raid5-ppl: move no_mem_stripes to struct ppl_conf
[linux-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
3f07c014
IM
58#include <linux/sched/signal.h>
59
a9add5d9 60#include <trace/events/block.h>
aaf9f12e 61#include <linux/list_sort.h>
a9add5d9 62
43b2e5d8 63#include "md.h"
bff61975 64#include "raid5.h"
54071b38 65#include "raid0.h"
ef740c37 66#include "bitmap.h"
ff875738 67#include "raid5-log.h"
72626685 68
394ed8e4
SL
69#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70
851c30c9
SL
71#define cpu_to_group(cpu) cpu_to_node(cpu)
72#define ANY_GROUP NUMA_NO_NODE
73
8e0e99ba
N
74static bool devices_handle_discard_safely = false;
75module_param(devices_handle_discard_safely, bool, 0644);
76MODULE_PARM_DESC(devices_handle_discard_safely,
77 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 78static struct workqueue_struct *raid5_wq;
1da177e4 79
d1688a6d 80static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
81{
82 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 return &conf->stripe_hashtbl[hash];
84}
1da177e4 85
566c09c5
SL
86static inline int stripe_hash_locks_hash(sector_t sect)
87{
88 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89}
90
91static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92{
93 spin_lock_irq(conf->hash_locks + hash);
94 spin_lock(&conf->device_lock);
95}
96
97static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98{
99 spin_unlock(&conf->device_lock);
100 spin_unlock_irq(conf->hash_locks + hash);
101}
102
103static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104{
105 int i;
106 local_irq_disable();
107 spin_lock(conf->hash_locks);
108 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
109 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
110 spin_lock(&conf->device_lock);
111}
112
113static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
114{
115 int i;
116 spin_unlock(&conf->device_lock);
117 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
118 spin_unlock(conf->hash_locks + i - 1);
119 local_irq_enable();
120}
121
d0dabf7e
N
122/* Find first data disk in a raid6 stripe */
123static inline int raid6_d0(struct stripe_head *sh)
124{
67cc2b81
N
125 if (sh->ddf_layout)
126 /* ddf always start from first device */
127 return 0;
128 /* md starts just after Q block */
d0dabf7e
N
129 if (sh->qd_idx == sh->disks - 1)
130 return 0;
131 else
132 return sh->qd_idx + 1;
133}
16a53ecc
N
134static inline int raid6_next_disk(int disk, int raid_disks)
135{
136 disk++;
137 return (disk < raid_disks) ? disk : 0;
138}
a4456856 139
d0dabf7e
N
140/* When walking through the disks in a raid5, starting at raid6_d0,
141 * We need to map each disk to a 'slot', where the data disks are slot
142 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
143 * is raid_disks-1. This help does that mapping.
144 */
67cc2b81
N
145static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
146 int *count, int syndrome_disks)
d0dabf7e 147{
6629542e 148 int slot = *count;
67cc2b81 149
e4424fee 150 if (sh->ddf_layout)
6629542e 151 (*count)++;
d0dabf7e 152 if (idx == sh->pd_idx)
67cc2b81 153 return syndrome_disks;
d0dabf7e 154 if (idx == sh->qd_idx)
67cc2b81 155 return syndrome_disks + 1;
e4424fee 156 if (!sh->ddf_layout)
6629542e 157 (*count)++;
d0dabf7e
N
158 return slot;
159}
160
d1688a6d 161static void print_raid5_conf (struct r5conf *conf);
1da177e4 162
600aa109
DW
163static int stripe_operations_active(struct stripe_head *sh)
164{
165 return sh->check_state || sh->reconstruct_state ||
166 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
167 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
168}
169
535ae4eb
SL
170static bool stripe_is_lowprio(struct stripe_head *sh)
171{
172 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
173 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
174 !test_bit(STRIPE_R5C_CACHING, &sh->state);
175}
176
851c30c9
SL
177static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
178{
179 struct r5conf *conf = sh->raid_conf;
180 struct r5worker_group *group;
bfc90cb0 181 int thread_cnt;
851c30c9
SL
182 int i, cpu = sh->cpu;
183
184 if (!cpu_online(cpu)) {
185 cpu = cpumask_any(cpu_online_mask);
186 sh->cpu = cpu;
187 }
188
189 if (list_empty(&sh->lru)) {
190 struct r5worker_group *group;
191 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
192 if (stripe_is_lowprio(sh))
193 list_add_tail(&sh->lru, &group->loprio_list);
194 else
195 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
196 group->stripes_cnt++;
197 sh->group = group;
851c30c9
SL
198 }
199
200 if (conf->worker_cnt_per_group == 0) {
201 md_wakeup_thread(conf->mddev->thread);
202 return;
203 }
204
205 group = conf->worker_groups + cpu_to_group(sh->cpu);
206
bfc90cb0
SL
207 group->workers[0].working = true;
208 /* at least one worker should run to avoid race */
209 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
210
211 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
212 /* wakeup more workers */
213 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
214 if (group->workers[i].working == false) {
215 group->workers[i].working = true;
216 queue_work_on(sh->cpu, raid5_wq,
217 &group->workers[i].work);
218 thread_cnt--;
219 }
220 }
851c30c9
SL
221}
222
566c09c5
SL
223static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
224 struct list_head *temp_inactive_list)
1da177e4 225{
1e6d690b
SL
226 int i;
227 int injournal = 0; /* number of date pages with R5_InJournal */
228
4eb788df
SL
229 BUG_ON(!list_empty(&sh->lru));
230 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
231
232 if (r5c_is_writeback(conf->log))
233 for (i = sh->disks; i--; )
234 if (test_bit(R5_InJournal, &sh->dev[i].flags))
235 injournal++;
a39f7afd
SL
236 /*
237 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
238 * data in journal, so they are not released to cached lists
239 */
240 if (conf->quiesce && r5c_is_writeback(conf->log) &&
241 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
242 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
243 r5c_make_stripe_write_out(sh);
244 set_bit(STRIPE_HANDLE, &sh->state);
245 }
1e6d690b 246
4eb788df
SL
247 if (test_bit(STRIPE_HANDLE, &sh->state)) {
248 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 249 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 250 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 251 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
252 sh->bm_seq - conf->seq_write > 0)
253 list_add_tail(&sh->lru, &conf->bitmap_list);
254 else {
255 clear_bit(STRIPE_DELAYED, &sh->state);
256 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 257 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
258 if (stripe_is_lowprio(sh))
259 list_add_tail(&sh->lru,
260 &conf->loprio_list);
261 else
262 list_add_tail(&sh->lru,
263 &conf->handle_list);
851c30c9
SL
264 } else {
265 raid5_wakeup_stripe_thread(sh);
266 return;
267 }
4eb788df
SL
268 }
269 md_wakeup_thread(conf->mddev->thread);
270 } else {
271 BUG_ON(stripe_operations_active(sh));
272 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
273 if (atomic_dec_return(&conf->preread_active_stripes)
274 < IO_THRESHOLD)
275 md_wakeup_thread(conf->mddev->thread);
276 atomic_dec(&conf->active_stripes);
1e6d690b
SL
277 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
278 if (!r5c_is_writeback(conf->log))
279 list_add_tail(&sh->lru, temp_inactive_list);
280 else {
281 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
282 if (injournal == 0)
283 list_add_tail(&sh->lru, temp_inactive_list);
284 else if (injournal == conf->raid_disks - conf->max_degraded) {
285 /* full stripe */
286 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
287 atomic_inc(&conf->r5c_cached_full_stripes);
288 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
289 atomic_dec(&conf->r5c_cached_partial_stripes);
290 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 291 r5c_check_cached_full_stripe(conf);
03b047f4
SL
292 } else
293 /*
294 * STRIPE_R5C_PARTIAL_STRIPE is set in
295 * r5c_try_caching_write(). No need to
296 * set it again.
297 */
1e6d690b 298 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
299 }
300 }
1da177e4
LT
301 }
302}
d0dabf7e 303
566c09c5
SL
304static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
305 struct list_head *temp_inactive_list)
4eb788df
SL
306{
307 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
308 do_release_stripe(conf, sh, temp_inactive_list);
309}
310
311/*
312 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
313 *
314 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
315 * given time. Adding stripes only takes device lock, while deleting stripes
316 * only takes hash lock.
317 */
318static void release_inactive_stripe_list(struct r5conf *conf,
319 struct list_head *temp_inactive_list,
320 int hash)
321{
322 int size;
6ab2a4b8 323 bool do_wakeup = false;
566c09c5
SL
324 unsigned long flags;
325
326 if (hash == NR_STRIPE_HASH_LOCKS) {
327 size = NR_STRIPE_HASH_LOCKS;
328 hash = NR_STRIPE_HASH_LOCKS - 1;
329 } else
330 size = 1;
331 while (size) {
332 struct list_head *list = &temp_inactive_list[size - 1];
333
334 /*
6d036f7d 335 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
336 * remove stripes from the list
337 */
338 if (!list_empty_careful(list)) {
339 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
340 if (list_empty(conf->inactive_list + hash) &&
341 !list_empty(list))
342 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 343 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 344 do_wakeup = true;
566c09c5
SL
345 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
346 }
347 size--;
348 hash--;
349 }
350
351 if (do_wakeup) {
6ab2a4b8 352 wake_up(&conf->wait_for_stripe);
b1b46486
YL
353 if (atomic_read(&conf->active_stripes) == 0)
354 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
355 if (conf->retry_read_aligned)
356 md_wakeup_thread(conf->mddev->thread);
357 }
4eb788df
SL
358}
359
773ca82f 360/* should hold conf->device_lock already */
566c09c5
SL
361static int release_stripe_list(struct r5conf *conf,
362 struct list_head *temp_inactive_list)
773ca82f 363{
eae8263f 364 struct stripe_head *sh, *t;
773ca82f
SL
365 int count = 0;
366 struct llist_node *head;
367
368 head = llist_del_all(&conf->released_stripes);
d265d9dc 369 head = llist_reverse_order(head);
eae8263f 370 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
371 int hash;
372
773ca82f
SL
373 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
374 smp_mb();
375 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
376 /*
377 * Don't worry the bit is set here, because if the bit is set
378 * again, the count is always > 1. This is true for
379 * STRIPE_ON_UNPLUG_LIST bit too.
