atomic_set(&conf->reshape_stripes, 0);
8015 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8016 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8017 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
ad39c081 8018 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
f6705578
N
8019 }
8020
1da177e4 8021 /* Ok, everything is just fine now */
a64c876f
N
8022 if (mddev->to_remove == &raid5_attrs_group)
8023 mddev->to_remove = NULL;
00bcb4ac
N
8024 else if (mddev->kobj.sd &&
8025 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
8026 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8027 mdname(mddev));
4a5add49 8028 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 8029
176df894 8030 if (!mddev_is_dm(mddev)) {
f63f1735
CH
8031 ret = raid5_set_limits(mddev);
8032 if (ret)
8033 goto abort;
9f7c2220 8034 }
23032a0e 8035
845b9e22 8036 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
ff875738 8037 goto abort;
5c7e81c3 8038
1da177e4
LT
8039 return 0;
8040abort:
7eb8ff02 8041 md_unregister_thread(mddev, &mddev->thread);
e4f869d9
N
8042 print_raid5_conf(conf);
8043 free_conf(conf);
1da177e4 8044 mddev->private = NULL;
cc6167b4 8045 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
f63f1735 8046 return ret;
1da177e4
LT
8047}
8048
afa0f557 8049static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 8050{
afa0f557 8051 struct r5conf *conf = priv;
1da177e4 8052
95fc17aa 8053 free_conf(conf);
a64c876f 8054 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
8055}
8056
849674e4 8057static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 8058{
d1688a6d 8059 struct r5conf *conf = mddev->private;
1da177e4
LT
8060 int i;
8061
ad860670
YK
8062 lockdep_assert_held(&mddev->lock);
8063
9d8f0363 8064 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 8065 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 8066 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351 8067 for (i = 0; i < conf->raid_disks; i++) {
ad860670
YK
8068 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8069
5fd13351
N
8070 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8071 }
1da177e4 8072 seq_printf (seq, "]");
1da177e4
LT
8073}
8074
2314c2e3 8075static void print_raid5_conf(struct r5conf *conf)
1da177e4 8076{
b0920ede 8077 struct md_rdev *rdev;
1da177e4 8078 int i;
1da177e4 8079
cc6167b4 8080 pr_debug("RAID conf printout:\n");
1da177e4 8081 if (!conf) {
cc6167b4 8082 pr_debug("(conf==NULL)\n");
1da177e4
LT
8083 return;
8084 }
cc6167b4 8085 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
8086 conf->raid_disks,
8087 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
8088
8089 for (i = 0; i < conf->raid_disks; i++) {
2314c2e3 8090 rdev = conf->disks[i].rdev;
b0920ede 8091 if (rdev)
913cce5a 8092 pr_debug(" disk %d, o:%d, dev:%pg\n",
b0920ede 8093 i, !test_bit(Faulty, &rdev->flags),
913cce5a 8094 rdev->bdev);
1da177e4
LT
8095 }
8096}
8097
fd01b88c 8098static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
8099{
8100 int i;
d1688a6d 8101 struct r5conf *conf = mddev->private;
9aeb7f99 8102 struct md_rdev *rdev, *replacement;
6b965620
N
8103 int count = 0;
8104 unsigned long flags;
1da177e4
LT
8105
8106 for (i = 0; i < conf->raid_disks; i++) {
ad860670
YK
8107 rdev = conf->disks[i].rdev;
8108 replacement = conf->disks[i].replacement;
9aeb7f99
LG
8109 if (replacement
8110 && replacement->recovery_offset == MaxSector
8111 && !test_bit(Faulty, &replacement->flags)
8112 && !test_and_set_bit(In_sync, &replacement->flags)) {
dd054fce 8113 /* Replacement has just become active. */
9aeb7f99
LG
8114 if (!rdev
8115 || !test_and_clear_bit(In_sync, &rdev->flags))
dd054fce 8116 count++;
9aeb7f99 8117 if (rdev) {
dd054fce
N
8118 /* Replaced device not technically faulty,
8119 * but we need to be sure it gets removed
8120 * and never re-added.
8121 */
9aeb7f99 8122 set_bit(Faulty, &rdev->flags);
dd054fce 8123 sysfs_notify_dirent_safe(
9aeb7f99 8124 rdev->sysfs_state);
dd054fce 8125 }
9aeb7f99
LG
8126 sysfs_notify_dirent_safe(replacement->sysfs_state);
8127 } else if (rdev
8128 && rdev->recovery_offset == MaxSector
8129 && !test_bit(Faulty, &rdev->flags)
8130 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 8131 count++;
9aeb7f99 8132 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
8133 }
8134 }
6b965620 8135 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 8136 mddev->degraded = raid5_calc_degraded(conf);
6b965620 8137 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 8138 print_raid5_conf(conf);
6b965620 8139 return count;
1da177e4
LT
8140}
8141
b8321b68 8142static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 8143{
d1688a6d 8144 struct r5conf *conf = mddev->private;
1da177e4 8145 int err = 0;
b8321b68 8146 int number = rdev->raid_disk;
ad860670 8147 struct md_rdev **rdevp;
1ebc2cec 8148 struct disk_info *p;
b0920ede 8149 struct md_rdev *tmp;
1da177e4
LT
8150
8151 print_raid5_conf(conf);
f6b6ec5c 8152 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 8153 /*
f6b6ec5c
SL
8154 * we can't wait pending write here, as this is called in
8155 * raid5d, wait will deadlock.
