md: use kzalloc() when bitmap is disabled
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
a4456856
DW
226static void return_io(struct bio *return_bi)
227{
228 struct bio *bi = return_bi;
229 while (bi) {
a4456856
DW
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
4f024f37 233 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
0e13fe23 236 bio_endio(bi, 0);
a4456856
DW
237 bi = return_bi;
238 }
239}
240
d1688a6d 241static void print_raid5_conf (struct r5conf *conf);
1da177e4 242
600aa109
DW
243static int stripe_operations_active(struct stripe_head *sh)
244{
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248}
249
851c30c9
SL
250static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251{
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
bfc90cb0 254 int thread_cnt;
851c30c9
SL
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
266 group->stripes_cnt++;
267 sh->group = group;
851c30c9
SL
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
bfc90cb0
SL
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
851c30c9
SL
291}
292
566c09c5
SL
293static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
1da177e4 295{
4eb788df
SL
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 301 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
4eb788df
SL
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
566c09c5
SL
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
325 }
326}
d0dabf7e 327
566c09c5
SL
328static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
4eb788df
SL
330{
331 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
332 do_release_stripe(conf, sh, temp_inactive_list);
333}
334
335/*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345{
346 int size;
e9e4c377
YL
347 unsigned long do_wakeup = 0;
348 int i = 0;
566c09c5
SL
349 unsigned long flags;
350
351 if (hash == NR_STRIPE_HASH_LOCKS) {
352 size = NR_STRIPE_HASH_LOCKS;
353 hash = NR_STRIPE_HASH_LOCKS - 1;
354 } else
355 size = 1;
356 while (size) {
357 struct list_head *list = &temp_inactive_list[size - 1];
358
359 /*
360 * We don't hold any lock here yet, get_active_stripe() might
361 * remove stripes from the list
362 */
363 if (!list_empty_careful(list)) {
364 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
365 if (list_empty(conf->inactive_list + hash) &&
366 !list_empty(list))
367 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 368 list_splice_tail_init(list, conf->inactive_list + hash);
e9e4c377 369 do_wakeup |= 1 << hash;
566c09c5
SL
370 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
371 }
372 size--;
373 hash--;
374 }
375
e9e4c377
YL
376 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
377 if (do_wakeup & (1 << i))
378 wake_up(&conf->wait_for_stripe[i]);
379 }
380
566c09c5 381 if (do_wakeup) {
b1b46486
YL
382 if (atomic_read(&conf->active_stripes) == 0)
383 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
384 if (conf->retry_read_aligned)
385 md_wakeup_thread(conf->mddev->thread);
386 }
4eb788df
SL
387}
388
773ca82f 389/* should hold conf->device_lock already */
566c09c5
SL
390static int release_stripe_list(struct r5conf *conf,
391 struct list_head *temp_inactive_list)
773ca82f
SL
392{
393 struct stripe_head *sh;
394 int count = 0;
395 struct llist_node *head;
396
397 head = llist_del_all(&conf->released_stripes);
d265d9dc 398 head = llist_reverse_order(head);
773ca82f 399 while (head) {
566c09c5
SL
400 int hash;
401
773ca82f
SL
402 sh = llist_entry(head, struct stripe_head, release_list);
403 head = llist_next(head);
404 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
405 smp_mb();
406 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
407 /*
408 * Don't worry the bit is set here, because if the bit is set
409 * again, the count is always > 1. This is true for
410 * STRIPE_ON_UNPLUG_LIST bit too.
411 */
566c09c5
SL
412 hash = sh->hash_lock_index;
413 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
414 count++;
415 }
416
417 return count;
418}
419
1da177e4
LT
420static void release_stripe(struct stripe_head *sh)
421{
d1688a6d 422 struct r5conf *conf = sh->raid_conf;
1da177e4 423 unsigned long flags;
566c09c5
SL
424 struct list_head list;
425 int hash;
773ca82f 426 bool wakeup;
16a53ecc 427
cf170f3f
ES
428 /* Avoid release_list until the last reference.
429 */
430 if (atomic_add_unless(&sh->count, -1, 1))
431 return;
432
ad4068de 433 if (unlikely(!conf->mddev->thread) ||
434 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
435 goto slow_path;
436 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
437 if (wakeup)
438 md_wakeup_thread(conf->mddev->thread);
439 return;
440slow_path:
4eb788df 441 local_irq_save(flags);
773ca82f 442 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 443 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
444 INIT_LIST_HEAD(&list);
445 hash = sh->hash_lock_index;
446 do_release_stripe(conf, sh, &list);
4eb788df 447 spin_unlock(&conf->device_lock);
566c09c5 448 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
449 }
450 local_irq_restore(flags);
1da177e4
LT
451}
452
fccddba0 453static inline void remove_hash(struct stripe_head *sh)
1da177e4 454{
45b4233c
DW
455 pr_debug("remove_hash(), stripe %llu\n",
456 (unsigned long long)sh->sector);
1da177e4 457
fccddba0 458 hlist_del_init(&sh->hash);
1da177e4
LT
459}
460
d1688a6d 461static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 462{
fccddba0 463 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 464
45b4233c
DW
465 pr_debug("insert_hash(), stripe %llu\n",
466 (unsigned long long)sh->sector);
1da177e4 467
fccddba0 468 hlist_add_head(&sh->hash, hp);
1da177e4
LT
469}
470
1da177e4 471/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 472static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
473{
474 struct stripe_head *sh = NULL;
475 struct list_head *first;
476
566c09c5 477 if (list_empty(conf->inactive_list + hash))
1da177e4 478 goto out;
566c09c5 479 first = (conf->inactive_list + hash)->next;
1da177e4
LT
480 sh = list_entry(first, struct stripe_head, lru);
481 list_del_init(first);
482 remove_hash(sh);
483 atomic_inc(&conf->active_stripes);
566c09c5 484 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
485 if (list_empty(conf->inactive_list + hash))
486 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
487out:
488 return sh;
489}
490
e4e11e38 491static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
492{
493 struct page *p;
494 int i;
e4e11e38 495 int num = sh->raid_conf->pool_size;
1da177e4 496
e4e11e38 497 for (i = 0; i < num ; i++) {
d592a996 498 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
499 p = sh->dev[i].page;
500 if (!p)
501 continue;
502 sh->dev[i].page = NULL;
2d1f3b5d 503 put_page(p);
1da177e4
LT
504 }
505}
506
a9683a79 507static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
508{
509 int i;
e4e11e38 510 int num = sh->raid_conf->pool_size;
1da177e4 511
e4e11e38 512 for (i = 0; i < num; i++) {
1da177e4
LT
513 struct page *page;
514
a9683a79 515 if (!(page = alloc_page(gfp))) {
1da177e4
LT
516 return 1;
517 }
518 sh->dev[i].page = page;
d592a996 519 sh->dev[i].orig_page = page;
1da177e4
LT
520 }
521 return 0;
522}
523
784052ec 524static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 525static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 526 struct stripe_head *sh);
1da177e4 527
b5663ba4 528static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 529{
d1688a6d 530 struct r5conf *conf = sh->raid_conf;
566c09c5 531 int i, seq;
1da177e4 532
78bafebd
ES
533 BUG_ON(atomic_read(&sh->count) != 0);
534 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 535 BUG_ON(stripe_operations_active(sh));
59fc630b 536 BUG_ON(sh->batch_head);
d84e0f10 537
45b4233c 538 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 539 (unsigned long long)sector);
566c09c5
SL
540retry:
541 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 542 sh->generation = conf->generation - previous;
b5663ba4 543 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 544 sh->sector = sector;
911d4ee8 545 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
546 sh->state = 0;
547
7ecaa1e6 548 for (i = sh->disks; i--; ) {
1da177e4
LT
549 struct r5dev *dev = &sh->dev[i];
550
d84e0f10 551 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 552 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 553 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 554 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 555 dev->read, dev->towrite, dev->written,
1da177e4 556 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 557 WARN_ON(1);
1da177e4
LT
558 }
559 dev->flags = 0;
784052ec 560 raid5_build_block(sh, i, previous);
1da177e4 561 }
566c09c5
SL
562 if (read_seqcount_retry(&conf->gen_lock, seq))
563 goto retry;
7a87f434 564 sh->overwrite_disks = 0;
1da177e4 565 insert_hash(conf, sh);
851c30c9 566 sh->cpu = smp_processor_id();
da41ba65 567 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
568}
569
d1688a6d 570static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 571 short generation)
1da177e4
LT
572{
573 struct stripe_head *sh;
574
45b4233c 575 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 576 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 577 if (sh->sector == sector && sh->generation == generation)
1da177e4 578 return sh;
45b4233c 579 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
580 return NULL;
581}
582
674806d6
N
583/*
584 * Need to check if array has failed when deciding whether to:
585 * - start an array
586 * - remove non-faulty devices
587 * - add a spare
588 * - allow a reshape
589 * This determination is simple when no reshape is happening.
590 * However if there is a reshape, we need to carefully check
591 * both the before and after sections.
592 * This is because some failed devices may only affect one
593 * of the two sections, and some non-in_sync devices may
594 * be insync in the section most affected by failed devices.
595 */
908f4fbd 596static int calc_degraded(struct r5conf *conf)
674806d6 597{
908f4fbd 598 int degraded, degraded2;
674806d6 599 int i;
674806d6
N
600
601 rcu_read_lock();
602 degraded = 0;
603 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 604 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
605 if (rdev && test_bit(Faulty, &rdev->flags))
606 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
607 if (!rdev || test_bit(Faulty, &rdev->flags))
608 degraded++;
609 else if (test_bit(In_sync, &rdev->flags))
610 ;
611 else
612 /* not in-sync or faulty.
613 * If the reshape increases the number of devices,
614 * this is being recovered by the reshape, so
615 * this 'previous' section is not in_sync.
616 * If the number of devices is being reduced however,
617 * the device can only be part of the array if
618 * we are reverting a reshape, so this section will
619 * be in-sync.
620 */
621 if (conf->raid_disks >= conf->previous_raid_disks)
622 degraded++;
623 }
624 rcu_read_unlock();
908f4fbd
N
625 if (conf->raid_disks == conf->previous_raid_disks)
626 return degraded;
674806d6 627 rcu_read_lock();
908f4fbd 628 degraded2 = 0;
674806d6 629 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 630 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
631 if (rdev && test_bit(Faulty, &rdev->flags))
632 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 633 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 634 degraded2++;
674806d6
N
635 else if (test_bit(In_sync, &rdev->flags))
636 ;
637 else
638 /* not in-sync or faulty.
639 * If reshape increases the number of devices, this
640 * section has already been recovered, else it
641 * almost certainly hasn't.
642 */
643 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 644 degraded2++;
674806d6
N
645 }
646 rcu_read_unlock();
908f4fbd
N
647 if (degraded2 > degraded)
648 return degraded2;
649 return degraded;
650}
651
652static int has_failed(struct r5conf *conf)
653{
654 int degraded;
655
656 if (conf->mddev->reshape_position == MaxSector)
657 return conf->mddev->degraded > conf->max_degraded;
658
659 degraded = calc_degraded(conf);
674806d6
N
660 if (degraded > conf->max_degraded)
661 return 1;
662 return 0;
663}
664
b5663ba4 665static struct stripe_head *
d1688a6d 666get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 667 int previous, int noblock, int noquiesce)
1da177e4
LT
668{
669 struct stripe_head *sh;
566c09c5 670 int hash = stripe_hash_locks_hash(sector);
1da177e4 671
45b4233c 672 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 673
566c09c5 674 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
675
676 do {
b1b46486 677 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 678 conf->quiesce == 0 || noquiesce,
566c09c5 679 *(conf->hash_locks + hash));
86b42c71 680 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 681 if (!sh) {
edbe83ab 682 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 683 sh = get_free_stripe(conf, hash);
713bc5c2
SL
684 if (!sh && !test_bit(R5_DID_ALLOC,
685 &conf->cache_state))
edbe83ab
N
686 set_bit(R5_ALLOC_MORE,
687 &conf->cache_state);
688 }
1da177e4
LT
689 if (noblock && sh == NULL)
690 break;
691 if (!sh) {
5423399a
N
692 set_bit(R5_INACTIVE_BLOCKED,
693 &conf->cache_state);
e9e4c377
YL
694 wait_event_exclusive_cmd(
695 conf->wait_for_stripe[hash],
566c09c5
SL
696 !list_empty(conf->inactive_list + hash) &&
697 (atomic_read(&conf->active_stripes)
698 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
699 || !test_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state)),
e9e4c377
YL
701 spin_unlock_irq(conf->hash_locks + hash),
702 spin_lock_irq(conf->hash_locks + hash));
5423399a
N
703 clear_bit(R5_INACTIVE_BLOCKED,
704 &conf->cache_state);
7da9d450 705 } else {
b5663ba4 706 init_stripe(sh, sector, previous);
7da9d450
N
707 atomic_inc(&sh->count);
708 }
e240c183 709 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 710 spin_lock(&conf->device_lock);
e240c183 711 if (!atomic_read(&sh->count)) {
1da177e4
LT
712 if (!test_bit(STRIPE_HANDLE, &sh->state))
713 atomic_inc(&conf->active_stripes);
5af9bef7
N
714 BUG_ON(list_empty(&sh->lru) &&
715 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 716 list_del_init(&sh->lru);
bfc90cb0
SL
717 if (sh->group) {
718 sh->group->stripes_cnt--;
719 sh->group = NULL;
720 }
1da177e4 721 }
7da9d450 722 atomic_inc(&sh->count);
6d183de4 723 spin_unlock(&conf->device_lock);
1da177e4
LT
724 }
725 } while (sh == NULL);
726
e9e4c377
YL
727 if (!list_empty(conf->inactive_list + hash))
728 wake_up(&conf->wait_for_stripe[hash]);
729
566c09c5 730 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
731 return sh;
732}
733
7a87f434 734static bool is_full_stripe_write(struct stripe_head *sh)
735{
736 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
737 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
738}
739
59fc630b 740static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
741{
742 local_irq_disable();
743 if (sh1 > sh2) {
744 spin_lock(&sh2->stripe_lock);
745 spin_lock_nested(&sh1->stripe_lock, 1);
746 } else {
747 spin_lock(&sh1->stripe_lock);
748 spin_lock_nested(&sh2->stripe_lock, 1);
749 }
750}
751
752static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
753{
754 spin_unlock(&sh1->stripe_lock);
755 spin_unlock(&sh2->stripe_lock);
756 local_irq_enable();
757}
758
759/* Only freshly new full stripe normal write stripe can be added to a batch list */
760static bool stripe_can_batch(struct stripe_head *sh)
761{
762 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 763 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 764 is_full_stripe_write(sh);
765}
766
767/* we only do back search */
768static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769{
770 struct stripe_head *head;
771 sector_t head_sector, tmp_sec;
772 int hash;
773 int dd_idx;
774
775 if (!stripe_can_batch(sh))
776 return;
777 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778 tmp_sec = sh->sector;
779 if (!sector_div(tmp_sec, conf->chunk_sectors))
780 return;
781 head_sector = sh->sector - STRIPE_SECTORS;
782
783 hash = stripe_hash_locks_hash(head_sector);
784 spin_lock_irq(conf->hash_locks + hash);
785 head = __find_stripe(conf, head_sector, conf->generation);
786 if (head && !atomic_inc_not_zero(&head->count)) {
787 spin_lock(&conf->device_lock);
788 if (!atomic_read(&head->count)) {
789 if (!test_bit(STRIPE_HANDLE, &head->state))
790 atomic_inc(&conf->active_stripes);
791 BUG_ON(list_empty(&head->lru) &&
792 !test_bit(STRIPE_EXPANDING, &head->state));
793 list_del_init(&head->lru);
794 if (head->group) {
795 head->group->stripes_cnt--;
796 head->group = NULL;
797 }
798 }
799 atomic_inc(&head->count);
800 spin_unlock(&conf->device_lock);
801 }
802 spin_unlock_irq(conf->hash_locks + hash);
803
804 if (!head)
805 return;
806 if (!stripe_can_batch(head))
807 goto out;
808
809 lock_two_stripes(head, sh);
810 /* clear_batch_ready clear the flag */
811 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812 goto unlock_out;
813
814 if (sh->batch_head)
815 goto unlock_out;
816
817 dd_idx = 0;
818 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819 dd_idx++;
820 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821 goto unlock_out;
822
823 if (head->batch_head) {
824 spin_lock(&head->batch_head->batch_lock);
825 /* This batch list is already running */
826 if (!stripe_can_batch(head)) {
827 spin_unlock(&head->batch_head->batch_lock);
828 goto unlock_out;
829 }
830
831 /*
832 * at this point, head's BATCH_READY could be cleared, but we
833 * can still add the stripe to batch list
834 */
835 list_add(&sh->batch_list, &head->batch_list);
836 spin_unlock(&head->batch_head->batch_lock);
837
838 sh->batch_head = head->batch_head;
839 } else {
840 head->batch_head = head;
841 sh->batch_head = head->batch_head;
842 spin_lock(&head->batch_lock);
843 list_add_tail(&sh->batch_list, &head->batch_list);
844 spin_unlock(&head->batch_lock);
845 }
846
847 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848 if (atomic_dec_return(&conf->preread_active_stripes)
849 < IO_THRESHOLD)
850 md_wakeup_thread(conf->mddev->thread);
851
2b6b2457
N
852 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853 int seq = sh->bm_seq;
854 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855 sh->batch_head->bm_seq > seq)
856 seq = sh->batch_head->bm_seq;
857 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858 sh->batch_head->bm_seq = seq;
859 }
860
59fc630b 861 atomic_inc(&sh->count);
862unlock_out:
863 unlock_two_stripes(head, sh);
864out:
865 release_stripe(head);
866}
867
05616be5
N
868/* Determine if 'data_offset' or 'new_data_offset' should be used
869 * in this stripe_head.
870 */
871static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872{
873 sector_t progress = conf->reshape_progress;
874 /* Need a memory barrier to make sure we see the value
875 * of conf->generation, or ->data_offset that was set before
876 * reshape_progress was updated.
877 */
878 smp_rmb();
879 if (progress == MaxSector)
880 return 0;
881 if (sh->generation == conf->generation - 1)
882 return 0;
883 /* We are in a reshape, and this is a new-generation stripe,
884 * so use new_data_offset.
885 */
886 return 1;
887}
888
6712ecf8
N
889static void
890raid5_end_read_request(struct bio *bi, int error);
891static void
892raid5_end_write_request(struct bio *bi, int error);
91c00924 893
c4e5ac0a 894static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 895{
d1688a6d 896 struct r5conf *conf = sh->raid_conf;
91c00924 897 int i, disks = sh->disks;
59fc630b 898 struct stripe_head *head_sh = sh;
91c00924
DW
899
900 might_sleep();
901
902 for (i = disks; i--; ) {
903 int rw;
9a3e1101 904 int replace_only = 0;
977df362
N
905 struct bio *bi, *rbi;
906 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 907
908 sh = head_sh;
e9c7469b
TH
909 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911 rw = WRITE_FUA;
912 else
913 rw = WRITE;
9e444768 914 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 915 rw |= REQ_DISCARD;
e9c7469b 916 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 917 rw = READ;
9a3e1101
N
918 else if (test_and_clear_bit(R5_WantReplace,
919 &sh->dev[i].flags)) {
920 rw = WRITE;
921 replace_only = 1;
922 } else
91c00924 923 continue;
bc0934f0
SL
924 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925 rw |= REQ_SYNC;
91c00924 926
59fc630b 927again:
91c00924 928 bi = &sh->dev[i].req;
977df362 929 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 930
91c00924 931 rcu_read_lock();
9a3e1101 932 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
933 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934 rdev = rcu_dereference(conf->disks[i].rdev);
935 if (!rdev) {
936 rdev = rrdev;
937 rrdev = NULL;
938 }
9a3e1101
N
939 if (rw & WRITE) {
940 if (replace_only)
941 rdev = NULL;
dd054fce
N
942 if (rdev == rrdev)
943 /* We raced and saw duplicates */
944 rrdev = NULL;
9a3e1101 945 } else {
59fc630b 946 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
947 rdev = rrdev;
948 rrdev = NULL;
949 }
977df362 950
91c00924
DW
951 if (rdev && test_bit(Faulty, &rdev->flags))
952 rdev = NULL;
953 if (rdev)
954 atomic_inc(&rdev->nr_pending);
977df362
N
955 if (rrdev && test_bit(Faulty, &rrdev->flags))
956 rrdev = NULL;
957 if (rrdev)
958 atomic_inc(&rrdev->nr_pending);
91c00924
DW
959 rcu_read_unlock();
960
73e92e51 961 /* We have already checked bad blocks for reads. Now
977df362
N
962 * need to check for writes. We never accept write errors
963 * on the replacement, so we don't to check rrdev.
73e92e51
N
964 */
965 while ((rw & WRITE) && rdev &&
966 test_bit(WriteErrorSeen, &rdev->flags)) {
967 sector_t first_bad;
968 int bad_sectors;
969 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970 &first_bad, &bad_sectors);
971 if (!bad)
972 break;
973
974 if (bad < 0) {
975 set_bit(BlockedBadBlocks, &rdev->flags);
976 if (!conf->mddev->external &&
977 conf->mddev->flags) {
978 /* It is very unlikely, but we might
979 * still need to write out the
980 * bad block log - better give it
981 * a chance*/
982 md_check_recovery(conf->mddev);
983 }
1850753d 984 /*
985 * Because md_wait_for_blocked_rdev
986 * will dec nr_pending, we must
987 * increment it first.
988 */
989 atomic_inc(&rdev->nr_pending);
73e92e51
N
990 md_wait_for_blocked_rdev(rdev, conf->mddev);
991 } else {
992 /* Acknowledged bad block - skip the write */
993 rdev_dec_pending(rdev, conf->mddev);
994 rdev = NULL;
995 }
996 }
997
91c00924 998 if (rdev) {
9a3e1101
N
999 if (s->syncing || s->expanding || s->expanded
1000 || s->replacing)
91c00924
DW
1001 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002
2b7497f0
DW
1003 set_bit(STRIPE_IO_STARTED, &sh->state);
1004
2f6db2a7 1005 bio_reset(bi);
91c00924 1006 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
1007 bi->bi_rw = rw;
1008 bi->bi_end_io = (rw & WRITE)
1009 ? raid5_end_write_request
1010 : raid5_end_read_request;
1011 bi->bi_private = sh;
1012
91c00924 1013 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 1014 __func__, (unsigned long long)sh->sector,
91c00924
DW
1015 bi->bi_rw, i);
1016 atomic_inc(&sh->count);
59fc630b 1017 if (sh != head_sh)
1018 atomic_inc(&head_sh->count);
05616be5 1019 if (use_new_offset(conf, sh))
4f024f37 1020 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1021 + rdev->new_data_offset);
1022 else
4f024f37 1023 bi->bi_iter.bi_sector = (sh->sector
05616be5 1024 + rdev->data_offset);
59fc630b 1025 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1026 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1027
d592a996
SL
1028 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1031 bi->bi_vcnt = 1;
91c00924
DW
1032 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1034 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1035 /*
1036 * If this is discard request, set bi_vcnt 0. We don't
1037 * want to confuse SCSI because SCSI will replace payload
1038 */
1039 if (rw & REQ_DISCARD)
1040 bi->bi_vcnt = 0;
977df362
N
1041 if (rrdev)
1042 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1043
1044 if (conf->mddev->gendisk)
1045 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046 bi, disk_devt(conf->mddev->gendisk),
1047 sh->dev[i].sector);
91c00924 1048 generic_make_request(bi);
977df362
N
1049 }
1050 if (rrdev) {
9a3e1101
N
1051 if (s->syncing || s->expanding || s->expanded
1052 || s->replacing)
977df362
N
1053 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054
1055 set_bit(STRIPE_IO_STARTED, &sh->state);
1056
2f6db2a7 1057 bio_reset(rbi);
977df362 1058 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1059 rbi->bi_rw = rw;
1060 BUG_ON(!(rw & WRITE));
1061 rbi->bi_end_io = raid5_end_write_request;
1062 rbi->bi_private = sh;
1063
977df362
N
1064 pr_debug("%s: for %llu schedule op %ld on "
1065 "replacement disc %d\n",
1066 __func__, (unsigned long long)sh->sector,
1067 rbi->bi_rw, i);
1068 atomic_inc(&sh->count);
59fc630b 1069 if (sh != head_sh)
1070 atomic_inc(&head_sh->count);
05616be5 1071 if (use_new_offset(conf, sh))
4f024f37 1072 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1073 + rrdev->new_data_offset);
1074 else
4f024f37 1075 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1076 + rrdev->data_offset);
d592a996
SL
1077 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1080 rbi->bi_vcnt = 1;
977df362
N
1081 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1083 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1084 /*
1085 * If this is discard request, set bi_vcnt 0. We don't
1086 * want to confuse SCSI because SCSI will replace payload
1087 */
1088 if (rw & REQ_DISCARD)
1089 rbi->bi_vcnt = 0;
e3620a3a
JB
1090 if (conf->mddev->gendisk)
1091 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092 rbi, disk_devt(conf->mddev->gendisk),
1093 sh->dev[i].sector);
977df362
N
1094 generic_make_request(rbi);
1095 }
1096 if (!rdev && !rrdev) {
b062962e 1097 if (rw & WRITE)
91c00924
DW
1098 set_bit(STRIPE_DEGRADED, &sh->state);
1099 pr_debug("skip op %ld on disc %d for sector %llu\n",
1100 bi->bi_rw, i, (unsigned long long)sh->sector);
1101 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102 set_bit(STRIPE_HANDLE, &sh->state);
1103 }
59fc630b 1104
1105 if (!head_sh->batch_head)
1106 continue;
1107 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108 batch_list);
1109 if (sh != head_sh)
1110 goto again;
91c00924
DW
1111 }
1112}
1113
1114static struct dma_async_tx_descriptor *
d592a996
SL
1115async_copy_data(int frombio, struct bio *bio, struct page **page,
1116 sector_t sector, struct dma_async_tx_descriptor *tx,
1117 struct stripe_head *sh)
91c00924 1118{
7988613b
KO
1119 struct bio_vec bvl;
1120 struct bvec_iter iter;
91c00924 1121 struct page *bio_page;
91c00924 1122 int page_offset;
a08abd8c 1123 struct async_submit_ctl submit;
0403e382 1124 enum async_tx_flags flags = 0;
91c00924 1125
4f024f37
KO
1126 if (bio->bi_iter.bi_sector >= sector)
1127 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1128 else
4f024f37 1129 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1130
0403e382
DW
1131 if (frombio)
1132 flags |= ASYNC_TX_FENCE;
1133 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134
7988613b
KO
1135 bio_for_each_segment(bvl, bio, iter) {
1136 int len = bvl.bv_len;
91c00924
DW
1137 int clen;
1138 int b_offset = 0;
1139
1140 if (page_offset < 0) {
1141 b_offset = -page_offset;
1142 page_offset += b_offset;
1143 len -= b_offset;
1144 }
1145
1146 if (len > 0 && page_offset + len > STRIPE_SIZE)
1147 clen = STRIPE_SIZE - page_offset;
1148 else
1149 clen = len;
1150
1151 if (clen > 0) {
7988613b
KO
1152 b_offset += bvl.bv_offset;
1153 bio_page = bvl.bv_page;
d592a996
SL
1154 if (frombio) {
1155 if (sh->raid_conf->skip_copy &&
1156 b_offset == 0 && page_offset == 0 &&
1157 clen == STRIPE_SIZE)
1158 *page = bio_page;
1159 else
1160 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1161 b_offset, clen, &submit);
d592a996
SL
1162 } else
1163 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1164 page_offset, clen, &submit);
91c00924 1165 }
a08abd8c
DW
1166 /* chain the operations */
1167 submit.depend_tx = tx;
1168
91c00924
DW
1169 if (clen < len) /* hit end of page */
1170 break;
1171 page_offset += len;
1172 }
1173
1174 return tx;
1175}
1176
1177static void ops_complete_biofill(void *stripe_head_ref)
1178{
1179 struct stripe_head *sh = stripe_head_ref;
1180 struct bio *return_bi = NULL;
e4d84909 1181 int i;
91c00924 1182
e46b272b 1183 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1184 (unsigned long long)sh->sector);
1185
1186 /* clear completed biofills */
1187 for (i = sh->disks; i--; ) {
1188 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1189
1190 /* acknowledge completion of a biofill operation */
e4d84909
DW
1191 /* and check if we need to reply to a read request,
1192 * new R5_Wantfill requests are held off until
83de75cc 1193 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1194 */
1195 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1196 struct bio *rbi, *rbi2;
91c00924 1197
91c00924
DW
1198 BUG_ON(!dev->read);
1199 rbi = dev->read;
1200 dev->read = NULL;
4f024f37 1201 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1202 dev->sector + STRIPE_SECTORS) {
1203 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 1204 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
1205 rbi->bi_next = return_bi;
1206 return_bi = rbi;
1207 }
91c00924
DW
1208 rbi = rbi2;
1209 }
1210 }
1211 }
83de75cc 1212 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
1213
1214 return_io(return_bi);
1215
e4d84909 1216 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
1217 release_stripe(sh);
1218}
1219
1220static void ops_run_biofill(struct stripe_head *sh)
1221{
1222 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1223 struct async_submit_ctl submit;
91c00924
DW
1224 int i;
1225
59fc630b 1226 BUG_ON(sh->batch_head);
e46b272b 1227 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1228 (unsigned long long)sh->sector);
1229
1230 for (i = sh->disks; i--; ) {
1231 struct r5dev *dev = &sh->dev[i];
1232 if (test_bit(R5_Wantfill, &dev->flags)) {
1233 struct bio *rbi;
b17459c0 1234 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1235 dev->read = rbi = dev->toread;
1236 dev->toread = NULL;
b17459c0 1237 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1238 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1239 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1240 tx = async_copy_data(0, rbi, &dev->page,
1241 dev->sector, tx, sh);
91c00924
DW
1242 rbi = r5_next_bio(rbi, dev->sector);
1243 }
1244 }
1245 }
1246
1247 atomic_inc(&sh->count);
a08abd8c
DW
1248 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249 async_trigger_callback(&submit);
91c00924
DW
1250}
1251
4e7d2c0a 1252static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1253{
4e7d2c0a 1254 struct r5dev *tgt;
91c00924 1255
4e7d2c0a
DW
1256 if (target < 0)
1257 return;
91c00924 1258
4e7d2c0a 1259 tgt = &sh->dev[target];
91c00924
DW
1260 set_bit(R5_UPTODATE, &tgt->flags);
1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1263}
1264
ac6b53b6 1265static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1266{
1267 struct stripe_head *sh = stripe_head_ref;
91c00924 1268
e46b272b 1269 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1270 (unsigned long long)sh->sector);
1271
ac6b53b6 1272 /* mark the computed target(s) as uptodate */
4e7d2c0a 1273 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1274 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1275
ecc65c9b
DW
1276 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277 if (sh->check_state == check_state_compute_run)
1278 sh->check_state = check_state_compute_result;
91c00924
DW
1279 set_bit(STRIPE_HANDLE, &sh->state);
1280 release_stripe(sh);
1281}
1282
d6f38f31
DW
1283/* return a pointer to the address conversion region of the scribble buffer */
1284static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1285 struct raid5_percpu *percpu, int i)
d6f38f31 1286{
46d5b785 1287 void *addr;
1288
1289 addr = flex_array_get(percpu->scribble, i);
1290 return addr + sizeof(struct page *) * (sh->disks + 2);
1291}
1292
1293/* return a pointer to the address conversion region of the scribble buffer */
1294static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295{
1296 void *addr;
1297
1298 addr = flex_array_get(percpu->scribble, i);
1299 return addr;
d6f38f31
DW
1300}
1301
1302static struct dma_async_tx_descriptor *
1303ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1304{
91c00924 1305 int disks = sh->disks;
46d5b785 1306 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1307 int target = sh->ops.target;
1308 struct r5dev *tgt = &sh->dev[target];
1309 struct page *xor_dest = tgt->page;
1310 int count = 0;
1311 struct dma_async_tx_descriptor *tx;
a08abd8c 1312 struct async_submit_ctl submit;
91c00924
DW
1313 int i;
1314
59fc630b 1315 BUG_ON(sh->batch_head);
1316
91c00924 1317 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1318 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1319 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320
1321 for (i = disks; i--; )
1322 if (i != target)
1323 xor_srcs[count++] = sh->dev[i].page;
1324
1325 atomic_inc(&sh->count);
1326
0403e382 1327 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1328 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1329 if (unlikely(count == 1))
a08abd8c 1330 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1331 else
a08abd8c 1332 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1333
91c00924
DW
1334 return tx;
1335}
1336
ac6b53b6
DW
1337/* set_syndrome_sources - populate source buffers for gen_syndrome
1338 * @srcs - (struct page *) array of size sh->disks
1339 * @sh - stripe_head to parse
1340 *
1341 * Populates srcs in proper layout order for the stripe and returns the
1342 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1343 * destination buffer is recorded in srcs[count] and the Q destination
1344 * is recorded in srcs[count+1]].