380 */
566c09c5
SL
381 hash = sh->hash_lock_index;
382 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
383 count++;
384 }
385
386 return count;
387}
388
6d036f7d 389void raid5_release_stripe(struct stripe_head *sh)
1da177e4 390{
d1688a6d 391 struct r5conf *conf = sh->raid_conf;
1da177e4 392 unsigned long flags;
566c09c5
SL
393 struct list_head list;
394 int hash;
773ca82f 395 bool wakeup;
16a53ecc 396
cf170f3f
ES
397 /* Avoid release_list until the last reference.
398 */
399 if (atomic_add_unless(&sh->count, -1, 1))
400 return;
401
ad4068de 402 if (unlikely(!conf->mddev->thread) ||
403 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
404 goto slow_path;
405 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
406 if (wakeup)
407 md_wakeup_thread(conf->mddev->thread);
408 return;
409slow_path:
4eb788df 410 local_irq_save(flags);
773ca82f 411 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 412 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
413 INIT_LIST_HEAD(&list);
414 hash = sh->hash_lock_index;
415 do_release_stripe(conf, sh, &list);
4eb788df 416 spin_unlock(&conf->device_lock);
566c09c5 417 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
418 }
419 local_irq_restore(flags);
1da177e4
LT
420}
421
fccddba0 422static inline void remove_hash(struct stripe_head *sh)
1da177e4 423{
45b4233c
DW
424 pr_debug("remove_hash(), stripe %llu\n",
425 (unsigned long long)sh->sector);
1da177e4 426
fccddba0 427 hlist_del_init(&sh->hash);
1da177e4
LT
428}
429
d1688a6d 430static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 431{
fccddba0 432 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 433
45b4233c
DW
434 pr_debug("insert_hash(), stripe %llu\n",
435 (unsigned long long)sh->sector);
1da177e4 436
fccddba0 437 hlist_add_head(&sh->hash, hp);
1da177e4
LT
438}
439
1da177e4 440/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 441static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
442{
443 struct stripe_head *sh = NULL;
444 struct list_head *first;
445
566c09c5 446 if (list_empty(conf->inactive_list + hash))
1da177e4 447 goto out;
566c09c5 448 first = (conf->inactive_list + hash)->next;
1da177e4
LT
449 sh = list_entry(first, struct stripe_head, lru);
450 list_del_init(first);
451 remove_hash(sh);
452 atomic_inc(&conf->active_stripes);
566c09c5 453 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
454 if (list_empty(conf->inactive_list + hash))
455 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
456out:
457 return sh;
458}
459
e4e11e38 460static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
461{
462 struct page *p;
463 int i;
e4e11e38 464 int num = sh->raid_conf->pool_size;
1da177e4 465
e4e11e38 466 for (i = 0; i < num ; i++) {
d592a996 467 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
468 p = sh->dev[i].page;
469 if (!p)
470 continue;
471 sh->dev[i].page = NULL;
2d1f3b5d 472 put_page(p);
1da177e4 473 }
3418d036
AP
474
475 if (sh->ppl_page) {
476 put_page(sh->ppl_page);
477 sh->ppl_page = NULL;
478 }
1da177e4
LT
479}
480
a9683a79 481static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
482{
483 int i;
e4e11e38 484 int num = sh->raid_conf->pool_size;
1da177e4 485
e4e11e38 486 for (i = 0; i < num; i++) {
1da177e4
LT
487 struct page *page;
488
a9683a79 489 if (!(page = alloc_page(gfp))) {
1da177e4
LT
490 return 1;
491 }
492 sh->dev[i].page = page;
d592a996 493 sh->dev[i].orig_page = page;
1da177e4 494 }
3418d036
AP
495
496 if (raid5_has_ppl(sh->raid_conf)) {
497 sh->ppl_page = alloc_page(gfp);
498 if (!sh->ppl_page)
499 return 1;
500 }
501
1da177e4
LT
502 return 0;
503}
504
784052ec 505static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 506static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 507 struct stripe_head *sh);
1da177e4 508
b5663ba4 509static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 510{
d1688a6d 511 struct r5conf *conf = sh->raid_conf;
566c09c5 512 int i, seq;
1da177e4 513
78bafebd
ES
514 BUG_ON(atomic_read(&sh->count) != 0);
515 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 516 BUG_ON(stripe_operations_active(sh));
59fc630b 517 BUG_ON(sh->batch_head);
d84e0f10 518
45b4233c 519 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 520 (unsigned long long)sector);
566c09c5
SL
521retry:
522 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 523 sh->generation = conf->generation - previous;
b5663ba4 524 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 525 sh->sector = sector;
911d4ee8 526 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
527 sh->state = 0;
528
7ecaa1e6 529 for (i = sh->disks; i--; ) {
1da177e4
LT
530 struct r5dev *dev = &sh->dev[i];
531
d84e0f10 532 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 533 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 534 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 535 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 536 dev->read, dev->towrite, dev->written,
1da177e4 537 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 538 WARN_ON(1);
1da177e4
LT
539 }
540 dev->flags = 0;
784052ec 541 raid5_build_block(sh, i, previous);
1da177e4 542 }
566c09c5
SL
543 if (read_seqcount_retry(&conf->gen_lock, seq))
544 goto retry;
7a87f434 545 sh->overwrite_disks = 0;
1da177e4 546 insert_hash(conf, sh);
851c30c9 547 sh->cpu = smp_processor_id();
da41ba65 548 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
549}
550
d1688a6d 551static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 552 short generation)
1da177e4
LT
553{
554 struct stripe_head *sh;
555
45b4233c 556 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 557 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 558 if (sh->sector == sector && sh->generation == generation)
1da177e4 559 return sh;
45b4233c 560 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
561 return NULL;
562}
563
674806d6
N
564/*
565 * Need to check if array has failed when deciding whether to:
566 * - start an array
567 * - remove non-faulty devices
568 * - add a spare
569 * - allow a reshape
570 * This determination is simple when no reshape is happening.
571 * However if there is a reshape, we need to carefully check
572 * both the before and after sections.
573 * This is because some failed devices may only affect one
574 * of the two sections, and some non-in_sync devices may
575 * be insync in the section most affected by failed devices.
576 */
2e38a37f 577int raid5_calc_degraded(struct r5conf *conf)
674806d6 578{
908f4fbd 579 int degraded, degraded2;
674806d6 580 int i;
674806d6
N
581
582 rcu_read_lock();
583 degraded = 0;
584 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 585 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
586 if (rdev && test_bit(Faulty, &rdev->flags))
587 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
588 if (!rdev || test_bit(Faulty, &rdev->flags))
589 degraded++;
590 else if (test_bit(In_sync, &rdev->flags))
591 ;
592 else
593 /* not in-sync or faulty.
594 * If the reshape increases the number of devices,
595 * this is being recovered by the reshape, so
596 * this 'previous' section is not in_sync.
597 * If the number of devices is being reduced however,
598 * the device can only be part of the array if
599 * we are reverting a reshape, so this section will
600 * be in-sync.
601 */
602 if (conf->raid_disks >= conf->previous_raid_disks)
603 degraded++;
604 }
605 rcu_read_unlock();
908f4fbd
N
606 if (conf->raid_disks == conf->previous_raid_disks)
607 return degraded;
674806d6 608 rcu_read_lock();
908f4fbd 609 degraded2 = 0;
674806d6 610 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 611 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
612 if (rdev && test_bit(Faulty, &rdev->flags))
613 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 614 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 615 degraded2++;
674806d6
N
616 else if (test_bit(In_sync, &rdev->flags))
617 ;
618 else
619 /* not in-sync or faulty.
620 * If reshape increases the number of devices, this
621 * section has already been recovered, else it
622 * almost certainly hasn't.
