raid5: refactor handle_stripe5 and handle_stripe6 (v3)
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
1da177e4
LT
46#include <linux/module.h>
47#include <linux/slab.h>
1da177e4
LT
48#include <linux/highmem.h>
49#include <linux/bitops.h>
f6705578 50#include <linux/kthread.h>
1da177e4 51#include <asm/atomic.h>
16a53ecc 52#include "raid6.h"
1da177e4 53
72626685
N
54#include <linux/raid/bitmap.h>
55
1da177e4
LT
56/*
57 * Stripe cache
58 */
59
60#define NR_STRIPES 256
61#define STRIPE_SIZE PAGE_SIZE
62#define STRIPE_SHIFT (PAGE_SHIFT - 9)
63#define STRIPE_SECTORS (STRIPE_SIZE>>9)
64#define IO_THRESHOLD 1
fccddba0 65#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
66#define HASH_MASK (NR_HASH - 1)
67
fccddba0 68#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
83#define RAID5_DEBUG 0
84#define RAID5_PARANOIA 1
85#if RAID5_PARANOIA && defined(CONFIG_SMP)
86# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87#else
88# define CHECK_DEVLOCK()
89#endif
90
91#define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
92#if RAID5_DEBUG
93#define inline
94#define __inline__
95#endif
96
16a53ecc
N
97#if !RAID6_USE_EMPTY_ZERO_PAGE
98/* In .bss so it's zeroed */
99const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100#endif
101
102static inline int raid6_next_disk(int disk, int raid_disks)
103{
104 disk++;
105 return (disk < raid_disks) ? disk : 0;
106}
a4456856
DW
107
108static void return_io(struct bio *return_bi)
109{
110 struct bio *bi = return_bi;
111 while (bi) {
112 int bytes = bi->bi_size;
113
114 return_bi = bi->bi_next;
115 bi->bi_next = NULL;
116 bi->bi_size = 0;
117 bi->bi_end_io(bi, bytes,
118 test_bit(BIO_UPTODATE, &bi->bi_flags)
119 ? 0 : -EIO);
120 bi = return_bi;
121 }
122}
123
1da177e4
LT
124static void print_raid5_conf (raid5_conf_t *conf);
125
858119e1 126static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
127{
128 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
129 BUG_ON(!list_empty(&sh->lru));
130 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 131 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 132 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 133 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
134 blk_plug_device(conf->mddev->queue);
135 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 136 sh->bm_seq - conf->seq_write > 0) {
72626685 137 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
138 blk_plug_device(conf->mddev->queue);
139 } else {
72626685 140 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 141 list_add_tail(&sh->lru, &conf->handle_list);
72626685 142 }
1da177e4
LT
143 md_wakeup_thread(conf->mddev->thread);
144 } else {
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
149 }
1da177e4 150 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 153 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 156 }
1da177e4
LT
157 }
158 }
159}
160static void release_stripe(struct stripe_head *sh)
161{
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
16a53ecc 164
1da177e4
LT
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
168}
169
fccddba0 170static inline void remove_hash(struct stripe_head *sh)
1da177e4
LT
171{
172 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
173
fccddba0 174 hlist_del_init(&sh->hash);
1da177e4
LT
175}
176
16a53ecc 177static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 178{
fccddba0 179 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4
LT
180
181 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
182
183 CHECK_DEVLOCK();
fccddba0 184 hlist_add_head(&sh->hash, hp);
1da177e4
LT
185}
186
187
188/* find an idle stripe, make sure it is unhashed, and return it. */
189static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
190{
191 struct stripe_head *sh = NULL;
192 struct list_head *first;
193
194 CHECK_DEVLOCK();
195 if (list_empty(&conf->inactive_list))
196 goto out;
197 first = conf->inactive_list.next;
198 sh = list_entry(first, struct stripe_head, lru);
199 list_del_init(first);
200 remove_hash(sh);
201 atomic_inc(&conf->active_stripes);
202out:
203 return sh;
204}
205
206static void shrink_buffers(struct stripe_head *sh, int num)
207{
208 struct page *p;
209 int i;
210
211 for (i=0; i<num ; i++) {
212 p = sh->dev[i].page;
213 if (!p)
214 continue;
215 sh->dev[i].page = NULL;
2d1f3b5d 216 put_page(p);
1da177e4
LT
217 }
218}
219
220static int grow_buffers(struct stripe_head *sh, int num)
221{
222 int i;
223
224 for (i=0; i<num; i++) {
225 struct page *page;
226
227 if (!(page = alloc_page(GFP_KERNEL))) {
228 return 1;
229 }
230 sh->dev[i].page = page;
231 }
232 return 0;
233}
234
235static void raid5_build_block (struct stripe_head *sh, int i);
236
7ecaa1e6 237static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
238{
239 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 240 int i;
1da177e4 241
78bafebd
ES
242 BUG_ON(atomic_read(&sh->count) != 0);
243 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1da177e4
LT
244
245 CHECK_DEVLOCK();
246 PRINTK("init_stripe called, stripe %llu\n",
247 (unsigned long long)sh->sector);
248
249 remove_hash(sh);
16a53ecc 250
1da177e4
LT
251 sh->sector = sector;
252 sh->pd_idx = pd_idx;
253 sh->state = 0;
254
7ecaa1e6
N
255 sh->disks = disks;
256
257 for (i = sh->disks; i--; ) {
1da177e4
LT
258 struct r5dev *dev = &sh->dev[i];
259
260 if (dev->toread || dev->towrite || dev->written ||
261 test_bit(R5_LOCKED, &dev->flags)) {
262 printk("sector=%llx i=%d %p %p %p %d\n",
263 (unsigned long long)sh->sector, i, dev->toread,
264 dev->towrite, dev->written,
265 test_bit(R5_LOCKED, &dev->flags));
266 BUG();
267 }
268 dev->flags = 0;
269 raid5_build_block(sh, i);
270 }
271 insert_hash(conf, sh);
272}
273
7ecaa1e6 274static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
275{
276 struct stripe_head *sh;
fccddba0 277 struct hlist_node *hn;
1da177e4
LT
278
279 CHECK_DEVLOCK();
280 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 281 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 282 if (sh->sector == sector && sh->disks == disks)
1da177e4
LT
283 return sh;
284 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
285 return NULL;
286}
287
288static void unplug_slaves(mddev_t *mddev);
289static void raid5_unplug_device(request_queue_t *q);
290
7ecaa1e6
N
291static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
292 int pd_idx, int noblock)
1da177e4
LT
293{
294 struct stripe_head *sh;
295
296 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
297
298 spin_lock_irq(&conf->device_lock);
299
300 do {
72626685
N
301 wait_event_lock_irq(conf->wait_for_stripe,
302 conf->quiesce == 0,
303 conf->device_lock, /* nothing */);
7ecaa1e6 304 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
305 if (!sh) {
306 if (!conf->inactive_blocked)
307 sh = get_free_stripe(conf);
308 if (noblock && sh == NULL)
309 break;
310 if (!sh) {
311 conf->inactive_blocked = 1;
312 wait_event_lock_irq(conf->wait_for_stripe,
313 !list_empty(&conf->inactive_list) &&
5036805b
N
314 (atomic_read(&conf->active_stripes)
315 < (conf->max_nr_stripes *3/4)
1da177e4
LT
316 || !conf->inactive_blocked),
317 conf->device_lock,
f4370781 318 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
319 );
320 conf->inactive_blocked = 0;
321 } else
7ecaa1e6 322 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
323 } else {
324 if (atomic_read(&sh->count)) {
78bafebd 325 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
326 } else {
327 if (!test_bit(STRIPE_HANDLE, &sh->state))
328 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
329 if (list_empty(&sh->lru) &&
330 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
331 BUG();
332 list_del_init(&sh->lru);
1da177e4
LT
333 }
334 }
335 } while (sh == NULL);
336
337 if (sh)
338 atomic_inc(&sh->count);
339
340 spin_unlock_irq(&conf->device_lock);
341 return sh;
342}
343
3f294f4f 344static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
345{
346 struct stripe_head *sh;
3f294f4f
N
347 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
348 if (!sh)
349 return 0;
350 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
351 sh->raid_conf = conf;
352 spin_lock_init(&sh->lock);
353
354 if (grow_buffers(sh, conf->raid_disks)) {
355 shrink_buffers(sh, conf->raid_disks);
356 kmem_cache_free(conf->slab_cache, sh);
357 return 0;
358 }
7ecaa1e6 359 sh->disks = conf->raid_disks;
3f294f4f
N
360 /* we just created an active stripe so... */
361 atomic_set(&sh->count, 1);
362 atomic_inc(&conf->active_stripes);
363 INIT_LIST_HEAD(&sh->lru);
364 release_stripe(sh);
365 return 1;
366}
367
368static int grow_stripes(raid5_conf_t *conf, int num)
369{
e18b890b 370 struct kmem_cache *sc;
1da177e4
LT
371 int devs = conf->raid_disks;
372
42b9bebe
N
373 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
374 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
ad01c9e3
N
375 conf->active_name = 0;
376 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4
LT
377 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
378 0, 0, NULL, NULL);
379 if (!sc)
380 return 1;
381 conf->slab_cache = sc;
ad01c9e3 382 conf->pool_size = devs;
16a53ecc 383 while (num--)
3f294f4f 384 if (!grow_one_stripe(conf))
1da177e4 385 return 1;
1da177e4
LT
386 return 0;
387}
29269553
N
388
389#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
390static int resize_stripes(raid5_conf_t *conf, int newsize)
391{
392 /* Make all the stripes able to hold 'newsize' devices.
393 * New slots in each stripe get 'page' set to a new page.
394 *
395 * This happens in stages:
396 * 1/ create a new kmem_cache and allocate the required number of
397 * stripe_heads.
398 * 2/ gather all the old stripe_heads and tranfer the pages across
399 * to the new stripe_heads. This will have the side effect of
400 * freezing the array as once all stripe_heads have been collected,
401 * no IO will be possible. Old stripe heads are freed once their
402 * pages have been transferred over, and the old kmem_cache is
403 * freed when all stripes are done.
404 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
405 * we simple return a failre status - no need to clean anything up.
406 * 4/ allocate new pages for the new slots in the new stripe_heads.
407 * If this fails, we don't bother trying the shrink the
408 * stripe_heads down again, we just leave them as they are.
409 * As each stripe_head is processed the new one is released into
410 * active service.
411 *
412 * Once step2 is started, we cannot afford to wait for a write,
413 * so we use GFP_NOIO allocations.
414 */
415 struct stripe_head *osh, *nsh;
416 LIST_HEAD(newstripes);
417 struct disk_info *ndisks;
418 int err = 0;
e18b890b 419 struct kmem_cache *sc;
ad01c9e3
N
420 int i;
421
422 if (newsize <= conf->pool_size)
423 return 0; /* never bother to shrink */
424
2a2275d6
N
425 md_allow_write(conf->mddev);
426
ad01c9e3
N
427 /* Step 1 */
428 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
429 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
430 0, 0, NULL, NULL);
431 if (!sc)
432 return -ENOMEM;
433
434 for (i = conf->max_nr_stripes; i; i--) {
435 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
436 if (!nsh)
437 break;
438
439 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
440
441 nsh->raid_conf = conf;
442 spin_lock_init(&nsh->lock);
443
444 list_add(&nsh->lru, &newstripes);
445 }
446 if (i) {
447 /* didn't get enough, give up */
448 while (!list_empty(&newstripes)) {
449 nsh = list_entry(newstripes.next, struct stripe_head, lru);
450 list_del(&nsh->lru);
451 kmem_cache_free(sc, nsh);
452 }
453 kmem_cache_destroy(sc);
454 return -ENOMEM;
455 }
456 /* Step 2 - Must use GFP_NOIO now.
457 * OK, we have enough stripes, start collecting inactive
458 * stripes and copying them over
459 */
460 list_for_each_entry(nsh, &newstripes, lru) {
461 spin_lock_irq(&conf->device_lock);
462 wait_event_lock_irq(conf->wait_for_stripe,
463 !list_empty(&conf->inactive_list),
464 conf->device_lock,
b3b46be3 465 unplug_slaves(conf->mddev)
ad01c9e3
N
466 );
467 osh = get_free_stripe(conf);
468 spin_unlock_irq(&conf->device_lock);
469 atomic_set(&nsh->count, 1);
470 for(i=0; i<conf->pool_size; i++)
471 nsh->dev[i].page = osh->dev[i].page;
472 for( ; i<newsize; i++)
473 nsh->dev[i].page = NULL;
474 kmem_cache_free(conf->slab_cache, osh);
475 }
476 kmem_cache_destroy(conf->slab_cache);
477
478 /* Step 3.
479 * At this point, we are holding all the stripes so the array
480 * is completely stalled, so now is a good time to resize
481 * conf->disks.
482 */
483 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
484 if (ndisks) {
485 for (i=0; i<conf->raid_disks; i++)
486 ndisks[i] = conf->disks[i];
487 kfree(conf->disks);
488 conf->disks = ndisks;
489 } else
490 err = -ENOMEM;
491
492 /* Step 4, return new stripes to service */
493 while(!list_empty(&newstripes)) {
494 nsh = list_entry(newstripes.next, struct stripe_head, lru);
495 list_del_init(&nsh->lru);
496 for (i=conf->raid_disks; i < newsize; i++)
497 if (nsh->dev[i].page == NULL) {
498 struct page *p = alloc_page(GFP_NOIO);
499 nsh->dev[i].page = p;
500 if (!p)
501 err = -ENOMEM;
502 }
503 release_stripe(nsh);
504 }
505 /* critical section pass, GFP_NOIO no longer needed */
506
507 conf->slab_cache = sc;
508 conf->active_name = 1-conf->active_name;
509 conf->pool_size = newsize;
510 return err;
511}
29269553 512#endif
1da177e4 513
3f294f4f 514static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
515{
516 struct stripe_head *sh;
517
3f294f4f
N
518 spin_lock_irq(&conf->device_lock);
519 sh = get_free_stripe(conf);
520 spin_unlock_irq(&conf->device_lock);
521 if (!sh)
522 return 0;
78bafebd 523 BUG_ON(atomic_read(&sh->count));
ad01c9e3 524 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
525 kmem_cache_free(conf->slab_cache, sh);
526 atomic_dec(&conf->active_stripes);
527 return 1;
528}
529
530static void shrink_stripes(raid5_conf_t *conf)
531{
532 while (drop_one_stripe(conf))
533 ;
534
29fc7e3e
N
535 if (conf->slab_cache)
536 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
537 conf->slab_cache = NULL;
538}
539
4e5314b5 540static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1da177e4
LT
541 int error)
542{
543 struct stripe_head *sh = bi->bi_private;
544 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 545 int disks = sh->disks, i;
1da177e4 546 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
547 char b[BDEVNAME_SIZE];
548 mdk_rdev_t *rdev;
1da177e4
LT
549
550 if (bi->bi_size)
551 return 1;
552
553 for (i=0 ; i<disks; i++)
554 if (bi == &sh->dev[i].req)
555 break;
556
557 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
558 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
559 uptodate);
560 if (i == disks) {
561 BUG();
562 return 0;
563 }
564
565 if (uptodate) {
1da177e4 566 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 567 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432
N
568 rdev = conf->disks[i].rdev;
569 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
570 mdname(conf->mddev), STRIPE_SECTORS,
571 (unsigned long long)sh->sector + rdev->data_offset,
572 bdevname(rdev->bdev, b));
4e5314b5
N
573 clear_bit(R5_ReadError, &sh->dev[i].flags);
574 clear_bit(R5_ReWrite, &sh->dev[i].flags);
575 }
ba22dcbf
N
576 if (atomic_read(&conf->disks[i].rdev->read_errors))
577 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 578 } else {
d6950432 579 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 580 int retry = 0;
d6950432
N
581 rdev = conf->disks[i].rdev;
582
1da177e4 583 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 584 atomic_inc(&rdev->read_errors);
ba22dcbf 585 if (conf->mddev->degraded)
d6950432
N
586 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
587 mdname(conf->mddev),
588 (unsigned long long)sh->sector + rdev->data_offset,
589 bdn);
ba22dcbf 590 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 591 /* Oh, no!!! */
d6950432
N
592 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
593 mdname(conf->mddev),
594 (unsigned long long)sh->sector + rdev->data_offset,
595 bdn);
596 else if (atomic_read(&rdev->read_errors)
ba22dcbf 597 > conf->max_nr_stripes)
14f8d26b 598 printk(KERN_WARNING
d6950432
N
599 "raid5:%s: Too many read errors, failing device %s.\n",
600 mdname(conf->mddev), bdn);
ba22dcbf
N
601 else
602 retry = 1;
603 if (retry)
604 set_bit(R5_ReadError, &sh->dev[i].flags);
605 else {
4e5314b5
N
606 clear_bit(R5_ReadError, &sh->dev[i].flags);
607 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 608 md_error(conf->mddev, rdev);
ba22dcbf 609 }
1da177e4
LT
610 }
611 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
612 clear_bit(R5_LOCKED, &sh->dev[i].flags);
613 set_bit(STRIPE_HANDLE, &sh->state);
614 release_stripe(sh);
615 return 0;
616}
617
618static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
619 int error)
620{
621 struct stripe_head *sh = bi->bi_private;
622 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 623 int disks = sh->disks, i;
1da177e4
LT
624 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
625
626 if (bi->bi_size)
627 return 1;
628
629 for (i=0 ; i<disks; i++)
630 if (bi == &sh->dev[i].req)
631 break;
632
633 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
634 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
635 uptodate);
636 if (i == disks) {
637 BUG();
638 return 0;
639 }
640
1da177e4
LT
641 if (!uptodate)
642 md_error(conf->mddev, conf->disks[i].rdev);
643
644 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
645
646 clear_bit(R5_LOCKED, &sh->dev[i].flags);
647 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 648 release_stripe(sh);
1da177e4
LT
649 return 0;
650}
651
652
653static sector_t compute_blocknr(struct stripe_head *sh, int i);
654
655static void raid5_build_block (struct stripe_head *sh, int i)
656{
657 struct r5dev *dev = &sh->dev[i];
658
659 bio_init(&dev->req);
660 dev->req.bi_io_vec = &dev->vec;
661 dev->req.bi_vcnt++;
662 dev->req.bi_max_vecs++;
663 dev->vec.bv_page = dev->page;
664 dev->vec.bv_len = STRIPE_SIZE;
665 dev->vec.bv_offset = 0;
666
667 dev->req.bi_sector = sh->sector;
668 dev->req.bi_private = sh;
669
670 dev->flags = 0;
16a53ecc 671 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
672}
673
674static void error(mddev_t *mddev, mdk_rdev_t *rdev)
675{
676 char b[BDEVNAME_SIZE];
677 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
678 PRINTK("raid5: error called\n");
679
b2d444d7 680 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 681 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
682 if (test_and_clear_bit(In_sync, &rdev->flags)) {
683 unsigned long flags;
684 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 685 mddev->degraded++;
c04be0aa 686 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
687 /*
688 * if recovery was running, make sure it aborts.
