raid5: add basic stripe log
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
34a6f80e 226static void return_io(struct bio_list *return_bi)
a4456856 227{
34a6f80e
N
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
4f024f37 230 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
4246a0b6 233 bio_endio(bi);
a4456856
DW
234 }
235}
236
d1688a6d 237static void print_raid5_conf (struct r5conf *conf);
1da177e4 238
600aa109
DW
239static int stripe_operations_active(struct stripe_head *sh)
240{
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244}
245
851c30c9
SL
246static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247{
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
bfc90cb0 250 int thread_cnt;
851c30c9
SL
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
262 group->stripes_cnt++;
263 sh->group = group;
851c30c9
SL
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
bfc90cb0
SL
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
851c30c9
SL
287}
288
566c09c5
SL
289static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
1da177e4 291{
4eb788df
SL
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 297 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
4eb788df
SL
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
566c09c5
SL
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
321 }
322}
d0dabf7e 323
566c09c5
SL
324static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
4eb788df
SL
326{
327 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
328 do_release_stripe(conf, sh, temp_inactive_list);
329}
330
331/*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341{
342 int size;
e9e4c377
YL
343 unsigned long do_wakeup = 0;
344 int i = 0;
566c09c5
SL
345 unsigned long flags;
346
347 if (hash == NR_STRIPE_HASH_LOCKS) {
348 size = NR_STRIPE_HASH_LOCKS;
349 hash = NR_STRIPE_HASH_LOCKS - 1;
350 } else
351 size = 1;
352 while (size) {
353 struct list_head *list = &temp_inactive_list[size - 1];
354
355 /*
6d036f7d 356 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
357 * remove stripes from the list
358 */
359 if (!list_empty_careful(list)) {
360 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
361 if (list_empty(conf->inactive_list + hash) &&
362 !list_empty(list))
363 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 364 list_splice_tail_init(list, conf->inactive_list + hash);
e9e4c377 365 do_wakeup |= 1 << hash;
566c09c5
SL
366 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 }
368 size--;
369 hash--;
370 }
371
e9e4c377
YL
372 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 if (do_wakeup & (1 << i))
374 wake_up(&conf->wait_for_stripe[i]);
375 }
376
566c09c5 377 if (do_wakeup) {
b1b46486
YL
378 if (atomic_read(&conf->active_stripes) == 0)
379 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
380 if (conf->retry_read_aligned)
381 md_wakeup_thread(conf->mddev->thread);
382 }
4eb788df
SL
383}
384
773ca82f 385/* should hold conf->device_lock already */
566c09c5
SL
386static int release_stripe_list(struct r5conf *conf,
387 struct list_head *temp_inactive_list)
773ca82f
SL
388{
389 struct stripe_head *sh;
390 int count = 0;
391 struct llist_node *head;
392
393 head = llist_del_all(&conf->released_stripes);
d265d9dc 394 head = llist_reverse_order(head);
773ca82f 395 while (head) {
566c09c5
SL
396 int hash;
397
773ca82f
SL
398 sh = llist_entry(head, struct stripe_head, release_list);
399 head = llist_next(head);
400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 smp_mb();
402 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 /*
404 * Don't worry the bit is set here, because if the bit is set
405 * again, the count is always > 1. This is true for
406 * STRIPE_ON_UNPLUG_LIST bit too.
407 */
566c09c5
SL
408 hash = sh->hash_lock_index;
409 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
410 count++;
411 }
412
413 return count;
414}
415
6d036f7d 416void raid5_release_stripe(struct stripe_head *sh)
1da177e4 417{
d1688a6d 418 struct r5conf *conf = sh->raid_conf;
1da177e4 419 unsigned long flags;
566c09c5
SL
420 struct list_head list;
421 int hash;
773ca82f 422 bool wakeup;
16a53ecc 423
cf170f3f
ES
424 /* Avoid release_list until the last reference.
425 */
426 if (atomic_add_unless(&sh->count, -1, 1))
427 return;
428
ad4068de 429 if (unlikely(!conf->mddev->thread) ||
430 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
431 goto slow_path;
432 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 if (wakeup)
434 md_wakeup_thread(conf->mddev->thread);
435 return;
436slow_path:
4eb788df 437 local_irq_save(flags);
773ca82f 438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 439 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
440 INIT_LIST_HEAD(&list);
441 hash = sh->hash_lock_index;
442 do_release_stripe(conf, sh, &list);
4eb788df 443 spin_unlock(&conf->device_lock);
566c09c5 444 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
445 }
446 local_irq_restore(flags);
1da177e4
LT
447}
448
fccddba0 449static inline void remove_hash(struct stripe_head *sh)
1da177e4 450{
45b4233c
DW
451 pr_debug("remove_hash(), stripe %llu\n",
452 (unsigned long long)sh->sector);
1da177e4 453
fccddba0 454 hlist_del_init(&sh->hash);
1da177e4
LT
455}
456
d1688a6d 457static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 458{
fccddba0 459 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 460
45b4233c
DW
461 pr_debug("insert_hash(), stripe %llu\n",
462 (unsigned long long)sh->sector);
1da177e4 463
fccddba0 464 hlist_add_head(&sh->hash, hp);
1da177e4
LT
465}
466
1da177e4 467/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 468static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
469{
470 struct stripe_head *sh = NULL;
471 struct list_head *first;
472
566c09c5 473 if (list_empty(conf->inactive_list + hash))
1da177e4 474 goto out;
566c09c5 475 first = (conf->inactive_list + hash)->next;
1da177e4
LT
476 sh = list_entry(first, struct stripe_head, lru);
477 list_del_init(first);
478 remove_hash(sh);
479 atomic_inc(&conf->active_stripes);
566c09c5 480 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
481 if (list_empty(conf->inactive_list + hash))
482 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
483out:
484 return sh;
485}
486
e4e11e38 487static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
488{
489 struct page *p;
490 int i;
e4e11e38 491 int num = sh->raid_conf->pool_size;
1da177e4 492
e4e11e38 493 for (i = 0; i < num ; i++) {
d592a996 494 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
495 p = sh->dev[i].page;
496 if (!p)
497 continue;
498 sh->dev[i].page = NULL;
2d1f3b5d 499 put_page(p);
1da177e4
LT
500 }
501}
502
a9683a79 503static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
504{
505 int i;
e4e11e38 506 int num = sh->raid_conf->pool_size;
1da177e4 507
e4e11e38 508 for (i = 0; i < num; i++) {
1da177e4
LT
509 struct page *page;
510
a9683a79 511 if (!(page = alloc_page(gfp))) {
1da177e4
LT
512 return 1;
513 }
514 sh->dev[i].page = page;
d592a996 515 sh->dev[i].orig_page = page;
1da177e4
LT
516 }
517 return 0;
518}
519
784052ec 520static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 521static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 522 struct stripe_head *sh);
1da177e4 523
b5663ba4 524static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 525{
d1688a6d 526 struct r5conf *conf = sh->raid_conf;
566c09c5 527 int i, seq;
1da177e4 528
78bafebd
ES
529 BUG_ON(atomic_read(&sh->count) != 0);
530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 531 BUG_ON(stripe_operations_active(sh));
59fc630b 532 BUG_ON(sh->batch_head);
d84e0f10 533
45b4233c 534 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 535 (unsigned long long)sector);
566c09c5
SL
536retry:
537 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 538 sh->generation = conf->generation - previous;
b5663ba4 539 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 540 sh->sector = sector;
911d4ee8 541 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
542 sh->state = 0;
543
7ecaa1e6 544 for (i = sh->disks; i--; ) {
1da177e4
LT
545 struct r5dev *dev = &sh->dev[i];
546
d84e0f10 547 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 548 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 549 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 550 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 551 dev->read, dev->towrite, dev->written,
1da177e4 552 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 553 WARN_ON(1);
1da177e4
LT
554 }
555 dev->flags = 0;
784052ec 556 raid5_build_block(sh, i, previous);
1da177e4 557 }
566c09c5
SL
558 if (read_seqcount_retry(&conf->gen_lock, seq))
559 goto retry;
7a87f434 560 sh->overwrite_disks = 0;
1da177e4 561 insert_hash(conf, sh);
851c30c9 562 sh->cpu = smp_processor_id();
da41ba65 563 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
564}
565
d1688a6d 566static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 567 short generation)
1da177e4
LT
568{
569 struct stripe_head *sh;
570
45b4233c 571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 573 if (sh->sector == sector && sh->generation == generation)
1da177e4 574 return sh;
45b4233c 575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
576 return NULL;
577}
578
674806d6
N
579/*
580 * Need to check if array has failed when deciding whether to:
581 * - start an array
582 * - remove non-faulty devices
583 * - add a spare
584 * - allow a reshape
585 * This determination is simple when no reshape is happening.
586 * However if there is a reshape, we need to carefully check
587 * both the before and after sections.
588 * This is because some failed devices may only affect one
589 * of the two sections, and some non-in_sync devices may
590 * be insync in the section most affected by failed devices.
591 */
908f4fbd 592static int calc_degraded(struct r5conf *conf)
674806d6 593{
908f4fbd 594 int degraded, degraded2;
674806d6 595 int i;
674806d6
N
596
597 rcu_read_lock();
598 degraded = 0;
599 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
601 if (rdev && test_bit(Faulty, &rdev->flags))
602 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
603 if (!rdev || test_bit(Faulty, &rdev->flags))
604 degraded++;
605 else if (test_bit(In_sync, &rdev->flags))
606 ;
607 else
608 /* not in-sync or faulty.
609 * If the reshape increases the number of devices,
610 * this is being recovered by the reshape, so
611 * this 'previous' section is not in_sync.
612 * If the number of devices is being reduced however,
613 * the device can only be part of the array if
614 * we are reverting a reshape, so this section will
615 * be in-sync.
616 */
617 if (conf->raid_disks >= conf->previous_raid_disks)
618 degraded++;
619 }
620 rcu_read_unlock();
908f4fbd
N
621 if (conf->raid_disks == conf->previous_raid_disks)
622 return degraded;
674806d6 623 rcu_read_lock();
908f4fbd 624 degraded2 = 0;
674806d6 625 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
627 if (rdev && test_bit(Faulty, &rdev->flags))
628 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 629 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 630 degraded2++;
674806d6
N
631 else if (test_bit(In_sync, &rdev->flags))
632 ;
633 else
634 /* not in-sync or faulty.
635 * If reshape increases the number of devices, this
636 * section has already been recovered, else it
637 * almost certainly hasn't.
638 */
639 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 640 degraded2++;
674806d6
N
641 }
642 rcu_read_unlock();
908f4fbd
N
643 if (degraded2 > degraded)
644 return degraded2;
645 return degraded;
646}
647
648static int has_failed(struct r5conf *conf)
649{
650 int degraded;
651
652 if (conf->mddev->reshape_position == MaxSector)
653 return conf->mddev->degraded > conf->max_degraded;
654
655 degraded = calc_degraded(conf);
674806d6
N
656 if (degraded > conf->max_degraded)
657 return 1;
658 return 0;
659}
660
6d036f7d
SL
661struct stripe_head *
662raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663 int previous, int noblock, int noquiesce)
1da177e4
LT
664{
665 struct stripe_head *sh;
566c09c5 666 int hash = stripe_hash_locks_hash(sector);
1da177e4 667
45b4233c 668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 669
566c09c5 670 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
671
672 do {
b1b46486 673 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 674 conf->quiesce == 0 || noquiesce,
566c09c5 675 *(conf->hash_locks + hash));
86b42c71 676 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 677 if (!sh) {
edbe83ab 678 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 679 sh = get_free_stripe(conf, hash);
713bc5c2
SL
680 if (!sh && !test_bit(R5_DID_ALLOC,
681 &conf->cache_state))
edbe83ab
N
682 set_bit(R5_ALLOC_MORE,
683 &conf->cache_state);
684 }
1da177e4
LT
685 if (noblock && sh == NULL)
686 break;
687 if (!sh) {
5423399a
N
688 set_bit(R5_INACTIVE_BLOCKED,
689 &conf->cache_state);
e9e4c377
YL
690 wait_event_exclusive_cmd(
691 conf->wait_for_stripe[hash],
566c09c5
SL
692 !list_empty(conf->inactive_list + hash) &&
693 (atomic_read(&conf->active_stripes)
694 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
695 || !test_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state)),
e9e4c377
YL
697 spin_unlock_irq(conf->hash_locks + hash),
698 spin_lock_irq(conf->hash_locks + hash));
5423399a
N
699 clear_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state);
7da9d450 701 } else {
b5663ba4 702 init_stripe(sh, sector, previous);
7da9d450
N
703 atomic_inc(&sh->count);
704 }
e240c183 705 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 706 spin_lock(&conf->device_lock);
e240c183 707 if (!atomic_read(&sh->count)) {
1da177e4
LT
708 if (!test_bit(STRIPE_HANDLE, &sh->state))
709 atomic_inc(&conf->active_stripes);
5af9bef7
N
710 BUG_ON(list_empty(&sh->lru) &&
711 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 712 list_del_init(&sh->lru);
bfc90cb0
SL
713 if (sh->group) {
714 sh->group->stripes_cnt--;
715 sh->group = NULL;
716 }
1da177e4 717 }
7da9d450 718 atomic_inc(&sh->count);
6d183de4 719 spin_unlock(&conf->device_lock);
1da177e4
LT
720 }
721 } while (sh == NULL);
722
e9e4c377
YL
723 if (!list_empty(conf->inactive_list + hash))
724 wake_up(&conf->wait_for_stripe[hash]);
725
566c09c5 726 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
727 return sh;
728}
729
7a87f434 730static bool is_full_stripe_write(struct stripe_head *sh)
731{
732 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734}
735
59fc630b 736static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737{
738 local_irq_disable();
739 if (sh1 > sh2) {
740 spin_lock(&sh2->stripe_lock);
741 spin_lock_nested(&sh1->stripe_lock, 1);
742 } else {
743 spin_lock(&sh1->stripe_lock);
744 spin_lock_nested(&sh2->stripe_lock, 1);
745 }
746}
747
748static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749{
750 spin_unlock(&sh1->stripe_lock);
751 spin_unlock(&sh2->stripe_lock);
752 local_irq_enable();
753}
754
755/* Only freshly new full stripe normal write stripe can be added to a batch list */
756static bool stripe_can_batch(struct stripe_head *sh)
757{
758 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 759 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 760 is_full_stripe_write(sh);
761}
762
763/* we only do back search */
764static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
765{
766 struct stripe_head *head;
767 sector_t head_sector, tmp_sec;
768 int hash;
769 int dd_idx;
770
771 if (!stripe_can_batch(sh))
772 return;
773 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774 tmp_sec = sh->sector;
775 if (!sector_div(tmp_sec, conf->chunk_sectors))
776 return;
777 head_sector = sh->sector - STRIPE_SECTORS;
778
779 hash = stripe_hash_locks_hash(head_sector);
780 spin_lock_irq(conf->hash_locks + hash);
781 head = __find_stripe(conf, head_sector, conf->generation);
782 if (head && !atomic_inc_not_zero(&head->count)) {
783 spin_lock(&conf->device_lock);
784 if (!atomic_read(&head->count)) {
785 if (!test_bit(STRIPE_HANDLE, &head->state))
786 atomic_inc(&conf->active_stripes);
787 BUG_ON(list_empty(&head->lru) &&
788 !test_bit(STRIPE_EXPANDING, &head->state));
789 list_del_init(&head->lru);
790 if (head->group) {
791 head->group->stripes_cnt--;
792 head->group = NULL;
793 }
794 }
795 atomic_inc(&head->count);
796 spin_unlock(&conf->device_lock);
797 }
798 spin_unlock_irq(conf->hash_locks + hash);
799
800 if (!head)
801 return;
802 if (!stripe_can_batch(head))
803 goto out;
804
805 lock_two_stripes(head, sh);
806 /* clear_batch_ready clear the flag */
807 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
808 goto unlock_out;
809
810 if (sh->batch_head)
811 goto unlock_out;
812
813 dd_idx = 0;
814 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
815 dd_idx++;
816 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
817 goto unlock_out;
818
819 if (head->batch_head) {
820 spin_lock(&head->batch_head->batch_lock);
821 /* This batch list is already running */
822 if (!stripe_can_batch(head)) {
823 spin_unlock(&head->batch_head->batch_lock);
824 goto unlock_out;
825 }
826
827 /*
828 * at this point, head's BATCH_READY could be cleared, but we
829 * can still add the stripe to batch list
830 */
831 list_add(&sh->batch_list, &head->batch_list);
832 spin_unlock(&head->batch_head->batch_lock);
833
834 sh->batch_head = head->batch_head;
835 } else {
836 head->batch_head = head;
837 sh->batch_head = head->batch_head;
838 spin_lock(&head->batch_lock);
839 list_add_tail(&sh->batch_list, &head->batch_list);
840 spin_unlock(&head->batch_lock);
841 }
842
843 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
844 if (atomic_dec_return(&conf->preread_active_stripes)
845 < IO_THRESHOLD)
846 md_wakeup_thread(conf->mddev->thread);
847
2b6b2457
N
848 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
849 int seq = sh->bm_seq;
850 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
851 sh->batch_head->bm_seq > seq)
852 seq = sh->batch_head->bm_seq;
853 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
854 sh->batch_head->bm_seq = seq;
855 }
856
59fc630b 857 atomic_inc(&sh->count);
858unlock_out:
859 unlock_two_stripes(head, sh);
860out:
6d036f7d 861 raid5_release_stripe(head);
59fc630b 862}
863
05616be5
N
864/* Determine if 'data_offset' or 'new_data_offset' should be used
865 * in this stripe_head.
866 */
867static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
868{
869 sector_t progress = conf->reshape_progress;
870 /* Need a memory barrier to make sure we see the value
871 * of conf->generation, or ->data_offset that was set before
872 * reshape_progress was updated.
873 */
874 smp_rmb();
875 if (progress == MaxSector)
876 return 0;
877 if (sh->generation == conf->generation - 1)
878 return 0;
879 /* We are in a reshape, and this is a new-generation stripe,
880 * so use new_data_offset.
881 */
882 return 1;
883}
884
6712ecf8 885static void
4246a0b6 886raid5_end_read_request(struct bio *bi);
6712ecf8 887static void
4246a0b6 888raid5_end_write_request(struct bio *bi);
91c00924 889
c4e5ac0a 890static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 891{
d1688a6d 892 struct r5conf *conf = sh->raid_conf;
91c00924 893 int i, disks = sh->disks;
59fc630b 894 struct stripe_head *head_sh = sh;
91c00924
DW
895
896 might_sleep();
897
f6bed0ef
SL
898 if (r5l_write_stripe(conf->log, sh) == 0)
899 return;
91c00924
DW
900 for (i = disks; i--; ) {
901 int rw;
9a3e1101 902 int replace_only = 0;
977df362
N
903 struct bio *bi, *rbi;
904 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 905
906 sh = head_sh;
e9c7469b
TH
907 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
908 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
909 rw = WRITE_FUA;
910 else
911 rw = WRITE;
9e444768 912 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 913 rw |= REQ_DISCARD;
e9c7469b 914 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 915 rw = READ;
9a3e1101
N
916 else if (test_and_clear_bit(R5_WantReplace,
917 &sh->dev[i].flags)) {
918 rw = WRITE;
919 replace_only = 1;
920 } else
91c00924 921 continue;
bc0934f0
SL
922 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
923 rw |= REQ_SYNC;
91c00924 924
59fc630b 925again:
91c00924 926 bi = &sh->dev[i].req;
977df362 927 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 928
91c00924 929 rcu_read_lock();
9a3e1101 930 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
931 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
932 rdev = rcu_dereference(conf->disks[i].rdev);
933 if (!rdev) {
934 rdev = rrdev;
935 rrdev = NULL;
936 }
9a3e1101
N
937 if (rw & WRITE) {
938 if (replace_only)
939 rdev = NULL;
dd054fce
N
940 if (rdev == rrdev)
941 /* We raced and saw duplicates */
942 rrdev = NULL;
9a3e1101 943 } else {
59fc630b 944 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
945 rdev = rrdev;
946 rrdev = NULL;
947 }
977df362 948
91c00924
DW
949 if (rdev && test_bit(Faulty, &rdev->flags))
950 rdev = NULL;
951 if (rdev)
952 atomic_inc(&rdev->nr_pending);
977df362
N
953 if (rrdev && test_bit(Faulty, &rrdev->flags))
954 rrdev = NULL;
955 if (rrdev)
956 atomic_inc(&rrdev->nr_pending);
91c00924
DW
957 rcu_read_unlock();
958
73e92e51 959 /* We have already checked bad blocks for reads. Now
977df362
N
960 * need to check for writes. We never accept write errors
961 * on the replacement, so we don't to check rrdev.
73e92e51
N
962 */
963 while ((rw & WRITE) && rdev &&
964 test_bit(WriteErrorSeen, &rdev->flags)) {
965 sector_t first_bad;
966 int bad_sectors;
967 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
968 &first_bad, &bad_sectors);
969 if (!bad)
970 break;
971
972 if (bad < 0) {
973 set_bit(BlockedBadBlocks, &rdev->flags);
974 if (!conf->mddev->external &&
975 conf->mddev->flags) {
976 /* It is very unlikely, but we might
977 * still need to write out the
978 * bad block log - better give it
979 * a chance*/
980 md_check_recovery(conf->mddev);
981 }
1850753d 982 /*
983 * Because md_wait_for_blocked_rdev
984 * will dec nr_pending, we must
985 * increment it first.
986 */
987 atomic_inc(&rdev->nr_pending);
73e92e51
N
988 md_wait_for_blocked_rdev(rdev, conf->mddev);
989 } else {
990 /* Acknowledged bad block - skip the write */
991 rdev_dec_pending(rdev, conf->mddev);
992 rdev = NULL;
993 }
994 }
995
91c00924 996 if (rdev) {
9a3e1101
N
997 if (s->syncing || s->expanding || s->expanded
998 || s->replacing)
91c00924
DW
999 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1000
2b7497f0
DW
1001 set_bit(STRIPE_IO_STARTED, &sh->state);
1002
2f6db2a7 1003 bio_reset(bi);
91c00924 1004 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
1005 bi->bi_rw = rw;
1006 bi->bi_end_io = (rw & WRITE)
1007 ? raid5_end_write_request
1008 : raid5_end_read_request;
1009 bi->bi_private = sh;
1010
91c00924 1011 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 1012 __func__, (unsigned long long)sh->sector,
91c00924
DW
1013 bi->bi_rw, i);
1014 atomic_inc(&sh->count);
59fc630b 1015 if (sh != head_sh)
1016 atomic_inc(&head_sh->count);
05616be5 1017 if (use_new_offset(conf, sh))
4f024f37 1018 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1019 + rdev->new_data_offset);
1020 else
4f024f37 1021 bi->bi_iter.bi_sector = (sh->sector
05616be5 1022 + rdev->data_offset);
59fc630b 1023 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1024 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1025
d592a996
SL
1026 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1027 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1028 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1029 bi->bi_vcnt = 1;
91c00924
DW
1030 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1031 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1032 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1033 /*
1034 * If this is discard request, set bi_vcnt 0. We don't
1035 * want to confuse SCSI because SCSI will replace payload
1036 */
1037 if (rw & REQ_DISCARD)
1038 bi->bi_vcnt = 0;
977df362
N
1039 if (rrdev)
1040 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1041
1042 if (conf->mddev->gendisk)
1043 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1044 bi, disk_devt(conf->mddev->gendisk),
1045 sh->dev[i].sector);
91c00924 1046 generic_make_request(bi);
977df362
N
1047 }
1048 if (rrdev) {
9a3e1101
N
1049 if (s->syncing || s->expanding || s->expanded
1050 || s->replacing)
977df362
N
1051 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1052
1053 set_bit(STRIPE_IO_STARTED, &sh->state);
1054
2f6db2a7 1055 bio_reset(rbi);
977df362 1056 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1057 rbi->bi_rw = rw;
1058 BUG_ON(!(rw & WRITE));
1059 rbi->bi_end_io = raid5_end_write_request;
1060 rbi->bi_private = sh;
1061
977df362
N
1062 pr_debug("%s: for %llu schedule op %ld on "
1063 "replacement disc %d\n",
1064 __func__, (unsigned long long)sh->sector,
1065 rbi->bi_rw, i);
1066 atomic_inc(&sh->count);
59fc630b 1067 if (sh != head_sh)
1068 atomic_inc(&head_sh->count);
05616be5 1069 if (use_new_offset(conf, sh))
4f024f37 1070 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1071 + rrdev->new_data_offset);
1072 else
4f024f37 1073 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1074 + rrdev->data_offset);
d592a996
SL
1075 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1076 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1077 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1078 rbi->bi_vcnt = 1;
977df362
N
1079 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1080 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1081 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1082 /*
1083 * If this is discard request, set bi_vcnt 0. We don't
1084 * want to confuse SCSI because SCSI will replace payload
1085 */
1086 if (rw & REQ_DISCARD)
1087 rbi->bi_vcnt = 0;
e3620a3a
JB
1088 if (conf->mddev->gendisk)
1089 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1090 rbi, disk_devt(conf->mddev->gendisk),
1091 sh->dev[i].sector);
977df362
N
1092 generic_make_request(rbi);
1093 }
1094 if (!rdev && !rrdev) {
b062962e 1095 if (rw & WRITE)
91c00924
DW
1096 set_bit(STRIPE_DEGRADED, &sh->state);
1097 pr_debug("skip op %ld on disc %d for sector %llu\n",
1098 bi->bi_rw, i, (unsigned long long)sh->sector);
1099 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1100 set_bit(STRIPE_HANDLE, &sh->state);
1101 }
59fc630b 1102
1103 if (!head_sh->batch_head)
1104 continue;
1105 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1106 batch_list);
1107 if (sh != head_sh)
1108 goto again;
91c00924
DW
1109 }
1110}
1111
1112static struct dma_async_tx_descriptor *
d592a996
SL
1113async_copy_data(int frombio, struct bio *bio, struct page **page,
1114 sector_t sector, struct dma_async_tx_descriptor *tx,
1115 struct stripe_head *sh)
91c00924 1116{
7988613b
KO
1117 struct bio_vec bvl;
1118 struct bvec_iter iter;
91c00924 1119 struct page *bio_page;
91c00924 1120 int page_offset;
a08abd8c 1121 struct async_submit_ctl submit;
0403e382 1122 enum async_tx_flags flags = 0;
91c00924 1123
4f024f37
KO
1124 if (bio->bi_iter.bi_sector >= sector)
1125 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1126 else
4f024f37 1127 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1128
0403e382
DW
1129 if (frombio)
1130 flags |= ASYNC_TX_FENCE;
1131 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1132
7988613b
KO
1133 bio_for_each_segment(bvl, bio, iter) {
1134 int len = bvl.bv_len;
91c00924
DW
1135 int clen;
1136 int b_offset = 0;
1137
1138 if (page_offset < 0) {
1139 b_offset = -page_offset;
1140 page_offset += b_offset;
1141 len -= b_offset;
1142 }
1143
1144 if (len > 0 && page_offset + len > STRIPE_SIZE)
1145 clen = STRIPE_SIZE - page_offset;
1146 else
1147 clen = len;
1148
1149 if (clen > 0) {
7988613b
KO
1150 b_offset += bvl.bv_offset;
1151 bio_page = bvl.bv_page;
d592a996
SL
1152 if (frombio) {
1153 if (sh->raid_conf->skip_copy &&
1154 b_offset == 0 && page_offset == 0 &&
1155 clen == STRIPE_SIZE)
1156 *page = bio_page;
1157 else
1158 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1159 b_offset, clen, &submit);
d592a996
SL
1160 } else
1161 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1162 page_offset, clen, &submit);
91c00924 1163 }
a08abd8c
DW
1164 /* chain the operations */
1165 submit.depend_tx = tx;
1166
91c00924
DW
1167 if (clen < len) /* hit end of page */
1168 break;
1169 page_offset += len;
1170 }
1171
1172 return tx;
1173}
1174
1175static void ops_complete_biofill(void *stripe_head_ref)
1176{
1177 struct stripe_head *sh = stripe_head_ref;
34a6f80e 1178 struct bio_list return_bi = BIO_EMPTY_LIST;
e4d84909 1179 int i;
91c00924 1180
e46b272b 1181 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1182 (unsigned long long)sh->sector);
1183
1184 /* clear completed biofills */
1185 for (i = sh->disks; i--; ) {
1186 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1187
1188 /* acknowledge completion of a biofill operation */
e4d84909
DW
1189 /* and check if we need to reply to a read request,
1190 * new R5_Wantfill requests are held off until
83de75cc 1191 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1192 */
1193 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1194 struct bio *rbi, *rbi2;
91c00924 1195
91c00924
DW
1196 BUG_ON(!dev->read);
1197 rbi = dev->read;
1198 dev->read = NULL;
4f024f37 1199 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1200 dev->sector + STRIPE_SECTORS) {
1201 rbi2 = r5_next_bio(rbi, dev->sector);
34a6f80e
N
1202 if (!raid5_dec_bi_active_stripes(rbi))
1203 bio_list_add(&return_bi, rbi);
91c00924
DW
1204 rbi = rbi2;
1205 }
1206 }
1207 }
83de75cc 1208 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1209
34a6f80e 1210 return_io(&return_bi);
91c00924 1211
e4d84909 1212 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1213 raid5_release_stripe(sh);
91c00924
DW
1214}
1215
1216static void ops_run_biofill(struct stripe_head *sh)
1217{
1218 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1219 struct async_submit_ctl submit;
91c00924
DW
1220 int i;
1221
59fc630b 1222 BUG_ON(sh->batch_head);
e46b272b 1223 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1224 (unsigned long long)sh->sector);
1225
1226 for (i = sh->disks; i--; ) {
1227 struct r5dev *dev = &sh->dev[i];
1228 if (test_bit(R5_Wantfill, &dev->flags)) {
1229 struct bio *rbi;
b17459c0 1230 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1231 dev->read = rbi = dev->toread;
1232 dev->toread = NULL;
b17459c0 1233 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1234 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1235 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1236 tx = async_copy_data(0, rbi, &dev->page,
1237 dev->sector, tx, sh);
91c00924
DW
1238 rbi = r5_next_bio(rbi, dev->sector);
1239 }
1240 }
1241 }
1242
1243 atomic_inc(&sh->count);
a08abd8c
DW
1244 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1245 async_trigger_callback(&submit);
91c00924
DW
1246}
1247
4e7d2c0a 1248static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1249{
4e7d2c0a 1250 struct r5dev *tgt;
91c00924 1251
4e7d2c0a
DW
1252 if (target < 0)
1253 return;
91c00924 1254
4e7d2c0a 1255 tgt = &sh->dev[target];
91c00924
DW
1256 set_bit(R5_UPTODATE, &tgt->flags);
1257 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1258 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1259}
1260
ac6b53b6 1261static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1262{
1263 struct stripe_head *sh = stripe_head_ref;
91c00924 1264
e46b272b 1265 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1266 (unsigned long long)sh->sector);
1267
ac6b53b6 1268 /* mark the computed target(s) as uptodate */
4e7d2c0a 1269 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1270 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1271
ecc65c9b
DW
1272 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1273 if (sh->check_state == check_state_compute_run)
1274 sh->check_state = check_state_compute_result;
91c00924 1275 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1276 raid5_release_stripe(sh);
91c00924
DW
1277}
1278
d6f38f31
DW
1279/* return a pointer to the address conversion region of the scribble buffer */
1280static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1281 struct raid5_percpu *percpu, int i)
d6f38f31 1282{
46d5b785 1283 void *addr;
1284
1285 addr = flex_array_get(percpu->scribble, i);
1286 return addr + sizeof(struct page *) * (sh->disks + 2);
1287}
1288
1289/* return a pointer to the address conversion region of the scribble buffer */
1290static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1291{
1292 void *addr;
1293
1294 addr = flex_array_get(percpu->scribble, i);
1295 return addr;
d6f38f31
DW
1296}
1297
1298static struct dma_async_tx_descriptor *
1299ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1300{
91c00924 1301 int disks = sh->disks;
46d5b785 1302 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1303 int target = sh->ops.target;
1304 struct r5dev *tgt = &sh->dev[target];
1305 struct page *xor_dest = tgt->page;
1306 int count = 0;
1307 struct dma_async_tx_descriptor *tx;
a08abd8c 1308 struct async_submit_ctl submit;
91c00924
DW
1309 int i;
1310
59fc630b 1311 BUG_ON(sh->batch_head);
1312
91c00924 1313 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1314 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1315 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1316
1317 for (i = disks; i--; )
1318 if (i != target)
1319 xor_srcs[count++] = sh->dev[i].page;
1320
1321 atomic_inc(&sh->count);
1322
0403e382 1323 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1324 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1325 if (unlikely(count == 1))
a08abd8c 1326 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1327 else
a08abd8c 1328 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1329
91c00924
DW
1330 return tx;
1331}
1332
ac6b53b6
DW
1333/* set_syndrome_sources - populate source buffers for gen_syndrome
1334 * @srcs - (struct page *) array of size sh->disks
1335 * @sh - stripe_head to parse
1336 *
1337 * Populates srcs in proper layout order for the stripe and returns the
1338 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1339 * destination buffer is recorded in srcs[count] and the Q destination
1340 * is recorded in srcs[count+1]].