623 */
624 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 625 degraded2++;
674806d6
N
626 }
627 rcu_read_unlock();
908f4fbd
N
628 if (degraded2 > degraded)
629 return degraded2;
630 return degraded;
631}
632
633static int has_failed(struct r5conf *conf)
634{
635 int degraded;
636
637 if (conf->mddev->reshape_position == MaxSector)
638 return conf->mddev->degraded > conf->max_degraded;
639
2e38a37f 640 degraded = raid5_calc_degraded(conf);
674806d6
N
641 if (degraded > conf->max_degraded)
642 return 1;
643 return 0;
644}
645
6d036f7d
SL
646struct stripe_head *
647raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
648 int previous, int noblock, int noquiesce)
1da177e4
LT
649{
650 struct stripe_head *sh;
566c09c5 651 int hash = stripe_hash_locks_hash(sector);
ff00d3b4 652 int inc_empty_inactive_list_flag;
1da177e4 653
45b4233c 654 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 655
566c09c5 656 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
657
658 do {
b1b46486 659 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 660 conf->quiesce == 0 || noquiesce,
566c09c5 661 *(conf->hash_locks + hash));
86b42c71 662 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 663 if (!sh) {
edbe83ab 664 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 665 sh = get_free_stripe(conf, hash);
713bc5c2
SL
666 if (!sh && !test_bit(R5_DID_ALLOC,
667 &conf->cache_state))
edbe83ab
N
668 set_bit(R5_ALLOC_MORE,
669 &conf->cache_state);
670 }
1da177e4
LT
671 if (noblock && sh == NULL)
672 break;
a39f7afd
SL
673
674 r5c_check_stripe_cache_usage(conf);
1da177e4 675 if (!sh) {
5423399a
N
676 set_bit(R5_INACTIVE_BLOCKED,
677 &conf->cache_state);
a39f7afd 678 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
679 wait_event_lock_irq(
680 conf->wait_for_stripe,
566c09c5
SL
681 !list_empty(conf->inactive_list + hash) &&
682 (atomic_read(&conf->active_stripes)
683 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
684 || !test_bit(R5_INACTIVE_BLOCKED,
685 &conf->cache_state)),
6ab2a4b8 686 *(conf->hash_locks + hash));
5423399a
N
687 clear_bit(R5_INACTIVE_BLOCKED,
688 &conf->cache_state);
7da9d450 689 } else {
b5663ba4 690 init_stripe(sh, sector, previous);
7da9d450
N
691 atomic_inc(&sh->count);
692 }
e240c183 693 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 694 spin_lock(&conf->device_lock);
e240c183 695 if (!atomic_read(&sh->count)) {
1da177e4
LT
696 if (!test_bit(STRIPE_HANDLE, &sh->state))
697 atomic_inc(&conf->active_stripes);
5af9bef7
N
698 BUG_ON(list_empty(&sh->lru) &&
699 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
700 inc_empty_inactive_list_flag = 0;
701 if (!list_empty(conf->inactive_list + hash))
702 inc_empty_inactive_list_flag = 1;
16a53ecc 703 list_del_init(&sh->lru);
ff00d3b4
ZL
704 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
705 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
706 if (sh->group) {
707 sh->group->stripes_cnt--;
708 sh->group = NULL;
709 }
1da177e4 710 }
7da9d450 711 atomic_inc(&sh->count);
6d183de4 712 spin_unlock(&conf->device_lock);
1da177e4
LT
713 }
714 } while (sh == NULL);
715
566c09c5 716 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
717 return sh;
718}
719
7a87f434 720static bool is_full_stripe_write(struct stripe_head *sh)
721{
722 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
723 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
724}
725
59fc630b 726static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
727{
728 local_irq_disable();
729 if (sh1 > sh2) {
730 spin_lock(&sh2->stripe_lock);
731 spin_lock_nested(&sh1->stripe_lock, 1);
732 } else {
733 spin_lock(&sh1->stripe_lock);
734 spin_lock_nested(&sh2->stripe_lock, 1);
735 }
736}
737
738static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
739{
740 spin_unlock(&sh1->stripe_lock);
741 spin_unlock(&sh2->stripe_lock);
742 local_irq_enable();
743}
744
745/* Only freshly new full stripe normal write stripe can be added to a batch list */
746static bool stripe_can_batch(struct stripe_head *sh)
747{
9c3e333d
SL
748 struct r5conf *conf = sh->raid_conf;
749
3418d036 750 if (conf->log || raid5_has_ppl(conf))
9c3e333d 751 return false;
59fc630b 752 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 753 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 754 is_full_stripe_write(sh);
755}
756
757/* we only do back search */
758static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
759{
760 struct stripe_head *head;
761 sector_t head_sector, tmp_sec;
762 int hash;
763 int dd_idx;
ff00d3b4 764 int inc_empty_inactive_list_flag;
59fc630b 765
59fc630b 766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 tmp_sec = sh->sector;
768 if (!sector_div(tmp_sec, conf->chunk_sectors))
769 return;
770 head_sector = sh->sector - STRIPE_SECTORS;
771
772 hash = stripe_hash_locks_hash(head_sector);
773 spin_lock_irq(conf->hash_locks + hash);
774 head = __find_stripe(conf, head_sector, conf->generation);
775 if (head && !atomic_inc_not_zero(&head->count)) {
776 spin_lock(&conf->device_lock);
777 if (!atomic_read(&head->count)) {
778 if (!test_bit(STRIPE_HANDLE, &head->state))
779 atomic_inc(&conf->active_stripes);
780 BUG_ON(list_empty(&head->lru) &&
781 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
782 inc_empty_inactive_list_flag = 0;
783 if (!list_empty(conf->inactive_list + hash))
784 inc_empty_inactive_list_flag = 1;
59fc630b 785 list_del_init(&head->lru);
ff00d3b4
ZL
786 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
787 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 788 if (head->group) {
789 head->group->stripes_cnt--;
790 head->group = NULL;
791 }
792 }
793 atomic_inc(&head->count);
794 spin_unlock(&conf->device_lock);
795 }
796 spin_unlock_irq(conf->hash_locks + hash);
797
798 if (!head)
799 return;
800 if (!stripe_can_batch(head))
801 goto out;
802
803 lock_two_stripes(head, sh);
804 /* clear_batch_ready clear the flag */
805 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
806 goto unlock_out;
807
808 if (sh->batch_head)
809 goto unlock_out;
810
811 dd_idx = 0;
812 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
813 dd_idx++;
1eff9d32 814 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 815 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 816 goto unlock_out;
817
818 if (head->batch_head) {
819 spin_lock(&head->batch_head->batch_lock);
820 /* This batch list is already running */
821 if (!stripe_can_batch(head)) {
822 spin_unlock(&head->batch_head->batch_lock);
823 goto unlock_out;
824 }
825
826 /*
827 * at this point, head's BATCH_READY could be cleared, but we
828 * can still add the stripe to batch list
829 */
830 list_add(&sh->batch_list, &head->batch_list);
831 spin_unlock(&head->batch_head->batch_lock);
832
833 sh->batch_head = head->batch_head;
834 } else {
835 head->batch_head = head;
836 sh->batch_head = head->batch_head;
837 spin_lock(&head->batch_lock);
838 list_add_tail(&sh->batch_list, &head->batch_list);
839 spin_unlock(&head->batch_lock);
840 }
841
842 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
843 if (atomic_dec_return(&conf->preread_active_stripes)
844 < IO_THRESHOLD)
845 md_wakeup_thread(conf->mddev->thread);
846
2b6b2457
N
847 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
848 int seq = sh->bm_seq;
849 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
850 sh->batch_head->bm_seq > seq)
851 seq = sh->batch_head->bm_seq;
852 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
853 sh->batch_head->bm_seq = seq;
854 }
855
59fc630b 856 atomic_inc(&sh->count);
857unlock_out:
858 unlock_two_stripes(head, sh);
859out:
6d036f7d 860 raid5_release_stripe(head);
59fc630b 861}
862
05616be5
N
863/* Determine if 'data_offset' or 'new_data_offset' should be used
864 * in this stripe_head.
865 */
866static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
867{
868 sector_t progress = conf->reshape_progress;
869 /* Need a memory barrier to make sure we see the value
870 * of conf->generation, or ->data_offset that was set before
871 * reshape_progress was updated.
872 */
873 smp_rmb();
874 if (progress == MaxSector)
875 return 0;
876 if (sh->generation == conf->generation - 1)
877 return 0;
878 /* We are in a reshape, and this is a new-generation stripe,
879 * so use new_data_offset.
