md/raid6: release spare page at ->stop()
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
bff61975 50#include <linux/seq_file.h>
43b2e5d8 51#include "md.h"
bff61975 52#include "raid5.h"
ef740c37 53#include "bitmap.h"
72626685 54
1da177e4
LT
55/*
56 * Stripe cache
57 */
58
59#define NR_STRIPES 256
60#define STRIPE_SIZE PAGE_SIZE
61#define STRIPE_SHIFT (PAGE_SHIFT - 9)
62#define STRIPE_SECTORS (STRIPE_SIZE>>9)
63#define IO_THRESHOLD 1
8b3e6cdc 64#define BYPASS_THRESHOLD 1
fccddba0 65#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
66#define HASH_MASK (NR_HASH - 1)
67
fccddba0 68#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
1da177e4
LT
83#define RAID5_PARANOIA 1
84#if RAID5_PARANOIA && defined(CONFIG_SMP)
85# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86#else
87# define CHECK_DEVLOCK()
88#endif
89
45b4233c 90#ifdef DEBUG
1da177e4
LT
91#define inline
92#define __inline__
93#endif
94
6be9d494
BS
95#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
960e739d 97/*
5b99c2ff
JA
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
100 */
101static inline int raid5_bi_phys_segments(struct bio *bio)
102{
5b99c2ff 103 return bio->bi_phys_segments & 0xffff;
960e739d
JA
104}
105
106static inline int raid5_bi_hw_segments(struct bio *bio)
107{
5b99c2ff 108 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
109}
110
111static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112{
113 --bio->bi_phys_segments;
114 return raid5_bi_phys_segments(bio);
115}
116
117static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118{
119 unsigned short val = raid5_bi_hw_segments(bio);
120
121 --val;
5b99c2ff 122 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
123 return val;
124}
125
126static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127{
5b99c2ff 128 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
129}
130
d0dabf7e
N
131/* Find first data disk in a raid6 stripe */
132static inline int raid6_d0(struct stripe_head *sh)
133{
67cc2b81
N
134 if (sh->ddf_layout)
135 /* ddf always start from first device */
136 return 0;
137 /* md starts just after Q block */
d0dabf7e
N
138 if (sh->qd_idx == sh->disks - 1)
139 return 0;
140 else
141 return sh->qd_idx + 1;
142}
16a53ecc
N
143static inline int raid6_next_disk(int disk, int raid_disks)
144{
145 disk++;
146 return (disk < raid_disks) ? disk : 0;
147}
a4456856 148
d0dabf7e
N
149/* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1. This help does that mapping.
153 */
67cc2b81
N
154static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155 int *count, int syndrome_disks)
d0dabf7e
N
156{
157 int slot;
67cc2b81 158
d0dabf7e 159 if (idx == sh->pd_idx)
67cc2b81 160 return syndrome_disks;
d0dabf7e 161 if (idx == sh->qd_idx)
67cc2b81 162 return syndrome_disks + 1;
d0dabf7e
N
163 slot = (*count)++;
164 return slot;
165}
166
a4456856
DW
167static void return_io(struct bio *return_bi)
168{
169 struct bio *bi = return_bi;
170 while (bi) {
a4456856
DW
171
172 return_bi = bi->bi_next;
173 bi->bi_next = NULL;
174 bi->bi_size = 0;
0e13fe23 175 bio_endio(bi, 0);
a4456856
DW
176 bi = return_bi;
177 }
178}
179
1da177e4
LT
180static void print_raid5_conf (raid5_conf_t *conf);
181
600aa109
DW
182static int stripe_operations_active(struct stripe_head *sh)
183{
184 return sh->check_state || sh->reconstruct_state ||
185 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187}
188
858119e1 189static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
190{
191 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
192 BUG_ON(!list_empty(&sh->lru));
193 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 194 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 195 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 196 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
197 blk_plug_device(conf->mddev->queue);
198 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 199 sh->bm_seq - conf->seq_write > 0) {
72626685 200 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
201 blk_plug_device(conf->mddev->queue);
202 } else {
72626685 203 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 204 list_add_tail(&sh->lru, &conf->handle_list);
72626685 205 }
1da177e4
LT
206 md_wakeup_thread(conf->mddev->thread);
207 } else {
600aa109 208 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
209 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210 atomic_dec(&conf->preread_active_stripes);
211 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212 md_wakeup_thread(conf->mddev->thread);
213 }
1da177e4 214 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
215 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 217 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
218 if (conf->retry_read_aligned)
219 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 220 }
1da177e4
LT
221 }
222 }
223}
d0dabf7e 224
1da177e4
LT
225static void release_stripe(struct stripe_head *sh)
226{
227 raid5_conf_t *conf = sh->raid_conf;
228 unsigned long flags;
16a53ecc 229
1da177e4
LT
230 spin_lock_irqsave(&conf->device_lock, flags);
231 __release_stripe(conf, sh);
232 spin_unlock_irqrestore(&conf->device_lock, flags);
233}
234
fccddba0 235static inline void remove_hash(struct stripe_head *sh)
1da177e4 236{
45b4233c
DW
237 pr_debug("remove_hash(), stripe %llu\n",
238 (unsigned long long)sh->sector);
1da177e4 239
fccddba0 240 hlist_del_init(&sh->hash);
1da177e4
LT
241}
242
16a53ecc 243static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 244{
fccddba0 245 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 246
45b4233c
DW
247 pr_debug("insert_hash(), stripe %llu\n",
248 (unsigned long long)sh->sector);
1da177e4
LT
249
250 CHECK_DEVLOCK();
fccddba0 251 hlist_add_head(&sh->hash, hp);
1da177e4
LT
252}
253
254
255/* find an idle stripe, make sure it is unhashed, and return it. */
256static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257{
258 struct stripe_head *sh = NULL;
259 struct list_head *first;
260
261 CHECK_DEVLOCK();
262 if (list_empty(&conf->inactive_list))
263 goto out;
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
267 remove_hash(sh);
268 atomic_inc(&conf->active_stripes);
269out:
270 return sh;
271}
272
273static void shrink_buffers(struct stripe_head *sh, int num)
274{
275 struct page *p;
276 int i;
277
278 for (i=0; i<num ; i++) {
279 p = sh->dev[i].page;
280 if (!p)
281 continue;
282 sh->dev[i].page = NULL;
2d1f3b5d 283 put_page(p);
1da177e4
LT
284 }
285}
286
287static int grow_buffers(struct stripe_head *sh, int num)
288{
289 int i;
290
291 for (i=0; i<num; i++) {
292 struct page *page;
293
294 if (!(page = alloc_page(GFP_KERNEL))) {
295 return 1;
296 }
297 sh->dev[i].page = page;
298 }
299 return 0;
300}
301
784052ec 302static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
303static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304 struct stripe_head *sh);
1da177e4 305
b5663ba4 306static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
307{
308 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 309 int i;
1da177e4 310
78bafebd
ES
311 BUG_ON(atomic_read(&sh->count) != 0);
312 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 313 BUG_ON(stripe_operations_active(sh));
d84e0f10 314
1da177e4 315 CHECK_DEVLOCK();
45b4233c 316 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
317 (unsigned long long)sh->sector);
318
319 remove_hash(sh);
16a53ecc 320
86b42c71 321 sh->generation = conf->generation - previous;
b5663ba4 322 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 323 sh->sector = sector;
911d4ee8 324 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
325 sh->state = 0;
326
7ecaa1e6
N
327
328 for (i = sh->disks; i--; ) {
1da177e4
LT
329 struct r5dev *dev = &sh->dev[i];
330
d84e0f10 331 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 332 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 333 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 334 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 335 dev->read, dev->towrite, dev->written,
1da177e4
LT
336 test_bit(R5_LOCKED, &dev->flags));
337 BUG();
338 }
339 dev->flags = 0;
784052ec 340 raid5_build_block(sh, i, previous);
1da177e4
LT
341 }
342 insert_hash(conf, sh);
343}
344
86b42c71
N
345static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346 short generation)
1da177e4
LT
347{
348 struct stripe_head *sh;
fccddba0 349 struct hlist_node *hn;
1da177e4
LT
350
351 CHECK_DEVLOCK();
45b4233c 352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 353 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 354 if (sh->sector == sector && sh->generation == generation)
1da177e4 355 return sh;
45b4233c 356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
357 return NULL;
358}
359
360static void unplug_slaves(mddev_t *mddev);
165125e1 361static void raid5_unplug_device(struct request_queue *q);
1da177e4 362
b5663ba4
N
363static struct stripe_head *
364get_active_stripe(raid5_conf_t *conf, sector_t sector,
365 int previous, int noblock)
1da177e4
LT
366{
367 struct stripe_head *sh;
368
45b4233c 369 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
370
371 spin_lock_irq(&conf->device_lock);
372
373 do {
72626685
N
374 wait_event_lock_irq(conf->wait_for_stripe,
375 conf->quiesce == 0,
376 conf->device_lock, /* nothing */);
86b42c71 377 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
378 if (!sh) {
379 if (!conf->inactive_blocked)
380 sh = get_free_stripe(conf);
381 if (noblock && sh == NULL)
382 break;
383 if (!sh) {
384 conf->inactive_blocked = 1;
385 wait_event_lock_irq(conf->wait_for_stripe,
386 !list_empty(&conf->inactive_list) &&
5036805b
N
387 (atomic_read(&conf->active_stripes)
388 < (conf->max_nr_stripes *3/4)
1da177e4
LT
389 || !conf->inactive_blocked),
390 conf->device_lock,
f4370781 391 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
392 );
393 conf->inactive_blocked = 0;
394 } else
b5663ba4 395 init_stripe(sh, sector, previous);
1da177e4
LT
396 } else {
397 if (atomic_read(&sh->count)) {
ab69ae12
N
398 BUG_ON(!list_empty(&sh->lru)
399 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
400 } else {
401 if (!test_bit(STRIPE_HANDLE, &sh->state))
402 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
403 if (list_empty(&sh->lru) &&
404 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
405 BUG();
406 list_del_init(&sh->lru);
1da177e4
LT
407 }
408 }
409 } while (sh == NULL);
410
411 if (sh)
412 atomic_inc(&sh->count);
413
414 spin_unlock_irq(&conf->device_lock);
415 return sh;
416}
417
6712ecf8
N
418static void
419raid5_end_read_request(struct bio *bi, int error);
420static void
421raid5_end_write_request(struct bio *bi, int error);
91c00924 422
c4e5ac0a 423static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
424{
425 raid5_conf_t *conf = sh->raid_conf;
426 int i, disks = sh->disks;
427
428 might_sleep();
429
430 for (i = disks; i--; ) {
431 int rw;
432 struct bio *bi;
433 mdk_rdev_t *rdev;
434 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
435 rw = WRITE;
436 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
437 rw = READ;
438 else
439 continue;
440
441 bi = &sh->dev[i].req;
442
443 bi->bi_rw = rw;
444 if (rw == WRITE)
445 bi->bi_end_io = raid5_end_write_request;
446 else
447 bi->bi_end_io = raid5_end_read_request;
448
449 rcu_read_lock();
450 rdev = rcu_dereference(conf->disks[i].rdev);
451 if (rdev && test_bit(Faulty, &rdev->flags))
452 rdev = NULL;
453 if (rdev)
454 atomic_inc(&rdev->nr_pending);
455 rcu_read_unlock();
456
457 if (rdev) {
c4e5ac0a 458 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
459 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
460
2b7497f0
DW
461 set_bit(STRIPE_IO_STARTED, &sh->state);
462
91c00924
DW
463 bi->bi_bdev = rdev->bdev;
464 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 465 __func__, (unsigned long long)sh->sector,
91c00924
DW
466 bi->bi_rw, i);
467 atomic_inc(&sh->count);
468 bi->bi_sector = sh->sector + rdev->data_offset;
469 bi->bi_flags = 1 << BIO_UPTODATE;
470 bi->bi_vcnt = 1;
471 bi->bi_max_vecs = 1;
472 bi->bi_idx = 0;
473 bi->bi_io_vec = &sh->dev[i].vec;
474 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
475 bi->bi_io_vec[0].bv_offset = 0;
476 bi->bi_size = STRIPE_SIZE;
477 bi->bi_next = NULL;
478 if (rw == WRITE &&
479 test_bit(R5_ReWrite, &sh->dev[i].flags))
480 atomic_add(STRIPE_SECTORS,
481 &rdev->corrected_errors);
482 generic_make_request(bi);
483 } else {
484 if (rw == WRITE)
485 set_bit(STRIPE_DEGRADED, &sh->state);
486 pr_debug("skip op %ld on disc %d for sector %llu\n",
487 bi->bi_rw, i, (unsigned long long)sh->sector);
488 clear_bit(R5_LOCKED, &sh->dev[i].flags);
489 set_bit(STRIPE_HANDLE, &sh->state);
490 }
491 }
492}
493
494static struct dma_async_tx_descriptor *
495async_copy_data(int frombio, struct bio *bio, struct page *page,
496 sector_t sector, struct dma_async_tx_descriptor *tx)
497{
498 struct bio_vec *bvl;
499 struct page *bio_page;
500 int i;
501 int page_offset;
a08abd8c 502 struct async_submit_ctl submit;
91c00924
DW
503
504 if (bio->bi_sector >= sector)
505 page_offset = (signed)(bio->bi_sector - sector) * 512;
506 else
507 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c
DW
508
509 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
91c00924
DW
510 bio_for_each_segment(bvl, bio, i) {
511 int len = bio_iovec_idx(bio, i)->bv_len;
512 int clen;
513 int b_offset = 0;
514
515 if (page_offset < 0) {
516 b_offset = -page_offset;
517 page_offset += b_offset;
518 len -= b_offset;
519 }
520
521 if (len > 0 && page_offset + len > STRIPE_SIZE)
522 clen = STRIPE_SIZE - page_offset;
523 else
524 clen = len;
525
526 if (clen > 0) {
527 b_offset += bio_iovec_idx(bio, i)->bv_offset;
528 bio_page = bio_iovec_idx(bio, i)->bv_page;
529 if (frombio)
530 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 531 b_offset, clen, &submit);
91c00924
DW
532 else
533 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 534 page_offset, clen, &submit);
91c00924 535 }
a08abd8c
DW
536 /* chain the operations */
537 submit.depend_tx = tx;
538
91c00924
DW
539 if (clen < len) /* hit end of page */
540 break;
541 page_offset += len;
542 }
543
544 return tx;
545}
546
547static void ops_complete_biofill(void *stripe_head_ref)
548{
549 struct stripe_head *sh = stripe_head_ref;
550 struct bio *return_bi = NULL;
551 raid5_conf_t *conf = sh->raid_conf;
e4d84909 552 int i;
91c00924 553
e46b272b 554 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
555 (unsigned long long)sh->sector);
556
557 /* clear completed biofills */
83de75cc 558 spin_lock_irq(&conf->device_lock);
91c00924
DW
559 for (i = sh->disks; i--; ) {
560 struct r5dev *dev = &sh->dev[i];
91c00924
DW
561
562 /* acknowledge completion of a biofill operation */
e4d84909
DW
563 /* and check if we need to reply to a read request,
564 * new R5_Wantfill requests are held off until
83de75cc 565 * !STRIPE_BIOFILL_RUN
e4d84909
DW
566 */
567 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 568 struct bio *rbi, *rbi2;
91c00924 569
91c00924
DW
570 BUG_ON(!dev->read);
571 rbi = dev->read;
572 dev->read = NULL;
573 while (rbi && rbi->bi_sector <
574 dev->sector + STRIPE_SECTORS) {
575 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 576 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
577 rbi->bi_next = return_bi;
578 return_bi = rbi;
579 }
91c00924
DW
580 rbi = rbi2;
581 }
582 }
583 }
83de75cc
DW
584 spin_unlock_irq(&conf->device_lock);
585 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
586
587 return_io(return_bi);
588
e4d84909 589 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
590 release_stripe(sh);
591}
592
593static void ops_run_biofill(struct stripe_head *sh)
594{
595 struct dma_async_tx_descriptor *tx = NULL;
596 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 597 struct async_submit_ctl submit;
91c00924
DW
598 int i;
599
e46b272b 600 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
601 (unsigned long long)sh->sector);
602
603 for (i = sh->disks; i--; ) {
604 struct r5dev *dev = &sh->dev[i];
605 if (test_bit(R5_Wantfill, &dev->flags)) {
606 struct bio *rbi;
607 spin_lock_irq(&conf->device_lock);
608 dev->read = rbi = dev->toread;
609 dev->toread = NULL;
610 spin_unlock_irq(&conf->device_lock);
611 while (rbi && rbi->bi_sector <
612 dev->sector + STRIPE_SECTORS) {
613 tx = async_copy_data(0, rbi, dev->page,
614 dev->sector, tx);
615 rbi = r5_next_bio(rbi, dev->sector);
616 }
617 }
618 }
619
620 atomic_inc(&sh->count);
a08abd8c
DW
621 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
622 async_trigger_callback(&submit);
91c00924
DW
623}
624
625static void ops_complete_compute5(void *stripe_head_ref)
626{
627 struct stripe_head *sh = stripe_head_ref;
628 int target = sh->ops.target;
629 struct r5dev *tgt = &sh->dev[target];
630
e46b272b 631 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
632 (unsigned long long)sh->sector);
633
634 set_bit(R5_UPTODATE, &tgt->flags);
635 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
636 clear_bit(R5_Wantcompute, &tgt->flags);
ecc65c9b
DW
637 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
638 if (sh->check_state == check_state_compute_run)
639 sh->check_state = check_state_compute_result;
91c00924
DW
640 set_bit(STRIPE_HANDLE, &sh->state);
641 release_stripe(sh);
642}
643
7b3a871e 644static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
91c00924
DW
645{
646 /* kernel stack size limits the total number of disks */
647 int disks = sh->disks;
648 struct page *xor_srcs[disks];
649 int target = sh->ops.target;
650 struct r5dev *tgt = &sh->dev[target];
651 struct page *xor_dest = tgt->page;
652 int count = 0;
653 struct dma_async_tx_descriptor *tx;
a08abd8c 654 struct async_submit_ctl submit;
91c00924
DW
655 int i;
656
657 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 658 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
659 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
660
661 for (i = disks; i--; )
662 if (i != target)
663 xor_srcs[count++] = sh->dev[i].page;
664
665 atomic_inc(&sh->count);
666
a08abd8c
DW
667 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
668 ops_complete_compute5, sh, NULL);
91c00924 669 if (unlikely(count == 1))
a08abd8c 670 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 671 else
a08abd8c 672 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 673
91c00924
DW
674 return tx;
675}
676
677static void ops_complete_prexor(void *stripe_head_ref)
678{
679 struct stripe_head *sh = stripe_head_ref;
680
e46b272b 681 pr_debug("%s: stripe %llu\n", __func__,
91c00924 682 (unsigned long long)sh->sector);
91c00924
DW
683}
684
685static struct dma_async_tx_descriptor *
686ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
687{
688 /* kernel stack size limits the total number of disks */
689 int disks = sh->disks;
690 struct page *xor_srcs[disks];
691 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 692 struct async_submit_ctl submit;
91c00924
DW
693
694 /* existing parity data subtracted */
695 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
696
e46b272b 697 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
698 (unsigned long long)sh->sector);
699
700 for (i = disks; i--; ) {
701 struct r5dev *dev = &sh->dev[i];
702 /* Only process blocks that are known to be uptodate */
d8ee0728 703 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
704 xor_srcs[count++] = dev->page;
705 }
706
a08abd8c
DW
707 init_async_submit(&submit, ASYNC_TX_XOR_DROP_DST, tx,
708 ops_complete_prexor, sh, NULL);
709 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
710
711 return tx;
712}
713
714static struct dma_async_tx_descriptor *
d8ee0728 715ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
716{
717 int disks = sh->disks;
d8ee0728 718 int i;
91c00924 719
e46b272b 720 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
721 (unsigned long long)sh->sector);
722
723 for (i = disks; i--; ) {
724 struct r5dev *dev = &sh->dev[i];
725 struct bio *chosen;
91c00924 726
d8ee0728 727 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
728 struct bio *wbi;
729
730 spin_lock(&sh->lock);
731 chosen = dev->towrite;
732 dev->towrite = NULL;
733 BUG_ON(dev->written);
734 wbi = dev->written = chosen;
735 spin_unlock(&sh->lock);
736
737 while (wbi && wbi->bi_sector <
738 dev->sector + STRIPE_SECTORS) {
739 tx = async_copy_data(1, wbi, dev->page,
740 dev->sector, tx);
741 wbi = r5_next_bio(wbi, dev->sector);
742 }
743 }
744 }
745
746 return tx;
747}
748
749static void ops_complete_postxor(void *stripe_head_ref)
91c00924
DW
750{
751 struct stripe_head *sh = stripe_head_ref;
752 int disks = sh->disks, i, pd_idx = sh->pd_idx;
753
e46b272b 754 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
755 (unsigned long long)sh->sector);
756
757 for (i = disks; i--; ) {
758 struct r5dev *dev = &sh->dev[i];
759 if (dev->written || i == pd_idx)
760 set_bit(R5_UPTODATE, &dev->flags);
761 }
762
d8ee0728
DW
763 if (sh->reconstruct_state == reconstruct_state_drain_run)
764 sh->reconstruct_state = reconstruct_state_drain_result;
765 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
766 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
767 else {
768 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
769 sh->reconstruct_state = reconstruct_state_result;
770 }
91c00924
DW
771
772 set_bit(STRIPE_HANDLE, &sh->state);
773 release_stripe(sh);
774}
775
776static void
d8ee0728 777ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
778{
779 /* kernel stack size limits the total number of disks */
780 int disks = sh->disks;
781 struct page *xor_srcs[disks];
a08abd8c 782 struct async_submit_ctl submit;
91c00924
DW
783 int count = 0, pd_idx = sh->pd_idx, i;
784 struct page *xor_dest;
d8ee0728 785 int prexor = 0;
91c00924 786 unsigned long flags;
91c00924 787
e46b272b 788 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
789 (unsigned long long)sh->sector);
790
791 /* check if prexor is active which means only process blocks
792 * that are part of a read-modify-write (written)
793 */
d8ee0728
DW
794 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
795 prexor = 1;
91c00924
DW
796 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
797 for (i = disks; i--; ) {
798 struct r5dev *dev = &sh->dev[i];
799 if (dev->written)
800 xor_srcs[count++] = dev->page;
801 }
802 } else {
803 xor_dest = sh->dev[pd_idx].page;
804 for (i = disks; i--; ) {
805 struct r5dev *dev = &sh->dev[i];
806 if (i != pd_idx)
807 xor_srcs[count++] = dev->page;
808 }
809 }
810
91c00924
DW
811 /* 1/ if we prexor'd then the dest is reused as a source
812 * 2/ if we did not prexor then we are redoing the parity
813 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
814 * for the synchronous xor case
815 */
88ba2aa5 816 flags = ASYNC_TX_ACK |
91c00924
DW
817 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
818
819 atomic_inc(&sh->count);
820
a08abd8c
DW
821 init_async_submit(&submit, flags, tx, ops_complete_postxor, sh, NULL);
822 if (unlikely(count == 1))
823 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
824 else
825 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
826}
827
828static void ops_complete_check(void *stripe_head_ref)
829{
830 struct stripe_head *sh = stripe_head_ref;
91c00924 831
e46b272b 832 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
833 (unsigned long long)sh->sector);
834
ecc65c9b 835 sh->check_state = check_state_check_result;
91c00924
DW
836 set_bit(STRIPE_HANDLE, &sh->state);
837 release_stripe(sh);
838}
839
840static void ops_run_check(struct stripe_head *sh)
841{
842 /* kernel stack size limits the total number of disks */
843 int disks = sh->disks;
844 struct page *xor_srcs[disks];
845 struct dma_async_tx_descriptor *tx;
a08abd8c 846 struct async_submit_ctl submit;
91c00924
DW
847
848 int count = 0, pd_idx = sh->pd_idx, i;
849 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
850
e46b272b 851 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
852 (unsigned long long)sh->sector);
853
854 for (i = disks; i--; ) {
855 struct r5dev *dev = &sh->dev[i];
856 if (i != pd_idx)
857 xor_srcs[count++] = dev->page;
858 }
859
a08abd8c 860 init_async_submit(&submit, 0, NULL, NULL, NULL, NULL);
099f53cb 861 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 862 &sh->ops.zero_sum_result, &submit);
91c00924 863
91c00924 864 atomic_inc(&sh->count);
a08abd8c
DW
865 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
866 tx = async_trigger_callback(&submit);
91c00924
DW
867}
868
600aa109 869static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
870{
871 int overlap_clear = 0, i, disks = sh->disks;
872 struct dma_async_tx_descriptor *tx = NULL;
873
83de75cc 874 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
875 ops_run_biofill(sh);
876 overlap_clear++;
877 }
878
7b3a871e
DW
879 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
880 tx = ops_run_compute5(sh);
881 /* terminate the chain if postxor is not set to be run */
882 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
883 async_tx_ack(tx);
884 }
91c00924 885
600aa109 886 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
91c00924
DW
887 tx = ops_run_prexor(sh, tx);
888
600aa109 889 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 890 tx = ops_run_biodrain(sh, tx);
91c00924
DW
891 overlap_clear++;
892 }
893
600aa109 894 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
d8ee0728 895 ops_run_postxor(sh, tx);
91c00924 896
ecc65c9b 897 if (test_bit(STRIPE_OP_CHECK, &ops_request))
91c00924
DW
898 ops_run_check(sh);
899
91c00924
DW
900 if (overlap_clear)
901 for (i = disks; i--; ) {
902 struct r5dev *dev = &sh->dev[i];
903 if (test_and_clear_bit(R5_Overlap, &dev->flags))
904 wake_up(&sh->raid_conf->wait_for_overlap);
905 }
906}
907
3f294f4f 908static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
909{
910 struct stripe_head *sh;
3f294f4f
N
911 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
912 if (!sh)
913 return 0;
914 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
915 sh->raid_conf = conf;
916 spin_lock_init(&sh->lock);
917
918 if (grow_buffers(sh, conf->raid_disks)) {
919 shrink_buffers(sh, conf->raid_disks);
920 kmem_cache_free(conf->slab_cache, sh);
921 return 0;
922 }
7ecaa1e6 923 sh->disks = conf->raid_disks;
3f294f4f
N
924 /* we just created an active stripe so... */
925 atomic_set(&sh->count, 1);
926 atomic_inc(&conf->active_stripes);
927 INIT_LIST_HEAD(&sh->lru);
928 release_stripe(sh);
929 return 1;
930}
931
932static int grow_stripes(raid5_conf_t *conf, int num)
933{
e18b890b 934 struct kmem_cache *sc;
1da177e4
LT
935 int devs = conf->raid_disks;
936
245f46c2
N
937 sprintf(conf->cache_name[0],
938 "raid%d-%s", conf->level, mdname(conf->mddev));
939 sprintf(conf->cache_name[1],
940 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
ad01c9e3
N
941 conf->active_name = 0;
942 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 943 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 944 0, 0, NULL);
1da177e4
LT
945 if (!sc)
946 return 1;
947 conf->slab_cache = sc;
ad01c9e3 948 conf->pool_size = devs;
16a53ecc 949 while (num--)
3f294f4f 950 if (!grow_one_stripe(conf))
1da177e4 951 return 1;
1da177e4
LT
952 return 0;
953}
29269553 954
ad01c9e3
N
955static int resize_stripes(raid5_conf_t *conf, int newsize)
956{
957 /* Make all the stripes able to hold 'newsize' devices.
