block: remove split code in blkdev_issue_{discard,write_same}
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
a4456856
DW
226static void return_io(struct bio *return_bi)
227{
228 struct bio *bi = return_bi;
229 while (bi) {
a4456856
DW
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
4f024f37 233 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
4246a0b6 236 bio_endio(bi);
a4456856
DW
237 bi = return_bi;
238 }
239}
240
d1688a6d 241static void print_raid5_conf (struct r5conf *conf);
1da177e4 242
600aa109
DW
243static int stripe_operations_active(struct stripe_head *sh)
244{
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248}
249
851c30c9
SL
250static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251{
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
bfc90cb0 254 int thread_cnt;
851c30c9
SL
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
266 group->stripes_cnt++;
267 sh->group = group;
851c30c9
SL
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
bfc90cb0
SL
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
851c30c9
SL
291}
292
566c09c5
SL
293static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
1da177e4 295{
4eb788df
SL
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 301 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
4eb788df
SL
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
566c09c5
SL
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
325 }
326}
d0dabf7e 327
566c09c5
SL
328static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
4eb788df
SL
330{
331 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
332 do_release_stripe(conf, sh, temp_inactive_list);
333}
334
335/*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345{
346 int size;
e9e4c377
YL
347 unsigned long do_wakeup = 0;
348 int i = 0;
566c09c5
SL
349 unsigned long flags;
350
351 if (hash == NR_STRIPE_HASH_LOCKS) {
352 size = NR_STRIPE_HASH_LOCKS;
353 hash = NR_STRIPE_HASH_LOCKS - 1;
354 } else
355 size = 1;
356 while (size) {
357 struct list_head *list = &temp_inactive_list[size - 1];
358
359 /*
360 * We don't hold any lock here yet, get_active_stripe() might
361 * remove stripes from the list
362 */
363 if (!list_empty_careful(list)) {
364 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
365 if (list_empty(conf->inactive_list + hash) &&
366 !list_empty(list))
367 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 368 list_splice_tail_init(list, conf->inactive_list + hash);
e9e4c377 369 do_wakeup |= 1 << hash;
566c09c5
SL
370 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
371 }
372 size--;
373 hash--;
374 }
375
e9e4c377
YL
376 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
377 if (do_wakeup & (1 << i))
378 wake_up(&conf->wait_for_stripe[i]);
379 }
380
566c09c5 381 if (do_wakeup) {
b1b46486
YL
382 if (atomic_read(&conf->active_stripes) == 0)
383 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
384 if (conf->retry_read_aligned)
385 md_wakeup_thread(conf->mddev->thread);
386 }
4eb788df
SL
387}
388
773ca82f 389/* should hold conf->device_lock already */
566c09c5
SL
390static int release_stripe_list(struct r5conf *conf,
391 struct list_head *temp_inactive_list)
773ca82f
SL
392{
393 struct stripe_head *sh;
394 int count = 0;
395 struct llist_node *head;
396
397 head = llist_del_all(&conf->released_stripes);
d265d9dc 398 head = llist_reverse_order(head);
773ca82f 399 while (head) {
566c09c5
SL
400 int hash;
401
773ca82f
SL
402 sh = llist_entry(head, struct stripe_head, release_list);
403 head = llist_next(head);
404 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
405 smp_mb();
406 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
407 /*
408 * Don't worry the bit is set here, because if the bit is set
409 * again, the count is always > 1. This is true for
410 * STRIPE_ON_UNPLUG_LIST bit too.
411 */
566c09c5
SL
412 hash = sh->hash_lock_index;
413 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
414 count++;
415 }
416
417 return count;
418}
419
1da177e4
LT
420static void release_stripe(struct stripe_head *sh)
421{
d1688a6d 422 struct r5conf *conf = sh->raid_conf;
1da177e4 423 unsigned long flags;
566c09c5
SL
424 struct list_head list;
425 int hash;
773ca82f 426 bool wakeup;
16a53ecc 427
cf170f3f
ES
428 /* Avoid release_list until the last reference.
429 */
430 if (atomic_add_unless(&sh->count, -1, 1))
431 return;
432
ad4068de 433 if (unlikely(!conf->mddev->thread) ||
434 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
435 goto slow_path;
436 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
437 if (wakeup)
438 md_wakeup_thread(conf->mddev->thread);
439 return;
440slow_path:
4eb788df 441 local_irq_save(flags);
773ca82f 442 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 443 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
444 INIT_LIST_HEAD(&list);
445 hash = sh->hash_lock_index;
446 do_release_stripe(conf, sh, &list);
4eb788df 447 spin_unlock(&conf->device_lock);
566c09c5 448 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
449 }
450 local_irq_restore(flags);
1da177e4
LT
451}
452
fccddba0 453static inline void remove_hash(struct stripe_head *sh)
1da177e4 454{
45b4233c
DW
455 pr_debug("remove_hash(), stripe %llu\n",
456 (unsigned long long)sh->sector);
1da177e4 457
fccddba0 458 hlist_del_init(&sh->hash);
1da177e4
LT
459}
460
d1688a6d 461static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 462{
fccddba0 463 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 464
45b4233c
DW
465 pr_debug("insert_hash(), stripe %llu\n",
466 (unsigned long long)sh->sector);
1da177e4 467
fccddba0 468 hlist_add_head(&sh->hash, hp);
1da177e4
LT
469}
470
1da177e4 471/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 472static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
473{
474 struct stripe_head *sh = NULL;
475 struct list_head *first;
476
566c09c5 477 if (list_empty(conf->inactive_list + hash))
1da177e4 478 goto out;
566c09c5 479 first = (conf->inactive_list + hash)->next;
1da177e4
LT
480 sh = list_entry(first, struct stripe_head, lru);
481 list_del_init(first);
482 remove_hash(sh);
483 atomic_inc(&conf->active_stripes);
566c09c5 484 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
485 if (list_empty(conf->inactive_list + hash))
486 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
487out:
488 return sh;
489}
490
e4e11e38 491static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
492{
493 struct page *p;
494 int i;
e4e11e38 495 int num = sh->raid_conf->pool_size;
1da177e4 496
e4e11e38 497 for (i = 0; i < num ; i++) {
d592a996 498 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
499 p = sh->dev[i].page;
500 if (!p)
501 continue;
502 sh->dev[i].page = NULL;
2d1f3b5d 503 put_page(p);
1da177e4
LT
504 }
505}
506
a9683a79 507static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
508{
509 int i;
e4e11e38 510 int num = sh->raid_conf->pool_size;
1da177e4 511
e4e11e38 512 for (i = 0; i < num; i++) {
1da177e4
LT
513 struct page *page;
514
a9683a79 515 if (!(page = alloc_page(gfp))) {
1da177e4
LT
516 return 1;
517 }
518 sh->dev[i].page = page;
d592a996 519 sh->dev[i].orig_page = page;
1da177e4
LT
520 }
521 return 0;
522}
523
784052ec 524static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 525static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 526 struct stripe_head *sh);
1da177e4 527
b5663ba4 528static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 529{
d1688a6d 530 struct r5conf *conf = sh->raid_conf;
566c09c5 531 int i, seq;
1da177e4 532
78bafebd
ES
533 BUG_ON(atomic_read(&sh->count) != 0);
534 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 535 BUG_ON(stripe_operations_active(sh));
59fc630b 536 BUG_ON(sh->batch_head);
d84e0f10 537
45b4233c 538 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 539 (unsigned long long)sector);
566c09c5
SL
540retry:
541 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 542 sh->generation = conf->generation - previous;
b5663ba4 543 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 544 sh->sector = sector;
911d4ee8 545 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
546 sh->state = 0;
547
7ecaa1e6 548 for (i = sh->disks; i--; ) {
1da177e4
LT
549 struct r5dev *dev = &sh->dev[i];
550
d84e0f10 551 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 552 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 553 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 554 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 555 dev->read, dev->towrite, dev->written,
1da177e4 556 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 557 WARN_ON(1);
1da177e4
LT
558 }
559 dev->flags = 0;
784052ec 560 raid5_build_block(sh, i, previous);
1da177e4 561 }
566c09c5
SL
562 if (read_seqcount_retry(&conf->gen_lock, seq))
563 goto retry;
7a87f434 564 sh->overwrite_disks = 0;
1da177e4 565 insert_hash(conf, sh);
851c30c9 566 sh->cpu = smp_processor_id();
da41ba65 567 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
568}
569
d1688a6d 570static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 571 short generation)
1da177e4
LT
572{
573 struct stripe_head *sh;
574
45b4233c 575 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 576 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 577 if (sh->sector == sector && sh->generation == generation)
1da177e4 578 return sh;
45b4233c 579 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
580 return NULL;
581}
582
674806d6
N
583/*
584 * Need to check if array has failed when deciding whether to:
585 * - start an array
586 * - remove non-faulty devices
587 * - add a spare
588 * - allow a reshape
589 * This determination is simple when no reshape is happening.
590 * However if there is a reshape, we need to carefully check
591 * both the before and after sections.
592 * This is because some failed devices may only affect one
593 * of the two sections, and some non-in_sync devices may
594 * be insync in the section most affected by failed devices.
595 */
908f4fbd 596static int calc_degraded(struct r5conf *conf)
674806d6 597{
908f4fbd 598 int degraded, degraded2;
674806d6 599 int i;
674806d6
N
600
601 rcu_read_lock();
602 degraded = 0;
603 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 604 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
605 if (rdev && test_bit(Faulty, &rdev->flags))
606 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
607 if (!rdev || test_bit(Faulty, &rdev->flags))
608 degraded++;
609 else if (test_bit(In_sync, &rdev->flags))
610 ;
611 else
612 /* not in-sync or faulty.
613 * If the reshape increases the number of devices,
614 * this is being recovered by the reshape, so
615 * this 'previous' section is not in_sync.
616 * If the number of devices is being reduced however,
617 * the device can only be part of the array if
618 * we are reverting a reshape, so this section will
619 * be in-sync.
620 */
621 if (conf->raid_disks >= conf->previous_raid_disks)
622 degraded++;
623 }
624 rcu_read_unlock();
908f4fbd
N
625 if (conf->raid_disks == conf->previous_raid_disks)
626 return degraded;
674806d6 627 rcu_read_lock();
908f4fbd 628 degraded2 = 0;
674806d6 629 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 630 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
631 if (rdev && test_bit(Faulty, &rdev->flags))
632 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 633 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 634 degraded2++;
674806d6
N
635 else if (test_bit(In_sync, &rdev->flags))
636 ;
637 else
638 /* not in-sync or faulty.
639 * If reshape increases the number of devices, this
640 * section has already been recovered, else it
641 * almost certainly hasn't.
642 */
643 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 644 degraded2++;
674806d6
N
645 }
646 rcu_read_unlock();
908f4fbd
N
647 if (degraded2 > degraded)
648 return degraded2;
649 return degraded;
650}
651
652static int has_failed(struct r5conf *conf)
653{
654 int degraded;
655
656 if (conf->mddev->reshape_position == MaxSector)
657 return conf->mddev->degraded > conf->max_degraded;
658
659 degraded = calc_degraded(conf);
674806d6
N
660 if (degraded > conf->max_degraded)
661 return 1;
662 return 0;
663}
664
b5663ba4 665static struct stripe_head *
d1688a6d 666get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 667 int previous, int noblock, int noquiesce)
1da177e4
LT
668{
669 struct stripe_head *sh;
566c09c5 670 int hash = stripe_hash_locks_hash(sector);
1da177e4 671
45b4233c 672 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 673
566c09c5 674 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
675
676 do {
b1b46486 677 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 678 conf->quiesce == 0 || noquiesce,
566c09c5 679 *(conf->hash_locks + hash));
86b42c71 680 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 681 if (!sh) {
edbe83ab 682 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 683 sh = get_free_stripe(conf, hash);
713bc5c2
SL
684 if (!sh && !test_bit(R5_DID_ALLOC,
685 &conf->cache_state))
edbe83ab
N
686 set_bit(R5_ALLOC_MORE,
687 &conf->cache_state);
688 }
1da177e4
LT
689 if (noblock && sh == NULL)
690 break;
691 if (!sh) {
5423399a
N
692 set_bit(R5_INACTIVE_BLOCKED,
693 &conf->cache_state);
e9e4c377
YL
694 wait_event_exclusive_cmd(
695 conf->wait_for_stripe[hash],
566c09c5
SL
696 !list_empty(conf->inactive_list + hash) &&
697 (atomic_read(&conf->active_stripes)
698 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
699 || !test_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state)),
e9e4c377
YL
701 spin_unlock_irq(conf->hash_locks + hash),
702 spin_lock_irq(conf->hash_locks + hash));
5423399a
N
703 clear_bit(R5_INACTIVE_BLOCKED,
704 &conf->cache_state);
7da9d450 705 } else {
b5663ba4 706 init_stripe(sh, sector, previous);
7da9d450
N
707 atomic_inc(&sh->count);
708 }
e240c183 709 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 710 spin_lock(&conf->device_lock);
e240c183 711 if (!atomic_read(&sh->count)) {
1da177e4
LT
712 if (!test_bit(STRIPE_HANDLE, &sh->state))
713 atomic_inc(&conf->active_stripes);
5af9bef7
N
714 BUG_ON(list_empty(&sh->lru) &&
715 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 716 list_del_init(&sh->lru);
bfc90cb0
SL
717 if (sh->group) {
718 sh->group->stripes_cnt--;
719 sh->group = NULL;
720 }
1da177e4 721 }
7da9d450 722 atomic_inc(&sh->count);
6d183de4 723 spin_unlock(&conf->device_lock);
1da177e4
LT
724 }
725 } while (sh == NULL);
726
e9e4c377
YL
727 if (!list_empty(conf->inactive_list + hash))
728 wake_up(&conf->wait_for_stripe[hash]);
729
566c09c5 730 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
731 return sh;
732}
733
7a87f434 734static bool is_full_stripe_write(struct stripe_head *sh)
735{
736 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
737 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
738}
739
59fc630b 740static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
741{
742 local_irq_disable();
743 if (sh1 > sh2) {
744 spin_lock(&sh2->stripe_lock);
745 spin_lock_nested(&sh1->stripe_lock, 1);
746 } else {
747 spin_lock(&sh1->stripe_lock);
748 spin_lock_nested(&sh2->stripe_lock, 1);
749 }
750}
751
752static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
753{
754 spin_unlock(&sh1->stripe_lock);
755 spin_unlock(&sh2->stripe_lock);
756 local_irq_enable();
757}
758
759/* Only freshly new full stripe normal write stripe can be added to a batch list */
760static bool stripe_can_batch(struct stripe_head *sh)
761{
762 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 763 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 764 is_full_stripe_write(sh);
765}
766
767/* we only do back search */
768static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769{
770 struct stripe_head *head;
771 sector_t head_sector, tmp_sec;
772 int hash;
773 int dd_idx;
774
775 if (!stripe_can_batch(sh))
776 return;
777 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778 tmp_sec = sh->sector;
779 if (!sector_div(tmp_sec, conf->chunk_sectors))
780 return;
781 head_sector = sh->sector - STRIPE_SECTORS;
782
783 hash = stripe_hash_locks_hash(head_sector);
784 spin_lock_irq(conf->hash_locks + hash);
785 head = __find_stripe(conf, head_sector, conf->generation);
786 if (head && !atomic_inc_not_zero(&head->count)) {
787 spin_lock(&conf->device_lock);
788 if (!atomic_read(&head->count)) {
789 if (!test_bit(STRIPE_HANDLE, &head->state))
790 atomic_inc(&conf->active_stripes);
791 BUG_ON(list_empty(&head->lru) &&
792 !test_bit(STRIPE_EXPANDING, &head->state));
793 list_del_init(&head->lru);
794 if (head->group) {
795 head->group->stripes_cnt--;
796 head->group = NULL;
797 }
798 }
799 atomic_inc(&head->count);
800 spin_unlock(&conf->device_lock);
801 }
802 spin_unlock_irq(conf->hash_locks + hash);
803
804 if (!head)
805 return;
806 if (!stripe_can_batch(head))
807 goto out;
808
809 lock_two_stripes(head, sh);
810 /* clear_batch_ready clear the flag */
811 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812 goto unlock_out;
813
814 if (sh->batch_head)
815 goto unlock_out;
816
817 dd_idx = 0;
818 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819 dd_idx++;
820 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821 goto unlock_out;
822
823 if (head->batch_head) {
824 spin_lock(&head->batch_head->batch_lock);
825 /* This batch list is already running */
826 if (!stripe_can_batch(head)) {
827 spin_unlock(&head->batch_head->batch_lock);
828 goto unlock_out;
829 }
830
831 /*
832 * at this point, head's BATCH_READY could be cleared, but we
833 * can still add the stripe to batch list
834 */
835 list_add(&sh->batch_list, &head->batch_list);
836 spin_unlock(&head->batch_head->batch_lock);
837
838 sh->batch_head = head->batch_head;
839 } else {
840 head->batch_head = head;
841 sh->batch_head = head->batch_head;
842 spin_lock(&head->batch_lock);
843 list_add_tail(&sh->batch_list, &head->batch_list);
844 spin_unlock(&head->batch_lock);
845 }
846
847 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848 if (atomic_dec_return(&conf->preread_active_stripes)
849 < IO_THRESHOLD)
850 md_wakeup_thread(conf->mddev->thread);
851
2b6b2457
N
852 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853 int seq = sh->bm_seq;
854 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855 sh->batch_head->bm_seq > seq)
856 seq = sh->batch_head->bm_seq;
857 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858 sh->batch_head->bm_seq = seq;
859 }
860
59fc630b 861 atomic_inc(&sh->count);
862unlock_out:
863 unlock_two_stripes(head, sh);
864out:
865 release_stripe(head);
866}
867
05616be5
N
868/* Determine if 'data_offset' or 'new_data_offset' should be used
869 * in this stripe_head.
870 */
871static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872{
873 sector_t progress = conf->reshape_progress;
874 /* Need a memory barrier to make sure we see the value
875 * of conf->generation, or ->data_offset that was set before
876 * reshape_progress was updated.
877 */
878 smp_rmb();
879 if (progress == MaxSector)
880 return 0;
881 if (sh->generation == conf->generation - 1)
882 return 0;
883 /* We are in a reshape, and this is a new-generation stripe,
884 * so use new_data_offset.
885 */
886 return 1;
887}
888
6712ecf8 889static void
4246a0b6 890raid5_end_read_request(struct bio *bi);
6712ecf8 891static void
4246a0b6 892raid5_end_write_request(struct bio *bi);
91c00924 893
c4e5ac0a 894static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 895{
d1688a6d 896 struct r5conf *conf = sh->raid_conf;
91c00924 897 int i, disks = sh->disks;
59fc630b 898 struct stripe_head *head_sh = sh;
91c00924
DW
899
900 might_sleep();
901
902 for (i = disks; i--; ) {
903 int rw;
9a3e1101 904 int replace_only = 0;
977df362
N
905 struct bio *bi, *rbi;
906 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 907
908 sh = head_sh;
e9c7469b
TH
909 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911 rw = WRITE_FUA;
912 else
913 rw = WRITE;
9e444768 914 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 915 rw |= REQ_DISCARD;
e9c7469b 916 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 917 rw = READ;
9a3e1101
N
918 else if (test_and_clear_bit(R5_WantReplace,
919 &sh->dev[i].flags)) {
920 rw = WRITE;
921 replace_only = 1;
922 } else
91c00924 923 continue;
bc0934f0
SL
924 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925 rw |= REQ_SYNC;
91c00924 926
59fc630b 927again:
91c00924 928 bi = &sh->dev[i].req;
977df362 929 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 930
91c00924 931 rcu_read_lock();
9a3e1101 932 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
933 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934 rdev = rcu_dereference(conf->disks[i].rdev);
935 if (!rdev) {
936 rdev = rrdev;
937 rrdev = NULL;
938 }
9a3e1101
N
939 if (rw & WRITE) {
940 if (replace_only)
941 rdev = NULL;
dd054fce
N
942 if (rdev == rrdev)
943 /* We raced and saw duplicates */
944 rrdev = NULL;
9a3e1101 945 } else {
59fc630b 946 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
947 rdev = rrdev;
948 rrdev = NULL;
949 }
977df362 950
91c00924
DW
951 if (rdev && test_bit(Faulty, &rdev->flags))
952 rdev = NULL;
953 if (rdev)
954 atomic_inc(&rdev->nr_pending);
977df362
N
955 if (rrdev && test_bit(Faulty, &rrdev->flags))
956 rrdev = NULL;
957 if (rrdev)
958 atomic_inc(&rrdev->nr_pending);
91c00924
DW
959 rcu_read_unlock();
960
73e92e51 961 /* We have already checked bad blocks for reads. Now
977df362
N
962 * need to check for writes. We never accept write errors
963 * on the replacement, so we don't to check rrdev.
73e92e51
N
964 */
965 while ((rw & WRITE) && rdev &&
966 test_bit(WriteErrorSeen, &rdev->flags)) {
967 sector_t first_bad;
968 int bad_sectors;
969 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970 &first_bad, &bad_sectors);
971 if (!bad)
972 break;
973
974 if (bad < 0) {
975 set_bit(BlockedBadBlocks, &rdev->flags);
976 if (!conf->mddev->external &&
977 conf->mddev->flags) {
978 /* It is very unlikely, but we might
979 * still need to write out the
980 * bad block log - better give it
981 * a chance*/
982 md_check_recovery(conf->mddev);
983 }
1850753d 984 /*
985 * Because md_wait_for_blocked_rdev
986 * will dec nr_pending, we must
987 * increment it first.
988 */
989 atomic_inc(&rdev->nr_pending);
73e92e51
N
990 md_wait_for_blocked_rdev(rdev, conf->mddev);
991 } else {
992 /* Acknowledged bad block - skip the write */
993 rdev_dec_pending(rdev, conf->mddev);
994 rdev = NULL;
995 }
996 }
997
91c00924 998 if (rdev) {
9a3e1101
N
999 if (s->syncing || s->expanding || s->expanded
1000 || s->replacing)
91c00924
DW
1001 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002
2b7497f0
DW
1003 set_bit(STRIPE_IO_STARTED, &sh->state);
1004
2f6db2a7 1005 bio_reset(bi);
91c00924 1006 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
1007 bi->bi_rw = rw;
1008 bi->bi_end_io = (rw & WRITE)
1009 ? raid5_end_write_request
1010 : raid5_end_read_request;
1011 bi->bi_private = sh;
1012
91c00924 1013 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 1014 __func__, (unsigned long long)sh->sector,
91c00924
DW
1015 bi->bi_rw, i);
1016 atomic_inc(&sh->count);
59fc630b 1017 if (sh != head_sh)
1018 atomic_inc(&head_sh->count);
05616be5 1019 if (use_new_offset(conf, sh))
4f024f37 1020 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1021 + rdev->new_data_offset);
1022 else
4f024f37 1023 bi->bi_iter.bi_sector = (sh->sector
05616be5 1024 + rdev->data_offset);
59fc630b 1025 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1026 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1027
d592a996
SL
1028 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1031 bi->bi_vcnt = 1;
91c00924
DW
1032 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1034 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1035 /*
1036 * If this is discard request, set bi_vcnt 0. We don't
1037 * want to confuse SCSI because SCSI will replace payload
1038 */
1039 if (rw & REQ_DISCARD)
1040 bi->bi_vcnt = 0;
977df362
N
1041 if (rrdev)
1042 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1043
1044 if (conf->mddev->gendisk)
1045 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046 bi, disk_devt(conf->mddev->gendisk),
1047 sh->dev[i].sector);
91c00924 1048 generic_make_request(bi);
977df362
N
1049 }
1050 if (rrdev) {
9a3e1101
N
1051 if (s->syncing || s->expanding || s->expanded
1052 || s->replacing)
977df362
N
1053 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054
1055 set_bit(STRIPE_IO_STARTED, &sh->state);
1056
2f6db2a7 1057 bio_reset(rbi);
977df362 1058 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1059 rbi->bi_rw = rw;
1060 BUG_ON(!(rw & WRITE));
1061 rbi->bi_end_io = raid5_end_write_request;
1062 rbi->bi_private = sh;
1063
977df362
N
1064 pr_debug("%s: for %llu schedule op %ld on "
1065 "replacement disc %d\n",
1066 __func__, (unsigned long long)sh->sector,
1067 rbi->bi_rw, i);
1068 atomic_inc(&sh->count);
59fc630b 1069 if (sh != head_sh)
1070 atomic_inc(&head_sh->count);
05616be5 1071 if (use_new_offset(conf, sh))
4f024f37 1072 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1073 + rrdev->new_data_offset);
1074 else
4f024f37 1075 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1076 + rrdev->data_offset);
d592a996
SL
1077 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1080 rbi->bi_vcnt = 1;
977df362
N
1081 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1083 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1084 /*
1085 * If this is discard request, set bi_vcnt 0. We don't
1086 * want to confuse SCSI because SCSI will replace payload
1087 */
1088 if (rw & REQ_DISCARD)
1089 rbi->bi_vcnt = 0;
e3620a3a
JB
1090 if (conf->mddev->gendisk)
1091 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092 rbi, disk_devt(conf->mddev->gendisk),
1093 sh->dev[i].sector);
977df362
N
1094 generic_make_request(rbi);
1095 }
1096 if (!rdev && !rrdev) {
b062962e 1097 if (rw & WRITE)
91c00924
DW
1098 set_bit(STRIPE_DEGRADED, &sh->state);
1099 pr_debug("skip op %ld on disc %d for sector %llu\n",
1100 bi->bi_rw, i, (unsigned long long)sh->sector);
1101 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102 set_bit(STRIPE_HANDLE, &sh->state);
1103 }
59fc630b 1104
1105 if (!head_sh->batch_head)
1106 continue;
1107 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108 batch_list);
1109 if (sh != head_sh)
1110 goto again;
91c00924
DW
1111 }
1112}
1113
1114static struct dma_async_tx_descriptor *
d592a996
SL
1115async_copy_data(int frombio, struct bio *bio, struct page **page,
1116 sector_t sector, struct dma_async_tx_descriptor *tx,
1117 struct stripe_head *sh)
91c00924 1118{
7988613b
KO
1119 struct bio_vec bvl;
1120 struct bvec_iter iter;
91c00924 1121 struct page *bio_page;
91c00924 1122 int page_offset;
a08abd8c 1123 struct async_submit_ctl submit;
0403e382 1124 enum async_tx_flags flags = 0;
91c00924 1125
4f024f37
KO
1126 if (bio->bi_iter.bi_sector >= sector)
1127 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1128 else
4f024f37 1129 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1130
0403e382
DW
1131 if (frombio)
1132 flags |= ASYNC_TX_FENCE;
1133 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134
7988613b
KO
1135 bio_for_each_segment(bvl, bio, iter) {
1136 int len = bvl.bv_len;
91c00924
DW
1137 int clen;
1138 int b_offset = 0;
1139
1140 if (page_offset < 0) {
1141 b_offset = -page_offset;
1142 page_offset += b_offset;
1143 len -= b_offset;
1144 }
1145
1146 if (len > 0 && page_offset + len > STRIPE_SIZE)
1147 clen = STRIPE_SIZE - page_offset;
1148 else
1149 clen = len;
1150
1151 if (clen > 0) {
7988613b
KO
1152 b_offset += bvl.bv_offset;
1153 bio_page = bvl.bv_page;
d592a996
SL
1154 if (frombio) {
1155 if (sh->raid_conf->skip_copy &&
1156 b_offset == 0 && page_offset == 0 &&
1157 clen == STRIPE_SIZE)
1158 *page = bio_page;
1159 else
1160 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1161 b_offset, clen, &submit);
d592a996
SL
1162 } else
1163 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1164 page_offset, clen, &submit);
91c00924 1165 }
a08abd8c
DW
1166 /* chain the operations */
1167 submit.depend_tx = tx;
1168
91c00924
DW
1169 if (clen < len) /* hit end of page */
1170 break;
1171 page_offset += len;
1172 }
1173
1174 return tx;
1175}
1176
1177static void ops_complete_biofill(void *stripe_head_ref)
1178{
1179 struct stripe_head *sh = stripe_head_ref;
1180 struct bio *return_bi = NULL;
e4d84909 1181 int i;
91c00924 1182
e46b272b 1183 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1184 (unsigned long long)sh->sector);
1185
1186 /* clear completed biofills */
1187 for (i = sh->disks; i--; ) {
1188 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1189
1190 /* acknowledge completion of a biofill operation */
e4d84909
DW
1191 /* and check if we need to reply to a read request,
1192 * new R5_Wantfill requests are held off until
83de75cc 1193 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1194 */
1195 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1196 struct bio *rbi, *rbi2;
91c00924 1197
91c00924
DW
1198 BUG_ON(!dev->read);
1199 rbi = dev->read;
1200 dev->read = NULL;
4f024f37 1201 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1202 dev->sector + STRIPE_SECTORS) {
1203 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 1204 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
1205 rbi->bi_next = return_bi;
1206 return_bi = rbi;
1207 }
91c00924
DW
1208 rbi = rbi2;
1209 }
1210 }
1211 }
83de75cc 1212 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
1213
1214 return_io(return_bi);
1215
e4d84909 1216 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
1217 release_stripe(sh);
1218}
1219
1220static void ops_run_biofill(struct stripe_head *sh)
1221{
1222 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1223 struct async_submit_ctl submit;
91c00924
DW
1224 int i;
1225
59fc630b 1226 BUG_ON(sh->batch_head);
e46b272b 1227 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1228 (unsigned long long)sh->sector);
1229
1230 for (i = sh->disks; i--; ) {
1231 struct r5dev *dev = &sh->dev[i];
1232 if (test_bit(R5_Wantfill, &dev->flags)) {
1233 struct bio *rbi;
b17459c0 1234 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1235 dev->read = rbi = dev->toread;
1236 dev->toread = NULL;
b17459c0 1237 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1238 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1239 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1240 tx = async_copy_data(0, rbi, &dev->page,
1241 dev->sector, tx, sh);
91c00924
DW
1242 rbi = r5_next_bio(rbi, dev->sector);
1243 }
1244 }
1245 }
1246
1247 atomic_inc(&sh->count);
a08abd8c
DW
1248 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249 async_trigger_callback(&submit);
91c00924
DW
1250}
1251
4e7d2c0a 1252static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1253{
4e7d2c0a 1254 struct r5dev *tgt;
91c00924 1255
4e7d2c0a
DW
1256 if (target < 0)
1257 return;
91c00924 1258
4e7d2c0a 1259 tgt = &sh->dev[target];
91c00924
DW
1260 set_bit(R5_UPTODATE, &tgt->flags);
1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1263}
1264
ac6b53b6 1265static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1266{
1267 struct stripe_head *sh = stripe_head_ref;
91c00924 1268
e46b272b 1269 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1270 (unsigned long long)sh->sector);
1271
ac6b53b6 1272 /* mark the computed target(s) as uptodate */
4e7d2c0a 1273 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1274 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1275
ecc65c9b
DW
1276 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277 if (sh->check_state == check_state_compute_run)
1278 sh->check_state = check_state_compute_result;
91c00924
DW
1279 set_bit(STRIPE_HANDLE, &sh->state);
1280 release_stripe(sh);
1281}
1282
d6f38f31
DW
1283/* return a pointer to the address conversion region of the scribble buffer */
1284static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1285 struct raid5_percpu *percpu, int i)
d6f38f31 1286{
46d5b785 1287 void *addr;
1288
1289 addr = flex_array_get(percpu->scribble, i);
1290 return addr + sizeof(struct page *) * (sh->disks + 2);
1291}
1292
1293/* return a pointer to the address conversion region of the scribble buffer */
1294static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295{
1296 void *addr;
1297
1298 addr = flex_array_get(percpu->scribble, i);
1299 return addr;
d6f38f31
DW
1300}
1301
1302static struct dma_async_tx_descriptor *
1303ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1304{
91c00924 1305 int disks = sh->disks;
46d5b785 1306 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1307 int target = sh->ops.target;
1308 struct r5dev *tgt = &sh->dev[target];
1309 struct page *xor_dest = tgt->page;
1310 int count = 0;
1311 struct dma_async_tx_descriptor *tx;
a08abd8c 1312 struct async_submit_ctl submit;
91c00924
DW
1313 int i;
1314
59fc630b 1315 BUG_ON(sh->batch_head);
1316
91c00924 1317 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1318 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1319 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320
1321 for (i = disks; i--; )
1322 if (i != target)
1323 xor_srcs[count++] = sh->dev[i].page;
1324
1325 atomic_inc(&sh->count);
1326
0403e382 1327 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1328 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1329 if (unlikely(count == 1))
a08abd8c 1330 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1331 else
a08abd8c 1332 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1333
91c00924
DW
1334 return tx;
1335}
1336
ac6b53b6
DW
1337/* set_syndrome_sources - populate source buffers for gen_syndrome
1338 * @srcs - (struct page *) array of size sh->disks
1339 * @sh - stripe_head to parse
1340 *
1341 * Populates srcs in proper layout order for the stripe and returns the
1342 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1343 * destination buffer is recorded in srcs[count] and the Q destination
1344 * is recorded in srcs[count+1]].