880 */
881 return 1;
882}
883
aaf9f12e 884static void dispatch_bio_list(struct bio_list *tmp)
765d704d 885{
765d704d
SL
886 struct bio *bio;
887
aaf9f12e
SL
888 while ((bio = bio_list_pop(tmp)))
889 generic_make_request(bio);
890}
891
892static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
893{
894 const struct r5pending_data *da = list_entry(a,
895 struct r5pending_data, sibling);
896 const struct r5pending_data *db = list_entry(b,
897 struct r5pending_data, sibling);
898 if (da->sector > db->sector)
899 return 1;
900 if (da->sector < db->sector)
901 return -1;
902 return 0;
903}
904
905static void dispatch_defer_bios(struct r5conf *conf, int target,
906 struct bio_list *list)
907{
908 struct r5pending_data *data;
909 struct list_head *first, *next = NULL;
910 int cnt = 0;
911
912 if (conf->pending_data_cnt == 0)
913 return;
914
915 list_sort(NULL, &conf->pending_list, cmp_stripe);
916
917 first = conf->pending_list.next;
918
919 /* temporarily move the head */
920 if (conf->next_pending_data)
921 list_move_tail(&conf->pending_list,
922 &conf->next_pending_data->sibling);
923
924 while (!list_empty(&conf->pending_list)) {
925 data = list_first_entry(&conf->pending_list,
926 struct r5pending_data, sibling);
927 if (&data->sibling == first)
928 first = data->sibling.next;
929 next = data->sibling.next;
930
931 bio_list_merge(list, &data->bios);
932 list_move(&data->sibling, &conf->free_list);
933 cnt++;
934 if (cnt >= target)
935 break;
936 }
937 conf->pending_data_cnt -= cnt;
938 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
939
940 if (next != &conf->pending_list)
941 conf->next_pending_data = list_entry(next,
942 struct r5pending_data, sibling);
943 else
944 conf->next_pending_data = NULL;
945 /* list isn't empty */
946 if (first != &conf->pending_list)
947 list_move_tail(&conf->pending_list, first);
948}
949
950static void flush_deferred_bios(struct r5conf *conf)
951{
952 struct bio_list tmp = BIO_EMPTY_LIST;
953
954 if (conf->pending_data_cnt == 0)
765d704d
SL
955 return;
956
765d704d 957 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
958 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
959 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
960 spin_unlock(&conf->pending_bios_lock);
961
aaf9f12e 962 dispatch_bio_list(&tmp);
765d704d
SL
963}
964
aaf9f12e
SL
965static void defer_issue_bios(struct r5conf *conf, sector_t sector,
966 struct bio_list *bios)
765d704d 967{
aaf9f12e
SL
968 struct bio_list tmp = BIO_EMPTY_LIST;
969 struct r5pending_data *ent;
970
765d704d 971 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
972 ent = list_first_entry(&conf->free_list, struct r5pending_data,
973 sibling);
974 list_move_tail(&ent->sibling, &conf->pending_list);
975 ent->sector = sector;
976 bio_list_init(&ent->bios);
977 bio_list_merge(&ent->bios, bios);
978 conf->pending_data_cnt++;
979 if (conf->pending_data_cnt >= PENDING_IO_MAX)
980 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
981
765d704d 982 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
983
984 dispatch_bio_list(&tmp);
765d704d
SL
985}
986
6712ecf8 987static void
4246a0b6 988raid5_end_read_request(struct bio *bi);
6712ecf8 989static void
4246a0b6 990raid5_end_write_request(struct bio *bi);
91c00924 991
c4e5ac0a 992static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 993{
d1688a6d 994 struct r5conf *conf = sh->raid_conf;
91c00924 995 int i, disks = sh->disks;
59fc630b 996 struct stripe_head *head_sh = sh;
aaf9f12e
SL
997 struct bio_list pending_bios = BIO_EMPTY_LIST;
998 bool should_defer;
91c00924
DW
999
1000 might_sleep();
1001
ff875738
AP
1002 if (log_stripe(sh, s) == 0)
1003 return;
1e6d690b 1004
aaf9f12e
SL
1005 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1006
91c00924 1007 for (i = disks; i--; ) {
796a5cf0 1008 int op, op_flags = 0;
9a3e1101 1009 int replace_only = 0;
977df362
N
1010 struct bio *bi, *rbi;
1011 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 1012
1013 sh = head_sh;
e9c7469b 1014 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1015 op = REQ_OP_WRITE;
e9c7469b 1016 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1017 op_flags = REQ_FUA;
9e444768 1018 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1019 op = REQ_OP_DISCARD;
e9c7469b 1020 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1021 op = REQ_OP_READ;
9a3e1101
N
1022 else if (test_and_clear_bit(R5_WantReplace,
1023 &sh->dev[i].flags)) {
796a5cf0 1024 op = REQ_OP_WRITE;
9a3e1101
N
1025 replace_only = 1;
1026 } else
91c00924 1027 continue;
bc0934f0 1028 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1029 op_flags |= REQ_SYNC;
91c00924 1030
59fc630b 1031again:
91c00924 1032 bi = &sh->dev[i].req;
977df362 1033 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 1034
91c00924 1035 rcu_read_lock();
9a3e1101 1036 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1037 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1038 rdev = rcu_dereference(conf->disks[i].rdev);
1039 if (!rdev) {
1040 rdev = rrdev;
1041 rrdev = NULL;
1042 }
796a5cf0 1043 if (op_is_write(op)) {
9a3e1101
N
1044 if (replace_only)
1045 rdev = NULL;
dd054fce
N
1046 if (rdev == rrdev)
1047 /* We raced and saw duplicates */
1048 rrdev = NULL;
9a3e1101 1049 } else {
59fc630b 1050 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1051 rdev = rrdev;
1052 rrdev = NULL;
1053 }
977df362 1054
91c00924
DW
1055 if (rdev && test_bit(Faulty, &rdev->flags))
1056 rdev = NULL;
1057 if (rdev)
1058 atomic_inc(&rdev->nr_pending);
977df362
N
1059 if (rrdev && test_bit(Faulty, &rrdev->flags))
1060 rrdev = NULL;
1061 if (rrdev)
1062 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1063 rcu_read_unlock();
1064
73e92e51 1065 /* We have already checked bad blocks for reads. Now
977df362
N
1066 * need to check for writes. We never accept write errors
1067 * on the replacement, so we don't to check rrdev.
73e92e51 1068 */
796a5cf0 1069 while (op_is_write(op) && rdev &&
73e92e51
N
1070 test_bit(WriteErrorSeen, &rdev->flags)) {
1071 sector_t first_bad;
1072 int bad_sectors;
1073 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1074 &first_bad, &bad_sectors);
1075 if (!bad)
1076 break;
1077
1078 if (bad < 0) {
1079 set_bit(BlockedBadBlocks, &rdev->flags);
1080 if (!conf->mddev->external &&
2953079c 1081 conf->mddev->sb_flags) {
73e92e51
N
1082 /* It is very unlikely, but we might
1083 * still need to write out the
1084 * bad block log - better give it
1085 * a chance*/
1086 md_check_recovery(conf->mddev);
1087 }
1850753d 1088 /*
1089 * Because md_wait_for_blocked_rdev
1090 * will dec nr_pending, we must
1091 * increment it first.
1092 */
1093 atomic_inc(&rdev->nr_pending);
73e92e51
N
1094 md_wait_for_blocked_rdev(rdev, conf->mddev);
1095 } else {
1096 /* Acknowledged bad block - skip the write */
1097 rdev_dec_pending(rdev, conf->mddev);
1098 rdev = NULL;
1099 }
1100 }
1101
91c00924 1102 if (rdev) {
9a3e1101
N
1103 if (s->syncing || s->expanding || s->expanded
1104 || s->replacing)
91c00924
DW
1105 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1106
2b7497f0
DW
1107 set_bit(STRIPE_IO_STARTED, &sh->state);
1108
91c00924 1109 bi->bi_bdev = rdev->bdev;
796a5cf0
MC
1110 bio_set_op_attrs(bi, op, op_flags);
1111 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1112 ? raid5_end_write_request
1113 : raid5_end_read_request;
1114 bi->bi_private = sh;
1115
6296b960 1116 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1117 __func__, (unsigned long long)sh->sector,
1eff9d32 1118 bi->bi_opf, i);
91c00924 1119 atomic_inc(&sh->count);
59fc630b 1120 if (sh != head_sh)
1121 atomic_inc(&head_sh->count);
05616be5 1122 if (use_new_offset(conf, sh))
4f024f37 1123 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1124 + rdev->new_data_offset);
1125 else
4f024f37 1126 bi->bi_iter.bi_sector = (sh->sector
05616be5 1127 + rdev->data_offset);
59fc630b 1128 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1129 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1130
d592a996
SL
1131 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1132 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1133
1134 if (!op_is_write(op) &&
1135 test_bit(R5_InJournal, &sh->dev[i].flags))
1136 /*
1137 * issuing read for a page in journal, this
1138 * must be preparing for prexor in rmw; read
1139 * the data into orig_page
1140 */
1141 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1142 else
1143 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1144 bi->bi_vcnt = 1;
91c00924
DW
1145 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1146 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1147 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1148 /*
1149 * If this is discard request, set bi_vcnt 0. We don't
1150 * want to confuse SCSI because SCSI will replace payload
1151 */
796a5cf0 1152 if (op == REQ_OP_DISCARD)
37c61ff3 1153 bi->bi_vcnt = 0;
977df362
N
1154 if (rrdev)
1155 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1156
1157 if (conf->mddev->gendisk)
1158 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1159 bi, disk_devt(conf->mddev->gendisk),
1160 sh->dev[i].sector);
aaf9f12e
SL
1161 if (should_defer && op_is_write(op))
1162 bio_list_add(&pending_bios, bi);
1163 else
1164 generic_make_request(bi);
977df362
N
1165 }
1166 if (rrdev) {
9a3e1101
N
1167 if (s->syncing || s->expanding || s->expanded
1168 || s->replacing)
977df362
N
1169 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1170
1171 set_bit(STRIPE_IO_STARTED, &sh->state);
1172
1173 rbi->bi_bdev = rrdev->bdev;
796a5cf0
MC
1174 bio_set_op_attrs(rbi, op, op_flags);
1175 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1176 rbi->bi_end_io = raid5_end_write_request;
1177 rbi->bi_private = sh;
1178