689 */
690 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
691 }
b2d444d7 692 set_bit(Faulty, &rdev->flags);
1da177e4
LT
693 printk (KERN_ALERT
694 "raid5: Disk failure on %s, disabling device."
695 " Operation continuing on %d devices\n",
02c2de8c 696 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 697 }
16a53ecc 698}
1da177e4
LT
699
700/*
701 * Input: a 'big' sector number,
702 * Output: index of the data and parity disk, and the sector # in them.
703 */
704static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
705 unsigned int data_disks, unsigned int * dd_idx,
706 unsigned int * pd_idx, raid5_conf_t *conf)
707{
708 long stripe;
709 unsigned long chunk_number;
710 unsigned int chunk_offset;
711 sector_t new_sector;
712 int sectors_per_chunk = conf->chunk_size >> 9;
713
714 /* First compute the information on this sector */
715
716 /*
717 * Compute the chunk number and the sector offset inside the chunk
718 */
719 chunk_offset = sector_div(r_sector, sectors_per_chunk);
720 chunk_number = r_sector;
721 BUG_ON(r_sector != chunk_number);
722
723 /*
724 * Compute the stripe number
725 */
726 stripe = chunk_number / data_disks;
727
728 /*
729 * Compute the data disk and parity disk indexes inside the stripe
730 */
731 *dd_idx = chunk_number % data_disks;
732
733 /*
734 * Select the parity disk based on the user selected algorithm.
735 */
16a53ecc
N
736 switch(conf->level) {
737 case 4:
1da177e4 738 *pd_idx = data_disks;
16a53ecc
N
739 break;
740 case 5:
741 switch (conf->algorithm) {
1da177e4
LT
742 case ALGORITHM_LEFT_ASYMMETRIC:
743 *pd_idx = data_disks - stripe % raid_disks;
744 if (*dd_idx >= *pd_idx)
745 (*dd_idx)++;
746 break;
747 case ALGORITHM_RIGHT_ASYMMETRIC:
748 *pd_idx = stripe % raid_disks;
749 if (*dd_idx >= *pd_idx)
750 (*dd_idx)++;
751 break;
752 case ALGORITHM_LEFT_SYMMETRIC:
753 *pd_idx = data_disks - stripe % raid_disks;
754 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
755 break;
756 case ALGORITHM_RIGHT_SYMMETRIC:
757 *pd_idx = stripe % raid_disks;
758 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
759 break;
760 default:
14f8d26b 761 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 762 conf->algorithm);
16a53ecc
N
763 }
764 break;
765 case 6:
766
767 /**** FIX THIS ****/
768 switch (conf->algorithm) {
769 case ALGORITHM_LEFT_ASYMMETRIC:
770 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
771 if (*pd_idx == raid_disks-1)
772 (*dd_idx)++; /* Q D D D P */
773 else if (*dd_idx >= *pd_idx)
774 (*dd_idx) += 2; /* D D P Q D */
775 break;
776 case ALGORITHM_RIGHT_ASYMMETRIC:
777 *pd_idx = stripe % raid_disks;
778 if (*pd_idx == raid_disks-1)
779 (*dd_idx)++; /* Q D D D P */
780 else if (*dd_idx >= *pd_idx)
781 (*dd_idx) += 2; /* D D P Q D */
782 break;
783 case ALGORITHM_LEFT_SYMMETRIC:
784 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
785 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
786 break;
787 case ALGORITHM_RIGHT_SYMMETRIC:
788 *pd_idx = stripe % raid_disks;
789 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
790 break;
791 default:
792 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
793 conf->algorithm);
794 }
795 break;
1da177e4
LT
796 }
797
798 /*
799 * Finally, compute the new sector number
800 */
801 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
802 return new_sector;
803}
804
805
806static sector_t compute_blocknr(struct stripe_head *sh, int i)
807{
808 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
809 int raid_disks = sh->disks;
810 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
811 sector_t new_sector = sh->sector, check;
812 int sectors_per_chunk = conf->chunk_size >> 9;
813 sector_t stripe;
814 int chunk_offset;
815 int chunk_number, dummy1, dummy2, dd_idx = i;
816 sector_t r_sector;
817
16a53ecc 818
1da177e4
LT
819 chunk_offset = sector_div(new_sector, sectors_per_chunk);
820 stripe = new_sector;
821 BUG_ON(new_sector != stripe);
822
16a53ecc
N
823 if (i == sh->pd_idx)
824 return 0;
825 switch(conf->level) {
826 case 4: break;
827 case 5:
828 switch (conf->algorithm) {
1da177e4
LT
829 case ALGORITHM_LEFT_ASYMMETRIC:
830 case ALGORITHM_RIGHT_ASYMMETRIC:
831 if (i > sh->pd_idx)
832 i--;
833 break;
834 case ALGORITHM_LEFT_SYMMETRIC:
835 case ALGORITHM_RIGHT_SYMMETRIC:
836 if (i < sh->pd_idx)
837 i += raid_disks;
838 i -= (sh->pd_idx + 1);
839 break;
840 default:
14f8d26b 841 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
842 conf->algorithm);
843 }
844 break;
845 case 6:
16a53ecc
N
846 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
847 return 0; /* It is the Q disk */
848 switch (conf->algorithm) {
849 case ALGORITHM_LEFT_ASYMMETRIC:
850 case ALGORITHM_RIGHT_ASYMMETRIC:
851 if (sh->pd_idx == raid_disks-1)
852 i--; /* Q D D D P */
853 else if (i > sh->pd_idx)
854 i -= 2; /* D D P Q D */
855 break;
856 case ALGORITHM_LEFT_SYMMETRIC:
857 case ALGORITHM_RIGHT_SYMMETRIC:
858 if (sh->pd_idx == raid_disks-1)
859 i--; /* Q D D D P */
860 else {
861 /* D D P Q D */
862 if (i < sh->pd_idx)
863 i += raid_disks;
864 i -= (sh->pd_idx + 2);
865 }
866 break;
867 default:
868 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1da177e4 869 conf->algorithm);
16a53ecc
N
870 }
871 break;
1da177e4
LT
872 }
873
874 chunk_number = stripe * data_disks + i;
875 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
876
877 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
878 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 879 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
880 return 0;
881 }
882 return r_sector;
883}
884
885
886
887/*
16a53ecc
N
888 * Copy data between a page in the stripe cache, and one or more bion
889 * The page could align with the middle of the bio, or there could be
890 * several bion, each with several bio_vecs, which cover part of the page
891 * Multiple bion are linked together on bi_next. There may be extras
892 * at the end of this list. We ignore them.
1da177e4
LT
893 */
894static void copy_data(int frombio, struct bio *bio,
895 struct page *page,
896 sector_t sector)
897{
898 char *pa = page_address(page);
899 struct bio_vec *bvl;
900 int i;
901 int page_offset;
902
903 if (bio->bi_sector >= sector)
904 page_offset = (signed)(bio->bi_sector - sector) * 512;
905 else
906 page_offset = (signed)(sector - bio->bi_sector) * -512;
907 bio_for_each_segment(bvl, bio, i) {
908 int len = bio_iovec_idx(bio,i)->bv_len;
909 int clen;
910 int b_offset = 0;
911
912 if (page_offset < 0) {
913 b_offset = -page_offset;
914 page_offset += b_offset;
915 len -= b_offset;
916 }
917
918 if (len > 0 && page_offset + len > STRIPE_SIZE)
919 clen = STRIPE_SIZE - page_offset;
920 else clen = len;
16a53ecc 921
1da177e4
LT
922 if (clen > 0) {
923 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
924 if (frombio)
925 memcpy(pa+page_offset, ba+b_offset, clen);
926 else
927 memcpy(ba+b_offset, pa+page_offset, clen);
928 __bio_kunmap_atomic(ba, KM_USER0);
929 }
930 if (clen < len) /* hit end of page */
931 break;
932 page_offset += len;
933 }
934}
935
9bc89cd8
DW
936#define check_xor() do { \
937 if (count == MAX_XOR_BLOCKS) { \
938 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
939 count = 0; \
940 } \
1da177e4
LT
941 } while(0)
942
943
944static void compute_block(struct stripe_head *sh, int dd_idx)
945{
7ecaa1e6 946 int i, count, disks = sh->disks;
9bc89cd8 947 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1da177e4
LT
948
949 PRINTK("compute_block, stripe %llu, idx %d\n",
950 (unsigned long long)sh->sector, dd_idx);
951
9bc89cd8
DW
952 dest = page_address(sh->dev[dd_idx].page);
953 memset(dest, 0, STRIPE_SIZE);
954 count = 0;
1da177e4
LT
955 for (i = disks ; i--; ) {
956 if (i == dd_idx)
957 continue;
958 p = page_address(sh->dev[i].page);
959 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
960 ptr[count++] = p;
961 else
14f8d26b 962 printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
1da177e4
LT
963 " not present\n", dd_idx,
964 (unsigned long long)sh->sector, i);
965
966 check_xor();
967 }
9bc89cd8
DW
968 if (count)
969 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1da177e4
LT
970 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
971}
972
16a53ecc 973static void compute_parity5(struct stripe_head *sh, int method)
1da177e4
LT
974{
975 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 976 int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
9bc89cd8 977 void *ptr[MAX_XOR_BLOCKS], *dest;
1da177e4
LT
978 struct bio *chosen;
979
16a53ecc 980 PRINTK("compute_parity5, stripe %llu, method %d\n",
1da177e4
LT
981 (unsigned long long)sh->sector, method);
982
9bc89cd8
DW
983 count = 0;
984 dest = page_address(sh->dev[pd_idx].page);
1da177e4
LT
985 switch(method) {
986 case READ_MODIFY_WRITE:
78bafebd 987 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
1da177e4
LT
988 for (i=disks ; i-- ;) {
989 if (i==pd_idx)
990 continue;
991 if (sh->dev[i].towrite &&
992 test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
993 ptr[count++] = page_address(sh->dev[i].page);
994 chosen = sh->dev[i].towrite;
995 sh->dev[i].towrite = NULL;
996
997 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
998 wake_up(&conf->wait_for_overlap);
999
78bafebd 1000 BUG_ON(sh->dev[i].written);
1da177e4
LT
1001 sh->dev[i].written = chosen;
1002 check_xor();
1003 }
1004 }
1005 break;
1006 case RECONSTRUCT_WRITE:
9bc89cd8 1007 memset(dest, 0, STRIPE_SIZE);
1da177e4
LT
1008 for (i= disks; i-- ;)
1009 if (i!=pd_idx && sh->dev[i].towrite) {
1010 chosen = sh->dev[i].towrite;
1011 sh->dev[i].towrite = NULL;
1012
1013 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1014 wake_up(&conf->wait_for_overlap);
1015
78bafebd 1016 BUG_ON(sh->dev[i].written);
1da177e4
LT
1017 sh->dev[i].written = chosen;
1018 }
1019 break;
1020 case CHECK_PARITY:
1021 break;
1022 }
9bc89cd8
DW
1023 if (count) {
1024 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1025 count = 0;
1da177e4
LT
1026 }
1027
1028 for (i = disks; i--;)
1029 if (sh->dev[i].written) {
1030 sector_t sector = sh->dev[i].sector;
1031 struct bio *wbi = sh->dev[i].written;
1032 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1033 copy_data(1, wbi, sh->dev[i].page, sector);
1034 wbi = r5_next_bio(wbi, sector);
1035 }
1036
1037 set_bit(R5_LOCKED, &sh->dev[i].flags);
1038 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1039 }
1040
1041 switch(method) {
1042 case RECONSTRUCT_WRITE:
1043 case CHECK_PARITY:
1044 for (i=disks; i--;)
1045 if (i != pd_idx) {
1046 ptr[count++] = page_address(sh->dev[i].page);
1047 check_xor();
1048 }
1049 break;
1050 case READ_MODIFY_WRITE:
1051 for (i = disks; i--;)
1052 if (sh->dev[i].written) {
1053 ptr[count++] = page_address(sh->dev[i].page);
1054 check_xor();
1055 }
1056 }
9bc89cd8
DW
1057 if (count)
1058 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1059
1da177e4
LT
1060 if (method != CHECK_PARITY) {
1061 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1062 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1063 } else
1064 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1065}
1066
16a53ecc
N
1067static void compute_parity6(struct stripe_head *sh, int method)
1068{
1069 raid6_conf_t *conf = sh->raid_conf;
f416885e 1070 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
16a53ecc
N
1071 struct bio *chosen;
1072 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1073 void *ptrs[disks];
1074
1075 qd_idx = raid6_next_disk(pd_idx, disks);
1076 d0_idx = raid6_next_disk(qd_idx, disks);
1077
1078 PRINTK("compute_parity, stripe %llu, method %d\n",
1079 (unsigned long long)sh->sector, method);
1080
1081 switch(method) {
1082 case READ_MODIFY_WRITE:
1083 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1084 case RECONSTRUCT_WRITE:
1085 for (i= disks; i-- ;)
1086 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1087 chosen = sh->dev[i].towrite;
1088 sh->dev[i].towrite = NULL;
1089
1090 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1091 wake_up(&conf->wait_for_overlap);
1092
52e5f9d1 1093 BUG_ON(sh->dev[i].written);
16a53ecc
N
1094 sh->dev[i].written = chosen;
1095 }
1096 break;
1097 case CHECK_PARITY:
1098 BUG(); /* Not implemented yet */
1099 }
1100
1101 for (i = disks; i--;)
1102 if (sh->dev[i].written) {
1103 sector_t sector = sh->dev[i].sector;
1104 struct bio *wbi = sh->dev[i].written;
1105 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1106 copy_data(1, wbi, sh->dev[i].page, sector);
1107 wbi = r5_next_bio(wbi, sector);
1108 }
1109
1110 set_bit(R5_LOCKED, &sh->dev[i].flags);
1111 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1112 }
1113
1114// switch(method) {
1115// case RECONSTRUCT_WRITE:
1116// case CHECK_PARITY:
1117// case UPDATE_PARITY:
1118 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1119 /* FIX: Is this ordering of drives even remotely optimal? */
1120 count = 0;
1121 i = d0_idx;
1122 do {
1123 ptrs[count++] = page_address(sh->dev[i].page);
1124 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1125 printk("block %d/%d not uptodate on parity calc\n", i,count);
1126 i = raid6_next_disk(i, disks);
1127 } while ( i != d0_idx );
1128// break;
1129// }
1130
1131 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1132
1133 switch(method) {
1134 case RECONSTRUCT_WRITE:
1135 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1136 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1137 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1138 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1139 break;
1140 case UPDATE_PARITY:
1141 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1142 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1143 break;
1144 }
1145}
1146
1147
1148/* Compute one missing block */
1149static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1150{
f416885e 1151 int i, count, disks = sh->disks;
9bc89cd8 1152 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
16a53ecc
N
1153 int pd_idx = sh->pd_idx;
1154 int qd_idx = raid6_next_disk(pd_idx, disks);
1155
1156 PRINTK("compute_block_1, stripe %llu, idx %d\n",
1157 (unsigned long long)sh->sector, dd_idx);
1158
1159 if ( dd_idx == qd_idx ) {
1160 /* We're actually computing the Q drive */
1161 compute_parity6(sh, UPDATE_PARITY);
1162 } else {
9bc89cd8
DW
1163 dest = page_address(sh->dev[dd_idx].page);
1164 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1165 count = 0;
16a53ecc
N
1166 for (i = disks ; i--; ) {
1167 if (i == dd_idx || i == qd_idx)
1168 continue;
1169 p = page_address(sh->dev[i].page);
1170 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1171 ptr[count++] = p;
1172 else
1173 printk("compute_block() %d, stripe %llu, %d"
1174 " not present\n", dd_idx,
1175 (unsigned long long)sh->sector, i);
1176
1177 check_xor();
1178 }
9bc89cd8
DW
1179 if (count)
1180 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1181 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1182 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1183 }
1184}
1185
1186/* Compute two missing blocks */
1187static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1188{
f416885e 1189 int i, count, disks = sh->disks;
16a53ecc
N
1190 int pd_idx = sh->pd_idx;
1191 int qd_idx = raid6_next_disk(pd_idx, disks);
1192 int d0_idx = raid6_next_disk(qd_idx, disks);
1193 int faila, failb;
1194
1195 /* faila and failb are disk numbers relative to d0_idx */
1196 /* pd_idx become disks-2 and qd_idx become disks-1 */
1197 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1198 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1199
1200 BUG_ON(faila == failb);
1201 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1202
1203 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1204 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1205
1206 if ( failb == disks-1 ) {
1207 /* Q disk is one of the missing disks */
1208 if ( faila == disks-2 ) {
1209 /* Missing P+Q, just recompute */
1210 compute_parity6(sh, UPDATE_PARITY);
1211 return;
1212 } else {
1213 /* We're missing D+Q; recompute D from P */
1214 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1215 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1216 return;
1217 }
1218 }
1219
1220 /* We're missing D+P or D+D; build pointer table */
1221 {
1222 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1223 void *ptrs[disks];
1224
1225 count = 0;
1226 i = d0_idx;
1227 do {
1228 ptrs[count++] = page_address(sh->dev[i].page);
1229 i = raid6_next_disk(i, disks);
1230 if (i != dd_idx1 && i != dd_idx2 &&
1231 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1232 printk("compute_2 with missing block %d/%d\n", count, i);
1233 } while ( i != d0_idx );
1234
1235 if ( failb == disks-2 ) {
1236 /* We're missing D+P. */
1237 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1238 } else {
1239 /* We're missing D+D. */
1240 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1241 }
1242
1243 /* Both the above update both missing blocks */
1244 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1245 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1246 }
1247}
1248
1249
1250
1da177e4
LT
1251/*
1252 * Each stripe/dev can have one or more bion attached.
