md/raid5: call bio_endio() directly rather than queueing for later.
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
3f07c014
IM
58#include <linux/sched/signal.h>
59
a9add5d9 60#include <trace/events/block.h>
aaf9f12e 61#include <linux/list_sort.h>
a9add5d9 62
43b2e5d8 63#include "md.h"
bff61975 64#include "raid5.h"
54071b38 65#include "raid0.h"
ef740c37 66#include "bitmap.h"
ff875738 67#include "raid5-log.h"
72626685 68
394ed8e4
SL
69#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70
851c30c9
SL
71#define cpu_to_group(cpu) cpu_to_node(cpu)
72#define ANY_GROUP NUMA_NO_NODE
73
8e0e99ba
N
74static bool devices_handle_discard_safely = false;
75module_param(devices_handle_discard_safely, bool, 0644);
76MODULE_PARM_DESC(devices_handle_discard_safely,
77 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 78static struct workqueue_struct *raid5_wq;
1da177e4 79
d1688a6d 80static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
81{
82 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 return &conf->stripe_hashtbl[hash];
84}
1da177e4 85
566c09c5
SL
86static inline int stripe_hash_locks_hash(sector_t sect)
87{
88 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89}
90
91static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92{
93 spin_lock_irq(conf->hash_locks + hash);
94 spin_lock(&conf->device_lock);
95}
96
97static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98{
99 spin_unlock(&conf->device_lock);
100 spin_unlock_irq(conf->hash_locks + hash);
101}
102
103static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104{
105 int i;
106 local_irq_disable();
107 spin_lock(conf->hash_locks);
108 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
109 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
110 spin_lock(&conf->device_lock);
111}
112
113static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
114{
115 int i;
116 spin_unlock(&conf->device_lock);
117 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
118 spin_unlock(conf->hash_locks + i - 1);
119 local_irq_enable();
120}
121
d0dabf7e
N
122/* Find first data disk in a raid6 stripe */
123static inline int raid6_d0(struct stripe_head *sh)
124{
67cc2b81
N
125 if (sh->ddf_layout)
126 /* ddf always start from first device */
127 return 0;
128 /* md starts just after Q block */
d0dabf7e
N
129 if (sh->qd_idx == sh->disks - 1)
130 return 0;
131 else
132 return sh->qd_idx + 1;
133}
16a53ecc
N
134static inline int raid6_next_disk(int disk, int raid_disks)
135{
136 disk++;
137 return (disk < raid_disks) ? disk : 0;
138}
a4456856 139
d0dabf7e
N
140/* When walking through the disks in a raid5, starting at raid6_d0,
141 * We need to map each disk to a 'slot', where the data disks are slot
142 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
143 * is raid_disks-1. This help does that mapping.
144 */
67cc2b81
N
145static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
146 int *count, int syndrome_disks)
d0dabf7e 147{
6629542e 148 int slot = *count;
67cc2b81 149
e4424fee 150 if (sh->ddf_layout)
6629542e 151 (*count)++;
d0dabf7e 152 if (idx == sh->pd_idx)
67cc2b81 153 return syndrome_disks;
d0dabf7e 154 if (idx == sh->qd_idx)
67cc2b81 155 return syndrome_disks + 1;
e4424fee 156 if (!sh->ddf_layout)
6629542e 157 (*count)++;
d0dabf7e
N
158 return slot;
159}
160
d1688a6d 161static void print_raid5_conf (struct r5conf *conf);
1da177e4 162
600aa109
DW
163static int stripe_operations_active(struct stripe_head *sh)
164{
165 return sh->check_state || sh->reconstruct_state ||
166 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
167 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
168}
169
535ae4eb
SL
170static bool stripe_is_lowprio(struct stripe_head *sh)
171{
172 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
173 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
174 !test_bit(STRIPE_R5C_CACHING, &sh->state);
175}
176
851c30c9
SL
177static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
178{
179 struct r5conf *conf = sh->raid_conf;
180 struct r5worker_group *group;
bfc90cb0 181 int thread_cnt;
851c30c9
SL
182 int i, cpu = sh->cpu;
183
184 if (!cpu_online(cpu)) {
185 cpu = cpumask_any(cpu_online_mask);
186 sh->cpu = cpu;
187 }
188
189 if (list_empty(&sh->lru)) {
190 struct r5worker_group *group;
191 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
192 if (stripe_is_lowprio(sh))
193 list_add_tail(&sh->lru, &group->loprio_list);
194 else
195 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
196 group->stripes_cnt++;
197 sh->group = group;
851c30c9
SL
198 }
199
200 if (conf->worker_cnt_per_group == 0) {
201 md_wakeup_thread(conf->mddev->thread);
202 return;
203 }
204
205 group = conf->worker_groups + cpu_to_group(sh->cpu);
206
bfc90cb0
SL
207 group->workers[0].working = true;
208 /* at least one worker should run to avoid race */
209 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
210
211 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
212 /* wakeup more workers */
213 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
214 if (group->workers[i].working == false) {
215 group->workers[i].working = true;
216 queue_work_on(sh->cpu, raid5_wq,
217 &group->workers[i].work);
218 thread_cnt--;
219 }
220 }
851c30c9
SL
221}
222
566c09c5
SL
223static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
224 struct list_head *temp_inactive_list)
1da177e4 225{
1e6d690b
SL
226 int i;
227 int injournal = 0; /* number of date pages with R5_InJournal */
228
4eb788df
SL
229 BUG_ON(!list_empty(&sh->lru));
230 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
231
232 if (r5c_is_writeback(conf->log))
233 for (i = sh->disks; i--; )
234 if (test_bit(R5_InJournal, &sh->dev[i].flags))
235 injournal++;
a39f7afd
SL
236 /*
237 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
238 * data in journal, so they are not released to cached lists
239 */
240 if (conf->quiesce && r5c_is_writeback(conf->log) &&
241 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
242 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
243 r5c_make_stripe_write_out(sh);
244 set_bit(STRIPE_HANDLE, &sh->state);
245 }
1e6d690b 246
4eb788df
SL
247 if (test_bit(STRIPE_HANDLE, &sh->state)) {
248 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 249 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 250 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 251 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
252 sh->bm_seq - conf->seq_write > 0)
253 list_add_tail(&sh->lru, &conf->bitmap_list);
254 else {
255 clear_bit(STRIPE_DELAYED, &sh->state);
256 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 257 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
258 if (stripe_is_lowprio(sh))
259 list_add_tail(&sh->lru,
260 &conf->loprio_list);
261 else
262 list_add_tail(&sh->lru,
263 &conf->handle_list);
851c30c9
SL
264 } else {
265 raid5_wakeup_stripe_thread(sh);
266 return;
267 }
4eb788df
SL
268 }
269 md_wakeup_thread(conf->mddev->thread);
270 } else {
271 BUG_ON(stripe_operations_active(sh));
272 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
273 if (atomic_dec_return(&conf->preread_active_stripes)
274 < IO_THRESHOLD)
275 md_wakeup_thread(conf->mddev->thread);
276 atomic_dec(&conf->active_stripes);
1e6d690b
SL
277 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
278 if (!r5c_is_writeback(conf->log))
279 list_add_tail(&sh->lru, temp_inactive_list);
280 else {
281 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
282 if (injournal == 0)
283 list_add_tail(&sh->lru, temp_inactive_list);
284 else if (injournal == conf->raid_disks - conf->max_degraded) {
285 /* full stripe */
286 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
287 atomic_inc(&conf->r5c_cached_full_stripes);
288 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
289 atomic_dec(&conf->r5c_cached_partial_stripes);
290 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 291 r5c_check_cached_full_stripe(conf);
03b047f4
SL
292 } else
293 /*
294 * STRIPE_R5C_PARTIAL_STRIPE is set in
295 * r5c_try_caching_write(). No need to
296 * set it again.
297 */
1e6d690b 298 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
299 }
300 }
1da177e4
LT
301 }
302}
d0dabf7e 303
566c09c5
SL
304static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
305 struct list_head *temp_inactive_list)
4eb788df
SL
306{
307 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
308 do_release_stripe(conf, sh, temp_inactive_list);
309}
310
311/*
312 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
313 *
314 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
315 * given time. Adding stripes only takes device lock, while deleting stripes
316 * only takes hash lock.
317 */
318static void release_inactive_stripe_list(struct r5conf *conf,
319 struct list_head *temp_inactive_list,
320 int hash)
321{
322 int size;
6ab2a4b8 323 bool do_wakeup = false;
566c09c5
SL
324 unsigned long flags;
325
326 if (hash == NR_STRIPE_HASH_LOCKS) {
327 size = NR_STRIPE_HASH_LOCKS;
328 hash = NR_STRIPE_HASH_LOCKS - 1;
329 } else
330 size = 1;
331 while (size) {
332 struct list_head *list = &temp_inactive_list[size - 1];
333
334 /*
6d036f7d 335 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
336 * remove stripes from the list
337 */
338 if (!list_empty_careful(list)) {
339 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
340 if (list_empty(conf->inactive_list + hash) &&
341 !list_empty(list))
342 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 343 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 344 do_wakeup = true;
566c09c5
SL
345 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
346 }
347 size--;
348 hash--;
349 }
350
351 if (do_wakeup) {
6ab2a4b8 352 wake_up(&conf->wait_for_stripe);
b1b46486
YL
353 if (atomic_read(&conf->active_stripes) == 0)
354 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
355 if (conf->retry_read_aligned)
356 md_wakeup_thread(conf->mddev->thread);
357 }
4eb788df
SL
358}
359
773ca82f 360/* should hold conf->device_lock already */
566c09c5
SL
361static int release_stripe_list(struct r5conf *conf,
362 struct list_head *temp_inactive_list)
773ca82f 363{
eae8263f 364 struct stripe_head *sh, *t;
773ca82f
SL
365 int count = 0;
366 struct llist_node *head;
367
368 head = llist_del_all(&conf->released_stripes);
d265d9dc 369 head = llist_reverse_order(head);
eae8263f 370 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
371 int hash;
372
773ca82f
SL
373 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
374 smp_mb();
375 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
376 /*
377 * Don't worry the bit is set here, because if the bit is set
378 * again, the count is always > 1. This is true for
379 * STRIPE_ON_UNPLUG_LIST bit too.
380 */
566c09c5
SL
381 hash = sh->hash_lock_index;
382 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
383 count++;
384 }
385
386 return count;
387}
388
6d036f7d 389void raid5_release_stripe(struct stripe_head *sh)
1da177e4 390{
d1688a6d 391 struct r5conf *conf = sh->raid_conf;
1da177e4 392 unsigned long flags;
566c09c5
SL
393 struct list_head list;
394 int hash;
773ca82f 395 bool wakeup;
16a53ecc 396
cf170f3f
ES
397 /* Avoid release_list until the last reference.
398 */
399 if (atomic_add_unless(&sh->count, -1, 1))
400 return;
401
ad4068de 402 if (unlikely(!conf->mddev->thread) ||
403 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
404 goto slow_path;
405 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
406 if (wakeup)
407 md_wakeup_thread(conf->mddev->thread);
408 return;
409slow_path:
4eb788df 410 local_irq_save(flags);
773ca82f 411 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 412 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
413 INIT_LIST_HEAD(&list);
414 hash = sh->hash_lock_index;
415 do_release_stripe(conf, sh, &list);
4eb788df 416 spin_unlock(&conf->device_lock);
566c09c5 417 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
418 }
419 local_irq_restore(flags);
1da177e4
LT
420}
421
fccddba0 422static inline void remove_hash(struct stripe_head *sh)
1da177e4 423{
45b4233c
DW
424 pr_debug("remove_hash(), stripe %llu\n",
425 (unsigned long long)sh->sector);
1da177e4 426
fccddba0 427 hlist_del_init(&sh->hash);
1da177e4
LT
428}
429
d1688a6d 430static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 431{
fccddba0 432 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 433
45b4233c
DW
434 pr_debug("insert_hash(), stripe %llu\n",
435 (unsigned long long)sh->sector);
1da177e4 436
fccddba0 437 hlist_add_head(&sh->hash, hp);
1da177e4
LT
438}
439
1da177e4 440/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 441static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
442{
443 struct stripe_head *sh = NULL;
444 struct list_head *first;
445
566c09c5 446 if (list_empty(conf->inactive_list + hash))
1da177e4 447 goto out;
566c09c5 448 first = (conf->inactive_list + hash)->next;
1da177e4
LT
449 sh = list_entry(first, struct stripe_head, lru);
450 list_del_init(first);
451 remove_hash(sh);
452 atomic_inc(&conf->active_stripes);
566c09c5 453 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
454 if (list_empty(conf->inactive_list + hash))
455 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
456out:
457 return sh;
458}
459
e4e11e38 460static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
461{
462 struct page *p;
463 int i;
e4e11e38 464 int num = sh->raid_conf->pool_size;
1da177e4 465
e4e11e38 466 for (i = 0; i < num ; i++) {
d592a996 467 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
468 p = sh->dev[i].page;
469 if (!p)
470 continue;
471 sh->dev[i].page = NULL;
2d1f3b5d 472 put_page(p);
1da177e4 473 }
3418d036
AP
474
475 if (sh->ppl_page) {
476 put_page(sh->ppl_page);
477 sh->ppl_page = NULL;
478 }
1da177e4
LT
479}
480
a9683a79 481static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
482{
483 int i;
e4e11e38 484 int num = sh->raid_conf->pool_size;
1da177e4 485
e4e11e38 486 for (i = 0; i < num; i++) {
1da177e4
LT
487 struct page *page;
488
a9683a79 489 if (!(page = alloc_page(gfp))) {
1da177e4
LT
490 return 1;
491 }
492 sh->dev[i].page = page;
d592a996 493 sh->dev[i].orig_page = page;
1da177e4 494 }
3418d036
AP
495
496 if (raid5_has_ppl(sh->raid_conf)) {
497 sh->ppl_page = alloc_page(gfp);
498 if (!sh->ppl_page)
499 return 1;
500 }
501
1da177e4
LT
502 return 0;
503}
504
784052ec 505static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 506static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 507 struct stripe_head *sh);
1da177e4 508
b5663ba4 509static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 510{
d1688a6d 511 struct r5conf *conf = sh->raid_conf;
566c09c5 512 int i, seq;
1da177e4 513
78bafebd
ES
514 BUG_ON(atomic_read(&sh->count) != 0);
515 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 516 BUG_ON(stripe_operations_active(sh));
59fc630b 517 BUG_ON(sh->batch_head);
d84e0f10 518
45b4233c 519 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 520 (unsigned long long)sector);
566c09c5
SL
521retry:
522 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 523 sh->generation = conf->generation - previous;
b5663ba4 524 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 525 sh->sector = sector;
911d4ee8 526 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
527 sh->state = 0;
528
7ecaa1e6 529 for (i = sh->disks; i--; ) {
1da177e4
LT
530 struct r5dev *dev = &sh->dev[i];
531
d84e0f10 532 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 533 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 534 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 535 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 536 dev->read, dev->towrite, dev->written,
1da177e4 537 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 538 WARN_ON(1);
1da177e4
LT
539 }
540 dev->flags = 0;
784052ec 541 raid5_build_block(sh, i, previous);
1da177e4 542 }
566c09c5
SL
543 if (read_seqcount_retry(&conf->gen_lock, seq))
544 goto retry;
7a87f434 545 sh->overwrite_disks = 0;
1da177e4 546 insert_hash(conf, sh);
851c30c9 547 sh->cpu = smp_processor_id();
da41ba65 548 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
549}
550
d1688a6d 551static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 552 short generation)
1da177e4
LT
553{
554 struct stripe_head *sh;
555
45b4233c 556 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 557 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 558 if (sh->sector == sector && sh->generation == generation)
1da177e4 559 return sh;
45b4233c 560 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
561 return NULL;
562}
563
674806d6
N
564/*
565 * Need to check if array has failed when deciding whether to:
566 * - start an array
567 * - remove non-faulty devices
568 * - add a spare
569 * - allow a reshape
570 * This determination is simple when no reshape is happening.
571 * However if there is a reshape, we need to carefully check
572 * both the before and after sections.
573 * This is because some failed devices may only affect one
574 * of the two sections, and some non-in_sync devices may
575 * be insync in the section most affected by failed devices.
576 */
2e38a37f 577int raid5_calc_degraded(struct r5conf *conf)
674806d6 578{
908f4fbd 579 int degraded, degraded2;
674806d6 580 int i;
674806d6
N
581
582 rcu_read_lock();
583 degraded = 0;
584 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 585 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
586 if (rdev && test_bit(Faulty, &rdev->flags))
587 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
588 if (!rdev || test_bit(Faulty, &rdev->flags))
589 degraded++;
590 else if (test_bit(In_sync, &rdev->flags))
591 ;
592 else
593 /* not in-sync or faulty.
594 * If the reshape increases the number of devices,
595 * this is being recovered by the reshape, so
596 * this 'previous' section is not in_sync.
597 * If the number of devices is being reduced however,
598 * the device can only be part of the array if
599 * we are reverting a reshape, so this section will
600 * be in-sync.
601 */
602 if (conf->raid_disks >= conf->previous_raid_disks)
603 degraded++;
604 }
605 rcu_read_unlock();
908f4fbd
N
606 if (conf->raid_disks == conf->previous_raid_disks)
607 return degraded;
674806d6 608 rcu_read_lock();
908f4fbd 609 degraded2 = 0;
674806d6 610 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 611 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
612 if (rdev && test_bit(Faulty, &rdev->flags))
613 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 614 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 615 degraded2++;
674806d6
N
616 else if (test_bit(In_sync, &rdev->flags))
617 ;
618 else
619 /* not in-sync or faulty.
620 * If reshape increases the number of devices, this
621 * section has already been recovered, else it
622 * almost certainly hasn't.
623 */
624 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 625 degraded2++;
674806d6
N
626 }
627 rcu_read_unlock();
908f4fbd
N
628 if (degraded2 > degraded)
629 return degraded2;
630 return degraded;
631}
632
633static int has_failed(struct r5conf *conf)
634{
635 int degraded;
636
637 if (conf->mddev->reshape_position == MaxSector)
638 return conf->mddev->degraded > conf->max_degraded;
639
2e38a37f 640 degraded = raid5_calc_degraded(conf);
674806d6
N
641 if (degraded > conf->max_degraded)
642 return 1;
643 return 0;
644}
645
6d036f7d
SL
646struct stripe_head *
647raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
648 int previous, int noblock, int noquiesce)
1da177e4
LT
649{
650 struct stripe_head *sh;
566c09c5 651 int hash = stripe_hash_locks_hash(sector);
ff00d3b4 652 int inc_empty_inactive_list_flag;
1da177e4 653
45b4233c 654 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 655
566c09c5 656 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
657
658 do {
b1b46486 659 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 660 conf->quiesce == 0 || noquiesce,
566c09c5 661 *(conf->hash_locks + hash));
86b42c71 662 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 663 if (!sh) {
edbe83ab 664 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 665 sh = get_free_stripe(conf, hash);
713bc5c2
SL
666 if (!sh && !test_bit(R5_DID_ALLOC,
667 &conf->cache_state))
edbe83ab
N
668 set_bit(R5_ALLOC_MORE,
669 &conf->cache_state);
670 }
1da177e4
LT
671 if (noblock && sh == NULL)
672 break;
a39f7afd
SL
673
674 r5c_check_stripe_cache_usage(conf);
1da177e4 675 if (!sh) {
5423399a
N
676 set_bit(R5_INACTIVE_BLOCKED,
677 &conf->cache_state);
a39f7afd 678 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
679 wait_event_lock_irq(
680 conf->wait_for_stripe,
566c09c5
SL
681 !list_empty(conf->inactive_list + hash) &&
682 (atomic_read(&conf->active_stripes)
683 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
684 || !test_bit(R5_INACTIVE_BLOCKED,
685 &conf->cache_state)),
6ab2a4b8 686 *(conf->hash_locks + hash));
5423399a
N
687 clear_bit(R5_INACTIVE_BLOCKED,
688 &conf->cache_state);
7da9d450 689 } else {
b5663ba4 690 init_stripe(sh, sector, previous);
7da9d450
N
691 atomic_inc(&sh->count);
692 }
e240c183 693 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 694 spin_lock(&conf->device_lock);
e240c183 695 if (!atomic_read(&sh->count)) {
1da177e4
LT
696 if (!test_bit(STRIPE_HANDLE, &sh->state))
697 atomic_inc(&conf->active_stripes);
5af9bef7
N
698 BUG_ON(list_empty(&sh->lru) &&
699 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
700 inc_empty_inactive_list_flag = 0;
701 if (!list_empty(conf->inactive_list + hash))
702 inc_empty_inactive_list_flag = 1;
16a53ecc 703 list_del_init(&sh->lru);
ff00d3b4
ZL
704 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
705 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
706 if (sh->group) {
707 sh->group->stripes_cnt--;
708 sh->group = NULL;
709 }
1da177e4 710 }
7da9d450 711 atomic_inc(&sh->count);
6d183de4 712 spin_unlock(&conf->device_lock);
1da177e4
LT
713 }
714 } while (sh == NULL);
715
566c09c5 716 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
717 return sh;
718}
719
7a87f434 720static bool is_full_stripe_write(struct stripe_head *sh)
721{
722 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
723 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
724}
725
59fc630b 726static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
727{
728 local_irq_disable();
729 if (sh1 > sh2) {
730 spin_lock(&sh2->stripe_lock);
731 spin_lock_nested(&sh1->stripe_lock, 1);
732 } else {
733 spin_lock(&sh1->stripe_lock);
734 spin_lock_nested(&sh2->stripe_lock, 1);
735 }
736}
737
738static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
739{
740 spin_unlock(&sh1->stripe_lock);
741 spin_unlock(&sh2->stripe_lock);
742 local_irq_enable();
743}
744
745/* Only freshly new full stripe normal write stripe can be added to a batch list */
746static bool stripe_can_batch(struct stripe_head *sh)
747{
9c3e333d
SL
748 struct r5conf *conf = sh->raid_conf;
749
3418d036 750 if (conf->log || raid5_has_ppl(conf))
9c3e333d 751 return false;
59fc630b 752 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 753 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 754 is_full_stripe_write(sh);
755}
756
757/* we only do back search */
758static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
759{
760 struct stripe_head *head;
761 sector_t head_sector, tmp_sec;
762 int hash;
763 int dd_idx;
ff00d3b4 764 int inc_empty_inactive_list_flag;
59fc630b 765
59fc630b 766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 tmp_sec = sh->sector;
768 if (!sector_div(tmp_sec, conf->chunk_sectors))
769 return;
770 head_sector = sh->sector - STRIPE_SECTORS;
771
772 hash = stripe_hash_locks_hash(head_sector);
773 spin_lock_irq(conf->hash_locks + hash);
774 head = __find_stripe(conf, head_sector, conf->generation);
775 if (head && !atomic_inc_not_zero(&head->count)) {
776 spin_lock(&conf->device_lock);
777 if (!atomic_read(&head->count)) {
778 if (!test_bit(STRIPE_HANDLE, &head->state))
779 atomic_inc(&conf->active_stripes);
780 BUG_ON(list_empty(&head->lru) &&
781 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
782 inc_empty_inactive_list_flag = 0;
783 if (!list_empty(conf->inactive_list + hash))
784 inc_empty_inactive_list_flag = 1;
59fc630b 785 list_del_init(&head->lru);
ff00d3b4
ZL
786 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
787 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 788 if (head->group) {
789 head->group->stripes_cnt--;
790 head->group = NULL;
791 }
792 }
793 atomic_inc(&head->count);
794 spin_unlock(&conf->device_lock);
795 }
796 spin_unlock_irq(conf->hash_locks + hash);
797
798 if (!head)
799 return;
800 if (!stripe_can_batch(head))
801 goto out;
802
803 lock_two_stripes(head, sh);
804 /* clear_batch_ready clear the flag */
805 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
806 goto unlock_out;
807
808 if (sh->batch_head)
809 goto unlock_out;
810
811 dd_idx = 0;
812 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
813 dd_idx++;
1eff9d32 814 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 815 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 816 goto unlock_out;
817
818 if (head->batch_head) {
819 spin_lock(&head->batch_head->batch_lock);
820 /* This batch list is already running */
821 if (!stripe_can_batch(head)) {
822 spin_unlock(&head->batch_head->batch_lock);
823 goto unlock_out;
824 }
825
826 /*
827 * at this point, head's BATCH_READY could be cleared, but we
828 * can still add the stripe to batch list
829 */
830 list_add(&sh->batch_list, &head->batch_list);
831 spin_unlock(&head->batch_head->batch_lock);
832
833 sh->batch_head = head->batch_head;
834 } else {
835 head->batch_head = head;
836 sh->batch_head = head->batch_head;
837 spin_lock(&head->batch_lock);
838 list_add_tail(&sh->batch_list, &head->batch_list);
839 spin_unlock(&head->batch_lock);
840 }
841
842 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
843 if (atomic_dec_return(&conf->preread_active_stripes)
844 < IO_THRESHOLD)
845 md_wakeup_thread(conf->mddev->thread);
846
2b6b2457
N
847 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
848 int seq = sh->bm_seq;
849 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
850 sh->batch_head->bm_seq > seq)
851 seq = sh->batch_head->bm_seq;
852 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
853 sh->batch_head->bm_seq = seq;
854 }
855
59fc630b 856 atomic_inc(&sh->count);
857unlock_out:
858 unlock_two_stripes(head, sh);
859out:
6d036f7d 860 raid5_release_stripe(head);
59fc630b 861}
862
05616be5
N
863/* Determine if 'data_offset' or 'new_data_offset' should be used
864 * in this stripe_head.
865 */
866static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
867{
868 sector_t progress = conf->reshape_progress;
869 /* Need a memory barrier to make sure we see the value
870 * of conf->generation, or ->data_offset that was set before
871 * reshape_progress was updated.
872 */
873 smp_rmb();
874 if (progress == MaxSector)
875 return 0;
876 if (sh->generation == conf->generation - 1)
877 return 0;
878 /* We are in a reshape, and this is a new-generation stripe,
879 * so use new_data_offset.
880 */
881 return 1;
882}
883
aaf9f12e 884static void dispatch_bio_list(struct bio_list *tmp)
765d704d 885{
765d704d
SL
886 struct bio *bio;
887
aaf9f12e
SL
888 while ((bio = bio_list_pop(tmp)))
889 generic_make_request(bio);
890}
891
892static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
893{
894 const struct r5pending_data *da = list_entry(a,
895 struct r5pending_data, sibling);
896 const struct r5pending_data *db = list_entry(b,
897 struct r5pending_data, sibling);
898 if (da->sector > db->sector)
899 return 1;
900 if (da->sector < db->sector)
901 return -1;
902 return 0;
903}
904
905static void dispatch_defer_bios(struct r5conf *conf, int target,
906 struct bio_list *list)
907{
908 struct r5pending_data *data;
909 struct list_head *first, *next = NULL;
910 int cnt = 0;
911
912 if (conf->pending_data_cnt == 0)
913 return;
914
915 list_sort(NULL, &conf->pending_list, cmp_stripe);
916
917 first = conf->pending_list.next;
918
919 /* temporarily move the head */
920 if (conf->next_pending_data)
921 list_move_tail(&conf->pending_list,
922 &conf->next_pending_data->sibling);
923
924 while (!list_empty(&conf->pending_list)) {
925 data = list_first_entry(&conf->pending_list,
926 struct r5pending_data, sibling);
927 if (&data->sibling == first)
928 first = data->sibling.next;
929 next = data->sibling.next;
930
931 bio_list_merge(list, &data->bios);
932 list_move(&data->sibling, &conf->free_list);
933 cnt++;
934 if (cnt >= target)
935 break;
936 }
937 conf->pending_data_cnt -= cnt;
938 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
939
940 if (next != &conf->pending_list)
941 conf->next_pending_data = list_entry(next,
942 struct r5pending_data, sibling);
943 else
944 conf->next_pending_data = NULL;
945 /* list isn't empty */
946 if (first != &conf->pending_list)
947 list_move_tail(&conf->pending_list, first);
948}
949
950static void flush_deferred_bios(struct r5conf *conf)
951{
952 struct bio_list tmp = BIO_EMPTY_LIST;
953
954 if (conf->pending_data_cnt == 0)
765d704d
SL
955 return;
956
765d704d 957 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
958 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
959 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
960 spin_unlock(&conf->pending_bios_lock);
961
aaf9f12e 962 dispatch_bio_list(&tmp);
765d704d
SL
963}
964
aaf9f12e
SL
965static void defer_issue_bios(struct r5conf *conf, sector_t sector,
966 struct bio_list *bios)
765d704d 967{
aaf9f12e
SL
968 struct bio_list tmp = BIO_EMPTY_LIST;
969 struct r5pending_data *ent;
970
765d704d 971 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
972 ent = list_first_entry(&conf->free_list, struct r5pending_data,
973 sibling);
974 list_move_tail(&ent->sibling, &conf->pending_list);
975 ent->sector = sector;
976 bio_list_init(&ent->bios);
977 bio_list_merge(&ent->bios, bios);
978 conf->pending_data_cnt++;
979 if (conf->pending_data_cnt >= PENDING_IO_MAX)
980 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
981
765d704d 982 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
983
984 dispatch_bio_list(&tmp);
765d704d
SL
985}
986
6712ecf8 987static void
4246a0b6 988raid5_end_read_request(struct bio *bi);
6712ecf8 989static void
4246a0b6 990raid5_end_write_request(struct bio *bi);
91c00924 991
c4e5ac0a 992static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 993{
d1688a6d 994 struct r5conf *conf = sh->raid_conf;
91c00924 995 int i, disks = sh->disks;
59fc630b 996 struct stripe_head *head_sh = sh;
aaf9f12e
SL
997 struct bio_list pending_bios = BIO_EMPTY_LIST;
998 bool should_defer;
91c00924
DW
999
1000 might_sleep();
1001
ff875738
AP
1002 if (log_stripe(sh, s) == 0)
1003 return;
1e6d690b 1004
aaf9f12e
SL
1005 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1006
91c00924 1007 for (i = disks; i--; ) {
796a5cf0 1008 int op, op_flags = 0;
9a3e1101 1009 int replace_only = 0;
977df362
N
1010 struct bio *bi, *rbi;
1011 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 1012
1013 sh = head_sh;
e9c7469b 1014 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1015 op = REQ_OP_WRITE;
e9c7469b 1016 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1017 op_flags = REQ_FUA;
9e444768 1018 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1019 op = REQ_OP_DISCARD;
e9c7469b 1020 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1021 op = REQ_OP_READ;
9a3e1101
N
1022 else if (test_and_clear_bit(R5_WantReplace,
1023 &sh->dev[i].flags)) {
796a5cf0 1024 op = REQ_OP_WRITE;
9a3e1101
N
1025 replace_only = 1;
1026 } else
91c00924 1027 continue;
bc0934f0 1028 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1029 op_flags |= REQ_SYNC;
91c00924 1030
59fc630b 1031again:
91c00924 1032 bi = &sh->dev[i].req;
977df362 1033 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 1034
91c00924 1035 rcu_read_lock();
9a3e1101 1036 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1037 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1038 rdev = rcu_dereference(conf->disks[i].rdev);
1039 if (!rdev) {
1040 rdev = rrdev;
1041 rrdev = NULL;
1042 }
796a5cf0 1043 if (op_is_write(op)) {
9a3e1101
N
1044 if (replace_only)
1045 rdev = NULL;
dd054fce
N
1046 if (rdev == rrdev)
1047 /* We raced and saw duplicates */
1048 rrdev = NULL;
9a3e1101 1049 } else {
59fc630b 1050 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1051 rdev = rrdev;
1052 rrdev = NULL;
1053 }
977df362 1054
91c00924
DW
1055 if (rdev && test_bit(Faulty, &rdev->flags))
1056 rdev = NULL;
1057 if (rdev)
1058 atomic_inc(&rdev->nr_pending);
977df362
N
1059 if (rrdev && test_bit(Faulty, &rrdev->flags))
1060 rrdev = NULL;
1061 if (rrdev)
1062 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1063 rcu_read_unlock();
1064
73e92e51 1065 /* We have already checked bad blocks for reads. Now
977df362
N
1066 * need to check for writes. We never accept write errors
1067 * on the replacement, so we don't to check rrdev.
73e92e51 1068 */
796a5cf0 1069 while (op_is_write(op) && rdev &&
73e92e51
N
1070 test_bit(WriteErrorSeen, &rdev->flags)) {
1071 sector_t first_bad;
1072 int bad_sectors;
1073 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1074 &first_bad, &bad_sectors);
1075 if (!bad)
1076 break;
1077
1078 if (bad < 0) {
1079 set_bit(BlockedBadBlocks, &rdev->flags);
1080 if (!conf->mddev->external &&
2953079c 1081 conf->mddev->sb_flags) {
73e92e51
N
1082 /* It is very unlikely, but we might
1083 * still need to write out the
1084 * bad block log - better give it
1085 * a chance*/
1086 md_check_recovery(conf->mddev);
1087 }
1850753d 1088 /*
1089 * Because md_wait_for_blocked_rdev
1090 * will dec nr_pending, we must
1091 * increment it first.