6296b960 1179 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1180 "replacement disc %d\n",
1181 __func__, (unsigned long long)sh->sector,
1eff9d32 1182 rbi->bi_opf, i);
977df362 1183 atomic_inc(&sh->count);
59fc630b 1184 if (sh != head_sh)
1185 atomic_inc(&head_sh->count);
05616be5 1186 if (use_new_offset(conf, sh))
4f024f37 1187 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1188 + rrdev->new_data_offset);
1189 else
4f024f37 1190 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1191 + rrdev->data_offset);
d592a996
SL
1192 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1193 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1194 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1195 rbi->bi_vcnt = 1;
977df362
N
1196 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1197 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1198 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1199 /*
1200 * If this is discard request, set bi_vcnt 0. We don't
1201 * want to confuse SCSI because SCSI will replace payload
1202 */
796a5cf0 1203 if (op == REQ_OP_DISCARD)
37c61ff3 1204 rbi->bi_vcnt = 0;
e3620a3a
JB
1205 if (conf->mddev->gendisk)
1206 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1207 rbi, disk_devt(conf->mddev->gendisk),
1208 sh->dev[i].sector);
aaf9f12e
SL
1209 if (should_defer && op_is_write(op))
1210 bio_list_add(&pending_bios, rbi);
1211 else
1212 generic_make_request(rbi);
977df362
N
1213 }
1214 if (!rdev && !rrdev) {
796a5cf0 1215 if (op_is_write(op))
91c00924 1216 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1217 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1218 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1219 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1220 set_bit(STRIPE_HANDLE, &sh->state);
1221 }
59fc630b 1222
1223 if (!head_sh->batch_head)
1224 continue;
1225 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1226 batch_list);
1227 if (sh != head_sh)
1228 goto again;
91c00924 1229 }
aaf9f12e
SL
1230
1231 if (should_defer && !bio_list_empty(&pending_bios))
1232 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1233}
1234
1235static struct dma_async_tx_descriptor *
d592a996
SL
1236async_copy_data(int frombio, struct bio *bio, struct page **page,
1237 sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1238 struct stripe_head *sh, int no_skipcopy)
91c00924 1239{
7988613b
KO
1240 struct bio_vec bvl;
1241 struct bvec_iter iter;
91c00924 1242 struct page *bio_page;
91c00924 1243 int page_offset;
a08abd8c 1244 struct async_submit_ctl submit;
0403e382 1245 enum async_tx_flags flags = 0;
91c00924 1246
4f024f37
KO
1247 if (bio->bi_iter.bi_sector >= sector)
1248 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1249 else
4f024f37 1250 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1251
0403e382
DW
1252 if (frombio)
1253 flags |= ASYNC_TX_FENCE;
1254 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1255
7988613b
KO
1256 bio_for_each_segment(bvl, bio, iter) {
1257 int len = bvl.bv_len;
91c00924
DW
1258 int clen;
1259 int b_offset = 0;
1260
1261 if (page_offset < 0) {
1262 b_offset = -page_offset;
1263 page_offset += b_offset;
1264 len -= b_offset;
1265 }
1266
1267 if (len > 0 && page_offset + len > STRIPE_SIZE)
1268 clen = STRIPE_SIZE - page_offset;
1269 else
1270 clen = len;
1271
1272 if (clen > 0) {
7988613b
KO
1273 b_offset += bvl.bv_offset;
1274 bio_page = bvl.bv_page;
d592a996
SL
1275 if (frombio) {
1276 if (sh->raid_conf->skip_copy &&
1277 b_offset == 0 && page_offset == 0 &&
1e6d690b
SL
1278 clen == STRIPE_SIZE &&
1279 !no_skipcopy)
d592a996
SL
1280 *page = bio_page;
1281 else
1282 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1283 b_offset, clen, &submit);
d592a996
SL
1284 } else
1285 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1286 page_offset, clen, &submit);
91c00924 1287 }
a08abd8c
DW
1288 /* chain the operations */
1289 submit.depend_tx = tx;
1290
91c00924
DW
1291 if (clen < len) /* hit end of page */
1292 break;
1293 page_offset += len;
1294 }
1295
1296 return tx;
1297}
1298
1299static void ops_complete_biofill(void *stripe_head_ref)
1300{
1301 struct stripe_head *sh = stripe_head_ref;
e4d84909 1302 int i;
91c00924 1303
e46b272b 1304 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1305 (unsigned long long)sh->sector);
1306
1307 /* clear completed biofills */
1308 for (i = sh->disks; i--; ) {
1309 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1310
1311 /* acknowledge completion of a biofill operation */
e4d84909
DW
1312 /* and check if we need to reply to a read request,
1313 * new R5_Wantfill requests are held off until
83de75cc 1314 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1315 */
1316 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1317 struct bio *rbi, *rbi2;
91c00924 1318
91c00924
DW
1319 BUG_ON(!dev->read);
1320 rbi = dev->read;
1321 dev->read = NULL;
4f024f37 1322 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1323 dev->sector + STRIPE_SECTORS) {
1324 rbi2 = r5_next_bio(rbi, dev->sector);
016c76ac 1325 bio_endio(rbi);
91c00924
DW
1326 rbi = rbi2;
1327 }
1328 }
1329 }
83de75cc 1330 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1331
e4d84909 1332 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1333 raid5_release_stripe(sh);
91c00924
DW
1334}
1335
1336static void ops_run_biofill(struct stripe_head *sh)
1337{
1338 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1339 struct async_submit_ctl submit;
91c00924
DW
1340 int i;
1341
59fc630b 1342 BUG_ON(sh->batch_head);
e46b272b 1343 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1344 (unsigned long long)sh->sector);
1345
1346 for (i = sh->disks; i--; ) {
1347 struct r5dev *dev = &sh->dev[i];
1348 if (test_bit(R5_Wantfill, &dev->flags)) {
1349 struct bio *rbi;
b17459c0 1350 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1351 dev->read = rbi = dev->toread;
1352 dev->toread = NULL;
b17459c0 1353 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1354 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1355 dev->sector + STRIPE_SECTORS) {
d592a996 1356 tx = async_copy_data(0, rbi, &dev->page,
1e6d690b 1357 dev->sector, tx, sh, 0);
91c00924
DW
1358 rbi = r5_next_bio(rbi, dev->sector);
1359 }
1360 }
1361 }
1362
1363 atomic_inc(&sh->count);
a08abd8c
DW
1364 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1365 async_trigger_callback(&submit);
91c00924
DW
1366}
1367
4e7d2c0a 1368static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1369{
4e7d2c0a 1370 struct r5dev *tgt;
91c00924 1371
4e7d2c0a
DW
1372 if (target < 0)
1373 return;
91c00924 1374
4e7d2c0a 1375 tgt = &sh->dev[target];
91c00924
DW
1376 set_bit(R5_UPTODATE, &tgt->flags);
1377 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1378 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1379}
1380
ac6b53b6 1381static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1382{
1383 struct stripe_head *sh = stripe_head_ref;
91c00924 1384
e46b272b 1385 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1386 (unsigned long long)sh->sector);
1387
ac6b53b6 1388 /* mark the computed target(s) as uptodate */
4e7d2c0a 1389 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1390 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1391
ecc65c9b
DW
1392 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1393 if (sh->check_state == check_state_compute_run)
1394 sh->check_state = check_state_compute_result;
91c00924 1395 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1396 raid5_release_stripe(sh);
91c00924
DW
1397}
1398
d6f38f31
DW
1399/* return a pointer to the address conversion region of the scribble buffer */
1400static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1401 struct raid5_percpu *percpu, int i)
d6f38f31 1402{
46d5b785 1403 void *addr;
1404
1405 addr = flex_array_get(percpu->scribble, i);
1406 return addr + sizeof(struct page *) * (sh->disks + 2);
1407}
1408
1409/* return a pointer to the address conversion region of the scribble buffer */
1410static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1411{
1412 void *addr;
1413
1414 addr = flex_array_get(percpu->scribble, i);
1415 return addr;
d6f38f31
DW
1416}
1417
1418static struct dma_async_tx_descriptor *
1419ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1420{
91c00924 1421 int disks = sh->disks;
46d5b785 1422 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1423 int target = sh->ops.target;
1424 struct r5dev *tgt = &sh->dev[target];
1425 struct page *xor_dest = tgt->page;
1426 int count = 0;
1427 struct dma_async_tx_descriptor *tx;
a08abd8c 1428 struct async_submit_ctl submit;
91c00924
DW
1429 int i;
1430
59fc630b 1431 BUG_ON(sh->batch_head);
1432
91c00924 1433 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1434 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1435 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1436
1437 for (i = disks; i--; )
1438 if (i != target)
1439 xor_srcs[count++] = sh->dev[i].page;
1440
1441 atomic_inc(&sh->count);
1442
0403e382 1443 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1444 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1445 if (unlikely(count == 1))
a08abd8c 1446 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1447 else
a08abd8c 1448 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1449
91c00924
DW
1450 return tx;
1451}
1452
ac6b53b6
DW
1453/* set_syndrome_sources - populate source buffers for gen_syndrome
1454 * @srcs - (struct page *) array of size sh->disks
1455 * @sh - stripe_head to parse
1456 *
1457 * Populates srcs in proper layout order for the stripe and returns the
1458 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1459 * destination buffer is recorded in srcs[count] and the Q destination
1460 * is recorded in srcs[count+1]].