1345 */
584acdd4
MS
1346static int set_syndrome_sources(struct page **srcs,
1347 struct stripe_head *sh,
1348 int srctype)
ac6b53b6
DW
1349{
1350 int disks = sh->disks;
1351 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352 int d0_idx = raid6_d0(sh);
1353 int count;
1354 int i;
1355
1356 for (i = 0; i < disks; i++)
5dd33c9a 1357 srcs[i] = NULL;
ac6b53b6
DW
1358
1359 count = 0;
1360 i = d0_idx;
1361 do {
1362 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1363 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1364
584acdd4
MS
1365 if (i == sh->qd_idx || i == sh->pd_idx ||
1366 (srctype == SYNDROME_SRC_ALL) ||
1367 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368 test_bit(R5_Wantdrain, &dev->flags)) ||
1369 (srctype == SYNDROME_SRC_WRITTEN &&
1370 dev->written))
1371 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1372 i = raid6_next_disk(i, disks);
1373 } while (i != d0_idx);
ac6b53b6 1374
e4424fee 1375 return syndrome_disks;
ac6b53b6
DW
1376}
1377
1378static struct dma_async_tx_descriptor *
1379ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380{
1381 int disks = sh->disks;
46d5b785 1382 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1383 int target;
1384 int qd_idx = sh->qd_idx;
1385 struct dma_async_tx_descriptor *tx;
1386 struct async_submit_ctl submit;
1387 struct r5dev *tgt;
1388 struct page *dest;
1389 int i;
1390 int count;
1391
59fc630b 1392 BUG_ON(sh->batch_head);
ac6b53b6
DW
1393 if (sh->ops.target < 0)
1394 target = sh->ops.target2;
1395 else if (sh->ops.target2 < 0)
1396 target = sh->ops.target;
91c00924 1397 else
ac6b53b6
DW
1398 /* we should only have one valid target */
1399 BUG();
1400 BUG_ON(target < 0);
1401 pr_debug("%s: stripe %llu block: %d\n",
1402 __func__, (unsigned long long)sh->sector, target);
1403
1404 tgt = &sh->dev[target];
1405 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406 dest = tgt->page;
1407
1408 atomic_inc(&sh->count);
1409
1410 if (target == qd_idx) {
584acdd4 1411 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1412 blocks[count] = NULL; /* regenerating p is not necessary */
1413 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1414 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415 ops_complete_compute, sh,
46d5b785 1416 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1417 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418 } else {
1419 /* Compute any data- or p-drive using XOR */
1420 count = 0;
1421 for (i = disks; i-- ; ) {
1422 if (i == target || i == qd_idx)
1423 continue;
1424 blocks[count++] = sh->dev[i].page;
1425 }
1426
0403e382
DW
1427 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428 NULL, ops_complete_compute, sh,
46d5b785 1429 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1430 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431 }
91c00924 1432
91c00924
DW
1433 return tx;
1434}
1435
ac6b53b6
DW
1436static struct dma_async_tx_descriptor *
1437ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438{
1439 int i, count, disks = sh->disks;
1440 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441 int d0_idx = raid6_d0(sh);
1442 int faila = -1, failb = -1;
1443 int target = sh->ops.target;
1444 int target2 = sh->ops.target2;
1445 struct r5dev *tgt = &sh->dev[target];
1446 struct r5dev *tgt2 = &sh->dev[target2];
1447 struct dma_async_tx_descriptor *tx;
46d5b785 1448 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1449 struct async_submit_ctl submit;
1450
59fc630b 1451 BUG_ON(sh->batch_head);
ac6b53b6
DW
1452 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453 __func__, (unsigned long long)sh->sector, target, target2);
1454 BUG_ON(target < 0 || target2 < 0);
1455 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457
6c910a78 1458 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1459 * slot number conversion for 'faila' and 'failb'
1460 */
1461 for (i = 0; i < disks ; i++)
5dd33c9a 1462 blocks[i] = NULL;
ac6b53b6
DW
1463 count = 0;
1464 i = d0_idx;
1465 do {
1466 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467
1468 blocks[slot] = sh->dev[i].page;
1469
1470 if (i == target)
1471 faila = slot;
1472 if (i == target2)
1473 failb = slot;
1474 i = raid6_next_disk(i, disks);
1475 } while (i != d0_idx);
ac6b53b6
DW
1476
1477 BUG_ON(faila == failb);
1478 if (failb < faila)
1479 swap(faila, failb);
1480 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481 __func__, (unsigned long long)sh->sector, faila, failb);
1482
1483 atomic_inc(&sh->count);
1484
1485 if (failb == syndrome_disks+1) {
1486 /* Q disk is one of the missing disks */
1487 if (faila == syndrome_disks) {
1488 /* Missing P+Q, just recompute */
0403e382
DW
1489 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490 ops_complete_compute, sh,
46d5b785 1491 to_addr_conv(sh, percpu, 0));
e4424fee 1492 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1493 STRIPE_SIZE, &submit);
1494 } else {
1495 struct page *dest;
1496 int data_target;
1497 int qd_idx = sh->qd_idx;
1498
1499 /* Missing D+Q: recompute D from P, then recompute Q */
1500 if (target == qd_idx)
1501 data_target = target2;
1502 else
1503 data_target = target;
1504
1505 count = 0;
1506 for (i = disks; i-- ; ) {
1507 if (i == data_target || i == qd_idx)
1508 continue;
1509 blocks[count++] = sh->dev[i].page;
1510 }
1511 dest = sh->dev[data_target].page;
0403e382
DW
1512 init_async_submit(&submit,
1513 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514 NULL, NULL, NULL,
46d5b785 1515 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1516 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517 &submit);
1518
584acdd4 1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1520 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521 ops_complete_compute, sh,
46d5b785 1522 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1523 return async_gen_syndrome(blocks, 0, count+2,
1524 STRIPE_SIZE, &submit);
1525 }
ac6b53b6 1526 } else {
6c910a78
DW
1527 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 ops_complete_compute, sh,
46d5b785 1529 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1530 if (failb == syndrome_disks) {
1531 /* We're missing D+P. */
1532 return async_raid6_datap_recov(syndrome_disks+2,
1533 STRIPE_SIZE, faila,
1534 blocks, &submit);
1535 } else {
1536 /* We're missing D+D. */
1537 return async_raid6_2data_recov(syndrome_disks+2,
1538 STRIPE_SIZE, faila, failb,
1539 blocks, &submit);
1540 }
ac6b53b6
DW
1541 }
1542}
1543
91c00924
DW
1544static void ops_complete_prexor(void *stripe_head_ref)
1545{
1546 struct stripe_head *sh = stripe_head_ref;
1547
e46b272b 1548 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1549 (unsigned long long)sh->sector);
91c00924
DW
1550}
1551
1552static struct dma_async_tx_descriptor *
584acdd4
MS
1553ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554 struct dma_async_tx_descriptor *tx)
91c00924 1555{
91c00924 1556 int disks = sh->disks;
46d5b785 1557 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1558 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1559 struct async_submit_ctl submit;
91c00924
DW
1560
1561 /* existing parity data subtracted */
1562 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563
59fc630b 1564 BUG_ON(sh->batch_head);
e46b272b 1565 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1566 (unsigned long long)sh->sector);
1567
1568 for (i = disks; i--; ) {
1569 struct r5dev *dev = &sh->dev[i];
1570 /* Only process blocks that are known to be uptodate */
d8ee0728 1571 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1572 xor_srcs[count++] = dev->page;
1573 }
1574
0403e382 1575 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1576 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1577 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1578
1579 return tx;
1580}
1581
584acdd4
MS
1582static struct dma_async_tx_descriptor *
1583ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584 struct dma_async_tx_descriptor *tx)
1585{
1586 struct page **blocks = to_addr_page(percpu, 0);
1587 int count;
1588 struct async_submit_ctl submit;
1589
1590 pr_debug("%s: stripe %llu\n", __func__,
1591 (unsigned long long)sh->sector);
1592
1593 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1598
1599 return tx;
1600}
1601
91c00924 1602static struct dma_async_tx_descriptor *
d8ee0728 1603ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1604{
1605 int disks = sh->disks;
d8ee0728 1606 int i;
59fc630b 1607 struct stripe_head *head_sh = sh;
91c00924 1608
e46b272b 1609 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1610 (unsigned long long)sh->sector);
1611
1612 for (i = disks; i--; ) {
59fc630b 1613 struct r5dev *dev;
91c00924 1614 struct bio *chosen;
91c00924 1615
59fc630b 1616 sh = head_sh;
1617 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1618 struct bio *wbi;
1619
59fc630b 1620again:
1621 dev = &sh->dev[i];
b17459c0 1622 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1623 chosen = dev->towrite;
1624 dev->towrite = NULL;
7a87f434 1625 sh->overwrite_disks = 0;
91c00924
DW
1626 BUG_ON(dev->written);
1627 wbi = dev->written = chosen;
b17459c0 1628 spin_unlock_irq(&sh->stripe_lock);
d592a996 1629 WARN_ON(dev->page != dev->orig_page);
91c00924 1630
4f024f37 1631 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1632 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1633 if (wbi->bi_rw & REQ_FUA)
1634 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1635 if (wbi->bi_rw & REQ_SYNC)
1636 set_bit(R5_SyncIO, &dev->flags);
9e444768 1637 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1638 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1639 else {
1640 tx = async_copy_data(1, wbi, &dev->page,
1641 dev->sector, tx, sh);
1642 if (dev->page != dev->orig_page) {
1643 set_bit(R5_SkipCopy, &dev->flags);
1644 clear_bit(R5_UPTODATE, &dev->flags);
1645 clear_bit(R5_OVERWRITE, &dev->flags);
1646 }
1647 }
91c00924
DW
1648 wbi = r5_next_bio(wbi, dev->sector);
1649 }
59fc630b 1650
1651 if (head_sh->batch_head) {
1652 sh = list_first_entry(&sh->batch_list,
1653 struct stripe_head,
1654 batch_list);
1655 if (sh == head_sh)
1656 continue;
1657 goto again;
1658 }
91c00924
DW
1659 }
1660 }
1661
1662 return tx;
1663}
1664
ac6b53b6 1665static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1666{
1667 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1668 int disks = sh->disks;
1669 int pd_idx = sh->pd_idx;
1670 int qd_idx = sh->qd_idx;
1671 int i;
9e444768 1672 bool fua = false, sync = false, discard = false;
91c00924 1673
e46b272b 1674 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1675 (unsigned long long)sh->sector);
1676
bc0934f0 1677 for (i = disks; i--; ) {
e9c7469b 1678 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1679 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1680 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1681 }
e9c7469b 1682
91c00924
DW
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1685
e9c7469b 1686 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1687 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1688 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1689 if (fua)
1690 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1691 if (sync)
1692 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1693 }
91c00924
DW
1694 }
1695
d8ee0728
DW
1696 if (sh->reconstruct_state == reconstruct_state_drain_run)
1697 sh->reconstruct_state = reconstruct_state_drain_result;
1698 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700 else {
1701 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702 sh->reconstruct_state = reconstruct_state_result;
1703 }
91c00924
DW
1704
1705 set_bit(STRIPE_HANDLE, &sh->state);
1706 release_stripe(sh);
1707}
1708
1709static void
ac6b53b6
DW
1710ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711 struct dma_async_tx_descriptor *tx)
91c00924 1712{
91c00924 1713 int disks = sh->disks;
59fc630b 1714 struct page **xor_srcs;
a08abd8c 1715 struct async_submit_ctl submit;
59fc630b 1716 int count, pd_idx = sh->pd_idx, i;
91c00924 1717 struct page *xor_dest;
d8ee0728 1718 int prexor = 0;
91c00924 1719 unsigned long flags;
59fc630b 1720 int j = 0;
1721 struct stripe_head *head_sh = sh;
1722 int last_stripe;
91c00924 1723
e46b272b 1724 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1725 (unsigned long long)sh->sector);
1726
620125f2
SL
1727 for (i = 0; i < sh->disks; i++) {
1728 if (pd_idx == i)
1729 continue;
1730 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731 break;
1732 }
1733 if (i >= sh->disks) {
1734 atomic_inc(&sh->count);
620125f2
SL
1735 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736 ops_complete_reconstruct(sh);
1737 return;
1738 }
59fc630b 1739again:
1740 count = 0;
1741 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1742 /* check if prexor is active which means only process blocks
1743 * that are part of a read-modify-write (written)
1744 */
59fc630b 1745 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1746 prexor = 1;
91c00924
DW
1747 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748 for (i = disks; i--; ) {
1749 struct r5dev *dev = &sh->dev[i];
59fc630b 1750 if (head_sh->dev[i].written)
91c00924
DW
1751 xor_srcs[count++] = dev->page;
1752 }
1753 } else {
1754 xor_dest = sh->dev[pd_idx].page;
1755 for (i = disks; i--; ) {
1756 struct r5dev *dev = &sh->dev[i];
1757 if (i != pd_idx)
1758 xor_srcs[count++] = dev->page;
1759 }
1760 }
1761
91c00924
DW
1762 /* 1/ if we prexor'd then the dest is reused as a source
1763 * 2/ if we did not prexor then we are redoing the parity
1764 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765 * for the synchronous xor case
1766 */
59fc630b 1767 last_stripe = !head_sh->batch_head ||
1768 list_first_entry(&sh->batch_list,
1769 struct stripe_head, batch_list) == head_sh;
1770 if (last_stripe) {
1771 flags = ASYNC_TX_ACK |
1772 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773
1774 atomic_inc(&head_sh->count);
1775 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776 to_addr_conv(sh, percpu, j));
1777 } else {
1778 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779 init_async_submit(&submit, flags, tx, NULL, NULL,
1780 to_addr_conv(sh, percpu, j));
1781 }
91c00924 1782
a08abd8c
DW
1783 if (unlikely(count == 1))
1784 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785 else
1786 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1787 if (!last_stripe) {
1788 j++;
1789 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790 batch_list);
1791 goto again;
1792 }
91c00924
DW
1793}
1794
ac6b53b6
DW
1795static void
1796ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797 struct dma_async_tx_descriptor *tx)
1798{
1799 struct async_submit_ctl submit;
59fc630b 1800 struct page **blocks;
1801 int count, i, j = 0;
1802 struct stripe_head *head_sh = sh;
1803 int last_stripe;
584acdd4
MS
1804 int synflags;
1805 unsigned long txflags;
ac6b53b6
DW
1806
1807 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808
620125f2
SL
1809 for (i = 0; i < sh->disks; i++) {
1810 if (sh->pd_idx == i || sh->qd_idx == i)
1811 continue;
1812 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813 break;
1814 }
1815 if (i >= sh->disks) {
1816 atomic_inc(&sh->count);
620125f2
SL
1817 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819 ops_complete_reconstruct(sh);
1820 return;
1821 }
1822
59fc630b 1823again:
1824 blocks = to_addr_page(percpu, j);
584acdd4
MS
1825
1826 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827 synflags = SYNDROME_SRC_WRITTEN;
1828 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829 } else {
1830 synflags = SYNDROME_SRC_ALL;
1831 txflags = ASYNC_TX_ACK;
1832 }
1833
1834 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1835 last_stripe = !head_sh->batch_head ||
1836 list_first_entry(&sh->batch_list,
1837 struct stripe_head, batch_list) == head_sh;
1838
1839 if (last_stripe) {
1840 atomic_inc(&head_sh->count);
584acdd4 1841 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1842 head_sh, to_addr_conv(sh, percpu, j));
1843 } else
1844 init_async_submit(&submit, 0, tx, NULL, NULL,
1845 to_addr_conv(sh, percpu, j));
48769695 1846 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1847 if (!last_stripe) {
1848 j++;
1849 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850 batch_list);
1851 goto again;
1852 }
91c00924
DW
1853}
1854
1855static void ops_complete_check(void *stripe_head_ref)
1856{
1857 struct stripe_head *sh = stripe_head_ref;
91c00924 1858
e46b272b 1859 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1860 (unsigned long long)sh->sector);
1861
ecc65c9b 1862 sh->check_state = check_state_check_result;
91c00924
DW
1863 set_bit(STRIPE_HANDLE, &sh->state);
1864 release_stripe(sh);
1865}
1866
ac6b53b6 1867static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1868{
91c00924 1869 int disks = sh->disks;
ac6b53b6
DW
1870 int pd_idx = sh->pd_idx;
1871 int qd_idx = sh->qd_idx;
1872 struct page *xor_dest;
46d5b785 1873 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1874 struct dma_async_tx_descriptor *tx;
a08abd8c 1875 struct async_submit_ctl submit;
ac6b53b6
DW
1876 int count;
1877 int i;
91c00924 1878
e46b272b 1879 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1880 (unsigned long long)sh->sector);
1881
59fc630b 1882 BUG_ON(sh->batch_head);
ac6b53b6
DW
1883 count = 0;
1884 xor_dest = sh->dev[pd_idx].page;
1885 xor_srcs[count++] = xor_dest;
91c00924 1886 for (i = disks; i--; ) {
ac6b53b6
DW
1887 if (i == pd_idx || i == qd_idx)
1888 continue;
1889 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1890 }
1891
d6f38f31 1892 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1893 to_addr_conv(sh, percpu, 0));
099f53cb 1894 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1895 &sh->ops.zero_sum_result, &submit);
91c00924 1896
91c00924 1897 atomic_inc(&sh->count);
a08abd8c
DW
1898 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899 tx = async_trigger_callback(&submit);
91c00924
DW
1900}
1901
ac6b53b6
DW
1902static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903{
46d5b785 1904 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1905 struct async_submit_ctl submit;
1906 int count;
1907
1908 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909 (unsigned long long)sh->sector, checkp);
1910
59fc630b 1911 BUG_ON(sh->batch_head);
584acdd4 1912 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1913 if (!checkp)
1914 srcs[count] = NULL;
91c00924 1915
91c00924 1916 atomic_inc(&sh->count);
ac6b53b6 1917 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1918 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1919 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1921}
1922
51acbcec 1923static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1924{
1925 int overlap_clear = 0, i, disks = sh->disks;
1926 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1927 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1928 int level = conf->level;
d6f38f31
DW
1929 struct raid5_percpu *percpu;
1930 unsigned long cpu;
91c00924 1931
d6f38f31
DW
1932 cpu = get_cpu();
1933 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1934 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1935 ops_run_biofill(sh);
1936 overlap_clear++;
1937 }
1938
7b3a871e 1939 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1940 if (level < 6)
1941 tx = ops_run_compute5(sh, percpu);
1942 else {
1943 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944 tx = ops_run_compute6_1(sh, percpu);
1945 else
1946 tx = ops_run_compute6_2(sh, percpu);
1947 }
1948 /* terminate the chain if reconstruct is not set to be run */
1949 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1950 async_tx_ack(tx);
1951 }
91c00924 1952
584acdd4
MS
1953 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954 if (level < 6)
1955 tx = ops_run_prexor5(sh, percpu, tx);
1956 else
1957 tx = ops_run_prexor6(sh, percpu, tx);
1958 }
91c00924 1959
600aa109 1960 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1961 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1962 overlap_clear++;
1963 }
1964
ac6b53b6
DW
1965 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966 if (level < 6)
1967 ops_run_reconstruct5(sh, percpu, tx);
1968 else
1969 ops_run_reconstruct6(sh, percpu, tx);
1970 }
91c00924 1971
ac6b53b6
DW
1972 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973 if (sh->check_state == check_state_run)
1974 ops_run_check_p(sh, percpu);
1975 else if (sh->check_state == check_state_run_q)
1976 ops_run_check_pq(sh, percpu, 0);
1977 else if (sh->check_state == check_state_run_pq)
1978 ops_run_check_pq(sh, percpu, 1);
1979 else
1980 BUG();
1981 }
91c00924 1982
59fc630b 1983 if (overlap_clear && !sh->batch_head)
91c00924
DW
1984 for (i = disks; i--; ) {
1985 struct r5dev *dev = &sh->dev[i];
1986 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987 wake_up(&sh->raid_conf->wait_for_overlap);
1988 }
d6f38f31 1989 put_cpu();
91c00924
DW
1990}
1991
f18c1a35
N
1992static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993{
1994 struct stripe_head *sh;
1995
1996 sh = kmem_cache_zalloc(sc, gfp);
1997 if (sh) {
1998 spin_lock_init(&sh->stripe_lock);
1999 spin_lock_init(&sh->batch_lock);
2000 INIT_LIST_HEAD(&sh->batch_list);
2001 INIT_LIST_HEAD(&sh->lru);
2002 atomic_set(&sh->count, 1);
2003 }
2004 return sh;
2005}
486f0644 2006static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2007{
2008 struct stripe_head *sh;
f18c1a35
N
2009
2010 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
2011 if (!sh)
2012 return 0;
6ce32846 2013
3f294f4f 2014 sh->raid_conf = conf;
3f294f4f 2015
a9683a79 2016 if (grow_buffers(sh, gfp)) {
e4e11e38 2017 shrink_buffers(sh);
3f294f4f
N
2018 kmem_cache_free(conf->slab_cache, sh);
2019 return 0;
2020 }
486f0644
N
2021 sh->hash_lock_index =
2022 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2023 /* we just created an active stripe so... */
3f294f4f 2024 atomic_inc(&conf->active_stripes);
59fc630b 2025
3f294f4f 2026 release_stripe(sh);
486f0644 2027 conf->max_nr_stripes++;
3f294f4f
N
2028 return 1;
2029}
2030
d1688a6d 2031static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2032{
e18b890b 2033 struct kmem_cache *sc;
5e5e3e78 2034 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2035
f4be6b43
N
2036 if (conf->mddev->gendisk)
2037 sprintf(conf->cache_name[0],
2038 "raid%d-%s", conf->level, mdname(conf->mddev));
2039 else
2040 sprintf(conf->cache_name[0],
2041 "raid%d-%p", conf->level, conf->mddev);
2042 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043
ad01c9e3
N
2044 conf->active_name = 0;
2045 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2046 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2047 0, 0, NULL);
1da177e4
LT
2048 if (!sc)
2049 return 1;
2050 conf->slab_cache = sc;
ad01c9e3 2051 conf->pool_size = devs;
486f0644
N
2052 while (num--)
2053 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2054 return 1;
486f0644 2055
1da177e4
LT
2056 return 0;
2057}
29269553 2058
d6f38f31
DW
2059/**
2060 * scribble_len - return the required size of the scribble region
2061 * @num - total number of disks in the array
2062 *
2063 * The size must be enough to contain:
2064 * 1/ a struct page pointer for each device in the array +2
2065 * 2/ room to convert each entry in (1) to its corresponding dma
2066 * (dma_map_page()) or page (page_address()) address.
2067 *
2068 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069 * calculate over all devices (not just the data blocks), using zeros in place
2070 * of the P and Q blocks.
2071 */
46d5b785 2072static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2073{
46d5b785 2074 struct flex_array *ret;
d6f38f31
DW
2075 size_t len;
2076
2077 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2078 ret = flex_array_alloc(len, cnt, flags);
2079 if (!ret)
2080 return NULL;
2081 /* always prealloc all elements, so no locking is required */
2082 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083 flex_array_free(ret);
2084 return NULL;
2085 }
2086 return ret;
d6f38f31
DW
2087}
2088
738a2738
N
2089static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090{
2091 unsigned long cpu;
2092 int err = 0;
2093
2094 mddev_suspend(conf->mddev);
2095 get_online_cpus();
2096 for_each_present_cpu(cpu) {
2097 struct raid5_percpu *percpu;
2098 struct flex_array *scribble;
2099
2100 percpu = per_cpu_ptr(conf->percpu, cpu);
2101 scribble = scribble_alloc(new_disks,
2102 new_sectors / STRIPE_SECTORS,
2103 GFP_NOIO);
2104
2105 if (scribble) {
2106 flex_array_free(percpu->scribble);
2107 percpu->scribble = scribble;
2108 } else {
2109 err = -ENOMEM;
2110 break;
2111 }
2112 }
2113 put_online_cpus();
2114 mddev_resume(conf->mddev);
2115 return err;
2116}
2117
d1688a6d 2118static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2119{
2120 /* Make all the stripes able to hold 'newsize' devices.
2121 * New slots in each stripe get 'page' set to a new page.
2122 *
2123 * This happens in stages:
2124 * 1/ create a new kmem_cache and allocate the required number of
2125 * stripe_heads.
83f0d77a 2126 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2127 * to the new stripe_heads. This will have the side effect of
2128 * freezing the array as once all stripe_heads have been collected,
2129 * no IO will be possible. Old stripe heads are freed once their
2130 * pages have been transferred over, and the old kmem_cache is
2131 * freed when all stripes are done.
2132 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2133 * we simple return a failre status - no need to clean anything up.
2134 * 4/ allocate new pages for the new slots in the new stripe_heads.
2135 * If this fails, we don't bother trying the shrink the
2136 * stripe_heads down again, we just leave them as they are.
2137 * As each stripe_head is processed the new one is released into
2138 * active service.
2139 *
2140 * Once step2 is started, we cannot afford to wait for a write,
2141 * so we use GFP_NOIO allocations.
2142 */
2143 struct stripe_head *osh, *nsh;
2144 LIST_HEAD(newstripes);
2145 struct disk_info *ndisks;
b5470dc5 2146 int err;
e18b890b 2147 struct kmem_cache *sc;
ad01c9e3 2148 int i;
566c09c5 2149 int hash, cnt;
ad01c9e3
N
2150
2151 if (newsize <= conf->pool_size)
2152 return 0; /* never bother to shrink */
2153
b5470dc5
DW
2154 err = md_allow_write(conf->mddev);
2155 if (err)
2156 return err;
2a2275d6 2157
ad01c9e3
N
2158 /* Step 1 */
2159 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2161 0, 0, NULL);
ad01c9e3
N
2162 if (!sc)
2163 return -ENOMEM;
2164
2165 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2166 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2167 if (!nsh)
2168 break;
2169
ad01c9e3 2170 nsh->raid_conf = conf;
ad01c9e3
N
2171 list_add(&nsh->lru, &newstripes);
2172 }
2173 if (i) {
2174 /* didn't get enough, give up */
2175 while (!list_empty(&newstripes)) {
2176 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2177 list_del(&nsh->lru);
2178 kmem_cache_free(sc, nsh);
2179 }
2180 kmem_cache_destroy(sc);
2181 return -ENOMEM;
2182 }
2183 /* Step 2 - Must use GFP_NOIO now.
2184 * OK, we have enough stripes, start collecting inactive
2185 * stripes and copying them over
2186 */
566c09c5
SL
2187 hash = 0;
2188 cnt = 0;
ad01c9e3 2189 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2190 lock_device_hash_lock(conf, hash);
e9e4c377 2191 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
566c09c5
SL
2192 !list_empty(conf->inactive_list + hash),
2193 unlock_device_hash_lock(conf, hash),
2194 lock_device_hash_lock(conf, hash));
2195 osh = get_free_stripe(conf, hash);
2196 unlock_device_hash_lock(conf, hash);
f18c1a35 2197
d592a996 2198 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2199 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2200 nsh->dev[i].orig_page = osh->dev[i].page;
2201 }
566c09c5 2202 nsh->hash_lock_index = hash;
ad01c9e3 2203 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2204 cnt++;
2205 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2206 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2207 hash++;
2208 cnt = 0;
2209 }
ad01c9e3
N
2210 }
2211 kmem_cache_destroy(conf->slab_cache);
2212
2213 /* Step 3.
2214 * At this point, we are holding all the stripes so the array
2215 * is completely stalled, so now is a good time to resize
d6f38f31 2216 * conf->disks and the scribble region
ad01c9e3
N
2217 */
2218 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2219 if (ndisks) {
2220 for (i=0; i<conf->raid_disks; i++)
2221 ndisks[i] = conf->disks[i];
2222 kfree(conf->disks);
2223 conf->disks = ndisks;
2224 } else
2225 err = -ENOMEM;
2226
2227 /* Step 4, return new stripes to service */
2228 while(!list_empty(&newstripes)) {
2229 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2230 list_del_init(&nsh->lru);
d6f38f31 2231
ad01c9e3
N
2232 for (i=conf->raid_disks; i < newsize; i++)
2233 if (nsh->dev[i].page == NULL) {
2234 struct page *p = alloc_page(GFP_NOIO);
2235 nsh->dev[i].page = p;
d592a996 2236 nsh->dev[i].orig_page = p;
ad01c9e3
N
2237 if (!p)
2238 err = -ENOMEM;
2239 }
2240 release_stripe(nsh);
2241 }
2242 /* critical section pass, GFP_NOIO no longer needed */
2243
2244 conf->slab_cache = sc;
2245 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2246 if (!err)
2247 conf->pool_size = newsize;
ad01c9e3
N
2248 return err;
2249}
1da177e4 2250
486f0644 2251static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2252{
2253 struct stripe_head *sh;
486f0644 2254 int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
1da177e4 2255
566c09c5
SL
2256 spin_lock_irq(conf->hash_locks + hash);
2257 sh = get_free_stripe(conf, hash);
2258 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2259 if (!sh)
2260 return 0;
78bafebd 2261 BUG_ON(atomic_read(&sh->count));
e4e11e38 2262 shrink_buffers(sh);
3f294f4f
N
2263 kmem_cache_free(conf->slab_cache, sh);
2264 atomic_dec(&conf->active_stripes);
486f0644 2265 conf->max_nr_stripes--;
3f294f4f
N
2266 return 1;
2267}
2268
d1688a6d 2269static void shrink_stripes(struct r5conf *conf)
3f294f4f 2270{
486f0644
N
2271 while (conf->max_nr_stripes &&
2272 drop_one_stripe(conf))
2273 ;
3f294f4f 2274
29fc7e3e
N
2275 if (conf->slab_cache)
2276 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2277 conf->slab_cache = NULL;
2278}
2279
4246a0b6 2280static void raid5_end_read_request(struct bio * bi)
1da177e4 2281{
99c0fb5f 2282 struct stripe_head *sh = bi->bi_private;
d1688a6d 2283 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2284 int disks = sh->disks, i;
d6950432 2285 char b[BDEVNAME_SIZE];
dd054fce 2286 struct md_rdev *rdev = NULL;
05616be5 2287 sector_t s;
1da177e4
LT
2288
2289 for (i=0 ; i<disks; i++)
2290 if (bi == &sh->dev[i].req)
2291 break;
2292
4246a0b6 2293 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2294 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2295 bi->bi_error);
1da177e4
LT
2296 if (i == disks) {
2297 BUG();
6712ecf8 2298 return;
1da177e4 2299 }
14a75d3e 2300 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2301 /* If replacement finished while this request was outstanding,
2302 * 'replacement' might be NULL already.
2303 * In that case it moved down to 'rdev'.
2304 * rdev is not removed until all requests are finished.