1092 */
1093 atomic_inc(&rdev->nr_pending);
73e92e51
N
1094 md_wait_for_blocked_rdev(rdev, conf->mddev);
1095 } else {
1096 /* Acknowledged bad block - skip the write */
1097 rdev_dec_pending(rdev, conf->mddev);
1098 rdev = NULL;
1099 }
1100 }
1101
91c00924 1102 if (rdev) {
9a3e1101
N
1103 if (s->syncing || s->expanding || s->expanded
1104 || s->replacing)
91c00924
DW
1105 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1106
2b7497f0
DW
1107 set_bit(STRIPE_IO_STARTED, &sh->state);
1108
91c00924 1109 bi->bi_bdev = rdev->bdev;
796a5cf0
MC
1110 bio_set_op_attrs(bi, op, op_flags);
1111 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1112 ? raid5_end_write_request
1113 : raid5_end_read_request;
1114 bi->bi_private = sh;
1115
6296b960 1116 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1117 __func__, (unsigned long long)sh->sector,
1eff9d32 1118 bi->bi_opf, i);
91c00924 1119 atomic_inc(&sh->count);
59fc630b 1120 if (sh != head_sh)
1121 atomic_inc(&head_sh->count);
05616be5 1122 if (use_new_offset(conf, sh))
4f024f37 1123 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1124 + rdev->new_data_offset);
1125 else
4f024f37 1126 bi->bi_iter.bi_sector = (sh->sector
05616be5 1127 + rdev->data_offset);
59fc630b 1128 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1129 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1130
d592a996
SL
1131 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1132 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1133
1134 if (!op_is_write(op) &&
1135 test_bit(R5_InJournal, &sh->dev[i].flags))
1136 /*
1137 * issuing read for a page in journal, this
1138 * must be preparing for prexor in rmw; read
1139 * the data into orig_page
1140 */
1141 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1142 else
1143 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1144 bi->bi_vcnt = 1;
91c00924
DW
1145 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1146 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1147 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1148 /*
1149 * If this is discard request, set bi_vcnt 0. We don't
1150 * want to confuse SCSI because SCSI will replace payload
1151 */
796a5cf0 1152 if (op == REQ_OP_DISCARD)
37c61ff3 1153 bi->bi_vcnt = 0;
977df362
N
1154 if (rrdev)
1155 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1156
1157 if (conf->mddev->gendisk)
1158 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1159 bi, disk_devt(conf->mddev->gendisk),
1160 sh->dev[i].sector);
aaf9f12e
SL
1161 if (should_defer && op_is_write(op))
1162 bio_list_add(&pending_bios, bi);
1163 else
1164 generic_make_request(bi);
977df362
N
1165 }
1166 if (rrdev) {
9a3e1101
N
1167 if (s->syncing || s->expanding || s->expanded
1168 || s->replacing)
977df362
N
1169 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1170
1171 set_bit(STRIPE_IO_STARTED, &sh->state);
1172
1173 rbi->bi_bdev = rrdev->bdev;
796a5cf0
MC
1174 bio_set_op_attrs(rbi, op, op_flags);
1175 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1176 rbi->bi_end_io = raid5_end_write_request;
1177 rbi->bi_private = sh;
1178
6296b960 1179 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1180 "replacement disc %d\n",
1181 __func__, (unsigned long long)sh->sector,
1eff9d32 1182 rbi->bi_opf, i);
977df362 1183 atomic_inc(&sh->count);
59fc630b 1184 if (sh != head_sh)
1185 atomic_inc(&head_sh->count);
05616be5 1186 if (use_new_offset(conf, sh))
4f024f37 1187 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1188 + rrdev->new_data_offset);
1189 else
4f024f37 1190 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1191 + rrdev->data_offset);
d592a996
SL
1192 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1193 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1194 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1195 rbi->bi_vcnt = 1;
977df362
N
1196 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1197 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1198 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1199 /*
1200 * If this is discard request, set bi_vcnt 0. We don't
1201 * want to confuse SCSI because SCSI will replace payload
1202 */
796a5cf0 1203 if (op == REQ_OP_DISCARD)
37c61ff3 1204 rbi->bi_vcnt = 0;
e3620a3a
JB
1205 if (conf->mddev->gendisk)
1206 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1207 rbi, disk_devt(conf->mddev->gendisk),
1208 sh->dev[i].sector);
aaf9f12e
SL
1209 if (should_defer && op_is_write(op))
1210 bio_list_add(&pending_bios, rbi);
1211 else
1212 generic_make_request(rbi);
977df362
N
1213 }
1214 if (!rdev && !rrdev) {
796a5cf0 1215 if (op_is_write(op))
91c00924 1216 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1217 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1218 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1219 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1220 set_bit(STRIPE_HANDLE, &sh->state);
1221 }
59fc630b 1222
1223 if (!head_sh->batch_head)
1224 continue;
1225 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1226 batch_list);
1227 if (sh != head_sh)
1228 goto again;
91c00924 1229 }
aaf9f12e
SL
1230
1231 if (should_defer && !bio_list_empty(&pending_bios))
1232 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1233}
1234
1235static struct dma_async_tx_descriptor *
d592a996
SL
1236async_copy_data(int frombio, struct bio *bio, struct page **page,
1237 sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1238 struct stripe_head *sh, int no_skipcopy)
91c00924 1239{
7988613b
KO
1240 struct bio_vec bvl;
1241 struct bvec_iter iter;
91c00924 1242 struct page *bio_page;
91c00924 1243 int page_offset;
a08abd8c 1244 struct async_submit_ctl submit;
0403e382 1245 enum async_tx_flags flags = 0;
91c00924 1246
4f024f37
KO
1247 if (bio->bi_iter.bi_sector >= sector)
1248 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1249 else
4f024f37 1250 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1251
0403e382
DW
1252 if (frombio)
1253 flags |= ASYNC_TX_FENCE;
1254 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1255
7988613b
KO
1256 bio_for_each_segment(bvl, bio, iter) {
1257 int len = bvl.bv_len;
91c00924
DW
1258 int clen;
1259 int b_offset = 0;
1260
1261 if (page_offset < 0) {
1262 b_offset = -page_offset;
1263 page_offset += b_offset;
1264 len -= b_offset;
1265 }
1266
1267 if (len > 0 && page_offset + len > STRIPE_SIZE)
1268 clen = STRIPE_SIZE - page_offset;
1269 else
1270 clen = len;
1271
1272 if (clen > 0) {
7988613b
KO
1273 b_offset += bvl.bv_offset;
1274 bio_page = bvl.bv_page;
d592a996
SL
1275 if (frombio) {
1276 if (sh->raid_conf->skip_copy &&
1277 b_offset == 0 && page_offset == 0 &&
1e6d690b
SL
1278 clen == STRIPE_SIZE &&
1279 !no_skipcopy)
d592a996
SL
1280 *page = bio_page;
1281 else
1282 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1283 b_offset, clen, &submit);
d592a996
SL
1284 } else
1285 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1286 page_offset, clen, &submit);
91c00924 1287 }
a08abd8c
DW
1288 /* chain the operations */
1289 submit.depend_tx = tx;
1290
91c00924
DW
1291 if (clen < len) /* hit end of page */
1292 break;
1293 page_offset += len;
1294 }
1295
1296 return tx;
1297}
1298
1299static void ops_complete_biofill(void *stripe_head_ref)
1300{
1301 struct stripe_head *sh = stripe_head_ref;
e4d84909 1302 int i;
91c00924 1303
e46b272b 1304 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1305 (unsigned long long)sh->sector);
1306
1307 /* clear completed biofills */
1308 for (i = sh->disks; i--; ) {
1309 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1310
1311 /* acknowledge completion of a biofill operation */
e4d84909
DW
1312 /* and check if we need to reply to a read request,
1313 * new R5_Wantfill requests are held off until
83de75cc 1314 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1315 */
1316 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1317 struct bio *rbi, *rbi2;
91c00924 1318
91c00924
DW
1319 BUG_ON(!dev->read);
1320 rbi = dev->read;
1321 dev->read = NULL;
4f024f37 1322 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1323 dev->sector + STRIPE_SECTORS) {
1324 rbi2 = r5_next_bio(rbi, dev->sector);
34a6f80e 1325 if (!raid5_dec_bi_active_stripes(rbi))
bd83d0a2 1326 bio_endio(rbi);
91c00924
DW
1327 rbi = rbi2;
1328 }
1329 }
1330 }
83de75cc 1331 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1332
e4d84909 1333 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1334 raid5_release_stripe(sh);
91c00924
DW
1335}
1336
1337static void ops_run_biofill(struct stripe_head *sh)
1338{
1339 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1340 struct async_submit_ctl submit;
91c00924
DW
1341 int i;
1342
59fc630b 1343 BUG_ON(sh->batch_head);
e46b272b 1344 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1345 (unsigned long long)sh->sector);
1346
1347 for (i = sh->disks; i--; ) {
1348 struct r5dev *dev = &sh->dev[i];
1349 if (test_bit(R5_Wantfill, &dev->flags)) {
1350 struct bio *rbi;
b17459c0 1351 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1352 dev->read = rbi = dev->toread;
1353 dev->toread = NULL;
b17459c0 1354 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1355 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1356 dev->sector + STRIPE_SECTORS) {
d592a996 1357 tx = async_copy_data(0, rbi, &dev->page,
1e6d690b 1358 dev->sector, tx, sh, 0);
91c00924
DW
1359 rbi = r5_next_bio(rbi, dev->sector);
1360 }
1361 }
1362 }
1363
1364 atomic_inc(&sh->count);
a08abd8c
DW
1365 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1366 async_trigger_callback(&submit);
91c00924
DW
1367}
1368
4e7d2c0a 1369static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1370{
4e7d2c0a 1371 struct r5dev *tgt;
91c00924 1372
4e7d2c0a
DW
1373 if (target < 0)
1374 return;
91c00924 1375
4e7d2c0a 1376 tgt = &sh->dev[target];
91c00924
DW
1377 set_bit(R5_UPTODATE, &tgt->flags);
1378 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1379 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1380}
1381
ac6b53b6 1382static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1383{
1384 struct stripe_head *sh = stripe_head_ref;
91c00924 1385
e46b272b 1386 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1387 (unsigned long long)sh->sector);
1388
ac6b53b6 1389 /* mark the computed target(s) as uptodate */
4e7d2c0a 1390 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1391 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1392
ecc65c9b
DW
1393 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1394 if (sh->check_state == check_state_compute_run)
1395 sh->check_state = check_state_compute_result;
91c00924 1396 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1397 raid5_release_stripe(sh);
91c00924
DW
1398}
1399
d6f38f31
DW
1400/* return a pointer to the address conversion region of the scribble buffer */
1401static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1402 struct raid5_percpu *percpu, int i)
d6f38f31 1403{
46d5b785 1404 void *addr;
1405
1406 addr = flex_array_get(percpu->scribble, i);
1407 return addr + sizeof(struct page *) * (sh->disks + 2);
1408}
1409
1410/* return a pointer to the address conversion region of the scribble buffer */
1411static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1412{
1413 void *addr;
1414
1415 addr = flex_array_get(percpu->scribble, i);
1416 return addr;
d6f38f31
DW
1417}
1418
1419static struct dma_async_tx_descriptor *
1420ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1421{
91c00924 1422 int disks = sh->disks;
46d5b785 1423 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1424 int target = sh->ops.target;
1425 struct r5dev *tgt = &sh->dev[target];
1426 struct page *xor_dest = tgt->page;
1427 int count = 0;
1428 struct dma_async_tx_descriptor *tx;
a08abd8c 1429 struct async_submit_ctl submit;
91c00924
DW
1430 int i;
1431
59fc630b 1432 BUG_ON(sh->batch_head);
1433
91c00924 1434 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1435 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1436 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1437
1438 for (i = disks; i--; )
1439 if (i != target)
1440 xor_srcs[count++] = sh->dev[i].page;
1441
1442 atomic_inc(&sh->count);
1443
0403e382 1444 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1445 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1446 if (unlikely(count == 1))
a08abd8c 1447 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1448 else
a08abd8c 1449 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1450
91c00924
DW
1451 return tx;
1452}
1453
ac6b53b6
DW
1454/* set_syndrome_sources - populate source buffers for gen_syndrome
1455 * @srcs - (struct page *) array of size sh->disks
1456 * @sh - stripe_head to parse
1457 *
1458 * Populates srcs in proper layout order for the stripe and returns the
1459 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1460 * destination buffer is recorded in srcs[count] and the Q destination
1461 * is recorded in srcs[count+1]].
1462 */
584acdd4
MS
1463static int set_syndrome_sources(struct page **srcs,
1464 struct stripe_head *sh,
1465 int srctype)
ac6b53b6
DW
1466{
1467 int disks = sh->disks;
1468 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1469 int d0_idx = raid6_d0(sh);
1470 int count;
1471 int i;
1472
1473 for (i = 0; i < disks; i++)
5dd33c9a 1474 srcs[i] = NULL;
ac6b53b6
DW
1475
1476 count = 0;
1477 i = d0_idx;
1478 do {
1479 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1480 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1481
584acdd4
MS
1482 if (i == sh->qd_idx || i == sh->pd_idx ||
1483 (srctype == SYNDROME_SRC_ALL) ||
1484 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1485 (test_bit(R5_Wantdrain, &dev->flags) ||
1486 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1487 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1488 (dev->written ||
1489 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1490 if (test_bit(R5_InJournal, &dev->flags))
1491 srcs[slot] = sh->dev[i].orig_page;
1492 else
1493 srcs[slot] = sh->dev[i].page;
1494 }
ac6b53b6
DW
1495 i = raid6_next_disk(i, disks);
1496 } while (i != d0_idx);
ac6b53b6 1497
e4424fee 1498 return syndrome_disks;
ac6b53b6
DW
1499}
1500
1501static struct dma_async_tx_descriptor *
1502ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1503{
1504 int disks = sh->disks;
46d5b785 1505 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1506 int target;
1507 int qd_idx = sh->qd_idx;
1508 struct dma_async_tx_descriptor *tx;
1509 struct async_submit_ctl submit;
1510 struct r5dev *tgt;
1511 struct page *dest;
1512 int i;
1513 int count;
1514
59fc630b 1515 BUG_ON(sh->batch_head);
ac6b53b6
DW
1516 if (sh->ops.target < 0)
1517 target = sh->ops.target2;
1518 else if (sh->ops.target2 < 0)
1519 target = sh->ops.target;
91c00924 1520 else
ac6b53b6
DW
1521 /* we should only have one valid target */
1522 BUG();
1523 BUG_ON(target < 0);
1524 pr_debug("%s: stripe %llu block: %d\n",
1525 __func__, (unsigned long long)sh->sector, target);
1526
1527 tgt = &sh->dev[target];
1528 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1529 dest = tgt->page;
1530
1531 atomic_inc(&sh->count);
1532
1533 if (target == qd_idx) {
584acdd4 1534 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1535 blocks[count] = NULL; /* regenerating p is not necessary */
1536 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1537 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1538 ops_complete_compute, sh,
46d5b785 1539 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1540 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1541 } else {
1542 /* Compute any data- or p-drive using XOR */
1543 count = 0;
1544 for (i = disks; i-- ; ) {
1545 if (i == target || i == qd_idx)
1546 continue;
1547 blocks[count++] = sh->dev[i].page;
1548 }
1549
0403e382
DW
1550 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1551 NULL, ops_complete_compute, sh,
46d5b785 1552 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1553 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1554 }
91c00924 1555
91c00924
DW
1556 return tx;
1557}
1558
ac6b53b6
DW
1559static struct dma_async_tx_descriptor *
1560ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1561{
1562 int i, count, disks = sh->disks;
1563 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1564 int d0_idx = raid6_d0(sh);
1565 int faila = -1, failb = -1;
1566 int target = sh->ops.target;
1567 int target2 = sh->ops.target2;
1568 struct r5dev *tgt = &sh->dev[target];
1569 struct r5dev *tgt2 = &sh->dev[target2];
1570 struct dma_async_tx_descriptor *tx;
46d5b785 1571 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1572 struct async_submit_ctl submit;
1573
59fc630b 1574 BUG_ON(sh->batch_head);
ac6b53b6
DW
1575 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1576 __func__, (unsigned long long)sh->sector, target, target2);
1577 BUG_ON(target < 0 || target2 < 0);
1578 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1579 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1580
6c910a78 1581 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1582 * slot number conversion for 'faila' and 'failb'
1583 */
1584 for (i = 0; i < disks ; i++)
5dd33c9a 1585 blocks[i] = NULL;
ac6b53b6
DW
1586 count = 0;
1587 i = d0_idx;
1588 do {
1589 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1590
1591 blocks[slot] = sh->dev[i].page;
1592
1593 if (i == target)
1594 faila = slot;
1595 if (i == target2)
1596 failb = slot;
1597 i = raid6_next_disk(i, disks);
1598 } while (i != d0_idx);
ac6b53b6
DW
1599
1600 BUG_ON(faila == failb);
1601 if (failb < faila)
1602 swap(faila, failb);
1603 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1604 __func__, (unsigned long long)sh->sector, faila, failb);
1605
1606 atomic_inc(&sh->count);
1607
1608 if (failb == syndrome_disks+1) {
1609 /* Q disk is one of the missing disks */
1610 if (faila == syndrome_disks) {
1611 /* Missing P+Q, just recompute */
0403e382
DW
1612 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1613 ops_complete_compute, sh,
46d5b785 1614 to_addr_conv(sh, percpu, 0));
e4424fee 1615 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1616 STRIPE_SIZE, &submit);
1617 } else {
1618 struct page *dest;
1619 int data_target;
1620 int qd_idx = sh->qd_idx;
1621
1622 /* Missing D+Q: recompute D from P, then recompute Q */
1623 if (target == qd_idx)
1624 data_target = target2;
1625 else
1626 data_target = target;
1627
1628 count = 0;
1629 for (i = disks; i-- ; ) {
1630 if (i == data_target || i == qd_idx)
1631 continue;
1632 blocks[count++] = sh->dev[i].page;
1633 }
1634 dest = sh->dev[data_target].page;
0403e382
DW
1635 init_async_submit(&submit,
1636 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1637 NULL, NULL, NULL,
46d5b785 1638 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1639 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1640 &submit);
1641
584acdd4 1642 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1643 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1644 ops_complete_compute, sh,
46d5b785 1645 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1646 return async_gen_syndrome(blocks, 0, count+2,
1647 STRIPE_SIZE, &submit);
1648 }
ac6b53b6 1649 } else {
6c910a78
DW
1650 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1651 ops_complete_compute, sh,
46d5b785 1652 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1653 if (failb == syndrome_disks) {
1654 /* We're missing D+P. */
1655 return async_raid6_datap_recov(syndrome_disks+2,
1656 STRIPE_SIZE, faila,
1657 blocks, &submit);
1658 } else {
1659 /* We're missing D+D. */
1660 return async_raid6_2data_recov(syndrome_disks+2,
1661 STRIPE_SIZE, faila, failb,
1662 blocks, &submit);
1663 }
ac6b53b6
DW
1664 }
1665}
1666
91c00924
DW
1667static void ops_complete_prexor(void *stripe_head_ref)
1668{
1669 struct stripe_head *sh = stripe_head_ref;
1670
e46b272b 1671 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1672 (unsigned long long)sh->sector);
1e6d690b
SL
1673
1674 if (r5c_is_writeback(sh->raid_conf->log))
1675 /*
1676 * raid5-cache write back uses orig_page during prexor.
1677 * After prexor, it is time to free orig_page
1678 */
1679 r5c_release_extra_page(sh);
91c00924
DW
1680}
1681
1682static struct dma_async_tx_descriptor *
584acdd4
MS
1683ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1684 struct dma_async_tx_descriptor *tx)
91c00924 1685{
91c00924 1686 int disks = sh->disks;
46d5b785 1687 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1688 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1689 struct async_submit_ctl submit;
91c00924
DW
1690
1691 /* existing parity data subtracted */
1692 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1693
59fc630b 1694 BUG_ON(sh->batch_head);
e46b272b 1695 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1696 (unsigned long long)sh->sector);
1697
1698 for (i = disks; i--; ) {
1699 struct r5dev *dev = &sh->dev[i];
1700 /* Only process blocks that are known to be uptodate */
1e6d690b
SL
1701 if (test_bit(R5_InJournal, &dev->flags))
1702 xor_srcs[count++] = dev->orig_page;
1703 else if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1704 xor_srcs[count++] = dev->page;
1705 }
1706
0403e382 1707 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1708 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1709 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1710
1711 return tx;
1712}
1713
584acdd4
MS
1714static struct dma_async_tx_descriptor *
1715ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1716 struct dma_async_tx_descriptor *tx)
1717{
1718 struct page **blocks = to_addr_page(percpu, 0);
1719 int count;
1720 struct async_submit_ctl submit;
1721
1722 pr_debug("%s: stripe %llu\n", __func__,
1723 (unsigned long long)sh->sector);
1724
1725 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1726
1727 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1728 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1729 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1730
1731 return tx;
1732}
1733
91c00924 1734static struct dma_async_tx_descriptor *
d8ee0728 1735ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1736{
1e6d690b 1737 struct r5conf *conf = sh->raid_conf;
91c00924 1738 int disks = sh->disks;
d8ee0728 1739 int i;
59fc630b 1740 struct stripe_head *head_sh = sh;
91c00924 1741
e46b272b 1742 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1743 (unsigned long long)sh->sector);
1744
1745 for (i = disks; i--; ) {
59fc630b 1746 struct r5dev *dev;
91c00924 1747 struct bio *chosen;
91c00924 1748
59fc630b 1749 sh = head_sh;
1750 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1751 struct bio *wbi;
1752
59fc630b 1753again:
1754 dev = &sh->dev[i];
1e6d690b
SL
1755 /*
1756 * clear R5_InJournal, so when rewriting a page in
1757 * journal, it is not skipped by r5l_log_stripe()
1758 */
1759 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1760 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1761 chosen = dev->towrite;
1762 dev->towrite = NULL;
7a87f434 1763 sh->overwrite_disks = 0;
91c00924
DW
1764 BUG_ON(dev->written);
1765 wbi = dev->written = chosen;
b17459c0 1766 spin_unlock_irq(&sh->stripe_lock);
d592a996 1767 WARN_ON(dev->page != dev->orig_page);
91c00924 1768
4f024f37 1769 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1770 dev->sector + STRIPE_SECTORS) {
1eff9d32 1771 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1772 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1773 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1774 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1775 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1776 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1777 else {
1778 tx = async_copy_data(1, wbi, &dev->page,
1e6d690b
SL
1779 dev->sector, tx, sh,
1780 r5c_is_writeback(conf->log));
1781 if (dev->page != dev->orig_page &&
1782 !r5c_is_writeback(conf->log)) {
d592a996
SL
1783 set_bit(R5_SkipCopy, &dev->flags);
1784 clear_bit(R5_UPTODATE, &dev->flags);
1785 clear_bit(R5_OVERWRITE, &dev->flags);
1786 }
1787 }
91c00924
DW
1788 wbi = r5_next_bio(wbi, dev->sector);
1789 }
59fc630b 1790
1791 if (head_sh->batch_head) {
1792 sh = list_first_entry(&sh->batch_list,
1793 struct stripe_head,
1794 batch_list);
1795 if (sh == head_sh)
1796 continue;
1797 goto again;
1798 }
91c00924
DW
1799 }
1800 }
1801
1802 return tx;
1803}
1804
ac6b53b6 1805static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1806{
1807 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1808 int disks = sh->disks;
1809 int pd_idx = sh->pd_idx;
1810 int qd_idx = sh->qd_idx;
1811 int i;
9e444768 1812 bool fua = false, sync = false, discard = false;
91c00924 1813
e46b272b 1814 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1815 (unsigned long long)sh->sector);
1816
bc0934f0 1817 for (i = disks; i--; ) {
e9c7469b 1818 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1819 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1820 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1821 }
e9c7469b 1822
91c00924
DW
1823 for (i = disks; i--; ) {
1824 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1825
e9c7469b 1826 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1827 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1828 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1829 if (fua)
1830 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1831 if (sync)
1832 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1833 }
91c00924
DW
1834 }
1835
d8ee0728
DW
1836 if (sh->reconstruct_state == reconstruct_state_drain_run)
1837 sh->reconstruct_state = reconstruct_state_drain_result;
1838 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1839 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1840 else {
1841 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1842 sh->reconstruct_state = reconstruct_state_result;
1843 }
91c00924
DW
1844
1845 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1846 raid5_release_stripe(sh);
91c00924
DW
1847}
1848
1849static void
ac6b53b6
DW
1850ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1851 struct dma_async_tx_descriptor *tx)
91c00924 1852{
91c00924 1853 int disks = sh->disks;
59fc630b 1854 struct page **xor_srcs;
a08abd8c 1855 struct async_submit_ctl submit;
59fc630b 1856 int count, pd_idx = sh->pd_idx, i;
91c00924 1857 struct page *xor_dest;
d8ee0728 1858 int prexor = 0;
91c00924 1859 unsigned long flags;
59fc630b 1860 int j = 0;
1861 struct stripe_head *head_sh = sh;
1862 int last_stripe;
91c00924 1863
e46b272b 1864 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1865 (unsigned long long)sh->sector);
1866
620125f2
SL
1867 for (i = 0; i < sh->disks; i++) {
1868 if (pd_idx == i)
1869 continue;
1870 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1871 break;
1872 }
1873 if (i >= sh->disks) {
1874 atomic_inc(&sh->count);
620125f2
SL
1875 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1876 ops_complete_reconstruct(sh);
1877 return;
1878 }
59fc630b 1879again:
1880 count = 0;
1881 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1882 /* check if prexor is active which means only process blocks
1883 * that are part of a read-modify-write (written)
1884 */
59fc630b 1885 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1886 prexor = 1;
91c00924
DW
1887 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1888 for (i = disks; i--; ) {
1889 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
1890 if (head_sh->dev[i].written ||
1891 test_bit(R5_InJournal, &head_sh->dev[i].flags))
91c00924
DW
1892 xor_srcs[count++] = dev->page;
1893 }
1894 } else {
1895 xor_dest = sh->dev[pd_idx].page;
1896 for (i = disks; i--; ) {
1897 struct r5dev *dev = &sh->dev[i];
1898 if (i != pd_idx)
1899 xor_srcs[count++] = dev->page;
1900 }
1901 }
1902
91c00924
DW
1903 /* 1/ if we prexor'd then the dest is reused as a source
1904 * 2/ if we did not prexor then we are redoing the parity
1905 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1906 * for the synchronous xor case
1907 */
59fc630b 1908 last_stripe = !head_sh->batch_head ||
1909 list_first_entry(&sh->batch_list,
1910 struct stripe_head, batch_list) == head_sh;
1911 if (last_stripe) {
1912 flags = ASYNC_TX_ACK |
1913 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1914
1915 atomic_inc(&head_sh->count);
1916 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1917 to_addr_conv(sh, percpu, j));
1918 } else {
1919 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1920 init_async_submit(&submit, flags, tx, NULL, NULL,
1921 to_addr_conv(sh, percpu, j));
1922 }
91c00924 1923
a08abd8c
DW
1924 if (unlikely(count == 1))
1925 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1926 else
1927 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1928 if (!last_stripe) {
1929 j++;
1930 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1931 batch_list);
1932 goto again;
1933 }
91c00924
DW
1934}
1935
ac6b53b6
DW
1936static void
1937ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1938 struct dma_async_tx_descriptor *tx)
1939{
1940 struct async_submit_ctl submit;
59fc630b 1941 struct page **blocks;
1942 int count, i, j = 0;
1943 struct stripe_head *head_sh = sh;
1944 int last_stripe;
584acdd4
MS
1945 int synflags;
1946 unsigned long txflags;
ac6b53b6
DW
1947
1948 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1949
620125f2
SL
1950 for (i = 0; i < sh->disks; i++) {
1951 if (sh->pd_idx == i || sh->qd_idx == i)
1952 continue;
1953 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1954 break;
1955 }
1956 if (i >= sh->disks) {
1957 atomic_inc(&sh->count);
620125f2
SL
1958 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1959 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1960 ops_complete_reconstruct(sh);
1961 return;
1962 }
1963
59fc630b 1964again:
1965 blocks = to_addr_page(percpu, j);
584acdd4
MS
1966
1967 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1968 synflags = SYNDROME_SRC_WRITTEN;
1969 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1970 } else {
1971 synflags = SYNDROME_SRC_ALL;
1972 txflags = ASYNC_TX_ACK;
1973 }
1974
1975 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1976 last_stripe = !head_sh->batch_head ||
1977 list_first_entry(&sh->batch_list,
1978 struct stripe_head, batch_list) == head_sh;
1979
1980 if (last_stripe) {
1981 atomic_inc(&head_sh->count);
584acdd4 1982 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1983 head_sh, to_addr_conv(sh, percpu, j));
1984 } else
1985 init_async_submit(&submit, 0, tx, NULL, NULL,
1986 to_addr_conv(sh, percpu, j));
48769695 1987 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1988 if (!last_stripe) {
1989 j++;
1990 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1991 batch_list);
1992 goto again;
1993 }
91c00924
DW
1994}
1995
1996static void ops_complete_check(void *stripe_head_ref)
1997{
1998 struct stripe_head *sh = stripe_head_ref;
91c00924 1999
e46b272b 2000 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2001 (unsigned long long)sh->sector);
2002
ecc65c9b 2003 sh->check_state = check_state_check_result;
91c00924 2004 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2005 raid5_release_stripe(sh);
91c00924
DW
2006}
2007
ac6b53b6 2008static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 2009{
91c00924 2010 int disks = sh->disks;
ac6b53b6
DW
2011 int pd_idx = sh->pd_idx;
2012 int qd_idx = sh->qd_idx;
2013 struct page *xor_dest;
46d5b785 2014 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 2015 struct dma_async_tx_descriptor *tx;
a08abd8c 2016 struct async_submit_ctl submit;
ac6b53b6
DW
2017 int count;
2018 int i;
91c00924 2019
e46b272b 2020 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2021 (unsigned long long)sh->sector);
2022
59fc630b 2023 BUG_ON(sh->batch_head);
ac6b53b6
DW
2024 count = 0;
2025 xor_dest = sh->dev[pd_idx].page;
2026 xor_srcs[count++] = xor_dest;
91c00924 2027 for (i = disks; i--; ) {
ac6b53b6
DW
2028 if (i == pd_idx || i == qd_idx)
2029 continue;
2030 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2031 }
2032
d6f38f31 2033 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2034 to_addr_conv(sh, percpu, 0));
099f53cb 2035 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 2036 &sh->ops.zero_sum_result, &submit);
91c00924 2037
91c00924 2038 atomic_inc(&sh->count);
a08abd8c
DW
2039 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2040 tx = async_trigger_callback(&submit);
91c00924
DW
2041}
2042
ac6b53b6
DW
2043static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2044{
46d5b785 2045 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
2046 struct async_submit_ctl submit;
2047 int count;
2048
2049 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2050 (unsigned long long)sh->sector, checkp);
2051
59fc630b 2052 BUG_ON(sh->batch_head);
584acdd4 2053 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2054 if (!checkp)
2055 srcs[count] = NULL;
91c00924 2056
91c00924 2057 atomic_inc(&sh->count);
ac6b53b6 2058 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2059 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
2060 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2061 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
2062}
2063
51acbcec 2064static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2065{
2066 int overlap_clear = 0, i, disks = sh->disks;
2067 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2068 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2069 int level = conf->level;
d6f38f31
DW
2070 struct raid5_percpu *percpu;
2071 unsigned long cpu;
91c00924 2072
d6f38f31
DW
2073 cpu = get_cpu();
2074 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 2075 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2076 ops_run_biofill(sh);
2077 overlap_clear++;
2078 }
2079
7b3a871e 2080 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2081 if (level < 6)
2082 tx = ops_run_compute5(sh, percpu);
2083 else {
2084 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2085 tx = ops_run_compute6_1(sh, percpu);
2086 else
2087 tx = ops_run_compute6_2(sh, percpu);
2088 }
2089 /* terminate the chain if reconstruct is not set to be run */
2090 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2091 async_tx_ack(tx);
2092 }
91c00924 2093
3418d036
AP
2094 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2095 tx = ops_run_partial_parity(sh, percpu, tx);
2096
584acdd4
MS
2097 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2098 if (level < 6)
2099 tx = ops_run_prexor5(sh, percpu, tx);
2100 else
2101 tx = ops_run_prexor6(sh, percpu, tx);
2102 }
91c00924 2103
600aa109 2104 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2105 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2106 overlap_clear++;
2107 }
2108
ac6b53b6
DW
2109 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2110 if (level < 6)
2111 ops_run_reconstruct5(sh, percpu, tx);
2112 else
2113 ops_run_reconstruct6(sh, percpu, tx);
2114 }
91c00924 2115
ac6b53b6
DW
2116 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2117 if (sh->check_state == check_state_run)
2118 ops_run_check_p(sh, percpu);
2119 else if (sh->check_state == check_state_run_q)
2120 ops_run_check_pq(sh, percpu, 0);
2121 else if (sh->check_state == check_state_run_pq)
2122 ops_run_check_pq(sh, percpu, 1);
2123 else
2124 BUG();
2125 }
91c00924 2126
59fc630b 2127 if (overlap_clear && !sh->batch_head)
91c00924
DW
2128 for (i = disks; i--; ) {
2129 struct r5dev *dev = &sh->dev[i];
2130 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2131 wake_up(&sh->raid_conf->wait_for_overlap);
2132 }
d6f38f31 2133 put_cpu();
91c00924
DW
2134}
2135
5f9d1fde
SL
2136static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2137 int disks)
f18c1a35
N
2138{
2139 struct stripe_head *sh;
5f9d1fde 2140 int i;
f18c1a35
N
2141
2142 sh = kmem_cache_zalloc(sc, gfp);
2143 if (sh) {
2144 spin_lock_init(&sh->stripe_lock);
2145 spin_lock_init(&sh->batch_lock);
2146 INIT_LIST_HEAD(&sh->batch_list);
2147 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2148 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2149 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2150 atomic_set(&sh->count, 1);
a39f7afd 2151 sh->log_start = MaxSector;
5f9d1fde
SL
2152 for (i = 0; i < disks; i++) {
2153 struct r5dev *dev = &sh->dev[i];
2154
3a83f467
ML
2155 bio_init(&dev->req, &dev->vec, 1);
2156 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2157 }
f18c1a35
N
2158 }
2159 return sh;
2160}
486f0644 2161static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2162{
2163 struct stripe_head *sh;
f18c1a35 2164
5f9d1fde 2165 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
3f294f4f
N
2166 if (!sh)
2167 return 0;
6ce32846 2168
3f294f4f 2169 sh->raid_conf = conf;
3f294f4f 2170
a9683a79 2171 if (grow_buffers(sh, gfp)) {
e4e11e38 2172 shrink_buffers(sh);
3f294f4f
N
2173 kmem_cache_free(conf->slab_cache, sh);
2174 return 0;
2175 }
486f0644
N
2176 sh->hash_lock_index =
2177 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2178 /* we just created an active stripe so... */
3f294f4f 2179 atomic_inc(&conf->active_stripes);
59fc630b 2180
6d036f7d 2181 raid5_release_stripe(sh);
486f0644 2182 conf->max_nr_stripes++;
3f294f4f
N
2183 return 1;
2184}
2185
d1688a6d 2186static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2187{
e18b890b 2188 struct kmem_cache *sc;
5e5e3e78 2189 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2190
f4be6b43
N
2191 if (conf->mddev->gendisk)
2192 sprintf(conf->cache_name[0],
2193 "raid%d-%s", conf->level, mdname(conf->mddev));
2194 else
2195 sprintf(conf->cache_name[0],
2196 "raid%d-%p", conf->level, conf->mddev);
2197 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2198
ad01c9e3
N
2199 conf->active_name = 0;
2200 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2201 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2202 0, 0, NULL);
1da177e4
LT
2203 if (!sc)
2204 return 1;
2205 conf->slab_cache = sc;
ad01c9e3 2206 conf->pool_size = devs;
486f0644
N
2207 while (num--)
2208 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2209 return 1;
486f0644 2210
1da177e4
LT
2211 return 0;
2212}
29269553 2213
d6f38f31
DW
2214/**
2215 * scribble_len - return the required size of the scribble region
2216 * @num - total number of disks in the array
2217 *
2218 * The size must be enough to contain:
2219 * 1/ a struct page pointer for each device in the array +2
2220 * 2/ room to convert each entry in (1) to its corresponding dma
2221 * (dma_map_page()) or page (page_address()) address.
2222 *
2223 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2224 * calculate over all devices (not just the data blocks), using zeros in place
2225 * of the P and Q blocks.
2226 */
46d5b785 2227static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2228{
46d5b785 2229 struct flex_array *ret;
d6f38f31
DW
2230 size_t len;
2231
2232 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2233 ret = flex_array_alloc(len, cnt, flags);
2234 if (!ret)
2235 return NULL;
2236 /* always prealloc all elements, so no locking is required */
2237 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2238 flex_array_free(ret);
2239 return NULL;
2240 }
2241 return ret;
d6f38f31
DW
2242}
2243
738a2738
N
2244static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2245{
2246 unsigned long cpu;
2247 int err = 0;
2248
27a353c0
SL
2249 /*
2250 * Never shrink. And mddev_suspend() could deadlock if this is called
2251 * from raid5d. In that case, scribble_disks and scribble_sectors
2252 * should equal to new_disks and new_sectors
2253 */
2254 if (conf->scribble_disks >= new_disks &&
2255 conf->scribble_sectors >= new_sectors)
2256 return 0;
738a2738
N
2257 mddev_suspend(conf->mddev);
2258 get_online_cpus();
2259 for_each_present_cpu(cpu) {
2260 struct raid5_percpu *percpu;
2261 struct flex_array *scribble;
2262
2263 percpu = per_cpu_ptr(conf->percpu, cpu);
2264 scribble = scribble_alloc(new_disks,
2265 new_sectors / STRIPE_SECTORS,
2266 GFP_NOIO);
2267
2268 if (scribble) {
2269 flex_array_free(percpu->scribble);
2270 percpu->scribble = scribble;
2271 } else {
2272 err = -ENOMEM;
2273 break;
2274 }
2275 }
2276 put_online_cpus();
2277 mddev_resume(conf->mddev);
27a353c0
SL
2278 if (!err) {
2279 conf->scribble_disks = new_disks;
2280 conf->scribble_sectors = new_sectors;
2281 }
738a2738
N
2282 return err;
2283}
2284
d1688a6d 2285static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2286{
2287 /* Make all the stripes able to hold 'newsize' devices.