1461 */
584acdd4
MS
1462static int set_syndrome_sources(struct page **srcs,
1463 struct stripe_head *sh,
1464 int srctype)
ac6b53b6
DW
1465{
1466 int disks = sh->disks;
1467 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1468 int d0_idx = raid6_d0(sh);
1469 int count;
1470 int i;
1471
1472 for (i = 0; i < disks; i++)
5dd33c9a 1473 srcs[i] = NULL;
ac6b53b6
DW
1474
1475 count = 0;
1476 i = d0_idx;
1477 do {
1478 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1479 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1480
584acdd4
MS
1481 if (i == sh->qd_idx || i == sh->pd_idx ||
1482 (srctype == SYNDROME_SRC_ALL) ||
1483 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1484 (test_bit(R5_Wantdrain, &dev->flags) ||
1485 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1486 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1487 (dev->written ||
1488 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1489 if (test_bit(R5_InJournal, &dev->flags))
1490 srcs[slot] = sh->dev[i].orig_page;
1491 else
1492 srcs[slot] = sh->dev[i].page;
1493 }
ac6b53b6
DW
1494 i = raid6_next_disk(i, disks);
1495 } while (i != d0_idx);
ac6b53b6 1496
e4424fee 1497 return syndrome_disks;
ac6b53b6
DW
1498}
1499
1500static struct dma_async_tx_descriptor *
1501ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1502{
1503 int disks = sh->disks;
46d5b785 1504 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1505 int target;
1506 int qd_idx = sh->qd_idx;
1507 struct dma_async_tx_descriptor *tx;
1508 struct async_submit_ctl submit;
1509 struct r5dev *tgt;
1510 struct page *dest;
1511 int i;
1512 int count;
1513
59fc630b 1514 BUG_ON(sh->batch_head);
ac6b53b6
DW
1515 if (sh->ops.target < 0)
1516 target = sh->ops.target2;
1517 else if (sh->ops.target2 < 0)
1518 target = sh->ops.target;
91c00924 1519 else
ac6b53b6
DW
1520 /* we should only have one valid target */
1521 BUG();
1522 BUG_ON(target < 0);
1523 pr_debug("%s: stripe %llu block: %d\n",
1524 __func__, (unsigned long long)sh->sector, target);
1525
1526 tgt = &sh->dev[target];
1527 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1528 dest = tgt->page;
1529
1530 atomic_inc(&sh->count);
1531
1532 if (target == qd_idx) {
584acdd4 1533 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1534 blocks[count] = NULL; /* regenerating p is not necessary */
1535 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1536 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1537 ops_complete_compute, sh,
46d5b785 1538 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1539 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1540 } else {
1541 /* Compute any data- or p-drive using XOR */
1542 count = 0;
1543 for (i = disks; i-- ; ) {
1544 if (i == target || i == qd_idx)
1545 continue;
1546 blocks[count++] = sh->dev[i].page;
1547 }
1548
0403e382
DW
1549 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1550 NULL, ops_complete_compute, sh,
46d5b785 1551 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1552 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1553 }
91c00924 1554
91c00924
DW
1555 return tx;
1556}
1557
ac6b53b6
DW
1558static struct dma_async_tx_descriptor *
1559ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1560{
1561 int i, count, disks = sh->disks;
1562 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1563 int d0_idx = raid6_d0(sh);
1564 int faila = -1, failb = -1;
1565 int target = sh->ops.target;
1566 int target2 = sh->ops.target2;
1567 struct r5dev *tgt = &sh->dev[target];
1568 struct r5dev *tgt2 = &sh->dev[target2];
1569 struct dma_async_tx_descriptor *tx;
46d5b785 1570 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1571 struct async_submit_ctl submit;
1572
59fc630b 1573 BUG_ON(sh->batch_head);
ac6b53b6
DW
1574 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1575 __func__, (unsigned long long)sh->sector, target, target2);
1576 BUG_ON(target < 0 || target2 < 0);
1577 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1578 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1579
6c910a78 1580 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1581 * slot number conversion for 'faila' and 'failb'
1582 */
1583 for (i = 0; i < disks ; i++)
5dd33c9a 1584 blocks[i] = NULL;
ac6b53b6
DW
1585 count = 0;
1586 i = d0_idx;
1587 do {
1588 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1589
1590 blocks[slot] = sh->dev[i].page;
1591
1592 if (i == target)
1593 faila = slot;
1594 if (i == target2)
1595 failb = slot;
1596 i = raid6_next_disk(i, disks);
1597 } while (i != d0_idx);
ac6b53b6
DW
1598
1599 BUG_ON(faila == failb);
1600 if (failb < faila)
1601 swap(faila, failb);
1602 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1603 __func__, (unsigned long long)sh->sector, faila, failb);
1604
1605 atomic_inc(&sh->count);
1606
1607 if (failb == syndrome_disks+1) {
1608 /* Q disk is one of the missing disks */
1609 if (faila == syndrome_disks) {
1610 /* Missing P+Q, just recompute */
0403e382
DW
1611 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1612 ops_complete_compute, sh,
46d5b785 1613 to_addr_conv(sh, percpu, 0));
e4424fee 1614 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1615 STRIPE_SIZE, &submit);
1616 } else {
1617 struct page *dest;
1618 int data_target;
1619 int qd_idx = sh->qd_idx;
1620
1621 /* Missing D+Q: recompute D from P, then recompute Q */
1622 if (target == qd_idx)
1623 data_target = target2;
1624 else
1625 data_target = target;
1626
1627 count = 0;
1628 for (i = disks; i-- ; ) {
1629 if (i == data_target || i == qd_idx)
1630 continue;
1631 blocks[count++] = sh->dev[i].page;
1632 }
1633 dest = sh->dev[data_target].page;
0403e382
DW
1634 init_async_submit(&submit,
1635 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1636 NULL, NULL, NULL,
46d5b785 1637 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1638 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1639 &submit);
1640
584acdd4 1641 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1642 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1643 ops_complete_compute, sh,
46d5b785 1644 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1645 return async_gen_syndrome(blocks, 0, count+2,
1646 STRIPE_SIZE, &submit);
1647 }
ac6b53b6 1648 } else {
6c910a78
DW
1649 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1650 ops_complete_compute, sh,
46d5b785 1651 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1652 if (failb == syndrome_disks) {
1653 /* We're missing D+P. */
1654 return async_raid6_datap_recov(syndrome_disks+2,
1655 STRIPE_SIZE, faila,
1656 blocks, &submit);
1657 } else {
1658 /* We're missing D+D. */
1659 return async_raid6_2data_recov(syndrome_disks+2,
1660 STRIPE_SIZE, faila, failb,
1661 blocks, &submit);
1662 }
ac6b53b6
DW
1663 }
1664}
1665
91c00924
DW
1666static void ops_complete_prexor(void *stripe_head_ref)
1667{
1668 struct stripe_head *sh = stripe_head_ref;
1669
e46b272b 1670 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1671 (unsigned long long)sh->sector);
1e6d690b
SL
1672
1673 if (r5c_is_writeback(sh->raid_conf->log))
1674 /*
1675 * raid5-cache write back uses orig_page during prexor.
1676 * After prexor, it is time to free orig_page
1677 */
1678 r5c_release_extra_page(sh);
91c00924
DW
1679}
1680
1681static struct dma_async_tx_descriptor *
584acdd4
MS
1682ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1683 struct dma_async_tx_descriptor *tx)
91c00924 1684{
91c00924 1685 int disks = sh->disks;
46d5b785 1686 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1687 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1688 struct async_submit_ctl submit;
91c00924
DW
1689
1690 /* existing parity data subtracted */
1691 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1692
59fc630b 1693 BUG_ON(sh->batch_head);
e46b272b 1694 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1695 (unsigned long long)sh->sector);
1696
1697 for (i = disks; i--; ) {
1698 struct r5dev *dev = &sh->dev[i];
1699 /* Only process blocks that are known to be uptodate */
1e6d690b
SL
1700 if (test_bit(R5_InJournal, &dev->flags))
1701 xor_srcs[count++] = dev->orig_page;
1702 else if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1703 xor_srcs[count++] = dev->page;
1704 }
1705
0403e382 1706 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1707 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1708 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1709
1710 return tx;
1711}
1712
584acdd4
MS
1713static struct dma_async_tx_descriptor *
1714ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1715 struct dma_async_tx_descriptor *tx)
1716{
1717 struct page **blocks = to_addr_page(percpu, 0);
1718 int count;
1719 struct async_submit_ctl submit;
1720
1721 pr_debug("%s: stripe %llu\n", __func__,
1722 (unsigned long long)sh->sector);
1723
1724 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1725
1726 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1727 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1728 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1729
1730 return tx;
1731}
1732
91c00924 1733static struct dma_async_tx_descriptor *
d8ee0728 1734ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1735{
1e6d690b 1736 struct r5conf *conf = sh->raid_conf;
91c00924 1737 int disks = sh->disks;
d8ee0728 1738 int i;
59fc630b 1739 struct stripe_head *head_sh = sh;
91c00924 1740
e46b272b 1741 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1742 (unsigned long long)sh->sector);
1743
1744 for (i = disks; i--; ) {
59fc630b 1745 struct r5dev *dev;
91c00924 1746 struct bio *chosen;
91c00924 1747
59fc630b 1748 sh = head_sh;
1749 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1750 struct bio *wbi;
1751
59fc630b 1752again:
1753 dev = &sh->dev[i];
1e6d690b
SL
1754 /*
1755 * clear R5_InJournal, so when rewriting a page in
1756 * journal, it is not skipped by r5l_log_stripe()