1341 */
584acdd4
MS
1342static int set_syndrome_sources(struct page **srcs,
1343 struct stripe_head *sh,
1344 int srctype)
ac6b53b6
DW
1345{
1346 int disks = sh->disks;
1347 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1348 int d0_idx = raid6_d0(sh);
1349 int count;
1350 int i;
1351
1352 for (i = 0; i < disks; i++)
5dd33c9a 1353 srcs[i] = NULL;
ac6b53b6
DW
1354
1355 count = 0;
1356 i = d0_idx;
1357 do {
1358 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1359 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1360
584acdd4
MS
1361 if (i == sh->qd_idx || i == sh->pd_idx ||
1362 (srctype == SYNDROME_SRC_ALL) ||
1363 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1364 test_bit(R5_Wantdrain, &dev->flags)) ||
1365 (srctype == SYNDROME_SRC_WRITTEN &&
1366 dev->written))
1367 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1368 i = raid6_next_disk(i, disks);
1369 } while (i != d0_idx);
ac6b53b6 1370
e4424fee 1371 return syndrome_disks;
ac6b53b6
DW
1372}
1373
1374static struct dma_async_tx_descriptor *
1375ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1376{
1377 int disks = sh->disks;
46d5b785 1378 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1379 int target;
1380 int qd_idx = sh->qd_idx;
1381 struct dma_async_tx_descriptor *tx;
1382 struct async_submit_ctl submit;
1383 struct r5dev *tgt;
1384 struct page *dest;
1385 int i;
1386 int count;
1387
59fc630b 1388 BUG_ON(sh->batch_head);
ac6b53b6
DW
1389 if (sh->ops.target < 0)
1390 target = sh->ops.target2;
1391 else if (sh->ops.target2 < 0)
1392 target = sh->ops.target;
91c00924 1393 else
ac6b53b6
DW
1394 /* we should only have one valid target */
1395 BUG();
1396 BUG_ON(target < 0);
1397 pr_debug("%s: stripe %llu block: %d\n",
1398 __func__, (unsigned long long)sh->sector, target);
1399
1400 tgt = &sh->dev[target];
1401 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1402 dest = tgt->page;
1403
1404 atomic_inc(&sh->count);
1405
1406 if (target == qd_idx) {
584acdd4 1407 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1408 blocks[count] = NULL; /* regenerating p is not necessary */
1409 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1410 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1411 ops_complete_compute, sh,
46d5b785 1412 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1413 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1414 } else {
1415 /* Compute any data- or p-drive using XOR */
1416 count = 0;
1417 for (i = disks; i-- ; ) {
1418 if (i == target || i == qd_idx)
1419 continue;
1420 blocks[count++] = sh->dev[i].page;
1421 }
1422
0403e382
DW
1423 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1424 NULL, ops_complete_compute, sh,
46d5b785 1425 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1426 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1427 }
91c00924 1428
91c00924
DW
1429 return tx;
1430}
1431
ac6b53b6
DW
1432static struct dma_async_tx_descriptor *
1433ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1434{
1435 int i, count, disks = sh->disks;
1436 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1437 int d0_idx = raid6_d0(sh);
1438 int faila = -1, failb = -1;
1439 int target = sh->ops.target;
1440 int target2 = sh->ops.target2;
1441 struct r5dev *tgt = &sh->dev[target];
1442 struct r5dev *tgt2 = &sh->dev[target2];
1443 struct dma_async_tx_descriptor *tx;
46d5b785 1444 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1445 struct async_submit_ctl submit;
1446
59fc630b 1447 BUG_ON(sh->batch_head);
ac6b53b6
DW
1448 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1449 __func__, (unsigned long long)sh->sector, target, target2);
1450 BUG_ON(target < 0 || target2 < 0);
1451 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1452 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1453
6c910a78 1454 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1455 * slot number conversion for 'faila' and 'failb'
1456 */
1457 for (i = 0; i < disks ; i++)
5dd33c9a 1458 blocks[i] = NULL;
ac6b53b6
DW
1459 count = 0;
1460 i = d0_idx;
1461 do {
1462 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1463
1464 blocks[slot] = sh->dev[i].page;
1465
1466 if (i == target)
1467 faila = slot;
1468 if (i == target2)
1469 failb = slot;
1470 i = raid6_next_disk(i, disks);
1471 } while (i != d0_idx);
ac6b53b6
DW
1472
1473 BUG_ON(faila == failb);
1474 if (failb < faila)
1475 swap(faila, failb);
1476 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1477 __func__, (unsigned long long)sh->sector, faila, failb);
1478
1479 atomic_inc(&sh->count);
1480
1481 if (failb == syndrome_disks+1) {
1482 /* Q disk is one of the missing disks */
1483 if (faila == syndrome_disks) {
1484 /* Missing P+Q, just recompute */
0403e382
DW
1485 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1486 ops_complete_compute, sh,
46d5b785 1487 to_addr_conv(sh, percpu, 0));
e4424fee 1488 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1489 STRIPE_SIZE, &submit);
1490 } else {
1491 struct page *dest;
1492 int data_target;
1493 int qd_idx = sh->qd_idx;
1494
1495 /* Missing D+Q: recompute D from P, then recompute Q */
1496 if (target == qd_idx)
1497 data_target = target2;
1498 else
1499 data_target = target;
1500
1501 count = 0;
1502 for (i = disks; i-- ; ) {
1503 if (i == data_target || i == qd_idx)
1504 continue;
1505 blocks[count++] = sh->dev[i].page;
1506 }
1507 dest = sh->dev[data_target].page;
0403e382
DW
1508 init_async_submit(&submit,
1509 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1510 NULL, NULL, NULL,
46d5b785 1511 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1512 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1513 &submit);
1514
584acdd4 1515 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1516 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1517 ops_complete_compute, sh,
46d5b785 1518 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1519 return async_gen_syndrome(blocks, 0, count+2,
1520 STRIPE_SIZE, &submit);
1521 }
ac6b53b6 1522 } else {
6c910a78
DW
1523 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1524 ops_complete_compute, sh,
46d5b785 1525 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1526 if (failb == syndrome_disks) {
1527 /* We're missing D+P. */
1528 return async_raid6_datap_recov(syndrome_disks+2,
1529 STRIPE_SIZE, faila,
1530 blocks, &submit);
1531 } else {
1532 /* We're missing D+D. */
1533 return async_raid6_2data_recov(syndrome_disks+2,
1534 STRIPE_SIZE, faila, failb,
1535 blocks, &submit);
1536 }
ac6b53b6
DW
1537 }
1538}
1539
91c00924
DW
1540static void ops_complete_prexor(void *stripe_head_ref)
1541{
1542 struct stripe_head *sh = stripe_head_ref;
1543
e46b272b 1544 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1545 (unsigned long long)sh->sector);
91c00924
DW
1546}
1547
1548static struct dma_async_tx_descriptor *
584acdd4
MS
1549ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1550 struct dma_async_tx_descriptor *tx)
91c00924 1551{
91c00924 1552 int disks = sh->disks;
46d5b785 1553 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1554 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1555 struct async_submit_ctl submit;
91c00924
DW
1556
1557 /* existing parity data subtracted */
1558 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1559
59fc630b 1560 BUG_ON(sh->batch_head);
e46b272b 1561 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1562 (unsigned long long)sh->sector);
1563
1564 for (i = disks; i--; ) {
1565 struct r5dev *dev = &sh->dev[i];
1566 /* Only process blocks that are known to be uptodate */
d8ee0728 1567 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1568 xor_srcs[count++] = dev->page;
1569 }
1570
0403e382 1571 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1572 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1573 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1574
1575 return tx;
1576}
1577
584acdd4
MS
1578static struct dma_async_tx_descriptor *
1579ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1580 struct dma_async_tx_descriptor *tx)
1581{
1582 struct page **blocks = to_addr_page(percpu, 0);
1583 int count;
1584 struct async_submit_ctl submit;
1585
1586 pr_debug("%s: stripe %llu\n", __func__,
1587 (unsigned long long)sh->sector);
1588
1589 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1590
1591 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1592 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1593 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1594
1595 return tx;
1596}
1597
91c00924 1598static struct dma_async_tx_descriptor *
d8ee0728 1599ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1600{
1601 int disks = sh->disks;
d8ee0728 1602 int i;
59fc630b 1603 struct stripe_head *head_sh = sh;
91c00924 1604
e46b272b 1605 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1606 (unsigned long long)sh->sector);
1607
1608 for (i = disks; i--; ) {
59fc630b 1609 struct r5dev *dev;
91c00924 1610 struct bio *chosen;
91c00924 1611
59fc630b 1612 sh = head_sh;
1613 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1614 struct bio *wbi;
1615
59fc630b 1616again:
1617 dev = &sh->dev[i];
b17459c0 1618 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1619 chosen = dev->towrite;
1620 dev->towrite = NULL;
7a87f434 1621 sh->overwrite_disks = 0;
91c00924
DW
1622 BUG_ON(dev->written);
1623 wbi = dev->written = chosen;
b17459c0 1624 spin_unlock_irq(&sh->stripe_lock);
d592a996 1625 WARN_ON(dev->page != dev->orig_page);
91c00924 1626
4f024f37 1627 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1628 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1629 if (wbi->bi_rw & REQ_FUA)
1630 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1631 if (wbi->bi_rw & REQ_SYNC)
1632 set_bit(R5_SyncIO, &dev->flags);
9e444768 1633 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1634 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1635 else {
1636 tx = async_copy_data(1, wbi, &dev->page,
1637 dev->sector, tx, sh);
1638 if (dev->page != dev->orig_page) {
1639 set_bit(R5_SkipCopy, &dev->flags);
1640 clear_bit(R5_UPTODATE, &dev->flags);
1641 clear_bit(R5_OVERWRITE, &dev->flags);
1642 }
1643 }
91c00924
DW
1644 wbi = r5_next_bio(wbi, dev->sector);
1645 }
59fc630b 1646
1647 if (head_sh->batch_head) {
1648 sh = list_first_entry(&sh->batch_list,
1649 struct stripe_head,
1650 batch_list);
1651 if (sh == head_sh)
1652 continue;
1653 goto again;
1654 }
91c00924
DW
1655 }
1656 }
1657
1658 return tx;
1659}
1660
ac6b53b6 1661static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1662{
1663 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1664 int disks = sh->disks;
1665 int pd_idx = sh->pd_idx;
1666 int qd_idx = sh->qd_idx;
1667 int i;
9e444768 1668 bool fua = false, sync = false, discard = false;
91c00924 1669
e46b272b 1670 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1671 (unsigned long long)sh->sector);
1672
bc0934f0 1673 for (i = disks; i--; ) {
e9c7469b 1674 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1675 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1676 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1677 }
e9c7469b 1678
91c00924
DW
1679 for (i = disks; i--; ) {
1680 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1681
e9c7469b 1682 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1683 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1684 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1685 if (fua)
1686 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1687 if (sync)
1688 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1689 }
91c00924
DW
1690 }
1691
d8ee0728
DW
1692 if (sh->reconstruct_state == reconstruct_state_drain_run)
1693 sh->reconstruct_state = reconstruct_state_drain_result;
1694 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1695 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1696 else {
1697 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1698 sh->reconstruct_state = reconstruct_state_result;
1699 }
91c00924
DW
1700
1701 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1702 raid5_release_stripe(sh);
91c00924
DW
1703}
1704
1705static void
ac6b53b6
DW
1706ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1707 struct dma_async_tx_descriptor *tx)
91c00924 1708{
91c00924 1709 int disks = sh->disks;
59fc630b 1710 struct page **xor_srcs;
a08abd8c 1711 struct async_submit_ctl submit;
59fc630b 1712 int count, pd_idx = sh->pd_idx, i;
91c00924 1713 struct page *xor_dest;
d8ee0728 1714 int prexor = 0;
91c00924 1715 unsigned long flags;
59fc630b 1716 int j = 0;
1717 struct stripe_head *head_sh = sh;
1718 int last_stripe;
91c00924 1719
e46b272b 1720 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1721 (unsigned long long)sh->sector);
1722
620125f2
SL
1723 for (i = 0; i < sh->disks; i++) {
1724 if (pd_idx == i)
1725 continue;
1726 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1727 break;
1728 }
1729 if (i >= sh->disks) {
1730 atomic_inc(&sh->count);
620125f2
SL
1731 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1732 ops_complete_reconstruct(sh);
1733 return;
1734 }
59fc630b 1735again:
1736 count = 0;
1737 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1738 /* check if prexor is active which means only process blocks
1739 * that are part of a read-modify-write (written)
1740 */
59fc630b 1741 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1742 prexor = 1;
91c00924
DW
1743 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1744 for (i = disks; i--; ) {
1745 struct r5dev *dev = &sh->dev[i];
59fc630b 1746 if (head_sh->dev[i].written)
91c00924
DW
1747 xor_srcs[count++] = dev->page;
1748 }
1749 } else {
1750 xor_dest = sh->dev[pd_idx].page;
1751 for (i = disks; i--; ) {
1752 struct r5dev *dev = &sh->dev[i];
1753 if (i != pd_idx)
1754 xor_srcs[count++] = dev->page;
1755 }
1756 }
1757
91c00924
DW
1758 /* 1/ if we prexor'd then the dest is reused as a source
1759 * 2/ if we did not prexor then we are redoing the parity
1760 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1761 * for the synchronous xor case
1762 */
59fc630b 1763 last_stripe = !head_sh->batch_head ||
1764 list_first_entry(&sh->batch_list,
1765 struct stripe_head, batch_list) == head_sh;
1766 if (last_stripe) {
1767 flags = ASYNC_TX_ACK |
1768 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1769
1770 atomic_inc(&head_sh->count);
1771 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1772 to_addr_conv(sh, percpu, j));
1773 } else {
1774 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1775 init_async_submit(&submit, flags, tx, NULL, NULL,
1776 to_addr_conv(sh, percpu, j));
1777 }
91c00924 1778
a08abd8c
DW
1779 if (unlikely(count == 1))
1780 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1781 else
1782 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1783 if (!last_stripe) {
1784 j++;
1785 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1786 batch_list);
1787 goto again;
1788 }
91c00924
DW
1789}
1790
ac6b53b6
DW
1791static void
1792ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1793 struct dma_async_tx_descriptor *tx)
1794{
1795 struct async_submit_ctl submit;
59fc630b 1796 struct page **blocks;
1797 int count, i, j = 0;
1798 struct stripe_head *head_sh = sh;
1799 int last_stripe;
584acdd4
MS
1800 int synflags;
1801 unsigned long txflags;
ac6b53b6
DW
1802
1803 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1804
620125f2
SL
1805 for (i = 0; i < sh->disks; i++) {
1806 if (sh->pd_idx == i || sh->qd_idx == i)
1807 continue;
1808 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1809 break;
1810 }
1811 if (i >= sh->disks) {
1812 atomic_inc(&sh->count);
620125f2
SL
1813 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1814 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1815 ops_complete_reconstruct(sh);
1816 return;
1817 }
1818
59fc630b 1819again:
1820 blocks = to_addr_page(percpu, j);
584acdd4
MS
1821
1822 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1823 synflags = SYNDROME_SRC_WRITTEN;
1824 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1825 } else {
1826 synflags = SYNDROME_SRC_ALL;
1827 txflags = ASYNC_TX_ACK;
1828 }
1829
1830 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1831 last_stripe = !head_sh->batch_head ||
1832 list_first_entry(&sh->batch_list,
1833 struct stripe_head, batch_list) == head_sh;
1834
1835 if (last_stripe) {
1836 atomic_inc(&head_sh->count);
584acdd4 1837 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1838 head_sh, to_addr_conv(sh, percpu, j));
1839 } else
1840 init_async_submit(&submit, 0, tx, NULL, NULL,
1841 to_addr_conv(sh, percpu, j));
48769695 1842 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1843 if (!last_stripe) {
1844 j++;
1845 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1846 batch_list);
1847 goto again;
1848 }
91c00924
DW
1849}
1850
1851static void ops_complete_check(void *stripe_head_ref)
1852{
1853 struct stripe_head *sh = stripe_head_ref;
91c00924 1854
e46b272b 1855 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1856 (unsigned long long)sh->sector);
1857
ecc65c9b 1858 sh->check_state = check_state_check_result;
91c00924 1859 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1860 raid5_release_stripe(sh);
91c00924
DW
1861}
1862
ac6b53b6 1863static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1864{
91c00924 1865 int disks = sh->disks;
ac6b53b6
DW
1866 int pd_idx = sh->pd_idx;
1867 int qd_idx = sh->qd_idx;
1868 struct page *xor_dest;
46d5b785 1869 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1870 struct dma_async_tx_descriptor *tx;
a08abd8c 1871 struct async_submit_ctl submit;
ac6b53b6
DW
1872 int count;
1873 int i;
91c00924 1874
e46b272b 1875 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1876 (unsigned long long)sh->sector);
1877
59fc630b 1878 BUG_ON(sh->batch_head);
ac6b53b6
DW
1879 count = 0;
1880 xor_dest = sh->dev[pd_idx].page;
1881 xor_srcs[count++] = xor_dest;
91c00924 1882 for (i = disks; i--; ) {
ac6b53b6
DW
1883 if (i == pd_idx || i == qd_idx)
1884 continue;
1885 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1886 }
1887
d6f38f31 1888 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1889 to_addr_conv(sh, percpu, 0));
099f53cb 1890 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1891 &sh->ops.zero_sum_result, &submit);
91c00924 1892
91c00924 1893 atomic_inc(&sh->count);
a08abd8c
DW
1894 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1895 tx = async_trigger_callback(&submit);
91c00924
DW
1896}
1897
ac6b53b6
DW
1898static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1899{
46d5b785 1900 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1901 struct async_submit_ctl submit;
1902 int count;
1903
1904 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1905 (unsigned long long)sh->sector, checkp);
1906
59fc630b 1907 BUG_ON(sh->batch_head);
584acdd4 1908 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1909 if (!checkp)
1910 srcs[count] = NULL;
91c00924 1911
91c00924 1912 atomic_inc(&sh->count);
ac6b53b6 1913 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1914 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1915 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1916 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1917}
1918
51acbcec 1919static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1920{
1921 int overlap_clear = 0, i, disks = sh->disks;
1922 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1923 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1924 int level = conf->level;
d6f38f31
DW
1925 struct raid5_percpu *percpu;
1926 unsigned long cpu;
91c00924 1927
d6f38f31
DW
1928 cpu = get_cpu();
1929 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1930 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1931 ops_run_biofill(sh);
1932 overlap_clear++;
1933 }
1934
7b3a871e 1935 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1936 if (level < 6)
1937 tx = ops_run_compute5(sh, percpu);
1938 else {
1939 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1940 tx = ops_run_compute6_1(sh, percpu);
1941 else
1942 tx = ops_run_compute6_2(sh, percpu);
1943 }
1944 /* terminate the chain if reconstruct is not set to be run */
1945 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1946 async_tx_ack(tx);
1947 }
91c00924 1948
584acdd4
MS
1949 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1950 if (level < 6)
1951 tx = ops_run_prexor5(sh, percpu, tx);
1952 else
1953 tx = ops_run_prexor6(sh, percpu, tx);
1954 }
91c00924 1955
600aa109 1956 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1957 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1958 overlap_clear++;
1959 }
1960
ac6b53b6
DW
1961 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1962 if (level < 6)
1963 ops_run_reconstruct5(sh, percpu, tx);
1964 else
1965 ops_run_reconstruct6(sh, percpu, tx);
1966 }
91c00924 1967
ac6b53b6
DW
1968 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1969 if (sh->check_state == check_state_run)
1970 ops_run_check_p(sh, percpu);
1971 else if (sh->check_state == check_state_run_q)
1972 ops_run_check_pq(sh, percpu, 0);
1973 else if (sh->check_state == check_state_run_pq)
1974 ops_run_check_pq(sh, percpu, 1);
1975 else
1976 BUG();
1977 }
91c00924 1978
59fc630b 1979 if (overlap_clear && !sh->batch_head)
91c00924
DW
1980 for (i = disks; i--; ) {
1981 struct r5dev *dev = &sh->dev[i];
1982 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1983 wake_up(&sh->raid_conf->wait_for_overlap);
1984 }
d6f38f31 1985 put_cpu();
91c00924
DW
1986}
1987
f18c1a35
N
1988static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1989{
1990 struct stripe_head *sh;
1991
1992 sh = kmem_cache_zalloc(sc, gfp);
1993 if (sh) {
1994 spin_lock_init(&sh->stripe_lock);
1995 spin_lock_init(&sh->batch_lock);
1996 INIT_LIST_HEAD(&sh->batch_list);
1997 INIT_LIST_HEAD(&sh->lru);
1998 atomic_set(&sh->count, 1);
1999 }
2000 return sh;
2001}
486f0644 2002static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2003{
2004 struct stripe_head *sh;
f18c1a35
N
2005
2006 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
2007 if (!sh)
2008 return 0;
6ce32846 2009
3f294f4f 2010 sh->raid_conf = conf;
3f294f4f 2011
a9683a79 2012 if (grow_buffers(sh, gfp)) {
e4e11e38 2013 shrink_buffers(sh);
3f294f4f
N
2014 kmem_cache_free(conf->slab_cache, sh);
2015 return 0;
2016 }
486f0644
N
2017 sh->hash_lock_index =
2018 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2019 /* we just created an active stripe so... */
3f294f4f 2020 atomic_inc(&conf->active_stripes);
59fc630b 2021
6d036f7d 2022 raid5_release_stripe(sh);
486f0644 2023 conf->max_nr_stripes++;
3f294f4f
N
2024 return 1;
2025}
2026
d1688a6d 2027static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2028{
e18b890b 2029 struct kmem_cache *sc;
5e5e3e78 2030 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2031
f4be6b43
N
2032 if (conf->mddev->gendisk)
2033 sprintf(conf->cache_name[0],
2034 "raid%d-%s", conf->level, mdname(conf->mddev));
2035 else
2036 sprintf(conf->cache_name[0],
2037 "raid%d-%p", conf->level, conf->mddev);
2038 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2039
ad01c9e3
N
2040 conf->active_name = 0;
2041 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2042 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2043 0, 0, NULL);
1da177e4
LT
2044 if (!sc)
2045 return 1;
2046 conf->slab_cache = sc;
ad01c9e3 2047 conf->pool_size = devs;
486f0644
N
2048 while (num--)
2049 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2050 return 1;
486f0644 2051
1da177e4
LT
2052 return 0;
2053}
29269553 2054
d6f38f31
DW
2055/**
2056 * scribble_len - return the required size of the scribble region
2057 * @num - total number of disks in the array
2058 *
2059 * The size must be enough to contain:
2060 * 1/ a struct page pointer for each device in the array +2
2061 * 2/ room to convert each entry in (1) to its corresponding dma
2062 * (dma_map_page()) or page (page_address()) address.
2063 *
2064 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2065 * calculate over all devices (not just the data blocks), using zeros in place
2066 * of the P and Q blocks.
2067 */
46d5b785 2068static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2069{
46d5b785 2070 struct flex_array *ret;
d6f38f31
DW
2071 size_t len;
2072
2073 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2074 ret = flex_array_alloc(len, cnt, flags);
2075 if (!ret)
2076 return NULL;
2077 /* always prealloc all elements, so no locking is required */
2078 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2079 flex_array_free(ret);
2080 return NULL;
2081 }
2082 return ret;
d6f38f31
DW
2083}
2084
738a2738
N
2085static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2086{
2087 unsigned long cpu;
2088 int err = 0;
2089
2090 mddev_suspend(conf->mddev);
2091 get_online_cpus();
2092 for_each_present_cpu(cpu) {
2093 struct raid5_percpu *percpu;
2094 struct flex_array *scribble;
2095
2096 percpu = per_cpu_ptr(conf->percpu, cpu);
2097 scribble = scribble_alloc(new_disks,
2098 new_sectors / STRIPE_SECTORS,
2099 GFP_NOIO);
2100
2101 if (scribble) {
2102 flex_array_free(percpu->scribble);
2103 percpu->scribble = scribble;
2104 } else {
2105 err = -ENOMEM;
2106 break;
2107 }
2108 }
2109 put_online_cpus();
2110 mddev_resume(conf->mddev);
2111 return err;
2112}
2113
d1688a6d 2114static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2115{
2116 /* Make all the stripes able to hold 'newsize' devices.
2117 * New slots in each stripe get 'page' set to a new page.
2118 *
2119 * This happens in stages:
2120 * 1/ create a new kmem_cache and allocate the required number of
2121 * stripe_heads.
83f0d77a 2122 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2123 * to the new stripe_heads. This will have the side effect of
2124 * freezing the array as once all stripe_heads have been collected,
2125 * no IO will be possible. Old stripe heads are freed once their
2126 * pages have been transferred over, and the old kmem_cache is
2127 * freed when all stripes are done.
2128 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2129 * we simple return a failre status - no need to clean anything up.
2130 * 4/ allocate new pages for the new slots in the new stripe_heads.
2131 * If this fails, we don't bother trying the shrink the
2132 * stripe_heads down again, we just leave them as they are.
2133 * As each stripe_head is processed the new one is released into
2134 * active service.
2135 *
2136 * Once step2 is started, we cannot afford to wait for a write,
2137 * so we use GFP_NOIO allocations.
2138 */
2139 struct stripe_head *osh, *nsh;
2140 LIST_HEAD(newstripes);
2141 struct disk_info *ndisks;
b5470dc5 2142 int err;
e18b890b 2143 struct kmem_cache *sc;
ad01c9e3 2144 int i;
566c09c5 2145 int hash, cnt;
ad01c9e3
N
2146
2147 if (newsize <= conf->pool_size)
2148 return 0; /* never bother to shrink */
2149
b5470dc5
DW
2150 err = md_allow_write(conf->mddev);
2151 if (err)
2152 return err;
2a2275d6 2153
ad01c9e3
N
2154 /* Step 1 */
2155 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2156 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2157 0, 0, NULL);
ad01c9e3
N
2158 if (!sc)
2159 return -ENOMEM;
2160
2d5b569b
N
2161 /* Need to ensure auto-resizing doesn't interfere */
2162 mutex_lock(&conf->cache_size_mutex);
2163
ad01c9e3 2164 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2165 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2166 if (!nsh)
2167 break;
2168
ad01c9e3 2169 nsh->raid_conf = conf;
ad01c9e3
N
2170 list_add(&nsh->lru, &newstripes);
2171 }
2172 if (i) {
2173 /* didn't get enough, give up */
2174 while (!list_empty(&newstripes)) {
2175 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2176 list_del(&nsh->lru);
2177 kmem_cache_free(sc, nsh);
2178 }
2179 kmem_cache_destroy(sc);
2d5b569b 2180 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2181 return -ENOMEM;
2182 }
2183 /* Step 2 - Must use GFP_NOIO now.
2184 * OK, we have enough stripes, start collecting inactive
2185 * stripes and copying them over
2186 */
566c09c5
SL
2187 hash = 0;
2188 cnt = 0;
ad01c9e3 2189 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2190 lock_device_hash_lock(conf, hash);
e9e4c377 2191 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
566c09c5
SL
2192 !list_empty(conf->inactive_list + hash),
2193 unlock_device_hash_lock(conf, hash),
2194 lock_device_hash_lock(conf, hash));
2195 osh = get_free_stripe(conf, hash);
2196 unlock_device_hash_lock(conf, hash);
f18c1a35 2197
d592a996 2198 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2199 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2200 nsh->dev[i].orig_page = osh->dev[i].page;
2201 }
566c09c5 2202 nsh->hash_lock_index = hash;
ad01c9e3 2203 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2204 cnt++;
2205 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2206 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2207 hash++;
2208 cnt = 0;
2209 }
ad01c9e3
N
2210 }
2211 kmem_cache_destroy(conf->slab_cache);
2212
2213 /* Step 3.
2214 * At this point, we are holding all the stripes so the array
2215 * is completely stalled, so now is a good time to resize
d6f38f31 2216 * conf->disks and the scribble region
ad01c9e3
N
2217 */
2218 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2219 if (ndisks) {
2220 for (i=0; i<conf->raid_disks; i++)
2221 ndisks[i] = conf->disks[i];
2222 kfree(conf->disks);
2223 conf->disks = ndisks;
2224 } else
2225 err = -ENOMEM;
2226
2d5b569b 2227 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2228 /* Step 4, return new stripes to service */
2229 while(!list_empty(&newstripes)) {
2230 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2231 list_del_init(&nsh->lru);
d6f38f31 2232
ad01c9e3
N
2233 for (i=conf->raid_disks; i < newsize; i++)
2234 if (nsh->dev[i].page == NULL) {
2235 struct page *p = alloc_page(GFP_NOIO);
2236 nsh->dev[i].page = p;
d592a996 2237 nsh->dev[i].orig_page = p;
ad01c9e3
N
2238 if (!p)
2239 err = -ENOMEM;
2240 }
6d036f7d 2241 raid5_release_stripe(nsh);
ad01c9e3
N
2242 }
2243 /* critical section pass, GFP_NOIO no longer needed */
2244
2245 conf->slab_cache = sc;
2246 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2247 if (!err)
2248 conf->pool_size = newsize;
ad01c9e3
N
2249 return err;
2250}
1da177e4 2251
486f0644 2252static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2253{
2254 struct stripe_head *sh;
49895bcc 2255 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2256
566c09c5
SL
2257 spin_lock_irq(conf->hash_locks + hash);
2258 sh = get_free_stripe(conf, hash);
2259 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2260 if (!sh)
2261 return 0;
78bafebd 2262 BUG_ON(atomic_read(&sh->count));
e4e11e38 2263 shrink_buffers(sh);
3f294f4f
N
2264 kmem_cache_free(conf->slab_cache, sh);
2265 atomic_dec(&conf->active_stripes);
486f0644 2266 conf->max_nr_stripes--;
3f294f4f
N
2267 return 1;
2268}
2269
d1688a6d 2270static void shrink_stripes(struct r5conf *conf)
3f294f4f 2271{
486f0644
N
2272 while (conf->max_nr_stripes &&
2273 drop_one_stripe(conf))
2274 ;
3f294f4f 2275
644df1a8 2276 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2277 conf->slab_cache = NULL;
2278}
2279
4246a0b6 2280static void raid5_end_read_request(struct bio * bi)
1da177e4 2281{
99c0fb5f 2282 struct stripe_head *sh = bi->bi_private;
d1688a6d 2283 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2284 int disks = sh->disks, i;
d6950432 2285 char b[BDEVNAME_SIZE];
dd054fce 2286 struct md_rdev *rdev = NULL;
05616be5 2287 sector_t s;
1da177e4
LT
2288
2289 for (i=0 ; i<disks; i++)
2290 if (bi == &sh->dev[i].req)
2291 break;
2292
4246a0b6 2293 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2294 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2295 bi->bi_error);
1da177e4
LT
2296 if (i == disks) {
2297 BUG();
6712ecf8 2298 return;
1da177e4 2299 }
14a75d3e 2300 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2301 /* If replacement finished while this request was outstanding,
2302 * 'replacement' might be NULL already.
2303 * In that case it moved down to 'rdev'.
2304 * rdev is not removed until all requests are finished.