2288 * New slots in each stripe get 'page' set to a new page.
2289 *
2290 * This happens in stages:
2291 * 1/ create a new kmem_cache and allocate the required number of
2292 * stripe_heads.
83f0d77a 2293 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2294 * to the new stripe_heads. This will have the side effect of
2295 * freezing the array as once all stripe_heads have been collected,
2296 * no IO will be possible. Old stripe heads are freed once their
2297 * pages have been transferred over, and the old kmem_cache is
2298 * freed when all stripes are done.
2299 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2300 * we simple return a failre status - no need to clean anything up.
2301 * 4/ allocate new pages for the new slots in the new stripe_heads.
2302 * If this fails, we don't bother trying the shrink the
2303 * stripe_heads down again, we just leave them as they are.
2304 * As each stripe_head is processed the new one is released into
2305 * active service.
2306 *
2307 * Once step2 is started, we cannot afford to wait for a write,
2308 * so we use GFP_NOIO allocations.
2309 */
2310 struct stripe_head *osh, *nsh;
2311 LIST_HEAD(newstripes);
2312 struct disk_info *ndisks;
b5470dc5 2313 int err;
e18b890b 2314 struct kmem_cache *sc;
ad01c9e3 2315 int i;
566c09c5 2316 int hash, cnt;
ad01c9e3
N
2317
2318 if (newsize <= conf->pool_size)
2319 return 0; /* never bother to shrink */
2320
b5470dc5
DW
2321 err = md_allow_write(conf->mddev);
2322 if (err)
2323 return err;
2a2275d6 2324
ad01c9e3
N
2325 /* Step 1 */
2326 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2327 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2328 0, 0, NULL);
ad01c9e3
N
2329 if (!sc)
2330 return -ENOMEM;
2331
2d5b569b
N
2332 /* Need to ensure auto-resizing doesn't interfere */
2333 mutex_lock(&conf->cache_size_mutex);
2334
ad01c9e3 2335 for (i = conf->max_nr_stripes; i; i--) {
5f9d1fde 2336 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
ad01c9e3
N
2337 if (!nsh)
2338 break;
2339
ad01c9e3 2340 nsh->raid_conf = conf;
ad01c9e3
N
2341 list_add(&nsh->lru, &newstripes);
2342 }
2343 if (i) {
2344 /* didn't get enough, give up */
2345 while (!list_empty(&newstripes)) {
2346 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2347 list_del(&nsh->lru);
2348 kmem_cache_free(sc, nsh);
2349 }
2350 kmem_cache_destroy(sc);
2d5b569b 2351 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2352 return -ENOMEM;
2353 }
2354 /* Step 2 - Must use GFP_NOIO now.
2355 * OK, we have enough stripes, start collecting inactive
2356 * stripes and copying them over
2357 */
566c09c5
SL
2358 hash = 0;
2359 cnt = 0;
ad01c9e3 2360 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2361 lock_device_hash_lock(conf, hash);
6ab2a4b8 2362 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2363 !list_empty(conf->inactive_list + hash),
2364 unlock_device_hash_lock(conf, hash),
2365 lock_device_hash_lock(conf, hash));
2366 osh = get_free_stripe(conf, hash);
2367 unlock_device_hash_lock(conf, hash);
f18c1a35 2368
d592a996 2369 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2370 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2371 nsh->dev[i].orig_page = osh->dev[i].page;
2372 }
566c09c5 2373 nsh->hash_lock_index = hash;
ad01c9e3 2374 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2375 cnt++;
2376 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2377 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2378 hash++;
2379 cnt = 0;
2380 }
ad01c9e3
N
2381 }
2382 kmem_cache_destroy(conf->slab_cache);
2383
2384 /* Step 3.
2385 * At this point, we are holding all the stripes so the array
2386 * is completely stalled, so now is a good time to resize
d6f38f31 2387 * conf->disks and the scribble region
ad01c9e3
N
2388 */
2389 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2390 if (ndisks) {
d7bd398e 2391 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2392 ndisks[i] = conf->disks[i];
d7bd398e
SL
2393
2394 for (i = conf->pool_size; i < newsize; i++) {
2395 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2396 if (!ndisks[i].extra_page)
2397 err = -ENOMEM;
2398 }
2399
2400 if (err) {
2401 for (i = conf->pool_size; i < newsize; i++)
2402 if (ndisks[i].extra_page)
2403 put_page(ndisks[i].extra_page);
2404 kfree(ndisks);
2405 } else {
2406 kfree(conf->disks);
2407 conf->disks = ndisks;
2408 }
ad01c9e3
N
2409 } else
2410 err = -ENOMEM;
2411
2d5b569b 2412 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2413 /* Step 4, return new stripes to service */
2414 while(!list_empty(&newstripes)) {
2415 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2416 list_del_init(&nsh->lru);
d6f38f31 2417
ad01c9e3
N
2418 for (i=conf->raid_disks; i < newsize; i++)
2419 if (nsh->dev[i].page == NULL) {
2420 struct page *p = alloc_page(GFP_NOIO);
2421 nsh->dev[i].page = p;
d592a996 2422 nsh->dev[i].orig_page = p;
ad01c9e3
N
2423 if (!p)
2424 err = -ENOMEM;
2425 }
6d036f7d 2426 raid5_release_stripe(nsh);
ad01c9e3
N
2427 }
2428 /* critical section pass, GFP_NOIO no longer needed */
2429
2430 conf->slab_cache = sc;
2431 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2432 if (!err)
2433 conf->pool_size = newsize;
ad01c9e3
N
2434 return err;
2435}
1da177e4 2436
486f0644 2437static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2438{
2439 struct stripe_head *sh;
49895bcc 2440 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2441
566c09c5
SL
2442 spin_lock_irq(conf->hash_locks + hash);
2443 sh = get_free_stripe(conf, hash);
2444 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2445 if (!sh)
2446 return 0;
78bafebd 2447 BUG_ON(atomic_read(&sh->count));
e4e11e38 2448 shrink_buffers(sh);
3f294f4f
N
2449 kmem_cache_free(conf->slab_cache, sh);
2450 atomic_dec(&conf->active_stripes);
486f0644 2451 conf->max_nr_stripes--;
3f294f4f
N
2452 return 1;
2453}
2454
d1688a6d 2455static void shrink_stripes(struct r5conf *conf)
3f294f4f 2456{
486f0644
N
2457 while (conf->max_nr_stripes &&
2458 drop_one_stripe(conf))
2459 ;
3f294f4f 2460
644df1a8 2461 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2462 conf->slab_cache = NULL;
2463}
2464
4246a0b6 2465static void raid5_end_read_request(struct bio * bi)
1da177e4 2466{
99c0fb5f 2467 struct stripe_head *sh = bi->bi_private;
d1688a6d 2468 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2469 int disks = sh->disks, i;
d6950432 2470 char b[BDEVNAME_SIZE];
dd054fce 2471 struct md_rdev *rdev = NULL;
05616be5 2472 sector_t s;
1da177e4
LT
2473
2474 for (i=0 ; i<disks; i++)
2475 if (bi == &sh->dev[i].req)
2476 break;
2477
4246a0b6 2478 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2479 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2480 bi->bi_error);
1da177e4 2481 if (i == disks) {
5f9d1fde 2482 bio_reset(bi);
1da177e4 2483 BUG();
6712ecf8 2484 return;
1da177e4 2485 }
14a75d3e 2486 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2487 /* If replacement finished while this request was outstanding,
2488 * 'replacement' might be NULL already.
2489 * In that case it moved down to 'rdev'.
2490 * rdev is not removed until all requests are finished.
2491 */
14a75d3e 2492 rdev = conf->disks[i].replacement;
dd054fce 2493 if (!rdev)
14a75d3e 2494 rdev = conf->disks[i].rdev;
1da177e4 2495
05616be5
N
2496 if (use_new_offset(conf, sh))
2497 s = sh->sector + rdev->new_data_offset;
2498 else
2499 s = sh->sector + rdev->data_offset;
4246a0b6 2500 if (!bi->bi_error) {
1da177e4 2501 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2502 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2503 /* Note that this cannot happen on a
2504 * replacement device. We just fail those on
2505 * any error
2506 */
cc6167b4
N
2507 pr_info_ratelimited(
2508 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
8bda470e 2509 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2510 (unsigned long long)s,
8bda470e 2511 bdevname(rdev->bdev, b));
ddd5115f 2512 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2513 clear_bit(R5_ReadError, &sh->dev[i].flags);
2514 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2515 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2516 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2517
86aa1397
SL
2518 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2519 /*
2520 * end read for a page in journal, this
2521 * must be preparing for prexor in rmw
2522 */
2523 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2524
14a75d3e
N
2525 if (atomic_read(&rdev->read_errors))
2526 atomic_set(&rdev->read_errors, 0);
1da177e4 2527 } else {
14a75d3e 2528 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2529 int retry = 0;
2e8ac303 2530 int set_bad = 0;
d6950432 2531
1da177e4 2532 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2533 atomic_inc(&rdev->read_errors);
14a75d3e 2534 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2535 pr_warn_ratelimited(
2536 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2537 mdname(conf->mddev),
05616be5 2538 (unsigned long long)s,
14a75d3e 2539 bdn);
2e8ac303 2540 else if (conf->mddev->degraded >= conf->max_degraded) {
2541 set_bad = 1;
cc6167b4
N
2542 pr_warn_ratelimited(
2543 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2544 mdname(conf->mddev),
05616be5 2545 (unsigned long long)s,
8bda470e 2546 bdn);
2e8ac303 2547 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2548 /* Oh, no!!! */
2e8ac303 2549 set_bad = 1;
cc6167b4
N
2550 pr_warn_ratelimited(
2551 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2552 mdname(conf->mddev),
05616be5 2553 (unsigned long long)s,
8bda470e 2554 bdn);
2e8ac303 2555 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2556 > conf->max_nr_stripes)
cc6167b4 2557 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2558 mdname(conf->mddev), bdn);
ba22dcbf
N
2559 else
2560 retry = 1;
edfa1f65
BY
2561 if (set_bad && test_bit(In_sync, &rdev->flags)
2562 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2563 retry = 1;
ba22dcbf 2564 if (retry)
3f9e7c14 2565 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2566 set_bit(R5_ReadError, &sh->dev[i].flags);
2567 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2568 } else
2569 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2570 else {
4e5314b5
N
2571 clear_bit(R5_ReadError, &sh->dev[i].flags);
2572 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2573 if (!(set_bad
2574 && test_bit(In_sync, &rdev->flags)
2575 && rdev_set_badblocks(
2576 rdev, sh->sector, STRIPE_SECTORS, 0)))
2577 md_error(conf->mddev, rdev);
ba22dcbf 2578 }
1da177e4 2579 }
14a75d3e 2580 rdev_dec_pending(rdev, conf->mddev);
c9445555 2581 bio_reset(bi);
1da177e4
LT
2582 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2583 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2584 raid5_release_stripe(sh);
1da177e4
LT
2585}
2586
4246a0b6 2587static void raid5_end_write_request(struct bio *bi)
1da177e4 2588{
99c0fb5f 2589 struct stripe_head *sh = bi->bi_private;
d1688a6d 2590 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2591 int disks = sh->disks, i;
977df362 2592 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2593 sector_t first_bad;
2594 int bad_sectors;
977df362 2595 int replacement = 0;
1da177e4 2596
977df362
N
2597 for (i = 0 ; i < disks; i++) {
2598 if (bi == &sh->dev[i].req) {
2599 rdev = conf->disks[i].rdev;
1da177e4 2600 break;
977df362
N
2601 }
2602 if (bi == &sh->dev[i].rreq) {
2603 rdev = conf->disks[i].replacement;
dd054fce
N
2604 if (rdev)
2605 replacement = 1;
2606 else
2607 /* rdev was removed and 'replacement'
2608 * replaced it. rdev is not removed
2609 * until all requests are finished.
2610 */
2611 rdev = conf->disks[i].rdev;
977df362
N
2612 break;
2613 }
2614 }
4246a0b6 2615 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2616 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2617 bi->bi_error);
1da177e4 2618 if (i == disks) {
5f9d1fde 2619 bio_reset(bi);
1da177e4 2620 BUG();
6712ecf8 2621 return;
1da177e4
LT
2622 }
2623
977df362 2624 if (replacement) {
4246a0b6 2625 if (bi->bi_error)
977df362
N
2626 md_error(conf->mddev, rdev);
2627 else if (is_badblock(rdev, sh->sector,
2628 STRIPE_SECTORS,
2629 &first_bad, &bad_sectors))
2630 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2631 } else {
4246a0b6 2632 if (bi->bi_error) {
9f97e4b1 2633 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2634 set_bit(WriteErrorSeen, &rdev->flags);
2635 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2636 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2637 set_bit(MD_RECOVERY_NEEDED,
2638 &rdev->mddev->recovery);
977df362
N
2639 } else if (is_badblock(rdev, sh->sector,
2640 STRIPE_SECTORS,
c0b32972 2641 &first_bad, &bad_sectors)) {
977df362 2642 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2643 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2644 /* That was a successful write so make
2645 * sure it looks like we already did
2646 * a re-write.
2647 */
2648 set_bit(R5_ReWrite, &sh->dev[i].flags);
2649 }
977df362
N
2650 }
2651 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2652
4246a0b6 2653 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2654 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2655
c9445555 2656 bio_reset(bi);
977df362
N
2657 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2658 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2659 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2660 raid5_release_stripe(sh);
59fc630b 2661
2662 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2663 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2664}
2665
784052ec 2666static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2667{
2668 struct r5dev *dev = &sh->dev[i];
2669
1da177e4 2670 dev->flags = 0;
6d036f7d 2671 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2672}
2673
849674e4 2674static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2675{
2676 char b[BDEVNAME_SIZE];
d1688a6d 2677 struct r5conf *conf = mddev->private;
908f4fbd 2678 unsigned long flags;
0c55e022 2679 pr_debug("raid456: error called\n");
1da177e4 2680
908f4fbd
N
2681 spin_lock_irqsave(&conf->device_lock, flags);
2682 clear_bit(In_sync, &rdev->flags);
2e38a37f 2683 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2684 spin_unlock_irqrestore(&conf->device_lock, flags);
2685 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2686
de393cde 2687 set_bit(Blocked, &rdev->flags);
6f8d0c77 2688 set_bit(Faulty, &rdev->flags);
2953079c
SL
2689 set_mask_bits(&mddev->sb_flags, 0,
2690 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2691 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2692 "md/raid:%s: Operation continuing on %d devices.\n",
2693 mdname(mddev),
2694 bdevname(rdev->bdev, b),
2695 mdname(mddev),
2696 conf->raid_disks - mddev->degraded);
2e38a37f 2697 r5c_update_on_rdev_error(mddev);
16a53ecc 2698}
1da177e4
LT
2699
2700/*
2701 * Input: a 'big' sector number,
2702 * Output: index of the data and parity disk, and the sector # in them.
2703 */
6d036f7d
SL
2704sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2705 int previous, int *dd_idx,
2706 struct stripe_head *sh)
1da177e4 2707{
6e3b96ed 2708 sector_t stripe, stripe2;
35f2a591 2709 sector_t chunk_number;
1da177e4 2710 unsigned int chunk_offset;
911d4ee8 2711 int pd_idx, qd_idx;
67cc2b81 2712 int ddf_layout = 0;
1da177e4 2713 sector_t new_sector;
e183eaed
N
2714 int algorithm = previous ? conf->prev_algo
2715 : conf->algorithm;
09c9e5fa
AN
2716 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2717 : conf->chunk_sectors;
112bf897
N
2718 int raid_disks = previous ? conf->previous_raid_disks
2719 : conf->raid_disks;
2720 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2721
2722 /* First compute the information on this sector */
2723
2724 /*
2725 * Compute the chunk number and the sector offset inside the chunk
2726 */
2727 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2728 chunk_number = r_sector;
1da177e4
LT
2729
2730 /*
2731 * Compute the stripe number
2732 */
35f2a591
N
2733 stripe = chunk_number;
2734 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2735 stripe2 = stripe;
1da177e4
LT
2736 /*
2737 * Select the parity disk based on the user selected algorithm.
2738 */
84789554 2739 pd_idx = qd_idx = -1;
16a53ecc
N
2740 switch(conf->level) {
2741 case 4:
911d4ee8 2742 pd_idx = data_disks;
16a53ecc
N
2743 break;
2744 case 5:
e183eaed 2745 switch (algorithm) {
1da177e4 2746 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2747 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2748 if (*dd_idx >= pd_idx)
1da177e4
LT
2749 (*dd_idx)++;
2750 break;
2751 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2752 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2753 if (*dd_idx >= pd_idx)
1da177e4
LT
2754 (*dd_idx)++;
2755 break;
2756 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2757 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2758 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2759 break;
2760 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2761 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2762 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2763 break;
99c0fb5f
N
2764 case ALGORITHM_PARITY_0:
2765 pd_idx = 0;
2766 (*dd_idx)++;
2767 break;
2768 case ALGORITHM_PARITY_N:
2769 pd_idx = data_disks;
2770 break;
1da177e4 2771 default:
99c0fb5f 2772 BUG();
16a53ecc
N
2773 }
2774 break;
2775 case 6:
2776
e183eaed 2777 switch (algorithm) {
16a53ecc 2778 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2779 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2780 qd_idx = pd_idx + 1;
2781 if (pd_idx == raid_disks-1) {
99c0fb5f 2782 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2783 qd_idx = 0;
2784 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2785 (*dd_idx) += 2; /* D D P Q D */
2786 break;
2787 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2788 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2789 qd_idx = pd_idx + 1;
2790 if (pd_idx == raid_disks-1) {
99c0fb5f 2791 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2792 qd_idx = 0;
2793 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2794 (*dd_idx) += 2; /* D D P Q D */
2795 break;
2796 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2797 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2798 qd_idx = (pd_idx + 1) % raid_disks;
2799 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2800 break;
2801 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2802 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2803 qd_idx = (pd_idx + 1) % raid_disks;
2804 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2805 break;
99c0fb5f
N
2806
2807 case ALGORITHM_PARITY_0:
2808 pd_idx = 0;
2809 qd_idx = 1;
2810 (*dd_idx) += 2;
2811 break;
2812 case ALGORITHM_PARITY_N:
2813 pd_idx = data_disks;
2814 qd_idx = data_disks + 1;
2815 break;
2816
2817 case ALGORITHM_ROTATING_ZERO_RESTART:
2818 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2819 * of blocks for computing Q is different.
2820 */
6e3b96ed 2821 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2822 qd_idx = pd_idx + 1;
2823 if (pd_idx == raid_disks-1) {
2824 (*dd_idx)++; /* Q D D D P */
2825 qd_idx = 0;
2826 } else if (*dd_idx >= pd_idx)
2827 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2828 ddf_layout = 1;
99c0fb5f
N
2829 break;
2830
2831 case ALGORITHM_ROTATING_N_RESTART:
2832 /* Same a left_asymmetric, by first stripe is
2833 * D D D P Q rather than
2834 * Q D D D P
2835 */
6e3b96ed
N
2836 stripe2 += 1;
2837 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2838 qd_idx = pd_idx + 1;
2839 if (pd_idx == raid_disks-1) {
2840 (*dd_idx)++; /* Q D D D P */
2841 qd_idx = 0;
2842 } else if (*dd_idx >= pd_idx)
2843 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2844 ddf_layout = 1;
99c0fb5f
N
2845 break;
2846
2847 case ALGORITHM_ROTATING_N_CONTINUE:
2848 /* Same as left_symmetric but Q is before P */
6e3b96ed 2849 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2850 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2851 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2852 ddf_layout = 1;
99c0fb5f
N
2853 break;
2854
2855 case ALGORITHM_LEFT_ASYMMETRIC_6:
2856 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2857 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2858 if (*dd_idx >= pd_idx)
2859 (*dd_idx)++;
2860 qd_idx = raid_disks - 1;
2861 break;
2862
2863 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2864 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2865 if (*dd_idx >= pd_idx)
2866 (*dd_idx)++;
2867 qd_idx = raid_disks - 1;
2868 break;
2869
2870 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2871 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2872 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2873 qd_idx = raid_disks - 1;
2874 break;
2875
2876 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2877 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2878 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2879 qd_idx = raid_disks - 1;
2880 break;
2881
2882 case ALGORITHM_PARITY_0_6:
2883 pd_idx = 0;
2884 (*dd_idx)++;
2885 qd_idx = raid_disks - 1;
2886 break;
2887
16a53ecc 2888 default:
99c0fb5f 2889 BUG();
16a53ecc
N
2890 }
2891 break;
1da177e4
LT
2892 }
2893
911d4ee8
N
2894 if (sh) {
2895 sh->pd_idx = pd_idx;
2896 sh->qd_idx = qd_idx;
67cc2b81 2897 sh->ddf_layout = ddf_layout;
911d4ee8 2898 }
1da177e4
LT
2899 /*
2900 * Finally, compute the new sector number
2901 */
2902 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2903 return new_sector;
2904}
2905
6d036f7d 2906sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2907{
d1688a6d 2908 struct r5conf *conf = sh->raid_conf;
b875e531
N
2909 int raid_disks = sh->disks;
2910 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2911 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2912 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2913 : conf->chunk_sectors;
e183eaed
N
2914 int algorithm = previous ? conf->prev_algo
2915 : conf->algorithm;
1da177e4
LT
2916 sector_t stripe;
2917 int chunk_offset;
35f2a591
N
2918 sector_t chunk_number;
2919 int dummy1, dd_idx = i;
1da177e4 2920 sector_t r_sector;
911d4ee8 2921 struct stripe_head sh2;
1da177e4
LT
2922
2923 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2924 stripe = new_sector;
1da177e4 2925
16a53ecc
N
2926 if (i == sh->pd_idx)
2927 return 0;
2928 switch(conf->level) {
2929 case 4: break;
2930 case 5:
e183eaed 2931 switch (algorithm) {
1da177e4
LT
2932 case ALGORITHM_LEFT_ASYMMETRIC:
2933 case ALGORITHM_RIGHT_ASYMMETRIC:
2934 if (i > sh->pd_idx)
2935 i--;
2936 break;
2937 case ALGORITHM_LEFT_SYMMETRIC:
2938 case ALGORITHM_RIGHT_SYMMETRIC:
2939 if (i < sh->pd_idx)
2940 i += raid_disks;
2941 i -= (sh->pd_idx + 1);
2942 break;
99c0fb5f
N
2943 case ALGORITHM_PARITY_0:
2944 i -= 1;
2945 break;
2946 case ALGORITHM_PARITY_N:
2947 break;
1da177e4 2948 default:
99c0fb5f 2949 BUG();
16a53ecc
N
2950 }
2951 break;
2952 case 6:
d0dabf7e 2953 if (i == sh->qd_idx)
16a53ecc 2954 return 0; /* It is the Q disk */
e183eaed 2955 switch (algorithm) {
16a53ecc
N
2956 case ALGORITHM_LEFT_ASYMMETRIC:
2957 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2958 case ALGORITHM_ROTATING_ZERO_RESTART:
2959 case ALGORITHM_ROTATING_N_RESTART:
2960 if (sh->pd_idx == raid_disks-1)
2961 i--; /* Q D D D P */
16a53ecc
N
2962 else if (i > sh->pd_idx)
2963 i -= 2; /* D D P Q D */
2964 break;
2965 case ALGORITHM_LEFT_SYMMETRIC:
2966 case ALGORITHM_RIGHT_SYMMETRIC:
2967 if (sh->pd_idx == raid_disks-1)
2968 i--; /* Q D D D P */
2969 else {
2970 /* D D P Q D */
2971 if (i < sh->pd_idx)
2972 i += raid_disks;
2973 i -= (sh->pd_idx + 2);
2974 }
2975 break;
99c0fb5f
N
2976 case ALGORITHM_PARITY_0:
2977 i -= 2;
2978 break;
2979 case ALGORITHM_PARITY_N:
2980 break;
2981 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2982 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2983 if (sh->pd_idx == 0)
2984 i--; /* P D D D Q */
e4424fee
N
2985 else {
2986 /* D D Q P D */
2987 if (i < sh->pd_idx)
2988 i += raid_disks;
2989 i -= (sh->pd_idx + 1);
2990 }
99c0fb5f
N
2991 break;
2992 case ALGORITHM_LEFT_ASYMMETRIC_6:
2993 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2994 if (i > sh->pd_idx)
2995 i--;
2996 break;
2997 case ALGORITHM_LEFT_SYMMETRIC_6:
2998 case ALGORITHM_RIGHT_SYMMETRIC_6:
2999 if (i < sh->pd_idx)
3000 i += data_disks + 1;
3001 i -= (sh->pd_idx + 1);
3002 break;
3003 case ALGORITHM_PARITY_0_6:
3004 i -= 1;
3005 break;
16a53ecc 3006 default:
99c0fb5f 3007 BUG();
16a53ecc
N
3008 }
3009 break;
1da177e4
LT
3010 }
3011
3012 chunk_number = stripe * data_disks + i;
35f2a591 3013 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3014
112bf897 3015 check = raid5_compute_sector(conf, r_sector,
784052ec 3016 previous, &dummy1, &sh2);
911d4ee8
N
3017 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3018 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3019 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3020 mdname(conf->mddev));
1da177e4
LT
3021 return 0;
3022 }
3023 return r_sector;
3024}
3025
07e83364
SL
3026/*
3027 * There are cases where we want handle_stripe_dirtying() and
3028 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3029 *
3030 * This function checks whether we want to delay the towrite. Specifically,
3031 * we delay the towrite when:
3032 *
3033 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3034 * stripe has data in journal (for other devices).
3035 *
3036 * In this case, when reading data for the non-overwrite dev, it is
3037 * necessary to handle complex rmw of write back cache (prexor with
3038 * orig_page, and xor with page). To keep read path simple, we would
3039 * like to flush data in journal to RAID disks first, so complex rmw
3040 * is handled in the write patch (handle_stripe_dirtying).
3041 *
39b99586
SL
3042 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3043 *
3044 * It is important to be able to flush all stripes in raid5-cache.
3045 * Therefore, we need reserve some space on the journal device for
3046 * these flushes. If flush operation includes pending writes to the
3047 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3048 * for the flush out. If we exclude these pending writes from flush
3049 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3050 * Therefore, excluding pending writes in these cases enables more
3051 * efficient use of the journal device.
3052 *
3053 * Note: To make sure the stripe makes progress, we only delay
3054 * towrite for stripes with data already in journal (injournal > 0).
3055 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3056 * no_space_stripes list.
3057 *
07e83364 3058 */
39b99586
SL
3059static inline bool delay_towrite(struct r5conf *conf,
3060 struct r5dev *dev,
3061 struct stripe_head_state *s)
07e83364 3062{
39b99586
SL
3063 /* case 1 above */
3064 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3065 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3066 return true;
3067 /* case 2 above */
3068 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3069 s->injournal > 0)
3070 return true;
3071 return false;
07e83364
SL
3072}
3073
600aa109 3074static void
c0f7bddb 3075schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3076 int rcw, int expand)
e33129d8 3077{
584acdd4 3078 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3079 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3080 int level = conf->level;
e33129d8
DW
3081
3082 if (rcw) {
1e6d690b
SL
3083 /*
3084 * In some cases, handle_stripe_dirtying initially decided to
3085 * run rmw and allocates extra page for prexor. However, rcw is
3086 * cheaper later on. We need to free the extra page now,
3087 * because we won't be able to do that in ops_complete_prexor().
3088 */
3089 r5c_release_extra_page(sh);
e33129d8
DW
3090
3091 for (i = disks; i--; ) {
3092 struct r5dev *dev = &sh->dev[i];
3093
39b99586 3094 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3095 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3096 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3097 if (!expand)
3098 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3099 s->locked++;
1e6d690b
SL
3100 } else if (test_bit(R5_InJournal, &dev->flags)) {
3101 set_bit(R5_LOCKED, &dev->flags);
3102 s->locked++;
e33129d8
DW
3103 }
3104 }
ce7d363a
N
3105 /* if we are not expanding this is a proper write request, and
3106 * there will be bios with new data to be drained into the
3107 * stripe cache
3108 */
3109 if (!expand) {
3110 if (!s->locked)
3111 /* False alarm, nothing to do */
3112 return;
3113 sh->reconstruct_state = reconstruct_state_drain_run;
3114 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3115 } else
3116 sh->reconstruct_state = reconstruct_state_run;
3117
3118 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3119
c0f7bddb 3120 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3121 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3122 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3123 } else {
3124 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3125 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3126 BUG_ON(level == 6 &&
3127 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3128 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3129
e33129d8
DW
3130 for (i = disks; i--; ) {
3131 struct r5dev *dev = &sh->dev[i];
584acdd4 3132 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3133 continue;
3134
e33129d8
DW
3135 if (dev->towrite &&
3136 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3137 test_bit(R5_Wantcompute, &dev->flags))) {
3138 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3139 set_bit(R5_LOCKED, &dev->flags);
3140 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3141 s->locked++;
1e6d690b
SL
3142 } else if (test_bit(R5_InJournal, &dev->flags)) {
3143 set_bit(R5_LOCKED, &dev->flags);
3144 s->locked++;
e33129d8
DW
3145 }
3146 }
ce7d363a
N
3147 if (!s->locked)
3148 /* False alarm - nothing to do */
3149 return;
3150 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3151 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3152 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3153 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3154 }
3155
c0f7bddb 3156 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3157 * are in flight
3158 */
3159 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3160 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3161 s->locked++;
e33129d8 3162
c0f7bddb
YT
3163 if (level == 6) {
3164 int qd_idx = sh->qd_idx;
3165 struct r5dev *dev = &sh->dev[qd_idx];
3166
3167 set_bit(R5_LOCKED, &dev->flags);
3168 clear_bit(R5_UPTODATE, &dev->flags);
3169 s->locked++;
3170 }
3171
3418d036
AP
3172 if (raid5_has_ppl(sh->raid_conf) &&
3173 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3174 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3175 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3176 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3177
600aa109 3178 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3179 __func__, (unsigned long long)sh->sector,
600aa109 3180 s->locked, s->ops_request);
e33129d8 3181}
16a53ecc 3182
1da177e4
LT
3183/*
3184 * Each stripe/dev can have one or more bion attached.
16a53ecc 3185 * toread/towrite point to the first in a chain.
1da177e4
LT
3186 * The bi_next chain must be in order.
3187 */
da41ba65 3188static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3189 int forwrite, int previous)
1da177e4
LT
3190{
3191 struct bio **bip;
d1688a6d 3192 struct r5conf *conf = sh->raid_conf;
72626685 3193 int firstwrite=0;
1da177e4 3194
cbe47ec5 3195 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3196 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3197 (unsigned long long)sh->sector);
3198
b17459c0
SL
3199 /*
3200 * If several bio share a stripe. The bio bi_phys_segments acts as a
3201 * reference count to avoid race. The reference count should already be
3202 * increased before this function is called (for example, in
849674e4 3203 * raid5_make_request()), so other bio sharing this stripe will not free the
b17459c0
SL
3204 * stripe. If a stripe is owned by one stripe, the stripe lock will
3205 * protect it.
3206 */
3207 spin_lock_irq(&sh->stripe_lock);
59fc630b 3208 /* Don't allow new IO added to stripes in batch list */
3209 if (sh->batch_head)
3210 goto overlap;
72626685 3211 if (forwrite) {
1da177e4 3212 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3213 if (*bip == NULL)
72626685
N
3214 firstwrite = 1;
3215 } else
1da177e4 3216 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3217 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3218 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3219 goto overlap;
3220 bip = & (*bip)->bi_next;
3221 }
4f024f37 3222 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3223 goto overlap;
3224
3418d036
AP
3225 if (forwrite && raid5_has_ppl(conf)) {
3226 /*
3227 * With PPL only writes to consecutive data chunks within a
3228 * stripe are allowed because for a single stripe_head we can
3229 * only have one PPL entry at a time, which describes one data
3230 * range. Not really an overlap, but wait_for_overlap can be
3231 * used to handle this.
3232 */
3233 sector_t sector;
3234 sector_t first = 0;
3235 sector_t last = 0;
3236 int count = 0;
3237 int i;
3238
3239 for (i = 0; i < sh->disks; i++) {
3240 if (i != sh->pd_idx &&
3241 (i == dd_idx || sh->dev[i].towrite)) {
3242 sector = sh->dev[i].sector;
3243 if (count == 0 || sector < first)
3244 first = sector;
3245 if (sector > last)
3246 last = sector;
3247 count++;
3248 }
3249 }
3250
3251 if (first + conf->chunk_sectors * (count - 1) != last)
3252 goto overlap;
3253 }
3254
da41ba65 3255 if (!forwrite || previous)
3256 clear_bit(STRIPE_BATCH_READY, &sh->state);
3257
78bafebd 3258 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3259 if (*bip)
3260 bi->bi_next = *bip;
3261 *bip = bi;
e7836bd6 3262 raid5_inc_bi_active_stripes(bi);
49728050 3263 md_write_inc(conf->mddev, bi);
72626685 3264
1da177e4
LT
3265 if (forwrite) {
3266 /* check if page is covered */
3267 sector_t sector = sh->dev[dd_idx].sector;
3268 for (bi=sh->dev[dd_idx].towrite;
3269 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3270 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3271 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3272 if (bio_end_sector(bi) >= sector)
3273 sector = bio_end_sector(bi);
1da177e4
LT
3274 }
3275 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3276 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3277 sh->overwrite_disks++;
1da177e4 3278 }
cbe47ec5
N
3279
3280 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3281 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3282 (unsigned long long)sh->sector, dd_idx);
3283
3284 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3285 /* Cannot hold spinlock over bitmap_startwrite,
3286 * but must ensure this isn't added to a batch until
3287 * we have added to the bitmap and set bm_seq.
3288 * So set STRIPE_BITMAP_PENDING to prevent
3289 * batching.
3290 * If multiple add_stripe_bio() calls race here they
3291 * much all set STRIPE_BITMAP_PENDING. So only the first one
3292 * to complete "bitmap_startwrite" gets to set
3293 * STRIPE_BIT_DELAY. This is important as once a stripe
3294 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3295 * any more.