16a53ecc 1253 * toread/towrite point to the first in a chain.
1da177e4
LT
1254 * The bi_next chain must be in order.
1255 */
1256static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1257{
1258 struct bio **bip;
1259 raid5_conf_t *conf = sh->raid_conf;
72626685 1260 int firstwrite=0;
1da177e4
LT
1261
1262 PRINTK("adding bh b#%llu to stripe s#%llu\n",
1263 (unsigned long long)bi->bi_sector,
1264 (unsigned long long)sh->sector);
1265
1266
1267 spin_lock(&sh->lock);
1268 spin_lock_irq(&conf->device_lock);
72626685 1269 if (forwrite) {
1da177e4 1270 bip = &sh->dev[dd_idx].towrite;
72626685
N
1271 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1272 firstwrite = 1;
1273 } else
1da177e4
LT
1274 bip = &sh->dev[dd_idx].toread;
1275 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1276 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1277 goto overlap;
1278 bip = & (*bip)->bi_next;
1279 }
1280 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1281 goto overlap;
1282
78bafebd 1283 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1284 if (*bip)
1285 bi->bi_next = *bip;
1286 *bip = bi;
1287 bi->bi_phys_segments ++;
1288 spin_unlock_irq(&conf->device_lock);
1289 spin_unlock(&sh->lock);
1290
1291 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1292 (unsigned long long)bi->bi_sector,
1293 (unsigned long long)sh->sector, dd_idx);
1294
72626685 1295 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1296 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1297 STRIPE_SECTORS, 0);
ae3c20cc 1298 sh->bm_seq = conf->seq_flush+1;
72626685
N
1299 set_bit(STRIPE_BIT_DELAY, &sh->state);
1300 }
1301
1da177e4
LT
1302 if (forwrite) {
1303 /* check if page is covered */
1304 sector_t sector = sh->dev[dd_idx].sector;
1305 for (bi=sh->dev[dd_idx].towrite;
1306 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1307 bi && bi->bi_sector <= sector;
1308 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1309 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1310 sector = bi->bi_sector + (bi->bi_size>>9);
1311 }
1312 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1313 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1314 }
1315 return 1;
1316
1317 overlap:
1318 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1319 spin_unlock_irq(&conf->device_lock);
1320 spin_unlock(&sh->lock);
1321 return 0;
1322}
1323
29269553
N
1324static void end_reshape(raid5_conf_t *conf);
1325
16a53ecc
N
1326static int page_is_zero(struct page *p)
1327{
1328 char *a = page_address(p);
1329 return ((*(u32*)a) == 0 &&
1330 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1331}
1332
ccfcc3c1
N
1333static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1334{
1335 int sectors_per_chunk = conf->chunk_size >> 9;
ccfcc3c1 1336 int pd_idx, dd_idx;
2d2063ce
CQH
1337 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1338
b875e531
N
1339 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1340 *sectors_per_chunk + chunk_offset,
1341 disks, disks - conf->max_degraded,
1342 &dd_idx, &pd_idx, conf);
ccfcc3c1
N
1343 return pd_idx;
1344}
1345
a4456856
DW
1346static void
1347handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1348 struct stripe_head_state *s, int disks,
1349 struct bio **return_bi)
1350{
1351 int i;
1352 for (i = disks; i--; ) {
1353 struct bio *bi;
1354 int bitmap_end = 0;
1355
1356 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1357 mdk_rdev_t *rdev;
1358 rcu_read_lock();
1359 rdev = rcu_dereference(conf->disks[i].rdev);
1360 if (rdev && test_bit(In_sync, &rdev->flags))
1361 /* multiple read failures in one stripe */
1362 md_error(conf->mddev, rdev);
1363 rcu_read_unlock();
1364 }
1365 spin_lock_irq(&conf->device_lock);
1366 /* fail all writes first */
1367 bi = sh->dev[i].towrite;
1368 sh->dev[i].towrite = NULL;
1369 if (bi) {
1370 s->to_write--;
1371 bitmap_end = 1;
1372 }
1373
1374 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1375 wake_up(&conf->wait_for_overlap);
1376
1377 while (bi && bi->bi_sector <
1378 sh->dev[i].sector + STRIPE_SECTORS) {
1379 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1380 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1381 if (--bi->bi_phys_segments == 0) {
1382 md_write_end(conf->mddev);
1383 bi->bi_next = *return_bi;
1384 *return_bi = bi;
1385 }
1386 bi = nextbi;
1387 }
1388 /* and fail all 'written' */
1389 bi = sh->dev[i].written;
1390 sh->dev[i].written = NULL;
1391 if (bi) bitmap_end = 1;
1392 while (bi && bi->bi_sector <
1393 sh->dev[i].sector + STRIPE_SECTORS) {
1394 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1395 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1396 if (--bi->bi_phys_segments == 0) {
1397 md_write_end(conf->mddev);
1398 bi->bi_next = *return_bi;
1399 *return_bi = bi;
1400 }
1401 bi = bi2;
1402 }
1403
1404 /* fail any reads if this device is non-operational */
1405 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1406 test_bit(R5_ReadError, &sh->dev[i].flags)) {
1407 bi = sh->dev[i].toread;
1408 sh->dev[i].toread = NULL;
1409 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1410 wake_up(&conf->wait_for_overlap);
1411 if (bi) s->to_read--;
1412 while (bi && bi->bi_sector <
1413 sh->dev[i].sector + STRIPE_SECTORS) {
1414 struct bio *nextbi =
1415 r5_next_bio(bi, sh->dev[i].sector);
1416 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1417 if (--bi->bi_phys_segments == 0) {
1418 bi->bi_next = *return_bi;
1419 *return_bi = bi;
1420 }
1421 bi = nextbi;
1422 }
1423 }
1424 spin_unlock_irq(&conf->device_lock);
1425 if (bitmap_end)
1426 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1427 STRIPE_SECTORS, 0, 0);
1428 }
1429
1430}
1431
1432static void handle_issuing_new_read_requests5(struct stripe_head *sh,
1433 struct stripe_head_state *s, int disks)
1434{
1435 int i;
1436 for (i = disks; i--; ) {
1437 struct r5dev *dev = &sh->dev[i];
1438 if (!test_bit(R5_LOCKED, &dev->flags) &&
1439 !test_bit(R5_UPTODATE, &dev->flags) &&
1440 (dev->toread ||
1441 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1442 s->syncing || s->expanding ||
1443 (s->failed && (sh->dev[s->failed_num].toread ||
1444 (sh->dev[s->failed_num].towrite &&
1445 !test_bit(R5_OVERWRITE, &sh->dev[s->failed_num].flags))
1446 )))) {
1447 /* we would like to get this block, possibly
1448 * by computing it, but we might not be able to
1449 */
1450 if (s->uptodate == disks-1) {
1451 PRINTK("Computing block %d\n", i);
1452 compute_block(sh, i);
1453 s->uptodate++;
1454 } else if (test_bit(R5_Insync, &dev->flags)) {
1455 set_bit(R5_LOCKED, &dev->flags);
1456 set_bit(R5_Wantread, &dev->flags);
1457 s->locked++;
1458 PRINTK("Reading block %d (sync=%d)\n",
1459 i, s->syncing);
1460 }
1461 }
1462 }
1463 set_bit(STRIPE_HANDLE, &sh->state);
1464}
1465
1466static void handle_issuing_new_read_requests6(struct stripe_head *sh,
1467 struct stripe_head_state *s, struct r6_state *r6s,
1468 int disks)
1469{
1470 int i;
1471 for (i = disks; i--; ) {
1472 struct r5dev *dev = &sh->dev[i];
1473 if (!test_bit(R5_LOCKED, &dev->flags) &&
1474 !test_bit(R5_UPTODATE, &dev->flags) &&
1475 (dev->toread || (dev->towrite &&
1476 !test_bit(R5_OVERWRITE, &dev->flags)) ||
1477 s->syncing || s->expanding ||
1478 (s->failed >= 1 &&
1479 (sh->dev[r6s->failed_num[0]].toread ||
1480 s->to_write)) ||
1481 (s->failed >= 2 &&
1482 (sh->dev[r6s->failed_num[1]].toread ||
1483 s->to_write)))) {
1484 /* we would like to get this block, possibly
1485 * by computing it, but we might not be able to
1486 */
1487 if (s->uptodate == disks-1) {
1488 PRINTK("Computing stripe %llu block %d\n",
1489 (unsigned long long)sh->sector, i);
1490 compute_block_1(sh, i, 0);
1491 s->uptodate++;
1492 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
1493 /* Computing 2-failure is *very* expensive; only
1494 * do it if failed >= 2
1495 */
1496 int other;
1497 for (other = disks; other--; ) {
1498 if (other == i)
1499 continue;
1500 if (!test_bit(R5_UPTODATE,
1501 &sh->dev[other].flags))
1502 break;
1503 }
1504 BUG_ON(other < 0);
1505 PRINTK("Computing stripe %llu blocks %d,%d\n",
1506 (unsigned long long)sh->sector,
1507 i, other);
1508 compute_block_2(sh, i, other);
1509 s->uptodate += 2;
1510 } else if (test_bit(R5_Insync, &dev->flags)) {
1511 set_bit(R5_LOCKED, &dev->flags);
1512 set_bit(R5_Wantread, &dev->flags);
1513 s->locked++;
1514 PRINTK("Reading block %d (sync=%d)\n",
1515 i, s->syncing);
1516 }
1517 }
1518 }
1519 set_bit(STRIPE_HANDLE, &sh->state);
1520}
1521
1522
1523/* handle_completed_write_requests
1524 * any written block on an uptodate or failed drive can be returned.
1525 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1526 * never LOCKED, so we don't need to test 'failed' directly.
1527 */
1528static void handle_completed_write_requests(raid5_conf_t *conf,
1529 struct stripe_head *sh, int disks, struct bio **return_bi)
1530{
1531 int i;
1532 struct r5dev *dev;
1533
1534 for (i = disks; i--; )
1535 if (sh->dev[i].written) {
1536 dev = &sh->dev[i];
1537 if (!test_bit(R5_LOCKED, &dev->flags) &&
1538 test_bit(R5_UPTODATE, &dev->flags)) {
1539 /* We can return any write requests */
1540 struct bio *wbi, *wbi2;
1541 int bitmap_end = 0;
1542 PRINTK("Return write for disc %d\n", i);
1543 spin_lock_irq(&conf->device_lock);
1544 wbi = dev->written;
1545 dev->written = NULL;
1546 while (wbi && wbi->bi_sector <
1547 dev->sector + STRIPE_SECTORS) {
1548 wbi2 = r5_next_bio(wbi, dev->sector);
1549 if (--wbi->bi_phys_segments == 0) {
1550 md_write_end(conf->mddev);
1551 wbi->bi_next = *return_bi;
1552 *return_bi = wbi;
1553 }
1554 wbi = wbi2;
1555 }
1556 if (dev->towrite == NULL)
1557 bitmap_end = 1;
1558 spin_unlock_irq(&conf->device_lock);
1559 if (bitmap_end)
1560 bitmap_endwrite(conf->mddev->bitmap,
1561 sh->sector,
1562 STRIPE_SECTORS,
1563 !test_bit(STRIPE_DEGRADED, &sh->state),
1564 0);
1565 }
1566 }
1567}
1568
1569static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
1570 struct stripe_head *sh, struct stripe_head_state *s, int disks)
1571{
1572 int rmw = 0, rcw = 0, i;
1573 for (i = disks; i--; ) {
1574 /* would I have to read this buffer for read_modify_write */
1575 struct r5dev *dev = &sh->dev[i];
1576 if ((dev->towrite || i == sh->pd_idx) &&
1577 !test_bit(R5_LOCKED, &dev->flags) &&
1578 !test_bit(R5_UPTODATE, &dev->flags)) {
1579 if (test_bit(R5_Insync, &dev->flags))
1580 rmw++;
1581 else
1582 rmw += 2*disks; /* cannot read it */
1583 }
1584 /* Would I have to read this buffer for reconstruct_write */
1585 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1586 !test_bit(R5_LOCKED, &dev->flags) &&
1587 !test_bit(R5_UPTODATE, &dev->flags)) {
1588 if (test_bit(R5_Insync, &dev->flags))
1589 rcw++;
1590 else
1591 rcw += 2*disks;
1592 }
1593 }
1594 PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1595 (unsigned long long)sh->sector, rmw, rcw);
1596 set_bit(STRIPE_HANDLE, &sh->state);
1597 if (rmw < rcw && rmw > 0)
1598 /* prefer read-modify-write, but need to get some data */
1599 for (i = disks; i--; ) {
1600 struct r5dev *dev = &sh->dev[i];
1601 if ((dev->towrite || i == sh->pd_idx) &&
1602 !test_bit(R5_LOCKED, &dev->flags) &&
1603 !test_bit(R5_UPTODATE, &dev->flags) &&
1604 test_bit(R5_Insync, &dev->flags)) {
1605 if (
1606 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1607 PRINTK("Read_old block "
1608 "%d for r-m-w\n", i);
1609 set_bit(R5_LOCKED, &dev->flags);
1610 set_bit(R5_Wantread, &dev->flags);
1611 s->locked++;
1612 } else {
1613 set_bit(STRIPE_DELAYED, &sh->state);
1614 set_bit(STRIPE_HANDLE, &sh->state);
1615 }
1616 }
1617 }
1618 if (rcw <= rmw && rcw > 0)
1619 /* want reconstruct write, but need to get some data */
1620 for (i = disks; i--; ) {
1621 struct r5dev *dev = &sh->dev[i];
1622 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
1623 i != sh->pd_idx &&
1624 !test_bit(R5_LOCKED, &dev->flags) &&
1625 !test_bit(R5_UPTODATE, &dev->flags) &&
1626 test_bit(R5_Insync, &dev->flags)) {
1627 if (
1628 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1629 PRINTK("Read_old block "
1630 "%d for Reconstruct\n", i);
1631 set_bit(R5_LOCKED, &dev->flags);
1632 set_bit(R5_Wantread, &dev->flags);
1633 s->locked++;
1634 } else {
1635 set_bit(STRIPE_DELAYED, &sh->state);
1636 set_bit(STRIPE_HANDLE, &sh->state);
1637 }
1638 }
1639 }
1640 /* now if nothing is locked, and if we have enough data,
1641 * we can start a write request
1642 */
1643 if (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1644 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1645 PRINTK("Computing parity...\n");
1646 compute_parity5(sh, rcw == 0 ?