1757 */
1758 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1759 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1760 chosen = dev->towrite;
1761 dev->towrite = NULL;
7a87f434 1762 sh->overwrite_disks = 0;
91c00924
DW
1763 BUG_ON(dev->written);
1764 wbi = dev->written = chosen;
b17459c0 1765 spin_unlock_irq(&sh->stripe_lock);
d592a996 1766 WARN_ON(dev->page != dev->orig_page);
91c00924 1767
4f024f37 1768 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1769 dev->sector + STRIPE_SECTORS) {
1eff9d32 1770 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1771 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1772 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1773 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1774 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1775 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1776 else {
1777 tx = async_copy_data(1, wbi, &dev->page,
1e6d690b
SL
1778 dev->sector, tx, sh,
1779 r5c_is_writeback(conf->log));
1780 if (dev->page != dev->orig_page &&
1781 !r5c_is_writeback(conf->log)) {
d592a996
SL
1782 set_bit(R5_SkipCopy, &dev->flags);
1783 clear_bit(R5_UPTODATE, &dev->flags);
1784 clear_bit(R5_OVERWRITE, &dev->flags);
1785 }
1786 }
91c00924
DW
1787 wbi = r5_next_bio(wbi, dev->sector);
1788 }
59fc630b 1789
1790 if (head_sh->batch_head) {
1791 sh = list_first_entry(&sh->batch_list,
1792 struct stripe_head,
1793 batch_list);
1794 if (sh == head_sh)
1795 continue;
1796 goto again;
1797 }
91c00924
DW
1798 }
1799 }
1800
1801 return tx;
1802}
1803
ac6b53b6 1804static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1805{
1806 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1807 int disks = sh->disks;
1808 int pd_idx = sh->pd_idx;
1809 int qd_idx = sh->qd_idx;
1810 int i;
9e444768 1811 bool fua = false, sync = false, discard = false;
91c00924 1812
e46b272b 1813 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1814 (unsigned long long)sh->sector);
1815
bc0934f0 1816 for (i = disks; i--; ) {
e9c7469b 1817 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1818 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1819 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1820 }
e9c7469b 1821
91c00924
DW
1822 for (i = disks; i--; ) {
1823 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1824
e9c7469b 1825 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1826 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1827 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1828 if (fua)
1829 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1830 if (sync)
1831 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1832 }
91c00924
DW
1833 }
1834
d8ee0728
DW
1835 if (sh->reconstruct_state == reconstruct_state_drain_run)
1836 sh->reconstruct_state = reconstruct_state_drain_result;
1837 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1838 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1839 else {
1840 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1841 sh->reconstruct_state = reconstruct_state_result;
1842 }
91c00924
DW
1843
1844 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1845 raid5_release_stripe(sh);
91c00924
DW
1846}
1847
1848static void
ac6b53b6
DW
1849ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1850 struct dma_async_tx_descriptor *tx)
91c00924 1851{
91c00924 1852 int disks = sh->disks;
59fc630b 1853 struct page **xor_srcs;
a08abd8c 1854 struct async_submit_ctl submit;
59fc630b 1855 int count, pd_idx = sh->pd_idx, i;
91c00924 1856 struct page *xor_dest;
d8ee0728 1857 int prexor = 0;
91c00924 1858 unsigned long flags;
59fc630b 1859 int j = 0;
1860 struct stripe_head *head_sh = sh;
1861 int last_stripe;
91c00924 1862
e46b272b 1863 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1864 (unsigned long long)sh->sector);
1865
620125f2
SL
1866 for (i = 0; i < sh->disks; i++) {
1867 if (pd_idx == i)
1868 continue;
1869 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870 break;
1871 }
1872 if (i >= sh->disks) {
1873 atomic_inc(&sh->count);
620125f2
SL
1874 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1875 ops_complete_reconstruct(sh);
1876 return;
1877 }
59fc630b 1878again:
1879 count = 0;
1880 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1881 /* check if prexor is active which means only process blocks
1882 * that are part of a read-modify-write (written)
1883 */
59fc630b 1884 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1885 prexor = 1;
91c00924
DW
1886 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1887 for (i = disks; i--; ) {
1888 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
1889 if (head_sh->dev[i].written ||
1890 test_bit(R5_InJournal, &head_sh->dev[i].flags))
91c00924
DW
1891 xor_srcs[count++] = dev->page;
1892 }
1893 } else {
1894 xor_dest = sh->dev[pd_idx].page;
1895 for (i = disks; i--; ) {
1896 struct r5dev *dev = &sh->dev[i];
1897 if (i != pd_idx)
1898 xor_srcs[count++] = dev->page;
1899 }
1900 }
1901
91c00924
DW
1902 /* 1/ if we prexor'd then the dest is reused as a source
1903 * 2/ if we did not prexor then we are redoing the parity
1904 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905 * for the synchronous xor case
1906 */
59fc630b 1907 last_stripe = !head_sh->batch_head ||
1908 list_first_entry(&sh->batch_list,
1909 struct stripe_head, batch_list) == head_sh;
1910 if (last_stripe) {
1911 flags = ASYNC_TX_ACK |
1912 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1913
1914 atomic_inc(&head_sh->count);
1915 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1916 to_addr_conv(sh, percpu, j));
1917 } else {
1918 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1919 init_async_submit(&submit, flags, tx, NULL, NULL,
1920 to_addr_conv(sh, percpu, j));
1921 }
91c00924 1922
a08abd8c
DW
1923 if (unlikely(count == 1))
1924 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1925 else
1926 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1927 if (!last_stripe) {
1928 j++;
1929 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1930 batch_list);
1931 goto again;
1932 }
91c00924
DW
1933}
1934
ac6b53b6
DW
1935static void
1936ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1937 struct dma_async_tx_descriptor *tx)
1938{
1939 struct async_submit_ctl submit;
59fc630b 1940 struct page **blocks;
1941 int count, i, j = 0;
1942 struct stripe_head *head_sh = sh;
1943 int last_stripe;
584acdd4
MS
1944 int synflags;
1945 unsigned long txflags;
ac6b53b6
DW
1946
1947 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1948
620125f2
SL
1949 for (i = 0; i < sh->disks; i++) {
1950 if (sh->pd_idx == i || sh->qd_idx == i)
1951 continue;
1952 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1953 break;
1954 }
1955 if (i >= sh->disks) {
1956 atomic_inc(&sh->count);
620125f2
SL
1957 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1958 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1959 ops_complete_reconstruct(sh);
1960 return;
1961 }
1962
59fc630b 1963again:
1964 blocks = to_addr_page(percpu, j);
584acdd4
MS
1965
1966 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1967 synflags = SYNDROME_SRC_WRITTEN;
1968 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1969 } else {
1970 synflags = SYNDROME_SRC_ALL;
1971 txflags = ASYNC_TX_ACK;
1972 }
1973
1974 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1975 last_stripe = !head_sh->batch_head ||
1976 list_first_entry(&sh->batch_list,
1977 struct stripe_head, batch_list) == head_sh;
1978
1979 if (last_stripe) {
1980 atomic_inc(&head_sh->count);
584acdd4 1981 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1982 head_sh, to_addr_conv(sh, percpu, j));
1983 } else
1984 init_async_submit(&submit, 0, tx, NULL, NULL,
1985 to_addr_conv(sh, percpu, j));
48769695 1986 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1987 if (!last_stripe) {
1988 j++;
1989 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1990 batch_list);
1991 goto again;
1992 }
91c00924
DW
1993}
1994
1995static void ops_complete_check(void *stripe_head_ref)
1996{
1997 struct stripe_head *sh = stripe_head_ref;
91c00924 1998
e46b272b 1999 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2000 (unsigned long long)sh->sector);
2001
ecc65c9b 2002 sh->check_state = check_state_check_result;
91c00924 2003 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2004 raid5_release_stripe(sh);
91c00924
DW
2005}
2006
ac6b53b6 2007static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 2008{
91c00924 2009 int disks = sh->disks;
ac6b53b6
DW
2010 int pd_idx = sh->pd_idx;
2011 int qd_idx = sh->qd_idx;
2012 struct page *xor_dest;
46d5b785 2013 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 2014 struct dma_async_tx_descriptor *tx;
a08abd8c 2015 struct async_submit_ctl submit;
ac6b53b6
DW
2016 int count;
2017 int i;
91c00924 2018
e46b272b 2019 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2020 (unsigned long long)sh->sector);
2021
59fc630b 2022 BUG_ON(sh->batch_head);
ac6b53b6
DW
2023 count = 0;
2024 xor_dest = sh->dev[pd_idx].page;
2025 xor_srcs[count++] = xor_dest;
91c00924 2026 for (i = disks; i--; ) {
ac6b53b6
DW
2027 if (i == pd_idx || i == qd_idx)
2028 continue;
2029 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2030 }
2031
d6f38f31 2032 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2033 to_addr_conv(sh, percpu, 0));
099f53cb 2034 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 2035 &sh->ops.zero_sum_result, &submit);
91c00924 2036
91c00924 2037 atomic_inc(&sh->count);
a08abd8c
DW
2038 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2039 tx = async_trigger_callback(&submit);
91c00924
DW
2040}
2041
ac6b53b6
DW
2042static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2043{
46d5b785 2044 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
2045 struct async_submit_ctl submit;
2046 int count;
2047