958 * New slots in each stripe get 'page' set to a new page.
959 *
960 * This happens in stages:
961 * 1/ create a new kmem_cache and allocate the required number of
962 * stripe_heads.
963 * 2/ gather all the old stripe_heads and tranfer the pages across
964 * to the new stripe_heads. This will have the side effect of
965 * freezing the array as once all stripe_heads have been collected,
966 * no IO will be possible. Old stripe heads are freed once their
967 * pages have been transferred over, and the old kmem_cache is
968 * freed when all stripes are done.
969 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
970 * we simple return a failre status - no need to clean anything up.
971 * 4/ allocate new pages for the new slots in the new stripe_heads.
972 * If this fails, we don't bother trying the shrink the
973 * stripe_heads down again, we just leave them as they are.
974 * As each stripe_head is processed the new one is released into
975 * active service.
976 *
977 * Once step2 is started, we cannot afford to wait for a write,
978 * so we use GFP_NOIO allocations.
979 */
980 struct stripe_head *osh, *nsh;
981 LIST_HEAD(newstripes);
982 struct disk_info *ndisks;
b5470dc5 983 int err;
e18b890b 984 struct kmem_cache *sc;
ad01c9e3
N
985 int i;
986
987 if (newsize <= conf->pool_size)
988 return 0; /* never bother to shrink */
989
b5470dc5
DW
990 err = md_allow_write(conf->mddev);
991 if (err)
992 return err;
2a2275d6 993
ad01c9e3
N
994 /* Step 1 */
995 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
996 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 997 0, 0, NULL);
ad01c9e3
N
998 if (!sc)
999 return -ENOMEM;
1000
1001 for (i = conf->max_nr_stripes; i; i--) {
1002 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1003 if (!nsh)
1004 break;
1005
1006 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1007
1008 nsh->raid_conf = conf;
1009 spin_lock_init(&nsh->lock);
1010
1011 list_add(&nsh->lru, &newstripes);
1012 }
1013 if (i) {
1014 /* didn't get enough, give up */
1015 while (!list_empty(&newstripes)) {
1016 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1017 list_del(&nsh->lru);
1018 kmem_cache_free(sc, nsh);
1019 }
1020 kmem_cache_destroy(sc);
1021 return -ENOMEM;
1022 }
1023 /* Step 2 - Must use GFP_NOIO now.
1024 * OK, we have enough stripes, start collecting inactive
1025 * stripes and copying them over
1026 */
1027 list_for_each_entry(nsh, &newstripes, lru) {
1028 spin_lock_irq(&conf->device_lock);
1029 wait_event_lock_irq(conf->wait_for_stripe,
1030 !list_empty(&conf->inactive_list),
1031 conf->device_lock,
b3b46be3 1032 unplug_slaves(conf->mddev)
ad01c9e3
N
1033 );
1034 osh = get_free_stripe(conf);
1035 spin_unlock_irq(&conf->device_lock);
1036 atomic_set(&nsh->count, 1);
1037 for(i=0; i<conf->pool_size; i++)
1038 nsh->dev[i].page = osh->dev[i].page;
1039 for( ; i<newsize; i++)
1040 nsh->dev[i].page = NULL;
1041 kmem_cache_free(conf->slab_cache, osh);
1042 }
1043 kmem_cache_destroy(conf->slab_cache);
1044
1045 /* Step 3.
1046 * At this point, we are holding all the stripes so the array
1047 * is completely stalled, so now is a good time to resize
1048 * conf->disks.
1049 */
1050 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1051 if (ndisks) {
1052 for (i=0; i<conf->raid_disks; i++)
1053 ndisks[i] = conf->disks[i];
1054 kfree(conf->disks);
1055 conf->disks = ndisks;
1056 } else
1057 err = -ENOMEM;
1058
1059 /* Step 4, return new stripes to service */
1060 while(!list_empty(&newstripes)) {
1061 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1062 list_del_init(&nsh->lru);
1063 for (i=conf->raid_disks; i < newsize; i++)
1064 if (nsh->dev[i].page == NULL) {
1065 struct page *p = alloc_page(GFP_NOIO);
1066 nsh->dev[i].page = p;
1067 if (!p)
1068 err = -ENOMEM;
1069 }
1070 release_stripe(nsh);
1071 }
1072 /* critical section pass, GFP_NOIO no longer needed */
1073
1074 conf->slab_cache = sc;
1075 conf->active_name = 1-conf->active_name;
1076 conf->pool_size = newsize;
1077 return err;
1078}
1da177e4 1079
3f294f4f 1080static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1081{
1082 struct stripe_head *sh;
1083
3f294f4f
N
1084 spin_lock_irq(&conf->device_lock);
1085 sh = get_free_stripe(conf);
1086 spin_unlock_irq(&conf->device_lock);
1087 if (!sh)
1088 return 0;
78bafebd 1089 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1090 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1091 kmem_cache_free(conf->slab_cache, sh);
1092 atomic_dec(&conf->active_stripes);
1093 return 1;
1094}
1095
1096static void shrink_stripes(raid5_conf_t *conf)
1097{
1098 while (drop_one_stripe(conf))
1099 ;
1100
29fc7e3e
N
1101 if (conf->slab_cache)
1102 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1103 conf->slab_cache = NULL;
1104}
1105
6712ecf8 1106static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1107{
99c0fb5f 1108 struct stripe_head *sh = bi->bi_private;
1da177e4 1109 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1110 int disks = sh->disks, i;
1da177e4 1111 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1112 char b[BDEVNAME_SIZE];
1113 mdk_rdev_t *rdev;
1da177e4 1114
1da177e4
LT
1115
1116 for (i=0 ; i<disks; i++)
1117 if (bi == &sh->dev[i].req)
1118 break;
1119
45b4233c
DW
1120 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1121 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1122 uptodate);
1123 if (i == disks) {
1124 BUG();
6712ecf8 1125 return;
1da177e4
LT
1126 }
1127
1128 if (uptodate) {
1da177e4 1129 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1130 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1131 rdev = conf->disks[i].rdev;
6be9d494
BS
1132 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1133 " (%lu sectors at %llu on %s)\n",
1134 mdname(conf->mddev), STRIPE_SECTORS,
1135 (unsigned long long)(sh->sector
1136 + rdev->data_offset),
1137 bdevname(rdev->bdev, b));
4e5314b5
N
1138 clear_bit(R5_ReadError, &sh->dev[i].flags);
1139 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1140 }
ba22dcbf
N
1141 if (atomic_read(&conf->disks[i].rdev->read_errors))
1142 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1143 } else {
d6950432 1144 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1145 int retry = 0;
d6950432
N
1146 rdev = conf->disks[i].rdev;
1147
1da177e4 1148 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1149 atomic_inc(&rdev->read_errors);
ba22dcbf 1150 if (conf->mddev->degraded)
6be9d494
BS
1151 printk_rl(KERN_WARNING
1152 "raid5:%s: read error not correctable "
1153 "(sector %llu on %s).\n",
1154 mdname(conf->mddev),
1155 (unsigned long long)(sh->sector
1156 + rdev->data_offset),
1157 bdn);
ba22dcbf 1158 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1159 /* Oh, no!!! */
6be9d494
BS
1160 printk_rl(KERN_WARNING
1161 "raid5:%s: read error NOT corrected!! "
1162 "(sector %llu on %s).\n",
1163 mdname(conf->mddev),
1164 (unsigned long long)(sh->sector
1165 + rdev->data_offset),
1166 bdn);
d6950432 1167 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1168 > conf->max_nr_stripes)
14f8d26b 1169 printk(KERN_WARNING
d6950432
N
1170 "raid5:%s: Too many read errors, failing device %s.\n",
1171 mdname(conf->mddev), bdn);
ba22dcbf
N
1172 else
1173 retry = 1;
1174 if (retry)
1175 set_bit(R5_ReadError, &sh->dev[i].flags);
1176 else {
4e5314b5
N
1177 clear_bit(R5_ReadError, &sh->dev[i].flags);
1178 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1179 md_error(conf->mddev, rdev);
ba22dcbf 1180 }
1da177e4
LT
1181 }
1182 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1183 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1184 set_bit(STRIPE_HANDLE, &sh->state);
1185 release_stripe(sh);
1da177e4
LT
1186}
1187
d710e138 1188static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1189{
99c0fb5f 1190 struct stripe_head *sh = bi->bi_private;
1da177e4 1191 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1192 int disks = sh->disks, i;
1da177e4
LT
1193 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1194
1da177e4
LT
1195 for (i=0 ; i<disks; i++)
1196 if (bi == &sh->dev[i].req)
1197 break;
1198
45b4233c 1199 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1200 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1201 uptodate);
1202 if (i == disks) {
1203 BUG();
6712ecf8 1204 return;
1da177e4
LT
1205 }
1206
1da177e4
LT
1207 if (!uptodate)
1208 md_error(conf->mddev, conf->disks[i].rdev);
1209
1210 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1211
1212 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1213 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1214 release_stripe(sh);
1da177e4
LT
1215}
1216
1217
784052ec 1218static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1219
784052ec 1220static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1221{
1222 struct r5dev *dev = &sh->dev[i];
1223
1224 bio_init(&dev->req);
1225 dev->req.bi_io_vec = &dev->vec;
1226 dev->req.bi_vcnt++;
1227 dev->req.bi_max_vecs++;
1228 dev->vec.bv_page = dev->page;
1229 dev->vec.bv_len = STRIPE_SIZE;
1230 dev->vec.bv_offset = 0;
1231
1232 dev->req.bi_sector = sh->sector;
1233 dev->req.bi_private = sh;
1234
1235 dev->flags = 0;
784052ec 1236 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1237}
1238
1239static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1240{
1241 char b[BDEVNAME_SIZE];
1242 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1243 pr_debug("raid5: error called\n");
1da177e4 1244
b2d444d7 1245 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1246 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1247 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1248 unsigned long flags;
1249 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1250 mddev->degraded++;
c04be0aa 1251 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1252 /*
1253 * if recovery was running, make sure it aborts.
1254 */
dfc70645 1255 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1256 }
b2d444d7 1257 set_bit(Faulty, &rdev->flags);
d710e138
N
1258 printk(KERN_ALERT
1259 "raid5: Disk failure on %s, disabling device.\n"
1260 "raid5: Operation continuing on %d devices.\n",
1261 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1262 }
16a53ecc 1263}
1da177e4
LT
1264
1265/*
1266 * Input: a 'big' sector number,
1267 * Output: index of the data and parity disk, and the sector # in them.
1268 */
112bf897 1269static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1270 int previous, int *dd_idx,
1271 struct stripe_head *sh)
1da177e4
LT
1272{
1273 long stripe;
1274 unsigned long chunk_number;
1275 unsigned int chunk_offset;
911d4ee8 1276 int pd_idx, qd_idx;
67cc2b81 1277 int ddf_layout = 0;
1da177e4 1278 sector_t new_sector;
e183eaed
N
1279 int algorithm = previous ? conf->prev_algo
1280 : conf->algorithm;
784052ec
N
1281 int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1282 : (conf->chunk_size >> 9);
112bf897
N
1283 int raid_disks = previous ? conf->previous_raid_disks
1284 : conf->raid_disks;
1285 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1286
1287 /* First compute the information on this sector */
1288
1289 /*
1290 * Compute the chunk number and the sector offset inside the chunk
1291 */
1292 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1293 chunk_number = r_sector;
1294 BUG_ON(r_sector != chunk_number);
1295
1296 /*
1297 * Compute the stripe number
1298 */
1299 stripe = chunk_number / data_disks;
1300
1301 /*
1302 * Compute the data disk and parity disk indexes inside the stripe
1303 */
1304 *dd_idx = chunk_number % data_disks;
1305
1306 /*
1307 * Select the parity disk based on the user selected algorithm.
1308 */
911d4ee8 1309 pd_idx = qd_idx = ~0;
16a53ecc
N
1310 switch(conf->level) {
1311 case 4:
911d4ee8 1312 pd_idx = data_disks;
16a53ecc
N
1313 break;
1314 case 5:
e183eaed 1315 switch (algorithm) {
1da177e4 1316 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1317 pd_idx = data_disks - stripe % raid_disks;
1318 if (*dd_idx >= pd_idx)
1da177e4
LT
1319 (*dd_idx)++;
1320 break;
1321 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1322 pd_idx = stripe % raid_disks;
1323 if (*dd_idx >= pd_idx)
1da177e4
LT
1324 (*dd_idx)++;
1325 break;
1326 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1327 pd_idx = data_disks - stripe % raid_disks;
1328 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1329 break;
1330 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1331 pd_idx = stripe % raid_disks;
1332 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1333 break;
99c0fb5f
N
1334 case ALGORITHM_PARITY_0:
1335 pd_idx = 0;
1336 (*dd_idx)++;
1337 break;
1338 case ALGORITHM_PARITY_N:
1339 pd_idx = data_disks;
1340 break;
1da177e4 1341 default:
14f8d26b 1342 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1343 algorithm);
99c0fb5f 1344 BUG();
16a53ecc
N
1345 }
1346 break;
1347 case 6:
1348
e183eaed 1349 switch (algorithm) {
16a53ecc 1350 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1351 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352 qd_idx = pd_idx + 1;
1353 if (pd_idx == raid_disks-1) {
99c0fb5f 1354 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1355 qd_idx = 0;
1356 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1357 (*dd_idx) += 2; /* D D P Q D */
1358 break;
1359 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1360 pd_idx = stripe % raid_disks;
1361 qd_idx = pd_idx + 1;
1362 if (pd_idx == raid_disks-1) {
99c0fb5f 1363 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1364 qd_idx = 0;
1365 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1366 (*dd_idx) += 2; /* D D P Q D */
1367 break;
1368 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1369 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1370 qd_idx = (pd_idx + 1) % raid_disks;
1371 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1372 break;
1373 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1374 pd_idx = stripe % raid_disks;
1375 qd_idx = (pd_idx + 1) % raid_disks;
1376 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1377 break;
99c0fb5f
N
1378
1379 case ALGORITHM_PARITY_0:
1380 pd_idx = 0;
1381 qd_idx = 1;
1382 (*dd_idx) += 2;
1383 break;
1384 case ALGORITHM_PARITY_N:
1385 pd_idx = data_disks;
1386 qd_idx = data_disks + 1;
1387 break;
1388
1389 case ALGORITHM_ROTATING_ZERO_RESTART:
1390 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1391 * of blocks for computing Q is different.