1345 */
584acdd4
MS
1346static int set_syndrome_sources(struct page **srcs,
1347 struct stripe_head *sh,
1348 int srctype)
ac6b53b6
DW
1349{
1350 int disks = sh->disks;
1351 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352 int d0_idx = raid6_d0(sh);
1353 int count;
1354 int i;
1355
1356 for (i = 0; i < disks; i++)
5dd33c9a 1357 srcs[i] = NULL;
ac6b53b6
DW
1358
1359 count = 0;
1360 i = d0_idx;
1361 do {
1362 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1363 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1364
584acdd4
MS
1365 if (i == sh->qd_idx || i == sh->pd_idx ||
1366 (srctype == SYNDROME_SRC_ALL) ||
1367 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368 test_bit(R5_Wantdrain, &dev->flags)) ||
1369 (srctype == SYNDROME_SRC_WRITTEN &&
1370 dev->written))
1371 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1372 i = raid6_next_disk(i, disks);
1373 } while (i != d0_idx);
ac6b53b6 1374
e4424fee 1375 return syndrome_disks;
ac6b53b6
DW
1376}
1377
1378static struct dma_async_tx_descriptor *
1379ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380{
1381 int disks = sh->disks;
46d5b785 1382 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1383 int target;
1384 int qd_idx = sh->qd_idx;
1385 struct dma_async_tx_descriptor *tx;
1386 struct async_submit_ctl submit;
1387 struct r5dev *tgt;
1388 struct page *dest;
1389 int i;
1390 int count;
1391
59fc630b 1392 BUG_ON(sh->batch_head);
ac6b53b6
DW
1393 if (sh->ops.target < 0)
1394 target = sh->ops.target2;
1395 else if (sh->ops.target2 < 0)
1396 target = sh->ops.target;
91c00924 1397 else
ac6b53b6
DW
1398 /* we should only have one valid target */
1399 BUG();
1400 BUG_ON(target < 0);
1401 pr_debug("%s: stripe %llu block: %d\n",
1402 __func__, (unsigned long long)sh->sector, target);
1403
1404 tgt = &sh->dev[target];
1405 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406 dest = tgt->page;
1407
1408 atomic_inc(&sh->count);
1409
1410 if (target == qd_idx) {
584acdd4 1411 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1412 blocks[count] = NULL; /* regenerating p is not necessary */
1413 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1414 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415 ops_complete_compute, sh,
46d5b785 1416 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1417 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418 } else {
1419 /* Compute any data- or p-drive using XOR */
1420 count = 0;
1421 for (i = disks; i-- ; ) {
1422 if (i == target || i == qd_idx)
1423 continue;
1424 blocks[count++] = sh->dev[i].page;
1425 }
1426
0403e382
DW
1427 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428 NULL, ops_complete_compute, sh,
46d5b785 1429 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1430 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431 }
91c00924 1432
91c00924
DW
1433 return tx;
1434}
1435
ac6b53b6
DW
1436static struct dma_async_tx_descriptor *
1437ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438{
1439 int i, count, disks = sh->disks;
1440 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441 int d0_idx = raid6_d0(sh);
1442 int faila = -1, failb = -1;
1443 int target = sh->ops.target;
1444 int target2 = sh->ops.target2;
1445 struct r5dev *tgt = &sh->dev[target];
1446 struct r5dev *tgt2 = &sh->dev[target2];
1447 struct dma_async_tx_descriptor *tx;
46d5b785 1448 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1449 struct async_submit_ctl submit;
1450
59fc630b 1451 BUG_ON(sh->batch_head);
ac6b53b6
DW
1452 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453 __func__, (unsigned long long)sh->sector, target, target2);
1454 BUG_ON(target < 0 || target2 < 0);
1455 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457
6c910a78 1458 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1459 * slot number conversion for 'faila' and 'failb'
1460 */
1461 for (i = 0; i < disks ; i++)
5dd33c9a 1462 blocks[i] = NULL;
ac6b53b6
DW
1463 count = 0;
1464 i = d0_idx;
1465 do {
1466 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467
1468 blocks[slot] = sh->dev[i].page;
1469
1470 if (i == target)
1471 faila = slot;
1472 if (i == target2)
1473 failb = slot;
1474 i = raid6_next_disk(i, disks);
1475 } while (i != d0_idx);
ac6b53b6
DW
1476
1477 BUG_ON(faila == failb);
1478 if (failb < faila)
1479 swap(faila, failb);
1480 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481 __func__, (unsigned long long)sh->sector, faila, failb);
1482
1483 atomic_inc(&sh->count);
1484
1485 if (failb == syndrome_disks+1) {
1486 /* Q disk is one of the missing disks */
1487 if (faila == syndrome_disks) {
1488 /* Missing P+Q, just recompute */
0403e382
DW
1489 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490 ops_complete_compute, sh,
46d5b785 1491 to_addr_conv(sh, percpu, 0));
e4424fee 1492 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1493 STRIPE_SIZE, &submit);
1494 } else {
1495 struct page *dest;
1496 int data_target;
1497 int qd_idx = sh->qd_idx;
1498
1499 /* Missing D+Q: recompute D from P, then recompute Q */
1500 if (target == qd_idx)
1501 data_target = target2;
1502 else
1503 data_target = target;
1504
1505 count = 0;
1506 for (i = disks; i-- ; ) {
1507 if (i == data_target || i == qd_idx)
1508 continue;
1509 blocks[count++] = sh->dev[i].page;
1510 }
1511 dest = sh->dev[data_target].page;
0403e382
DW
1512 init_async_submit(&submit,
1513 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514 NULL, NULL, NULL,
46d5b785 1515 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1516 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517 &submit);
1518
584acdd4 1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1520 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521 ops_complete_compute, sh,
46d5b785 1522 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1523 return async_gen_syndrome(blocks, 0, count+2,
1524 STRIPE_SIZE, &submit);
1525 }
ac6b53b6 1526 } else {
6c910a78
DW
1527 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 ops_complete_compute, sh,
46d5b785 1529 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1530 if (failb == syndrome_disks) {
1531 /* We're missing D+P. */
1532 return async_raid6_datap_recov(syndrome_disks+2,
1533 STRIPE_SIZE, faila,
1534 blocks, &submit);
1535 } else {
1536 /* We're missing D+D. */
1537 return async_raid6_2data_recov(syndrome_disks+2,
1538 STRIPE_SIZE, faila, failb,
1539 blocks, &submit);
1540 }
ac6b53b6
DW
1541 }
1542}
1543
91c00924
DW
1544static void ops_complete_prexor(void *stripe_head_ref)
1545{
1546 struct stripe_head *sh = stripe_head_ref;
1547
e46b272b 1548 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1549 (unsigned long long)sh->sector);
91c00924
DW
1550}
1551
1552static struct dma_async_tx_descriptor *
584acdd4
MS
1553ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554 struct dma_async_tx_descriptor *tx)
91c00924 1555{
91c00924 1556 int disks = sh->disks;
46d5b785 1557 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1558 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1559 struct async_submit_ctl submit;
91c00924
DW
1560
1561 /* existing parity data subtracted */
1562 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563
59fc630b 1564 BUG_ON(sh->batch_head);
e46b272b 1565 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1566 (unsigned long long)sh->sector);
1567
1568 for (i = disks; i--; ) {
1569 struct r5dev *dev = &sh->dev[i];
1570 /* Only process blocks that are known to be uptodate */
d8ee0728 1571 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1572 xor_srcs[count++] = dev->page;
1573 }
1574
0403e382 1575 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1576 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1577 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1578
1579 return tx;
1580}
1581
584acdd4
MS
1582static struct dma_async_tx_descriptor *
1583ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584 struct dma_async_tx_descriptor *tx)
1585{
1586 struct page **blocks = to_addr_page(percpu, 0);
1587 int count;
1588 struct async_submit_ctl submit;
1589
1590 pr_debug("%s: stripe %llu\n", __func__,
1591 (unsigned long long)sh->sector);
1592
1593 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1598
1599 return tx;
1600}
1601
91c00924 1602static struct dma_async_tx_descriptor *
d8ee0728 1603ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1604{
1605 int disks = sh->disks;
d8ee0728 1606 int i;
59fc630b 1607 struct stripe_head *head_sh = sh;
91c00924 1608
e46b272b 1609 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1610 (unsigned long long)sh->sector);
1611
1612 for (i = disks; i--; ) {
59fc630b 1613 struct r5dev *dev;
91c00924 1614 struct bio *chosen;
91c00924 1615
59fc630b 1616 sh = head_sh;
1617 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1618 struct bio *wbi;
1619
59fc630b 1620again:
1621 dev = &sh->dev[i];
b17459c0 1622 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1623 chosen = dev->towrite;
1624 dev->towrite = NULL;
7a87f434 1625 sh->overwrite_disks = 0;
91c00924
DW
1626 BUG_ON(dev->written);
1627 wbi = dev->written = chosen;
b17459c0 1628 spin_unlock_irq(&sh->stripe_lock);
d592a996 1629 WARN_ON(dev->page != dev->orig_page);
91c00924 1630
4f024f37 1631 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1632 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1633 if (wbi->bi_rw & REQ_FUA)
1634 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1635 if (wbi->bi_rw & REQ_SYNC)
1636 set_bit(R5_SyncIO, &dev->flags);
9e444768 1637 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1638 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1639 else {
1640 tx = async_copy_data(1, wbi, &dev->page,
1641 dev->sector, tx, sh);
1642 if (dev->page != dev->orig_page) {
1643 set_bit(R5_SkipCopy, &dev->flags);
1644 clear_bit(R5_UPTODATE, &dev->flags);
1645 clear_bit(R5_OVERWRITE, &dev->flags);
1646 }
1647 }
91c00924
DW
1648 wbi = r5_next_bio(wbi, dev->sector);
1649 }
59fc630b 1650
1651 if (head_sh->batch_head) {
1652 sh = list_first_entry(&sh->batch_list,
1653 struct stripe_head,
1654 batch_list);
1655 if (sh == head_sh)
1656 continue;
1657 goto again;
1658 }
91c00924
DW
1659 }
1660 }
1661
1662 return tx;
1663}
1664
ac6b53b6 1665static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1666{
1667 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1668 int disks = sh->disks;
1669 int pd_idx = sh->pd_idx;
1670 int qd_idx = sh->qd_idx;
1671 int i;
9e444768 1672 bool fua = false, sync = false, discard = false;
91c00924 1673
e46b272b 1674 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1675 (unsigned long long)sh->sector);
1676
bc0934f0 1677 for (i = disks; i--; ) {
e9c7469b 1678 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1679 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1680 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1681 }
e9c7469b 1682
91c00924
DW
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1685
e9c7469b 1686 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1687 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1688 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1689 if (fua)
1690 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1691 if (sync)
1692 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1693 }
91c00924
DW
1694 }
1695
d8ee0728
DW
1696 if (sh->reconstruct_state == reconstruct_state_drain_run)
1697 sh->reconstruct_state = reconstruct_state_drain_result;
1698 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700 else {
1701 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702 sh->reconstruct_state = reconstruct_state_result;
1703 }
91c00924
DW
1704
1705 set_bit(STRIPE_HANDLE, &sh->state);
1706 release_stripe(sh);
1707}
1708
1709static void
ac6b53b6
DW
1710ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711 struct dma_async_tx_descriptor *tx)
91c00924 1712{
91c00924 1713 int disks = sh->disks;
59fc630b 1714 struct page **xor_srcs;
a08abd8c 1715 struct async_submit_ctl submit;
59fc630b 1716 int count, pd_idx = sh->pd_idx, i;
91c00924 1717 struct page *xor_dest;
d8ee0728 1718 int prexor = 0;
91c00924 1719 unsigned long flags;
59fc630b 1720 int j = 0;
1721 struct stripe_head *head_sh = sh;
1722 int last_stripe;
91c00924 1723
e46b272b 1724 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1725 (unsigned long long)sh->sector);
1726
620125f2
SL
1727 for (i = 0; i < sh->disks; i++) {
1728 if (pd_idx == i)
1729 continue;
1730 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731 break;
1732 }
1733 if (i >= sh->disks) {
1734 atomic_inc(&sh->count);
620125f2
SL
1735 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736 ops_complete_reconstruct(sh);
1737 return;
1738 }
59fc630b 1739again:
1740 count = 0;
1741 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1742 /* check if prexor is active which means only process blocks
1743 * that are part of a read-modify-write (written)
1744 */
59fc630b 1745 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1746 prexor = 1;
91c00924
DW
1747 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748 for (i = disks; i--; ) {
1749 struct r5dev *dev = &sh->dev[i];
59fc630b 1750 if (head_sh->dev[i].written)
91c00924
DW
1751 xor_srcs[count++] = dev->page;
1752 }
1753 } else {
1754 xor_dest = sh->dev[pd_idx].page;
1755 for (i = disks; i--; ) {
1756 struct r5dev *dev = &sh->dev[i];
1757 if (i != pd_idx)
1758 xor_srcs[count++] = dev->page;
1759 }
1760 }
1761
91c00924
DW
1762 /* 1/ if we prexor'd then the dest is reused as a source
1763 * 2/ if we did not prexor then we are redoing the parity
1764 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765 * for the synchronous xor case
1766 */
59fc630b 1767 last_stripe = !head_sh->batch_head ||
1768 list_first_entry(&sh->batch_list,
1769 struct stripe_head, batch_list) == head_sh;
1770 if (last_stripe) {
1771 flags = ASYNC_TX_ACK |
1772 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773
1774 atomic_inc(&head_sh->count);
1775 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776 to_addr_conv(sh, percpu, j));
1777 } else {
1778 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779 init_async_submit(&submit, flags, tx, NULL, NULL,
1780 to_addr_conv(sh, percpu, j));
1781 }
91c00924 1782
a08abd8c
DW
1783 if (unlikely(count == 1))
1784 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785 else
1786 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1787 if (!last_stripe) {
1788 j++;
1789 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790 batch_list);
1791 goto again;
1792 }
91c00924
DW
1793}
1794
ac6b53b6
DW
1795static void
1796ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797 struct dma_async_tx_descriptor *tx)
1798{
1799 struct async_submit_ctl submit;
59fc630b 1800 struct page **blocks;
1801 int count, i, j = 0;
1802 struct stripe_head *head_sh = sh;
1803 int last_stripe;
584acdd4
MS
1804 int synflags;
1805 unsigned long txflags;
ac6b53b6
DW
1806
1807 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808
620125f2
SL
1809 for (i = 0; i < sh->disks; i++) {
1810 if (sh->pd_idx == i || sh->qd_idx == i)
1811 continue;
1812 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813 break;
1814 }
1815 if (i >= sh->disks) {
1816 atomic_inc(&sh->count);
620125f2
SL
1817 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819 ops_complete_reconstruct(sh);
1820 return;
1821 }
1822
59fc630b 1823again:
1824 blocks = to_addr_page(percpu, j);
584acdd4
MS
1825
1826 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827 synflags = SYNDROME_SRC_WRITTEN;
1828 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829 } else {
1830 synflags = SYNDROME_SRC_ALL;
1831 txflags = ASYNC_TX_ACK;
1832 }
1833
1834 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1835 last_stripe = !head_sh->batch_head ||
1836 list_first_entry(&sh->batch_list,
1837 struct stripe_head, batch_list) == head_sh;
1838
1839 if (last_stripe) {
1840 atomic_inc(&head_sh->count);
584acdd4 1841 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1842 head_sh, to_addr_conv(sh, percpu, j));
1843 } else
1844 init_async_submit(&submit, 0, tx, NULL, NULL,
1845 to_addr_conv(sh, percpu, j));
48769695 1846 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1847 if (!last_stripe) {
1848 j++;
1849 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850 batch_list);
1851 goto again;
1852 }
91c00924
DW
1853}
1854
1855static void ops_complete_check(void *stripe_head_ref)
1856{
1857 struct stripe_head *sh = stripe_head_ref;
91c00924 1858
e46b272b 1859 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1860 (unsigned long long)sh->sector);
1861
ecc65c9b 1862 sh->check_state = check_state_check_result;
91c00924
DW
1863 set_bit(STRIPE_HANDLE, &sh->state);
1864 release_stripe(sh);
1865}
1866
ac6b53b6 1867static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1868{
91c00924 1869 int disks = sh->disks;
ac6b53b6
DW
1870 int pd_idx = sh->pd_idx;
1871 int qd_idx = sh->qd_idx;
1872 struct page *xor_dest;
46d5b785 1873 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1874 struct dma_async_tx_descriptor *tx;
a08abd8c 1875 struct async_submit_ctl submit;
ac6b53b6
DW
1876 int count;
1877 int i;
91c00924 1878
e46b272b 1879 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1880 (unsigned long long)sh->sector);
1881
59fc630b 1882 BUG_ON(sh->batch_head);
ac6b53b6
DW
1883 count = 0;
1884 xor_dest = sh->dev[pd_idx].page;
1885 xor_srcs[count++] = xor_dest;
91c00924 1886 for (i = disks; i--; ) {
ac6b53b6
DW
1887 if (i == pd_idx || i == qd_idx)
1888 continue;
1889 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1890 }
1891
d6f38f31 1892 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1893 to_addr_conv(sh, percpu, 0));
099f53cb 1894 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1895 &sh->ops.zero_sum_result, &submit);
91c00924 1896
91c00924 1897 atomic_inc(&sh->count);
a08abd8c
DW
1898 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899 tx = async_trigger_callback(&submit);
91c00924
DW
1900}
1901
ac6b53b6
DW
1902static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903{
46d5b785 1904 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1905 struct async_submit_ctl submit;
1906 int count;
1907
1908 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909 (unsigned long long)sh->sector, checkp);
1910
59fc630b 1911 BUG_ON(sh->batch_head);
584acdd4 1912 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1913 if (!checkp)
1914 srcs[count] = NULL;
91c00924 1915
91c00924 1916 atomic_inc(&sh->count);
ac6b53b6 1917 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1918 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1919 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1921}
1922
51acbcec 1923static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1924{
1925 int overlap_clear = 0, i, disks = sh->disks;
1926 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1927 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1928 int level = conf->level;
d6f38f31
DW
1929 struct raid5_percpu *percpu;
1930 unsigned long cpu;
91c00924 1931
d6f38f31
DW
1932 cpu = get_cpu();
1933 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1934 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1935 ops_run_biofill(sh);
1936 overlap_clear++;
1937 }
1938
7b3a871e 1939 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1940 if (level < 6)
1941 tx = ops_run_compute5(sh, percpu);
1942 else {
1943 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944 tx = ops_run_compute6_1(sh, percpu);
1945 else
1946 tx = ops_run_compute6_2(sh, percpu);
1947 }
1948 /* terminate the chain if reconstruct is not set to be run */
1949 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1950 async_tx_ack(tx);
1951 }
91c00924 1952
584acdd4
MS
1953 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954 if (level < 6)
1955 tx = ops_run_prexor5(sh, percpu, tx);
1956 else
1957 tx = ops_run_prexor6(sh, percpu, tx);
1958 }
91c00924 1959
600aa109 1960 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1961 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1962 overlap_clear++;
1963 }
1964
ac6b53b6
DW
1965 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966 if (level < 6)
1967 ops_run_reconstruct5(sh, percpu, tx);
1968 else
1969 ops_run_reconstruct6(sh, percpu, tx);
1970 }
91c00924 1971
ac6b53b6
DW
1972 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973 if (sh->check_state == check_state_run)
1974 ops_run_check_p(sh, percpu);
1975 else if (sh->check_state == check_state_run_q)
1976 ops_run_check_pq(sh, percpu, 0);
1977 else if (sh->check_state == check_state_run_pq)
1978 ops_run_check_pq(sh, percpu, 1);
1979 else
1980 BUG();
1981 }
91c00924 1982
59fc630b 1983 if (overlap_clear && !sh->batch_head)
91c00924
DW
1984 for (i = disks; i--; ) {
1985 struct r5dev *dev = &sh->dev[i];
1986 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987 wake_up(&sh->raid_conf->wait_for_overlap);
1988 }
d6f38f31 1989 put_cpu();
91c00924
DW
1990}
1991
f18c1a35
N
1992static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993{
1994 struct stripe_head *sh;
1995
1996 sh = kmem_cache_zalloc(sc, gfp);
1997 if (sh) {
1998 spin_lock_init(&sh->stripe_lock);
1999 spin_lock_init(&sh->batch_lock);
2000 INIT_LIST_HEAD(&sh->batch_list);
2001 INIT_LIST_HEAD(&sh->lru);
2002 atomic_set(&sh->count, 1);
2003 }
2004 return sh;
2005}
486f0644 2006static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2007{
2008 struct stripe_head *sh;
f18c1a35
N
2009
2010 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
2011 if (!sh)
2012 return 0;
6ce32846 2013
3f294f4f 2014 sh->raid_conf = conf;
3f294f4f 2015
a9683a79 2016 if (grow_buffers(sh, gfp)) {
e4e11e38 2017 shrink_buffers(sh);
3f294f4f
N
2018 kmem_cache_free(conf->slab_cache, sh);
2019 return 0;
2020 }
486f0644
N
2021 sh->hash_lock_index =
2022 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2023 /* we just created an active stripe so... */
3f294f4f 2024 atomic_inc(&conf->active_stripes);
59fc630b 2025
3f294f4f 2026 release_stripe(sh);
486f0644 2027 conf->max_nr_stripes++;
3f294f4f
N
2028 return 1;
2029}
2030
d1688a6d 2031static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2032{
e18b890b 2033 struct kmem_cache *sc;
5e5e3e78 2034 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2035
f4be6b43
N
2036 if (conf->mddev->gendisk)
2037 sprintf(conf->cache_name[0],
2038 "raid%d-%s", conf->level, mdname(conf->mddev));
2039 else
2040 sprintf(conf->cache_name[0],
2041 "raid%d-%p", conf->level, conf->mddev);
2042 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043
ad01c9e3
N
2044 conf->active_name = 0;
2045 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2046 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2047 0, 0, NULL);
1da177e4
LT
2048 if (!sc)
2049 return 1;
2050 conf->slab_cache = sc;
ad01c9e3 2051 conf->pool_size = devs;
486f0644
N
2052 while (num--)
2053 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2054 return 1;
486f0644 2055
1da177e4
LT
2056 return 0;
2057}
29269553 2058
d6f38f31
DW
2059/**
2060 * scribble_len - return the required size of the scribble region
2061 * @num - total number of disks in the array
2062 *
2063 * The size must be enough to contain:
2064 * 1/ a struct page pointer for each device in the array +2
2065 * 2/ room to convert each entry in (1) to its corresponding dma
2066 * (dma_map_page()) or page (page_address()) address.
2067 *
2068 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069 * calculate over all devices (not just the data blocks), using zeros in place
2070 * of the P and Q blocks.
2071 */
46d5b785 2072static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2073{
46d5b785 2074 struct flex_array *ret;
d6f38f31
DW
2075 size_t len;
2076
2077 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2078 ret = flex_array_alloc(len, cnt, flags);
2079 if (!ret)
2080 return NULL;
2081 /* always prealloc all elements, so no locking is required */
2082 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083 flex_array_free(ret);
2084 return NULL;
2085 }
2086 return ret;
d6f38f31
DW
2087}
2088
738a2738
N
2089static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090{
2091 unsigned long cpu;
2092 int err = 0;
2093
2094 mddev_suspend(conf->mddev);
2095 get_online_cpus();
2096 for_each_present_cpu(cpu) {
2097 struct raid5_percpu *percpu;
2098 struct flex_array *scribble;
2099
2100 percpu = per_cpu_ptr(conf->percpu, cpu);
2101 scribble = scribble_alloc(new_disks,
2102 new_sectors / STRIPE_SECTORS,
2103 GFP_NOIO);
2104
2105 if (scribble) {
2106 flex_array_free(percpu->scribble);
2107 percpu->scribble = scribble;
2108 } else {
2109 err = -ENOMEM;
2110 break;
2111 }
2112 }
2113 put_online_cpus();
2114 mddev_resume(conf->mddev);
2115 return err;
2116}
2117
d1688a6d 2118static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2119{
2120 /* Make all the stripes able to hold 'newsize' devices.
2121 * New slots in each stripe get 'page' set to a new page.
2122 *
2123 * This happens in stages:
2124 * 1/ create a new kmem_cache and allocate the required number of
2125 * stripe_heads.
83f0d77a 2126 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2127 * to the new stripe_heads. This will have the side effect of
2128 * freezing the array as once all stripe_heads have been collected,
2129 * no IO will be possible. Old stripe heads are freed once their
2130 * pages have been transferred over, and the old kmem_cache is
2131 * freed when all stripes are done.
2132 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2133 * we simple return a failre status - no need to clean anything up.
2134 * 4/ allocate new pages for the new slots in the new stripe_heads.
2135 * If this fails, we don't bother trying the shrink the
2136 * stripe_heads down again, we just leave them as they are.
2137 * As each stripe_head is processed the new one is released into
2138 * active service.
2139 *
2140 * Once step2 is started, we cannot afford to wait for a write,
2141 * so we use GFP_NOIO allocations.
2142 */
2143 struct stripe_head *osh, *nsh;
2144 LIST_HEAD(newstripes);
2145 struct disk_info *ndisks;
b5470dc5 2146 int err;
e18b890b 2147 struct kmem_cache *sc;
ad01c9e3 2148 int i;
566c09c5 2149 int hash, cnt;
ad01c9e3
N
2150
2151 if (newsize <= conf->pool_size)
2152 return 0; /* never bother to shrink */
2153
b5470dc5
DW
2154 err = md_allow_write(conf->mddev);
2155 if (err)
2156 return err;
2a2275d6 2157
ad01c9e3
N
2158 /* Step 1 */
2159 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2161 0, 0, NULL);
ad01c9e3
N
2162 if (!sc)
2163 return -ENOMEM;
2164
2d5b569b
N
2165 /* Need to ensure auto-resizing doesn't interfere */
2166 mutex_lock(&conf->cache_size_mutex);
2167
ad01c9e3 2168 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2169 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2170 if (!nsh)
2171 break;
2172
ad01c9e3 2173 nsh->raid_conf = conf;
ad01c9e3
N
2174 list_add(&nsh->lru, &newstripes);
2175 }
2176 if (i) {
2177 /* didn't get enough, give up */
2178 while (!list_empty(&newstripes)) {
2179 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2180 list_del(&nsh->lru);
2181 kmem_cache_free(sc, nsh);
2182 }
2183 kmem_cache_destroy(sc);
2d5b569b 2184 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2185 return -ENOMEM;
2186 }
2187 /* Step 2 - Must use GFP_NOIO now.
2188 * OK, we have enough stripes, start collecting inactive
2189 * stripes and copying them over
2190 */
566c09c5
SL
2191 hash = 0;
2192 cnt = 0;
ad01c9e3 2193 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2194 lock_device_hash_lock(conf, hash);
e9e4c377 2195 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
566c09c5
SL
2196 !list_empty(conf->inactive_list + hash),
2197 unlock_device_hash_lock(conf, hash),
2198 lock_device_hash_lock(conf, hash));
2199 osh = get_free_stripe(conf, hash);
2200 unlock_device_hash_lock(conf, hash);
f18c1a35 2201
d592a996 2202 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2203 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2204 nsh->dev[i].orig_page = osh->dev[i].page;
2205 }
566c09c5 2206 nsh->hash_lock_index = hash;
ad01c9e3 2207 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2208 cnt++;
2209 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2210 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2211 hash++;
2212 cnt = 0;
2213 }
ad01c9e3
N
2214 }
2215 kmem_cache_destroy(conf->slab_cache);
2216
2217 /* Step 3.
2218 * At this point, we are holding all the stripes so the array
2219 * is completely stalled, so now is a good time to resize
d6f38f31 2220 * conf->disks and the scribble region
ad01c9e3
N
2221 */
2222 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2223 if (ndisks) {
2224 for (i=0; i<conf->raid_disks; i++)
2225 ndisks[i] = conf->disks[i];
2226 kfree(conf->disks);
2227 conf->disks = ndisks;
2228 } else
2229 err = -ENOMEM;
2230
2d5b569b 2231 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2232 /* Step 4, return new stripes to service */
2233 while(!list_empty(&newstripes)) {
2234 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2235 list_del_init(&nsh->lru);
d6f38f31 2236
ad01c9e3
N
2237 for (i=conf->raid_disks; i < newsize; i++)
2238 if (nsh->dev[i].page == NULL) {
2239 struct page *p = alloc_page(GFP_NOIO);
2240 nsh->dev[i].page = p;
d592a996 2241 nsh->dev[i].orig_page = p;
ad01c9e3
N
2242 if (!p)
2243 err = -ENOMEM;
2244 }
2245 release_stripe(nsh);
2246 }
2247 /* critical section pass, GFP_NOIO no longer needed */
2248
2249 conf->slab_cache = sc;
2250 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2251 if (!err)
2252 conf->pool_size = newsize;
ad01c9e3
N
2253 return err;
2254}
1da177e4 2255
486f0644 2256static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2257{
2258 struct stripe_head *sh;
486f0644 2259 int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
1da177e4 2260
566c09c5
SL
2261 spin_lock_irq(conf->hash_locks + hash);
2262 sh = get_free_stripe(conf, hash);
2263 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2264 if (!sh)
2265 return 0;
78bafebd 2266 BUG_ON(atomic_read(&sh->count));
e4e11e38 2267 shrink_buffers(sh);
3f294f4f
N
2268 kmem_cache_free(conf->slab_cache, sh);
2269 atomic_dec(&conf->active_stripes);
486f0644 2270 conf->max_nr_stripes--;
3f294f4f
N
2271 return 1;
2272}
2273
d1688a6d 2274static void shrink_stripes(struct r5conf *conf)
3f294f4f 2275{
486f0644
N
2276 while (conf->max_nr_stripes &&
2277 drop_one_stripe(conf))
2278 ;
3f294f4f 2279
29fc7e3e
N
2280 if (conf->slab_cache)
2281 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2282 conf->slab_cache = NULL;
2283}
2284
6712ecf8 2285static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 2286{
99c0fb5f 2287 struct stripe_head *sh = bi->bi_private;
d1688a6d 2288 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2289 int disks = sh->disks, i;
1da177e4 2290 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 2291 char b[BDEVNAME_SIZE];
dd054fce 2292 struct md_rdev *rdev = NULL;
05616be5 2293 sector_t s;
1da177e4
LT
2294
2295 for (i=0 ; i<disks; i++)
2296 if (bi == &sh->dev[i].req)
2297 break;
2298
45b4233c
DW
2299 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2300 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
2301 uptodate);
2302 if (i == disks) {
2303 BUG();
6712ecf8 2304 return;
1da177e4 2305 }
14a75d3e 2306 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2307 /* If replacement finished while this request was outstanding,
2308 * 'replacement' might be NULL already.
2309 * In that case it moved down to 'rdev'.
2310 * rdev is not removed until all requests are finished.