2305 */
14a75d3e 2306 rdev = conf->disks[i].replacement;
dd054fce 2307 if (!rdev)
14a75d3e 2308 rdev = conf->disks[i].rdev;
1da177e4 2309
05616be5
N
2310 if (use_new_offset(conf, sh))
2311 s = sh->sector + rdev->new_data_offset;
2312 else
2313 s = sh->sector + rdev->data_offset;
4246a0b6 2314 if (!bi->bi_error) {
1da177e4 2315 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2316 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2317 /* Note that this cannot happen on a
2318 * replacement device. We just fail those on
2319 * any error
2320 */
8bda470e
CD
2321 printk_ratelimited(
2322 KERN_INFO
2323 "md/raid:%s: read error corrected"
2324 " (%lu sectors at %llu on %s)\n",
2325 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2326 (unsigned long long)s,
8bda470e 2327 bdevname(rdev->bdev, b));
ddd5115f 2328 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2329 clear_bit(R5_ReadError, &sh->dev[i].flags);
2330 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2331 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2332 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2333
14a75d3e
N
2334 if (atomic_read(&rdev->read_errors))
2335 atomic_set(&rdev->read_errors, 0);
1da177e4 2336 } else {
14a75d3e 2337 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2338 int retry = 0;
2e8ac303 2339 int set_bad = 0;
d6950432 2340
1da177e4 2341 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2342 atomic_inc(&rdev->read_errors);
14a75d3e
N
2343 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2344 printk_ratelimited(
2345 KERN_WARNING
2346 "md/raid:%s: read error on replacement device "
2347 "(sector %llu on %s).\n",
2348 mdname(conf->mddev),
05616be5 2349 (unsigned long long)s,
14a75d3e 2350 bdn);
2e8ac303 2351 else if (conf->mddev->degraded >= conf->max_degraded) {
2352 set_bad = 1;
8bda470e
CD
2353 printk_ratelimited(
2354 KERN_WARNING
2355 "md/raid:%s: read error not correctable "
2356 "(sector %llu on %s).\n",
2357 mdname(conf->mddev),
05616be5 2358 (unsigned long long)s,
8bda470e 2359 bdn);
2e8ac303 2360 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2361 /* Oh, no!!! */
2e8ac303 2362 set_bad = 1;
8bda470e
CD
2363 printk_ratelimited(
2364 KERN_WARNING
2365 "md/raid:%s: read error NOT corrected!! "
2366 "(sector %llu on %s).\n",
2367 mdname(conf->mddev),
05616be5 2368 (unsigned long long)s,
8bda470e 2369 bdn);
2e8ac303 2370 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2371 > conf->max_nr_stripes)
14f8d26b 2372 printk(KERN_WARNING
0c55e022 2373 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2374 mdname(conf->mddev), bdn);
ba22dcbf
N
2375 else
2376 retry = 1;
edfa1f65
BY
2377 if (set_bad && test_bit(In_sync, &rdev->flags)
2378 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2379 retry = 1;
ba22dcbf 2380 if (retry)
3f9e7c14 2381 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2382 set_bit(R5_ReadError, &sh->dev[i].flags);
2383 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2384 } else
2385 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2386 else {
4e5314b5
N
2387 clear_bit(R5_ReadError, &sh->dev[i].flags);
2388 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2389 if (!(set_bad
2390 && test_bit(In_sync, &rdev->flags)
2391 && rdev_set_badblocks(
2392 rdev, sh->sector, STRIPE_SECTORS, 0)))
2393 md_error(conf->mddev, rdev);
ba22dcbf 2394 }
1da177e4 2395 }
14a75d3e 2396 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2397 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2398 set_bit(STRIPE_HANDLE, &sh->state);
2399 release_stripe(sh);
1da177e4
LT
2400}
2401
4246a0b6 2402static void raid5_end_write_request(struct bio *bi)
1da177e4 2403{
99c0fb5f 2404 struct stripe_head *sh = bi->bi_private;
d1688a6d 2405 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2406 int disks = sh->disks, i;
977df362 2407 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2408 sector_t first_bad;
2409 int bad_sectors;
977df362 2410 int replacement = 0;
1da177e4 2411
977df362
N
2412 for (i = 0 ; i < disks; i++) {
2413 if (bi == &sh->dev[i].req) {
2414 rdev = conf->disks[i].rdev;
1da177e4 2415 break;
977df362
N
2416 }
2417 if (bi == &sh->dev[i].rreq) {
2418 rdev = conf->disks[i].replacement;
dd054fce
N
2419 if (rdev)
2420 replacement = 1;
2421 else
2422 /* rdev was removed and 'replacement'
2423 * replaced it. rdev is not removed
2424 * until all requests are finished.
2425 */
2426 rdev = conf->disks[i].rdev;
977df362
N
2427 break;
2428 }
2429 }
4246a0b6 2430 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2431 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2432 bi->bi_error);
1da177e4
LT
2433 if (i == disks) {
2434 BUG();
6712ecf8 2435 return;
1da177e4
LT
2436 }
2437
977df362 2438 if (replacement) {
4246a0b6 2439 if (bi->bi_error)
977df362
N
2440 md_error(conf->mddev, rdev);
2441 else if (is_badblock(rdev, sh->sector,
2442 STRIPE_SECTORS,
2443 &first_bad, &bad_sectors))
2444 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2445 } else {
4246a0b6 2446 if (bi->bi_error) {
9f97e4b1 2447 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2448 set_bit(WriteErrorSeen, &rdev->flags);
2449 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2450 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2451 set_bit(MD_RECOVERY_NEEDED,
2452 &rdev->mddev->recovery);
977df362
N
2453 } else if (is_badblock(rdev, sh->sector,
2454 STRIPE_SECTORS,
c0b32972 2455 &first_bad, &bad_sectors)) {
977df362 2456 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2457 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2458 /* That was a successful write so make
2459 * sure it looks like we already did
2460 * a re-write.
2461 */
2462 set_bit(R5_ReWrite, &sh->dev[i].flags);
2463 }
977df362
N
2464 }
2465 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2466
4246a0b6 2467 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2468 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2469
977df362
N
2470 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2471 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2472 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2473 release_stripe(sh);
59fc630b 2474
2475 if (sh->batch_head && sh != sh->batch_head)
2476 release_stripe(sh->batch_head);
1da177e4
LT
2477}
2478
784052ec 2479static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
d592a996 2480
784052ec 2481static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2482{
2483 struct r5dev *dev = &sh->dev[i];
2484
2485 bio_init(&dev->req);
2486 dev->req.bi_io_vec = &dev->vec;
d592a996 2487 dev->req.bi_max_vecs = 1;
1da177e4
LT
2488 dev->req.bi_private = sh;
2489
977df362
N
2490 bio_init(&dev->rreq);
2491 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2492 dev->rreq.bi_max_vecs = 1;
977df362 2493 dev->rreq.bi_private = sh;
977df362 2494
1da177e4 2495 dev->flags = 0;
784052ec 2496 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2497}
2498
fd01b88c 2499static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2500{
2501 char b[BDEVNAME_SIZE];
d1688a6d 2502 struct r5conf *conf = mddev->private;
908f4fbd 2503 unsigned long flags;
0c55e022 2504 pr_debug("raid456: error called\n");
1da177e4 2505
908f4fbd
N
2506 spin_lock_irqsave(&conf->device_lock, flags);
2507 clear_bit(In_sync, &rdev->flags);
2508 mddev->degraded = calc_degraded(conf);
2509 spin_unlock_irqrestore(&conf->device_lock, flags);
2510 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2511
de393cde 2512 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2513 set_bit(Faulty, &rdev->flags);
2514 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2515 printk(KERN_ALERT
2516 "md/raid:%s: Disk failure on %s, disabling device.\n"
2517 "md/raid:%s: Operation continuing on %d devices.\n",
2518 mdname(mddev),
2519 bdevname(rdev->bdev, b),
2520 mdname(mddev),
2521 conf->raid_disks - mddev->degraded);
16a53ecc 2522}
1da177e4
LT
2523
2524/*
2525 * Input: a 'big' sector number,
2526 * Output: index of the data and parity disk, and the sector # in them.
2527 */
d1688a6d 2528static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2529 int previous, int *dd_idx,
2530 struct stripe_head *sh)
1da177e4 2531{
6e3b96ed 2532 sector_t stripe, stripe2;
35f2a591 2533 sector_t chunk_number;
1da177e4 2534 unsigned int chunk_offset;
911d4ee8 2535 int pd_idx, qd_idx;
67cc2b81 2536 int ddf_layout = 0;
1da177e4 2537 sector_t new_sector;
e183eaed
N
2538 int algorithm = previous ? conf->prev_algo
2539 : conf->algorithm;
09c9e5fa
AN
2540 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2541 : conf->chunk_sectors;
112bf897
N
2542 int raid_disks = previous ? conf->previous_raid_disks
2543 : conf->raid_disks;
2544 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2545
2546 /* First compute the information on this sector */
2547
2548 /*
2549 * Compute the chunk number and the sector offset inside the chunk
2550 */
2551 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2552 chunk_number = r_sector;
1da177e4
LT
2553
2554 /*
2555 * Compute the stripe number
2556 */
35f2a591
N
2557 stripe = chunk_number;
2558 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2559 stripe2 = stripe;
1da177e4
LT
2560 /*
2561 * Select the parity disk based on the user selected algorithm.
2562 */
84789554 2563 pd_idx = qd_idx = -1;
16a53ecc
N
2564 switch(conf->level) {
2565 case 4:
911d4ee8 2566 pd_idx = data_disks;
16a53ecc
N
2567 break;
2568 case 5:
e183eaed 2569 switch (algorithm) {
1da177e4 2570 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2571 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2572 if (*dd_idx >= pd_idx)
1da177e4
LT
2573 (*dd_idx)++;
2574 break;
2575 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2576 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2577 if (*dd_idx >= pd_idx)
1da177e4
LT
2578 (*dd_idx)++;
2579 break;
2580 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2581 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2582 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2583 break;
2584 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2585 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2586 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2587 break;
99c0fb5f
N
2588 case ALGORITHM_PARITY_0:
2589 pd_idx = 0;
2590 (*dd_idx)++;
2591 break;
2592 case ALGORITHM_PARITY_N:
2593 pd_idx = data_disks;
2594 break;
1da177e4 2595 default:
99c0fb5f 2596 BUG();
16a53ecc
N
2597 }
2598 break;
2599 case 6:
2600
e183eaed 2601 switch (algorithm) {
16a53ecc 2602 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2603 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2604 qd_idx = pd_idx + 1;
2605 if (pd_idx == raid_disks-1) {
99c0fb5f 2606 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2607 qd_idx = 0;
2608 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2609 (*dd_idx) += 2; /* D D P Q D */
2610 break;
2611 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2612 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2613 qd_idx = pd_idx + 1;
2614 if (pd_idx == raid_disks-1) {
99c0fb5f 2615 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2616 qd_idx = 0;
2617 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2618 (*dd_idx) += 2; /* D D P Q D */
2619 break;
2620 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2621 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2622 qd_idx = (pd_idx + 1) % raid_disks;
2623 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2624 break;
2625 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2626 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2627 qd_idx = (pd_idx + 1) % raid_disks;
2628 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2629 break;
99c0fb5f
N
2630
2631 case ALGORITHM_PARITY_0:
2632 pd_idx = 0;
2633 qd_idx = 1;
2634 (*dd_idx) += 2;
2635 break;
2636 case ALGORITHM_PARITY_N:
2637 pd_idx = data_disks;
2638 qd_idx = data_disks + 1;
2639 break;
2640
2641 case ALGORITHM_ROTATING_ZERO_RESTART:
2642 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2643 * of blocks for computing Q is different.
2644 */
6e3b96ed 2645 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2646 qd_idx = pd_idx + 1;
2647 if (pd_idx == raid_disks-1) {
2648 (*dd_idx)++; /* Q D D D P */
2649 qd_idx = 0;
2650 } else if (*dd_idx >= pd_idx)
2651 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2652 ddf_layout = 1;
99c0fb5f
N
2653 break;
2654
2655 case ALGORITHM_ROTATING_N_RESTART:
2656 /* Same a left_asymmetric, by first stripe is
2657 * D D D P Q rather than
2658 * Q D D D P
2659 */
6e3b96ed
N
2660 stripe2 += 1;
2661 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2662 qd_idx = pd_idx + 1;
2663 if (pd_idx == raid_disks-1) {
2664 (*dd_idx)++; /* Q D D D P */
2665 qd_idx = 0;
2666 } else if (*dd_idx >= pd_idx)
2667 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2668 ddf_layout = 1;
99c0fb5f
N
2669 break;
2670
2671 case ALGORITHM_ROTATING_N_CONTINUE:
2672 /* Same as left_symmetric but Q is before P */
6e3b96ed 2673 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2674 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2675 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2676 ddf_layout = 1;
99c0fb5f
N
2677 break;
2678
2679 case ALGORITHM_LEFT_ASYMMETRIC_6:
2680 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2681 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2682 if (*dd_idx >= pd_idx)
2683 (*dd_idx)++;
2684 qd_idx = raid_disks - 1;
2685 break;
2686
2687 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2688 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2689 if (*dd_idx >= pd_idx)
2690 (*dd_idx)++;
2691 qd_idx = raid_disks - 1;
2692 break;
2693
2694 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2695 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2696 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2697 qd_idx = raid_disks - 1;
2698 break;
2699
2700 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2701 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2702 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2703 qd_idx = raid_disks - 1;
2704 break;
2705
2706 case ALGORITHM_PARITY_0_6:
2707 pd_idx = 0;
2708 (*dd_idx)++;
2709 qd_idx = raid_disks - 1;
2710 break;
2711
16a53ecc 2712 default:
99c0fb5f 2713 BUG();
16a53ecc
N
2714 }
2715 break;
1da177e4
LT
2716 }
2717
911d4ee8
N
2718 if (sh) {
2719 sh->pd_idx = pd_idx;
2720 sh->qd_idx = qd_idx;
67cc2b81 2721 sh->ddf_layout = ddf_layout;
911d4ee8 2722 }
1da177e4
LT
2723 /*
2724 * Finally, compute the new sector number
2725 */
2726 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2727 return new_sector;
2728}
2729
784052ec 2730static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2731{
d1688a6d 2732 struct r5conf *conf = sh->raid_conf;
b875e531
N
2733 int raid_disks = sh->disks;
2734 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2735 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2736 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2737 : conf->chunk_sectors;
e183eaed
N
2738 int algorithm = previous ? conf->prev_algo
2739 : conf->algorithm;
1da177e4
LT
2740 sector_t stripe;
2741 int chunk_offset;
35f2a591
N
2742 sector_t chunk_number;
2743 int dummy1, dd_idx = i;
1da177e4 2744 sector_t r_sector;
911d4ee8 2745 struct stripe_head sh2;
1da177e4
LT
2746
2747 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2748 stripe = new_sector;
1da177e4 2749
16a53ecc
N
2750 if (i == sh->pd_idx)
2751 return 0;
2752 switch(conf->level) {
2753 case 4: break;
2754 case 5:
e183eaed 2755 switch (algorithm) {
1da177e4
LT
2756 case ALGORITHM_LEFT_ASYMMETRIC:
2757 case ALGORITHM_RIGHT_ASYMMETRIC:
2758 if (i > sh->pd_idx)
2759 i--;
2760 break;
2761 case ALGORITHM_LEFT_SYMMETRIC:
2762 case ALGORITHM_RIGHT_SYMMETRIC:
2763 if (i < sh->pd_idx)
2764 i += raid_disks;
2765 i -= (sh->pd_idx + 1);
2766 break;
99c0fb5f
N
2767 case ALGORITHM_PARITY_0:
2768 i -= 1;
2769 break;
2770 case ALGORITHM_PARITY_N:
2771 break;
1da177e4 2772 default:
99c0fb5f 2773 BUG();
16a53ecc
N
2774 }
2775 break;
2776 case 6:
d0dabf7e 2777 if (i == sh->qd_idx)
16a53ecc 2778 return 0; /* It is the Q disk */
e183eaed 2779 switch (algorithm) {
16a53ecc
N
2780 case ALGORITHM_LEFT_ASYMMETRIC:
2781 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2782 case ALGORITHM_ROTATING_ZERO_RESTART:
2783 case ALGORITHM_ROTATING_N_RESTART:
2784 if (sh->pd_idx == raid_disks-1)
2785 i--; /* Q D D D P */
16a53ecc
N
2786 else if (i > sh->pd_idx)
2787 i -= 2; /* D D P Q D */
2788 break;
2789 case ALGORITHM_LEFT_SYMMETRIC:
2790 case ALGORITHM_RIGHT_SYMMETRIC:
2791 if (sh->pd_idx == raid_disks-1)
2792 i--; /* Q D D D P */
2793 else {
2794 /* D D P Q D */
2795 if (i < sh->pd_idx)
2796 i += raid_disks;
2797 i -= (sh->pd_idx + 2);
2798 }
2799 break;
99c0fb5f
N
2800 case ALGORITHM_PARITY_0:
2801 i -= 2;
2802 break;
2803 case ALGORITHM_PARITY_N:
2804 break;
2805 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2806 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2807 if (sh->pd_idx == 0)
2808 i--; /* P D D D Q */
e4424fee
N
2809 else {
2810 /* D D Q P D */
2811 if (i < sh->pd_idx)
2812 i += raid_disks;
2813 i -= (sh->pd_idx + 1);
2814 }
99c0fb5f
N
2815 break;
2816 case ALGORITHM_LEFT_ASYMMETRIC_6:
2817 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2818 if (i > sh->pd_idx)
2819 i--;
2820 break;
2821 case ALGORITHM_LEFT_SYMMETRIC_6:
2822 case ALGORITHM_RIGHT_SYMMETRIC_6:
2823 if (i < sh->pd_idx)
2824 i += data_disks + 1;
2825 i -= (sh->pd_idx + 1);
2826 break;
2827 case ALGORITHM_PARITY_0_6:
2828 i -= 1;
2829 break;
16a53ecc 2830 default:
99c0fb5f 2831 BUG();
16a53ecc
N
2832 }
2833 break;
1da177e4
LT
2834 }
2835
2836 chunk_number = stripe * data_disks + i;
35f2a591 2837 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2838
112bf897 2839 check = raid5_compute_sector(conf, r_sector,
784052ec 2840 previous, &dummy1, &sh2);
911d4ee8
N
2841 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2842 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2843 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2844 mdname(conf->mddev));
1da177e4
LT
2845 return 0;
2846 }
2847 return r_sector;
2848}
2849
600aa109 2850static void
c0f7bddb 2851schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2852 int rcw, int expand)
e33129d8 2853{
584acdd4 2854 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2855 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2856 int level = conf->level;
e33129d8
DW
2857
2858 if (rcw) {
e33129d8
DW
2859
2860 for (i = disks; i--; ) {
2861 struct r5dev *dev = &sh->dev[i];
2862
2863 if (dev->towrite) {
2864 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2865 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2866 if (!expand)
2867 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2868 s->locked++;
e33129d8
DW
2869 }
2870 }
ce7d363a
N
2871 /* if we are not expanding this is a proper write request, and
2872 * there will be bios with new data to be drained into the
2873 * stripe cache
2874 */
2875 if (!expand) {
2876 if (!s->locked)
2877 /* False alarm, nothing to do */
2878 return;
2879 sh->reconstruct_state = reconstruct_state_drain_run;
2880 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2881 } else
2882 sh->reconstruct_state = reconstruct_state_run;
2883
2884 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2885
c0f7bddb 2886 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2887 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2888 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2889 } else {
2890 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2891 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2892 BUG_ON(level == 6 &&
2893 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2894 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2895
e33129d8
DW
2896 for (i = disks; i--; ) {
2897 struct r5dev *dev = &sh->dev[i];
584acdd4 2898 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2899 continue;
2900
e33129d8
DW
2901 if (dev->towrite &&
2902 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2903 test_bit(R5_Wantcompute, &dev->flags))) {
2904 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2905 set_bit(R5_LOCKED, &dev->flags);
2906 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2907 s->locked++;
e33129d8
DW
2908 }
2909 }
ce7d363a
N
2910 if (!s->locked)
2911 /* False alarm - nothing to do */
2912 return;
2913 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2914 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2915 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2916 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2917 }
2918
c0f7bddb 2919 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2920 * are in flight
2921 */
2922 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2923 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2924 s->locked++;
e33129d8 2925
c0f7bddb
YT
2926 if (level == 6) {
2927 int qd_idx = sh->qd_idx;
2928 struct r5dev *dev = &sh->dev[qd_idx];
2929
2930 set_bit(R5_LOCKED, &dev->flags);
2931 clear_bit(R5_UPTODATE, &dev->flags);
2932 s->locked++;
2933 }
2934
600aa109 2935 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2936 __func__, (unsigned long long)sh->sector,
600aa109 2937 s->locked, s->ops_request);
e33129d8 2938}
16a53ecc 2939
1da177e4
LT
2940/*
2941 * Each stripe/dev can have one or more bion attached.
16a53ecc 2942 * toread/towrite point to the first in a chain.
1da177e4
LT
2943 * The bi_next chain must be in order.
2944 */
da41ba65 2945static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2946 int forwrite, int previous)
1da177e4
LT
2947{
2948 struct bio **bip;
d1688a6d 2949 struct r5conf *conf = sh->raid_conf;
72626685 2950 int firstwrite=0;
1da177e4 2951
cbe47ec5 2952 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2953 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2954 (unsigned long long)sh->sector);
2955
b17459c0
SL
2956 /*
2957 * If several bio share a stripe. The bio bi_phys_segments acts as a
2958 * reference count to avoid race. The reference count should already be
2959 * increased before this function is called (for example, in
2960 * make_request()), so other bio sharing this stripe will not free the
2961 * stripe. If a stripe is owned by one stripe, the stripe lock will
2962 * protect it.
2963 */
2964 spin_lock_irq(&sh->stripe_lock);
59fc630b 2965 /* Don't allow new IO added to stripes in batch list */
2966 if (sh->batch_head)
2967 goto overlap;
72626685 2968 if (forwrite) {
1da177e4 2969 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2970 if (*bip == NULL)
72626685
N
2971 firstwrite = 1;
2972 } else
1da177e4 2973 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2974 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2975 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2976 goto overlap;
2977 bip = & (*bip)->bi_next;
2978 }
4f024f37 2979 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2980 goto overlap;
2981
da41ba65 2982 if (!forwrite || previous)
2983 clear_bit(STRIPE_BATCH_READY, &sh->state);
2984
78bafebd 2985 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2986 if (*bip)
2987 bi->bi_next = *bip;
2988 *bip = bi;
e7836bd6 2989 raid5_inc_bi_active_stripes(bi);
72626685 2990
1da177e4
LT
2991 if (forwrite) {
2992 /* check if page is covered */
2993 sector_t sector = sh->dev[dd_idx].sector;
2994 for (bi=sh->dev[dd_idx].towrite;
2995 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2996 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2997 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2998 if (bio_end_sector(bi) >= sector)
2999 sector = bio_end_sector(bi);
1da177e4
LT
3000 }
3001 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3002 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3003 sh->overwrite_disks++;
1da177e4 3004 }
cbe47ec5
N
3005
3006 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3007 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3008 (unsigned long long)sh->sector, dd_idx);
3009
3010 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3011 /* Cannot hold spinlock over bitmap_startwrite,
3012 * but must ensure this isn't added to a batch until
3013 * we have added to the bitmap and set bm_seq.
3014 * So set STRIPE_BITMAP_PENDING to prevent
3015 * batching.
3016 * If multiple add_stripe_bio() calls race here they
3017 * much all set STRIPE_BITMAP_PENDING. So only the first one
3018 * to complete "bitmap_startwrite" gets to set
3019 * STRIPE_BIT_DELAY. This is important as once a stripe
3020 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3021 * any more.
3022 */
3023 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3024 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3025 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3026 STRIPE_SECTORS, 0);
d0852df5
N
3027 spin_lock_irq(&sh->stripe_lock);
3028 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3029 if (!sh->batch_head) {
3030 sh->bm_seq = conf->seq_flush+1;
3031 set_bit(STRIPE_BIT_DELAY, &sh->state);
3032 }
cbe47ec5 3033 }
d0852df5 3034 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3035
3036 if (stripe_can_batch(sh))
3037 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3038 return 1;
3039
3040 overlap:
3041 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3042 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3043 return 0;
3044}
3045
d1688a6d 3046static void end_reshape(struct r5conf *conf);
29269553 3047
d1688a6d 3048static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3049 struct stripe_head *sh)
ccfcc3c1 3050{
784052ec 3051 int sectors_per_chunk =
09c9e5fa 3052 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3053 int dd_idx;
2d2063ce 3054 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3055 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3056
112bf897
N
3057 raid5_compute_sector(conf,
3058 stripe * (disks - conf->max_degraded)
b875e531 3059 *sectors_per_chunk + chunk_offset,
112bf897 3060 previous,
911d4ee8 3061 &dd_idx, sh);
ccfcc3c1
N
3062}
3063
a4456856 3064static void
d1688a6d 3065handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3066 struct stripe_head_state *s, int disks,
3067 struct bio **return_bi)
3068{
3069 int i;
59fc630b 3070 BUG_ON(sh->batch_head);
a4456856
DW
3071 for (i = disks; i--; ) {
3072 struct bio *bi;
3073 int bitmap_end = 0;
3074
3075 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3076 struct md_rdev *rdev;
a4456856
DW
3077 rcu_read_lock();
3078 rdev = rcu_dereference(conf->disks[i].rdev);
3079 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3080 atomic_inc(&rdev->nr_pending);
3081 else
3082 rdev = NULL;
a4456856 3083 rcu_read_unlock();
7f0da59b
N
3084 if (rdev) {
3085 if (!rdev_set_badblocks(
3086 rdev,
3087 sh->sector,
3088 STRIPE_SECTORS, 0))
3089 md_error(conf->mddev, rdev);
3090 rdev_dec_pending(rdev, conf->mddev);
3091 }
a4456856 3092 }
b17459c0 3093 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3094 /* fail all writes first */
3095 bi = sh->dev[i].towrite;
3096 sh->dev[i].towrite = NULL;
7a87f434 3097 sh->overwrite_disks = 0;
b17459c0 3098 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3099 if (bi)
a4456856 3100 bitmap_end = 1;
a4456856
DW
3101
3102 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3103 wake_up(&conf->wait_for_overlap);
3104
4f024f37 3105 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3106 sh->dev[i].sector + STRIPE_SECTORS) {
3107 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3108
3109 bi->bi_error = -EIO;
e7836bd6 3110 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3111 md_write_end(conf->mddev);
3112 bi->bi_next = *return_bi;
3113 *return_bi = bi;
3114 }
3115 bi = nextbi;
3116 }
7eaf7e8e
SL
3117 if (bitmap_end)
3118 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3119 STRIPE_SECTORS, 0, 0);
3120 bitmap_end = 0;
a4456856
DW
3121 /* and fail all 'written' */
3122 bi = sh->dev[i].written;
3123 sh->dev[i].written = NULL;
d592a996
SL
3124 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3125 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3126 sh->dev[i].page = sh->dev[i].orig_page;
3127 }
3128
a4456856 3129 if (bi) bitmap_end = 1;
4f024f37 3130 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3131 sh->dev[i].sector + STRIPE_SECTORS) {
3132 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3133
3134 bi->bi_error = -EIO;
e7836bd6 3135 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3136 md_write_end(conf->mddev);
3137 bi->bi_next = *return_bi;
3138 *return_bi = bi;
3139 }
3140 bi = bi2;
3141 }
3142
b5e98d65
DW
3143 /* fail any reads if this device is non-operational and
3144 * the data has not reached the cache yet.
3145 */
3146 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3147 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3148 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3149 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3150 bi = sh->dev[i].toread;
3151 sh->dev[i].toread = NULL;
143c4d05 3152 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3153 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3154 wake_up(&conf->wait_for_overlap);
4f024f37 3155 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3156 sh->dev[i].sector + STRIPE_SECTORS) {
3157 struct bio *nextbi =
3158 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3159
3160 bi->bi_error = -EIO;
e7836bd6 3161 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3162 bi->bi_next = *return_bi;
3163 *return_bi = bi;
3164 }
3165 bi = nextbi;
3166 }
3167 }
a4456856
DW
3168 if (bitmap_end)
3169 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3170 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3171 /* If we were in the middle of a write the parity block might
3172 * still be locked - so just clear all R5_LOCKED flags
3173 */
3174 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
3175 }
3176
8b3e6cdc
DW
3177 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3178 if (atomic_dec_and_test(&conf->pending_full_writes))
3179 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3180}
3181
7f0da59b 3182static void
d1688a6d 3183handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3184 struct stripe_head_state *s)
3185{
3186 int abort = 0;
3187 int i;
3188
59fc630b 3189 BUG_ON(sh->batch_head);
7f0da59b 3190 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3191 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3192 wake_up(&conf->wait_for_overlap);
7f0da59b 3193 s->syncing = 0;
9a3e1101 3194 s->replacing = 0;
7f0da59b 3195 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3196 * Don't even need to abort as that is handled elsewhere
3197 * if needed, and not always wanted e.g. if there is a known
3198 * bad block here.
9a3e1101 3199 * For recover/replace we need to record a bad block on all
7f0da59b
N
3200 * non-sync devices, or abort the recovery
3201 */
18b9837e
N
3202 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3203 /* During recovery devices cannot be removed, so
3204 * locking and refcounting of rdevs is not needed
3205 */
3206 for (i = 0; i < conf->raid_disks; i++) {
3207 struct md_rdev *rdev = conf->disks[i].rdev;
3208 if (rdev
3209 && !test_bit(Faulty, &rdev->flags)
3210 && !test_bit(In_sync, &rdev->flags)
3211 && !rdev_set_badblocks(rdev, sh->sector,
3212 STRIPE_SECTORS, 0))
3213 abort = 1;
3214 rdev = conf->disks[i].replacement;
3215 if (rdev
3216 && !test_bit(Faulty, &rdev->flags)
3217 && !test_bit(In_sync, &rdev->flags)
3218 && !rdev_set_badblocks(rdev, sh->sector,
3219 STRIPE_SECTORS, 0))
3220 abort = 1;
3221 }
3222 if (abort)
3223 conf->recovery_disabled =
3224 conf->mddev->recovery_disabled;
7f0da59b 3225 }
18b9837e 3226 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3227}
3228
9a3e1101
N
3229static int want_replace(struct stripe_head *sh, int disk_idx)
3230{
3231 struct md_rdev *rdev;
3232 int rv = 0;
3233 /* Doing recovery so rcu locking not required */
3234 rdev = sh->raid_conf->disks[disk_idx].replacement;
3235 if (rdev
3236 && !test_bit(Faulty, &rdev->flags)
3237 && !test_bit(In_sync, &rdev->flags)
3238 && (rdev->recovery_offset <= sh->sector
3239 || rdev->mddev->recovery_cp <= sh->sector))
3240 rv = 1;
3241
3242 return rv;
3243}
3244
93b3dbce 3245/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3246 * to be read or computed to satisfy a request.
3247 *
3248 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3249 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3250 */
2c58f06e
N
3251
3252static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3253 int disk_idx, int disks)
a4456856 3254{
5599becc 3255 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3256 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3257 &sh->dev[s->failed_num[1]] };
ea664c82 3258 int i;
5599becc 3259
a79cfe12
N
3260
3261 if (test_bit(R5_LOCKED, &dev->flags) ||
3262 test_bit(R5_UPTODATE, &dev->flags))
3263 /* No point reading this as we already have it or have
3264 * decided to get it.
3265 */
3266 return 0;
3267
3268 if (dev->toread ||
3269 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3270 /* We need this block to directly satisfy a request */
3271 return 1;
3272
3273 if (s->syncing || s->expanding ||
3274 (s->replacing && want_replace(sh, disk_idx)))
3275 /* When syncing, or expanding we read everything.
3276 * When replacing, we need the replaced block.
3277 */
3278 return 1;
3279
3280 if ((s->failed >= 1 && fdev[0]->toread) ||
3281 (s->failed >= 2 && fdev[1]->toread))
3282 /* If we want to read from a failed device, then
3283 * we need to actually read every other device.