3296 */
3297 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3298 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3299 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3300 STRIPE_SECTORS, 0);
d0852df5
N
3301 spin_lock_irq(&sh->stripe_lock);
3302 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3303 if (!sh->batch_head) {
3304 sh->bm_seq = conf->seq_flush+1;
3305 set_bit(STRIPE_BIT_DELAY, &sh->state);
3306 }
cbe47ec5 3307 }
d0852df5 3308 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3309
3310 if (stripe_can_batch(sh))
3311 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3312 return 1;
3313
3314 overlap:
3315 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3316 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3317 return 0;
3318}
3319
d1688a6d 3320static void end_reshape(struct r5conf *conf);
29269553 3321
d1688a6d 3322static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3323 struct stripe_head *sh)
ccfcc3c1 3324{
784052ec 3325 int sectors_per_chunk =
09c9e5fa 3326 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3327 int dd_idx;
2d2063ce 3328 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3329 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3330
112bf897
N
3331 raid5_compute_sector(conf,
3332 stripe * (disks - conf->max_degraded)
b875e531 3333 *sectors_per_chunk + chunk_offset,
112bf897 3334 previous,
911d4ee8 3335 &dd_idx, sh);
ccfcc3c1
N
3336}
3337
a4456856 3338static void
d1688a6d 3339handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3340 struct stripe_head_state *s, int disks)
a4456856
DW
3341{
3342 int i;
59fc630b 3343 BUG_ON(sh->batch_head);
a4456856
DW
3344 for (i = disks; i--; ) {
3345 struct bio *bi;
3346 int bitmap_end = 0;
3347
3348 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3349 struct md_rdev *rdev;
a4456856
DW
3350 rcu_read_lock();
3351 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3352 if (rdev && test_bit(In_sync, &rdev->flags) &&
3353 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3354 atomic_inc(&rdev->nr_pending);
3355 else
3356 rdev = NULL;
a4456856 3357 rcu_read_unlock();
7f0da59b
N
3358 if (rdev) {
3359 if (!rdev_set_badblocks(
3360 rdev,
3361 sh->sector,
3362 STRIPE_SECTORS, 0))
3363 md_error(conf->mddev, rdev);
3364 rdev_dec_pending(rdev, conf->mddev);
3365 }
a4456856 3366 }
b17459c0 3367 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3368 /* fail all writes first */
3369 bi = sh->dev[i].towrite;
3370 sh->dev[i].towrite = NULL;
7a87f434 3371 sh->overwrite_disks = 0;
b17459c0 3372 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3373 if (bi)
a4456856 3374 bitmap_end = 1;
a4456856 3375
ff875738 3376 log_stripe_write_finished(sh);
0576b1c6 3377
a4456856
DW
3378 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3379 wake_up(&conf->wait_for_overlap);
3380
4f024f37 3381 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3382 sh->dev[i].sector + STRIPE_SECTORS) {
3383 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3384
3385 bi->bi_error = -EIO;
49728050
N
3386 md_write_end(conf->mddev);
3387 if (!raid5_dec_bi_active_stripes(bi))
bd83d0a2 3388 bio_endio(bi);
a4456856
DW
3389 bi = nextbi;
3390 }
7eaf7e8e
SL
3391 if (bitmap_end)
3392 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3393 STRIPE_SECTORS, 0, 0);
3394 bitmap_end = 0;
a4456856
DW
3395 /* and fail all 'written' */
3396 bi = sh->dev[i].written;
3397 sh->dev[i].written = NULL;
d592a996
SL
3398 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3399 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3400 sh->dev[i].page = sh->dev[i].orig_page;
3401 }
3402
a4456856 3403 if (bi) bitmap_end = 1;
4f024f37 3404 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3405 sh->dev[i].sector + STRIPE_SECTORS) {
3406 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3407
3408 bi->bi_error = -EIO;
49728050
N
3409 md_write_end(conf->mddev);
3410 if (!raid5_dec_bi_active_stripes(bi))
bd83d0a2 3411 bio_endio(bi);
a4456856
DW
3412 bi = bi2;
3413 }
3414
b5e98d65
DW
3415 /* fail any reads if this device is non-operational and
3416 * the data has not reached the cache yet.
3417 */
3418 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3419 s->failed > conf->max_degraded &&
b5e98d65
DW
3420 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3421 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3422 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3423 bi = sh->dev[i].toread;
3424 sh->dev[i].toread = NULL;
143c4d05 3425 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3426 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3427 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3428 if (bi)
3429 s->to_read--;
4f024f37 3430 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3431 sh->dev[i].sector + STRIPE_SECTORS) {
3432 struct bio *nextbi =
3433 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3434
3435 bi->bi_error = -EIO;
34a6f80e 3436 if (!raid5_dec_bi_active_stripes(bi))
bd83d0a2 3437 bio_endio(bi);
a4456856
DW
3438 bi = nextbi;
3439 }
3440 }
a4456856
DW
3441 if (bitmap_end)
3442 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3443 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3444 /* If we were in the middle of a write the parity block might
3445 * still be locked - so just clear all R5_LOCKED flags
3446 */
3447 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3448 }
ebda780b
SL
3449 s->to_write = 0;
3450 s->written = 0;
a4456856 3451
8b3e6cdc
DW
3452 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3453 if (atomic_dec_and_test(&conf->pending_full_writes))
3454 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3455}
3456
7f0da59b 3457static void
d1688a6d 3458handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3459 struct stripe_head_state *s)
3460{
3461 int abort = 0;
3462 int i;
3463
59fc630b 3464 BUG_ON(sh->batch_head);
7f0da59b 3465 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3466 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3467 wake_up(&conf->wait_for_overlap);
7f0da59b 3468 s->syncing = 0;
9a3e1101 3469 s->replacing = 0;
7f0da59b 3470 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3471 * Don't even need to abort as that is handled elsewhere
3472 * if needed, and not always wanted e.g. if there is a known
3473 * bad block here.
9a3e1101 3474 * For recover/replace we need to record a bad block on all
7f0da59b
N
3475 * non-sync devices, or abort the recovery
3476 */
18b9837e
N
3477 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3478 /* During recovery devices cannot be removed, so
3479 * locking and refcounting of rdevs is not needed
3480 */
e50d3992 3481 rcu_read_lock();
18b9837e 3482 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3483 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3484 if (rdev
3485 && !test_bit(Faulty, &rdev->flags)
3486 && !test_bit(In_sync, &rdev->flags)
3487 && !rdev_set_badblocks(rdev, sh->sector,
3488 STRIPE_SECTORS, 0))
3489 abort = 1;
e50d3992 3490 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3491 if (rdev
3492 && !test_bit(Faulty, &rdev->flags)
3493 && !test_bit(In_sync, &rdev->flags)
3494 && !rdev_set_badblocks(rdev, sh->sector,
3495 STRIPE_SECTORS, 0))
3496 abort = 1;
3497 }
e50d3992 3498 rcu_read_unlock();
18b9837e
N
3499 if (abort)
3500 conf->recovery_disabled =
3501 conf->mddev->recovery_disabled;
7f0da59b 3502 }
18b9837e 3503 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3504}
3505
9a3e1101
N
3506static int want_replace(struct stripe_head *sh, int disk_idx)
3507{
3508 struct md_rdev *rdev;
3509 int rv = 0;
3f232d6a
N
3510
3511 rcu_read_lock();
3512 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3513 if (rdev
3514 && !test_bit(Faulty, &rdev->flags)
3515 && !test_bit(In_sync, &rdev->flags)
3516 && (rdev->recovery_offset <= sh->sector
3517 || rdev->mddev->recovery_cp <= sh->sector))
3518 rv = 1;
3f232d6a 3519 rcu_read_unlock();
9a3e1101
N
3520 return rv;
3521}
3522
2c58f06e
N
3523static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3524 int disk_idx, int disks)
a4456856 3525{
5599becc 3526 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3527 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3528 &sh->dev[s->failed_num[1]] };
ea664c82 3529 int i;
5599becc 3530
a79cfe12
N
3531
3532 if (test_bit(R5_LOCKED, &dev->flags) ||
3533 test_bit(R5_UPTODATE, &dev->flags))
3534 /* No point reading this as we already have it or have
3535 * decided to get it.
3536 */
3537 return 0;
3538
3539 if (dev->toread ||
3540 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3541 /* We need this block to directly satisfy a request */
3542 return 1;
3543
3544 if (s->syncing || s->expanding ||
3545 (s->replacing && want_replace(sh, disk_idx)))
3546 /* When syncing, or expanding we read everything.
3547 * When replacing, we need the replaced block.
3548 */
3549 return 1;
3550
3551 if ((s->failed >= 1 && fdev[0]->toread) ||
3552 (s->failed >= 2 && fdev[1]->toread))
3553 /* If we want to read from a failed device, then
3554 * we need to actually read every other device.
3555 */
3556 return 1;
3557
a9d56950
N
3558 /* Sometimes neither read-modify-write nor reconstruct-write
3559 * cycles can work. In those cases we read every block we
3560 * can. Then the parity-update is certain to have enough to
3561 * work with.
3562 * This can only be a problem when we need to write something,
3563 * and some device has failed. If either of those tests
3564 * fail we need look no further.
3565 */
3566 if (!s->failed || !s->to_write)
3567 return 0;
3568
3569 if (test_bit(R5_Insync, &dev->flags) &&
3570 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3571 /* Pre-reads at not permitted until after short delay
3572 * to gather multiple requests. However if this
3573 * device is no Insync, the block could only be be computed
3574 * and there is no need to delay that.
3575 */
3576 return 0;
ea664c82 3577
36707bb2 3578 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3579 if (fdev[i]->towrite &&
3580 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3581 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3582 /* If we have a partial write to a failed
3583 * device, then we will need to reconstruct
3584 * the content of that device, so all other
3585 * devices must be read.
3586 */
3587 return 1;
3588 }
3589
3590 /* If we are forced to do a reconstruct-write, either because
3591 * the current RAID6 implementation only supports that, or
3592 * or because parity cannot be trusted and we are currently
3593 * recovering it, there is extra need to be careful.
3594 * If one of the devices that we would need to read, because
3595 * it is not being overwritten (and maybe not written at all)
3596 * is missing/faulty, then we need to read everything we can.
3597 */
3598 if (sh->raid_conf->level != 6 &&
3599 sh->sector < sh->raid_conf->mddev->recovery_cp)
3600 /* reconstruct-write isn't being forced */
3601 return 0;
36707bb2 3602 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3603 if (s->failed_num[i] != sh->pd_idx &&
3604 s->failed_num[i] != sh->qd_idx &&
3605 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3606 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3607 return 1;
3608 }
3609
2c58f06e
N
3610 return 0;
3611}
3612
ba02684d
SL
3613/* fetch_block - checks the given member device to see if its data needs
3614 * to be read or computed to satisfy a request.
3615 *
3616 * Returns 1 when no more member devices need to be checked, otherwise returns
3617 * 0 to tell the loop in handle_stripe_fill to continue
3618 */
2c58f06e
N
3619static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3620 int disk_idx, int disks)
3621{
3622 struct r5dev *dev = &sh->dev[disk_idx];
3623
3624 /* is the data in this block needed, and can we get it? */
3625 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3626 /* we would like to get this block, possibly by computing it,
3627 * otherwise read it if the backing disk is insync
3628 */
3629 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3630 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3631 BUG_ON(sh->batch_head);
5599becc 3632 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3633 (s->failed && (disk_idx == s->failed_num[0] ||
3634 disk_idx == s->failed_num[1]))) {
5599becc
YT
3635 /* have disk failed, and we're requested to fetch it;
3636 * do compute it
a4456856 3637 */
5599becc
YT
3638 pr_debug("Computing stripe %llu block %d\n",
3639 (unsigned long long)sh->sector, disk_idx);
3640 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3641 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3642 set_bit(R5_Wantcompute, &dev->flags);
3643 sh->ops.target = disk_idx;
3644 sh->ops.target2 = -1; /* no 2nd target */
3645 s->req_compute = 1;
93b3dbce
N
3646 /* Careful: from this point on 'uptodate' is in the eye
3647 * of raid_run_ops which services 'compute' operations
3648 * before writes. R5_Wantcompute flags a block that will
3649 * be R5_UPTODATE by the time it is needed for a
3650 * subsequent operation.
3651 */
5599becc
YT
3652 s->uptodate++;
3653 return 1;
3654 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3655 /* Computing 2-failure is *very* expensive; only
3656 * do it if failed >= 2
3657 */
3658 int other;
3659 for (other = disks; other--; ) {
3660 if (other == disk_idx)
3661 continue;
3662 if (!test_bit(R5_UPTODATE,
3663 &sh->dev[other].flags))
3664 break;
a4456856 3665 }
5599becc
YT
3666 BUG_ON(other < 0);
3667 pr_debug("Computing stripe %llu blocks %d,%d\n",
3668 (unsigned long long)sh->sector,
3669 disk_idx, other);
3670 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3671 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3672 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3673 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3674 sh->ops.target = disk_idx;
3675 sh->ops.target2 = other;
3676 s->uptodate += 2;
3677 s->req_compute = 1;
3678 return 1;
3679 } else if (test_bit(R5_Insync, &dev->flags)) {
3680 set_bit(R5_LOCKED, &dev->flags);
3681 set_bit(R5_Wantread, &dev->flags);
3682 s->locked++;
3683 pr_debug("Reading block %d (sync=%d)\n",
3684 disk_idx, s->syncing);
a4456856
DW
3685 }
3686 }
5599becc
YT
3687
3688 return 0;
3689}
3690
3691/**
93b3dbce 3692 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3693 */
93b3dbce
N
3694static void handle_stripe_fill(struct stripe_head *sh,
3695 struct stripe_head_state *s,
3696 int disks)
5599becc
YT
3697{
3698 int i;
3699
3700 /* look for blocks to read/compute, skip this if a compute
3701 * is already in flight, or if the stripe contents are in the
3702 * midst of changing due to a write
3703 */
3704 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3705 !sh->reconstruct_state) {
3706
3707 /*
3708 * For degraded stripe with data in journal, do not handle
3709 * read requests yet, instead, flush the stripe to raid
3710 * disks first, this avoids handling complex rmw of write
3711 * back cache (prexor with orig_page, and then xor with
3712 * page) in the read path
3713 */
3714 if (s->injournal && s->failed) {
3715 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3716 r5c_make_stripe_write_out(sh);
3717 goto out;
3718 }
3719
5599becc 3720 for (i = disks; i--; )
93b3dbce 3721 if (fetch_block(sh, s, i, disks))
5599becc 3722 break;
07e83364
SL
3723 }
3724out:
a4456856
DW
3725 set_bit(STRIPE_HANDLE, &sh->state);
3726}
3727
787b76fa
N
3728static void break_stripe_batch_list(struct stripe_head *head_sh,
3729 unsigned long handle_flags);
1fe797e6 3730/* handle_stripe_clean_event
a4456856
DW
3731 * any written block on an uptodate or failed drive can be returned.
3732 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3733 * never LOCKED, so we don't need to test 'failed' directly.
3734 */
d1688a6d 3735static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3736 struct stripe_head *sh, int disks)
a4456856
DW
3737{
3738 int i;
3739 struct r5dev *dev;
f8dfcffd 3740 int discard_pending = 0;
59fc630b 3741 struct stripe_head *head_sh = sh;
3742 bool do_endio = false;
a4456856
DW
3743
3744 for (i = disks; i--; )
3745 if (sh->dev[i].written) {
3746 dev = &sh->dev[i];
3747 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3748 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3749 test_bit(R5_Discard, &dev->flags) ||
3750 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3751 /* We can return any write requests */
3752 struct bio *wbi, *wbi2;
45b4233c 3753 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3754 if (test_and_clear_bit(R5_Discard, &dev->flags))
3755 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3756 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3757 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3758 }
59fc630b 3759 do_endio = true;
3760
3761returnbi:
3762 dev->page = dev->orig_page;
a4456856
DW
3763 wbi = dev->written;
3764 dev->written = NULL;
4f024f37 3765 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3766 dev->sector + STRIPE_SECTORS) {
3767 wbi2 = r5_next_bio(wbi, dev->sector);
49728050
N
3768 md_write_end(conf->mddev);
3769 if (!raid5_dec_bi_active_stripes(wbi))
bd83d0a2 3770 bio_endio(wbi);
a4456856
DW
3771 wbi = wbi2;
3772 }
7eaf7e8e
SL
3773 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3774 STRIPE_SECTORS,
a4456856 3775 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3776 0);
59fc630b 3777 if (head_sh->batch_head) {
3778 sh = list_first_entry(&sh->batch_list,
3779 struct stripe_head,
3780 batch_list);
3781 if (sh != head_sh) {
3782 dev = &sh->dev[i];
3783 goto returnbi;
3784 }
3785 }
3786 sh = head_sh;
3787 dev = &sh->dev[i];
f8dfcffd
N
3788 } else if (test_bit(R5_Discard, &dev->flags))
3789 discard_pending = 1;
3790 }
f6bed0ef 3791
ff875738 3792 log_stripe_write_finished(sh);
0576b1c6 3793
f8dfcffd
N
3794 if (!discard_pending &&
3795 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3796 int hash;
f8dfcffd
N
3797 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3798 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3799 if (sh->qd_idx >= 0) {
3800 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3801 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3802 }
3803 /* now that discard is done we can proceed with any sync */
3804 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3805 /*
3806 * SCSI discard will change some bio fields and the stripe has
3807 * no updated data, so remove it from hash list and the stripe
3808 * will be reinitialized
3809 */
59fc630b 3810unhash:
b8a9d66d
RG
3811 hash = sh->hash_lock_index;
3812 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3813 remove_hash(sh);
b8a9d66d 3814 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3815 if (head_sh->batch_head) {
3816 sh = list_first_entry(&sh->batch_list,
3817 struct stripe_head, batch_list);
3818 if (sh != head_sh)
3819 goto unhash;
3820 }
59fc630b 3821 sh = head_sh;
3822
f8dfcffd
N
3823 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3824 set_bit(STRIPE_HANDLE, &sh->state);
3825
3826 }
8b3e6cdc
DW
3827
3828 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3829 if (atomic_dec_and_test(&conf->pending_full_writes))
3830 md_wakeup_thread(conf->mddev->thread);
59fc630b 3831
787b76fa
N
3832 if (head_sh->batch_head && do_endio)
3833 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3834}
3835
86aa1397
SL
3836/*
3837 * For RMW in write back cache, we need extra page in prexor to store the
3838 * old data. This page is stored in dev->orig_page.
3839 *
3840 * This function checks whether we have data for prexor. The exact logic
3841 * is:
3842 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3843 */
3844static inline bool uptodate_for_rmw(struct r5dev *dev)
3845{
3846 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3847 (!test_bit(R5_InJournal, &dev->flags) ||
3848 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3849}
3850
d7bd398e
SL
3851static int handle_stripe_dirtying(struct r5conf *conf,
3852 struct stripe_head *sh,
3853 struct stripe_head_state *s,
3854 int disks)
a4456856
DW
3855{
3856 int rmw = 0, rcw = 0, i;
a7854487
AL
3857 sector_t recovery_cp = conf->mddev->recovery_cp;
3858
584acdd4 3859 /* Check whether resync is now happening or should start.
a7854487
AL
3860 * If yes, then the array is dirty (after unclean shutdown or
3861 * initial creation), so parity in some stripes might be inconsistent.
3862 * In this case, we need to always do reconstruct-write, to ensure
3863 * that in case of drive failure or read-error correction, we
3864 * generate correct data from the parity.
3865 */
584acdd4 3866 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3867 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3868 s->failed == 0)) {
a7854487 3869 /* Calculate the real rcw later - for now make it
c8ac1803
N
3870 * look like rcw is cheaper
3871 */
3872 rcw = 1; rmw = 2;
584acdd4
MS
3873 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3874 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3875 (unsigned long long)sh->sector);
c8ac1803 3876 } else for (i = disks; i--; ) {
a4456856
DW
3877 /* would I have to read this buffer for read_modify_write */
3878 struct r5dev *dev = &sh->dev[i];
39b99586 3879 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 3880 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 3881 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3882 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3883 !(uptodate_for_rmw(dev) ||
f38e1219 3884 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3885 if (test_bit(R5_Insync, &dev->flags))
3886 rmw++;
3887 else
3888 rmw += 2*disks; /* cannot read it */
3889 }
3890 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3891 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3892 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3893 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3894 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 3895 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3896 if (test_bit(R5_Insync, &dev->flags))
3897 rcw++;
a4456856
DW
3898 else
3899 rcw += 2*disks;
3900 }
3901 }
1e6d690b 3902
39b99586
SL
3903 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3904 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 3905 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3906 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3907 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3908 if (conf->mddev->queue)
3909 blk_add_trace_msg(conf->mddev->queue,
3910 "raid5 rmw %llu %d",
3911 (unsigned long long)sh->sector, rmw);
a4456856
DW
3912 for (i = disks; i--; ) {
3913 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
3914 if (test_bit(R5_InJournal, &dev->flags) &&
3915 dev->page == dev->orig_page &&
3916 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3917 /* alloc page for prexor */
d7bd398e
SL
3918 struct page *p = alloc_page(GFP_NOIO);
3919
3920 if (p) {
3921 dev->orig_page = p;
3922 continue;
3923 }
3924
3925 /*
3926 * alloc_page() failed, try use
3927 * disk_info->extra_page
3928 */
3929 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3930 &conf->cache_state)) {
3931 r5c_use_extra_page(sh);
3932 break;
3933 }
1e6d690b 3934
d7bd398e
SL
3935 /* extra_page in use, add to delayed_list */
3936 set_bit(STRIPE_DELAYED, &sh->state);
3937 s->waiting_extra_page = 1;
3938 return -EAGAIN;
1e6d690b 3939 }
d7bd398e 3940 }
1e6d690b 3941
d7bd398e
SL
3942 for (i = disks; i--; ) {
3943 struct r5dev *dev = &sh->dev[i];
39b99586 3944 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
3945 i == sh->pd_idx || i == sh->qd_idx ||
3946 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3947 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3948 !(uptodate_for_rmw(dev) ||
1e6d690b 3949 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3950 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3951 if (test_bit(STRIPE_PREREAD_ACTIVE,
3952 &sh->state)) {
3953 pr_debug("Read_old block %d for r-m-w\n",
3954 i);
a4456856
DW
3955 set_bit(R5_LOCKED, &dev->flags);
3956 set_bit(R5_Wantread, &dev->flags);
3957 s->locked++;
3958 } else {
3959 set_bit(STRIPE_DELAYED, &sh->state);
3960 set_bit(STRIPE_HANDLE, &sh->state);
3961 }
3962 }
3963 }
a9add5d9 3964 }
41257580 3965 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3966 /* want reconstruct write, but need to get some data */
a9add5d9 3967 int qread =0;
c8ac1803 3968 rcw = 0;
a4456856
DW
3969 for (i = disks; i--; ) {
3970 struct r5dev *dev = &sh->dev[i];
3971 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3972 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3973 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3974 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3975 test_bit(R5_Wantcompute, &dev->flags))) {
3976 rcw++;
67f45548
N
3977 if (test_bit(R5_Insync, &dev->flags) &&
3978 test_bit(STRIPE_PREREAD_ACTIVE,
3979 &sh->state)) {
45b4233c 3980 pr_debug("Read_old block "
a4456856
DW
3981 "%d for Reconstruct\n", i);
3982 set_bit(R5_LOCKED, &dev->flags);
3983 set_bit(R5_Wantread, &dev->flags);
3984 s->locked++;
a9add5d9 3985 qread++;
a4456856
DW
3986 } else {
3987 set_bit(STRIPE_DELAYED, &sh->state);
3988 set_bit(STRIPE_HANDLE, &sh->state);
3989 }
3990 }
3991 }
e3620a3a 3992 if (rcw && conf->mddev->queue)
a9add5d9
N
3993 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3994 (unsigned long long)sh->sector,
3995 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3996 }
b1b02fe9
N
3997
3998 if (rcw > disks && rmw > disks &&
3999 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4000 set_bit(STRIPE_DELAYED, &sh->state);
4001
a4456856
DW
4002 /* now if nothing is locked, and if we have enough data,
4003 * we can start a write request
4004 */
f38e1219
DW
4005 /* since handle_stripe can be called at any time we need to handle the
4006 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4007 * subsequent call wants to start a write request. raid_run_ops only
4008 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4009 * simultaneously. If this is not the case then new writes need to be
4010 * held off until the compute completes.
4011 */
976ea8d4
DW
4012 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4013 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4014 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4015 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4016 return 0;
a4456856
DW
4017}
4018
d1688a6d 4019static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4020 struct stripe_head_state *s, int disks)
4021{
ecc65c9b 4022 struct r5dev *dev = NULL;
bd2ab670 4023
59fc630b 4024 BUG_ON(sh->batch_head);
a4456856 4025 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4026
ecc65c9b
DW
4027 switch (sh->check_state) {
4028 case check_state_idle:
4029 /* start a new check operation if there are no failures */
bd2ab670 4030 if (s->failed == 0) {
bd2ab670 4031 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4032 sh->check_state = check_state_run;
4033 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4034 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4035 s->uptodate--;
ecc65c9b 4036 break;
bd2ab670 4037 }
f2b3b44d 4038 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
4039 /* fall through */
4040 case check_state_compute_result:
4041 sh->check_state = check_state_idle;
4042 if (!dev)
4043 dev = &sh->dev[sh->pd_idx];
4044
4045 /* check that a write has not made the stripe insync */
4046 if (test_bit(STRIPE_INSYNC, &sh->state))
4047 break;
c8894419 4048
a4456856 4049 /* either failed parity check, or recovery is happening */
a4456856
DW
4050 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4051 BUG_ON(s->uptodate != disks);
4052
4053 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4054 s->locked++;
a4456856 4055 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4056
a4456856 4057 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4058 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4059 break;
4060 case check_state_run:
4061 break; /* we will be called again upon completion */
4062 case check_state_check_result:
4063 sh->check_state = check_state_idle;
4064
4065 /* if a failure occurred during the check operation, leave
4066 * STRIPE_INSYNC not set and let the stripe be handled again
4067 */
4068 if (s->failed)
4069 break;
4070
4071 /* handle a successful check operation, if parity is correct
4072 * we are done. Otherwise update the mismatch count and repair
4073 * parity if !MD_RECOVERY_CHECK
4074 */
ad283ea4 4075 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4076 /* parity is correct (on disc,
4077 * not in buffer any more)
4078 */
4079 set_bit(STRIPE_INSYNC, &sh->state);
4080 else {
7f7583d4 4081 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
4082 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4083 /* don't try to repair!! */
4084 set_bit(STRIPE_INSYNC, &sh->state);
4085 else {
4086 sh->check_state = check_state_compute_run;
976ea8d4 4087 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4088 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4089 set_bit(R5_Wantcompute,
4090 &sh->dev[sh->pd_idx].flags);
4091 sh->ops.target = sh->pd_idx;
ac6b53b6 4092 sh->ops.target2 = -1;
ecc65c9b
DW
4093 s->uptodate++;
4094 }
4095 }
4096 break;
4097 case check_state_compute_run:
4098 break;
4099 default:
cc6167b4 4100 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4101 __func__, sh->check_state,
4102 (unsigned long long) sh->sector);
4103 BUG();
a4456856
DW
4104 }
4105}
4106
d1688a6d 4107static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4108 struct stripe_head_state *s,
f2b3b44d 4109 int disks)
a4456856 4110{
a4456856 4111 int pd_idx = sh->pd_idx;
34e04e87 4112 int qd_idx = sh->qd_idx;
d82dfee0 4113 struct r5dev *dev;
a4456856 4114
59fc630b 4115 BUG_ON(sh->batch_head);
a4456856
DW
4116 set_bit(STRIPE_HANDLE, &sh->state);
4117
4118 BUG_ON(s->failed > 2);
d82dfee0 4119
a4456856
DW
4120 /* Want to check and possibly repair P and Q.
4121 * However there could be one 'failed' device, in which
4122 * case we can only check one of them, possibly using the
4123 * other to generate missing data
4124 */
4125
d82dfee0
DW
4126 switch (sh->check_state) {
4127 case check_state_idle:
4128 /* start a new check operation if there are < 2 failures */
f2b3b44d 4129 if (s->failed == s->q_failed) {
d82dfee0 4130 /* The only possible failed device holds Q, so it
a4456856
DW
4131 * makes sense to check P (If anything else were failed,
4132 * we would have used P to recreate it).
4133 */
d82dfee0 4134 sh->check_state = check_state_run;
a4456856 4135 }
f2b3b44d 4136 if (!s->q_failed && s->failed < 2) {
d82dfee0 4137 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4138 * anything, so it makes sense to check it
4139 */
d82dfee0
DW
4140 if (sh->check_state == check_state_run)
4141 sh->check_state = check_state_run_pq;
4142 else
4143 sh->check_state = check_state_run_q;
a4456856 4144 }
a4456856 4145
d82dfee0
DW
4146 /* discard potentially stale zero_sum_result */
4147 sh->ops.zero_sum_result = 0;
a4456856 4148
d82dfee0
DW
4149 if (sh->check_state == check_state_run) {
4150 /* async_xor_zero_sum destroys the contents of P */
4151 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4152 s->uptodate--;
a4456856 4153 }
d82dfee0
DW
4154 if (sh->check_state >= check_state_run &&
4155 sh->check_state <= check_state_run_pq) {
4156 /* async_syndrome_zero_sum preserves P and Q, so
4157 * no need to mark them !uptodate here
4158 */
4159 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4160 break;
a4456856
DW
4161 }
4162
d82dfee0
DW
4163 /* we have 2-disk failure */
4164 BUG_ON(s->failed != 2);
4165 /* fall through */
4166 case check_state_compute_result:
4167 sh->check_state = check_state_idle;
a4456856 4168
d82dfee0
DW
4169 /* check that a write has not made the stripe insync */
4170 if (test_bit(STRIPE_INSYNC, &sh->state))
4171 break;
a4456856
DW
4172
4173 /* now write out any block on a failed drive,
d82dfee0 4174 * or P or Q if they were recomputed
a4456856 4175 */
d82dfee0 4176 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 4177 if (s->failed == 2) {
f2b3b44d 4178 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4179 s->locked++;
4180 set_bit(R5_LOCKED, &dev->flags);
4181 set_bit(R5_Wantwrite, &dev->flags);
4182 }
4183 if (s->failed >= 1) {
f2b3b44d 4184 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4185 s->locked++;
4186 set_bit(R5_LOCKED, &dev->flags);
4187 set_bit(R5_Wantwrite, &dev->flags);
4188 }
d82dfee0 4189 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4190 dev = &sh->dev[pd_idx];
4191 s->locked++;
4192 set_bit(R5_LOCKED, &dev->flags);
4193 set_bit(R5_Wantwrite, &dev->flags);
4194 }
d82dfee0 4195 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4196 dev = &sh->dev[qd_idx];
4197 s->locked++;
4198 set_bit(R5_LOCKED, &dev->flags);
4199 set_bit(R5_Wantwrite, &dev->flags);
4200 }
4201 clear_bit(STRIPE_DEGRADED, &sh->state);
4202
4203 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4204 break;
4205 case check_state_run:
4206 case check_state_run_q:
4207 case check_state_run_pq:
4208 break; /* we will be called again upon completion */
4209 case check_state_check_result:
4210 sh->check_state = check_state_idle;
4211
4212 /* handle a successful check operation, if parity is correct
4213 * we are done. Otherwise update the mismatch count and repair
4214 * parity if !MD_RECOVERY_CHECK
4215 */
4216 if (sh->ops.zero_sum_result == 0) {
4217 /* both parities are correct */
4218 if (!s->failed)
4219 set_bit(STRIPE_INSYNC, &sh->state);
4220 else {
4221 /* in contrast to the raid5 case we can validate
4222 * parity, but still have a failure to write
4223 * back
4224 */
4225 sh->check_state = check_state_compute_result;
4226 /* Returning at this point means that we may go
4227 * off and bring p and/or q uptodate again so
4228 * we make sure to check zero_sum_result again
4229 * to verify if p or q need writeback
4230 */
4231 }
4232 } else {
7f7583d4 4233 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
4234 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4235 /* don't try to repair!! */
4236 set_bit(STRIPE_INSYNC, &sh->state);
4237 else {
4238 int *target = &sh->ops.target;
4239
4240 sh->ops.target = -1;
4241 sh->ops.target2 = -1;
4242 sh->check_state = check_state_compute_run;
4243 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4244 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4245 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4246 set_bit(R5_Wantcompute,
4247 &sh->dev[pd_idx].flags);
4248 *target = pd_idx;
4249 target = &sh->ops.target2;
4250 s->uptodate++;
4251 }
4252 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4253 set_bit(R5_Wantcompute,
4254 &sh->dev[qd_idx].flags);
4255 *target = qd_idx;
4256 s->uptodate++;
4257 }
4258 }
4259 }
4260 break;
4261 case check_state_compute_run:
4262 break;
4263 default:
cc6167b4
N
4264 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4265 __func__, sh->check_state,
4266 (unsigned long long) sh->sector);
d82dfee0 4267 BUG();
a4456856
DW
4268 }
4269}
4270
d1688a6d 4271static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4272{
4273 int i;
4274
4275 /* We have read all the blocks in this stripe and now we need to
4276 * copy some of them into a target stripe for expand.
4277 */
f0a50d37 4278 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4279 BUG_ON(sh->batch_head);
a4456856
DW
4280 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4281 for (i = 0; i < sh->disks; i++)
34e04e87 4282 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4283 int dd_idx, j;
a4456856 4284 struct stripe_head *sh2;
a08abd8c 4285 struct async_submit_ctl submit;
a4456856 4286
6d036f7d 4287 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4288 sector_t s = raid5_compute_sector(conf, bn, 0,
4289 &dd_idx, NULL);
6d036f7d 4290 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4291 if (sh2 == NULL)
4292 /* so far only the early blocks of this stripe
4293 * have been requested. When later blocks
4294 * get requested, we will try again
4295 */
4296 continue;
4297 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4298 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4299 /* must have already done this block */
6d036f7d 4300 raid5_release_stripe(sh2);
a4456856
DW
4301 continue;
4302 }
f0a50d37
DW
4303
4304 /* place all the copies on one channel */
a08abd8c 4305 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4306 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 4307 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 4308 &submit);
f0a50d37 4309
a4456856
DW
4310 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4311 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4312 for (j = 0; j < conf->raid_disks; j++)
4313 if (j != sh2->pd_idx &&
86c374ba 4314 j != sh2->qd_idx &&
a4456856
DW
4315 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4316 break;
4317 if (j == conf->raid_disks) {
4318 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4319 set_bit(STRIPE_HANDLE, &sh2->state);
4320 }
6d036f7d 4321 raid5_release_stripe(sh2);
f0a50d37 4322
a4456856 4323 }
a2e08551 4324 /* done submitting copies, wait for them to complete */
749586b7 4325 async_tx_quiesce(&tx);
a4456856 4326}
1da177e4
LT
4327
4328/*
4329 * handle_stripe - do things to a stripe.
4330 *
9a3e1101
N
4331 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4332 * state of various bits to see what needs to be done.
1da177e4 4333 * Possible results:
9a3e1101
N
4334 * return some read requests which now have data
4335 * return some write requests which are safely on storage
1da177e4
LT
4336 * schedule a read on some buffers
4337 * schedule a write of some buffers
4338 * return confirmation of parity correctness
4339 *
1da177e4 4340 */
a4456856 4341
acfe726b 4342static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4343{
d1688a6d 4344 struct r5conf *conf = sh->raid_conf;
f416885e 4345 int disks = sh->disks;
474af965
N
4346 struct r5dev *dev;
4347 int i;
9a3e1101 4348 int do_recovery = 0;
1da177e4 4349
acfe726b
N
4350 memset(s, 0, sizeof(*s));
4351
dabc4ec6 4352 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4353 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4354 s->failed_num[0] = -1;
4355 s->failed_num[1] = -1;
6e74a9cf 4356 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4357
acfe726b 4358 /* Now to look around and see what can be done */
1da177e4 4359 rcu_read_lock();
16a53ecc 4360 for (i=disks; i--; ) {
3cb03002 4361 struct md_rdev *rdev;
31c176ec
N
4362 sector_t first_bad;
4363 int bad_sectors;
4364 int is_bad = 0;
acfe726b 4365
16a53ecc 4366 dev = &sh->dev[i];
1da177e4 4367
45b4233c 4368 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4369 i, dev->flags,
4370 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4371 /* maybe we can reply to a read
4372 *
4373 * new wantfill requests are only permitted while
4374 * ops_complete_biofill is guaranteed to be inactive
4375 */
4376 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4377 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4378 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4379
16a53ecc 4380 /* now count some things */
cc94015a
N
4381 if (test_bit(R5_LOCKED, &dev->flags))
4382 s->locked++;
4383 if (test_bit(R5_UPTODATE, &dev->flags))
4384 s->uptodate++;
2d6e4ecc 4385 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4386 s->compute++;
4387 BUG_ON(s->compute > 2);
2d6e4ecc 4388 }
1da177e4 4389
acfe726b 4390 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4391 s->to_fill++;
acfe726b 4392 else if (dev->toread)
cc94015a 4393 s->to_read++;
16a53ecc 4394 if (dev->towrite) {
cc94015a 4395 s->to_write++;
16a53ecc 4396 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4397 s->non_overwrite++;
16a53ecc 4398 }
a4456856 4399 if (dev->written)
cc94015a 4400 s->written++;
14a75d3e
N
4401 /* Prefer to use the replacement for reads, but only
4402 * if it is recovered enough and has no bad blocks.