2311 */
14a75d3e 2312 rdev = conf->disks[i].replacement;
dd054fce 2313 if (!rdev)
14a75d3e 2314 rdev = conf->disks[i].rdev;
1da177e4 2315
05616be5
N
2316 if (use_new_offset(conf, sh))
2317 s = sh->sector + rdev->new_data_offset;
2318 else
2319 s = sh->sector + rdev->data_offset;
1da177e4 2320 if (uptodate) {
1da177e4 2321 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2322 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2323 /* Note that this cannot happen on a
2324 * replacement device. We just fail those on
2325 * any error
2326 */
8bda470e
CD
2327 printk_ratelimited(
2328 KERN_INFO
2329 "md/raid:%s: read error corrected"
2330 " (%lu sectors at %llu on %s)\n",
2331 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2332 (unsigned long long)s,
8bda470e 2333 bdevname(rdev->bdev, b));
ddd5115f 2334 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2335 clear_bit(R5_ReadError, &sh->dev[i].flags);
2336 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2337 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2338 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2339
14a75d3e
N
2340 if (atomic_read(&rdev->read_errors))
2341 atomic_set(&rdev->read_errors, 0);
1da177e4 2342 } else {
14a75d3e 2343 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2344 int retry = 0;
2e8ac303 2345 int set_bad = 0;
d6950432 2346
1da177e4 2347 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2348 atomic_inc(&rdev->read_errors);
14a75d3e
N
2349 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2350 printk_ratelimited(
2351 KERN_WARNING
2352 "md/raid:%s: read error on replacement device "
2353 "(sector %llu on %s).\n",
2354 mdname(conf->mddev),
05616be5 2355 (unsigned long long)s,
14a75d3e 2356 bdn);
2e8ac303 2357 else if (conf->mddev->degraded >= conf->max_degraded) {
2358 set_bad = 1;
8bda470e
CD
2359 printk_ratelimited(
2360 KERN_WARNING
2361 "md/raid:%s: read error not correctable "
2362 "(sector %llu on %s).\n",
2363 mdname(conf->mddev),
05616be5 2364 (unsigned long long)s,
8bda470e 2365 bdn);
2e8ac303 2366 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2367 /* Oh, no!!! */
2e8ac303 2368 set_bad = 1;
8bda470e
CD
2369 printk_ratelimited(
2370 KERN_WARNING
2371 "md/raid:%s: read error NOT corrected!! "
2372 "(sector %llu on %s).\n",
2373 mdname(conf->mddev),
05616be5 2374 (unsigned long long)s,
8bda470e 2375 bdn);
2e8ac303 2376 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2377 > conf->max_nr_stripes)
14f8d26b 2378 printk(KERN_WARNING
0c55e022 2379 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2380 mdname(conf->mddev), bdn);
ba22dcbf
N
2381 else
2382 retry = 1;
edfa1f65
BY
2383 if (set_bad && test_bit(In_sync, &rdev->flags)
2384 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2385 retry = 1;
ba22dcbf 2386 if (retry)
3f9e7c14 2387 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2388 set_bit(R5_ReadError, &sh->dev[i].flags);
2389 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2390 } else
2391 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2392 else {
4e5314b5
N
2393 clear_bit(R5_ReadError, &sh->dev[i].flags);
2394 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2395 if (!(set_bad
2396 && test_bit(In_sync, &rdev->flags)
2397 && rdev_set_badblocks(
2398 rdev, sh->sector, STRIPE_SECTORS, 0)))
2399 md_error(conf->mddev, rdev);
ba22dcbf 2400 }
1da177e4 2401 }
14a75d3e 2402 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2403 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2404 set_bit(STRIPE_HANDLE, &sh->state);
2405 release_stripe(sh);
1da177e4
LT
2406}
2407
d710e138 2408static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 2409{
99c0fb5f 2410 struct stripe_head *sh = bi->bi_private;
d1688a6d 2411 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2412 int disks = sh->disks, i;
977df362 2413 struct md_rdev *uninitialized_var(rdev);
1da177e4 2414 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
2415 sector_t first_bad;
2416 int bad_sectors;
977df362 2417 int replacement = 0;
1da177e4 2418
977df362
N
2419 for (i = 0 ; i < disks; i++) {
2420 if (bi == &sh->dev[i].req) {
2421 rdev = conf->disks[i].rdev;
1da177e4 2422 break;
977df362
N
2423 }
2424 if (bi == &sh->dev[i].rreq) {
2425 rdev = conf->disks[i].replacement;
dd054fce
N
2426 if (rdev)
2427 replacement = 1;
2428 else
2429 /* rdev was removed and 'replacement'
2430 * replaced it. rdev is not removed
2431 * until all requests are finished.
2432 */
2433 rdev = conf->disks[i].rdev;
977df362
N
2434 break;
2435 }
2436 }
45b4233c 2437 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
2438 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2439 uptodate);
2440 if (i == disks) {
2441 BUG();
6712ecf8 2442 return;
1da177e4
LT
2443 }
2444
977df362
N
2445 if (replacement) {
2446 if (!uptodate)
2447 md_error(conf->mddev, rdev);
2448 else if (is_badblock(rdev, sh->sector,
2449 STRIPE_SECTORS,
2450 &first_bad, &bad_sectors))
2451 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2452 } else {
2453 if (!uptodate) {
9f97e4b1 2454 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2455 set_bit(WriteErrorSeen, &rdev->flags);
2456 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2457 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2458 set_bit(MD_RECOVERY_NEEDED,
2459 &rdev->mddev->recovery);
977df362
N
2460 } else if (is_badblock(rdev, sh->sector,
2461 STRIPE_SECTORS,
c0b32972 2462 &first_bad, &bad_sectors)) {
977df362 2463 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2464 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2465 /* That was a successful write so make
2466 * sure it looks like we already did
2467 * a re-write.
2468 */
2469 set_bit(R5_ReWrite, &sh->dev[i].flags);
2470 }
977df362
N
2471 }
2472 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2473
bb27051f 2474 if (sh->batch_head && !uptodate && !replacement)
72ac7330 2475 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2476
977df362
N
2477 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2478 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2479 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2480 release_stripe(sh);
59fc630b 2481
2482 if (sh->batch_head && sh != sh->batch_head)
2483 release_stripe(sh->batch_head);
1da177e4
LT
2484}
2485
784052ec 2486static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
d592a996 2487
784052ec 2488static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2489{
2490 struct r5dev *dev = &sh->dev[i];
2491
2492 bio_init(&dev->req);
2493 dev->req.bi_io_vec = &dev->vec;
d592a996 2494 dev->req.bi_max_vecs = 1;
1da177e4
LT
2495 dev->req.bi_private = sh;
2496
977df362
N
2497 bio_init(&dev->rreq);
2498 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2499 dev->rreq.bi_max_vecs = 1;
977df362 2500 dev->rreq.bi_private = sh;
977df362 2501
1da177e4 2502 dev->flags = 0;
784052ec 2503 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2504}
2505
fd01b88c 2506static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2507{
2508 char b[BDEVNAME_SIZE];
d1688a6d 2509 struct r5conf *conf = mddev->private;
908f4fbd 2510 unsigned long flags;
0c55e022 2511 pr_debug("raid456: error called\n");
1da177e4 2512
908f4fbd
N
2513 spin_lock_irqsave(&conf->device_lock, flags);
2514 clear_bit(In_sync, &rdev->flags);
2515 mddev->degraded = calc_degraded(conf);
2516 spin_unlock_irqrestore(&conf->device_lock, flags);
2517 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2518
de393cde 2519 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2520 set_bit(Faulty, &rdev->flags);
2521 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2522 printk(KERN_ALERT
2523 "md/raid:%s: Disk failure on %s, disabling device.\n"
2524 "md/raid:%s: Operation continuing on %d devices.\n",
2525 mdname(mddev),
2526 bdevname(rdev->bdev, b),
2527 mdname(mddev),
2528 conf->raid_disks - mddev->degraded);
16a53ecc 2529}
1da177e4
LT
2530
2531/*
2532 * Input: a 'big' sector number,
2533 * Output: index of the data and parity disk, and the sector # in them.
2534 */
d1688a6d 2535static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2536 int previous, int *dd_idx,
2537 struct stripe_head *sh)
1da177e4 2538{
6e3b96ed 2539 sector_t stripe, stripe2;
35f2a591 2540 sector_t chunk_number;
1da177e4 2541 unsigned int chunk_offset;
911d4ee8 2542 int pd_idx, qd_idx;
67cc2b81 2543 int ddf_layout = 0;
1da177e4 2544 sector_t new_sector;
e183eaed
N
2545 int algorithm = previous ? conf->prev_algo
2546 : conf->algorithm;
09c9e5fa
AN
2547 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2548 : conf->chunk_sectors;
112bf897
N
2549 int raid_disks = previous ? conf->previous_raid_disks
2550 : conf->raid_disks;
2551 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2552
2553 /* First compute the information on this sector */
2554
2555 /*
2556 * Compute the chunk number and the sector offset inside the chunk
2557 */
2558 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2559 chunk_number = r_sector;
1da177e4
LT
2560
2561 /*
2562 * Compute the stripe number
2563 */
35f2a591
N
2564 stripe = chunk_number;
2565 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2566 stripe2 = stripe;
1da177e4
LT
2567 /*
2568 * Select the parity disk based on the user selected algorithm.
2569 */
84789554 2570 pd_idx = qd_idx = -1;
16a53ecc
N
2571 switch(conf->level) {
2572 case 4:
911d4ee8 2573 pd_idx = data_disks;
16a53ecc
N
2574 break;
2575 case 5:
e183eaed 2576 switch (algorithm) {
1da177e4 2577 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2578 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2579 if (*dd_idx >= pd_idx)
1da177e4
LT
2580 (*dd_idx)++;
2581 break;
2582 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2583 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2584 if (*dd_idx >= pd_idx)
1da177e4
LT
2585 (*dd_idx)++;
2586 break;
2587 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2588 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2589 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2590 break;
2591 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2592 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2593 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2594 break;
99c0fb5f
N
2595 case ALGORITHM_PARITY_0:
2596 pd_idx = 0;
2597 (*dd_idx)++;
2598 break;
2599 case ALGORITHM_PARITY_N:
2600 pd_idx = data_disks;
2601 break;
1da177e4 2602 default:
99c0fb5f 2603 BUG();
16a53ecc
N
2604 }
2605 break;
2606 case 6:
2607
e183eaed 2608 switch (algorithm) {
16a53ecc 2609 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2610 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2611 qd_idx = pd_idx + 1;
2612 if (pd_idx == raid_disks-1) {
99c0fb5f 2613 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2614 qd_idx = 0;
2615 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2616 (*dd_idx) += 2; /* D D P Q D */
2617 break;
2618 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2619 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2620 qd_idx = pd_idx + 1;
2621 if (pd_idx == raid_disks-1) {
99c0fb5f 2622 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2623 qd_idx = 0;
2624 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2625 (*dd_idx) += 2; /* D D P Q D */
2626 break;
2627 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2628 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2629 qd_idx = (pd_idx + 1) % raid_disks;
2630 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2631 break;
2632 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2633 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2634 qd_idx = (pd_idx + 1) % raid_disks;
2635 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2636 break;
99c0fb5f
N
2637
2638 case ALGORITHM_PARITY_0:
2639 pd_idx = 0;
2640 qd_idx = 1;
2641 (*dd_idx) += 2;
2642 break;
2643 case ALGORITHM_PARITY_N:
2644 pd_idx = data_disks;
2645 qd_idx = data_disks + 1;
2646 break;
2647
2648 case ALGORITHM_ROTATING_ZERO_RESTART:
2649 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2650 * of blocks for computing Q is different.
2651 */
6e3b96ed 2652 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2653 qd_idx = pd_idx + 1;
2654 if (pd_idx == raid_disks-1) {
2655 (*dd_idx)++; /* Q D D D P */
2656 qd_idx = 0;
2657 } else if (*dd_idx >= pd_idx)
2658 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2659 ddf_layout = 1;
99c0fb5f
N
2660 break;
2661
2662 case ALGORITHM_ROTATING_N_RESTART:
2663 /* Same a left_asymmetric, by first stripe is
2664 * D D D P Q rather than
2665 * Q D D D P
2666 */
6e3b96ed
N
2667 stripe2 += 1;
2668 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2669 qd_idx = pd_idx + 1;
2670 if (pd_idx == raid_disks-1) {
2671 (*dd_idx)++; /* Q D D D P */
2672 qd_idx = 0;
2673 } else if (*dd_idx >= pd_idx)
2674 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2675 ddf_layout = 1;
99c0fb5f
N
2676 break;
2677
2678 case ALGORITHM_ROTATING_N_CONTINUE:
2679 /* Same as left_symmetric but Q is before P */
6e3b96ed 2680 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2681 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2682 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2683 ddf_layout = 1;
99c0fb5f
N
2684 break;
2685
2686 case ALGORITHM_LEFT_ASYMMETRIC_6:
2687 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2688 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2689 if (*dd_idx >= pd_idx)
2690 (*dd_idx)++;
2691 qd_idx = raid_disks - 1;
2692 break;
2693
2694 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2695 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2696 if (*dd_idx >= pd_idx)
2697 (*dd_idx)++;
2698 qd_idx = raid_disks - 1;
2699 break;
2700
2701 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2702 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2703 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2704 qd_idx = raid_disks - 1;
2705 break;
2706
2707 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2708 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2709 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2710 qd_idx = raid_disks - 1;
2711 break;
2712
2713 case ALGORITHM_PARITY_0_6:
2714 pd_idx = 0;
2715 (*dd_idx)++;
2716 qd_idx = raid_disks - 1;
2717 break;
2718
16a53ecc 2719 default:
99c0fb5f 2720 BUG();
16a53ecc
N
2721 }
2722 break;
1da177e4
LT
2723 }
2724
911d4ee8
N
2725 if (sh) {
2726 sh->pd_idx = pd_idx;
2727 sh->qd_idx = qd_idx;
67cc2b81 2728 sh->ddf_layout = ddf_layout;
911d4ee8 2729 }
1da177e4
LT
2730 /*
2731 * Finally, compute the new sector number
2732 */
2733 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2734 return new_sector;
2735}
2736
784052ec 2737static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2738{
d1688a6d 2739 struct r5conf *conf = sh->raid_conf;
b875e531
N
2740 int raid_disks = sh->disks;
2741 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2742 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2743 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2744 : conf->chunk_sectors;
e183eaed
N
2745 int algorithm = previous ? conf->prev_algo
2746 : conf->algorithm;
1da177e4
LT
2747 sector_t stripe;
2748 int chunk_offset;
35f2a591
N
2749 sector_t chunk_number;
2750 int dummy1, dd_idx = i;
1da177e4 2751 sector_t r_sector;
911d4ee8 2752 struct stripe_head sh2;
1da177e4
LT
2753
2754 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2755 stripe = new_sector;
1da177e4 2756
16a53ecc
N
2757 if (i == sh->pd_idx)
2758 return 0;
2759 switch(conf->level) {
2760 case 4: break;
2761 case 5:
e183eaed 2762 switch (algorithm) {
1da177e4
LT
2763 case ALGORITHM_LEFT_ASYMMETRIC:
2764 case ALGORITHM_RIGHT_ASYMMETRIC:
2765 if (i > sh->pd_idx)
2766 i--;
2767 break;
2768 case ALGORITHM_LEFT_SYMMETRIC:
2769 case ALGORITHM_RIGHT_SYMMETRIC:
2770 if (i < sh->pd_idx)
2771 i += raid_disks;
2772 i -= (sh->pd_idx + 1);
2773 break;
99c0fb5f
N
2774 case ALGORITHM_PARITY_0:
2775 i -= 1;
2776 break;
2777 case ALGORITHM_PARITY_N:
2778 break;
1da177e4 2779 default:
99c0fb5f 2780 BUG();
16a53ecc
N
2781 }
2782 break;
2783 case 6:
d0dabf7e 2784 if (i == sh->qd_idx)
16a53ecc 2785 return 0; /* It is the Q disk */
e183eaed 2786 switch (algorithm) {
16a53ecc
N
2787 case ALGORITHM_LEFT_ASYMMETRIC:
2788 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2789 case ALGORITHM_ROTATING_ZERO_RESTART:
2790 case ALGORITHM_ROTATING_N_RESTART:
2791 if (sh->pd_idx == raid_disks-1)
2792 i--; /* Q D D D P */
16a53ecc
N
2793 else if (i > sh->pd_idx)
2794 i -= 2; /* D D P Q D */
2795 break;
2796 case ALGORITHM_LEFT_SYMMETRIC:
2797 case ALGORITHM_RIGHT_SYMMETRIC:
2798 if (sh->pd_idx == raid_disks-1)
2799 i--; /* Q D D D P */
2800 else {
2801 /* D D P Q D */
2802 if (i < sh->pd_idx)
2803 i += raid_disks;
2804 i -= (sh->pd_idx + 2);
2805 }
2806 break;
99c0fb5f
N
2807 case ALGORITHM_PARITY_0:
2808 i -= 2;
2809 break;
2810 case ALGORITHM_PARITY_N:
2811 break;
2812 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2813 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2814 if (sh->pd_idx == 0)
2815 i--; /* P D D D Q */
e4424fee
N
2816 else {
2817 /* D D Q P D */
2818 if (i < sh->pd_idx)
2819 i += raid_disks;
2820 i -= (sh->pd_idx + 1);
2821 }
99c0fb5f
N
2822 break;
2823 case ALGORITHM_LEFT_ASYMMETRIC_6:
2824 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2825 if (i > sh->pd_idx)
2826 i--;
2827 break;
2828 case ALGORITHM_LEFT_SYMMETRIC_6:
2829 case ALGORITHM_RIGHT_SYMMETRIC_6:
2830 if (i < sh->pd_idx)
2831 i += data_disks + 1;
2832 i -= (sh->pd_idx + 1);
2833 break;
2834 case ALGORITHM_PARITY_0_6:
2835 i -= 1;
2836 break;
16a53ecc 2837 default:
99c0fb5f 2838 BUG();
16a53ecc
N
2839 }
2840 break;
1da177e4
LT
2841 }
2842
2843 chunk_number = stripe * data_disks + i;
35f2a591 2844 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2845
112bf897 2846 check = raid5_compute_sector(conf, r_sector,
784052ec 2847 previous, &dummy1, &sh2);
911d4ee8
N
2848 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2849 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2850 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2851 mdname(conf->mddev));
1da177e4
LT
2852 return 0;
2853 }
2854 return r_sector;
2855}
2856
600aa109 2857static void
c0f7bddb 2858schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2859 int rcw, int expand)
e33129d8 2860{
584acdd4 2861 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2862 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2863 int level = conf->level;
e33129d8
DW
2864
2865 if (rcw) {
e33129d8
DW
2866
2867 for (i = disks; i--; ) {
2868 struct r5dev *dev = &sh->dev[i];
2869
2870 if (dev->towrite) {
2871 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2872 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2873 if (!expand)
2874 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2875 s->locked++;
e33129d8
DW
2876 }
2877 }
ce7d363a
N
2878 /* if we are not expanding this is a proper write request, and
2879 * there will be bios with new data to be drained into the
2880 * stripe cache
2881 */
2882 if (!expand) {
2883 if (!s->locked)
2884 /* False alarm, nothing to do */
2885 return;
2886 sh->reconstruct_state = reconstruct_state_drain_run;
2887 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2888 } else
2889 sh->reconstruct_state = reconstruct_state_run;
2890
2891 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2892
c0f7bddb 2893 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2894 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2895 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2896 } else {
2897 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2898 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2899 BUG_ON(level == 6 &&
2900 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2901 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2902
e33129d8
DW
2903 for (i = disks; i--; ) {
2904 struct r5dev *dev = &sh->dev[i];
584acdd4 2905 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2906 continue;
2907
e33129d8
DW
2908 if (dev->towrite &&
2909 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2910 test_bit(R5_Wantcompute, &dev->flags))) {
2911 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2912 set_bit(R5_LOCKED, &dev->flags);
2913 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2914 s->locked++;
e33129d8
DW
2915 }
2916 }
ce7d363a
N
2917 if (!s->locked)
2918 /* False alarm - nothing to do */
2919 return;
2920 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2921 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2922 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2923 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2924 }
2925
c0f7bddb 2926 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2927 * are in flight
2928 */
2929 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2930 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2931 s->locked++;
e33129d8 2932
c0f7bddb
YT
2933 if (level == 6) {
2934 int qd_idx = sh->qd_idx;
2935 struct r5dev *dev = &sh->dev[qd_idx];
2936
2937 set_bit(R5_LOCKED, &dev->flags);
2938 clear_bit(R5_UPTODATE, &dev->flags);
2939 s->locked++;
2940 }
2941
600aa109 2942 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2943 __func__, (unsigned long long)sh->sector,
600aa109 2944 s->locked, s->ops_request);
e33129d8 2945}
16a53ecc 2946
1da177e4
LT
2947/*
2948 * Each stripe/dev can have one or more bion attached.
16a53ecc 2949 * toread/towrite point to the first in a chain.
1da177e4
LT
2950 * The bi_next chain must be in order.
2951 */
da41ba65 2952static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2953 int forwrite, int previous)
1da177e4
LT
2954{
2955 struct bio **bip;
d1688a6d 2956 struct r5conf *conf = sh->raid_conf;
72626685 2957 int firstwrite=0;
1da177e4 2958
cbe47ec5 2959 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2960 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2961 (unsigned long long)sh->sector);
2962
b17459c0
SL
2963 /*
2964 * If several bio share a stripe. The bio bi_phys_segments acts as a
2965 * reference count to avoid race. The reference count should already be
2966 * increased before this function is called (for example, in
2967 * make_request()), so other bio sharing this stripe will not free the
2968 * stripe. If a stripe is owned by one stripe, the stripe lock will
2969 * protect it.
2970 */
2971 spin_lock_irq(&sh->stripe_lock);
59fc630b 2972 /* Don't allow new IO added to stripes in batch list */
2973 if (sh->batch_head)
2974 goto overlap;
72626685 2975 if (forwrite) {
1da177e4 2976 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2977 if (*bip == NULL)
72626685
N
2978 firstwrite = 1;
2979 } else
1da177e4 2980 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2981 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2982 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2983 goto overlap;
2984 bip = & (*bip)->bi_next;
2985 }
4f024f37 2986 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2987 goto overlap;
2988
da41ba65 2989 if (!forwrite || previous)
2990 clear_bit(STRIPE_BATCH_READY, &sh->state);
2991
78bafebd 2992 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2993 if (*bip)
2994 bi->bi_next = *bip;
2995 *bip = bi;
e7836bd6 2996 raid5_inc_bi_active_stripes(bi);
72626685 2997
1da177e4
LT
2998 if (forwrite) {
2999 /* check if page is covered */
3000 sector_t sector = sh->dev[dd_idx].sector;
3001 for (bi=sh->dev[dd_idx].towrite;
3002 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3003 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3004 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3005 if (bio_end_sector(bi) >= sector)
3006 sector = bio_end_sector(bi);
1da177e4
LT
3007 }
3008 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3009 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3010 sh->overwrite_disks++;
1da177e4 3011 }
cbe47ec5
N
3012
3013 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3014 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3015 (unsigned long long)sh->sector, dd_idx);
3016
3017 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3018 /* Cannot hold spinlock over bitmap_startwrite,
3019 * but must ensure this isn't added to a batch until
3020 * we have added to the bitmap and set bm_seq.
3021 * So set STRIPE_BITMAP_PENDING to prevent
3022 * batching.
3023 * If multiple add_stripe_bio() calls race here they
3024 * much all set STRIPE_BITMAP_PENDING. So only the first one
3025 * to complete "bitmap_startwrite" gets to set
3026 * STRIPE_BIT_DELAY. This is important as once a stripe
3027 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3028 * any more.
3029 */
3030 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3031 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3032 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3033 STRIPE_SECTORS, 0);
d0852df5
N
3034 spin_lock_irq(&sh->stripe_lock);
3035 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3036 if (!sh->batch_head) {
3037 sh->bm_seq = conf->seq_flush+1;
3038 set_bit(STRIPE_BIT_DELAY, &sh->state);
3039 }
cbe47ec5 3040 }
d0852df5 3041 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3042
3043 if (stripe_can_batch(sh))
3044 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3045 return 1;
3046
3047 overlap:
3048 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3049 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3050 return 0;
3051}
3052
d1688a6d 3053static void end_reshape(struct r5conf *conf);
29269553 3054
d1688a6d 3055static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3056 struct stripe_head *sh)
ccfcc3c1 3057{
784052ec 3058 int sectors_per_chunk =
09c9e5fa 3059 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3060 int dd_idx;
2d2063ce 3061 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3062 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3063
112bf897
N
3064 raid5_compute_sector(conf,
3065 stripe * (disks - conf->max_degraded)
b875e531 3066 *sectors_per_chunk + chunk_offset,
112bf897 3067 previous,
911d4ee8 3068 &dd_idx, sh);
ccfcc3c1
N
3069}
3070
a4456856 3071static void
d1688a6d 3072handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3073 struct stripe_head_state *s, int disks,
3074 struct bio **return_bi)
3075{
3076 int i;
59fc630b 3077 BUG_ON(sh->batch_head);
a4456856
DW
3078 for (i = disks; i--; ) {
3079 struct bio *bi;
3080 int bitmap_end = 0;
3081
3082 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3083 struct md_rdev *rdev;
a4456856
DW
3084 rcu_read_lock();
3085 rdev = rcu_dereference(conf->disks[i].rdev);
3086 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3087 atomic_inc(&rdev->nr_pending);
3088 else
3089 rdev = NULL;
a4456856 3090 rcu_read_unlock();
7f0da59b
N
3091 if (rdev) {
3092 if (!rdev_set_badblocks(
3093 rdev,
3094 sh->sector,
3095 STRIPE_SECTORS, 0))
3096 md_error(conf->mddev, rdev);
3097 rdev_dec_pending(rdev, conf->mddev);
3098 }
a4456856 3099 }
b17459c0 3100 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3101 /* fail all writes first */
3102 bi = sh->dev[i].towrite;
3103 sh->dev[i].towrite = NULL;
7a87f434 3104 sh->overwrite_disks = 0;
b17459c0 3105 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3106 if (bi)
a4456856 3107 bitmap_end = 1;
a4456856
DW
3108
3109 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3110 wake_up(&conf->wait_for_overlap);
3111
4f024f37 3112 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3113 sh->dev[i].sector + STRIPE_SECTORS) {
3114 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3115 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3116 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3117 md_write_end(conf->mddev);
3118 bi->bi_next = *return_bi;
3119 *return_bi = bi;
3120 }
3121 bi = nextbi;
3122 }
7eaf7e8e
SL
3123 if (bitmap_end)
3124 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3125 STRIPE_SECTORS, 0, 0);
3126 bitmap_end = 0;
a4456856
DW
3127 /* and fail all 'written' */
3128 bi = sh->dev[i].written;
3129 sh->dev[i].written = NULL;
d592a996
SL
3130 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3131 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3132 sh->dev[i].page = sh->dev[i].orig_page;
3133 }
3134
a4456856 3135 if (bi) bitmap_end = 1;
4f024f37 3136 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3137 sh->dev[i].sector + STRIPE_SECTORS) {
3138 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3139 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3140 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3141 md_write_end(conf->mddev);
3142 bi->bi_next = *return_bi;
3143 *return_bi = bi;
3144 }
3145 bi = bi2;
3146 }
3147
b5e98d65
DW
3148 /* fail any reads if this device is non-operational and
3149 * the data has not reached the cache yet.
3150 */
3151 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3152 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3153 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3154 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3155 bi = sh->dev[i].toread;
3156 sh->dev[i].toread = NULL;
143c4d05 3157 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3158 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3159 wake_up(&conf->wait_for_overlap);
4f024f37 3160 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3161 sh->dev[i].sector + STRIPE_SECTORS) {
3162 struct bio *nextbi =
3163 r5_next_bio(bi, sh->dev[i].sector);
3164 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3165 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3166 bi->bi_next = *return_bi;
3167 *return_bi = bi;
3168 }
3169 bi = nextbi;
3170 }
3171 }
a4456856
DW
3172 if (bitmap_end)
3173 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3174 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3175 /* If we were in the middle of a write the parity block might
3176 * still be locked - so just clear all R5_LOCKED flags
3177 */
3178 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
3179 }
3180
8b3e6cdc
DW
3181 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3182 if (atomic_dec_and_test(&conf->pending_full_writes))
3183 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3184}
3185
7f0da59b 3186static void
d1688a6d 3187handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3188 struct stripe_head_state *s)
3189{
3190 int abort = 0;
3191 int i;
3192
59fc630b 3193 BUG_ON(sh->batch_head);
7f0da59b 3194 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3195 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3196 wake_up(&conf->wait_for_overlap);
7f0da59b 3197 s->syncing = 0;
9a3e1101 3198 s->replacing = 0;
7f0da59b 3199 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3200 * Don't even need to abort as that is handled elsewhere
3201 * if needed, and not always wanted e.g. if there is a known
3202 * bad block here.
9a3e1101 3203 * For recover/replace we need to record a bad block on all
7f0da59b
N
3204 * non-sync devices, or abort the recovery
3205 */
18b9837e
N
3206 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3207 /* During recovery devices cannot be removed, so
3208 * locking and refcounting of rdevs is not needed
3209 */
3210 for (i = 0; i < conf->raid_disks; i++) {
3211 struct md_rdev *rdev = conf->disks[i].rdev;
3212 if (rdev
3213 && !test_bit(Faulty, &rdev->flags)
3214 && !test_bit(In_sync, &rdev->flags)
3215 && !rdev_set_badblocks(rdev, sh->sector,
3216 STRIPE_SECTORS, 0))
3217 abort = 1;
3218 rdev = conf->disks[i].replacement;
3219 if (rdev
3220 && !test_bit(Faulty, &rdev->flags)
3221 && !test_bit(In_sync, &rdev->flags)
3222 && !rdev_set_badblocks(rdev, sh->sector,
3223 STRIPE_SECTORS, 0))
3224 abort = 1;
3225 }
3226 if (abort)
3227 conf->recovery_disabled =
3228 conf->mddev->recovery_disabled;
7f0da59b 3229 }
18b9837e 3230 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3231}
3232
9a3e1101
N
3233static int want_replace(struct stripe_head *sh, int disk_idx)
3234{
3235 struct md_rdev *rdev;
3236 int rv = 0;
3237 /* Doing recovery so rcu locking not required */
3238 rdev = sh->raid_conf->disks[disk_idx].replacement;
3239 if (rdev
3240 && !test_bit(Faulty, &rdev->flags)
3241 && !test_bit(In_sync, &rdev->flags)
3242 && (rdev->recovery_offset <= sh->sector
3243 || rdev->mddev->recovery_cp <= sh->sector))
3244 rv = 1;
3245
3246 return rv;
3247}
3248
93b3dbce 3249/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3250 * to be read or computed to satisfy a request.
3251 *
3252 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3253 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3254 */
2c58f06e
N
3255
3256static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3257 int disk_idx, int disks)
a4456856 3258{
5599becc 3259 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3260 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3261 &sh->dev[s->failed_num[1]] };
ea664c82 3262 int i;
5599becc 3263
a79cfe12
N
3264
3265 if (test_bit(R5_LOCKED, &dev->flags) ||
3266 test_bit(R5_UPTODATE, &dev->flags))
3267 /* No point reading this as we already have it or have
3268 * decided to get it.
3269 */
3270 return 0;
3271
3272 if (dev->toread ||
3273 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3274 /* We need this block to directly satisfy a request */
3275 return 1;
3276
3277 if (s->syncing || s->expanding ||
3278 (s->replacing && want_replace(sh, disk_idx)))
3279 /* When syncing, or expanding we read everything.
3280 * When replacing, we need the replaced block.
3281 */
3282 return 1;
3283
3284 if ((s->failed >= 1 && fdev[0]->toread) ||
3285 (s->failed >= 2 && fdev[1]->toread))
3286 /* If we want to read from a failed device, then
3287 * we need to actually read every other device.
3288 */
3289 return 1;
3290
a9d56950
N
3291 /* Sometimes neither read-modify-write nor reconstruct-write
3292 * cycles can work. In those cases we read every block we
3293 * can. Then the parity-update is certain to have enough to
3294 * work with.