3284 */
3285 return 1;
3286
a9d56950
N
3287 /* Sometimes neither read-modify-write nor reconstruct-write
3288 * cycles can work. In those cases we read every block we
3289 * can. Then the parity-update is certain to have enough to
3290 * work with.
3291 * This can only be a problem when we need to write something,
3292 * and some device has failed. If either of those tests
3293 * fail we need look no further.
3294 */
3295 if (!s->failed || !s->to_write)
3296 return 0;
3297
3298 if (test_bit(R5_Insync, &dev->flags) &&
3299 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3300 /* Pre-reads at not permitted until after short delay
3301 * to gather multiple requests. However if this
3302 * device is no Insync, the block could only be be computed
3303 * and there is no need to delay that.
3304 */
3305 return 0;
ea664c82
N
3306
3307 for (i = 0; i < s->failed; i++) {
3308 if (fdev[i]->towrite &&
3309 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3310 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3311 /* If we have a partial write to a failed
3312 * device, then we will need to reconstruct
3313 * the content of that device, so all other
3314 * devices must be read.
3315 */
3316 return 1;
3317 }
3318
3319 /* If we are forced to do a reconstruct-write, either because
3320 * the current RAID6 implementation only supports that, or
3321 * or because parity cannot be trusted and we are currently
3322 * recovering it, there is extra need to be careful.
3323 * If one of the devices that we would need to read, because
3324 * it is not being overwritten (and maybe not written at all)
3325 * is missing/faulty, then we need to read everything we can.
3326 */
3327 if (sh->raid_conf->level != 6 &&
3328 sh->sector < sh->raid_conf->mddev->recovery_cp)
3329 /* reconstruct-write isn't being forced */
3330 return 0;
3331 for (i = 0; i < s->failed; i++) {
10d82c5f
N
3332 if (s->failed_num[i] != sh->pd_idx &&
3333 s->failed_num[i] != sh->qd_idx &&
3334 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3335 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3336 return 1;
3337 }
3338
2c58f06e
N
3339 return 0;
3340}
3341
3342static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3343 int disk_idx, int disks)
3344{
3345 struct r5dev *dev = &sh->dev[disk_idx];
3346
3347 /* is the data in this block needed, and can we get it? */
3348 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3349 /* we would like to get this block, possibly by computing it,
3350 * otherwise read it if the backing disk is insync
3351 */
3352 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3353 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3354 BUG_ON(sh->batch_head);
5599becc 3355 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3356 (s->failed && (disk_idx == s->failed_num[0] ||
3357 disk_idx == s->failed_num[1]))) {
5599becc
YT
3358 /* have disk failed, and we're requested to fetch it;
3359 * do compute it
a4456856 3360 */
5599becc
YT
3361 pr_debug("Computing stripe %llu block %d\n",
3362 (unsigned long long)sh->sector, disk_idx);
3363 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3364 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3365 set_bit(R5_Wantcompute, &dev->flags);
3366 sh->ops.target = disk_idx;
3367 sh->ops.target2 = -1; /* no 2nd target */
3368 s->req_compute = 1;
93b3dbce
N
3369 /* Careful: from this point on 'uptodate' is in the eye
3370 * of raid_run_ops which services 'compute' operations
3371 * before writes. R5_Wantcompute flags a block that will
3372 * be R5_UPTODATE by the time it is needed for a
3373 * subsequent operation.
3374 */
5599becc
YT
3375 s->uptodate++;
3376 return 1;
3377 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3378 /* Computing 2-failure is *very* expensive; only
3379 * do it if failed >= 2
3380 */
3381 int other;
3382 for (other = disks; other--; ) {
3383 if (other == disk_idx)
3384 continue;
3385 if (!test_bit(R5_UPTODATE,
3386 &sh->dev[other].flags))
3387 break;
a4456856 3388 }
5599becc
YT
3389 BUG_ON(other < 0);
3390 pr_debug("Computing stripe %llu blocks %d,%d\n",
3391 (unsigned long long)sh->sector,
3392 disk_idx, other);
3393 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3394 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3395 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3396 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3397 sh->ops.target = disk_idx;
3398 sh->ops.target2 = other;
3399 s->uptodate += 2;
3400 s->req_compute = 1;
3401 return 1;
3402 } else if (test_bit(R5_Insync, &dev->flags)) {
3403 set_bit(R5_LOCKED, &dev->flags);
3404 set_bit(R5_Wantread, &dev->flags);
3405 s->locked++;
3406 pr_debug("Reading block %d (sync=%d)\n",
3407 disk_idx, s->syncing);
a4456856
DW
3408 }
3409 }
5599becc
YT
3410
3411 return 0;
3412}
3413
3414/**
93b3dbce 3415 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3416 */
93b3dbce
N
3417static void handle_stripe_fill(struct stripe_head *sh,
3418 struct stripe_head_state *s,
3419 int disks)
5599becc
YT
3420{
3421 int i;
3422
3423 /* look for blocks to read/compute, skip this if a compute
3424 * is already in flight, or if the stripe contents are in the
3425 * midst of changing due to a write
3426 */
3427 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3428 !sh->reconstruct_state)
3429 for (i = disks; i--; )
93b3dbce 3430 if (fetch_block(sh, s, i, disks))
5599becc 3431 break;
a4456856
DW
3432 set_bit(STRIPE_HANDLE, &sh->state);
3433}
3434
787b76fa
N
3435static void break_stripe_batch_list(struct stripe_head *head_sh,
3436 unsigned long handle_flags);
1fe797e6 3437/* handle_stripe_clean_event
a4456856
DW
3438 * any written block on an uptodate or failed drive can be returned.
3439 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3440 * never LOCKED, so we don't need to test 'failed' directly.
3441 */
d1688a6d 3442static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
3443 struct stripe_head *sh, int disks, struct bio **return_bi)
3444{
3445 int i;
3446 struct r5dev *dev;
f8dfcffd 3447 int discard_pending = 0;
59fc630b 3448 struct stripe_head *head_sh = sh;
3449 bool do_endio = false;
a4456856
DW
3450
3451 for (i = disks; i--; )
3452 if (sh->dev[i].written) {
3453 dev = &sh->dev[i];
3454 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3455 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3456 test_bit(R5_Discard, &dev->flags) ||
3457 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3458 /* We can return any write requests */
3459 struct bio *wbi, *wbi2;
45b4233c 3460 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3461 if (test_and_clear_bit(R5_Discard, &dev->flags))
3462 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3463 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3464 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3465 }
59fc630b 3466 do_endio = true;
3467
3468returnbi:
3469 dev->page = dev->orig_page;
a4456856
DW
3470 wbi = dev->written;
3471 dev->written = NULL;
4f024f37 3472 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3473 dev->sector + STRIPE_SECTORS) {
3474 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3475 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
3476 md_write_end(conf->mddev);
3477 wbi->bi_next = *return_bi;
3478 *return_bi = wbi;
3479 }
3480 wbi = wbi2;
3481 }
7eaf7e8e
SL
3482 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3483 STRIPE_SECTORS,
a4456856 3484 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3485 0);
59fc630b 3486 if (head_sh->batch_head) {
3487 sh = list_first_entry(&sh->batch_list,
3488 struct stripe_head,
3489 batch_list);
3490 if (sh != head_sh) {
3491 dev = &sh->dev[i];
3492 goto returnbi;
3493 }
3494 }
3495 sh = head_sh;
3496 dev = &sh->dev[i];
f8dfcffd
N
3497 } else if (test_bit(R5_Discard, &dev->flags))
3498 discard_pending = 1;
d592a996
SL
3499 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3500 WARN_ON(dev->page != dev->orig_page);
f8dfcffd
N
3501 }
3502 if (!discard_pending &&
3503 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3504 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3505 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3506 if (sh->qd_idx >= 0) {
3507 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3508 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3509 }
3510 /* now that discard is done we can proceed with any sync */
3511 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3512 /*
3513 * SCSI discard will change some bio fields and the stripe has
3514 * no updated data, so remove it from hash list and the stripe
3515 * will be reinitialized
3516 */
3517 spin_lock_irq(&conf->device_lock);
59fc630b 3518unhash:
d47648fc 3519 remove_hash(sh);
59fc630b 3520 if (head_sh->batch_head) {
3521 sh = list_first_entry(&sh->batch_list,
3522 struct stripe_head, batch_list);
3523 if (sh != head_sh)
3524 goto unhash;
3525 }
d47648fc 3526 spin_unlock_irq(&conf->device_lock);
59fc630b 3527 sh = head_sh;
3528
f8dfcffd
N
3529 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3530 set_bit(STRIPE_HANDLE, &sh->state);
3531
3532 }
8b3e6cdc
DW
3533
3534 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3535 if (atomic_dec_and_test(&conf->pending_full_writes))
3536 md_wakeup_thread(conf->mddev->thread);
59fc630b 3537
787b76fa
N
3538 if (head_sh->batch_head && do_endio)
3539 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3540}
3541
d1688a6d 3542static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3543 struct stripe_head *sh,
3544 struct stripe_head_state *s,
3545 int disks)
a4456856
DW
3546{
3547 int rmw = 0, rcw = 0, i;
a7854487
AL
3548 sector_t recovery_cp = conf->mddev->recovery_cp;
3549
584acdd4 3550 /* Check whether resync is now happening or should start.
a7854487
AL
3551 * If yes, then the array is dirty (after unclean shutdown or
3552 * initial creation), so parity in some stripes might be inconsistent.
3553 * In this case, we need to always do reconstruct-write, to ensure
3554 * that in case of drive failure or read-error correction, we
3555 * generate correct data from the parity.
3556 */
584acdd4 3557 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3558 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3559 s->failed == 0)) {
a7854487 3560 /* Calculate the real rcw later - for now make it
c8ac1803
N
3561 * look like rcw is cheaper
3562 */
3563 rcw = 1; rmw = 2;
584acdd4
MS
3564 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3565 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3566 (unsigned long long)sh->sector);
c8ac1803 3567 } else for (i = disks; i--; ) {
a4456856
DW
3568 /* would I have to read this buffer for read_modify_write */
3569 struct r5dev *dev = &sh->dev[i];
584acdd4 3570 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3571 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3572 !(test_bit(R5_UPTODATE, &dev->flags) ||
3573 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3574 if (test_bit(R5_Insync, &dev->flags))
3575 rmw++;
3576 else
3577 rmw += 2*disks; /* cannot read it */
3578 }
3579 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3580 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3581 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3582 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3583 !(test_bit(R5_UPTODATE, &dev->flags) ||
3584 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3585 if (test_bit(R5_Insync, &dev->flags))
3586 rcw++;
a4456856
DW
3587 else
3588 rcw += 2*disks;
3589 }
3590 }
45b4233c 3591 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3592 (unsigned long long)sh->sector, rmw, rcw);
3593 set_bit(STRIPE_HANDLE, &sh->state);
584acdd4 3594 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
a4456856 3595 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3596 if (conf->mddev->queue)
3597 blk_add_trace_msg(conf->mddev->queue,
3598 "raid5 rmw %llu %d",
3599 (unsigned long long)sh->sector, rmw);
a4456856
DW
3600 for (i = disks; i--; ) {
3601 struct r5dev *dev = &sh->dev[i];
584acdd4 3602 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3603 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3604 !(test_bit(R5_UPTODATE, &dev->flags) ||
3605 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3606 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3607 if (test_bit(STRIPE_PREREAD_ACTIVE,
3608 &sh->state)) {
3609 pr_debug("Read_old block %d for r-m-w\n",
3610 i);
a4456856
DW
3611 set_bit(R5_LOCKED, &dev->flags);
3612 set_bit(R5_Wantread, &dev->flags);
3613 s->locked++;
3614 } else {
3615 set_bit(STRIPE_DELAYED, &sh->state);
3616 set_bit(STRIPE_HANDLE, &sh->state);
3617 }
3618 }
3619 }
a9add5d9 3620 }
584acdd4 3621 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
a4456856 3622 /* want reconstruct write, but need to get some data */
a9add5d9 3623 int qread =0;
c8ac1803 3624 rcw = 0;
a4456856
DW
3625 for (i = disks; i--; ) {
3626 struct r5dev *dev = &sh->dev[i];
3627 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3628 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3629 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3630 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3631 test_bit(R5_Wantcompute, &dev->flags))) {
3632 rcw++;
67f45548
N
3633 if (test_bit(R5_Insync, &dev->flags) &&
3634 test_bit(STRIPE_PREREAD_ACTIVE,
3635 &sh->state)) {
45b4233c 3636 pr_debug("Read_old block "
a4456856
DW
3637 "%d for Reconstruct\n", i);
3638 set_bit(R5_LOCKED, &dev->flags);
3639 set_bit(R5_Wantread, &dev->flags);
3640 s->locked++;
a9add5d9 3641 qread++;
a4456856
DW
3642 } else {
3643 set_bit(STRIPE_DELAYED, &sh->state);
3644 set_bit(STRIPE_HANDLE, &sh->state);
3645 }
3646 }
3647 }
e3620a3a 3648 if (rcw && conf->mddev->queue)
a9add5d9
N
3649 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3650 (unsigned long long)sh->sector,
3651 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3652 }
b1b02fe9
N
3653
3654 if (rcw > disks && rmw > disks &&
3655 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3656 set_bit(STRIPE_DELAYED, &sh->state);
3657
a4456856
DW
3658 /* now if nothing is locked, and if we have enough data,
3659 * we can start a write request
3660 */
f38e1219
DW
3661 /* since handle_stripe can be called at any time we need to handle the
3662 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3663 * subsequent call wants to start a write request. raid_run_ops only
3664 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3665 * simultaneously. If this is not the case then new writes need to be
3666 * held off until the compute completes.
3667 */
976ea8d4
DW
3668 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3669 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3670 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3671 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3672}
3673
d1688a6d 3674static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3675 struct stripe_head_state *s, int disks)
3676{
ecc65c9b 3677 struct r5dev *dev = NULL;
bd2ab670 3678
59fc630b 3679 BUG_ON(sh->batch_head);
a4456856 3680 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3681
ecc65c9b
DW
3682 switch (sh->check_state) {
3683 case check_state_idle:
3684 /* start a new check operation if there are no failures */
bd2ab670 3685 if (s->failed == 0) {
bd2ab670 3686 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3687 sh->check_state = check_state_run;
3688 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3689 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3690 s->uptodate--;
ecc65c9b 3691 break;
bd2ab670 3692 }
f2b3b44d 3693 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3694 /* fall through */
3695 case check_state_compute_result:
3696 sh->check_state = check_state_idle;
3697 if (!dev)
3698 dev = &sh->dev[sh->pd_idx];
3699
3700 /* check that a write has not made the stripe insync */
3701 if (test_bit(STRIPE_INSYNC, &sh->state))
3702 break;
c8894419 3703
a4456856 3704 /* either failed parity check, or recovery is happening */
a4456856
DW
3705 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3706 BUG_ON(s->uptodate != disks);
3707
3708 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3709 s->locked++;
a4456856 3710 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3711
a4456856 3712 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3713 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3714 break;
3715 case check_state_run:
3716 break; /* we will be called again upon completion */
3717 case check_state_check_result:
3718 sh->check_state = check_state_idle;
3719
3720 /* if a failure occurred during the check operation, leave
3721 * STRIPE_INSYNC not set and let the stripe be handled again
3722 */
3723 if (s->failed)
3724 break;
3725
3726 /* handle a successful check operation, if parity is correct
3727 * we are done. Otherwise update the mismatch count and repair
3728 * parity if !MD_RECOVERY_CHECK
3729 */
ad283ea4 3730 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3731 /* parity is correct (on disc,
3732 * not in buffer any more)
3733 */
3734 set_bit(STRIPE_INSYNC, &sh->state);
3735 else {
7f7583d4 3736 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3737 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3738 /* don't try to repair!! */
3739 set_bit(STRIPE_INSYNC, &sh->state);
3740 else {
3741 sh->check_state = check_state_compute_run;
976ea8d4 3742 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3743 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3744 set_bit(R5_Wantcompute,
3745 &sh->dev[sh->pd_idx].flags);
3746 sh->ops.target = sh->pd_idx;
ac6b53b6 3747 sh->ops.target2 = -1;
ecc65c9b
DW
3748 s->uptodate++;
3749 }
3750 }
3751 break;
3752 case check_state_compute_run:
3753 break;
3754 default:
3755 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3756 __func__, sh->check_state,
3757 (unsigned long long) sh->sector);
3758 BUG();
a4456856
DW
3759 }
3760}
3761
d1688a6d 3762static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3763 struct stripe_head_state *s,
f2b3b44d 3764 int disks)
a4456856 3765{
a4456856 3766 int pd_idx = sh->pd_idx;
34e04e87 3767 int qd_idx = sh->qd_idx;
d82dfee0 3768 struct r5dev *dev;
a4456856 3769
59fc630b 3770 BUG_ON(sh->batch_head);
a4456856
DW
3771 set_bit(STRIPE_HANDLE, &sh->state);
3772
3773 BUG_ON(s->failed > 2);
d82dfee0 3774
a4456856
DW
3775 /* Want to check and possibly repair P and Q.
3776 * However there could be one 'failed' device, in which
3777 * case we can only check one of them, possibly using the
3778 * other to generate missing data
3779 */
3780
d82dfee0
DW
3781 switch (sh->check_state) {
3782 case check_state_idle:
3783 /* start a new check operation if there are < 2 failures */
f2b3b44d 3784 if (s->failed == s->q_failed) {
d82dfee0 3785 /* The only possible failed device holds Q, so it
a4456856
DW
3786 * makes sense to check P (If anything else were failed,
3787 * we would have used P to recreate it).
3788 */
d82dfee0 3789 sh->check_state = check_state_run;
a4456856 3790 }
f2b3b44d 3791 if (!s->q_failed && s->failed < 2) {
d82dfee0 3792 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3793 * anything, so it makes sense to check it
3794 */
d82dfee0
DW
3795 if (sh->check_state == check_state_run)
3796 sh->check_state = check_state_run_pq;
3797 else
3798 sh->check_state = check_state_run_q;
a4456856 3799 }
a4456856 3800
d82dfee0
DW
3801 /* discard potentially stale zero_sum_result */
3802 sh->ops.zero_sum_result = 0;
a4456856 3803
d82dfee0
DW
3804 if (sh->check_state == check_state_run) {
3805 /* async_xor_zero_sum destroys the contents of P */
3806 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3807 s->uptodate--;
a4456856 3808 }
d82dfee0
DW
3809 if (sh->check_state >= check_state_run &&
3810 sh->check_state <= check_state_run_pq) {
3811 /* async_syndrome_zero_sum preserves P and Q, so
3812 * no need to mark them !uptodate here
3813 */
3814 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3815 break;
a4456856
DW
3816 }
3817
d82dfee0
DW
3818 /* we have 2-disk failure */
3819 BUG_ON(s->failed != 2);
3820 /* fall through */
3821 case check_state_compute_result:
3822 sh->check_state = check_state_idle;
a4456856 3823
d82dfee0
DW
3824 /* check that a write has not made the stripe insync */
3825 if (test_bit(STRIPE_INSYNC, &sh->state))
3826 break;
a4456856
DW
3827
3828 /* now write out any block on a failed drive,
d82dfee0 3829 * or P or Q if they were recomputed
a4456856 3830 */
d82dfee0 3831 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3832 if (s->failed == 2) {
f2b3b44d 3833 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3834 s->locked++;
3835 set_bit(R5_LOCKED, &dev->flags);
3836 set_bit(R5_Wantwrite, &dev->flags);
3837 }
3838 if (s->failed >= 1) {
f2b3b44d 3839 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3840 s->locked++;
3841 set_bit(R5_LOCKED, &dev->flags);
3842 set_bit(R5_Wantwrite, &dev->flags);
3843 }
d82dfee0 3844 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3845 dev = &sh->dev[pd_idx];
3846 s->locked++;
3847 set_bit(R5_LOCKED, &dev->flags);
3848 set_bit(R5_Wantwrite, &dev->flags);
3849 }
d82dfee0 3850 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3851 dev = &sh->dev[qd_idx];
3852 s->locked++;
3853 set_bit(R5_LOCKED, &dev->flags);
3854 set_bit(R5_Wantwrite, &dev->flags);
3855 }
3856 clear_bit(STRIPE_DEGRADED, &sh->state);
3857
3858 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3859 break;
3860 case check_state_run:
3861 case check_state_run_q:
3862 case check_state_run_pq:
3863 break; /* we will be called again upon completion */
3864 case check_state_check_result:
3865 sh->check_state = check_state_idle;
3866
3867 /* handle a successful check operation, if parity is correct
3868 * we are done. Otherwise update the mismatch count and repair
3869 * parity if !MD_RECOVERY_CHECK
3870 */
3871 if (sh->ops.zero_sum_result == 0) {
3872 /* both parities are correct */
3873 if (!s->failed)
3874 set_bit(STRIPE_INSYNC, &sh->state);
3875 else {
3876 /* in contrast to the raid5 case we can validate
3877 * parity, but still have a failure to write
3878 * back
3879 */
3880 sh->check_state = check_state_compute_result;
3881 /* Returning at this point means that we may go
3882 * off and bring p and/or q uptodate again so
3883 * we make sure to check zero_sum_result again
3884 * to verify if p or q need writeback
3885 */
3886 }
3887 } else {
7f7583d4 3888 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3889 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3890 /* don't try to repair!! */
3891 set_bit(STRIPE_INSYNC, &sh->state);
3892 else {
3893 int *target = &sh->ops.target;
3894
3895 sh->ops.target = -1;
3896 sh->ops.target2 = -1;
3897 sh->check_state = check_state_compute_run;
3898 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3899 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3900 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3901 set_bit(R5_Wantcompute,
3902 &sh->dev[pd_idx].flags);
3903 *target = pd_idx;
3904 target = &sh->ops.target2;
3905 s->uptodate++;
3906 }
3907 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3908 set_bit(R5_Wantcompute,
3909 &sh->dev[qd_idx].flags);
3910 *target = qd_idx;
3911 s->uptodate++;
3912 }
3913 }
3914 }
3915 break;
3916 case check_state_compute_run:
3917 break;
3918 default:
3919 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3920 __func__, sh->check_state,
3921 (unsigned long long) sh->sector);
3922 BUG();
a4456856
DW
3923 }
3924}
3925
d1688a6d 3926static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3927{
3928 int i;
3929
3930 /* We have read all the blocks in this stripe and now we need to
3931 * copy some of them into a target stripe for expand.
3932 */
f0a50d37 3933 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3934 BUG_ON(sh->batch_head);
a4456856
DW
3935 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3936 for (i = 0; i < sh->disks; i++)
34e04e87 3937 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3938 int dd_idx, j;
a4456856 3939 struct stripe_head *sh2;
a08abd8c 3940 struct async_submit_ctl submit;
a4456856 3941
784052ec 3942 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3943 sector_t s = raid5_compute_sector(conf, bn, 0,
3944 &dd_idx, NULL);
a8c906ca 3945 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3946 if (sh2 == NULL)
3947 /* so far only the early blocks of this stripe
3948 * have been requested. When later blocks
3949 * get requested, we will try again
3950 */
3951 continue;
3952 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3953 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3954 /* must have already done this block */
3955 release_stripe(sh2);
3956 continue;
3957 }
f0a50d37
DW
3958
3959 /* place all the copies on one channel */
a08abd8c 3960 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3961 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3962 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3963 &submit);
f0a50d37 3964
a4456856
DW
3965 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3966 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3967 for (j = 0; j < conf->raid_disks; j++)
3968 if (j != sh2->pd_idx &&
86c374ba 3969 j != sh2->qd_idx &&
a4456856
DW
3970 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3971 break;
3972 if (j == conf->raid_disks) {
3973 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3974 set_bit(STRIPE_HANDLE, &sh2->state);
3975 }
3976 release_stripe(sh2);
f0a50d37 3977
a4456856 3978 }
a2e08551 3979 /* done submitting copies, wait for them to complete */
749586b7 3980 async_tx_quiesce(&tx);
a4456856 3981}
1da177e4
LT
3982
3983/*
3984 * handle_stripe - do things to a stripe.
3985 *
9a3e1101
N
3986 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3987 * state of various bits to see what needs to be done.
1da177e4 3988 * Possible results:
9a3e1101
N
3989 * return some read requests which now have data
3990 * return some write requests which are safely on storage
1da177e4
LT
3991 * schedule a read on some buffers
3992 * schedule a write of some buffers
3993 * return confirmation of parity correctness
3994 *
1da177e4 3995 */
a4456856 3996
acfe726b 3997static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3998{
d1688a6d 3999 struct r5conf *conf = sh->raid_conf;
f416885e 4000 int disks = sh->disks;
474af965
N
4001 struct r5dev *dev;
4002 int i;
9a3e1101 4003 int do_recovery = 0;
1da177e4 4004
acfe726b
N
4005 memset(s, 0, sizeof(*s));
4006
dabc4ec6 4007 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4008 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4009 s->failed_num[0] = -1;
4010 s->failed_num[1] = -1;
1da177e4 4011
acfe726b 4012 /* Now to look around and see what can be done */
1da177e4 4013 rcu_read_lock();
16a53ecc 4014 for (i=disks; i--; ) {
3cb03002 4015 struct md_rdev *rdev;
31c176ec
N
4016 sector_t first_bad;
4017 int bad_sectors;
4018 int is_bad = 0;
acfe726b 4019
16a53ecc 4020 dev = &sh->dev[i];
1da177e4 4021
45b4233c 4022 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4023 i, dev->flags,
4024 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4025 /* maybe we can reply to a read
4026 *
4027 * new wantfill requests are only permitted while
4028 * ops_complete_biofill is guaranteed to be inactive
4029 */
4030 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4031 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4032 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4033
16a53ecc 4034 /* now count some things */
cc94015a
N
4035 if (test_bit(R5_LOCKED, &dev->flags))
4036 s->locked++;
4037 if (test_bit(R5_UPTODATE, &dev->flags))
4038 s->uptodate++;
2d6e4ecc 4039 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4040 s->compute++;
4041 BUG_ON(s->compute > 2);
2d6e4ecc 4042 }
1da177e4 4043
acfe726b 4044 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4045 s->to_fill++;
acfe726b 4046 else if (dev->toread)
cc94015a 4047 s->to_read++;
16a53ecc 4048 if (dev->towrite) {
cc94015a 4049 s->to_write++;
16a53ecc 4050 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4051 s->non_overwrite++;
16a53ecc 4052 }
a4456856 4053 if (dev->written)
cc94015a 4054 s->written++;
14a75d3e
N
4055 /* Prefer to use the replacement for reads, but only
4056 * if it is recovered enough and has no bad blocks.
4057 */
4058 rdev = rcu_dereference(conf->disks[i].replacement);
4059 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4060 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4061 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4062 &first_bad, &bad_sectors))
4063 set_bit(R5_ReadRepl, &dev->flags);
4064 else {
9a3e1101
N
4065 if (rdev)
4066 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4067 rdev = rcu_dereference(conf->disks[i].rdev);
4068 clear_bit(R5_ReadRepl, &dev->flags);
4069 }
9283d8c5
N
4070 if (rdev && test_bit(Faulty, &rdev->flags))
4071 rdev = NULL;
31c176ec
N
4072 if (rdev) {
4073 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4074 &first_bad, &bad_sectors);
4075 if (s->blocked_rdev == NULL
4076 && (test_bit(Blocked, &rdev->flags)
4077 || is_bad < 0)) {
4078 if (is_bad < 0)
4079 set_bit(BlockedBadBlocks,
4080 &rdev->flags);
4081 s->blocked_rdev = rdev;
4082 atomic_inc(&rdev->nr_pending);
4083 }
6bfe0b49 4084 }
415e72d0
N
4085 clear_bit(R5_Insync, &dev->flags);
4086 if (!rdev)
4087 /* Not in-sync */;
31c176ec
N
4088 else if (is_bad) {
4089 /* also not in-sync */
18b9837e
N
4090 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4091 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4092 /* treat as in-sync, but with a read error
4093 * which we can now try to correct
4094 */
4095 set_bit(R5_Insync, &dev->flags);
4096 set_bit(R5_ReadError, &dev->flags);
4097 }
4098 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4099 set_bit(R5_Insync, &dev->flags);
30d7a483 4100 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4101 /* in sync if before recovery_offset */
30d7a483
N
4102 set_bit(R5_Insync, &dev->flags);
4103 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4104 test_bit(R5_Expanded, &dev->flags))
4105 /* If we've reshaped into here, we assume it is Insync.
4106 * We will shortly update recovery_offset to make
4107 * it official.
4108 */
4109 set_bit(R5_Insync, &dev->flags);
4110
1cc03eb9 4111 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4112 /* This flag does not apply to '.replacement'
4113 * only to .rdev, so make sure to check that*/
4114 struct md_rdev *rdev2 = rcu_dereference(
4115 conf->disks[i].rdev);
4116 if (rdev2 == rdev)
4117 clear_bit(R5_Insync, &dev->flags);
4118 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4119 s->handle_bad_blocks = 1;
14a75d3e 4120 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4121 } else
4122 clear_bit(R5_WriteError, &dev->flags);
4123 }
1cc03eb9 4124 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4125 /* This flag does not apply to '.replacement'
4126 * only to .rdev, so make sure to check that*/
4127 struct md_rdev *rdev2 = rcu_dereference(
4128 conf->disks[i].rdev);
4129 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4130 s->handle_bad_blocks = 1;
14a75d3e 4131 atomic_inc(&rdev2->nr_pending);
b84db560
N
4132 } else
4133 clear_bit(R5_MadeGood, &dev->flags);
4134 }
977df362
N
4135 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4136 struct md_rdev *rdev2 = rcu_dereference(
4137 conf->disks[i].replacement);
4138 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4139 s->handle_bad_blocks = 1;
4140 atomic_inc(&rdev2->nr_pending);
4141 } else
4142 clear_bit(R5_MadeGoodRepl, &dev->flags);
4143 }
415e72d0 4144 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4145 /* The ReadError flag will just be confusing now */
4146 clear_bit(R5_ReadError, &dev->flags);
4147 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4148 }
415e72d0
N
4149 if (test_bit(R5_ReadError, &dev->flags))
4150 clear_bit(R5_Insync, &dev->flags);
4151 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4152 if (s->failed < 2)
4153 s->failed_num[s->failed] = i;
4154 s->failed++;
9a3e1101
N
4155 if (rdev && !test_bit(Faulty, &rdev->flags))
4156 do_recovery = 1;
415e72d0 4157 }
1da177e4 4158 }
9a3e1101
N
4159 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4160 /* If there is a failed device being replaced,
4161 * we must be recovering.
4162 * else if we are after recovery_cp, we must be syncing
c6d2e084 4163 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4164 * else we can only be replacing
4165 * sync and recovery both need to read all devices, and so
4166 * use the same flag.
4167 */
4168 if (do_recovery ||
c6d2e084 4169 sh->sector >= conf->mddev->recovery_cp ||
4170 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4171 s->syncing = 1;
4172 else
4173 s->replacing = 1;
4174 }
1da177e4 4175 rcu_read_unlock();
cc94015a
N
4176}
4177
59fc630b 4178static int clear_batch_ready(struct stripe_head *sh)
4179{
b15a9dbd
N
4180 /* Return '1' if this is a member of batch, or
4181 * '0' if it is a lone stripe or a head which can now be
4182 * handled.
4183 */
59fc630b 4184 struct stripe_head *tmp;
4185 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4186 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4187 spin_lock(&sh->stripe_lock);
4188 if (!sh->batch_head) {
4189 spin_unlock(&sh->stripe_lock);
4190 return 0;
4191 }
4192
4193 /*
4194 * this stripe could be added to a batch list before we check
4195 * BATCH_READY, skips it
4196 */
4197 if (sh->batch_head != sh) {
4198 spin_unlock(&sh->stripe_lock);
4199 return 1;
4200 }
4201 spin_lock(&sh->batch_lock);
4202 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4203 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4204 spin_unlock(&sh->batch_lock);
4205 spin_unlock(&sh->stripe_lock);
4206
4207 /*
4208 * BATCH_READY is cleared, no new stripes can be added.