4403 */
4404 rdev = rcu_dereference(conf->disks[i].replacement);
4405 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4406 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4407 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4408 &first_bad, &bad_sectors))
4409 set_bit(R5_ReadRepl, &dev->flags);
4410 else {
e6030cb0 4411 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4412 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4413 else
4414 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4415 rdev = rcu_dereference(conf->disks[i].rdev);
4416 clear_bit(R5_ReadRepl, &dev->flags);
4417 }
9283d8c5
N
4418 if (rdev && test_bit(Faulty, &rdev->flags))
4419 rdev = NULL;
31c176ec
N
4420 if (rdev) {
4421 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4422 &first_bad, &bad_sectors);
4423 if (s->blocked_rdev == NULL
4424 && (test_bit(Blocked, &rdev->flags)
4425 || is_bad < 0)) {
4426 if (is_bad < 0)
4427 set_bit(BlockedBadBlocks,
4428 &rdev->flags);
4429 s->blocked_rdev = rdev;
4430 atomic_inc(&rdev->nr_pending);
4431 }
6bfe0b49 4432 }
415e72d0
N
4433 clear_bit(R5_Insync, &dev->flags);
4434 if (!rdev)
4435 /* Not in-sync */;
31c176ec
N
4436 else if (is_bad) {
4437 /* also not in-sync */
18b9837e
N
4438 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4439 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4440 /* treat as in-sync, but with a read error
4441 * which we can now try to correct
4442 */
4443 set_bit(R5_Insync, &dev->flags);
4444 set_bit(R5_ReadError, &dev->flags);
4445 }
4446 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4447 set_bit(R5_Insync, &dev->flags);
30d7a483 4448 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4449 /* in sync if before recovery_offset */
30d7a483
N
4450 set_bit(R5_Insync, &dev->flags);
4451 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4452 test_bit(R5_Expanded, &dev->flags))
4453 /* If we've reshaped into here, we assume it is Insync.
4454 * We will shortly update recovery_offset to make
4455 * it official.
4456 */
4457 set_bit(R5_Insync, &dev->flags);
4458
1cc03eb9 4459 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4460 /* This flag does not apply to '.replacement'
4461 * only to .rdev, so make sure to check that*/
4462 struct md_rdev *rdev2 = rcu_dereference(
4463 conf->disks[i].rdev);
4464 if (rdev2 == rdev)
4465 clear_bit(R5_Insync, &dev->flags);
4466 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4467 s->handle_bad_blocks = 1;
14a75d3e 4468 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4469 } else
4470 clear_bit(R5_WriteError, &dev->flags);
4471 }
1cc03eb9 4472 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4473 /* This flag does not apply to '.replacement'
4474 * only to .rdev, so make sure to check that*/
4475 struct md_rdev *rdev2 = rcu_dereference(
4476 conf->disks[i].rdev);
4477 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4478 s->handle_bad_blocks = 1;
14a75d3e 4479 atomic_inc(&rdev2->nr_pending);
b84db560
N
4480 } else
4481 clear_bit(R5_MadeGood, &dev->flags);
4482 }
977df362
N
4483 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4484 struct md_rdev *rdev2 = rcu_dereference(
4485 conf->disks[i].replacement);
4486 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4487 s->handle_bad_blocks = 1;
4488 atomic_inc(&rdev2->nr_pending);
4489 } else
4490 clear_bit(R5_MadeGoodRepl, &dev->flags);
4491 }
415e72d0 4492 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4493 /* The ReadError flag will just be confusing now */
4494 clear_bit(R5_ReadError, &dev->flags);
4495 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4496 }
415e72d0
N
4497 if (test_bit(R5_ReadError, &dev->flags))
4498 clear_bit(R5_Insync, &dev->flags);
4499 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4500 if (s->failed < 2)
4501 s->failed_num[s->failed] = i;
4502 s->failed++;
9a3e1101
N
4503 if (rdev && !test_bit(Faulty, &rdev->flags))
4504 do_recovery = 1;
415e72d0 4505 }
2ded3703
SL
4506
4507 if (test_bit(R5_InJournal, &dev->flags))
4508 s->injournal++;
1e6d690b
SL
4509 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4510 s->just_cached++;
1da177e4 4511 }
9a3e1101
N
4512 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4513 /* If there is a failed device being replaced,
4514 * we must be recovering.
4515 * else if we are after recovery_cp, we must be syncing
c6d2e084 4516 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4517 * else we can only be replacing
4518 * sync and recovery both need to read all devices, and so
4519 * use the same flag.
4520 */
4521 if (do_recovery ||
c6d2e084 4522 sh->sector >= conf->mddev->recovery_cp ||
4523 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4524 s->syncing = 1;
4525 else
4526 s->replacing = 1;
4527 }
1da177e4 4528 rcu_read_unlock();
cc94015a
N
4529}
4530
59fc630b 4531static int clear_batch_ready(struct stripe_head *sh)
4532{
b15a9dbd
N
4533 /* Return '1' if this is a member of batch, or
4534 * '0' if it is a lone stripe or a head which can now be
4535 * handled.
4536 */
59fc630b 4537 struct stripe_head *tmp;
4538 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4539 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4540 spin_lock(&sh->stripe_lock);
4541 if (!sh->batch_head) {
4542 spin_unlock(&sh->stripe_lock);
4543 return 0;
4544 }
4545
4546 /*
4547 * this stripe could be added to a batch list before we check
4548 * BATCH_READY, skips it
4549 */
4550 if (sh->batch_head != sh) {
4551 spin_unlock(&sh->stripe_lock);
4552 return 1;
4553 }
4554 spin_lock(&sh->batch_lock);
4555 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4556 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4557 spin_unlock(&sh->batch_lock);
4558 spin_unlock(&sh->stripe_lock);
4559
4560 /*
4561 * BATCH_READY is cleared, no new stripes can be added.
4562 * batch_list can be accessed without lock
4563 */
4564 return 0;
4565}
4566
3960ce79
N
4567static void break_stripe_batch_list(struct stripe_head *head_sh,
4568 unsigned long handle_flags)
72ac7330 4569{
4e3d62ff 4570 struct stripe_head *sh, *next;
72ac7330 4571 int i;
fb642b92 4572 int do_wakeup = 0;
72ac7330 4573
bb27051f
N
4574 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4575
72ac7330 4576 list_del_init(&sh->batch_list);
4577
fb3229d5 4578 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4579 (1 << STRIPE_SYNCING) |
4580 (1 << STRIPE_REPLACED) |
1b956f7a
N
4581 (1 << STRIPE_DELAYED) |
4582 (1 << STRIPE_BIT_DELAY) |
4583 (1 << STRIPE_FULL_WRITE) |
4584 (1 << STRIPE_BIOFILL_RUN) |
4585 (1 << STRIPE_COMPUTE_RUN) |
4586 (1 << STRIPE_OPS_REQ_PENDING) |
4587 (1 << STRIPE_DISCARD) |
4588 (1 << STRIPE_BATCH_READY) |
4589 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4590 (1 << STRIPE_BITMAP_PENDING)),
4591 "stripe state: %lx\n", sh->state);
4592 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4593 (1 << STRIPE_REPLACED)),
4594 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4595
4596 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4597 (1 << STRIPE_PREREAD_ACTIVE) |
1b956f7a
N
4598 (1 << STRIPE_DEGRADED)),
4599 head_sh->state & (1 << STRIPE_INSYNC));
4600
72ac7330 4601 sh->check_state = head_sh->check_state;
4602 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4603 for (i = 0; i < sh->disks; i++) {
4604 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4605 do_wakeup = 1;
72ac7330 4606 sh->dev[i].flags = head_sh->dev[i].flags &
4607 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4608 }
72ac7330 4609 spin_lock_irq(&sh->stripe_lock);
4610 sh->batch_head = NULL;
4611 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4612 if (handle_flags == 0 ||
4613 sh->state & handle_flags)
4614 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4615 raid5_release_stripe(sh);
72ac7330 4616 }
fb642b92
N
4617 spin_lock_irq(&head_sh->stripe_lock);
4618 head_sh->batch_head = NULL;
4619 spin_unlock_irq(&head_sh->stripe_lock);
4620 for (i = 0; i < head_sh->disks; i++)
4621 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4622 do_wakeup = 1;
3960ce79
N
4623 if (head_sh->state & handle_flags)
4624 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4625
4626 if (do_wakeup)
4627 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4628}
4629
cc94015a
N
4630static void handle_stripe(struct stripe_head *sh)
4631{
4632 struct stripe_head_state s;
d1688a6d 4633 struct r5conf *conf = sh->raid_conf;
3687c061 4634 int i;
84789554
N
4635 int prexor;
4636 int disks = sh->disks;
474af965 4637 struct r5dev *pdev, *qdev;
cc94015a
N
4638
4639 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4640 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4641 /* already being handled, ensure it gets handled
4642 * again when current action finishes */
4643 set_bit(STRIPE_HANDLE, &sh->state);
4644 return;
4645 }
4646
59fc630b 4647 if (clear_batch_ready(sh) ) {
4648 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4649 return;
4650 }
4651
4e3d62ff 4652 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4653 break_stripe_batch_list(sh, 0);
72ac7330 4654
dabc4ec6 4655 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4656 spin_lock(&sh->stripe_lock);
4657 /* Cannot process 'sync' concurrently with 'discard' */
4658 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4659 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4660 set_bit(STRIPE_SYNCING, &sh->state);
4661 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4662 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4663 }
4664 spin_unlock(&sh->stripe_lock);
cc94015a
N
4665 }
4666 clear_bit(STRIPE_DELAYED, &sh->state);
4667
4668 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4669 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4670 (unsigned long long)sh->sector, sh->state,
4671 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4672 sh->check_state, sh->reconstruct_state);
3687c061 4673
acfe726b 4674 analyse_stripe(sh, &s);
c5a31000 4675
b70abcb2
SL
4676 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4677 goto finish;
4678
16d997b7
N
4679 if (s.handle_bad_blocks ||
4680 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4681 set_bit(STRIPE_HANDLE, &sh->state);
4682 goto finish;
4683 }
4684
474af965
N
4685 if (unlikely(s.blocked_rdev)) {
4686 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4687 s.replacing || s.to_write || s.written) {
474af965
N
4688 set_bit(STRIPE_HANDLE, &sh->state);
4689 goto finish;
4690 }
4691 /* There is nothing for the blocked_rdev to block */
4692 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4693 s.blocked_rdev = NULL;
4694 }
4695
4696 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4697 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4698 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4699 }
4700
4701 pr_debug("locked=%d uptodate=%d to_read=%d"
4702 " to_write=%d failed=%d failed_num=%d,%d\n",
4703 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4704 s.failed_num[0], s.failed_num[1]);
4705 /* check if the array has lost more than max_degraded devices and,
4706 * if so, some requests might need to be failed.
4707 */
6e74a9cf 4708 if (s.failed > conf->max_degraded || s.log_failed) {
9a3f530f
N
4709 sh->check_state = 0;
4710 sh->reconstruct_state = 0;
626f2092 4711 break_stripe_batch_list(sh, 0);
9a3f530f 4712 if (s.to_read+s.to_write+s.written)
bd83d0a2 4713 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4714 if (s.syncing + s.replacing)
9a3f530f
N
4715 handle_failed_sync(conf, sh, &s);
4716 }
474af965 4717
84789554
N
4718 /* Now we check to see if any write operations have recently
4719 * completed
4720 */
4721 prexor = 0;
4722 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4723 prexor = 1;
4724 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4725 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4726 sh->reconstruct_state = reconstruct_state_idle;
4727
4728 /* All the 'written' buffers and the parity block are ready to
4729 * be written back to disk
4730 */
9e444768
SL
4731 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4732 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4733 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4734 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4735 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4736 for (i = disks; i--; ) {
4737 struct r5dev *dev = &sh->dev[i];
4738 if (test_bit(R5_LOCKED, &dev->flags) &&
4739 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
4740 dev->written || test_bit(R5_InJournal,
4741 &dev->flags))) {
84789554
N
4742 pr_debug("Writing block %d\n", i);
4743 set_bit(R5_Wantwrite, &dev->flags);
4744 if (prexor)
4745 continue;
9c4bdf69
N
4746 if (s.failed > 1)
4747 continue;
84789554
N
4748 if (!test_bit(R5_Insync, &dev->flags) ||
4749 ((i == sh->pd_idx || i == sh->qd_idx) &&
4750 s.failed == 0))
4751 set_bit(STRIPE_INSYNC, &sh->state);
4752 }
4753 }
4754 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4755 s.dec_preread_active = 1;
4756 }
4757
ef5b7c69
N
4758 /*
4759 * might be able to return some write requests if the parity blocks
4760 * are safe, or on a failed drive
4761 */
4762 pdev = &sh->dev[sh->pd_idx];
4763 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4764 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4765 qdev = &sh->dev[sh->qd_idx];
4766 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4767 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4768 || conf->level < 6;
4769
4770 if (s.written &&
4771 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4772 && !test_bit(R5_LOCKED, &pdev->flags)
4773 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4774 test_bit(R5_Discard, &pdev->flags))))) &&
4775 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4776 && !test_bit(R5_LOCKED, &qdev->flags)
4777 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4778 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 4779 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 4780
1e6d690b 4781 if (s.just_cached)
bd83d0a2 4782 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 4783 log_stripe_write_finished(sh);
1e6d690b 4784
ef5b7c69
N
4785 /* Now we might consider reading some blocks, either to check/generate
4786 * parity, or to satisfy requests
4787 * or to load a block that is being partially written.
4788 */
4789 if (s.to_read || s.non_overwrite
4790 || (conf->level == 6 && s.to_write && s.failed)
4791 || (s.syncing && (s.uptodate + s.compute < disks))
4792 || s.replacing
4793 || s.expanding)
4794 handle_stripe_fill(sh, &s, disks);
4795
2ded3703
SL
4796 /*
4797 * When the stripe finishes full journal write cycle (write to journal
4798 * and raid disk), this is the clean up procedure so it is ready for
4799 * next operation.
4800 */
4801 r5c_finish_stripe_write_out(conf, sh, &s);
4802
4803 /*
4804 * Now to consider new write requests, cache write back and what else,
4805 * if anything should be read. We do not handle new writes when:
84789554
N
4806 * 1/ A 'write' operation (copy+xor) is already in flight.
4807 * 2/ A 'check' operation is in flight, as it may clobber the parity
4808 * block.
2ded3703 4809 * 3/ A r5c cache log write is in flight.
84789554 4810 */
2ded3703
SL
4811
4812 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4813 if (!r5c_is_writeback(conf->log)) {
4814 if (s.to_write)
4815 handle_stripe_dirtying(conf, sh, &s, disks);
4816 } else { /* write back cache */
4817 int ret = 0;
4818
4819 /* First, try handle writes in caching phase */
4820 if (s.to_write)
4821 ret = r5c_try_caching_write(conf, sh, &s,
4822 disks);
4823 /*
4824 * If caching phase failed: ret == -EAGAIN
4825 * OR
4826 * stripe under reclaim: !caching && injournal
4827 *
4828 * fall back to handle_stripe_dirtying()
4829 */
4830 if (ret == -EAGAIN ||
4831 /* stripe under reclaim: !caching && injournal */
4832 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
4833 s.injournal > 0)) {
4834 ret = handle_stripe_dirtying(conf, sh, &s,
4835 disks);
4836 if (ret == -EAGAIN)
4837 goto finish;
4838 }
2ded3703
SL
4839 }
4840 }
84789554
N
4841
4842 /* maybe we need to check and possibly fix the parity for this stripe
4843 * Any reads will already have been scheduled, so we just see if enough
4844 * data is available. The parity check is held off while parity
4845 * dependent operations are in flight.
4846 */
4847 if (sh->check_state ||
4848 (s.syncing && s.locked == 0 &&
4849 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4850 !test_bit(STRIPE_INSYNC, &sh->state))) {
4851 if (conf->level == 6)
4852 handle_parity_checks6(conf, sh, &s, disks);
4853 else
4854 handle_parity_checks5(conf, sh, &s, disks);
4855 }
c5a31000 4856
f94c0b66
N
4857 if ((s.replacing || s.syncing) && s.locked == 0
4858 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4859 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4860 /* Write out to replacement devices where possible */
4861 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4862 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4863 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4864 set_bit(R5_WantReplace, &sh->dev[i].flags);
4865 set_bit(R5_LOCKED, &sh->dev[i].flags);
4866 s.locked++;
4867 }
f94c0b66
N
4868 if (s.replacing)
4869 set_bit(STRIPE_INSYNC, &sh->state);
4870 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4871 }
4872 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4873 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4874 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4875 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4876 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4877 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4878 wake_up(&conf->wait_for_overlap);
c5a31000
N
4879 }
4880
4881 /* If the failed drives are just a ReadError, then we might need
4882 * to progress the repair/check process
4883 */
4884 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4885 for (i = 0; i < s.failed; i++) {
4886 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4887 if (test_bit(R5_ReadError, &dev->flags)
4888 && !test_bit(R5_LOCKED, &dev->flags)
4889 && test_bit(R5_UPTODATE, &dev->flags)
4890 ) {
4891 if (!test_bit(R5_ReWrite, &dev->flags)) {
4892 set_bit(R5_Wantwrite, &dev->flags);
4893 set_bit(R5_ReWrite, &dev->flags);
4894 set_bit(R5_LOCKED, &dev->flags);
4895 s.locked++;
4896 } else {
4897 /* let's read it back */
4898 set_bit(R5_Wantread, &dev->flags);
4899 set_bit(R5_LOCKED, &dev->flags);
4900 s.locked++;
4901 }
4902 }
4903 }
4904
3687c061
N
4905 /* Finish reconstruct operations initiated by the expansion process */
4906 if (sh->reconstruct_state == reconstruct_state_result) {
4907 struct stripe_head *sh_src
6d036f7d 4908 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4909 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4910 /* sh cannot be written until sh_src has been read.
4911 * so arrange for sh to be delayed a little
4912 */
4913 set_bit(STRIPE_DELAYED, &sh->state);
4914 set_bit(STRIPE_HANDLE, &sh->state);
4915 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4916 &sh_src->state))
4917 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4918 raid5_release_stripe(sh_src);
3687c061
N
4919 goto finish;
4920 }
4921 if (sh_src)
6d036f7d 4922 raid5_release_stripe(sh_src);
3687c061
N
4923
4924 sh->reconstruct_state = reconstruct_state_idle;
4925 clear_bit(STRIPE_EXPANDING, &sh->state);
4926 for (i = conf->raid_disks; i--; ) {
4927 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4928 set_bit(R5_LOCKED, &sh->dev[i].flags);
4929 s.locked++;
4930 }
4931 }
f416885e 4932
3687c061
N
4933 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4934 !sh->reconstruct_state) {
4935 /* Need to write out all blocks after computing parity */
4936 sh->disks = conf->raid_disks;
4937 stripe_set_idx(sh->sector, conf, 0, sh);
4938 schedule_reconstruction(sh, &s, 1, 1);
4939 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4940 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4941 atomic_dec(&conf->reshape_stripes);
4942 wake_up(&conf->wait_for_overlap);
4943 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4944 }
4945
4946 if (s.expanding && s.locked == 0 &&
4947 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4948 handle_stripe_expansion(conf, sh);
16a53ecc 4949
3687c061 4950finish:
6bfe0b49 4951 /* wait for this device to become unblocked */
5f066c63
N
4952 if (unlikely(s.blocked_rdev)) {
4953 if (conf->mddev->external)
4954 md_wait_for_blocked_rdev(s.blocked_rdev,
4955 conf->mddev);
4956 else
4957 /* Internal metadata will immediately
4958 * be written by raid5d, so we don't
4959 * need to wait here.
4960 */
4961 rdev_dec_pending(s.blocked_rdev,
4962 conf->mddev);
4963 }
6bfe0b49 4964
bc2607f3
N
4965 if (s.handle_bad_blocks)
4966 for (i = disks; i--; ) {
3cb03002 4967 struct md_rdev *rdev;
bc2607f3
N
4968 struct r5dev *dev = &sh->dev[i];
4969 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4970 /* We own a safe reference to the rdev */
4971 rdev = conf->disks[i].rdev;
4972 if (!rdev_set_badblocks(rdev, sh->sector,
4973 STRIPE_SECTORS, 0))
4974 md_error(conf->mddev, rdev);
4975 rdev_dec_pending(rdev, conf->mddev);
4976 }
b84db560
N
4977 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4978 rdev = conf->disks[i].rdev;
4979 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4980 STRIPE_SECTORS, 0);
b84db560
N
4981 rdev_dec_pending(rdev, conf->mddev);
4982 }
977df362
N
4983 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4984 rdev = conf->disks[i].replacement;
dd054fce
N
4985 if (!rdev)
4986 /* rdev have been moved down */
4987 rdev = conf->disks[i].rdev;
977df362 4988 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4989 STRIPE_SECTORS, 0);
977df362
N
4990 rdev_dec_pending(rdev, conf->mddev);
4991 }
bc2607f3
N
4992 }
4993
6c0069c0
YT
4994 if (s.ops_request)
4995 raid_run_ops(sh, s.ops_request);
4996
f0e43bcd 4997 ops_run_io(sh, &s);
16a53ecc 4998
c5709ef6 4999 if (s.dec_preread_active) {
729a1866 5000 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5001 * is waiting on a flush, it won't continue until the writes
729a1866
N
5002 * have actually been submitted.
5003 */
5004 atomic_dec(&conf->preread_active_stripes);
5005 if (atomic_read(&conf->preread_active_stripes) <
5006 IO_THRESHOLD)
5007 md_wakeup_thread(conf->mddev->thread);
5008 }
5009
257a4b42 5010 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5011}
5012
d1688a6d 5013static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
5014{
5015 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5016 while (!list_empty(&conf->delayed_list)) {
5017 struct list_head *l = conf->delayed_list.next;
5018 struct stripe_head *sh;
5019 sh = list_entry(l, struct stripe_head, lru);
5020 list_del_init(l);
5021 clear_bit(STRIPE_DELAYED, &sh->state);
5022 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5023 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5024 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5025 raid5_wakeup_stripe_thread(sh);
16a53ecc 5026 }
482c0834 5027 }
16a53ecc
N
5028}
5029
566c09c5
SL
5030static void activate_bit_delay(struct r5conf *conf,
5031 struct list_head *temp_inactive_list)
16a53ecc
N
5032{
5033 /* device_lock is held */
5034 struct list_head head;
5035 list_add(&head, &conf->bitmap_list);
5036 list_del_init(&conf->bitmap_list);
5037 while (!list_empty(&head)) {
5038 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5039 int hash;
16a53ecc
N
5040 list_del_init(&sh->lru);
5041 atomic_inc(&sh->count);
566c09c5
SL
5042 hash = sh->hash_lock_index;
5043 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5044 }
5045}
5046
5c675f83 5047static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 5048{
d1688a6d 5049 struct r5conf *conf = mddev->private;
f022b2fd
N
5050
5051 /* No difference between reads and writes. Just check
5052 * how busy the stripe_cache is
5053 */
3fa841d7 5054
5423399a 5055 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd 5056 return 1;
a39f7afd
SL
5057
5058 /* Also checks whether there is pressure on r5cache log space */
5059 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5060 return 1;
f022b2fd
N
5061 if (conf->quiesce)
5062 return 1;
4bda556a 5063 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
5064 return 1;
5065
5066 return 0;
5067}
5068
fd01b88c 5069static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5070{
3cb5edf4 5071 struct r5conf *conf = mddev->private;
4f024f37 5072 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 5073 unsigned int chunk_sectors;
aa8b57aa 5074 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5075
3cb5edf4 5076 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5077 return chunk_sectors >=
5078 ((sector & (chunk_sectors - 1)) + bio_sectors);
5079}
5080
46031f9a
RBJ
5081/*
5082 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5083 * later sampled by raid5d.
5084 */
d1688a6d 5085static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5086{
5087 unsigned long flags;
5088
5089 spin_lock_irqsave(&conf->device_lock, flags);
5090
5091 bi->bi_next = conf->retry_read_aligned_list;
5092 conf->retry_read_aligned_list = bi;
5093
5094 spin_unlock_irqrestore(&conf->device_lock, flags);
5095 md_wakeup_thread(conf->mddev->thread);
5096}
5097
d1688a6d 5098static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
5099{
5100 struct bio *bi;
5101
5102 bi = conf->retry_read_aligned;
5103 if (bi) {
5104 conf->retry_read_aligned = NULL;
5105 return bi;
5106 }
5107 bi = conf->retry_read_aligned_list;
5108 if(bi) {
387bb173 5109 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5110 bi->bi_next = NULL;
960e739d
JA
5111 /*
5112 * this sets the active strip count to 1 and the processed
5113 * strip count to zero (upper 8 bits)
5114 */
e7836bd6 5115 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
5116 }
5117
5118 return bi;
5119}
5120
f679623f
RBJ
5121/*
5122 * The "raid5_align_endio" should check if the read succeeded and if it
5123 * did, call bio_endio on the original bio (having bio_put the new bio
5124 * first).
5125 * If the read failed..
5126 */
4246a0b6 5127static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5128{
5129 struct bio* raid_bi = bi->bi_private;
fd01b88c 5130 struct mddev *mddev;
d1688a6d 5131 struct r5conf *conf;
3cb03002 5132 struct md_rdev *rdev;
9b81c842 5133 int error = bi->bi_error;
46031f9a 5134
f679623f 5135 bio_put(bi);
46031f9a 5136
46031f9a
RBJ
5137 rdev = (void*)raid_bi->bi_next;
5138 raid_bi->bi_next = NULL;
2b7f2228
N
5139 mddev = rdev->mddev;
5140 conf = mddev->private;
46031f9a
RBJ
5141
5142 rdev_dec_pending(rdev, conf->mddev);
5143
9b81c842 5144 if (!error) {
0a82a8d1
LT
5145 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
5146 raid_bi, 0);
4246a0b6 5147 bio_endio(raid_bi);
46031f9a 5148 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5149 wake_up(&conf->wait_for_quiescent);
6712ecf8 5150 return;
46031f9a
RBJ
5151 }
5152
45b4233c 5153 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5154
5155 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5156}
5157
7ef6b12a 5158static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5159{
d1688a6d 5160 struct r5conf *conf = mddev->private;
8553fe7e 5161 int dd_idx;
f679623f 5162 struct bio* align_bi;
3cb03002 5163 struct md_rdev *rdev;
671488cc 5164 sector_t end_sector;
f679623f
RBJ
5165
5166 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5167 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5168 return 0;
5169 }
5170 /*
d7a10308 5171 * use bio_clone_fast to make a copy of the bio
f679623f 5172 */
d7a10308 5173 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
f679623f
RBJ
5174 if (!align_bi)
5175 return 0;
5176 /*
5177 * set bi_end_io to a new function, and set bi_private to the
5178 * original bio.
5179 */
5180 align_bi->bi_end_io = raid5_align_endio;
5181 align_bi->bi_private = raid_bio;
5182 /*
5183 * compute position
5184 */
4f024f37
KO
5185 align_bi->bi_iter.bi_sector =
5186 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5187 0, &dd_idx, NULL);
f679623f 5188
f73a1c7d 5189 end_sector = bio_end_sector(align_bi);
f679623f 5190 rcu_read_lock();
671488cc
N
5191 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5192 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5193 rdev->recovery_offset < end_sector) {
5194 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5195 if (rdev &&
5196 (test_bit(Faulty, &rdev->flags) ||
5197 !(test_bit(In_sync, &rdev->flags) ||
5198 rdev->recovery_offset >= end_sector)))
5199 rdev = NULL;
5200 }
03b047f4
SL
5201
5202 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5203 rcu_read_unlock();
5204 bio_put(align_bi);
5205 return 0;
5206 }
5207
671488cc 5208 if (rdev) {
31c176ec
N
5209 sector_t first_bad;
5210 int bad_sectors;
5211
f679623f
RBJ
5212 atomic_inc(&rdev->nr_pending);
5213 rcu_read_unlock();
46031f9a
RBJ
5214 raid_bio->bi_next = (void*)rdev;
5215 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 5216 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 5217
7140aafc 5218 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 5219 bio_sectors(align_bi),
31c176ec 5220 &first_bad, &bad_sectors)) {
387bb173
NB
5221 bio_put(align_bi);
5222 rdev_dec_pending(rdev, mddev);
5223 return 0;
5224 }
5225
6c0544e2 5226 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 5227 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 5228
46031f9a 5229 spin_lock_irq(&conf->device_lock);
b1b46486 5230 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 5231 conf->quiesce == 0,
eed8c02e 5232 conf->device_lock);
46031f9a
RBJ
5233 atomic_inc(&conf->active_aligned_reads);
5234 spin_unlock_irq(&conf->device_lock);
5235
e3620a3a
JB
5236 if (mddev->gendisk)
5237 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5238 align_bi, disk_devt(mddev->gendisk),
4f024f37 5239 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
5240 generic_make_request(align_bi);
5241 return 1;
5242 } else {
5243 rcu_read_unlock();
46031f9a 5244 bio_put(align_bi);
f679623f
RBJ
5245 return 0;
5246 }
5247}
5248
7ef6b12a
ML
5249static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5250{
5251 struct bio *split;
5252
5253 do {
5254 sector_t sector = raid_bio->bi_iter.bi_sector;
5255 unsigned chunk_sects = mddev->chunk_sectors;
5256 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5257
5258 if (sectors < bio_sectors(raid_bio)) {
5259 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5260 bio_chain(split, raid_bio);
5261 } else
5262 split = raid_bio;
5263
5264 if (!raid5_read_one_chunk(mddev, split)) {
5265 if (split != raid_bio)
5266 generic_make_request(raid_bio);
5267 return split;
5268 }
5269 } while (split != raid_bio);
5270
5271 return NULL;
5272}
5273
8b3e6cdc
DW
5274/* __get_priority_stripe - get the next stripe to process
5275 *
5276 * Full stripe writes are allowed to pass preread active stripes up until
5277 * the bypass_threshold is exceeded. In general the bypass_count
5278 * increments when the handle_list is handled before the hold_list; however, it
5279 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5280 * stripe with in flight i/o. The bypass_count will be reset when the
5281 * head of the hold_list has changed, i.e. the head was promoted to the
5282 * handle_list.
5283 */
851c30c9 5284static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5285{
535ae4eb 5286 struct stripe_head *sh, *tmp;
851c30c9 5287 struct list_head *handle_list = NULL;
535ae4eb
SL
5288 struct r5worker_group *wg;
5289 bool second_try = !r5c_is_writeback(conf->log);
5290 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state);
851c30c9 5291
535ae4eb
SL
5292again:
5293 wg = NULL;
5294 sh = NULL;
851c30c9 5295 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5296 handle_list = try_loprio ? &conf->loprio_list :
5297 &conf->handle_list;
851c30c9 5298 } else if (group != ANY_GROUP) {
535ae4eb
SL
5299 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5300 &conf->worker_groups[group].handle_list;
bfc90cb0 5301 wg = &conf->worker_groups[group];
851c30c9
SL
5302 } else {
5303 int i;
5304 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5305 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5306 &conf->worker_groups[i].handle_list;
bfc90cb0 5307 wg = &conf->worker_groups[i];
851c30c9
SL
5308 if (!list_empty(handle_list))
5309 break;
5310 }
5311 }
8b3e6cdc
DW
5312
5313 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5314 __func__,
851c30c9 5315 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5316 list_empty(&conf->hold_list) ? "empty" : "busy",
5317 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5318
851c30c9
SL
5319 if (!list_empty(handle_list)) {
5320 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5321
5322 if (list_empty(&conf->hold_list))
5323 conf->bypass_count = 0;
5324 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5325 if (conf->hold_list.next == conf->last_hold)
5326 conf->bypass_count++;
5327 else {
5328 conf->last_hold = conf->hold_list.next;
5329 conf->bypass_count -= conf->bypass_threshold;
5330 if (conf->bypass_count < 0)
5331 conf->bypass_count = 0;
5332 }
5333 }
5334 } else if (!list_empty(&conf->hold_list) &&
5335 ((conf->bypass_threshold &&
5336 conf->bypass_count > conf->bypass_threshold) ||
5337 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5338
5339 list_for_each_entry(tmp, &conf->hold_list, lru) {
5340 if (conf->worker_cnt_per_group == 0 ||
5341 group == ANY_GROUP ||
5342 !cpu_online(tmp->cpu) ||
5343 cpu_to_group(tmp->cpu) == group) {
5344 sh = tmp;
5345 break;
5346 }
5347 }
5348
5349 if (sh) {
5350 conf->bypass_count -= conf->bypass_threshold;
5351 if (conf->bypass_count < 0)
5352 conf->bypass_count = 0;
5353 }
bfc90cb0 5354 wg = NULL;
851c30c9
SL
5355 }
5356
535ae4eb
SL
5357 if (!sh) {
5358 if (second_try)
5359 return NULL;
5360 second_try = true;
5361 try_loprio = !try_loprio;
5362 goto again;
5363 }
8b3e6cdc 5364
bfc90cb0
SL
5365 if (wg) {
5366 wg->stripes_cnt--;
5367 sh->group = NULL;
5368 }
8b3e6cdc 5369 list_del_init(&sh->lru);
c7a6d35e 5370 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5371 return sh;
5372}
f679623f 5373
8811b596
SL
5374struct raid5_plug_cb {
5375 struct blk_plug_cb cb;
5376 struct list_head list;
566c09c5 5377 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5378};
5379
5380static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5381{
5382 struct raid5_plug_cb *cb = container_of(
5383 blk_cb, struct raid5_plug_cb, cb);
5384 struct stripe_head *sh;
5385 struct mddev *mddev = cb->cb.data;
5386 struct r5conf *conf = mddev->private;
a9add5d9 5387 int cnt = 0;
566c09c5 5388 int hash;
8811b596
SL
5389
5390 if (cb->list.next && !list_empty(&cb->list)) {
5391 spin_lock_irq(&conf->device_lock);
5392 while (!list_empty(&cb->list)) {
5393 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5394 list_del_init(&sh->lru);
5395 /*
5396 * avoid race release_stripe_plug() sees
5397 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5398 * is still in our list
5399 */
4e857c58 5400 smp_mb__before_atomic();
8811b596 5401 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5402 /*
5403 * STRIPE_ON_RELEASE_LIST could be set here. In that
5404 * case, the count is always > 1 here
5405 */
566c09c5
SL
5406 hash = sh->hash_lock_index;
5407 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5408 cnt++;
8811b596
SL
5409 }
5410 spin_unlock_irq(&conf->device_lock);
5411 }
566c09c5
SL
5412 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5413 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5414 if (mddev->queue)
5415 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5416 kfree(cb);
5417}
5418
5419static void release_stripe_plug(struct mddev *mddev,
5420 struct stripe_head *sh)
5421{
5422 struct blk_plug_cb *blk_cb = blk_check_plugged(
5423 raid5_unplug, mddev,
5424 sizeof(struct raid5_plug_cb));
5425 struct raid5_plug_cb *cb;
5426
5427 if (!blk_cb) {
6d036f7d 5428 raid5_release_stripe(sh);
8811b596
SL
5429 return;
5430 }
5431
5432 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5433
566c09c5
SL
5434 if (cb->list.next == NULL) {
5435 int i;
8811b596 5436 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5437 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5438 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5439 }
8811b596
SL
5440
5441 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5442 list_add_tail(&sh->lru, &cb->list);
5443 else
6d036f7d 5444 raid5_release_stripe(sh);
8811b596
SL
5445}
5446
620125f2
SL
5447static void make_discard_request(struct mddev *mddev, struct bio *bi)
5448{
5449 struct r5conf *conf = mddev->private;
5450 sector_t logical_sector, last_sector;
5451 struct stripe_head *sh;
5452 int remaining;
5453 int stripe_sectors;
5454
5455 if (mddev->reshape_position != MaxSector)
5456 /* Skip discard while reshape is happening */
5457 return;
5458
4f024f37
KO
5459 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5460 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5461
5462 bi->bi_next = NULL;
5463 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
49728050 5464 md_write_start(mddev, bi);
620125f2
SL
5465
5466 stripe_sectors = conf->chunk_sectors *
5467 (conf->raid_disks - conf->max_degraded);
5468 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5469 stripe_sectors);
5470 sector_div(last_sector, stripe_sectors);
5471
5472 logical_sector *= conf->chunk_sectors;
5473 last_sector *= conf->chunk_sectors;
5474
5475 for (; logical_sector < last_sector;
5476 logical_sector += STRIPE_SECTORS) {
5477 DEFINE_WAIT(w);
5478 int d;
5479 again:
6d036f7d 5480 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5481 prepare_to_wait(&conf->wait_for_overlap, &w,
5482 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5483 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5484 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5485 raid5_release_stripe(sh);
f8dfcffd
N
5486 schedule();
5487 goto again;
5488 }
5489 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5490 spin_lock_irq(&sh->stripe_lock);
5491 for (d = 0; d < conf->raid_disks; d++) {
5492 if (d == sh->pd_idx || d == sh->qd_idx)
5493 continue;
5494 if (sh->dev[d].towrite || sh->dev[d].toread) {
5495 set_bit(R5_Overlap, &sh->dev[d].flags);
5496 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5497 raid5_release_stripe(sh);
620125f2
SL
5498 schedule();
5499 goto again;
5500 }
5501 }
f8dfcffd 5502 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5503 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5504 sh->overwrite_disks = 0;
620125f2
SL
5505 for (d = 0; d < conf->raid_disks; d++) {
5506 if (d == sh->pd_idx || d == sh->qd_idx)
5507 continue;
5508 sh->dev[d].towrite = bi;
5509 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5510 raid5_inc_bi_active_stripes(bi);
49728050 5511 md_write_inc(mddev, bi);
7a87f434 5512 sh->overwrite_disks++;
620125f2
SL
5513 }
5514 spin_unlock_irq(&sh->stripe_lock);
5515 if (conf->mddev->bitmap) {
5516 for (d = 0;
5517 d < conf->raid_disks - conf->max_degraded;
5518 d++)
5519 bitmap_startwrite(mddev->bitmap,
5520 sh->sector,
5521 STRIPE_SECTORS,
5522 0);
5523 sh->bm_seq = conf->seq_flush + 1;
5524 set_bit(STRIPE_BIT_DELAY, &sh->state);
5525 }
5526
5527 set_bit(STRIPE_HANDLE, &sh->state);
5528 clear_bit(STRIPE_DELAYED, &sh->state);
5529 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5530 atomic_inc(&conf->preread_active_stripes);
5531 release_stripe_plug(mddev, sh);
5532 }
5533
49728050 5534 md_write_end(mddev);
620125f2
SL
5535 remaining = raid5_dec_bi_active_stripes(bi);
5536 if (remaining == 0) {
4246a0b6 5537 bio_endio(bi);
620125f2
SL
5538 }
5539}
5540
849674e4 5541static void raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5542{
d1688a6d 5543 struct r5conf *conf = mddev->private;
911d4ee8 5544 int dd_idx;
1da177e4
LT
5545 sector_t new_sector;
5546 sector_t logical_sector, last_sector;
5547 struct stripe_head *sh;
a362357b 5548 const int rw = bio_data_dir(bi);
49077326 5549 int remaining;
27c0f68f
SL
5550 DEFINE_WAIT(w);
5551 bool do_prepare;
3bddb7f8 5552 bool do_flush = false;
1da177e4 5553
1eff9d32 5554 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
828cbe98
SL
5555 int ret = r5l_handle_flush_request(conf->log, bi);
5556
5557 if (ret == 0)
5558 return;
5559 if (ret == -ENODEV) {
5560 md_flush_request(mddev, bi);
5561 return;
5562 }
5563 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5564 /*
5565 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5566 * we need to flush journal device
5567 */
5568 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5569 }
5570
9ffc8f7c
EM
5571 /*
5572 * If array is degraded, better not do chunk aligned read because
5573 * later we might have to read it again in order to reconstruct
5574 * data on failed drives.