1647 RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1648 /* now every locked buffer is ready to be written */
1649 for (i = disks; i--; )
1650 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1651 PRINTK("Writing block %d\n", i);
1652 s->locked++;
1653 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1654 if (!test_bit(R5_Insync, &sh->dev[i].flags)
1655 || (i == sh->pd_idx && s->failed == 0))
1656 set_bit(STRIPE_INSYNC, &sh->state);
1657 }
1658 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1659 atomic_dec(&conf->preread_active_stripes);
1660 if (atomic_read(&conf->preread_active_stripes) <
1661 IO_THRESHOLD)
1662 md_wakeup_thread(conf->mddev->thread);
1663 }
1664 }
1665}
1666
1667static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
1668 struct stripe_head *sh, struct stripe_head_state *s,
1669 struct r6_state *r6s, int disks)
1670{
1671 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
1672 int qd_idx = r6s->qd_idx;
1673 for (i = disks; i--; ) {
1674 struct r5dev *dev = &sh->dev[i];
1675 /* Would I have to read this buffer for reconstruct_write */
1676 if (!test_bit(R5_OVERWRITE, &dev->flags)
1677 && i != pd_idx && i != qd_idx
1678 && (!test_bit(R5_LOCKED, &dev->flags)
1679 ) &&
1680 !test_bit(R5_UPTODATE, &dev->flags)) {
1681 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1682 else {
1683 PRINTK("raid6: must_compute: "
1684 "disk %d flags=%#lx\n", i, dev->flags);
1685 must_compute++;
1686 }
1687 }
1688 }
1689 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
1690 (unsigned long long)sh->sector, rcw, must_compute);
1691 set_bit(STRIPE_HANDLE, &sh->state);
1692
1693 if (rcw > 0)
1694 /* want reconstruct write, but need to get some data */
1695 for (i = disks; i--; ) {
1696 struct r5dev *dev = &sh->dev[i];
1697 if (!test_bit(R5_OVERWRITE, &dev->flags)
1698 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
1699 && !test_bit(R5_LOCKED, &dev->flags) &&
1700 !test_bit(R5_UPTODATE, &dev->flags) &&
1701 test_bit(R5_Insync, &dev->flags)) {
1702 if (
1703 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1704 PRINTK("Read_old stripe %llu "
1705 "block %d for Reconstruct\n",
1706 (unsigned long long)sh->sector, i);
1707 set_bit(R5_LOCKED, &dev->flags);
1708 set_bit(R5_Wantread, &dev->flags);
1709 s->locked++;
1710 } else {
1711 PRINTK("Request delayed stripe %llu "
1712 "block %d for Reconstruct\n",
1713 (unsigned long long)sh->sector, i);
1714 set_bit(STRIPE_DELAYED, &sh->state);
1715 set_bit(STRIPE_HANDLE, &sh->state);
1716 }
1717 }
1718 }
1719 /* now if nothing is locked, and if we have enough data, we can start a
1720 * write request
1721 */
1722 if (s->locked == 0 && rcw == 0 &&
1723 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1724 if (must_compute > 0) {
1725 /* We have failed blocks and need to compute them */
1726 switch (s->failed) {
1727 case 0:
1728 BUG();
1729 case 1:
1730 compute_block_1(sh, r6s->failed_num[0], 0);
1731 break;
1732 case 2:
1733 compute_block_2(sh, r6s->failed_num[0],
1734 r6s->failed_num[1]);
1735 break;
1736 default: /* This request should have been failed? */
1737 BUG();
1738 }
1739 }
1740
1741 PRINTK("Computing parity for stripe %llu\n",
1742 (unsigned long long)sh->sector);
1743 compute_parity6(sh, RECONSTRUCT_WRITE);
1744 /* now every locked buffer is ready to be written */
1745 for (i = disks; i--; )
1746 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1747 PRINTK("Writing stripe %llu block %d\n",
1748 (unsigned long long)sh->sector, i);
1749 s->locked++;
1750 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1751 }
1752 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
1753 set_bit(STRIPE_INSYNC, &sh->state);
1754
1755 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1756 atomic_dec(&conf->preread_active_stripes);
1757 if (atomic_read(&conf->preread_active_stripes) <
1758 IO_THRESHOLD)
1759 md_wakeup_thread(conf->mddev->thread);
1760 }
1761 }
1762}
1763
1764static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
1765 struct stripe_head_state *s, int disks)
1766{
1767 set_bit(STRIPE_HANDLE, &sh->state);
1768 if (s->failed == 0) {
1769 BUG_ON(s->uptodate != disks);
1770 compute_parity5(sh, CHECK_PARITY);
1771 s->uptodate--;
1772 if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1773 /* parity is correct (on disc, not in buffer any more)
1774 */
1775 set_bit(STRIPE_INSYNC, &sh->state);
1776 } else {
1777 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1778 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1779 /* don't try to repair!! */
1780 set_bit(STRIPE_INSYNC, &sh->state);
1781 else {
1782 compute_block(sh, sh->pd_idx);
1783 s->uptodate++;
1784 }
1785 }
1786 }
1787 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1788 struct r5dev *dev;
1789 /* either failed parity check, or recovery is happening */
1790 if (s->failed == 0)
1791 s->failed_num = sh->pd_idx;
1792 dev = &sh->dev[s->failed_num];
1793 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1794 BUG_ON(s->uptodate != disks);
1795
1796 set_bit(R5_LOCKED, &dev->flags);
1797 set_bit(R5_Wantwrite, &dev->flags);
1798 clear_bit(STRIPE_DEGRADED, &sh->state);
1799 s->locked++;
1800 set_bit(STRIPE_INSYNC, &sh->state);
1801 }
1802}
1803
1804
1805static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
1806 struct stripe_head_state *s,
1807 struct r6_state *r6s, struct page *tmp_page,
1808 int disks)
1809{
1810 int update_p = 0, update_q = 0;
1811 struct r5dev *dev;
1812 int pd_idx = sh->pd_idx;
1813 int qd_idx = r6s->qd_idx;
1814
1815 set_bit(STRIPE_HANDLE, &sh->state);
1816
1817 BUG_ON(s->failed > 2);
1818 BUG_ON(s->uptodate < disks);
1819 /* Want to check and possibly repair P and Q.
1820 * However there could be one 'failed' device, in which
1821 * case we can only check one of them, possibly using the
1822 * other to generate missing data
1823 */
1824
1825 /* If !tmp_page, we cannot do the calculations,
1826 * but as we have set STRIPE_HANDLE, we will soon be called
1827 * by stripe_handle with a tmp_page - just wait until then.
1828 */
1829 if (tmp_page) {
1830 if (s->failed == r6s->q_failed) {
1831 /* The only possible failed device holds 'Q', so it
1832 * makes sense to check P (If anything else were failed,
1833 * we would have used P to recreate it).
1834 */
1835 compute_block_1(sh, pd_idx, 1);
1836 if (!page_is_zero(sh->dev[pd_idx].page)) {
1837 compute_block_1(sh, pd_idx, 0);
1838 update_p = 1;
1839 }
1840 }
1841 if (!r6s->q_failed && s->failed < 2) {
1842 /* q is not failed, and we didn't use it to generate
1843 * anything, so it makes sense to check it
1844 */
1845 memcpy(page_address(tmp_page),
1846 page_address(sh->dev[qd_idx].page),
1847 STRIPE_SIZE);
1848 compute_parity6(sh, UPDATE_PARITY);
1849 if (memcmp(page_address(tmp_page),
1850 page_address(sh->dev[qd_idx].page),
1851 STRIPE_SIZE) != 0) {
1852 clear_bit(STRIPE_INSYNC, &sh->state);
1853 update_q = 1;
1854 }
1855 }
1856 if (update_p || update_q) {
1857 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1858 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1859 /* don't try to repair!! */
1860 update_p = update_q = 0;
1861 }
1862
1863 /* now write out any block on a failed drive,
1864 * or P or Q if they need it
1865 */
1866
1867 if (s->failed == 2) {
1868 dev = &sh->dev[r6s->failed_num[1]];
1869 s->locked++;
1870 set_bit(R5_LOCKED, &dev->flags);
1871 set_bit(R5_Wantwrite, &dev->flags);
1872 }
1873 if (s->failed >= 1) {
1874 dev = &sh->dev[r6s->failed_num[0]];
1875 s->locked++;
1876 set_bit(R5_LOCKED, &dev->flags);
1877 set_bit(R5_Wantwrite, &dev->flags);
1878 }
1879
1880 if (update_p) {
1881 dev = &sh->dev[pd_idx];
1882 s->locked++;
1883 set_bit(R5_LOCKED, &dev->flags);
1884 set_bit(R5_Wantwrite, &dev->flags);
1885 }
1886 if (update_q) {
1887 dev = &sh->dev[qd_idx];
1888 s->locked++;
1889 set_bit(R5_LOCKED, &dev->flags);
1890 set_bit(R5_Wantwrite, &dev->flags);
1891 }
1892 clear_bit(STRIPE_DEGRADED, &sh->state);
1893
1894 set_bit(STRIPE_INSYNC, &sh->state);
1895 }
1896}
1897
1898static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
1899 struct r6_state *r6s)
1900{
1901 int i;
1902
1903 /* We have read all the blocks in this stripe and now we need to
1904 * copy some of them into a target stripe for expand.
1905 */
1906 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1907 for (i = 0; i < sh->disks; i++)
1908 if (i != sh->pd_idx && (r6s && i != r6s->qd_idx)) {
1909 int dd_idx, pd_idx, j;
1910 struct stripe_head *sh2;
1911
1912 sector_t bn = compute_blocknr(sh, i);
1913 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1914 conf->raid_disks -
1915 conf->max_degraded, &dd_idx,
1916 &pd_idx, conf);
1917 sh2 = get_active_stripe(conf, s, conf->raid_disks,
1918 pd_idx, 1);
1919 if (sh2 == NULL)
1920 /* so far only the early blocks of this stripe
1921 * have been requested. When later blocks
1922 * get requested, we will try again
1923 */
1924 continue;
1925 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1926 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1927 /* must have already done this block */
1928 release_stripe(sh2);
1929 continue;
1930 }
1931 memcpy(page_address(sh2->dev[dd_idx].page),
1932 page_address(sh->dev[i].page),
1933 STRIPE_SIZE);
1934 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1935 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1936 for (j = 0; j < conf->raid_disks; j++)
1937 if (j != sh2->pd_idx &&
1938 (r6s && j != r6s->qd_idx) &&
1939 !test_bit(R5_Expanded, &sh2->dev[j].flags))
1940 break;
1941 if (j == conf->raid_disks) {
1942 set_bit(STRIPE_EXPAND_READY, &sh2->state);
1943 set_bit(STRIPE_HANDLE, &sh2->state);
1944 }
1945 release_stripe(sh2);
1946 }
1947}
1da177e4
LT
1948
1949/*
1950 * handle_stripe - do things to a stripe.
1951 *
1952 * We lock the stripe and then examine the state of various bits
1953 * to see what needs to be done.
1954 * Possible results:
1955 * return some read request which now have data
1956 * return some write requests which are safely on disc
1957 * schedule a read on some buffers
1958 * schedule a write of some buffers
1959 * return confirmation of parity correctness
1960 *
1961 * Parity calculations are done inside the stripe lock
1962 * buffers are taken off read_list or write_list, and bh_cache buffers
1963 * get BH_Lock set before the stripe lock is released.
1964 *
1965 */
a4456856 1966
16a53ecc 1967static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
1968{
1969 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
1970 int disks = sh->disks, i;
1971 struct bio *return_bi = NULL;
1972 struct stripe_head_state s;
1da177e4
LT
1973 struct r5dev *dev;
1974
a4456856 1975 memset(&s, 0, sizeof(s));
1da177e4
LT
1976 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1977 (unsigned long long)sh->sector, atomic_read(&sh->count),
1978 sh->pd_idx);
1979
1980 spin_lock(&sh->lock);
1981 clear_bit(STRIPE_HANDLE, &sh->state);
1982 clear_bit(STRIPE_DELAYED, &sh->state);
1983
a4456856
DW
1984 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
1985 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1986 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1da177e4
LT
1987 /* Now to look around and see what can be done */
1988
9910f16a 1989 rcu_read_lock();
1da177e4
LT
1990 for (i=disks; i--; ) {
1991 mdk_rdev_t *rdev;
a4456856 1992 struct r5dev *dev = &sh->dev[i];
1da177e4 1993 clear_bit(R5_Insync, &dev->flags);
1da177e4
LT
1994
1995 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1996 i, dev->flags, dev->toread, dev->towrite, dev->written);
1997 /* maybe we can reply to a read */
1998 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1999 struct bio *rbi, *rbi2;
2000 PRINTK("Return read for disc %d\n", i);
2001 spin_lock_irq(&conf->device_lock);
2002 rbi = dev->toread;
2003 dev->toread = NULL;
2004 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2005 wake_up(&conf->wait_for_overlap);
2006 spin_unlock_irq(&conf->device_lock);
2007 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2008 copy_data(0, rbi, dev->page, dev->sector);
2009 rbi2 = r5_next_bio(rbi, dev->sector);
2010 spin_lock_irq(&conf->device_lock);
2011 if (--rbi->bi_phys_segments == 0) {
2012 rbi->bi_next = return_bi;
2013 return_bi = rbi;
2014 }
2015 spin_unlock_irq(&conf->device_lock);
2016 rbi = rbi2;
2017 }
2018 }
2019
2020 /* now count some things */
a4456856
DW
2021 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2022 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 2023
a4456856
DW
2024 if (dev->toread)
2025 s.to_read++;
1da177e4 2026 if (dev->towrite) {
a4456856 2027 s.to_write++;
1da177e4 2028 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2029 s.non_overwrite++;
1da177e4 2030 }
a4456856
DW
2031 if (dev->written)
2032 s.written++;
9910f16a 2033 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 2034 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2035 /* The ReadError flag will just be confusing now */
4e5314b5
N
2036 clear_bit(R5_ReadError, &dev->flags);
2037 clear_bit(R5_ReWrite, &dev->flags);
2038 }
b2d444d7 2039 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2040 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2041 s.failed++;
2042 s.failed_num = i;
1da177e4
LT
2043 } else
2044 set_bit(R5_Insync, &dev->flags);
2045 }
9910f16a 2046 rcu_read_unlock();
1da177e4
LT
2047 PRINTK("locked=%d uptodate=%d to_read=%d"
2048 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2049 s.locked, s.uptodate, s.to_read, s.to_write,
2050 s.failed, s.failed_num);
1da177e4
LT
2051 /* check if the array has lost two devices and, if so, some requests might
2052 * need to be failed
2053 */
a4456856
DW
2054 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2055 handle_requests_to_failed_array(conf, sh, &s, disks,
2056 &return_bi);
2057 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2058 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2059 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2060 s.syncing = 0;
1da177e4
LT
2061 }
2062
2063 /* might be able to return some write requests if the parity block
2064 * is safe, or on a failed drive
2065 */
2066 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2067 if ( s.written &&
2068 ((test_bit(R5_Insync, &dev->flags) &&
2069 !test_bit(R5_LOCKED, &dev->flags) &&
2070 test_bit(R5_UPTODATE, &dev->flags)) ||
2071 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2072 handle_completed_write_requests(conf, sh, disks, &return_bi);
1da177e4
LT
2073
2074 /* Now we might consider reading some blocks, either to check/generate
2075 * parity, or to satisfy requests
2076 * or to load a block that is being partially written.