2305 */
14a75d3e 2306 rdev = conf->disks[i].replacement;
dd054fce 2307 if (!rdev)
14a75d3e 2308 rdev = conf->disks[i].rdev;
1da177e4 2309
05616be5
N
2310 if (use_new_offset(conf, sh))
2311 s = sh->sector + rdev->new_data_offset;
2312 else
2313 s = sh->sector + rdev->data_offset;
4246a0b6 2314 if (!bi->bi_error) {
1da177e4 2315 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2316 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2317 /* Note that this cannot happen on a
2318 * replacement device. We just fail those on
2319 * any error
2320 */
8bda470e
CD
2321 printk_ratelimited(
2322 KERN_INFO
2323 "md/raid:%s: read error corrected"
2324 " (%lu sectors at %llu on %s)\n",
2325 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2326 (unsigned long long)s,
8bda470e 2327 bdevname(rdev->bdev, b));
ddd5115f 2328 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2329 clear_bit(R5_ReadError, &sh->dev[i].flags);
2330 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2331 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2332 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2333
14a75d3e
N
2334 if (atomic_read(&rdev->read_errors))
2335 atomic_set(&rdev->read_errors, 0);
1da177e4 2336 } else {
14a75d3e 2337 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2338 int retry = 0;
2e8ac303 2339 int set_bad = 0;
d6950432 2340
1da177e4 2341 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2342 atomic_inc(&rdev->read_errors);
14a75d3e
N
2343 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2344 printk_ratelimited(
2345 KERN_WARNING
2346 "md/raid:%s: read error on replacement device "
2347 "(sector %llu on %s).\n",
2348 mdname(conf->mddev),
05616be5 2349 (unsigned long long)s,
14a75d3e 2350 bdn);
2e8ac303 2351 else if (conf->mddev->degraded >= conf->max_degraded) {
2352 set_bad = 1;
8bda470e
CD
2353 printk_ratelimited(
2354 KERN_WARNING
2355 "md/raid:%s: read error not correctable "
2356 "(sector %llu on %s).\n",
2357 mdname(conf->mddev),
05616be5 2358 (unsigned long long)s,
8bda470e 2359 bdn);
2e8ac303 2360 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2361 /* Oh, no!!! */
2e8ac303 2362 set_bad = 1;
8bda470e
CD
2363 printk_ratelimited(
2364 KERN_WARNING
2365 "md/raid:%s: read error NOT corrected!! "
2366 "(sector %llu on %s).\n",
2367 mdname(conf->mddev),
05616be5 2368 (unsigned long long)s,
8bda470e 2369 bdn);
2e8ac303 2370 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2371 > conf->max_nr_stripes)
14f8d26b 2372 printk(KERN_WARNING
0c55e022 2373 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2374 mdname(conf->mddev), bdn);
ba22dcbf
N
2375 else
2376 retry = 1;
edfa1f65
BY
2377 if (set_bad && test_bit(In_sync, &rdev->flags)
2378 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2379 retry = 1;
ba22dcbf 2380 if (retry)
3f9e7c14 2381 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2382 set_bit(R5_ReadError, &sh->dev[i].flags);
2383 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2384 } else
2385 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2386 else {
4e5314b5
N
2387 clear_bit(R5_ReadError, &sh->dev[i].flags);
2388 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2389 if (!(set_bad
2390 && test_bit(In_sync, &rdev->flags)
2391 && rdev_set_badblocks(
2392 rdev, sh->sector, STRIPE_SECTORS, 0)))
2393 md_error(conf->mddev, rdev);
ba22dcbf 2394 }
1da177e4 2395 }
14a75d3e 2396 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2397 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2398 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2399 raid5_release_stripe(sh);
1da177e4
LT
2400}
2401
4246a0b6 2402static void raid5_end_write_request(struct bio *bi)
1da177e4 2403{
99c0fb5f 2404 struct stripe_head *sh = bi->bi_private;
d1688a6d 2405 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2406 int disks = sh->disks, i;
977df362 2407 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2408 sector_t first_bad;
2409 int bad_sectors;
977df362 2410 int replacement = 0;
1da177e4 2411
977df362
N
2412 for (i = 0 ; i < disks; i++) {
2413 if (bi == &sh->dev[i].req) {
2414 rdev = conf->disks[i].rdev;
1da177e4 2415 break;
977df362
N
2416 }
2417 if (bi == &sh->dev[i].rreq) {
2418 rdev = conf->disks[i].replacement;
dd054fce
N
2419 if (rdev)
2420 replacement = 1;
2421 else
2422 /* rdev was removed and 'replacement'
2423 * replaced it. rdev is not removed
2424 * until all requests are finished.
2425 */
2426 rdev = conf->disks[i].rdev;
977df362
N
2427 break;
2428 }
2429 }
4246a0b6 2430 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2431 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2432 bi->bi_error);
1da177e4
LT
2433 if (i == disks) {
2434 BUG();
6712ecf8 2435 return;
1da177e4
LT
2436 }
2437
977df362 2438 if (replacement) {
4246a0b6 2439 if (bi->bi_error)
977df362
N
2440 md_error(conf->mddev, rdev);
2441 else if (is_badblock(rdev, sh->sector,
2442 STRIPE_SECTORS,
2443 &first_bad, &bad_sectors))
2444 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2445 } else {
4246a0b6 2446 if (bi->bi_error) {
9f97e4b1 2447 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2448 set_bit(WriteErrorSeen, &rdev->flags);
2449 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2450 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2451 set_bit(MD_RECOVERY_NEEDED,
2452 &rdev->mddev->recovery);
977df362
N
2453 } else if (is_badblock(rdev, sh->sector,
2454 STRIPE_SECTORS,
c0b32972 2455 &first_bad, &bad_sectors)) {
977df362 2456 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2457 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2458 /* That was a successful write so make
2459 * sure it looks like we already did
2460 * a re-write.
2461 */
2462 set_bit(R5_ReWrite, &sh->dev[i].flags);
2463 }
977df362
N
2464 }
2465 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2466
4246a0b6 2467 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2468 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2469
977df362
N
2470 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2471 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2472 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2473 raid5_release_stripe(sh);
59fc630b 2474
2475 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2476 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2477}
2478
784052ec 2479static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2480{
2481 struct r5dev *dev = &sh->dev[i];
2482
2483 bio_init(&dev->req);
2484 dev->req.bi_io_vec = &dev->vec;
d592a996 2485 dev->req.bi_max_vecs = 1;
1da177e4
LT
2486 dev->req.bi_private = sh;
2487
977df362
N
2488 bio_init(&dev->rreq);
2489 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2490 dev->rreq.bi_max_vecs = 1;
977df362 2491 dev->rreq.bi_private = sh;
977df362 2492
1da177e4 2493 dev->flags = 0;
6d036f7d 2494 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2495}
2496
fd01b88c 2497static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2498{
2499 char b[BDEVNAME_SIZE];
d1688a6d 2500 struct r5conf *conf = mddev->private;
908f4fbd 2501 unsigned long flags;
0c55e022 2502 pr_debug("raid456: error called\n");
1da177e4 2503
908f4fbd
N
2504 spin_lock_irqsave(&conf->device_lock, flags);
2505 clear_bit(In_sync, &rdev->flags);
2506 mddev->degraded = calc_degraded(conf);
2507 spin_unlock_irqrestore(&conf->device_lock, flags);
2508 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2509
de393cde 2510 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2511 set_bit(Faulty, &rdev->flags);
2512 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c3cce6cd 2513 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6f8d0c77
N
2514 printk(KERN_ALERT
2515 "md/raid:%s: Disk failure on %s, disabling device.\n"
2516 "md/raid:%s: Operation continuing on %d devices.\n",
2517 mdname(mddev),
2518 bdevname(rdev->bdev, b),
2519 mdname(mddev),
2520 conf->raid_disks - mddev->degraded);
16a53ecc 2521}
1da177e4
LT
2522
2523/*
2524 * Input: a 'big' sector number,
2525 * Output: index of the data and parity disk, and the sector # in them.
2526 */
6d036f7d
SL
2527sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2528 int previous, int *dd_idx,
2529 struct stripe_head *sh)
1da177e4 2530{
6e3b96ed 2531 sector_t stripe, stripe2;
35f2a591 2532 sector_t chunk_number;
1da177e4 2533 unsigned int chunk_offset;
911d4ee8 2534 int pd_idx, qd_idx;
67cc2b81 2535 int ddf_layout = 0;
1da177e4 2536 sector_t new_sector;
e183eaed
N
2537 int algorithm = previous ? conf->prev_algo
2538 : conf->algorithm;
09c9e5fa
AN
2539 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2540 : conf->chunk_sectors;
112bf897
N
2541 int raid_disks = previous ? conf->previous_raid_disks
2542 : conf->raid_disks;
2543 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2544
2545 /* First compute the information on this sector */
2546
2547 /*
2548 * Compute the chunk number and the sector offset inside the chunk
2549 */
2550 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2551 chunk_number = r_sector;
1da177e4
LT
2552
2553 /*
2554 * Compute the stripe number
2555 */
35f2a591
N
2556 stripe = chunk_number;
2557 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2558 stripe2 = stripe;
1da177e4
LT
2559 /*
2560 * Select the parity disk based on the user selected algorithm.
2561 */
84789554 2562 pd_idx = qd_idx = -1;
16a53ecc
N
2563 switch(conf->level) {
2564 case 4:
911d4ee8 2565 pd_idx = data_disks;
16a53ecc
N
2566 break;
2567 case 5:
e183eaed 2568 switch (algorithm) {
1da177e4 2569 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2570 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2571 if (*dd_idx >= pd_idx)
1da177e4
LT
2572 (*dd_idx)++;
2573 break;
2574 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2575 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2576 if (*dd_idx >= pd_idx)
1da177e4
LT
2577 (*dd_idx)++;
2578 break;
2579 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2580 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2581 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2582 break;
2583 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2584 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2585 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2586 break;
99c0fb5f
N
2587 case ALGORITHM_PARITY_0:
2588 pd_idx = 0;
2589 (*dd_idx)++;
2590 break;
2591 case ALGORITHM_PARITY_N:
2592 pd_idx = data_disks;
2593 break;
1da177e4 2594 default:
99c0fb5f 2595 BUG();
16a53ecc
N
2596 }
2597 break;
2598 case 6:
2599
e183eaed 2600 switch (algorithm) {
16a53ecc 2601 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2602 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2603 qd_idx = pd_idx + 1;
2604 if (pd_idx == raid_disks-1) {
99c0fb5f 2605 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2606 qd_idx = 0;
2607 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2608 (*dd_idx) += 2; /* D D P Q D */
2609 break;
2610 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2611 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2612 qd_idx = pd_idx + 1;
2613 if (pd_idx == raid_disks-1) {
99c0fb5f 2614 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2615 qd_idx = 0;
2616 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2617 (*dd_idx) += 2; /* D D P Q D */
2618 break;
2619 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2620 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2621 qd_idx = (pd_idx + 1) % raid_disks;
2622 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2623 break;
2624 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2625 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2626 qd_idx = (pd_idx + 1) % raid_disks;
2627 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2628 break;
99c0fb5f
N
2629
2630 case ALGORITHM_PARITY_0:
2631 pd_idx = 0;
2632 qd_idx = 1;
2633 (*dd_idx) += 2;
2634 break;
2635 case ALGORITHM_PARITY_N:
2636 pd_idx = data_disks;
2637 qd_idx = data_disks + 1;
2638 break;
2639
2640 case ALGORITHM_ROTATING_ZERO_RESTART:
2641 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2642 * of blocks for computing Q is different.
2643 */
6e3b96ed 2644 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2645 qd_idx = pd_idx + 1;
2646 if (pd_idx == raid_disks-1) {
2647 (*dd_idx)++; /* Q D D D P */
2648 qd_idx = 0;
2649 } else if (*dd_idx >= pd_idx)
2650 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2651 ddf_layout = 1;
99c0fb5f
N
2652 break;
2653
2654 case ALGORITHM_ROTATING_N_RESTART:
2655 /* Same a left_asymmetric, by first stripe is
2656 * D D D P Q rather than
2657 * Q D D D P
2658 */
6e3b96ed
N
2659 stripe2 += 1;
2660 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2661 qd_idx = pd_idx + 1;
2662 if (pd_idx == raid_disks-1) {
2663 (*dd_idx)++; /* Q D D D P */
2664 qd_idx = 0;
2665 } else if (*dd_idx >= pd_idx)
2666 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2667 ddf_layout = 1;
99c0fb5f
N
2668 break;
2669
2670 case ALGORITHM_ROTATING_N_CONTINUE:
2671 /* Same as left_symmetric but Q is before P */
6e3b96ed 2672 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2673 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2674 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2675 ddf_layout = 1;
99c0fb5f
N
2676 break;
2677
2678 case ALGORITHM_LEFT_ASYMMETRIC_6:
2679 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2680 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2681 if (*dd_idx >= pd_idx)
2682 (*dd_idx)++;
2683 qd_idx = raid_disks - 1;
2684 break;
2685
2686 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2687 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2688 if (*dd_idx >= pd_idx)
2689 (*dd_idx)++;
2690 qd_idx = raid_disks - 1;
2691 break;
2692
2693 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2694 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2695 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2696 qd_idx = raid_disks - 1;
2697 break;
2698
2699 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2700 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2701 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2702 qd_idx = raid_disks - 1;
2703 break;
2704
2705 case ALGORITHM_PARITY_0_6:
2706 pd_idx = 0;
2707 (*dd_idx)++;
2708 qd_idx = raid_disks - 1;
2709 break;
2710
16a53ecc 2711 default:
99c0fb5f 2712 BUG();
16a53ecc
N
2713 }
2714 break;
1da177e4
LT
2715 }
2716
911d4ee8
N
2717 if (sh) {
2718 sh->pd_idx = pd_idx;
2719 sh->qd_idx = qd_idx;
67cc2b81 2720 sh->ddf_layout = ddf_layout;
911d4ee8 2721 }
1da177e4
LT
2722 /*
2723 * Finally, compute the new sector number
2724 */
2725 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2726 return new_sector;
2727}
2728
6d036f7d 2729sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2730{
d1688a6d 2731 struct r5conf *conf = sh->raid_conf;
b875e531
N
2732 int raid_disks = sh->disks;
2733 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2734 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2735 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2736 : conf->chunk_sectors;
e183eaed
N
2737 int algorithm = previous ? conf->prev_algo
2738 : conf->algorithm;
1da177e4
LT
2739 sector_t stripe;
2740 int chunk_offset;
35f2a591
N
2741 sector_t chunk_number;
2742 int dummy1, dd_idx = i;
1da177e4 2743 sector_t r_sector;
911d4ee8 2744 struct stripe_head sh2;
1da177e4
LT
2745
2746 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2747 stripe = new_sector;
1da177e4 2748
16a53ecc
N
2749 if (i == sh->pd_idx)
2750 return 0;
2751 switch(conf->level) {
2752 case 4: break;
2753 case 5:
e183eaed 2754 switch (algorithm) {
1da177e4
LT
2755 case ALGORITHM_LEFT_ASYMMETRIC:
2756 case ALGORITHM_RIGHT_ASYMMETRIC:
2757 if (i > sh->pd_idx)
2758 i--;
2759 break;
2760 case ALGORITHM_LEFT_SYMMETRIC:
2761 case ALGORITHM_RIGHT_SYMMETRIC:
2762 if (i < sh->pd_idx)
2763 i += raid_disks;
2764 i -= (sh->pd_idx + 1);
2765 break;
99c0fb5f
N
2766 case ALGORITHM_PARITY_0:
2767 i -= 1;
2768 break;
2769 case ALGORITHM_PARITY_N:
2770 break;
1da177e4 2771 default:
99c0fb5f 2772 BUG();
16a53ecc
N
2773 }
2774 break;
2775 case 6:
d0dabf7e 2776 if (i == sh->qd_idx)
16a53ecc 2777 return 0; /* It is the Q disk */
e183eaed 2778 switch (algorithm) {
16a53ecc
N
2779 case ALGORITHM_LEFT_ASYMMETRIC:
2780 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2781 case ALGORITHM_ROTATING_ZERO_RESTART:
2782 case ALGORITHM_ROTATING_N_RESTART:
2783 if (sh->pd_idx == raid_disks-1)
2784 i--; /* Q D D D P */
16a53ecc
N
2785 else if (i > sh->pd_idx)
2786 i -= 2; /* D D P Q D */
2787 break;
2788 case ALGORITHM_LEFT_SYMMETRIC:
2789 case ALGORITHM_RIGHT_SYMMETRIC:
2790 if (sh->pd_idx == raid_disks-1)
2791 i--; /* Q D D D P */
2792 else {
2793 /* D D P Q D */
2794 if (i < sh->pd_idx)
2795 i += raid_disks;
2796 i -= (sh->pd_idx + 2);
2797 }
2798 break;
99c0fb5f
N
2799 case ALGORITHM_PARITY_0:
2800 i -= 2;
2801 break;
2802 case ALGORITHM_PARITY_N:
2803 break;
2804 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2805 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2806 if (sh->pd_idx == 0)
2807 i--; /* P D D D Q */
e4424fee
N
2808 else {
2809 /* D D Q P D */
2810 if (i < sh->pd_idx)
2811 i += raid_disks;
2812 i -= (sh->pd_idx + 1);
2813 }
99c0fb5f
N
2814 break;
2815 case ALGORITHM_LEFT_ASYMMETRIC_6:
2816 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2817 if (i > sh->pd_idx)
2818 i--;
2819 break;
2820 case ALGORITHM_LEFT_SYMMETRIC_6:
2821 case ALGORITHM_RIGHT_SYMMETRIC_6:
2822 if (i < sh->pd_idx)
2823 i += data_disks + 1;
2824 i -= (sh->pd_idx + 1);
2825 break;
2826 case ALGORITHM_PARITY_0_6:
2827 i -= 1;
2828 break;
16a53ecc 2829 default:
99c0fb5f 2830 BUG();
16a53ecc
N
2831 }
2832 break;
1da177e4
LT
2833 }
2834
2835 chunk_number = stripe * data_disks + i;
35f2a591 2836 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2837
112bf897 2838 check = raid5_compute_sector(conf, r_sector,
784052ec 2839 previous, &dummy1, &sh2);
911d4ee8
N
2840 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2841 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2842 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2843 mdname(conf->mddev));
1da177e4
LT
2844 return 0;
2845 }
2846 return r_sector;
2847}
2848
600aa109 2849static void
c0f7bddb 2850schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2851 int rcw, int expand)
e33129d8 2852{
584acdd4 2853 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2854 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2855 int level = conf->level;
e33129d8
DW
2856
2857 if (rcw) {
e33129d8
DW
2858
2859 for (i = disks; i--; ) {
2860 struct r5dev *dev = &sh->dev[i];
2861
2862 if (dev->towrite) {
2863 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2864 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2865 if (!expand)
2866 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2867 s->locked++;
e33129d8
DW
2868 }
2869 }
ce7d363a
N
2870 /* if we are not expanding this is a proper write request, and
2871 * there will be bios with new data to be drained into the
2872 * stripe cache
2873 */
2874 if (!expand) {
2875 if (!s->locked)
2876 /* False alarm, nothing to do */
2877 return;
2878 sh->reconstruct_state = reconstruct_state_drain_run;
2879 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2880 } else
2881 sh->reconstruct_state = reconstruct_state_run;
2882
2883 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2884
c0f7bddb 2885 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2886 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2887 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2888 } else {
2889 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2890 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2891 BUG_ON(level == 6 &&
2892 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2893 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2894
e33129d8
DW
2895 for (i = disks; i--; ) {
2896 struct r5dev *dev = &sh->dev[i];
584acdd4 2897 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2898 continue;
2899
e33129d8
DW
2900 if (dev->towrite &&
2901 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2902 test_bit(R5_Wantcompute, &dev->flags))) {
2903 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2904 set_bit(R5_LOCKED, &dev->flags);
2905 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2906 s->locked++;
e33129d8
DW
2907 }
2908 }
ce7d363a
N
2909 if (!s->locked)
2910 /* False alarm - nothing to do */
2911 return;
2912 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2913 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2914 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2915 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2916 }
2917
c0f7bddb 2918 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2919 * are in flight
2920 */
2921 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2922 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2923 s->locked++;
e33129d8 2924
c0f7bddb
YT
2925 if (level == 6) {
2926 int qd_idx = sh->qd_idx;
2927 struct r5dev *dev = &sh->dev[qd_idx];
2928
2929 set_bit(R5_LOCKED, &dev->flags);
2930 clear_bit(R5_UPTODATE, &dev->flags);
2931 s->locked++;
2932 }
2933
600aa109 2934 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2935 __func__, (unsigned long long)sh->sector,
600aa109 2936 s->locked, s->ops_request);
e33129d8 2937}
16a53ecc 2938
1da177e4
LT
2939/*
2940 * Each stripe/dev can have one or more bion attached.
16a53ecc 2941 * toread/towrite point to the first in a chain.
1da177e4
LT
2942 * The bi_next chain must be in order.
2943 */
da41ba65 2944static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2945 int forwrite, int previous)
1da177e4
LT
2946{
2947 struct bio **bip;
d1688a6d 2948 struct r5conf *conf = sh->raid_conf;
72626685 2949 int firstwrite=0;
1da177e4 2950
cbe47ec5 2951 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2952 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2953 (unsigned long long)sh->sector);
2954
b17459c0
SL
2955 /*
2956 * If several bio share a stripe. The bio bi_phys_segments acts as a
2957 * reference count to avoid race. The reference count should already be
2958 * increased before this function is called (for example, in
2959 * make_request()), so other bio sharing this stripe will not free the
2960 * stripe. If a stripe is owned by one stripe, the stripe lock will
2961 * protect it.
2962 */
2963 spin_lock_irq(&sh->stripe_lock);
59fc630b 2964 /* Don't allow new IO added to stripes in batch list */
2965 if (sh->batch_head)
2966 goto overlap;
72626685 2967 if (forwrite) {
1da177e4 2968 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2969 if (*bip == NULL)
72626685
N
2970 firstwrite = 1;
2971 } else
1da177e4 2972 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2973 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2974 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2975 goto overlap;
2976 bip = & (*bip)->bi_next;
2977 }
4f024f37 2978 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2979 goto overlap;
2980
da41ba65 2981 if (!forwrite || previous)
2982 clear_bit(STRIPE_BATCH_READY, &sh->state);
2983
78bafebd 2984 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2985 if (*bip)
2986 bi->bi_next = *bip;
2987 *bip = bi;
e7836bd6 2988 raid5_inc_bi_active_stripes(bi);
72626685 2989
1da177e4
LT
2990 if (forwrite) {
2991 /* check if page is covered */
2992 sector_t sector = sh->dev[dd_idx].sector;
2993 for (bi=sh->dev[dd_idx].towrite;
2994 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2995 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2996 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2997 if (bio_end_sector(bi) >= sector)
2998 sector = bio_end_sector(bi);
1da177e4
LT
2999 }
3000 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3001 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3002 sh->overwrite_disks++;
1da177e4 3003 }
cbe47ec5
N
3004
3005 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3006 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3007 (unsigned long long)sh->sector, dd_idx);
3008
3009 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3010 /* Cannot hold spinlock over bitmap_startwrite,
3011 * but must ensure this isn't added to a batch until
3012 * we have added to the bitmap and set bm_seq.
3013 * So set STRIPE_BITMAP_PENDING to prevent
3014 * batching.
3015 * If multiple add_stripe_bio() calls race here they
3016 * much all set STRIPE_BITMAP_PENDING. So only the first one
3017 * to complete "bitmap_startwrite" gets to set
3018 * STRIPE_BIT_DELAY. This is important as once a stripe
3019 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3020 * any more.
3021 */
3022 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3023 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3024 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3025 STRIPE_SECTORS, 0);
d0852df5
N
3026 spin_lock_irq(&sh->stripe_lock);
3027 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028 if (!sh->batch_head) {
3029 sh->bm_seq = conf->seq_flush+1;
3030 set_bit(STRIPE_BIT_DELAY, &sh->state);
3031 }
cbe47ec5 3032 }
d0852df5 3033 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3034
3035 if (stripe_can_batch(sh))
3036 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3037 return 1;
3038
3039 overlap:
3040 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3041 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3042 return 0;
3043}
3044
d1688a6d 3045static void end_reshape(struct r5conf *conf);
29269553 3046
d1688a6d 3047static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3048 struct stripe_head *sh)
ccfcc3c1 3049{
784052ec 3050 int sectors_per_chunk =
09c9e5fa 3051 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3052 int dd_idx;
2d2063ce 3053 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3054 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3055
112bf897
N
3056 raid5_compute_sector(conf,
3057 stripe * (disks - conf->max_degraded)
b875e531 3058 *sectors_per_chunk + chunk_offset,
112bf897 3059 previous,
911d4ee8 3060 &dd_idx, sh);
ccfcc3c1
N
3061}
3062
a4456856 3063static void
d1688a6d 3064handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856 3065 struct stripe_head_state *s, int disks,
34a6f80e 3066 struct bio_list *return_bi)
a4456856
DW
3067{
3068 int i;
59fc630b 3069 BUG_ON(sh->batch_head);
a4456856
DW
3070 for (i = disks; i--; ) {
3071 struct bio *bi;
3072 int bitmap_end = 0;
3073
3074 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3075 struct md_rdev *rdev;
a4456856
DW
3076 rcu_read_lock();
3077 rdev = rcu_dereference(conf->disks[i].rdev);
3078 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3079 atomic_inc(&rdev->nr_pending);
3080 else
3081 rdev = NULL;
a4456856 3082 rcu_read_unlock();
7f0da59b
N
3083 if (rdev) {
3084 if (!rdev_set_badblocks(
3085 rdev,
3086 sh->sector,
3087 STRIPE_SECTORS, 0))
3088 md_error(conf->mddev, rdev);
3089 rdev_dec_pending(rdev, conf->mddev);
3090 }
a4456856 3091 }
b17459c0 3092 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3093 /* fail all writes first */
3094 bi = sh->dev[i].towrite;
3095 sh->dev[i].towrite = NULL;
7a87f434 3096 sh->overwrite_disks = 0;
b17459c0 3097 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3098 if (bi)
a4456856 3099 bitmap_end = 1;
a4456856
DW
3100
3101 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3102 wake_up(&conf->wait_for_overlap);
3103
4f024f37 3104 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3105 sh->dev[i].sector + STRIPE_SECTORS) {
3106 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3107
3108 bi->bi_error = -EIO;
e7836bd6 3109 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3110 md_write_end(conf->mddev);
34a6f80e 3111 bio_list_add(return_bi, bi);
a4456856
DW
3112 }
3113 bi = nextbi;
3114 }
7eaf7e8e
SL
3115 if (bitmap_end)
3116 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3117 STRIPE_SECTORS, 0, 0);
3118 bitmap_end = 0;
a4456856
DW
3119 /* and fail all 'written' */
3120 bi = sh->dev[i].written;
3121 sh->dev[i].written = NULL;
d592a996
SL
3122 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3123 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3124 sh->dev[i].page = sh->dev[i].orig_page;
3125 }
3126
a4456856 3127 if (bi) bitmap_end = 1;
4f024f37 3128 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3129 sh->dev[i].sector + STRIPE_SECTORS) {
3130 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3131
3132 bi->bi_error = -EIO;
e7836bd6 3133 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3134 md_write_end(conf->mddev);
34a6f80e 3135 bio_list_add(return_bi, bi);
a4456856
DW
3136 }
3137 bi = bi2;
3138 }
3139
b5e98d65
DW
3140 /* fail any reads if this device is non-operational and
3141 * the data has not reached the cache yet.
3142 */
3143 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3144 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3145 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3146 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3147 bi = sh->dev[i].toread;
3148 sh->dev[i].toread = NULL;
143c4d05 3149 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3150 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3151 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3152 if (bi)
3153 s->to_read--;
4f024f37 3154 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3155 sh->dev[i].sector + STRIPE_SECTORS) {
3156 struct bio *nextbi =
3157 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3158
3159 bi->bi_error = -EIO;
34a6f80e
N
3160 if (!raid5_dec_bi_active_stripes(bi))
3161 bio_list_add(return_bi, bi);
a4456856
DW
3162 bi = nextbi;
3163 }
3164 }
a4456856
DW
3165 if (bitmap_end)
3166 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3167 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3168 /* If we were in the middle of a write the parity block might
3169 * still be locked - so just clear all R5_LOCKED flags
3170 */
3171 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3172 }
ebda780b
SL
3173 s->to_write = 0;
3174 s->written = 0;
a4456856 3175
8b3e6cdc
DW
3176 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3177 if (atomic_dec_and_test(&conf->pending_full_writes))
3178 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3179}
3180
7f0da59b 3181static void
d1688a6d 3182handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3183 struct stripe_head_state *s)
3184{
3185 int abort = 0;
3186 int i;
3187
59fc630b 3188 BUG_ON(sh->batch_head);
7f0da59b 3189 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3190 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3191 wake_up(&conf->wait_for_overlap);
7f0da59b 3192 s->syncing = 0;
9a3e1101 3193 s->replacing = 0;
7f0da59b 3194 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3195 * Don't even need to abort as that is handled elsewhere
3196 * if needed, and not always wanted e.g. if there is a known
3197 * bad block here.
9a3e1101 3198 * For recover/replace we need to record a bad block on all
7f0da59b
N
3199 * non-sync devices, or abort the recovery
3200 */
18b9837e
N
3201 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3202 /* During recovery devices cannot be removed, so
3203 * locking and refcounting of rdevs is not needed
3204 */
3205 for (i = 0; i < conf->raid_disks; i++) {
3206 struct md_rdev *rdev = conf->disks[i].rdev;
3207 if (rdev
3208 && !test_bit(Faulty, &rdev->flags)
3209 && !test_bit(In_sync, &rdev->flags)
3210 && !rdev_set_badblocks(rdev, sh->sector,
3211 STRIPE_SECTORS, 0))
3212 abort = 1;
3213 rdev = conf->disks[i].replacement;
3214 if (rdev
3215 && !test_bit(Faulty, &rdev->flags)
3216 && !test_bit(In_sync, &rdev->flags)
3217 && !rdev_set_badblocks(rdev, sh->sector,
3218 STRIPE_SECTORS, 0))
3219 abort = 1;
3220 }
3221 if (abort)
3222 conf->recovery_disabled =
3223 conf->mddev->recovery_disabled;
7f0da59b 3224 }
18b9837e 3225 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3226}
3227
9a3e1101
N
3228static int want_replace(struct stripe_head *sh, int disk_idx)
3229{
3230 struct md_rdev *rdev;
3231 int rv = 0;
3232 /* Doing recovery so rcu locking not required */
3233 rdev = sh->raid_conf->disks[disk_idx].replacement;
3234 if (rdev
3235 && !test_bit(Faulty, &rdev->flags)
3236 && !test_bit(In_sync, &rdev->flags)
3237 && (rdev->recovery_offset <= sh->sector
3238 || rdev->mddev->recovery_cp <= sh->sector))
3239 rv = 1;
3240
3241 return rv;
3242}
3243
93b3dbce 3244/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3245 * to be read or computed to satisfy a request.
3246 *
3247 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3248 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3249 */
2c58f06e
N
3250
3251static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3252 int disk_idx, int disks)
a4456856 3253{
5599becc 3254 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3255 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3256 &sh->dev[s->failed_num[1]] };
ea664c82 3257 int i;
5599becc 3258
a79cfe12
N
3259
3260 if (test_bit(R5_LOCKED, &dev->flags) ||
3261 test_bit(R5_UPTODATE, &dev->flags))
3262 /* No point reading this as we already have it or have
3263 * decided to get it.
3264 */
3265 return 0;
3266
3267 if (dev->toread ||
3268 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3269 /* We need this block to directly satisfy a request */
3270 return 1;
3271
3272 if (s->syncing || s->expanding ||
3273 (s->replacing && want_replace(sh, disk_idx)))
3274 /* When syncing, or expanding we read everything.
3275 * When replacing, we need the replaced block.
3276 */
3277 return 1;
3278
3279 if ((s->failed >= 1 && fdev[0]->toread) ||
3280 (s->failed >= 2 && fdev[1]->toread))
3281 /* If we want to read from a failed device, then
3282 * we need to actually read every other device.
3283 */
3284 return 1;
3285
a9d56950
N
3286 /* Sometimes neither read-modify-write nor reconstruct-write
3287 * cycles can work. In those cases we read every block we
3288 * can. Then the parity-update is certain to have enough to
3289 * work with.