5575 */
5576 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5577 mddev->reshape_position == MaxSector) {
5578 bi = chunk_aligned_read(mddev, bi);
5579 if (!bi)
5580 return;
5581 }
52488615 5582
796a5cf0 5583 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2
SL
5584 make_discard_request(mddev, bi);
5585 return;
5586 }
5587
4f024f37 5588 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5589 last_sector = bio_end_sector(bi);
1da177e4
LT
5590 bi->bi_next = NULL;
5591 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
49728050 5592 md_write_start(mddev, bi);
06d91a5f 5593
27c0f68f 5594 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5595 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5596 int previous;
c46501b2 5597 int seq;
b578d55f 5598
27c0f68f 5599 do_prepare = false;
7ecaa1e6 5600 retry:
c46501b2 5601 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5602 previous = 0;
27c0f68f
SL
5603 if (do_prepare)
5604 prepare_to_wait(&conf->wait_for_overlap, &w,
5605 TASK_UNINTERRUPTIBLE);
b0f9ec04 5606 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5607 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5608 * 64bit on a 32bit platform, and so it might be
5609 * possible to see a half-updated value
aeb878b0 5610 * Of course reshape_progress could change after
df8e7f76
N
5611 * the lock is dropped, so once we get a reference
5612 * to the stripe that we think it is, we will have
5613 * to check again.
5614 */
7ecaa1e6 5615 spin_lock_irq(&conf->device_lock);
2c810cdd 5616 if (mddev->reshape_backwards
fef9c61f
N
5617 ? logical_sector < conf->reshape_progress
5618 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5619 previous = 1;
5620 } else {
2c810cdd 5621 if (mddev->reshape_backwards
fef9c61f
N
5622 ? logical_sector < conf->reshape_safe
5623 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5624 spin_unlock_irq(&conf->device_lock);
5625 schedule();
27c0f68f 5626 do_prepare = true;
b578d55f
N
5627 goto retry;
5628 }
5629 }
7ecaa1e6
N
5630 spin_unlock_irq(&conf->device_lock);
5631 }
16a53ecc 5632
112bf897
N
5633 new_sector = raid5_compute_sector(conf, logical_sector,
5634 previous,
911d4ee8 5635 &dd_idx, NULL);
849674e4 5636 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5637 (unsigned long long)new_sector,
1da177e4
LT
5638 (unsigned long long)logical_sector);
5639
6d036f7d 5640 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5641 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5642 if (sh) {
b0f9ec04 5643 if (unlikely(previous)) {
7ecaa1e6 5644 /* expansion might have moved on while waiting for a
df8e7f76
N
5645 * stripe, so we must do the range check again.
5646 * Expansion could still move past after this
5647 * test, but as we are holding a reference to
5648 * 'sh', we know that if that happens,
5649 * STRIPE_EXPANDING will get set and the expansion
5650 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5651 */
5652 int must_retry = 0;
5653 spin_lock_irq(&conf->device_lock);
2c810cdd 5654 if (mddev->reshape_backwards
b0f9ec04
N
5655 ? logical_sector >= conf->reshape_progress
5656 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5657 /* mismatch, need to try again */
5658 must_retry = 1;
5659 spin_unlock_irq(&conf->device_lock);
5660 if (must_retry) {
6d036f7d 5661 raid5_release_stripe(sh);
7a3ab908 5662 schedule();
27c0f68f 5663 do_prepare = true;
7ecaa1e6
N
5664 goto retry;
5665 }
5666 }
c46501b2
N
5667 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5668 /* Might have got the wrong stripe_head
5669 * by accident
5670 */
6d036f7d 5671 raid5_release_stripe(sh);
c46501b2
N
5672 goto retry;
5673 }
e62e58a5 5674
ffd96e35 5675 if (rw == WRITE &&
a5c308d4 5676 logical_sector >= mddev->suspend_lo &&
e464eafd 5677 logical_sector < mddev->suspend_hi) {
6d036f7d 5678 raid5_release_stripe(sh);
e62e58a5
N
5679 /* As the suspend_* range is controlled by
5680 * userspace, we want an interruptible
5681 * wait.
5682 */
5683 flush_signals(current);
5684 prepare_to_wait(&conf->wait_for_overlap,
5685 &w, TASK_INTERRUPTIBLE);
5686 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5687 logical_sector < mddev->suspend_hi) {
e62e58a5 5688 schedule();
27c0f68f
SL
5689 do_prepare = true;
5690 }
e464eafd
N
5691 goto retry;
5692 }
7ecaa1e6
N
5693
5694 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5695 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5696 /* Stripe is busy expanding or
5697 * add failed due to overlap. Flush everything
1da177e4
LT
5698 * and wait a while
5699 */
482c0834 5700 md_wakeup_thread(mddev->thread);
6d036f7d 5701 raid5_release_stripe(sh);
1da177e4 5702 schedule();
27c0f68f 5703 do_prepare = true;
1da177e4
LT
5704 goto retry;
5705 }
3bddb7f8
SL
5706 if (do_flush) {
5707 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5708 /* we only need flush for one stripe */
5709 do_flush = false;
5710 }
5711
6ed3003c
N
5712 set_bit(STRIPE_HANDLE, &sh->state);
5713 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5714 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5715 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5716 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5717 atomic_inc(&conf->preread_active_stripes);
8811b596 5718 release_stripe_plug(mddev, sh);
1da177e4
LT
5719 } else {
5720 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5721 bi->bi_error = -EIO;
1da177e4
LT
5722 break;
5723 }
1da177e4 5724 }
27c0f68f 5725 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5726
49728050
N
5727 if (rw == WRITE)
5728 md_write_end(mddev);
e7836bd6 5729 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5730 if (remaining == 0) {
1da177e4 5731
6712ecf8 5732
0a82a8d1
LT
5733 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5734 bi, 0);
4246a0b6 5735 bio_endio(bi);
1da177e4 5736 }
1da177e4
LT
5737}
5738
fd01b88c 5739static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5740
fd01b88c 5741static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5742{
52c03291
N
5743 /* reshaping is quite different to recovery/resync so it is
5744 * handled quite separately ... here.
5745 *
5746 * On each call to sync_request, we gather one chunk worth of
5747 * destination stripes and flag them as expanding.
5748 * Then we find all the source stripes and request reads.
5749 * As the reads complete, handle_stripe will copy the data
5750 * into the destination stripe and release that stripe.
5751 */
d1688a6d 5752 struct r5conf *conf = mddev->private;
1da177e4 5753 struct stripe_head *sh;
ccfcc3c1 5754 sector_t first_sector, last_sector;
f416885e
N
5755 int raid_disks = conf->previous_raid_disks;
5756 int data_disks = raid_disks - conf->max_degraded;
5757 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5758 int i;
5759 int dd_idx;
c8f517c4 5760 sector_t writepos, readpos, safepos;
ec32a2bd 5761 sector_t stripe_addr;
7a661381 5762 int reshape_sectors;
ab69ae12 5763 struct list_head stripes;
92140480 5764 sector_t retn;
52c03291 5765
fef9c61f
N
5766 if (sector_nr == 0) {
5767 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5768 if (mddev->reshape_backwards &&
fef9c61f
N
5769 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5770 sector_nr = raid5_size(mddev, 0, 0)
5771 - conf->reshape_progress;
6cbd8148
N
5772 } else if (mddev->reshape_backwards &&
5773 conf->reshape_progress == MaxSector) {
5774 /* shouldn't happen, but just in case, finish up.*/
5775 sector_nr = MaxSector;
2c810cdd 5776 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5777 conf->reshape_progress > 0)
5778 sector_nr = conf->reshape_progress;
f416885e 5779 sector_div(sector_nr, new_data_disks);
fef9c61f 5780 if (sector_nr) {
8dee7211
N
5781 mddev->curr_resync_completed = sector_nr;
5782 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5783 *skipped = 1;
92140480
N
5784 retn = sector_nr;
5785 goto finish;
fef9c61f 5786 }
52c03291
N
5787 }
5788
7a661381
N
5789 /* We need to process a full chunk at a time.
5790 * If old and new chunk sizes differ, we need to process the
5791 * largest of these
5792 */
3cb5edf4
N
5793
5794 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5795
b5254dd5
N
5796 /* We update the metadata at least every 10 seconds, or when
5797 * the data about to be copied would over-write the source of
5798 * the data at the front of the range. i.e. one new_stripe
5799 * along from reshape_progress new_maps to after where
5800 * reshape_safe old_maps to
52c03291 5801 */
fef9c61f 5802 writepos = conf->reshape_progress;
f416885e 5803 sector_div(writepos, new_data_disks);
c8f517c4
N
5804 readpos = conf->reshape_progress;
5805 sector_div(readpos, data_disks);
fef9c61f 5806 safepos = conf->reshape_safe;
f416885e 5807 sector_div(safepos, data_disks);
2c810cdd 5808 if (mddev->reshape_backwards) {
c74c0d76
N
5809 BUG_ON(writepos < reshape_sectors);
5810 writepos -= reshape_sectors;
c8f517c4 5811 readpos += reshape_sectors;
7a661381 5812 safepos += reshape_sectors;
fef9c61f 5813 } else {
7a661381 5814 writepos += reshape_sectors;
c74c0d76
N
5815 /* readpos and safepos are worst-case calculations.
5816 * A negative number is overly pessimistic, and causes
5817 * obvious problems for unsigned storage. So clip to 0.
5818 */
ed37d83e
N
5819 readpos -= min_t(sector_t, reshape_sectors, readpos);
5820 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5821 }
52c03291 5822
b5254dd5
N
5823 /* Having calculated the 'writepos' possibly use it
5824 * to set 'stripe_addr' which is where we will write to.
5825 */
5826 if (mddev->reshape_backwards) {
5827 BUG_ON(conf->reshape_progress == 0);
5828 stripe_addr = writepos;
5829 BUG_ON((mddev->dev_sectors &
5830 ~((sector_t)reshape_sectors - 1))
5831 - reshape_sectors - stripe_addr
5832 != sector_nr);
5833 } else {
5834 BUG_ON(writepos != sector_nr + reshape_sectors);
5835 stripe_addr = sector_nr;
5836 }
5837
c8f517c4
N
5838 /* 'writepos' is the most advanced device address we might write.
5839 * 'readpos' is the least advanced device address we might read.
5840 * 'safepos' is the least address recorded in the metadata as having
5841 * been reshaped.
b5254dd5
N
5842 * If there is a min_offset_diff, these are adjusted either by
5843 * increasing the safepos/readpos if diff is negative, or
5844 * increasing writepos if diff is positive.
5845 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5846 * ensure safety in the face of a crash - that must be done by userspace
5847 * making a backup of the data. So in that case there is no particular
5848 * rush to update metadata.
5849 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5850 * update the metadata to advance 'safepos' to match 'readpos' so that
5851 * we can be safe in the event of a crash.
5852 * So we insist on updating metadata if safepos is behind writepos and
5853 * readpos is beyond writepos.
5854 * In any case, update the metadata every 10 seconds.
5855 * Maybe that number should be configurable, but I'm not sure it is
5856 * worth it.... maybe it could be a multiple of safemode_delay???
5857 */
b5254dd5
N
5858 if (conf->min_offset_diff < 0) {
5859 safepos += -conf->min_offset_diff;
5860 readpos += -conf->min_offset_diff;
5861 } else
5862 writepos += conf->min_offset_diff;
5863
2c810cdd 5864 if ((mddev->reshape_backwards
c8f517c4
N
5865 ? (safepos > writepos && readpos < writepos)
5866 : (safepos < writepos && readpos > writepos)) ||
5867 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5868 /* Cannot proceed until we've updated the superblock... */
5869 wait_event(conf->wait_for_overlap,
c91abf5a
N
5870 atomic_read(&conf->reshape_stripes)==0
5871 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5872 if (atomic_read(&conf->reshape_stripes) != 0)
5873 return 0;
fef9c61f 5874 mddev->reshape_position = conf->reshape_progress;
75d3da43 5875 mddev->curr_resync_completed = sector_nr;
c8f517c4 5876 conf->reshape_checkpoint = jiffies;
2953079c 5877 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 5878 md_wakeup_thread(mddev->thread);
2953079c 5879 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
5880 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5881 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5882 return 0;
52c03291 5883 spin_lock_irq(&conf->device_lock);
fef9c61f 5884 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5885 spin_unlock_irq(&conf->device_lock);
5886 wake_up(&conf->wait_for_overlap);
acb180b0 5887 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5888 }
5889
ab69ae12 5890 INIT_LIST_HEAD(&stripes);
7a661381 5891 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5892 int j;
a9f326eb 5893 int skipped_disk = 0;
6d036f7d 5894 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5895 set_bit(STRIPE_EXPANDING, &sh->state);
5896 atomic_inc(&conf->reshape_stripes);
5897 /* If any of this stripe is beyond the end of the old
5898 * array, then we need to zero those blocks
5899 */
5900 for (j=sh->disks; j--;) {
5901 sector_t s;
5902 if (j == sh->pd_idx)
5903 continue;
f416885e 5904 if (conf->level == 6 &&
d0dabf7e 5905 j == sh->qd_idx)
f416885e 5906 continue;
6d036f7d 5907 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5908 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5909 skipped_disk = 1;
52c03291
N
5910 continue;
5911 }
5912 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5913 set_bit(R5_Expanded, &sh->dev[j].flags);
5914 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5915 }
a9f326eb 5916 if (!skipped_disk) {
52c03291
N
5917 set_bit(STRIPE_EXPAND_READY, &sh->state);
5918 set_bit(STRIPE_HANDLE, &sh->state);
5919 }
ab69ae12 5920 list_add(&sh->lru, &stripes);
52c03291
N
5921 }
5922 spin_lock_irq(&conf->device_lock);
2c810cdd 5923 if (mddev->reshape_backwards)
7a661381 5924 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5925 else
7a661381 5926 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5927 spin_unlock_irq(&conf->device_lock);
5928 /* Ok, those stripe are ready. We can start scheduling
5929 * reads on the source stripes.
5930 * The source stripes are determined by mapping the first and last
5931 * block on the destination stripes.
5932 */
52c03291 5933 first_sector =
ec32a2bd 5934 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5935 1, &dd_idx, NULL);
52c03291 5936 last_sector =
0e6e0271 5937 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5938 * new_data_disks - 1),
911d4ee8 5939 1, &dd_idx, NULL);
58c0fed4
AN
5940 if (last_sector >= mddev->dev_sectors)
5941 last_sector = mddev->dev_sectors - 1;
52c03291 5942 while (first_sector <= last_sector) {
6d036f7d 5943 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5944 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5945 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5946 raid5_release_stripe(sh);
52c03291
N
5947 first_sector += STRIPE_SECTORS;
5948 }
ab69ae12
N
5949 /* Now that the sources are clearly marked, we can release
5950 * the destination stripes
5951 */
5952 while (!list_empty(&stripes)) {
5953 sh = list_entry(stripes.next, struct stripe_head, lru);
5954 list_del_init(&sh->lru);
6d036f7d 5955 raid5_release_stripe(sh);
ab69ae12 5956 }
c6207277
N
5957 /* If this takes us to the resync_max point where we have to pause,
5958 * then we need to write out the superblock.
5959 */
7a661381 5960 sector_nr += reshape_sectors;
92140480
N
5961 retn = reshape_sectors;
5962finish:
c5e19d90
N
5963 if (mddev->curr_resync_completed > mddev->resync_max ||
5964 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5965 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5966 /* Cannot proceed until we've updated the superblock... */
5967 wait_event(conf->wait_for_overlap,
c91abf5a
N
5968 atomic_read(&conf->reshape_stripes) == 0
5969 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5970 if (atomic_read(&conf->reshape_stripes) != 0)
5971 goto ret;
fef9c61f 5972 mddev->reshape_position = conf->reshape_progress;
75d3da43 5973 mddev->curr_resync_completed = sector_nr;
c8f517c4 5974 conf->reshape_checkpoint = jiffies;
2953079c 5975 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
5976 md_wakeup_thread(mddev->thread);
5977 wait_event(mddev->sb_wait,
2953079c 5978 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
5979 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5980 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5981 goto ret;
c6207277 5982 spin_lock_irq(&conf->device_lock);
fef9c61f 5983 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5984 spin_unlock_irq(&conf->device_lock);
5985 wake_up(&conf->wait_for_overlap);
acb180b0 5986 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5987 }
c91abf5a 5988ret:
92140480 5989 return retn;
52c03291
N
5990}
5991
849674e4
SL
5992static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5993 int *skipped)
52c03291 5994{
d1688a6d 5995 struct r5conf *conf = mddev->private;
52c03291 5996 struct stripe_head *sh;
58c0fed4 5997 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5998 sector_t sync_blocks;
16a53ecc
N
5999 int still_degraded = 0;
6000 int i;
1da177e4 6001
72626685 6002 if (sector_nr >= max_sector) {
1da177e4 6003 /* just being told to finish up .. nothing much to do */
cea9c228 6004
29269553
N
6005 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6006 end_reshape(conf);
6007 return 0;
6008 }
72626685
N
6009
6010 if (mddev->curr_resync < max_sector) /* aborted */
6011 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6012 &sync_blocks, 1);
16a53ecc 6013 else /* completed sync */
72626685
N
6014 conf->fullsync = 0;
6015 bitmap_close_sync(mddev->bitmap);
6016
1da177e4
LT
6017 return 0;
6018 }
ccfcc3c1 6019
64bd660b
N
6020 /* Allow raid5_quiesce to complete */
6021 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6022
52c03291
N
6023 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6024 return reshape_request(mddev, sector_nr, skipped);
f6705578 6025
c6207277
N
6026 /* No need to check resync_max as we never do more than one
6027 * stripe, and as resync_max will always be on a chunk boundary,
6028 * if the check in md_do_sync didn't fire, there is no chance
6029 * of overstepping resync_max here
6030 */
6031
16a53ecc 6032 /* if there is too many failed drives and we are trying
1da177e4
LT
6033 * to resync, then assert that we are finished, because there is
6034 * nothing we can do.
6035 */
3285edf1 6036 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6037 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6038 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6039 *skipped = 1;
1da177e4
LT
6040 return rv;
6041 }
6f608040 6042 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6043 !conf->fullsync &&
6044 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6045 sync_blocks >= STRIPE_SECTORS) {
72626685
N
6046 /* we can skip this block, and probably more */
6047 sync_blocks /= STRIPE_SECTORS;
6048 *skipped = 1;
6049 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6050 }
1da177e4 6051
c40f341f 6052 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6053
6d036f7d 6054 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 6055 if (sh == NULL) {
6d036f7d 6056 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 6057 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6058 * is trying to get access
1da177e4 6059 */
66c006a5 6060 schedule_timeout_uninterruptible(1);
1da177e4 6061 }
16a53ecc 6062 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6063 * Note in case of > 1 drive failures it's possible we're rebuilding
6064 * one drive while leaving another faulty drive in array.
16a53ecc 6065 */
16d9cfab
EM
6066 rcu_read_lock();
6067 for (i = 0; i < conf->raid_disks; i++) {
6068 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6069
6070 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6071 still_degraded = 1;
16d9cfab
EM
6072 }
6073 rcu_read_unlock();
16a53ecc
N
6074
6075 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6076
83206d66 6077 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6078 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6079
6d036f7d 6080 raid5_release_stripe(sh);
1da177e4
LT
6081
6082 return STRIPE_SECTORS;
6083}
6084
d1688a6d 6085static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
6086{
6087 /* We may not be able to submit a whole bio at once as there
6088 * may not be enough stripe_heads available.
6089 * We cannot pre-allocate enough stripe_heads as we may need
6090 * more than exist in the cache (if we allow ever large chunks).
6091 * So we do one stripe head at a time and record in
6092 * ->bi_hw_segments how many have been done.
6093 *
6094 * We *know* that this entire raid_bio is in one chunk, so
6095 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6096 */
6097 struct stripe_head *sh;
911d4ee8 6098 int dd_idx;
46031f9a
RBJ
6099 sector_t sector, logical_sector, last_sector;
6100 int scnt = 0;
6101 int remaining;
6102 int handled = 0;
6103
4f024f37
KO
6104 logical_sector = raid_bio->bi_iter.bi_sector &
6105 ~((sector_t)STRIPE_SECTORS-1);
112bf897 6106 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6107 0, &dd_idx, NULL);
f73a1c7d 6108 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6109
6110 for (; logical_sector < last_sector;
387bb173
NB
6111 logical_sector += STRIPE_SECTORS,
6112 sector += STRIPE_SECTORS,
6113 scnt++) {
46031f9a 6114
e7836bd6 6115 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
6116 /* already done this stripe */
6117 continue;
6118
6d036f7d 6119 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
6120
6121 if (!sh) {
6122 /* failed to get a stripe - must wait */
e7836bd6 6123 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
6124 conf->retry_read_aligned = raid_bio;
6125 return handled;
6126 }
6127
da41ba65 6128 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6129 raid5_release_stripe(sh);
e7836bd6 6130 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
6131 conf->retry_read_aligned = raid_bio;
6132 return handled;
6133 }
6134
3f9e7c14 6135 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6136 handle_stripe(sh);
6d036f7d 6137 raid5_release_stripe(sh);
46031f9a
RBJ
6138 handled++;
6139 }
e7836bd6 6140 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
6141 if (remaining == 0) {
6142 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
6143 raid_bio, 0);
4246a0b6 6144 bio_endio(raid_bio);
0a82a8d1 6145 }
46031f9a 6146 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6147 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6148 return handled;
6149}
6150
bfc90cb0 6151static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6152 struct r5worker *worker,
6153 struct list_head *temp_inactive_list)
46a06401
SL
6154{
6155 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6156 int i, batch_size = 0, hash;
6157 bool release_inactive = false;
46a06401
SL
6158
6159 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6160 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6161 batch[batch_size++] = sh;
6162
566c09c5
SL
6163 if (batch_size == 0) {
6164 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6165 if (!list_empty(temp_inactive_list + i))
6166 break;
a8c34f91
SL
6167 if (i == NR_STRIPE_HASH_LOCKS) {
6168 spin_unlock_irq(&conf->device_lock);
6169 r5l_flush_stripe_to_raid(conf->log);
6170 spin_lock_irq(&conf->device_lock);
566c09c5 6171 return batch_size;
a8c34f91 6172 }
566c09c5
SL
6173 release_inactive = true;
6174 }
46a06401
SL
6175 spin_unlock_irq(&conf->device_lock);
6176
566c09c5
SL
6177 release_inactive_stripe_list(conf, temp_inactive_list,
6178 NR_STRIPE_HASH_LOCKS);
6179
a8c34f91 6180 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6181 if (release_inactive) {
6182 spin_lock_irq(&conf->device_lock);
6183 return 0;
6184 }
6185
46a06401
SL
6186 for (i = 0; i < batch_size; i++)
6187 handle_stripe(batch[i]);
ff875738 6188 log_write_stripe_run(conf);
46a06401
SL
6189
6190 cond_resched();
6191
6192 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6193 for (i = 0; i < batch_size; i++) {
6194 hash = batch[i]->hash_lock_index;
6195 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6196 }
46a06401
SL
6197 return batch_size;
6198}
46031f9a 6199
851c30c9
SL
6200static void raid5_do_work(struct work_struct *work)
6201{
6202 struct r5worker *worker = container_of(work, struct r5worker, work);
6203 struct r5worker_group *group = worker->group;
6204 struct r5conf *conf = group->conf;
16d997b7 6205 struct mddev *mddev = conf->mddev;
851c30c9
SL
6206 int group_id = group - conf->worker_groups;
6207 int handled;
6208 struct blk_plug plug;
6209
6210 pr_debug("+++ raid5worker active\n");
6211
6212 blk_start_plug(&plug);
6213 handled = 0;
6214 spin_lock_irq(&conf->device_lock);
6215 while (1) {
6216 int batch_size, released;
6217
566c09c5 6218 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6219
566c09c5
SL
6220 batch_size = handle_active_stripes(conf, group_id, worker,
6221 worker->temp_inactive_list);
bfc90cb0 6222 worker->working = false;
851c30c9
SL
6223 if (!batch_size && !released)
6224 break;
6225 handled += batch_size;
16d997b7
N
6226 wait_event_lock_irq(mddev->sb_wait,
6227 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6228 conf->device_lock);
851c30c9
SL
6229 }
6230 pr_debug("%d stripes handled\n", handled);
6231
6232 spin_unlock_irq(&conf->device_lock);
6233 blk_finish_plug(&plug);
6234
6235 pr_debug("--- raid5worker inactive\n");
6236}
6237
1da177e4
LT
6238/*
6239 * This is our raid5 kernel thread.
6240 *
6241 * We scan the hash table for stripes which can be handled now.
6242 * During the scan, completed stripes are saved for us by the interrupt
6243 * handler, so that they will not have to wait for our next wakeup.