1392 */
1393 pd_idx = stripe % raid_disks;
1394 qd_idx = pd_idx + 1;
1395 if (pd_idx == raid_disks-1) {
1396 (*dd_idx)++; /* Q D D D P */
1397 qd_idx = 0;
1398 } else if (*dd_idx >= pd_idx)
1399 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1400 ddf_layout = 1;
99c0fb5f
N
1401 break;
1402
1403 case ALGORITHM_ROTATING_N_RESTART:
1404 /* Same a left_asymmetric, by first stripe is
1405 * D D D P Q rather than
1406 * Q D D D P
1407 */
1408 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1409 qd_idx = pd_idx + 1;
1410 if (pd_idx == raid_disks-1) {
1411 (*dd_idx)++; /* Q D D D P */
1412 qd_idx = 0;
1413 } else if (*dd_idx >= pd_idx)
1414 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1415 ddf_layout = 1;
99c0fb5f
N
1416 break;
1417
1418 case ALGORITHM_ROTATING_N_CONTINUE:
1419 /* Same as left_symmetric but Q is before P */
1420 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1421 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1422 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1423 ddf_layout = 1;
99c0fb5f
N
1424 break;
1425
1426 case ALGORITHM_LEFT_ASYMMETRIC_6:
1427 /* RAID5 left_asymmetric, with Q on last device */
1428 pd_idx = data_disks - stripe % (raid_disks-1);
1429 if (*dd_idx >= pd_idx)
1430 (*dd_idx)++;
1431 qd_idx = raid_disks - 1;
1432 break;
1433
1434 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1435 pd_idx = stripe % (raid_disks-1);
1436 if (*dd_idx >= pd_idx)
1437 (*dd_idx)++;
1438 qd_idx = raid_disks - 1;
1439 break;
1440
1441 case ALGORITHM_LEFT_SYMMETRIC_6:
1442 pd_idx = data_disks - stripe % (raid_disks-1);
1443 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1444 qd_idx = raid_disks - 1;
1445 break;
1446
1447 case ALGORITHM_RIGHT_SYMMETRIC_6:
1448 pd_idx = stripe % (raid_disks-1);
1449 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1450 qd_idx = raid_disks - 1;
1451 break;
1452
1453 case ALGORITHM_PARITY_0_6:
1454 pd_idx = 0;
1455 (*dd_idx)++;
1456 qd_idx = raid_disks - 1;
1457 break;
1458
1459
16a53ecc 1460 default:
d710e138 1461 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1462 algorithm);
99c0fb5f 1463 BUG();
16a53ecc
N
1464 }
1465 break;
1da177e4
LT
1466 }
1467
911d4ee8
N
1468 if (sh) {
1469 sh->pd_idx = pd_idx;
1470 sh->qd_idx = qd_idx;
67cc2b81 1471 sh->ddf_layout = ddf_layout;
911d4ee8 1472 }
1da177e4
LT
1473 /*
1474 * Finally, compute the new sector number
1475 */
1476 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1477 return new_sector;
1478}
1479
1480
784052ec 1481static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1482{
1483 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1484 int raid_disks = sh->disks;
1485 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1486 sector_t new_sector = sh->sector, check;
784052ec
N
1487 int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1488 : (conf->chunk_size >> 9);
e183eaed
N
1489 int algorithm = previous ? conf->prev_algo
1490 : conf->algorithm;
1da177e4
LT
1491 sector_t stripe;
1492 int chunk_offset;
911d4ee8 1493 int chunk_number, dummy1, dd_idx = i;
1da177e4 1494 sector_t r_sector;
911d4ee8 1495 struct stripe_head sh2;
1da177e4 1496
16a53ecc 1497
1da177e4
LT
1498 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1499 stripe = new_sector;
1500 BUG_ON(new_sector != stripe);
1501
16a53ecc
N
1502 if (i == sh->pd_idx)
1503 return 0;
1504 switch(conf->level) {
1505 case 4: break;
1506 case 5:
e183eaed 1507 switch (algorithm) {
1da177e4
LT
1508 case ALGORITHM_LEFT_ASYMMETRIC:
1509 case ALGORITHM_RIGHT_ASYMMETRIC:
1510 if (i > sh->pd_idx)
1511 i--;
1512 break;
1513 case ALGORITHM_LEFT_SYMMETRIC:
1514 case ALGORITHM_RIGHT_SYMMETRIC:
1515 if (i < sh->pd_idx)
1516 i += raid_disks;
1517 i -= (sh->pd_idx + 1);
1518 break;
99c0fb5f
N
1519 case ALGORITHM_PARITY_0:
1520 i -= 1;
1521 break;
1522 case ALGORITHM_PARITY_N:
1523 break;
1da177e4 1524 default:
14f8d26b 1525 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1526 algorithm);
99c0fb5f 1527 BUG();
16a53ecc
N
1528 }
1529 break;
1530 case 6:
d0dabf7e 1531 if (i == sh->qd_idx)
16a53ecc 1532 return 0; /* It is the Q disk */
e183eaed 1533 switch (algorithm) {
16a53ecc
N
1534 case ALGORITHM_LEFT_ASYMMETRIC:
1535 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1536 case ALGORITHM_ROTATING_ZERO_RESTART:
1537 case ALGORITHM_ROTATING_N_RESTART:
1538 if (sh->pd_idx == raid_disks-1)
1539 i--; /* Q D D D P */
16a53ecc
N
1540 else if (i > sh->pd_idx)
1541 i -= 2; /* D D P Q D */
1542 break;
1543 case ALGORITHM_LEFT_SYMMETRIC:
1544 case ALGORITHM_RIGHT_SYMMETRIC:
1545 if (sh->pd_idx == raid_disks-1)
1546 i--; /* Q D D D P */
1547 else {
1548 /* D D P Q D */
1549 if (i < sh->pd_idx)
1550 i += raid_disks;
1551 i -= (sh->pd_idx + 2);
1552 }
1553 break;
99c0fb5f
N
1554 case ALGORITHM_PARITY_0:
1555 i -= 2;
1556 break;
1557 case ALGORITHM_PARITY_N:
1558 break;
1559 case ALGORITHM_ROTATING_N_CONTINUE:
1560 if (sh->pd_idx == 0)
1561 i--; /* P D D D Q */
1562 else if (i > sh->pd_idx)
1563 i -= 2; /* D D Q P D */
1564 break;
1565 case ALGORITHM_LEFT_ASYMMETRIC_6:
1566 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1567 if (i > sh->pd_idx)
1568 i--;
1569 break;
1570 case ALGORITHM_LEFT_SYMMETRIC_6:
1571 case ALGORITHM_RIGHT_SYMMETRIC_6:
1572 if (i < sh->pd_idx)
1573 i += data_disks + 1;
1574 i -= (sh->pd_idx + 1);
1575 break;
1576 case ALGORITHM_PARITY_0_6:
1577 i -= 1;
1578 break;
16a53ecc 1579 default:
d710e138 1580 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1581 algorithm);
99c0fb5f 1582 BUG();
16a53ecc
N
1583 }
1584 break;
1da177e4
LT
1585 }
1586
1587 chunk_number = stripe * data_disks + i;
1588 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1589
112bf897 1590 check = raid5_compute_sector(conf, r_sector,
784052ec 1591 previous, &dummy1, &sh2);
911d4ee8
N
1592 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1593 || sh2.qd_idx != sh->qd_idx) {
14f8d26b 1594 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1595 return 0;
1596 }
1597 return r_sector;
1598}
1599
1600
1601
1602/*
16a53ecc
N
1603 * Copy data between a page in the stripe cache, and one or more bion
1604 * The page could align with the middle of the bio, or there could be
1605 * several bion, each with several bio_vecs, which cover part of the page
1606 * Multiple bion are linked together on bi_next. There may be extras
1607 * at the end of this list. We ignore them.
1da177e4
LT
1608 */
1609static void copy_data(int frombio, struct bio *bio,
1610 struct page *page,
1611 sector_t sector)
1612{
1613 char *pa = page_address(page);
1614 struct bio_vec *bvl;
1615 int i;
1616 int page_offset;
1617
1618 if (bio->bi_sector >= sector)
1619 page_offset = (signed)(bio->bi_sector - sector) * 512;
1620 else
1621 page_offset = (signed)(sector - bio->bi_sector) * -512;
1622 bio_for_each_segment(bvl, bio, i) {
1623 int len = bio_iovec_idx(bio,i)->bv_len;
1624 int clen;
1625 int b_offset = 0;
1626
1627 if (page_offset < 0) {
1628 b_offset = -page_offset;
1629 page_offset += b_offset;
1630 len -= b_offset;
1631 }
1632
1633 if (len > 0 && page_offset + len > STRIPE_SIZE)
1634 clen = STRIPE_SIZE - page_offset;
1635 else clen = len;
16a53ecc 1636
1da177e4
LT
1637 if (clen > 0) {
1638 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1639 if (frombio)
1640 memcpy(pa+page_offset, ba+b_offset, clen);
1641 else
1642 memcpy(ba+b_offset, pa+page_offset, clen);
1643 __bio_kunmap_atomic(ba, KM_USER0);
1644 }
1645 if (clen < len) /* hit end of page */
1646 break;
1647 page_offset += len;
1648 }
1649}
1650
9bc89cd8
DW
1651#define check_xor() do { \
1652 if (count == MAX_XOR_BLOCKS) { \
1653 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1654 count = 0; \
1655 } \
1da177e4
LT
1656 } while(0)
1657
16a53ecc
N
1658static void compute_parity6(struct stripe_head *sh, int method)
1659{
bff61975 1660 raid5_conf_t *conf = sh->raid_conf;
d0dabf7e 1661 int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
67cc2b81 1662 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
16a53ecc
N
1663 struct bio *chosen;
1664 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1665 void *ptrs[syndrome_disks+2];
16a53ecc 1666
d0dabf7e
N
1667 pd_idx = sh->pd_idx;
1668 qd_idx = sh->qd_idx;
1669 d0_idx = raid6_d0(sh);
16a53ecc 1670
45b4233c 1671 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1672 (unsigned long long)sh->sector, method);
1673
1674 switch(method) {
1675 case READ_MODIFY_WRITE:
1676 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1677 case RECONSTRUCT_WRITE:
1678 for (i= disks; i-- ;)
1679 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1680 chosen = sh->dev[i].towrite;
1681 sh->dev[i].towrite = NULL;
1682
1683 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1684 wake_up(&conf->wait_for_overlap);
1685
52e5f9d1 1686 BUG_ON(sh->dev[i].written);
16a53ecc
N
1687 sh->dev[i].written = chosen;
1688 }
1689 break;
1690 case CHECK_PARITY:
1691 BUG(); /* Not implemented yet */
1692 }
1693
1694 for (i = disks; i--;)
1695 if (sh->dev[i].written) {
1696 sector_t sector = sh->dev[i].sector;
1697 struct bio *wbi = sh->dev[i].written;
1698 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1699 copy_data(1, wbi, sh->dev[i].page, sector);
1700 wbi = r5_next_bio(wbi, sector);
1701 }
1702
1703 set_bit(R5_LOCKED, &sh->dev[i].flags);
1704 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1705 }
1706
d0dabf7e 1707 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
67cc2b81
N
1708
1709 for (i = 0; i < disks; i++)
1710 ptrs[i] = (void *)raid6_empty_zero_page;
1711
d0dabf7e
N
1712 count = 0;
1713 i = d0_idx;
1714 do {
67cc2b81
N
1715 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1716
d0dabf7e 1717 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 1718 if (slot < syndrome_disks &&
d0dabf7e
N
1719 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1720 printk(KERN_ERR "block %d/%d not uptodate "
1721 "on parity calc\n", i, count);
1722 BUG();
1723 }
67cc2b81 1724
d0dabf7e
N
1725 i = raid6_next_disk(i, disks);
1726 } while (i != d0_idx);
67cc2b81 1727 BUG_ON(count != syndrome_disks);
16a53ecc 1728
67cc2b81 1729 raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
16a53ecc
N
1730
1731 switch(method) {
1732 case RECONSTRUCT_WRITE:
1733 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1734 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1735 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1736 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1737 break;
1738 case UPDATE_PARITY:
1739 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1740 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1741 break;
1742 }
1743}
1744
1745
1746/* Compute one missing block */
1747static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1748{
f416885e 1749 int i, count, disks = sh->disks;
9bc89cd8 1750 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
d0dabf7e 1751 int qd_idx = sh->qd_idx;
16a53ecc 1752
45b4233c 1753 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1754 (unsigned long long)sh->sector, dd_idx);
1755
1756 if ( dd_idx == qd_idx ) {
1757 /* We're actually computing the Q drive */
1758 compute_parity6(sh, UPDATE_PARITY);
1759 } else {
9bc89cd8
DW
1760 dest = page_address(sh->dev[dd_idx].page);
1761 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1762 count = 0;
16a53ecc
N
1763 for (i = disks ; i--; ) {
1764 if (i == dd_idx || i == qd_idx)
1765 continue;
1766 p = page_address(sh->dev[i].page);
1767 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1768 ptr[count++] = p;
1769 else
1770 printk("compute_block() %d, stripe %llu, %d"
1771 " not present\n", dd_idx,
1772 (unsigned long long)sh->sector, i);
1773
1774 check_xor();
1775 }
9bc89cd8
DW
1776 if (count)
1777 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1778 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1779 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1780 }
1781}
1782
1783/* Compute two missing blocks */
1784static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1785{
f416885e 1786 int i, count, disks = sh->disks;
67cc2b81 1787 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
d0dabf7e
N
1788 int d0_idx = raid6_d0(sh);
1789 int faila = -1, failb = -1;
1790 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1791 void *ptrs[syndrome_disks+2];
16a53ecc 1792
67cc2b81
N
1793 for (i = 0; i < disks ; i++)
1794 ptrs[i] = (void *)raid6_empty_zero_page;
d0dabf7e
N
1795 count = 0;
1796 i = d0_idx;
1797 do {
67cc2b81
N
1798 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1799
d0dabf7e 1800 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 1801
d0dabf7e
N
1802 if (i == dd_idx1)
1803 faila = slot;
1804 if (i == dd_idx2)
1805 failb = slot;
1806 i = raid6_next_disk(i, disks);
1807 } while (i != d0_idx);
67cc2b81 1808 BUG_ON(count != syndrome_disks);
16a53ecc
N
1809
1810 BUG_ON(faila == failb);
1811 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1812
45b4233c 1813 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
d0dabf7e
N
1814 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1815 faila, failb);
16a53ecc 1816
67cc2b81 1817 if (failb == syndrome_disks+1) {
16a53ecc 1818 /* Q disk is one of the missing disks */
67cc2b81 1819 if (faila == syndrome_disks) {
16a53ecc
N
1820 /* Missing P+Q, just recompute */
1821 compute_parity6(sh, UPDATE_PARITY);
1822 return;
1823 } else {
1824 /* We're missing D+Q; recompute D from P */
d0dabf7e
N
1825 compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1826 dd_idx2 : dd_idx1),
1827 0);
16a53ecc
N
1828 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1829 return;
1830 }
1831 }
1832
d0dabf7e 1833 /* We're missing D+P or D+D; */
67cc2b81 1834 if (failb == syndrome_disks) {
d0dabf7e 1835 /* We're missing D+P. */
67cc2b81 1836 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
d0dabf7e
N
1837 } else {
1838 /* We're missing D+D. */
67cc2b81
N
1839 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1840 ptrs);
16a53ecc 1841 }
d0dabf7e
N
1842
1843 /* Both the above update both missing blocks */
1844 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1845 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
16a53ecc
N
1846}
1847
600aa109 1848static void
1fe797e6 1849schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 1850 int rcw, int expand)
e33129d8
DW
1851{
1852 int i, pd_idx = sh->pd_idx, disks = sh->disks;
e33129d8
DW
1853
1854 if (rcw) {
1855 /* if we are not expanding this is a proper write request, and
1856 * there will be bios with new data to be drained into the
1857 * stripe cache
1858 */
1859 if (!expand) {
600aa109
DW
1860 sh->reconstruct_state = reconstruct_state_drain_run;
1861 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1862 } else
1863 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 1864
600aa109 1865 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1866
1867 for (i = disks; i--; ) {
1868 struct r5dev *dev = &sh->dev[i];
1869
1870 if (dev->towrite) {
1871 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 1872 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1873 if (!expand)
1874 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1875 s->locked++;
e33129d8
DW
1876 }
1877 }
600aa109 1878 if (s->locked + 1 == disks)
8b3e6cdc
DW
1879 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1880 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1881 } else {
1882 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1883 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1884
d8ee0728 1885 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
1886 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1887 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1888 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1889
1890 for (i = disks; i--; ) {
1891 struct r5dev *dev = &sh->dev[i];
1892 if (i == pd_idx)
1893 continue;
1894
e33129d8
DW
1895 if (dev->towrite &&
1896 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
1897 test_bit(R5_Wantcompute, &dev->flags))) {
1898 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1899 set_bit(R5_LOCKED, &dev->flags);
1900 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1901 s->locked++;
e33129d8
DW
1902 }
1903 }
1904 }
1905
1906 /* keep the parity disk locked while asynchronous operations
1907 * are in flight
1908 */
1909 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1910 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 1911 s->locked++;
e33129d8 1912
600aa109 1913 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 1914 __func__, (unsigned long long)sh->sector,
600aa109 1915 s->locked, s->ops_request);
e33129d8 1916}
16a53ecc 1917
1da177e4
LT
1918/*
1919 * Each stripe/dev can have one or more bion attached.
16a53ecc 1920 * toread/towrite point to the first in a chain.
1da177e4
LT
1921 * The bi_next chain must be in order.
1922 */
1923static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1924{
1925 struct bio **bip;
1926 raid5_conf_t *conf = sh->raid_conf;
72626685 1927 int firstwrite=0;
1da177e4 1928
45b4233c 1929 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1930 (unsigned long long)bi->bi_sector,
1931 (unsigned long long)sh->sector);
1932
1933
1934 spin_lock(&sh->lock);
1935 spin_lock_irq(&conf->device_lock);
72626685 1936 if (forwrite) {
1da177e4 1937 bip = &sh->dev[dd_idx].towrite;
72626685
N
1938 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1939 firstwrite = 1;
1940 } else
1da177e4
LT
1941 bip = &sh->dev[dd_idx].toread;
1942 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1943 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1944 goto overlap;
1945 bip = & (*bip)->bi_next;
1946 }
1947 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1948 goto overlap;
1949
78bafebd 1950 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1951 if (*bip)
1952 bi->bi_next = *bip;
1953 *bip = bi;
960e739d 1954 bi->bi_phys_segments++;
1da177e4
LT
1955 spin_unlock_irq(&conf->device_lock);
1956 spin_unlock(&sh->lock);
1957
45b4233c 1958 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1959 (unsigned long long)bi->bi_sector,
1960 (unsigned long long)sh->sector, dd_idx);
1961
72626685 1962 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1963 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1964 STRIPE_SECTORS, 0);
ae3c20cc 1965 sh->bm_seq = conf->seq_flush+1;
72626685
N
1966 set_bit(STRIPE_BIT_DELAY, &sh->state);
1967 }
1968
1da177e4
LT
1969 if (forwrite) {
1970 /* check if page is covered */
1971 sector_t sector = sh->dev[dd_idx].sector;
1972 for (bi=sh->dev[dd_idx].towrite;
1973 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1974 bi && bi->bi_sector <= sector;
1975 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1976 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1977 sector = bi->bi_sector + (bi->bi_size>>9);
1978 }
1979 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1980 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1981 }
1982 return 1;
1983
1984 overlap:
1985 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1986 spin_unlock_irq(&conf->device_lock);
1987 spin_unlock(&sh->lock);
1988 return 0;
1989}
1990
29269553
N
1991static void end_reshape(raid5_conf_t *conf);
1992
16a53ecc
N
1993static int page_is_zero(struct page *p)
1994{
1995 char *a = page_address(p);
1996 return ((*(u32*)a) == 0 &&
1997 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1998}
1999
911d4ee8
N
2000static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2001 struct stripe_head *sh)
ccfcc3c1 2002{
784052ec
N
2003 int sectors_per_chunk =
2004 previous ? (conf->prev_chunk >> 9)
2005 : (conf->chunk_size >> 9);
911d4ee8 2006 int dd_idx;
2d2063ce 2007 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2008 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2009
112bf897
N
2010 raid5_compute_sector(conf,
2011 stripe * (disks - conf->max_degraded)
b875e531 2012 *sectors_per_chunk + chunk_offset,
112bf897 2013 previous,
911d4ee8 2014 &dd_idx, sh);
ccfcc3c1
N
2015}
2016
a4456856 2017static void
1fe797e6 2018handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2019 struct stripe_head_state *s, int disks,
2020 struct bio **return_bi)
2021{
2022 int i;
2023 for (i = disks; i--; ) {
2024 struct bio *bi;
2025 int bitmap_end = 0;
2026
2027 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2028 mdk_rdev_t *rdev;
2029 rcu_read_lock();
2030 rdev = rcu_dereference(conf->disks[i].rdev);
2031 if (rdev && test_bit(In_sync, &rdev->flags))
2032 /* multiple read failures in one stripe */
2033 md_error(conf->mddev, rdev);
2034 rcu_read_unlock();
2035 }
2036 spin_lock_irq(&conf->device_lock);
2037 /* fail all writes first */
2038 bi = sh->dev[i].towrite;
2039 sh->dev[i].towrite = NULL;
2040 if (bi) {
2041 s->to_write--;
2042 bitmap_end = 1;
2043 }
2044
2045 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2046 wake_up(&conf->wait_for_overlap);
2047
2048 while (bi && bi->bi_sector <
2049 sh->dev[i].sector + STRIPE_SECTORS) {
2050 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2051 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2052 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2053 md_write_end(conf->mddev);
2054 bi->bi_next = *return_bi;
2055 *return_bi = bi;
2056 }
2057 bi = nextbi;
2058 }
2059 /* and fail all 'written' */
2060 bi = sh->dev[i].written;
2061 sh->dev[i].written = NULL;
2062 if (bi) bitmap_end = 1;
2063 while (bi && bi->bi_sector <
2064 sh->dev[i].sector + STRIPE_SECTORS) {
2065 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2066 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2067 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2068 md_write_end(conf->mddev);
2069 bi->bi_next = *return_bi;
2070 *return_bi = bi;
2071 }
2072 bi = bi2;
2073 }
2074
b5e98d65
DW
2075 /* fail any reads if this device is non-operational and
2076 * the data has not reached the cache yet.
2077 */
2078 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2079 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2080 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2081 bi = sh->dev[i].toread;
2082 sh->dev[i].toread = NULL;
2083 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2084 wake_up(&conf->wait_for_overlap);
2085 if (bi) s->to_read--;
2086 while (bi && bi->bi_sector <
2087 sh->dev[i].sector + STRIPE_SECTORS) {
2088 struct bio *nextbi =
2089 r5_next_bio(bi, sh->dev[i].sector);
2090 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2091 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2092 bi->bi_next = *return_bi;
2093 *return_bi = bi;
2094 }
2095 bi = nextbi;
2096 }
2097 }
2098 spin_unlock_irq(&conf->device_lock);
2099 if (bitmap_end)
2100 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2101 STRIPE_SECTORS, 0, 0);
2102 }
2103
8b3e6cdc
DW
2104 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2105 if (atomic_dec_and_test(&conf->pending_full_writes))
2106 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2107}
2108
1fe797e6
DW
2109/* fetch_block5 - checks the given member device to see if its data needs
2110 * to be read or computed to satisfy a request.
2111 *
2112 * Returns 1 when no more member devices need to be checked, otherwise returns
2113 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2114 */
1fe797e6
DW
2115static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2116 int disk_idx, int disks)
f38e1219
DW
2117{
2118 struct r5dev *dev = &sh->dev[disk_idx];
2119 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2120
f38e1219
DW
2121 /* is the data in this block needed, and can we get it? */
2122 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2123 !test_bit(R5_UPTODATE, &dev->flags) &&
2124 (dev->toread ||
2125 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2126 s->syncing || s->expanding ||
2127 (s->failed &&
2128 (failed_dev->toread ||
2129 (failed_dev->towrite &&
2130 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2131 /* We would like to get this block, possibly by computing it,
2132 * otherwise read it if the backing disk is insync
f38e1219
DW
2133 */
2134 if ((s->uptodate == disks - 1) &&
ecc65c9b 2135 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2136 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2137 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2138 set_bit(R5_Wantcompute, &dev->flags);
2139 sh->ops.target = disk_idx;
2140 s->req_compute = 1;
f38e1219
DW
2141 /* Careful: from this point on 'uptodate' is in the eye
2142 * of raid5_run_ops which services 'compute' operations
2143 * before writes. R5_Wantcompute flags a block that will
2144 * be R5_UPTODATE by the time it is needed for a
2145 * subsequent operation.