3290 * This can only be a problem when we need to write something,
3291 * and some device has failed. If either of those tests
3292 * fail we need look no further.
3293 */
3294 if (!s->failed || !s->to_write)
3295 return 0;
3296
3297 if (test_bit(R5_Insync, &dev->flags) &&
3298 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3299 /* Pre-reads at not permitted until after short delay
3300 * to gather multiple requests. However if this
3301 * device is no Insync, the block could only be be computed
3302 * and there is no need to delay that.
3303 */
3304 return 0;
ea664c82 3305
36707bb2 3306 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3307 if (fdev[i]->towrite &&
3308 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3309 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3310 /* If we have a partial write to a failed
3311 * device, then we will need to reconstruct
3312 * the content of that device, so all other
3313 * devices must be read.
3314 */
3315 return 1;
3316 }
3317
3318 /* If we are forced to do a reconstruct-write, either because
3319 * the current RAID6 implementation only supports that, or
3320 * or because parity cannot be trusted and we are currently
3321 * recovering it, there is extra need to be careful.
3322 * If one of the devices that we would need to read, because
3323 * it is not being overwritten (and maybe not written at all)
3324 * is missing/faulty, then we need to read everything we can.
3325 */
3326 if (sh->raid_conf->level != 6 &&
3327 sh->sector < sh->raid_conf->mddev->recovery_cp)
3328 /* reconstruct-write isn't being forced */
3329 return 0;
36707bb2 3330 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3331 if (s->failed_num[i] != sh->pd_idx &&
3332 s->failed_num[i] != sh->qd_idx &&
3333 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3334 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3335 return 1;
3336 }
3337
2c58f06e
N
3338 return 0;
3339}
3340
3341static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3342 int disk_idx, int disks)
3343{
3344 struct r5dev *dev = &sh->dev[disk_idx];
3345
3346 /* is the data in this block needed, and can we get it? */
3347 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3348 /* we would like to get this block, possibly by computing it,
3349 * otherwise read it if the backing disk is insync
3350 */
3351 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3352 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3353 BUG_ON(sh->batch_head);
5599becc 3354 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3355 (s->failed && (disk_idx == s->failed_num[0] ||
3356 disk_idx == s->failed_num[1]))) {
5599becc
YT
3357 /* have disk failed, and we're requested to fetch it;
3358 * do compute it
a4456856 3359 */
5599becc
YT
3360 pr_debug("Computing stripe %llu block %d\n",
3361 (unsigned long long)sh->sector, disk_idx);
3362 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3363 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3364 set_bit(R5_Wantcompute, &dev->flags);
3365 sh->ops.target = disk_idx;
3366 sh->ops.target2 = -1; /* no 2nd target */
3367 s->req_compute = 1;
93b3dbce
N
3368 /* Careful: from this point on 'uptodate' is in the eye
3369 * of raid_run_ops which services 'compute' operations
3370 * before writes. R5_Wantcompute flags a block that will
3371 * be R5_UPTODATE by the time it is needed for a
3372 * subsequent operation.
3373 */
5599becc
YT
3374 s->uptodate++;
3375 return 1;
3376 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3377 /* Computing 2-failure is *very* expensive; only
3378 * do it if failed >= 2
3379 */
3380 int other;
3381 for (other = disks; other--; ) {
3382 if (other == disk_idx)
3383 continue;
3384 if (!test_bit(R5_UPTODATE,
3385 &sh->dev[other].flags))
3386 break;
a4456856 3387 }
5599becc
YT
3388 BUG_ON(other < 0);
3389 pr_debug("Computing stripe %llu blocks %d,%d\n",
3390 (unsigned long long)sh->sector,
3391 disk_idx, other);
3392 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3393 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3394 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3395 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3396 sh->ops.target = disk_idx;
3397 sh->ops.target2 = other;
3398 s->uptodate += 2;
3399 s->req_compute = 1;
3400 return 1;
3401 } else if (test_bit(R5_Insync, &dev->flags)) {
3402 set_bit(R5_LOCKED, &dev->flags);
3403 set_bit(R5_Wantread, &dev->flags);
3404 s->locked++;
3405 pr_debug("Reading block %d (sync=%d)\n",
3406 disk_idx, s->syncing);
a4456856
DW
3407 }
3408 }
5599becc
YT
3409
3410 return 0;
3411}
3412
3413/**
93b3dbce 3414 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3415 */
93b3dbce
N
3416static void handle_stripe_fill(struct stripe_head *sh,
3417 struct stripe_head_state *s,
3418 int disks)
5599becc
YT
3419{
3420 int i;
3421
3422 /* look for blocks to read/compute, skip this if a compute
3423 * is already in flight, or if the stripe contents are in the
3424 * midst of changing due to a write
3425 */
3426 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3427 !sh->reconstruct_state)
3428 for (i = disks; i--; )
93b3dbce 3429 if (fetch_block(sh, s, i, disks))
5599becc 3430 break;
a4456856
DW
3431 set_bit(STRIPE_HANDLE, &sh->state);
3432}
3433
787b76fa
N
3434static void break_stripe_batch_list(struct stripe_head *head_sh,
3435 unsigned long handle_flags);
1fe797e6 3436/* handle_stripe_clean_event
a4456856
DW
3437 * any written block on an uptodate or failed drive can be returned.
3438 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3439 * never LOCKED, so we don't need to test 'failed' directly.
3440 */
d1688a6d 3441static void handle_stripe_clean_event(struct r5conf *conf,
34a6f80e 3442 struct stripe_head *sh, int disks, struct bio_list *return_bi)
a4456856
DW
3443{
3444 int i;
3445 struct r5dev *dev;
f8dfcffd 3446 int discard_pending = 0;
59fc630b 3447 struct stripe_head *head_sh = sh;
3448 bool do_endio = false;
a4456856
DW
3449
3450 for (i = disks; i--; )
3451 if (sh->dev[i].written) {
3452 dev = &sh->dev[i];
3453 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3454 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3455 test_bit(R5_Discard, &dev->flags) ||
3456 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3457 /* We can return any write requests */
3458 struct bio *wbi, *wbi2;
45b4233c 3459 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3460 if (test_and_clear_bit(R5_Discard, &dev->flags))
3461 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3462 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3463 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3464 }
59fc630b 3465 do_endio = true;
3466
3467returnbi:
3468 dev->page = dev->orig_page;
a4456856
DW
3469 wbi = dev->written;
3470 dev->written = NULL;
4f024f37 3471 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3472 dev->sector + STRIPE_SECTORS) {
3473 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3474 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856 3475 md_write_end(conf->mddev);
34a6f80e 3476 bio_list_add(return_bi, wbi);
a4456856
DW
3477 }
3478 wbi = wbi2;
3479 }
7eaf7e8e
SL
3480 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3481 STRIPE_SECTORS,
a4456856 3482 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3483 0);
59fc630b 3484 if (head_sh->batch_head) {
3485 sh = list_first_entry(&sh->batch_list,
3486 struct stripe_head,
3487 batch_list);
3488 if (sh != head_sh) {
3489 dev = &sh->dev[i];
3490 goto returnbi;
3491 }
3492 }
3493 sh = head_sh;
3494 dev = &sh->dev[i];
f8dfcffd
N
3495 } else if (test_bit(R5_Discard, &dev->flags))
3496 discard_pending = 1;
d592a996
SL
3497 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3498 WARN_ON(dev->page != dev->orig_page);
f8dfcffd 3499 }
f6bed0ef 3500
f8dfcffd
N
3501 if (!discard_pending &&
3502 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3503 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3504 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3505 if (sh->qd_idx >= 0) {
3506 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3507 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3508 }
3509 /* now that discard is done we can proceed with any sync */
3510 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3511 /*
3512 * SCSI discard will change some bio fields and the stripe has
3513 * no updated data, so remove it from hash list and the stripe
3514 * will be reinitialized
3515 */
3516 spin_lock_irq(&conf->device_lock);
59fc630b 3517unhash:
d47648fc 3518 remove_hash(sh);
59fc630b 3519 if (head_sh->batch_head) {
3520 sh = list_first_entry(&sh->batch_list,
3521 struct stripe_head, batch_list);
3522 if (sh != head_sh)
3523 goto unhash;
3524 }
d47648fc 3525 spin_unlock_irq(&conf->device_lock);
59fc630b 3526 sh = head_sh;
3527
f8dfcffd
N
3528 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3529 set_bit(STRIPE_HANDLE, &sh->state);
3530
3531 }
8b3e6cdc
DW
3532
3533 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3534 if (atomic_dec_and_test(&conf->pending_full_writes))
3535 md_wakeup_thread(conf->mddev->thread);
59fc630b 3536
787b76fa
N
3537 if (head_sh->batch_head && do_endio)
3538 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3539}
3540
d1688a6d 3541static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3542 struct stripe_head *sh,
3543 struct stripe_head_state *s,
3544 int disks)
a4456856
DW
3545{
3546 int rmw = 0, rcw = 0, i;
a7854487
AL
3547 sector_t recovery_cp = conf->mddev->recovery_cp;
3548
584acdd4 3549 /* Check whether resync is now happening or should start.
a7854487
AL
3550 * If yes, then the array is dirty (after unclean shutdown or
3551 * initial creation), so parity in some stripes might be inconsistent.
3552 * In this case, we need to always do reconstruct-write, to ensure
3553 * that in case of drive failure or read-error correction, we
3554 * generate correct data from the parity.
3555 */
584acdd4 3556 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3557 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3558 s->failed == 0)) {
a7854487 3559 /* Calculate the real rcw later - for now make it
c8ac1803
N
3560 * look like rcw is cheaper
3561 */
3562 rcw = 1; rmw = 2;
584acdd4
MS
3563 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3564 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3565 (unsigned long long)sh->sector);
c8ac1803 3566 } else for (i = disks; i--; ) {
a4456856
DW
3567 /* would I have to read this buffer for read_modify_write */
3568 struct r5dev *dev = &sh->dev[i];
584acdd4 3569 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3570 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3571 !(test_bit(R5_UPTODATE, &dev->flags) ||
3572 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3573 if (test_bit(R5_Insync, &dev->flags))
3574 rmw++;
3575 else
3576 rmw += 2*disks; /* cannot read it */
3577 }
3578 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3579 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3580 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3581 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3582 !(test_bit(R5_UPTODATE, &dev->flags) ||
3583 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3584 if (test_bit(R5_Insync, &dev->flags))
3585 rcw++;
a4456856
DW
3586 else
3587 rcw += 2*disks;
3588 }
3589 }
45b4233c 3590 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3591 (unsigned long long)sh->sector, rmw, rcw);
3592 set_bit(STRIPE_HANDLE, &sh->state);
584acdd4 3593 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
a4456856 3594 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3595 if (conf->mddev->queue)
3596 blk_add_trace_msg(conf->mddev->queue,
3597 "raid5 rmw %llu %d",
3598 (unsigned long long)sh->sector, rmw);
a4456856
DW
3599 for (i = disks; i--; ) {
3600 struct r5dev *dev = &sh->dev[i];
584acdd4 3601 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3602 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3603 !(test_bit(R5_UPTODATE, &dev->flags) ||
3604 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3605 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3606 if (test_bit(STRIPE_PREREAD_ACTIVE,
3607 &sh->state)) {
3608 pr_debug("Read_old block %d for r-m-w\n",
3609 i);
a4456856
DW
3610 set_bit(R5_LOCKED, &dev->flags);
3611 set_bit(R5_Wantread, &dev->flags);
3612 s->locked++;
3613 } else {
3614 set_bit(STRIPE_DELAYED, &sh->state);
3615 set_bit(STRIPE_HANDLE, &sh->state);
3616 }
3617 }
3618 }
a9add5d9 3619 }
584acdd4 3620 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
a4456856 3621 /* want reconstruct write, but need to get some data */
a9add5d9 3622 int qread =0;
c8ac1803 3623 rcw = 0;
a4456856
DW
3624 for (i = disks; i--; ) {
3625 struct r5dev *dev = &sh->dev[i];
3626 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3627 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3628 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3629 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3630 test_bit(R5_Wantcompute, &dev->flags))) {
3631 rcw++;
67f45548
N
3632 if (test_bit(R5_Insync, &dev->flags) &&
3633 test_bit(STRIPE_PREREAD_ACTIVE,
3634 &sh->state)) {
45b4233c 3635 pr_debug("Read_old block "
a4456856
DW
3636 "%d for Reconstruct\n", i);
3637 set_bit(R5_LOCKED, &dev->flags);
3638 set_bit(R5_Wantread, &dev->flags);
3639 s->locked++;
a9add5d9 3640 qread++;
a4456856
DW
3641 } else {
3642 set_bit(STRIPE_DELAYED, &sh->state);
3643 set_bit(STRIPE_HANDLE, &sh->state);
3644 }
3645 }
3646 }
e3620a3a 3647 if (rcw && conf->mddev->queue)
a9add5d9
N
3648 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3649 (unsigned long long)sh->sector,
3650 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3651 }
b1b02fe9
N
3652
3653 if (rcw > disks && rmw > disks &&
3654 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3655 set_bit(STRIPE_DELAYED, &sh->state);
3656
a4456856
DW
3657 /* now if nothing is locked, and if we have enough data,
3658 * we can start a write request
3659 */
f38e1219
DW
3660 /* since handle_stripe can be called at any time we need to handle the
3661 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3662 * subsequent call wants to start a write request. raid_run_ops only
3663 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3664 * simultaneously. If this is not the case then new writes need to be
3665 * held off until the compute completes.
3666 */
976ea8d4
DW
3667 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3668 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3669 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3670 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3671}
3672
d1688a6d 3673static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3674 struct stripe_head_state *s, int disks)
3675{
ecc65c9b 3676 struct r5dev *dev = NULL;
bd2ab670 3677
59fc630b 3678 BUG_ON(sh->batch_head);
a4456856 3679 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3680
ecc65c9b
DW
3681 switch (sh->check_state) {
3682 case check_state_idle:
3683 /* start a new check operation if there are no failures */
bd2ab670 3684 if (s->failed == 0) {
bd2ab670 3685 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3686 sh->check_state = check_state_run;
3687 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3688 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3689 s->uptodate--;
ecc65c9b 3690 break;
bd2ab670 3691 }
f2b3b44d 3692 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3693 /* fall through */
3694 case check_state_compute_result:
3695 sh->check_state = check_state_idle;
3696 if (!dev)
3697 dev = &sh->dev[sh->pd_idx];
3698
3699 /* check that a write has not made the stripe insync */
3700 if (test_bit(STRIPE_INSYNC, &sh->state))
3701 break;
c8894419 3702
a4456856 3703 /* either failed parity check, or recovery is happening */
a4456856
DW
3704 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3705 BUG_ON(s->uptodate != disks);
3706
3707 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3708 s->locked++;
a4456856 3709 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3710
a4456856 3711 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3712 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3713 break;
3714 case check_state_run:
3715 break; /* we will be called again upon completion */
3716 case check_state_check_result:
3717 sh->check_state = check_state_idle;
3718
3719 /* if a failure occurred during the check operation, leave
3720 * STRIPE_INSYNC not set and let the stripe be handled again
3721 */
3722 if (s->failed)
3723 break;
3724
3725 /* handle a successful check operation, if parity is correct
3726 * we are done. Otherwise update the mismatch count and repair
3727 * parity if !MD_RECOVERY_CHECK
3728 */
ad283ea4 3729 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3730 /* parity is correct (on disc,
3731 * not in buffer any more)
3732 */
3733 set_bit(STRIPE_INSYNC, &sh->state);
3734 else {
7f7583d4 3735 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3736 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3737 /* don't try to repair!! */
3738 set_bit(STRIPE_INSYNC, &sh->state);
3739 else {
3740 sh->check_state = check_state_compute_run;
976ea8d4 3741 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3742 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3743 set_bit(R5_Wantcompute,
3744 &sh->dev[sh->pd_idx].flags);
3745 sh->ops.target = sh->pd_idx;
ac6b53b6 3746 sh->ops.target2 = -1;
ecc65c9b
DW
3747 s->uptodate++;
3748 }
3749 }
3750 break;
3751 case check_state_compute_run:
3752 break;
3753 default:
3754 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3755 __func__, sh->check_state,
3756 (unsigned long long) sh->sector);
3757 BUG();
a4456856
DW
3758 }
3759}
3760
d1688a6d 3761static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3762 struct stripe_head_state *s,
f2b3b44d 3763 int disks)
a4456856 3764{
a4456856 3765 int pd_idx = sh->pd_idx;
34e04e87 3766 int qd_idx = sh->qd_idx;
d82dfee0 3767 struct r5dev *dev;
a4456856 3768
59fc630b 3769 BUG_ON(sh->batch_head);
a4456856
DW
3770 set_bit(STRIPE_HANDLE, &sh->state);
3771
3772 BUG_ON(s->failed > 2);
d82dfee0 3773
a4456856
DW
3774 /* Want to check and possibly repair P and Q.
3775 * However there could be one 'failed' device, in which
3776 * case we can only check one of them, possibly using the
3777 * other to generate missing data
3778 */
3779
d82dfee0
DW
3780 switch (sh->check_state) {
3781 case check_state_idle:
3782 /* start a new check operation if there are < 2 failures */
f2b3b44d 3783 if (s->failed == s->q_failed) {
d82dfee0 3784 /* The only possible failed device holds Q, so it
a4456856
DW
3785 * makes sense to check P (If anything else were failed,
3786 * we would have used P to recreate it).
3787 */
d82dfee0 3788 sh->check_state = check_state_run;
a4456856 3789 }
f2b3b44d 3790 if (!s->q_failed && s->failed < 2) {
d82dfee0 3791 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3792 * anything, so it makes sense to check it
3793 */
d82dfee0
DW
3794 if (sh->check_state == check_state_run)
3795 sh->check_state = check_state_run_pq;
3796 else
3797 sh->check_state = check_state_run_q;
a4456856 3798 }
a4456856 3799
d82dfee0
DW
3800 /* discard potentially stale zero_sum_result */
3801 sh->ops.zero_sum_result = 0;
a4456856 3802
d82dfee0
DW
3803 if (sh->check_state == check_state_run) {
3804 /* async_xor_zero_sum destroys the contents of P */
3805 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3806 s->uptodate--;
a4456856 3807 }
d82dfee0
DW
3808 if (sh->check_state >= check_state_run &&
3809 sh->check_state <= check_state_run_pq) {
3810 /* async_syndrome_zero_sum preserves P and Q, so
3811 * no need to mark them !uptodate here
3812 */
3813 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3814 break;
a4456856
DW
3815 }
3816
d82dfee0
DW
3817 /* we have 2-disk failure */
3818 BUG_ON(s->failed != 2);
3819 /* fall through */
3820 case check_state_compute_result:
3821 sh->check_state = check_state_idle;
a4456856 3822
d82dfee0
DW
3823 /* check that a write has not made the stripe insync */
3824 if (test_bit(STRIPE_INSYNC, &sh->state))
3825 break;
a4456856
DW
3826
3827 /* now write out any block on a failed drive,
d82dfee0 3828 * or P or Q if they were recomputed
a4456856 3829 */
d82dfee0 3830 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3831 if (s->failed == 2) {
f2b3b44d 3832 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3833 s->locked++;
3834 set_bit(R5_LOCKED, &dev->flags);
3835 set_bit(R5_Wantwrite, &dev->flags);
3836 }
3837 if (s->failed >= 1) {
f2b3b44d 3838 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3839 s->locked++;
3840 set_bit(R5_LOCKED, &dev->flags);
3841 set_bit(R5_Wantwrite, &dev->flags);
3842 }
d82dfee0 3843 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3844 dev = &sh->dev[pd_idx];
3845 s->locked++;
3846 set_bit(R5_LOCKED, &dev->flags);
3847 set_bit(R5_Wantwrite, &dev->flags);
3848 }
d82dfee0 3849 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3850 dev = &sh->dev[qd_idx];
3851 s->locked++;
3852 set_bit(R5_LOCKED, &dev->flags);
3853 set_bit(R5_Wantwrite, &dev->flags);
3854 }
3855 clear_bit(STRIPE_DEGRADED, &sh->state);
3856
3857 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3858 break;
3859 case check_state_run:
3860 case check_state_run_q:
3861 case check_state_run_pq:
3862 break; /* we will be called again upon completion */
3863 case check_state_check_result:
3864 sh->check_state = check_state_idle;
3865
3866 /* handle a successful check operation, if parity is correct
3867 * we are done. Otherwise update the mismatch count and repair
3868 * parity if !MD_RECOVERY_CHECK
3869 */
3870 if (sh->ops.zero_sum_result == 0) {
3871 /* both parities are correct */
3872 if (!s->failed)
3873 set_bit(STRIPE_INSYNC, &sh->state);
3874 else {
3875 /* in contrast to the raid5 case we can validate
3876 * parity, but still have a failure to write
3877 * back
3878 */
3879 sh->check_state = check_state_compute_result;
3880 /* Returning at this point means that we may go
3881 * off and bring p and/or q uptodate again so
3882 * we make sure to check zero_sum_result again
3883 * to verify if p or q need writeback
3884 */
3885 }
3886 } else {
7f7583d4 3887 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3888 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3889 /* don't try to repair!! */
3890 set_bit(STRIPE_INSYNC, &sh->state);
3891 else {
3892 int *target = &sh->ops.target;
3893
3894 sh->ops.target = -1;
3895 sh->ops.target2 = -1;
3896 sh->check_state = check_state_compute_run;
3897 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3898 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3899 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3900 set_bit(R5_Wantcompute,
3901 &sh->dev[pd_idx].flags);
3902 *target = pd_idx;
3903 target = &sh->ops.target2;
3904 s->uptodate++;
3905 }
3906 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3907 set_bit(R5_Wantcompute,
3908 &sh->dev[qd_idx].flags);
3909 *target = qd_idx;
3910 s->uptodate++;
3911 }
3912 }
3913 }
3914 break;
3915 case check_state_compute_run:
3916 break;
3917 default:
3918 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3919 __func__, sh->check_state,
3920 (unsigned long long) sh->sector);
3921 BUG();
a4456856
DW
3922 }
3923}
3924
d1688a6d 3925static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3926{
3927 int i;
3928
3929 /* We have read all the blocks in this stripe and now we need to
3930 * copy some of them into a target stripe for expand.
3931 */
f0a50d37 3932 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3933 BUG_ON(sh->batch_head);
a4456856
DW
3934 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3935 for (i = 0; i < sh->disks; i++)
34e04e87 3936 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3937 int dd_idx, j;
a4456856 3938 struct stripe_head *sh2;
a08abd8c 3939 struct async_submit_ctl submit;
a4456856 3940
6d036f7d 3941 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
3942 sector_t s = raid5_compute_sector(conf, bn, 0,
3943 &dd_idx, NULL);
6d036f7d 3944 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3945 if (sh2 == NULL)
3946 /* so far only the early blocks of this stripe
3947 * have been requested. When later blocks
3948 * get requested, we will try again
3949 */
3950 continue;
3951 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3952 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3953 /* must have already done this block */
6d036f7d 3954 raid5_release_stripe(sh2);
a4456856
DW
3955 continue;
3956 }
f0a50d37
DW
3957
3958 /* place all the copies on one channel */
a08abd8c 3959 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3960 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3961 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3962 &submit);
f0a50d37 3963
a4456856
DW
3964 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3965 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3966 for (j = 0; j < conf->raid_disks; j++)
3967 if (j != sh2->pd_idx &&
86c374ba 3968 j != sh2->qd_idx &&
a4456856
DW
3969 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3970 break;
3971 if (j == conf->raid_disks) {
3972 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3973 set_bit(STRIPE_HANDLE, &sh2->state);
3974 }
6d036f7d 3975 raid5_release_stripe(sh2);
f0a50d37 3976
a4456856 3977 }
a2e08551 3978 /* done submitting copies, wait for them to complete */
749586b7 3979 async_tx_quiesce(&tx);
a4456856 3980}
1da177e4
LT
3981
3982/*
3983 * handle_stripe - do things to a stripe.
3984 *
9a3e1101
N
3985 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3986 * state of various bits to see what needs to be done.
1da177e4 3987 * Possible results:
9a3e1101
N
3988 * return some read requests which now have data
3989 * return some write requests which are safely on storage
1da177e4
LT
3990 * schedule a read on some buffers
3991 * schedule a write of some buffers
3992 * return confirmation of parity correctness
3993 *
1da177e4 3994 */
a4456856 3995
acfe726b 3996static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3997{
d1688a6d 3998 struct r5conf *conf = sh->raid_conf;
f416885e 3999 int disks = sh->disks;
474af965
N
4000 struct r5dev *dev;
4001 int i;
9a3e1101 4002 int do_recovery = 0;
1da177e4 4003
acfe726b
N
4004 memset(s, 0, sizeof(*s));
4005
dabc4ec6 4006 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4007 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4008 s->failed_num[0] = -1;
4009 s->failed_num[1] = -1;
1da177e4 4010
acfe726b 4011 /* Now to look around and see what can be done */
1da177e4 4012 rcu_read_lock();
16a53ecc 4013 for (i=disks; i--; ) {
3cb03002 4014 struct md_rdev *rdev;
31c176ec
N
4015 sector_t first_bad;
4016 int bad_sectors;
4017 int is_bad = 0;
acfe726b 4018
16a53ecc 4019 dev = &sh->dev[i];
1da177e4 4020
45b4233c 4021 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4022 i, dev->flags,
4023 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4024 /* maybe we can reply to a read
4025 *
4026 * new wantfill requests are only permitted while
4027 * ops_complete_biofill is guaranteed to be inactive
4028 */
4029 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4030 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4031 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4032
16a53ecc 4033 /* now count some things */
cc94015a
N
4034 if (test_bit(R5_LOCKED, &dev->flags))
4035 s->locked++;
4036 if (test_bit(R5_UPTODATE, &dev->flags))
4037 s->uptodate++;
2d6e4ecc 4038 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4039 s->compute++;
4040 BUG_ON(s->compute > 2);
2d6e4ecc 4041 }
1da177e4 4042
acfe726b 4043 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4044 s->to_fill++;
acfe726b 4045 else if (dev->toread)
cc94015a 4046 s->to_read++;
16a53ecc 4047 if (dev->towrite) {
cc94015a 4048 s->to_write++;
16a53ecc 4049 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4050 s->non_overwrite++;
16a53ecc 4051 }
a4456856 4052 if (dev->written)
cc94015a 4053 s->written++;
14a75d3e
N
4054 /* Prefer to use the replacement for reads, but only
4055 * if it is recovered enough and has no bad blocks.
4056 */
4057 rdev = rcu_dereference(conf->disks[i].replacement);
4058 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4059 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4060 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4061 &first_bad, &bad_sectors))
4062 set_bit(R5_ReadRepl, &dev->flags);
4063 else {
e6030cb0 4064 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4065 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4066 else
4067 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4068 rdev = rcu_dereference(conf->disks[i].rdev);
4069 clear_bit(R5_ReadRepl, &dev->flags);
4070 }
9283d8c5
N
4071 if (rdev && test_bit(Faulty, &rdev->flags))
4072 rdev = NULL;
31c176ec
N
4073 if (rdev) {
4074 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4075 &first_bad, &bad_sectors);
4076 if (s->blocked_rdev == NULL
4077 && (test_bit(Blocked, &rdev->flags)
4078 || is_bad < 0)) {
4079 if (is_bad < 0)
4080 set_bit(BlockedBadBlocks,
4081 &rdev->flags);
4082 s->blocked_rdev = rdev;
4083 atomic_inc(&rdev->nr_pending);
4084 }
6bfe0b49 4085 }
415e72d0
N
4086 clear_bit(R5_Insync, &dev->flags);
4087 if (!rdev)
4088 /* Not in-sync */;
31c176ec
N
4089 else if (is_bad) {
4090 /* also not in-sync */
18b9837e
N
4091 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4092 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4093 /* treat as in-sync, but with a read error
4094 * which we can now try to correct
4095 */
4096 set_bit(R5_Insync, &dev->flags);
4097 set_bit(R5_ReadError, &dev->flags);
4098 }
4099 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4100 set_bit(R5_Insync, &dev->flags);
30d7a483 4101 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4102 /* in sync if before recovery_offset */
30d7a483
N
4103 set_bit(R5_Insync, &dev->flags);
4104 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4105 test_bit(R5_Expanded, &dev->flags))
4106 /* If we've reshaped into here, we assume it is Insync.
4107 * We will shortly update recovery_offset to make
4108 * it official.
4109 */
4110 set_bit(R5_Insync, &dev->flags);
4111
1cc03eb9 4112 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4113 /* This flag does not apply to '.replacement'
4114 * only to .rdev, so make sure to check that*/
4115 struct md_rdev *rdev2 = rcu_dereference(
4116 conf->disks[i].rdev);
4117 if (rdev2 == rdev)
4118 clear_bit(R5_Insync, &dev->flags);
4119 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4120 s->handle_bad_blocks = 1;
14a75d3e 4121 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4122 } else
4123 clear_bit(R5_WriteError, &dev->flags);
4124 }
1cc03eb9 4125 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4126 /* This flag does not apply to '.replacement'
4127 * only to .rdev, so make sure to check that*/
4128 struct md_rdev *rdev2 = rcu_dereference(
4129 conf->disks[i].rdev);
4130 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4131 s->handle_bad_blocks = 1;
14a75d3e 4132 atomic_inc(&rdev2->nr_pending);
b84db560
N
4133 } else
4134 clear_bit(R5_MadeGood, &dev->flags);
4135 }
977df362
N
4136 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4137 struct md_rdev *rdev2 = rcu_dereference(
4138 conf->disks[i].replacement);
4139 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4140 s->handle_bad_blocks = 1;
4141 atomic_inc(&rdev2->nr_pending);
4142 } else
4143 clear_bit(R5_MadeGoodRepl, &dev->flags);
4144 }
415e72d0 4145 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4146 /* The ReadError flag will just be confusing now */
4147 clear_bit(R5_ReadError, &dev->flags);
4148 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4149 }
415e72d0
N
4150 if (test_bit(R5_ReadError, &dev->flags))
4151 clear_bit(R5_Insync, &dev->flags);
4152 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4153 if (s->failed < 2)
4154 s->failed_num[s->failed] = i;
4155 s->failed++;
9a3e1101
N
4156 if (rdev && !test_bit(Faulty, &rdev->flags))
4157 do_recovery = 1;
415e72d0 4158 }
1da177e4 4159 }
9a3e1101
N
4160 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4161 /* If there is a failed device being replaced,
4162 * we must be recovering.
4163 * else if we are after recovery_cp, we must be syncing
c6d2e084 4164 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4165 * else we can only be replacing
4166 * sync and recovery both need to read all devices, and so
4167 * use the same flag.
4168 */
4169 if (do_recovery ||
c6d2e084 4170 sh->sector >= conf->mddev->recovery_cp ||
4171 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4172 s->syncing = 1;
4173 else
4174 s->replacing = 1;
4175 }
1da177e4 4176 rcu_read_unlock();
cc94015a
N
4177}
4178
59fc630b 4179static int clear_batch_ready(struct stripe_head *sh)
4180{
b15a9dbd
N
4181 /* Return '1' if this is a member of batch, or
4182 * '0' if it is a lone stripe or a head which can now be
4183 * handled.
4184 */
59fc630b 4185 struct stripe_head *tmp;
4186 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4187 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4188 spin_lock(&sh->stripe_lock);
4189 if (!sh->batch_head) {
4190 spin_unlock(&sh->stripe_lock);
4191 return 0;
4192 }
4193
4194 /*
4195 * this stripe could be added to a batch list before we check
4196 * BATCH_READY, skips it
4197 */
4198 if (sh->batch_head != sh) {
4199 spin_unlock(&sh->stripe_lock);
4200 return 1;
4201 }
4202 spin_lock(&sh->batch_lock);
4203 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4204 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4205 spin_unlock(&sh->batch_lock);
4206 spin_unlock(&sh->stripe_lock);
4207
4208 /*
4209 * BATCH_READY is cleared, no new stripes can be added.