6244 */
4ed8731d 6245static void raid5d(struct md_thread *thread)
1da177e4 6246{
4ed8731d 6247 struct mddev *mddev = thread->mddev;
d1688a6d 6248 struct r5conf *conf = mddev->private;
1da177e4 6249 int handled;
e1dfa0a2 6250 struct blk_plug plug;
1da177e4 6251
45b4233c 6252 pr_debug("+++ raid5d active\n");
1da177e4
LT
6253
6254 md_check_recovery(mddev);
1da177e4 6255
e1dfa0a2 6256 blk_start_plug(&plug);
1da177e4
LT
6257 handled = 0;
6258 spin_lock_irq(&conf->device_lock);
6259 while (1) {
46031f9a 6260 struct bio *bio;
773ca82f
SL
6261 int batch_size, released;
6262
566c09c5 6263 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6264 if (released)
6265 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6266
0021b7bc 6267 if (
7c13edc8
N
6268 !list_empty(&conf->bitmap_list)) {
6269 /* Now is a good time to flush some bitmap updates */
6270 conf->seq_flush++;
700e432d 6271 spin_unlock_irq(&conf->device_lock);
72626685 6272 bitmap_unplug(mddev->bitmap);
700e432d 6273 spin_lock_irq(&conf->device_lock);
7c13edc8 6274 conf->seq_write = conf->seq_flush;
566c09c5 6275 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6276 }
0021b7bc 6277 raid5_activate_delayed(conf);
72626685 6278
46031f9a
RBJ
6279 while ((bio = remove_bio_from_retry(conf))) {
6280 int ok;
6281 spin_unlock_irq(&conf->device_lock);
6282 ok = retry_aligned_read(conf, bio);
6283 spin_lock_irq(&conf->device_lock);
6284 if (!ok)
6285 break;
6286 handled++;
6287 }
6288
566c09c5
SL
6289 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6290 conf->temp_inactive_list);
773ca82f 6291 if (!batch_size && !released)
1da177e4 6292 break;
46a06401 6293 handled += batch_size;
1da177e4 6294
2953079c 6295 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6296 spin_unlock_irq(&conf->device_lock);
de393cde 6297 md_check_recovery(mddev);
46a06401
SL
6298 spin_lock_irq(&conf->device_lock);
6299 }
1da177e4 6300 }
45b4233c 6301 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6302
6303 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6304 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6305 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6306 grow_one_stripe(conf, __GFP_NOWARN);
6307 /* Set flag even if allocation failed. This helps
6308 * slow down allocation requests when mem is short
6309 */
6310 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6311 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6312 }
1da177e4 6313
765d704d
SL
6314 flush_deferred_bios(conf);
6315
0576b1c6
SL
6316 r5l_flush_stripe_to_raid(conf->log);
6317
c9f21aaf 6318 async_tx_issue_pending_all();
e1dfa0a2 6319 blk_finish_plug(&plug);
1da177e4 6320
45b4233c 6321 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6322}
6323
3f294f4f 6324static ssize_t
fd01b88c 6325raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6326{
7b1485ba
N
6327 struct r5conf *conf;
6328 int ret = 0;
6329 spin_lock(&mddev->lock);
6330 conf = mddev->private;
96de1e66 6331 if (conf)
edbe83ab 6332 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6333 spin_unlock(&mddev->lock);
6334 return ret;
3f294f4f
N
6335}
6336
c41d4ac4 6337int
fd01b88c 6338raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6339{
d1688a6d 6340 struct r5conf *conf = mddev->private;
b5470dc5
DW
6341 int err;
6342
c41d4ac4 6343 if (size <= 16 || size > 32768)
3f294f4f 6344 return -EINVAL;
486f0644 6345
edbe83ab 6346 conf->min_nr_stripes = size;
2d5b569b 6347 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6348 while (size < conf->max_nr_stripes &&
6349 drop_one_stripe(conf))
6350 ;
2d5b569b 6351 mutex_unlock(&conf->cache_size_mutex);
486f0644 6352
edbe83ab 6353
b5470dc5
DW
6354 err = md_allow_write(mddev);
6355 if (err)
6356 return err;
486f0644 6357
2d5b569b 6358 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6359 while (size > conf->max_nr_stripes)
6360 if (!grow_one_stripe(conf, GFP_KERNEL))
6361 break;
2d5b569b 6362 mutex_unlock(&conf->cache_size_mutex);
486f0644 6363
c41d4ac4
N
6364 return 0;
6365}
6366EXPORT_SYMBOL(raid5_set_cache_size);
6367
6368static ssize_t
fd01b88c 6369raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6370{
6791875e 6371 struct r5conf *conf;
c41d4ac4
N
6372 unsigned long new;
6373 int err;
6374
6375 if (len >= PAGE_SIZE)
6376 return -EINVAL;
b29bebd6 6377 if (kstrtoul(page, 10, &new))
c41d4ac4 6378 return -EINVAL;
6791875e 6379 err = mddev_lock(mddev);
c41d4ac4
N
6380 if (err)
6381 return err;
6791875e
N
6382 conf = mddev->private;
6383 if (!conf)
6384 err = -ENODEV;
6385 else
6386 err = raid5_set_cache_size(mddev, new);
6387 mddev_unlock(mddev);
6388
6389 return err ?: len;
3f294f4f 6390}
007583c9 6391
96de1e66
N
6392static struct md_sysfs_entry
6393raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6394 raid5_show_stripe_cache_size,
6395 raid5_store_stripe_cache_size);
3f294f4f 6396
d06f191f
MS
6397static ssize_t
6398raid5_show_rmw_level(struct mddev *mddev, char *page)
6399{
6400 struct r5conf *conf = mddev->private;
6401 if (conf)
6402 return sprintf(page, "%d\n", conf->rmw_level);
6403 else
6404 return 0;
6405}
6406
6407static ssize_t
6408raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6409{
6410 struct r5conf *conf = mddev->private;
6411 unsigned long new;
6412
6413 if (!conf)
6414 return -ENODEV;
6415
6416 if (len >= PAGE_SIZE)
6417 return -EINVAL;
6418
6419 if (kstrtoul(page, 10, &new))
6420 return -EINVAL;
6421
6422 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6423 return -EINVAL;
6424
6425 if (new != PARITY_DISABLE_RMW &&
6426 new != PARITY_ENABLE_RMW &&
6427 new != PARITY_PREFER_RMW)
6428 return -EINVAL;
6429
6430 conf->rmw_level = new;
6431 return len;
6432}
6433
6434static struct md_sysfs_entry
6435raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6436 raid5_show_rmw_level,
6437 raid5_store_rmw_level);
6438
6439
8b3e6cdc 6440static ssize_t
fd01b88c 6441raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6442{
7b1485ba
N
6443 struct r5conf *conf;
6444 int ret = 0;
6445 spin_lock(&mddev->lock);
6446 conf = mddev->private;
8b3e6cdc 6447 if (conf)
7b1485ba
N
6448 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6449 spin_unlock(&mddev->lock);
6450 return ret;
8b3e6cdc
DW
6451}
6452
6453static ssize_t
fd01b88c 6454raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6455{
6791875e 6456 struct r5conf *conf;
4ef197d8 6457 unsigned long new;
6791875e
N
6458 int err;
6459
8b3e6cdc
DW
6460 if (len >= PAGE_SIZE)
6461 return -EINVAL;
b29bebd6 6462 if (kstrtoul(page, 10, &new))
8b3e6cdc 6463 return -EINVAL;
6791875e
N
6464
6465 err = mddev_lock(mddev);
6466 if (err)
6467 return err;
6468 conf = mddev->private;
6469 if (!conf)
6470 err = -ENODEV;
edbe83ab 6471 else if (new > conf->min_nr_stripes)
6791875e
N
6472 err = -EINVAL;
6473 else
6474 conf->bypass_threshold = new;
6475 mddev_unlock(mddev);
6476 return err ?: len;
8b3e6cdc
DW
6477}
6478
6479static struct md_sysfs_entry
6480raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6481 S_IRUGO | S_IWUSR,
6482 raid5_show_preread_threshold,
6483 raid5_store_preread_threshold);
6484
d592a996
SL
6485static ssize_t
6486raid5_show_skip_copy(struct mddev *mddev, char *page)
6487{
7b1485ba
N
6488 struct r5conf *conf;
6489 int ret = 0;
6490 spin_lock(&mddev->lock);
6491 conf = mddev->private;
d592a996 6492 if (conf)
7b1485ba
N
6493 ret = sprintf(page, "%d\n", conf->skip_copy);
6494 spin_unlock(&mddev->lock);
6495 return ret;
d592a996
SL
6496}
6497
6498static ssize_t
6499raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6500{
6791875e 6501 struct r5conf *conf;
d592a996 6502 unsigned long new;
6791875e
N
6503 int err;
6504
d592a996
SL
6505 if (len >= PAGE_SIZE)
6506 return -EINVAL;
d592a996
SL
6507 if (kstrtoul(page, 10, &new))
6508 return -EINVAL;
6509 new = !!new;
6791875e
N
6510
6511 err = mddev_lock(mddev);
6512 if (err)
6513 return err;
6514 conf = mddev->private;
6515 if (!conf)
6516 err = -ENODEV;
6517 else if (new != conf->skip_copy) {
6518 mddev_suspend(mddev);
6519 conf->skip_copy = new;
6520 if (new)
dc3b17cc 6521 mddev->queue->backing_dev_info->capabilities |=
6791875e
N
6522 BDI_CAP_STABLE_WRITES;
6523 else
dc3b17cc 6524 mddev->queue->backing_dev_info->capabilities &=
6791875e
N
6525 ~BDI_CAP_STABLE_WRITES;
6526 mddev_resume(mddev);
6527 }
6528 mddev_unlock(mddev);
6529 return err ?: len;
d592a996
SL
6530}
6531
6532static struct md_sysfs_entry
6533raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6534 raid5_show_skip_copy,
6535 raid5_store_skip_copy);
6536
3f294f4f 6537static ssize_t
fd01b88c 6538stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6539{
d1688a6d 6540 struct r5conf *conf = mddev->private;
96de1e66
N
6541 if (conf)
6542 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6543 else
6544 return 0;
3f294f4f
N
6545}
6546
96de1e66
N
6547static struct md_sysfs_entry
6548raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6549
b721420e
SL
6550static ssize_t
6551raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6552{
7b1485ba
N
6553 struct r5conf *conf;
6554 int ret = 0;
6555 spin_lock(&mddev->lock);
6556 conf = mddev->private;
b721420e 6557 if (conf)
7b1485ba
N
6558 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6559 spin_unlock(&mddev->lock);
6560 return ret;
b721420e
SL
6561}
6562
60aaf933 6563static int alloc_thread_groups(struct r5conf *conf, int cnt,
6564 int *group_cnt,
6565 int *worker_cnt_per_group,
6566 struct r5worker_group **worker_groups);
b721420e
SL
6567static ssize_t
6568raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6569{
6791875e 6570 struct r5conf *conf;
b721420e
SL
6571 unsigned long new;
6572 int err;
60aaf933 6573 struct r5worker_group *new_groups, *old_groups;
6574 int group_cnt, worker_cnt_per_group;
b721420e
SL
6575
6576 if (len >= PAGE_SIZE)
6577 return -EINVAL;
b721420e
SL
6578 if (kstrtoul(page, 10, &new))
6579 return -EINVAL;
6580
6791875e
N
6581 err = mddev_lock(mddev);
6582 if (err)
6583 return err;
6584 conf = mddev->private;
6585 if (!conf)
6586 err = -ENODEV;
6587 else if (new != conf->worker_cnt_per_group) {
6588 mddev_suspend(mddev);
b721420e 6589
6791875e
N
6590 old_groups = conf->worker_groups;
6591 if (old_groups)
6592 flush_workqueue(raid5_wq);
d206dcfa 6593
6791875e
N
6594 err = alloc_thread_groups(conf, new,
6595 &group_cnt, &worker_cnt_per_group,
6596 &new_groups);
6597 if (!err) {
6598 spin_lock_irq(&conf->device_lock);
6599 conf->group_cnt = group_cnt;
6600 conf->worker_cnt_per_group = worker_cnt_per_group;
6601 conf->worker_groups = new_groups;
6602 spin_unlock_irq(&conf->device_lock);
b721420e 6603
6791875e
N
6604 if (old_groups)
6605 kfree(old_groups[0].workers);
6606 kfree(old_groups);
6607 }
6608 mddev_resume(mddev);
b721420e 6609 }
6791875e 6610 mddev_unlock(mddev);
b721420e 6611
6791875e 6612 return err ?: len;
b721420e
SL
6613}
6614
6615static struct md_sysfs_entry
6616raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6617 raid5_show_group_thread_cnt,
6618 raid5_store_group_thread_cnt);
6619
007583c9 6620static struct attribute *raid5_attrs[] = {
3f294f4f
N
6621 &raid5_stripecache_size.attr,
6622 &raid5_stripecache_active.attr,
8b3e6cdc 6623 &raid5_preread_bypass_threshold.attr,
b721420e 6624 &raid5_group_thread_cnt.attr,
d592a996 6625 &raid5_skip_copy.attr,
d06f191f 6626 &raid5_rmw_level.attr,
2c7da14b 6627 &r5c_journal_mode.attr,
3f294f4f
N
6628 NULL,
6629};
007583c9
N
6630static struct attribute_group raid5_attrs_group = {
6631 .name = NULL,
6632 .attrs = raid5_attrs,
3f294f4f
N
6633};
6634
60aaf933 6635static int alloc_thread_groups(struct r5conf *conf, int cnt,
6636 int *group_cnt,
6637 int *worker_cnt_per_group,
6638 struct r5worker_group **worker_groups)
851c30c9 6639{
566c09c5 6640 int i, j, k;
851c30c9
SL
6641 ssize_t size;
6642 struct r5worker *workers;
6643
60aaf933 6644 *worker_cnt_per_group = cnt;
851c30c9 6645 if (cnt == 0) {
60aaf933 6646 *group_cnt = 0;
6647 *worker_groups = NULL;
851c30c9
SL
6648 return 0;
6649 }
60aaf933 6650 *group_cnt = num_possible_nodes();
851c30c9 6651 size = sizeof(struct r5worker) * cnt;
60aaf933 6652 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6653 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6654 *group_cnt, GFP_NOIO);
6655 if (!*worker_groups || !workers) {
851c30c9 6656 kfree(workers);
60aaf933 6657 kfree(*worker_groups);
851c30c9
SL
6658 return -ENOMEM;
6659 }
6660
60aaf933 6661 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6662 struct r5worker_group *group;
6663
0c775d52 6664 group = &(*worker_groups)[i];
851c30c9 6665 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 6666 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
6667 group->conf = conf;
6668 group->workers = workers + i * cnt;
6669
6670 for (j = 0; j < cnt; j++) {
566c09c5
SL
6671 struct r5worker *worker = group->workers + j;
6672 worker->group = group;
6673 INIT_WORK(&worker->work, raid5_do_work);
6674
6675 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6676 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6677 }
6678 }
6679
6680 return 0;
6681}
6682
6683static void free_thread_groups(struct r5conf *conf)
6684{
6685 if (conf->worker_groups)
6686 kfree(conf->worker_groups[0].workers);
6687 kfree(conf->worker_groups);
6688 conf->worker_groups = NULL;
6689}
6690
80c3a6ce 6691static sector_t
fd01b88c 6692raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6693{
d1688a6d 6694 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6695
6696 if (!sectors)
6697 sectors = mddev->dev_sectors;
5e5e3e78 6698 if (!raid_disks)
7ec05478 6699 /* size is defined by the smallest of previous and new size */
5e5e3e78 6700 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6701
3cb5edf4
N
6702 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6703 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6704 return sectors * (raid_disks - conf->max_degraded);
6705}
6706
789b5e03
ON
6707static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6708{
6709 safe_put_page(percpu->spare_page);
46d5b785 6710 if (percpu->scribble)
6711 flex_array_free(percpu->scribble);
789b5e03
ON
6712 percpu->spare_page = NULL;
6713 percpu->scribble = NULL;
6714}
6715
6716static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6717{
6718 if (conf->level == 6 && !percpu->spare_page)
6719 percpu->spare_page = alloc_page(GFP_KERNEL);
6720 if (!percpu->scribble)
46d5b785 6721 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6722 conf->previous_raid_disks),
6723 max(conf->chunk_sectors,
6724 conf->prev_chunk_sectors)
6725 / STRIPE_SECTORS,
6726 GFP_KERNEL);
789b5e03
ON
6727
6728 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6729 free_scratch_buffer(conf, percpu);
6730 return -ENOMEM;
6731 }
6732
6733 return 0;
6734}
6735
29c6d1bb 6736static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 6737{
29c6d1bb
SAS
6738 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6739
6740 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6741 return 0;
6742}
36d1c647 6743
29c6d1bb
SAS
6744static void raid5_free_percpu(struct r5conf *conf)
6745{
36d1c647
DW
6746 if (!conf->percpu)
6747 return;
6748
29c6d1bb 6749 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
6750 free_percpu(conf->percpu);
6751}
6752
d1688a6d 6753static void free_conf(struct r5conf *conf)
95fc17aa 6754{
d7bd398e
SL
6755 int i;
6756
ff875738
AP
6757 log_exit(conf);
6758
30c89465 6759 if (conf->shrinker.nr_deferred)
edbe83ab 6760 unregister_shrinker(&conf->shrinker);
5c7e81c3 6761
851c30c9 6762 free_thread_groups(conf);
95fc17aa 6763 shrink_stripes(conf);
36d1c647 6764 raid5_free_percpu(conf);
d7bd398e
SL
6765 for (i = 0; i < conf->pool_size; i++)
6766 if (conf->disks[i].extra_page)
6767 put_page(conf->disks[i].extra_page);
95fc17aa
DW
6768 kfree(conf->disks);
6769 kfree(conf->stripe_hashtbl);
aaf9f12e 6770 kfree(conf->pending_data);
95fc17aa
DW
6771 kfree(conf);
6772}
6773
29c6d1bb 6774static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 6775{
29c6d1bb 6776 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
6777 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6778
29c6d1bb 6779 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
6780 pr_warn("%s: failed memory allocation for cpu%u\n",
6781 __func__, cpu);
29c6d1bb 6782 return -ENOMEM;
36d1c647 6783 }
29c6d1bb 6784 return 0;
36d1c647 6785}
36d1c647 6786
d1688a6d 6787static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 6788{
789b5e03 6789 int err = 0;
36d1c647 6790
789b5e03
ON
6791 conf->percpu = alloc_percpu(struct raid5_percpu);
6792 if (!conf->percpu)
36d1c647 6793 return -ENOMEM;
789b5e03 6794
29c6d1bb 6795 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
6796 if (!err) {
6797 conf->scribble_disks = max(conf->raid_disks,
6798 conf->previous_raid_disks);
6799 conf->scribble_sectors = max(conf->chunk_sectors,
6800 conf->prev_chunk_sectors);
6801 }
36d1c647
DW
6802 return err;
6803}
6804
edbe83ab
N
6805static unsigned long raid5_cache_scan(struct shrinker *shrink,
6806 struct shrink_control *sc)
6807{
6808 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6809 unsigned long ret = SHRINK_STOP;
6810
6811 if (mutex_trylock(&conf->cache_size_mutex)) {
6812 ret= 0;
49895bcc
N
6813 while (ret < sc->nr_to_scan &&
6814 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6815 if (drop_one_stripe(conf) == 0) {
6816 ret = SHRINK_STOP;
6817 break;
6818 }
6819 ret++;
6820 }
6821 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6822 }
6823 return ret;
6824}
6825
6826static unsigned long raid5_cache_count(struct shrinker *shrink,
6827 struct shrink_control *sc)
6828{
6829 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6830
6831 if (conf->max_nr_stripes < conf->min_nr_stripes)
6832 /* unlikely, but not impossible */
6833 return 0;
6834 return conf->max_nr_stripes - conf->min_nr_stripes;
6835}
6836
d1688a6d 6837static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6838{
d1688a6d 6839 struct r5conf *conf;
5e5e3e78 6840 int raid_disk, memory, max_disks;
3cb03002 6841 struct md_rdev *rdev;
1da177e4 6842 struct disk_info *disk;
0232605d 6843 char pers_name[6];
566c09c5 6844 int i;
60aaf933 6845 int group_cnt, worker_cnt_per_group;
6846 struct r5worker_group *new_group;
1da177e4 6847
91adb564
N
6848 if (mddev->new_level != 5
6849 && mddev->new_level != 4
6850 && mddev->new_level != 6) {
cc6167b4
N
6851 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6852 mdname(mddev), mddev->new_level);
91adb564 6853 return ERR_PTR(-EIO);
1da177e4 6854 }
91adb564
N
6855 if ((mddev->new_level == 5
6856 && !algorithm_valid_raid5(mddev->new_layout)) ||
6857 (mddev->new_level == 6
6858 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
6859 pr_warn("md/raid:%s: layout %d not supported\n",
6860 mdname(mddev), mddev->new_layout);
91adb564 6861 return ERR_PTR(-EIO);
99c0fb5f 6862 }
91adb564 6863 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
6864 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6865 mdname(mddev), mddev->raid_disks);
91adb564 6866 return ERR_PTR(-EINVAL);
4bbf3771
N
6867 }
6868
664e7c41
AN
6869 if (!mddev->new_chunk_sectors ||
6870 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6871 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
6872 pr_warn("md/raid:%s: invalid chunk size %d\n",
6873 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6874 return ERR_PTR(-EINVAL);
f6705578
N
6875 }
6876
d1688a6d 6877 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6878 if (conf == NULL)
1da177e4 6879 goto abort;
aaf9f12e
SL
6880 INIT_LIST_HEAD(&conf->free_list);
6881 INIT_LIST_HEAD(&conf->pending_list);
6882 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6883 PENDING_IO_MAX, GFP_KERNEL);
6884 if (!conf->pending_data)
6885 goto abort;
6886 for (i = 0; i < PENDING_IO_MAX; i++)
6887 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 6888 /* Don't enable multi-threading by default*/
60aaf933 6889 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6890 &new_group)) {
6891 conf->group_cnt = group_cnt;
6892 conf->worker_cnt_per_group = worker_cnt_per_group;
6893 conf->worker_groups = new_group;
6894 } else
851c30c9 6895 goto abort;
f5efd45a 6896 spin_lock_init(&conf->device_lock);
c46501b2 6897 seqcount_init(&conf->gen_lock);
2d5b569b 6898 mutex_init(&conf->cache_size_mutex);
b1b46486 6899 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6900 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6901 init_waitqueue_head(&conf->wait_for_overlap);
6902 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 6903 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
6904 INIT_LIST_HEAD(&conf->hold_list);
6905 INIT_LIST_HEAD(&conf->delayed_list);
6906 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6907 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6908 atomic_set(&conf->active_stripes, 0);
6909 atomic_set(&conf->preread_active_stripes, 0);
6910 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
6911 spin_lock_init(&conf->pending_bios_lock);
6912 conf->batch_bio_dispatch = true;
6913 rdev_for_each(rdev, mddev) {
6914 if (test_bit(Journal, &rdev->flags))
6915 continue;
6916 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6917 conf->batch_bio_dispatch = false;
6918 break;
6919 }
6920 }
6921
f5efd45a 6922 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6923 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6924
6925 conf->raid_disks = mddev->raid_disks;
6926 if (mddev->reshape_position == MaxSector)
6927 conf->previous_raid_disks = mddev->raid_disks;
6928 else
f6705578 6929 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6930 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6931
5e5e3e78 6932 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc 6933 GFP_KERNEL);
d7bd398e 6934
b55e6bfc
N
6935 if (!conf->disks)
6936 goto abort;
9ffae0cf 6937
d7bd398e
SL
6938 for (i = 0; i < max_disks; i++) {
6939 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6940 if (!conf->disks[i].extra_page)
6941 goto abort;
6942 }
6943
1da177e4
LT
6944 conf->mddev = mddev;
6945
fccddba0 6946 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6947 goto abort;
1da177e4 6948
566c09c5
SL
6949 /* We init hash_locks[0] separately to that it can be used
6950 * as the reference lock in the spin_lock_nest_lock() call
6951 * in lock_all_device_hash_locks_irq in order to convince
6952 * lockdep that we know what we are doing.
6953 */
6954 spin_lock_init(conf->hash_locks);
6955 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6956 spin_lock_init(conf->hash_locks + i);
6957
6958 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6959 INIT_LIST_HEAD(conf->inactive_list + i);
6960
6961 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6962 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6963
1e6d690b
SL
6964 atomic_set(&conf->r5c_cached_full_stripes, 0);
6965 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6966 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6967 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
6968 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6969 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 6970
36d1c647 6971 conf->level = mddev->new_level;
46d5b785 6972 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6973 if (raid5_alloc_percpu(conf) != 0)
6974 goto abort;
6975
0c55e022 6976 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6977
dafb20fa 6978 rdev_for_each(rdev, mddev) {
1da177e4 6979 raid_disk = rdev->raid_disk;
5e5e3e78 6980 if (raid_disk >= max_disks
f2076e7d 6981 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
6982 continue;
6983 disk = conf->disks + raid_disk;
6984
17045f52
N
6985 if (test_bit(Replacement, &rdev->flags)) {
6986 if (disk->replacement)
6987 goto abort;
6988 disk->replacement = rdev;
6989 } else {
6990 if (disk->rdev)
6991 goto abort;
6992 disk->rdev = rdev;
6993 }
1da177e4 6994
b2d444d7 6995 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6996 char b[BDEVNAME_SIZE];
cc6167b4
N
6997 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6998 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6999 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
7000 /* Cannot rely on bitmap to complete recovery */
7001 conf->fullsync = 1;
1da177e4
LT
7002 }
7003
91adb564 7004 conf->level = mddev->new_level;
584acdd4 7005 if (conf->level == 6) {
16a53ecc 7006 conf->max_degraded = 2;
584acdd4
MS
7007 if (raid6_call.xor_syndrome)
7008 conf->rmw_level = PARITY_ENABLE_RMW;
7009 else
7010 conf->rmw_level = PARITY_DISABLE_RMW;
7011 } else {
16a53ecc 7012 conf->max_degraded = 1;
584acdd4
MS
7013 conf->rmw_level = PARITY_ENABLE_RMW;
7014 }
91adb564 7015 conf->algorithm = mddev->new_layout;
fef9c61f 7016 conf->reshape_progress = mddev->reshape_position;
e183eaed 7017 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7018 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7019 conf->prev_algo = mddev->layout;
5cac6bcb
N
7020 } else {
7021 conf->prev_chunk_sectors = conf->chunk_sectors;
7022 conf->prev_algo = conf->algorithm;
e183eaed 7023 }
1da177e4 7024
edbe83ab 7025 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7026 if (mddev->reshape_position != MaxSector) {
7027 int stripes = max_t(int,
7028 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7029 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7030 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7031 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7032 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7033 mdname(mddev), conf->min_nr_stripes);
7034 }
edbe83ab 7035 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7036 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7037 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7038 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7039 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7040 mdname(mddev), memory);
91adb564
N
7041 goto abort;
7042 } else
cc6167b4 7043 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7044 /*
7045 * Losing a stripe head costs more than the time to refill it,
7046 * it reduces the queue depth and so can hurt throughput.
7047 * So set it rather large, scaled by number of devices.
7048 */
7049 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7050 conf->shrinker.scan_objects = raid5_cache_scan;
7051 conf->shrinker.count_objects = raid5_cache_count;
7052 conf->shrinker.batch = 128;
7053 conf->shrinker.flags = 0;
6a0f53ff 7054 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
7055 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7056 mdname(mddev));
6a0f53ff
CY
7057 goto abort;
7058 }
1da177e4 7059
0232605d
N
7060 sprintf(pers_name, "raid%d", mddev->new_level);
7061 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7062 if (!conf->thread) {
cc6167b4
N
7063 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7064 mdname(mddev));
16a53ecc
N
7065 goto abort;
7066 }
91adb564
N
7067
7068 return conf;
7069
7070 abort:
7071 if (conf) {
95fc17aa 7072 free_conf(conf);
91adb564
N
7073 return ERR_PTR(-EIO);
7074 } else
7075 return ERR_PTR(-ENOMEM);
7076}
7077
c148ffdc
N
7078static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7079{
7080 switch (algo) {
7081 case ALGORITHM_PARITY_0:
7082 if (raid_disk < max_degraded)
7083 return 1;
7084 break;
7085 case ALGORITHM_PARITY_N:
7086 if (raid_disk >= raid_disks - max_degraded)
7087 return 1;
7088 break;
7089 case ALGORITHM_PARITY_0_6:
f72ffdd6 7090 if (raid_disk == 0 ||
c148ffdc
N
7091 raid_disk == raid_disks - 1)
7092 return 1;
7093 break;
7094 case ALGORITHM_LEFT_ASYMMETRIC_6:
7095 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7096 case ALGORITHM_LEFT_SYMMETRIC_6:
7097 case ALGORITHM_RIGHT_SYMMETRIC_6:
7098 if (raid_disk == raid_disks - 1)
7099 return 1;
7100 }
7101 return 0;
7102}
7103
849674e4 7104static int raid5_run(struct mddev *mddev)
91adb564 7105{
d1688a6d 7106 struct r5conf *conf;
9f7c2220 7107 int working_disks = 0;
c148ffdc 7108 int dirty_parity_disks = 0;
3cb03002 7109 struct md_rdev *rdev;
713cf5a6 7110 struct md_rdev *journal_dev = NULL;
c148ffdc 7111 sector_t reshape_offset = 0;
17045f52 7112 int i;
b5254dd5
N
7113 long long min_offset_diff = 0;
7114 int first = 1;
91adb564 7115
8c6ac868 7116 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7117 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7118 mdname(mddev));
b5254dd5
N
7119
7120 rdev_for_each(rdev, mddev) {
7121 long long diff;
713cf5a6 7122
f2076e7d 7123 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7124 journal_dev = rdev;
f2076e7d
SL
7125 continue;
7126 }
b5254dd5
N
7127 if (rdev->raid_disk < 0)
7128 continue;
7129 diff = (rdev->new_data_offset - rdev->data_offset);
7130 if (first) {
7131 min_offset_diff = diff;
7132 first = 0;
7133 } else if (mddev->reshape_backwards &&
7134 diff < min_offset_diff)
7135 min_offset_diff = diff;
7136 else if (!mddev->reshape_backwards &&
7137 diff > min_offset_diff)
7138 min_offset_diff = diff;
7139 }
7140
91adb564
N
7141 if (mddev->reshape_position != MaxSector) {
7142 /* Check that we can continue the reshape.
b5254dd5
N
7143 * Difficulties arise if the stripe we would write to
7144 * next is at or after the stripe we would read from next.
7145 * For a reshape that changes the number of devices, this
7146 * is only possible for a very short time, and mdadm makes
7147 * sure that time appears to have past before assembling
7148 * the array. So we fail if that time hasn't passed.
7149 * For a reshape that keeps the number of devices the same
7150 * mdadm must be monitoring the reshape can keeping the
7151 * critical areas read-only and backed up. It will start
7152 * the array in read-only mode, so we check for that.
91adb564
N
7153 */
7154 sector_t here_new, here_old;
7155 int old_disks;
18b00334 7156 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7157 int chunk_sectors;
7158 int new_data_disks;
91adb564 7159
713cf5a6 7160 if (journal_dev) {
cc6167b4
N
7161 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7162 mdname(mddev));
713cf5a6
SL
7163 return -EINVAL;
7164 }
7165
88ce4930 7166 if (mddev->new_level != mddev->level) {
cc6167b4
N
7167 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7168 mdname(mddev));
91adb564
N
7169 return -EINVAL;
7170 }
91adb564
N
7171 old_disks = mddev->raid_disks - mddev->delta_disks;
7172 /* reshape_position must be on a new-stripe boundary, and one
7173 * further up in new geometry must map after here in old
7174 * geometry.
05256d98
N
7175 * If the chunk sizes are different, then as we perform reshape
7176 * in units of the largest of the two, reshape_position needs
7177 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7178 */
7179 here_new = mddev->reshape_position;
05256d98
N
7180 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7181 new_data_disks = mddev->raid_disks - max_degraded;
7182 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7183 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7184 mdname(mddev));
91adb564
N
7185 return -EINVAL;
7186 }
05256d98 7187 reshape_offset = here_new * chunk_sectors;
91adb564
N
7188 /* here_new is the stripe we will write to */
7189 here_old = mddev->reshape_position;
05256d98 7190 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7191 /* here_old is the first stripe that we might need to read
7192 * from */
67ac6011
N
7193 if (mddev->delta_disks == 0) {
7194 /* We cannot be sure it is safe to start an in-place
b5254dd5 7195 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7196 * and taking constant backups.
7197 * mdadm always starts a situation like this in
7198 * readonly mode so it can take control before
7199 * allowing any writes. So just check for that.
7200 */
b5254dd5
N
7201 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7202 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7203 /* not really in-place - so OK */;
7204 else if (mddev->ro == 0) {
cc6167b4
N
7205 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7206 mdname(mddev));
67ac6011
N
7207 return -EINVAL;
7208 }
2c810cdd 7209 } else if (mddev->reshape_backwards
05256d98
N
7210 ? (here_new * chunk_sectors + min_offset_diff <=
7211 here_old * chunk_sectors)
7212 : (here_new * chunk_sectors >=
7213 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7214 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7215 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7216 mdname(mddev));
91adb564
N
7217 return -EINVAL;
7218 }
cc6167b4 7219 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7220 /* OK, we should be able to continue; */
7221 } else {
7222 BUG_ON(mddev->level != mddev->new_level);
7223 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7224 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7225 BUG_ON(mddev->delta_disks != 0);
1da177e4 7226 }
91adb564 7227
3418d036
AP
7228 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7229 test_bit(MD_HAS_PPL, &mddev->flags)) {
7230 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7231 mdname(mddev));
7232 clear_bit(MD_HAS_PPL, &mddev->flags);
7233 }
7234
245f46c2
N
7235 if (mddev->private == NULL)
7236 conf = setup_conf(mddev);
7237 else
7238 conf = mddev->private;
7239
91adb564
N
7240 if (IS_ERR(conf))
7241 return PTR_ERR(conf);
7242
486b0f7b
SL
7243 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7244 if (!journal_dev) {
cc6167b4
N
7245 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7246 mdname(mddev));
486b0f7b
SL
7247 mddev->ro = 1;
7248 set_disk_ro(mddev->gendisk, 1);
7249 } else if (mddev->recovery_cp == MaxSector)
7250 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7251 }
7252
b5254dd5 7253 conf->min_offset_diff = min_offset_diff;
91adb564
N
7254 mddev->thread = conf->thread;
7255 conf->thread = NULL;
7256 mddev->private = conf;
7257
17045f52
N
7258 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7259 i++) {
7260 rdev = conf->disks[i].rdev;
7261 if (!rdev && conf->disks[i].replacement) {
7262 /* The replacement is all we have yet */
7263 rdev = conf->disks[i].replacement;
7264 conf->disks[i].replacement = NULL;
7265 clear_bit(Replacement, &rdev->flags);
7266 conf->disks[i].rdev = rdev;
7267 }
7268 if (!rdev)
c148ffdc 7269 continue;
17045f52
N
7270 if (conf->disks[i].replacement &&
7271 conf->reshape_progress != MaxSector) {
7272 /* replacements and reshape simply do not mix. */
cc6167b4 7273 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7274 goto abort;
7275 }
2f115882 7276 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7277 working_disks++;
2f115882
N
7278 continue;
7279 }
c148ffdc
N
7280 /* This disc is not fully in-sync. However if it
7281 * just stored parity (beyond the recovery_offset),
7282 * when we don't need to be concerned about the
7283 * array being dirty.
7284 * When reshape goes 'backwards', we never have
7285 * partially completed devices, so we only need
7286 * to worry about reshape going forwards.
7287 */
7288 /* Hack because v0.91 doesn't store recovery_offset properly. */
7289 if (mddev->major_version == 0 &&
7290 mddev->minor_version > 90)
7291 rdev->recovery_offset = reshape_offset;
5026d7a9 7292
c148ffdc
N
7293 if (rdev->recovery_offset < reshape_offset) {
7294 /* We need to check old and new layout */
7295 if (!only_parity(rdev->raid_disk,
7296 conf->algorithm,
7297 conf->raid_disks,
7298 conf->max_degraded))
7299 continue;
7300 }
7301 if (!only_parity(rdev->raid_disk,
7302 conf->prev_algo,
7303 conf->previous_raid_disks,
7304 conf->max_degraded))
7305 continue;
7306 dirty_parity_disks++;
7307 }
91adb564 7308
17045f52
N
7309 /*
7310 * 0 for a fully functional array, 1 or 2 for a degraded array.
7311 */
2e38a37f 7312 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7313
674806d6 7314 if (has_failed(conf)) {
cc6167b4 7315 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7316 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7317 goto abort;
7318 }
7319
91adb564 7320 /* device size must be a multiple of chunk size */
9d8f0363 7321 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
7322 mddev->resync_max_sectors = mddev->dev_sectors;
7323
c148ffdc 7324 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7325 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7326 if (test_bit(MD_HAS_PPL, &mddev->flags))
7327 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7328 mdname(mddev));
7329 else if (mddev->ok_start_degraded)
cc6167b4
N
7330 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7331 mdname(mddev));
6ff8d8ec 7332 else {
cc6167b4
N
7333 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7334 mdname(mddev));
6ff8d8ec
N
7335 goto abort;
7336 }
1da177e4
LT
7337 }
7338
cc6167b4
N
7339 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7340 mdname(mddev), conf->level,
7341 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7342 mddev->new_layout);
1da177e4
LT
7343
7344 print_raid5_conf(conf);
7345
fef9c61f 7346 if (conf->reshape_progress != MaxSector) {
fef9c61f 7347 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7348 atomic_set(&conf->reshape_stripes, 0);
7349 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7350 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7351 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7352 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7353 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7354 "reshape");
f6705578
N
7355 }
7356
1da177e4 7357 /* Ok, everything is just fine now */
a64c876f
N
7358 if (mddev->to_remove == &raid5_attrs_group)
7359 mddev->to_remove = NULL;
00bcb4ac
N
7360 else if (mddev->kobj.sd &&
7361 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7362 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7363 mdname(mddev));
4a5add49 7364 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7365
4a5add49 7366 if (mddev->queue) {
9f7c2220 7367 int chunk_size;
620125f2 7368 bool discard_supported = true;
4a5add49
N
7369 /* read-ahead size must cover two whole stripes, which
7370 * is 2 * (datadisks) * chunksize where 'n' is the
7371 * number of raid devices
7372 */
7373 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7374 int stripe = data_disks *
7375 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
dc3b17cc
JK
7376 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7377 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
91adb564 7378
9f7c2220
N
7379 chunk_size = mddev->chunk_sectors << 9;
7380 blk_queue_io_min(mddev->queue, chunk_size);
7381 blk_queue_io_opt(mddev->queue, chunk_size *
7382 (conf->raid_disks - conf->max_degraded));
c78afc62 7383 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7384 /*
7385 * We can only discard a whole stripe. It doesn't make sense to
7386 * discard data disk but write parity disk
7387 */
7388 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7389 /* Round up to power of 2, as discard handling
7390 * currently assumes that */
7391 while ((stripe-1) & stripe)
7392 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7393 mddev->queue->limits.discard_alignment = stripe;
7394 mddev->queue->limits.discard_granularity = stripe;
e8d7c332
KK
7395
7396 /*
7397 * We use 16-bit counter of active stripes in bi_phys_segments
7398 * (minus one for over-loaded initialization)
7399 */
7400 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7401 blk_queue_max_discard_sectors(mddev->queue,
7402 0xfffe * STRIPE_SECTORS);
7403
620125f2
SL
7404 /*
7405 * unaligned part of discard request will be ignored, so can't
8e0e99ba 7406 * guarantee discard_zeroes_data
620125f2
SL
7407 */
7408 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 7409
5026d7a9
PA
7410 blk_queue_max_write_same_sectors(mddev->queue, 0);
7411
05616be5 7412 rdev_for_each(rdev, mddev) {
9f7c2220
N
7413 disk_stack_limits(mddev->gendisk, rdev->bdev,
7414 rdev->data_offset << 9);
05616be5
N
7415 disk_stack_limits(mddev->gendisk, rdev->bdev,
7416 rdev->new_data_offset << 9);
620125f2
SL
7417 /*
7418 * discard_zeroes_data is required, otherwise data
7419 * could be lost. Consider a scenario: discard a stripe
7420 * (the stripe could be inconsistent if
7421 * discard_zeroes_data is 0); write one disk of the
7422 * stripe (the stripe could be inconsistent again
7423 * depending on which disks are used to calculate
7424 * parity); the disk is broken; The stripe data of this
7425 * disk is lost.
7426 */
7427 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7428 !bdev_get_queue(rdev->bdev)->
7429 limits.discard_zeroes_data)
7430 discard_supported = false;
8e0e99ba
N
7431 /* Unfortunately, discard_zeroes_data is not currently
7432 * a guarantee - just a hint. So we only allow DISCARD
7433 * if the sysadmin has confirmed that only safe devices
7434 * are in use by setting a module parameter.
7435 */
7436 if (!devices_handle_discard_safely) {
7437 if (discard_supported) {
7438 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7439 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7440 }
7441 discard_supported = false;
7442 }
05616be5 7443 }
620125f2
SL
7444
7445 if (discard_supported &&
e7597e69
JS
7446 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7447 mddev->queue->limits.discard_granularity >= stripe)
620125f2
SL
7448 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7449 mddev->queue);
7450 else
7451 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7452 mddev->queue);
1dffdddd
SL
7453
7454 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7455 }
23032a0e 7456
ff875738
AP
7457 if (log_init(conf, journal_dev))
7458 goto abort;
5c7e81c3 7459
1da177e4
LT
7460 return 0;
7461abort:
01f96c0a 7462 md_unregister_thread(&mddev->thread);
e4f869d9
N
7463 print_raid5_conf(conf);
7464 free_conf(conf);
1da177e4 7465 mddev->private = NULL;
cc6167b4 7466 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7467 return -EIO;
7468}
7469
afa0f557 7470static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7471{
afa0f557 7472 struct r5conf *conf = priv;
1da177e4 7473
95fc17aa 7474 free_conf(conf);
a64c876f 7475 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7476}
7477
849674e4 7478static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7479{
d1688a6d 7480 struct r5conf *conf = mddev->private;
1da177e4
LT
7481 int i;
7482
9d8f0363 7483 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7484 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7485 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7486 rcu_read_lock();
7487 for (i = 0; i < conf->raid_disks; i++) {
7488 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7489 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7490 }
7491 rcu_read_unlock();
1da177e4 7492 seq_printf (seq, "]");
1da177e4
LT
7493}
7494
d1688a6d 7495static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7496{
7497 int i;
7498 struct disk_info *tmp;
7499
cc6167b4 7500 pr_debug("RAID conf printout:\n");
1da177e4 7501 if (!conf) {
cc6167b4 7502 pr_debug("(conf==NULL)\n");
1da177e4
LT
7503 return;
7504 }
cc6167b4 7505 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7506 conf->raid_disks,
7507 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7508
7509 for (i = 0; i < conf->raid_disks; i++) {
7510 char b[BDEVNAME_SIZE];
7511 tmp = conf->disks + i;
7512 if (tmp->rdev)
cc6167b4 7513 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7514 i, !test_bit(Faulty, &tmp->rdev->flags),
7515 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7516 }
7517}
7518
fd01b88c 7519static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7520{
7521 int i;
d1688a6d 7522 struct r5conf *conf = mddev->private;
1da177e4 7523 struct disk_info *tmp;
6b965620
N
7524 int count = 0;
7525 unsigned long flags;
1da177e4
LT
7526
7527 for (i = 0; i < conf->raid_disks; i++) {
7528 tmp = conf->disks + i;
dd054fce
N
7529 if (tmp->replacement
7530 && tmp->replacement->recovery_offset == MaxSector
7531 && !test_bit(Faulty, &tmp->replacement->flags)
7532 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7533 /* Replacement has just become active. */
7534 if (!tmp->rdev
7535 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7536 count++;
7537 if (tmp->rdev) {
7538 /* Replaced device not technically faulty,
7539 * but we need to be sure it gets removed
7540 * and never re-added.