2146 */
2147 s->uptodate++;
1fe797e6 2148 return 1; /* uptodate + compute == disks */
7a1fc53c 2149 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2150 set_bit(R5_LOCKED, &dev->flags);
2151 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2152 s->locked++;
2153 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2154 s->syncing);
2155 }
2156 }
2157
1fe797e6 2158 return 0;
f38e1219
DW
2159}
2160
1fe797e6
DW
2161/**
2162 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2163 */
2164static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2165 struct stripe_head_state *s, int disks)
2166{
2167 int i;
f38e1219 2168
f38e1219
DW
2169 /* look for blocks to read/compute, skip this if a compute
2170 * is already in flight, or if the stripe contents are in the
2171 * midst of changing due to a write
2172 */
976ea8d4 2173 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2174 !sh->reconstruct_state)
f38e1219 2175 for (i = disks; i--; )
1fe797e6 2176 if (fetch_block5(sh, s, i, disks))
f38e1219 2177 break;
a4456856
DW
2178 set_bit(STRIPE_HANDLE, &sh->state);
2179}
2180
1fe797e6 2181static void handle_stripe_fill6(struct stripe_head *sh,
a4456856
DW
2182 struct stripe_head_state *s, struct r6_state *r6s,
2183 int disks)
2184{
2185 int i;
2186 for (i = disks; i--; ) {
2187 struct r5dev *dev = &sh->dev[i];
2188 if (!test_bit(R5_LOCKED, &dev->flags) &&
2189 !test_bit(R5_UPTODATE, &dev->flags) &&
2190 (dev->toread || (dev->towrite &&
2191 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2192 s->syncing || s->expanding ||
2193 (s->failed >= 1 &&
2194 (sh->dev[r6s->failed_num[0]].toread ||
2195 s->to_write)) ||
2196 (s->failed >= 2 &&
2197 (sh->dev[r6s->failed_num[1]].toread ||
2198 s->to_write)))) {
2199 /* we would like to get this block, possibly
2200 * by computing it, but we might not be able to
2201 */
c337869d
DW
2202 if ((s->uptodate == disks - 1) &&
2203 (s->failed && (i == r6s->failed_num[0] ||
2204 i == r6s->failed_num[1]))) {
45b4233c 2205 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2206 (unsigned long long)sh->sector, i);
2207 compute_block_1(sh, i, 0);
2208 s->uptodate++;
2209 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2210 /* Computing 2-failure is *very* expensive; only
2211 * do it if failed >= 2
2212 */
2213 int other;
2214 for (other = disks; other--; ) {
2215 if (other == i)
2216 continue;
2217 if (!test_bit(R5_UPTODATE,
2218 &sh->dev[other].flags))
2219 break;
2220 }
2221 BUG_ON(other < 0);
45b4233c 2222 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2223 (unsigned long long)sh->sector,
2224 i, other);
2225 compute_block_2(sh, i, other);
2226 s->uptodate += 2;
2227 } else if (test_bit(R5_Insync, &dev->flags)) {
2228 set_bit(R5_LOCKED, &dev->flags);
2229 set_bit(R5_Wantread, &dev->flags);
2230 s->locked++;
45b4233c 2231 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2232 i, s->syncing);
2233 }
2234 }
2235 }
2236 set_bit(STRIPE_HANDLE, &sh->state);
2237}
2238
2239
1fe797e6 2240/* handle_stripe_clean_event
a4456856
DW
2241 * any written block on an uptodate or failed drive can be returned.
2242 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2243 * never LOCKED, so we don't need to test 'failed' directly.
2244 */
1fe797e6 2245static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2246 struct stripe_head *sh, int disks, struct bio **return_bi)
2247{
2248 int i;
2249 struct r5dev *dev;
2250
2251 for (i = disks; i--; )
2252 if (sh->dev[i].written) {
2253 dev = &sh->dev[i];
2254 if (!test_bit(R5_LOCKED, &dev->flags) &&
2255 test_bit(R5_UPTODATE, &dev->flags)) {
2256 /* We can return any write requests */
2257 struct bio *wbi, *wbi2;
2258 int bitmap_end = 0;
45b4233c 2259 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2260 spin_lock_irq(&conf->device_lock);
2261 wbi = dev->written;
2262 dev->written = NULL;
2263 while (wbi && wbi->bi_sector <
2264 dev->sector + STRIPE_SECTORS) {
2265 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2266 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2267 md_write_end(conf->mddev);
2268 wbi->bi_next = *return_bi;
2269 *return_bi = wbi;
2270 }
2271 wbi = wbi2;
2272 }
2273 if (dev->towrite == NULL)
2274 bitmap_end = 1;
2275 spin_unlock_irq(&conf->device_lock);
2276 if (bitmap_end)
2277 bitmap_endwrite(conf->mddev->bitmap,
2278 sh->sector,
2279 STRIPE_SECTORS,
2280 !test_bit(STRIPE_DEGRADED, &sh->state),
2281 0);
2282 }
2283 }
8b3e6cdc
DW
2284
2285 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2286 if (atomic_dec_and_test(&conf->pending_full_writes))
2287 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2288}
2289
1fe797e6 2290static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2291 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2292{
2293 int rmw = 0, rcw = 0, i;
2294 for (i = disks; i--; ) {
2295 /* would I have to read this buffer for read_modify_write */
2296 struct r5dev *dev = &sh->dev[i];
2297 if ((dev->towrite || i == sh->pd_idx) &&
2298 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2299 !(test_bit(R5_UPTODATE, &dev->flags) ||
2300 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2301 if (test_bit(R5_Insync, &dev->flags))
2302 rmw++;
2303 else
2304 rmw += 2*disks; /* cannot read it */
2305 }
2306 /* Would I have to read this buffer for reconstruct_write */
2307 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2308 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2309 !(test_bit(R5_UPTODATE, &dev->flags) ||
2310 test_bit(R5_Wantcompute, &dev->flags))) {
2311 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2312 else
2313 rcw += 2*disks;
2314 }
2315 }
45b4233c 2316 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2317 (unsigned long long)sh->sector, rmw, rcw);
2318 set_bit(STRIPE_HANDLE, &sh->state);
2319 if (rmw < rcw && rmw > 0)
2320 /* prefer read-modify-write, but need to get some data */
2321 for (i = disks; i--; ) {
2322 struct r5dev *dev = &sh->dev[i];
2323 if ((dev->towrite || i == sh->pd_idx) &&
2324 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2325 !(test_bit(R5_UPTODATE, &dev->flags) ||
2326 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2327 test_bit(R5_Insync, &dev->flags)) {
2328 if (
2329 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2330 pr_debug("Read_old block "
a4456856
DW
2331 "%d for r-m-w\n", i);
2332 set_bit(R5_LOCKED, &dev->flags);
2333 set_bit(R5_Wantread, &dev->flags);
2334 s->locked++;
2335 } else {
2336 set_bit(STRIPE_DELAYED, &sh->state);
2337 set_bit(STRIPE_HANDLE, &sh->state);
2338 }
2339 }
2340 }
2341 if (rcw <= rmw && rcw > 0)
2342 /* want reconstruct write, but need to get some data */
2343 for (i = disks; i--; ) {
2344 struct r5dev *dev = &sh->dev[i];
2345 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2346 i != sh->pd_idx &&
2347 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2348 !(test_bit(R5_UPTODATE, &dev->flags) ||
2349 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2350 test_bit(R5_Insync, &dev->flags)) {
2351 if (
2352 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2353 pr_debug("Read_old block "
a4456856
DW
2354 "%d for Reconstruct\n", i);
2355 set_bit(R5_LOCKED, &dev->flags);
2356 set_bit(R5_Wantread, &dev->flags);
2357 s->locked++;
2358 } else {
2359 set_bit(STRIPE_DELAYED, &sh->state);
2360 set_bit(STRIPE_HANDLE, &sh->state);
2361 }
2362 }
2363 }
2364 /* now if nothing is locked, and if we have enough data,
2365 * we can start a write request
2366 */
f38e1219
DW
2367 /* since handle_stripe can be called at any time we need to handle the
2368 * case where a compute block operation has been submitted and then a
2369 * subsequent call wants to start a write request. raid5_run_ops only
2370 * handles the case where compute block and postxor are requested
2371 * simultaneously. If this is not the case then new writes need to be
2372 * held off until the compute completes.
2373 */
976ea8d4
DW
2374 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2375 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2376 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
1fe797e6 2377 schedule_reconstruction5(sh, s, rcw == 0, 0);
a4456856
DW
2378}
2379
1fe797e6 2380static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2381 struct stripe_head *sh, struct stripe_head_state *s,
2382 struct r6_state *r6s, int disks)
2383{
2384 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
34e04e87 2385 int qd_idx = sh->qd_idx;
a4456856
DW
2386 for (i = disks; i--; ) {
2387 struct r5dev *dev = &sh->dev[i];
2388 /* Would I have to read this buffer for reconstruct_write */
2389 if (!test_bit(R5_OVERWRITE, &dev->flags)
2390 && i != pd_idx && i != qd_idx
2391 && (!test_bit(R5_LOCKED, &dev->flags)
2392 ) &&
2393 !test_bit(R5_UPTODATE, &dev->flags)) {
2394 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2395 else {
45b4233c 2396 pr_debug("raid6: must_compute: "
a4456856
DW
2397 "disk %d flags=%#lx\n", i, dev->flags);
2398 must_compute++;
2399 }
2400 }
2401 }
45b4233c 2402 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2403 (unsigned long long)sh->sector, rcw, must_compute);
2404 set_bit(STRIPE_HANDLE, &sh->state);
2405
2406 if (rcw > 0)
2407 /* want reconstruct write, but need to get some data */
2408 for (i = disks; i--; ) {
2409 struct r5dev *dev = &sh->dev[i];
2410 if (!test_bit(R5_OVERWRITE, &dev->flags)
2411 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2412 && !test_bit(R5_LOCKED, &dev->flags) &&
2413 !test_bit(R5_UPTODATE, &dev->flags) &&
2414 test_bit(R5_Insync, &dev->flags)) {
2415 if (
2416 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2417 pr_debug("Read_old stripe %llu "
a4456856
DW
2418 "block %d for Reconstruct\n",
2419 (unsigned long long)sh->sector, i);
2420 set_bit(R5_LOCKED, &dev->flags);
2421 set_bit(R5_Wantread, &dev->flags);
2422 s->locked++;
2423 } else {
45b4233c 2424 pr_debug("Request delayed stripe %llu "
a4456856
DW
2425 "block %d for Reconstruct\n",
2426 (unsigned long long)sh->sector, i);
2427 set_bit(STRIPE_DELAYED, &sh->state);
2428 set_bit(STRIPE_HANDLE, &sh->state);
2429 }
2430 }
2431 }
2432 /* now if nothing is locked, and if we have enough data, we can start a
2433 * write request
2434 */
2435 if (s->locked == 0 && rcw == 0 &&
2436 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2437 if (must_compute > 0) {
2438 /* We have failed blocks and need to compute them */
2439 switch (s->failed) {
2440 case 0:
2441 BUG();
2442 case 1:
2443 compute_block_1(sh, r6s->failed_num[0], 0);
2444 break;
2445 case 2:
2446 compute_block_2(sh, r6s->failed_num[0],
2447 r6s->failed_num[1]);
2448 break;
2449 default: /* This request should have been failed? */
2450 BUG();
2451 }
2452 }
2453
45b4233c 2454 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2455 (unsigned long long)sh->sector);
2456 compute_parity6(sh, RECONSTRUCT_WRITE);
2457 /* now every locked buffer is ready to be written */
2458 for (i = disks; i--; )
2459 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2460 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2461 (unsigned long long)sh->sector, i);
2462 s->locked++;
2463 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2464 }
8b3e6cdc
DW
2465 if (s->locked == disks)
2466 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2467 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2468 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2469 set_bit(STRIPE_INSYNC, &sh->state);
2470
2471 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2472 atomic_dec(&conf->preread_active_stripes);
2473 if (atomic_read(&conf->preread_active_stripes) <
2474 IO_THRESHOLD)
2475 md_wakeup_thread(conf->mddev->thread);
2476 }
2477 }
2478}
2479
2480static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2481 struct stripe_head_state *s, int disks)
2482{
ecc65c9b 2483 struct r5dev *dev = NULL;
bd2ab670 2484
a4456856 2485 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2486
ecc65c9b
DW
2487 switch (sh->check_state) {
2488 case check_state_idle:
2489 /* start a new check operation if there are no failures */
bd2ab670 2490 if (s->failed == 0) {
bd2ab670 2491 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2492 sh->check_state = check_state_run;
2493 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2494 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2495 s->uptodate--;
ecc65c9b 2496 break;
bd2ab670 2497 }
ecc65c9b
DW
2498 dev = &sh->dev[s->failed_num];
2499 /* fall through */
2500 case check_state_compute_result:
2501 sh->check_state = check_state_idle;
2502 if (!dev)
2503 dev = &sh->dev[sh->pd_idx];
2504
2505 /* check that a write has not made the stripe insync */
2506 if (test_bit(STRIPE_INSYNC, &sh->state))
2507 break;
c8894419 2508
a4456856 2509 /* either failed parity check, or recovery is happening */
a4456856
DW
2510 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2511 BUG_ON(s->uptodate != disks);
2512
2513 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2514 s->locked++;
a4456856 2515 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2516
a4456856 2517 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2518 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2519 break;
2520 case check_state_run:
2521 break; /* we will be called again upon completion */
2522 case check_state_check_result:
2523 sh->check_state = check_state_idle;
2524
2525 /* if a failure occurred during the check operation, leave
2526 * STRIPE_INSYNC not set and let the stripe be handled again
2527 */
2528 if (s->failed)
2529 break;
2530
2531 /* handle a successful check operation, if parity is correct
2532 * we are done. Otherwise update the mismatch count and repair
2533 * parity if !MD_RECOVERY_CHECK
2534 */
2535 if (sh->ops.zero_sum_result == 0)
2536 /* parity is correct (on disc,
2537 * not in buffer any more)
2538 */
2539 set_bit(STRIPE_INSYNC, &sh->state);
2540 else {
2541 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2542 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2543 /* don't try to repair!! */
2544 set_bit(STRIPE_INSYNC, &sh->state);
2545 else {
2546 sh->check_state = check_state_compute_run;
976ea8d4 2547 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2548 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2549 set_bit(R5_Wantcompute,
2550 &sh->dev[sh->pd_idx].flags);
2551 sh->ops.target = sh->pd_idx;
2552 s->uptodate++;
2553 }
2554 }
2555 break;
2556 case check_state_compute_run:
2557 break;
2558 default:
2559 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2560 __func__, sh->check_state,
2561 (unsigned long long) sh->sector);
2562 BUG();
a4456856
DW
2563 }
2564}
2565
2566
2567static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2568 struct stripe_head_state *s,
2569 struct r6_state *r6s, struct page *tmp_page,
2570 int disks)
2571{
2572 int update_p = 0, update_q = 0;
2573 struct r5dev *dev;
2574 int pd_idx = sh->pd_idx;
34e04e87 2575 int qd_idx = sh->qd_idx;
a4456856
DW
2576
2577 set_bit(STRIPE_HANDLE, &sh->state);
2578
2579 BUG_ON(s->failed > 2);
2580 BUG_ON(s->uptodate < disks);
2581 /* Want to check and possibly repair P and Q.
2582 * However there could be one 'failed' device, in which
2583 * case we can only check one of them, possibly using the
2584 * other to generate missing data
2585 */
2586
2587 /* If !tmp_page, we cannot do the calculations,
2588 * but as we have set STRIPE_HANDLE, we will soon be called
2589 * by stripe_handle with a tmp_page - just wait until then.
2590 */
2591 if (tmp_page) {
2592 if (s->failed == r6s->q_failed) {
2593 /* The only possible failed device holds 'Q', so it
2594 * makes sense to check P (If anything else were failed,
2595 * we would have used P to recreate it).
2596 */
2597 compute_block_1(sh, pd_idx, 1);
2598 if (!page_is_zero(sh->dev[pd_idx].page)) {
2599 compute_block_1(sh, pd_idx, 0);
2600 update_p = 1;
2601 }
2602 }
2603 if (!r6s->q_failed && s->failed < 2) {
2604 /* q is not failed, and we didn't use it to generate
2605 * anything, so it makes sense to check it
2606 */
2607 memcpy(page_address(tmp_page),
2608 page_address(sh->dev[qd_idx].page),
2609 STRIPE_SIZE);
2610 compute_parity6(sh, UPDATE_PARITY);
2611 if (memcmp(page_address(tmp_page),
2612 page_address(sh->dev[qd_idx].page),
2613 STRIPE_SIZE) != 0) {
2614 clear_bit(STRIPE_INSYNC, &sh->state);
2615 update_q = 1;
2616 }
2617 }
2618 if (update_p || update_q) {
2619 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2620 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2621 /* don't try to repair!! */
2622 update_p = update_q = 0;
2623 }
2624
2625 /* now write out any block on a failed drive,
2626 * or P or Q if they need it
2627 */
2628
2629 if (s->failed == 2) {
2630 dev = &sh->dev[r6s->failed_num[1]];
2631 s->locked++;
2632 set_bit(R5_LOCKED, &dev->flags);
2633 set_bit(R5_Wantwrite, &dev->flags);
2634 }
2635 if (s->failed >= 1) {
2636 dev = &sh->dev[r6s->failed_num[0]];
2637 s->locked++;
2638 set_bit(R5_LOCKED, &dev->flags);
2639 set_bit(R5_Wantwrite, &dev->flags);
2640 }
2641
2642 if (update_p) {
2643 dev = &sh->dev[pd_idx];
2644 s->locked++;
2645 set_bit(R5_LOCKED, &dev->flags);
2646 set_bit(R5_Wantwrite, &dev->flags);
2647 }
2648 if (update_q) {
2649 dev = &sh->dev[qd_idx];
2650 s->locked++;
2651 set_bit(R5_LOCKED, &dev->flags);
2652 set_bit(R5_Wantwrite, &dev->flags);
2653 }
2654 clear_bit(STRIPE_DEGRADED, &sh->state);
2655
2656 set_bit(STRIPE_INSYNC, &sh->state);
2657 }
2658}
2659
2660static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2661 struct r6_state *r6s)
2662{
2663 int i;
2664
2665 /* We have read all the blocks in this stripe and now we need to
2666 * copy some of them into a target stripe for expand.
2667 */
f0a50d37 2668 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2669 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2670 for (i = 0; i < sh->disks; i++)
34e04e87 2671 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2672 int dd_idx, j;
a4456856 2673 struct stripe_head *sh2;
a08abd8c 2674 struct async_submit_ctl submit;
a4456856 2675
784052ec 2676 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2677 sector_t s = raid5_compute_sector(conf, bn, 0,
2678 &dd_idx, NULL);
b5663ba4 2679 sh2 = get_active_stripe(conf, s, 0, 1);
a4456856
DW
2680 if (sh2 == NULL)
2681 /* so far only the early blocks of this stripe
2682 * have been requested. When later blocks
2683 * get requested, we will try again
2684 */
2685 continue;
2686 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2687 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2688 /* must have already done this block */
2689 release_stripe(sh2);
2690 continue;
2691 }
f0a50d37
DW
2692
2693 /* place all the copies on one channel */
a08abd8c 2694 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2695 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2696 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2697 &submit);
f0a50d37 2698
a4456856
DW
2699 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2700 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2701 for (j = 0; j < conf->raid_disks; j++)
2702 if (j != sh2->pd_idx &&
d0dabf7e 2703 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2704 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2705 break;
2706 if (j == conf->raid_disks) {
2707 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2708 set_bit(STRIPE_HANDLE, &sh2->state);
2709 }
2710 release_stripe(sh2);
f0a50d37 2711
a4456856 2712 }
a2e08551
N
2713 /* done submitting copies, wait for them to complete */
2714 if (tx) {
2715 async_tx_ack(tx);
2716 dma_wait_for_async_tx(tx);
2717 }
a4456856 2718}
1da177e4 2719
6bfe0b49 2720
1da177e4
LT
2721/*
2722 * handle_stripe - do things to a stripe.
2723 *
2724 * We lock the stripe and then examine the state of various bits
2725 * to see what needs to be done.
2726 * Possible results:
2727 * return some read request which now have data
2728 * return some write requests which are safely on disc
2729 * schedule a read on some buffers
2730 * schedule a write of some buffers
2731 * return confirmation of parity correctness
2732 *
1da177e4
LT
2733 * buffers are taken off read_list or write_list, and bh_cache buffers
2734 * get BH_Lock set before the stripe lock is released.
2735 *
2736 */
a4456856 2737
df10cfbc 2738static bool handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2739{
2740 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2741 int disks = sh->disks, i;
2742 struct bio *return_bi = NULL;
2743 struct stripe_head_state s;
1da177e4 2744 struct r5dev *dev;
6bfe0b49 2745 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2746 int prexor;
1da177e4 2747
a4456856 2748 memset(&s, 0, sizeof(s));
600aa109
DW
2749 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2750 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2751 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2752 sh->reconstruct_state);
1da177e4
LT
2753
2754 spin_lock(&sh->lock);
2755 clear_bit(STRIPE_HANDLE, &sh->state);
2756 clear_bit(STRIPE_DELAYED, &sh->state);
2757
a4456856
DW
2758 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2759 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2760 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 2761
83de75cc 2762 /* Now to look around and see what can be done */
9910f16a 2763 rcu_read_lock();
1da177e4
LT
2764 for (i=disks; i--; ) {
2765 mdk_rdev_t *rdev;
a4456856 2766 struct r5dev *dev = &sh->dev[i];
1da177e4 2767 clear_bit(R5_Insync, &dev->flags);
1da177e4 2768
b5e98d65
DW
2769 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2770 "written %p\n", i, dev->flags, dev->toread, dev->read,
2771 dev->towrite, dev->written);
2772
2773 /* maybe we can request a biofill operation
2774 *
2775 * new wantfill requests are only permitted while
83de75cc 2776 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
2777 */
2778 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 2779 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 2780 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2781
2782 /* now count some things */
a4456856
DW
2783 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2784 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2785 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2786
b5e98d65
DW
2787 if (test_bit(R5_Wantfill, &dev->flags))
2788 s.to_fill++;
2789 else if (dev->toread)
a4456856 2790 s.to_read++;
1da177e4 2791 if (dev->towrite) {
a4456856 2792 s.to_write++;
1da177e4 2793 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2794 s.non_overwrite++;
1da177e4 2795 }
a4456856
DW
2796 if (dev->written)
2797 s.written++;
9910f16a 2798 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
2799 if (blocked_rdev == NULL &&
2800 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
2801 blocked_rdev = rdev;
2802 atomic_inc(&rdev->nr_pending);
6bfe0b49 2803 }
b2d444d7 2804 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2805 /* The ReadError flag will just be confusing now */
4e5314b5
N
2806 clear_bit(R5_ReadError, &dev->flags);
2807 clear_bit(R5_ReWrite, &dev->flags);
2808 }
b2d444d7 2809 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2810 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2811 s.failed++;
2812 s.failed_num = i;
1da177e4
LT
2813 } else
2814 set_bit(R5_Insync, &dev->flags);
2815 }
9910f16a 2816 rcu_read_unlock();
b5e98d65 2817
6bfe0b49 2818 if (unlikely(blocked_rdev)) {
ac4090d2
N
2819 if (s.syncing || s.expanding || s.expanded ||
2820 s.to_write || s.written) {
2821 set_bit(STRIPE_HANDLE, &sh->state);
2822 goto unlock;
2823 }
2824 /* There is nothing for the blocked_rdev to block */
2825 rdev_dec_pending(blocked_rdev, conf->mddev);
2826 blocked_rdev = NULL;
6bfe0b49
DW
2827 }
2828
83de75cc
DW
2829 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2830 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2831 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2832 }
b5e98d65 2833
45b4233c 2834 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2835 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2836 s.locked, s.uptodate, s.to_read, s.to_write,
2837 s.failed, s.failed_num);
1da177e4
LT
2838 /* check if the array has lost two devices and, if so, some requests might
2839 * need to be failed
2840 */
a4456856 2841 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 2842 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 2843 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2844 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2845 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2846 s.syncing = 0;
1da177e4
LT
2847 }
2848
2849 /* might be able to return some write requests if the parity block
2850 * is safe, or on a failed drive
2851 */
2852 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2853 if ( s.written &&
2854 ((test_bit(R5_Insync, &dev->flags) &&
2855 !test_bit(R5_LOCKED, &dev->flags) &&
2856 test_bit(R5_UPTODATE, &dev->flags)) ||
2857 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 2858 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
2859
2860 /* Now we might consider reading some blocks, either to check/generate
2861 * parity, or to satisfy requests
2862 * or to load a block that is being partially written.