84dd97a6
N
8156 * neilb: there is no locking about new writes here,
8157 * so this cannot be safe.
c2bb6242 8158 */
70d466f7
SL
8159 if (atomic_read(&conf->active_stripes) ||
8160 atomic_read(&conf->r5c_cached_full_stripes) ||
8161 atomic_read(&conf->r5c_cached_partial_stripes)) {
f6b6ec5c 8162 return -EBUSY;
84dd97a6 8163 }
ff875738 8164 log_exit(conf);
f6b6ec5c 8165 return 0;
c2bb6242 8166 }
1ebc2cec
MP
8167 if (unlikely(number >= conf->pool_size))
8168 return 0;
8169 p = conf->disks + number;
ad860670 8170 if (rdev == p->rdev)
657e3e4d 8171 rdevp = &p->rdev;
ad860670 8172 else if (rdev == p->replacement)
657e3e4d
N
8173 rdevp = &p->replacement;
8174 else
8175 return 0;
8176
8177 if (number >= conf->raid_disks &&
8178 conf->reshape_progress == MaxSector)
8179 clear_bit(In_sync, &rdev->flags);
8180
8181 if (test_bit(In_sync, &rdev->flags) ||
8182 atomic_read(&rdev->nr_pending)) {
8183 err = -EBUSY;
8184 goto abort;
8185 }
8186 /* Only remove non-faulty devices if recovery
8187 * isn't possible.
8188 */
8189 if (!test_bit(Faulty, &rdev->flags) &&
8190 mddev->recovery_disabled != conf->recovery_disabled &&
8191 !has_failed(conf) &&
ad860670 8192 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
8193 number < conf->raid_disks) {
8194 err = -EBUSY;
8195 goto abort;
8196 }
ad860670 8197 WRITE_ONCE(*rdevp, NULL);
6358c239
AP
8198 if (!err) {
8199 err = log_modify(conf, rdev, false);
8200 if (err)
8201 goto abort;
8202 }
b0920ede 8203
ad860670 8204 tmp = p->replacement;
b0920ede 8205 if (tmp) {
dd054fce 8206 /* We must have just cleared 'rdev' */
ad860670 8207 WRITE_ONCE(p->rdev, tmp);
b0920ede 8208 clear_bit(Replacement, &tmp->flags);
ad860670 8209 WRITE_ONCE(p->replacement, NULL);
6358c239
AP
8210
8211 if (!err)
b0920ede 8212 err = log_modify(conf, tmp, true);
e5bc9c3c
GJ
8213 }
8214
8215 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
8216abort:
8217
8218 print_raid5_conf(conf);
8219 return err;
8220}
8221
fd01b88c 8222static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 8223{
d1688a6d 8224 struct r5conf *conf = mddev->private;
d9771f5e 8225 int ret, err = -EEXIST;
1da177e4
LT
8226 int disk;
8227 struct disk_info *p;
9aeb7f99 8228 struct md_rdev *tmp;
6c2fce2e
NB
8229 int first = 0;
8230 int last = conf->raid_disks - 1;
1da177e4 8231
f6b6ec5c 8232 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
8233 if (conf->log)
8234 return -EBUSY;
8235
8236 rdev->raid_disk = 0;
8237 /*
8238 * The array is in readonly mode if journal is missing, so no
8239 * write requests running. We should be safe
8240 */
d9771f5e
XN
8241 ret = log_init(conf, rdev, false);
8242 if (ret)
8243 return ret;
8244
8245 ret = r5l_start(conf->log);
8246 if (ret)
8247 return ret;
8248
f6b6ec5c
SL
8249 return 0;
8250 }
7f0da59b
N
8251 if (mddev->recovery_disabled == conf->recovery_disabled)
8252 return -EBUSY;
8253
dc10c643 8254 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 8255 /* no point adding a device */
199050ea 8256 return -EINVAL;
1da177e4 8257
6c2fce2e
NB
8258 if (rdev->raid_disk >= 0)
8259 first = last = rdev->raid_disk;
1da177e4
LT
8260
8261 /*
16a53ecc
N
8262 * find the disk ... but prefer rdev->saved_raid_disk
8263 * if possible.
1da177e4 8264 */
a20d636b 8265 if (rdev->saved_raid_disk >= first &&
617b3658 8266 rdev->saved_raid_disk <= last &&
16a53ecc 8267 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
8268 first = rdev->saved_raid_disk;
8269
8270 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
8271 p = conf->disks + disk;
8272 if (p->rdev == NULL) {
b2d444d7 8273 clear_bit(In_sync, &rdev->flags);
1da177e4 8274 rdev->raid_disk = disk;
72626685
N
8275 if (rdev->saved_raid_disk != disk)
8276 conf->fullsync = 1;
ad860670 8277 WRITE_ONCE(p->rdev, rdev);
6358c239
AP
8278
8279 err = log_modify(conf, rdev, true);
8280
5cfb22a1 8281 goto out;
1da177e4 8282 }
5cfb22a1
N
8283 }
8284 for (disk = first; disk <= last; disk++) {
8285 p = conf->disks + disk;
ad860670 8286 tmp = p->rdev;
9aeb7f99 8287 if (test_bit(WantReplacement, &tmp->flags) &&
46038b30 8288 mddev->reshape_position == MaxSector &&
7bfec5f3
N
8289 p->replacement == NULL) {
8290 clear_bit(In_sync, &rdev->flags);
8291 set_bit(Replacement, &rdev->flags);
8292 rdev->raid_disk = disk;
8293 err = 0;
8294 conf->fullsync = 1;
ad860670 8295 WRITE_ONCE(p->replacement, rdev);
7bfec5f3
N
8296 break;
8297 }
8298 }
5cfb22a1 8299out:
1da177e4 8300 print_raid5_conf(conf);
199050ea 8301 return err;
1da177e4
LT
8302}
8303
fd01b88c 8304static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
8305{
8306 /* no resync is happening, and there is enough space
8307 * on all devices, so we can resize.