3295 * This can only be a problem when we need to write something,
3296 * and some device has failed. If either of those tests
3297 * fail we need look no further.
3298 */
3299 if (!s->failed || !s->to_write)
3300 return 0;
3301
3302 if (test_bit(R5_Insync, &dev->flags) &&
3303 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3304 /* Pre-reads at not permitted until after short delay
3305 * to gather multiple requests. However if this
3306 * device is no Insync, the block could only be be computed
3307 * and there is no need to delay that.
3308 */
3309 return 0;
ea664c82
N
3310
3311 for (i = 0; i < s->failed; i++) {
3312 if (fdev[i]->towrite &&
3313 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3314 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3315 /* If we have a partial write to a failed
3316 * device, then we will need to reconstruct
3317 * the content of that device, so all other
3318 * devices must be read.
3319 */
3320 return 1;
3321 }
3322
3323 /* If we are forced to do a reconstruct-write, either because
3324 * the current RAID6 implementation only supports that, or
3325 * or because parity cannot be trusted and we are currently
3326 * recovering it, there is extra need to be careful.
3327 * If one of the devices that we would need to read, because
3328 * it is not being overwritten (and maybe not written at all)
3329 * is missing/faulty, then we need to read everything we can.
3330 */
3331 if (sh->raid_conf->level != 6 &&
3332 sh->sector < sh->raid_conf->mddev->recovery_cp)
3333 /* reconstruct-write isn't being forced */
3334 return 0;
3335 for (i = 0; i < s->failed; i++) {
10d82c5f
N
3336 if (s->failed_num[i] != sh->pd_idx &&
3337 s->failed_num[i] != sh->qd_idx &&
3338 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3339 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3340 return 1;
3341 }
3342
2c58f06e
N
3343 return 0;
3344}
3345
3346static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3347 int disk_idx, int disks)
3348{
3349 struct r5dev *dev = &sh->dev[disk_idx];
3350
3351 /* is the data in this block needed, and can we get it? */
3352 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3353 /* we would like to get this block, possibly by computing it,
3354 * otherwise read it if the backing disk is insync
3355 */
3356 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3357 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3358 BUG_ON(sh->batch_head);
5599becc 3359 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3360 (s->failed && (disk_idx == s->failed_num[0] ||
3361 disk_idx == s->failed_num[1]))) {
5599becc
YT
3362 /* have disk failed, and we're requested to fetch it;
3363 * do compute it
a4456856 3364 */
5599becc
YT
3365 pr_debug("Computing stripe %llu block %d\n",
3366 (unsigned long long)sh->sector, disk_idx);
3367 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3368 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3369 set_bit(R5_Wantcompute, &dev->flags);
3370 sh->ops.target = disk_idx;
3371 sh->ops.target2 = -1; /* no 2nd target */
3372 s->req_compute = 1;
93b3dbce
N
3373 /* Careful: from this point on 'uptodate' is in the eye
3374 * of raid_run_ops which services 'compute' operations
3375 * before writes. R5_Wantcompute flags a block that will
3376 * be R5_UPTODATE by the time it is needed for a
3377 * subsequent operation.
3378 */
5599becc
YT
3379 s->uptodate++;
3380 return 1;
3381 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3382 /* Computing 2-failure is *very* expensive; only
3383 * do it if failed >= 2
3384 */
3385 int other;
3386 for (other = disks; other--; ) {
3387 if (other == disk_idx)
3388 continue;
3389 if (!test_bit(R5_UPTODATE,
3390 &sh->dev[other].flags))
3391 break;
a4456856 3392 }
5599becc
YT
3393 BUG_ON(other < 0);
3394 pr_debug("Computing stripe %llu blocks %d,%d\n",
3395 (unsigned long long)sh->sector,
3396 disk_idx, other);
3397 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3398 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3399 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3400 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3401 sh->ops.target = disk_idx;
3402 sh->ops.target2 = other;
3403 s->uptodate += 2;
3404 s->req_compute = 1;
3405 return 1;
3406 } else if (test_bit(R5_Insync, &dev->flags)) {
3407 set_bit(R5_LOCKED, &dev->flags);
3408 set_bit(R5_Wantread, &dev->flags);
3409 s->locked++;
3410 pr_debug("Reading block %d (sync=%d)\n",
3411 disk_idx, s->syncing);
a4456856
DW
3412 }
3413 }
5599becc
YT
3414
3415 return 0;
3416}
3417
3418/**
93b3dbce 3419 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3420 */
93b3dbce
N
3421static void handle_stripe_fill(struct stripe_head *sh,
3422 struct stripe_head_state *s,
3423 int disks)
5599becc
YT
3424{
3425 int i;
3426
3427 /* look for blocks to read/compute, skip this if a compute
3428 * is already in flight, or if the stripe contents are in the
3429 * midst of changing due to a write
3430 */
3431 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3432 !sh->reconstruct_state)
3433 for (i = disks; i--; )
93b3dbce 3434 if (fetch_block(sh, s, i, disks))
5599becc 3435 break;
a4456856
DW
3436 set_bit(STRIPE_HANDLE, &sh->state);
3437}
3438
787b76fa
N
3439static void break_stripe_batch_list(struct stripe_head *head_sh,
3440 unsigned long handle_flags);
1fe797e6 3441/* handle_stripe_clean_event
a4456856
DW
3442 * any written block on an uptodate or failed drive can be returned.
3443 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3444 * never LOCKED, so we don't need to test 'failed' directly.
3445 */
d1688a6d 3446static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
3447 struct stripe_head *sh, int disks, struct bio **return_bi)
3448{
3449 int i;
3450 struct r5dev *dev;
f8dfcffd 3451 int discard_pending = 0;
59fc630b 3452 struct stripe_head *head_sh = sh;
3453 bool do_endio = false;
a4456856
DW
3454
3455 for (i = disks; i--; )
3456 if (sh->dev[i].written) {
3457 dev = &sh->dev[i];
3458 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3459 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3460 test_bit(R5_Discard, &dev->flags) ||
3461 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3462 /* We can return any write requests */
3463 struct bio *wbi, *wbi2;
45b4233c 3464 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3465 if (test_and_clear_bit(R5_Discard, &dev->flags))
3466 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3467 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3468 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3469 }
59fc630b 3470 do_endio = true;
3471
3472returnbi:
3473 dev->page = dev->orig_page;
a4456856
DW
3474 wbi = dev->written;
3475 dev->written = NULL;
4f024f37 3476 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3477 dev->sector + STRIPE_SECTORS) {
3478 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3479 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
3480 md_write_end(conf->mddev);
3481 wbi->bi_next = *return_bi;
3482 *return_bi = wbi;
3483 }
3484 wbi = wbi2;
3485 }
7eaf7e8e
SL
3486 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3487 STRIPE_SECTORS,
a4456856 3488 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3489 0);
59fc630b 3490 if (head_sh->batch_head) {
3491 sh = list_first_entry(&sh->batch_list,
3492 struct stripe_head,
3493 batch_list);
3494 if (sh != head_sh) {
3495 dev = &sh->dev[i];
3496 goto returnbi;
3497 }
3498 }
3499 sh = head_sh;
3500 dev = &sh->dev[i];
f8dfcffd
N
3501 } else if (test_bit(R5_Discard, &dev->flags))
3502 discard_pending = 1;
d592a996
SL
3503 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3504 WARN_ON(dev->page != dev->orig_page);
f8dfcffd
N
3505 }
3506 if (!discard_pending &&
3507 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3508 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3509 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3510 if (sh->qd_idx >= 0) {
3511 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3512 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3513 }
3514 /* now that discard is done we can proceed with any sync */
3515 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3516 /*
3517 * SCSI discard will change some bio fields and the stripe has
3518 * no updated data, so remove it from hash list and the stripe
3519 * will be reinitialized
3520 */
3521 spin_lock_irq(&conf->device_lock);
59fc630b 3522unhash:
d47648fc 3523 remove_hash(sh);
59fc630b 3524 if (head_sh->batch_head) {
3525 sh = list_first_entry(&sh->batch_list,
3526 struct stripe_head, batch_list);
3527 if (sh != head_sh)
3528 goto unhash;
3529 }
d47648fc 3530 spin_unlock_irq(&conf->device_lock);
59fc630b 3531 sh = head_sh;
3532
f8dfcffd
N
3533 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3534 set_bit(STRIPE_HANDLE, &sh->state);
3535
3536 }
8b3e6cdc
DW
3537
3538 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3539 if (atomic_dec_and_test(&conf->pending_full_writes))
3540 md_wakeup_thread(conf->mddev->thread);
59fc630b 3541
787b76fa
N
3542 if (head_sh->batch_head && do_endio)
3543 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3544}
3545
d1688a6d 3546static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3547 struct stripe_head *sh,
3548 struct stripe_head_state *s,
3549 int disks)
a4456856
DW
3550{
3551 int rmw = 0, rcw = 0, i;
a7854487
AL
3552 sector_t recovery_cp = conf->mddev->recovery_cp;
3553
584acdd4 3554 /* Check whether resync is now happening or should start.
a7854487
AL
3555 * If yes, then the array is dirty (after unclean shutdown or
3556 * initial creation), so parity in some stripes might be inconsistent.
3557 * In this case, we need to always do reconstruct-write, to ensure
3558 * that in case of drive failure or read-error correction, we
3559 * generate correct data from the parity.
3560 */
584acdd4 3561 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3562 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3563 s->failed == 0)) {
a7854487 3564 /* Calculate the real rcw later - for now make it
c8ac1803
N
3565 * look like rcw is cheaper
3566 */
3567 rcw = 1; rmw = 2;
584acdd4
MS
3568 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3569 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3570 (unsigned long long)sh->sector);
c8ac1803 3571 } else for (i = disks; i--; ) {
a4456856
DW
3572 /* would I have to read this buffer for read_modify_write */
3573 struct r5dev *dev = &sh->dev[i];
584acdd4 3574 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3575 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3576 !(test_bit(R5_UPTODATE, &dev->flags) ||
3577 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3578 if (test_bit(R5_Insync, &dev->flags))
3579 rmw++;
3580 else
3581 rmw += 2*disks; /* cannot read it */
3582 }
3583 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3584 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3585 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3586 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3587 !(test_bit(R5_UPTODATE, &dev->flags) ||
3588 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3589 if (test_bit(R5_Insync, &dev->flags))
3590 rcw++;
a4456856
DW
3591 else
3592 rcw += 2*disks;
3593 }
3594 }
45b4233c 3595 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3596 (unsigned long long)sh->sector, rmw, rcw);
3597 set_bit(STRIPE_HANDLE, &sh->state);
584acdd4 3598 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
a4456856 3599 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3600 if (conf->mddev->queue)
3601 blk_add_trace_msg(conf->mddev->queue,
3602 "raid5 rmw %llu %d",
3603 (unsigned long long)sh->sector, rmw);
a4456856
DW
3604 for (i = disks; i--; ) {
3605 struct r5dev *dev = &sh->dev[i];
584acdd4 3606 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3607 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3608 !(test_bit(R5_UPTODATE, &dev->flags) ||
3609 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3610 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3611 if (test_bit(STRIPE_PREREAD_ACTIVE,
3612 &sh->state)) {
3613 pr_debug("Read_old block %d for r-m-w\n",
3614 i);
a4456856
DW
3615 set_bit(R5_LOCKED, &dev->flags);
3616 set_bit(R5_Wantread, &dev->flags);
3617 s->locked++;
3618 } else {
3619 set_bit(STRIPE_DELAYED, &sh->state);
3620 set_bit(STRIPE_HANDLE, &sh->state);
3621 }
3622 }
3623 }
a9add5d9 3624 }
584acdd4 3625 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
a4456856 3626 /* want reconstruct write, but need to get some data */
a9add5d9 3627 int qread =0;
c8ac1803 3628 rcw = 0;
a4456856
DW
3629 for (i = disks; i--; ) {
3630 struct r5dev *dev = &sh->dev[i];
3631 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3632 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3633 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3634 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3635 test_bit(R5_Wantcompute, &dev->flags))) {
3636 rcw++;
67f45548
N
3637 if (test_bit(R5_Insync, &dev->flags) &&
3638 test_bit(STRIPE_PREREAD_ACTIVE,
3639 &sh->state)) {
45b4233c 3640 pr_debug("Read_old block "
a4456856
DW
3641 "%d for Reconstruct\n", i);
3642 set_bit(R5_LOCKED, &dev->flags);
3643 set_bit(R5_Wantread, &dev->flags);
3644 s->locked++;
a9add5d9 3645 qread++;
a4456856
DW
3646 } else {
3647 set_bit(STRIPE_DELAYED, &sh->state);
3648 set_bit(STRIPE_HANDLE, &sh->state);
3649 }
3650 }
3651 }
e3620a3a 3652 if (rcw && conf->mddev->queue)
a9add5d9
N
3653 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3654 (unsigned long long)sh->sector,
3655 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3656 }
b1b02fe9
N
3657
3658 if (rcw > disks && rmw > disks &&
3659 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3660 set_bit(STRIPE_DELAYED, &sh->state);
3661
a4456856
DW
3662 /* now if nothing is locked, and if we have enough data,
3663 * we can start a write request
3664 */
f38e1219
DW
3665 /* since handle_stripe can be called at any time we need to handle the
3666 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3667 * subsequent call wants to start a write request. raid_run_ops only
3668 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3669 * simultaneously. If this is not the case then new writes need to be
3670 * held off until the compute completes.
3671 */
976ea8d4
DW
3672 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3673 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3674 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3675 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3676}
3677
d1688a6d 3678static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3679 struct stripe_head_state *s, int disks)
3680{
ecc65c9b 3681 struct r5dev *dev = NULL;
bd2ab670 3682
59fc630b 3683 BUG_ON(sh->batch_head);
a4456856 3684 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3685
ecc65c9b
DW
3686 switch (sh->check_state) {
3687 case check_state_idle:
3688 /* start a new check operation if there are no failures */
bd2ab670 3689 if (s->failed == 0) {
bd2ab670 3690 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3691 sh->check_state = check_state_run;
3692 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3693 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3694 s->uptodate--;
ecc65c9b 3695 break;
bd2ab670 3696 }
f2b3b44d 3697 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3698 /* fall through */
3699 case check_state_compute_result:
3700 sh->check_state = check_state_idle;
3701 if (!dev)
3702 dev = &sh->dev[sh->pd_idx];
3703
3704 /* check that a write has not made the stripe insync */
3705 if (test_bit(STRIPE_INSYNC, &sh->state))
3706 break;
c8894419 3707
a4456856 3708 /* either failed parity check, or recovery is happening */
a4456856
DW
3709 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3710 BUG_ON(s->uptodate != disks);
3711
3712 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3713 s->locked++;
a4456856 3714 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3715
a4456856 3716 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3717 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3718 break;
3719 case check_state_run:
3720 break; /* we will be called again upon completion */
3721 case check_state_check_result:
3722 sh->check_state = check_state_idle;
3723
3724 /* if a failure occurred during the check operation, leave
3725 * STRIPE_INSYNC not set and let the stripe be handled again
3726 */
3727 if (s->failed)
3728 break;
3729
3730 /* handle a successful check operation, if parity is correct
3731 * we are done. Otherwise update the mismatch count and repair
3732 * parity if !MD_RECOVERY_CHECK
3733 */
ad283ea4 3734 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3735 /* parity is correct (on disc,
3736 * not in buffer any more)
3737 */
3738 set_bit(STRIPE_INSYNC, &sh->state);
3739 else {
7f7583d4 3740 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3741 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3742 /* don't try to repair!! */
3743 set_bit(STRIPE_INSYNC, &sh->state);
3744 else {
3745 sh->check_state = check_state_compute_run;
976ea8d4 3746 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3747 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3748 set_bit(R5_Wantcompute,
3749 &sh->dev[sh->pd_idx].flags);
3750 sh->ops.target = sh->pd_idx;
ac6b53b6 3751 sh->ops.target2 = -1;
ecc65c9b
DW
3752 s->uptodate++;
3753 }
3754 }
3755 break;
3756 case check_state_compute_run:
3757 break;
3758 default:
3759 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3760 __func__, sh->check_state,
3761 (unsigned long long) sh->sector);
3762 BUG();
a4456856
DW
3763 }
3764}
3765
d1688a6d 3766static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3767 struct stripe_head_state *s,
f2b3b44d 3768 int disks)
a4456856 3769{
a4456856 3770 int pd_idx = sh->pd_idx;
34e04e87 3771 int qd_idx = sh->qd_idx;
d82dfee0 3772 struct r5dev *dev;
a4456856 3773
59fc630b 3774 BUG_ON(sh->batch_head);
a4456856
DW
3775 set_bit(STRIPE_HANDLE, &sh->state);
3776
3777 BUG_ON(s->failed > 2);
d82dfee0 3778
a4456856
DW
3779 /* Want to check and possibly repair P and Q.
3780 * However there could be one 'failed' device, in which
3781 * case we can only check one of them, possibly using the
3782 * other to generate missing data
3783 */
3784
d82dfee0
DW
3785 switch (sh->check_state) {
3786 case check_state_idle:
3787 /* start a new check operation if there are < 2 failures */
f2b3b44d 3788 if (s->failed == s->q_failed) {
d82dfee0 3789 /* The only possible failed device holds Q, so it
a4456856
DW
3790 * makes sense to check P (If anything else were failed,
3791 * we would have used P to recreate it).
3792 */
d82dfee0 3793 sh->check_state = check_state_run;
a4456856 3794 }
f2b3b44d 3795 if (!s->q_failed && s->failed < 2) {
d82dfee0 3796 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3797 * anything, so it makes sense to check it
3798 */
d82dfee0
DW
3799 if (sh->check_state == check_state_run)
3800 sh->check_state = check_state_run_pq;
3801 else
3802 sh->check_state = check_state_run_q;
a4456856 3803 }
a4456856 3804
d82dfee0
DW
3805 /* discard potentially stale zero_sum_result */
3806 sh->ops.zero_sum_result = 0;
a4456856 3807
d82dfee0
DW
3808 if (sh->check_state == check_state_run) {
3809 /* async_xor_zero_sum destroys the contents of P */
3810 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3811 s->uptodate--;
a4456856 3812 }
d82dfee0
DW
3813 if (sh->check_state >= check_state_run &&
3814 sh->check_state <= check_state_run_pq) {
3815 /* async_syndrome_zero_sum preserves P and Q, so
3816 * no need to mark them !uptodate here
3817 */
3818 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3819 break;
a4456856
DW
3820 }
3821
d82dfee0
DW
3822 /* we have 2-disk failure */
3823 BUG_ON(s->failed != 2);
3824 /* fall through */
3825 case check_state_compute_result:
3826 sh->check_state = check_state_idle;
a4456856 3827
d82dfee0
DW
3828 /* check that a write has not made the stripe insync */
3829 if (test_bit(STRIPE_INSYNC, &sh->state))
3830 break;
a4456856
DW
3831
3832 /* now write out any block on a failed drive,
d82dfee0 3833 * or P or Q if they were recomputed
a4456856 3834 */
d82dfee0 3835 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3836 if (s->failed == 2) {
f2b3b44d 3837 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3838 s->locked++;
3839 set_bit(R5_LOCKED, &dev->flags);
3840 set_bit(R5_Wantwrite, &dev->flags);
3841 }
3842 if (s->failed >= 1) {
f2b3b44d 3843 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3844 s->locked++;
3845 set_bit(R5_LOCKED, &dev->flags);
3846 set_bit(R5_Wantwrite, &dev->flags);
3847 }
d82dfee0 3848 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3849 dev = &sh->dev[pd_idx];
3850 s->locked++;
3851 set_bit(R5_LOCKED, &dev->flags);
3852 set_bit(R5_Wantwrite, &dev->flags);
3853 }
d82dfee0 3854 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3855 dev = &sh->dev[qd_idx];
3856 s->locked++;
3857 set_bit(R5_LOCKED, &dev->flags);
3858 set_bit(R5_Wantwrite, &dev->flags);
3859 }
3860 clear_bit(STRIPE_DEGRADED, &sh->state);
3861
3862 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3863 break;
3864 case check_state_run:
3865 case check_state_run_q:
3866 case check_state_run_pq:
3867 break; /* we will be called again upon completion */
3868 case check_state_check_result:
3869 sh->check_state = check_state_idle;
3870
3871 /* handle a successful check operation, if parity is correct
3872 * we are done. Otherwise update the mismatch count and repair
3873 * parity if !MD_RECOVERY_CHECK
3874 */
3875 if (sh->ops.zero_sum_result == 0) {
3876 /* both parities are correct */
3877 if (!s->failed)
3878 set_bit(STRIPE_INSYNC, &sh->state);
3879 else {
3880 /* in contrast to the raid5 case we can validate
3881 * parity, but still have a failure to write
3882 * back
3883 */
3884 sh->check_state = check_state_compute_result;
3885 /* Returning at this point means that we may go
3886 * off and bring p and/or q uptodate again so
3887 * we make sure to check zero_sum_result again
3888 * to verify if p or q need writeback
3889 */
3890 }
3891 } else {
7f7583d4 3892 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3893 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3894 /* don't try to repair!! */
3895 set_bit(STRIPE_INSYNC, &sh->state);
3896 else {
3897 int *target = &sh->ops.target;
3898
3899 sh->ops.target = -1;
3900 sh->ops.target2 = -1;
3901 sh->check_state = check_state_compute_run;
3902 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3903 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3904 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3905 set_bit(R5_Wantcompute,
3906 &sh->dev[pd_idx].flags);
3907 *target = pd_idx;
3908 target = &sh->ops.target2;
3909 s->uptodate++;
3910 }
3911 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3912 set_bit(R5_Wantcompute,
3913 &sh->dev[qd_idx].flags);
3914 *target = qd_idx;
3915 s->uptodate++;
3916 }
3917 }
3918 }
3919 break;
3920 case check_state_compute_run:
3921 break;
3922 default:
3923 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3924 __func__, sh->check_state,
3925 (unsigned long long) sh->sector);
3926 BUG();
a4456856
DW
3927 }
3928}
3929
d1688a6d 3930static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3931{
3932 int i;
3933
3934 /* We have read all the blocks in this stripe and now we need to
3935 * copy some of them into a target stripe for expand.
3936 */
f0a50d37 3937 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3938 BUG_ON(sh->batch_head);
a4456856
DW
3939 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3940 for (i = 0; i < sh->disks; i++)
34e04e87 3941 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3942 int dd_idx, j;
a4456856 3943 struct stripe_head *sh2;
a08abd8c 3944 struct async_submit_ctl submit;
a4456856 3945
784052ec 3946 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3947 sector_t s = raid5_compute_sector(conf, bn, 0,
3948 &dd_idx, NULL);
a8c906ca 3949 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3950 if (sh2 == NULL)
3951 /* so far only the early blocks of this stripe
3952 * have been requested. When later blocks
3953 * get requested, we will try again
3954 */
3955 continue;
3956 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3957 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3958 /* must have already done this block */
3959 release_stripe(sh2);
3960 continue;
3961 }
f0a50d37
DW
3962
3963 /* place all the copies on one channel */
a08abd8c 3964 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3965 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3966 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3967 &submit);
f0a50d37 3968
a4456856
DW
3969 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3970 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3971 for (j = 0; j < conf->raid_disks; j++)
3972 if (j != sh2->pd_idx &&
86c374ba 3973 j != sh2->qd_idx &&
a4456856
DW
3974 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3975 break;
3976 if (j == conf->raid_disks) {
3977 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3978 set_bit(STRIPE_HANDLE, &sh2->state);
3979 }
3980 release_stripe(sh2);
f0a50d37 3981
a4456856 3982 }
a2e08551 3983 /* done submitting copies, wait for them to complete */
749586b7 3984 async_tx_quiesce(&tx);
a4456856 3985}
1da177e4
LT
3986
3987/*
3988 * handle_stripe - do things to a stripe.
3989 *
9a3e1101
N
3990 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3991 * state of various bits to see what needs to be done.
1da177e4 3992 * Possible results:
9a3e1101
N
3993 * return some read requests which now have data
3994 * return some write requests which are safely on storage
1da177e4
LT
3995 * schedule a read on some buffers
3996 * schedule a write of some buffers
3997 * return confirmation of parity correctness
3998 *
1da177e4 3999 */
a4456856 4000
acfe726b 4001static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4002{
d1688a6d 4003 struct r5conf *conf = sh->raid_conf;
f416885e 4004 int disks = sh->disks;
474af965
N
4005 struct r5dev *dev;
4006 int i;
9a3e1101 4007 int do_recovery = 0;
1da177e4 4008
acfe726b
N
4009 memset(s, 0, sizeof(*s));
4010
dabc4ec6 4011 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4012 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4013 s->failed_num[0] = -1;
4014 s->failed_num[1] = -1;
1da177e4 4015
acfe726b 4016 /* Now to look around and see what can be done */
1da177e4 4017 rcu_read_lock();
16a53ecc 4018 for (i=disks; i--; ) {
3cb03002 4019 struct md_rdev *rdev;
31c176ec
N
4020 sector_t first_bad;
4021 int bad_sectors;
4022 int is_bad = 0;
acfe726b 4023
16a53ecc 4024 dev = &sh->dev[i];
1da177e4 4025
45b4233c 4026 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4027 i, dev->flags,
4028 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4029 /* maybe we can reply to a read
4030 *
4031 * new wantfill requests are only permitted while
4032 * ops_complete_biofill is guaranteed to be inactive
4033 */
4034 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4035 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4036 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4037
16a53ecc 4038 /* now count some things */
cc94015a
N
4039 if (test_bit(R5_LOCKED, &dev->flags))
4040 s->locked++;
4041 if (test_bit(R5_UPTODATE, &dev->flags))
4042 s->uptodate++;
2d6e4ecc 4043 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4044 s->compute++;
4045 BUG_ON(s->compute > 2);
2d6e4ecc 4046 }
1da177e4 4047
acfe726b 4048 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4049 s->to_fill++;
acfe726b 4050 else if (dev->toread)
cc94015a 4051 s->to_read++;
16a53ecc 4052 if (dev->towrite) {
cc94015a 4053 s->to_write++;
16a53ecc 4054 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4055 s->non_overwrite++;
16a53ecc 4056 }
a4456856 4057 if (dev->written)
cc94015a 4058 s->written++;
14a75d3e
N
4059 /* Prefer to use the replacement for reads, but only
4060 * if it is recovered enough and has no bad blocks.
4061 */
4062 rdev = rcu_dereference(conf->disks[i].replacement);
4063 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4064 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4065 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4066 &first_bad, &bad_sectors))
4067 set_bit(R5_ReadRepl, &dev->flags);
4068 else {
e6030cb0 4069 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4070 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4071 else
4072 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4073 rdev = rcu_dereference(conf->disks[i].rdev);
4074 clear_bit(R5_ReadRepl, &dev->flags);
4075 }
9283d8c5
N
4076 if (rdev && test_bit(Faulty, &rdev->flags))
4077 rdev = NULL;
31c176ec
N
4078 if (rdev) {
4079 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4080 &first_bad, &bad_sectors);
4081 if (s->blocked_rdev == NULL
4082 && (test_bit(Blocked, &rdev->flags)
4083 || is_bad < 0)) {
4084 if (is_bad < 0)
4085 set_bit(BlockedBadBlocks,
4086 &rdev->flags);
4087 s->blocked_rdev = rdev;
4088 atomic_inc(&rdev->nr_pending);
4089 }
6bfe0b49 4090 }
415e72d0
N
4091 clear_bit(R5_Insync, &dev->flags);
4092 if (!rdev)
4093 /* Not in-sync */;
31c176ec
N
4094 else if (is_bad) {
4095 /* also not in-sync */
18b9837e
N
4096 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4097 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4098 /* treat as in-sync, but with a read error
4099 * which we can now try to correct
4100 */
4101 set_bit(R5_Insync, &dev->flags);
4102 set_bit(R5_ReadError, &dev->flags);
4103 }
4104 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4105 set_bit(R5_Insync, &dev->flags);
30d7a483 4106 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4107 /* in sync if before recovery_offset */
30d7a483
N
4108 set_bit(R5_Insync, &dev->flags);
4109 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4110 test_bit(R5_Expanded, &dev->flags))
4111 /* If we've reshaped into here, we assume it is Insync.
4112 * We will shortly update recovery_offset to make
4113 * it official.
4114 */
4115 set_bit(R5_Insync, &dev->flags);
4116
1cc03eb9 4117 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4118 /* This flag does not apply to '.replacement'
4119 * only to .rdev, so make sure to check that*/
4120 struct md_rdev *rdev2 = rcu_dereference(
4121 conf->disks[i].rdev);
4122 if (rdev2 == rdev)
4123 clear_bit(R5_Insync, &dev->flags);
4124 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4125 s->handle_bad_blocks = 1;
14a75d3e 4126 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4127 } else
4128 clear_bit(R5_WriteError, &dev->flags);
4129 }
1cc03eb9 4130 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4131 /* This flag does not apply to '.replacement'
4132 * only to .rdev, so make sure to check that*/
4133 struct md_rdev *rdev2 = rcu_dereference(
4134 conf->disks[i].rdev);
4135 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4136 s->handle_bad_blocks = 1;
14a75d3e 4137 atomic_inc(&rdev2->nr_pending);
b84db560
N
4138 } else
4139 clear_bit(R5_MadeGood, &dev->flags);
4140 }
977df362
N
4141 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4142 struct md_rdev *rdev2 = rcu_dereference(
4143 conf->disks[i].replacement);
4144 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4145 s->handle_bad_blocks = 1;
4146 atomic_inc(&rdev2->nr_pending);
4147 } else
4148 clear_bit(R5_MadeGoodRepl, &dev->flags);
4149 }
415e72d0 4150 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4151 /* The ReadError flag will just be confusing now */
4152 clear_bit(R5_ReadError, &dev->flags);
4153 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4154 }
415e72d0
N
4155 if (test_bit(R5_ReadError, &dev->flags))
4156 clear_bit(R5_Insync, &dev->flags);
4157 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4158 if (s->failed < 2)
4159 s->failed_num[s->failed] = i;
4160 s->failed++;
9a3e1101
N
4161 if (rdev && !test_bit(Faulty, &rdev->flags))
4162 do_recovery = 1;
415e72d0 4163 }
1da177e4 4164 }
9a3e1101
N
4165 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4166 /* If there is a failed device being replaced,
4167 * we must be recovering.
4168 * else if we are after recovery_cp, we must be syncing
c6d2e084 4169 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4170 * else we can only be replacing
4171 * sync and recovery both need to read all devices, and so
4172 * use the same flag.
4173 */
4174 if (do_recovery ||
c6d2e084 4175 sh->sector >= conf->mddev->recovery_cp ||
4176 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4177 s->syncing = 1;
4178 else
4179 s->replacing = 1;
4180 }
1da177e4 4181 rcu_read_unlock();
cc94015a
N
4182}
4183
59fc630b 4184static int clear_batch_ready(struct stripe_head *sh)
4185{
b15a9dbd
N
4186 /* Return '1' if this is a member of batch, or
4187 * '0' if it is a lone stripe or a head which can now be
4188 * handled.
4189 */
59fc630b 4190 struct stripe_head *tmp;
4191 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4192 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4193 spin_lock(&sh->stripe_lock);
4194 if (!sh->batch_head) {
4195 spin_unlock(&sh->stripe_lock);
4196 return 0;
4197 }
4198
4199 /*
4200 * this stripe could be added to a batch list before we check
4201 * BATCH_READY, skips it
4202 */
4203 if (sh->batch_head != sh) {
4204 spin_unlock(&sh->stripe_lock);
4205 return 1;
4206 }
4207 spin_lock(&sh->batch_lock);
4208 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4209 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4210 spin_unlock(&sh->batch_lock);
4211 spin_unlock(&sh->stripe_lock);
4212
4213 /*
4214 * BATCH_READY is cleared, no new stripes can be added.