2863 */
a4456856 2864 if (s.to_read || s.non_overwrite ||
976ea8d4 2865 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 2866 handle_stripe_fill5(sh, &s, disks);
1da177e4 2867
e33129d8
DW
2868 /* Now we check to see if any write operations have recently
2869 * completed
2870 */
e0a115e5 2871 prexor = 0;
d8ee0728 2872 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 2873 prexor = 1;
d8ee0728
DW
2874 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2875 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 2876 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
2877
2878 /* All the 'written' buffers and the parity block are ready to
2879 * be written back to disk
2880 */
2881 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2882 for (i = disks; i--; ) {
2883 dev = &sh->dev[i];
2884 if (test_bit(R5_LOCKED, &dev->flags) &&
2885 (i == sh->pd_idx || dev->written)) {
2886 pr_debug("Writing block %d\n", i);
2887 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
2888 if (prexor)
2889 continue;
e33129d8
DW
2890 if (!test_bit(R5_Insync, &dev->flags) ||
2891 (i == sh->pd_idx && s.failed == 0))
2892 set_bit(STRIPE_INSYNC, &sh->state);
2893 }
2894 }
2895 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2896 atomic_dec(&conf->preread_active_stripes);
2897 if (atomic_read(&conf->preread_active_stripes) <
2898 IO_THRESHOLD)
2899 md_wakeup_thread(conf->mddev->thread);
2900 }
2901 }
2902
2903 /* Now to consider new write requests and what else, if anything
2904 * should be read. We do not handle new writes when:
2905 * 1/ A 'write' operation (copy+xor) is already in flight.
2906 * 2/ A 'check' operation is in flight, as it may clobber the parity
2907 * block.
2908 */
600aa109 2909 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 2910 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
2911
2912 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2913 * Any reads will already have been scheduled, so we just see if enough
2914 * data is available. The parity check is held off while parity
2915 * dependent operations are in flight.
1da177e4 2916 */
ecc65c9b
DW
2917 if (sh->check_state ||
2918 (s.syncing && s.locked == 0 &&
976ea8d4 2919 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 2920 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 2921 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2922
a4456856 2923 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2924 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2925 clear_bit(STRIPE_SYNCING, &sh->state);
2926 }
4e5314b5
N
2927
2928 /* If the failed drive is just a ReadError, then we might need to progress
2929 * the repair/check process
2930 */
a4456856
DW
2931 if (s.failed == 1 && !conf->mddev->ro &&
2932 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2933 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2934 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2935 ) {
a4456856 2936 dev = &sh->dev[s.failed_num];
4e5314b5
N
2937 if (!test_bit(R5_ReWrite, &dev->flags)) {
2938 set_bit(R5_Wantwrite, &dev->flags);
2939 set_bit(R5_ReWrite, &dev->flags);
2940 set_bit(R5_LOCKED, &dev->flags);
a4456856 2941 s.locked++;
4e5314b5
N
2942 } else {
2943 /* let's read it back */
2944 set_bit(R5_Wantread, &dev->flags);
2945 set_bit(R5_LOCKED, &dev->flags);
a4456856 2946 s.locked++;
4e5314b5
N
2947 }
2948 }
2949
600aa109
DW
2950 /* Finish reconstruct operations initiated by the expansion process */
2951 if (sh->reconstruct_state == reconstruct_state_result) {
ab69ae12
N
2952 struct stripe_head *sh2
2953 = get_active_stripe(conf, sh->sector, 1, 1);
2954 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
2955 /* sh cannot be written until sh2 has been read.
2956 * so arrange for sh to be delayed a little
2957 */
2958 set_bit(STRIPE_DELAYED, &sh->state);
2959 set_bit(STRIPE_HANDLE, &sh->state);
2960 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
2961 &sh2->state))
2962 atomic_inc(&conf->preread_active_stripes);
2963 release_stripe(sh2);
2964 goto unlock;
2965 }
2966 if (sh2)
2967 release_stripe(sh2);
2968
600aa109 2969 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 2970 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 2971 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 2972 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 2973 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 2974 s.locked++;
23397883 2975 }
f0a50d37
DW
2976 }
2977
2978 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 2979 !sh->reconstruct_state) {
f0a50d37
DW
2980 /* Need to write out all blocks after computing parity */
2981 sh->disks = conf->raid_disks;
911d4ee8 2982 stripe_set_idx(sh->sector, conf, 0, sh);
1fe797e6 2983 schedule_reconstruction5(sh, &s, 1, 1);
600aa109 2984 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 2985 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2986 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2987 wake_up(&conf->wait_for_overlap);
2988 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2989 }
2990
0f94e87c 2991 if (s.expanding && s.locked == 0 &&
976ea8d4 2992 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 2993 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2994
6bfe0b49 2995 unlock:
1da177e4
LT
2996 spin_unlock(&sh->lock);
2997
6bfe0b49
DW
2998 /* wait for this device to become unblocked */
2999 if (unlikely(blocked_rdev))
3000 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3001
600aa109
DW
3002 if (s.ops_request)
3003 raid5_run_ops(sh, s.ops_request);
d84e0f10 3004
c4e5ac0a 3005 ops_run_io(sh, &s);
1da177e4 3006
a4456856 3007 return_io(return_bi);
df10cfbc
DW
3008
3009 return blocked_rdev == NULL;
1da177e4
LT
3010}
3011
df10cfbc 3012static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 3013{
bff61975 3014 raid5_conf_t *conf = sh->raid_conf;
f416885e 3015 int disks = sh->disks;
a4456856 3016 struct bio *return_bi = NULL;
34e04e87 3017 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
3018 struct stripe_head_state s;
3019 struct r6_state r6s;
16a53ecc 3020 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 3021 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 3022
45b4233c 3023 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
3024 "pd_idx=%d, qd_idx=%d\n",
3025 (unsigned long long)sh->sector, sh->state,
34e04e87 3026 atomic_read(&sh->count), pd_idx, qd_idx);
a4456856 3027 memset(&s, 0, sizeof(s));
72626685 3028
16a53ecc
N
3029 spin_lock(&sh->lock);
3030 clear_bit(STRIPE_HANDLE, &sh->state);
3031 clear_bit(STRIPE_DELAYED, &sh->state);
3032
a4456856
DW
3033 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3034 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3035 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3036 /* Now to look around and see what can be done */
1da177e4
LT
3037
3038 rcu_read_lock();
16a53ecc
N
3039 for (i=disks; i--; ) {
3040 mdk_rdev_t *rdev;
3041 dev = &sh->dev[i];
3042 clear_bit(R5_Insync, &dev->flags);
1da177e4 3043
45b4233c 3044 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
3045 i, dev->flags, dev->toread, dev->towrite, dev->written);
3046 /* maybe we can reply to a read */
3047 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3048 struct bio *rbi, *rbi2;
45b4233c 3049 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
3050 spin_lock_irq(&conf->device_lock);
3051 rbi = dev->toread;
3052 dev->toread = NULL;
3053 if (test_and_clear_bit(R5_Overlap, &dev->flags))
3054 wake_up(&conf->wait_for_overlap);
3055 spin_unlock_irq(&conf->device_lock);
3056 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3057 copy_data(0, rbi, dev->page, dev->sector);
3058 rbi2 = r5_next_bio(rbi, dev->sector);
3059 spin_lock_irq(&conf->device_lock);
960e739d 3060 if (!raid5_dec_bi_phys_segments(rbi)) {
16a53ecc
N
3061 rbi->bi_next = return_bi;
3062 return_bi = rbi;
3063 }
3064 spin_unlock_irq(&conf->device_lock);
3065 rbi = rbi2;
3066 }
3067 }
1da177e4 3068
16a53ecc 3069 /* now count some things */
a4456856
DW
3070 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3071 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 3072
16a53ecc 3073
a4456856
DW
3074 if (dev->toread)
3075 s.to_read++;
16a53ecc 3076 if (dev->towrite) {
a4456856 3077 s.to_write++;
16a53ecc 3078 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3079 s.non_overwrite++;
16a53ecc 3080 }
a4456856
DW
3081 if (dev->written)
3082 s.written++;
16a53ecc 3083 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3084 if (blocked_rdev == NULL &&
3085 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3086 blocked_rdev = rdev;
3087 atomic_inc(&rdev->nr_pending);
6bfe0b49 3088 }
16a53ecc
N
3089 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3090 /* The ReadError flag will just be confusing now */
3091 clear_bit(R5_ReadError, &dev->flags);
3092 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3093 }
16a53ecc
N
3094 if (!rdev || !test_bit(In_sync, &rdev->flags)
3095 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3096 if (s.failed < 2)
3097 r6s.failed_num[s.failed] = i;
3098 s.failed++;
16a53ecc
N
3099 } else
3100 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
3101 }
3102 rcu_read_unlock();
6bfe0b49
DW
3103
3104 if (unlikely(blocked_rdev)) {
ac4090d2
N
3105 if (s.syncing || s.expanding || s.expanded ||
3106 s.to_write || s.written) {
3107 set_bit(STRIPE_HANDLE, &sh->state);
3108 goto unlock;
3109 }
3110 /* There is nothing for the blocked_rdev to block */
3111 rdev_dec_pending(blocked_rdev, conf->mddev);
3112 blocked_rdev = NULL;
6bfe0b49 3113 }
ac4090d2 3114
45b4233c 3115 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3116 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3117 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3118 r6s.failed_num[0], r6s.failed_num[1]);
3119 /* check if the array has lost >2 devices and, if so, some requests
3120 * might need to be failed
16a53ecc 3121 */
a4456856 3122 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3123 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3124 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3125 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3126 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3127 s.syncing = 0;
16a53ecc
N
3128 }
3129
3130 /*
3131 * might be able to return some write requests if the parity blocks
3132 * are safe, or on a failed drive
3133 */
3134 pdev = &sh->dev[pd_idx];
a4456856
DW
3135 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3136 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3137 qdev = &sh->dev[qd_idx];
3138 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3139 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3140
3141 if ( s.written &&
3142 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3143 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3144 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3145 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3146 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3147 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3148 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3149
3150 /* Now we might consider reading some blocks, either to check/generate
3151 * parity, or to satisfy requests
3152 * or to load a block that is being partially written.
3153 */
a4456856
DW
3154 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3155 (s.syncing && (s.uptodate < disks)) || s.expanding)
1fe797e6 3156 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc
N
3157
3158 /* now to consider writing and what else, if anything should be read */
a4456856 3159 if (s.to_write)
1fe797e6 3160 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3161
3162 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3163 * Any reads will already have been scheduled, so we just see if enough
3164 * data is available
16a53ecc 3165 */
a4456856
DW
3166 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3167 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 3168
a4456856 3169 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3170 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3171 clear_bit(STRIPE_SYNCING, &sh->state);
3172 }
3173
3174 /* If the failed drives are just a ReadError, then we might need
3175 * to progress the repair/check process
3176 */
a4456856
DW
3177 if (s.failed <= 2 && !conf->mddev->ro)
3178 for (i = 0; i < s.failed; i++) {
3179 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3180 if (test_bit(R5_ReadError, &dev->flags)
3181 && !test_bit(R5_LOCKED, &dev->flags)
3182 && test_bit(R5_UPTODATE, &dev->flags)
3183 ) {
3184 if (!test_bit(R5_ReWrite, &dev->flags)) {
3185 set_bit(R5_Wantwrite, &dev->flags);
3186 set_bit(R5_ReWrite, &dev->flags);
3187 set_bit(R5_LOCKED, &dev->flags);
3188 } else {
3189 /* let's read it back */
3190 set_bit(R5_Wantread, &dev->flags);
3191 set_bit(R5_LOCKED, &dev->flags);
3192 }
3193 }
3194 }
f416885e 3195
a4456856 3196 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
ab69ae12
N
3197 struct stripe_head *sh2
3198 = get_active_stripe(conf, sh->sector, 1, 1);
3199 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3200 /* sh cannot be written until sh2 has been read.
3201 * so arrange for sh to be delayed a little
3202 */
3203 set_bit(STRIPE_DELAYED, &sh->state);
3204 set_bit(STRIPE_HANDLE, &sh->state);
3205 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3206 &sh2->state))
3207 atomic_inc(&conf->preread_active_stripes);
3208 release_stripe(sh2);
3209 goto unlock;
3210 }
3211 if (sh2)
3212 release_stripe(sh2);
3213
f416885e
N
3214 /* Need to write out all blocks after computing P&Q */
3215 sh->disks = conf->raid_disks;
911d4ee8 3216 stripe_set_idx(sh->sector, conf, 0, sh);
f416885e
N
3217 compute_parity6(sh, RECONSTRUCT_WRITE);
3218 for (i = conf->raid_disks ; i-- ; ) {
3219 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3220 s.locked++;
f416885e
N
3221 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3222 }
3223 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3224 } else if (s.expanded) {
f416885e
N
3225 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3226 atomic_dec(&conf->reshape_stripes);
3227 wake_up(&conf->wait_for_overlap);
3228 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3229 }
3230
0f94e87c 3231 if (s.expanding && s.locked == 0 &&
976ea8d4 3232 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3233 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3234
6bfe0b49 3235 unlock:
16a53ecc
N
3236 spin_unlock(&sh->lock);
3237
6bfe0b49
DW
3238 /* wait for this device to become unblocked */
3239 if (unlikely(blocked_rdev))
3240 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3241
f0e43bcd 3242 ops_run_io(sh, &s);
16a53ecc 3243
f0e43bcd 3244 return_io(return_bi);
df10cfbc
DW
3245
3246 return blocked_rdev == NULL;
16a53ecc
N
3247}
3248
df10cfbc
DW
3249/* returns true if the stripe was handled */
3250static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
16a53ecc
N
3251{
3252 if (sh->raid_conf->level == 6)
df10cfbc 3253 return handle_stripe6(sh, tmp_page);
16a53ecc 3254 else
df10cfbc 3255 return handle_stripe5(sh);
16a53ecc
N
3256}
3257
3258
3259
3260static void raid5_activate_delayed(raid5_conf_t *conf)
3261{
3262 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3263 while (!list_empty(&conf->delayed_list)) {
3264 struct list_head *l = conf->delayed_list.next;
3265 struct stripe_head *sh;
3266 sh = list_entry(l, struct stripe_head, lru);
3267 list_del_init(l);
3268 clear_bit(STRIPE_DELAYED, &sh->state);
3269 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3270 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3271 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3272 }
6ed3003c
N
3273 } else
3274 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3275}
3276
3277static void activate_bit_delay(raid5_conf_t *conf)
3278{
3279 /* device_lock is held */
3280 struct list_head head;
3281 list_add(&head, &conf->bitmap_list);
3282 list_del_init(&conf->bitmap_list);
3283 while (!list_empty(&head)) {
3284 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3285 list_del_init(&sh->lru);
3286 atomic_inc(&sh->count);
3287 __release_stripe(conf, sh);
3288 }
3289}
3290
3291static void unplug_slaves(mddev_t *mddev)
3292{
3293 raid5_conf_t *conf = mddev_to_conf(mddev);
3294 int i;
3295
3296 rcu_read_lock();
3297 for (i=0; i<mddev->raid_disks; i++) {
3298 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3299 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3300 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3301
3302 atomic_inc(&rdev->nr_pending);
3303 rcu_read_unlock();
3304
2ad8b1ef 3305 blk_unplug(r_queue);
16a53ecc
N
3306
3307 rdev_dec_pending(rdev, mddev);
3308 rcu_read_lock();
3309 }
3310 }
3311 rcu_read_unlock();
3312}
3313
165125e1 3314static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3315{
3316 mddev_t *mddev = q->queuedata;
3317 raid5_conf_t *conf = mddev_to_conf(mddev);
3318 unsigned long flags;
3319
3320 spin_lock_irqsave(&conf->device_lock, flags);
3321
3322 if (blk_remove_plug(q)) {
3323 conf->seq_flush++;
3324 raid5_activate_delayed(conf);
72626685 3325 }
1da177e4
LT
3326 md_wakeup_thread(mddev->thread);
3327
3328 spin_unlock_irqrestore(&conf->device_lock, flags);
3329
3330 unplug_slaves(mddev);
3331}
3332
f022b2fd
N
3333static int raid5_congested(void *data, int bits)
3334{
3335 mddev_t *mddev = data;
3336 raid5_conf_t *conf = mddev_to_conf(mddev);
3337
3338 /* No difference between reads and writes. Just check
3339 * how busy the stripe_cache is
3340 */
3341 if (conf->inactive_blocked)
3342 return 1;
3343 if (conf->quiesce)
3344 return 1;
3345 if (list_empty_careful(&conf->inactive_list))
3346 return 1;
3347
3348 return 0;
3349}
3350
23032a0e
RBJ
3351/* We want read requests to align with chunks where possible,
3352 * but write requests don't need to.
3353 */
cc371e66
AK
3354static int raid5_mergeable_bvec(struct request_queue *q,
3355 struct bvec_merge_data *bvm,
3356 struct bio_vec *biovec)
23032a0e
RBJ
3357{
3358 mddev_t *mddev = q->queuedata;
cc371e66 3359 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e
RBJ
3360 int max;
3361 unsigned int chunk_sectors = mddev->chunk_size >> 9;
cc371e66 3362 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3363
cc371e66 3364 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3365 return biovec->bv_len; /* always allow writes to be mergeable */
3366
784052ec
N
3367 if (mddev->new_chunk < mddev->chunk_size)
3368 chunk_sectors = mddev->new_chunk >> 9;
23032a0e
RBJ
3369 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3370 if (max < 0) max = 0;
3371 if (max <= biovec->bv_len && bio_sectors == 0)
3372 return biovec->bv_len;
3373 else
3374 return max;
3375}
3376
f679623f
RBJ
3377
3378static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3379{
3380 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3381 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3382 unsigned int bio_sectors = bio->bi_size >> 9;
3383
784052ec
N
3384 if (mddev->new_chunk < mddev->chunk_size)
3385 chunk_sectors = mddev->new_chunk >> 9;
f679623f
RBJ
3386 return chunk_sectors >=
3387 ((sector & (chunk_sectors - 1)) + bio_sectors);
3388}
3389
46031f9a
RBJ
3390/*
3391 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3392 * later sampled by raid5d.
3393 */
3394static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3395{
3396 unsigned long flags;
3397
3398 spin_lock_irqsave(&conf->device_lock, flags);
3399
3400 bi->bi_next = conf->retry_read_aligned_list;
3401 conf->retry_read_aligned_list = bi;
3402
3403 spin_unlock_irqrestore(&conf->device_lock, flags);
3404 md_wakeup_thread(conf->mddev->thread);
3405}
3406
3407
3408static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3409{
3410 struct bio *bi;
3411
3412 bi = conf->retry_read_aligned;
3413 if (bi) {
3414 conf->retry_read_aligned = NULL;
3415 return bi;
3416 }
3417 bi = conf->retry_read_aligned_list;
3418 if(bi) {
387bb173 3419 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3420 bi->bi_next = NULL;
960e739d
JA
3421 /*
3422 * this sets the active strip count to 1 and the processed
3423 * strip count to zero (upper 8 bits)
3424 */
46031f9a 3425 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3426 }
3427
3428 return bi;
3429}
3430
3431
f679623f
RBJ
3432/*
3433 * The "raid5_align_endio" should check if the read succeeded and if it
3434 * did, call bio_endio on the original bio (having bio_put the new bio
3435 * first).
3436 * If the read failed..
3437 */
6712ecf8 3438static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3439{
3440 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3441 mddev_t *mddev;
3442 raid5_conf_t *conf;
3443 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3444 mdk_rdev_t *rdev;
3445
f679623f 3446 bio_put(bi);
46031f9a
RBJ
3447
3448 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3449 conf = mddev_to_conf(mddev);
3450 rdev = (void*)raid_bi->bi_next;
3451 raid_bi->bi_next = NULL;
3452
3453 rdev_dec_pending(rdev, conf->mddev);
3454
3455 if (!error && uptodate) {
6712ecf8 3456 bio_endio(raid_bi, 0);
46031f9a
RBJ
3457 if (atomic_dec_and_test(&conf->active_aligned_reads))
3458 wake_up(&conf->wait_for_stripe);
6712ecf8 3459 return;
46031f9a
RBJ
3460 }
3461
3462
45b4233c 3463 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3464
3465 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3466}
3467
387bb173
NB
3468static int bio_fits_rdev(struct bio *bi)
3469{
165125e1 3470 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3471
3472 if ((bi->bi_size>>9) > q->max_sectors)
3473 return 0;
3474 blk_recount_segments(q, bi);
960e739d 3475 if (bi->bi_phys_segments > q->max_phys_segments)
387bb173
NB
3476 return 0;
3477
3478 if (q->merge_bvec_fn)
3479 /* it's too hard to apply the merge_bvec_fn at this stage,
3480 * just just give up
3481 */
3482 return 0;
3483
3484 return 1;
3485}
3486
3487
165125e1 3488static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3489{
3490 mddev_t *mddev = q->queuedata;
3491 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3492 unsigned int dd_idx;
f679623f
RBJ
3493 struct bio* align_bi;
3494 mdk_rdev_t *rdev;
3495
3496 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3497 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3498 return 0;
3499 }
3500 /*
99c0fb5f 3501 * use bio_clone to make a copy of the bio
f679623f
RBJ
3502 */
3503 align_bi = bio_clone(raid_bio, GFP_NOIO);
3504 if (!align_bi)
3505 return 0;
3506 /*
3507 * set bi_end_io to a new function, and set bi_private to the
3508 * original bio.