8308 * We need to make sure resync covers any new space.
8309 * If the array is shrinking we should possibly wait until
8310 * any io in the removed space completes, but it hardly seems
8311 * worth it.
8312 */
a4a6125a 8313 sector_t newsize;
3cb5edf4 8314 struct r5conf *conf = mddev->private;
e1791dae 8315 int ret;
3cb5edf4 8316
e254de6b 8317 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 8318 return -EINVAL;
3cb5edf4 8319 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
8320 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8321 if (mddev->external_size &&
8322 mddev->array_sectors > newsize)
b522adcd 8323 return -EINVAL;
e1791dae 8324
77c09640 8325 ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false);
e1791dae
YK
8326 if (ret)
8327 return ret;
8328
a4a6125a 8329 md_set_array_sectors(mddev, newsize);
b098636c
N
8330 if (sectors > mddev->dev_sectors &&
8331 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 8332 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
8333 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8334 }
58c0fed4 8335 mddev->dev_sectors = sectors;
4b5c7ae8 8336 mddev->resync_max_sectors = sectors;
1da177e4
LT
8337 return 0;
8338}
8339
fd01b88c 8340static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
8341{
8342 /* Can only proceed if there are plenty of stripe_heads.
8343 * We need a minimum of one full stripe,, and for sensible progress
8344 * it is best to have about 4 times that.
8345 * If we require 4 times, then the default 256 4K stripe_heads will
8346 * allow for chunk sizes up to 256K, which is probably OK.
8347 * If the chunk size is greater, user-space should request more
8348 * stripe_heads first.
8349 */
d1688a6d 8350 struct r5conf *conf = mddev->private;
c911c46c 8351 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
edbe83ab 8352 > conf->min_nr_stripes ||
c911c46c 8353 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
edbe83ab 8354 > conf->min_nr_stripes) {
cc6167b4
N
8355 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8356 mdname(mddev),
8357 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
c911c46c 8358 / RAID5_STRIPE_SIZE(conf))*4);
01ee22b4
N
8359 return 0;
8360 }
8361 return 1;
8362}
8363
fd01b88c 8364static int check_reshape(struct mddev *mddev)
29269553 8365{
d1688a6d 8366 struct r5conf *conf = mddev->private;
29269553 8367
e254de6b 8368 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 8369 return -EINVAL;
88ce4930
N
8370 if (mddev->delta_disks == 0 &&
8371 mddev->new_layout == mddev->layout &&
664e7c41 8372 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 8373 return 0; /* nothing to do */
674806d6 8374 if (has_failed(conf))
ec32a2bd 8375 return -EINVAL;
fdcfbbb6 8376 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
8377 /* We might be able to shrink, but the devices must
8378 * be made bigger first.
8379 * For raid6, 4 is the minimum size.
8380 * Otherwise 2 is the minimum
8381 */
8382 int min = 2;
8383 if (mddev->level == 6)
8384 min = 4;
8385 if (mddev->raid_disks + mddev->delta_disks < min)
8386 return -EINVAL;
8387 }
29269553 8388
01ee22b4 8389 if (!check_stripe_cache(mddev))
29269553 8390 return -ENOSPC;
29269553 8391
738a2738
N
8392 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8393 mddev->delta_disks > 0)
8394 if (resize_chunks(conf,
8395 conf->previous_raid_disks
8396 + max(0, mddev->delta_disks),
8397 max(mddev->new_chunk_sectors,
8398 mddev->chunk_sectors)
8399 ) < 0)
8400 return -ENOMEM;
845b9e22
AP
8401
8402 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8403 return 0; /* never bother to shrink */
e56108d6
N
8404 return resize_stripes(conf, (conf->previous_raid_disks
8405 + mddev->delta_disks));
63c70c4f
N
8406}
8407
fd01b88c 8408static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 8409{
d1688a6d 8410 struct r5conf *conf = mddev->private;
3cb03002 8411 struct md_rdev *rdev;
63c70c4f 8412 int spares = 0;
75aa7a1b 8413 int i;
c04be0aa 8414 unsigned long flags;
63c70c4f 8415
f416885e 8416 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
8417 return -EBUSY;
8418
01ee22b4
N
8419 if (!check_stripe_cache(mddev))
8420 return -ENOSPC;
8421
30b67645
N
8422 if (has_failed(conf))
8423 return -EINVAL;
8424
75aa7a1b
YK
8425 /* raid5 can't handle concurrent reshape and recovery */
8426 if (mddev->recovery_cp < MaxSector)
8427 return -EBUSY;
8428 for (i = 0; i < conf->raid_disks; i++)
ad860670 8429 if (conf->disks[i].replacement)
75aa7a1b
YK
8430 return -EBUSY;
8431
c6563a8c 8432 rdev_for_each(rdev, mddev) {
469518a3
N
8433 if (!test_bit(In_sync, &rdev->flags)
8434 && !test_bit(Faulty, &rdev->flags))
29269553 8435 spares++;
c6563a8c 8436 }
63c70c4f 8437
f416885e 8438 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
8439 /* Not enough devices even to make a degraded array
8440 * of that size
8441 */
8442 return -EINVAL;
8443
ec32a2bd
N
8444 /* Refuse to reduce size of the array. Any reductions in
8445 * array size must be through explicit setting of array_size
8446 * attribute.