4215 * batch_list can be accessed without lock
4216 */
4217 return 0;
4218}
4219
3960ce79
N
4220static void break_stripe_batch_list(struct stripe_head *head_sh,
4221 unsigned long handle_flags)
72ac7330 4222{
4e3d62ff 4223 struct stripe_head *sh, *next;
72ac7330 4224 int i;
fb642b92 4225 int do_wakeup = 0;
72ac7330 4226
bb27051f
N
4227 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4228
72ac7330 4229 list_del_init(&sh->batch_list);
4230
1b956f7a
N
4231 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4232 (1 << STRIPE_SYNCING) |
4233 (1 << STRIPE_REPLACED) |
4234 (1 << STRIPE_PREREAD_ACTIVE) |
4235 (1 << STRIPE_DELAYED) |
4236 (1 << STRIPE_BIT_DELAY) |
4237 (1 << STRIPE_FULL_WRITE) |
4238 (1 << STRIPE_BIOFILL_RUN) |
4239 (1 << STRIPE_COMPUTE_RUN) |
4240 (1 << STRIPE_OPS_REQ_PENDING) |
4241 (1 << STRIPE_DISCARD) |
4242 (1 << STRIPE_BATCH_READY) |
4243 (1 << STRIPE_BATCH_ERR) |
4244 (1 << STRIPE_BITMAP_PENDING)));
4245 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4246 (1 << STRIPE_REPLACED)));
4247
4248 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4249 (1 << STRIPE_DEGRADED)),
4250 head_sh->state & (1 << STRIPE_INSYNC));
4251
72ac7330 4252 sh->check_state = head_sh->check_state;
4253 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4254 for (i = 0; i < sh->disks; i++) {
4255 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4256 do_wakeup = 1;
72ac7330 4257 sh->dev[i].flags = head_sh->dev[i].flags &
4258 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4259 }
72ac7330 4260 spin_lock_irq(&sh->stripe_lock);
4261 sh->batch_head = NULL;
4262 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4263 if (handle_flags == 0 ||
4264 sh->state & handle_flags)
4265 set_bit(STRIPE_HANDLE, &sh->state);
72ac7330 4266 release_stripe(sh);
72ac7330 4267 }
fb642b92
N
4268 spin_lock_irq(&head_sh->stripe_lock);
4269 head_sh->batch_head = NULL;
4270 spin_unlock_irq(&head_sh->stripe_lock);
4271 for (i = 0; i < head_sh->disks; i++)
4272 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4273 do_wakeup = 1;
3960ce79
N
4274 if (head_sh->state & handle_flags)
4275 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4276
4277 if (do_wakeup)
4278 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4279}
4280
cc94015a
N
4281static void handle_stripe(struct stripe_head *sh)
4282{
4283 struct stripe_head_state s;
d1688a6d 4284 struct r5conf *conf = sh->raid_conf;
3687c061 4285 int i;
84789554
N
4286 int prexor;
4287 int disks = sh->disks;
474af965 4288 struct r5dev *pdev, *qdev;
cc94015a
N
4289
4290 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4291 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4292 /* already being handled, ensure it gets handled
4293 * again when current action finishes */
4294 set_bit(STRIPE_HANDLE, &sh->state);
4295 return;
4296 }
4297
59fc630b 4298 if (clear_batch_ready(sh) ) {
4299 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4300 return;
4301 }
4302
4e3d62ff 4303 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4304 break_stripe_batch_list(sh, 0);
72ac7330 4305
dabc4ec6 4306 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4307 spin_lock(&sh->stripe_lock);
4308 /* Cannot process 'sync' concurrently with 'discard' */
4309 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4310 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4311 set_bit(STRIPE_SYNCING, &sh->state);
4312 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4313 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4314 }
4315 spin_unlock(&sh->stripe_lock);
cc94015a
N
4316 }
4317 clear_bit(STRIPE_DELAYED, &sh->state);
4318
4319 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4320 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4321 (unsigned long long)sh->sector, sh->state,
4322 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4323 sh->check_state, sh->reconstruct_state);
3687c061 4324
acfe726b 4325 analyse_stripe(sh, &s);
c5a31000 4326
bc2607f3
N
4327 if (s.handle_bad_blocks) {
4328 set_bit(STRIPE_HANDLE, &sh->state);
4329 goto finish;
4330 }
4331
474af965
N
4332 if (unlikely(s.blocked_rdev)) {
4333 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4334 s.replacing || s.to_write || s.written) {
474af965
N
4335 set_bit(STRIPE_HANDLE, &sh->state);
4336 goto finish;
4337 }
4338 /* There is nothing for the blocked_rdev to block */
4339 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4340 s.blocked_rdev = NULL;
4341 }
4342
4343 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4344 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4345 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4346 }
4347
4348 pr_debug("locked=%d uptodate=%d to_read=%d"
4349 " to_write=%d failed=%d failed_num=%d,%d\n",
4350 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4351 s.failed_num[0], s.failed_num[1]);
4352 /* check if the array has lost more than max_degraded devices and,
4353 * if so, some requests might need to be failed.
4354 */
9a3f530f
N
4355 if (s.failed > conf->max_degraded) {
4356 sh->check_state = 0;
4357 sh->reconstruct_state = 0;
626f2092 4358 break_stripe_batch_list(sh, 0);
9a3f530f
N
4359 if (s.to_read+s.to_write+s.written)
4360 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4361 if (s.syncing + s.replacing)
9a3f530f
N
4362 handle_failed_sync(conf, sh, &s);
4363 }
474af965 4364
84789554
N
4365 /* Now we check to see if any write operations have recently
4366 * completed
4367 */
4368 prexor = 0;
4369 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4370 prexor = 1;
4371 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4372 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4373 sh->reconstruct_state = reconstruct_state_idle;
4374
4375 /* All the 'written' buffers and the parity block are ready to
4376 * be written back to disk
4377 */
9e444768
SL
4378 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4379 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4380 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4381 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4382 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4383 for (i = disks; i--; ) {
4384 struct r5dev *dev = &sh->dev[i];
4385 if (test_bit(R5_LOCKED, &dev->flags) &&
4386 (i == sh->pd_idx || i == sh->qd_idx ||
4387 dev->written)) {
4388 pr_debug("Writing block %d\n", i);
4389 set_bit(R5_Wantwrite, &dev->flags);
4390 if (prexor)
4391 continue;
9c4bdf69
N
4392 if (s.failed > 1)
4393 continue;
84789554
N
4394 if (!test_bit(R5_Insync, &dev->flags) ||
4395 ((i == sh->pd_idx || i == sh->qd_idx) &&
4396 s.failed == 0))
4397 set_bit(STRIPE_INSYNC, &sh->state);
4398 }
4399 }
4400 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4401 s.dec_preread_active = 1;
4402 }
4403
ef5b7c69
N
4404 /*
4405 * might be able to return some write requests if the parity blocks
4406 * are safe, or on a failed drive
4407 */
4408 pdev = &sh->dev[sh->pd_idx];
4409 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4410 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4411 qdev = &sh->dev[sh->qd_idx];
4412 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4413 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4414 || conf->level < 6;
4415
4416 if (s.written &&
4417 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4418 && !test_bit(R5_LOCKED, &pdev->flags)
4419 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4420 test_bit(R5_Discard, &pdev->flags))))) &&
4421 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4422 && !test_bit(R5_LOCKED, &qdev->flags)
4423 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4424 test_bit(R5_Discard, &qdev->flags))))))
4425 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4426
4427 /* Now we might consider reading some blocks, either to check/generate
4428 * parity, or to satisfy requests
4429 * or to load a block that is being partially written.
4430 */
4431 if (s.to_read || s.non_overwrite
4432 || (conf->level == 6 && s.to_write && s.failed)
4433 || (s.syncing && (s.uptodate + s.compute < disks))
4434 || s.replacing
4435 || s.expanding)
4436 handle_stripe_fill(sh, &s, disks);
4437
84789554
N
4438 /* Now to consider new write requests and what else, if anything
4439 * should be read. We do not handle new writes when:
4440 * 1/ A 'write' operation (copy+xor) is already in flight.
4441 * 2/ A 'check' operation is in flight, as it may clobber the parity
4442 * block.
4443 */
4444 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4445 handle_stripe_dirtying(conf, sh, &s, disks);
4446
4447 /* maybe we need to check and possibly fix the parity for this stripe
4448 * Any reads will already have been scheduled, so we just see if enough
4449 * data is available. The parity check is held off while parity
4450 * dependent operations are in flight.
4451 */
4452 if (sh->check_state ||
4453 (s.syncing && s.locked == 0 &&
4454 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4455 !test_bit(STRIPE_INSYNC, &sh->state))) {
4456 if (conf->level == 6)
4457 handle_parity_checks6(conf, sh, &s, disks);
4458 else
4459 handle_parity_checks5(conf, sh, &s, disks);
4460 }
c5a31000 4461
f94c0b66
N
4462 if ((s.replacing || s.syncing) && s.locked == 0
4463 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4464 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4465 /* Write out to replacement devices where possible */
4466 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4467 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4468 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4469 set_bit(R5_WantReplace, &sh->dev[i].flags);
4470 set_bit(R5_LOCKED, &sh->dev[i].flags);
4471 s.locked++;
4472 }
f94c0b66
N
4473 if (s.replacing)
4474 set_bit(STRIPE_INSYNC, &sh->state);
4475 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4476 }
4477 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4478 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4479 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4480 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4481 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4482 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4483 wake_up(&conf->wait_for_overlap);
c5a31000
N
4484 }
4485
4486 /* If the failed drives are just a ReadError, then we might need
4487 * to progress the repair/check process
4488 */
4489 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4490 for (i = 0; i < s.failed; i++) {
4491 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4492 if (test_bit(R5_ReadError, &dev->flags)
4493 && !test_bit(R5_LOCKED, &dev->flags)
4494 && test_bit(R5_UPTODATE, &dev->flags)
4495 ) {
4496 if (!test_bit(R5_ReWrite, &dev->flags)) {
4497 set_bit(R5_Wantwrite, &dev->flags);
4498 set_bit(R5_ReWrite, &dev->flags);
4499 set_bit(R5_LOCKED, &dev->flags);
4500 s.locked++;
4501 } else {
4502 /* let's read it back */
4503 set_bit(R5_Wantread, &dev->flags);
4504 set_bit(R5_LOCKED, &dev->flags);
4505 s.locked++;
4506 }
4507 }
4508 }
4509
3687c061
N
4510 /* Finish reconstruct operations initiated by the expansion process */
4511 if (sh->reconstruct_state == reconstruct_state_result) {
4512 struct stripe_head *sh_src
4513 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4514 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4515 /* sh cannot be written until sh_src has been read.
4516 * so arrange for sh to be delayed a little
4517 */
4518 set_bit(STRIPE_DELAYED, &sh->state);
4519 set_bit(STRIPE_HANDLE, &sh->state);
4520 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4521 &sh_src->state))
4522 atomic_inc(&conf->preread_active_stripes);
4523 release_stripe(sh_src);
4524 goto finish;
4525 }
4526 if (sh_src)
4527 release_stripe(sh_src);
4528
4529 sh->reconstruct_state = reconstruct_state_idle;
4530 clear_bit(STRIPE_EXPANDING, &sh->state);
4531 for (i = conf->raid_disks; i--; ) {
4532 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4533 set_bit(R5_LOCKED, &sh->dev[i].flags);
4534 s.locked++;
4535 }
4536 }
f416885e 4537
3687c061
N
4538 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4539 !sh->reconstruct_state) {
4540 /* Need to write out all blocks after computing parity */
4541 sh->disks = conf->raid_disks;
4542 stripe_set_idx(sh->sector, conf, 0, sh);
4543 schedule_reconstruction(sh, &s, 1, 1);
4544 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4545 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4546 atomic_dec(&conf->reshape_stripes);
4547 wake_up(&conf->wait_for_overlap);
4548 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4549 }
4550
4551 if (s.expanding && s.locked == 0 &&
4552 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4553 handle_stripe_expansion(conf, sh);
16a53ecc 4554
3687c061 4555finish:
6bfe0b49 4556 /* wait for this device to become unblocked */
5f066c63
N
4557 if (unlikely(s.blocked_rdev)) {
4558 if (conf->mddev->external)
4559 md_wait_for_blocked_rdev(s.blocked_rdev,
4560 conf->mddev);
4561 else
4562 /* Internal metadata will immediately
4563 * be written by raid5d, so we don't
4564 * need to wait here.
4565 */
4566 rdev_dec_pending(s.blocked_rdev,
4567 conf->mddev);
4568 }
6bfe0b49 4569
bc2607f3
N
4570 if (s.handle_bad_blocks)
4571 for (i = disks; i--; ) {
3cb03002 4572 struct md_rdev *rdev;
bc2607f3
N
4573 struct r5dev *dev = &sh->dev[i];
4574 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4575 /* We own a safe reference to the rdev */
4576 rdev = conf->disks[i].rdev;
4577 if (!rdev_set_badblocks(rdev, sh->sector,
4578 STRIPE_SECTORS, 0))
4579 md_error(conf->mddev, rdev);
4580 rdev_dec_pending(rdev, conf->mddev);
4581 }
b84db560
N
4582 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4583 rdev = conf->disks[i].rdev;
4584 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4585 STRIPE_SECTORS, 0);
b84db560
N
4586 rdev_dec_pending(rdev, conf->mddev);
4587 }
977df362
N
4588 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4589 rdev = conf->disks[i].replacement;
dd054fce
N
4590 if (!rdev)
4591 /* rdev have been moved down */
4592 rdev = conf->disks[i].rdev;
977df362 4593 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4594 STRIPE_SECTORS, 0);
977df362
N
4595 rdev_dec_pending(rdev, conf->mddev);
4596 }
bc2607f3
N
4597 }
4598
6c0069c0
YT
4599 if (s.ops_request)
4600 raid_run_ops(sh, s.ops_request);
4601
f0e43bcd 4602 ops_run_io(sh, &s);
16a53ecc 4603
c5709ef6 4604 if (s.dec_preread_active) {
729a1866 4605 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4606 * is waiting on a flush, it won't continue until the writes
729a1866
N
4607 * have actually been submitted.
4608 */
4609 atomic_dec(&conf->preread_active_stripes);
4610 if (atomic_read(&conf->preread_active_stripes) <
4611 IO_THRESHOLD)
4612 md_wakeup_thread(conf->mddev->thread);
4613 }
4614
c5709ef6 4615 return_io(s.return_bi);
16a53ecc 4616
257a4b42 4617 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4618}
4619
d1688a6d 4620static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4621{
4622 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4623 while (!list_empty(&conf->delayed_list)) {
4624 struct list_head *l = conf->delayed_list.next;
4625 struct stripe_head *sh;
4626 sh = list_entry(l, struct stripe_head, lru);
4627 list_del_init(l);
4628 clear_bit(STRIPE_DELAYED, &sh->state);
4629 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4630 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4631 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4632 raid5_wakeup_stripe_thread(sh);
16a53ecc 4633 }
482c0834 4634 }
16a53ecc
N
4635}
4636
566c09c5
SL
4637static void activate_bit_delay(struct r5conf *conf,
4638 struct list_head *temp_inactive_list)
16a53ecc
N
4639{
4640 /* device_lock is held */
4641 struct list_head head;
4642 list_add(&head, &conf->bitmap_list);
4643 list_del_init(&conf->bitmap_list);
4644 while (!list_empty(&head)) {
4645 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4646 int hash;
16a53ecc
N
4647 list_del_init(&sh->lru);
4648 atomic_inc(&sh->count);
566c09c5
SL
4649 hash = sh->hash_lock_index;
4650 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4651 }
4652}
4653
5c675f83 4654static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4655{
d1688a6d 4656 struct r5conf *conf = mddev->private;
f022b2fd
N
4657
4658 /* No difference between reads and writes. Just check
4659 * how busy the stripe_cache is
4660 */
3fa841d7 4661
5423399a 4662 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4663 return 1;
4664 if (conf->quiesce)
4665 return 1;
4bda556a 4666 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4667 return 1;
4668
4669 return 0;
4670}
4671
23032a0e
RBJ
4672/* We want read requests to align with chunks where possible,
4673 * but write requests don't need to.
4674 */
64590f45 4675static int raid5_mergeable_bvec(struct mddev *mddev,
cc371e66
AK
4676 struct bvec_merge_data *bvm,
4677 struct bio_vec *biovec)
23032a0e 4678{
cc371e66 4679 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 4680 int max;
9d8f0363 4681 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 4682 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 4683
9ffc8f7c
EM
4684 /*
4685 * always allow writes to be mergeable, read as well if array
4686 * is degraded as we'll go through stripe cache anyway.
4687 */
4688 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4689 return biovec->bv_len;
23032a0e 4690
664e7c41
AN
4691 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4692 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
4693 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4694 if (max < 0) max = 0;
4695 if (max <= biovec->bv_len && bio_sectors == 0)
4696 return biovec->bv_len;
4697 else
4698 return max;
4699}
4700
fd01b88c 4701static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4702{
4f024f37 4703 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 4704 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 4705 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4706
664e7c41
AN
4707 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4708 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
4709 return chunk_sectors >=
4710 ((sector & (chunk_sectors - 1)) + bio_sectors);
4711}
4712
46031f9a
RBJ
4713/*
4714 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4715 * later sampled by raid5d.
4716 */
d1688a6d 4717static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4718{
4719 unsigned long flags;
4720
4721 spin_lock_irqsave(&conf->device_lock, flags);
4722
4723 bi->bi_next = conf->retry_read_aligned_list;
4724 conf->retry_read_aligned_list = bi;
4725
4726 spin_unlock_irqrestore(&conf->device_lock, flags);
4727 md_wakeup_thread(conf->mddev->thread);
4728}
4729
d1688a6d 4730static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4731{
4732 struct bio *bi;
4733
4734 bi = conf->retry_read_aligned;
4735 if (bi) {
4736 conf->retry_read_aligned = NULL;
4737 return bi;
4738 }
4739 bi = conf->retry_read_aligned_list;
4740 if(bi) {
387bb173 4741 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4742 bi->bi_next = NULL;
960e739d
JA
4743 /*
4744 * this sets the active strip count to 1 and the processed
4745 * strip count to zero (upper 8 bits)
4746 */
e7836bd6 4747 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4748 }
4749
4750 return bi;
4751}
4752
f679623f
RBJ
4753/*
4754 * The "raid5_align_endio" should check if the read succeeded and if it
4755 * did, call bio_endio on the original bio (having bio_put the new bio
4756 * first).
4757 * If the read failed..
4758 */
6712ecf8 4759static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
4760{
4761 struct bio* raid_bi = bi->bi_private;
fd01b88c 4762 struct mddev *mddev;
d1688a6d 4763 struct r5conf *conf;
46031f9a 4764 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 4765 struct md_rdev *rdev;
46031f9a 4766
f679623f 4767 bio_put(bi);
46031f9a 4768
46031f9a
RBJ
4769 rdev = (void*)raid_bi->bi_next;
4770 raid_bi->bi_next = NULL;
2b7f2228
N
4771 mddev = rdev->mddev;
4772 conf = mddev->private;
46031f9a
RBJ
4773
4774 rdev_dec_pending(rdev, conf->mddev);
4775
4776 if (!error && uptodate) {
0a82a8d1
LT
4777 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4778 raid_bi, 0);
6712ecf8 4779 bio_endio(raid_bi, 0);
46031f9a 4780 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 4781 wake_up(&conf->wait_for_quiescent);
6712ecf8 4782 return;
46031f9a
RBJ
4783 }
4784
45b4233c 4785 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4786
4787 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4788}
4789
387bb173
NB
4790static int bio_fits_rdev(struct bio *bi)
4791{
165125e1 4792 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4793
aa8b57aa 4794 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4795 return 0;
4796 blk_recount_segments(q, bi);
8a78362c 4797 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4798 return 0;
4799
4800 if (q->merge_bvec_fn)
4801 /* it's too hard to apply the merge_bvec_fn at this stage,
4802 * just just give up
4803 */
4804 return 0;
4805
4806 return 1;
4807}
4808
fd01b88c 4809static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4810{
d1688a6d 4811 struct r5conf *conf = mddev->private;
8553fe7e 4812 int dd_idx;
f679623f 4813 struct bio* align_bi;
3cb03002 4814 struct md_rdev *rdev;
671488cc 4815 sector_t end_sector;
f679623f
RBJ
4816
4817 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4818 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4819 return 0;
4820 }
4821 /*
a167f663 4822 * use bio_clone_mddev to make a copy of the bio
f679623f 4823 */
a167f663 4824 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4825 if (!align_bi)
4826 return 0;
4827 /*
4828 * set bi_end_io to a new function, and set bi_private to the
4829 * original bio.
4830 */
4831 align_bi->bi_end_io = raid5_align_endio;
4832 align_bi->bi_private = raid_bio;
4833 /*
4834 * compute position
4835 */
4f024f37
KO
4836 align_bi->bi_iter.bi_sector =
4837 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4838 0, &dd_idx, NULL);
f679623f 4839
f73a1c7d 4840 end_sector = bio_end_sector(align_bi);
f679623f 4841 rcu_read_lock();
671488cc
N
4842 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4843 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4844 rdev->recovery_offset < end_sector) {
4845 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4846 if (rdev &&
4847 (test_bit(Faulty, &rdev->flags) ||
4848 !(test_bit(In_sync, &rdev->flags) ||
4849 rdev->recovery_offset >= end_sector)))
4850 rdev = NULL;
4851 }
4852 if (rdev) {
31c176ec
N
4853 sector_t first_bad;
4854 int bad_sectors;
4855
f679623f
RBJ
4856 atomic_inc(&rdev->nr_pending);
4857 rcu_read_unlock();
46031f9a
RBJ
4858 raid_bio->bi_next = (void*)rdev;
4859 align_bi->bi_bdev = rdev->bdev;
3fd83717 4860 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
46031f9a 4861
31c176ec 4862 if (!bio_fits_rdev(align_bi) ||
4f024f37
KO
4863 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4864 bio_sectors(align_bi),
31c176ec
N
4865 &first_bad, &bad_sectors)) {
4866 /* too big in some way, or has a known bad block */
387bb173
NB
4867 bio_put(align_bi);
4868 rdev_dec_pending(rdev, mddev);
4869 return 0;
4870 }
4871
6c0544e2 4872 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4873 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4874
46031f9a 4875 spin_lock_irq(&conf->device_lock);
b1b46486 4876 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 4877 conf->quiesce == 0,
eed8c02e 4878 conf->device_lock);
46031f9a
RBJ
4879 atomic_inc(&conf->active_aligned_reads);
4880 spin_unlock_irq(&conf->device_lock);
4881
e3620a3a
JB
4882 if (mddev->gendisk)
4883 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4884 align_bi, disk_devt(mddev->gendisk),
4f024f37 4885 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4886 generic_make_request(align_bi);
4887 return 1;
4888 } else {
4889 rcu_read_unlock();
46031f9a 4890 bio_put(align_bi);
f679623f
RBJ
4891 return 0;
4892 }
4893}
4894
8b3e6cdc
DW
4895/* __get_priority_stripe - get the next stripe to process
4896 *
4897 * Full stripe writes are allowed to pass preread active stripes up until
4898 * the bypass_threshold is exceeded. In general the bypass_count
4899 * increments when the handle_list is handled before the hold_list; however, it
4900 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4901 * stripe with in flight i/o. The bypass_count will be reset when the
4902 * head of the hold_list has changed, i.e. the head was promoted to the
4903 * handle_list.
4904 */
851c30c9 4905static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4906{
851c30c9
SL
4907 struct stripe_head *sh = NULL, *tmp;
4908 struct list_head *handle_list = NULL;
bfc90cb0 4909 struct r5worker_group *wg = NULL;
851c30c9
SL
4910
4911 if (conf->worker_cnt_per_group == 0) {
4912 handle_list = &conf->handle_list;
4913 } else if (group != ANY_GROUP) {
4914 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4915 wg = &conf->worker_groups[group];
851c30c9
SL
4916 } else {
4917 int i;
4918 for (i = 0; i < conf->group_cnt; i++) {
4919 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4920 wg = &conf->worker_groups[i];
851c30c9
SL
4921 if (!list_empty(handle_list))
4922 break;
4923 }
4924 }
8b3e6cdc
DW
4925
4926 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4927 __func__,
851c30c9 4928 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4929 list_empty(&conf->hold_list) ? "empty" : "busy",
4930 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4931
851c30c9
SL
4932 if (!list_empty(handle_list)) {
4933 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4934
4935 if (list_empty(&conf->hold_list))
4936 conf->bypass_count = 0;
4937 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4938 if (conf->hold_list.next == conf->last_hold)
4939 conf->bypass_count++;
4940 else {
4941 conf->last_hold = conf->hold_list.next;
4942 conf->bypass_count -= conf->bypass_threshold;
4943 if (conf->bypass_count < 0)
4944 conf->bypass_count = 0;
4945 }
4946 }
4947 } else if (!list_empty(&conf->hold_list) &&
4948 ((conf->bypass_threshold &&
4949 conf->bypass_count > conf->bypass_threshold) ||
4950 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4951
4952 list_for_each_entry(tmp, &conf->hold_list, lru) {
4953 if (conf->worker_cnt_per_group == 0 ||
4954 group == ANY_GROUP ||
4955 !cpu_online(tmp->cpu) ||
4956 cpu_to_group(tmp->cpu) == group) {
4957 sh = tmp;
4958 break;
4959 }
4960 }
4961
4962 if (sh) {
4963 conf->bypass_count -= conf->bypass_threshold;
4964 if (conf->bypass_count < 0)
4965 conf->bypass_count = 0;
4966 }
bfc90cb0 4967 wg = NULL;
851c30c9
SL
4968 }
4969
4970 if (!sh)
8b3e6cdc
DW
4971 return NULL;
4972
bfc90cb0
SL
4973 if (wg) {
4974 wg->stripes_cnt--;
4975 sh->group = NULL;
4976 }
8b3e6cdc 4977 list_del_init(&sh->lru);
c7a6d35e 4978 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4979 return sh;
4980}
f679623f 4981
8811b596
SL
4982struct raid5_plug_cb {
4983 struct blk_plug_cb cb;
4984 struct list_head list;
566c09c5 4985 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4986};
4987
4988static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4989{
4990 struct raid5_plug_cb *cb = container_of(
4991 blk_cb, struct raid5_plug_cb, cb);
4992 struct stripe_head *sh;
4993 struct mddev *mddev = cb->cb.data;
4994 struct r5conf *conf = mddev->private;
a9add5d9 4995 int cnt = 0;
566c09c5 4996 int hash;
8811b596
SL
4997
4998 if (cb->list.next && !list_empty(&cb->list)) {
4999 spin_lock_irq(&conf->device_lock);
5000 while (!list_empty(&cb->list)) {
5001 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5002 list_del_init(&sh->lru);
5003 /*
5004 * avoid race release_stripe_plug() sees
5005 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5006 * is still in our list
5007 */
4e857c58 5008 smp_mb__before_atomic();
8811b596 5009 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5010 /*
5011 * STRIPE_ON_RELEASE_LIST could be set here. In that
5012 * case, the count is always > 1 here
5013 */
566c09c5
SL
5014 hash = sh->hash_lock_index;
5015 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5016 cnt++;
8811b596
SL
5017 }
5018 spin_unlock_irq(&conf->device_lock);
5019 }
566c09c5
SL
5020 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5021 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5022 if (mddev->queue)
5023 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5024 kfree(cb);
5025}
5026
5027static void release_stripe_plug(struct mddev *mddev,
5028 struct stripe_head *sh)
5029{
5030 struct blk_plug_cb *blk_cb = blk_check_plugged(
5031 raid5_unplug, mddev,
5032 sizeof(struct raid5_plug_cb));
5033 struct raid5_plug_cb *cb;
5034
5035 if (!blk_cb) {
5036 release_stripe(sh);
5037 return;
5038 }
5039
5040 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5041
566c09c5
SL
5042 if (cb->list.next == NULL) {
5043 int i;
8811b596 5044 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5045 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5046 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5047 }
8811b596
SL
5048
5049 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5050 list_add_tail(&sh->lru, &cb->list);
5051 else
5052 release_stripe(sh);
5053}
5054
620125f2
SL
5055static void make_discard_request(struct mddev *mddev, struct bio *bi)
5056{
5057 struct r5conf *conf = mddev->private;
5058 sector_t logical_sector, last_sector;
5059 struct stripe_head *sh;
5060 int remaining;
5061 int stripe_sectors;
5062
5063 if (mddev->reshape_position != MaxSector)
5064 /* Skip discard while reshape is happening */
5065 return;
5066
4f024f37
KO
5067 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5068 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5069
5070 bi->bi_next = NULL;
5071 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5072
5073 stripe_sectors = conf->chunk_sectors *
5074 (conf->raid_disks - conf->max_degraded);
5075 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5076 stripe_sectors);
5077 sector_div(last_sector, stripe_sectors);
5078
5079 logical_sector *= conf->chunk_sectors;
5080 last_sector *= conf->chunk_sectors;
5081
5082 for (; logical_sector < last_sector;
5083 logical_sector += STRIPE_SECTORS) {
5084 DEFINE_WAIT(w);
5085 int d;
5086 again:
5087 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5088 prepare_to_wait(&conf->wait_for_overlap, &w,
5089 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5090 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5091 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5092 release_stripe(sh);
5093 schedule();
5094 goto again;
5095 }
5096 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5097 spin_lock_irq(&sh->stripe_lock);
5098 for (d = 0; d < conf->raid_disks; d++) {
5099 if (d == sh->pd_idx || d == sh->qd_idx)
5100 continue;
5101 if (sh->dev[d].towrite || sh->dev[d].toread) {
5102 set_bit(R5_Overlap, &sh->dev[d].flags);
5103 spin_unlock_irq(&sh->stripe_lock);
5104 release_stripe(sh);
5105 schedule();
5106 goto again;
5107 }
5108 }
f8dfcffd 5109 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5110 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5111 sh->overwrite_disks = 0;
620125f2
SL
5112 for (d = 0; d < conf->raid_disks; d++) {
5113 if (d == sh->pd_idx || d == sh->qd_idx)
5114 continue;
5115 sh->dev[d].towrite = bi;
5116 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5117 raid5_inc_bi_active_stripes(bi);
7a87f434 5118 sh->overwrite_disks++;
620125f2
SL
5119 }
5120 spin_unlock_irq(&sh->stripe_lock);
5121 if (conf->mddev->bitmap) {
5122 for (d = 0;
5123 d < conf->raid_disks - conf->max_degraded;
5124 d++)
5125 bitmap_startwrite(mddev->bitmap,
5126 sh->sector,
5127 STRIPE_SECTORS,
5128 0);
5129 sh->bm_seq = conf->seq_flush + 1;
5130 set_bit(STRIPE_BIT_DELAY, &sh->state);
5131 }
5132
5133 set_bit(STRIPE_HANDLE, &sh->state);
5134 clear_bit(STRIPE_DELAYED, &sh->state);
5135 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5136 atomic_inc(&conf->preread_active_stripes);
5137 release_stripe_plug(mddev, sh);
5138 }
5139
5140 remaining = raid5_dec_bi_active_stripes(bi);
5141 if (remaining == 0) {
5142 md_write_end(mddev);
5143 bio_endio(bi, 0);
5144 }
5145}
5146
b4fdcb02 5147static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5148{
d1688a6d 5149 struct r5conf *conf = mddev->private;
911d4ee8 5150 int dd_idx;
1da177e4
LT
5151 sector_t new_sector;
5152 sector_t logical_sector, last_sector;
5153 struct stripe_head *sh;
a362357b 5154 const int rw = bio_data_dir(bi);
49077326 5155 int remaining;
27c0f68f
SL
5156 DEFINE_WAIT(w);
5157 bool do_prepare;
1da177e4 5158
e9c7469b
TH
5159 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5160 md_flush_request(mddev, bi);
5a7bbad2 5161 return;
e5dcdd80
N
5162 }
5163
3d310eb7 5164 md_write_start(mddev, bi);
06d91a5f 5165
9ffc8f7c
EM
5166 /*
5167 * If array is degraded, better not do chunk aligned read because
5168 * later we might have to read it again in order to reconstruct
5169 * data on failed drives.