2077 */
a4456856
DW
2078 if (s.to_read || s.non_overwrite ||
2079 (s.syncing && (s.uptodate < disks)) || s.expanding)
2080 handle_issuing_new_read_requests5(sh, &s, disks);
1da177e4
LT
2081
2082 /* now to consider writing and what else, if anything should be read */
a4456856
DW
2083 if (s.to_write)
2084 handle_issuing_new_write_requests5(conf, sh, &s, disks);
1da177e4
LT
2085
2086 /* maybe we need to check and possibly fix the parity for this stripe
2087 * Any reads will already have been scheduled, so we just see if enough data
2088 * is available
2089 */
a4456856
DW
2090 if (s.syncing && s.locked == 0 &&
2091 !test_bit(STRIPE_INSYNC, &sh->state))
2092 handle_parity_checks5(conf, sh, &s, disks);
2093 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2094 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2095 clear_bit(STRIPE_SYNCING, &sh->state);
2096 }
4e5314b5
N
2097
2098 /* If the failed drive is just a ReadError, then we might need to progress
2099 * the repair/check process
2100 */
a4456856
DW
2101 if (s.failed == 1 && !conf->mddev->ro &&
2102 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2103 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2104 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2105 ) {
a4456856 2106 dev = &sh->dev[s.failed_num];
4e5314b5
N
2107 if (!test_bit(R5_ReWrite, &dev->flags)) {
2108 set_bit(R5_Wantwrite, &dev->flags);
2109 set_bit(R5_ReWrite, &dev->flags);
2110 set_bit(R5_LOCKED, &dev->flags);
a4456856 2111 s.locked++;
4e5314b5
N
2112 } else {
2113 /* let's read it back */
2114 set_bit(R5_Wantread, &dev->flags);
2115 set_bit(R5_LOCKED, &dev->flags);
a4456856 2116 s.locked++;
4e5314b5
N
2117 }
2118 }
2119
a4456856 2120 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
ccfcc3c1
N
2121 /* Need to write out all blocks after computing parity */
2122 sh->disks = conf->raid_disks;
2123 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
16a53ecc 2124 compute_parity5(sh, RECONSTRUCT_WRITE);
a4456856 2125 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 2126 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 2127 s.locked++;
ccfcc3c1
N
2128 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2129 }
2130 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 2131 } else if (s.expanded) {
ccfcc3c1 2132 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2133 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2134 wake_up(&conf->wait_for_overlap);
2135 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2136 }
2137
a4456856
DW
2138 if (s.expanding && s.locked == 0)
2139 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2140
1da177e4
LT
2141 spin_unlock(&sh->lock);
2142
a4456856 2143 return_io(return_bi);
1da177e4 2144
1da177e4
LT
2145 for (i=disks; i-- ;) {
2146 int rw;
2147 struct bio *bi;
2148 mdk_rdev_t *rdev;
2149 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
802ba064 2150 rw = WRITE;
1da177e4 2151 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
802ba064 2152 rw = READ;
1da177e4
LT
2153 else
2154 continue;
2155
2156 bi = &sh->dev[i].req;
2157
2158 bi->bi_rw = rw;
802ba064 2159 if (rw == WRITE)
1da177e4
LT
2160 bi->bi_end_io = raid5_end_write_request;
2161 else
2162 bi->bi_end_io = raid5_end_read_request;
2163
2164 rcu_read_lock();
d6065f7b 2165 rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 2166 if (rdev && test_bit(Faulty, &rdev->flags))
1da177e4
LT
2167 rdev = NULL;
2168 if (rdev)
2169 atomic_inc(&rdev->nr_pending);
2170 rcu_read_unlock();
2171
2172 if (rdev) {
a4456856 2173 if (s.syncing || s.expanding || s.expanded)
1da177e4
LT
2174 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2175
2176 bi->bi_bdev = rdev->bdev;
2177 PRINTK("for %llu schedule op %ld on disc %d\n",
2178 (unsigned long long)sh->sector, bi->bi_rw, i);
2179 atomic_inc(&sh->count);
2180 bi->bi_sector = sh->sector + rdev->data_offset;
2181 bi->bi_flags = 1 << BIO_UPTODATE;
2182 bi->bi_vcnt = 1;
2183 bi->bi_max_vecs = 1;
2184 bi->bi_idx = 0;
2185 bi->bi_io_vec = &sh->dev[i].vec;
2186 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2187 bi->bi_io_vec[0].bv_offset = 0;
2188 bi->bi_size = STRIPE_SIZE;
2189 bi->bi_next = NULL;
4dbcdc75
N
2190 if (rw == WRITE &&
2191 test_bit(R5_ReWrite, &sh->dev[i].flags))
2192 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1da177e4
LT
2193 generic_make_request(bi);
2194 } else {
802ba064 2195 if (rw == WRITE)
72626685 2196 set_bit(STRIPE_DEGRADED, &sh->state);
1da177e4
LT
2197 PRINTK("skip op %ld on disc %d for sector %llu\n",
2198 bi->bi_rw, i, (unsigned long long)sh->sector);
2199 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2200 set_bit(STRIPE_HANDLE, &sh->state);
2201 }
2202 }
2203}
2204
16a53ecc 2205static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 2206{
16a53ecc 2207 raid6_conf_t *conf = sh->raid_conf;
f416885e 2208 int disks = sh->disks;
a4456856
DW
2209 struct bio *return_bi = NULL;
2210 int i, pd_idx = sh->pd_idx;
2211 struct stripe_head_state s;
2212 struct r6_state r6s;
16a53ecc 2213 struct r5dev *dev, *pdev, *qdev;
1da177e4 2214
a4456856
DW
2215 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2216 PRINTK("handling stripe %llu, state=%#lx cnt=%d, "
2217 "pd_idx=%d, qd_idx=%d\n",
2218 (unsigned long long)sh->sector, sh->state,
2219 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2220 memset(&s, 0, sizeof(s));
72626685 2221
16a53ecc
N
2222 spin_lock(&sh->lock);
2223 clear_bit(STRIPE_HANDLE, &sh->state);
2224 clear_bit(STRIPE_DELAYED, &sh->state);
2225
a4456856
DW
2226 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2227 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2228 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 2229 /* Now to look around and see what can be done */
1da177e4
LT
2230
2231 rcu_read_lock();
16a53ecc
N
2232 for (i=disks; i--; ) {
2233 mdk_rdev_t *rdev;
2234 dev = &sh->dev[i];
2235 clear_bit(R5_Insync, &dev->flags);
1da177e4 2236
16a53ecc
N
2237 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
2238 i, dev->flags, dev->toread, dev->towrite, dev->written);
2239 /* maybe we can reply to a read */
2240 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2241 struct bio *rbi, *rbi2;
2242 PRINTK("Return read for disc %d\n", i);
2243 spin_lock_irq(&conf->device_lock);
2244 rbi = dev->toread;
2245 dev->toread = NULL;
2246 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2247 wake_up(&conf->wait_for_overlap);
2248 spin_unlock_irq(&conf->device_lock);
2249 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2250 copy_data(0, rbi, dev->page, dev->sector);
2251 rbi2 = r5_next_bio(rbi, dev->sector);
2252 spin_lock_irq(&conf->device_lock);
2253 if (--rbi->bi_phys_segments == 0) {
2254 rbi->bi_next = return_bi;
2255 return_bi = rbi;
2256 }
2257 spin_unlock_irq(&conf->device_lock);
2258 rbi = rbi2;
2259 }
2260 }
1da177e4 2261
16a53ecc 2262 /* now count some things */
a4456856
DW
2263 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2264 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 2265
16a53ecc 2266
a4456856
DW
2267 if (dev->toread)
2268 s.to_read++;
16a53ecc 2269 if (dev->towrite) {
a4456856 2270 s.to_write++;
16a53ecc 2271 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2272 s.non_overwrite++;
16a53ecc 2273 }
a4456856
DW
2274 if (dev->written)
2275 s.written++;
16a53ecc
N
2276 rdev = rcu_dereference(conf->disks[i].rdev);
2277 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2278 /* The ReadError flag will just be confusing now */
2279 clear_bit(R5_ReadError, &dev->flags);
2280 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 2281 }
16a53ecc
N
2282 if (!rdev || !test_bit(In_sync, &rdev->flags)
2283 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2284 if (s.failed < 2)
2285 r6s.failed_num[s.failed] = i;
2286 s.failed++;
16a53ecc
N
2287 } else
2288 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
2289 }
2290 rcu_read_unlock();
16a53ecc
N
2291 PRINTK("locked=%d uptodate=%d to_read=%d"
2292 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
2293 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2294 r6s.failed_num[0], r6s.failed_num[1]);
2295 /* check if the array has lost >2 devices and, if so, some requests
2296 * might need to be failed
16a53ecc 2297 */
a4456856
DW
2298 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2299 handle_requests_to_failed_array(conf, sh, &s, disks,
2300 &return_bi);
2301 if (s.failed > 2 && s.syncing) {
16a53ecc
N
2302 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2303 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2304 s.syncing = 0;
16a53ecc
N
2305 }
2306
2307 /*
2308 * might be able to return some write requests if the parity blocks
2309 * are safe, or on a failed drive
2310 */
2311 pdev = &sh->dev[pd_idx];
a4456856
DW
2312 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2313 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2314 qdev = &sh->dev[r6s.qd_idx];
2315 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2316 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2317
2318 if ( s.written &&
2319 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 2320 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
2321 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2322 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 2323 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856
DW
2324 && test_bit(R5_UPTODATE, &qdev->flags)))))
2325 handle_completed_write_requests(conf, sh, disks, &return_bi);
16a53ecc
N
2326
2327 /* Now we might consider reading some blocks, either to check/generate
2328 * parity, or to satisfy requests
2329 * or to load a block that is being partially written.
2330 */
a4456856
DW
2331 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2332 (s.syncing && (s.uptodate < disks)) || s.expanding)
2333 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
16a53ecc
N
2334
2335 /* now to consider writing and what else, if anything should be read */
a4456856
DW
2336 if (s.to_write)
2337 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
16a53ecc
N
2338
2339 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
2340 * Any reads will already have been scheduled, so we just see if enough
2341 * data is available
16a53ecc 2342 */
a4456856
DW
2343 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2344 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 2345
a4456856 2346 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
2347 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2348 clear_bit(STRIPE_SYNCING, &sh->state);
2349 }
2350
2351 /* If the failed drives are just a ReadError, then we might need
2352 * to progress the repair/check process
2353 */
a4456856
DW
2354 if (s.failed <= 2 && !conf->mddev->ro)
2355 for (i = 0; i < s.failed; i++) {
2356 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
2357 if (test_bit(R5_ReadError, &dev->flags)
2358 && !test_bit(R5_LOCKED, &dev->flags)
2359 && test_bit(R5_UPTODATE, &dev->flags)
2360 ) {
2361 if (!test_bit(R5_ReWrite, &dev->flags)) {
2362 set_bit(R5_Wantwrite, &dev->flags);
2363 set_bit(R5_ReWrite, &dev->flags);
2364 set_bit(R5_LOCKED, &dev->flags);
2365 } else {
2366 /* let's read it back */
2367 set_bit(R5_Wantread, &dev->flags);
2368 set_bit(R5_LOCKED, &dev->flags);
2369 }
2370 }
2371 }
f416885e 2372
a4456856 2373 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
2374 /* Need to write out all blocks after computing P&Q */
2375 sh->disks = conf->raid_disks;
2376 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2377 conf->raid_disks);
2378 compute_parity6(sh, RECONSTRUCT_WRITE);
2379 for (i = conf->raid_disks ; i-- ; ) {
2380 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 2381 s.locked++;
f416885e
N
2382 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2383 }
2384 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 2385 } else if (s.expanded) {
f416885e
N
2386 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2387 atomic_dec(&conf->reshape_stripes);
2388 wake_up(&conf->wait_for_overlap);
2389 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2390 }
2391
a4456856
DW
2392 if (s.expanding && s.locked == 0)
2393 handle_stripe_expansion(conf, sh, &r6s);
f416885e 2394
16a53ecc
N
2395 spin_unlock(&sh->lock);
2396
a4456856 2397 return_io(return_bi);
16a53ecc 2398
16a53ecc
N
2399 for (i=disks; i-- ;) {
2400 int rw;
2401 struct bio *bi;
2402 mdk_rdev_t *rdev;
2403 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
802ba064 2404 rw = WRITE;
16a53ecc 2405 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
802ba064 2406 rw = READ;
16a53ecc
N
2407 else
2408 continue;
2409
2410 bi = &sh->dev[i].req;
2411
2412 bi->bi_rw = rw;
802ba064 2413 if (rw == WRITE)
16a53ecc
N
2414 bi->bi_end_io = raid5_end_write_request;
2415 else
2416 bi->bi_end_io = raid5_end_read_request;
2417
2418 rcu_read_lock();
2419 rdev = rcu_dereference(conf->disks[i].rdev);
2420 if (rdev && test_bit(Faulty, &rdev->flags))
2421 rdev = NULL;
2422 if (rdev)
2423 atomic_inc(&rdev->nr_pending);
2424 rcu_read_unlock();
2425
2426 if (rdev) {
a4456856 2427 if (s.syncing || s.expanding || s.expanded)
16a53ecc
N
2428 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2429
2430 bi->bi_bdev = rdev->bdev;
2431 PRINTK("for %llu schedule op %ld on disc %d\n",
2432 (unsigned long long)sh->sector, bi->bi_rw, i);
2433 atomic_inc(&sh->count);
2434 bi->bi_sector = sh->sector + rdev->data_offset;
2435 bi->bi_flags = 1 << BIO_UPTODATE;
2436 bi->bi_vcnt = 1;
2437 bi->bi_max_vecs = 1;
2438 bi->bi_idx = 0;
2439 bi->bi_io_vec = &sh->dev[i].vec;
2440 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2441 bi->bi_io_vec[0].bv_offset = 0;
2442 bi->bi_size = STRIPE_SIZE;
2443 bi->bi_next = NULL;
2444 if (rw == WRITE &&
2445 test_bit(R5_ReWrite, &sh->dev[i].flags))
2446 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2447 generic_make_request(bi);
2448 } else {
802ba064 2449 if (rw == WRITE)
16a53ecc
N
2450 set_bit(STRIPE_DEGRADED, &sh->state);
2451 PRINTK("skip op %ld on disc %d for sector %llu\n",
2452 bi->bi_rw, i, (unsigned long long)sh->sector);
2453 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2454 set_bit(STRIPE_HANDLE, &sh->state);
2455 }
2456 }
2457}
2458
2459static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2460{
2461 if (sh->raid_conf->level == 6)
2462 handle_stripe6(sh, tmp_page);
2463 else
2464 handle_stripe5(sh);
2465}
2466
2467
2468
2469static void raid5_activate_delayed(raid5_conf_t *conf)
2470{
2471 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2472 while (!list_empty(&conf->delayed_list)) {
2473 struct list_head *l = conf->delayed_list.next;
2474 struct stripe_head *sh;
2475 sh = list_entry(l, struct stripe_head, lru);
2476 list_del_init(l);
2477 clear_bit(STRIPE_DELAYED, &sh->state);
2478 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2479 atomic_inc(&conf->preread_active_stripes);
2480 list_add_tail(&sh->lru, &conf->handle_list);
2481 }
2482 }
2483}
2484
2485static void activate_bit_delay(raid5_conf_t *conf)
2486{
2487 /* device_lock is held */
2488 struct list_head head;
2489 list_add(&head, &conf->bitmap_list);
2490 list_del_init(&conf->bitmap_list);
2491 while (!list_empty(&head)) {
2492 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2493 list_del_init(&sh->lru);
2494 atomic_inc(&sh->count);
2495 __release_stripe(conf, sh);
2496 }
2497}
2498
2499static void unplug_slaves(mddev_t *mddev)
2500{
2501 raid5_conf_t *conf = mddev_to_conf(mddev);
2502 int i;
2503
2504 rcu_read_lock();
2505 for (i=0; i<mddev->raid_disks; i++) {
2506 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2507 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2508 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2509
2510 atomic_inc(&rdev->nr_pending);
2511 rcu_read_unlock();
2512
2513 if (r_queue->unplug_fn)
2514 r_queue->unplug_fn(r_queue);
2515
2516 rdev_dec_pending(rdev, mddev);
2517 rcu_read_lock();
2518 }
2519 }
2520 rcu_read_unlock();
2521}
2522
2523static void raid5_unplug_device(request_queue_t *q)
2524{
2525 mddev_t *mddev = q->queuedata;
2526 raid5_conf_t *conf = mddev_to_conf(mddev);
2527 unsigned long flags;
2528
2529 spin_lock_irqsave(&conf->device_lock, flags);
2530
2531 if (blk_remove_plug(q)) {
2532 conf->seq_flush++;
2533 raid5_activate_delayed(conf);
72626685 2534 }
1da177e4
LT
2535 md_wakeup_thread(mddev->thread);
2536
2537 spin_unlock_irqrestore(&conf->device_lock, flags);
2538
2539 unplug_slaves(mddev);
2540}
2541
2542static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2543 sector_t *error_sector)
2544{
2545 mddev_t *mddev = q->queuedata;
2546 raid5_conf_t *conf = mddev_to_conf(mddev);
2547 int i, ret = 0;
2548
2549 rcu_read_lock();
2550 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
d6065f7b 2551 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
b2d444d7 2552 if (rdev && !test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
2553 struct block_device *bdev = rdev->bdev;
2554 request_queue_t *r_queue = bdev_get_queue(bdev);
2555
2556 if (!r_queue->issue_flush_fn)
2557 ret = -EOPNOTSUPP;
2558 else {
2559 atomic_inc(&rdev->nr_pending);
2560 rcu_read_unlock();
2561 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2562 error_sector);
2563 rdev_dec_pending(rdev, mddev);
2564 rcu_read_lock();
2565 }
2566 }
2567 }
2568 rcu_read_unlock();
2569 return ret;
2570}
2571
f022b2fd
N
2572static int raid5_congested(void *data, int bits)
2573{
2574 mddev_t *mddev = data;
2575 raid5_conf_t *conf = mddev_to_conf(mddev);
2576
2577 /* No difference between reads and writes. Just check
2578 * how busy the stripe_cache is
2579 */
2580 if (conf->inactive_blocked)
2581 return 1;
2582 if (conf->quiesce)
2583 return 1;
2584 if (list_empty_careful(&conf->inactive_list))
2585 return 1;
2586
2587 return 0;
2588}
2589
23032a0e
RBJ
2590/* We want read requests to align with chunks where possible,
2591 * but write requests don't need to.
2592 */
2593static int raid5_mergeable_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *biovec)
2594{
2595 mddev_t *mddev = q->queuedata;
2596 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
2597 int max;
2598 unsigned int chunk_sectors = mddev->chunk_size >> 9;
2599 unsigned int bio_sectors = bio->bi_size >> 9;
2600
802ba064 2601 if (bio_data_dir(bio) == WRITE)
23032a0e
RBJ
2602 return biovec->bv_len; /* always allow writes to be mergeable */
2603
2604 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
2605 if (max < 0) max = 0;
2606 if (max <= biovec->bv_len && bio_sectors == 0)
2607 return biovec->bv_len;
2608 else
2609 return max;
2610}
2611
f679623f
RBJ
2612
2613static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
2614{
2615 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
2616 unsigned int chunk_sectors = mddev->chunk_size >> 9;
2617 unsigned int bio_sectors = bio->bi_size >> 9;
2618
2619 return chunk_sectors >=
2620 ((sector & (chunk_sectors - 1)) + bio_sectors);
2621}
2622
46031f9a
RBJ
2623/*
2624 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
2625 * later sampled by raid5d.
2626 */
2627static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
2628{
2629 unsigned long flags;
2630
2631 spin_lock_irqsave(&conf->device_lock, flags);
2632
2633 bi->bi_next = conf->retry_read_aligned_list;
2634 conf->retry_read_aligned_list = bi;
2635
2636 spin_unlock_irqrestore(&conf->device_lock, flags);
2637 md_wakeup_thread(conf->mddev->thread);
2638}
2639
2640
2641static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
2642{
2643 struct bio *bi;
2644
2645 bi = conf->retry_read_aligned;
2646 if (bi) {
2647 conf->retry_read_aligned = NULL;
2648 return bi;
2649 }
2650 bi = conf->retry_read_aligned_list;
2651 if(bi) {
387bb173 2652 conf->retry_read_aligned_list = bi->bi_next;
46031f9a
RBJ
2653 bi->bi_next = NULL;
2654 bi->bi_phys_segments = 1; /* biased count of active stripes */
2655 bi->bi_hw_segments = 0; /* count of processed stripes */
2656 }
2657
2658 return bi;
2659}
2660
2661
f679623f
RBJ
2662/*
2663 * The "raid5_align_endio" should check if the read succeeded and if it
2664 * did, call bio_endio on the original bio (having bio_put the new bio
2665 * first).