4210 * batch_list can be accessed without lock
4211 */
4212 return 0;
4213}
4214
3960ce79
N
4215static void break_stripe_batch_list(struct stripe_head *head_sh,
4216 unsigned long handle_flags)
72ac7330 4217{
4e3d62ff 4218 struct stripe_head *sh, *next;
72ac7330 4219 int i;
fb642b92 4220 int do_wakeup = 0;
72ac7330 4221
bb27051f
N
4222 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4223
72ac7330 4224 list_del_init(&sh->batch_list);
4225
1b956f7a
N
4226 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4227 (1 << STRIPE_SYNCING) |
4228 (1 << STRIPE_REPLACED) |
4229 (1 << STRIPE_PREREAD_ACTIVE) |
4230 (1 << STRIPE_DELAYED) |
4231 (1 << STRIPE_BIT_DELAY) |
4232 (1 << STRIPE_FULL_WRITE) |
4233 (1 << STRIPE_BIOFILL_RUN) |
4234 (1 << STRIPE_COMPUTE_RUN) |
4235 (1 << STRIPE_OPS_REQ_PENDING) |
4236 (1 << STRIPE_DISCARD) |
4237 (1 << STRIPE_BATCH_READY) |
4238 (1 << STRIPE_BATCH_ERR) |
4239 (1 << STRIPE_BITMAP_PENDING)));
4240 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4241 (1 << STRIPE_REPLACED)));
4242
4243 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4244 (1 << STRIPE_DEGRADED)),
4245 head_sh->state & (1 << STRIPE_INSYNC));
4246
72ac7330 4247 sh->check_state = head_sh->check_state;
4248 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4249 for (i = 0; i < sh->disks; i++) {
4250 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4251 do_wakeup = 1;
72ac7330 4252 sh->dev[i].flags = head_sh->dev[i].flags &
4253 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4254 }
72ac7330 4255 spin_lock_irq(&sh->stripe_lock);
4256 sh->batch_head = NULL;
4257 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4258 if (handle_flags == 0 ||
4259 sh->state & handle_flags)
4260 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4261 raid5_release_stripe(sh);
72ac7330 4262 }
fb642b92
N
4263 spin_lock_irq(&head_sh->stripe_lock);
4264 head_sh->batch_head = NULL;
4265 spin_unlock_irq(&head_sh->stripe_lock);
4266 for (i = 0; i < head_sh->disks; i++)
4267 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4268 do_wakeup = 1;
3960ce79
N
4269 if (head_sh->state & handle_flags)
4270 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4271
4272 if (do_wakeup)
4273 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4274}
4275
cc94015a
N
4276static void handle_stripe(struct stripe_head *sh)
4277{
4278 struct stripe_head_state s;
d1688a6d 4279 struct r5conf *conf = sh->raid_conf;
3687c061 4280 int i;
84789554
N
4281 int prexor;
4282 int disks = sh->disks;
474af965 4283 struct r5dev *pdev, *qdev;
cc94015a
N
4284
4285 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4286 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4287 /* already being handled, ensure it gets handled
4288 * again when current action finishes */
4289 set_bit(STRIPE_HANDLE, &sh->state);
4290 return;
4291 }
4292
59fc630b 4293 if (clear_batch_ready(sh) ) {
4294 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4295 return;
4296 }
4297
4e3d62ff 4298 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4299 break_stripe_batch_list(sh, 0);
72ac7330 4300
dabc4ec6 4301 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4302 spin_lock(&sh->stripe_lock);
4303 /* Cannot process 'sync' concurrently with 'discard' */
4304 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4305 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4306 set_bit(STRIPE_SYNCING, &sh->state);
4307 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4308 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4309 }
4310 spin_unlock(&sh->stripe_lock);
cc94015a
N
4311 }
4312 clear_bit(STRIPE_DELAYED, &sh->state);
4313
4314 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4315 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4316 (unsigned long long)sh->sector, sh->state,
4317 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4318 sh->check_state, sh->reconstruct_state);
3687c061 4319
acfe726b 4320 analyse_stripe(sh, &s);
c5a31000 4321
b70abcb2
SL
4322 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4323 goto finish;
4324
bc2607f3
N
4325 if (s.handle_bad_blocks) {
4326 set_bit(STRIPE_HANDLE, &sh->state);
4327 goto finish;
4328 }
4329
474af965
N
4330 if (unlikely(s.blocked_rdev)) {
4331 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4332 s.replacing || s.to_write || s.written) {
474af965
N
4333 set_bit(STRIPE_HANDLE, &sh->state);
4334 goto finish;
4335 }
4336 /* There is nothing for the blocked_rdev to block */
4337 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4338 s.blocked_rdev = NULL;
4339 }
4340
4341 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4342 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4343 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4344 }
4345
4346 pr_debug("locked=%d uptodate=%d to_read=%d"
4347 " to_write=%d failed=%d failed_num=%d,%d\n",
4348 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4349 s.failed_num[0], s.failed_num[1]);
4350 /* check if the array has lost more than max_degraded devices and,
4351 * if so, some requests might need to be failed.
4352 */
9a3f530f
N
4353 if (s.failed > conf->max_degraded) {
4354 sh->check_state = 0;
4355 sh->reconstruct_state = 0;
626f2092 4356 break_stripe_batch_list(sh, 0);
9a3f530f
N
4357 if (s.to_read+s.to_write+s.written)
4358 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4359 if (s.syncing + s.replacing)
9a3f530f
N
4360 handle_failed_sync(conf, sh, &s);
4361 }
474af965 4362
84789554
N
4363 /* Now we check to see if any write operations have recently
4364 * completed
4365 */
4366 prexor = 0;
4367 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4368 prexor = 1;
4369 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4370 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4371 sh->reconstruct_state = reconstruct_state_idle;
4372
4373 /* All the 'written' buffers and the parity block are ready to
4374 * be written back to disk
4375 */
9e444768
SL
4376 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4377 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4378 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4379 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4380 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4381 for (i = disks; i--; ) {
4382 struct r5dev *dev = &sh->dev[i];
4383 if (test_bit(R5_LOCKED, &dev->flags) &&
4384 (i == sh->pd_idx || i == sh->qd_idx ||
4385 dev->written)) {
4386 pr_debug("Writing block %d\n", i);
4387 set_bit(R5_Wantwrite, &dev->flags);
4388 if (prexor)
4389 continue;
9c4bdf69
N
4390 if (s.failed > 1)
4391 continue;
84789554
N
4392 if (!test_bit(R5_Insync, &dev->flags) ||
4393 ((i == sh->pd_idx || i == sh->qd_idx) &&
4394 s.failed == 0))
4395 set_bit(STRIPE_INSYNC, &sh->state);
4396 }
4397 }
4398 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4399 s.dec_preread_active = 1;
4400 }
4401
ef5b7c69
N
4402 /*
4403 * might be able to return some write requests if the parity blocks
4404 * are safe, or on a failed drive
4405 */
4406 pdev = &sh->dev[sh->pd_idx];
4407 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4408 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4409 qdev = &sh->dev[sh->qd_idx];
4410 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4411 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4412 || conf->level < 6;
4413
4414 if (s.written &&
4415 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4416 && !test_bit(R5_LOCKED, &pdev->flags)
4417 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4418 test_bit(R5_Discard, &pdev->flags))))) &&
4419 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4420 && !test_bit(R5_LOCKED, &qdev->flags)
4421 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4422 test_bit(R5_Discard, &qdev->flags))))))
4423 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4424
4425 /* Now we might consider reading some blocks, either to check/generate
4426 * parity, or to satisfy requests
4427 * or to load a block that is being partially written.
4428 */
4429 if (s.to_read || s.non_overwrite
4430 || (conf->level == 6 && s.to_write && s.failed)
4431 || (s.syncing && (s.uptodate + s.compute < disks))
4432 || s.replacing
4433 || s.expanding)
4434 handle_stripe_fill(sh, &s, disks);
4435
84789554
N
4436 /* Now to consider new write requests and what else, if anything
4437 * should be read. We do not handle new writes when:
4438 * 1/ A 'write' operation (copy+xor) is already in flight.
4439 * 2/ A 'check' operation is in flight, as it may clobber the parity
4440 * block.
4441 */
4442 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4443 handle_stripe_dirtying(conf, sh, &s, disks);
4444
4445 /* maybe we need to check and possibly fix the parity for this stripe
4446 * Any reads will already have been scheduled, so we just see if enough
4447 * data is available. The parity check is held off while parity
4448 * dependent operations are in flight.
4449 */
4450 if (sh->check_state ||
4451 (s.syncing && s.locked == 0 &&
4452 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4453 !test_bit(STRIPE_INSYNC, &sh->state))) {
4454 if (conf->level == 6)
4455 handle_parity_checks6(conf, sh, &s, disks);
4456 else
4457 handle_parity_checks5(conf, sh, &s, disks);
4458 }
c5a31000 4459
f94c0b66
N
4460 if ((s.replacing || s.syncing) && s.locked == 0
4461 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4462 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4463 /* Write out to replacement devices where possible */
4464 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4465 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4466 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4467 set_bit(R5_WantReplace, &sh->dev[i].flags);
4468 set_bit(R5_LOCKED, &sh->dev[i].flags);
4469 s.locked++;
4470 }
f94c0b66
N
4471 if (s.replacing)
4472 set_bit(STRIPE_INSYNC, &sh->state);
4473 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4474 }
4475 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4476 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4477 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4478 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4479 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4480 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4481 wake_up(&conf->wait_for_overlap);
c5a31000
N
4482 }
4483
4484 /* If the failed drives are just a ReadError, then we might need
4485 * to progress the repair/check process
4486 */
4487 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4488 for (i = 0; i < s.failed; i++) {
4489 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4490 if (test_bit(R5_ReadError, &dev->flags)
4491 && !test_bit(R5_LOCKED, &dev->flags)
4492 && test_bit(R5_UPTODATE, &dev->flags)
4493 ) {
4494 if (!test_bit(R5_ReWrite, &dev->flags)) {
4495 set_bit(R5_Wantwrite, &dev->flags);
4496 set_bit(R5_ReWrite, &dev->flags);
4497 set_bit(R5_LOCKED, &dev->flags);
4498 s.locked++;
4499 } else {
4500 /* let's read it back */
4501 set_bit(R5_Wantread, &dev->flags);
4502 set_bit(R5_LOCKED, &dev->flags);
4503 s.locked++;
4504 }
4505 }
4506 }
4507
3687c061
N
4508 /* Finish reconstruct operations initiated by the expansion process */
4509 if (sh->reconstruct_state == reconstruct_state_result) {
4510 struct stripe_head *sh_src
6d036f7d 4511 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4512 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4513 /* sh cannot be written until sh_src has been read.
4514 * so arrange for sh to be delayed a little
4515 */
4516 set_bit(STRIPE_DELAYED, &sh->state);
4517 set_bit(STRIPE_HANDLE, &sh->state);
4518 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4519 &sh_src->state))
4520 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4521 raid5_release_stripe(sh_src);
3687c061
N
4522 goto finish;
4523 }
4524 if (sh_src)
6d036f7d 4525 raid5_release_stripe(sh_src);
3687c061
N
4526
4527 sh->reconstruct_state = reconstruct_state_idle;
4528 clear_bit(STRIPE_EXPANDING, &sh->state);
4529 for (i = conf->raid_disks; i--; ) {
4530 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4531 set_bit(R5_LOCKED, &sh->dev[i].flags);
4532 s.locked++;
4533 }
4534 }
f416885e 4535
3687c061
N
4536 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4537 !sh->reconstruct_state) {
4538 /* Need to write out all blocks after computing parity */
4539 sh->disks = conf->raid_disks;
4540 stripe_set_idx(sh->sector, conf, 0, sh);
4541 schedule_reconstruction(sh, &s, 1, 1);
4542 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4543 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4544 atomic_dec(&conf->reshape_stripes);
4545 wake_up(&conf->wait_for_overlap);
4546 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4547 }
4548
4549 if (s.expanding && s.locked == 0 &&
4550 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4551 handle_stripe_expansion(conf, sh);
16a53ecc 4552
3687c061 4553finish:
6bfe0b49 4554 /* wait for this device to become unblocked */
5f066c63
N
4555 if (unlikely(s.blocked_rdev)) {
4556 if (conf->mddev->external)
4557 md_wait_for_blocked_rdev(s.blocked_rdev,
4558 conf->mddev);
4559 else
4560 /* Internal metadata will immediately
4561 * be written by raid5d, so we don't
4562 * need to wait here.
4563 */
4564 rdev_dec_pending(s.blocked_rdev,
4565 conf->mddev);
4566 }
6bfe0b49 4567
bc2607f3
N
4568 if (s.handle_bad_blocks)
4569 for (i = disks; i--; ) {
3cb03002 4570 struct md_rdev *rdev;
bc2607f3
N
4571 struct r5dev *dev = &sh->dev[i];
4572 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4573 /* We own a safe reference to the rdev */
4574 rdev = conf->disks[i].rdev;
4575 if (!rdev_set_badblocks(rdev, sh->sector,
4576 STRIPE_SECTORS, 0))
4577 md_error(conf->mddev, rdev);
4578 rdev_dec_pending(rdev, conf->mddev);
4579 }
b84db560
N
4580 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4581 rdev = conf->disks[i].rdev;
4582 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4583 STRIPE_SECTORS, 0);
b84db560
N
4584 rdev_dec_pending(rdev, conf->mddev);
4585 }
977df362
N
4586 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4587 rdev = conf->disks[i].replacement;
dd054fce
N
4588 if (!rdev)
4589 /* rdev have been moved down */
4590 rdev = conf->disks[i].rdev;
977df362 4591 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4592 STRIPE_SECTORS, 0);
977df362
N
4593 rdev_dec_pending(rdev, conf->mddev);
4594 }
bc2607f3
N
4595 }
4596
6c0069c0
YT
4597 if (s.ops_request)
4598 raid_run_ops(sh, s.ops_request);
4599
f0e43bcd 4600 ops_run_io(sh, &s);
16a53ecc 4601
c5709ef6 4602 if (s.dec_preread_active) {
729a1866 4603 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4604 * is waiting on a flush, it won't continue until the writes
729a1866
N
4605 * have actually been submitted.
4606 */
4607 atomic_dec(&conf->preread_active_stripes);
4608 if (atomic_read(&conf->preread_active_stripes) <
4609 IO_THRESHOLD)
4610 md_wakeup_thread(conf->mddev->thread);
4611 }
4612
c3cce6cd
N
4613 if (!bio_list_empty(&s.return_bi)) {
4614 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4615 spin_lock_irq(&conf->device_lock);
4616 bio_list_merge(&conf->return_bi, &s.return_bi);
4617 spin_unlock_irq(&conf->device_lock);
4618 md_wakeup_thread(conf->mddev->thread);
4619 } else
4620 return_io(&s.return_bi);
4621 }
16a53ecc 4622
257a4b42 4623 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4624}
4625
d1688a6d 4626static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4627{
4628 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4629 while (!list_empty(&conf->delayed_list)) {
4630 struct list_head *l = conf->delayed_list.next;
4631 struct stripe_head *sh;
4632 sh = list_entry(l, struct stripe_head, lru);
4633 list_del_init(l);
4634 clear_bit(STRIPE_DELAYED, &sh->state);
4635 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4636 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4637 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4638 raid5_wakeup_stripe_thread(sh);
16a53ecc 4639 }
482c0834 4640 }
16a53ecc
N
4641}
4642
566c09c5
SL
4643static void activate_bit_delay(struct r5conf *conf,
4644 struct list_head *temp_inactive_list)
16a53ecc
N
4645{
4646 /* device_lock is held */
4647 struct list_head head;
4648 list_add(&head, &conf->bitmap_list);
4649 list_del_init(&conf->bitmap_list);
4650 while (!list_empty(&head)) {
4651 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4652 int hash;
16a53ecc
N
4653 list_del_init(&sh->lru);
4654 atomic_inc(&sh->count);
566c09c5
SL
4655 hash = sh->hash_lock_index;
4656 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4657 }
4658}
4659
5c675f83 4660static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4661{
d1688a6d 4662 struct r5conf *conf = mddev->private;
f022b2fd
N
4663
4664 /* No difference between reads and writes. Just check
4665 * how busy the stripe_cache is
4666 */
3fa841d7 4667
5423399a 4668 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4669 return 1;
4670 if (conf->quiesce)
4671 return 1;
4bda556a 4672 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4673 return 1;
4674
4675 return 0;
4676}
4677
fd01b88c 4678static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4679{
3cb5edf4 4680 struct r5conf *conf = mddev->private;
4f024f37 4681 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 4682 unsigned int chunk_sectors;
aa8b57aa 4683 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4684
3cb5edf4 4685 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
4686 return chunk_sectors >=
4687 ((sector & (chunk_sectors - 1)) + bio_sectors);
4688}
4689
46031f9a
RBJ
4690/*
4691 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4692 * later sampled by raid5d.
4693 */
d1688a6d 4694static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4695{
4696 unsigned long flags;
4697
4698 spin_lock_irqsave(&conf->device_lock, flags);
4699
4700 bi->bi_next = conf->retry_read_aligned_list;
4701 conf->retry_read_aligned_list = bi;
4702
4703 spin_unlock_irqrestore(&conf->device_lock, flags);
4704 md_wakeup_thread(conf->mddev->thread);
4705}
4706
d1688a6d 4707static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4708{
4709 struct bio *bi;
4710
4711 bi = conf->retry_read_aligned;
4712 if (bi) {
4713 conf->retry_read_aligned = NULL;
4714 return bi;
4715 }
4716 bi = conf->retry_read_aligned_list;
4717 if(bi) {
387bb173 4718 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4719 bi->bi_next = NULL;
960e739d
JA
4720 /*
4721 * this sets the active strip count to 1 and the processed
4722 * strip count to zero (upper 8 bits)
4723 */
e7836bd6 4724 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4725 }
4726
4727 return bi;
4728}
4729
f679623f
RBJ
4730/*
4731 * The "raid5_align_endio" should check if the read succeeded and if it
4732 * did, call bio_endio on the original bio (having bio_put the new bio
4733 * first).
4734 * If the read failed..
4735 */
4246a0b6 4736static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
4737{
4738 struct bio* raid_bi = bi->bi_private;
fd01b88c 4739 struct mddev *mddev;
d1688a6d 4740 struct r5conf *conf;
3cb03002 4741 struct md_rdev *rdev;
9b81c842 4742 int error = bi->bi_error;
46031f9a 4743
f679623f 4744 bio_put(bi);
46031f9a 4745
46031f9a
RBJ
4746 rdev = (void*)raid_bi->bi_next;
4747 raid_bi->bi_next = NULL;
2b7f2228
N
4748 mddev = rdev->mddev;
4749 conf = mddev->private;
46031f9a
RBJ
4750
4751 rdev_dec_pending(rdev, conf->mddev);
4752
9b81c842 4753 if (!error) {
0a82a8d1
LT
4754 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4755 raid_bi, 0);
4246a0b6 4756 bio_endio(raid_bi);
46031f9a 4757 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 4758 wake_up(&conf->wait_for_quiescent);
6712ecf8 4759 return;
46031f9a
RBJ
4760 }
4761
45b4233c 4762 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4763
4764 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4765}
4766
7ef6b12a 4767static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 4768{
d1688a6d 4769 struct r5conf *conf = mddev->private;
8553fe7e 4770 int dd_idx;
f679623f 4771 struct bio* align_bi;
3cb03002 4772 struct md_rdev *rdev;
671488cc 4773 sector_t end_sector;
f679623f
RBJ
4774
4775 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 4776 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
4777 return 0;
4778 }
4779 /*
a167f663 4780 * use bio_clone_mddev to make a copy of the bio
f679623f 4781 */
a167f663 4782 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4783 if (!align_bi)
4784 return 0;
4785 /*
4786 * set bi_end_io to a new function, and set bi_private to the
4787 * original bio.
4788 */
4789 align_bi->bi_end_io = raid5_align_endio;
4790 align_bi->bi_private = raid_bio;
4791 /*
4792 * compute position
4793 */
4f024f37
KO
4794 align_bi->bi_iter.bi_sector =
4795 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4796 0, &dd_idx, NULL);
f679623f 4797
f73a1c7d 4798 end_sector = bio_end_sector(align_bi);
f679623f 4799 rcu_read_lock();
671488cc
N
4800 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4801 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4802 rdev->recovery_offset < end_sector) {
4803 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4804 if (rdev &&
4805 (test_bit(Faulty, &rdev->flags) ||
4806 !(test_bit(In_sync, &rdev->flags) ||
4807 rdev->recovery_offset >= end_sector)))
4808 rdev = NULL;
4809 }
4810 if (rdev) {
31c176ec
N
4811 sector_t first_bad;
4812 int bad_sectors;
4813
f679623f
RBJ
4814 atomic_inc(&rdev->nr_pending);
4815 rcu_read_unlock();
46031f9a
RBJ
4816 raid_bio->bi_next = (void*)rdev;
4817 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 4818 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 4819
7140aafc 4820 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 4821 bio_sectors(align_bi),
31c176ec 4822 &first_bad, &bad_sectors)) {
387bb173
NB
4823 bio_put(align_bi);
4824 rdev_dec_pending(rdev, mddev);
4825 return 0;
4826 }
4827
6c0544e2 4828 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4829 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4830
46031f9a 4831 spin_lock_irq(&conf->device_lock);
b1b46486 4832 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 4833 conf->quiesce == 0,
eed8c02e 4834 conf->device_lock);
46031f9a
RBJ
4835 atomic_inc(&conf->active_aligned_reads);
4836 spin_unlock_irq(&conf->device_lock);
4837
e3620a3a
JB
4838 if (mddev->gendisk)
4839 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4840 align_bi, disk_devt(mddev->gendisk),
4f024f37 4841 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4842 generic_make_request(align_bi);
4843 return 1;
4844 } else {
4845 rcu_read_unlock();
46031f9a 4846 bio_put(align_bi);
f679623f
RBJ
4847 return 0;
4848 }
4849}
4850
7ef6b12a
ML
4851static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4852{
4853 struct bio *split;
4854
4855 do {
4856 sector_t sector = raid_bio->bi_iter.bi_sector;
4857 unsigned chunk_sects = mddev->chunk_sectors;
4858 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4859
4860 if (sectors < bio_sectors(raid_bio)) {
4861 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4862 bio_chain(split, raid_bio);
4863 } else
4864 split = raid_bio;
4865
4866 if (!raid5_read_one_chunk(mddev, split)) {
4867 if (split != raid_bio)
4868 generic_make_request(raid_bio);
4869 return split;
4870 }
4871 } while (split != raid_bio);
4872
4873 return NULL;
4874}
4875
8b3e6cdc
DW
4876/* __get_priority_stripe - get the next stripe to process
4877 *
4878 * Full stripe writes are allowed to pass preread active stripes up until
4879 * the bypass_threshold is exceeded. In general the bypass_count
4880 * increments when the handle_list is handled before the hold_list; however, it
4881 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4882 * stripe with in flight i/o. The bypass_count will be reset when the
4883 * head of the hold_list has changed, i.e. the head was promoted to the
4884 * handle_list.
4885 */
851c30c9 4886static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4887{
851c30c9
SL
4888 struct stripe_head *sh = NULL, *tmp;
4889 struct list_head *handle_list = NULL;
bfc90cb0 4890 struct r5worker_group *wg = NULL;
851c30c9
SL
4891
4892 if (conf->worker_cnt_per_group == 0) {
4893 handle_list = &conf->handle_list;
4894 } else if (group != ANY_GROUP) {
4895 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4896 wg = &conf->worker_groups[group];
851c30c9
SL
4897 } else {
4898 int i;
4899 for (i = 0; i < conf->group_cnt; i++) {
4900 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4901 wg = &conf->worker_groups[i];
851c30c9
SL
4902 if (!list_empty(handle_list))
4903 break;
4904 }
4905 }
8b3e6cdc
DW
4906
4907 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4908 __func__,
851c30c9 4909 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4910 list_empty(&conf->hold_list) ? "empty" : "busy",
4911 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4912
851c30c9
SL
4913 if (!list_empty(handle_list)) {
4914 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4915
4916 if (list_empty(&conf->hold_list))
4917 conf->bypass_count = 0;
4918 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4919 if (conf->hold_list.next == conf->last_hold)
4920 conf->bypass_count++;
4921 else {
4922 conf->last_hold = conf->hold_list.next;
4923 conf->bypass_count -= conf->bypass_threshold;
4924 if (conf->bypass_count < 0)
4925 conf->bypass_count = 0;
4926 }
4927 }
4928 } else if (!list_empty(&conf->hold_list) &&
4929 ((conf->bypass_threshold &&
4930 conf->bypass_count > conf->bypass_threshold) ||
4931 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4932
4933 list_for_each_entry(tmp, &conf->hold_list, lru) {
4934 if (conf->worker_cnt_per_group == 0 ||
4935 group == ANY_GROUP ||
4936 !cpu_online(tmp->cpu) ||
4937 cpu_to_group(tmp->cpu) == group) {
4938 sh = tmp;
4939 break;
4940 }
4941 }
4942
4943 if (sh) {
4944 conf->bypass_count -= conf->bypass_threshold;
4945 if (conf->bypass_count < 0)
4946 conf->bypass_count = 0;
4947 }
bfc90cb0 4948 wg = NULL;
851c30c9
SL
4949 }
4950
4951 if (!sh)
8b3e6cdc
DW
4952 return NULL;
4953
bfc90cb0
SL
4954 if (wg) {
4955 wg->stripes_cnt--;
4956 sh->group = NULL;
4957 }
8b3e6cdc 4958 list_del_init(&sh->lru);
c7a6d35e 4959 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4960 return sh;
4961}
f679623f 4962
8811b596
SL
4963struct raid5_plug_cb {
4964 struct blk_plug_cb cb;
4965 struct list_head list;
566c09c5 4966 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4967};
4968
4969static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4970{
4971 struct raid5_plug_cb *cb = container_of(
4972 blk_cb, struct raid5_plug_cb, cb);
4973 struct stripe_head *sh;
4974 struct mddev *mddev = cb->cb.data;
4975 struct r5conf *conf = mddev->private;
a9add5d9 4976 int cnt = 0;
566c09c5 4977 int hash;
8811b596
SL
4978
4979 if (cb->list.next && !list_empty(&cb->list)) {
4980 spin_lock_irq(&conf->device_lock);
4981 while (!list_empty(&cb->list)) {
4982 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4983 list_del_init(&sh->lru);
4984 /*
4985 * avoid race release_stripe_plug() sees
4986 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4987 * is still in our list
4988 */
4e857c58 4989 smp_mb__before_atomic();
8811b596 4990 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4991 /*
4992 * STRIPE_ON_RELEASE_LIST could be set here. In that
4993 * case, the count is always > 1 here
4994 */
566c09c5
SL
4995 hash = sh->hash_lock_index;
4996 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 4997 cnt++;
8811b596
SL
4998 }
4999 spin_unlock_irq(&conf->device_lock);
5000 }
566c09c5
SL
5001 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5002 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5003 if (mddev->queue)
5004 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5005 kfree(cb);
5006}
5007
5008static void release_stripe_plug(struct mddev *mddev,
5009 struct stripe_head *sh)
5010{
5011 struct blk_plug_cb *blk_cb = blk_check_plugged(
5012 raid5_unplug, mddev,
5013 sizeof(struct raid5_plug_cb));
5014 struct raid5_plug_cb *cb;
5015
5016 if (!blk_cb) {
6d036f7d 5017 raid5_release_stripe(sh);
8811b596
SL
5018 return;
5019 }
5020
5021 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5022
566c09c5
SL
5023 if (cb->list.next == NULL) {
5024 int i;
8811b596 5025 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5026 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5027 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5028 }
8811b596
SL
5029
5030 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5031 list_add_tail(&sh->lru, &cb->list);
5032 else
6d036f7d 5033 raid5_release_stripe(sh);
8811b596
SL
5034}
5035
620125f2
SL
5036static void make_discard_request(struct mddev *mddev, struct bio *bi)
5037{
5038 struct r5conf *conf = mddev->private;
5039 sector_t logical_sector, last_sector;
5040 struct stripe_head *sh;
5041 int remaining;
5042 int stripe_sectors;
5043
5044 if (mddev->reshape_position != MaxSector)
5045 /* Skip discard while reshape is happening */
5046 return;
5047
4f024f37
KO
5048 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5049 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5050
5051 bi->bi_next = NULL;
5052 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5053
5054 stripe_sectors = conf->chunk_sectors *
5055 (conf->raid_disks - conf->max_degraded);
5056 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5057 stripe_sectors);
5058 sector_div(last_sector, stripe_sectors);
5059
5060 logical_sector *= conf->chunk_sectors;
5061 last_sector *= conf->chunk_sectors;
5062
5063 for (; logical_sector < last_sector;
5064 logical_sector += STRIPE_SECTORS) {
5065 DEFINE_WAIT(w);
5066 int d;
5067 again:
6d036f7d 5068 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5069 prepare_to_wait(&conf->wait_for_overlap, &w,
5070 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5071 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5072 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5073 raid5_release_stripe(sh);
f8dfcffd
N
5074 schedule();
5075 goto again;
5076 }
5077 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5078 spin_lock_irq(&sh->stripe_lock);
5079 for (d = 0; d < conf->raid_disks; d++) {
5080 if (d == sh->pd_idx || d == sh->qd_idx)
5081 continue;
5082 if (sh->dev[d].towrite || sh->dev[d].toread) {
5083 set_bit(R5_Overlap, &sh->dev[d].flags);
5084 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5085 raid5_release_stripe(sh);
620125f2
SL
5086 schedule();
5087 goto again;
5088 }
5089 }
f8dfcffd 5090 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5091 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5092 sh->overwrite_disks = 0;
620125f2
SL
5093 for (d = 0; d < conf->raid_disks; d++) {
5094 if (d == sh->pd_idx || d == sh->qd_idx)
5095 continue;
5096 sh->dev[d].towrite = bi;
5097 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5098 raid5_inc_bi_active_stripes(bi);
7a87f434 5099 sh->overwrite_disks++;
620125f2
SL
5100 }
5101 spin_unlock_irq(&sh->stripe_lock);
5102 if (conf->mddev->bitmap) {
5103 for (d = 0;
5104 d < conf->raid_disks - conf->max_degraded;
5105 d++)
5106 bitmap_startwrite(mddev->bitmap,
5107 sh->sector,
5108 STRIPE_SECTORS,
5109 0);
5110 sh->bm_seq = conf->seq_flush + 1;
5111 set_bit(STRIPE_BIT_DELAY, &sh->state);
5112 }
5113
5114 set_bit(STRIPE_HANDLE, &sh->state);
5115 clear_bit(STRIPE_DELAYED, &sh->state);
5116 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5117 atomic_inc(&conf->preread_active_stripes);
5118 release_stripe_plug(mddev, sh);
5119 }
5120
5121 remaining = raid5_dec_bi_active_stripes(bi);
5122 if (remaining == 0) {
5123 md_write_end(mddev);
4246a0b6 5124 bio_endio(bi);
620125f2
SL
5125 }
5126}
5127
b4fdcb02 5128static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5129{
d1688a6d 5130 struct r5conf *conf = mddev->private;
911d4ee8 5131 int dd_idx;
1da177e4
LT
5132 sector_t new_sector;
5133 sector_t logical_sector, last_sector;
5134 struct stripe_head *sh;
a362357b 5135 const int rw = bio_data_dir(bi);
49077326 5136 int remaining;
27c0f68f
SL
5137 DEFINE_WAIT(w);
5138 bool do_prepare;
1da177e4 5139
e9c7469b
TH
5140 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5141 md_flush_request(mddev, bi);
5a7bbad2 5142 return;
e5dcdd80
N
5143 }
5144
3d310eb7 5145 md_write_start(mddev, bi);
06d91a5f 5146
9ffc8f7c
EM
5147 /*
5148 * If array is degraded, better not do chunk aligned read because
5149 * later we might have to read it again in order to reconstruct
5150 * data on failed drives.