4209 * batch_list can be accessed without lock
4210 */
4211 return 0;
4212}
4213
3960ce79
N
4214static void break_stripe_batch_list(struct stripe_head *head_sh,
4215 unsigned long handle_flags)
72ac7330 4216{
4e3d62ff 4217 struct stripe_head *sh, *next;
72ac7330 4218 int i;
fb642b92 4219 int do_wakeup = 0;
72ac7330 4220
bb27051f
N
4221 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4222
72ac7330 4223 list_del_init(&sh->batch_list);
4224
1b956f7a
N
4225 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4226 (1 << STRIPE_SYNCING) |
4227 (1 << STRIPE_REPLACED) |
4228 (1 << STRIPE_PREREAD_ACTIVE) |
4229 (1 << STRIPE_DELAYED) |
4230 (1 << STRIPE_BIT_DELAY) |
4231 (1 << STRIPE_FULL_WRITE) |
4232 (1 << STRIPE_BIOFILL_RUN) |
4233 (1 << STRIPE_COMPUTE_RUN) |
4234 (1 << STRIPE_OPS_REQ_PENDING) |
4235 (1 << STRIPE_DISCARD) |
4236 (1 << STRIPE_BATCH_READY) |
4237 (1 << STRIPE_BATCH_ERR) |
4238 (1 << STRIPE_BITMAP_PENDING)));
4239 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4240 (1 << STRIPE_REPLACED)));
4241
4242 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4243 (1 << STRIPE_DEGRADED)),
4244 head_sh->state & (1 << STRIPE_INSYNC));
4245
72ac7330 4246 sh->check_state = head_sh->check_state;
4247 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4248 for (i = 0; i < sh->disks; i++) {
4249 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4250 do_wakeup = 1;
72ac7330 4251 sh->dev[i].flags = head_sh->dev[i].flags &
4252 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4253 }
72ac7330 4254 spin_lock_irq(&sh->stripe_lock);
4255 sh->batch_head = NULL;
4256 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4257 if (handle_flags == 0 ||
4258 sh->state & handle_flags)
4259 set_bit(STRIPE_HANDLE, &sh->state);
72ac7330 4260 release_stripe(sh);
72ac7330 4261 }
fb642b92
N
4262 spin_lock_irq(&head_sh->stripe_lock);
4263 head_sh->batch_head = NULL;
4264 spin_unlock_irq(&head_sh->stripe_lock);
4265 for (i = 0; i < head_sh->disks; i++)
4266 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4267 do_wakeup = 1;
3960ce79
N
4268 if (head_sh->state & handle_flags)
4269 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4270
4271 if (do_wakeup)
4272 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4273}
4274
cc94015a
N
4275static void handle_stripe(struct stripe_head *sh)
4276{
4277 struct stripe_head_state s;
d1688a6d 4278 struct r5conf *conf = sh->raid_conf;
3687c061 4279 int i;
84789554
N
4280 int prexor;
4281 int disks = sh->disks;
474af965 4282 struct r5dev *pdev, *qdev;
cc94015a
N
4283
4284 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4285 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4286 /* already being handled, ensure it gets handled
4287 * again when current action finishes */
4288 set_bit(STRIPE_HANDLE, &sh->state);
4289 return;
4290 }
4291
59fc630b 4292 if (clear_batch_ready(sh) ) {
4293 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4294 return;
4295 }
4296
4e3d62ff 4297 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4298 break_stripe_batch_list(sh, 0);
72ac7330 4299
dabc4ec6 4300 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4301 spin_lock(&sh->stripe_lock);
4302 /* Cannot process 'sync' concurrently with 'discard' */
4303 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4304 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4305 set_bit(STRIPE_SYNCING, &sh->state);
4306 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4307 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4308 }
4309 spin_unlock(&sh->stripe_lock);
cc94015a
N
4310 }
4311 clear_bit(STRIPE_DELAYED, &sh->state);
4312
4313 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4314 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4315 (unsigned long long)sh->sector, sh->state,
4316 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4317 sh->check_state, sh->reconstruct_state);
3687c061 4318
acfe726b 4319 analyse_stripe(sh, &s);
c5a31000 4320
bc2607f3
N
4321 if (s.handle_bad_blocks) {
4322 set_bit(STRIPE_HANDLE, &sh->state);
4323 goto finish;
4324 }
4325
474af965
N
4326 if (unlikely(s.blocked_rdev)) {
4327 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4328 s.replacing || s.to_write || s.written) {
474af965
N
4329 set_bit(STRIPE_HANDLE, &sh->state);
4330 goto finish;
4331 }
4332 /* There is nothing for the blocked_rdev to block */
4333 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4334 s.blocked_rdev = NULL;
4335 }
4336
4337 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4338 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4339 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4340 }
4341
4342 pr_debug("locked=%d uptodate=%d to_read=%d"
4343 " to_write=%d failed=%d failed_num=%d,%d\n",
4344 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4345 s.failed_num[0], s.failed_num[1]);
4346 /* check if the array has lost more than max_degraded devices and,
4347 * if so, some requests might need to be failed.
4348 */
9a3f530f
N
4349 if (s.failed > conf->max_degraded) {
4350 sh->check_state = 0;
4351 sh->reconstruct_state = 0;
626f2092 4352 break_stripe_batch_list(sh, 0);
9a3f530f
N
4353 if (s.to_read+s.to_write+s.written)
4354 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4355 if (s.syncing + s.replacing)
9a3f530f
N
4356 handle_failed_sync(conf, sh, &s);
4357 }
474af965 4358
84789554
N
4359 /* Now we check to see if any write operations have recently
4360 * completed
4361 */
4362 prexor = 0;
4363 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4364 prexor = 1;
4365 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4366 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4367 sh->reconstruct_state = reconstruct_state_idle;
4368
4369 /* All the 'written' buffers and the parity block are ready to
4370 * be written back to disk
4371 */
9e444768
SL
4372 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4373 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4374 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4375 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4376 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4377 for (i = disks; i--; ) {
4378 struct r5dev *dev = &sh->dev[i];
4379 if (test_bit(R5_LOCKED, &dev->flags) &&
4380 (i == sh->pd_idx || i == sh->qd_idx ||
4381 dev->written)) {
4382 pr_debug("Writing block %d\n", i);
4383 set_bit(R5_Wantwrite, &dev->flags);
4384 if (prexor)
4385 continue;
9c4bdf69
N
4386 if (s.failed > 1)
4387 continue;
84789554
N
4388 if (!test_bit(R5_Insync, &dev->flags) ||
4389 ((i == sh->pd_idx || i == sh->qd_idx) &&
4390 s.failed == 0))
4391 set_bit(STRIPE_INSYNC, &sh->state);
4392 }
4393 }
4394 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4395 s.dec_preread_active = 1;
4396 }
4397
ef5b7c69
N
4398 /*
4399 * might be able to return some write requests if the parity blocks
4400 * are safe, or on a failed drive
4401 */
4402 pdev = &sh->dev[sh->pd_idx];
4403 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4404 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4405 qdev = &sh->dev[sh->qd_idx];
4406 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4407 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4408 || conf->level < 6;
4409
4410 if (s.written &&
4411 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4412 && !test_bit(R5_LOCKED, &pdev->flags)
4413 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4414 test_bit(R5_Discard, &pdev->flags))))) &&
4415 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4416 && !test_bit(R5_LOCKED, &qdev->flags)
4417 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4418 test_bit(R5_Discard, &qdev->flags))))))
4419 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4420
4421 /* Now we might consider reading some blocks, either to check/generate
4422 * parity, or to satisfy requests
4423 * or to load a block that is being partially written.
4424 */
4425 if (s.to_read || s.non_overwrite
4426 || (conf->level == 6 && s.to_write && s.failed)
4427 || (s.syncing && (s.uptodate + s.compute < disks))
4428 || s.replacing
4429 || s.expanding)
4430 handle_stripe_fill(sh, &s, disks);
4431
84789554
N
4432 /* Now to consider new write requests and what else, if anything
4433 * should be read. We do not handle new writes when:
4434 * 1/ A 'write' operation (copy+xor) is already in flight.
4435 * 2/ A 'check' operation is in flight, as it may clobber the parity
4436 * block.
4437 */
4438 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4439 handle_stripe_dirtying(conf, sh, &s, disks);
4440
4441 /* maybe we need to check and possibly fix the parity for this stripe
4442 * Any reads will already have been scheduled, so we just see if enough
4443 * data is available. The parity check is held off while parity
4444 * dependent operations are in flight.
4445 */
4446 if (sh->check_state ||
4447 (s.syncing && s.locked == 0 &&
4448 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4449 !test_bit(STRIPE_INSYNC, &sh->state))) {
4450 if (conf->level == 6)
4451 handle_parity_checks6(conf, sh, &s, disks);
4452 else
4453 handle_parity_checks5(conf, sh, &s, disks);
4454 }
c5a31000 4455
f94c0b66
N
4456 if ((s.replacing || s.syncing) && s.locked == 0
4457 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4458 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4459 /* Write out to replacement devices where possible */
4460 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4461 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4462 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4463 set_bit(R5_WantReplace, &sh->dev[i].flags);
4464 set_bit(R5_LOCKED, &sh->dev[i].flags);
4465 s.locked++;
4466 }
f94c0b66
N
4467 if (s.replacing)
4468 set_bit(STRIPE_INSYNC, &sh->state);
4469 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4470 }
4471 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4472 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4473 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4474 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4475 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4476 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4477 wake_up(&conf->wait_for_overlap);
c5a31000
N
4478 }
4479
4480 /* If the failed drives are just a ReadError, then we might need
4481 * to progress the repair/check process
4482 */
4483 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4484 for (i = 0; i < s.failed; i++) {
4485 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4486 if (test_bit(R5_ReadError, &dev->flags)
4487 && !test_bit(R5_LOCKED, &dev->flags)
4488 && test_bit(R5_UPTODATE, &dev->flags)
4489 ) {
4490 if (!test_bit(R5_ReWrite, &dev->flags)) {
4491 set_bit(R5_Wantwrite, &dev->flags);
4492 set_bit(R5_ReWrite, &dev->flags);
4493 set_bit(R5_LOCKED, &dev->flags);
4494 s.locked++;
4495 } else {
4496 /* let's read it back */
4497 set_bit(R5_Wantread, &dev->flags);
4498 set_bit(R5_LOCKED, &dev->flags);
4499 s.locked++;
4500 }
4501 }
4502 }
4503
3687c061
N
4504 /* Finish reconstruct operations initiated by the expansion process */
4505 if (sh->reconstruct_state == reconstruct_state_result) {
4506 struct stripe_head *sh_src
4507 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4508 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4509 /* sh cannot be written until sh_src has been read.
4510 * so arrange for sh to be delayed a little
4511 */
4512 set_bit(STRIPE_DELAYED, &sh->state);
4513 set_bit(STRIPE_HANDLE, &sh->state);
4514 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4515 &sh_src->state))
4516 atomic_inc(&conf->preread_active_stripes);
4517 release_stripe(sh_src);
4518 goto finish;
4519 }
4520 if (sh_src)
4521 release_stripe(sh_src);
4522
4523 sh->reconstruct_state = reconstruct_state_idle;
4524 clear_bit(STRIPE_EXPANDING, &sh->state);
4525 for (i = conf->raid_disks; i--; ) {
4526 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4527 set_bit(R5_LOCKED, &sh->dev[i].flags);
4528 s.locked++;
4529 }
4530 }
f416885e 4531
3687c061
N
4532 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4533 !sh->reconstruct_state) {
4534 /* Need to write out all blocks after computing parity */
4535 sh->disks = conf->raid_disks;
4536 stripe_set_idx(sh->sector, conf, 0, sh);
4537 schedule_reconstruction(sh, &s, 1, 1);
4538 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4539 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4540 atomic_dec(&conf->reshape_stripes);
4541 wake_up(&conf->wait_for_overlap);
4542 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4543 }
4544
4545 if (s.expanding && s.locked == 0 &&
4546 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4547 handle_stripe_expansion(conf, sh);
16a53ecc 4548
3687c061 4549finish:
6bfe0b49 4550 /* wait for this device to become unblocked */
5f066c63
N
4551 if (unlikely(s.blocked_rdev)) {
4552 if (conf->mddev->external)
4553 md_wait_for_blocked_rdev(s.blocked_rdev,
4554 conf->mddev);
4555 else
4556 /* Internal metadata will immediately
4557 * be written by raid5d, so we don't
4558 * need to wait here.
4559 */
4560 rdev_dec_pending(s.blocked_rdev,
4561 conf->mddev);
4562 }
6bfe0b49 4563
bc2607f3
N
4564 if (s.handle_bad_blocks)
4565 for (i = disks; i--; ) {
3cb03002 4566 struct md_rdev *rdev;
bc2607f3
N
4567 struct r5dev *dev = &sh->dev[i];
4568 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4569 /* We own a safe reference to the rdev */
4570 rdev = conf->disks[i].rdev;
4571 if (!rdev_set_badblocks(rdev, sh->sector,
4572 STRIPE_SECTORS, 0))
4573 md_error(conf->mddev, rdev);
4574 rdev_dec_pending(rdev, conf->mddev);
4575 }
b84db560
N
4576 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4577 rdev = conf->disks[i].rdev;
4578 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4579 STRIPE_SECTORS, 0);
b84db560
N
4580 rdev_dec_pending(rdev, conf->mddev);
4581 }
977df362
N
4582 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4583 rdev = conf->disks[i].replacement;
dd054fce
N
4584 if (!rdev)
4585 /* rdev have been moved down */
4586 rdev = conf->disks[i].rdev;
977df362 4587 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4588 STRIPE_SECTORS, 0);
977df362
N
4589 rdev_dec_pending(rdev, conf->mddev);
4590 }
bc2607f3
N
4591 }
4592
6c0069c0
YT
4593 if (s.ops_request)
4594 raid_run_ops(sh, s.ops_request);
4595
f0e43bcd 4596 ops_run_io(sh, &s);
16a53ecc 4597
c5709ef6 4598 if (s.dec_preread_active) {
729a1866 4599 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4600 * is waiting on a flush, it won't continue until the writes
729a1866
N
4601 * have actually been submitted.
4602 */
4603 atomic_dec(&conf->preread_active_stripes);
4604 if (atomic_read(&conf->preread_active_stripes) <
4605 IO_THRESHOLD)
4606 md_wakeup_thread(conf->mddev->thread);
4607 }
4608
c5709ef6 4609 return_io(s.return_bi);
16a53ecc 4610
257a4b42 4611 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4612}
4613
d1688a6d 4614static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4615{
4616 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4617 while (!list_empty(&conf->delayed_list)) {
4618 struct list_head *l = conf->delayed_list.next;
4619 struct stripe_head *sh;
4620 sh = list_entry(l, struct stripe_head, lru);
4621 list_del_init(l);
4622 clear_bit(STRIPE_DELAYED, &sh->state);
4623 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4624 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4625 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4626 raid5_wakeup_stripe_thread(sh);
16a53ecc 4627 }
482c0834 4628 }
16a53ecc
N
4629}
4630
566c09c5
SL
4631static void activate_bit_delay(struct r5conf *conf,
4632 struct list_head *temp_inactive_list)
16a53ecc
N
4633{
4634 /* device_lock is held */
4635 struct list_head head;
4636 list_add(&head, &conf->bitmap_list);
4637 list_del_init(&conf->bitmap_list);
4638 while (!list_empty(&head)) {
4639 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4640 int hash;
16a53ecc
N
4641 list_del_init(&sh->lru);
4642 atomic_inc(&sh->count);
566c09c5
SL
4643 hash = sh->hash_lock_index;
4644 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4645 }
4646}
4647
5c675f83 4648static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4649{
d1688a6d 4650 struct r5conf *conf = mddev->private;
f022b2fd
N
4651
4652 /* No difference between reads and writes. Just check
4653 * how busy the stripe_cache is
4654 */
3fa841d7 4655
5423399a 4656 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4657 return 1;
4658 if (conf->quiesce)
4659 return 1;
4bda556a 4660 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4661 return 1;
4662
4663 return 0;
4664}
4665
23032a0e
RBJ
4666/* We want read requests to align with chunks where possible,
4667 * but write requests don't need to.
4668 */
64590f45 4669static int raid5_mergeable_bvec(struct mddev *mddev,
cc371e66
AK
4670 struct bvec_merge_data *bvm,
4671 struct bio_vec *biovec)
23032a0e 4672{
cc371e66 4673 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 4674 int max;
9d8f0363 4675 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 4676 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 4677
9ffc8f7c
EM
4678 /*
4679 * always allow writes to be mergeable, read as well if array
4680 * is degraded as we'll go through stripe cache anyway.
4681 */
4682 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4683 return biovec->bv_len;
23032a0e 4684
664e7c41
AN
4685 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4686 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
4687 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4688 if (max < 0) max = 0;
4689 if (max <= biovec->bv_len && bio_sectors == 0)
4690 return biovec->bv_len;
4691 else
4692 return max;
4693}
4694
fd01b88c 4695static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4696{
4f024f37 4697 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 4698 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 4699 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4700
664e7c41
AN
4701 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4702 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
4703 return chunk_sectors >=
4704 ((sector & (chunk_sectors - 1)) + bio_sectors);
4705}
4706
46031f9a
RBJ
4707/*
4708 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4709 * later sampled by raid5d.
4710 */
d1688a6d 4711static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4712{
4713 unsigned long flags;
4714
4715 spin_lock_irqsave(&conf->device_lock, flags);
4716
4717 bi->bi_next = conf->retry_read_aligned_list;
4718 conf->retry_read_aligned_list = bi;
4719
4720 spin_unlock_irqrestore(&conf->device_lock, flags);
4721 md_wakeup_thread(conf->mddev->thread);
4722}
4723
d1688a6d 4724static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4725{
4726 struct bio *bi;
4727
4728 bi = conf->retry_read_aligned;
4729 if (bi) {
4730 conf->retry_read_aligned = NULL;
4731 return bi;
4732 }
4733 bi = conf->retry_read_aligned_list;
4734 if(bi) {
387bb173 4735 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4736 bi->bi_next = NULL;
960e739d
JA
4737 /*
4738 * this sets the active strip count to 1 and the processed
4739 * strip count to zero (upper 8 bits)
4740 */
e7836bd6 4741 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4742 }
4743
4744 return bi;
4745}
4746
f679623f
RBJ
4747/*
4748 * The "raid5_align_endio" should check if the read succeeded and if it
4749 * did, call bio_endio on the original bio (having bio_put the new bio
4750 * first).
4751 * If the read failed..
4752 */
4246a0b6 4753static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
4754{
4755 struct bio* raid_bi = bi->bi_private;
fd01b88c 4756 struct mddev *mddev;
d1688a6d 4757 struct r5conf *conf;
3cb03002 4758 struct md_rdev *rdev;
9b81c842 4759 int error = bi->bi_error;
46031f9a 4760
f679623f 4761 bio_put(bi);
46031f9a 4762
46031f9a
RBJ
4763 rdev = (void*)raid_bi->bi_next;
4764 raid_bi->bi_next = NULL;
2b7f2228
N
4765 mddev = rdev->mddev;
4766 conf = mddev->private;
46031f9a
RBJ
4767
4768 rdev_dec_pending(rdev, conf->mddev);
4769
9b81c842 4770 if (!error) {
0a82a8d1
LT
4771 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4772 raid_bi, 0);
4246a0b6 4773 bio_endio(raid_bi);
46031f9a 4774 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 4775 wake_up(&conf->wait_for_quiescent);
6712ecf8 4776 return;
46031f9a
RBJ
4777 }
4778
45b4233c 4779 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4780
4781 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4782}
4783
387bb173
NB
4784static int bio_fits_rdev(struct bio *bi)
4785{
165125e1 4786 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4787
aa8b57aa 4788 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4789 return 0;
4790 blk_recount_segments(q, bi);
8a78362c 4791 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4792 return 0;
4793
4794 if (q->merge_bvec_fn)
4795 /* it's too hard to apply the merge_bvec_fn at this stage,
4796 * just just give up
4797 */
4798 return 0;
4799
4800 return 1;
4801}
4802
fd01b88c 4803static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4804{
d1688a6d 4805 struct r5conf *conf = mddev->private;
8553fe7e 4806 int dd_idx;
f679623f 4807 struct bio* align_bi;
3cb03002 4808 struct md_rdev *rdev;
671488cc 4809 sector_t end_sector;
f679623f
RBJ
4810
4811 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4812 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4813 return 0;
4814 }
4815 /*
a167f663 4816 * use bio_clone_mddev to make a copy of the bio
f679623f 4817 */
a167f663 4818 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4819 if (!align_bi)
4820 return 0;
4821 /*
4822 * set bi_end_io to a new function, and set bi_private to the
4823 * original bio.
4824 */
4825 align_bi->bi_end_io = raid5_align_endio;
4826 align_bi->bi_private = raid_bio;
4827 /*
4828 * compute position
4829 */
4f024f37
KO
4830 align_bi->bi_iter.bi_sector =
4831 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4832 0, &dd_idx, NULL);
f679623f 4833
f73a1c7d 4834 end_sector = bio_end_sector(align_bi);
f679623f 4835 rcu_read_lock();
671488cc
N
4836 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4837 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4838 rdev->recovery_offset < end_sector) {
4839 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4840 if (rdev &&
4841 (test_bit(Faulty, &rdev->flags) ||
4842 !(test_bit(In_sync, &rdev->flags) ||
4843 rdev->recovery_offset >= end_sector)))
4844 rdev = NULL;
4845 }
4846 if (rdev) {
31c176ec
N
4847 sector_t first_bad;
4848 int bad_sectors;
4849
f679623f
RBJ
4850 atomic_inc(&rdev->nr_pending);
4851 rcu_read_unlock();
46031f9a
RBJ
4852 raid_bio->bi_next = (void*)rdev;
4853 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 4854 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 4855
31c176ec 4856 if (!bio_fits_rdev(align_bi) ||
4f024f37
KO
4857 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4858 bio_sectors(align_bi),
31c176ec
N
4859 &first_bad, &bad_sectors)) {
4860 /* too big in some way, or has a known bad block */
387bb173
NB
4861 bio_put(align_bi);
4862 rdev_dec_pending(rdev, mddev);
4863 return 0;
4864 }
4865
6c0544e2 4866 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4867 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4868
46031f9a 4869 spin_lock_irq(&conf->device_lock);
b1b46486 4870 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 4871 conf->quiesce == 0,
eed8c02e 4872 conf->device_lock);
46031f9a
RBJ
4873 atomic_inc(&conf->active_aligned_reads);
4874 spin_unlock_irq(&conf->device_lock);
4875
e3620a3a
JB
4876 if (mddev->gendisk)
4877 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4878 align_bi, disk_devt(mddev->gendisk),
4f024f37 4879 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4880 generic_make_request(align_bi);
4881 return 1;
4882 } else {
4883 rcu_read_unlock();
46031f9a 4884 bio_put(align_bi);
f679623f
RBJ
4885 return 0;
4886 }
4887}
4888
8b3e6cdc
DW
4889/* __get_priority_stripe - get the next stripe to process
4890 *
4891 * Full stripe writes are allowed to pass preread active stripes up until
4892 * the bypass_threshold is exceeded. In general the bypass_count
4893 * increments when the handle_list is handled before the hold_list; however, it
4894 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4895 * stripe with in flight i/o. The bypass_count will be reset when the
4896 * head of the hold_list has changed, i.e. the head was promoted to the
4897 * handle_list.
4898 */
851c30c9 4899static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4900{
851c30c9
SL
4901 struct stripe_head *sh = NULL, *tmp;
4902 struct list_head *handle_list = NULL;
bfc90cb0 4903 struct r5worker_group *wg = NULL;
851c30c9
SL
4904
4905 if (conf->worker_cnt_per_group == 0) {
4906 handle_list = &conf->handle_list;
4907 } else if (group != ANY_GROUP) {
4908 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4909 wg = &conf->worker_groups[group];
851c30c9
SL
4910 } else {
4911 int i;
4912 for (i = 0; i < conf->group_cnt; i++) {
4913 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4914 wg = &conf->worker_groups[i];
851c30c9
SL
4915 if (!list_empty(handle_list))
4916 break;
4917 }
4918 }
8b3e6cdc
DW
4919
4920 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4921 __func__,
851c30c9 4922 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4923 list_empty(&conf->hold_list) ? "empty" : "busy",
4924 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4925
851c30c9
SL
4926 if (!list_empty(handle_list)) {
4927 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4928
4929 if (list_empty(&conf->hold_list))
4930 conf->bypass_count = 0;
4931 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4932 if (conf->hold_list.next == conf->last_hold)
4933 conf->bypass_count++;
4934 else {
4935 conf->last_hold = conf->hold_list.next;
4936 conf->bypass_count -= conf->bypass_threshold;
4937 if (conf->bypass_count < 0)
4938 conf->bypass_count = 0;
4939 }
4940 }
4941 } else if (!list_empty(&conf->hold_list) &&
4942 ((conf->bypass_threshold &&
4943 conf->bypass_count > conf->bypass_threshold) ||
4944 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4945
4946 list_for_each_entry(tmp, &conf->hold_list, lru) {
4947 if (conf->worker_cnt_per_group == 0 ||
4948 group == ANY_GROUP ||
4949 !cpu_online(tmp->cpu) ||
4950 cpu_to_group(tmp->cpu) == group) {
4951 sh = tmp;
4952 break;
4953 }
4954 }
4955
4956 if (sh) {
4957 conf->bypass_count -= conf->bypass_threshold;
4958 if (conf->bypass_count < 0)
4959 conf->bypass_count = 0;
4960 }
bfc90cb0 4961 wg = NULL;
851c30c9
SL
4962 }
4963
4964 if (!sh)
8b3e6cdc
DW
4965 return NULL;
4966
bfc90cb0
SL
4967 if (wg) {
4968 wg->stripes_cnt--;
4969 sh->group = NULL;
4970 }
8b3e6cdc 4971 list_del_init(&sh->lru);
c7a6d35e 4972 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4973 return sh;
4974}
f679623f 4975
8811b596
SL
4976struct raid5_plug_cb {
4977 struct blk_plug_cb cb;
4978 struct list_head list;
566c09c5 4979 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4980};
4981
4982static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4983{
4984 struct raid5_plug_cb *cb = container_of(
4985 blk_cb, struct raid5_plug_cb, cb);
4986 struct stripe_head *sh;
4987 struct mddev *mddev = cb->cb.data;
4988 struct r5conf *conf = mddev->private;
a9add5d9 4989 int cnt = 0;
566c09c5 4990 int hash;
8811b596
SL
4991
4992 if (cb->list.next && !list_empty(&cb->list)) {
4993 spin_lock_irq(&conf->device_lock);
4994 while (!list_empty(&cb->list)) {
4995 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4996 list_del_init(&sh->lru);
4997 /*
4998 * avoid race release_stripe_plug() sees
4999 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5000 * is still in our list
5001 */
4e857c58 5002 smp_mb__before_atomic();
8811b596 5003 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5004 /*
5005 * STRIPE_ON_RELEASE_LIST could be set here. In that
5006 * case, the count is always > 1 here
5007 */
566c09c5
SL
5008 hash = sh->hash_lock_index;
5009 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5010 cnt++;
8811b596
SL
5011 }
5012 spin_unlock_irq(&conf->device_lock);
5013 }
566c09c5
SL
5014 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5015 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5016 if (mddev->queue)
5017 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5018 kfree(cb);
5019}
5020
5021static void release_stripe_plug(struct mddev *mddev,
5022 struct stripe_head *sh)
5023{
5024 struct blk_plug_cb *blk_cb = blk_check_plugged(
5025 raid5_unplug, mddev,
5026 sizeof(struct raid5_plug_cb));
5027 struct raid5_plug_cb *cb;
5028
5029 if (!blk_cb) {
5030 release_stripe(sh);
5031 return;
5032 }
5033
5034 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5035
566c09c5
SL
5036 if (cb->list.next == NULL) {
5037 int i;
8811b596 5038 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5039 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5040 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5041 }
8811b596
SL
5042
5043 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5044 list_add_tail(&sh->lru, &cb->list);
5045 else
5046 release_stripe(sh);
5047}
5048
620125f2
SL
5049static void make_discard_request(struct mddev *mddev, struct bio *bi)
5050{
5051 struct r5conf *conf = mddev->private;
5052 sector_t logical_sector, last_sector;
5053 struct stripe_head *sh;
5054 int remaining;
5055 int stripe_sectors;
5056
5057 if (mddev->reshape_position != MaxSector)
5058 /* Skip discard while reshape is happening */
5059 return;
5060
4f024f37
KO
5061 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5062 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5063
5064 bi->bi_next = NULL;
5065 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5066
5067 stripe_sectors = conf->chunk_sectors *
5068 (conf->raid_disks - conf->max_degraded);
5069 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5070 stripe_sectors);
5071 sector_div(last_sector, stripe_sectors);
5072
5073 logical_sector *= conf->chunk_sectors;
5074 last_sector *= conf->chunk_sectors;
5075
5076 for (; logical_sector < last_sector;
5077 logical_sector += STRIPE_SECTORS) {
5078 DEFINE_WAIT(w);
5079 int d;
5080 again:
5081 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5082 prepare_to_wait(&conf->wait_for_overlap, &w,
5083 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5084 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5085 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5086 release_stripe(sh);
5087 schedule();
5088 goto again;
5089 }
5090 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5091 spin_lock_irq(&sh->stripe_lock);
5092 for (d = 0; d < conf->raid_disks; d++) {
5093 if (d == sh->pd_idx || d == sh->qd_idx)
5094 continue;
5095 if (sh->dev[d].towrite || sh->dev[d].toread) {
5096 set_bit(R5_Overlap, &sh->dev[d].flags);
5097 spin_unlock_irq(&sh->stripe_lock);
5098 release_stripe(sh);
5099 schedule();
5100 goto again;
5101 }
5102 }
f8dfcffd 5103 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5104 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5105 sh->overwrite_disks = 0;
620125f2
SL
5106 for (d = 0; d < conf->raid_disks; d++) {
5107 if (d == sh->pd_idx || d == sh->qd_idx)
5108 continue;
5109 sh->dev[d].towrite = bi;
5110 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5111 raid5_inc_bi_active_stripes(bi);
7a87f434 5112 sh->overwrite_disks++;
620125f2
SL
5113 }
5114 spin_unlock_irq(&sh->stripe_lock);
5115 if (conf->mddev->bitmap) {
5116 for (d = 0;
5117 d < conf->raid_disks - conf->max_degraded;
5118 d++)
5119 bitmap_startwrite(mddev->bitmap,
5120 sh->sector,
5121 STRIPE_SECTORS,
5122 0);
5123 sh->bm_seq = conf->seq_flush + 1;
5124 set_bit(STRIPE_BIT_DELAY, &sh->state);
5125 }
5126
5127 set_bit(STRIPE_HANDLE, &sh->state);
5128 clear_bit(STRIPE_DELAYED, &sh->state);
5129 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5130 atomic_inc(&conf->preread_active_stripes);
5131 release_stripe_plug(mddev, sh);
5132 }
5133
5134 remaining = raid5_dec_bi_active_stripes(bi);
5135 if (remaining == 0) {
5136 md_write_end(mddev);
4246a0b6 5137 bio_endio(bi);
620125f2
SL
5138 }
5139}
5140
b4fdcb02 5141static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5142{
d1688a6d 5143 struct r5conf *conf = mddev->private;
911d4ee8 5144 int dd_idx;
1da177e4
LT
5145 sector_t new_sector;
5146 sector_t logical_sector, last_sector;
5147 struct stripe_head *sh;
a362357b 5148 const int rw = bio_data_dir(bi);
49077326 5149 int remaining;
27c0f68f
SL
5150 DEFINE_WAIT(w);
5151 bool do_prepare;
1da177e4 5152
e9c7469b
TH
5153 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5154 md_flush_request(mddev, bi);
5a7bbad2 5155 return;
e5dcdd80
N
5156 }
5157
3d310eb7 5158 md_write_start(mddev, bi);
06d91a5f 5159
9ffc8f7c
EM
5160 /*
5161 * If array is degraded, better not do chunk aligned read because
5162 * later we might have to read it again in order to reconstruct
5163 * data on failed drives.