2666 * If the read failed..
2667 */
46031f9a 2668static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
f679623f
RBJ
2669{
2670 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
2671 mddev_t *mddev;
2672 raid5_conf_t *conf;
2673 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2674 mdk_rdev_t *rdev;
2675
f679623f
RBJ
2676 if (bi->bi_size)
2677 return 1;
2678 bio_put(bi);
46031f9a
RBJ
2679
2680 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
2681 conf = mddev_to_conf(mddev);
2682 rdev = (void*)raid_bi->bi_next;
2683 raid_bi->bi_next = NULL;
2684
2685 rdev_dec_pending(rdev, conf->mddev);
2686
2687 if (!error && uptodate) {
2688 bio_endio(raid_bi, bytes, 0);
2689 if (atomic_dec_and_test(&conf->active_aligned_reads))
2690 wake_up(&conf->wait_for_stripe);
2691 return 0;
2692 }
2693
2694
2695 PRINTK("raid5_align_endio : io error...handing IO for a retry\n");
2696
2697 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
2698 return 0;
2699}
2700
387bb173
NB
2701static int bio_fits_rdev(struct bio *bi)
2702{
2703 request_queue_t *q = bdev_get_queue(bi->bi_bdev);
2704
2705 if ((bi->bi_size>>9) > q->max_sectors)
2706 return 0;
2707 blk_recount_segments(q, bi);
2708 if (bi->bi_phys_segments > q->max_phys_segments ||
2709 bi->bi_hw_segments > q->max_hw_segments)
2710 return 0;
2711
2712 if (q->merge_bvec_fn)
2713 /* it's too hard to apply the merge_bvec_fn at this stage,
2714 * just just give up
2715 */
2716 return 0;
2717
2718 return 1;
2719}
2720
2721
f679623f
RBJ
2722static int chunk_aligned_read(request_queue_t *q, struct bio * raid_bio)
2723{
2724 mddev_t *mddev = q->queuedata;
2725 raid5_conf_t *conf = mddev_to_conf(mddev);
2726 const unsigned int raid_disks = conf->raid_disks;
46031f9a 2727 const unsigned int data_disks = raid_disks - conf->max_degraded;
f679623f
RBJ
2728 unsigned int dd_idx, pd_idx;
2729 struct bio* align_bi;
2730 mdk_rdev_t *rdev;
2731
2732 if (!in_chunk_boundary(mddev, raid_bio)) {
c20086de 2733 PRINTK("chunk_aligned_read : non aligned\n");
f679623f
RBJ
2734 return 0;
2735 }
2736 /*
2737 * use bio_clone to make a copy of the bio
2738 */
2739 align_bi = bio_clone(raid_bio, GFP_NOIO);
2740 if (!align_bi)
2741 return 0;
2742 /*
2743 * set bi_end_io to a new function, and set bi_private to the
2744 * original bio.
2745 */
2746 align_bi->bi_end_io = raid5_align_endio;
2747 align_bi->bi_private = raid_bio;
2748 /*
2749 * compute position
2750 */
2751 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
2752 raid_disks,
2753 data_disks,
2754 &dd_idx,
2755 &pd_idx,
2756 conf);
2757
2758 rcu_read_lock();
2759 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
2760 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
2761 atomic_inc(&rdev->nr_pending);
2762 rcu_read_unlock();
46031f9a
RBJ
2763 raid_bio->bi_next = (void*)rdev;
2764 align_bi->bi_bdev = rdev->bdev;
2765 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
2766 align_bi->bi_sector += rdev->data_offset;
2767
387bb173
NB
2768 if (!bio_fits_rdev(align_bi)) {
2769 /* too big in some way */
2770 bio_put(align_bi);
2771 rdev_dec_pending(rdev, mddev);
2772 return 0;
2773 }
2774
46031f9a
RBJ
2775 spin_lock_irq(&conf->device_lock);
2776 wait_event_lock_irq(conf->wait_for_stripe,
2777 conf->quiesce == 0,
2778 conf->device_lock, /* nothing */);
2779 atomic_inc(&conf->active_aligned_reads);
2780 spin_unlock_irq(&conf->device_lock);
2781
f679623f
RBJ
2782 generic_make_request(align_bi);
2783 return 1;
2784 } else {
2785 rcu_read_unlock();
46031f9a 2786 bio_put(align_bi);
f679623f
RBJ
2787 return 0;
2788 }
2789}
2790
2791
7ecaa1e6 2792static int make_request(request_queue_t *q, struct bio * bi)
1da177e4
LT
2793{
2794 mddev_t *mddev = q->queuedata;
2795 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
2796 unsigned int dd_idx, pd_idx;
2797 sector_t new_sector;
2798 sector_t logical_sector, last_sector;
2799 struct stripe_head *sh;
a362357b 2800 const int rw = bio_data_dir(bi);
f6344757 2801 int remaining;
1da177e4 2802
e5dcdd80
N
2803 if (unlikely(bio_barrier(bi))) {
2804 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2805 return 0;
2806 }
2807
3d310eb7 2808 md_write_start(mddev, bi);
06d91a5f 2809
a362357b
JA
2810 disk_stat_inc(mddev->gendisk, ios[rw]);
2811 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4 2812
802ba064 2813 if (rw == READ &&
52488615
RBJ
2814 mddev->reshape_position == MaxSector &&
2815 chunk_aligned_read(q,bi))
2816 return 0;
2817
1da177e4
LT
2818 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2819 last_sector = bi->bi_sector + (bi->bi_size>>9);
2820 bi->bi_next = NULL;
2821 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 2822
1da177e4
LT
2823 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2824 DEFINE_WAIT(w);
16a53ecc 2825 int disks, data_disks;
b578d55f 2826
7ecaa1e6 2827 retry:
b578d55f 2828 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
2829 if (likely(conf->expand_progress == MaxSector))
2830 disks = conf->raid_disks;
2831 else {
df8e7f76
N
2832 /* spinlock is needed as expand_progress may be
2833 * 64bit on a 32bit platform, and so it might be
2834 * possible to see a half-updated value
2835 * Ofcourse expand_progress could change after
2836 * the lock is dropped, so once we get a reference
2837 * to the stripe that we think it is, we will have
2838 * to check again.
2839 */
7ecaa1e6
N
2840 spin_lock_irq(&conf->device_lock);
2841 disks = conf->raid_disks;
2842 if (logical_sector >= conf->expand_progress)
2843 disks = conf->previous_raid_disks;
b578d55f
N
2844 else {
2845 if (logical_sector >= conf->expand_lo) {
2846 spin_unlock_irq(&conf->device_lock);
2847 schedule();
2848 goto retry;
2849 }
2850 }
7ecaa1e6
N
2851 spin_unlock_irq(&conf->device_lock);
2852 }
16a53ecc
N
2853 data_disks = disks - conf->max_degraded;
2854
2855 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
7ecaa1e6 2856 &dd_idx, &pd_idx, conf);
1da177e4
LT
2857 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2858 (unsigned long long)new_sector,
2859 (unsigned long long)logical_sector);
2860
7ecaa1e6 2861 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 2862 if (sh) {
7ecaa1e6
N
2863 if (unlikely(conf->expand_progress != MaxSector)) {
2864 /* expansion might have moved on while waiting for a
df8e7f76
N
2865 * stripe, so we must do the range check again.
2866 * Expansion could still move past after this
2867 * test, but as we are holding a reference to
2868 * 'sh', we know that if that happens,
2869 * STRIPE_EXPANDING will get set and the expansion
2870 * won't proceed until we finish with the stripe.
7ecaa1e6
N
2871 */
2872 int must_retry = 0;
2873 spin_lock_irq(&conf->device_lock);
2874 if (logical_sector < conf->expand_progress &&
2875 disks == conf->previous_raid_disks)
2876 /* mismatch, need to try again */
2877 must_retry = 1;
2878 spin_unlock_irq(&conf->device_lock);
2879 if (must_retry) {
2880 release_stripe(sh);
2881 goto retry;
2882 }
2883 }
e464eafd
N
2884 /* FIXME what if we get a false positive because these
2885 * are being updated.
2886 */
2887 if (logical_sector >= mddev->suspend_lo &&
2888 logical_sector < mddev->suspend_hi) {
2889 release_stripe(sh);
2890 schedule();
2891 goto retry;
2892 }
7ecaa1e6
N
2893
2894 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2895 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2896 /* Stripe is busy expanding or
2897 * add failed due to overlap. Flush everything
1da177e4
LT
2898 * and wait a while
2899 */
2900 raid5_unplug_device(mddev->queue);
2901 release_stripe(sh);
2902 schedule();
2903 goto retry;
2904 }
2905 finish_wait(&conf->wait_for_overlap, &w);
16a53ecc 2906 handle_stripe(sh, NULL);
1da177e4 2907 release_stripe(sh);
1da177e4
LT
2908 } else {
2909 /* cannot get stripe for read-ahead, just give-up */
2910 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2911 finish_wait(&conf->wait_for_overlap, &w);
2912 break;
2913 }
2914
2915 }
2916 spin_lock_irq(&conf->device_lock);
f6344757
N
2917 remaining = --bi->bi_phys_segments;
2918 spin_unlock_irq(&conf->device_lock);
2919 if (remaining == 0) {
1da177e4
LT
2920 int bytes = bi->bi_size;
2921
16a53ecc 2922 if ( rw == WRITE )
1da177e4
LT
2923 md_write_end(mddev);
2924 bi->bi_size = 0;
c2b00852
N
2925 bi->bi_end_io(bi, bytes,
2926 test_bit(BIO_UPTODATE, &bi->bi_flags)
2927 ? 0 : -EIO);
1da177e4 2928 }
1da177e4
LT
2929 return 0;
2930}
2931
52c03291 2932static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 2933{
52c03291
N
2934 /* reshaping is quite different to recovery/resync so it is
2935 * handled quite separately ... here.
2936 *
2937 * On each call to sync_request, we gather one chunk worth of
2938 * destination stripes and flag them as expanding.
2939 * Then we find all the source stripes and request reads.
2940 * As the reads complete, handle_stripe will copy the data
2941 * into the destination stripe and release that stripe.
2942 */
1da177e4
LT
2943 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2944 struct stripe_head *sh;
ccfcc3c1
N
2945 int pd_idx;
2946 sector_t first_sector, last_sector;
f416885e
N
2947 int raid_disks = conf->previous_raid_disks;
2948 int data_disks = raid_disks - conf->max_degraded;
2949 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
2950 int i;
2951 int dd_idx;
2952 sector_t writepos, safepos, gap;
2953
2954 if (sector_nr == 0 &&
2955 conf->expand_progress != 0) {
2956 /* restarting in the middle, skip the initial sectors */
2957 sector_nr = conf->expand_progress;
f416885e 2958 sector_div(sector_nr, new_data_disks);
52c03291
N
2959 *skipped = 1;
2960 return sector_nr;
2961 }
2962
2963 /* we update the metadata when there is more than 3Meg
2964 * in the block range (that is rather arbitrary, should
2965 * probably be time based) or when the data about to be
2966 * copied would over-write the source of the data at
2967 * the front of the range.
2968 * i.e. one new_stripe forward from expand_progress new_maps
2969 * to after where expand_lo old_maps to
2970 */
2971 writepos = conf->expand_progress +
f416885e
N
2972 conf->chunk_size/512*(new_data_disks);
2973 sector_div(writepos, new_data_disks);
52c03291 2974 safepos = conf->expand_lo;
f416885e 2975 sector_div(safepos, data_disks);
52c03291
N
2976 gap = conf->expand_progress - conf->expand_lo;
2977
2978 if (writepos >= safepos ||
f416885e 2979 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
2980 /* Cannot proceed until we've updated the superblock... */
2981 wait_event(conf->wait_for_overlap,
2982 atomic_read(&conf->reshape_stripes)==0);
2983 mddev->reshape_position = conf->expand_progress;
850b2b42 2984 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 2985 md_wakeup_thread(mddev->thread);
850b2b42 2986 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
2987 kthread_should_stop());
2988 spin_lock_irq(&conf->device_lock);
2989 conf->expand_lo = mddev->reshape_position;
2990 spin_unlock_irq(&conf->device_lock);
2991 wake_up(&conf->wait_for_overlap);
2992 }
2993
2994 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2995 int j;
2996 int skipped = 0;
2997 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2998 sh = get_active_stripe(conf, sector_nr+i,
2999 conf->raid_disks, pd_idx, 0);
3000 set_bit(STRIPE_EXPANDING, &sh->state);
3001 atomic_inc(&conf->reshape_stripes);
3002 /* If any of this stripe is beyond the end of the old
3003 * array, then we need to zero those blocks
3004 */
3005 for (j=sh->disks; j--;) {
3006 sector_t s;
3007 if (j == sh->pd_idx)
3008 continue;
f416885e
N
3009 if (conf->level == 6 &&
3010 j == raid6_next_disk(sh->pd_idx, sh->disks))
3011 continue;
52c03291
N
3012 s = compute_blocknr(sh, j);
3013 if (s < (mddev->array_size<<1)) {
3014 skipped = 1;
3015 continue;
3016 }
3017 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3018 set_bit(R5_Expanded, &sh->dev[j].flags);
3019 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3020 }
3021 if (!skipped) {
3022 set_bit(STRIPE_EXPAND_READY, &sh->state);
3023 set_bit(STRIPE_HANDLE, &sh->state);
3024 }
3025 release_stripe(sh);
3026 }
3027 spin_lock_irq(&conf->device_lock);
6d3baf2e 3028 conf->expand_progress = (sector_nr + i) * new_data_disks;
52c03291
N
3029 spin_unlock_irq(&conf->device_lock);
3030 /* Ok, those stripe are ready. We can start scheduling
3031 * reads on the source stripes.
3032 * The source stripes are determined by mapping the first and last
3033 * block on the destination stripes.
3034 */
52c03291 3035 first_sector =
f416885e 3036 raid5_compute_sector(sector_nr*(new_data_disks),
52c03291
N
3037 raid_disks, data_disks,
3038 &dd_idx, &pd_idx, conf);
3039 last_sector =
3040 raid5_compute_sector((sector_nr+conf->chunk_size/512)
f416885e 3041 *(new_data_disks) -1,
52c03291
N
3042 raid_disks, data_disks,
3043 &dd_idx, &pd_idx, conf);
3044 if (last_sector >= (mddev->size<<1))
3045 last_sector = (mddev->size<<1)-1;
3046 while (first_sector <= last_sector) {
f416885e
N
3047 pd_idx = stripe_to_pdidx(first_sector, conf,
3048 conf->previous_raid_disks);
52c03291
N
3049 sh = get_active_stripe(conf, first_sector,
3050 conf->previous_raid_disks, pd_idx, 0);
3051 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3052 set_bit(STRIPE_HANDLE, &sh->state);
3053 release_stripe(sh);
3054 first_sector += STRIPE_SECTORS;
3055 }
3056 return conf->chunk_size>>9;
3057}
3058
3059/* FIXME go_faster isn't used */
3060static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3061{
3062 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3063 struct stripe_head *sh;
3064 int pd_idx;
1da177e4 3065 int raid_disks = conf->raid_disks;
72626685
N
3066 sector_t max_sector = mddev->size << 1;
3067 int sync_blocks;
16a53ecc
N
3068 int still_degraded = 0;
3069 int i;
1da177e4 3070
72626685 3071 if (sector_nr >= max_sector) {
1da177e4
LT
3072 /* just being told to finish up .. nothing much to do */
3073 unplug_slaves(mddev);
29269553
N
3074 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3075 end_reshape(conf);
3076 return 0;
3077 }
72626685
N
3078
3079 if (mddev->curr_resync < max_sector) /* aborted */
3080 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3081 &sync_blocks, 1);
16a53ecc 3082 else /* completed sync */
72626685
N
3083 conf->fullsync = 0;
3084 bitmap_close_sync(mddev->bitmap);
3085
1da177e4
LT
3086 return 0;
3087 }
ccfcc3c1 3088
52c03291
N
3089 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3090 return reshape_request(mddev, sector_nr, skipped);
f6705578 3091
16a53ecc 3092 /* if there is too many failed drives and we are trying
1da177e4
LT
3093 * to resync, then assert that we are finished, because there is
3094 * nothing we can do.
3095 */
3285edf1 3096 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3097 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
3098 sector_t rv = (mddev->size << 1) - sector_nr;
3099 *skipped = 1;
1da177e4
LT
3100 return rv;
3101 }
72626685 3102 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3103 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3104 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3105 /* we can skip this block, and probably more */
3106 sync_blocks /= STRIPE_SECTORS;
3107 *skipped = 1;
3108 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3109 }
1da177e4 3110
ccfcc3c1 3111 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 3112 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 3113 if (sh == NULL) {
7ecaa1e6 3114 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4 3115 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3116 * is trying to get access
1da177e4 3117 */
66c006a5 3118 schedule_timeout_uninterruptible(1);
1da177e4 3119 }
16a53ecc
N
3120 /* Need to check if array will still be degraded after recovery/resync
3121 * We don't need to check the 'failed' flag as when that gets set,
3122 * recovery aborts.