8447 */
8448 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8449 < mddev->array_sectors) {
cc6167b4
N
8450 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8451 mdname(mddev));
ec32a2bd
N
8452 return -EINVAL;
8453 }
8454
f6705578 8455 atomic_set(&conf->reshape_stripes, 0);
29269553 8456 spin_lock_irq(&conf->device_lock);
c46501b2 8457 write_seqcount_begin(&conf->gen_lock);
29269553 8458 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 8459 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
8460 conf->prev_chunk_sectors = conf->chunk_sectors;
8461 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
8462 conf->prev_algo = conf->algorithm;
8463 conf->algorithm = mddev->new_layout;
05616be5
N
8464 conf->generation++;
8465 /* Code that selects data_offset needs to see the generation update
8466 * if reshape_progress has been set - so a memory barrier needed.
8467 */
8468 smp_mb();
2c810cdd 8469 if (mddev->reshape_backwards)
fef9c61f
N
8470 conf->reshape_progress = raid5_size(mddev, 0, 0);
8471 else
8472 conf->reshape_progress = 0;
8473 conf->reshape_safe = conf->reshape_progress;
c46501b2 8474 write_seqcount_end(&conf->gen_lock);
29269553
N
8475 spin_unlock_irq(&conf->device_lock);
8476
4d77e3ba
N
8477 /* Now make sure any requests that proceeded on the assumption
8478 * the reshape wasn't running - like Discard or Read - have
8479 * completed.
8480 */
b42cd7b3
YK
8481 raid5_quiesce(mddev, true);
8482 raid5_quiesce(mddev, false);
4d77e3ba 8483
29269553
N
8484 /* Add some new drives, as many as will fit.
8485 * We know there are enough to make the newly sized array work.
3424bf6a
N
8486 * Don't add devices if we are reducing the number of
8487 * devices in the array. This is because it is not possible
8488 * to correctly record the "partially reconstructed" state of
8489 * such devices during the reshape and confusion could result.
29269553 8490 */
87a8dec9 8491 if (mddev->delta_disks >= 0) {
dafb20fa 8492 rdev_for_each(rdev, mddev)
87a8dec9
N
8493 if (rdev->raid_disk < 0 &&
8494 !test_bit(Faulty, &rdev->flags)) {
8495 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 8496 if (rdev->raid_disk
9d4c7d87 8497 >= conf->previous_raid_disks)
87a8dec9 8498 set_bit(In_sync, &rdev->flags);
9d4c7d87 8499 else
87a8dec9 8500 rdev->recovery_offset = 0;
36fad858 8501
2aada5b1
DLM
8502 /* Failure here is OK */
8503 sysfs_link_rdev(mddev, rdev);
50da0840 8504 }
87a8dec9
N
8505 } else if (rdev->raid_disk >= conf->previous_raid_disks
8506 && !test_bit(Faulty, &rdev->flags)) {
8507 /* This is a spare that was manually added */
8508 set_bit(In_sync, &rdev->flags);
87a8dec9 8509 }
29269553 8510
87a8dec9
N
8511 /* When a reshape changes the number of devices,
8512 * ->degraded is measured against the larger of the
8513 * pre and post number of devices.
8514 */
ec32a2bd 8515 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 8516 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
8517 spin_unlock_irqrestore(&conf->device_lock, flags);
8518 }
63c70c4f 8519 mddev->raid_disks = conf->raid_disks;
e516402c 8520 mddev->reshape_position = conf->reshape_progress;
2953079c 8521 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 8522
29269553
N
8523 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8524 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 8525 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553 8526 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
ad39c081 8527 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
c8f517c4 8528 conf->reshape_checkpoint = jiffies;
54679486 8529 md_new_event();
29269553
N
8530 return 0;
8531}
29269553 8532
ec32a2bd
N
8533/* This is called from the reshape thread and should make any
8534 * changes needed in 'conf'
8535 */
d1688a6d 8536static void end_reshape(struct r5conf *conf)
29269553 8537{
29269553 8538
f6705578 8539 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
db0505d3 8540 struct md_rdev *rdev;
f6705578 8541
f6705578 8542 spin_lock_irq(&conf->device_lock);
cea9c228 8543 conf->previous_raid_disks = conf->raid_disks;
b5d27718 8544 md_finish_reshape(conf->mddev);
05616be5 8545 smp_wmb();
fef9c61f 8546 conf->reshape_progress = MaxSector;
6cbd8148 8547 conf->mddev->reshape_position = MaxSector;
db0505d3
N
8548 rdev_for_each(rdev, conf->mddev)
8549 if (rdev->raid_disk >= 0 &&
8550 !test_bit(Journal, &rdev->flags) &&
8551 !test_bit(In_sync, &rdev->flags))
8552 rdev->recovery_offset = MaxSector;
f6705578 8553 spin_unlock_irq(&conf->device_lock);
6f039cc4 8554 wake_up(&conf->wait_for_reshape);
16a53ecc 8555
f63f1735
CH
8556 mddev_update_io_opt(conf->mddev,
8557 conf->raid_disks - conf->max_degraded);
29269553 8558 }
29269553
N
8559}
8560
ec32a2bd
N
8561/* This is called from the raid5d thread with mddev_lock held.