5170 */
5171 if (rw == READ && mddev->degraded == 0 &&
52488615 5172 mddev->reshape_position == MaxSector &&
21a52c6d 5173 chunk_aligned_read(mddev,bi))
5a7bbad2 5174 return;
52488615 5175
620125f2
SL
5176 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5177 make_discard_request(mddev, bi);
5178 return;
5179 }
5180
4f024f37 5181 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5182 last_sector = bio_end_sector(bi);
1da177e4
LT
5183 bi->bi_next = NULL;
5184 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5185
27c0f68f 5186 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5187 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5188 int previous;
c46501b2 5189 int seq;
b578d55f 5190
27c0f68f 5191 do_prepare = false;
7ecaa1e6 5192 retry:
c46501b2 5193 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5194 previous = 0;
27c0f68f
SL
5195 if (do_prepare)
5196 prepare_to_wait(&conf->wait_for_overlap, &w,
5197 TASK_UNINTERRUPTIBLE);
b0f9ec04 5198 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5199 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5200 * 64bit on a 32bit platform, and so it might be
5201 * possible to see a half-updated value
aeb878b0 5202 * Of course reshape_progress could change after
df8e7f76
N
5203 * the lock is dropped, so once we get a reference
5204 * to the stripe that we think it is, we will have
5205 * to check again.
5206 */
7ecaa1e6 5207 spin_lock_irq(&conf->device_lock);
2c810cdd 5208 if (mddev->reshape_backwards
fef9c61f
N
5209 ? logical_sector < conf->reshape_progress
5210 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5211 previous = 1;
5212 } else {
2c810cdd 5213 if (mddev->reshape_backwards
fef9c61f
N
5214 ? logical_sector < conf->reshape_safe
5215 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5216 spin_unlock_irq(&conf->device_lock);
5217 schedule();
27c0f68f 5218 do_prepare = true;
b578d55f
N
5219 goto retry;
5220 }
5221 }
7ecaa1e6
N
5222 spin_unlock_irq(&conf->device_lock);
5223 }
16a53ecc 5224
112bf897
N
5225 new_sector = raid5_compute_sector(conf, logical_sector,
5226 previous,
911d4ee8 5227 &dd_idx, NULL);
0c55e022 5228 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 5229 (unsigned long long)new_sector,
1da177e4
LT
5230 (unsigned long long)logical_sector);
5231
b5663ba4 5232 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 5233 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5234 if (sh) {
b0f9ec04 5235 if (unlikely(previous)) {
7ecaa1e6 5236 /* expansion might have moved on while waiting for a
df8e7f76
N
5237 * stripe, so we must do the range check again.
5238 * Expansion could still move past after this
5239 * test, but as we are holding a reference to
5240 * 'sh', we know that if that happens,
5241 * STRIPE_EXPANDING will get set and the expansion
5242 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5243 */
5244 int must_retry = 0;
5245 spin_lock_irq(&conf->device_lock);
2c810cdd 5246 if (mddev->reshape_backwards
b0f9ec04
N
5247 ? logical_sector >= conf->reshape_progress
5248 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5249 /* mismatch, need to try again */
5250 must_retry = 1;
5251 spin_unlock_irq(&conf->device_lock);
5252 if (must_retry) {
5253 release_stripe(sh);
7a3ab908 5254 schedule();
27c0f68f 5255 do_prepare = true;
7ecaa1e6
N
5256 goto retry;
5257 }
5258 }
c46501b2
N
5259 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5260 /* Might have got the wrong stripe_head
5261 * by accident
5262 */
5263 release_stripe(sh);
5264 goto retry;
5265 }
e62e58a5 5266
ffd96e35 5267 if (rw == WRITE &&
a5c308d4 5268 logical_sector >= mddev->suspend_lo &&
e464eafd
N
5269 logical_sector < mddev->suspend_hi) {
5270 release_stripe(sh);
e62e58a5
N
5271 /* As the suspend_* range is controlled by
5272 * userspace, we want an interruptible
5273 * wait.
5274 */
5275 flush_signals(current);
5276 prepare_to_wait(&conf->wait_for_overlap,
5277 &w, TASK_INTERRUPTIBLE);
5278 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5279 logical_sector < mddev->suspend_hi) {
e62e58a5 5280 schedule();
27c0f68f
SL
5281 do_prepare = true;
5282 }
e464eafd
N
5283 goto retry;
5284 }
7ecaa1e6
N
5285
5286 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5287 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5288 /* Stripe is busy expanding or
5289 * add failed due to overlap. Flush everything
1da177e4
LT
5290 * and wait a while
5291 */
482c0834 5292 md_wakeup_thread(mddev->thread);
1da177e4
LT
5293 release_stripe(sh);
5294 schedule();
27c0f68f 5295 do_prepare = true;
1da177e4
LT
5296 goto retry;
5297 }
6ed3003c
N
5298 set_bit(STRIPE_HANDLE, &sh->state);
5299 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5300 if ((!sh->batch_head || sh == sh->batch_head) &&
5301 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5302 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5303 atomic_inc(&conf->preread_active_stripes);
8811b596 5304 release_stripe_plug(mddev, sh);
1da177e4
LT
5305 } else {
5306 /* cannot get stripe for read-ahead, just give-up */
5307 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1da177e4
LT
5308 break;
5309 }
1da177e4 5310 }
27c0f68f 5311 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5312
e7836bd6 5313 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5314 if (remaining == 0) {
1da177e4 5315
16a53ecc 5316 if ( rw == WRITE )
1da177e4 5317 md_write_end(mddev);
6712ecf8 5318
0a82a8d1
LT
5319 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5320 bi, 0);
0e13fe23 5321 bio_endio(bi, 0);
1da177e4 5322 }
1da177e4
LT
5323}
5324
fd01b88c 5325static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5326
fd01b88c 5327static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5328{
52c03291
N
5329 /* reshaping is quite different to recovery/resync so it is
5330 * handled quite separately ... here.
5331 *
5332 * On each call to sync_request, we gather one chunk worth of
5333 * destination stripes and flag them as expanding.
5334 * Then we find all the source stripes and request reads.
5335 * As the reads complete, handle_stripe will copy the data
5336 * into the destination stripe and release that stripe.
5337 */
d1688a6d 5338 struct r5conf *conf = mddev->private;
1da177e4 5339 struct stripe_head *sh;
ccfcc3c1 5340 sector_t first_sector, last_sector;
f416885e
N
5341 int raid_disks = conf->previous_raid_disks;
5342 int data_disks = raid_disks - conf->max_degraded;
5343 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5344 int i;
5345 int dd_idx;
c8f517c4 5346 sector_t writepos, readpos, safepos;
ec32a2bd 5347 sector_t stripe_addr;
7a661381 5348 int reshape_sectors;
ab69ae12 5349 struct list_head stripes;
52c03291 5350
fef9c61f
N
5351 if (sector_nr == 0) {
5352 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5353 if (mddev->reshape_backwards &&
fef9c61f
N
5354 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5355 sector_nr = raid5_size(mddev, 0, 0)
5356 - conf->reshape_progress;
2c810cdd 5357 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5358 conf->reshape_progress > 0)
5359 sector_nr = conf->reshape_progress;
f416885e 5360 sector_div(sector_nr, new_data_disks);
fef9c61f 5361 if (sector_nr) {
8dee7211
N
5362 mddev->curr_resync_completed = sector_nr;
5363 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
5364 *skipped = 1;
5365 return sector_nr;
5366 }
52c03291
N
5367 }
5368
7a661381
N
5369 /* We need to process a full chunk at a time.
5370 * If old and new chunk sizes differ, we need to process the
5371 * largest of these
5372 */
664e7c41
AN
5373 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5374 reshape_sectors = mddev->new_chunk_sectors;
7a661381 5375 else
9d8f0363 5376 reshape_sectors = mddev->chunk_sectors;
7a661381 5377
b5254dd5
N
5378 /* We update the metadata at least every 10 seconds, or when
5379 * the data about to be copied would over-write the source of
5380 * the data at the front of the range. i.e. one new_stripe
5381 * along from reshape_progress new_maps to after where
5382 * reshape_safe old_maps to
52c03291 5383 */
fef9c61f 5384 writepos = conf->reshape_progress;
f416885e 5385 sector_div(writepos, new_data_disks);
c8f517c4
N
5386 readpos = conf->reshape_progress;
5387 sector_div(readpos, data_disks);
fef9c61f 5388 safepos = conf->reshape_safe;
f416885e 5389 sector_div(safepos, data_disks);
2c810cdd 5390 if (mddev->reshape_backwards) {
ed37d83e 5391 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 5392 readpos += reshape_sectors;
7a661381 5393 safepos += reshape_sectors;
fef9c61f 5394 } else {
7a661381 5395 writepos += reshape_sectors;
ed37d83e
N
5396 readpos -= min_t(sector_t, reshape_sectors, readpos);
5397 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5398 }
52c03291 5399
b5254dd5
N
5400 /* Having calculated the 'writepos' possibly use it
5401 * to set 'stripe_addr' which is where we will write to.
5402 */
5403 if (mddev->reshape_backwards) {
5404 BUG_ON(conf->reshape_progress == 0);
5405 stripe_addr = writepos;
5406 BUG_ON((mddev->dev_sectors &
5407 ~((sector_t)reshape_sectors - 1))
5408 - reshape_sectors - stripe_addr
5409 != sector_nr);
5410 } else {
5411 BUG_ON(writepos != sector_nr + reshape_sectors);
5412 stripe_addr = sector_nr;
5413 }
5414
c8f517c4
N
5415 /* 'writepos' is the most advanced device address we might write.
5416 * 'readpos' is the least advanced device address we might read.
5417 * 'safepos' is the least address recorded in the metadata as having
5418 * been reshaped.
b5254dd5
N
5419 * If there is a min_offset_diff, these are adjusted either by
5420 * increasing the safepos/readpos if diff is negative, or
5421 * increasing writepos if diff is positive.
5422 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5423 * ensure safety in the face of a crash - that must be done by userspace
5424 * making a backup of the data. So in that case there is no particular
5425 * rush to update metadata.
5426 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5427 * update the metadata to advance 'safepos' to match 'readpos' so that
5428 * we can be safe in the event of a crash.
5429 * So we insist on updating metadata if safepos is behind writepos and
5430 * readpos is beyond writepos.
5431 * In any case, update the metadata every 10 seconds.
5432 * Maybe that number should be configurable, but I'm not sure it is
5433 * worth it.... maybe it could be a multiple of safemode_delay???
5434 */
b5254dd5
N
5435 if (conf->min_offset_diff < 0) {
5436 safepos += -conf->min_offset_diff;
5437 readpos += -conf->min_offset_diff;
5438 } else
5439 writepos += conf->min_offset_diff;
5440
2c810cdd 5441 if ((mddev->reshape_backwards
c8f517c4
N
5442 ? (safepos > writepos && readpos < writepos)
5443 : (safepos < writepos && readpos > writepos)) ||
5444 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5445 /* Cannot proceed until we've updated the superblock... */
5446 wait_event(conf->wait_for_overlap,
c91abf5a
N
5447 atomic_read(&conf->reshape_stripes)==0
5448 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5449 if (atomic_read(&conf->reshape_stripes) != 0)
5450 return 0;
fef9c61f 5451 mddev->reshape_position = conf->reshape_progress;
75d3da43 5452 mddev->curr_resync_completed = sector_nr;
c8f517c4 5453 conf->reshape_checkpoint = jiffies;
850b2b42 5454 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5455 md_wakeup_thread(mddev->thread);
850b2b42 5456 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5457 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5458 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5459 return 0;
52c03291 5460 spin_lock_irq(&conf->device_lock);
fef9c61f 5461 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5462 spin_unlock_irq(&conf->device_lock);
5463 wake_up(&conf->wait_for_overlap);
acb180b0 5464 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5465 }
5466
ab69ae12 5467 INIT_LIST_HEAD(&stripes);
7a661381 5468 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5469 int j;
a9f326eb 5470 int skipped_disk = 0;
a8c906ca 5471 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5472 set_bit(STRIPE_EXPANDING, &sh->state);
5473 atomic_inc(&conf->reshape_stripes);
5474 /* If any of this stripe is beyond the end of the old
5475 * array, then we need to zero those blocks
5476 */
5477 for (j=sh->disks; j--;) {
5478 sector_t s;
5479 if (j == sh->pd_idx)
5480 continue;
f416885e 5481 if (conf->level == 6 &&
d0dabf7e 5482 j == sh->qd_idx)
f416885e 5483 continue;
784052ec 5484 s = compute_blocknr(sh, j, 0);
b522adcd 5485 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5486 skipped_disk = 1;
52c03291
N
5487 continue;
5488 }
5489 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5490 set_bit(R5_Expanded, &sh->dev[j].flags);
5491 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5492 }
a9f326eb 5493 if (!skipped_disk) {
52c03291
N
5494 set_bit(STRIPE_EXPAND_READY, &sh->state);
5495 set_bit(STRIPE_HANDLE, &sh->state);
5496 }
ab69ae12 5497 list_add(&sh->lru, &stripes);
52c03291
N
5498 }
5499 spin_lock_irq(&conf->device_lock);
2c810cdd 5500 if (mddev->reshape_backwards)
7a661381 5501 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5502 else
7a661381 5503 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5504 spin_unlock_irq(&conf->device_lock);
5505 /* Ok, those stripe are ready. We can start scheduling
5506 * reads on the source stripes.
5507 * The source stripes are determined by mapping the first and last
5508 * block on the destination stripes.
5509 */
52c03291 5510 first_sector =
ec32a2bd 5511 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5512 1, &dd_idx, NULL);
52c03291 5513 last_sector =
0e6e0271 5514 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5515 * new_data_disks - 1),
911d4ee8 5516 1, &dd_idx, NULL);
58c0fed4
AN
5517 if (last_sector >= mddev->dev_sectors)
5518 last_sector = mddev->dev_sectors - 1;
52c03291 5519 while (first_sector <= last_sector) {
a8c906ca 5520 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5521 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5522 set_bit(STRIPE_HANDLE, &sh->state);
5523 release_stripe(sh);
5524 first_sector += STRIPE_SECTORS;
5525 }
ab69ae12
N
5526 /* Now that the sources are clearly marked, we can release
5527 * the destination stripes
5528 */
5529 while (!list_empty(&stripes)) {
5530 sh = list_entry(stripes.next, struct stripe_head, lru);
5531 list_del_init(&sh->lru);
5532 release_stripe(sh);
5533 }
c6207277
N
5534 /* If this takes us to the resync_max point where we have to pause,
5535 * then we need to write out the superblock.
5536 */
7a661381 5537 sector_nr += reshape_sectors;
c03f6a19
N
5538 if ((sector_nr - mddev->curr_resync_completed) * 2
5539 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5540 /* Cannot proceed until we've updated the superblock... */
5541 wait_event(conf->wait_for_overlap,
c91abf5a
N
5542 atomic_read(&conf->reshape_stripes) == 0
5543 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5544 if (atomic_read(&conf->reshape_stripes) != 0)
5545 goto ret;
fef9c61f 5546 mddev->reshape_position = conf->reshape_progress;
75d3da43 5547 mddev->curr_resync_completed = sector_nr;
c8f517c4 5548 conf->reshape_checkpoint = jiffies;
c6207277
N
5549 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5550 md_wakeup_thread(mddev->thread);
5551 wait_event(mddev->sb_wait,
5552 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5553 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5554 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5555 goto ret;
c6207277 5556 spin_lock_irq(&conf->device_lock);
fef9c61f 5557 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5558 spin_unlock_irq(&conf->device_lock);
5559 wake_up(&conf->wait_for_overlap);
acb180b0 5560 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5561 }
c91abf5a 5562ret:
7a661381 5563 return reshape_sectors;
52c03291
N
5564}
5565
09314799 5566static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
52c03291 5567{
d1688a6d 5568 struct r5conf *conf = mddev->private;
52c03291 5569 struct stripe_head *sh;
58c0fed4 5570 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5571 sector_t sync_blocks;
16a53ecc
N
5572 int still_degraded = 0;
5573 int i;
1da177e4 5574
72626685 5575 if (sector_nr >= max_sector) {
1da177e4 5576 /* just being told to finish up .. nothing much to do */
cea9c228 5577
29269553
N
5578 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5579 end_reshape(conf);
5580 return 0;
5581 }
72626685
N
5582
5583 if (mddev->curr_resync < max_sector) /* aborted */
5584 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5585 &sync_blocks, 1);
16a53ecc 5586 else /* completed sync */
72626685
N
5587 conf->fullsync = 0;
5588 bitmap_close_sync(mddev->bitmap);
5589
1da177e4
LT
5590 return 0;
5591 }
ccfcc3c1 5592
64bd660b
N
5593 /* Allow raid5_quiesce to complete */
5594 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5595
52c03291
N
5596 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5597 return reshape_request(mddev, sector_nr, skipped);
f6705578 5598
c6207277
N
5599 /* No need to check resync_max as we never do more than one
5600 * stripe, and as resync_max will always be on a chunk boundary,
5601 * if the check in md_do_sync didn't fire, there is no chance
5602 * of overstepping resync_max here
5603 */
5604
16a53ecc 5605 /* if there is too many failed drives and we are trying
1da177e4
LT
5606 * to resync, then assert that we are finished, because there is
5607 * nothing we can do.
5608 */
3285edf1 5609 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5610 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5611 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5612 *skipped = 1;
1da177e4
LT
5613 return rv;
5614 }
6f608040 5615 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5616 !conf->fullsync &&
5617 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5618 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5619 /* we can skip this block, and probably more */
5620 sync_blocks /= STRIPE_SECTORS;
5621 *skipped = 1;
5622 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5623 }
1da177e4 5624
b47490c9
N
5625 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5626
a8c906ca 5627 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5628 if (sh == NULL) {
a8c906ca 5629 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5630 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5631 * is trying to get access
1da177e4 5632 */
66c006a5 5633 schedule_timeout_uninterruptible(1);
1da177e4 5634 }
16a53ecc 5635 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5636 * Note in case of > 1 drive failures it's possible we're rebuilding
5637 * one drive while leaving another faulty drive in array.
16a53ecc 5638 */
16d9cfab
EM
5639 rcu_read_lock();
5640 for (i = 0; i < conf->raid_disks; i++) {
5641 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5642
5643 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5644 still_degraded = 1;
16d9cfab
EM
5645 }
5646 rcu_read_unlock();
16a53ecc
N
5647
5648 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5649
83206d66 5650 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5651 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5652
1da177e4
LT
5653 release_stripe(sh);
5654
5655 return STRIPE_SECTORS;
5656}
5657
d1688a6d 5658static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5659{
5660 /* We may not be able to submit a whole bio at once as there
5661 * may not be enough stripe_heads available.
5662 * We cannot pre-allocate enough stripe_heads as we may need
5663 * more than exist in the cache (if we allow ever large chunks).
5664 * So we do one stripe head at a time and record in
5665 * ->bi_hw_segments how many have been done.
5666 *
5667 * We *know* that this entire raid_bio is in one chunk, so
5668 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5669 */
5670 struct stripe_head *sh;
911d4ee8 5671 int dd_idx;
46031f9a
RBJ
5672 sector_t sector, logical_sector, last_sector;
5673 int scnt = 0;
5674 int remaining;
5675 int handled = 0;
5676
4f024f37
KO
5677 logical_sector = raid_bio->bi_iter.bi_sector &
5678 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5679 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5680 0, &dd_idx, NULL);
f73a1c7d 5681 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5682
5683 for (; logical_sector < last_sector;
387bb173
NB
5684 logical_sector += STRIPE_SECTORS,
5685 sector += STRIPE_SECTORS,
5686 scnt++) {
46031f9a 5687
e7836bd6 5688 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5689 /* already done this stripe */
5690 continue;
5691
2844dc32 5692 sh = get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5693
5694 if (!sh) {
5695 /* failed to get a stripe - must wait */
e7836bd6 5696 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5697 conf->retry_read_aligned = raid_bio;
5698 return handled;
5699 }
5700
da41ba65 5701 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
387bb173 5702 release_stripe(sh);
e7836bd6 5703 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5704 conf->retry_read_aligned = raid_bio;
5705 return handled;
5706 }
5707
3f9e7c14 5708 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5709 handle_stripe(sh);
46031f9a
RBJ
5710 release_stripe(sh);
5711 handled++;
5712 }
e7836bd6 5713 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5714 if (remaining == 0) {
5715 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5716 raid_bio, 0);
0e13fe23 5717 bio_endio(raid_bio, 0);
0a82a8d1 5718 }
46031f9a 5719 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5720 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
5721 return handled;
5722}
5723
bfc90cb0 5724static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5725 struct r5worker *worker,
5726 struct list_head *temp_inactive_list)
46a06401
SL
5727{
5728 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5729 int i, batch_size = 0, hash;
5730 bool release_inactive = false;
46a06401
SL
5731
5732 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5733 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5734 batch[batch_size++] = sh;
5735
566c09c5
SL
5736 if (batch_size == 0) {
5737 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5738 if (!list_empty(temp_inactive_list + i))
5739 break;
5740 if (i == NR_STRIPE_HASH_LOCKS)
5741 return batch_size;
5742 release_inactive = true;
5743 }
46a06401
SL
5744 spin_unlock_irq(&conf->device_lock);
5745
566c09c5
SL
5746 release_inactive_stripe_list(conf, temp_inactive_list,
5747 NR_STRIPE_HASH_LOCKS);
5748
5749 if (release_inactive) {
5750 spin_lock_irq(&conf->device_lock);
5751 return 0;
5752 }
5753
46a06401
SL
5754 for (i = 0; i < batch_size; i++)
5755 handle_stripe(batch[i]);
5756
5757 cond_resched();
5758
5759 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5760 for (i = 0; i < batch_size; i++) {
5761 hash = batch[i]->hash_lock_index;
5762 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5763 }
46a06401
SL
5764 return batch_size;
5765}
46031f9a 5766
851c30c9
SL
5767static void raid5_do_work(struct work_struct *work)
5768{
5769 struct r5worker *worker = container_of(work, struct r5worker, work);
5770 struct r5worker_group *group = worker->group;
5771 struct r5conf *conf = group->conf;
5772 int group_id = group - conf->worker_groups;
5773 int handled;
5774 struct blk_plug plug;
5775
5776 pr_debug("+++ raid5worker active\n");
5777
5778 blk_start_plug(&plug);
5779 handled = 0;
5780 spin_lock_irq(&conf->device_lock);
5781 while (1) {
5782 int batch_size, released;
5783
566c09c5 5784 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5785
566c09c5
SL
5786 batch_size = handle_active_stripes(conf, group_id, worker,
5787 worker->temp_inactive_list);
bfc90cb0 5788 worker->working = false;
851c30c9
SL
5789 if (!batch_size && !released)
5790 break;
5791 handled += batch_size;
5792 }
5793 pr_debug("%d stripes handled\n", handled);
5794
5795 spin_unlock_irq(&conf->device_lock);
5796 blk_finish_plug(&plug);
5797
5798 pr_debug("--- raid5worker inactive\n");
5799}
5800
1da177e4
LT
5801/*
5802 * This is our raid5 kernel thread.
5803 *
5804 * We scan the hash table for stripes which can be handled now.
5805 * During the scan, completed stripes are saved for us by the interrupt
5806 * handler, so that they will not have to wait for our next wakeup.