5151 */
5152 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5153 mddev->reshape_position == MaxSector) {
5154 bi = chunk_aligned_read(mddev, bi);
5155 if (!bi)
5156 return;
5157 }
52488615 5158
620125f2
SL
5159 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5160 make_discard_request(mddev, bi);
5161 return;
5162 }
5163
4f024f37 5164 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5165 last_sector = bio_end_sector(bi);
1da177e4
LT
5166 bi->bi_next = NULL;
5167 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5168
27c0f68f 5169 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5170 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5171 int previous;
c46501b2 5172 int seq;
b578d55f 5173
27c0f68f 5174 do_prepare = false;
7ecaa1e6 5175 retry:
c46501b2 5176 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5177 previous = 0;
27c0f68f
SL
5178 if (do_prepare)
5179 prepare_to_wait(&conf->wait_for_overlap, &w,
5180 TASK_UNINTERRUPTIBLE);
b0f9ec04 5181 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5182 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5183 * 64bit on a 32bit platform, and so it might be
5184 * possible to see a half-updated value
aeb878b0 5185 * Of course reshape_progress could change after
df8e7f76
N
5186 * the lock is dropped, so once we get a reference
5187 * to the stripe that we think it is, we will have
5188 * to check again.
5189 */
7ecaa1e6 5190 spin_lock_irq(&conf->device_lock);
2c810cdd 5191 if (mddev->reshape_backwards
fef9c61f
N
5192 ? logical_sector < conf->reshape_progress
5193 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5194 previous = 1;
5195 } else {
2c810cdd 5196 if (mddev->reshape_backwards
fef9c61f
N
5197 ? logical_sector < conf->reshape_safe
5198 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5199 spin_unlock_irq(&conf->device_lock);
5200 schedule();
27c0f68f 5201 do_prepare = true;
b578d55f
N
5202 goto retry;
5203 }
5204 }
7ecaa1e6
N
5205 spin_unlock_irq(&conf->device_lock);
5206 }
16a53ecc 5207
112bf897
N
5208 new_sector = raid5_compute_sector(conf, logical_sector,
5209 previous,
911d4ee8 5210 &dd_idx, NULL);
0c55e022 5211 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 5212 (unsigned long long)new_sector,
1da177e4
LT
5213 (unsigned long long)logical_sector);
5214
6d036f7d 5215 sh = raid5_get_active_stripe(conf, new_sector, previous,
a8c906ca 5216 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5217 if (sh) {
b0f9ec04 5218 if (unlikely(previous)) {
7ecaa1e6 5219 /* expansion might have moved on while waiting for a
df8e7f76
N
5220 * stripe, so we must do the range check again.
5221 * Expansion could still move past after this
5222 * test, but as we are holding a reference to
5223 * 'sh', we know that if that happens,
5224 * STRIPE_EXPANDING will get set and the expansion
5225 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5226 */
5227 int must_retry = 0;
5228 spin_lock_irq(&conf->device_lock);
2c810cdd 5229 if (mddev->reshape_backwards
b0f9ec04
N
5230 ? logical_sector >= conf->reshape_progress
5231 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5232 /* mismatch, need to try again */
5233 must_retry = 1;
5234 spin_unlock_irq(&conf->device_lock);
5235 if (must_retry) {
6d036f7d 5236 raid5_release_stripe(sh);
7a3ab908 5237 schedule();
27c0f68f 5238 do_prepare = true;
7ecaa1e6
N
5239 goto retry;
5240 }
5241 }
c46501b2
N
5242 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5243 /* Might have got the wrong stripe_head
5244 * by accident
5245 */
6d036f7d 5246 raid5_release_stripe(sh);
c46501b2
N
5247 goto retry;
5248 }
e62e58a5 5249
ffd96e35 5250 if (rw == WRITE &&
a5c308d4 5251 logical_sector >= mddev->suspend_lo &&
e464eafd 5252 logical_sector < mddev->suspend_hi) {
6d036f7d 5253 raid5_release_stripe(sh);
e62e58a5
N
5254 /* As the suspend_* range is controlled by
5255 * userspace, we want an interruptible
5256 * wait.
5257 */
5258 flush_signals(current);
5259 prepare_to_wait(&conf->wait_for_overlap,
5260 &w, TASK_INTERRUPTIBLE);
5261 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5262 logical_sector < mddev->suspend_hi) {
e62e58a5 5263 schedule();
27c0f68f
SL
5264 do_prepare = true;
5265 }
e464eafd
N
5266 goto retry;
5267 }
7ecaa1e6
N
5268
5269 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5270 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5271 /* Stripe is busy expanding or
5272 * add failed due to overlap. Flush everything
1da177e4
LT
5273 * and wait a while
5274 */
482c0834 5275 md_wakeup_thread(mddev->thread);
6d036f7d 5276 raid5_release_stripe(sh);
1da177e4 5277 schedule();
27c0f68f 5278 do_prepare = true;
1da177e4
LT
5279 goto retry;
5280 }
6ed3003c
N
5281 set_bit(STRIPE_HANDLE, &sh->state);
5282 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5283 if ((!sh->batch_head || sh == sh->batch_head) &&
5284 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5285 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5286 atomic_inc(&conf->preread_active_stripes);
8811b596 5287 release_stripe_plug(mddev, sh);
1da177e4
LT
5288 } else {
5289 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5290 bi->bi_error = -EIO;
1da177e4
LT
5291 break;
5292 }
1da177e4 5293 }
27c0f68f 5294 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5295
e7836bd6 5296 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5297 if (remaining == 0) {
1da177e4 5298
16a53ecc 5299 if ( rw == WRITE )
1da177e4 5300 md_write_end(mddev);
6712ecf8 5301
0a82a8d1
LT
5302 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5303 bi, 0);
4246a0b6 5304 bio_endio(bi);
1da177e4 5305 }
1da177e4
LT
5306}
5307
fd01b88c 5308static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5309
fd01b88c 5310static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5311{
52c03291
N
5312 /* reshaping is quite different to recovery/resync so it is
5313 * handled quite separately ... here.
5314 *
5315 * On each call to sync_request, we gather one chunk worth of
5316 * destination stripes and flag them as expanding.
5317 * Then we find all the source stripes and request reads.
5318 * As the reads complete, handle_stripe will copy the data
5319 * into the destination stripe and release that stripe.
5320 */
d1688a6d 5321 struct r5conf *conf = mddev->private;
1da177e4 5322 struct stripe_head *sh;
ccfcc3c1 5323 sector_t first_sector, last_sector;
f416885e
N
5324 int raid_disks = conf->previous_raid_disks;
5325 int data_disks = raid_disks - conf->max_degraded;
5326 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5327 int i;
5328 int dd_idx;
c8f517c4 5329 sector_t writepos, readpos, safepos;
ec32a2bd 5330 sector_t stripe_addr;
7a661381 5331 int reshape_sectors;
ab69ae12 5332 struct list_head stripes;
92140480 5333 sector_t retn;
52c03291 5334
fef9c61f
N
5335 if (sector_nr == 0) {
5336 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5337 if (mddev->reshape_backwards &&
fef9c61f
N
5338 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5339 sector_nr = raid5_size(mddev, 0, 0)
5340 - conf->reshape_progress;
6cbd8148
N
5341 } else if (mddev->reshape_backwards &&
5342 conf->reshape_progress == MaxSector) {
5343 /* shouldn't happen, but just in case, finish up.*/
5344 sector_nr = MaxSector;
2c810cdd 5345 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5346 conf->reshape_progress > 0)
5347 sector_nr = conf->reshape_progress;
f416885e 5348 sector_div(sector_nr, new_data_disks);
fef9c61f 5349 if (sector_nr) {
8dee7211
N
5350 mddev->curr_resync_completed = sector_nr;
5351 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5352 *skipped = 1;
92140480
N
5353 retn = sector_nr;
5354 goto finish;
fef9c61f 5355 }
52c03291
N
5356 }
5357
7a661381
N
5358 /* We need to process a full chunk at a time.
5359 * If old and new chunk sizes differ, we need to process the
5360 * largest of these
5361 */
3cb5edf4
N
5362
5363 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5364
b5254dd5
N
5365 /* We update the metadata at least every 10 seconds, or when
5366 * the data about to be copied would over-write the source of
5367 * the data at the front of the range. i.e. one new_stripe
5368 * along from reshape_progress new_maps to after where
5369 * reshape_safe old_maps to
52c03291 5370 */
fef9c61f 5371 writepos = conf->reshape_progress;
f416885e 5372 sector_div(writepos, new_data_disks);
c8f517c4
N
5373 readpos = conf->reshape_progress;
5374 sector_div(readpos, data_disks);
fef9c61f 5375 safepos = conf->reshape_safe;
f416885e 5376 sector_div(safepos, data_disks);
2c810cdd 5377 if (mddev->reshape_backwards) {
c74c0d76
N
5378 BUG_ON(writepos < reshape_sectors);
5379 writepos -= reshape_sectors;
c8f517c4 5380 readpos += reshape_sectors;
7a661381 5381 safepos += reshape_sectors;
fef9c61f 5382 } else {
7a661381 5383 writepos += reshape_sectors;
c74c0d76
N
5384 /* readpos and safepos are worst-case calculations.
5385 * A negative number is overly pessimistic, and causes
5386 * obvious problems for unsigned storage. So clip to 0.
5387 */
ed37d83e
N
5388 readpos -= min_t(sector_t, reshape_sectors, readpos);
5389 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5390 }
52c03291 5391
b5254dd5
N
5392 /* Having calculated the 'writepos' possibly use it
5393 * to set 'stripe_addr' which is where we will write to.
5394 */
5395 if (mddev->reshape_backwards) {
5396 BUG_ON(conf->reshape_progress == 0);
5397 stripe_addr = writepos;
5398 BUG_ON((mddev->dev_sectors &
5399 ~((sector_t)reshape_sectors - 1))
5400 - reshape_sectors - stripe_addr
5401 != sector_nr);
5402 } else {
5403 BUG_ON(writepos != sector_nr + reshape_sectors);
5404 stripe_addr = sector_nr;
5405 }
5406
c8f517c4
N
5407 /* 'writepos' is the most advanced device address we might write.
5408 * 'readpos' is the least advanced device address we might read.
5409 * 'safepos' is the least address recorded in the metadata as having
5410 * been reshaped.
b5254dd5
N
5411 * If there is a min_offset_diff, these are adjusted either by
5412 * increasing the safepos/readpos if diff is negative, or
5413 * increasing writepos if diff is positive.
5414 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5415 * ensure safety in the face of a crash - that must be done by userspace
5416 * making a backup of the data. So in that case there is no particular
5417 * rush to update metadata.
5418 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5419 * update the metadata to advance 'safepos' to match 'readpos' so that
5420 * we can be safe in the event of a crash.
5421 * So we insist on updating metadata if safepos is behind writepos and
5422 * readpos is beyond writepos.
5423 * In any case, update the metadata every 10 seconds.
5424 * Maybe that number should be configurable, but I'm not sure it is
5425 * worth it.... maybe it could be a multiple of safemode_delay???
5426 */
b5254dd5
N
5427 if (conf->min_offset_diff < 0) {
5428 safepos += -conf->min_offset_diff;
5429 readpos += -conf->min_offset_diff;
5430 } else
5431 writepos += conf->min_offset_diff;
5432
2c810cdd 5433 if ((mddev->reshape_backwards
c8f517c4
N
5434 ? (safepos > writepos && readpos < writepos)
5435 : (safepos < writepos && readpos > writepos)) ||
5436 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5437 /* Cannot proceed until we've updated the superblock... */
5438 wait_event(conf->wait_for_overlap,
c91abf5a
N
5439 atomic_read(&conf->reshape_stripes)==0
5440 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5441 if (atomic_read(&conf->reshape_stripes) != 0)
5442 return 0;
fef9c61f 5443 mddev->reshape_position = conf->reshape_progress;
75d3da43 5444 mddev->curr_resync_completed = sector_nr;
c8f517c4 5445 conf->reshape_checkpoint = jiffies;
850b2b42 5446 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5447 md_wakeup_thread(mddev->thread);
850b2b42 5448 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5449 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5450 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5451 return 0;
52c03291 5452 spin_lock_irq(&conf->device_lock);
fef9c61f 5453 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5454 spin_unlock_irq(&conf->device_lock);
5455 wake_up(&conf->wait_for_overlap);
acb180b0 5456 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5457 }
5458
ab69ae12 5459 INIT_LIST_HEAD(&stripes);
7a661381 5460 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5461 int j;
a9f326eb 5462 int skipped_disk = 0;
6d036f7d 5463 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5464 set_bit(STRIPE_EXPANDING, &sh->state);
5465 atomic_inc(&conf->reshape_stripes);
5466 /* If any of this stripe is beyond the end of the old
5467 * array, then we need to zero those blocks
5468 */
5469 for (j=sh->disks; j--;) {
5470 sector_t s;
5471 if (j == sh->pd_idx)
5472 continue;
f416885e 5473 if (conf->level == 6 &&
d0dabf7e 5474 j == sh->qd_idx)
f416885e 5475 continue;
6d036f7d 5476 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5477 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5478 skipped_disk = 1;
52c03291
N
5479 continue;
5480 }
5481 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5482 set_bit(R5_Expanded, &sh->dev[j].flags);
5483 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5484 }
a9f326eb 5485 if (!skipped_disk) {
52c03291
N
5486 set_bit(STRIPE_EXPAND_READY, &sh->state);
5487 set_bit(STRIPE_HANDLE, &sh->state);
5488 }
ab69ae12 5489 list_add(&sh->lru, &stripes);
52c03291
N
5490 }
5491 spin_lock_irq(&conf->device_lock);
2c810cdd 5492 if (mddev->reshape_backwards)
7a661381 5493 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5494 else
7a661381 5495 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5496 spin_unlock_irq(&conf->device_lock);
5497 /* Ok, those stripe are ready. We can start scheduling
5498 * reads on the source stripes.
5499 * The source stripes are determined by mapping the first and last
5500 * block on the destination stripes.
5501 */
52c03291 5502 first_sector =
ec32a2bd 5503 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5504 1, &dd_idx, NULL);
52c03291 5505 last_sector =
0e6e0271 5506 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5507 * new_data_disks - 1),
911d4ee8 5508 1, &dd_idx, NULL);
58c0fed4
AN
5509 if (last_sector >= mddev->dev_sectors)
5510 last_sector = mddev->dev_sectors - 1;
52c03291 5511 while (first_sector <= last_sector) {
6d036f7d 5512 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5513 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5514 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5515 raid5_release_stripe(sh);
52c03291
N
5516 first_sector += STRIPE_SECTORS;
5517 }
ab69ae12
N
5518 /* Now that the sources are clearly marked, we can release
5519 * the destination stripes
5520 */
5521 while (!list_empty(&stripes)) {
5522 sh = list_entry(stripes.next, struct stripe_head, lru);
5523 list_del_init(&sh->lru);
6d036f7d 5524 raid5_release_stripe(sh);
ab69ae12 5525 }
c6207277
N
5526 /* If this takes us to the resync_max point where we have to pause,
5527 * then we need to write out the superblock.
5528 */
7a661381 5529 sector_nr += reshape_sectors;
92140480
N
5530 retn = reshape_sectors;
5531finish:
c5e19d90
N
5532 if (mddev->curr_resync_completed > mddev->resync_max ||
5533 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5534 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5535 /* Cannot proceed until we've updated the superblock... */
5536 wait_event(conf->wait_for_overlap,
c91abf5a
N
5537 atomic_read(&conf->reshape_stripes) == 0
5538 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5539 if (atomic_read(&conf->reshape_stripes) != 0)
5540 goto ret;
fef9c61f 5541 mddev->reshape_position = conf->reshape_progress;
75d3da43 5542 mddev->curr_resync_completed = sector_nr;
c8f517c4 5543 conf->reshape_checkpoint = jiffies;
c6207277
N
5544 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5545 md_wakeup_thread(mddev->thread);
5546 wait_event(mddev->sb_wait,
5547 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5548 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5549 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5550 goto ret;
c6207277 5551 spin_lock_irq(&conf->device_lock);
fef9c61f 5552 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5553 spin_unlock_irq(&conf->device_lock);
5554 wake_up(&conf->wait_for_overlap);
acb180b0 5555 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5556 }
c91abf5a 5557ret:
92140480 5558 return retn;
52c03291
N
5559}
5560
09314799 5561static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
52c03291 5562{
d1688a6d 5563 struct r5conf *conf = mddev->private;
52c03291 5564 struct stripe_head *sh;
58c0fed4 5565 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5566 sector_t sync_blocks;
16a53ecc
N
5567 int still_degraded = 0;
5568 int i;
1da177e4 5569
72626685 5570 if (sector_nr >= max_sector) {
1da177e4 5571 /* just being told to finish up .. nothing much to do */
cea9c228 5572
29269553
N
5573 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5574 end_reshape(conf);
5575 return 0;
5576 }
72626685
N
5577
5578 if (mddev->curr_resync < max_sector) /* aborted */
5579 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5580 &sync_blocks, 1);
16a53ecc 5581 else /* completed sync */
72626685
N
5582 conf->fullsync = 0;
5583 bitmap_close_sync(mddev->bitmap);
5584
1da177e4
LT
5585 return 0;
5586 }
ccfcc3c1 5587
64bd660b
N
5588 /* Allow raid5_quiesce to complete */
5589 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5590
52c03291
N
5591 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5592 return reshape_request(mddev, sector_nr, skipped);
f6705578 5593
c6207277
N
5594 /* No need to check resync_max as we never do more than one
5595 * stripe, and as resync_max will always be on a chunk boundary,
5596 * if the check in md_do_sync didn't fire, there is no chance
5597 * of overstepping resync_max here
5598 */
5599
16a53ecc 5600 /* if there is too many failed drives and we are trying
1da177e4
LT
5601 * to resync, then assert that we are finished, because there is
5602 * nothing we can do.
5603 */
3285edf1 5604 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5605 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5606 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5607 *skipped = 1;
1da177e4
LT
5608 return rv;
5609 }
6f608040 5610 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5611 !conf->fullsync &&
5612 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5613 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5614 /* we can skip this block, and probably more */
5615 sync_blocks /= STRIPE_SECTORS;
5616 *skipped = 1;
5617 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5618 }
1da177e4 5619
c40f341f 5620 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 5621
6d036f7d 5622 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5623 if (sh == NULL) {
6d036f7d 5624 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5625 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5626 * is trying to get access
1da177e4 5627 */
66c006a5 5628 schedule_timeout_uninterruptible(1);
1da177e4 5629 }
16a53ecc 5630 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5631 * Note in case of > 1 drive failures it's possible we're rebuilding
5632 * one drive while leaving another faulty drive in array.
16a53ecc 5633 */
16d9cfab
EM
5634 rcu_read_lock();
5635 for (i = 0; i < conf->raid_disks; i++) {
5636 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5637
5638 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5639 still_degraded = 1;
16d9cfab
EM
5640 }
5641 rcu_read_unlock();
16a53ecc
N
5642
5643 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5644
83206d66 5645 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5646 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5647
6d036f7d 5648 raid5_release_stripe(sh);
1da177e4
LT
5649
5650 return STRIPE_SECTORS;
5651}
5652
d1688a6d 5653static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5654{
5655 /* We may not be able to submit a whole bio at once as there
5656 * may not be enough stripe_heads available.
5657 * We cannot pre-allocate enough stripe_heads as we may need
5658 * more than exist in the cache (if we allow ever large chunks).
5659 * So we do one stripe head at a time and record in
5660 * ->bi_hw_segments how many have been done.
5661 *
5662 * We *know* that this entire raid_bio is in one chunk, so
5663 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5664 */
5665 struct stripe_head *sh;
911d4ee8 5666 int dd_idx;
46031f9a
RBJ
5667 sector_t sector, logical_sector, last_sector;
5668 int scnt = 0;
5669 int remaining;
5670 int handled = 0;
5671
4f024f37
KO
5672 logical_sector = raid_bio->bi_iter.bi_sector &
5673 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5674 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5675 0, &dd_idx, NULL);
f73a1c7d 5676 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5677
5678 for (; logical_sector < last_sector;
387bb173
NB
5679 logical_sector += STRIPE_SECTORS,
5680 sector += STRIPE_SECTORS,
5681 scnt++) {
46031f9a 5682
e7836bd6 5683 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5684 /* already done this stripe */
5685 continue;
5686
6d036f7d 5687 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5688
5689 if (!sh) {
5690 /* failed to get a stripe - must wait */
e7836bd6 5691 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5692 conf->retry_read_aligned = raid_bio;
5693 return handled;
5694 }
5695
da41ba65 5696 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 5697 raid5_release_stripe(sh);
e7836bd6 5698 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5699 conf->retry_read_aligned = raid_bio;
5700 return handled;
5701 }
5702
3f9e7c14 5703 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5704 handle_stripe(sh);
6d036f7d 5705 raid5_release_stripe(sh);
46031f9a
RBJ
5706 handled++;
5707 }
e7836bd6 5708 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5709 if (remaining == 0) {
5710 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5711 raid_bio, 0);
4246a0b6 5712 bio_endio(raid_bio);
0a82a8d1 5713 }
46031f9a 5714 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5715 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
5716 return handled;
5717}
5718
bfc90cb0 5719static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5720 struct r5worker *worker,
5721 struct list_head *temp_inactive_list)
46a06401
SL
5722{
5723 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5724 int i, batch_size = 0, hash;
5725 bool release_inactive = false;
46a06401
SL
5726
5727 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5728 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5729 batch[batch_size++] = sh;
5730
566c09c5
SL
5731 if (batch_size == 0) {
5732 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5733 if (!list_empty(temp_inactive_list + i))
5734 break;
5735 if (i == NR_STRIPE_HASH_LOCKS)
5736 return batch_size;
5737 release_inactive = true;
5738 }
46a06401
SL
5739 spin_unlock_irq(&conf->device_lock);
5740
566c09c5
SL
5741 release_inactive_stripe_list(conf, temp_inactive_list,
5742 NR_STRIPE_HASH_LOCKS);
5743
5744 if (release_inactive) {
5745 spin_lock_irq(&conf->device_lock);
5746 return 0;
5747 }
5748
46a06401
SL
5749 for (i = 0; i < batch_size; i++)
5750 handle_stripe(batch[i]);
f6bed0ef 5751 r5l_write_stripe_run(conf->log);
46a06401
SL
5752
5753 cond_resched();
5754
5755 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5756 for (i = 0; i < batch_size; i++) {
5757 hash = batch[i]->hash_lock_index;
5758 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5759 }
46a06401
SL
5760 return batch_size;
5761}
46031f9a 5762
851c30c9
SL
5763static void raid5_do_work(struct work_struct *work)
5764{
5765 struct r5worker *worker = container_of(work, struct r5worker, work);
5766 struct r5worker_group *group = worker->group;
5767 struct r5conf *conf = group->conf;
5768 int group_id = group - conf->worker_groups;
5769 int handled;
5770 struct blk_plug plug;
5771
5772 pr_debug("+++ raid5worker active\n");
5773
5774 blk_start_plug(&plug);
5775 handled = 0;
5776 spin_lock_irq(&conf->device_lock);
5777 while (1) {
5778 int batch_size, released;
5779
566c09c5 5780 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5781
566c09c5
SL
5782 batch_size = handle_active_stripes(conf, group_id, worker,
5783 worker->temp_inactive_list);
bfc90cb0 5784 worker->working = false;
851c30c9
SL
5785 if (!batch_size && !released)
5786 break;
5787 handled += batch_size;
5788 }
5789 pr_debug("%d stripes handled\n", handled);
5790
5791 spin_unlock_irq(&conf->device_lock);
5792 blk_finish_plug(&plug);
5793
5794 pr_debug("--- raid5worker inactive\n");
5795}
5796
1da177e4
LT
5797/*
5798 * This is our raid5 kernel thread.
5799 *
5800 * We scan the hash table for stripes which can be handled now.
5801 * During the scan, completed stripes are saved for us by the interrupt
5802 * handler, so that they will not have to wait for our next wakeup.