8562 * It makes config changes to the device.
8563 */
fd01b88c 8564static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 8565{
d1688a6d 8566 struct r5conf *conf = mddev->private;
9aeb7f99 8567 struct md_rdev *rdev;
cea9c228
N
8568
8569 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8570
8876391e 8571 if (mddev->delta_disks <= 0) {
ec32a2bd 8572 int d;
908f4fbd 8573 spin_lock_irq(&conf->device_lock);
2e38a37f 8574 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 8575 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
8576 for (d = conf->raid_disks ;
8577 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 8578 d++) {
ad860670 8579 rdev = conf->disks[d].rdev;
da7613b8
N
8580 if (rdev)
8581 clear_bit(In_sync, &rdev->flags);
ad860670 8582 rdev = conf->disks[d].replacement;
da7613b8
N
8583 if (rdev)
8584 clear_bit(In_sync, &rdev->flags);
1a67dde0 8585 }
cea9c228 8586 }
88ce4930 8587 mddev->layout = conf->algorithm;
09c9e5fa 8588 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
8589 mddev->reshape_position = MaxSector;
8590 mddev->delta_disks = 0;
2c810cdd 8591 mddev->reshape_backwards = 0;
cea9c228
N
8592 }
8593}
8594
b03e0ccb 8595static void raid5_quiesce(struct mddev *mddev, int quiesce)
72626685 8596{
d1688a6d 8597 struct r5conf *conf = mddev->private;
72626685 8598
b03e0ccb
N
8599 if (quiesce) {
8600 /* stop all writes */
566c09c5 8601 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8602 /* '2' tells resync/reshape to pause so that all
8603 * active stripes can drain
8604 */
a39f7afd 8605 r5c_flush_cache(conf, INT_MAX);
97ae2725
GO
8606 /* need a memory barrier to make sure read_one_chunk() sees
8607 * quiesce started and reverts to slow (locked) path.
8608 */
8609 smp_store_release(&conf->quiesce, 2);
b1b46486 8610 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8611 atomic_read(&conf->active_stripes) == 0 &&
8612 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8613 unlock_all_device_hash_locks_irq(conf),
8614 lock_all_device_hash_locks_irq(conf));
64bd660b 8615 conf->quiesce = 1;
566c09c5 8616 unlock_all_device_hash_locks_irq(conf);
64bd660b 8617 /* allow reshape to continue */
6f039cc4 8618 wake_up(&conf->wait_for_reshape);
b03e0ccb
N
8619 } else {
8620 /* re-enable writes */
566c09c5 8621 lock_all_device_hash_locks_irq(conf);
72626685 8622 conf->quiesce = 0;
b1b46486 8623 wake_up(&conf->wait_for_quiescent);
6f039cc4 8624 wake_up(&conf->wait_for_reshape);
566c09c5 8625 unlock_all_device_hash_locks_irq(conf);
72626685 8626 }
1532d9e8 8627 log_quiesce(conf, quiesce);
72626685 8628}
b15c2e57 8629
fd01b88c 8630static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8631{
e373ab10 8632 struct r0conf *raid0_conf = mddev->private;
d76c8420 8633 sector_t sectors;
54071b38 8634
f1b29bca 8635 /* for raid0 takeover only one zone is supported */
e373ab10 8636 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8637 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8638 mdname(mddev));
f1b29bca
DW
8639 return ERR_PTR(-EINVAL);
8640 }
8641
e373ab10
N
8642 sectors = raid0_conf->strip_zone[0].zone_end;
8643 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8644 mddev->dev_sectors = sectors;
f1b29bca 8645 mddev->new_level = level;
54071b38
TM
8646 mddev->new_layout = ALGORITHM_PARITY_N;
8647 mddev->new_chunk_sectors = mddev->chunk_sectors;
8648 mddev->raid_disks += 1;
8649 mddev->delta_disks = 1;
8650 /* make sure it will be not marked as dirty */
8651 mddev->recovery_cp = MaxSector;
8652
8653 return setup_conf(mddev);
8654}
8655
fd01b88c 8656static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8657{
8658 int chunksect;
6995f0b2 8659 void *ret;
d562b0c4
N
8660
8661 if (mddev->raid_disks != 2 ||
8662 mddev->degraded > 1)
8663 return ERR_PTR(-EINVAL);
8664
8665 /* Should check if there are write-behind devices? */
8666
8667 chunksect = 64*2; /* 64K by default */
8668
8669 /* The array must be an exact multiple of chunksize */
8670 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8671 chunksect >>= 1;
8672
c911c46c 8673 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
d562b0c4
N
8674 /* array size does not allow a suitable chunk size */
8675 return ERR_PTR(-EINVAL);
8676
8677 mddev->new_level = 5;
8678 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8679 mddev->new_chunk_sectors = chunksect;
d562b0c4 8680
6995f0b2 8681 ret = setup_conf(mddev);
32cd7cbb 8682 if (!IS_ERR(ret))
394ed8e4
SL
8683 mddev_clear_unsupported_flags(mddev,
8684 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8685 return ret;
d562b0c4
N
8686}
8687
fd01b88c 8688static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8689{
8690 int new_layout;
8691
8692 switch (mddev->layout) {
8693 case ALGORITHM_LEFT_ASYMMETRIC_6:
8694 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8695 break;
8696 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8697 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8698 break;
8699 case ALGORITHM_LEFT_SYMMETRIC_6:
8700 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8701 break;
8702 case ALGORITHM_RIGHT_SYMMETRIC_6:
8703 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8704 break;
8705 case ALGORITHM_PARITY_0_6:
8706 new_layout = ALGORITHM_PARITY_0;
8707 break;
8708 case ALGORITHM_PARITY_N:
8709 new_layout = ALGORITHM_PARITY_N;
8710 break;
8711 default:
8712 return ERR_PTR(-EINVAL);
8713 }
8714 mddev->new_level = 5;
8715 mddev->new_layout = new_layout;
8716 mddev->delta_disks = -1;
8717 mddev->raid_disks -= 1;
8718 return setup_conf(mddev);
8719}
8720
fd01b88c 8721static int raid5_check_reshape(struct mddev *mddev)
b3546035 8722{
88ce4930
N
8723 /* For a 2-drive array, the layout and chunk size can be changed
8724 * immediately as not restriping is needed.