7541 */
7542 set_bit(Faulty, &tmp->rdev->flags);
7543 sysfs_notify_dirent_safe(
7544 tmp->rdev->sysfs_state);
7545 }
7546 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7547 } else if (tmp->rdev
70fffd0b 7548 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7549 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7550 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7551 count++;
43c73ca4 7552 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7553 }
7554 }
6b965620 7555 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7556 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7557 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7558 print_raid5_conf(conf);
6b965620 7559 return count;
1da177e4
LT
7560}
7561
b8321b68 7562static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7563{
d1688a6d 7564 struct r5conf *conf = mddev->private;
1da177e4 7565 int err = 0;
b8321b68 7566 int number = rdev->raid_disk;
657e3e4d 7567 struct md_rdev **rdevp;
1da177e4
LT
7568 struct disk_info *p = conf->disks + number;
7569
7570 print_raid5_conf(conf);
f6b6ec5c 7571 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 7572 /*
f6b6ec5c
SL
7573 * we can't wait pending write here, as this is called in
7574 * raid5d, wait will deadlock.
c2bb6242 7575 */
f6b6ec5c
SL
7576 if (atomic_read(&mddev->writes_pending))
7577 return -EBUSY;
ff875738 7578 log_exit(conf);
f6b6ec5c 7579 return 0;
c2bb6242 7580 }
657e3e4d
N
7581 if (rdev == p->rdev)
7582 rdevp = &p->rdev;
7583 else if (rdev == p->replacement)
7584 rdevp = &p->replacement;
7585 else
7586 return 0;
7587
7588 if (number >= conf->raid_disks &&
7589 conf->reshape_progress == MaxSector)
7590 clear_bit(In_sync, &rdev->flags);
7591
7592 if (test_bit(In_sync, &rdev->flags) ||
7593 atomic_read(&rdev->nr_pending)) {
7594 err = -EBUSY;
7595 goto abort;
7596 }
7597 /* Only remove non-faulty devices if recovery
7598 * isn't possible.
7599 */
7600 if (!test_bit(Faulty, &rdev->flags) &&
7601 mddev->recovery_disabled != conf->recovery_disabled &&
7602 !has_failed(conf) &&
dd054fce 7603 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7604 number < conf->raid_disks) {
7605 err = -EBUSY;
7606 goto abort;
7607 }
7608 *rdevp = NULL;
d787be40
N
7609 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7610 synchronize_rcu();
7611 if (atomic_read(&rdev->nr_pending)) {
7612 /* lost the race, try later */
7613 err = -EBUSY;
7614 *rdevp = rdev;
7615 }
7616 }
6358c239
AP
7617 if (!err) {
7618 err = log_modify(conf, rdev, false);
7619 if (err)
7620 goto abort;
7621 }
d787be40 7622 if (p->replacement) {
dd054fce
N
7623 /* We must have just cleared 'rdev' */
7624 p->rdev = p->replacement;
7625 clear_bit(Replacement, &p->replacement->flags);
7626 smp_mb(); /* Make sure other CPUs may see both as identical
7627 * but will never see neither - if they are careful
7628 */
7629 p->replacement = NULL;
7630 clear_bit(WantReplacement, &rdev->flags);
6358c239
AP
7631
7632 if (!err)
7633 err = log_modify(conf, p->rdev, true);
dd054fce
N
7634 } else
7635 /* We might have just removed the Replacement as faulty-
7636 * clear the bit just in case
7637 */
7638 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7639abort:
7640
7641 print_raid5_conf(conf);
7642 return err;
7643}
7644
fd01b88c 7645static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7646{
d1688a6d 7647 struct r5conf *conf = mddev->private;
199050ea 7648 int err = -EEXIST;
1da177e4
LT
7649 int disk;
7650 struct disk_info *p;
6c2fce2e
NB
7651 int first = 0;
7652 int last = conf->raid_disks - 1;
1da177e4 7653
f6b6ec5c 7654 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
7655 if (conf->log)
7656 return -EBUSY;
7657
7658 rdev->raid_disk = 0;
7659 /*
7660 * The array is in readonly mode if journal is missing, so no
7661 * write requests running. We should be safe
7662 */
ff875738 7663 log_init(conf, rdev);
f6b6ec5c
SL
7664 return 0;
7665 }
7f0da59b
N
7666 if (mddev->recovery_disabled == conf->recovery_disabled)
7667 return -EBUSY;
7668
dc10c643 7669 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7670 /* no point adding a device */
199050ea 7671 return -EINVAL;
1da177e4 7672
6c2fce2e
NB
7673 if (rdev->raid_disk >= 0)
7674 first = last = rdev->raid_disk;
1da177e4
LT
7675
7676 /*
16a53ecc
N
7677 * find the disk ... but prefer rdev->saved_raid_disk
7678 * if possible.
1da177e4 7679 */
16a53ecc 7680 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7681 rdev->saved_raid_disk >= first &&
16a53ecc 7682 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7683 first = rdev->saved_raid_disk;
7684
7685 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7686 p = conf->disks + disk;
7687 if (p->rdev == NULL) {
b2d444d7 7688 clear_bit(In_sync, &rdev->flags);
1da177e4 7689 rdev->raid_disk = disk;
72626685
N
7690 if (rdev->saved_raid_disk != disk)
7691 conf->fullsync = 1;
d6065f7b 7692 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
7693
7694 err = log_modify(conf, rdev, true);
7695
5cfb22a1 7696 goto out;
1da177e4 7697 }
5cfb22a1
N
7698 }
7699 for (disk = first; disk <= last; disk++) {
7700 p = conf->disks + disk;
7bfec5f3
N
7701 if (test_bit(WantReplacement, &p->rdev->flags) &&
7702 p->replacement == NULL) {
7703 clear_bit(In_sync, &rdev->flags);
7704 set_bit(Replacement, &rdev->flags);
7705 rdev->raid_disk = disk;
7706 err = 0;
7707 conf->fullsync = 1;
7708 rcu_assign_pointer(p->replacement, rdev);
7709 break;
7710 }
7711 }
5cfb22a1 7712out:
1da177e4 7713 print_raid5_conf(conf);
199050ea 7714 return err;
1da177e4
LT
7715}
7716
fd01b88c 7717static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7718{
7719 /* no resync is happening, and there is enough space
7720 * on all devices, so we can resize.
7721 * We need to make sure resync covers any new space.
7722 * If the array is shrinking we should possibly wait until
7723 * any io in the removed space completes, but it hardly seems
7724 * worth it.
7725 */
a4a6125a 7726 sector_t newsize;
3cb5edf4
N
7727 struct r5conf *conf = mddev->private;
7728
3418d036 7729 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7730 return -EINVAL;
3cb5edf4 7731 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7732 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7733 if (mddev->external_size &&
7734 mddev->array_sectors > newsize)
b522adcd 7735 return -EINVAL;
a4a6125a
N
7736 if (mddev->bitmap) {
7737 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7738 if (ret)
7739 return ret;
7740 }
7741 md_set_array_sectors(mddev, newsize);
b098636c
N
7742 if (sectors > mddev->dev_sectors &&
7743 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7744 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7745 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7746 }
58c0fed4 7747 mddev->dev_sectors = sectors;
4b5c7ae8 7748 mddev->resync_max_sectors = sectors;
1da177e4
LT
7749 return 0;
7750}
7751
fd01b88c 7752static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7753{
7754 /* Can only proceed if there are plenty of stripe_heads.
7755 * We need a minimum of one full stripe,, and for sensible progress
7756 * it is best to have about 4 times that.
7757 * If we require 4 times, then the default 256 4K stripe_heads will
7758 * allow for chunk sizes up to 256K, which is probably OK.
7759 * If the chunk size is greater, user-space should request more
7760 * stripe_heads first.
7761 */
d1688a6d 7762 struct r5conf *conf = mddev->private;
01ee22b4 7763 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7764 > conf->min_nr_stripes ||
01ee22b4 7765 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7766 > conf->min_nr_stripes) {
cc6167b4
N
7767 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7768 mdname(mddev),
7769 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7770 / STRIPE_SIZE)*4);
01ee22b4
N
7771 return 0;
7772 }
7773 return 1;
7774}
7775
fd01b88c 7776static int check_reshape(struct mddev *mddev)
29269553 7777{
d1688a6d 7778 struct r5conf *conf = mddev->private;
29269553 7779
3418d036 7780 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7781 return -EINVAL;
88ce4930
N
7782 if (mddev->delta_disks == 0 &&
7783 mddev->new_layout == mddev->layout &&
664e7c41 7784 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7785 return 0; /* nothing to do */
674806d6 7786 if (has_failed(conf))
ec32a2bd 7787 return -EINVAL;
fdcfbbb6 7788 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7789 /* We might be able to shrink, but the devices must
7790 * be made bigger first.
7791 * For raid6, 4 is the minimum size.
7792 * Otherwise 2 is the minimum
7793 */
7794 int min = 2;
7795 if (mddev->level == 6)
7796 min = 4;
7797 if (mddev->raid_disks + mddev->delta_disks < min)
7798 return -EINVAL;
7799 }
29269553 7800
01ee22b4 7801 if (!check_stripe_cache(mddev))
29269553 7802 return -ENOSPC;
29269553 7803
738a2738
N
7804 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7805 mddev->delta_disks > 0)
7806 if (resize_chunks(conf,
7807 conf->previous_raid_disks
7808 + max(0, mddev->delta_disks),
7809 max(mddev->new_chunk_sectors,
7810 mddev->chunk_sectors)
7811 ) < 0)
7812 return -ENOMEM;
e56108d6
N
7813 return resize_stripes(conf, (conf->previous_raid_disks
7814 + mddev->delta_disks));
63c70c4f
N
7815}
7816
fd01b88c 7817static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7818{
d1688a6d 7819 struct r5conf *conf = mddev->private;
3cb03002 7820 struct md_rdev *rdev;
63c70c4f 7821 int spares = 0;
c04be0aa 7822 unsigned long flags;
63c70c4f 7823
f416885e 7824 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7825 return -EBUSY;
7826
01ee22b4
N
7827 if (!check_stripe_cache(mddev))
7828 return -ENOSPC;
7829
30b67645
N
7830 if (has_failed(conf))
7831 return -EINVAL;
7832
c6563a8c 7833 rdev_for_each(rdev, mddev) {
469518a3
N
7834 if (!test_bit(In_sync, &rdev->flags)
7835 && !test_bit(Faulty, &rdev->flags))
29269553 7836 spares++;
c6563a8c 7837 }
63c70c4f 7838
f416885e 7839 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7840 /* Not enough devices even to make a degraded array
7841 * of that size
7842 */
7843 return -EINVAL;
7844
ec32a2bd
N
7845 /* Refuse to reduce size of the array. Any reductions in
7846 * array size must be through explicit setting of array_size
7847 * attribute.
7848 */
7849 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7850 < mddev->array_sectors) {
cc6167b4
N
7851 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7852 mdname(mddev));
ec32a2bd
N
7853 return -EINVAL;
7854 }
7855
f6705578 7856 atomic_set(&conf->reshape_stripes, 0);
29269553 7857 spin_lock_irq(&conf->device_lock);
c46501b2 7858 write_seqcount_begin(&conf->gen_lock);
29269553 7859 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7860 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7861 conf->prev_chunk_sectors = conf->chunk_sectors;
7862 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7863 conf->prev_algo = conf->algorithm;
7864 conf->algorithm = mddev->new_layout;
05616be5
N
7865 conf->generation++;
7866 /* Code that selects data_offset needs to see the generation update
7867 * if reshape_progress has been set - so a memory barrier needed.
7868 */
7869 smp_mb();
2c810cdd 7870 if (mddev->reshape_backwards)
fef9c61f
N
7871 conf->reshape_progress = raid5_size(mddev, 0, 0);
7872 else
7873 conf->reshape_progress = 0;
7874 conf->reshape_safe = conf->reshape_progress;
c46501b2 7875 write_seqcount_end(&conf->gen_lock);
29269553
N
7876 spin_unlock_irq(&conf->device_lock);
7877
4d77e3ba
N
7878 /* Now make sure any requests that proceeded on the assumption
7879 * the reshape wasn't running - like Discard or Read - have
7880 * completed.
7881 */
7882 mddev_suspend(mddev);
7883 mddev_resume(mddev);
7884
29269553
N
7885 /* Add some new drives, as many as will fit.
7886 * We know there are enough to make the newly sized array work.
3424bf6a
N
7887 * Don't add devices if we are reducing the number of
7888 * devices in the array. This is because it is not possible
7889 * to correctly record the "partially reconstructed" state of
7890 * such devices during the reshape and confusion could result.
29269553 7891 */
87a8dec9 7892 if (mddev->delta_disks >= 0) {
dafb20fa 7893 rdev_for_each(rdev, mddev)
87a8dec9
N
7894 if (rdev->raid_disk < 0 &&
7895 !test_bit(Faulty, &rdev->flags)) {
7896 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7897 if (rdev->raid_disk
9d4c7d87 7898 >= conf->previous_raid_disks)
87a8dec9 7899 set_bit(In_sync, &rdev->flags);
9d4c7d87 7900 else
87a8dec9 7901 rdev->recovery_offset = 0;
36fad858
NK
7902
7903 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7904 /* Failure here is OK */;
50da0840 7905 }
87a8dec9
N
7906 } else if (rdev->raid_disk >= conf->previous_raid_disks
7907 && !test_bit(Faulty, &rdev->flags)) {
7908 /* This is a spare that was manually added */
7909 set_bit(In_sync, &rdev->flags);
87a8dec9 7910 }
29269553 7911
87a8dec9
N
7912 /* When a reshape changes the number of devices,
7913 * ->degraded is measured against the larger of the
7914 * pre and post number of devices.
7915 */
ec32a2bd 7916 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7917 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
7918 spin_unlock_irqrestore(&conf->device_lock, flags);
7919 }
63c70c4f 7920 mddev->raid_disks = conf->raid_disks;
e516402c 7921 mddev->reshape_position = conf->reshape_progress;
2953079c 7922 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 7923
29269553
N
7924 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7925 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7926 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7927 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7928 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7929 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7930 "reshape");
29269553
N
7931 if (!mddev->sync_thread) {
7932 mddev->recovery = 0;
7933 spin_lock_irq(&conf->device_lock);
ba8805b9 7934 write_seqcount_begin(&conf->gen_lock);
29269553 7935 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7936 mddev->new_chunk_sectors =
7937 conf->chunk_sectors = conf->prev_chunk_sectors;
7938 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7939 rdev_for_each(rdev, mddev)
7940 rdev->new_data_offset = rdev->data_offset;
7941 smp_wmb();
ba8805b9 7942 conf->generation --;
fef9c61f 7943 conf->reshape_progress = MaxSector;
1e3fa9bd 7944 mddev->reshape_position = MaxSector;
ba8805b9 7945 write_seqcount_end(&conf->gen_lock);
29269553
N
7946 spin_unlock_irq(&conf->device_lock);
7947 return -EAGAIN;
7948 }
c8f517c4 7949 conf->reshape_checkpoint = jiffies;
29269553
N
7950 md_wakeup_thread(mddev->sync_thread);
7951 md_new_event(mddev);
7952 return 0;
7953}
29269553 7954
ec32a2bd
N
7955/* This is called from the reshape thread and should make any
7956 * changes needed in 'conf'
7957 */
d1688a6d 7958static void end_reshape(struct r5conf *conf)
29269553 7959{
29269553 7960
f6705578 7961 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7962 struct md_rdev *rdev;
f6705578 7963
f6705578 7964 spin_lock_irq(&conf->device_lock);
cea9c228 7965 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7966 rdev_for_each(rdev, conf->mddev)
7967 rdev->data_offset = rdev->new_data_offset;
7968 smp_wmb();
fef9c61f 7969 conf->reshape_progress = MaxSector;
6cbd8148 7970 conf->mddev->reshape_position = MaxSector;
f6705578 7971 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7972 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7973
7974 /* read-ahead size must cover two whole stripes, which is
7975 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7976 */
4a5add49 7977 if (conf->mddev->queue) {
cea9c228 7978 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7979 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7980 / PAGE_SIZE);
dc3b17cc
JK
7981 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7982 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
16a53ecc 7983 }
29269553 7984 }
29269553
N
7985}
7986
ec32a2bd
N
7987/* This is called from the raid5d thread with mddev_lock held.
7988 * It makes config changes to the device.
7989 */
fd01b88c 7990static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7991{
d1688a6d 7992 struct r5conf *conf = mddev->private;
cea9c228
N
7993
7994 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7995
ec32a2bd
N
7996 if (mddev->delta_disks > 0) {
7997 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
fe67d19a
HM
7998 if (mddev->queue) {
7999 set_capacity(mddev->gendisk, mddev->array_sectors);
8000 revalidate_disk(mddev->gendisk);
8001 }
ec32a2bd
N
8002 } else {
8003 int d;
908f4fbd 8004 spin_lock_irq(&conf->device_lock);
2e38a37f 8005 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 8006 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
8007 for (d = conf->raid_disks ;
8008 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 8009 d++) {
3cb03002 8010 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
8011 if (rdev)
8012 clear_bit(In_sync, &rdev->flags);
8013 rdev = conf->disks[d].replacement;
8014 if (rdev)
8015 clear_bit(In_sync, &rdev->flags);
1a67dde0 8016 }
cea9c228 8017 }
88ce4930 8018 mddev->layout = conf->algorithm;
09c9e5fa 8019 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
8020 mddev->reshape_position = MaxSector;
8021 mddev->delta_disks = 0;
2c810cdd 8022 mddev->reshape_backwards = 0;
cea9c228
N
8023 }
8024}
8025
fd01b88c 8026static void raid5_quiesce(struct mddev *mddev, int state)
72626685 8027{
d1688a6d 8028 struct r5conf *conf = mddev->private;
72626685
N
8029
8030 switch(state) {
e464eafd
N
8031 case 2: /* resume for a suspend */
8032 wake_up(&conf->wait_for_overlap);
8033 break;
8034
72626685 8035 case 1: /* stop all writes */
566c09c5 8036 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8037 /* '2' tells resync/reshape to pause so that all
8038 * active stripes can drain
8039 */
a39f7afd 8040 r5c_flush_cache(conf, INT_MAX);
64bd660b 8041 conf->quiesce = 2;
b1b46486 8042 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8043 atomic_read(&conf->active_stripes) == 0 &&
8044 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8045 unlock_all_device_hash_locks_irq(conf),
8046 lock_all_device_hash_locks_irq(conf));
64bd660b 8047 conf->quiesce = 1;
566c09c5 8048 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
8049 /* allow reshape to continue */
8050 wake_up(&conf->wait_for_overlap);
72626685
N
8051 break;
8052
8053 case 0: /* re-enable writes */
566c09c5 8054 lock_all_device_hash_locks_irq(conf);
72626685 8055 conf->quiesce = 0;
b1b46486 8056 wake_up(&conf->wait_for_quiescent);
e464eafd 8057 wake_up(&conf->wait_for_overlap);
566c09c5 8058 unlock_all_device_hash_locks_irq(conf);
72626685
N
8059 break;
8060 }
e6c033f7 8061 r5l_quiesce(conf->log, state);
72626685 8062}
b15c2e57 8063
fd01b88c 8064static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8065{
e373ab10 8066 struct r0conf *raid0_conf = mddev->private;
d76c8420 8067 sector_t sectors;
54071b38 8068
f1b29bca 8069 /* for raid0 takeover only one zone is supported */
e373ab10 8070 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8071 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8072 mdname(mddev));
f1b29bca
DW
8073 return ERR_PTR(-EINVAL);
8074 }
8075
e373ab10
N
8076 sectors = raid0_conf->strip_zone[0].zone_end;
8077 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8078 mddev->dev_sectors = sectors;
f1b29bca 8079 mddev->new_level = level;
54071b38
TM
8080 mddev->new_layout = ALGORITHM_PARITY_N;
8081 mddev->new_chunk_sectors = mddev->chunk_sectors;
8082 mddev->raid_disks += 1;
8083 mddev->delta_disks = 1;
8084 /* make sure it will be not marked as dirty */
8085 mddev->recovery_cp = MaxSector;
8086
8087 return setup_conf(mddev);
8088}
8089
fd01b88c 8090static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8091{
8092 int chunksect;
6995f0b2 8093 void *ret;
d562b0c4
N
8094
8095 if (mddev->raid_disks != 2 ||
8096 mddev->degraded > 1)
8097 return ERR_PTR(-EINVAL);
8098
8099 /* Should check if there are write-behind devices? */
8100
8101 chunksect = 64*2; /* 64K by default */
8102
8103 /* The array must be an exact multiple of chunksize */
8104 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8105 chunksect >>= 1;
8106
8107 if ((chunksect<<9) < STRIPE_SIZE)
8108 /* array size does not allow a suitable chunk size */
8109 return ERR_PTR(-EINVAL);
8110
8111 mddev->new_level = 5;
8112 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8113 mddev->new_chunk_sectors = chunksect;
d562b0c4 8114
6995f0b2 8115 ret = setup_conf(mddev);
32cd7cbb 8116 if (!IS_ERR(ret))
394ed8e4
SL
8117 mddev_clear_unsupported_flags(mddev,
8118 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8119 return ret;
d562b0c4
N
8120}
8121
fd01b88c 8122static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8123{
8124 int new_layout;
8125
8126 switch (mddev->layout) {
8127 case ALGORITHM_LEFT_ASYMMETRIC_6:
8128 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8129 break;
8130 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8131 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8132 break;
8133 case ALGORITHM_LEFT_SYMMETRIC_6:
8134 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8135 break;
8136 case ALGORITHM_RIGHT_SYMMETRIC_6:
8137 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8138 break;
8139 case ALGORITHM_PARITY_0_6:
8140 new_layout = ALGORITHM_PARITY_0;
8141 break;
8142 case ALGORITHM_PARITY_N:
8143 new_layout = ALGORITHM_PARITY_N;
8144 break;
8145 default:
8146 return ERR_PTR(-EINVAL);
8147 }
8148 mddev->new_level = 5;
8149 mddev->new_layout = new_layout;
8150 mddev->delta_disks = -1;
8151 mddev->raid_disks -= 1;
8152 return setup_conf(mddev);
8153}
8154
fd01b88c 8155static int raid5_check_reshape(struct mddev *mddev)
b3546035 8156{
88ce4930
N
8157 /* For a 2-drive array, the layout and chunk size can be changed
8158 * immediately as not restriping is needed.
8159 * For larger arrays we record the new value - after validation
8160 * to be used by a reshape pass.
b3546035 8161 */
d1688a6d 8162 struct r5conf *conf = mddev->private;
597a711b 8163 int new_chunk = mddev->new_chunk_sectors;
b3546035 8164
597a711b 8165 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8166 return -EINVAL;
8167 if (new_chunk > 0) {
0ba459d2 8168 if (!is_power_of_2(new_chunk))
b3546035 8169 return -EINVAL;
597a711b 8170 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8171 return -EINVAL;
597a711b 8172 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8173 /* not factor of array size */
8174 return -EINVAL;
8175 }
8176
8177 /* They look valid */
8178
88ce4930 8179 if (mddev->raid_disks == 2) {
597a711b
N
8180 /* can make the change immediately */
8181 if (mddev->new_layout >= 0) {
8182 conf->algorithm = mddev->new_layout;
8183 mddev->layout = mddev->new_layout;
88ce4930
N
8184 }
8185 if (new_chunk > 0) {
597a711b
N
8186 conf->chunk_sectors = new_chunk ;
8187 mddev->chunk_sectors = new_chunk;
88ce4930 8188 }
2953079c 8189 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8190 md_wakeup_thread(mddev->thread);
b3546035 8191 }
50ac168a 8192 return check_reshape(mddev);
88ce4930
N
8193}
8194
fd01b88c 8195static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8196{
597a711b 8197 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8198
597a711b 8199 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8200 return -EINVAL;
b3546035 8201 if (new_chunk > 0) {
0ba459d2 8202 if (!is_power_of_2(new_chunk))
88ce4930 8203 return -EINVAL;
597a711b 8204 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8205 return -EINVAL;
597a711b 8206 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8207 /* not factor of array size */
8208 return -EINVAL;
b3546035 8209 }
88ce4930
N
8210
8211 /* They look valid */
50ac168a 8212 return check_reshape(mddev);
b3546035
N
8213}
8214
fd01b88c 8215static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8216{
8217 /* raid5 can take over:
f1b29bca 8218 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8219 * raid1 - if there are two drives. We need to know the chunk size
8220 * raid4 - trivial - just use a raid4 layout.
8221 * raid6 - Providing it is a *_6 layout
d562b0c4 8222 */
f1b29bca
DW
8223 if (mddev->level == 0)
8224 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8225 if (mddev->level == 1)
8226 return raid5_takeover_raid1(mddev);
e9d4758f
N
8227 if (mddev->level == 4) {
8228 mddev->new_layout = ALGORITHM_PARITY_N;
8229 mddev->new_level = 5;
8230 return setup_conf(mddev);
8231 }
fc9739c6
N
8232 if (mddev->level == 6)
8233 return raid5_takeover_raid6(mddev);
d562b0c4
N
8234
8235 return ERR_PTR(-EINVAL);
8236}
8237
fd01b88c 8238static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8239{
f1b29bca
DW
8240 /* raid4 can take over:
8241 * raid0 - if there is only one strip zone
8242 * raid5 - if layout is right
a78d38a1 8243 */
f1b29bca
DW
8244 if (mddev->level == 0)
8245 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8246 if (mddev->level == 5 &&
8247 mddev->layout == ALGORITHM_PARITY_N) {
8248 mddev->new_layout = 0;
8249 mddev->new_level = 4;
8250 return setup_conf(mddev);
8251 }
8252 return ERR_PTR(-EINVAL);
8253}
d562b0c4 8254
84fc4b56 8255static struct md_personality raid5_personality;
245f46c2 8256
fd01b88c 8257static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8258{
8259 /* Currently can only take over a raid5. We map the
8260 * personality to an equivalent raid6 personality
8261 * with the Q block at the end.
8262 */
8263 int new_layout;
8264
8265 if (mddev->pers != &raid5_personality)
8266 return ERR_PTR(-EINVAL);
8267 if (mddev->degraded > 1)
8268 return ERR_PTR(-EINVAL);
8269 if (mddev->raid_disks > 253)
8270 return ERR_PTR(-EINVAL);
8271 if (mddev->raid_disks < 3)
8272 return ERR_PTR(-EINVAL);
8273
8274 switch (mddev->layout) {
8275 case ALGORITHM_LEFT_ASYMMETRIC:
8276 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8277 break;
8278 case ALGORITHM_RIGHT_ASYMMETRIC:
8279 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8280 break;
8281 case ALGORITHM_LEFT_SYMMETRIC:
8282 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8283 break;
8284 case ALGORITHM_RIGHT_SYMMETRIC:
8285 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8286 break;
8287 case ALGORITHM_PARITY_0:
8288 new_layout = ALGORITHM_PARITY_0_6;
8289 break;
8290 case ALGORITHM_PARITY_N:
8291 new_layout = ALGORITHM_PARITY_N;
8292 break;
8293 default:
8294 return ERR_PTR(-EINVAL);
8295 }
8296 mddev->new_level = 6;
8297 mddev->new_layout = new_layout;
8298 mddev->delta_disks = 1;
8299 mddev->raid_disks += 1;
8300 return setup_conf(mddev);
8301}
8302
ba903a3e
AP
8303static void raid5_reset_stripe_cache(struct mddev *mddev)
8304{
8305 struct r5conf *conf = mddev->private;
8306
8307 mutex_lock(&conf->cache_size_mutex);
8308 while (conf->max_nr_stripes &&
8309 drop_one_stripe(conf))
8310 ;
8311 while (conf->min_nr_stripes > conf->max_nr_stripes &&
8312 grow_one_stripe(conf, GFP_KERNEL))
8313 ;
8314 mutex_unlock(&conf->cache_size_mutex);
8315}
8316
8317static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8318{
8319 struct r5conf *conf;
8320 int err;
8321
8322 err = mddev_lock(mddev);
8323 if (err)
8324 return err;
8325 conf = mddev->private;
8326 if (!conf) {
8327 mddev_unlock(mddev);
8328 return -ENODEV;
8329 }
8330
8331 if (strncmp(buf, "ppl", 3) == 0 && !raid5_has_ppl(conf)) {
8332 mddev_suspend(mddev);
8333 set_bit(MD_HAS_PPL, &mddev->flags);
8334 err = log_init(conf, NULL);
8335 if (!err)
8336 raid5_reset_stripe_cache(mddev);
8337 mddev_resume(mddev);
8338 } else if (strncmp(buf, "resync", 6) == 0 && raid5_has_ppl(conf)) {
8339 mddev_suspend(mddev);
8340 log_exit(conf);
8341 raid5_reset_stripe_cache(mddev);
8342 mddev_resume(mddev);
8343 } else {
8344 err = -EINVAL;
8345 }
8346
8347 if (!err)
8348 md_update_sb(mddev, 1);
8349
8350 mddev_unlock(mddev);
8351
8352 return err;
8353}
8354
84fc4b56 8355static struct md_personality raid6_personality =
16a53ecc
N
8356{
8357 .name = "raid6",
8358 .level = 6,
8359 .owner = THIS_MODULE,
849674e4
SL
8360 .make_request = raid5_make_request,
8361 .run = raid5_run,
afa0f557 8362 .free = raid5_free,
849674e4
SL
8363 .status = raid5_status,
8364 .error_handler = raid5_error,
16a53ecc
N
8365 .hot_add_disk = raid5_add_disk,
8366 .hot_remove_disk= raid5_remove_disk,
8367 .spare_active = raid5_spare_active,
849674e4 8368 .sync_request = raid5_sync_request,
16a53ecc 8369 .resize = raid5_resize,
80c3a6ce 8370 .size = raid5_size,
50ac168a 8371 .check_reshape = raid6_check_reshape,
f416885e 8372 .start_reshape = raid5_start_reshape,
cea9c228 8373 .finish_reshape = raid5_finish_reshape,
16a53ecc 8374 .quiesce = raid5_quiesce,
245f46c2 8375 .takeover = raid6_takeover,
5c675f83 8376 .congested = raid5_congested,
16a53ecc 8377};
84fc4b56 8378static struct md_personality raid5_personality =
1da177e4
LT
8379{
8380 .name = "raid5",
2604b703 8381 .level = 5,
1da177e4 8382 .owner = THIS_MODULE,
849674e4
SL
8383 .make_request = raid5_make_request,
8384 .run = raid5_run,
afa0f557 8385 .free = raid5_free,
849674e4
SL
8386 .status = raid5_status,
8387 .error_handler = raid5_error,
1da177e4
LT
8388 .hot_add_disk = raid5_add_disk,
8389 .hot_remove_disk= raid5_remove_disk,
8390 .spare_active = raid5_spare_active,
849674e4 8391 .sync_request = raid5_sync_request,
1da177e4 8392 .resize = raid5_resize,
80c3a6ce 8393 .size = raid5_size,
63c70c4f
N
8394 .check_reshape = raid5_check_reshape,
8395 .start_reshape = raid5_start_reshape,
cea9c228 8396 .finish_reshape = raid5_finish_reshape,
72626685 8397 .quiesce = raid5_quiesce,
d562b0c4 8398 .takeover = raid5_takeover,
5c675f83 8399 .congested = raid5_congested,
ba903a3e 8400 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
8401};
8402
84fc4b56 8403static struct md_personality raid4_personality =
1da177e4 8404{
2604b703
N
8405 .name = "raid4",
8406 .level = 4,
8407 .owner = THIS_MODULE,
849674e4
SL
8408 .make_request = raid5_make_request,
8409 .run = raid5_run,
afa0f557 8410 .free = raid5_free,
849674e4
SL
8411 .status = raid5_status,
8412 .error_handler = raid5_error,
2604b703
N
8413 .hot_add_disk = raid5_add_disk,
8414 .hot_remove_disk= raid5_remove_disk,
8415 .spare_active = raid5_spare_active,
849674e4 8416 .sync_request = raid5_sync_request,
2604b703 8417 .resize = raid5_resize,
80c3a6ce 8418 .size = raid5_size,
3d37890b
N
8419 .check_reshape = raid5_check_reshape,
8420 .start_reshape = raid5_start_reshape,
cea9c228 8421 .finish_reshape = raid5_finish_reshape,
2604b703 8422 .quiesce = raid5_quiesce,
a78d38a1 8423 .takeover = raid4_takeover,
5c675f83 8424 .congested = raid5_congested,
2604b703
N
8425};
8426
8427static int __init raid5_init(void)
8428{
29c6d1bb
SAS
8429 int ret;
8430
851c30c9
SL
8431 raid5_wq = alloc_workqueue("raid5wq",
8432 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8433 if (!raid5_wq)
8434 return -ENOMEM;
29c6d1bb
SAS
8435
8436 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8437 "md/raid5:prepare",
8438 raid456_cpu_up_prepare,
8439 raid456_cpu_dead);
8440 if (ret) {
8441 destroy_workqueue(raid5_wq);
8442 return ret;
8443 }
16a53ecc 8444 register_md_personality(&raid6_personality);
2604b703
N
8445 register_md_personality(&raid5_personality);
8446 register_md_personality(&raid4_personality);
8447 return 0;
1da177e4
LT
8448}
8449
2604b703 8450static void raid5_exit(void)
1da177e4 8451{
16a53ecc 8452 unregister_md_personality(&raid6_personality);
2604b703
N
8453 unregister_md_personality(&raid5_personality);
8454 unregister_md_personality(&raid4_personality);
29c6d1bb 8455 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8456 destroy_workqueue(raid5_wq);
1da177e4
LT
8457}
8458
8459module_init(raid5_init);
8460module_exit(raid5_exit);
8461MODULE_LICENSE("GPL");
0efb9e61 8462MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8463MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8464MODULE_ALIAS("md-raid5");
8465MODULE_ALIAS("md-raid4");
2604b703
N
8466MODULE_ALIAS("md-level-5");
8467MODULE_ALIAS("md-level-4");
16a53ecc
N
8468MODULE_ALIAS("md-personality-8"); /* RAID6 */
8469MODULE_ALIAS("md-raid6");
8470MODULE_ALIAS("md-level-6");
8471
8472/* This used to be two separate modules, they were: */
8473MODULE_ALIAS("raid5");
8474MODULE_ALIAS("raid6");