5803 */
4ed8731d 5804static void raid5d(struct md_thread *thread)
1da177e4 5805{
4ed8731d 5806 struct mddev *mddev = thread->mddev;
d1688a6d 5807 struct r5conf *conf = mddev->private;
1da177e4 5808 int handled;
e1dfa0a2 5809 struct blk_plug plug;
1da177e4 5810
45b4233c 5811 pr_debug("+++ raid5d active\n");
1da177e4
LT
5812
5813 md_check_recovery(mddev);
1da177e4 5814
c3cce6cd
N
5815 if (!bio_list_empty(&conf->return_bi) &&
5816 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5817 struct bio_list tmp = BIO_EMPTY_LIST;
5818 spin_lock_irq(&conf->device_lock);
5819 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5820 bio_list_merge(&tmp, &conf->return_bi);
5821 bio_list_init(&conf->return_bi);
5822 }
5823 spin_unlock_irq(&conf->device_lock);
5824 return_io(&tmp);
5825 }
5826
e1dfa0a2 5827 blk_start_plug(&plug);
1da177e4
LT
5828 handled = 0;
5829 spin_lock_irq(&conf->device_lock);
5830 while (1) {
46031f9a 5831 struct bio *bio;
773ca82f
SL
5832 int batch_size, released;
5833
566c09c5 5834 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5835 if (released)
5836 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5837
0021b7bc 5838 if (
7c13edc8
N
5839 !list_empty(&conf->bitmap_list)) {
5840 /* Now is a good time to flush some bitmap updates */
5841 conf->seq_flush++;
700e432d 5842 spin_unlock_irq(&conf->device_lock);
72626685 5843 bitmap_unplug(mddev->bitmap);
700e432d 5844 spin_lock_irq(&conf->device_lock);
7c13edc8 5845 conf->seq_write = conf->seq_flush;
566c09c5 5846 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5847 }
0021b7bc 5848 raid5_activate_delayed(conf);
72626685 5849
46031f9a
RBJ
5850 while ((bio = remove_bio_from_retry(conf))) {
5851 int ok;
5852 spin_unlock_irq(&conf->device_lock);
5853 ok = retry_aligned_read(conf, bio);
5854 spin_lock_irq(&conf->device_lock);
5855 if (!ok)
5856 break;
5857 handled++;
5858 }
5859
566c09c5
SL
5860 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5861 conf->temp_inactive_list);
773ca82f 5862 if (!batch_size && !released)
1da177e4 5863 break;
46a06401 5864 handled += batch_size;
1da177e4 5865
46a06401
SL
5866 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5867 spin_unlock_irq(&conf->device_lock);
de393cde 5868 md_check_recovery(mddev);
46a06401
SL
5869 spin_lock_irq(&conf->device_lock);
5870 }
1da177e4 5871 }
45b4233c 5872 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5873
5874 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
5875 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5876 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
5877 grow_one_stripe(conf, __GFP_NOWARN);
5878 /* Set flag even if allocation failed. This helps
5879 * slow down allocation requests when mem is short
5880 */
5881 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 5882 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 5883 }
1da177e4 5884
c9f21aaf 5885 async_tx_issue_pending_all();
e1dfa0a2 5886 blk_finish_plug(&plug);
1da177e4 5887
45b4233c 5888 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5889}
5890
3f294f4f 5891static ssize_t
fd01b88c 5892raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5893{
7b1485ba
N
5894 struct r5conf *conf;
5895 int ret = 0;
5896 spin_lock(&mddev->lock);
5897 conf = mddev->private;
96de1e66 5898 if (conf)
edbe83ab 5899 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5900 spin_unlock(&mddev->lock);
5901 return ret;
3f294f4f
N
5902}
5903
c41d4ac4 5904int
fd01b88c 5905raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5906{
d1688a6d 5907 struct r5conf *conf = mddev->private;
b5470dc5
DW
5908 int err;
5909
c41d4ac4 5910 if (size <= 16 || size > 32768)
3f294f4f 5911 return -EINVAL;
486f0644 5912
edbe83ab 5913 conf->min_nr_stripes = size;
2d5b569b 5914 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5915 while (size < conf->max_nr_stripes &&
5916 drop_one_stripe(conf))
5917 ;
2d5b569b 5918 mutex_unlock(&conf->cache_size_mutex);
486f0644 5919
edbe83ab 5920
b5470dc5
DW
5921 err = md_allow_write(mddev);
5922 if (err)
5923 return err;
486f0644 5924
2d5b569b 5925 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5926 while (size > conf->max_nr_stripes)
5927 if (!grow_one_stripe(conf, GFP_KERNEL))
5928 break;
2d5b569b 5929 mutex_unlock(&conf->cache_size_mutex);
486f0644 5930
c41d4ac4
N
5931 return 0;
5932}
5933EXPORT_SYMBOL(raid5_set_cache_size);
5934
5935static ssize_t
fd01b88c 5936raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5937{
6791875e 5938 struct r5conf *conf;
c41d4ac4
N
5939 unsigned long new;
5940 int err;
5941
5942 if (len >= PAGE_SIZE)
5943 return -EINVAL;
b29bebd6 5944 if (kstrtoul(page, 10, &new))
c41d4ac4 5945 return -EINVAL;
6791875e 5946 err = mddev_lock(mddev);
c41d4ac4
N
5947 if (err)
5948 return err;
6791875e
N
5949 conf = mddev->private;
5950 if (!conf)
5951 err = -ENODEV;
5952 else
5953 err = raid5_set_cache_size(mddev, new);
5954 mddev_unlock(mddev);
5955
5956 return err ?: len;
3f294f4f 5957}
007583c9 5958
96de1e66
N
5959static struct md_sysfs_entry
5960raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5961 raid5_show_stripe_cache_size,
5962 raid5_store_stripe_cache_size);
3f294f4f 5963
d06f191f
MS
5964static ssize_t
5965raid5_show_rmw_level(struct mddev *mddev, char *page)
5966{
5967 struct r5conf *conf = mddev->private;
5968 if (conf)
5969 return sprintf(page, "%d\n", conf->rmw_level);
5970 else
5971 return 0;
5972}
5973
5974static ssize_t
5975raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5976{
5977 struct r5conf *conf = mddev->private;
5978 unsigned long new;
5979
5980 if (!conf)
5981 return -ENODEV;
5982
5983 if (len >= PAGE_SIZE)
5984 return -EINVAL;
5985
5986 if (kstrtoul(page, 10, &new))
5987 return -EINVAL;
5988
5989 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5990 return -EINVAL;
5991
5992 if (new != PARITY_DISABLE_RMW &&
5993 new != PARITY_ENABLE_RMW &&
5994 new != PARITY_PREFER_RMW)
5995 return -EINVAL;
5996
5997 conf->rmw_level = new;
5998 return len;
5999}
6000
6001static struct md_sysfs_entry
6002raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6003 raid5_show_rmw_level,
6004 raid5_store_rmw_level);
6005
6006
8b3e6cdc 6007static ssize_t
fd01b88c 6008raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6009{
7b1485ba
N
6010 struct r5conf *conf;
6011 int ret = 0;
6012 spin_lock(&mddev->lock);
6013 conf = mddev->private;
8b3e6cdc 6014 if (conf)
7b1485ba
N
6015 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6016 spin_unlock(&mddev->lock);
6017 return ret;
8b3e6cdc
DW
6018}
6019
6020static ssize_t
fd01b88c 6021raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6022{
6791875e 6023 struct r5conf *conf;
4ef197d8 6024 unsigned long new;
6791875e
N
6025 int err;
6026
8b3e6cdc
DW
6027 if (len >= PAGE_SIZE)
6028 return -EINVAL;
b29bebd6 6029 if (kstrtoul(page, 10, &new))
8b3e6cdc 6030 return -EINVAL;
6791875e
N
6031
6032 err = mddev_lock(mddev);
6033 if (err)
6034 return err;
6035 conf = mddev->private;
6036 if (!conf)
6037 err = -ENODEV;
edbe83ab 6038 else if (new > conf->min_nr_stripes)
6791875e
N
6039 err = -EINVAL;
6040 else
6041 conf->bypass_threshold = new;
6042 mddev_unlock(mddev);
6043 return err ?: len;
8b3e6cdc
DW
6044}
6045
6046static struct md_sysfs_entry
6047raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6048 S_IRUGO | S_IWUSR,
6049 raid5_show_preread_threshold,
6050 raid5_store_preread_threshold);
6051
d592a996
SL
6052static ssize_t
6053raid5_show_skip_copy(struct mddev *mddev, char *page)
6054{
7b1485ba
N
6055 struct r5conf *conf;
6056 int ret = 0;
6057 spin_lock(&mddev->lock);
6058 conf = mddev->private;
d592a996 6059 if (conf)
7b1485ba
N
6060 ret = sprintf(page, "%d\n", conf->skip_copy);
6061 spin_unlock(&mddev->lock);
6062 return ret;
d592a996
SL
6063}
6064
6065static ssize_t
6066raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6067{
6791875e 6068 struct r5conf *conf;
d592a996 6069 unsigned long new;
6791875e
N
6070 int err;
6071
d592a996
SL
6072 if (len >= PAGE_SIZE)
6073 return -EINVAL;
d592a996
SL
6074 if (kstrtoul(page, 10, &new))
6075 return -EINVAL;
6076 new = !!new;
6791875e
N
6077
6078 err = mddev_lock(mddev);
6079 if (err)
6080 return err;
6081 conf = mddev->private;
6082 if (!conf)
6083 err = -ENODEV;
6084 else if (new != conf->skip_copy) {
6085 mddev_suspend(mddev);
6086 conf->skip_copy = new;
6087 if (new)
6088 mddev->queue->backing_dev_info.capabilities |=
6089 BDI_CAP_STABLE_WRITES;
6090 else
6091 mddev->queue->backing_dev_info.capabilities &=
6092 ~BDI_CAP_STABLE_WRITES;
6093 mddev_resume(mddev);
6094 }
6095 mddev_unlock(mddev);
6096 return err ?: len;
d592a996
SL
6097}
6098
6099static struct md_sysfs_entry
6100raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6101 raid5_show_skip_copy,
6102 raid5_store_skip_copy);
6103
3f294f4f 6104static ssize_t
fd01b88c 6105stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6106{
d1688a6d 6107 struct r5conf *conf = mddev->private;
96de1e66
N
6108 if (conf)
6109 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6110 else
6111 return 0;
3f294f4f
N
6112}
6113
96de1e66
N
6114static struct md_sysfs_entry
6115raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6116
b721420e
SL
6117static ssize_t
6118raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6119{
7b1485ba
N
6120 struct r5conf *conf;
6121 int ret = 0;
6122 spin_lock(&mddev->lock);
6123 conf = mddev->private;
b721420e 6124 if (conf)
7b1485ba
N
6125 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6126 spin_unlock(&mddev->lock);
6127 return ret;
b721420e
SL
6128}
6129
60aaf933 6130static int alloc_thread_groups(struct r5conf *conf, int cnt,
6131 int *group_cnt,
6132 int *worker_cnt_per_group,
6133 struct r5worker_group **worker_groups);
b721420e
SL
6134static ssize_t
6135raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6136{
6791875e 6137 struct r5conf *conf;
b721420e
SL
6138 unsigned long new;
6139 int err;
60aaf933 6140 struct r5worker_group *new_groups, *old_groups;
6141 int group_cnt, worker_cnt_per_group;
b721420e
SL
6142
6143 if (len >= PAGE_SIZE)
6144 return -EINVAL;
b721420e
SL
6145 if (kstrtoul(page, 10, &new))
6146 return -EINVAL;
6147
6791875e
N
6148 err = mddev_lock(mddev);
6149 if (err)
6150 return err;
6151 conf = mddev->private;
6152 if (!conf)
6153 err = -ENODEV;
6154 else if (new != conf->worker_cnt_per_group) {
6155 mddev_suspend(mddev);
b721420e 6156
6791875e
N
6157 old_groups = conf->worker_groups;
6158 if (old_groups)
6159 flush_workqueue(raid5_wq);
d206dcfa 6160
6791875e
N
6161 err = alloc_thread_groups(conf, new,
6162 &group_cnt, &worker_cnt_per_group,
6163 &new_groups);
6164 if (!err) {
6165 spin_lock_irq(&conf->device_lock);
6166 conf->group_cnt = group_cnt;
6167 conf->worker_cnt_per_group = worker_cnt_per_group;
6168 conf->worker_groups = new_groups;
6169 spin_unlock_irq(&conf->device_lock);
b721420e 6170
6791875e
N
6171 if (old_groups)
6172 kfree(old_groups[0].workers);
6173 kfree(old_groups);
6174 }
6175 mddev_resume(mddev);
b721420e 6176 }
6791875e 6177 mddev_unlock(mddev);
b721420e 6178
6791875e 6179 return err ?: len;
b721420e
SL
6180}
6181
6182static struct md_sysfs_entry
6183raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6184 raid5_show_group_thread_cnt,
6185 raid5_store_group_thread_cnt);
6186
007583c9 6187static struct attribute *raid5_attrs[] = {
3f294f4f
N
6188 &raid5_stripecache_size.attr,
6189 &raid5_stripecache_active.attr,
8b3e6cdc 6190 &raid5_preread_bypass_threshold.attr,
b721420e 6191 &raid5_group_thread_cnt.attr,
d592a996 6192 &raid5_skip_copy.attr,
d06f191f 6193 &raid5_rmw_level.attr,
3f294f4f
N
6194 NULL,
6195};
007583c9
N
6196static struct attribute_group raid5_attrs_group = {
6197 .name = NULL,
6198 .attrs = raid5_attrs,
3f294f4f
N
6199};
6200
60aaf933 6201static int alloc_thread_groups(struct r5conf *conf, int cnt,
6202 int *group_cnt,
6203 int *worker_cnt_per_group,
6204 struct r5worker_group **worker_groups)
851c30c9 6205{
566c09c5 6206 int i, j, k;
851c30c9
SL
6207 ssize_t size;
6208 struct r5worker *workers;
6209
60aaf933 6210 *worker_cnt_per_group = cnt;
851c30c9 6211 if (cnt == 0) {
60aaf933 6212 *group_cnt = 0;
6213 *worker_groups = NULL;
851c30c9
SL
6214 return 0;
6215 }
60aaf933 6216 *group_cnt = num_possible_nodes();
851c30c9 6217 size = sizeof(struct r5worker) * cnt;
60aaf933 6218 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6219 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6220 *group_cnt, GFP_NOIO);
6221 if (!*worker_groups || !workers) {
851c30c9 6222 kfree(workers);
60aaf933 6223 kfree(*worker_groups);
851c30c9
SL
6224 return -ENOMEM;
6225 }
6226
60aaf933 6227 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6228 struct r5worker_group *group;
6229
0c775d52 6230 group = &(*worker_groups)[i];
851c30c9
SL
6231 INIT_LIST_HEAD(&group->handle_list);
6232 group->conf = conf;
6233 group->workers = workers + i * cnt;
6234
6235 for (j = 0; j < cnt; j++) {
566c09c5
SL
6236 struct r5worker *worker = group->workers + j;
6237 worker->group = group;
6238 INIT_WORK(&worker->work, raid5_do_work);
6239
6240 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6241 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6242 }
6243 }
6244
6245 return 0;
6246}
6247
6248static void free_thread_groups(struct r5conf *conf)
6249{
6250 if (conf->worker_groups)
6251 kfree(conf->worker_groups[0].workers);
6252 kfree(conf->worker_groups);
6253 conf->worker_groups = NULL;
6254}
6255
80c3a6ce 6256static sector_t
fd01b88c 6257raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6258{
d1688a6d 6259 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6260
6261 if (!sectors)
6262 sectors = mddev->dev_sectors;
5e5e3e78 6263 if (!raid_disks)
7ec05478 6264 /* size is defined by the smallest of previous and new size */
5e5e3e78 6265 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6266
3cb5edf4
N
6267 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6268 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6269 return sectors * (raid_disks - conf->max_degraded);
6270}
6271
789b5e03
ON
6272static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6273{
6274 safe_put_page(percpu->spare_page);
46d5b785 6275 if (percpu->scribble)
6276 flex_array_free(percpu->scribble);
789b5e03
ON
6277 percpu->spare_page = NULL;
6278 percpu->scribble = NULL;
6279}
6280
6281static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6282{
6283 if (conf->level == 6 && !percpu->spare_page)
6284 percpu->spare_page = alloc_page(GFP_KERNEL);
6285 if (!percpu->scribble)
46d5b785 6286 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6287 conf->previous_raid_disks),
6288 max(conf->chunk_sectors,
6289 conf->prev_chunk_sectors)
6290 / STRIPE_SECTORS,
6291 GFP_KERNEL);
789b5e03
ON
6292
6293 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6294 free_scratch_buffer(conf, percpu);
6295 return -ENOMEM;
6296 }
6297
6298 return 0;
6299}
6300
d1688a6d 6301static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6302{
36d1c647
DW
6303 unsigned long cpu;
6304
6305 if (!conf->percpu)
6306 return;
6307
36d1c647
DW
6308#ifdef CONFIG_HOTPLUG_CPU
6309 unregister_cpu_notifier(&conf->cpu_notify);
6310#endif
789b5e03
ON
6311
6312 get_online_cpus();
6313 for_each_possible_cpu(cpu)
6314 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6315 put_online_cpus();
6316
6317 free_percpu(conf->percpu);
6318}
6319
d1688a6d 6320static void free_conf(struct r5conf *conf)
95fc17aa 6321{
edbe83ab
N
6322 if (conf->shrinker.seeks)
6323 unregister_shrinker(&conf->shrinker);
851c30c9 6324 free_thread_groups(conf);
95fc17aa 6325 shrink_stripes(conf);
36d1c647 6326 raid5_free_percpu(conf);
95fc17aa
DW
6327 kfree(conf->disks);
6328 kfree(conf->stripe_hashtbl);
6329 kfree(conf);
6330}
6331
36d1c647
DW
6332#ifdef CONFIG_HOTPLUG_CPU
6333static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6334 void *hcpu)
6335{
d1688a6d 6336 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6337 long cpu = (long)hcpu;
6338 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6339
6340 switch (action) {
6341 case CPU_UP_PREPARE:
6342 case CPU_UP_PREPARE_FROZEN:
789b5e03 6343 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6344 pr_err("%s: failed memory allocation for cpu%ld\n",
6345 __func__, cpu);
55af6bb5 6346 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6347 }
6348 break;
6349 case CPU_DEAD:
6350 case CPU_DEAD_FROZEN:
789b5e03 6351 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6352 break;
6353 default:
6354 break;
6355 }
6356 return NOTIFY_OK;
6357}
6358#endif
6359
d1688a6d 6360static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6361{
6362 unsigned long cpu;
789b5e03 6363 int err = 0;
36d1c647 6364
789b5e03
ON
6365 conf->percpu = alloc_percpu(struct raid5_percpu);
6366 if (!conf->percpu)
36d1c647 6367 return -ENOMEM;
789b5e03
ON
6368
6369#ifdef CONFIG_HOTPLUG_CPU
6370 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6371 conf->cpu_notify.priority = 0;
6372 err = register_cpu_notifier(&conf->cpu_notify);
6373 if (err)
6374 return err;
6375#endif
36d1c647
DW
6376
6377 get_online_cpus();
36d1c647 6378 for_each_present_cpu(cpu) {
789b5e03
ON
6379 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6380 if (err) {
6381 pr_err("%s: failed memory allocation for cpu%ld\n",
6382 __func__, cpu);
36d1c647
DW
6383 break;
6384 }
36d1c647 6385 }
36d1c647
DW
6386 put_online_cpus();
6387
6388 return err;
6389}
6390
edbe83ab
N
6391static unsigned long raid5_cache_scan(struct shrinker *shrink,
6392 struct shrink_control *sc)
6393{
6394 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6395 unsigned long ret = SHRINK_STOP;
6396
6397 if (mutex_trylock(&conf->cache_size_mutex)) {
6398 ret= 0;
49895bcc
N
6399 while (ret < sc->nr_to_scan &&
6400 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6401 if (drop_one_stripe(conf) == 0) {
6402 ret = SHRINK_STOP;
6403 break;
6404 }
6405 ret++;
6406 }
6407 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6408 }
6409 return ret;
6410}
6411
6412static unsigned long raid5_cache_count(struct shrinker *shrink,
6413 struct shrink_control *sc)
6414{
6415 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6416
6417 if (conf->max_nr_stripes < conf->min_nr_stripes)
6418 /* unlikely, but not impossible */
6419 return 0;
6420 return conf->max_nr_stripes - conf->min_nr_stripes;
6421}
6422
d1688a6d 6423static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6424{
d1688a6d 6425 struct r5conf *conf;
5e5e3e78 6426 int raid_disk, memory, max_disks;
3cb03002 6427 struct md_rdev *rdev;
1da177e4 6428 struct disk_info *disk;
0232605d 6429 char pers_name[6];
566c09c5 6430 int i;
60aaf933 6431 int group_cnt, worker_cnt_per_group;
6432 struct r5worker_group *new_group;
1da177e4 6433
91adb564
N
6434 if (mddev->new_level != 5
6435 && mddev->new_level != 4
6436 && mddev->new_level != 6) {
0c55e022 6437 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6438 mdname(mddev), mddev->new_level);
6439 return ERR_PTR(-EIO);
1da177e4 6440 }
91adb564
N
6441 if ((mddev->new_level == 5
6442 && !algorithm_valid_raid5(mddev->new_layout)) ||
6443 (mddev->new_level == 6
6444 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6445 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6446 mdname(mddev), mddev->new_layout);
6447 return ERR_PTR(-EIO);
99c0fb5f 6448 }
91adb564 6449 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6450 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6451 mdname(mddev), mddev->raid_disks);
6452 return ERR_PTR(-EINVAL);
4bbf3771
N
6453 }
6454
664e7c41
AN
6455 if (!mddev->new_chunk_sectors ||
6456 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6457 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6458 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6459 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6460 return ERR_PTR(-EINVAL);
f6705578
N
6461 }
6462
d1688a6d 6463 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6464 if (conf == NULL)
1da177e4 6465 goto abort;
851c30c9 6466 /* Don't enable multi-threading by default*/
60aaf933 6467 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6468 &new_group)) {
6469 conf->group_cnt = group_cnt;
6470 conf->worker_cnt_per_group = worker_cnt_per_group;
6471 conf->worker_groups = new_group;
6472 } else
851c30c9 6473 goto abort;
f5efd45a 6474 spin_lock_init(&conf->device_lock);
c46501b2 6475 seqcount_init(&conf->gen_lock);
2d5b569b 6476 mutex_init(&conf->cache_size_mutex);
b1b46486 6477 init_waitqueue_head(&conf->wait_for_quiescent);
e9e4c377
YL
6478 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6479 init_waitqueue_head(&conf->wait_for_stripe[i]);
6480 }
f5efd45a
DW
6481 init_waitqueue_head(&conf->wait_for_overlap);
6482 INIT_LIST_HEAD(&conf->handle_list);
6483 INIT_LIST_HEAD(&conf->hold_list);
6484 INIT_LIST_HEAD(&conf->delayed_list);
6485 INIT_LIST_HEAD(&conf->bitmap_list);
c3cce6cd 6486 bio_list_init(&conf->return_bi);
773ca82f 6487 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6488 atomic_set(&conf->active_stripes, 0);
6489 atomic_set(&conf->preread_active_stripes, 0);
6490 atomic_set(&conf->active_aligned_reads, 0);
6491 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6492 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6493
6494 conf->raid_disks = mddev->raid_disks;
6495 if (mddev->reshape_position == MaxSector)
6496 conf->previous_raid_disks = mddev->raid_disks;
6497 else
f6705578 6498 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6499 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6500
5e5e3e78 6501 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6502 GFP_KERNEL);
6503 if (!conf->disks)
6504 goto abort;
9ffae0cf 6505
1da177e4
LT
6506 conf->mddev = mddev;
6507
fccddba0 6508 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6509 goto abort;
1da177e4 6510
566c09c5
SL
6511 /* We init hash_locks[0] separately to that it can be used
6512 * as the reference lock in the spin_lock_nest_lock() call
6513 * in lock_all_device_hash_locks_irq in order to convince
6514 * lockdep that we know what we are doing.
6515 */
6516 spin_lock_init(conf->hash_locks);
6517 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6518 spin_lock_init(conf->hash_locks + i);
6519
6520 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6521 INIT_LIST_HEAD(conf->inactive_list + i);
6522
6523 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6524 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6525
36d1c647 6526 conf->level = mddev->new_level;
46d5b785 6527 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6528 if (raid5_alloc_percpu(conf) != 0)
6529 goto abort;
6530
0c55e022 6531 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6532
dafb20fa 6533 rdev_for_each(rdev, mddev) {
1da177e4 6534 raid_disk = rdev->raid_disk;
5e5e3e78 6535 if (raid_disk >= max_disks
1da177e4
LT
6536 || raid_disk < 0)
6537 continue;
6538 disk = conf->disks + raid_disk;
6539
17045f52
N
6540 if (test_bit(Replacement, &rdev->flags)) {
6541 if (disk->replacement)
6542 goto abort;
6543 disk->replacement = rdev;
6544 } else {
6545 if (disk->rdev)
6546 goto abort;
6547 disk->rdev = rdev;
6548 }
1da177e4 6549
b2d444d7 6550 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6551 char b[BDEVNAME_SIZE];
0c55e022
N
6552 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6553 " disk %d\n",
6554 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6555 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6556 /* Cannot rely on bitmap to complete recovery */
6557 conf->fullsync = 1;
1da177e4
LT
6558 }
6559
91adb564 6560 conf->level = mddev->new_level;
584acdd4 6561 if (conf->level == 6) {
16a53ecc 6562 conf->max_degraded = 2;
584acdd4
MS
6563 if (raid6_call.xor_syndrome)
6564 conf->rmw_level = PARITY_ENABLE_RMW;
6565 else
6566 conf->rmw_level = PARITY_DISABLE_RMW;
6567 } else {
16a53ecc 6568 conf->max_degraded = 1;
584acdd4
MS
6569 conf->rmw_level = PARITY_ENABLE_RMW;
6570 }
91adb564 6571 conf->algorithm = mddev->new_layout;
fef9c61f 6572 conf->reshape_progress = mddev->reshape_position;
e183eaed 6573 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6574 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 6575 conf->prev_algo = mddev->layout;
5cac6bcb
N
6576 } else {
6577 conf->prev_chunk_sectors = conf->chunk_sectors;
6578 conf->prev_algo = conf->algorithm;
e183eaed 6579 }
1da177e4 6580
edbe83ab
N
6581 conf->min_nr_stripes = NR_STRIPES;
6582 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6583 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6584 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6585 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6586 printk(KERN_ERR
0c55e022
N
6587 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6588 mdname(mddev), memory);
91adb564
N
6589 goto abort;
6590 } else
0c55e022
N
6591 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6592 mdname(mddev), memory);
edbe83ab
N
6593 /*
6594 * Losing a stripe head costs more than the time to refill it,
6595 * it reduces the queue depth and so can hurt throughput.
6596 * So set it rather large, scaled by number of devices.
6597 */
6598 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6599 conf->shrinker.scan_objects = raid5_cache_scan;
6600 conf->shrinker.count_objects = raid5_cache_count;
6601 conf->shrinker.batch = 128;
6602 conf->shrinker.flags = 0;
6603 register_shrinker(&conf->shrinker);
1da177e4 6604
0232605d
N
6605 sprintf(pers_name, "raid%d", mddev->new_level);
6606 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6607 if (!conf->thread) {
6608 printk(KERN_ERR
0c55e022 6609 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6610 mdname(mddev));
16a53ecc
N
6611 goto abort;
6612 }
91adb564
N
6613
6614 return conf;
6615
6616 abort:
6617 if (conf) {
95fc17aa 6618 free_conf(conf);
91adb564
N
6619 return ERR_PTR(-EIO);
6620 } else
6621 return ERR_PTR(-ENOMEM);
6622}
6623
c148ffdc
N
6624static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6625{
6626 switch (algo) {
6627 case ALGORITHM_PARITY_0:
6628 if (raid_disk < max_degraded)
6629 return 1;
6630 break;
6631 case ALGORITHM_PARITY_N:
6632 if (raid_disk >= raid_disks - max_degraded)
6633 return 1;
6634 break;
6635 case ALGORITHM_PARITY_0_6:
f72ffdd6 6636 if (raid_disk == 0 ||
c148ffdc
N
6637 raid_disk == raid_disks - 1)
6638 return 1;
6639 break;
6640 case ALGORITHM_LEFT_ASYMMETRIC_6:
6641 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6642 case ALGORITHM_LEFT_SYMMETRIC_6:
6643 case ALGORITHM_RIGHT_SYMMETRIC_6:
6644 if (raid_disk == raid_disks - 1)
6645 return 1;
6646 }
6647 return 0;
6648}
6649
fd01b88c 6650static int run(struct mddev *mddev)
91adb564 6651{
d1688a6d 6652 struct r5conf *conf;
9f7c2220 6653 int working_disks = 0;
c148ffdc 6654 int dirty_parity_disks = 0;
3cb03002 6655 struct md_rdev *rdev;
c148ffdc 6656 sector_t reshape_offset = 0;
17045f52 6657 int i;
b5254dd5
N
6658 long long min_offset_diff = 0;
6659 int first = 1;
91adb564 6660
8c6ac868 6661 if (mddev->recovery_cp != MaxSector)
0c55e022 6662 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6663 " -- starting background reconstruction\n",
6664 mdname(mddev));
b5254dd5
N
6665
6666 rdev_for_each(rdev, mddev) {
6667 long long diff;
6668 if (rdev->raid_disk < 0)
6669 continue;
6670 diff = (rdev->new_data_offset - rdev->data_offset);
6671 if (first) {
6672 min_offset_diff = diff;
6673 first = 0;
6674 } else if (mddev->reshape_backwards &&
6675 diff < min_offset_diff)
6676 min_offset_diff = diff;
6677 else if (!mddev->reshape_backwards &&
6678 diff > min_offset_diff)
6679 min_offset_diff = diff;
6680 }
6681
91adb564
N
6682 if (mddev->reshape_position != MaxSector) {
6683 /* Check that we can continue the reshape.
b5254dd5
N
6684 * Difficulties arise if the stripe we would write to
6685 * next is at or after the stripe we would read from next.
6686 * For a reshape that changes the number of devices, this
6687 * is only possible for a very short time, and mdadm makes
6688 * sure that time appears to have past before assembling
6689 * the array. So we fail if that time hasn't passed.
6690 * For a reshape that keeps the number of devices the same
6691 * mdadm must be monitoring the reshape can keeping the
6692 * critical areas read-only and backed up. It will start
6693 * the array in read-only mode, so we check for that.
91adb564
N
6694 */
6695 sector_t here_new, here_old;
6696 int old_disks;
18b00334 6697 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
6698 int chunk_sectors;
6699 int new_data_disks;
91adb564 6700
88ce4930 6701 if (mddev->new_level != mddev->level) {
0c55e022 6702 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6703 "required - aborting.\n",
6704 mdname(mddev));
6705 return -EINVAL;
6706 }
91adb564
N
6707 old_disks = mddev->raid_disks - mddev->delta_disks;
6708 /* reshape_position must be on a new-stripe boundary, and one
6709 * further up in new geometry must map after here in old
6710 * geometry.
05256d98
N
6711 * If the chunk sizes are different, then as we perform reshape
6712 * in units of the largest of the two, reshape_position needs
6713 * be a multiple of the largest chunk size times new data disks.
91adb564
N
6714 */
6715 here_new = mddev->reshape_position;
05256d98
N
6716 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6717 new_data_disks = mddev->raid_disks - max_degraded;
6718 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
0c55e022
N
6719 printk(KERN_ERR "md/raid:%s: reshape_position not "
6720 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6721 return -EINVAL;
6722 }
05256d98 6723 reshape_offset = here_new * chunk_sectors;
91adb564
N
6724 /* here_new is the stripe we will write to */
6725 here_old = mddev->reshape_position;
05256d98 6726 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
6727 /* here_old is the first stripe that we might need to read
6728 * from */
67ac6011
N
6729 if (mddev->delta_disks == 0) {
6730 /* We cannot be sure it is safe to start an in-place
b5254dd5 6731 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6732 * and taking constant backups.
6733 * mdadm always starts a situation like this in
6734 * readonly mode so it can take control before
6735 * allowing any writes. So just check for that.
6736 */
b5254dd5
N
6737 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6738 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6739 /* not really in-place - so OK */;
6740 else if (mddev->ro == 0) {
6741 printk(KERN_ERR "md/raid:%s: in-place reshape "
6742 "must be started in read-only mode "
6743 "- aborting\n",
0c55e022 6744 mdname(mddev));
67ac6011
N
6745 return -EINVAL;
6746 }
2c810cdd 6747 } else if (mddev->reshape_backwards
05256d98
N
6748 ? (here_new * chunk_sectors + min_offset_diff <=
6749 here_old * chunk_sectors)
6750 : (here_new * chunk_sectors >=
6751 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 6752 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6753 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6754 "auto-recovery - aborting.\n",
6755 mdname(mddev));
91adb564
N
6756 return -EINVAL;
6757 }
0c55e022
N
6758 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6759 mdname(mddev));
91adb564
N
6760 /* OK, we should be able to continue; */
6761 } else {
6762 BUG_ON(mddev->level != mddev->new_level);
6763 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6764 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6765 BUG_ON(mddev->delta_disks != 0);
1da177e4 6766 }
91adb564 6767
245f46c2
N
6768 if (mddev->private == NULL)
6769 conf = setup_conf(mddev);
6770 else
6771 conf = mddev->private;
6772
91adb564
N
6773 if (IS_ERR(conf))
6774 return PTR_ERR(conf);
6775
b5254dd5 6776 conf->min_offset_diff = min_offset_diff;
91adb564
N
6777 mddev->thread = conf->thread;
6778 conf->thread = NULL;
6779 mddev->private = conf;
6780
17045f52
N
6781 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6782 i++) {
6783 rdev = conf->disks[i].rdev;
6784 if (!rdev && conf->disks[i].replacement) {
6785 /* The replacement is all we have yet */
6786 rdev = conf->disks[i].replacement;
6787 conf->disks[i].replacement = NULL;
6788 clear_bit(Replacement, &rdev->flags);
6789 conf->disks[i].rdev = rdev;
6790 }
6791 if (!rdev)
c148ffdc 6792 continue;
17045f52
N
6793 if (conf->disks[i].replacement &&
6794 conf->reshape_progress != MaxSector) {
6795 /* replacements and reshape simply do not mix. */
6796 printk(KERN_ERR "md: cannot handle concurrent "
6797 "replacement and reshape.\n");
6798 goto abort;
6799 }
2f115882 6800 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6801 working_disks++;
2f115882
N
6802 continue;
6803 }
c148ffdc
N
6804 /* This disc is not fully in-sync. However if it
6805 * just stored parity (beyond the recovery_offset),
6806 * when we don't need to be concerned about the
6807 * array being dirty.
6808 * When reshape goes 'backwards', we never have
6809 * partially completed devices, so we only need
6810 * to worry about reshape going forwards.
6811 */
6812 /* Hack because v0.91 doesn't store recovery_offset properly. */
6813 if (mddev->major_version == 0 &&
6814 mddev->minor_version > 90)
6815 rdev->recovery_offset = reshape_offset;
5026d7a9 6816
c148ffdc
N
6817 if (rdev->recovery_offset < reshape_offset) {
6818 /* We need to check old and new layout */
6819 if (!only_parity(rdev->raid_disk,
6820 conf->algorithm,
6821 conf->raid_disks,
6822 conf->max_degraded))
6823 continue;
6824 }
6825 if (!only_parity(rdev->raid_disk,
6826 conf->prev_algo,
6827 conf->previous_raid_disks,
6828 conf->max_degraded))
6829 continue;
6830 dirty_parity_disks++;
6831 }
91adb564 6832
17045f52
N
6833 /*
6834 * 0 for a fully functional array, 1 or 2 for a degraded array.
6835 */
908f4fbd 6836 mddev->degraded = calc_degraded(conf);
91adb564 6837
674806d6 6838 if (has_failed(conf)) {
0c55e022 6839 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6840 " (%d/%d failed)\n",
02c2de8c 6841 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6842 goto abort;
6843 }
6844
91adb564 6845 /* device size must be a multiple of chunk size */
9d8f0363 6846 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6847 mddev->resync_max_sectors = mddev->dev_sectors;
6848
c148ffdc 6849 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6850 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6851 if (mddev->ok_start_degraded)
6852 printk(KERN_WARNING
0c55e022
N
6853 "md/raid:%s: starting dirty degraded array"
6854 " - data corruption possible.\n",
6ff8d8ec
N
6855 mdname(mddev));
6856 else {
6857 printk(KERN_ERR
0c55e022 6858 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6859 mdname(mddev));
6860 goto abort;
6861 }
1da177e4
LT
6862 }
6863
1da177e4 6864 if (mddev->degraded == 0)
0c55e022
N
6865 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6866 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6867 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6868 mddev->new_layout);
1da177e4 6869 else
0c55e022
N
6870 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6871 " out of %d devices, algorithm %d\n",
6872 mdname(mddev), conf->level,
6873 mddev->raid_disks - mddev->degraded,
6874 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6875
6876 print_raid5_conf(conf);
6877
fef9c61f 6878 if (conf->reshape_progress != MaxSector) {
fef9c61f 6879 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6880 atomic_set(&conf->reshape_stripes, 0);
6881 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6882 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6883 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6884 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6885 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6886 "reshape");
f6705578
N
6887 }
6888
1da177e4 6889 /* Ok, everything is just fine now */
a64c876f
N
6890 if (mddev->to_remove == &raid5_attrs_group)
6891 mddev->to_remove = NULL;
00bcb4ac
N
6892 else if (mddev->kobj.sd &&
6893 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6894 printk(KERN_WARNING
4a5add49 6895 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6896 mdname(mddev));
4a5add49 6897 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6898
4a5add49 6899 if (mddev->queue) {
9f7c2220 6900 int chunk_size;
620125f2 6901 bool discard_supported = true;
4a5add49
N
6902 /* read-ahead size must cover two whole stripes, which
6903 * is 2 * (datadisks) * chunksize where 'n' is the
6904 * number of raid devices
6905 */
6906 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6907 int stripe = data_disks *
6908 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6909 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6910 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6911
9f7c2220
N
6912 chunk_size = mddev->chunk_sectors << 9;
6913 blk_queue_io_min(mddev->queue, chunk_size);
6914 blk_queue_io_opt(mddev->queue, chunk_size *
6915 (conf->raid_disks - conf->max_degraded));
c78afc62 6916 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6917 /*
6918 * We can only discard a whole stripe. It doesn't make sense to
6919 * discard data disk but write parity disk
6920 */
6921 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6922 /* Round up to power of 2, as discard handling
6923 * currently assumes that */
6924 while ((stripe-1) & stripe)
6925 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6926 mddev->queue->limits.discard_alignment = stripe;
6927 mddev->queue->limits.discard_granularity = stripe;
6928 /*
6929 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6930 * guarantee discard_zeroes_data
620125f2
SL
6931 */
6932 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6933
5026d7a9
PA
6934 blk_queue_max_write_same_sectors(mddev->queue, 0);
6935
05616be5 6936 rdev_for_each(rdev, mddev) {
9f7c2220
N
6937 disk_stack_limits(mddev->gendisk, rdev->bdev,
6938 rdev->data_offset << 9);
05616be5
N
6939 disk_stack_limits(mddev->gendisk, rdev->bdev,
6940 rdev->new_data_offset << 9);
620125f2
SL
6941 /*
6942 * discard_zeroes_data is required, otherwise data
6943 * could be lost. Consider a scenario: discard a stripe
6944 * (the stripe could be inconsistent if
6945 * discard_zeroes_data is 0); write one disk of the
6946 * stripe (the stripe could be inconsistent again
6947 * depending on which disks are used to calculate
6948 * parity); the disk is broken; The stripe data of this
6949 * disk is lost.
6950 */
6951 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6952 !bdev_get_queue(rdev->bdev)->
6953 limits.discard_zeroes_data)
6954 discard_supported = false;
8e0e99ba
N
6955 /* Unfortunately, discard_zeroes_data is not currently
6956 * a guarantee - just a hint. So we only allow DISCARD
6957 * if the sysadmin has confirmed that only safe devices
6958 * are in use by setting a module parameter.