8725 * For larger arrays we record the new value - after validation
8726 * to be used by a reshape pass.
b3546035 8727 */
d1688a6d 8728 struct r5conf *conf = mddev->private;
597a711b 8729 int new_chunk = mddev->new_chunk_sectors;
b3546035 8730
597a711b 8731 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8732 return -EINVAL;
8733 if (new_chunk > 0) {
0ba459d2 8734 if (!is_power_of_2(new_chunk))
b3546035 8735 return -EINVAL;
597a711b 8736 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8737 return -EINVAL;
597a711b 8738 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8739 /* not factor of array size */
8740 return -EINVAL;
8741 }
8742
8743 /* They look valid */
8744
88ce4930 8745 if (mddev->raid_disks == 2) {
597a711b
N
8746 /* can make the change immediately */
8747 if (mddev->new_layout >= 0) {
8748 conf->algorithm = mddev->new_layout;
8749 mddev->layout = mddev->new_layout;
88ce4930
N
8750 }
8751 if (new_chunk > 0) {
597a711b
N
8752 conf->chunk_sectors = new_chunk ;
8753 mddev->chunk_sectors = new_chunk;
88ce4930 8754 }
2953079c 8755 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8756 md_wakeup_thread(mddev->thread);
b3546035 8757 }
50ac168a 8758 return check_reshape(mddev);
88ce4930
N
8759}
8760
fd01b88c 8761static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8762{
597a711b 8763 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8764
597a711b 8765 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8766 return -EINVAL;
b3546035 8767 if (new_chunk > 0) {
0ba459d2 8768 if (!is_power_of_2(new_chunk))
88ce4930 8769 return -EINVAL;
597a711b 8770 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8771 return -EINVAL;
597a711b 8772 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8773 /* not factor of array size */
8774 return -EINVAL;
b3546035 8775 }
88ce4930
N
8776
8777 /* They look valid */
50ac168a 8778 return check_reshape(mddev);
b3546035
N
8779}
8780
fd01b88c 8781static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8782{
8783 /* raid5 can take over:
f1b29bca 8784 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8785 * raid1 - if there are two drives. We need to know the chunk size
8786 * raid4 - trivial - just use a raid4 layout.
8787 * raid6 - Providing it is a *_6 layout
d562b0c4 8788 */
f1b29bca
DW
8789 if (mddev->level == 0)
8790 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8791 if (mddev->level == 1)
8792 return raid5_takeover_raid1(mddev);
e9d4758f
N
8793 if (mddev->level == 4) {
8794 mddev->new_layout = ALGORITHM_PARITY_N;
8795 mddev->new_level = 5;
8796 return setup_conf(mddev);
8797 }
fc9739c6
N
8798 if (mddev->level == 6)
8799 return raid5_takeover_raid6(mddev);
d562b0c4
N
8800
8801 return ERR_PTR(-EINVAL);
8802}
8803
fd01b88c 8804static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8805{
f1b29bca
DW
8806 /* raid4 can take over:
8807 * raid0 - if there is only one strip zone
8808 * raid5 - if layout is right
a78d38a1 8809 */
f1b29bca
DW
8810 if (mddev->level == 0)
8811 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8812 if (mddev->level == 5 &&
8813 mddev->layout == ALGORITHM_PARITY_N) {
8814 mddev->new_layout = 0;
8815 mddev->new_level = 4;
8816 return setup_conf(mddev);
8817 }
8818 return ERR_PTR(-EINVAL);
8819}
d562b0c4 8820
84fc4b56 8821static struct md_personality raid5_personality;
245f46c2 8822
fd01b88c 8823static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8824{
8825 /* Currently can only take over a raid5. We map the
8826 * personality to an equivalent raid6 personality
8827 * with the Q block at the end.