5807 */
4ed8731d 5808static void raid5d(struct md_thread *thread)
1da177e4 5809{
4ed8731d 5810 struct mddev *mddev = thread->mddev;
d1688a6d 5811 struct r5conf *conf = mddev->private;
1da177e4 5812 int handled;
e1dfa0a2 5813 struct blk_plug plug;
1da177e4 5814
45b4233c 5815 pr_debug("+++ raid5d active\n");
1da177e4
LT
5816
5817 md_check_recovery(mddev);
1da177e4 5818
e1dfa0a2 5819 blk_start_plug(&plug);
1da177e4
LT
5820 handled = 0;
5821 spin_lock_irq(&conf->device_lock);
5822 while (1) {
46031f9a 5823 struct bio *bio;
773ca82f
SL
5824 int batch_size, released;
5825
566c09c5 5826 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5827 if (released)
5828 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5829
0021b7bc 5830 if (
7c13edc8
N
5831 !list_empty(&conf->bitmap_list)) {
5832 /* Now is a good time to flush some bitmap updates */
5833 conf->seq_flush++;
700e432d 5834 spin_unlock_irq(&conf->device_lock);
72626685 5835 bitmap_unplug(mddev->bitmap);
700e432d 5836 spin_lock_irq(&conf->device_lock);
7c13edc8 5837 conf->seq_write = conf->seq_flush;
566c09c5 5838 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5839 }
0021b7bc 5840 raid5_activate_delayed(conf);
72626685 5841
46031f9a
RBJ
5842 while ((bio = remove_bio_from_retry(conf))) {
5843 int ok;
5844 spin_unlock_irq(&conf->device_lock);
5845 ok = retry_aligned_read(conf, bio);
5846 spin_lock_irq(&conf->device_lock);
5847 if (!ok)
5848 break;
5849 handled++;
5850 }
5851
566c09c5
SL
5852 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5853 conf->temp_inactive_list);
773ca82f 5854 if (!batch_size && !released)
1da177e4 5855 break;
46a06401 5856 handled += batch_size;
1da177e4 5857
46a06401
SL
5858 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5859 spin_unlock_irq(&conf->device_lock);
de393cde 5860 md_check_recovery(mddev);
46a06401
SL
5861 spin_lock_irq(&conf->device_lock);
5862 }
1da177e4 5863 }
45b4233c 5864 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5865
5866 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
5867 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5868 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
5869 grow_one_stripe(conf, __GFP_NOWARN);
5870 /* Set flag even if allocation failed. This helps
5871 * slow down allocation requests when mem is short
5872 */
5873 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 5874 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 5875 }
1da177e4 5876
c9f21aaf 5877 async_tx_issue_pending_all();
e1dfa0a2 5878 blk_finish_plug(&plug);
1da177e4 5879
45b4233c 5880 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5881}
5882
3f294f4f 5883static ssize_t
fd01b88c 5884raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5885{
7b1485ba
N
5886 struct r5conf *conf;
5887 int ret = 0;
5888 spin_lock(&mddev->lock);
5889 conf = mddev->private;
96de1e66 5890 if (conf)
edbe83ab 5891 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5892 spin_unlock(&mddev->lock);
5893 return ret;
3f294f4f
N
5894}
5895
c41d4ac4 5896int
fd01b88c 5897raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5898{
d1688a6d 5899 struct r5conf *conf = mddev->private;
b5470dc5
DW
5900 int err;
5901
c41d4ac4 5902 if (size <= 16 || size > 32768)
3f294f4f 5903 return -EINVAL;
486f0644 5904
edbe83ab 5905 conf->min_nr_stripes = size;
2d5b569b 5906 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5907 while (size < conf->max_nr_stripes &&
5908 drop_one_stripe(conf))
5909 ;
2d5b569b 5910 mutex_unlock(&conf->cache_size_mutex);
486f0644 5911
edbe83ab 5912
b5470dc5
DW
5913 err = md_allow_write(mddev);
5914 if (err)
5915 return err;
486f0644 5916
2d5b569b 5917 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5918 while (size > conf->max_nr_stripes)
5919 if (!grow_one_stripe(conf, GFP_KERNEL))
5920 break;
2d5b569b 5921 mutex_unlock(&conf->cache_size_mutex);
486f0644 5922
c41d4ac4
N
5923 return 0;
5924}
5925EXPORT_SYMBOL(raid5_set_cache_size);
5926
5927static ssize_t
fd01b88c 5928raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5929{
6791875e 5930 struct r5conf *conf;
c41d4ac4
N
5931 unsigned long new;
5932 int err;
5933
5934 if (len >= PAGE_SIZE)
5935 return -EINVAL;
b29bebd6 5936 if (kstrtoul(page, 10, &new))
c41d4ac4 5937 return -EINVAL;
6791875e 5938 err = mddev_lock(mddev);
c41d4ac4
N
5939 if (err)
5940 return err;
6791875e
N
5941 conf = mddev->private;
5942 if (!conf)
5943 err = -ENODEV;
5944 else
5945 err = raid5_set_cache_size(mddev, new);
5946 mddev_unlock(mddev);
5947
5948 return err ?: len;
3f294f4f 5949}
007583c9 5950
96de1e66
N
5951static struct md_sysfs_entry
5952raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5953 raid5_show_stripe_cache_size,
5954 raid5_store_stripe_cache_size);
3f294f4f 5955
d06f191f
MS
5956static ssize_t
5957raid5_show_rmw_level(struct mddev *mddev, char *page)
5958{
5959 struct r5conf *conf = mddev->private;
5960 if (conf)
5961 return sprintf(page, "%d\n", conf->rmw_level);
5962 else
5963 return 0;
5964}
5965
5966static ssize_t
5967raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5968{
5969 struct r5conf *conf = mddev->private;
5970 unsigned long new;
5971
5972 if (!conf)
5973 return -ENODEV;
5974
5975 if (len >= PAGE_SIZE)
5976 return -EINVAL;
5977
5978 if (kstrtoul(page, 10, &new))
5979 return -EINVAL;
5980
5981 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5982 return -EINVAL;
5983
5984 if (new != PARITY_DISABLE_RMW &&
5985 new != PARITY_ENABLE_RMW &&
5986 new != PARITY_PREFER_RMW)
5987 return -EINVAL;
5988
5989 conf->rmw_level = new;
5990 return len;
5991}
5992
5993static struct md_sysfs_entry
5994raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5995 raid5_show_rmw_level,
5996 raid5_store_rmw_level);
5997
5998
8b3e6cdc 5999static ssize_t
fd01b88c 6000raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6001{
7b1485ba
N
6002 struct r5conf *conf;
6003 int ret = 0;
6004 spin_lock(&mddev->lock);
6005 conf = mddev->private;
8b3e6cdc 6006 if (conf)
7b1485ba
N
6007 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6008 spin_unlock(&mddev->lock);
6009 return ret;
8b3e6cdc
DW
6010}
6011
6012static ssize_t
fd01b88c 6013raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6014{
6791875e 6015 struct r5conf *conf;
4ef197d8 6016 unsigned long new;
6791875e
N
6017 int err;
6018
8b3e6cdc
DW
6019 if (len >= PAGE_SIZE)
6020 return -EINVAL;
b29bebd6 6021 if (kstrtoul(page, 10, &new))
8b3e6cdc 6022 return -EINVAL;
6791875e
N
6023
6024 err = mddev_lock(mddev);
6025 if (err)
6026 return err;
6027 conf = mddev->private;
6028 if (!conf)
6029 err = -ENODEV;
edbe83ab 6030 else if (new > conf->min_nr_stripes)
6791875e
N
6031 err = -EINVAL;
6032 else
6033 conf->bypass_threshold = new;
6034 mddev_unlock(mddev);
6035 return err ?: len;
8b3e6cdc
DW
6036}
6037
6038static struct md_sysfs_entry
6039raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6040 S_IRUGO | S_IWUSR,
6041 raid5_show_preread_threshold,
6042 raid5_store_preread_threshold);
6043
d592a996
SL
6044static ssize_t
6045raid5_show_skip_copy(struct mddev *mddev, char *page)
6046{
7b1485ba
N
6047 struct r5conf *conf;
6048 int ret = 0;
6049 spin_lock(&mddev->lock);
6050 conf = mddev->private;
d592a996 6051 if (conf)
7b1485ba
N
6052 ret = sprintf(page, "%d\n", conf->skip_copy);
6053 spin_unlock(&mddev->lock);
6054 return ret;
d592a996
SL
6055}
6056
6057static ssize_t
6058raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6059{
6791875e 6060 struct r5conf *conf;
d592a996 6061 unsigned long new;
6791875e
N
6062 int err;
6063
d592a996
SL
6064 if (len >= PAGE_SIZE)
6065 return -EINVAL;
d592a996
SL
6066 if (kstrtoul(page, 10, &new))
6067 return -EINVAL;
6068 new = !!new;
6791875e
N
6069
6070 err = mddev_lock(mddev);
6071 if (err)
6072 return err;
6073 conf = mddev->private;
6074 if (!conf)
6075 err = -ENODEV;
6076 else if (new != conf->skip_copy) {
6077 mddev_suspend(mddev);
6078 conf->skip_copy = new;
6079 if (new)
6080 mddev->queue->backing_dev_info.capabilities |=
6081 BDI_CAP_STABLE_WRITES;
6082 else
6083 mddev->queue->backing_dev_info.capabilities &=
6084 ~BDI_CAP_STABLE_WRITES;
6085 mddev_resume(mddev);
6086 }
6087 mddev_unlock(mddev);
6088 return err ?: len;
d592a996
SL
6089}
6090
6091static struct md_sysfs_entry
6092raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6093 raid5_show_skip_copy,
6094 raid5_store_skip_copy);
6095
3f294f4f 6096static ssize_t
fd01b88c 6097stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6098{
d1688a6d 6099 struct r5conf *conf = mddev->private;
96de1e66
N
6100 if (conf)
6101 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6102 else
6103 return 0;
3f294f4f
N
6104}
6105
96de1e66
N
6106static struct md_sysfs_entry
6107raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6108
b721420e
SL
6109static ssize_t
6110raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6111{
7b1485ba
N
6112 struct r5conf *conf;
6113 int ret = 0;
6114 spin_lock(&mddev->lock);
6115 conf = mddev->private;
b721420e 6116 if (conf)
7b1485ba
N
6117 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6118 spin_unlock(&mddev->lock);
6119 return ret;
b721420e
SL
6120}
6121
60aaf933 6122static int alloc_thread_groups(struct r5conf *conf, int cnt,
6123 int *group_cnt,
6124 int *worker_cnt_per_group,
6125 struct r5worker_group **worker_groups);
b721420e
SL
6126static ssize_t
6127raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6128{
6791875e 6129 struct r5conf *conf;
b721420e
SL
6130 unsigned long new;
6131 int err;
60aaf933 6132 struct r5worker_group *new_groups, *old_groups;
6133 int group_cnt, worker_cnt_per_group;
b721420e
SL
6134
6135 if (len >= PAGE_SIZE)
6136 return -EINVAL;
b721420e
SL
6137 if (kstrtoul(page, 10, &new))
6138 return -EINVAL;
6139
6791875e
N
6140 err = mddev_lock(mddev);
6141 if (err)
6142 return err;
6143 conf = mddev->private;
6144 if (!conf)
6145 err = -ENODEV;
6146 else if (new != conf->worker_cnt_per_group) {
6147 mddev_suspend(mddev);
b721420e 6148
6791875e
N
6149 old_groups = conf->worker_groups;
6150 if (old_groups)
6151 flush_workqueue(raid5_wq);
d206dcfa 6152
6791875e
N
6153 err = alloc_thread_groups(conf, new,
6154 &group_cnt, &worker_cnt_per_group,
6155 &new_groups);
6156 if (!err) {
6157 spin_lock_irq(&conf->device_lock);
6158 conf->group_cnt = group_cnt;
6159 conf->worker_cnt_per_group = worker_cnt_per_group;
6160 conf->worker_groups = new_groups;
6161 spin_unlock_irq(&conf->device_lock);
b721420e 6162
6791875e
N
6163 if (old_groups)
6164 kfree(old_groups[0].workers);
6165 kfree(old_groups);
6166 }
6167 mddev_resume(mddev);
b721420e 6168 }
6791875e 6169 mddev_unlock(mddev);
b721420e 6170
6791875e 6171 return err ?: len;
b721420e
SL
6172}
6173
6174static struct md_sysfs_entry
6175raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6176 raid5_show_group_thread_cnt,
6177 raid5_store_group_thread_cnt);
6178
007583c9 6179static struct attribute *raid5_attrs[] = {
3f294f4f
N
6180 &raid5_stripecache_size.attr,
6181 &raid5_stripecache_active.attr,
8b3e6cdc 6182 &raid5_preread_bypass_threshold.attr,
b721420e 6183 &raid5_group_thread_cnt.attr,
d592a996 6184 &raid5_skip_copy.attr,
d06f191f 6185 &raid5_rmw_level.attr,
3f294f4f
N
6186 NULL,
6187};
007583c9
N
6188static struct attribute_group raid5_attrs_group = {
6189 .name = NULL,
6190 .attrs = raid5_attrs,
3f294f4f
N
6191};
6192
60aaf933 6193static int alloc_thread_groups(struct r5conf *conf, int cnt,
6194 int *group_cnt,
6195 int *worker_cnt_per_group,
6196 struct r5worker_group **worker_groups)
851c30c9 6197{
566c09c5 6198 int i, j, k;
851c30c9
SL
6199 ssize_t size;
6200 struct r5worker *workers;
6201
60aaf933 6202 *worker_cnt_per_group = cnt;
851c30c9 6203 if (cnt == 0) {
60aaf933 6204 *group_cnt = 0;
6205 *worker_groups = NULL;
851c30c9
SL
6206 return 0;
6207 }
60aaf933 6208 *group_cnt = num_possible_nodes();
851c30c9 6209 size = sizeof(struct r5worker) * cnt;
60aaf933 6210 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6211 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6212 *group_cnt, GFP_NOIO);
6213 if (!*worker_groups || !workers) {
851c30c9 6214 kfree(workers);
60aaf933 6215 kfree(*worker_groups);
851c30c9
SL
6216 return -ENOMEM;
6217 }
6218
60aaf933 6219 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6220 struct r5worker_group *group;
6221
0c775d52 6222 group = &(*worker_groups)[i];
851c30c9
SL
6223 INIT_LIST_HEAD(&group->handle_list);
6224 group->conf = conf;
6225 group->workers = workers + i * cnt;
6226
6227 for (j = 0; j < cnt; j++) {
566c09c5
SL
6228 struct r5worker *worker = group->workers + j;
6229 worker->group = group;
6230 INIT_WORK(&worker->work, raid5_do_work);
6231
6232 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6233 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6234 }
6235 }
6236
6237 return 0;
6238}
6239
6240static void free_thread_groups(struct r5conf *conf)
6241{
6242 if (conf->worker_groups)
6243 kfree(conf->worker_groups[0].workers);
6244 kfree(conf->worker_groups);
6245 conf->worker_groups = NULL;
6246}
6247
80c3a6ce 6248static sector_t
fd01b88c 6249raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6250{
d1688a6d 6251 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6252
6253 if (!sectors)
6254 sectors = mddev->dev_sectors;
5e5e3e78 6255 if (!raid_disks)
7ec05478 6256 /* size is defined by the smallest of previous and new size */
5e5e3e78 6257 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6258
9d8f0363 6259 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 6260 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
6261 return sectors * (raid_disks - conf->max_degraded);
6262}
6263
789b5e03
ON
6264static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6265{
6266 safe_put_page(percpu->spare_page);
46d5b785 6267 if (percpu->scribble)
6268 flex_array_free(percpu->scribble);
789b5e03
ON
6269 percpu->spare_page = NULL;
6270 percpu->scribble = NULL;
6271}
6272
6273static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6274{
6275 if (conf->level == 6 && !percpu->spare_page)
6276 percpu->spare_page = alloc_page(GFP_KERNEL);
6277 if (!percpu->scribble)
46d5b785 6278 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6279 conf->previous_raid_disks),
6280 max(conf->chunk_sectors,
6281 conf->prev_chunk_sectors)
6282 / STRIPE_SECTORS,
6283 GFP_KERNEL);
789b5e03
ON
6284
6285 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6286 free_scratch_buffer(conf, percpu);
6287 return -ENOMEM;
6288 }
6289
6290 return 0;
6291}
6292
d1688a6d 6293static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6294{
36d1c647
DW
6295 unsigned long cpu;
6296
6297 if (!conf->percpu)
6298 return;
6299
36d1c647
DW
6300#ifdef CONFIG_HOTPLUG_CPU
6301 unregister_cpu_notifier(&conf->cpu_notify);
6302#endif
789b5e03
ON
6303
6304 get_online_cpus();
6305 for_each_possible_cpu(cpu)
6306 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6307 put_online_cpus();
6308
6309 free_percpu(conf->percpu);
6310}
6311
d1688a6d 6312static void free_conf(struct r5conf *conf)
95fc17aa 6313{
edbe83ab
N
6314 if (conf->shrinker.seeks)
6315 unregister_shrinker(&conf->shrinker);
851c30c9 6316 free_thread_groups(conf);
95fc17aa 6317 shrink_stripes(conf);
36d1c647 6318 raid5_free_percpu(conf);
95fc17aa
DW
6319 kfree(conf->disks);
6320 kfree(conf->stripe_hashtbl);
6321 kfree(conf);
6322}
6323
36d1c647
DW
6324#ifdef CONFIG_HOTPLUG_CPU
6325static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6326 void *hcpu)
6327{
d1688a6d 6328 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6329 long cpu = (long)hcpu;
6330 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6331
6332 switch (action) {
6333 case CPU_UP_PREPARE:
6334 case CPU_UP_PREPARE_FROZEN:
789b5e03 6335 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6336 pr_err("%s: failed memory allocation for cpu%ld\n",
6337 __func__, cpu);
55af6bb5 6338 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6339 }
6340 break;
6341 case CPU_DEAD:
6342 case CPU_DEAD_FROZEN:
789b5e03 6343 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6344 break;
6345 default:
6346 break;
6347 }
6348 return NOTIFY_OK;
6349}
6350#endif
6351
d1688a6d 6352static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6353{
6354 unsigned long cpu;
789b5e03 6355 int err = 0;
36d1c647 6356
789b5e03
ON
6357 conf->percpu = alloc_percpu(struct raid5_percpu);
6358 if (!conf->percpu)
36d1c647 6359 return -ENOMEM;
789b5e03
ON
6360
6361#ifdef CONFIG_HOTPLUG_CPU
6362 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6363 conf->cpu_notify.priority = 0;
6364 err = register_cpu_notifier(&conf->cpu_notify);
6365 if (err)
6366 return err;
6367#endif
36d1c647
DW
6368
6369 get_online_cpus();
36d1c647 6370 for_each_present_cpu(cpu) {
789b5e03
ON
6371 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6372 if (err) {
6373 pr_err("%s: failed memory allocation for cpu%ld\n",
6374 __func__, cpu);
36d1c647
DW
6375 break;
6376 }
36d1c647 6377 }
36d1c647
DW
6378 put_online_cpus();
6379
6380 return err;
6381}
6382
edbe83ab
N
6383static unsigned long raid5_cache_scan(struct shrinker *shrink,
6384 struct shrink_control *sc)
6385{
6386 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6387 unsigned long ret = SHRINK_STOP;
6388
6389 if (mutex_trylock(&conf->cache_size_mutex)) {
6390 ret= 0;
6391 while (ret < sc->nr_to_scan) {
6392 if (drop_one_stripe(conf) == 0) {
6393 ret = SHRINK_STOP;
6394 break;
6395 }
6396 ret++;
6397 }
6398 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6399 }
6400 return ret;
6401}
6402
6403static unsigned long raid5_cache_count(struct shrinker *shrink,
6404 struct shrink_control *sc)
6405{
6406 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6407
6408 if (conf->max_nr_stripes < conf->min_nr_stripes)
6409 /* unlikely, but not impossible */
6410 return 0;
6411 return conf->max_nr_stripes - conf->min_nr_stripes;
6412}
6413
d1688a6d 6414static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6415{
d1688a6d 6416 struct r5conf *conf;
5e5e3e78 6417 int raid_disk, memory, max_disks;
3cb03002 6418 struct md_rdev *rdev;
1da177e4 6419 struct disk_info *disk;
0232605d 6420 char pers_name[6];
566c09c5 6421 int i;
60aaf933 6422 int group_cnt, worker_cnt_per_group;
6423 struct r5worker_group *new_group;
1da177e4 6424
91adb564
N
6425 if (mddev->new_level != 5
6426 && mddev->new_level != 4
6427 && mddev->new_level != 6) {
0c55e022 6428 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6429 mdname(mddev), mddev->new_level);
6430 return ERR_PTR(-EIO);
1da177e4 6431 }
91adb564
N
6432 if ((mddev->new_level == 5
6433 && !algorithm_valid_raid5(mddev->new_layout)) ||
6434 (mddev->new_level == 6
6435 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6436 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6437 mdname(mddev), mddev->new_layout);
6438 return ERR_PTR(-EIO);
99c0fb5f 6439 }
91adb564 6440 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6441 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6442 mdname(mddev), mddev->raid_disks);
6443 return ERR_PTR(-EINVAL);
4bbf3771
N
6444 }
6445
664e7c41
AN
6446 if (!mddev->new_chunk_sectors ||
6447 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6448 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6449 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6450 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6451 return ERR_PTR(-EINVAL);
f6705578
N
6452 }
6453
d1688a6d 6454 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6455 if (conf == NULL)
1da177e4 6456 goto abort;
851c30c9 6457 /* Don't enable multi-threading by default*/
60aaf933 6458 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6459 &new_group)) {
6460 conf->group_cnt = group_cnt;
6461 conf->worker_cnt_per_group = worker_cnt_per_group;
6462 conf->worker_groups = new_group;
6463 } else
851c30c9 6464 goto abort;
f5efd45a 6465 spin_lock_init(&conf->device_lock);
c46501b2 6466 seqcount_init(&conf->gen_lock);
2d5b569b 6467 mutex_init(&conf->cache_size_mutex);
b1b46486 6468 init_waitqueue_head(&conf->wait_for_quiescent);
e9e4c377
YL
6469 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6470 init_waitqueue_head(&conf->wait_for_stripe[i]);
6471 }
f5efd45a
DW
6472 init_waitqueue_head(&conf->wait_for_overlap);
6473 INIT_LIST_HEAD(&conf->handle_list);
6474 INIT_LIST_HEAD(&conf->hold_list);
6475 INIT_LIST_HEAD(&conf->delayed_list);
6476 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6477 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6478 atomic_set(&conf->active_stripes, 0);
6479 atomic_set(&conf->preread_active_stripes, 0);
6480 atomic_set(&conf->active_aligned_reads, 0);
6481 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6482 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6483
6484 conf->raid_disks = mddev->raid_disks;
6485 if (mddev->reshape_position == MaxSector)
6486 conf->previous_raid_disks = mddev->raid_disks;
6487 else
f6705578 6488 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6489 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6490
5e5e3e78 6491 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6492 GFP_KERNEL);
6493 if (!conf->disks)
6494 goto abort;
9ffae0cf 6495
1da177e4
LT
6496 conf->mddev = mddev;
6497
fccddba0 6498 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6499 goto abort;
1da177e4 6500
566c09c5
SL
6501 /* We init hash_locks[0] separately to that it can be used
6502 * as the reference lock in the spin_lock_nest_lock() call
6503 * in lock_all_device_hash_locks_irq in order to convince
6504 * lockdep that we know what we are doing.
6505 */
6506 spin_lock_init(conf->hash_locks);
6507 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6508 spin_lock_init(conf->hash_locks + i);
6509
6510 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6511 INIT_LIST_HEAD(conf->inactive_list + i);
6512
6513 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6514 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6515
36d1c647 6516 conf->level = mddev->new_level;
46d5b785 6517 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6518 if (raid5_alloc_percpu(conf) != 0)
6519 goto abort;
6520
0c55e022 6521 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6522
dafb20fa 6523 rdev_for_each(rdev, mddev) {
1da177e4 6524 raid_disk = rdev->raid_disk;
5e5e3e78 6525 if (raid_disk >= max_disks
1da177e4
LT
6526 || raid_disk < 0)
6527 continue;
6528 disk = conf->disks + raid_disk;
6529
17045f52
N
6530 if (test_bit(Replacement, &rdev->flags)) {
6531 if (disk->replacement)
6532 goto abort;
6533 disk->replacement = rdev;
6534 } else {
6535 if (disk->rdev)
6536 goto abort;
6537 disk->rdev = rdev;
6538 }
1da177e4 6539
b2d444d7 6540 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6541 char b[BDEVNAME_SIZE];
0c55e022
N
6542 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6543 " disk %d\n",
6544 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6545 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6546 /* Cannot rely on bitmap to complete recovery */
6547 conf->fullsync = 1;
1da177e4
LT
6548 }
6549
91adb564 6550 conf->level = mddev->new_level;
584acdd4 6551 if (conf->level == 6) {
16a53ecc 6552 conf->max_degraded = 2;
584acdd4
MS
6553 if (raid6_call.xor_syndrome)
6554 conf->rmw_level = PARITY_ENABLE_RMW;
6555 else
6556 conf->rmw_level = PARITY_DISABLE_RMW;
6557 } else {
16a53ecc 6558 conf->max_degraded = 1;
584acdd4
MS
6559 conf->rmw_level = PARITY_ENABLE_RMW;
6560 }
91adb564 6561 conf->algorithm = mddev->new_layout;
fef9c61f 6562 conf->reshape_progress = mddev->reshape_position;
e183eaed 6563 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6564 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
6565 conf->prev_algo = mddev->layout;
6566 }
1da177e4 6567
edbe83ab
N
6568 conf->min_nr_stripes = NR_STRIPES;
6569 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6570 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6571 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6572 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6573 printk(KERN_ERR
0c55e022
N
6574 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6575 mdname(mddev), memory);
91adb564
N
6576 goto abort;
6577 } else
0c55e022
N
6578 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6579 mdname(mddev), memory);
edbe83ab
N
6580 /*
6581 * Losing a stripe head costs more than the time to refill it,
6582 * it reduces the queue depth and so can hurt throughput.
6583 * So set it rather large, scaled by number of devices.
6584 */
6585 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6586 conf->shrinker.scan_objects = raid5_cache_scan;
6587 conf->shrinker.count_objects = raid5_cache_count;
6588 conf->shrinker.batch = 128;
6589 conf->shrinker.flags = 0;
6590 register_shrinker(&conf->shrinker);
1da177e4 6591
0232605d
N
6592 sprintf(pers_name, "raid%d", mddev->new_level);
6593 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6594 if (!conf->thread) {
6595 printk(KERN_ERR
0c55e022 6596 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6597 mdname(mddev));
16a53ecc
N
6598 goto abort;
6599 }
91adb564
N
6600
6601 return conf;
6602
6603 abort:
6604 if (conf) {
95fc17aa 6605 free_conf(conf);
91adb564
N
6606 return ERR_PTR(-EIO);
6607 } else
6608 return ERR_PTR(-ENOMEM);
6609}
6610
c148ffdc
N
6611static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6612{
6613 switch (algo) {
6614 case ALGORITHM_PARITY_0:
6615 if (raid_disk < max_degraded)
6616 return 1;
6617 break;
6618 case ALGORITHM_PARITY_N:
6619 if (raid_disk >= raid_disks - max_degraded)
6620 return 1;
6621 break;
6622 case ALGORITHM_PARITY_0_6:
f72ffdd6 6623 if (raid_disk == 0 ||
c148ffdc
N
6624 raid_disk == raid_disks - 1)
6625 return 1;
6626 break;
6627 case ALGORITHM_LEFT_ASYMMETRIC_6:
6628 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6629 case ALGORITHM_LEFT_SYMMETRIC_6:
6630 case ALGORITHM_RIGHT_SYMMETRIC_6:
6631 if (raid_disk == raid_disks - 1)
6632 return 1;
6633 }
6634 return 0;
6635}
6636
fd01b88c 6637static int run(struct mddev *mddev)
91adb564 6638{
d1688a6d 6639 struct r5conf *conf;
9f7c2220 6640 int working_disks = 0;
c148ffdc 6641 int dirty_parity_disks = 0;
3cb03002 6642 struct md_rdev *rdev;
c148ffdc 6643 sector_t reshape_offset = 0;
17045f52 6644 int i;
b5254dd5
N
6645 long long min_offset_diff = 0;
6646 int first = 1;
91adb564 6647
8c6ac868 6648 if (mddev->recovery_cp != MaxSector)
0c55e022 6649 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6650 " -- starting background reconstruction\n",
6651 mdname(mddev));
b5254dd5
N
6652
6653 rdev_for_each(rdev, mddev) {
6654 long long diff;
6655 if (rdev->raid_disk < 0)
6656 continue;
6657 diff = (rdev->new_data_offset - rdev->data_offset);
6658 if (first) {
6659 min_offset_diff = diff;
6660 first = 0;
6661 } else if (mddev->reshape_backwards &&
6662 diff < min_offset_diff)
6663 min_offset_diff = diff;
6664 else if (!mddev->reshape_backwards &&
6665 diff > min_offset_diff)
6666 min_offset_diff = diff;
6667 }
6668
91adb564
N
6669 if (mddev->reshape_position != MaxSector) {
6670 /* Check that we can continue the reshape.
b5254dd5
N
6671 * Difficulties arise if the stripe we would write to
6672 * next is at or after the stripe we would read from next.
6673 * For a reshape that changes the number of devices, this
6674 * is only possible for a very short time, and mdadm makes
6675 * sure that time appears to have past before assembling
6676 * the array. So we fail if that time hasn't passed.
6677 * For a reshape that keeps the number of devices the same
6678 * mdadm must be monitoring the reshape can keeping the
6679 * critical areas read-only and backed up. It will start
6680 * the array in read-only mode, so we check for that.
91adb564
N
6681 */
6682 sector_t here_new, here_old;
6683 int old_disks;
18b00334 6684 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 6685
88ce4930 6686 if (mddev->new_level != mddev->level) {
0c55e022 6687 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6688 "required - aborting.\n",
6689 mdname(mddev));
6690 return -EINVAL;
6691 }
91adb564
N
6692 old_disks = mddev->raid_disks - mddev->delta_disks;
6693 /* reshape_position must be on a new-stripe boundary, and one
6694 * further up in new geometry must map after here in old
6695 * geometry.
6696 */
6697 here_new = mddev->reshape_position;
664e7c41 6698 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 6699 (mddev->raid_disks - max_degraded))) {
0c55e022
N
6700 printk(KERN_ERR "md/raid:%s: reshape_position not "
6701 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6702 return -EINVAL;
6703 }
c148ffdc 6704 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
6705 /* here_new is the stripe we will write to */
6706 here_old = mddev->reshape_position;
9d8f0363 6707 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
6708 (old_disks-max_degraded));
6709 /* here_old is the first stripe that we might need to read
6710 * from */
67ac6011 6711 if (mddev->delta_disks == 0) {
b5254dd5
N
6712 if ((here_new * mddev->new_chunk_sectors !=
6713 here_old * mddev->chunk_sectors)) {
6714 printk(KERN_ERR "md/raid:%s: reshape position is"
6715 " confused - aborting\n", mdname(mddev));
6716 return -EINVAL;
6717 }
67ac6011 6718 /* We cannot be sure it is safe to start an in-place
b5254dd5 6719 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6720 * and taking constant backups.
6721 * mdadm always starts a situation like this in
6722 * readonly mode so it can take control before
6723 * allowing any writes. So just check for that.
6724 */
b5254dd5
N
6725 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6726 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6727 /* not really in-place - so OK */;
6728 else if (mddev->ro == 0) {
6729 printk(KERN_ERR "md/raid:%s: in-place reshape "
6730 "must be started in read-only mode "
6731 "- aborting\n",
0c55e022 6732 mdname(mddev));
67ac6011
N
6733 return -EINVAL;
6734 }
2c810cdd 6735 } else if (mddev->reshape_backwards
b5254dd5 6736 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
6737 here_old * mddev->chunk_sectors)
6738 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 6739 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 6740 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6741 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6742 "auto-recovery - aborting.\n",
6743 mdname(mddev));
91adb564
N
6744 return -EINVAL;
6745 }
0c55e022
N
6746 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6747 mdname(mddev));
91adb564
N
6748 /* OK, we should be able to continue; */
6749 } else {
6750 BUG_ON(mddev->level != mddev->new_level);
6751 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6752 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6753 BUG_ON(mddev->delta_disks != 0);
1da177e4 6754 }
91adb564 6755
245f46c2
N
6756 if (mddev->private == NULL)
6757 conf = setup_conf(mddev);
6758 else
6759 conf = mddev->private;
6760
91adb564
N
6761 if (IS_ERR(conf))
6762 return PTR_ERR(conf);
6763
b5254dd5 6764 conf->min_offset_diff = min_offset_diff;
91adb564
N
6765 mddev->thread = conf->thread;
6766 conf->thread = NULL;
6767 mddev->private = conf;
6768
17045f52
N
6769 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6770 i++) {
6771 rdev = conf->disks[i].rdev;
6772 if (!rdev && conf->disks[i].replacement) {
6773 /* The replacement is all we have yet */
6774 rdev = conf->disks[i].replacement;
6775 conf->disks[i].replacement = NULL;
6776 clear_bit(Replacement, &rdev->flags);
6777 conf->disks[i].rdev = rdev;
6778 }
6779 if (!rdev)
c148ffdc 6780 continue;
17045f52
N
6781 if (conf->disks[i].replacement &&
6782 conf->reshape_progress != MaxSector) {
6783 /* replacements and reshape simply do not mix. */
6784 printk(KERN_ERR "md: cannot handle concurrent "
6785 "replacement and reshape.\n");
6786 goto abort;
6787 }
2f115882 6788 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6789 working_disks++;
2f115882
N
6790 continue;
6791 }
c148ffdc
N
6792 /* This disc is not fully in-sync. However if it
6793 * just stored parity (beyond the recovery_offset),
6794 * when we don't need to be concerned about the
6795 * array being dirty.
6796 * When reshape goes 'backwards', we never have
6797 * partially completed devices, so we only need
6798 * to worry about reshape going forwards.
6799 */
6800 /* Hack because v0.91 doesn't store recovery_offset properly. */
6801 if (mddev->major_version == 0 &&
6802 mddev->minor_version > 90)
6803 rdev->recovery_offset = reshape_offset;
5026d7a9 6804
c148ffdc
N
6805 if (rdev->recovery_offset < reshape_offset) {
6806 /* We need to check old and new layout */
6807 if (!only_parity(rdev->raid_disk,
6808 conf->algorithm,
6809 conf->raid_disks,
6810 conf->max_degraded))
6811 continue;
6812 }
6813 if (!only_parity(rdev->raid_disk,
6814 conf->prev_algo,
6815 conf->previous_raid_disks,
6816 conf->max_degraded))
6817 continue;
6818 dirty_parity_disks++;
6819 }
91adb564 6820
17045f52
N
6821 /*
6822 * 0 for a fully functional array, 1 or 2 for a degraded array.
6823 */
908f4fbd 6824 mddev->degraded = calc_degraded(conf);
91adb564 6825
674806d6 6826 if (has_failed(conf)) {
0c55e022 6827 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6828 " (%d/%d failed)\n",
02c2de8c 6829 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6830 goto abort;
6831 }
6832
91adb564 6833 /* device size must be a multiple of chunk size */
9d8f0363 6834 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6835 mddev->resync_max_sectors = mddev->dev_sectors;
6836
c148ffdc 6837 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6838 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6839 if (mddev->ok_start_degraded)
6840 printk(KERN_WARNING
0c55e022
N
6841 "md/raid:%s: starting dirty degraded array"
6842 " - data corruption possible.\n",
6ff8d8ec
N
6843 mdname(mddev));
6844 else {
6845 printk(KERN_ERR
0c55e022 6846 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6847 mdname(mddev));
6848 goto abort;
6849 }
1da177e4
LT
6850 }
6851
1da177e4 6852 if (mddev->degraded == 0)
0c55e022
N
6853 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6854 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6855 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6856 mddev->new_layout);
1da177e4 6857 else
0c55e022
N
6858 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6859 " out of %d devices, algorithm %d\n",
6860 mdname(mddev), conf->level,
6861 mddev->raid_disks - mddev->degraded,
6862 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6863
6864 print_raid5_conf(conf);
6865
fef9c61f 6866 if (conf->reshape_progress != MaxSector) {
fef9c61f 6867 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6868 atomic_set(&conf->reshape_stripes, 0);
6869 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6870 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6871 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6872 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6873 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6874 "reshape");
f6705578
N
6875 }
6876
1da177e4 6877 /* Ok, everything is just fine now */
a64c876f
N
6878 if (mddev->to_remove == &raid5_attrs_group)
6879 mddev->to_remove = NULL;
00bcb4ac
N
6880 else if (mddev->kobj.sd &&
6881 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6882 printk(KERN_WARNING
4a5add49 6883 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6884 mdname(mddev));
4a5add49 6885 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6886
4a5add49 6887 if (mddev->queue) {
9f7c2220 6888 int chunk_size;
620125f2 6889 bool discard_supported = true;
4a5add49
N
6890 /* read-ahead size must cover two whole stripes, which
6891 * is 2 * (datadisks) * chunksize where 'n' is the
6892 * number of raid devices
6893 */
6894 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6895 int stripe = data_disks *
6896 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6897 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6898 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6899
9f7c2220
N
6900 chunk_size = mddev->chunk_sectors << 9;
6901 blk_queue_io_min(mddev->queue, chunk_size);
6902 blk_queue_io_opt(mddev->queue, chunk_size *
6903 (conf->raid_disks - conf->max_degraded));
c78afc62 6904 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6905 /*
6906 * We can only discard a whole stripe. It doesn't make sense to
6907 * discard data disk but write parity disk
6908 */
6909 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6910 /* Round up to power of 2, as discard handling
6911 * currently assumes that */
6912 while ((stripe-1) & stripe)
6913 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6914 mddev->queue->limits.discard_alignment = stripe;
6915 mddev->queue->limits.discard_granularity = stripe;
6916 /*
6917 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6918 * guarantee discard_zeroes_data
620125f2
SL
6919 */
6920 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6921
5026d7a9
PA
6922 blk_queue_max_write_same_sectors(mddev->queue, 0);
6923
05616be5 6924 rdev_for_each(rdev, mddev) {
9f7c2220
N
6925 disk_stack_limits(mddev->gendisk, rdev->bdev,
6926 rdev->data_offset << 9);
05616be5
N
6927 disk_stack_limits(mddev->gendisk, rdev->bdev,
6928 rdev->new_data_offset << 9);
620125f2
SL
6929 /*
6930 * discard_zeroes_data is required, otherwise data
6931 * could be lost. Consider a scenario: discard a stripe
6932 * (the stripe could be inconsistent if
6933 * discard_zeroes_data is 0); write one disk of the
6934 * stripe (the stripe could be inconsistent again
6935 * depending on which disks are used to calculate
6936 * parity); the disk is broken; The stripe data of this
6937 * disk is lost.
6938 */
6939 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6940 !bdev_get_queue(rdev->bdev)->
6941 limits.discard_zeroes_data)
6942 discard_supported = false;
8e0e99ba
N
6943 /* Unfortunately, discard_zeroes_data is not currently
6944 * a guarantee - just a hint. So we only allow DISCARD
6945 * if the sysadmin has confirmed that only safe devices
6946 * are in use by setting a module parameter.