3509 */
3510 align_bi->bi_end_io = raid5_align_endio;
3511 align_bi->bi_private = raid_bio;
3512 /*
3513 * compute position
3514 */
112bf897
N
3515 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3516 0,
911d4ee8 3517 &dd_idx, NULL);
f679623f
RBJ
3518
3519 rcu_read_lock();
3520 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3521 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3522 atomic_inc(&rdev->nr_pending);
3523 rcu_read_unlock();
46031f9a
RBJ
3524 raid_bio->bi_next = (void*)rdev;
3525 align_bi->bi_bdev = rdev->bdev;
3526 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3527 align_bi->bi_sector += rdev->data_offset;
3528
387bb173
NB
3529 if (!bio_fits_rdev(align_bi)) {
3530 /* too big in some way */
3531 bio_put(align_bi);
3532 rdev_dec_pending(rdev, mddev);
3533 return 0;
3534 }
3535
46031f9a
RBJ
3536 spin_lock_irq(&conf->device_lock);
3537 wait_event_lock_irq(conf->wait_for_stripe,
3538 conf->quiesce == 0,
3539 conf->device_lock, /* nothing */);
3540 atomic_inc(&conf->active_aligned_reads);
3541 spin_unlock_irq(&conf->device_lock);
3542
f679623f
RBJ
3543 generic_make_request(align_bi);
3544 return 1;
3545 } else {
3546 rcu_read_unlock();
46031f9a 3547 bio_put(align_bi);
f679623f
RBJ
3548 return 0;
3549 }
3550}
3551
8b3e6cdc
DW
3552/* __get_priority_stripe - get the next stripe to process
3553 *
3554 * Full stripe writes are allowed to pass preread active stripes up until
3555 * the bypass_threshold is exceeded. In general the bypass_count
3556 * increments when the handle_list is handled before the hold_list; however, it
3557 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3558 * stripe with in flight i/o. The bypass_count will be reset when the
3559 * head of the hold_list has changed, i.e. the head was promoted to the
3560 * handle_list.
3561 */
3562static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3563{
3564 struct stripe_head *sh;
3565
3566 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3567 __func__,
3568 list_empty(&conf->handle_list) ? "empty" : "busy",
3569 list_empty(&conf->hold_list) ? "empty" : "busy",
3570 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3571
3572 if (!list_empty(&conf->handle_list)) {
3573 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3574
3575 if (list_empty(&conf->hold_list))
3576 conf->bypass_count = 0;
3577 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3578 if (conf->hold_list.next == conf->last_hold)
3579 conf->bypass_count++;
3580 else {
3581 conf->last_hold = conf->hold_list.next;
3582 conf->bypass_count -= conf->bypass_threshold;
3583 if (conf->bypass_count < 0)
3584 conf->bypass_count = 0;
3585 }
3586 }
3587 } else if (!list_empty(&conf->hold_list) &&
3588 ((conf->bypass_threshold &&
3589 conf->bypass_count > conf->bypass_threshold) ||
3590 atomic_read(&conf->pending_full_writes) == 0)) {
3591 sh = list_entry(conf->hold_list.next,
3592 typeof(*sh), lru);
3593 conf->bypass_count -= conf->bypass_threshold;
3594 if (conf->bypass_count < 0)
3595 conf->bypass_count = 0;
3596 } else
3597 return NULL;
3598
3599 list_del_init(&sh->lru);
3600 atomic_inc(&sh->count);
3601 BUG_ON(atomic_read(&sh->count) != 1);
3602 return sh;
3603}
f679623f 3604
165125e1 3605static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3606{
3607 mddev_t *mddev = q->queuedata;
3608 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3609 int dd_idx;
1da177e4
LT
3610 sector_t new_sector;
3611 sector_t logical_sector, last_sector;
3612 struct stripe_head *sh;
a362357b 3613 const int rw = bio_data_dir(bi);
c9959059 3614 int cpu, remaining;
1da177e4 3615
e5dcdd80 3616 if (unlikely(bio_barrier(bi))) {
6712ecf8 3617 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3618 return 0;
3619 }
3620
3d310eb7 3621 md_write_start(mddev, bi);
06d91a5f 3622
074a7aca
TH
3623 cpu = part_stat_lock();
3624 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3625 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3626 bio_sectors(bi));
3627 part_stat_unlock();
1da177e4 3628
802ba064 3629 if (rw == READ &&
52488615
RBJ
3630 mddev->reshape_position == MaxSector &&
3631 chunk_aligned_read(q,bi))
99c0fb5f 3632 return 0;
52488615 3633
1da177e4
LT
3634 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3635 last_sector = bi->bi_sector + (bi->bi_size>>9);
3636 bi->bi_next = NULL;
3637 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3638
1da177e4
LT
3639 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3640 DEFINE_WAIT(w);
16a53ecc 3641 int disks, data_disks;
b5663ba4 3642 int previous;
b578d55f 3643
7ecaa1e6 3644 retry:
b5663ba4 3645 previous = 0;
b0f9ec04 3646 disks = conf->raid_disks;
b578d55f 3647 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3648 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3649 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3650 * 64bit on a 32bit platform, and so it might be
3651 * possible to see a half-updated value
fef9c61f 3652 * Ofcourse reshape_progress could change after
df8e7f76
N
3653 * the lock is dropped, so once we get a reference
3654 * to the stripe that we think it is, we will have
3655 * to check again.
3656 */
7ecaa1e6 3657 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3658 if (mddev->delta_disks < 0
3659 ? logical_sector < conf->reshape_progress
3660 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3661 disks = conf->previous_raid_disks;
b5663ba4
N
3662 previous = 1;
3663 } else {
fef9c61f
N
3664 if (mddev->delta_disks < 0
3665 ? logical_sector < conf->reshape_safe
3666 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3667 spin_unlock_irq(&conf->device_lock);
3668 schedule();
3669 goto retry;
3670 }
3671 }
7ecaa1e6
N
3672 spin_unlock_irq(&conf->device_lock);
3673 }
16a53ecc
N
3674 data_disks = disks - conf->max_degraded;
3675
112bf897
N
3676 new_sector = raid5_compute_sector(conf, logical_sector,
3677 previous,
911d4ee8 3678 &dd_idx, NULL);
45b4233c 3679 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3680 (unsigned long long)new_sector,
3681 (unsigned long long)logical_sector);
3682
b5663ba4
N
3683 sh = get_active_stripe(conf, new_sector, previous,
3684 (bi->bi_rw&RWA_MASK));
1da177e4 3685 if (sh) {
b0f9ec04 3686 if (unlikely(previous)) {
7ecaa1e6 3687 /* expansion might have moved on while waiting for a
df8e7f76
N
3688 * stripe, so we must do the range check again.
3689 * Expansion could still move past after this
3690 * test, but as we are holding a reference to
3691 * 'sh', we know that if that happens,
3692 * STRIPE_EXPANDING will get set and the expansion
3693 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3694 */
3695 int must_retry = 0;
3696 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
3697 if (mddev->delta_disks < 0
3698 ? logical_sector >= conf->reshape_progress
3699 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
3700 /* mismatch, need to try again */
3701 must_retry = 1;
3702 spin_unlock_irq(&conf->device_lock);
3703 if (must_retry) {
3704 release_stripe(sh);
3705 goto retry;
3706 }
3707 }
e464eafd
N
3708 /* FIXME what if we get a false positive because these
3709 * are being updated.
3710 */
3711 if (logical_sector >= mddev->suspend_lo &&
3712 logical_sector < mddev->suspend_hi) {
3713 release_stripe(sh);
3714 schedule();
3715 goto retry;
3716 }
7ecaa1e6
N
3717
3718 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3719 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3720 /* Stripe is busy expanding or
3721 * add failed due to overlap. Flush everything
1da177e4
LT
3722 * and wait a while
3723 */
3724 raid5_unplug_device(mddev->queue);
3725 release_stripe(sh);
3726 schedule();
3727 goto retry;
3728 }
3729 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3730 set_bit(STRIPE_HANDLE, &sh->state);
3731 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3732 release_stripe(sh);
1da177e4
LT
3733 } else {
3734 /* cannot get stripe for read-ahead, just give-up */
3735 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3736 finish_wait(&conf->wait_for_overlap, &w);
3737 break;
3738 }
3739
3740 }
3741 spin_lock_irq(&conf->device_lock);
960e739d 3742 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3743 spin_unlock_irq(&conf->device_lock);
3744 if (remaining == 0) {
1da177e4 3745
16a53ecc 3746 if ( rw == WRITE )
1da177e4 3747 md_write_end(mddev);
6712ecf8 3748
0e13fe23 3749 bio_endio(bi, 0);
1da177e4 3750 }
1da177e4
LT
3751 return 0;
3752}
3753
b522adcd
DW
3754static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3755
52c03291 3756static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3757{
52c03291
N
3758 /* reshaping is quite different to recovery/resync so it is
3759 * handled quite separately ... here.
3760 *
3761 * On each call to sync_request, we gather one chunk worth of
3762 * destination stripes and flag them as expanding.
3763 * Then we find all the source stripes and request reads.
3764 * As the reads complete, handle_stripe will copy the data
3765 * into the destination stripe and release that stripe.
3766 */
1da177e4
LT
3767 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3768 struct stripe_head *sh;
ccfcc3c1 3769 sector_t first_sector, last_sector;
f416885e
N
3770 int raid_disks = conf->previous_raid_disks;
3771 int data_disks = raid_disks - conf->max_degraded;
3772 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3773 int i;
3774 int dd_idx;
c8f517c4 3775 sector_t writepos, readpos, safepos;
ec32a2bd 3776 sector_t stripe_addr;
7a661381 3777 int reshape_sectors;
ab69ae12 3778 struct list_head stripes;
52c03291 3779
fef9c61f
N
3780 if (sector_nr == 0) {
3781 /* If restarting in the middle, skip the initial sectors */
3782 if (mddev->delta_disks < 0 &&
3783 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3784 sector_nr = raid5_size(mddev, 0, 0)
3785 - conf->reshape_progress;
3786 } else if (mddev->delta_disks > 0 &&
3787 conf->reshape_progress > 0)
3788 sector_nr = conf->reshape_progress;
f416885e 3789 sector_div(sector_nr, new_data_disks);
fef9c61f
N
3790 if (sector_nr) {
3791 *skipped = 1;
3792 return sector_nr;
3793 }
52c03291
N
3794 }
3795
7a661381
N
3796 /* We need to process a full chunk at a time.
3797 * If old and new chunk sizes differ, we need to process the
3798 * largest of these
3799 */
3800 if (mddev->new_chunk > mddev->chunk_size)
3801 reshape_sectors = mddev->new_chunk / 512;
3802 else
3803 reshape_sectors = mddev->chunk_size / 512;
3804
52c03291
N
3805 /* we update the metadata when there is more than 3Meg
3806 * in the block range (that is rather arbitrary, should
3807 * probably be time based) or when the data about to be
3808 * copied would over-write the source of the data at
3809 * the front of the range.
fef9c61f
N
3810 * i.e. one new_stripe along from reshape_progress new_maps
3811 * to after where reshape_safe old_maps to
52c03291 3812 */
fef9c61f 3813 writepos = conf->reshape_progress;
f416885e 3814 sector_div(writepos, new_data_disks);
c8f517c4
N
3815 readpos = conf->reshape_progress;
3816 sector_div(readpos, data_disks);
fef9c61f 3817 safepos = conf->reshape_safe;
f416885e 3818 sector_div(safepos, data_disks);
fef9c61f 3819 if (mddev->delta_disks < 0) {
7a661381 3820 writepos -= reshape_sectors;
c8f517c4 3821 readpos += reshape_sectors;
7a661381 3822 safepos += reshape_sectors;
fef9c61f 3823 } else {
7a661381 3824 writepos += reshape_sectors;
c8f517c4 3825 readpos -= reshape_sectors;
7a661381 3826 safepos -= reshape_sectors;
fef9c61f 3827 }
52c03291 3828
c8f517c4
N
3829 /* 'writepos' is the most advanced device address we might write.
3830 * 'readpos' is the least advanced device address we might read.
3831 * 'safepos' is the least address recorded in the metadata as having
3832 * been reshaped.
3833 * If 'readpos' is behind 'writepos', then there is no way that we can
3834 * ensure safety in the face of a crash - that must be done by userspace
3835 * making a backup of the data. So in that case there is no particular
3836 * rush to update metadata.
3837 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3838 * update the metadata to advance 'safepos' to match 'readpos' so that
3839 * we can be safe in the event of a crash.
3840 * So we insist on updating metadata if safepos is behind writepos and
3841 * readpos is beyond writepos.
3842 * In any case, update the metadata every 10 seconds.
3843 * Maybe that number should be configurable, but I'm not sure it is
3844 * worth it.... maybe it could be a multiple of safemode_delay???
3845 */
fef9c61f 3846 if ((mddev->delta_disks < 0
c8f517c4
N
3847 ? (safepos > writepos && readpos < writepos)
3848 : (safepos < writepos && readpos > writepos)) ||
3849 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
3850 /* Cannot proceed until we've updated the superblock... */
3851 wait_event(conf->wait_for_overlap,
3852 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 3853 mddev->reshape_position = conf->reshape_progress;
c8f517c4 3854 conf->reshape_checkpoint = jiffies;
850b2b42 3855 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3856 md_wakeup_thread(mddev->thread);
850b2b42 3857 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3858 kthread_should_stop());
3859 spin_lock_irq(&conf->device_lock);
fef9c61f 3860 conf->reshape_safe = mddev->reshape_position;
52c03291
N
3861 spin_unlock_irq(&conf->device_lock);
3862 wake_up(&conf->wait_for_overlap);
3863 }
3864
ec32a2bd
N
3865 if (mddev->delta_disks < 0) {
3866 BUG_ON(conf->reshape_progress == 0);
3867 stripe_addr = writepos;
3868 BUG_ON((mddev->dev_sectors &
7a661381
N
3869 ~((sector_t)reshape_sectors - 1))
3870 - reshape_sectors - stripe_addr
ec32a2bd
N
3871 != sector_nr);
3872 } else {
7a661381 3873 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
3874 stripe_addr = sector_nr;
3875 }
ab69ae12 3876 INIT_LIST_HEAD(&stripes);
7a661381 3877 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291
N
3878 int j;
3879 int skipped = 0;
ec32a2bd 3880 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
52c03291
N
3881 set_bit(STRIPE_EXPANDING, &sh->state);
3882 atomic_inc(&conf->reshape_stripes);
3883 /* If any of this stripe is beyond the end of the old
3884 * array, then we need to zero those blocks
3885 */
3886 for (j=sh->disks; j--;) {
3887 sector_t s;
3888 if (j == sh->pd_idx)
3889 continue;
f416885e 3890 if (conf->level == 6 &&
d0dabf7e 3891 j == sh->qd_idx)
f416885e 3892 continue;
784052ec 3893 s = compute_blocknr(sh, j, 0);
b522adcd 3894 if (s < raid5_size(mddev, 0, 0)) {
52c03291
N
3895 skipped = 1;
3896 continue;
3897 }
3898 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3899 set_bit(R5_Expanded, &sh->dev[j].flags);
3900 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3901 }
3902 if (!skipped) {
3903 set_bit(STRIPE_EXPAND_READY, &sh->state);
3904 set_bit(STRIPE_HANDLE, &sh->state);
3905 }
ab69ae12 3906 list_add(&sh->lru, &stripes);
52c03291
N
3907 }
3908 spin_lock_irq(&conf->device_lock);
fef9c61f 3909 if (mddev->delta_disks < 0)
7a661381 3910 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 3911 else
7a661381 3912 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
3913 spin_unlock_irq(&conf->device_lock);
3914 /* Ok, those stripe are ready. We can start scheduling
3915 * reads on the source stripes.
3916 * The source stripes are determined by mapping the first and last
3917 * block on the destination stripes.
3918 */
52c03291 3919 first_sector =
ec32a2bd 3920 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 3921 1, &dd_idx, NULL);
52c03291 3922 last_sector =
ec32a2bd 3923 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
112bf897 3924 *(new_data_disks) - 1),
911d4ee8 3925 1, &dd_idx, NULL);
58c0fed4
AN
3926 if (last_sector >= mddev->dev_sectors)
3927 last_sector = mddev->dev_sectors - 1;
52c03291 3928 while (first_sector <= last_sector) {
b5663ba4 3929 sh = get_active_stripe(conf, first_sector, 1, 0);
52c03291
N
3930 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3931 set_bit(STRIPE_HANDLE, &sh->state);
3932 release_stripe(sh);
3933 first_sector += STRIPE_SECTORS;
3934 }
ab69ae12
N
3935 /* Now that the sources are clearly marked, we can release
3936 * the destination stripes
3937 */
3938 while (!list_empty(&stripes)) {
3939 sh = list_entry(stripes.next, struct stripe_head, lru);
3940 list_del_init(&sh->lru);
3941 release_stripe(sh);
3942 }
c6207277
N
3943 /* If this takes us to the resync_max point where we have to pause,
3944 * then we need to write out the superblock.
3945 */
7a661381 3946 sector_nr += reshape_sectors;
c6207277
N
3947 if (sector_nr >= mddev->resync_max) {
3948 /* Cannot proceed until we've updated the superblock... */
3949 wait_event(conf->wait_for_overlap,
3950 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 3951 mddev->reshape_position = conf->reshape_progress;
c8f517c4 3952 conf->reshape_checkpoint = jiffies;
c6207277
N
3953 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3954 md_wakeup_thread(mddev->thread);
3955 wait_event(mddev->sb_wait,
3956 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3957 || kthread_should_stop());
3958 spin_lock_irq(&conf->device_lock);
fef9c61f 3959 conf->reshape_safe = mddev->reshape_position;
c6207277
N
3960 spin_unlock_irq(&conf->device_lock);
3961 wake_up(&conf->wait_for_overlap);
3962 }
7a661381 3963 return reshape_sectors;
52c03291
N
3964}
3965
3966/* FIXME go_faster isn't used */
3967static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3968{
3969 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3970 struct stripe_head *sh;
58c0fed4 3971 sector_t max_sector = mddev->dev_sectors;
72626685 3972 int sync_blocks;
16a53ecc
N
3973 int still_degraded = 0;
3974 int i;
1da177e4 3975
72626685 3976 if (sector_nr >= max_sector) {
1da177e4
LT
3977 /* just being told to finish up .. nothing much to do */
3978 unplug_slaves(mddev);
cea9c228 3979
29269553
N
3980 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3981 end_reshape(conf);
3982 return 0;
3983 }
72626685
N
3984
3985 if (mddev->curr_resync < max_sector) /* aborted */
3986 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3987 &sync_blocks, 1);
16a53ecc 3988 else /* completed sync */
72626685
N
3989 conf->fullsync = 0;
3990 bitmap_close_sync(mddev->bitmap);
3991
1da177e4
LT
3992 return 0;
3993 }
ccfcc3c1 3994
52c03291
N
3995 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3996 return reshape_request(mddev, sector_nr, skipped);
f6705578 3997
c6207277
N
3998 /* No need to check resync_max as we never do more than one
3999 * stripe, and as resync_max will always be on a chunk boundary,
4000 * if the check in md_do_sync didn't fire, there is no chance
4001 * of overstepping resync_max here
4002 */
4003
16a53ecc 4004 /* if there is too many failed drives and we are trying
1da177e4
LT
4005 * to resync, then assert that we are finished, because there is
4006 * nothing we can do.
4007 */
3285edf1 4008 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4009 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4010 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4011 *skipped = 1;
1da177e4
LT
4012 return rv;
4013 }
72626685 4014 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4015 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4016 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4017 /* we can skip this block, and probably more */
4018 sync_blocks /= STRIPE_SECTORS;
4019 *skipped = 1;
4020 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4021 }
1da177e4 4022
b47490c9
N
4023
4024 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4025
b5663ba4 4026 sh = get_active_stripe(conf, sector_nr, 0, 1);
1da177e4 4027 if (sh == NULL) {
b5663ba4 4028 sh = get_active_stripe(conf, sector_nr, 0, 0);
1da177e4 4029 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4030 * is trying to get access
1da177e4 4031 */
66c006a5 4032 schedule_timeout_uninterruptible(1);
1da177e4 4033 }
16a53ecc
N
4034 /* Need to check if array will still be degraded after recovery/resync
4035 * We don't need to check the 'failed' flag as when that gets set,
4036 * recovery aborts.
4037 */
4038 for (i=0; i<mddev->raid_disks; i++)
4039 if (conf->disks[i].rdev == NULL)
4040 still_degraded = 1;
4041
4042 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4043
4044 spin_lock(&sh->lock);
1da177e4
LT
4045 set_bit(STRIPE_SYNCING, &sh->state);
4046 clear_bit(STRIPE_INSYNC, &sh->state);
4047 spin_unlock(&sh->lock);
4048
df10cfbc
DW
4049 /* wait for any blocked device to be handled */
4050 while(unlikely(!handle_stripe(sh, NULL)))
4051 ;
1da177e4
LT
4052 release_stripe(sh);
4053
4054 return STRIPE_SECTORS;
4055}
4056
46031f9a
RBJ
4057static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4058{
4059 /* We may not be able to submit a whole bio at once as there
4060 * may not be enough stripe_heads available.
4061 * We cannot pre-allocate enough stripe_heads as we may need
4062 * more than exist in the cache (if we allow ever large chunks).
4063 * So we do one stripe head at a time and record in
4064 * ->bi_hw_segments how many have been done.