3123 */
3124 for (i=0; i<mddev->raid_disks; i++)
3125 if (conf->disks[i].rdev == NULL)
3126 still_degraded = 1;
3127
3128 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3129
3130 spin_lock(&sh->lock);
1da177e4
LT
3131 set_bit(STRIPE_SYNCING, &sh->state);
3132 clear_bit(STRIPE_INSYNC, &sh->state);
3133 spin_unlock(&sh->lock);
3134
16a53ecc 3135 handle_stripe(sh, NULL);
1da177e4
LT
3136 release_stripe(sh);
3137
3138 return STRIPE_SECTORS;
3139}
3140
46031f9a
RBJ
3141static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3142{
3143 /* We may not be able to submit a whole bio at once as there
3144 * may not be enough stripe_heads available.
3145 * We cannot pre-allocate enough stripe_heads as we may need
3146 * more than exist in the cache (if we allow ever large chunks).
3147 * So we do one stripe head at a time and record in
3148 * ->bi_hw_segments how many have been done.
3149 *
3150 * We *know* that this entire raid_bio is in one chunk, so
3151 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3152 */
3153 struct stripe_head *sh;
3154 int dd_idx, pd_idx;
3155 sector_t sector, logical_sector, last_sector;
3156 int scnt = 0;
3157 int remaining;
3158 int handled = 0;
3159
3160 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3161 sector = raid5_compute_sector( logical_sector,
3162 conf->raid_disks,
3163 conf->raid_disks - conf->max_degraded,
3164 &dd_idx,
3165 &pd_idx,
3166 conf);
3167 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3168
3169 for (; logical_sector < last_sector;
387bb173
NB
3170 logical_sector += STRIPE_SECTORS,
3171 sector += STRIPE_SECTORS,
3172 scnt++) {
46031f9a
RBJ
3173
3174 if (scnt < raid_bio->bi_hw_segments)
3175 /* already done this stripe */
3176 continue;
3177
3178 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3179
3180 if (!sh) {
3181 /* failed to get a stripe - must wait */
3182 raid_bio->bi_hw_segments = scnt;
3183 conf->retry_read_aligned = raid_bio;
3184 return handled;
3185 }
3186
3187 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
3188 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3189 release_stripe(sh);
3190 raid_bio->bi_hw_segments = scnt;
3191 conf->retry_read_aligned = raid_bio;
3192 return handled;
3193 }
3194
46031f9a
RBJ
3195 handle_stripe(sh, NULL);
3196 release_stripe(sh);
3197 handled++;
3198 }
3199 spin_lock_irq(&conf->device_lock);
3200 remaining = --raid_bio->bi_phys_segments;
3201 spin_unlock_irq(&conf->device_lock);
3202 if (remaining == 0) {
3203 int bytes = raid_bio->bi_size;
3204
3205 raid_bio->bi_size = 0;
c2b00852
N
3206 raid_bio->bi_end_io(raid_bio, bytes,
3207 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3208 ? 0 : -EIO);
46031f9a
RBJ
3209 }
3210 if (atomic_dec_and_test(&conf->active_aligned_reads))
3211 wake_up(&conf->wait_for_stripe);
3212 return handled;
3213}
3214
3215
3216
1da177e4
LT
3217/*
3218 * This is our raid5 kernel thread.
3219 *
3220 * We scan the hash table for stripes which can be handled now.
3221 * During the scan, completed stripes are saved for us by the interrupt
3222 * handler, so that they will not have to wait for our next wakeup.
3223 */
3224static void raid5d (mddev_t *mddev)
3225{
3226 struct stripe_head *sh;
3227 raid5_conf_t *conf = mddev_to_conf(mddev);
3228 int handled;
3229
3230 PRINTK("+++ raid5d active\n");
3231
3232 md_check_recovery(mddev);
1da177e4
LT
3233
3234 handled = 0;
3235 spin_lock_irq(&conf->device_lock);
3236 while (1) {
3237 struct list_head *first;
46031f9a 3238 struct bio *bio;
1da177e4 3239
ae3c20cc 3240 if (conf->seq_flush != conf->seq_write) {
72626685 3241 int seq = conf->seq_flush;
700e432d 3242 spin_unlock_irq(&conf->device_lock);
72626685 3243 bitmap_unplug(mddev->bitmap);
700e432d 3244 spin_lock_irq(&conf->device_lock);
72626685
N
3245 conf->seq_write = seq;
3246 activate_bit_delay(conf);
3247 }
3248
1da177e4
LT
3249 if (list_empty(&conf->handle_list) &&
3250 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3251 !blk_queue_plugged(mddev->queue) &&
3252 !list_empty(&conf->delayed_list))
3253 raid5_activate_delayed(conf);
3254
46031f9a
RBJ
3255 while ((bio = remove_bio_from_retry(conf))) {
3256 int ok;
3257 spin_unlock_irq(&conf->device_lock);
3258 ok = retry_aligned_read(conf, bio);
3259 spin_lock_irq(&conf->device_lock);
3260 if (!ok)
3261 break;
3262 handled++;
3263 }
3264
1da177e4
LT
3265 if (list_empty(&conf->handle_list))
3266 break;
3267
3268 first = conf->handle_list.next;
3269 sh = list_entry(first, struct stripe_head, lru);
3270
3271 list_del_init(first);
3272 atomic_inc(&sh->count);
78bafebd 3273 BUG_ON(atomic_read(&sh->count)!= 1);
1da177e4
LT
3274 spin_unlock_irq(&conf->device_lock);
3275
3276 handled++;
16a53ecc 3277 handle_stripe(sh, conf->spare_page);
1da177e4
LT
3278 release_stripe(sh);
3279
3280 spin_lock_irq(&conf->device_lock);
3281 }
3282 PRINTK("%d stripes handled\n", handled);
3283
3284 spin_unlock_irq(&conf->device_lock);
3285
3286 unplug_slaves(mddev);
3287
3288 PRINTK("--- raid5d inactive\n");
3289}
3290
3f294f4f 3291static ssize_t
007583c9 3292raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 3293{
007583c9 3294 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3295 if (conf)
3296 return sprintf(page, "%d\n", conf->max_nr_stripes);
3297 else
3298 return 0;
3f294f4f
N
3299}
3300
3301static ssize_t
007583c9 3302raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 3303{
007583c9 3304 raid5_conf_t *conf = mddev_to_conf(mddev);
3f294f4f
N
3305 char *end;
3306 int new;
3307 if (len >= PAGE_SIZE)
3308 return -EINVAL;
96de1e66
N
3309 if (!conf)
3310 return -ENODEV;
3f294f4f
N
3311
3312 new = simple_strtoul(page, &end, 10);
3313 if (!*page || (*end && *end != '\n') )
3314 return -EINVAL;
3315 if (new <= 16 || new > 32768)
3316 return -EINVAL;
3317 while (new < conf->max_nr_stripes) {
3318 if (drop_one_stripe(conf))
3319 conf->max_nr_stripes--;
3320 else
3321 break;
3322 }
2a2275d6 3323 md_allow_write(mddev);
3f294f4f
N
3324 while (new > conf->max_nr_stripes) {
3325 if (grow_one_stripe(conf))
3326 conf->max_nr_stripes++;
3327 else break;
3328 }
3329 return len;
3330}
007583c9 3331
96de1e66
N
3332static struct md_sysfs_entry
3333raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3334 raid5_show_stripe_cache_size,
3335 raid5_store_stripe_cache_size);
3f294f4f
N
3336
3337static ssize_t
96de1e66 3338stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 3339{
007583c9 3340 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3341 if (conf)
3342 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3343 else
3344 return 0;
3f294f4f
N
3345}
3346
96de1e66
N
3347static struct md_sysfs_entry
3348raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 3349
007583c9 3350static struct attribute *raid5_attrs[] = {
3f294f4f
N
3351 &raid5_stripecache_size.attr,
3352 &raid5_stripecache_active.attr,
3353 NULL,
3354};
007583c9
N
3355static struct attribute_group raid5_attrs_group = {
3356 .name = NULL,
3357 .attrs = raid5_attrs,
3f294f4f
N
3358};
3359
72626685 3360static int run(mddev_t *mddev)
1da177e4
LT
3361{
3362 raid5_conf_t *conf;
3363 int raid_disk, memory;
3364 mdk_rdev_t *rdev;
3365 struct disk_info *disk;
3366 struct list_head *tmp;
02c2de8c 3367 int working_disks = 0;
1da177e4 3368
16a53ecc
N
3369 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3370 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 3371 mdname(mddev), mddev->level);
1da177e4
LT
3372 return -EIO;
3373 }
3374
f6705578
N
3375 if (mddev->reshape_position != MaxSector) {
3376 /* Check that we can continue the reshape.
3377 * Currently only disks can change, it must
3378 * increase, and we must be past the point where
3379 * a stripe over-writes itself
3380 */
3381 sector_t here_new, here_old;
3382 int old_disks;
f416885e 3383 int max_degraded = (mddev->level == 5 ? 1 : 2);
f6705578
N
3384
3385 if (mddev->new_level != mddev->level ||
3386 mddev->new_layout != mddev->layout ||
3387 mddev->new_chunk != mddev->chunk_size) {
f416885e
N
3388 printk(KERN_ERR "raid5: %s: unsupported reshape "
3389 "required - aborting.\n",
f6705578
N
3390 mdname(mddev));
3391 return -EINVAL;
3392 }
3393 if (mddev->delta_disks <= 0) {
f416885e
N
3394 printk(KERN_ERR "raid5: %s: unsupported reshape "
3395 "(reduce disks) required - aborting.\n",
f6705578
N
3396 mdname(mddev));
3397 return -EINVAL;
3398 }
3399 old_disks = mddev->raid_disks - mddev->delta_disks;
3400 /* reshape_position must be on a new-stripe boundary, and one
f416885e
N
3401 * further up in new geometry must map after here in old
3402 * geometry.
f6705578
N
3403 */
3404 here_new = mddev->reshape_position;
f416885e
N
3405 if (sector_div(here_new, (mddev->chunk_size>>9)*
3406 (mddev->raid_disks - max_degraded))) {
3407 printk(KERN_ERR "raid5: reshape_position not "
3408 "on a stripe boundary\n");
f6705578
N
3409 return -EINVAL;
3410 }
3411 /* here_new is the stripe we will write to */
3412 here_old = mddev->reshape_position;
f416885e
N
3413 sector_div(here_old, (mddev->chunk_size>>9)*
3414 (old_disks-max_degraded));
3415 /* here_old is the first stripe that we might need to read
3416 * from */
f6705578
N
3417 if (here_new >= here_old) {
3418 /* Reading from the same stripe as writing to - bad */
f416885e
N
3419 printk(KERN_ERR "raid5: reshape_position too early for "
3420 "auto-recovery - aborting.\n");
f6705578
N
3421 return -EINVAL;
3422 }
3423 printk(KERN_INFO "raid5: reshape will continue\n");
3424 /* OK, we should be able to continue; */
3425 }
3426
3427
b55e6bfc 3428 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
3429 if ((conf = mddev->private) == NULL)
3430 goto abort;
f6705578
N
3431 if (mddev->reshape_position == MaxSector) {
3432 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3433 } else {
3434 conf->raid_disks = mddev->raid_disks;
3435 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3436 }
3437
3438 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
3439 GFP_KERNEL);
3440 if (!conf->disks)
3441 goto abort;
9ffae0cf 3442
1da177e4
LT
3443 conf->mddev = mddev;
3444
fccddba0 3445 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 3446 goto abort;
1da177e4 3447
16a53ecc
N
3448 if (mddev->level == 6) {
3449 conf->spare_page = alloc_page(GFP_KERNEL);
3450 if (!conf->spare_page)
3451 goto abort;
3452 }
1da177e4
LT
3453 spin_lock_init(&conf->device_lock);
3454 init_waitqueue_head(&conf->wait_for_stripe);
3455 init_waitqueue_head(&conf->wait_for_overlap);
3456 INIT_LIST_HEAD(&conf->handle_list);
3457 INIT_LIST_HEAD(&conf->delayed_list);
72626685 3458 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
3459 INIT_LIST_HEAD(&conf->inactive_list);
3460 atomic_set(&conf->active_stripes, 0);
3461 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 3462 atomic_set(&conf->active_aligned_reads, 0);
1da177e4 3463
1da177e4
LT
3464 PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3465
3466 ITERATE_RDEV(mddev,rdev,tmp) {
3467 raid_disk = rdev->raid_disk;
f6705578 3468 if (raid_disk >= conf->raid_disks
1da177e4
LT
3469 || raid_disk < 0)
3470 continue;
3471 disk = conf->disks + raid_disk;
3472
3473 disk->rdev = rdev;
3474
b2d444d7 3475 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
3476 char b[BDEVNAME_SIZE];
3477 printk(KERN_INFO "raid5: device %s operational as raid"
3478 " disk %d\n", bdevname(rdev->bdev,b),
3479 raid_disk);
02c2de8c 3480 working_disks++;
1da177e4
LT
3481 }
3482 }
3483
1da177e4 3484 /*
16a53ecc 3485 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4 3486 */
02c2de8c 3487 mddev->degraded = conf->raid_disks - working_disks;
1da177e4
LT
3488 conf->mddev = mddev;
3489 conf->chunk_size = mddev->chunk_size;
3490 conf->level = mddev->level;
16a53ecc
N
3491 if (conf->level == 6)
3492 conf->max_degraded = 2;
3493 else
3494 conf->max_degraded = 1;
1da177e4
LT
3495 conf->algorithm = mddev->layout;
3496 conf->max_nr_stripes = NR_STRIPES;
f6705578 3497 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
3498
3499 /* device size must be a multiple of chunk size */
3500 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 3501 mddev->resync_max_sectors = mddev->size << 1;
1da177e4 3502
16a53ecc
N
3503 if (conf->level == 6 && conf->raid_disks < 4) {
3504 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3505 mdname(mddev), conf->raid_disks);
3506 goto abort;
3507 }
1da177e4
LT
3508 if (!conf->chunk_size || conf->chunk_size % 4) {
3509 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3510 conf->chunk_size, mdname(mddev));
3511 goto abort;
3512 }
3513 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3514 printk(KERN_ERR
3515 "raid5: unsupported parity algorithm %d for %s\n",
3516 conf->algorithm, mdname(mddev));
3517 goto abort;
3518 }
16a53ecc 3519 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
3520 printk(KERN_ERR "raid5: not enough operational devices for %s"
3521 " (%d/%d failed)\n",
02c2de8c 3522 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
3523 goto abort;
3524 }
3525
16a53ecc 3526 if (mddev->degraded > 0 &&
1da177e4 3527 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
3528 if (mddev->ok_start_degraded)
3529 printk(KERN_WARNING
3530 "raid5: starting dirty degraded array: %s"
3531 "- data corruption possible.\n",
3532 mdname(mddev));
3533 else {
3534 printk(KERN_ERR
3535 "raid5: cannot start dirty degraded array for %s\n",
3536 mdname(mddev));
3537 goto abort;
3538 }
1da177e4
LT
3539 }
3540
3541 {
3542 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3543 if (!mddev->thread) {
3544 printk(KERN_ERR
3545 "raid5: couldn't allocate thread for %s\n",
3546 mdname(mddev));
3547 goto abort;
3548 }
3549 }
5036805b 3550 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
3551 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3552 if (grow_stripes(conf, conf->max_nr_stripes)) {
3553 printk(KERN_ERR
3554 "raid5: couldn't allocate %dkB for buffers\n", memory);
3555 shrink_stripes(conf);
3556 md_unregister_thread(mddev->thread);
3557 goto abort;
3558 } else
3559 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3560 memory, mdname(mddev));
3561
3562 if (mddev->degraded == 0)
3563 printk("raid5: raid level %d set %s active with %d out of %d"
3564 " devices, algorithm %d\n", conf->level, mdname(mddev),
3565 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3566 conf->algorithm);
3567 else
3568 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3569 " out of %d devices, algorithm %d\n", conf->level,
3570 mdname(mddev), mddev->raid_disks - mddev->degraded,
3571 mddev->raid_disks, conf->algorithm);
3572
3573 print_raid5_conf(conf);
3574
f6705578
N
3575 if (conf->expand_progress != MaxSector) {
3576 printk("...ok start reshape thread\n");
b578d55f 3577 conf->expand_lo = conf->expand_progress;
f6705578
N
3578 atomic_set(&conf->reshape_stripes, 0);
3579 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3580 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3581 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3582 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3583 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3584 "%s_reshape");
f6705578
N
3585 }
3586
1da177e4 3587 /* read-ahead size must cover two whole stripes, which is
16a53ecc 3588 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
3589 */
3590 {
16a53ecc
N
3591 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3592 int stripe = data_disks *
8932c2e0 3593 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
3594 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3595 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3596 }
3597
3598 /* Ok, everything is just fine now */
5e55e2f5
N
3599 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
3600 printk(KERN_WARNING
3601 "raid5: failed to create sysfs attributes for %s\n",
3602 mdname(mddev));
7a5febe9
N
3603
3604 mddev->queue->unplug_fn = raid5_unplug_device;
3605 mddev->queue->issue_flush_fn = raid5_issue_flush;
f022b2fd 3606 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 3607 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 3608
16a53ecc
N
3609 mddev->array_size = mddev->size * (conf->previous_raid_disks -
3610 conf->max_degraded);
7a5febe9 3611
23032a0e
RBJ