6947 */
6948 if (!devices_handle_discard_safely) {
6949 if (discard_supported) {
6950 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6951 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6952 }
6953 discard_supported = false;
6954 }
05616be5 6955 }
620125f2
SL
6956
6957 if (discard_supported &&
6958 mddev->queue->limits.max_discard_sectors >= stripe &&
6959 mddev->queue->limits.discard_granularity >= stripe)
6960 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6961 mddev->queue);
6962 else
6963 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6964 mddev->queue);
9f7c2220 6965 }
23032a0e 6966
1da177e4
LT
6967 return 0;
6968abort:
01f96c0a 6969 md_unregister_thread(&mddev->thread);
e4f869d9
N
6970 print_raid5_conf(conf);
6971 free_conf(conf);
1da177e4 6972 mddev->private = NULL;
0c55e022 6973 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6974 return -EIO;
6975}
6976
afa0f557 6977static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 6978{
afa0f557 6979 struct r5conf *conf = priv;
1da177e4 6980
95fc17aa 6981 free_conf(conf);
a64c876f 6982 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6983}
6984
fd01b88c 6985static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6986{
d1688a6d 6987 struct r5conf *conf = mddev->private;
1da177e4
LT
6988 int i;
6989
9d8f0363
AN
6990 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6991 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 6992 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6993 for (i = 0; i < conf->raid_disks; i++)
6994 seq_printf (seq, "%s",
6995 conf->disks[i].rdev &&
b2d444d7 6996 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 6997 seq_printf (seq, "]");
1da177e4
LT
6998}
6999
d1688a6d 7000static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7001{
7002 int i;
7003 struct disk_info *tmp;
7004
0c55e022 7005 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
7006 if (!conf) {
7007 printk("(conf==NULL)\n");
7008 return;
7009 }
0c55e022
N
7010 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7011 conf->raid_disks,
7012 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7013
7014 for (i = 0; i < conf->raid_disks; i++) {
7015 char b[BDEVNAME_SIZE];
7016 tmp = conf->disks + i;
7017 if (tmp->rdev)
0c55e022
N
7018 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7019 i, !test_bit(Faulty, &tmp->rdev->flags),
7020 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7021 }
7022}
7023
fd01b88c 7024static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7025{
7026 int i;
d1688a6d 7027 struct r5conf *conf = mddev->private;
1da177e4 7028 struct disk_info *tmp;
6b965620
N
7029 int count = 0;
7030 unsigned long flags;
1da177e4
LT
7031
7032 for (i = 0; i < conf->raid_disks; i++) {
7033 tmp = conf->disks + i;
dd054fce
N
7034 if (tmp->replacement
7035 && tmp->replacement->recovery_offset == MaxSector
7036 && !test_bit(Faulty, &tmp->replacement->flags)
7037 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7038 /* Replacement has just become active. */
7039 if (!tmp->rdev
7040 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7041 count++;
7042 if (tmp->rdev) {
7043 /* Replaced device not technically faulty,
7044 * but we need to be sure it gets removed
7045 * and never re-added.
7046 */
7047 set_bit(Faulty, &tmp->rdev->flags);
7048 sysfs_notify_dirent_safe(
7049 tmp->rdev->sysfs_state);
7050 }
7051 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7052 } else if (tmp->rdev
70fffd0b 7053 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7054 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7055 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7056 count++;
43c73ca4 7057 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7058 }
7059 }
6b965620 7060 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7061 mddev->degraded = calc_degraded(conf);
6b965620 7062 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7063 print_raid5_conf(conf);
6b965620 7064 return count;
1da177e4
LT
7065}
7066
b8321b68 7067static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7068{
d1688a6d 7069 struct r5conf *conf = mddev->private;
1da177e4 7070 int err = 0;
b8321b68 7071 int number = rdev->raid_disk;
657e3e4d 7072 struct md_rdev **rdevp;
1da177e4
LT
7073 struct disk_info *p = conf->disks + number;
7074
7075 print_raid5_conf(conf);
657e3e4d
N
7076 if (rdev == p->rdev)
7077 rdevp = &p->rdev;
7078 else if (rdev == p->replacement)
7079 rdevp = &p->replacement;
7080 else
7081 return 0;
7082
7083 if (number >= conf->raid_disks &&
7084 conf->reshape_progress == MaxSector)
7085 clear_bit(In_sync, &rdev->flags);
7086
7087 if (test_bit(In_sync, &rdev->flags) ||
7088 atomic_read(&rdev->nr_pending)) {
7089 err = -EBUSY;
7090 goto abort;
7091 }
7092 /* Only remove non-faulty devices if recovery
7093 * isn't possible.
7094 */
7095 if (!test_bit(Faulty, &rdev->flags) &&
7096 mddev->recovery_disabled != conf->recovery_disabled &&
7097 !has_failed(conf) &&
dd054fce 7098 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7099 number < conf->raid_disks) {
7100 err = -EBUSY;
7101 goto abort;
7102 }
7103 *rdevp = NULL;
7104 synchronize_rcu();
7105 if (atomic_read(&rdev->nr_pending)) {
7106 /* lost the race, try later */
7107 err = -EBUSY;
7108 *rdevp = rdev;
dd054fce
N
7109 } else if (p->replacement) {
7110 /* We must have just cleared 'rdev' */
7111 p->rdev = p->replacement;
7112 clear_bit(Replacement, &p->replacement->flags);
7113 smp_mb(); /* Make sure other CPUs may see both as identical
7114 * but will never see neither - if they are careful
7115 */
7116 p->replacement = NULL;
7117 clear_bit(WantReplacement, &rdev->flags);
7118 } else
7119 /* We might have just removed the Replacement as faulty-
7120 * clear the bit just in case
7121 */
7122 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7123abort:
7124
7125 print_raid5_conf(conf);
7126 return err;
7127}
7128
fd01b88c 7129static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7130{
d1688a6d 7131 struct r5conf *conf = mddev->private;
199050ea 7132 int err = -EEXIST;
1da177e4
LT
7133 int disk;
7134 struct disk_info *p;
6c2fce2e
NB
7135 int first = 0;
7136 int last = conf->raid_disks - 1;
1da177e4 7137
7f0da59b
N
7138 if (mddev->recovery_disabled == conf->recovery_disabled)
7139 return -EBUSY;
7140
dc10c643 7141 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7142 /* no point adding a device */
199050ea 7143 return -EINVAL;
1da177e4 7144
6c2fce2e
NB
7145 if (rdev->raid_disk >= 0)
7146 first = last = rdev->raid_disk;
1da177e4
LT
7147
7148 /*
16a53ecc
N
7149 * find the disk ... but prefer rdev->saved_raid_disk
7150 * if possible.
1da177e4 7151 */
16a53ecc 7152 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7153 rdev->saved_raid_disk >= first &&
16a53ecc 7154 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7155 first = rdev->saved_raid_disk;
7156
7157 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7158 p = conf->disks + disk;
7159 if (p->rdev == NULL) {
b2d444d7 7160 clear_bit(In_sync, &rdev->flags);
1da177e4 7161 rdev->raid_disk = disk;
199050ea 7162 err = 0;
72626685
N
7163 if (rdev->saved_raid_disk != disk)
7164 conf->fullsync = 1;
d6065f7b 7165 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7166 goto out;
1da177e4 7167 }
5cfb22a1
N
7168 }
7169 for (disk = first; disk <= last; disk++) {
7170 p = conf->disks + disk;
7bfec5f3
N
7171 if (test_bit(WantReplacement, &p->rdev->flags) &&
7172 p->replacement == NULL) {
7173 clear_bit(In_sync, &rdev->flags);
7174 set_bit(Replacement, &rdev->flags);
7175 rdev->raid_disk = disk;
7176 err = 0;
7177 conf->fullsync = 1;
7178 rcu_assign_pointer(p->replacement, rdev);
7179 break;
7180 }
7181 }
5cfb22a1 7182out:
1da177e4 7183 print_raid5_conf(conf);
199050ea 7184 return err;
1da177e4
LT
7185}
7186
fd01b88c 7187static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7188{
7189 /* no resync is happening, and there is enough space
7190 * on all devices, so we can resize.
7191 * We need to make sure resync covers any new space.
7192 * If the array is shrinking we should possibly wait until
7193 * any io in the removed space completes, but it hardly seems
7194 * worth it.
7195 */
a4a6125a 7196 sector_t newsize;
9d8f0363 7197 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
7198 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7199 if (mddev->external_size &&
7200 mddev->array_sectors > newsize)
b522adcd 7201 return -EINVAL;
a4a6125a
N
7202 if (mddev->bitmap) {
7203 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7204 if (ret)
7205 return ret;
7206 }
7207 md_set_array_sectors(mddev, newsize);
f233ea5c 7208 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7209 revalidate_disk(mddev->gendisk);
b098636c
N
7210 if (sectors > mddev->dev_sectors &&
7211 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7212 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7213 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7214 }
58c0fed4 7215 mddev->dev_sectors = sectors;
4b5c7ae8 7216 mddev->resync_max_sectors = sectors;
1da177e4
LT
7217 return 0;
7218}
7219
fd01b88c 7220static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7221{
7222 /* Can only proceed if there are plenty of stripe_heads.
7223 * We need a minimum of one full stripe,, and for sensible progress
7224 * it is best to have about 4 times that.
7225 * If we require 4 times, then the default 256 4K stripe_heads will
7226 * allow for chunk sizes up to 256K, which is probably OK.
7227 * If the chunk size is greater, user-space should request more
7228 * stripe_heads first.
7229 */
d1688a6d 7230 struct r5conf *conf = mddev->private;
01ee22b4 7231 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7232 > conf->min_nr_stripes ||
01ee22b4 7233 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7234 > conf->min_nr_stripes) {
0c55e022
N
7235 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7236 mdname(mddev),
01ee22b4
N
7237 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7238 / STRIPE_SIZE)*4);
7239 return 0;
7240 }
7241 return 1;
7242}
7243
fd01b88c 7244static int check_reshape(struct mddev *mddev)
29269553 7245{
d1688a6d 7246 struct r5conf *conf = mddev->private;
29269553 7247
88ce4930
N
7248 if (mddev->delta_disks == 0 &&
7249 mddev->new_layout == mddev->layout &&
664e7c41 7250 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7251 return 0; /* nothing to do */
674806d6 7252 if (has_failed(conf))
ec32a2bd 7253 return -EINVAL;
fdcfbbb6 7254 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7255 /* We might be able to shrink, but the devices must
7256 * be made bigger first.
7257 * For raid6, 4 is the minimum size.
7258 * Otherwise 2 is the minimum
7259 */
7260 int min = 2;
7261 if (mddev->level == 6)
7262 min = 4;
7263 if (mddev->raid_disks + mddev->delta_disks < min)
7264 return -EINVAL;
7265 }
29269553 7266
01ee22b4 7267 if (!check_stripe_cache(mddev))
29269553 7268 return -ENOSPC;
29269553 7269
738a2738
N
7270 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7271 mddev->delta_disks > 0)
7272 if (resize_chunks(conf,
7273 conf->previous_raid_disks
7274 + max(0, mddev->delta_disks),
7275 max(mddev->new_chunk_sectors,
7276 mddev->chunk_sectors)
7277 ) < 0)
7278 return -ENOMEM;
e56108d6
N
7279 return resize_stripes(conf, (conf->previous_raid_disks
7280 + mddev->delta_disks));
63c70c4f
N
7281}
7282
fd01b88c 7283static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7284{
d1688a6d 7285 struct r5conf *conf = mddev->private;
3cb03002 7286 struct md_rdev *rdev;
63c70c4f 7287 int spares = 0;
c04be0aa 7288 unsigned long flags;
63c70c4f 7289
f416885e 7290 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7291 return -EBUSY;
7292
01ee22b4
N
7293 if (!check_stripe_cache(mddev))
7294 return -ENOSPC;
7295
30b67645
N
7296 if (has_failed(conf))
7297 return -EINVAL;
7298
c6563a8c 7299 rdev_for_each(rdev, mddev) {
469518a3
N
7300 if (!test_bit(In_sync, &rdev->flags)
7301 && !test_bit(Faulty, &rdev->flags))
29269553 7302 spares++;
c6563a8c 7303 }
63c70c4f 7304
f416885e 7305 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7306 /* Not enough devices even to make a degraded array
7307 * of that size
7308 */
7309 return -EINVAL;
7310
ec32a2bd
N
7311 /* Refuse to reduce size of the array. Any reductions in
7312 * array size must be through explicit setting of array_size
7313 * attribute.
7314 */
7315 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7316 < mddev->array_sectors) {
0c55e022 7317 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7318 "before number of disks\n", mdname(mddev));
7319 return -EINVAL;
7320 }
7321
f6705578 7322 atomic_set(&conf->reshape_stripes, 0);
29269553 7323 spin_lock_irq(&conf->device_lock);
c46501b2 7324 write_seqcount_begin(&conf->gen_lock);
29269553 7325 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7326 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7327 conf->prev_chunk_sectors = conf->chunk_sectors;
7328 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7329 conf->prev_algo = conf->algorithm;
7330 conf->algorithm = mddev->new_layout;
05616be5
N
7331 conf->generation++;
7332 /* Code that selects data_offset needs to see the generation update
7333 * if reshape_progress has been set - so a memory barrier needed.
7334 */
7335 smp_mb();
2c810cdd 7336 if (mddev->reshape_backwards)
fef9c61f
N
7337 conf->reshape_progress = raid5_size(mddev, 0, 0);
7338 else
7339 conf->reshape_progress = 0;
7340 conf->reshape_safe = conf->reshape_progress;
c46501b2 7341 write_seqcount_end(&conf->gen_lock);
29269553
N
7342 spin_unlock_irq(&conf->device_lock);
7343
4d77e3ba
N
7344 /* Now make sure any requests that proceeded on the assumption
7345 * the reshape wasn't running - like Discard or Read - have
7346 * completed.
7347 */
7348 mddev_suspend(mddev);
7349 mddev_resume(mddev);
7350
29269553
N
7351 /* Add some new drives, as many as will fit.
7352 * We know there are enough to make the newly sized array work.
3424bf6a
N
7353 * Don't add devices if we are reducing the number of
7354 * devices in the array. This is because it is not possible
7355 * to correctly record the "partially reconstructed" state of
7356 * such devices during the reshape and confusion could result.
29269553 7357 */
87a8dec9 7358 if (mddev->delta_disks >= 0) {
dafb20fa 7359 rdev_for_each(rdev, mddev)
87a8dec9
N
7360 if (rdev->raid_disk < 0 &&
7361 !test_bit(Faulty, &rdev->flags)) {
7362 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7363 if (rdev->raid_disk
9d4c7d87 7364 >= conf->previous_raid_disks)
87a8dec9 7365 set_bit(In_sync, &rdev->flags);
9d4c7d87 7366 else
87a8dec9 7367 rdev->recovery_offset = 0;
36fad858
NK
7368
7369 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7370 /* Failure here is OK */;
50da0840 7371 }
87a8dec9
N
7372 } else if (rdev->raid_disk >= conf->previous_raid_disks
7373 && !test_bit(Faulty, &rdev->flags)) {
7374 /* This is a spare that was manually added */
7375 set_bit(In_sync, &rdev->flags);
87a8dec9 7376 }
29269553 7377
87a8dec9
N
7378 /* When a reshape changes the number of devices,
7379 * ->degraded is measured against the larger of the
7380 * pre and post number of devices.
7381 */
ec32a2bd 7382 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7383 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7384 spin_unlock_irqrestore(&conf->device_lock, flags);
7385 }
63c70c4f 7386 mddev->raid_disks = conf->raid_disks;
e516402c 7387 mddev->reshape_position = conf->reshape_progress;
850b2b42 7388 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7389
29269553
N
7390 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7391 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7392 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7393 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7394 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7395 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7396 "reshape");
29269553
N
7397 if (!mddev->sync_thread) {
7398 mddev->recovery = 0;
7399 spin_lock_irq(&conf->device_lock);
ba8805b9 7400 write_seqcount_begin(&conf->gen_lock);
29269553 7401 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7402 mddev->new_chunk_sectors =
7403 conf->chunk_sectors = conf->prev_chunk_sectors;
7404 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7405 rdev_for_each(rdev, mddev)
7406 rdev->new_data_offset = rdev->data_offset;
7407 smp_wmb();
ba8805b9 7408 conf->generation --;
fef9c61f 7409 conf->reshape_progress = MaxSector;
1e3fa9bd 7410 mddev->reshape_position = MaxSector;
ba8805b9 7411 write_seqcount_end(&conf->gen_lock);
29269553
N
7412 spin_unlock_irq(&conf->device_lock);
7413 return -EAGAIN;
7414 }
c8f517c4 7415 conf->reshape_checkpoint = jiffies;
29269553
N
7416 md_wakeup_thread(mddev->sync_thread);
7417 md_new_event(mddev);
7418 return 0;
7419}
29269553 7420
ec32a2bd
N
7421/* This is called from the reshape thread and should make any
7422 * changes needed in 'conf'
7423 */
d1688a6d 7424static void end_reshape(struct r5conf *conf)
29269553 7425{
29269553 7426
f6705578 7427 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7428 struct md_rdev *rdev;
f6705578 7429
f6705578 7430 spin_lock_irq(&conf->device_lock);
cea9c228 7431 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7432 rdev_for_each(rdev, conf->mddev)
7433 rdev->data_offset = rdev->new_data_offset;
7434 smp_wmb();
fef9c61f 7435 conf->reshape_progress = MaxSector;
f6705578 7436 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7437 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7438
7439 /* read-ahead size must cover two whole stripes, which is
7440 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7441 */
4a5add49 7442 if (conf->mddev->queue) {
cea9c228 7443 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7444 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7445 / PAGE_SIZE);
16a53ecc
N
7446 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7447 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7448 }
29269553 7449 }
29269553
N
7450}
7451
ec32a2bd
N
7452/* This is called from the raid5d thread with mddev_lock held.
7453 * It makes config changes to the device.
7454 */
fd01b88c 7455static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7456{
d1688a6d 7457 struct r5conf *conf = mddev->private;
cea9c228
N
7458
7459 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7460
ec32a2bd
N
7461 if (mddev->delta_disks > 0) {
7462 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7463 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7464 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7465 } else {
7466 int d;
908f4fbd
N
7467 spin_lock_irq(&conf->device_lock);
7468 mddev->degraded = calc_degraded(conf);
7469 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7470 for (d = conf->raid_disks ;
7471 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7472 d++) {
3cb03002 7473 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7474 if (rdev)
7475 clear_bit(In_sync, &rdev->flags);
7476 rdev = conf->disks[d].replacement;
7477 if (rdev)
7478 clear_bit(In_sync, &rdev->flags);
1a67dde0 7479 }
cea9c228 7480 }
88ce4930 7481 mddev->layout = conf->algorithm;
09c9e5fa 7482 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7483 mddev->reshape_position = MaxSector;
7484 mddev->delta_disks = 0;
2c810cdd 7485 mddev->reshape_backwards = 0;
cea9c228
N
7486 }
7487}
7488
fd01b88c 7489static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7490{
d1688a6d 7491 struct r5conf *conf = mddev->private;
72626685
N
7492
7493 switch(state) {
e464eafd
N
7494 case 2: /* resume for a suspend */
7495 wake_up(&conf->wait_for_overlap);
7496 break;
7497
72626685 7498 case 1: /* stop all writes */
566c09c5 7499 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7500 /* '2' tells resync/reshape to pause so that all
7501 * active stripes can drain
7502 */
7503 conf->quiesce = 2;
b1b46486 7504 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7505 atomic_read(&conf->active_stripes) == 0 &&
7506 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7507 unlock_all_device_hash_locks_irq(conf),
7508 lock_all_device_hash_locks_irq(conf));
64bd660b 7509 conf->quiesce = 1;
566c09c5 7510 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7511 /* allow reshape to continue */
7512 wake_up(&conf->wait_for_overlap);
72626685
N
7513 break;
7514
7515 case 0: /* re-enable writes */
566c09c5 7516 lock_all_device_hash_locks_irq(conf);
72626685 7517 conf->quiesce = 0;
b1b46486 7518 wake_up(&conf->wait_for_quiescent);
e464eafd 7519 wake_up(&conf->wait_for_overlap);
566c09c5 7520 unlock_all_device_hash_locks_irq(conf);
72626685
N
7521 break;
7522 }
72626685 7523}
b15c2e57 7524
fd01b88c 7525static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7526{
e373ab10 7527 struct r0conf *raid0_conf = mddev->private;
d76c8420 7528 sector_t sectors;
54071b38 7529
f1b29bca 7530 /* for raid0 takeover only one zone is supported */
e373ab10 7531 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7532 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7533 mdname(mddev));
f1b29bca
DW
7534 return ERR_PTR(-EINVAL);
7535 }
7536
e373ab10
N
7537 sectors = raid0_conf->strip_zone[0].zone_end;
7538 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7539 mddev->dev_sectors = sectors;
f1b29bca 7540 mddev->new_level = level;
54071b38
TM
7541 mddev->new_layout = ALGORITHM_PARITY_N;
7542 mddev->new_chunk_sectors = mddev->chunk_sectors;
7543 mddev->raid_disks += 1;
7544 mddev->delta_disks = 1;
7545 /* make sure it will be not marked as dirty */
7546 mddev->recovery_cp = MaxSector;
7547
7548 return setup_conf(mddev);
7549}
7550
fd01b88c 7551static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7552{
7553 int chunksect;
7554
7555 if (mddev->raid_disks != 2 ||
7556 mddev->degraded > 1)
7557 return ERR_PTR(-EINVAL);
7558
7559 /* Should check if there are write-behind devices? */
7560
7561 chunksect = 64*2; /* 64K by default */
7562
7563 /* The array must be an exact multiple of chunksize */
7564 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7565 chunksect >>= 1;
7566
7567 if ((chunksect<<9) < STRIPE_SIZE)
7568 /* array size does not allow a suitable chunk size */
7569 return ERR_PTR(-EINVAL);
7570
7571 mddev->new_level = 5;
7572 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7573 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7574
7575 return setup_conf(mddev);
7576}
7577
fd01b88c 7578static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7579{
7580 int new_layout;
7581
7582 switch (mddev->layout) {
7583 case ALGORITHM_LEFT_ASYMMETRIC_6:
7584 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7585 break;
7586 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7587 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7588 break;
7589 case ALGORITHM_LEFT_SYMMETRIC_6:
7590 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7591 break;
7592 case ALGORITHM_RIGHT_SYMMETRIC_6:
7593 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7594 break;
7595 case ALGORITHM_PARITY_0_6:
7596 new_layout = ALGORITHM_PARITY_0;
7597 break;
7598 case ALGORITHM_PARITY_N:
7599 new_layout = ALGORITHM_PARITY_N;
7600 break;
7601 default:
7602 return ERR_PTR(-EINVAL);
7603 }
7604 mddev->new_level = 5;
7605 mddev->new_layout = new_layout;
7606 mddev->delta_disks = -1;
7607 mddev->raid_disks -= 1;
7608 return setup_conf(mddev);
7609}
7610
fd01b88c 7611static int raid5_check_reshape(struct mddev *mddev)
b3546035 7612{
88ce4930
N
7613 /* For a 2-drive array, the layout and chunk size can be changed
7614 * immediately as not restriping is needed.
7615 * For larger arrays we record the new value - after validation
7616 * to be used by a reshape pass.
b3546035 7617 */
d1688a6d 7618 struct r5conf *conf = mddev->private;
597a711b 7619 int new_chunk = mddev->new_chunk_sectors;
b3546035 7620
597a711b 7621 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7622 return -EINVAL;
7623 if (new_chunk > 0) {
0ba459d2 7624 if (!is_power_of_2(new_chunk))
b3546035 7625 return -EINVAL;
597a711b 7626 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7627 return -EINVAL;
597a711b 7628 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7629 /* not factor of array size */
7630 return -EINVAL;
7631 }
7632
7633 /* They look valid */
7634
88ce4930 7635 if (mddev->raid_disks == 2) {
597a711b
N
7636 /* can make the change immediately */
7637 if (mddev->new_layout >= 0) {
7638 conf->algorithm = mddev->new_layout;
7639 mddev->layout = mddev->new_layout;
88ce4930
N
7640 }
7641 if (new_chunk > 0) {
597a711b
N
7642 conf->chunk_sectors = new_chunk ;
7643 mddev->chunk_sectors = new_chunk;
88ce4930
N
7644 }
7645 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7646 md_wakeup_thread(mddev->thread);
b3546035 7647 }
50ac168a 7648 return check_reshape(mddev);
88ce4930
N
7649}
7650
fd01b88c 7651static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7652{
597a711b 7653 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7654
597a711b 7655 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7656 return -EINVAL;
b3546035 7657 if (new_chunk > 0) {
0ba459d2 7658 if (!is_power_of_2(new_chunk))
88ce4930 7659 return -EINVAL;
597a711b 7660 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7661 return -EINVAL;
597a711b 7662 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7663 /* not factor of array size */
7664 return -EINVAL;
b3546035 7665 }
88ce4930
N
7666
7667 /* They look valid */
50ac168a 7668 return check_reshape(mddev);
b3546035
N
7669}
7670
fd01b88c 7671static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7672{
7673 /* raid5 can take over:
f1b29bca 7674 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7675 * raid1 - if there are two drives. We need to know the chunk size
7676 * raid4 - trivial - just use a raid4 layout.
7677 * raid6 - Providing it is a *_6 layout
d562b0c4 7678 */
f1b29bca
DW
7679 if (mddev->level == 0)
7680 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7681 if (mddev->level == 1)
7682 return raid5_takeover_raid1(mddev);
e9d4758f
N
7683 if (mddev->level == 4) {
7684 mddev->new_layout = ALGORITHM_PARITY_N;
7685 mddev->new_level = 5;
7686 return setup_conf(mddev);
7687 }
fc9739c6
N
7688 if (mddev->level == 6)
7689 return raid5_takeover_raid6(mddev);
d562b0c4
N
7690
7691 return ERR_PTR(-EINVAL);
7692}
7693
fd01b88c 7694static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7695{
f1b29bca
DW
7696 /* raid4 can take over:
7697 * raid0 - if there is only one strip zone
7698 * raid5 - if layout is right
a78d38a1 7699 */
f1b29bca
DW
7700 if (mddev->level == 0)
7701 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7702 if (mddev->level == 5 &&
7703 mddev->layout == ALGORITHM_PARITY_N) {
7704 mddev->new_layout = 0;
7705 mddev->new_level = 4;
7706 return setup_conf(mddev);
7707 }
7708 return ERR_PTR(-EINVAL);
7709}
d562b0c4 7710
84fc4b56 7711static struct md_personality raid5_personality;
245f46c2 7712
fd01b88c 7713static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7714{
7715 /* Currently can only take over a raid5. We map the
7716 * personality to an equivalent raid6 personality
7717 * with the Q block at the end.
7718 */
7719 int new_layout;
7720
7721 if (mddev->pers != &raid5_personality)
7722 return ERR_PTR(-EINVAL);
7723 if (mddev->degraded > 1)
7724 return ERR_PTR(-EINVAL);
7725 if (mddev->raid_disks > 253)
7726 return ERR_PTR(-EINVAL);
7727 if (mddev->raid_disks < 3)
7728 return ERR_PTR(-EINVAL);
7729
7730 switch (mddev->layout) {
7731 case ALGORITHM_LEFT_ASYMMETRIC:
7732 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7733 break;
7734 case ALGORITHM_RIGHT_ASYMMETRIC:
7735 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7736 break;
7737 case ALGORITHM_LEFT_SYMMETRIC:
7738 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7739 break;
7740 case ALGORITHM_RIGHT_SYMMETRIC:
7741 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7742 break;
7743 case ALGORITHM_PARITY_0:
7744 new_layout = ALGORITHM_PARITY_0_6;
7745 break;
7746 case ALGORITHM_PARITY_N:
7747 new_layout = ALGORITHM_PARITY_N;
7748 break;
7749 default:
7750 return ERR_PTR(-EINVAL);
7751 }
7752 mddev->new_level = 6;
7753 mddev->new_layout = new_layout;
7754 mddev->delta_disks = 1;
7755 mddev->raid_disks += 1;
7756 return setup_conf(mddev);
7757}
7758
84fc4b56 7759static struct md_personality raid6_personality =
16a53ecc
N
7760{
7761 .name = "raid6",
7762 .level = 6,
7763 .owner = THIS_MODULE,
7764 .make_request = make_request,
7765 .run = run,
afa0f557 7766 .free = raid5_free,
16a53ecc
N
7767 .status = status,
7768 .error_handler = error,
7769 .hot_add_disk = raid5_add_disk,
7770 .hot_remove_disk= raid5_remove_disk,
7771 .spare_active = raid5_spare_active,
7772 .sync_request = sync_request,
7773 .resize = raid5_resize,
80c3a6ce 7774 .size = raid5_size,
50ac168a 7775 .check_reshape = raid6_check_reshape,
f416885e 7776 .start_reshape = raid5_start_reshape,
cea9c228 7777 .finish_reshape = raid5_finish_reshape,
16a53ecc 7778 .quiesce = raid5_quiesce,
245f46c2 7779 .takeover = raid6_takeover,
5c675f83 7780 .congested = raid5_congested,
64590f45 7781 .mergeable_bvec = raid5_mergeable_bvec,
16a53ecc 7782};
84fc4b56 7783static struct md_personality raid5_personality =
1da177e4
LT
7784{
7785 .name = "raid5",
2604b703 7786 .level = 5,
1da177e4
LT
7787 .owner = THIS_MODULE,
7788 .make_request = make_request,
7789 .run = run,
afa0f557 7790 .free = raid5_free,
1da177e4
LT
7791 .status = status,
7792 .error_handler = error,
7793 .hot_add_disk = raid5_add_disk,
7794 .hot_remove_disk= raid5_remove_disk,
7795 .spare_active = raid5_spare_active,
7796 .sync_request = sync_request,
7797 .resize = raid5_resize,
80c3a6ce 7798 .size = raid5_size,
63c70c4f
N
7799 .check_reshape = raid5_check_reshape,
7800 .start_reshape = raid5_start_reshape,
cea9c228 7801 .finish_reshape = raid5_finish_reshape,
72626685 7802 .quiesce = raid5_quiesce,
d562b0c4 7803 .takeover = raid5_takeover,
5c675f83 7804 .congested = raid5_congested,
64590f45 7805 .mergeable_bvec = raid5_mergeable_bvec,
1da177e4
LT
7806};
7807
84fc4b56 7808static struct md_personality raid4_personality =
1da177e4 7809{
2604b703
N
7810 .name = "raid4",
7811 .level = 4,
7812 .owner = THIS_MODULE,
7813 .make_request = make_request,
7814 .run = run,
afa0f557 7815 .free = raid5_free,
2604b703
N
7816 .status = status,
7817 .error_handler = error,
7818 .hot_add_disk = raid5_add_disk,
7819 .hot_remove_disk= raid5_remove_disk,
7820 .spare_active = raid5_spare_active,
7821 .sync_request = sync_request,
7822 .resize = raid5_resize,
80c3a6ce 7823 .size = raid5_size,
3d37890b
N
7824 .check_reshape = raid5_check_reshape,
7825 .start_reshape = raid5_start_reshape,
cea9c228 7826 .finish_reshape = raid5_finish_reshape,
2604b703 7827 .quiesce = raid5_quiesce,
a78d38a1 7828 .takeover = raid4_takeover,
5c675f83 7829 .congested = raid5_congested,
64590f45 7830 .mergeable_bvec = raid5_mergeable_bvec,
2604b703
N
7831};
7832
7833static int __init raid5_init(void)
7834{
851c30c9
SL
7835 raid5_wq = alloc_workqueue("raid5wq",
7836 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7837 if (!raid5_wq)
7838 return -ENOMEM;
16a53ecc 7839 register_md_personality(&raid6_personality);
2604b703
N
7840 register_md_personality(&raid5_personality);
7841 register_md_personality(&raid4_personality);
7842 return 0;
1da177e4
LT
7843}
7844
2604b703 7845static void raid5_exit(void)
1da177e4 7846{
16a53ecc 7847 unregister_md_personality(&raid6_personality);
2604b703
N
7848 unregister_md_personality(&raid5_personality);
7849 unregister_md_personality(&raid4_personality);
851c30c9 7850 destroy_workqueue(raid5_wq);
1da177e4
LT
7851}
7852
7853module_init(raid5_init);
7854module_exit(raid5_exit);
7855MODULE_LICENSE("GPL");
0efb9e61 7856MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7857MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7858MODULE_ALIAS("md-raid5");
7859MODULE_ALIAS("md-raid4");
2604b703
N
7860MODULE_ALIAS("md-level-5");
7861MODULE_ALIAS("md-level-4");
16a53ecc
N
7862MODULE_ALIAS("md-personality-8"); /* RAID6 */
7863MODULE_ALIAS("md-raid6");
7864MODULE_ALIAS("md-level-6");
7865
7866/* This used to be two separate modules, they were: */
7867MODULE_ALIAS("raid5");
7868MODULE_ALIAS("raid6");