4065 *
4066 * We *know* that this entire raid_bio is in one chunk, so
4067 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4068 */
4069 struct stripe_head *sh;
911d4ee8 4070 int dd_idx;
46031f9a
RBJ
4071 sector_t sector, logical_sector, last_sector;
4072 int scnt = 0;
4073 int remaining;
4074 int handled = 0;
4075
4076 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4077 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4078 0, &dd_idx, NULL);
46031f9a
RBJ
4079 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4080
4081 for (; logical_sector < last_sector;
387bb173
NB
4082 logical_sector += STRIPE_SECTORS,
4083 sector += STRIPE_SECTORS,
4084 scnt++) {
46031f9a 4085
960e739d 4086 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4087 /* already done this stripe */
4088 continue;
4089
b5663ba4 4090 sh = get_active_stripe(conf, sector, 0, 1);
46031f9a
RBJ
4091
4092 if (!sh) {
4093 /* failed to get a stripe - must wait */
960e739d 4094 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4095 conf->retry_read_aligned = raid_bio;
4096 return handled;
4097 }
4098
4099 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4100 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4101 release_stripe(sh);
960e739d 4102 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4103 conf->retry_read_aligned = raid_bio;
4104 return handled;
4105 }
4106
46031f9a
RBJ
4107 handle_stripe(sh, NULL);
4108 release_stripe(sh);
4109 handled++;
4110 }
4111 spin_lock_irq(&conf->device_lock);
960e739d 4112 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4113 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4114 if (remaining == 0)
4115 bio_endio(raid_bio, 0);
46031f9a
RBJ
4116 if (atomic_dec_and_test(&conf->active_aligned_reads))
4117 wake_up(&conf->wait_for_stripe);
4118 return handled;
4119}
4120
4121
4122
1da177e4
LT
4123/*
4124 * This is our raid5 kernel thread.
4125 *
4126 * We scan the hash table for stripes which can be handled now.
4127 * During the scan, completed stripes are saved for us by the interrupt
4128 * handler, so that they will not have to wait for our next wakeup.
4129 */
6ed3003c 4130static void raid5d(mddev_t *mddev)
1da177e4
LT
4131{
4132 struct stripe_head *sh;
4133 raid5_conf_t *conf = mddev_to_conf(mddev);
4134 int handled;
4135
45b4233c 4136 pr_debug("+++ raid5d active\n");
1da177e4
LT
4137
4138 md_check_recovery(mddev);
1da177e4
LT
4139
4140 handled = 0;
4141 spin_lock_irq(&conf->device_lock);
4142 while (1) {
46031f9a 4143 struct bio *bio;
1da177e4 4144
ae3c20cc 4145 if (conf->seq_flush != conf->seq_write) {
72626685 4146 int seq = conf->seq_flush;
700e432d 4147 spin_unlock_irq(&conf->device_lock);
72626685 4148 bitmap_unplug(mddev->bitmap);
700e432d 4149 spin_lock_irq(&conf->device_lock);
72626685
N
4150 conf->seq_write = seq;
4151 activate_bit_delay(conf);
4152 }
4153
46031f9a
RBJ
4154 while ((bio = remove_bio_from_retry(conf))) {
4155 int ok;
4156 spin_unlock_irq(&conf->device_lock);
4157 ok = retry_aligned_read(conf, bio);
4158 spin_lock_irq(&conf->device_lock);
4159 if (!ok)
4160 break;
4161 handled++;
4162 }
4163
8b3e6cdc
DW
4164 sh = __get_priority_stripe(conf);
4165
c9f21aaf 4166 if (!sh)
1da177e4 4167 break;
1da177e4
LT
4168 spin_unlock_irq(&conf->device_lock);
4169
4170 handled++;
16a53ecc 4171 handle_stripe(sh, conf->spare_page);
1da177e4
LT
4172 release_stripe(sh);
4173
4174 spin_lock_irq(&conf->device_lock);
4175 }
45b4233c 4176 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4177
4178 spin_unlock_irq(&conf->device_lock);
4179
c9f21aaf 4180 async_tx_issue_pending_all();
1da177e4
LT
4181 unplug_slaves(mddev);
4182
45b4233c 4183 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4184}
4185
3f294f4f 4186static ssize_t
007583c9 4187raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4188{
007583c9 4189 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4190 if (conf)
4191 return sprintf(page, "%d\n", conf->max_nr_stripes);
4192 else
4193 return 0;
3f294f4f
N
4194}
4195
4196static ssize_t
007583c9 4197raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4198{
007583c9 4199 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4200 unsigned long new;
b5470dc5
DW
4201 int err;
4202
3f294f4f
N
4203 if (len >= PAGE_SIZE)
4204 return -EINVAL;
96de1e66
N
4205 if (!conf)
4206 return -ENODEV;
3f294f4f 4207
4ef197d8 4208 if (strict_strtoul(page, 10, &new))
3f294f4f
N
4209 return -EINVAL;
4210 if (new <= 16 || new > 32768)
4211 return -EINVAL;
4212 while (new < conf->max_nr_stripes) {
4213 if (drop_one_stripe(conf))
4214 conf->max_nr_stripes--;
4215 else
4216 break;
4217 }
b5470dc5
DW
4218 err = md_allow_write(mddev);
4219 if (err)
4220 return err;
3f294f4f
N
4221 while (new > conf->max_nr_stripes) {
4222 if (grow_one_stripe(conf))
4223 conf->max_nr_stripes++;
4224 else break;
4225 }
4226 return len;
4227}
007583c9 4228
96de1e66
N
4229static struct md_sysfs_entry
4230raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4231 raid5_show_stripe_cache_size,
4232 raid5_store_stripe_cache_size);
3f294f4f 4233
8b3e6cdc
DW
4234static ssize_t
4235raid5_show_preread_threshold(mddev_t *mddev, char *page)
4236{
4237 raid5_conf_t *conf = mddev_to_conf(mddev);
4238 if (conf)
4239 return sprintf(page, "%d\n", conf->bypass_threshold);
4240 else
4241 return 0;
4242}
4243
4244static ssize_t
4245raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4246{
4247 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4248 unsigned long new;
8b3e6cdc
DW
4249 if (len >= PAGE_SIZE)
4250 return -EINVAL;
4251 if (!conf)
4252 return -ENODEV;
4253
4ef197d8 4254 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4255 return -EINVAL;
4ef197d8 4256 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4257 return -EINVAL;
4258 conf->bypass_threshold = new;
4259 return len;
4260}
4261
4262static struct md_sysfs_entry
4263raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4264 S_IRUGO | S_IWUSR,
4265 raid5_show_preread_threshold,
4266 raid5_store_preread_threshold);
4267
3f294f4f 4268static ssize_t
96de1e66 4269stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4270{
007583c9 4271 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4272 if (conf)
4273 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4274 else
4275 return 0;
3f294f4f
N
4276}
4277
96de1e66
N
4278static struct md_sysfs_entry
4279raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4280
007583c9 4281static struct attribute *raid5_attrs[] = {
3f294f4f
N
4282 &raid5_stripecache_size.attr,
4283 &raid5_stripecache_active.attr,
8b3e6cdc 4284 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4285 NULL,
4286};
007583c9
N
4287static struct attribute_group raid5_attrs_group = {
4288 .name = NULL,
4289 .attrs = raid5_attrs,
3f294f4f
N
4290};
4291
80c3a6ce
DW
4292static sector_t
4293raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4294{
4295 raid5_conf_t *conf = mddev_to_conf(mddev);
4296
4297 if (!sectors)
4298 sectors = mddev->dev_sectors;
7ec05478
N
4299 if (!raid_disks) {
4300 /* size is defined by the smallest of previous and new size */
4301 if (conf->raid_disks < conf->previous_raid_disks)
4302 raid_disks = conf->raid_disks;
4303 else
4304 raid_disks = conf->previous_raid_disks;
4305 }
80c3a6ce
DW
4306
4307 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
784052ec 4308 sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
80c3a6ce
DW
4309 return sectors * (raid_disks - conf->max_degraded);
4310}
4311
a11034b4
DW
4312static void free_conf(raid5_conf_t *conf)
4313{
4314 shrink_stripes(conf);
4315 safe_put_page(conf->spare_page);
4316 kfree(conf->disks);
4317 kfree(conf->stripe_hashtbl);
4318 kfree(conf);
4319}
4320
91adb564 4321static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4322{
4323 raid5_conf_t *conf;
4324 int raid_disk, memory;
4325 mdk_rdev_t *rdev;
4326 struct disk_info *disk;
1da177e4 4327
91adb564
N
4328 if (mddev->new_level != 5
4329 && mddev->new_level != 4
4330 && mddev->new_level != 6) {
16a53ecc 4331 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4332 mdname(mddev), mddev->new_level);
4333 return ERR_PTR(-EIO);
1da177e4 4334 }
91adb564
N
4335 if ((mddev->new_level == 5
4336 && !algorithm_valid_raid5(mddev->new_layout)) ||
4337 (mddev->new_level == 6
4338 && !algorithm_valid_raid6(mddev->new_layout))) {
99c0fb5f 4339 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
91adb564
N
4340 mdname(mddev), mddev->new_layout);
4341 return ERR_PTR(-EIO);
99c0fb5f 4342 }
91adb564
N
4343 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4344 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4345 mdname(mddev), mddev->raid_disks);
4346 return ERR_PTR(-EINVAL);
4bbf3771
N
4347 }
4348
91adb564
N
4349 if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4350 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4351 mddev->new_chunk, mdname(mddev));
4352 return ERR_PTR(-EINVAL);
f6705578
N
4353 }
4354
91adb564
N
4355 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4356 if (conf == NULL)
1da177e4 4357 goto abort;
91adb564
N
4358
4359 conf->raid_disks = mddev->raid_disks;
4360 if (mddev->reshape_position == MaxSector)
4361 conf->previous_raid_disks = mddev->raid_disks;
4362 else
f6705578 4363 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
f6705578
N
4364
4365 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4366 GFP_KERNEL);
4367 if (!conf->disks)
4368 goto abort;
9ffae0cf 4369
1da177e4
LT
4370 conf->mddev = mddev;
4371
fccddba0 4372 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4373 goto abort;
1da177e4 4374
91adb564 4375 if (mddev->new_level == 6) {
16a53ecc
N
4376 conf->spare_page = alloc_page(GFP_KERNEL);
4377 if (!conf->spare_page)
4378 goto abort;
4379 }
1da177e4
LT
4380 spin_lock_init(&conf->device_lock);
4381 init_waitqueue_head(&conf->wait_for_stripe);
4382 init_waitqueue_head(&conf->wait_for_overlap);
4383 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4384 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4385 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4386 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4387 INIT_LIST_HEAD(&conf->inactive_list);
4388 atomic_set(&conf->active_stripes, 0);
4389 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4390 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4391 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4392
45b4233c 4393 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4394
159ec1fc 4395 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4396 raid_disk = rdev->raid_disk;
f6705578 4397 if (raid_disk >= conf->raid_disks
1da177e4
LT
4398 || raid_disk < 0)
4399 continue;
4400 disk = conf->disks + raid_disk;
4401
4402 disk->rdev = rdev;
4403
b2d444d7 4404 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4405 char b[BDEVNAME_SIZE];
4406 printk(KERN_INFO "raid5: device %s operational as raid"
4407 " disk %d\n", bdevname(rdev->bdev,b),
4408 raid_disk);
8c2e870a
NB
4409 } else
4410 /* Cannot rely on bitmap to complete recovery */
4411 conf->fullsync = 1;
1da177e4
LT
4412 }
4413
91adb564
N
4414 conf->chunk_size = mddev->new_chunk;
4415 conf->level = mddev->new_level;
16a53ecc
N
4416 if (conf->level == 6)
4417 conf->max_degraded = 2;
4418 else
4419 conf->max_degraded = 1;
91adb564 4420 conf->algorithm = mddev->new_layout;
1da177e4 4421 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4422 conf->reshape_progress = mddev->reshape_position;
e183eaed 4423 if (conf->reshape_progress != MaxSector) {
784052ec 4424 conf->prev_chunk = mddev->chunk_size;
e183eaed
N
4425 conf->prev_algo = mddev->layout;
4426 }
1da177e4 4427
91adb564
N
4428 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4429 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4430 if (grow_stripes(conf, conf->max_nr_stripes)) {
4431 printk(KERN_ERR
4432 "raid5: couldn't allocate %dkB for buffers\n", memory);
4433 goto abort;
4434 } else
4435 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4436 memory, mdname(mddev));
1da177e4 4437
91adb564
N
4438 conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4439 if (!conf->thread) {
4440 printk(KERN_ERR
4441 "raid5: couldn't allocate thread for %s\n",
4442 mdname(mddev));
16a53ecc
N
4443 goto abort;
4444 }
91adb564
N
4445
4446 return conf;
4447
4448 abort:
4449 if (conf) {
a11034b4 4450 free_conf(conf);
91adb564
N
4451 return ERR_PTR(-EIO);
4452 } else
4453 return ERR_PTR(-ENOMEM);
4454}
4455
4456static int run(mddev_t *mddev)
4457{
4458 raid5_conf_t *conf;
4459 int working_disks = 0;
4460 mdk_rdev_t *rdev;
4461
4462 if (mddev->reshape_position != MaxSector) {
4463 /* Check that we can continue the reshape.
4464 * Currently only disks can change, it must
4465 * increase, and we must be past the point where
4466 * a stripe over-writes itself
4467 */
4468 sector_t here_new, here_old;
4469 int old_disks;
18b00334 4470 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4471
88ce4930 4472 if (mddev->new_level != mddev->level) {
91adb564
N
4473 printk(KERN_ERR "raid5: %s: unsupported reshape "
4474 "required - aborting.\n",
4475 mdname(mddev));
4476 return -EINVAL;
4477 }
91adb564
N
4478 old_disks = mddev->raid_disks - mddev->delta_disks;
4479 /* reshape_position must be on a new-stripe boundary, and one
4480 * further up in new geometry must map after here in old
4481 * geometry.
4482 */
4483 here_new = mddev->reshape_position;
784052ec 4484 if (sector_div(here_new, (mddev->new_chunk>>9)*
91adb564
N
4485 (mddev->raid_disks - max_degraded))) {
4486 printk(KERN_ERR "raid5: reshape_position not "
4487 "on a stripe boundary\n");
4488 return -EINVAL;
4489 }
4490 /* here_new is the stripe we will write to */
4491 here_old = mddev->reshape_position;
4492 sector_div(here_old, (mddev->chunk_size>>9)*
4493 (old_disks-max_degraded));
4494 /* here_old is the first stripe that we might need to read
4495 * from */
4496 if (here_new >= here_old) {
4497 /* Reading from the same stripe as writing to - bad */
4498 printk(KERN_ERR "raid5: reshape_position too early for "
4499 "auto-recovery - aborting.\n");
4500 return -EINVAL;
4501 }
4502 printk(KERN_INFO "raid5: reshape will continue\n");
4503 /* OK, we should be able to continue; */
4504 } else {
4505 BUG_ON(mddev->level != mddev->new_level);
4506 BUG_ON(mddev->layout != mddev->new_layout);
4507 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4508 BUG_ON(mddev->delta_disks != 0);
1da177e4 4509 }
91adb564 4510
245f46c2
N
4511 if (mddev->private == NULL)
4512 conf = setup_conf(mddev);
4513 else
4514 conf = mddev->private;
4515
91adb564
N
4516 if (IS_ERR(conf))
4517 return PTR_ERR(conf);
4518
4519 mddev->thread = conf->thread;
4520 conf->thread = NULL;
4521 mddev->private = conf;
4522
4523 /*
4524 * 0 for a fully functional array, 1 or 2 for a degraded array.
4525 */
4526 list_for_each_entry(rdev, &mddev->disks, same_set)
4527 if (rdev->raid_disk >= 0 &&
4528 test_bit(In_sync, &rdev->flags))
4529 working_disks++;
4530
4531 mddev->degraded = conf->raid_disks - working_disks;
4532
16a53ecc 4533 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4534 printk(KERN_ERR "raid5: not enough operational devices for %s"
4535 " (%d/%d failed)\n",
02c2de8c 4536 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4537 goto abort;
4538 }
4539
91adb564
N
4540 /* device size must be a multiple of chunk size */
4541 mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4542 mddev->resync_max_sectors = mddev->dev_sectors;
4543
16a53ecc 4544 if (mddev->degraded > 0 &&
1da177e4 4545 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4546 if (mddev->ok_start_degraded)
4547 printk(KERN_WARNING
4548 "raid5: starting dirty degraded array: %s"
4549 "- data corruption possible.\n",
4550 mdname(mddev));
4551 else {
4552 printk(KERN_ERR
4553 "raid5: cannot start dirty degraded array for %s\n",
4554 mdname(mddev));
4555 goto abort;
4556 }
1da177e4
LT
4557 }
4558
1da177e4
LT
4559 if (mddev->degraded == 0)
4560 printk("raid5: raid level %d set %s active with %d out of %d"
e183eaed
N
4561 " devices, algorithm %d\n", conf->level, mdname(mddev),
4562 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4563 mddev->new_layout);
1da177e4
LT
4564 else
4565 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4566 " out of %d devices, algorithm %d\n", conf->level,
4567 mdname(mddev), mddev->raid_disks - mddev->degraded,
e183eaed 4568 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
4569
4570 print_raid5_conf(conf);
4571
fef9c61f 4572 if (conf->reshape_progress != MaxSector) {
f6705578 4573 printk("...ok start reshape thread\n");
fef9c61f 4574 conf->reshape_safe = conf->reshape_progress;
f6705578
N
4575 atomic_set(&conf->reshape_stripes, 0);
4576 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4577 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4578 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4579 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4580 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4581 "%s_reshape");
f6705578
N
4582 }
4583
1da177e4 4584 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4585 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4586 */
4587 {
16a53ecc
N
4588 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4589 int stripe = data_disks *
8932c2e0 4590 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4591 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4592 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4593 }
4594
4595 /* Ok, everything is just fine now */
5e55e2f5
N
4596 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4597 printk(KERN_WARNING
4598 "raid5: failed to create sysfs attributes for %s\n",
4599 mdname(mddev));
7a5febe9 4600
91adb564
N
4601 mddev->queue->queue_lock = &conf->device_lock;
4602
7a5febe9 4603 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4604 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4605 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4606
1f403624 4607 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 4608
23032a0e
RBJ
4609 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4610
1da177e4
LT
4611 return 0;
4612abort:
e0cf8f04 4613 md_unregister_thread(mddev->thread);
91adb564 4614 mddev->thread = NULL;
1da177e4
LT
4615 if (conf) {
4616 print_raid5_conf(conf);
a11034b4 4617 free_conf(conf);
1da177e4
LT
4618 }
4619 mddev->private = NULL;
4620 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4621 return -EIO;
4622}
4623
4624
4625
3f294f4f 4626static int stop(mddev_t *mddev)
1da177e4
LT
4627{
4628 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4629
4630 md_unregister_thread(mddev->thread);
4631 mddev->thread = NULL;
041ae52e 4632 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4633 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4634 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
a11034b4 4635 free_conf(conf);
1da177e4
LT
4636 mddev->private = NULL;
4637 return 0;
4638}
4639
45b4233c 4640#ifdef DEBUG
d710e138 4641static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4642{
4643 int i;
4644
16a53ecc
N
4645 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4646 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4647 seq_printf(seq, "sh %llu, count %d.\n",
4648 (unsigned long long)sh->sector, atomic_read(&sh->count));
4649 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4650 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4651 seq_printf(seq, "(cache%d: %p %ld) ",
4652 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4653 }
16a53ecc 4654 seq_printf(seq, "\n");
1da177e4
LT
4655}
4656
d710e138 4657static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4658{
4659 struct stripe_head *sh;
fccddba0 4660 struct hlist_node *hn;
1da177e4
LT
4661 int i;
4662
4663 spin_lock_irq(&conf->device_lock);
4664 for (i = 0; i < NR_HASH; i++) {
fccddba0 4665 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4666 if (sh->raid_conf != conf)
4667 continue;
16a53ecc 4668 print_sh(seq, sh);
1da177e4
LT
4669 }
4670 }
4671 spin_unlock_irq(&conf->device_lock);
4672}
4673#endif
4674
d710e138 4675static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4
LT
4676{
4677 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4678 int i;
4679
4680 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4681 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4682 for (i = 0; i < conf->raid_disks; i++)
4683 seq_printf (seq, "%s",
4684 conf->disks[i].rdev &&
b2d444d7 4685 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4686 seq_printf (seq, "]");
45b4233c 4687#ifdef DEBUG
16a53ecc
N
4688 seq_printf (seq, "\n");
4689 printall(seq, conf);
1da177e4
LT
4690#endif
4691}
4692
4693static void print_raid5_conf (raid5_conf_t *conf)
4694{
4695 int i;
4696 struct disk_info *tmp;
4697
4698 printk("RAID5 conf printout:\n");
4699 if (!conf) {
4700 printk("(conf==NULL)\n");
4701 return;
4702 }
02c2de8c
N
4703 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4704 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4705
4706 for (i = 0; i < conf->raid_disks; i++) {
4707 char b[BDEVNAME_SIZE];
4708 tmp = conf->disks + i;
4709 if (tmp->rdev)
4710 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4711 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4712 bdevname(tmp->rdev->bdev,b));
4713 }
4714}
4715
4716static int raid5_spare_active(mddev_t *mddev)
4717{
4718 int i;
4719 raid5_conf_t *conf = mddev->private;
4720 struct disk_info *tmp;
4721
4722 for (i = 0; i < conf->raid_disks; i++) {
4723 tmp = conf->disks + i;
4724 if (tmp->rdev
b2d444d7 4725 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4726 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4727 unsigned long flags;
4728 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4729 mddev->degraded--;
c04be0aa 4730 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4731 }
4732 }
4733 print_raid5_conf(conf);
4734 return 0;
4735}
4736
4737static int raid5_remove_disk(mddev_t *mddev, int number)
4738{
4739 raid5_conf_t *conf = mddev->private;
4740 int err = 0;
4741 mdk_rdev_t *rdev;
4742 struct disk_info *p = conf->disks + number;
4743
4744 print_raid5_conf(conf);
4745 rdev = p->rdev;
4746 if (rdev) {
ec32a2bd
N
4747 if (number >= conf->raid_disks &&
4748 conf->reshape_progress == MaxSector)
4749 clear_bit(In_sync, &rdev->flags);
4750
b2d444d7 4751 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4752 atomic_read(&rdev->nr_pending)) {
4753 err = -EBUSY;
4754 goto abort;
4755 }
dfc70645
N
4756 /* Only remove non-faulty devices if recovery
4757 * isn't possible.