8828 */
8829 int new_layout;
8830
8831 if (mddev->pers != &raid5_personality)
8832 return ERR_PTR(-EINVAL);
8833 if (mddev->degraded > 1)
8834 return ERR_PTR(-EINVAL);
8835 if (mddev->raid_disks > 253)
8836 return ERR_PTR(-EINVAL);
8837 if (mddev->raid_disks < 3)
8838 return ERR_PTR(-EINVAL);
8839
8840 switch (mddev->layout) {
8841 case ALGORITHM_LEFT_ASYMMETRIC:
8842 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8843 break;
8844 case ALGORITHM_RIGHT_ASYMMETRIC:
8845 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8846 break;
8847 case ALGORITHM_LEFT_SYMMETRIC:
8848 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8849 break;
8850 case ALGORITHM_RIGHT_SYMMETRIC:
8851 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8852 break;
8853 case ALGORITHM_PARITY_0:
8854 new_layout = ALGORITHM_PARITY_0_6;
8855 break;
8856 case ALGORITHM_PARITY_N:
8857 new_layout = ALGORITHM_PARITY_N;
8858 break;
8859 default:
8860 return ERR_PTR(-EINVAL);
8861 }
8862 mddev->new_level = 6;
8863 mddev->new_layout = new_layout;
8864 mddev->delta_disks = 1;
8865 mddev->raid_disks += 1;
8866 return setup_conf(mddev);
8867}
8868
ba903a3e
AP
8869static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8870{
8871 struct r5conf *conf;
8872 int err;
8873
e28ca92f 8874 err = mddev_suspend_and_lock(mddev);
ba903a3e
AP
8875 if (err)
8876 return err;
8877 conf = mddev->private;
8878 if (!conf) {
e28ca92f 8879 mddev_unlock_and_resume(mddev);
ba903a3e
AP
8880 return -ENODEV;
8881 }
8882
845b9e22 8883 if (strncmp(buf, "ppl", 3) == 0) {
0bb0c105 8884 /* ppl only works with RAID 5 */
845b9e22
AP
8885 if (!raid5_has_ppl(conf) && conf->level == 5) {
8886 err = log_init(conf, NULL, true);
8887 if (!err) {
8888 err = resize_stripes(conf, conf->pool_size);
e28ca92f 8889 if (err)
845b9e22
AP
8890 log_exit(conf);
8891 }
0bb0c105
SL
8892 } else
8893 err = -EINVAL;
8894 } else if (strncmp(buf, "resync", 6) == 0) {
8895 if (raid5_has_ppl(conf)) {
0bb0c105 8896 log_exit(conf);
845b9e22 8897 err = resize_stripes(conf, conf->pool_size);
0bb0c105
SL
8898 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8899 r5l_log_disk_error(conf)) {
8900 bool journal_dev_exists = false;
8901 struct md_rdev *rdev;
8902
8903 rdev_for_each(rdev, mddev)
8904 if (test_bit(Journal, &rdev->flags)) {
8905 journal_dev_exists = true;
8906 break;
8907 }
8908
e28ca92f 8909 if (!journal_dev_exists)
0bb0c105 8910 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
e28ca92f 8911 else /* need remove journal device first */
0bb0c105
SL
8912 err = -EBUSY;
8913 } else
8914 err = -EINVAL;
ba903a3e
AP
8915 } else {
8916 err = -EINVAL;
8917 }
8918
8919 if (!err)
8920 md_update_sb(mddev, 1);
8921
e28ca92f 8922 mddev_unlock_and_resume(mddev);
ba903a3e
AP
8923
8924 return err;
8925}
8926
d5d885fd
SL
8927static int raid5_start(struct mddev *mddev)
8928{
8929 struct r5conf *conf = mddev->private;
8930
8931 return r5l_start(conf->log);
8932}
8933
41425f96
YK
8934/*
8935 * This is only used for dm-raid456, caller already frozen sync_thread, hence
8936 * if rehsape is still in progress, io that is waiting for reshape can never be
8937 * done now, hence wake up and handle those IO.
8938 */
8939static void raid5_prepare_suspend(struct mddev *mddev)
8940{
8941 struct r5conf *conf = mddev->private;
8942
6f039cc4 8943 wake_up(&conf->wait_for_reshape);
41425f96
YK
8944}
8945
84fc4b56 8946static struct md_personality raid6_personality =
16a53ecc 8947{
3d44e1d1
YK
8948 .head = {
8949 .type = MD_PERSONALITY,
8950 .id = ID_RAID6,
8951 .name = "raid6",
8952 .owner = THIS_MODULE,
8953 },
8954
849674e4
SL
8955 .make_request = raid5_make_request,
8956 .run = raid5_run,
d5d885fd 8957 .start = raid5_start,
afa0f557 8958 .free = raid5_free,
849674e4
SL
8959 .status = raid5_status,
8960 .error_handler = raid5_error,
16a53ecc
N
8961 .hot_add_disk = raid5_add_disk,
8962 .hot_remove_disk= raid5_remove_disk,
8963 .spare_active = raid5_spare_active,
849674e4 8964 .sync_request = raid5_sync_request,
16a53ecc 8965 .resize = raid5_resize,
80c3a6ce 8966 .size = raid5_size,
50ac168a 8967 .check_reshape = raid6_check_reshape,
f416885e 8968 .start_reshape = raid5_start_reshape,
cea9c228 8969 .finish_reshape = raid5_finish_reshape,
16a53ecc 8970 .quiesce = raid5_quiesce,
245f46c2 8971 .takeover = raid6_takeover,
0bb0c105 8972 .change_consistency_policy = raid5_change_consistency_policy,
41425f96 8973 .prepare_suspend = raid5_prepare_suspend,