5164 */
5165 if (rw == READ && mddev->degraded == 0 &&
52488615 5166 mddev->reshape_position == MaxSector &&
21a52c6d 5167 chunk_aligned_read(mddev,bi))
5a7bbad2 5168 return;
52488615 5169
620125f2
SL
5170 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5171 make_discard_request(mddev, bi);
5172 return;
5173 }
5174
4f024f37 5175 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5176 last_sector = bio_end_sector(bi);
1da177e4
LT
5177 bi->bi_next = NULL;
5178 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5179
27c0f68f 5180 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5181 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5182 int previous;
c46501b2 5183 int seq;
b578d55f 5184
27c0f68f 5185 do_prepare = false;
7ecaa1e6 5186 retry:
c46501b2 5187 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5188 previous = 0;
27c0f68f
SL
5189 if (do_prepare)
5190 prepare_to_wait(&conf->wait_for_overlap, &w,
5191 TASK_UNINTERRUPTIBLE);
b0f9ec04 5192 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5193 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5194 * 64bit on a 32bit platform, and so it might be
5195 * possible to see a half-updated value
aeb878b0 5196 * Of course reshape_progress could change after
df8e7f76
N
5197 * the lock is dropped, so once we get a reference
5198 * to the stripe that we think it is, we will have
5199 * to check again.
5200 */
7ecaa1e6 5201 spin_lock_irq(&conf->device_lock);
2c810cdd 5202 if (mddev->reshape_backwards
fef9c61f
N
5203 ? logical_sector < conf->reshape_progress
5204 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5205 previous = 1;
5206 } else {
2c810cdd 5207 if (mddev->reshape_backwards
fef9c61f
N
5208 ? logical_sector < conf->reshape_safe
5209 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5210 spin_unlock_irq(&conf->device_lock);
5211 schedule();
27c0f68f 5212 do_prepare = true;
b578d55f
N
5213 goto retry;
5214 }
5215 }
7ecaa1e6
N
5216 spin_unlock_irq(&conf->device_lock);
5217 }
16a53ecc 5218
112bf897
N
5219 new_sector = raid5_compute_sector(conf, logical_sector,
5220 previous,
911d4ee8 5221 &dd_idx, NULL);
0c55e022 5222 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 5223 (unsigned long long)new_sector,
1da177e4
LT
5224 (unsigned long long)logical_sector);
5225
b5663ba4 5226 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 5227 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5228 if (sh) {
b0f9ec04 5229 if (unlikely(previous)) {
7ecaa1e6 5230 /* expansion might have moved on while waiting for a
df8e7f76
N
5231 * stripe, so we must do the range check again.
5232 * Expansion could still move past after this
5233 * test, but as we are holding a reference to
5234 * 'sh', we know that if that happens,
5235 * STRIPE_EXPANDING will get set and the expansion
5236 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5237 */
5238 int must_retry = 0;
5239 spin_lock_irq(&conf->device_lock);
2c810cdd 5240 if (mddev->reshape_backwards
b0f9ec04
N
5241 ? logical_sector >= conf->reshape_progress
5242 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5243 /* mismatch, need to try again */
5244 must_retry = 1;
5245 spin_unlock_irq(&conf->device_lock);
5246 if (must_retry) {
5247 release_stripe(sh);
7a3ab908 5248 schedule();
27c0f68f 5249 do_prepare = true;
7ecaa1e6
N
5250 goto retry;
5251 }
5252 }
c46501b2
N
5253 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5254 /* Might have got the wrong stripe_head
5255 * by accident
5256 */
5257 release_stripe(sh);
5258 goto retry;
5259 }
e62e58a5 5260
ffd96e35 5261 if (rw == WRITE &&
a5c308d4 5262 logical_sector >= mddev->suspend_lo &&
e464eafd
N
5263 logical_sector < mddev->suspend_hi) {
5264 release_stripe(sh);
e62e58a5
N
5265 /* As the suspend_* range is controlled by
5266 * userspace, we want an interruptible
5267 * wait.
5268 */
5269 flush_signals(current);
5270 prepare_to_wait(&conf->wait_for_overlap,
5271 &w, TASK_INTERRUPTIBLE);
5272 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5273 logical_sector < mddev->suspend_hi) {
e62e58a5 5274 schedule();
27c0f68f
SL
5275 do_prepare = true;
5276 }
e464eafd
N
5277 goto retry;
5278 }
7ecaa1e6
N
5279
5280 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5281 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5282 /* Stripe is busy expanding or
5283 * add failed due to overlap. Flush everything
1da177e4
LT
5284 * and wait a while
5285 */
482c0834 5286 md_wakeup_thread(mddev->thread);
1da177e4
LT
5287 release_stripe(sh);
5288 schedule();
27c0f68f 5289 do_prepare = true;
1da177e4
LT
5290 goto retry;
5291 }
6ed3003c
N
5292 set_bit(STRIPE_HANDLE, &sh->state);
5293 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5294 if ((!sh->batch_head || sh == sh->batch_head) &&
5295 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5296 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5297 atomic_inc(&conf->preread_active_stripes);
8811b596 5298 release_stripe_plug(mddev, sh);
1da177e4
LT
5299 } else {
5300 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5301 bi->bi_error = -EIO;
1da177e4
LT
5302 break;
5303 }
1da177e4 5304 }
27c0f68f 5305 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5306
e7836bd6 5307 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5308 if (remaining == 0) {
1da177e4 5309
16a53ecc 5310 if ( rw == WRITE )
1da177e4 5311 md_write_end(mddev);
6712ecf8 5312
0a82a8d1
LT
5313 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5314 bi, 0);
4246a0b6 5315 bio_endio(bi);
1da177e4 5316 }
1da177e4
LT
5317}
5318
fd01b88c 5319static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5320
fd01b88c 5321static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5322{
52c03291
N
5323 /* reshaping is quite different to recovery/resync so it is
5324 * handled quite separately ... here.
5325 *
5326 * On each call to sync_request, we gather one chunk worth of
5327 * destination stripes and flag them as expanding.
5328 * Then we find all the source stripes and request reads.
5329 * As the reads complete, handle_stripe will copy the data
5330 * into the destination stripe and release that stripe.
5331 */
d1688a6d 5332 struct r5conf *conf = mddev->private;
1da177e4 5333 struct stripe_head *sh;
ccfcc3c1 5334 sector_t first_sector, last_sector;
f416885e
N
5335 int raid_disks = conf->previous_raid_disks;
5336 int data_disks = raid_disks - conf->max_degraded;
5337 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5338 int i;
5339 int dd_idx;
c8f517c4 5340 sector_t writepos, readpos, safepos;
ec32a2bd 5341 sector_t stripe_addr;
7a661381 5342 int reshape_sectors;
ab69ae12 5343 struct list_head stripes;
52c03291 5344
fef9c61f
N
5345 if (sector_nr == 0) {
5346 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5347 if (mddev->reshape_backwards &&
fef9c61f
N
5348 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5349 sector_nr = raid5_size(mddev, 0, 0)
5350 - conf->reshape_progress;
2c810cdd 5351 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5352 conf->reshape_progress > 0)
5353 sector_nr = conf->reshape_progress;
f416885e 5354 sector_div(sector_nr, new_data_disks);
fef9c61f 5355 if (sector_nr) {
8dee7211
N
5356 mddev->curr_resync_completed = sector_nr;
5357 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
5358 *skipped = 1;
5359 return sector_nr;
5360 }
52c03291
N
5361 }
5362
7a661381
N
5363 /* We need to process a full chunk at a time.
5364 * If old and new chunk sizes differ, we need to process the
5365 * largest of these
5366 */
664e7c41
AN
5367 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5368 reshape_sectors = mddev->new_chunk_sectors;
7a661381 5369 else
9d8f0363 5370 reshape_sectors = mddev->chunk_sectors;
7a661381 5371
b5254dd5
N
5372 /* We update the metadata at least every 10 seconds, or when
5373 * the data about to be copied would over-write the source of
5374 * the data at the front of the range. i.e. one new_stripe
5375 * along from reshape_progress new_maps to after where
5376 * reshape_safe old_maps to
52c03291 5377 */
fef9c61f 5378 writepos = conf->reshape_progress;
f416885e 5379 sector_div(writepos, new_data_disks);
c8f517c4
N
5380 readpos = conf->reshape_progress;
5381 sector_div(readpos, data_disks);
fef9c61f 5382 safepos = conf->reshape_safe;
f416885e 5383 sector_div(safepos, data_disks);
2c810cdd 5384 if (mddev->reshape_backwards) {
ed37d83e 5385 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 5386 readpos += reshape_sectors;
7a661381 5387 safepos += reshape_sectors;
fef9c61f 5388 } else {
7a661381 5389 writepos += reshape_sectors;
ed37d83e
N
5390 readpos -= min_t(sector_t, reshape_sectors, readpos);
5391 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5392 }
52c03291 5393
b5254dd5
N
5394 /* Having calculated the 'writepos' possibly use it
5395 * to set 'stripe_addr' which is where we will write to.
5396 */
5397 if (mddev->reshape_backwards) {
5398 BUG_ON(conf->reshape_progress == 0);
5399 stripe_addr = writepos;
5400 BUG_ON((mddev->dev_sectors &
5401 ~((sector_t)reshape_sectors - 1))
5402 - reshape_sectors - stripe_addr
5403 != sector_nr);
5404 } else {
5405 BUG_ON(writepos != sector_nr + reshape_sectors);
5406 stripe_addr = sector_nr;
5407 }
5408
c8f517c4
N
5409 /* 'writepos' is the most advanced device address we might write.
5410 * 'readpos' is the least advanced device address we might read.
5411 * 'safepos' is the least address recorded in the metadata as having
5412 * been reshaped.
b5254dd5
N
5413 * If there is a min_offset_diff, these are adjusted either by
5414 * increasing the safepos/readpos if diff is negative, or
5415 * increasing writepos if diff is positive.
5416 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5417 * ensure safety in the face of a crash - that must be done by userspace
5418 * making a backup of the data. So in that case there is no particular
5419 * rush to update metadata.
5420 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5421 * update the metadata to advance 'safepos' to match 'readpos' so that
5422 * we can be safe in the event of a crash.
5423 * So we insist on updating metadata if safepos is behind writepos and
5424 * readpos is beyond writepos.
5425 * In any case, update the metadata every 10 seconds.
5426 * Maybe that number should be configurable, but I'm not sure it is
5427 * worth it.... maybe it could be a multiple of safemode_delay???
5428 */
b5254dd5
N
5429 if (conf->min_offset_diff < 0) {
5430 safepos += -conf->min_offset_diff;
5431 readpos += -conf->min_offset_diff;
5432 } else
5433 writepos += conf->min_offset_diff;
5434
2c810cdd 5435 if ((mddev->reshape_backwards
c8f517c4
N
5436 ? (safepos > writepos && readpos < writepos)
5437 : (safepos < writepos && readpos > writepos)) ||
5438 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5439 /* Cannot proceed until we've updated the superblock... */
5440 wait_event(conf->wait_for_overlap,
c91abf5a
N
5441 atomic_read(&conf->reshape_stripes)==0
5442 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5443 if (atomic_read(&conf->reshape_stripes) != 0)
5444 return 0;
fef9c61f 5445 mddev->reshape_position = conf->reshape_progress;
75d3da43 5446 mddev->curr_resync_completed = sector_nr;
c8f517c4 5447 conf->reshape_checkpoint = jiffies;
850b2b42 5448 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5449 md_wakeup_thread(mddev->thread);
850b2b42 5450 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5451 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5452 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5453 return 0;
52c03291 5454 spin_lock_irq(&conf->device_lock);
fef9c61f 5455 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5456 spin_unlock_irq(&conf->device_lock);
5457 wake_up(&conf->wait_for_overlap);
acb180b0 5458 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5459 }
5460
ab69ae12 5461 INIT_LIST_HEAD(&stripes);
7a661381 5462 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5463 int j;
a9f326eb 5464 int skipped_disk = 0;
a8c906ca 5465 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5466 set_bit(STRIPE_EXPANDING, &sh->state);
5467 atomic_inc(&conf->reshape_stripes);
5468 /* If any of this stripe is beyond the end of the old
5469 * array, then we need to zero those blocks
5470 */
5471 for (j=sh->disks; j--;) {
5472 sector_t s;
5473 if (j == sh->pd_idx)
5474 continue;
f416885e 5475 if (conf->level == 6 &&
d0dabf7e 5476 j == sh->qd_idx)
f416885e 5477 continue;
784052ec 5478 s = compute_blocknr(sh, j, 0);
b522adcd 5479 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5480 skipped_disk = 1;
52c03291
N
5481 continue;
5482 }
5483 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5484 set_bit(R5_Expanded, &sh->dev[j].flags);
5485 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5486 }
a9f326eb 5487 if (!skipped_disk) {
52c03291
N
5488 set_bit(STRIPE_EXPAND_READY, &sh->state);
5489 set_bit(STRIPE_HANDLE, &sh->state);
5490 }
ab69ae12 5491 list_add(&sh->lru, &stripes);
52c03291
N
5492 }
5493 spin_lock_irq(&conf->device_lock);
2c810cdd 5494 if (mddev->reshape_backwards)
7a661381 5495 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5496 else
7a661381 5497 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5498 spin_unlock_irq(&conf->device_lock);
5499 /* Ok, those stripe are ready. We can start scheduling
5500 * reads on the source stripes.
5501 * The source stripes are determined by mapping the first and last
5502 * block on the destination stripes.
5503 */
52c03291 5504 first_sector =
ec32a2bd 5505 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5506 1, &dd_idx, NULL);
52c03291 5507 last_sector =
0e6e0271 5508 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5509 * new_data_disks - 1),
911d4ee8 5510 1, &dd_idx, NULL);
58c0fed4
AN
5511 if (last_sector >= mddev->dev_sectors)
5512 last_sector = mddev->dev_sectors - 1;
52c03291 5513 while (first_sector <= last_sector) {
a8c906ca 5514 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5515 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5516 set_bit(STRIPE_HANDLE, &sh->state);
5517 release_stripe(sh);
5518 first_sector += STRIPE_SECTORS;
5519 }
ab69ae12
N
5520 /* Now that the sources are clearly marked, we can release
5521 * the destination stripes
5522 */
5523 while (!list_empty(&stripes)) {
5524 sh = list_entry(stripes.next, struct stripe_head, lru);
5525 list_del_init(&sh->lru);
5526 release_stripe(sh);
5527 }
c6207277
N
5528 /* If this takes us to the resync_max point where we have to pause,
5529 * then we need to write out the superblock.
5530 */
7a661381 5531 sector_nr += reshape_sectors;
c03f6a19
N
5532 if ((sector_nr - mddev->curr_resync_completed) * 2
5533 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5534 /* Cannot proceed until we've updated the superblock... */
5535 wait_event(conf->wait_for_overlap,
c91abf5a
N
5536 atomic_read(&conf->reshape_stripes) == 0
5537 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5538 if (atomic_read(&conf->reshape_stripes) != 0)
5539 goto ret;
fef9c61f 5540 mddev->reshape_position = conf->reshape_progress;
75d3da43 5541 mddev->curr_resync_completed = sector_nr;
c8f517c4 5542 conf->reshape_checkpoint = jiffies;
c6207277
N
5543 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5544 md_wakeup_thread(mddev->thread);
5545 wait_event(mddev->sb_wait,
5546 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5547 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5548 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5549 goto ret;
c6207277 5550 spin_lock_irq(&conf->device_lock);
fef9c61f 5551 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5552 spin_unlock_irq(&conf->device_lock);
5553 wake_up(&conf->wait_for_overlap);
acb180b0 5554 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5555 }
c91abf5a 5556ret:
7a661381 5557 return reshape_sectors;
52c03291
N
5558}
5559
09314799 5560static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
52c03291 5561{
d1688a6d 5562 struct r5conf *conf = mddev->private;
52c03291 5563 struct stripe_head *sh;
58c0fed4 5564 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5565 sector_t sync_blocks;
16a53ecc
N
5566 int still_degraded = 0;
5567 int i;
1da177e4 5568
72626685 5569 if (sector_nr >= max_sector) {
1da177e4 5570 /* just being told to finish up .. nothing much to do */
cea9c228 5571
29269553
N
5572 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5573 end_reshape(conf);
5574 return 0;
5575 }
72626685
N
5576
5577 if (mddev->curr_resync < max_sector) /* aborted */
5578 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5579 &sync_blocks, 1);
16a53ecc 5580 else /* completed sync */
72626685
N
5581 conf->fullsync = 0;
5582 bitmap_close_sync(mddev->bitmap);
5583
1da177e4
LT
5584 return 0;
5585 }
ccfcc3c1 5586
64bd660b
N
5587 /* Allow raid5_quiesce to complete */
5588 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5589
52c03291
N
5590 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5591 return reshape_request(mddev, sector_nr, skipped);
f6705578 5592
c6207277
N
5593 /* No need to check resync_max as we never do more than one
5594 * stripe, and as resync_max will always be on a chunk boundary,
5595 * if the check in md_do_sync didn't fire, there is no chance
5596 * of overstepping resync_max here
5597 */
5598
16a53ecc 5599 /* if there is too many failed drives and we are trying
1da177e4
LT
5600 * to resync, then assert that we are finished, because there is
5601 * nothing we can do.
5602 */
3285edf1 5603 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5604 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5605 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5606 *skipped = 1;
1da177e4
LT
5607 return rv;
5608 }
6f608040 5609 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5610 !conf->fullsync &&
5611 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5612 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5613 /* we can skip this block, and probably more */
5614 sync_blocks /= STRIPE_SECTORS;
5615 *skipped = 1;
5616 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5617 }
1da177e4 5618
b47490c9
N
5619 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5620
a8c906ca 5621 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5622 if (sh == NULL) {
a8c906ca 5623 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5624 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5625 * is trying to get access
1da177e4 5626 */
66c006a5 5627 schedule_timeout_uninterruptible(1);
1da177e4 5628 }
16a53ecc 5629 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5630 * Note in case of > 1 drive failures it's possible we're rebuilding
5631 * one drive while leaving another faulty drive in array.
16a53ecc 5632 */
16d9cfab
EM
5633 rcu_read_lock();
5634 for (i = 0; i < conf->raid_disks; i++) {
5635 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5636
5637 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5638 still_degraded = 1;
16d9cfab
EM
5639 }
5640 rcu_read_unlock();
16a53ecc
N
5641
5642 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5643
83206d66 5644 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5645 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5646
1da177e4
LT
5647 release_stripe(sh);
5648
5649 return STRIPE_SECTORS;
5650}
5651
d1688a6d 5652static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5653{
5654 /* We may not be able to submit a whole bio at once as there
5655 * may not be enough stripe_heads available.
5656 * We cannot pre-allocate enough stripe_heads as we may need
5657 * more than exist in the cache (if we allow ever large chunks).
5658 * So we do one stripe head at a time and record in
5659 * ->bi_hw_segments how many have been done.
5660 *
5661 * We *know* that this entire raid_bio is in one chunk, so
5662 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5663 */
5664 struct stripe_head *sh;
911d4ee8 5665 int dd_idx;
46031f9a
RBJ
5666 sector_t sector, logical_sector, last_sector;
5667 int scnt = 0;
5668 int remaining;
5669 int handled = 0;
5670
4f024f37
KO
5671 logical_sector = raid_bio->bi_iter.bi_sector &
5672 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5673 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5674 0, &dd_idx, NULL);
f73a1c7d 5675 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5676
5677 for (; logical_sector < last_sector;
387bb173
NB
5678 logical_sector += STRIPE_SECTORS,
5679 sector += STRIPE_SECTORS,
5680 scnt++) {
46031f9a 5681
e7836bd6 5682 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5683 /* already done this stripe */
5684 continue;
5685
2844dc32 5686 sh = get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5687
5688 if (!sh) {
5689 /* failed to get a stripe - must wait */
e7836bd6 5690 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5691 conf->retry_read_aligned = raid_bio;
5692 return handled;
5693 }
5694
da41ba65 5695 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
387bb173 5696 release_stripe(sh);
e7836bd6 5697 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5698 conf->retry_read_aligned = raid_bio;
5699 return handled;
5700 }
5701
3f9e7c14 5702 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5703 handle_stripe(sh);
46031f9a
RBJ
5704 release_stripe(sh);
5705 handled++;
5706 }
e7836bd6 5707 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5708 if (remaining == 0) {
5709 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5710 raid_bio, 0);
4246a0b6 5711 bio_endio(raid_bio);
0a82a8d1 5712 }
46031f9a 5713 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5714 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
5715 return handled;
5716}
5717
bfc90cb0 5718static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5719 struct r5worker *worker,
5720 struct list_head *temp_inactive_list)
46a06401
SL
5721{
5722 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5723 int i, batch_size = 0, hash;
5724 bool release_inactive = false;
46a06401
SL
5725
5726 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5727 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5728 batch[batch_size++] = sh;
5729
566c09c5
SL
5730 if (batch_size == 0) {
5731 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5732 if (!list_empty(temp_inactive_list + i))
5733 break;
5734 if (i == NR_STRIPE_HASH_LOCKS)
5735 return batch_size;
5736 release_inactive = true;
5737 }
46a06401
SL
5738 spin_unlock_irq(&conf->device_lock);
5739
566c09c5
SL
5740 release_inactive_stripe_list(conf, temp_inactive_list,
5741 NR_STRIPE_HASH_LOCKS);
5742
5743 if (release_inactive) {
5744 spin_lock_irq(&conf->device_lock);
5745 return 0;
5746 }
5747
46a06401
SL
5748 for (i = 0; i < batch_size; i++)
5749 handle_stripe(batch[i]);
5750
5751 cond_resched();
5752
5753 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5754 for (i = 0; i < batch_size; i++) {
5755 hash = batch[i]->hash_lock_index;
5756 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5757 }
46a06401
SL
5758 return batch_size;
5759}
46031f9a 5760
851c30c9
SL
5761static void raid5_do_work(struct work_struct *work)
5762{
5763 struct r5worker *worker = container_of(work, struct r5worker, work);
5764 struct r5worker_group *group = worker->group;
5765 struct r5conf *conf = group->conf;
5766 int group_id = group - conf->worker_groups;
5767 int handled;
5768 struct blk_plug plug;
5769
5770 pr_debug("+++ raid5worker active\n");
5771
5772 blk_start_plug(&plug);
5773 handled = 0;
5774 spin_lock_irq(&conf->device_lock);
5775 while (1) {
5776 int batch_size, released;
5777
566c09c5 5778 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5779
566c09c5
SL
5780 batch_size = handle_active_stripes(conf, group_id, worker,
5781 worker->temp_inactive_list);
bfc90cb0 5782 worker->working = false;
851c30c9
SL
5783 if (!batch_size && !released)
5784 break;
5785 handled += batch_size;
5786 }
5787 pr_debug("%d stripes handled\n", handled);
5788
5789 spin_unlock_irq(&conf->device_lock);
5790 blk_finish_plug(&plug);
5791
5792 pr_debug("--- raid5worker inactive\n");
5793}
5794
1da177e4
LT
5795/*
5796 * This is our raid5 kernel thread.
5797 *
5798 * We scan the hash table for stripes which can be handled now.
5799 * During the scan, completed stripes are saved for us by the interrupt
5800 * handler, so that they will not have to wait for our next wakeup.