6959 */
6960 if (!devices_handle_discard_safely) {
6961 if (discard_supported) {
6962 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6963 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6964 }
6965 discard_supported = false;
6966 }
05616be5 6967 }
620125f2
SL
6968
6969 if (discard_supported &&
6970 mddev->queue->limits.max_discard_sectors >= stripe &&
6971 mddev->queue->limits.discard_granularity >= stripe)
6972 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6973 mddev->queue);
6974 else
6975 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6976 mddev->queue);
9f7c2220 6977 }
23032a0e 6978
1da177e4
LT
6979 return 0;
6980abort:
01f96c0a 6981 md_unregister_thread(&mddev->thread);
e4f869d9
N
6982 print_raid5_conf(conf);
6983 free_conf(conf);
1da177e4 6984 mddev->private = NULL;
0c55e022 6985 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6986 return -EIO;
6987}
6988
afa0f557 6989static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 6990{
afa0f557 6991 struct r5conf *conf = priv;
1da177e4 6992
95fc17aa 6993 free_conf(conf);
a64c876f 6994 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6995}
6996
fd01b88c 6997static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6998{
d1688a6d 6999 struct r5conf *conf = mddev->private;
1da177e4
LT
7000 int i;
7001
9d8f0363 7002 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7003 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7004 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
7005 for (i = 0; i < conf->raid_disks; i++)
7006 seq_printf (seq, "%s",
7007 conf->disks[i].rdev &&
b2d444d7 7008 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 7009 seq_printf (seq, "]");
1da177e4
LT
7010}
7011
d1688a6d 7012static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7013{
7014 int i;
7015 struct disk_info *tmp;
7016
0c55e022 7017 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
7018 if (!conf) {
7019 printk("(conf==NULL)\n");
7020 return;
7021 }
0c55e022
N
7022 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7023 conf->raid_disks,
7024 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7025
7026 for (i = 0; i < conf->raid_disks; i++) {
7027 char b[BDEVNAME_SIZE];
7028 tmp = conf->disks + i;
7029 if (tmp->rdev)
0c55e022
N
7030 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7031 i, !test_bit(Faulty, &tmp->rdev->flags),
7032 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7033 }
7034}
7035
fd01b88c 7036static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7037{
7038 int i;
d1688a6d 7039 struct r5conf *conf = mddev->private;
1da177e4 7040 struct disk_info *tmp;
6b965620
N
7041 int count = 0;
7042 unsigned long flags;
1da177e4
LT
7043
7044 for (i = 0; i < conf->raid_disks; i++) {
7045 tmp = conf->disks + i;
dd054fce
N
7046 if (tmp->replacement
7047 && tmp->replacement->recovery_offset == MaxSector
7048 && !test_bit(Faulty, &tmp->replacement->flags)
7049 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7050 /* Replacement has just become active. */
7051 if (!tmp->rdev
7052 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7053 count++;
7054 if (tmp->rdev) {
7055 /* Replaced device not technically faulty,
7056 * but we need to be sure it gets removed
7057 * and never re-added.
7058 */
7059 set_bit(Faulty, &tmp->rdev->flags);
7060 sysfs_notify_dirent_safe(
7061 tmp->rdev->sysfs_state);
7062 }
7063 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7064 } else if (tmp->rdev
70fffd0b 7065 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7066 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7067 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7068 count++;
43c73ca4 7069 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7070 }
7071 }
6b965620 7072 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7073 mddev->degraded = calc_degraded(conf);
6b965620 7074 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7075 print_raid5_conf(conf);
6b965620 7076 return count;
1da177e4
LT
7077}
7078
b8321b68 7079static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7080{
d1688a6d 7081 struct r5conf *conf = mddev->private;
1da177e4 7082 int err = 0;
b8321b68 7083 int number = rdev->raid_disk;
657e3e4d 7084 struct md_rdev **rdevp;
1da177e4
LT
7085 struct disk_info *p = conf->disks + number;
7086
7087 print_raid5_conf(conf);
657e3e4d
N
7088 if (rdev == p->rdev)
7089 rdevp = &p->rdev;
7090 else if (rdev == p->replacement)
7091 rdevp = &p->replacement;
7092 else
7093 return 0;
7094
7095 if (number >= conf->raid_disks &&
7096 conf->reshape_progress == MaxSector)
7097 clear_bit(In_sync, &rdev->flags);
7098
7099 if (test_bit(In_sync, &rdev->flags) ||
7100 atomic_read(&rdev->nr_pending)) {
7101 err = -EBUSY;
7102 goto abort;
7103 }
7104 /* Only remove non-faulty devices if recovery
7105 * isn't possible.
7106 */
7107 if (!test_bit(Faulty, &rdev->flags) &&
7108 mddev->recovery_disabled != conf->recovery_disabled &&
7109 !has_failed(conf) &&
dd054fce 7110 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7111 number < conf->raid_disks) {
7112 err = -EBUSY;
7113 goto abort;
7114 }
7115 *rdevp = NULL;
7116 synchronize_rcu();
7117 if (atomic_read(&rdev->nr_pending)) {
7118 /* lost the race, try later */
7119 err = -EBUSY;
7120 *rdevp = rdev;
dd054fce
N
7121 } else if (p->replacement) {
7122 /* We must have just cleared 'rdev' */
7123 p->rdev = p->replacement;
7124 clear_bit(Replacement, &p->replacement->flags);
7125 smp_mb(); /* Make sure other CPUs may see both as identical
7126 * but will never see neither - if they are careful
7127 */
7128 p->replacement = NULL;
7129 clear_bit(WantReplacement, &rdev->flags);
7130 } else
7131 /* We might have just removed the Replacement as faulty-
7132 * clear the bit just in case
7133 */
7134 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7135abort:
7136
7137 print_raid5_conf(conf);
7138 return err;
7139}
7140
fd01b88c 7141static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7142{
d1688a6d 7143 struct r5conf *conf = mddev->private;
199050ea 7144 int err = -EEXIST;
1da177e4
LT
7145 int disk;
7146 struct disk_info *p;
6c2fce2e
NB
7147 int first = 0;
7148 int last = conf->raid_disks - 1;
1da177e4 7149
7f0da59b
N
7150 if (mddev->recovery_disabled == conf->recovery_disabled)
7151 return -EBUSY;
7152
dc10c643 7153 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7154 /* no point adding a device */
199050ea 7155 return -EINVAL;
1da177e4 7156
6c2fce2e
NB
7157 if (rdev->raid_disk >= 0)
7158 first = last = rdev->raid_disk;
1da177e4
LT
7159
7160 /*
16a53ecc
N
7161 * find the disk ... but prefer rdev->saved_raid_disk
7162 * if possible.
1da177e4 7163 */
16a53ecc 7164 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7165 rdev->saved_raid_disk >= first &&
16a53ecc 7166 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7167 first = rdev->saved_raid_disk;
7168
7169 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7170 p = conf->disks + disk;
7171 if (p->rdev == NULL) {
b2d444d7 7172 clear_bit(In_sync, &rdev->flags);
1da177e4 7173 rdev->raid_disk = disk;
199050ea 7174 err = 0;
72626685
N
7175 if (rdev->saved_raid_disk != disk)
7176 conf->fullsync = 1;
d6065f7b 7177 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7178 goto out;
1da177e4 7179 }
5cfb22a1
N
7180 }
7181 for (disk = first; disk <= last; disk++) {
7182 p = conf->disks + disk;
7bfec5f3
N
7183 if (test_bit(WantReplacement, &p->rdev->flags) &&
7184 p->replacement == NULL) {
7185 clear_bit(In_sync, &rdev->flags);
7186 set_bit(Replacement, &rdev->flags);
7187 rdev->raid_disk = disk;
7188 err = 0;
7189 conf->fullsync = 1;
7190 rcu_assign_pointer(p->replacement, rdev);
7191 break;
7192 }
7193 }
5cfb22a1 7194out:
1da177e4 7195 print_raid5_conf(conf);
199050ea 7196 return err;
1da177e4
LT
7197}
7198
fd01b88c 7199static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7200{
7201 /* no resync is happening, and there is enough space
7202 * on all devices, so we can resize.
7203 * We need to make sure resync covers any new space.
7204 * If the array is shrinking we should possibly wait until
7205 * any io in the removed space completes, but it hardly seems
7206 * worth it.
7207 */
a4a6125a 7208 sector_t newsize;
3cb5edf4
N
7209 struct r5conf *conf = mddev->private;
7210
7211 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7212 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7213 if (mddev->external_size &&
7214 mddev->array_sectors > newsize)
b522adcd 7215 return -EINVAL;
a4a6125a
N
7216 if (mddev->bitmap) {
7217 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7218 if (ret)
7219 return ret;
7220 }
7221 md_set_array_sectors(mddev, newsize);
f233ea5c 7222 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7223 revalidate_disk(mddev->gendisk);
b098636c
N
7224 if (sectors > mddev->dev_sectors &&
7225 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7226 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7227 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7228 }
58c0fed4 7229 mddev->dev_sectors = sectors;
4b5c7ae8 7230 mddev->resync_max_sectors = sectors;
1da177e4
LT
7231 return 0;
7232}
7233
fd01b88c 7234static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7235{
7236 /* Can only proceed if there are plenty of stripe_heads.
7237 * We need a minimum of one full stripe,, and for sensible progress
7238 * it is best to have about 4 times that.
7239 * If we require 4 times, then the default 256 4K stripe_heads will
7240 * allow for chunk sizes up to 256K, which is probably OK.
7241 * If the chunk size is greater, user-space should request more
7242 * stripe_heads first.
7243 */
d1688a6d 7244 struct r5conf *conf = mddev->private;
01ee22b4 7245 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7246 > conf->min_nr_stripes ||
01ee22b4 7247 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7248 > conf->min_nr_stripes) {
0c55e022
N
7249 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7250 mdname(mddev),
01ee22b4
N
7251 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7252 / STRIPE_SIZE)*4);
7253 return 0;
7254 }
7255 return 1;
7256}
7257
fd01b88c 7258static int check_reshape(struct mddev *mddev)
29269553 7259{
d1688a6d 7260 struct r5conf *conf = mddev->private;
29269553 7261
88ce4930
N
7262 if (mddev->delta_disks == 0 &&
7263 mddev->new_layout == mddev->layout &&
664e7c41 7264 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7265 return 0; /* nothing to do */
674806d6 7266 if (has_failed(conf))
ec32a2bd 7267 return -EINVAL;
fdcfbbb6 7268 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7269 /* We might be able to shrink, but the devices must
7270 * be made bigger first.
7271 * For raid6, 4 is the minimum size.
7272 * Otherwise 2 is the minimum
7273 */
7274 int min = 2;
7275 if (mddev->level == 6)
7276 min = 4;
7277 if (mddev->raid_disks + mddev->delta_disks < min)
7278 return -EINVAL;
7279 }
29269553 7280
01ee22b4 7281 if (!check_stripe_cache(mddev))
29269553 7282 return -ENOSPC;
29269553 7283
738a2738
N
7284 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7285 mddev->delta_disks > 0)
7286 if (resize_chunks(conf,
7287 conf->previous_raid_disks
7288 + max(0, mddev->delta_disks),
7289 max(mddev->new_chunk_sectors,
7290 mddev->chunk_sectors)
7291 ) < 0)
7292 return -ENOMEM;
e56108d6
N
7293 return resize_stripes(conf, (conf->previous_raid_disks
7294 + mddev->delta_disks));
63c70c4f
N
7295}
7296
fd01b88c 7297static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7298{
d1688a6d 7299 struct r5conf *conf = mddev->private;
3cb03002 7300 struct md_rdev *rdev;
63c70c4f 7301 int spares = 0;
c04be0aa 7302 unsigned long flags;
63c70c4f 7303
f416885e 7304 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7305 return -EBUSY;
7306
01ee22b4
N
7307 if (!check_stripe_cache(mddev))
7308 return -ENOSPC;
7309
30b67645
N
7310 if (has_failed(conf))
7311 return -EINVAL;
7312
c6563a8c 7313 rdev_for_each(rdev, mddev) {
469518a3
N
7314 if (!test_bit(In_sync, &rdev->flags)
7315 && !test_bit(Faulty, &rdev->flags))
29269553 7316 spares++;
c6563a8c 7317 }
63c70c4f 7318
f416885e 7319 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7320 /* Not enough devices even to make a degraded array
7321 * of that size
7322 */
7323 return -EINVAL;
7324
ec32a2bd
N
7325 /* Refuse to reduce size of the array. Any reductions in
7326 * array size must be through explicit setting of array_size
7327 * attribute.
7328 */
7329 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7330 < mddev->array_sectors) {
0c55e022 7331 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7332 "before number of disks\n", mdname(mddev));
7333 return -EINVAL;
7334 }
7335
f6705578 7336 atomic_set(&conf->reshape_stripes, 0);
29269553 7337 spin_lock_irq(&conf->device_lock);
c46501b2 7338 write_seqcount_begin(&conf->gen_lock);
29269553 7339 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7340 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7341 conf->prev_chunk_sectors = conf->chunk_sectors;
7342 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7343 conf->prev_algo = conf->algorithm;
7344 conf->algorithm = mddev->new_layout;
05616be5
N
7345 conf->generation++;
7346 /* Code that selects data_offset needs to see the generation update
7347 * if reshape_progress has been set - so a memory barrier needed.
7348 */
7349 smp_mb();
2c810cdd 7350 if (mddev->reshape_backwards)
fef9c61f
N
7351 conf->reshape_progress = raid5_size(mddev, 0, 0);
7352 else
7353 conf->reshape_progress = 0;
7354 conf->reshape_safe = conf->reshape_progress;
c46501b2 7355 write_seqcount_end(&conf->gen_lock);
29269553
N
7356 spin_unlock_irq(&conf->device_lock);
7357
4d77e3ba
N
7358 /* Now make sure any requests that proceeded on the assumption
7359 * the reshape wasn't running - like Discard or Read - have
7360 * completed.
7361 */
7362 mddev_suspend(mddev);
7363 mddev_resume(mddev);
7364
29269553
N
7365 /* Add some new drives, as many as will fit.
7366 * We know there are enough to make the newly sized array work.
3424bf6a
N
7367 * Don't add devices if we are reducing the number of
7368 * devices in the array. This is because it is not possible
7369 * to correctly record the "partially reconstructed" state of
7370 * such devices during the reshape and confusion could result.
29269553 7371 */
87a8dec9 7372 if (mddev->delta_disks >= 0) {
dafb20fa 7373 rdev_for_each(rdev, mddev)
87a8dec9
N
7374 if (rdev->raid_disk < 0 &&
7375 !test_bit(Faulty, &rdev->flags)) {
7376 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7377 if (rdev->raid_disk
9d4c7d87 7378 >= conf->previous_raid_disks)
87a8dec9 7379 set_bit(In_sync, &rdev->flags);
9d4c7d87 7380 else
87a8dec9 7381 rdev->recovery_offset = 0;
36fad858
NK
7382
7383 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7384 /* Failure here is OK */;
50da0840 7385 }
87a8dec9
N
7386 } else if (rdev->raid_disk >= conf->previous_raid_disks
7387 && !test_bit(Faulty, &rdev->flags)) {
7388 /* This is a spare that was manually added */
7389 set_bit(In_sync, &rdev->flags);
87a8dec9 7390 }
29269553 7391
87a8dec9
N
7392 /* When a reshape changes the number of devices,
7393 * ->degraded is measured against the larger of the
7394 * pre and post number of devices.
7395 */
ec32a2bd 7396 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7397 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7398 spin_unlock_irqrestore(&conf->device_lock, flags);
7399 }
63c70c4f 7400 mddev->raid_disks = conf->raid_disks;
e516402c 7401 mddev->reshape_position = conf->reshape_progress;
850b2b42 7402 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7403
29269553
N
7404 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7405 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7406 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7407 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7408 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7409 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7410 "reshape");
29269553
N
7411 if (!mddev->sync_thread) {
7412 mddev->recovery = 0;
7413 spin_lock_irq(&conf->device_lock);
ba8805b9 7414 write_seqcount_begin(&conf->gen_lock);
29269553 7415 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7416 mddev->new_chunk_sectors =
7417 conf->chunk_sectors = conf->prev_chunk_sectors;
7418 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7419 rdev_for_each(rdev, mddev)
7420 rdev->new_data_offset = rdev->data_offset;
7421 smp_wmb();
ba8805b9 7422 conf->generation --;
fef9c61f 7423 conf->reshape_progress = MaxSector;
1e3fa9bd 7424 mddev->reshape_position = MaxSector;
ba8805b9 7425 write_seqcount_end(&conf->gen_lock);
29269553
N
7426 spin_unlock_irq(&conf->device_lock);
7427 return -EAGAIN;
7428 }
c8f517c4 7429 conf->reshape_checkpoint = jiffies;
29269553
N
7430 md_wakeup_thread(mddev->sync_thread);
7431 md_new_event(mddev);
7432 return 0;
7433}
29269553 7434
ec32a2bd
N
7435/* This is called from the reshape thread and should make any
7436 * changes needed in 'conf'
7437 */
d1688a6d 7438static void end_reshape(struct r5conf *conf)
29269553 7439{
29269553 7440
f6705578 7441 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7442 struct md_rdev *rdev;
f6705578 7443
f6705578 7444 spin_lock_irq(&conf->device_lock);
cea9c228 7445 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7446 rdev_for_each(rdev, conf->mddev)
7447 rdev->data_offset = rdev->new_data_offset;
7448 smp_wmb();
fef9c61f 7449 conf->reshape_progress = MaxSector;
6cbd8148 7450 conf->mddev->reshape_position = MaxSector;
f6705578 7451 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7452 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7453
7454 /* read-ahead size must cover two whole stripes, which is
7455 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7456 */
4a5add49 7457 if (conf->mddev->queue) {
cea9c228 7458 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7459 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7460 / PAGE_SIZE);
16a53ecc
N
7461 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7462 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7463 }
29269553 7464 }
29269553
N
7465}
7466
ec32a2bd
N
7467/* This is called from the raid5d thread with mddev_lock held.
7468 * It makes config changes to the device.
7469 */
fd01b88c 7470static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7471{
d1688a6d 7472 struct r5conf *conf = mddev->private;
cea9c228
N
7473
7474 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7475
ec32a2bd
N
7476 if (mddev->delta_disks > 0) {
7477 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7478 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7479 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7480 } else {
7481 int d;
908f4fbd
N
7482 spin_lock_irq(&conf->device_lock);
7483 mddev->degraded = calc_degraded(conf);
7484 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7485 for (d = conf->raid_disks ;
7486 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7487 d++) {
3cb03002 7488 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7489 if (rdev)
7490 clear_bit(In_sync, &rdev->flags);
7491 rdev = conf->disks[d].replacement;
7492 if (rdev)
7493 clear_bit(In_sync, &rdev->flags);
1a67dde0 7494 }
cea9c228 7495 }
88ce4930 7496 mddev->layout = conf->algorithm;
09c9e5fa 7497 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7498 mddev->reshape_position = MaxSector;
7499 mddev->delta_disks = 0;
2c810cdd 7500 mddev->reshape_backwards = 0;
cea9c228
N
7501 }
7502}
7503
fd01b88c 7504static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7505{
d1688a6d 7506 struct r5conf *conf = mddev->private;
72626685
N
7507
7508 switch(state) {
e464eafd
N
7509 case 2: /* resume for a suspend */
7510 wake_up(&conf->wait_for_overlap);
7511 break;
7512
72626685 7513 case 1: /* stop all writes */
566c09c5 7514 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7515 /* '2' tells resync/reshape to pause so that all
7516 * active stripes can drain
7517 */
7518 conf->quiesce = 2;
b1b46486 7519 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7520 atomic_read(&conf->active_stripes) == 0 &&
7521 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7522 unlock_all_device_hash_locks_irq(conf),
7523 lock_all_device_hash_locks_irq(conf));
64bd660b 7524 conf->quiesce = 1;
566c09c5 7525 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7526 /* allow reshape to continue */
7527 wake_up(&conf->wait_for_overlap);
72626685
N
7528 break;
7529
7530 case 0: /* re-enable writes */
566c09c5 7531 lock_all_device_hash_locks_irq(conf);
72626685 7532 conf->quiesce = 0;
b1b46486 7533 wake_up(&conf->wait_for_quiescent);
e464eafd 7534 wake_up(&conf->wait_for_overlap);
566c09c5 7535 unlock_all_device_hash_locks_irq(conf);
72626685
N
7536 break;
7537 }
72626685 7538}
b15c2e57 7539
fd01b88c 7540static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7541{
e373ab10 7542 struct r0conf *raid0_conf = mddev->private;
d76c8420 7543 sector_t sectors;
54071b38 7544
f1b29bca 7545 /* for raid0 takeover only one zone is supported */
e373ab10 7546 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7547 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7548 mdname(mddev));
f1b29bca
DW
7549 return ERR_PTR(-EINVAL);
7550 }
7551
e373ab10
N
7552 sectors = raid0_conf->strip_zone[0].zone_end;
7553 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7554 mddev->dev_sectors = sectors;
f1b29bca 7555 mddev->new_level = level;
54071b38
TM
7556 mddev->new_layout = ALGORITHM_PARITY_N;
7557 mddev->new_chunk_sectors = mddev->chunk_sectors;
7558 mddev->raid_disks += 1;
7559 mddev->delta_disks = 1;
7560 /* make sure it will be not marked as dirty */
7561 mddev->recovery_cp = MaxSector;
7562
7563 return setup_conf(mddev);
7564}
7565
fd01b88c 7566static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7567{
7568 int chunksect;
7569
7570 if (mddev->raid_disks != 2 ||
7571 mddev->degraded > 1)
7572 return ERR_PTR(-EINVAL);
7573
7574 /* Should check if there are write-behind devices? */
7575
7576 chunksect = 64*2; /* 64K by default */
7577
7578 /* The array must be an exact multiple of chunksize */
7579 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7580 chunksect >>= 1;
7581
7582 if ((chunksect<<9) < STRIPE_SIZE)
7583 /* array size does not allow a suitable chunk size */
7584 return ERR_PTR(-EINVAL);
7585
7586 mddev->new_level = 5;
7587 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7588 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7589
7590 return setup_conf(mddev);
7591}
7592
fd01b88c 7593static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7594{
7595 int new_layout;
7596
7597 switch (mddev->layout) {
7598 case ALGORITHM_LEFT_ASYMMETRIC_6:
7599 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7600 break;
7601 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7602 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7603 break;
7604 case ALGORITHM_LEFT_SYMMETRIC_6:
7605 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7606 break;
7607 case ALGORITHM_RIGHT_SYMMETRIC_6:
7608 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7609 break;
7610 case ALGORITHM_PARITY_0_6:
7611 new_layout = ALGORITHM_PARITY_0;
7612 break;
7613 case ALGORITHM_PARITY_N:
7614 new_layout = ALGORITHM_PARITY_N;
7615 break;
7616 default:
7617 return ERR_PTR(-EINVAL);
7618 }
7619 mddev->new_level = 5;
7620 mddev->new_layout = new_layout;
7621 mddev->delta_disks = -1;
7622 mddev->raid_disks -= 1;
7623 return setup_conf(mddev);
7624}
7625
fd01b88c 7626static int raid5_check_reshape(struct mddev *mddev)
b3546035 7627{
88ce4930
N
7628 /* For a 2-drive array, the layout and chunk size can be changed
7629 * immediately as not restriping is needed.
7630 * For larger arrays we record the new value - after validation
7631 * to be used by a reshape pass.
b3546035 7632 */
d1688a6d 7633 struct r5conf *conf = mddev->private;
597a711b 7634 int new_chunk = mddev->new_chunk_sectors;
b3546035 7635
597a711b 7636 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7637 return -EINVAL;
7638 if (new_chunk > 0) {
0ba459d2 7639 if (!is_power_of_2(new_chunk))
b3546035 7640 return -EINVAL;
597a711b 7641 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7642 return -EINVAL;
597a711b 7643 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7644 /* not factor of array size */
7645 return -EINVAL;
7646 }
7647
7648 /* They look valid */
7649
88ce4930 7650 if (mddev->raid_disks == 2) {
597a711b
N
7651 /* can make the change immediately */
7652 if (mddev->new_layout >= 0) {
7653 conf->algorithm = mddev->new_layout;
7654 mddev->layout = mddev->new_layout;
88ce4930
N
7655 }
7656 if (new_chunk > 0) {
597a711b
N
7657 conf->chunk_sectors = new_chunk ;
7658 mddev->chunk_sectors = new_chunk;
88ce4930
N
7659 }
7660 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7661 md_wakeup_thread(mddev->thread);
b3546035 7662 }
50ac168a 7663 return check_reshape(mddev);
88ce4930
N
7664}
7665
fd01b88c 7666static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7667{
597a711b 7668 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7669
597a711b 7670 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7671 return -EINVAL;
b3546035 7672 if (new_chunk > 0) {
0ba459d2 7673 if (!is_power_of_2(new_chunk))
88ce4930 7674 return -EINVAL;
597a711b 7675 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7676 return -EINVAL;
597a711b 7677 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7678 /* not factor of array size */
7679 return -EINVAL;
b3546035 7680 }
88ce4930
N
7681
7682 /* They look valid */
50ac168a 7683 return check_reshape(mddev);
b3546035
N
7684}
7685
fd01b88c 7686static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7687{
7688 /* raid5 can take over:
f1b29bca 7689 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7690 * raid1 - if there are two drives. We need to know the chunk size
7691 * raid4 - trivial - just use a raid4 layout.
7692 * raid6 - Providing it is a *_6 layout
d562b0c4 7693 */
f1b29bca
DW
7694 if (mddev->level == 0)
7695 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7696 if (mddev->level == 1)
7697 return raid5_takeover_raid1(mddev);
e9d4758f
N
7698 if (mddev->level == 4) {
7699 mddev->new_layout = ALGORITHM_PARITY_N;
7700 mddev->new_level = 5;
7701 return setup_conf(mddev);
7702 }
fc9739c6
N
7703 if (mddev->level == 6)
7704 return raid5_takeover_raid6(mddev);
d562b0c4
N
7705
7706 return ERR_PTR(-EINVAL);
7707}
7708
fd01b88c 7709static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7710{
f1b29bca
DW
7711 /* raid4 can take over:
7712 * raid0 - if there is only one strip zone
7713 * raid5 - if layout is right
a78d38a1 7714 */
f1b29bca
DW
7715 if (mddev->level == 0)
7716 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7717 if (mddev->level == 5 &&
7718 mddev->layout == ALGORITHM_PARITY_N) {
7719 mddev->new_layout = 0;
7720 mddev->new_level = 4;
7721 return setup_conf(mddev);
7722 }
7723 return ERR_PTR(-EINVAL);
7724}
d562b0c4 7725
84fc4b56 7726static struct md_personality raid5_personality;
245f46c2 7727
fd01b88c 7728static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7729{
7730 /* Currently can only take over a raid5. We map the
7731 * personality to an equivalent raid6 personality
7732 * with the Q block at the end.
7733 */
7734 int new_layout;
7735
7736 if (mddev->pers != &raid5_personality)
7737 return ERR_PTR(-EINVAL);
7738 if (mddev->degraded > 1)
7739 return ERR_PTR(-EINVAL);
7740 if (mddev->raid_disks > 253)
7741 return ERR_PTR(-EINVAL);
7742 if (mddev->raid_disks < 3)
7743 return ERR_PTR(-EINVAL);
7744
7745 switch (mddev->layout) {
7746 case ALGORITHM_LEFT_ASYMMETRIC:
7747 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7748 break;
7749 case ALGORITHM_RIGHT_ASYMMETRIC:
7750 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7751 break;
7752 case ALGORITHM_LEFT_SYMMETRIC:
7753 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7754 break;
7755 case ALGORITHM_RIGHT_SYMMETRIC:
7756 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7757 break;
7758 case ALGORITHM_PARITY_0:
7759 new_layout = ALGORITHM_PARITY_0_6;
7760 break;
7761 case ALGORITHM_PARITY_N:
7762 new_layout = ALGORITHM_PARITY_N;
7763 break;
7764 default:
7765 return ERR_PTR(-EINVAL);
7766 }
7767 mddev->new_level = 6;
7768 mddev->new_layout = new_layout;
7769 mddev->delta_disks = 1;
7770 mddev->raid_disks += 1;
7771 return setup_conf(mddev);
7772}
7773
84fc4b56 7774static struct md_personality raid6_personality =
16a53ecc
N
7775{
7776 .name = "raid6",
7777 .level = 6,
7778 .owner = THIS_MODULE,
7779 .make_request = make_request,
7780 .run = run,
afa0f557 7781 .free = raid5_free,
16a53ecc
N
7782 .status = status,
7783 .error_handler = error,
7784 .hot_add_disk = raid5_add_disk,
7785 .hot_remove_disk= raid5_remove_disk,
7786 .spare_active = raid5_spare_active,
7787 .sync_request = sync_request,
7788 .resize = raid5_resize,
80c3a6ce 7789 .size = raid5_size,
50ac168a 7790 .check_reshape = raid6_check_reshape,
f416885e 7791 .start_reshape = raid5_start_reshape,
cea9c228 7792 .finish_reshape = raid5_finish_reshape,
16a53ecc 7793 .quiesce = raid5_quiesce,
245f46c2 7794 .takeover = raid6_takeover,
5c675f83 7795 .congested = raid5_congested,
16a53ecc 7796};
84fc4b56 7797static struct md_personality raid5_personality =
1da177e4
LT
7798{
7799 .name = "raid5",
2604b703 7800 .level = 5,
1da177e4
LT
7801 .owner = THIS_MODULE,
7802 .make_request = make_request,
7803 .run = run,
afa0f557 7804 .free = raid5_free,
1da177e4
LT
7805 .status = status,
7806 .error_handler = error,
7807 .hot_add_disk = raid5_add_disk,
7808 .hot_remove_disk= raid5_remove_disk,
7809 .spare_active = raid5_spare_active,
7810 .sync_request = sync_request,
7811 .resize = raid5_resize,
80c3a6ce 7812 .size = raid5_size,
63c70c4f
N
7813 .check_reshape = raid5_check_reshape,
7814 .start_reshape = raid5_start_reshape,
cea9c228 7815 .finish_reshape = raid5_finish_reshape,
72626685 7816 .quiesce = raid5_quiesce,
d562b0c4 7817 .takeover = raid5_takeover,
5c675f83 7818 .congested = raid5_congested,
1da177e4
LT
7819};
7820
84fc4b56 7821static struct md_personality raid4_personality =
1da177e4 7822{
2604b703
N
7823 .name = "raid4",
7824 .level = 4,
7825 .owner = THIS_MODULE,
7826 .make_request = make_request,
7827 .run = run,
afa0f557 7828 .free = raid5_free,
2604b703
N
7829 .status = status,
7830 .error_handler = error,
7831 .hot_add_disk = raid5_add_disk,
7832 .hot_remove_disk= raid5_remove_disk,
7833 .spare_active = raid5_spare_active,
7834 .sync_request = sync_request,
7835 .resize = raid5_resize,
80c3a6ce 7836 .size = raid5_size,
3d37890b
N
7837 .check_reshape = raid5_check_reshape,
7838 .start_reshape = raid5_start_reshape,
cea9c228 7839 .finish_reshape = raid5_finish_reshape,
2604b703 7840 .quiesce = raid5_quiesce,
a78d38a1 7841 .takeover = raid4_takeover,
5c675f83 7842 .congested = raid5_congested,
2604b703
N
7843};
7844
7845static int __init raid5_init(void)
7846{
851c30c9
SL
7847 raid5_wq = alloc_workqueue("raid5wq",
7848 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7849 if (!raid5_wq)
7850 return -ENOMEM;
16a53ecc 7851 register_md_personality(&raid6_personality);
2604b703
N
7852 register_md_personality(&raid5_personality);
7853 register_md_personality(&raid4_personality);
7854 return 0;
1da177e4
LT
7855}
7856
2604b703 7857static void raid5_exit(void)
1da177e4 7858{
16a53ecc 7859 unregister_md_personality(&raid6_personality);
2604b703
N
7860 unregister_md_personality(&raid5_personality);
7861 unregister_md_personality(&raid4_personality);
851c30c9 7862 destroy_workqueue(raid5_wq);
1da177e4
LT
7863}
7864
7865module_init(raid5_init);
7866module_exit(raid5_exit);
7867MODULE_LICENSE("GPL");
0efb9e61 7868MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7869MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7870MODULE_ALIAS("md-raid5");
7871MODULE_ALIAS("md-raid4");
2604b703
N
7872MODULE_ALIAS("md-level-5");
7873MODULE_ALIAS("md-level-4");
16a53ecc
N
7874MODULE_ALIAS("md-personality-8"); /* RAID6 */
7875MODULE_ALIAS("md-raid6");
7876MODULE_ALIAS("md-level-6");
7877
7878/* This used to be two separate modules, they were: */
7879MODULE_ALIAS("raid5");
7880MODULE_ALIAS("raid6");