4758 */
4759 if (!test_bit(Faulty, &rdev->flags) &&
ec32a2bd
N
4760 mddev->degraded <= conf->max_degraded &&
4761 number < conf->raid_disks) {
dfc70645
N
4762 err = -EBUSY;
4763 goto abort;
4764 }
1da177e4 4765 p->rdev = NULL;
fbd568a3 4766 synchronize_rcu();
1da177e4
LT
4767 if (atomic_read(&rdev->nr_pending)) {
4768 /* lost the race, try later */
4769 err = -EBUSY;
4770 p->rdev = rdev;
4771 }
4772 }
4773abort:
4774
4775 print_raid5_conf(conf);
4776 return err;
4777}
4778
4779static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4780{
4781 raid5_conf_t *conf = mddev->private;
199050ea 4782 int err = -EEXIST;
1da177e4
LT
4783 int disk;
4784 struct disk_info *p;
6c2fce2e
NB
4785 int first = 0;
4786 int last = conf->raid_disks - 1;
1da177e4 4787
16a53ecc 4788 if (mddev->degraded > conf->max_degraded)
1da177e4 4789 /* no point adding a device */
199050ea 4790 return -EINVAL;
1da177e4 4791
6c2fce2e
NB
4792 if (rdev->raid_disk >= 0)
4793 first = last = rdev->raid_disk;
1da177e4
LT
4794
4795 /*
16a53ecc
N
4796 * find the disk ... but prefer rdev->saved_raid_disk
4797 * if possible.
1da177e4 4798 */
16a53ecc 4799 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 4800 rdev->saved_raid_disk >= first &&
16a53ecc
N
4801 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4802 disk = rdev->saved_raid_disk;
4803 else
6c2fce2e
NB
4804 disk = first;
4805 for ( ; disk <= last ; disk++)
1da177e4 4806 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4807 clear_bit(In_sync, &rdev->flags);
1da177e4 4808 rdev->raid_disk = disk;
199050ea 4809 err = 0;
72626685
N
4810 if (rdev->saved_raid_disk != disk)
4811 conf->fullsync = 1;
d6065f7b 4812 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4813 break;
4814 }
4815 print_raid5_conf(conf);
199050ea 4816 return err;
1da177e4
LT
4817}
4818
4819static int raid5_resize(mddev_t *mddev, sector_t sectors)
4820{
4821 /* no resync is happening, and there is enough space
4822 * on all devices, so we can resize.
4823 * We need to make sure resync covers any new space.
4824 * If the array is shrinking we should possibly wait until
4825 * any io in the removed space completes, but it hardly seems
4826 * worth it.
4827 */
4828 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
1f403624
DW
4829 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4830 mddev->raid_disks));
b522adcd
DW
4831 if (mddev->array_sectors >
4832 raid5_size(mddev, sectors, mddev->raid_disks))
4833 return -EINVAL;
f233ea5c 4834 set_capacity(mddev->gendisk, mddev->array_sectors);
44ce6294 4835 mddev->changed = 1;
58c0fed4
AN
4836 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4837 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
4838 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4839 }
58c0fed4 4840 mddev->dev_sectors = sectors;
4b5c7ae8 4841 mddev->resync_max_sectors = sectors;
1da177e4
LT
4842 return 0;
4843}
4844
63c70c4f 4845static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4846{
4847 raid5_conf_t *conf = mddev_to_conf(mddev);
29269553 4848
88ce4930
N
4849 if (mddev->delta_disks == 0 &&
4850 mddev->new_layout == mddev->layout &&
4851 mddev->new_chunk == mddev->chunk_size)
4852 return -EINVAL; /* nothing to do */
dba034ee
N
4853 if (mddev->bitmap)
4854 /* Cannot grow a bitmap yet */
4855 return -EBUSY;
ec32a2bd
N
4856 if (mddev->degraded > conf->max_degraded)
4857 return -EINVAL;
4858 if (mddev->delta_disks < 0) {
4859 /* We might be able to shrink, but the devices must
4860 * be made bigger first.
4861 * For raid6, 4 is the minimum size.
4862 * Otherwise 2 is the minimum
4863 */
4864 int min = 2;
4865 if (mddev->level == 6)
4866 min = 4;
4867 if (mddev->raid_disks + mddev->delta_disks < min)
4868 return -EINVAL;
4869 }
29269553
N
4870
4871 /* Can only proceed if there are plenty of stripe_heads.
4872 * We need a minimum of one full stripe,, and for sensible progress
4873 * it is best to have about 4 times that.
4874 * If we require 4 times, then the default 256 4K stripe_heads will
4875 * allow for chunk sizes up to 256K, which is probably OK.
4876 * If the chunk size is greater, user-space should request more
4877 * stripe_heads first.
4878 */
63c70c4f
N
4879 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4880 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553 4881 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
784052ec
N
4882 (max(mddev->chunk_size, mddev->new_chunk)
4883 / STRIPE_SIZE)*4);
29269553
N
4884 return -ENOSPC;
4885 }
4886
ec32a2bd 4887 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
4888}
4889
4890static int raid5_start_reshape(mddev_t *mddev)
4891{
4892 raid5_conf_t *conf = mddev_to_conf(mddev);
4893 mdk_rdev_t *rdev;
63c70c4f
N
4894 int spares = 0;
4895 int added_devices = 0;
c04be0aa 4896 unsigned long flags;
63c70c4f 4897
f416885e 4898 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4899 return -EBUSY;
4900
159ec1fc 4901 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
4902 if (rdev->raid_disk < 0 &&
4903 !test_bit(Faulty, &rdev->flags))
4904 spares++;
63c70c4f 4905
f416885e 4906 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4907 /* Not enough devices even to make a degraded array
4908 * of that size
4909 */
4910 return -EINVAL;
4911
ec32a2bd
N
4912 /* Refuse to reduce size of the array. Any reductions in
4913 * array size must be through explicit setting of array_size
4914 * attribute.
4915 */
4916 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4917 < mddev->array_sectors) {
4918 printk(KERN_ERR "md: %s: array size must be reduced "
4919 "before number of disks\n", mdname(mddev));
4920 return -EINVAL;
4921 }
4922
f6705578 4923 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4924 spin_lock_irq(&conf->device_lock);
4925 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4926 conf->raid_disks += mddev->delta_disks;
88ce4930
N
4927 conf->prev_chunk = conf->chunk_size;
4928 conf->chunk_size = mddev->new_chunk;
4929 conf->prev_algo = conf->algorithm;
4930 conf->algorithm = mddev->new_layout;
fef9c61f
N
4931 if (mddev->delta_disks < 0)
4932 conf->reshape_progress = raid5_size(mddev, 0, 0);
4933 else
4934 conf->reshape_progress = 0;
4935 conf->reshape_safe = conf->reshape_progress;
86b42c71 4936 conf->generation++;
29269553
N
4937 spin_unlock_irq(&conf->device_lock);
4938
4939 /* Add some new drives, as many as will fit.
4940 * We know there are enough to make the newly sized array work.
4941 */
159ec1fc 4942 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
4943 if (rdev->raid_disk < 0 &&
4944 !test_bit(Faulty, &rdev->flags)) {
199050ea 4945 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
4946 char nm[20];
4947 set_bit(In_sync, &rdev->flags);
29269553 4948 added_devices++;
5fd6c1dc 4949 rdev->recovery_offset = 0;
29269553 4950 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4951 if (sysfs_create_link(&mddev->kobj,
4952 &rdev->kobj, nm))
4953 printk(KERN_WARNING
4954 "raid5: failed to create "
4955 " link %s for %s\n",
4956 nm, mdname(mddev));
29269553
N
4957 } else
4958 break;
4959 }
4960
ec32a2bd
N
4961 if (mddev->delta_disks > 0) {
4962 spin_lock_irqsave(&conf->device_lock, flags);
4963 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4964 - added_devices;
4965 spin_unlock_irqrestore(&conf->device_lock, flags);
4966 }
63c70c4f 4967 mddev->raid_disks = conf->raid_disks;
f6705578 4968 mddev->reshape_position = 0;
850b2b42 4969 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4970
29269553
N
4971 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4972 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4973 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4974 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4975 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4976 "%s_reshape");
4977 if (!mddev->sync_thread) {
4978 mddev->recovery = 0;
4979 spin_lock_irq(&conf->device_lock);
4980 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 4981 conf->reshape_progress = MaxSector;
29269553
N
4982 spin_unlock_irq(&conf->device_lock);
4983 return -EAGAIN;
4984 }
c8f517c4 4985 conf->reshape_checkpoint = jiffies;
29269553
N
4986 md_wakeup_thread(mddev->sync_thread);
4987 md_new_event(mddev);
4988 return 0;
4989}
29269553 4990
ec32a2bd
N
4991/* This is called from the reshape thread and should make any
4992 * changes needed in 'conf'
4993 */
29269553
N
4994static void end_reshape(raid5_conf_t *conf)
4995{
29269553 4996
f6705578 4997 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 4998
f6705578 4999 spin_lock_irq(&conf->device_lock);
cea9c228 5000 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5001 conf->reshape_progress = MaxSector;
f6705578 5002 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5003 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5004
5005 /* read-ahead size must cover two whole stripes, which is
5006 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5007 */
5008 {
cea9c228
N
5009 int data_disks = conf->raid_disks - conf->max_degraded;
5010 int stripe = data_disks * (conf->chunk_size
5011 / PAGE_SIZE);
16a53ecc
N
5012 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5013 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5014 }
29269553 5015 }
29269553
N
5016}
5017
ec32a2bd
N
5018/* This is called from the raid5d thread with mddev_lock held.
5019 * It makes config changes to the device.
5020 */
cea9c228
N
5021static void raid5_finish_reshape(mddev_t *mddev)
5022{
5023 struct block_device *bdev;
88ce4930 5024 raid5_conf_t *conf = mddev_to_conf(mddev);
cea9c228
N
5025
5026 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5027
ec32a2bd
N
5028 if (mddev->delta_disks > 0) {
5029 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5030 set_capacity(mddev->gendisk, mddev->array_sectors);
5031 mddev->changed = 1;
5032
5033 bdev = bdget_disk(mddev->gendisk, 0);
5034 if (bdev) {
5035 mutex_lock(&bdev->bd_inode->i_mutex);
5036 i_size_write(bdev->bd_inode,
5037 (loff_t)mddev->array_sectors << 9);
5038 mutex_unlock(&bdev->bd_inode->i_mutex);
5039 bdput(bdev);
5040 }
5041 } else {
5042 int d;
ec32a2bd
N
5043 mddev->degraded = conf->raid_disks;
5044 for (d = 0; d < conf->raid_disks ; d++)
5045 if (conf->disks[d].rdev &&
5046 test_bit(In_sync,
5047 &conf->disks[d].rdev->flags))
5048 mddev->degraded--;
5049 for (d = conf->raid_disks ;
5050 d < conf->raid_disks - mddev->delta_disks;
5051 d++)
5052 raid5_remove_disk(mddev, d);
cea9c228 5053 }
88ce4930
N
5054 mddev->layout = conf->algorithm;
5055 mddev->chunk_size = conf->chunk_size;
ec32a2bd
N
5056 mddev->reshape_position = MaxSector;
5057 mddev->delta_disks = 0;
cea9c228
N
5058 }
5059}
5060
72626685
N
5061static void raid5_quiesce(mddev_t *mddev, int state)
5062{
5063 raid5_conf_t *conf = mddev_to_conf(mddev);
5064
5065 switch(state) {
e464eafd
N
5066 case 2: /* resume for a suspend */
5067 wake_up(&conf->wait_for_overlap);
5068 break;
5069
72626685
N
5070 case 1: /* stop all writes */
5071 spin_lock_irq(&conf->device_lock);
5072 conf->quiesce = 1;
5073 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5074 atomic_read(&conf->active_stripes) == 0 &&
5075 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
5076 conf->device_lock, /* nothing */);
5077 spin_unlock_irq(&conf->device_lock);
5078 break;
5079
5080 case 0: /* re-enable writes */
5081 spin_lock_irq(&conf->device_lock);
5082 conf->quiesce = 0;
5083 wake_up(&conf->wait_for_stripe);
e464eafd 5084 wake_up(&conf->wait_for_overlap);
72626685
N
5085 spin_unlock_irq(&conf->device_lock);
5086 break;
5087 }
72626685 5088}
b15c2e57 5089
d562b0c4
N
5090
5091static void *raid5_takeover_raid1(mddev_t *mddev)
5092{
5093 int chunksect;
5094
5095 if (mddev->raid_disks != 2 ||
5096 mddev->degraded > 1)
5097 return ERR_PTR(-EINVAL);
5098
5099 /* Should check if there are write-behind devices? */
5100
5101 chunksect = 64*2; /* 64K by default */
5102
5103 /* The array must be an exact multiple of chunksize */
5104 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5105 chunksect >>= 1;
5106
5107 if ((chunksect<<9) < STRIPE_SIZE)
5108 /* array size does not allow a suitable chunk size */
5109 return ERR_PTR(-EINVAL);
5110
5111 mddev->new_level = 5;
5112 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5113 mddev->new_chunk = chunksect << 9;
5114
5115 return setup_conf(mddev);
5116}
5117
fc9739c6
N
5118static void *raid5_takeover_raid6(mddev_t *mddev)
5119{
5120 int new_layout;
5121
5122 switch (mddev->layout) {
5123 case ALGORITHM_LEFT_ASYMMETRIC_6:
5124 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5125 break;
5126 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5127 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5128 break;
5129 case ALGORITHM_LEFT_SYMMETRIC_6:
5130 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5131 break;
5132 case ALGORITHM_RIGHT_SYMMETRIC_6:
5133 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5134 break;
5135 case ALGORITHM_PARITY_0_6:
5136 new_layout = ALGORITHM_PARITY_0;
5137 break;
5138 case ALGORITHM_PARITY_N:
5139 new_layout = ALGORITHM_PARITY_N;
5140 break;
5141 default:
5142 return ERR_PTR(-EINVAL);
5143 }
5144 mddev->new_level = 5;
5145 mddev->new_layout = new_layout;
5146 mddev->delta_disks = -1;
5147 mddev->raid_disks -= 1;
5148 return setup_conf(mddev);
5149}
5150
d562b0c4 5151
b3546035
N
5152static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5153{
88ce4930
N
5154 /* For a 2-drive array, the layout and chunk size can be changed
5155 * immediately as not restriping is needed.
5156 * For larger arrays we record the new value - after validation
5157 * to be used by a reshape pass.
b3546035
N
5158 */
5159 raid5_conf_t *conf = mddev_to_conf(mddev);
5160
5161 if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5162 return -EINVAL;
5163 if (new_chunk > 0) {
5164 if (new_chunk & (new_chunk-1))
5165 /* not a power of 2 */
5166 return -EINVAL;
5167 if (new_chunk < PAGE_SIZE)
5168 return -EINVAL;
5169 if (mddev->array_sectors & ((new_chunk>>9)-1))
5170 /* not factor of array size */
5171 return -EINVAL;
5172 }
5173
5174 /* They look valid */
5175
88ce4930 5176 if (mddev->raid_disks == 2) {
b3546035 5177
88ce4930
N
5178 if (new_layout >= 0) {
5179 conf->algorithm = new_layout;
5180 mddev->layout = mddev->new_layout = new_layout;
5181 }
5182 if (new_chunk > 0) {
5183 conf->chunk_size = new_chunk;
5184 mddev->chunk_size = mddev->new_chunk = new_chunk;
5185 }
5186 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5187 md_wakeup_thread(mddev->thread);
5188 } else {
5189 if (new_layout >= 0)
5190 mddev->new_layout = new_layout;
5191 if (new_chunk > 0)
5192 mddev->new_chunk = new_chunk;
b3546035 5193 }
88ce4930
N
5194 return 0;
5195}
5196
5197static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5198{
5199 if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
5200 return -EINVAL;
b3546035 5201 if (new_chunk > 0) {
88ce4930
N
5202 if (new_chunk & (new_chunk-1))
5203 /* not a power of 2 */
5204 return -EINVAL;
5205 if (new_chunk < PAGE_SIZE)
5206 return -EINVAL;
5207 if (mddev->array_sectors & ((new_chunk>>9)-1))
5208 /* not factor of array size */
5209 return -EINVAL;
b3546035 5210 }
88ce4930
N
5211
5212 /* They look valid */
5213
5214 if (new_layout >= 0)
5215 mddev->new_layout = new_layout;
5216 if (new_chunk > 0)
5217 mddev->new_chunk = new_chunk;
5218
b3546035
N
5219 return 0;
5220}
5221
d562b0c4
N
5222static void *raid5_takeover(mddev_t *mddev)
5223{
5224 /* raid5 can take over:
5225 * raid0 - if all devices are the same - make it a raid4 layout
5226 * raid1 - if there are two drives. We need to know the chunk size
5227 * raid4 - trivial - just use a raid4 layout.
5228 * raid6 - Providing it is a *_6 layout
5229 *
5230 * For now, just do raid1
5231 */
5232
5233 if (mddev->level == 1)
5234 return raid5_takeover_raid1(mddev);
e9d4758f
N
5235 if (mddev->level == 4) {
5236 mddev->new_layout = ALGORITHM_PARITY_N;
5237 mddev->new_level = 5;
5238 return setup_conf(mddev);
5239 }
fc9739c6
N
5240 if (mddev->level == 6)
5241 return raid5_takeover_raid6(mddev);
d562b0c4
N
5242
5243 return ERR_PTR(-EINVAL);
5244}
5245
5246
245f46c2
N
5247static struct mdk_personality raid5_personality;
5248
5249static void *raid6_takeover(mddev_t *mddev)
5250{
5251 /* Currently can only take over a raid5. We map the
5252 * personality to an equivalent raid6 personality
5253 * with the Q block at the end.
5254 */
5255 int new_layout;
5256
5257 if (mddev->pers != &raid5_personality)
5258 return ERR_PTR(-EINVAL);
5259 if (mddev->degraded > 1)
5260 return ERR_PTR(-EINVAL);
5261 if (mddev->raid_disks > 253)
5262 return ERR_PTR(-EINVAL);
5263 if (mddev->raid_disks < 3)
5264 return ERR_PTR(-EINVAL);
5265
5266 switch (mddev->layout) {
5267 case ALGORITHM_LEFT_ASYMMETRIC:
5268 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5269 break;
5270 case ALGORITHM_RIGHT_ASYMMETRIC:
5271 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5272 break;
5273 case ALGORITHM_LEFT_SYMMETRIC:
5274 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5275 break;
5276 case ALGORITHM_RIGHT_SYMMETRIC:
5277 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5278 break;
5279 case ALGORITHM_PARITY_0:
5280 new_layout = ALGORITHM_PARITY_0_6;
5281 break;
5282 case ALGORITHM_PARITY_N:
5283 new_layout = ALGORITHM_PARITY_N;
5284 break;
5285 default:
5286 return ERR_PTR(-EINVAL);
5287 }
5288 mddev->new_level = 6;
5289 mddev->new_layout = new_layout;
5290 mddev->delta_disks = 1;
5291 mddev->raid_disks += 1;
5292 return setup_conf(mddev);
5293}
5294
5295
16a53ecc
N
5296static struct mdk_personality raid6_personality =
5297{
5298 .name = "raid6",
5299 .level = 6,
5300 .owner = THIS_MODULE,
5301 .make_request = make_request,
5302 .run = run,
5303 .stop = stop,
5304 .status = status,
5305 .error_handler = error,
5306 .hot_add_disk = raid5_add_disk,
5307 .hot_remove_disk= raid5_remove_disk,
5308 .spare_active = raid5_spare_active,
5309 .sync_request = sync_request,
5310 .resize = raid5_resize,
80c3a6ce 5311 .size = raid5_size,
f416885e
N
5312 .check_reshape = raid5_check_reshape,
5313 .start_reshape = raid5_start_reshape,
cea9c228 5314 .finish_reshape = raid5_finish_reshape,
16a53ecc 5315 .quiesce = raid5_quiesce,
245f46c2 5316 .takeover = raid6_takeover,
88ce4930 5317 .reconfig = raid6_reconfig,
16a53ecc 5318};
2604b703 5319static struct mdk_personality raid5_personality =
1da177e4
LT
5320{
5321 .name = "raid5",
2604b703 5322 .level = 5,
1da177e4
LT
5323 .owner = THIS_MODULE,
5324 .make_request = make_request,
5325 .run = run,
5326 .stop = stop,
5327 .status = status,
5328 .error_handler = error,
5329 .hot_add_disk = raid5_add_disk,
5330 .hot_remove_disk= raid5_remove_disk,
5331 .spare_active = raid5_spare_active,
5332 .sync_request = sync_request,
5333 .resize = raid5_resize,
80c3a6ce 5334 .size = raid5_size,
63c70c4f
N
5335 .check_reshape = raid5_check_reshape,
5336 .start_reshape = raid5_start_reshape,
cea9c228 5337 .finish_reshape = raid5_finish_reshape,
72626685 5338 .quiesce = raid5_quiesce,
d562b0c4 5339 .takeover = raid5_takeover,
b3546035 5340 .reconfig = raid5_reconfig,
1da177e4
LT
5341};
5342
2604b703 5343static struct mdk_personality raid4_personality =
1da177e4 5344{
2604b703
N
5345 .name = "raid4",
5346 .level = 4,
5347 .owner = THIS_MODULE,
5348 .make_request = make_request,
5349 .run = run,
5350 .stop = stop,
5351 .status = status,
5352 .error_handler = error,
5353 .hot_add_disk = raid5_add_disk,
5354 .hot_remove_disk= raid5_remove_disk,
5355 .spare_active = raid5_spare_active,
5356 .sync_request = sync_request,
5357 .resize = raid5_resize,
80c3a6ce 5358 .size = raid5_size,
3d37890b
N
5359 .check_reshape = raid5_check_reshape,
5360 .start_reshape = raid5_start_reshape,
cea9c228 5361 .finish_reshape = raid5_finish_reshape,
2604b703
N
5362 .quiesce = raid5_quiesce,
5363};
5364
5365static int __init raid5_init(void)
5366{
16a53ecc 5367 register_md_personality(&raid6_personality);
2604b703
N
5368 register_md_personality(&raid5_personality);
5369 register_md_personality(&raid4_personality);
5370 return 0;
1da177e4
LT
5371}
5372
2604b703 5373static void raid5_exit(void)
1da177e4 5374{
16a53ecc 5375 unregister_md_personality(&raid6_personality);
2604b703
N
5376 unregister_md_personality(&raid5_personality);
5377 unregister_md_personality(&raid4_personality);
1da177e4
LT
5378}
5379
5380module_init(raid5_init);
5381module_exit(raid5_exit);
5382MODULE_LICENSE("GPL");
5383MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5384MODULE_ALIAS("md-raid5");
5385MODULE_ALIAS("md-raid4");
2604b703
N
5386MODULE_ALIAS("md-level-5");
5387MODULE_ALIAS("md-level-4");
16a53ecc
N
5388MODULE_ALIAS("md-personality-8"); /* RAID6 */
5389MODULE_ALIAS("md-raid6");
5390MODULE_ALIAS("md-level-6");
5391
5392/* This used to be two separate modules, they were: */
5393MODULE_ALIAS("raid5");
5394MODULE_ALIAS("raid6");