3612 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
3613
1da177e4
LT
3614 return 0;
3615abort:
3616 if (conf) {
3617 print_raid5_conf(conf);
16a53ecc 3618 safe_put_page(conf->spare_page);
b55e6bfc 3619 kfree(conf->disks);
fccddba0 3620 kfree(conf->stripe_hashtbl);
1da177e4
LT
3621 kfree(conf);
3622 }
3623 mddev->private = NULL;
3624 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3625 return -EIO;
3626}
3627
3628
3629
3f294f4f 3630static int stop(mddev_t *mddev)
1da177e4
LT
3631{
3632 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3633
3634 md_unregister_thread(mddev->thread);
3635 mddev->thread = NULL;
3636 shrink_stripes(conf);
fccddba0 3637 kfree(conf->stripe_hashtbl);
041ae52e 3638 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 3639 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 3640 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 3641 kfree(conf->disks);
96de1e66 3642 kfree(conf);
1da177e4
LT
3643 mddev->private = NULL;
3644 return 0;
3645}
3646
3647#if RAID5_DEBUG
16a53ecc 3648static void print_sh (struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
3649{
3650 int i;
3651
16a53ecc
N
3652 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3653 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3654 seq_printf(seq, "sh %llu, count %d.\n",
3655 (unsigned long long)sh->sector, atomic_read(&sh->count));
3656 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 3657 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
3658 seq_printf(seq, "(cache%d: %p %ld) ",
3659 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 3660 }
16a53ecc 3661 seq_printf(seq, "\n");
1da177e4
LT
3662}
3663
16a53ecc 3664static void printall (struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
3665{
3666 struct stripe_head *sh;
fccddba0 3667 struct hlist_node *hn;
1da177e4
LT
3668 int i;
3669
3670 spin_lock_irq(&conf->device_lock);
3671 for (i = 0; i < NR_HASH; i++) {
fccddba0 3672 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
3673 if (sh->raid_conf != conf)
3674 continue;
16a53ecc 3675 print_sh(seq, sh);
1da177e4
LT
3676 }
3677 }
3678 spin_unlock_irq(&conf->device_lock);
3679}
3680#endif
3681
3682static void status (struct seq_file *seq, mddev_t *mddev)
3683{
3684 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3685 int i;
3686
3687 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 3688 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
3689 for (i = 0; i < conf->raid_disks; i++)
3690 seq_printf (seq, "%s",
3691 conf->disks[i].rdev &&
b2d444d7 3692 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4
LT
3693 seq_printf (seq, "]");
3694#if RAID5_DEBUG
16a53ecc
N
3695 seq_printf (seq, "\n");
3696 printall(seq, conf);
1da177e4
LT
3697#endif
3698}
3699
3700static void print_raid5_conf (raid5_conf_t *conf)
3701{
3702 int i;
3703 struct disk_info *tmp;
3704
3705 printk("RAID5 conf printout:\n");
3706 if (!conf) {
3707 printk("(conf==NULL)\n");
3708 return;
3709 }
02c2de8c
N
3710 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
3711 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
3712
3713 for (i = 0; i < conf->raid_disks; i++) {
3714 char b[BDEVNAME_SIZE];
3715 tmp = conf->disks + i;
3716 if (tmp->rdev)
3717 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 3718 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
3719 bdevname(tmp->rdev->bdev,b));
3720 }
3721}
3722
3723static int raid5_spare_active(mddev_t *mddev)
3724{
3725 int i;
3726 raid5_conf_t *conf = mddev->private;
3727 struct disk_info *tmp;
3728
3729 for (i = 0; i < conf->raid_disks; i++) {
3730 tmp = conf->disks + i;
3731 if (tmp->rdev
b2d444d7 3732 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
3733 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
3734 unsigned long flags;
3735 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3736 mddev->degraded--;
c04be0aa 3737 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
3738 }
3739 }
3740 print_raid5_conf(conf);
3741 return 0;
3742}
3743
3744static int raid5_remove_disk(mddev_t *mddev, int number)
3745{
3746 raid5_conf_t *conf = mddev->private;
3747 int err = 0;
3748 mdk_rdev_t *rdev;
3749 struct disk_info *p = conf->disks + number;
3750
3751 print_raid5_conf(conf);
3752 rdev = p->rdev;
3753 if (rdev) {
b2d444d7 3754 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
3755 atomic_read(&rdev->nr_pending)) {
3756 err = -EBUSY;
3757 goto abort;
3758 }
3759 p->rdev = NULL;
fbd568a3 3760 synchronize_rcu();
1da177e4
LT
3761 if (atomic_read(&rdev->nr_pending)) {
3762 /* lost the race, try later */
3763 err = -EBUSY;
3764 p->rdev = rdev;
3765 }
3766 }
3767abort:
3768
3769 print_raid5_conf(conf);
3770 return err;
3771}
3772
3773static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3774{
3775 raid5_conf_t *conf = mddev->private;
3776 int found = 0;
3777 int disk;
3778 struct disk_info *p;
3779
16a53ecc 3780 if (mddev->degraded > conf->max_degraded)
1da177e4
LT
3781 /* no point adding a device */
3782 return 0;
3783
3784 /*
16a53ecc
N
3785 * find the disk ... but prefer rdev->saved_raid_disk
3786 * if possible.
1da177e4 3787 */
16a53ecc
N
3788 if (rdev->saved_raid_disk >= 0 &&
3789 conf->disks[rdev->saved_raid_disk].rdev == NULL)
3790 disk = rdev->saved_raid_disk;
3791 else
3792 disk = 0;
3793 for ( ; disk < conf->raid_disks; disk++)
1da177e4 3794 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 3795 clear_bit(In_sync, &rdev->flags);
1da177e4
LT
3796 rdev->raid_disk = disk;
3797 found = 1;
72626685
N
3798 if (rdev->saved_raid_disk != disk)
3799 conf->fullsync = 1;
d6065f7b 3800 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
3801 break;
3802 }
3803 print_raid5_conf(conf);
3804 return found;
3805}
3806
3807static int raid5_resize(mddev_t *mddev, sector_t sectors)
3808{
3809 /* no resync is happening, and there is enough space
3810 * on all devices, so we can resize.
3811 * We need to make sure resync covers any new space.
3812 * If the array is shrinking we should possibly wait until
3813 * any io in the removed space completes, but it hardly seems
3814 * worth it.
3815 */
16a53ecc
N
3816 raid5_conf_t *conf = mddev_to_conf(mddev);
3817
1da177e4 3818 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
16a53ecc 3819 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
1da177e4 3820 set_capacity(mddev->gendisk, mddev->array_size << 1);
44ce6294 3821 mddev->changed = 1;
1da177e4
LT
3822 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
3823 mddev->recovery_cp = mddev->size << 1;
3824 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3825 }
3826 mddev->size = sectors /2;
4b5c7ae8 3827 mddev->resync_max_sectors = sectors;
1da177e4
LT
3828 return 0;
3829}
3830
29269553 3831#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 3832static int raid5_check_reshape(mddev_t *mddev)
29269553
N
3833{
3834 raid5_conf_t *conf = mddev_to_conf(mddev);
3835 int err;
29269553 3836
63c70c4f
N
3837 if (mddev->delta_disks < 0 ||
3838 mddev->new_level != mddev->level)
3839 return -EINVAL; /* Cannot shrink array or change level yet */
3840 if (mddev->delta_disks == 0)
29269553
N
3841 return 0; /* nothing to do */
3842
3843 /* Can only proceed if there are plenty of stripe_heads.
3844 * We need a minimum of one full stripe,, and for sensible progress
3845 * it is best to have about 4 times that.
3846 * If we require 4 times, then the default 256 4K stripe_heads will
3847 * allow for chunk sizes up to 256K, which is probably OK.
3848 * If the chunk size is greater, user-space should request more
3849 * stripe_heads first.
3850 */
63c70c4f
N
3851 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3852 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
3853 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
3854 (mddev->chunk_size / STRIPE_SIZE)*4);
3855 return -ENOSPC;
3856 }
3857
63c70c4f
N
3858 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3859 if (err)
3860 return err;
3861
b4c4c7b8
N
3862 if (mddev->degraded > conf->max_degraded)
3863 return -EINVAL;
63c70c4f
N
3864 /* looks like we might be able to manage this */
3865 return 0;
3866}
3867
3868static int raid5_start_reshape(mddev_t *mddev)
3869{
3870 raid5_conf_t *conf = mddev_to_conf(mddev);
3871 mdk_rdev_t *rdev;
3872 struct list_head *rtmp;
3873 int spares = 0;
3874 int added_devices = 0;
c04be0aa 3875 unsigned long flags;
63c70c4f 3876
f416885e 3877 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
3878 return -EBUSY;
3879
29269553
N
3880 ITERATE_RDEV(mddev, rdev, rtmp)
3881 if (rdev->raid_disk < 0 &&
3882 !test_bit(Faulty, &rdev->flags))
3883 spares++;
63c70c4f 3884
f416885e 3885 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
3886 /* Not enough devices even to make a degraded array
3887 * of that size
3888 */
3889 return -EINVAL;
3890
f6705578 3891 atomic_set(&conf->reshape_stripes, 0);
29269553
N
3892 spin_lock_irq(&conf->device_lock);
3893 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 3894 conf->raid_disks += mddev->delta_disks;
29269553 3895 conf->expand_progress = 0;
b578d55f 3896 conf->expand_lo = 0;
29269553
N
3897 spin_unlock_irq(&conf->device_lock);
3898
3899 /* Add some new drives, as many as will fit.
3900 * We know there are enough to make the newly sized array work.
3901 */
3902 ITERATE_RDEV(mddev, rdev, rtmp)
3903 if (rdev->raid_disk < 0 &&
3904 !test_bit(Faulty, &rdev->flags)) {
3905 if (raid5_add_disk(mddev, rdev)) {
3906 char nm[20];
3907 set_bit(In_sync, &rdev->flags);
29269553 3908 added_devices++;
5fd6c1dc 3909 rdev->recovery_offset = 0;
29269553 3910 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
3911 if (sysfs_create_link(&mddev->kobj,
3912 &rdev->kobj, nm))
3913 printk(KERN_WARNING
3914 "raid5: failed to create "
3915 " link %s for %s\n",
3916 nm, mdname(mddev));
29269553
N
3917 } else
3918 break;
3919 }
3920
c04be0aa 3921 spin_lock_irqsave(&conf->device_lock, flags);
63c70c4f 3922 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
c04be0aa 3923 spin_unlock_irqrestore(&conf->device_lock, flags);
63c70c4f 3924 mddev->raid_disks = conf->raid_disks;
f6705578 3925 mddev->reshape_position = 0;
850b2b42 3926 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 3927
29269553
N
3928 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3929 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3930 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3931 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3932 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3933 "%s_reshape");
3934 if (!mddev->sync_thread) {
3935 mddev->recovery = 0;
3936 spin_lock_irq(&conf->device_lock);
3937 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3938 conf->expand_progress = MaxSector;
3939 spin_unlock_irq(&conf->device_lock);
3940 return -EAGAIN;
3941 }
3942 md_wakeup_thread(mddev->sync_thread);
3943 md_new_event(mddev);
3944 return 0;
3945}
3946#endif
3947
3948static void end_reshape(raid5_conf_t *conf)
3949{
3950 struct block_device *bdev;
3951
f6705578 3952 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f416885e
N
3953 conf->mddev->array_size = conf->mddev->size *
3954 (conf->raid_disks - conf->max_degraded);
f6705578 3955 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
44ce6294 3956 conf->mddev->changed = 1;
f6705578
N
3957
3958 bdev = bdget_disk(conf->mddev->gendisk, 0);
3959 if (bdev) {
3960 mutex_lock(&bdev->bd_inode->i_mutex);
0692c6b1 3961 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
f6705578
N
3962 mutex_unlock(&bdev->bd_inode->i_mutex);
3963 bdput(bdev);
3964 }
3965 spin_lock_irq(&conf->device_lock);
3966 conf->expand_progress = MaxSector;
3967 spin_unlock_irq(&conf->device_lock);
3968 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
3969
3970 /* read-ahead size must cover two whole stripes, which is
3971 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3972 */
3973 {
3974 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3975 int stripe = data_disks *
3976 (conf->mddev->chunk_size / PAGE_SIZE);
3977 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3978 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3979 }
29269553 3980 }
29269553
N
3981}
3982
72626685
N
3983static void raid5_quiesce(mddev_t *mddev, int state)
3984{
3985 raid5_conf_t *conf = mddev_to_conf(mddev);
3986
3987 switch(state) {
e464eafd
N
3988 case 2: /* resume for a suspend */
3989 wake_up(&conf->wait_for_overlap);
3990 break;
3991
72626685
N
3992 case 1: /* stop all writes */
3993 spin_lock_irq(&conf->device_lock);
3994 conf->quiesce = 1;
3995 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
3996 atomic_read(&conf->active_stripes) == 0 &&
3997 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
3998 conf->device_lock, /* nothing */);
3999 spin_unlock_irq(&conf->device_lock);
4000 break;
4001
4002 case 0: /* re-enable writes */
4003 spin_lock_irq(&conf->device_lock);
4004 conf->quiesce = 0;
4005 wake_up(&conf->wait_for_stripe);
e464eafd 4006 wake_up(&conf->wait_for_overlap);
72626685
N
4007 spin_unlock_irq(&conf->device_lock);
4008 break;
4009 }
72626685 4010}
b15c2e57 4011
16a53ecc
N
4012static struct mdk_personality raid6_personality =
4013{
4014 .name = "raid6",
4015 .level = 6,
4016 .owner = THIS_MODULE,
4017 .make_request = make_request,
4018 .run = run,
4019 .stop = stop,
4020 .status = status,
4021 .error_handler = error,
4022 .hot_add_disk = raid5_add_disk,
4023 .hot_remove_disk= raid5_remove_disk,
4024 .spare_active = raid5_spare_active,
4025 .sync_request = sync_request,
4026 .resize = raid5_resize,
f416885e
N
4027#ifdef CONFIG_MD_RAID5_RESHAPE
4028 .check_reshape = raid5_check_reshape,
4029 .start_reshape = raid5_start_reshape,
4030#endif
16a53ecc
N
4031 .quiesce = raid5_quiesce,
4032};
2604b703 4033static struct mdk_personality raid5_personality =
1da177e4
LT
4034{
4035 .name = "raid5",
2604b703 4036 .level = 5,
1da177e4
LT
4037 .owner = THIS_MODULE,
4038 .make_request = make_request,
4039 .run = run,
4040 .stop = stop,
4041 .status = status,
4042 .error_handler = error,
4043 .hot_add_disk = raid5_add_disk,
4044 .hot_remove_disk= raid5_remove_disk,
4045 .spare_active = raid5_spare_active,
4046 .sync_request = sync_request,
4047 .resize = raid5_resize,
29269553 4048#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
4049 .check_reshape = raid5_check_reshape,
4050 .start_reshape = raid5_start_reshape,
29269553 4051#endif
72626685 4052 .quiesce = raid5_quiesce,
1da177e4
LT
4053};
4054
2604b703 4055static struct mdk_personality raid4_personality =
1da177e4 4056{
2604b703
N
4057 .name = "raid4",
4058 .level = 4,
4059 .owner = THIS_MODULE,
4060 .make_request = make_request,
4061 .run = run,
4062 .stop = stop,
4063 .status = status,
4064 .error_handler = error,
4065 .hot_add_disk = raid5_add_disk,
4066 .hot_remove_disk= raid5_remove_disk,
4067 .spare_active = raid5_spare_active,
4068 .sync_request = sync_request,
4069 .resize = raid5_resize,
3d37890b
N
4070#ifdef CONFIG_MD_RAID5_RESHAPE
4071 .check_reshape = raid5_check_reshape,
4072 .start_reshape = raid5_start_reshape,
4073#endif
2604b703
N
4074 .quiesce = raid5_quiesce,
4075};
4076
4077static int __init raid5_init(void)
4078{
16a53ecc
N
4079 int e;
4080
4081 e = raid6_select_algo();
4082 if ( e )
4083 return e;
4084 register_md_personality(&raid6_personality);
2604b703
N
4085 register_md_personality(&raid5_personality);
4086 register_md_personality(&raid4_personality);
4087 return 0;
1da177e4
LT
4088}
4089
2604b703 4090static void raid5_exit(void)
1da177e4 4091{
16a53ecc 4092 unregister_md_personality(&raid6_personality);
2604b703
N
4093 unregister_md_personality(&raid5_personality);
4094 unregister_md_personality(&raid4_personality);
1da177e4
LT
4095}
4096
4097module_init(raid5_init);
4098module_exit(raid5_exit);
4099MODULE_LICENSE("GPL");
4100MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
4101MODULE_ALIAS("md-raid5");
4102MODULE_ALIAS("md-raid4");
2604b703
N
4103MODULE_ALIAS("md-level-5");
4104MODULE_ALIAS("md-level-4");
16a53ecc
N
4105MODULE_ALIAS("md-personality-8"); /* RAID6 */
4106MODULE_ALIAS("md-raid6");
4107MODULE_ALIAS("md-level-6");
4108
4109/* This used to be two separate modules, they were: */
4110MODULE_ALIAS("raid5");
4111MODULE_ALIAS("raid6");