9c89f604 8974 .bitmap_sector = raid5_bitmap_sector,
16a53ecc 8975};
84fc4b56 8976static struct md_personality raid5_personality =
1da177e4 8977{
3d44e1d1
YK
8978 .head = {
8979 .type = MD_PERSONALITY,
8980 .id = ID_RAID5,
8981 .name = "raid5",
8982 .owner = THIS_MODULE,
8983 },
8984
849674e4
SL
8985 .make_request = raid5_make_request,
8986 .run = raid5_run,
d5d885fd 8987 .start = raid5_start,
afa0f557 8988 .free = raid5_free,
849674e4
SL
8989 .status = raid5_status,
8990 .error_handler = raid5_error,
1da177e4
LT
8991 .hot_add_disk = raid5_add_disk,
8992 .hot_remove_disk= raid5_remove_disk,
8993 .spare_active = raid5_spare_active,
849674e4 8994 .sync_request = raid5_sync_request,
1da177e4 8995 .resize = raid5_resize,
80c3a6ce 8996 .size = raid5_size,
63c70c4f
N
8997 .check_reshape = raid5_check_reshape,
8998 .start_reshape = raid5_start_reshape,
cea9c228 8999 .finish_reshape = raid5_finish_reshape,
72626685 9000 .quiesce = raid5_quiesce,
d562b0c4 9001 .takeover = raid5_takeover,
ba903a3e 9002 .change_consistency_policy = raid5_change_consistency_policy,
41425f96 9003 .prepare_suspend = raid5_prepare_suspend,
9c89f604 9004 .bitmap_sector = raid5_bitmap_sector,
1da177e4
LT
9005};
9006
84fc4b56 9007static struct md_personality raid4_personality =
1da177e4 9008{
3d44e1d1
YK
9009 .head = {
9010 .type = MD_PERSONALITY,
9011 .id = ID_RAID4,
9012 .name = "raid4",
9013 .owner = THIS_MODULE,
9014 },
9015
849674e4
SL
9016 .make_request = raid5_make_request,
9017 .run = raid5_run,
d5d885fd 9018 .start = raid5_start,
afa0f557 9019 .free = raid5_free,
849674e4
SL
9020 .status = raid5_status,
9021 .error_handler = raid5_error,
2604b703
N
9022 .hot_add_disk = raid5_add_disk,
9023 .hot_remove_disk= raid5_remove_disk,
9024 .spare_active = raid5_spare_active,
849674e4 9025 .sync_request = raid5_sync_request,
2604b703 9026 .resize = raid5_resize,
80c3a6ce 9027 .size = raid5_size,
3d37890b
N
9028 .check_reshape = raid5_check_reshape,
9029 .start_reshape = raid5_start_reshape,
cea9c228 9030 .finish_reshape = raid5_finish_reshape,
2604b703 9031 .quiesce = raid5_quiesce,
a78d38a1 9032 .takeover = raid4_takeover,
0bb0c105 9033 .change_consistency_policy = raid5_change_consistency_policy,
41425f96 9034 .prepare_suspend = raid5_prepare_suspend,
9c89f604 9035 .bitmap_sector = raid5_bitmap_sector,
2604b703
N
9036};
9037
9038static int __init raid5_init(void)
9039{
29c6d1bb
SAS
9040 int ret;
9041
851c30c9
SL
9042 raid5_wq = alloc_workqueue("raid5wq",
9043 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9044 if (!raid5_wq)
9045 return -ENOMEM;
29c6d1bb
SAS
9046
9047 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9048 "md/raid5:prepare",
9049 raid456_cpu_up_prepare,
9050 raid456_cpu_dead);
3d44e1d1
YK
9051 if (ret)
9052 goto err_destroy_wq;
9053
9054 ret = register_md_submodule(&raid6_personality.head);
9055 if (ret)
9056 goto err_cpuhp_remove;
9057
9058 ret = register_md_submodule(&raid5_personality.head);
9059 if (ret)
9060 goto err_unregister_raid6;
9061
9062 ret = register_md_submodule(&raid4_personality.head);
9063 if (ret)
9064 goto err_unregister_raid5;
9065
2604b703 9066 return 0;
3d44e1d1
YK
9067
9068err_unregister_raid5:
9069 unregister_md_submodule(&raid5_personality.head);
9070err_unregister_raid6:
9071 unregister_md_submodule(&raid6_personality.head);
9072err_cpuhp_remove:
9073 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9074err_destroy_wq:
9075 destroy_workqueue(raid5_wq);
9076 return ret;
1da177e4
LT
9077}
9078
3d44e1d1 9079static void __exit raid5_exit(void)
1da177e4 9080{
3d44e1d1
YK
9081 unregister_md_submodule(&raid6_personality.head);
9082 unregister_md_submodule(&raid5_personality.head);
9083 unregister_md_submodule(&raid4_personality.head);
29c6d1bb 9084 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 9085 destroy_workqueue(raid5_wq);
1da177e4
LT
9086}
9087
9088module_init(raid5_init);
9089module_exit(raid5_exit);
9090MODULE_LICENSE("GPL");
0efb9e61 9091MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 9092MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
9093MODULE_ALIAS("md-raid5");
9094MODULE_ALIAS("md-raid4");
2604b703
N
9095MODULE_ALIAS("md-level-5");
9096MODULE_ALIAS("md-level-4");
16a53ecc
N
9097MODULE_ALIAS("md-personality-8"); /* RAID6 */
9098MODULE_ALIAS("md-raid6");
9099MODULE_ALIAS("md-level-6");
9100
9101/* This used to be two separate modules, they were: */
9102MODULE_ALIAS("raid5");
9103MODULE_ALIAS("raid6");