5801 */
4ed8731d 5802static void raid5d(struct md_thread *thread)
1da177e4 5803{
4ed8731d 5804 struct mddev *mddev = thread->mddev;
d1688a6d 5805 struct r5conf *conf = mddev->private;
1da177e4 5806 int handled;
e1dfa0a2 5807 struct blk_plug plug;
1da177e4 5808
45b4233c 5809 pr_debug("+++ raid5d active\n");
1da177e4
LT
5810
5811 md_check_recovery(mddev);
1da177e4 5812
e1dfa0a2 5813 blk_start_plug(&plug);
1da177e4
LT
5814 handled = 0;
5815 spin_lock_irq(&conf->device_lock);
5816 while (1) {
46031f9a 5817 struct bio *bio;
773ca82f
SL
5818 int batch_size, released;
5819
566c09c5 5820 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5821 if (released)
5822 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5823
0021b7bc 5824 if (
7c13edc8
N
5825 !list_empty(&conf->bitmap_list)) {
5826 /* Now is a good time to flush some bitmap updates */
5827 conf->seq_flush++;
700e432d 5828 spin_unlock_irq(&conf->device_lock);
72626685 5829 bitmap_unplug(mddev->bitmap);
700e432d 5830 spin_lock_irq(&conf->device_lock);
7c13edc8 5831 conf->seq_write = conf->seq_flush;
566c09c5 5832 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5833 }
0021b7bc 5834 raid5_activate_delayed(conf);
72626685 5835
46031f9a
RBJ
5836 while ((bio = remove_bio_from_retry(conf))) {
5837 int ok;
5838 spin_unlock_irq(&conf->device_lock);
5839 ok = retry_aligned_read(conf, bio);
5840 spin_lock_irq(&conf->device_lock);
5841 if (!ok)
5842 break;
5843 handled++;
5844 }
5845
566c09c5
SL
5846 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5847 conf->temp_inactive_list);
773ca82f 5848 if (!batch_size && !released)
1da177e4 5849 break;
46a06401 5850 handled += batch_size;
1da177e4 5851
46a06401
SL
5852 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5853 spin_unlock_irq(&conf->device_lock);
de393cde 5854 md_check_recovery(mddev);
46a06401
SL
5855 spin_lock_irq(&conf->device_lock);
5856 }
1da177e4 5857 }
45b4233c 5858 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5859
5860 spin_unlock_irq(&conf->device_lock);
edbe83ab
N
5861 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5862 grow_one_stripe(conf, __GFP_NOWARN);
5863 /* Set flag even if allocation failed. This helps
5864 * slow down allocation requests when mem is short
5865 */
5866 set_bit(R5_DID_ALLOC, &conf->cache_state);
5867 }
1da177e4 5868
c9f21aaf 5869 async_tx_issue_pending_all();
e1dfa0a2 5870 blk_finish_plug(&plug);
1da177e4 5871
45b4233c 5872 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5873}
5874
3f294f4f 5875static ssize_t
fd01b88c 5876raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5877{
7b1485ba
N
5878 struct r5conf *conf;
5879 int ret = 0;
5880 spin_lock(&mddev->lock);
5881 conf = mddev->private;
96de1e66 5882 if (conf)
edbe83ab 5883 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5884 spin_unlock(&mddev->lock);
5885 return ret;
3f294f4f
N
5886}
5887
c41d4ac4 5888int
fd01b88c 5889raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5890{
d1688a6d 5891 struct r5conf *conf = mddev->private;
b5470dc5
DW
5892 int err;
5893
c41d4ac4 5894 if (size <= 16 || size > 32768)
3f294f4f 5895 return -EINVAL;
486f0644 5896
edbe83ab 5897 conf->min_nr_stripes = size;
486f0644
N
5898 while (size < conf->max_nr_stripes &&
5899 drop_one_stripe(conf))
5900 ;
5901
edbe83ab 5902
b5470dc5
DW
5903 err = md_allow_write(mddev);
5904 if (err)
5905 return err;
486f0644
N
5906
5907 while (size > conf->max_nr_stripes)
5908 if (!grow_one_stripe(conf, GFP_KERNEL))
5909 break;
5910
c41d4ac4
N
5911 return 0;
5912}
5913EXPORT_SYMBOL(raid5_set_cache_size);
5914
5915static ssize_t
fd01b88c 5916raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5917{
6791875e 5918 struct r5conf *conf;
c41d4ac4
N
5919 unsigned long new;
5920 int err;
5921
5922 if (len >= PAGE_SIZE)
5923 return -EINVAL;
b29bebd6 5924 if (kstrtoul(page, 10, &new))
c41d4ac4 5925 return -EINVAL;
6791875e 5926 err = mddev_lock(mddev);
c41d4ac4
N
5927 if (err)
5928 return err;
6791875e
N
5929 conf = mddev->private;
5930 if (!conf)
5931 err = -ENODEV;
5932 else
5933 err = raid5_set_cache_size(mddev, new);
5934 mddev_unlock(mddev);
5935
5936 return err ?: len;
3f294f4f 5937}
007583c9 5938
96de1e66
N
5939static struct md_sysfs_entry
5940raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5941 raid5_show_stripe_cache_size,
5942 raid5_store_stripe_cache_size);
3f294f4f 5943
d06f191f
MS
5944static ssize_t
5945raid5_show_rmw_level(struct mddev *mddev, char *page)
5946{
5947 struct r5conf *conf = mddev->private;
5948 if (conf)
5949 return sprintf(page, "%d\n", conf->rmw_level);
5950 else
5951 return 0;
5952}
5953
5954static ssize_t
5955raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5956{
5957 struct r5conf *conf = mddev->private;
5958 unsigned long new;
5959
5960 if (!conf)
5961 return -ENODEV;
5962
5963 if (len >= PAGE_SIZE)
5964 return -EINVAL;
5965
5966 if (kstrtoul(page, 10, &new))
5967 return -EINVAL;
5968
5969 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5970 return -EINVAL;
5971
5972 if (new != PARITY_DISABLE_RMW &&
5973 new != PARITY_ENABLE_RMW &&
5974 new != PARITY_PREFER_RMW)
5975 return -EINVAL;
5976
5977 conf->rmw_level = new;
5978 return len;
5979}
5980
5981static struct md_sysfs_entry
5982raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5983 raid5_show_rmw_level,
5984 raid5_store_rmw_level);
5985
5986
8b3e6cdc 5987static ssize_t
fd01b88c 5988raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 5989{
7b1485ba
N
5990 struct r5conf *conf;
5991 int ret = 0;
5992 spin_lock(&mddev->lock);
5993 conf = mddev->private;
8b3e6cdc 5994 if (conf)
7b1485ba
N
5995 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5996 spin_unlock(&mddev->lock);
5997 return ret;
8b3e6cdc
DW
5998}
5999
6000static ssize_t
fd01b88c 6001raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6002{
6791875e 6003 struct r5conf *conf;
4ef197d8 6004 unsigned long new;
6791875e
N
6005 int err;
6006
8b3e6cdc
DW
6007 if (len >= PAGE_SIZE)
6008 return -EINVAL;
b29bebd6 6009 if (kstrtoul(page, 10, &new))
8b3e6cdc 6010 return -EINVAL;
6791875e
N
6011
6012 err = mddev_lock(mddev);
6013 if (err)
6014 return err;
6015 conf = mddev->private;
6016 if (!conf)
6017 err = -ENODEV;
edbe83ab 6018 else if (new > conf->min_nr_stripes)
6791875e
N
6019 err = -EINVAL;
6020 else
6021 conf->bypass_threshold = new;
6022 mddev_unlock(mddev);
6023 return err ?: len;
8b3e6cdc
DW
6024}
6025
6026static struct md_sysfs_entry
6027raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6028 S_IRUGO | S_IWUSR,
6029 raid5_show_preread_threshold,
6030 raid5_store_preread_threshold);
6031
d592a996
SL
6032static ssize_t
6033raid5_show_skip_copy(struct mddev *mddev, char *page)
6034{
7b1485ba
N
6035 struct r5conf *conf;
6036 int ret = 0;
6037 spin_lock(&mddev->lock);
6038 conf = mddev->private;
d592a996 6039 if (conf)
7b1485ba
N
6040 ret = sprintf(page, "%d\n", conf->skip_copy);
6041 spin_unlock(&mddev->lock);
6042 return ret;
d592a996
SL
6043}
6044
6045static ssize_t
6046raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6047{
6791875e 6048 struct r5conf *conf;
d592a996 6049 unsigned long new;
6791875e
N
6050 int err;
6051
d592a996
SL
6052 if (len >= PAGE_SIZE)
6053 return -EINVAL;
d592a996
SL
6054 if (kstrtoul(page, 10, &new))
6055 return -EINVAL;
6056 new = !!new;
6791875e
N
6057
6058 err = mddev_lock(mddev);
6059 if (err)
6060 return err;
6061 conf = mddev->private;
6062 if (!conf)
6063 err = -ENODEV;
6064 else if (new != conf->skip_copy) {
6065 mddev_suspend(mddev);
6066 conf->skip_copy = new;
6067 if (new)
6068 mddev->queue->backing_dev_info.capabilities |=
6069 BDI_CAP_STABLE_WRITES;
6070 else
6071 mddev->queue->backing_dev_info.capabilities &=
6072 ~BDI_CAP_STABLE_WRITES;
6073 mddev_resume(mddev);
6074 }
6075 mddev_unlock(mddev);
6076 return err ?: len;
d592a996
SL
6077}
6078
6079static struct md_sysfs_entry
6080raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6081 raid5_show_skip_copy,
6082 raid5_store_skip_copy);
6083
3f294f4f 6084static ssize_t
fd01b88c 6085stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6086{
d1688a6d 6087 struct r5conf *conf = mddev->private;
96de1e66
N
6088 if (conf)
6089 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6090 else
6091 return 0;
3f294f4f
N
6092}
6093
96de1e66
N
6094static struct md_sysfs_entry
6095raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6096
b721420e
SL
6097static ssize_t
6098raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6099{
7b1485ba
N
6100 struct r5conf *conf;
6101 int ret = 0;
6102 spin_lock(&mddev->lock);
6103 conf = mddev->private;
b721420e 6104 if (conf)
7b1485ba
N
6105 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6106 spin_unlock(&mddev->lock);
6107 return ret;
b721420e
SL
6108}
6109
60aaf933 6110static int alloc_thread_groups(struct r5conf *conf, int cnt,
6111 int *group_cnt,
6112 int *worker_cnt_per_group,
6113 struct r5worker_group **worker_groups);
b721420e
SL
6114static ssize_t
6115raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6116{
6791875e 6117 struct r5conf *conf;
b721420e
SL
6118 unsigned long new;
6119 int err;
60aaf933 6120 struct r5worker_group *new_groups, *old_groups;
6121 int group_cnt, worker_cnt_per_group;
b721420e
SL
6122
6123 if (len >= PAGE_SIZE)
6124 return -EINVAL;
b721420e
SL
6125 if (kstrtoul(page, 10, &new))
6126 return -EINVAL;
6127
6791875e
N
6128 err = mddev_lock(mddev);
6129 if (err)
6130 return err;
6131 conf = mddev->private;
6132 if (!conf)
6133 err = -ENODEV;
6134 else if (new != conf->worker_cnt_per_group) {
6135 mddev_suspend(mddev);
b721420e 6136
6791875e
N
6137 old_groups = conf->worker_groups;
6138 if (old_groups)
6139 flush_workqueue(raid5_wq);
d206dcfa 6140
6791875e
N
6141 err = alloc_thread_groups(conf, new,
6142 &group_cnt, &worker_cnt_per_group,
6143 &new_groups);
6144 if (!err) {
6145 spin_lock_irq(&conf->device_lock);
6146 conf->group_cnt = group_cnt;
6147 conf->worker_cnt_per_group = worker_cnt_per_group;
6148 conf->worker_groups = new_groups;
6149 spin_unlock_irq(&conf->device_lock);
b721420e 6150
6791875e
N
6151 if (old_groups)
6152 kfree(old_groups[0].workers);
6153 kfree(old_groups);
6154 }
6155 mddev_resume(mddev);
b721420e 6156 }
6791875e 6157 mddev_unlock(mddev);
b721420e 6158
6791875e 6159 return err ?: len;
b721420e
SL
6160}
6161
6162static struct md_sysfs_entry
6163raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6164 raid5_show_group_thread_cnt,
6165 raid5_store_group_thread_cnt);
6166
007583c9 6167static struct attribute *raid5_attrs[] = {
3f294f4f
N
6168 &raid5_stripecache_size.attr,
6169 &raid5_stripecache_active.attr,
8b3e6cdc 6170 &raid5_preread_bypass_threshold.attr,
b721420e 6171 &raid5_group_thread_cnt.attr,
d592a996 6172 &raid5_skip_copy.attr,
d06f191f 6173 &raid5_rmw_level.attr,
3f294f4f
N
6174 NULL,
6175};
007583c9
N
6176static struct attribute_group raid5_attrs_group = {
6177 .name = NULL,
6178 .attrs = raid5_attrs,
3f294f4f
N
6179};
6180
60aaf933 6181static int alloc_thread_groups(struct r5conf *conf, int cnt,
6182 int *group_cnt,
6183 int *worker_cnt_per_group,
6184 struct r5worker_group **worker_groups)
851c30c9 6185{
566c09c5 6186 int i, j, k;
851c30c9
SL
6187 ssize_t size;
6188 struct r5worker *workers;
6189
60aaf933 6190 *worker_cnt_per_group = cnt;
851c30c9 6191 if (cnt == 0) {
60aaf933 6192 *group_cnt = 0;
6193 *worker_groups = NULL;
851c30c9
SL
6194 return 0;
6195 }
60aaf933 6196 *group_cnt = num_possible_nodes();
851c30c9 6197 size = sizeof(struct r5worker) * cnt;
60aaf933 6198 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6199 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6200 *group_cnt, GFP_NOIO);
6201 if (!*worker_groups || !workers) {
851c30c9 6202 kfree(workers);
60aaf933 6203 kfree(*worker_groups);
851c30c9
SL
6204 return -ENOMEM;
6205 }
6206
60aaf933 6207 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6208 struct r5worker_group *group;
6209
0c775d52 6210 group = &(*worker_groups)[i];
851c30c9
SL
6211 INIT_LIST_HEAD(&group->handle_list);
6212 group->conf = conf;
6213 group->workers = workers + i * cnt;
6214
6215 for (j = 0; j < cnt; j++) {
566c09c5
SL
6216 struct r5worker *worker = group->workers + j;
6217 worker->group = group;
6218 INIT_WORK(&worker->work, raid5_do_work);
6219
6220 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6221 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6222 }
6223 }
6224
6225 return 0;
6226}
6227
6228static void free_thread_groups(struct r5conf *conf)
6229{
6230 if (conf->worker_groups)
6231 kfree(conf->worker_groups[0].workers);
6232 kfree(conf->worker_groups);
6233 conf->worker_groups = NULL;
6234}
6235
80c3a6ce 6236static sector_t
fd01b88c 6237raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6238{
d1688a6d 6239 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6240
6241 if (!sectors)
6242 sectors = mddev->dev_sectors;
5e5e3e78 6243 if (!raid_disks)
7ec05478 6244 /* size is defined by the smallest of previous and new size */
5e5e3e78 6245 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6246
9d8f0363 6247 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 6248 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
6249 return sectors * (raid_disks - conf->max_degraded);
6250}
6251
789b5e03
ON
6252static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6253{
6254 safe_put_page(percpu->spare_page);
46d5b785 6255 if (percpu->scribble)
6256 flex_array_free(percpu->scribble);
789b5e03
ON
6257 percpu->spare_page = NULL;
6258 percpu->scribble = NULL;
6259}
6260
6261static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6262{
6263 if (conf->level == 6 && !percpu->spare_page)
6264 percpu->spare_page = alloc_page(GFP_KERNEL);
6265 if (!percpu->scribble)
46d5b785 6266 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6267 conf->previous_raid_disks),
6268 max(conf->chunk_sectors,
6269 conf->prev_chunk_sectors)
6270 / STRIPE_SECTORS,
6271 GFP_KERNEL);
789b5e03
ON
6272
6273 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6274 free_scratch_buffer(conf, percpu);
6275 return -ENOMEM;
6276 }
6277
6278 return 0;
6279}
6280
d1688a6d 6281static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6282{
36d1c647
DW
6283 unsigned long cpu;
6284
6285 if (!conf->percpu)
6286 return;
6287
36d1c647
DW
6288#ifdef CONFIG_HOTPLUG_CPU
6289 unregister_cpu_notifier(&conf->cpu_notify);
6290#endif
789b5e03
ON
6291
6292 get_online_cpus();
6293 for_each_possible_cpu(cpu)
6294 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6295 put_online_cpus();
6296
6297 free_percpu(conf->percpu);
6298}
6299
d1688a6d 6300static void free_conf(struct r5conf *conf)
95fc17aa 6301{
edbe83ab
N
6302 if (conf->shrinker.seeks)
6303 unregister_shrinker(&conf->shrinker);
851c30c9 6304 free_thread_groups(conf);
95fc17aa 6305 shrink_stripes(conf);
36d1c647 6306 raid5_free_percpu(conf);
95fc17aa
DW
6307 kfree(conf->disks);
6308 kfree(conf->stripe_hashtbl);
6309 kfree(conf);
6310}
6311
36d1c647
DW
6312#ifdef CONFIG_HOTPLUG_CPU
6313static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6314 void *hcpu)
6315{
d1688a6d 6316 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6317 long cpu = (long)hcpu;
6318 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6319
6320 switch (action) {
6321 case CPU_UP_PREPARE:
6322 case CPU_UP_PREPARE_FROZEN:
789b5e03 6323 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6324 pr_err("%s: failed memory allocation for cpu%ld\n",
6325 __func__, cpu);
55af6bb5 6326 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6327 }
6328 break;
6329 case CPU_DEAD:
6330 case CPU_DEAD_FROZEN:
789b5e03 6331 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6332 break;
6333 default:
6334 break;
6335 }
6336 return NOTIFY_OK;
6337}
6338#endif
6339
d1688a6d 6340static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6341{
6342 unsigned long cpu;
789b5e03 6343 int err = 0;
36d1c647 6344
789b5e03
ON
6345 conf->percpu = alloc_percpu(struct raid5_percpu);
6346 if (!conf->percpu)
36d1c647 6347 return -ENOMEM;
789b5e03
ON
6348
6349#ifdef CONFIG_HOTPLUG_CPU
6350 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6351 conf->cpu_notify.priority = 0;
6352 err = register_cpu_notifier(&conf->cpu_notify);
6353 if (err)
6354 return err;
6355#endif
36d1c647
DW
6356
6357 get_online_cpus();
36d1c647 6358 for_each_present_cpu(cpu) {
789b5e03
ON
6359 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6360 if (err) {
6361 pr_err("%s: failed memory allocation for cpu%ld\n",
6362 __func__, cpu);
36d1c647
DW
6363 break;
6364 }
36d1c647 6365 }
36d1c647
DW
6366 put_online_cpus();
6367
6368 return err;
6369}
6370
edbe83ab
N
6371static unsigned long raid5_cache_scan(struct shrinker *shrink,
6372 struct shrink_control *sc)
6373{
6374 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6375 int ret = 0;
6376 while (ret < sc->nr_to_scan) {
6377 if (drop_one_stripe(conf) == 0)
6378 return SHRINK_STOP;
6379 ret++;
6380 }
6381 return ret;
6382}
6383
6384static unsigned long raid5_cache_count(struct shrinker *shrink,
6385 struct shrink_control *sc)
6386{
6387 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6388
6389 if (conf->max_nr_stripes < conf->min_nr_stripes)
6390 /* unlikely, but not impossible */
6391 return 0;
6392 return conf->max_nr_stripes - conf->min_nr_stripes;
6393}
6394
d1688a6d 6395static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6396{
d1688a6d 6397 struct r5conf *conf;
5e5e3e78 6398 int raid_disk, memory, max_disks;
3cb03002 6399 struct md_rdev *rdev;
1da177e4 6400 struct disk_info *disk;
0232605d 6401 char pers_name[6];
566c09c5 6402 int i;
60aaf933 6403 int group_cnt, worker_cnt_per_group;
6404 struct r5worker_group *new_group;
1da177e4 6405
91adb564
N
6406 if (mddev->new_level != 5
6407 && mddev->new_level != 4
6408 && mddev->new_level != 6) {
0c55e022 6409 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6410 mdname(mddev), mddev->new_level);
6411 return ERR_PTR(-EIO);
1da177e4 6412 }
91adb564
N
6413 if ((mddev->new_level == 5
6414 && !algorithm_valid_raid5(mddev->new_layout)) ||
6415 (mddev->new_level == 6
6416 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6417 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6418 mdname(mddev), mddev->new_layout);
6419 return ERR_PTR(-EIO);
99c0fb5f 6420 }
91adb564 6421 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6422 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6423 mdname(mddev), mddev->raid_disks);
6424 return ERR_PTR(-EINVAL);
4bbf3771
N
6425 }
6426
664e7c41
AN
6427 if (!mddev->new_chunk_sectors ||
6428 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6429 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6430 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6431 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6432 return ERR_PTR(-EINVAL);
f6705578
N
6433 }
6434
d1688a6d 6435 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6436 if (conf == NULL)
1da177e4 6437 goto abort;
851c30c9 6438 /* Don't enable multi-threading by default*/
60aaf933 6439 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6440 &new_group)) {
6441 conf->group_cnt = group_cnt;
6442 conf->worker_cnt_per_group = worker_cnt_per_group;
6443 conf->worker_groups = new_group;
6444 } else
851c30c9 6445 goto abort;
f5efd45a 6446 spin_lock_init(&conf->device_lock);
c46501b2 6447 seqcount_init(&conf->gen_lock);
b1b46486 6448 init_waitqueue_head(&conf->wait_for_quiescent);
e9e4c377
YL
6449 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6450 init_waitqueue_head(&conf->wait_for_stripe[i]);
6451 }
f5efd45a
DW
6452 init_waitqueue_head(&conf->wait_for_overlap);
6453 INIT_LIST_HEAD(&conf->handle_list);
6454 INIT_LIST_HEAD(&conf->hold_list);
6455 INIT_LIST_HEAD(&conf->delayed_list);
6456 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6457 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6458 atomic_set(&conf->active_stripes, 0);
6459 atomic_set(&conf->preread_active_stripes, 0);
6460 atomic_set(&conf->active_aligned_reads, 0);
6461 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6462 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6463
6464 conf->raid_disks = mddev->raid_disks;
6465 if (mddev->reshape_position == MaxSector)
6466 conf->previous_raid_disks = mddev->raid_disks;
6467 else
f6705578 6468 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6469 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6470
5e5e3e78 6471 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6472 GFP_KERNEL);
6473 if (!conf->disks)
6474 goto abort;
9ffae0cf 6475
1da177e4
LT
6476 conf->mddev = mddev;
6477
fccddba0 6478 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6479 goto abort;
1da177e4 6480
566c09c5
SL
6481 /* We init hash_locks[0] separately to that it can be used
6482 * as the reference lock in the spin_lock_nest_lock() call
6483 * in lock_all_device_hash_locks_irq in order to convince
6484 * lockdep that we know what we are doing.
6485 */
6486 spin_lock_init(conf->hash_locks);
6487 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6488 spin_lock_init(conf->hash_locks + i);
6489
6490 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6491 INIT_LIST_HEAD(conf->inactive_list + i);
6492
6493 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6494 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6495
36d1c647 6496 conf->level = mddev->new_level;
46d5b785 6497 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6498 if (raid5_alloc_percpu(conf) != 0)
6499 goto abort;
6500
0c55e022 6501 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6502
dafb20fa 6503 rdev_for_each(rdev, mddev) {
1da177e4 6504 raid_disk = rdev->raid_disk;
5e5e3e78 6505 if (raid_disk >= max_disks
1da177e4
LT
6506 || raid_disk < 0)
6507 continue;
6508 disk = conf->disks + raid_disk;
6509
17045f52
N
6510 if (test_bit(Replacement, &rdev->flags)) {
6511 if (disk->replacement)
6512 goto abort;
6513 disk->replacement = rdev;
6514 } else {
6515 if (disk->rdev)
6516 goto abort;
6517 disk->rdev = rdev;
6518 }
1da177e4 6519
b2d444d7 6520 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6521 char b[BDEVNAME_SIZE];
0c55e022
N
6522 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6523 " disk %d\n",
6524 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6525 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6526 /* Cannot rely on bitmap to complete recovery */
6527 conf->fullsync = 1;
1da177e4
LT
6528 }
6529
91adb564 6530 conf->level = mddev->new_level;
584acdd4 6531 if (conf->level == 6) {
16a53ecc 6532 conf->max_degraded = 2;
584acdd4
MS
6533 if (raid6_call.xor_syndrome)
6534 conf->rmw_level = PARITY_ENABLE_RMW;
6535 else
6536 conf->rmw_level = PARITY_DISABLE_RMW;
6537 } else {
16a53ecc 6538 conf->max_degraded = 1;
584acdd4
MS
6539 conf->rmw_level = PARITY_ENABLE_RMW;
6540 }
91adb564 6541 conf->algorithm = mddev->new_layout;
fef9c61f 6542 conf->reshape_progress = mddev->reshape_position;
e183eaed 6543 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6544 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
6545 conf->prev_algo = mddev->layout;
6546 }
1da177e4 6547
edbe83ab
N
6548 conf->min_nr_stripes = NR_STRIPES;
6549 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6550 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6551 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6552 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6553 printk(KERN_ERR
0c55e022
N
6554 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6555 mdname(mddev), memory);
91adb564
N
6556 goto abort;
6557 } else
0c55e022
N
6558 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6559 mdname(mddev), memory);
edbe83ab
N
6560 /*
6561 * Losing a stripe head costs more than the time to refill it,
6562 * it reduces the queue depth and so can hurt throughput.
6563 * So set it rather large, scaled by number of devices.
6564 */
6565 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6566 conf->shrinker.scan_objects = raid5_cache_scan;
6567 conf->shrinker.count_objects = raid5_cache_count;
6568 conf->shrinker.batch = 128;
6569 conf->shrinker.flags = 0;
6570 register_shrinker(&conf->shrinker);
1da177e4 6571
0232605d
N
6572 sprintf(pers_name, "raid%d", mddev->new_level);
6573 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6574 if (!conf->thread) {
6575 printk(KERN_ERR
0c55e022 6576 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6577 mdname(mddev));
16a53ecc
N
6578 goto abort;
6579 }
91adb564
N
6580
6581 return conf;
6582
6583 abort:
6584 if (conf) {
95fc17aa 6585 free_conf(conf);
91adb564
N
6586 return ERR_PTR(-EIO);
6587 } else
6588 return ERR_PTR(-ENOMEM);
6589}
6590
c148ffdc
N
6591static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6592{
6593 switch (algo) {
6594 case ALGORITHM_PARITY_0:
6595 if (raid_disk < max_degraded)
6596 return 1;
6597 break;
6598 case ALGORITHM_PARITY_N:
6599 if (raid_disk >= raid_disks - max_degraded)
6600 return 1;
6601 break;
6602 case ALGORITHM_PARITY_0_6:
f72ffdd6 6603 if (raid_disk == 0 ||
c148ffdc
N
6604 raid_disk == raid_disks - 1)
6605 return 1;
6606 break;
6607 case ALGORITHM_LEFT_ASYMMETRIC_6:
6608 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6609 case ALGORITHM_LEFT_SYMMETRIC_6:
6610 case ALGORITHM_RIGHT_SYMMETRIC_6:
6611 if (raid_disk == raid_disks - 1)
6612 return 1;
6613 }
6614 return 0;
6615}
6616
fd01b88c 6617static int run(struct mddev *mddev)
91adb564 6618{
d1688a6d 6619 struct r5conf *conf;
9f7c2220 6620 int working_disks = 0;
c148ffdc 6621 int dirty_parity_disks = 0;
3cb03002 6622 struct md_rdev *rdev;
c148ffdc 6623 sector_t reshape_offset = 0;
17045f52 6624 int i;
b5254dd5
N
6625 long long min_offset_diff = 0;
6626 int first = 1;
91adb564 6627
8c6ac868 6628 if (mddev->recovery_cp != MaxSector)
0c55e022 6629 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6630 " -- starting background reconstruction\n",
6631 mdname(mddev));
b5254dd5
N
6632
6633 rdev_for_each(rdev, mddev) {
6634 long long diff;
6635 if (rdev->raid_disk < 0)
6636 continue;
6637 diff = (rdev->new_data_offset - rdev->data_offset);
6638 if (first) {
6639 min_offset_diff = diff;
6640 first = 0;
6641 } else if (mddev->reshape_backwards &&
6642 diff < min_offset_diff)
6643 min_offset_diff = diff;
6644 else if (!mddev->reshape_backwards &&
6645 diff > min_offset_diff)
6646 min_offset_diff = diff;
6647 }
6648
91adb564
N
6649 if (mddev->reshape_position != MaxSector) {
6650 /* Check that we can continue the reshape.
b5254dd5
N
6651 * Difficulties arise if the stripe we would write to
6652 * next is at or after the stripe we would read from next.
6653 * For a reshape that changes the number of devices, this
6654 * is only possible for a very short time, and mdadm makes
6655 * sure that time appears to have past before assembling
6656 * the array. So we fail if that time hasn't passed.
6657 * For a reshape that keeps the number of devices the same
6658 * mdadm must be monitoring the reshape can keeping the
6659 * critical areas read-only and backed up. It will start
6660 * the array in read-only mode, so we check for that.
91adb564
N
6661 */
6662 sector_t here_new, here_old;
6663 int old_disks;
18b00334 6664 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 6665
88ce4930 6666 if (mddev->new_level != mddev->level) {
0c55e022 6667 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6668 "required - aborting.\n",
6669 mdname(mddev));
6670 return -EINVAL;
6671 }
91adb564
N
6672 old_disks = mddev->raid_disks - mddev->delta_disks;
6673 /* reshape_position must be on a new-stripe boundary, and one
6674 * further up in new geometry must map after here in old
6675 * geometry.
6676 */
6677 here_new = mddev->reshape_position;
664e7c41 6678 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 6679 (mddev->raid_disks - max_degraded))) {
0c55e022
N
6680 printk(KERN_ERR "md/raid:%s: reshape_position not "
6681 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6682 return -EINVAL;
6683 }
c148ffdc 6684 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
6685 /* here_new is the stripe we will write to */
6686 here_old = mddev->reshape_position;
9d8f0363 6687 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
6688 (old_disks-max_degraded));
6689 /* here_old is the first stripe that we might need to read
6690 * from */
67ac6011 6691 if (mddev->delta_disks == 0) {
b5254dd5
N
6692 if ((here_new * mddev->new_chunk_sectors !=
6693 here_old * mddev->chunk_sectors)) {
6694 printk(KERN_ERR "md/raid:%s: reshape position is"
6695 " confused - aborting\n", mdname(mddev));
6696 return -EINVAL;
6697 }
67ac6011 6698 /* We cannot be sure it is safe to start an in-place
b5254dd5 6699 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6700 * and taking constant backups.
6701 * mdadm always starts a situation like this in
6702 * readonly mode so it can take control before
6703 * allowing any writes. So just check for that.
6704 */
b5254dd5
N
6705 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6706 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6707 /* not really in-place - so OK */;
6708 else if (mddev->ro == 0) {
6709 printk(KERN_ERR "md/raid:%s: in-place reshape "
6710 "must be started in read-only mode "
6711 "- aborting\n",
0c55e022 6712 mdname(mddev));
67ac6011
N
6713 return -EINVAL;
6714 }
2c810cdd 6715 } else if (mddev->reshape_backwards
b5254dd5 6716 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
6717 here_old * mddev->chunk_sectors)
6718 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 6719 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 6720 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6721 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6722 "auto-recovery - aborting.\n",
6723 mdname(mddev));
91adb564
N
6724 return -EINVAL;
6725 }
0c55e022
N
6726 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6727 mdname(mddev));
91adb564
N
6728 /* OK, we should be able to continue; */
6729 } else {
6730 BUG_ON(mddev->level != mddev->new_level);
6731 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6732 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6733 BUG_ON(mddev->delta_disks != 0);
1da177e4 6734 }
91adb564 6735
245f46c2
N
6736 if (mddev->private == NULL)
6737 conf = setup_conf(mddev);
6738 else
6739 conf = mddev->private;
6740
91adb564
N
6741 if (IS_ERR(conf))
6742 return PTR_ERR(conf);
6743
b5254dd5 6744 conf->min_offset_diff = min_offset_diff;
91adb564
N
6745 mddev->thread = conf->thread;
6746 conf->thread = NULL;
6747 mddev->private = conf;
6748
17045f52
N
6749 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6750 i++) {
6751 rdev = conf->disks[i].rdev;
6752 if (!rdev && conf->disks[i].replacement) {
6753 /* The replacement is all we have yet */
6754 rdev = conf->disks[i].replacement;
6755 conf->disks[i].replacement = NULL;
6756 clear_bit(Replacement, &rdev->flags);
6757 conf->disks[i].rdev = rdev;
6758 }
6759 if (!rdev)
c148ffdc 6760 continue;
17045f52
N
6761 if (conf->disks[i].replacement &&
6762 conf->reshape_progress != MaxSector) {
6763 /* replacements and reshape simply do not mix. */
6764 printk(KERN_ERR "md: cannot handle concurrent "
6765 "replacement and reshape.\n");
6766 goto abort;
6767 }
2f115882 6768 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6769 working_disks++;
2f115882
N
6770 continue;
6771 }
c148ffdc
N
6772 /* This disc is not fully in-sync. However if it
6773 * just stored parity (beyond the recovery_offset),
6774 * when we don't need to be concerned about the
6775 * array being dirty.
6776 * When reshape goes 'backwards', we never have
6777 * partially completed devices, so we only need
6778 * to worry about reshape going forwards.
6779 */
6780 /* Hack because v0.91 doesn't store recovery_offset properly. */
6781 if (mddev->major_version == 0 &&
6782 mddev->minor_version > 90)
6783 rdev->recovery_offset = reshape_offset;
5026d7a9 6784
c148ffdc
N
6785 if (rdev->recovery_offset < reshape_offset) {
6786 /* We need to check old and new layout */
6787 if (!only_parity(rdev->raid_disk,
6788 conf->algorithm,
6789 conf->raid_disks,
6790 conf->max_degraded))
6791 continue;
6792 }
6793 if (!only_parity(rdev->raid_disk,
6794 conf->prev_algo,
6795 conf->previous_raid_disks,
6796 conf->max_degraded))
6797 continue;
6798 dirty_parity_disks++;
6799 }
91adb564 6800
17045f52
N
6801 /*
6802 * 0 for a fully functional array, 1 or 2 for a degraded array.
6803 */
908f4fbd 6804 mddev->degraded = calc_degraded(conf);
91adb564 6805
674806d6 6806 if (has_failed(conf)) {
0c55e022 6807 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6808 " (%d/%d failed)\n",
02c2de8c 6809 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6810 goto abort;
6811 }
6812
91adb564 6813 /* device size must be a multiple of chunk size */
9d8f0363 6814 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6815 mddev->resync_max_sectors = mddev->dev_sectors;
6816
c148ffdc 6817 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6818 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6819 if (mddev->ok_start_degraded)
6820 printk(KERN_WARNING
0c55e022
N
6821 "md/raid:%s: starting dirty degraded array"
6822 " - data corruption possible.\n",
6ff8d8ec
N
6823 mdname(mddev));
6824 else {
6825 printk(KERN_ERR
0c55e022 6826 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6827 mdname(mddev));
6828 goto abort;
6829 }
1da177e4
LT
6830 }
6831
1da177e4 6832 if (mddev->degraded == 0)
0c55e022
N
6833 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6834 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6835 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6836 mddev->new_layout);
1da177e4 6837 else
0c55e022
N
6838 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6839 " out of %d devices, algorithm %d\n",
6840 mdname(mddev), conf->level,
6841 mddev->raid_disks - mddev->degraded,
6842 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6843
6844 print_raid5_conf(conf);
6845
fef9c61f 6846 if (conf->reshape_progress != MaxSector) {
fef9c61f 6847 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6848 atomic_set(&conf->reshape_stripes, 0);
6849 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6850 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6851 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6852 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6853 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6854 "reshape");
f6705578
N
6855 }
6856
1da177e4 6857 /* Ok, everything is just fine now */
a64c876f
N
6858 if (mddev->to_remove == &raid5_attrs_group)
6859 mddev->to_remove = NULL;
00bcb4ac
N
6860 else if (mddev->kobj.sd &&
6861 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6862 printk(KERN_WARNING
4a5add49 6863 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6864 mdname(mddev));
4a5add49 6865 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6866
4a5add49 6867 if (mddev->queue) {
9f7c2220 6868 int chunk_size;
620125f2 6869 bool discard_supported = true;
4a5add49
N
6870 /* read-ahead size must cover two whole stripes, which
6871 * is 2 * (datadisks) * chunksize where 'n' is the
6872 * number of raid devices
6873 */
6874 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6875 int stripe = data_disks *
6876 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6877 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6878 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6879
9f7c2220
N
6880 chunk_size = mddev->chunk_sectors << 9;
6881 blk_queue_io_min(mddev->queue, chunk_size);
6882 blk_queue_io_opt(mddev->queue, chunk_size *
6883 (conf->raid_disks - conf->max_degraded));
c78afc62 6884 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6885 /*
6886 * We can only discard a whole stripe. It doesn't make sense to
6887 * discard data disk but write parity disk
6888 */
6889 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6890 /* Round up to power of 2, as discard handling
6891 * currently assumes that */
6892 while ((stripe-1) & stripe)
6893 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6894 mddev->queue->limits.discard_alignment = stripe;
6895 mddev->queue->limits.discard_granularity = stripe;
6896 /*
6897 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6898 * guarantee discard_zeroes_data
620125f2
SL
6899 */
6900 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6901
5026d7a9
PA
6902 blk_queue_max_write_same_sectors(mddev->queue, 0);
6903
05616be5 6904 rdev_for_each(rdev, mddev) {
9f7c2220
N
6905 disk_stack_limits(mddev->gendisk, rdev->bdev,
6906 rdev->data_offset << 9);
05616be5
N
6907 disk_stack_limits(mddev->gendisk, rdev->bdev,
6908 rdev->new_data_offset << 9);
620125f2
SL
6909 /*
6910 * discard_zeroes_data is required, otherwise data
6911 * could be lost. Consider a scenario: discard a stripe
6912 * (the stripe could be inconsistent if
6913 * discard_zeroes_data is 0); write one disk of the
6914 * stripe (the stripe could be inconsistent again
6915 * depending on which disks are used to calculate
6916 * parity); the disk is broken; The stripe data of this
6917 * disk is lost.
6918 */
6919 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6920 !bdev_get_queue(rdev->bdev)->
6921 limits.discard_zeroes_data)
6922 discard_supported = false;
8e0e99ba
N
6923 /* Unfortunately, discard_zeroes_data is not currently
6924 * a guarantee - just a hint. So we only allow DISCARD
6925 * if the sysadmin has confirmed that only safe devices
6926 * are in use by setting a module parameter.
6927 */
6928 if (!devices_handle_discard_safely) {
6929 if (discard_supported) {
6930 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6931 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6932 }
6933 discard_supported = false;
6934 }
05616be5 6935 }
620125f2
SL
6936
6937 if (discard_supported &&
6938 mddev->queue->limits.max_discard_sectors >= stripe &&
6939 mddev->queue->limits.discard_granularity >= stripe)
6940 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6941 mddev->queue);
6942 else
6943 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6944 mddev->queue);
9f7c2220 6945 }
23032a0e 6946
1da177e4
LT
6947 return 0;
6948abort:
01f96c0a 6949 md_unregister_thread(&mddev->thread);
e4f869d9
N
6950 print_raid5_conf(conf);
6951 free_conf(conf);
1da177e4 6952 mddev->private = NULL;
0c55e022 6953 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6954 return -EIO;
6955}
6956
afa0f557 6957static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 6958{
afa0f557 6959 struct r5conf *conf = priv;
1da177e4 6960
95fc17aa 6961 free_conf(conf);
a64c876f 6962 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6963}
6964
fd01b88c 6965static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6966{
d1688a6d 6967 struct r5conf *conf = mddev->private;
1da177e4
LT
6968 int i;
6969
9d8f0363
AN
6970 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6971 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 6972 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6973 for (i = 0; i < conf->raid_disks; i++)
6974 seq_printf (seq, "%s",
6975 conf->disks[i].rdev &&
b2d444d7 6976 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 6977 seq_printf (seq, "]");
1da177e4
LT
6978}
6979
d1688a6d 6980static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
6981{
6982 int i;
6983 struct disk_info *tmp;
6984
0c55e022 6985 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
6986 if (!conf) {
6987 printk("(conf==NULL)\n");
6988 return;
6989 }
0c55e022
N
6990 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6991 conf->raid_disks,
6992 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
6993
6994 for (i = 0; i < conf->raid_disks; i++) {
6995 char b[BDEVNAME_SIZE];
6996 tmp = conf->disks + i;
6997 if (tmp->rdev)
0c55e022
N
6998 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6999 i, !test_bit(Faulty, &tmp->rdev->flags),
7000 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7001 }
7002}
7003
fd01b88c 7004static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7005{
7006 int i;
d1688a6d 7007 struct r5conf *conf = mddev->private;
1da177e4 7008 struct disk_info *tmp;
6b965620
N
7009 int count = 0;
7010 unsigned long flags;
1da177e4
LT
7011
7012 for (i = 0; i < conf->raid_disks; i++) {
7013 tmp = conf->disks + i;
dd054fce
N
7014 if (tmp->replacement
7015 && tmp->replacement->recovery_offset == MaxSector
7016 && !test_bit(Faulty, &tmp->replacement->flags)
7017 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7018 /* Replacement has just become active. */
7019 if (!tmp->rdev
7020 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7021 count++;
7022 if (tmp->rdev) {
7023 /* Replaced device not technically faulty,
7024 * but we need to be sure it gets removed
7025 * and never re-added.
7026 */
7027 set_bit(Faulty, &tmp->rdev->flags);
7028 sysfs_notify_dirent_safe(
7029 tmp->rdev->sysfs_state);
7030 }
7031 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7032 } else if (tmp->rdev
70fffd0b 7033 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7034 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7035 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7036 count++;
43c73ca4 7037 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7038 }
7039 }
6b965620 7040 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7041 mddev->degraded = calc_degraded(conf);
6b965620 7042 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7043 print_raid5_conf(conf);
6b965620 7044 return count;
1da177e4
LT
7045}
7046
b8321b68 7047static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7048{
d1688a6d 7049 struct r5conf *conf = mddev->private;
1da177e4 7050 int err = 0;
b8321b68 7051 int number = rdev->raid_disk;
657e3e4d 7052 struct md_rdev **rdevp;
1da177e4
LT
7053 struct disk_info *p = conf->disks + number;
7054
7055 print_raid5_conf(conf);
657e3e4d
N
7056 if (rdev == p->rdev)
7057 rdevp = &p->rdev;
7058 else if (rdev == p->replacement)
7059 rdevp = &p->replacement;
7060 else
7061 return 0;
7062
7063 if (number >= conf->raid_disks &&
7064 conf->reshape_progress == MaxSector)
7065 clear_bit(In_sync, &rdev->flags);
7066
7067 if (test_bit(In_sync, &rdev->flags) ||
7068 atomic_read(&rdev->nr_pending)) {
7069 err = -EBUSY;
7070 goto abort;
7071 }
7072 /* Only remove non-faulty devices if recovery
7073 * isn't possible.
7074 */
7075 if (!test_bit(Faulty, &rdev->flags) &&
7076 mddev->recovery_disabled != conf->recovery_disabled &&
7077 !has_failed(conf) &&
dd054fce 7078 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7079 number < conf->raid_disks) {
7080 err = -EBUSY;
7081 goto abort;
7082 }
7083 *rdevp = NULL;
7084 synchronize_rcu();
7085 if (atomic_read(&rdev->nr_pending)) {
7086 /* lost the race, try later */
7087 err = -EBUSY;
7088 *rdevp = rdev;
dd054fce
N
7089 } else if (p->replacement) {
7090 /* We must have just cleared 'rdev' */
7091 p->rdev = p->replacement;
7092 clear_bit(Replacement, &p->replacement->flags);
7093 smp_mb(); /* Make sure other CPUs may see both as identical
7094 * but will never see neither - if they are careful
7095 */
7096 p->replacement = NULL;
7097 clear_bit(WantReplacement, &rdev->flags);
7098 } else
7099 /* We might have just removed the Replacement as faulty-
7100 * clear the bit just in case
7101 */
7102 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7103abort:
7104
7105 print_raid5_conf(conf);
7106 return err;
7107}
7108
fd01b88c 7109static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7110{
d1688a6d 7111 struct r5conf *conf = mddev->private;
199050ea 7112 int err = -EEXIST;
1da177e4
LT
7113 int disk;
7114 struct disk_info *p;
6c2fce2e
NB
7115 int first = 0;
7116 int last = conf->raid_disks - 1;
1da177e4 7117
7f0da59b
N
7118 if (mddev->recovery_disabled == conf->recovery_disabled)
7119 return -EBUSY;
7120
dc10c643 7121 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7122 /* no point adding a device */
199050ea 7123 return -EINVAL;
1da177e4 7124
6c2fce2e
NB
7125 if (rdev->raid_disk >= 0)
7126 first = last = rdev->raid_disk;
1da177e4
LT
7127
7128 /*
16a53ecc
N
7129 * find the disk ... but prefer rdev->saved_raid_disk
7130 * if possible.
1da177e4 7131 */
16a53ecc 7132 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7133 rdev->saved_raid_disk >= first &&
16a53ecc 7134 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7135 first = rdev->saved_raid_disk;
7136
7137 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7138 p = conf->disks + disk;
7139 if (p->rdev == NULL) {
b2d444d7 7140 clear_bit(In_sync, &rdev->flags);
1da177e4 7141 rdev->raid_disk = disk;
199050ea 7142 err = 0;
72626685
N
7143 if (rdev->saved_raid_disk != disk)
7144 conf->fullsync = 1;
d6065f7b 7145 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7146 goto out;
1da177e4 7147 }
5cfb22a1
N
7148 }
7149 for (disk = first; disk <= last; disk++) {
7150 p = conf->disks + disk;
7bfec5f3
N
7151 if (test_bit(WantReplacement, &p->rdev->flags) &&
7152 p->replacement == NULL) {
7153 clear_bit(In_sync, &rdev->flags);
7154 set_bit(Replacement, &rdev->flags);
7155 rdev->raid_disk = disk;
7156 err = 0;
7157 conf->fullsync = 1;
7158 rcu_assign_pointer(p->replacement, rdev);
7159 break;
7160 }
7161 }
5cfb22a1 7162out:
1da177e4 7163 print_raid5_conf(conf);
199050ea 7164 return err;
1da177e4
LT
7165}
7166
fd01b88c 7167static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7168{
7169 /* no resync is happening, and there is enough space
7170 * on all devices, so we can resize.
7171 * We need to make sure resync covers any new space.
7172 * If the array is shrinking we should possibly wait until
7173 * any io in the removed space completes, but it hardly seems
7174 * worth it.
7175 */
a4a6125a 7176 sector_t newsize;
9d8f0363 7177 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
7178 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7179 if (mddev->external_size &&
7180 mddev->array_sectors > newsize)
b522adcd 7181 return -EINVAL;
a4a6125a
N
7182 if (mddev->bitmap) {
7183 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7184 if (ret)
7185 return ret;
7186 }
7187 md_set_array_sectors(mddev, newsize);
f233ea5c 7188 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7189 revalidate_disk(mddev->gendisk);
b098636c
N
7190 if (sectors > mddev->dev_sectors &&
7191 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7192 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7193 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7194 }
58c0fed4 7195 mddev->dev_sectors = sectors;
4b5c7ae8 7196 mddev->resync_max_sectors = sectors;
1da177e4
LT
7197 return 0;
7198}
7199
fd01b88c 7200static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7201{
7202 /* Can only proceed if there are plenty of stripe_heads.
7203 * We need a minimum of one full stripe,, and for sensible progress
7204 * it is best to have about 4 times that.
7205 * If we require 4 times, then the default 256 4K stripe_heads will
7206 * allow for chunk sizes up to 256K, which is probably OK.
7207 * If the chunk size is greater, user-space should request more
7208 * stripe_heads first.
7209 */
d1688a6d 7210 struct r5conf *conf = mddev->private;
01ee22b4 7211 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7212 > conf->min_nr_stripes ||
01ee22b4 7213 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7214 > conf->min_nr_stripes) {
0c55e022
N
7215 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7216 mdname(mddev),
01ee22b4
N
7217 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7218 / STRIPE_SIZE)*4);
7219 return 0;
7220 }
7221 return 1;
7222}
7223
fd01b88c 7224static int check_reshape(struct mddev *mddev)
29269553 7225{
d1688a6d 7226 struct r5conf *conf = mddev->private;
29269553 7227
88ce4930
N
7228 if (mddev->delta_disks == 0 &&
7229 mddev->new_layout == mddev->layout &&
664e7c41 7230 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7231 return 0; /* nothing to do */
674806d6 7232 if (has_failed(conf))
ec32a2bd 7233 return -EINVAL;
fdcfbbb6 7234 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7235 /* We might be able to shrink, but the devices must
7236 * be made bigger first.
7237 * For raid6, 4 is the minimum size.
7238 * Otherwise 2 is the minimum
7239 */
7240 int min = 2;
7241 if (mddev->level == 6)
7242 min = 4;
7243 if (mddev->raid_disks + mddev->delta_disks < min)
7244 return -EINVAL;
7245 }
29269553 7246
01ee22b4 7247 if (!check_stripe_cache(mddev))
29269553 7248 return -ENOSPC;
29269553 7249
738a2738
N
7250 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7251 mddev->delta_disks > 0)
7252 if (resize_chunks(conf,
7253 conf->previous_raid_disks
7254 + max(0, mddev->delta_disks),
7255 max(mddev->new_chunk_sectors,
7256 mddev->chunk_sectors)
7257 ) < 0)
7258 return -ENOMEM;
e56108d6
N
7259 return resize_stripes(conf, (conf->previous_raid_disks
7260 + mddev->delta_disks));
63c70c4f
N
7261}
7262
fd01b88c 7263static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7264{
d1688a6d 7265 struct r5conf *conf = mddev->private;
3cb03002 7266 struct md_rdev *rdev;
63c70c4f 7267 int spares = 0;
c04be0aa 7268 unsigned long flags;
63c70c4f 7269
f416885e 7270 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7271 return -EBUSY;
7272
01ee22b4
N
7273 if (!check_stripe_cache(mddev))
7274 return -ENOSPC;
7275
30b67645
N
7276 if (has_failed(conf))
7277 return -EINVAL;
7278
c6563a8c 7279 rdev_for_each(rdev, mddev) {
469518a3
N
7280 if (!test_bit(In_sync, &rdev->flags)
7281 && !test_bit(Faulty, &rdev->flags))
29269553 7282 spares++;
c6563a8c 7283 }
63c70c4f 7284
f416885e 7285 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7286 /* Not enough devices even to make a degraded array
7287 * of that size
7288 */
7289 return -EINVAL;
7290
ec32a2bd
N
7291 /* Refuse to reduce size of the array. Any reductions in
7292 * array size must be through explicit setting of array_size
7293 * attribute.
7294 */
7295 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7296 < mddev->array_sectors) {
0c55e022 7297 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7298 "before number of disks\n", mdname(mddev));
7299 return -EINVAL;
7300 }
7301
f6705578 7302 atomic_set(&conf->reshape_stripes, 0);
29269553 7303 spin_lock_irq(&conf->device_lock);
c46501b2 7304 write_seqcount_begin(&conf->gen_lock);
29269553 7305 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7306 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7307 conf->prev_chunk_sectors = conf->chunk_sectors;
7308 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7309 conf->prev_algo = conf->algorithm;
7310 conf->algorithm = mddev->new_layout;
05616be5
N
7311 conf->generation++;
7312 /* Code that selects data_offset needs to see the generation update
7313 * if reshape_progress has been set - so a memory barrier needed.
7314 */
7315 smp_mb();
2c810cdd 7316 if (mddev->reshape_backwards)
fef9c61f
N
7317 conf->reshape_progress = raid5_size(mddev, 0, 0);
7318 else
7319 conf->reshape_progress = 0;
7320 conf->reshape_safe = conf->reshape_progress;
c46501b2 7321 write_seqcount_end(&conf->gen_lock);
29269553
N
7322 spin_unlock_irq(&conf->device_lock);
7323
4d77e3ba
N
7324 /* Now make sure any requests that proceeded on the assumption
7325 * the reshape wasn't running - like Discard or Read - have
7326 * completed.
7327 */
7328 mddev_suspend(mddev);
7329 mddev_resume(mddev);
7330
29269553
N
7331 /* Add some new drives, as many as will fit.
7332 * We know there are enough to make the newly sized array work.
3424bf6a
N
7333 * Don't add devices if we are reducing the number of
7334 * devices in the array. This is because it is not possible
7335 * to correctly record the "partially reconstructed" state of
7336 * such devices during the reshape and confusion could result.
29269553 7337 */
87a8dec9 7338 if (mddev->delta_disks >= 0) {
dafb20fa 7339 rdev_for_each(rdev, mddev)
87a8dec9
N
7340 if (rdev->raid_disk < 0 &&
7341 !test_bit(Faulty, &rdev->flags)) {
7342 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7343 if (rdev->raid_disk
9d4c7d87 7344 >= conf->previous_raid_disks)
87a8dec9 7345 set_bit(In_sync, &rdev->flags);
9d4c7d87 7346 else
87a8dec9 7347 rdev->recovery_offset = 0;
36fad858
NK
7348
7349 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7350 /* Failure here is OK */;
50da0840 7351 }
87a8dec9
N
7352 } else if (rdev->raid_disk >= conf->previous_raid_disks
7353 && !test_bit(Faulty, &rdev->flags)) {
7354 /* This is a spare that was manually added */
7355 set_bit(In_sync, &rdev->flags);
87a8dec9 7356 }
29269553 7357
87a8dec9
N
7358 /* When a reshape changes the number of devices,
7359 * ->degraded is measured against the larger of the
7360 * pre and post number of devices.
7361 */
ec32a2bd 7362 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7363 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7364 spin_unlock_irqrestore(&conf->device_lock, flags);
7365 }
63c70c4f 7366 mddev->raid_disks = conf->raid_disks;
e516402c 7367 mddev->reshape_position = conf->reshape_progress;
850b2b42 7368 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7369
29269553
N
7370 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7371 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7372 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7373 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7374 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7375 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7376 "reshape");
29269553
N
7377 if (!mddev->sync_thread) {
7378 mddev->recovery = 0;
7379 spin_lock_irq(&conf->device_lock);
ba8805b9 7380 write_seqcount_begin(&conf->gen_lock);
29269553 7381 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7382 mddev->new_chunk_sectors =
7383 conf->chunk_sectors = conf->prev_chunk_sectors;
7384 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7385 rdev_for_each(rdev, mddev)
7386 rdev->new_data_offset = rdev->data_offset;
7387 smp_wmb();
ba8805b9 7388 conf->generation --;
fef9c61f 7389 conf->reshape_progress = MaxSector;
1e3fa9bd 7390 mddev->reshape_position = MaxSector;
ba8805b9 7391 write_seqcount_end(&conf->gen_lock);
29269553
N
7392 spin_unlock_irq(&conf->device_lock);
7393 return -EAGAIN;
7394 }
c8f517c4 7395 conf->reshape_checkpoint = jiffies;
29269553
N
7396 md_wakeup_thread(mddev->sync_thread);
7397 md_new_event(mddev);
7398 return 0;
7399}
29269553 7400
ec32a2bd
N
7401/* This is called from the reshape thread and should make any
7402 * changes needed in 'conf'
7403 */
d1688a6d 7404static void end_reshape(struct r5conf *conf)
29269553 7405{
29269553 7406
f6705578 7407 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7408 struct md_rdev *rdev;
f6705578 7409
f6705578 7410 spin_lock_irq(&conf->device_lock);
cea9c228 7411 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7412 rdev_for_each(rdev, conf->mddev)
7413 rdev->data_offset = rdev->new_data_offset;
7414 smp_wmb();
fef9c61f 7415 conf->reshape_progress = MaxSector;
f6705578 7416 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7417 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7418
7419 /* read-ahead size must cover two whole stripes, which is
7420 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7421 */
4a5add49 7422 if (conf->mddev->queue) {
cea9c228 7423 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7424 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7425 / PAGE_SIZE);
16a53ecc
N
7426 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7427 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7428 }
29269553 7429 }
29269553
N
7430}
7431
ec32a2bd
N
7432/* This is called from the raid5d thread with mddev_lock held.
7433 * It makes config changes to the device.
7434 */
fd01b88c 7435static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7436{
d1688a6d 7437 struct r5conf *conf = mddev->private;
cea9c228
N
7438
7439 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7440
ec32a2bd
N
7441 if (mddev->delta_disks > 0) {
7442 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7443 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7444 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7445 } else {
7446 int d;
908f4fbd
N
7447 spin_lock_irq(&conf->device_lock);
7448 mddev->degraded = calc_degraded(conf);
7449 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7450 for (d = conf->raid_disks ;
7451 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7452 d++) {
3cb03002 7453 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7454 if (rdev)
7455 clear_bit(In_sync, &rdev->flags);
7456 rdev = conf->disks[d].replacement;
7457 if (rdev)
7458 clear_bit(In_sync, &rdev->flags);
1a67dde0 7459 }
cea9c228 7460 }
88ce4930 7461 mddev->layout = conf->algorithm;
09c9e5fa 7462 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7463 mddev->reshape_position = MaxSector;
7464 mddev->delta_disks = 0;
2c810cdd 7465 mddev->reshape_backwards = 0;
cea9c228
N
7466 }
7467}
7468
fd01b88c 7469static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7470{
d1688a6d 7471 struct r5conf *conf = mddev->private;
72626685
N
7472
7473 switch(state) {
e464eafd
N
7474 case 2: /* resume for a suspend */
7475 wake_up(&conf->wait_for_overlap);
7476 break;
7477
72626685 7478 case 1: /* stop all writes */
566c09c5 7479 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7480 /* '2' tells resync/reshape to pause so that all
7481 * active stripes can drain
7482 */
7483 conf->quiesce = 2;
b1b46486 7484 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7485 atomic_read(&conf->active_stripes) == 0 &&
7486 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7487 unlock_all_device_hash_locks_irq(conf),
7488 lock_all_device_hash_locks_irq(conf));
64bd660b 7489 conf->quiesce = 1;
566c09c5 7490 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7491 /* allow reshape to continue */
7492 wake_up(&conf->wait_for_overlap);
72626685
N
7493 break;
7494
7495 case 0: /* re-enable writes */
566c09c5 7496 lock_all_device_hash_locks_irq(conf);
72626685 7497 conf->quiesce = 0;
b1b46486 7498 wake_up(&conf->wait_for_quiescent);
e464eafd 7499 wake_up(&conf->wait_for_overlap);
566c09c5 7500 unlock_all_device_hash_locks_irq(conf);
72626685
N
7501 break;
7502 }
72626685 7503}
b15c2e57 7504
fd01b88c 7505static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7506{
e373ab10 7507 struct r0conf *raid0_conf = mddev->private;
d76c8420 7508 sector_t sectors;
54071b38 7509
f1b29bca 7510 /* for raid0 takeover only one zone is supported */
e373ab10 7511 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7512 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7513 mdname(mddev));
f1b29bca
DW
7514 return ERR_PTR(-EINVAL);
7515 }
7516
e373ab10
N
7517 sectors = raid0_conf->strip_zone[0].zone_end;
7518 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7519 mddev->dev_sectors = sectors;
f1b29bca 7520 mddev->new_level = level;
54071b38
TM
7521 mddev->new_layout = ALGORITHM_PARITY_N;
7522 mddev->new_chunk_sectors = mddev->chunk_sectors;
7523 mddev->raid_disks += 1;
7524 mddev->delta_disks = 1;
7525 /* make sure it will be not marked as dirty */
7526 mddev->recovery_cp = MaxSector;
7527
7528 return setup_conf(mddev);
7529}
7530
fd01b88c 7531static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7532{
7533 int chunksect;
7534
7535 if (mddev->raid_disks != 2 ||
7536 mddev->degraded > 1)
7537 return ERR_PTR(-EINVAL);
7538
7539 /* Should check if there are write-behind devices? */
7540
7541 chunksect = 64*2; /* 64K by default */
7542
7543 /* The array must be an exact multiple of chunksize */
7544 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7545 chunksect >>= 1;
7546
7547 if ((chunksect<<9) < STRIPE_SIZE)
7548 /* array size does not allow a suitable chunk size */
7549 return ERR_PTR(-EINVAL);
7550
7551 mddev->new_level = 5;
7552 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7553 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7554
7555 return setup_conf(mddev);
7556}
7557
fd01b88c 7558static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7559{
7560 int new_layout;
7561
7562 switch (mddev->layout) {
7563 case ALGORITHM_LEFT_ASYMMETRIC_6:
7564 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7565 break;
7566 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7567 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7568 break;
7569 case ALGORITHM_LEFT_SYMMETRIC_6:
7570 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7571 break;
7572 case ALGORITHM_RIGHT_SYMMETRIC_6:
7573 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7574 break;
7575 case ALGORITHM_PARITY_0_6:
7576 new_layout = ALGORITHM_PARITY_0;
7577 break;
7578 case ALGORITHM_PARITY_N:
7579 new_layout = ALGORITHM_PARITY_N;
7580 break;
7581 default:
7582 return ERR_PTR(-EINVAL);
7583 }
7584 mddev->new_level = 5;
7585 mddev->new_layout = new_layout;
7586 mddev->delta_disks = -1;
7587 mddev->raid_disks -= 1;
7588 return setup_conf(mddev);
7589}
7590
fd01b88c 7591static int raid5_check_reshape(struct mddev *mddev)
b3546035 7592{
88ce4930
N
7593 /* For a 2-drive array, the layout and chunk size can be changed
7594 * immediately as not restriping is needed.
7595 * For larger arrays we record the new value - after validation
7596 * to be used by a reshape pass.
b3546035 7597 */
d1688a6d 7598 struct r5conf *conf = mddev->private;
597a711b 7599 int new_chunk = mddev->new_chunk_sectors;
b3546035 7600
597a711b 7601 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7602 return -EINVAL;
7603 if (new_chunk > 0) {
0ba459d2 7604 if (!is_power_of_2(new_chunk))
b3546035 7605 return -EINVAL;
597a711b 7606 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7607 return -EINVAL;
597a711b 7608 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7609 /* not factor of array size */
7610 return -EINVAL;
7611 }
7612
7613 /* They look valid */
7614
88ce4930 7615 if (mddev->raid_disks == 2) {
597a711b
N
7616 /* can make the change immediately */
7617 if (mddev->new_layout >= 0) {
7618 conf->algorithm = mddev->new_layout;
7619 mddev->layout = mddev->new_layout;
88ce4930
N
7620 }
7621 if (new_chunk > 0) {
597a711b
N
7622 conf->chunk_sectors = new_chunk ;
7623 mddev->chunk_sectors = new_chunk;
88ce4930
N
7624 }
7625 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7626 md_wakeup_thread(mddev->thread);
b3546035 7627 }
50ac168a 7628 return check_reshape(mddev);
88ce4930
N
7629}
7630
fd01b88c 7631static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7632{
597a711b 7633 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7634
597a711b 7635 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7636 return -EINVAL;
b3546035 7637 if (new_chunk > 0) {
0ba459d2 7638 if (!is_power_of_2(new_chunk))
88ce4930 7639 return -EINVAL;
597a711b 7640 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7641 return -EINVAL;
597a711b 7642 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7643 /* not factor of array size */
7644 return -EINVAL;
b3546035 7645 }
88ce4930
N
7646
7647 /* They look valid */
50ac168a 7648 return check_reshape(mddev);
b3546035
N
7649}
7650
fd01b88c 7651static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7652{
7653 /* raid5 can take over:
f1b29bca 7654 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7655 * raid1 - if there are two drives. We need to know the chunk size
7656 * raid4 - trivial - just use a raid4 layout.
7657 * raid6 - Providing it is a *_6 layout
d562b0c4 7658 */
f1b29bca
DW
7659 if (mddev->level == 0)
7660 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7661 if (mddev->level == 1)
7662 return raid5_takeover_raid1(mddev);
e9d4758f
N
7663 if (mddev->level == 4) {
7664 mddev->new_layout = ALGORITHM_PARITY_N;
7665 mddev->new_level = 5;
7666 return setup_conf(mddev);
7667 }
fc9739c6
N
7668 if (mddev->level == 6)
7669 return raid5_takeover_raid6(mddev);
d562b0c4
N
7670
7671 return ERR_PTR(-EINVAL);
7672}
7673
fd01b88c 7674static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7675{
f1b29bca
DW
7676 /* raid4 can take over:
7677 * raid0 - if there is only one strip zone
7678 * raid5 - if layout is right
a78d38a1 7679 */
f1b29bca
DW
7680 if (mddev->level == 0)
7681 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7682 if (mddev->level == 5 &&
7683 mddev->layout == ALGORITHM_PARITY_N) {
7684 mddev->new_layout = 0;
7685 mddev->new_level = 4;
7686 return setup_conf(mddev);
7687 }
7688 return ERR_PTR(-EINVAL);
7689}
d562b0c4 7690
84fc4b56 7691static struct md_personality raid5_personality;
245f46c2 7692
fd01b88c 7693static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7694{
7695 /* Currently can only take over a raid5. We map the
7696 * personality to an equivalent raid6 personality
7697 * with the Q block at the end.
7698 */
7699 int new_layout;
7700
7701 if (mddev->pers != &raid5_personality)
7702 return ERR_PTR(-EINVAL);
7703 if (mddev->degraded > 1)
7704 return ERR_PTR(-EINVAL);
7705 if (mddev->raid_disks > 253)
7706 return ERR_PTR(-EINVAL);
7707 if (mddev->raid_disks < 3)
7708 return ERR_PTR(-EINVAL);
7709
7710 switch (mddev->layout) {
7711 case ALGORITHM_LEFT_ASYMMETRIC:
7712 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7713 break;
7714 case ALGORITHM_RIGHT_ASYMMETRIC:
7715 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7716 break;
7717 case ALGORITHM_LEFT_SYMMETRIC:
7718 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7719 break;
7720 case ALGORITHM_RIGHT_SYMMETRIC:
7721 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7722 break;
7723 case ALGORITHM_PARITY_0:
7724 new_layout = ALGORITHM_PARITY_0_6;
7725 break;
7726 case ALGORITHM_PARITY_N:
7727 new_layout = ALGORITHM_PARITY_N;
7728 break;
7729 default:
7730 return ERR_PTR(-EINVAL);
7731 }
7732 mddev->new_level = 6;
7733 mddev->new_layout = new_layout;
7734 mddev->delta_disks = 1;
7735 mddev->raid_disks += 1;
7736 return setup_conf(mddev);
7737}
7738
84fc4b56 7739static struct md_personality raid6_personality =
16a53ecc
N
7740{
7741 .name = "raid6",
7742 .level = 6,
7743 .owner = THIS_MODULE,
7744 .make_request = make_request,
7745 .run = run,
afa0f557 7746 .free = raid5_free,
16a53ecc
N
7747 .status = status,
7748 .error_handler = error,
7749 .hot_add_disk = raid5_add_disk,
7750 .hot_remove_disk= raid5_remove_disk,
7751 .spare_active = raid5_spare_active,
7752 .sync_request = sync_request,
7753 .resize = raid5_resize,
80c3a6ce 7754 .size = raid5_size,
50ac168a 7755 .check_reshape = raid6_check_reshape,
f416885e 7756 .start_reshape = raid5_start_reshape,
cea9c228 7757 .finish_reshape = raid5_finish_reshape,
16a53ecc 7758 .quiesce = raid5_quiesce,
245f46c2 7759 .takeover = raid6_takeover,
5c675f83 7760 .congested = raid5_congested,
64590f45 7761 .mergeable_bvec = raid5_mergeable_bvec,
16a53ecc 7762};
84fc4b56 7763static struct md_personality raid5_personality =
1da177e4
LT
7764{
7765 .name = "raid5",
2604b703 7766 .level = 5,
1da177e4
LT
7767 .owner = THIS_MODULE,
7768 .make_request = make_request,
7769 .run = run,
afa0f557 7770 .free = raid5_free,
1da177e4
LT
7771 .status = status,
7772 .error_handler = error,
7773 .hot_add_disk = raid5_add_disk,
7774 .hot_remove_disk= raid5_remove_disk,
7775 .spare_active = raid5_spare_active,
7776 .sync_request = sync_request,
7777 .resize = raid5_resize,
80c3a6ce 7778 .size = raid5_size,
63c70c4f
N
7779 .check_reshape = raid5_check_reshape,
7780 .start_reshape = raid5_start_reshape,
cea9c228 7781 .finish_reshape = raid5_finish_reshape,
72626685 7782 .quiesce = raid5_quiesce,
d562b0c4 7783 .takeover = raid5_takeover,
5c675f83 7784 .congested = raid5_congested,
64590f45 7785 .mergeable_bvec = raid5_mergeable_bvec,
1da177e4
LT
7786};
7787
84fc4b56 7788static struct md_personality raid4_personality =
1da177e4 7789{
2604b703
N
7790 .name = "raid4",
7791 .level = 4,
7792 .owner = THIS_MODULE,
7793 .make_request = make_request,
7794 .run = run,
afa0f557 7795 .free = raid5_free,
2604b703
N
7796 .status = status,
7797 .error_handler = error,
7798 .hot_add_disk = raid5_add_disk,
7799 .hot_remove_disk= raid5_remove_disk,
7800 .spare_active = raid5_spare_active,
7801 .sync_request = sync_request,
7802 .resize = raid5_resize,
80c3a6ce 7803 .size = raid5_size,
3d37890b
N
7804 .check_reshape = raid5_check_reshape,
7805 .start_reshape = raid5_start_reshape,
cea9c228 7806 .finish_reshape = raid5_finish_reshape,
2604b703 7807 .quiesce = raid5_quiesce,
a78d38a1 7808 .takeover = raid4_takeover,
5c675f83 7809 .congested = raid5_congested,
64590f45 7810 .mergeable_bvec = raid5_mergeable_bvec,
2604b703
N
7811};
7812
7813static int __init raid5_init(void)
7814{
851c30c9
SL
7815 raid5_wq = alloc_workqueue("raid5wq",
7816 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7817 if (!raid5_wq)
7818 return -ENOMEM;
16a53ecc 7819 register_md_personality(&raid6_personality);
2604b703
N
7820 register_md_personality(&raid5_personality);
7821 register_md_personality(&raid4_personality);
7822 return 0;
1da177e4
LT
7823}
7824
2604b703 7825static void raid5_exit(void)
1da177e4 7826{
16a53ecc 7827 unregister_md_personality(&raid6_personality);
2604b703
N
7828 unregister_md_personality(&raid5_personality);
7829 unregister_md_personality(&raid4_personality);
851c30c9 7830 destroy_workqueue(raid5_wq);
1da177e4
LT
7831}
7832
7833module_init(raid5_init);
7834module_exit(raid5_exit);
7835MODULE_LICENSE("GPL");
0efb9e61 7836MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7837MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7838MODULE_ALIAS("md-raid5");
7839MODULE_ALIAS("md-raid4");
2604b703
N
7840MODULE_ALIAS("md-level-5");
7841MODULE_ALIAS("md-level-4");
16a53ecc
N
7842MODULE_ALIAS("md-personality-8"); /* RAID6 */
7843MODULE_ALIAS("md-raid6");
7844MODULE_ALIAS("md-level-6");
7845
7846/* This used to be two separate modules, they were: */
7847MODULE_ALIAS("raid5");
7848MODULE_ALIAS("raid6");