2048 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2049 (unsigned long long)sh->sector, checkp);
2050
59fc630b 2051 BUG_ON(sh->batch_head);
584acdd4 2052 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2053 if (!checkp)
2054 srcs[count] = NULL;
91c00924 2055
91c00924 2056 atomic_inc(&sh->count);
ac6b53b6 2057 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2058 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
2059 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2060 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
2061}
2062
51acbcec 2063static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2064{
2065 int overlap_clear = 0, i, disks = sh->disks;
2066 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2067 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2068 int level = conf->level;
d6f38f31
DW
2069 struct raid5_percpu *percpu;
2070 unsigned long cpu;
91c00924 2071
d6f38f31
DW
2072 cpu = get_cpu();
2073 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 2074 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2075 ops_run_biofill(sh);
2076 overlap_clear++;
2077 }
2078
7b3a871e 2079 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2080 if (level < 6)
2081 tx = ops_run_compute5(sh, percpu);
2082 else {
2083 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2084 tx = ops_run_compute6_1(sh, percpu);
2085 else
2086 tx = ops_run_compute6_2(sh, percpu);
2087 }
2088 /* terminate the chain if reconstruct is not set to be run */
2089 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2090 async_tx_ack(tx);
2091 }
91c00924 2092
3418d036
AP
2093 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2094 tx = ops_run_partial_parity(sh, percpu, tx);
2095
584acdd4
MS
2096 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2097 if (level < 6)
2098 tx = ops_run_prexor5(sh, percpu, tx);
2099 else
2100 tx = ops_run_prexor6(sh, percpu, tx);
2101 }
91c00924 2102
600aa109 2103 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2104 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2105 overlap_clear++;
2106 }
2107
ac6b53b6
DW
2108 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2109 if (level < 6)
2110 ops_run_reconstruct5(sh, percpu, tx);
2111 else
2112 ops_run_reconstruct6(sh, percpu, tx);
2113 }
91c00924 2114
ac6b53b6
DW
2115 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2116 if (sh->check_state == check_state_run)
2117 ops_run_check_p(sh, percpu);
2118 else if (sh->check_state == check_state_run_q)
2119 ops_run_check_pq(sh, percpu, 0);
2120 else if (sh->check_state == check_state_run_pq)
2121 ops_run_check_pq(sh, percpu, 1);
2122 else
2123 BUG();
2124 }
91c00924 2125
59fc630b 2126 if (overlap_clear && !sh->batch_head)
91c00924
DW
2127 for (i = disks; i--; ) {
2128 struct r5dev *dev = &sh->dev[i];
2129 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2130 wake_up(&sh->raid_conf->wait_for_overlap);
2131 }
d6f38f31 2132 put_cpu();
91c00924
DW
2133}
2134
5f9d1fde
SL
2135static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2136 int disks)
f18c1a35
N
2137{
2138 struct stripe_head *sh;
5f9d1fde 2139 int i;
f18c1a35
N
2140
2141 sh = kmem_cache_zalloc(sc, gfp);
2142 if (sh) {
2143 spin_lock_init(&sh->stripe_lock);
2144 spin_lock_init(&sh->batch_lock);
2145 INIT_LIST_HEAD(&sh->batch_list);
2146 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2147 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2148 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2149 atomic_set(&sh->count, 1);
a39f7afd 2150 sh->log_start = MaxSector;
5f9d1fde
SL
2151 for (i = 0; i < disks; i++) {
2152 struct r5dev *dev = &sh->dev[i];
2153
3a83f467
ML
2154 bio_init(&dev->req, &dev->vec, 1);
2155 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2156 }
f18c1a35
N
2157 }
2158 return sh;
2159}
486f0644 2160static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2161{
2162 struct stripe_head *sh;
f18c1a35 2163
5f9d1fde 2164 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
3f294f4f
N
2165 if (!sh)
2166 return 0;
6ce32846 2167
3f294f4f 2168 sh->raid_conf = conf;
3f294f4f 2169
a9683a79 2170 if (grow_buffers(sh, gfp)) {
e4e11e38 2171 shrink_buffers(sh);
3f294f4f
N
2172 kmem_cache_free(conf->slab_cache, sh);
2173 return 0;
2174 }
486f0644
N
2175 sh->hash_lock_index =
2176 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2177 /* we just created an active stripe so... */
3f294f4f 2178 atomic_inc(&conf->active_stripes);
59fc630b 2179
6d036f7d 2180 raid5_release_stripe(sh);
486f0644 2181 conf->max_nr_stripes++;
3f294f4f
N
2182 return 1;
2183}
2184
d1688a6d 2185static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2186{
e18b890b 2187 struct kmem_cache *sc;
5e5e3e78 2188 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2189
f4be6b43
N
2190 if (conf->mddev->gendisk)
2191 sprintf(conf->cache_name[0],
2192 "raid%d-%s", conf->level, mdname(conf->mddev));
2193 else
2194 sprintf(conf->cache_name[0],
2195 "raid%d-%p", conf->level, conf->mddev);
2196 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2197
ad01c9e3
N
2198 conf->active_name = 0;
2199 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2200 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2201 0, 0, NULL);
1da177e4
LT
2202 if (!sc)
2203 return 1;
2204 conf->slab_cache = sc;
ad01c9e3 2205 conf->pool_size = devs;
486f0644
N
2206 while (num--)
2207 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2208 return 1;
486f0644 2209
1da177e4
LT
2210 return 0;
2211}
29269553 2212
d6f38f31
DW
2213/**
2214 * scribble_len - return the required size of the scribble region
2215 * @num - total number of disks in the array
2216 *
2217 * The size must be enough to contain:
2218 * 1/ a struct page pointer for each device in the array +2
2219 * 2/ room to convert each entry in (1) to its corresponding dma
2220 * (dma_map_page()) or page (page_address()) address.
2221 *
2222 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2223 * calculate over all devices (not just the data blocks), using zeros in place
2224 * of the P and Q blocks.
2225 */
46d5b785 2226static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2227{
46d5b785 2228 struct flex_array *ret;
d6f38f31
DW
2229 size_t len;
2230
2231 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2232 ret = flex_array_alloc(len, cnt, flags);
2233 if (!ret)
2234 return NULL;
2235 /* always prealloc all elements, so no locking is required */
2236 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2237 flex_array_free(ret);
2238 return NULL;
2239 }
2240 return ret;
d6f38f31
DW
2241}
2242
738a2738
N
2243static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2244{
2245 unsigned long cpu;
2246 int err = 0;
2247
27a353c0
SL
2248 /*
2249 * Never shrink. And mddev_suspend() could deadlock if this is called
2250 * from raid5d. In that case, scribble_disks and scribble_sectors
2251 * should equal to new_disks and new_sectors
2252 */
2253 if (conf->scribble_disks >= new_disks &&
2254 conf->scribble_sectors >= new_sectors)
2255 return 0;
738a2738
N
2256 mddev_suspend(conf->mddev);
2257 get_online_cpus();
2258 for_each_present_cpu(cpu) {
2259 struct raid5_percpu *percpu;
2260 struct flex_array *scribble;
2261
2262 percpu = per_cpu_ptr(conf->percpu, cpu);
2263 scribble = scribble_alloc(new_disks,
2264 new_sectors / STRIPE_SECTORS,
2265 GFP_NOIO);
2266
2267 if (scribble) {
2268 flex_array_free(percpu->scribble);
2269 percpu->scribble = scribble;
2270 } else {
2271 err = -ENOMEM;
2272 break;
2273 }
2274 }
2275 put_online_cpus();
2276 mddev_resume(conf->mddev);
27a353c0
SL
2277 if (!err) {
2278 conf->scribble_disks = new_disks;
2279 conf->scribble_sectors = new_sectors;
2280 }
738a2738
N
2281 return err;
2282}
2283
d1688a6d 2284static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2285{
2286 /* Make all the stripes able to hold 'newsize' devices.
2287 * New slots in each stripe get 'page' set to a new page.
2288 *
2289 * This happens in stages:
2290 * 1/ create a new kmem_cache and allocate the required number of
2291 * stripe_heads.
83f0d77a 2292 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2293 * to the new stripe_heads. This will have the side effect of
2294 * freezing the array as once all stripe_heads have been collected,
2295 * no IO will be possible. Old stripe heads are freed once their
2296 * pages have been transferred over, and the old kmem_cache is
2297 * freed when all stripes are done.
2298 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2299 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2300 * 4/ allocate new pages for the new slots in the new stripe_heads.
2301 * If this fails, we don't bother trying the shrink the
2302 * stripe_heads down again, we just leave them as they are.
2303 * As each stripe_head is processed the new one is released into
2304 * active service.
2305 *
2306 * Once step2 is started, we cannot afford to wait for a write,
2307 * so we use GFP_NOIO allocations.
2308 */
2309 struct stripe_head *osh, *nsh;
2310 LIST_HEAD(newstripes);
2311 struct disk_info *ndisks;
b5470dc5 2312 int err;
e18b890b 2313 struct kmem_cache *sc;
ad01c9e3 2314 int i;
566c09c5 2315 int hash, cnt;
ad01c9e3
N
2316
2317 if (newsize <= conf->pool_size)
2318 return 0; /* never bother to shrink */
2319
b5470dc5
DW
2320 err = md_allow_write(conf->mddev);
2321 if (err)
2322 return err;
2a2275d6 2323
ad01c9e3
N
2324 /* Step 1 */
2325 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2326 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2327 0, 0, NULL);
ad01c9e3
N
2328 if (!sc)
2329 return -ENOMEM;
2330
2d5b569b
N
2331 /* Need to ensure auto-resizing doesn't interfere */
2332 mutex_lock(&conf->cache_size_mutex);
2333
ad01c9e3 2334 for (i = conf->max_nr_stripes; i; i--) {
5f9d1fde 2335 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
ad01c9e3
N
2336 if (!nsh)
2337 break;
2338
ad01c9e3 2339 nsh->raid_conf = conf;
ad01c9e3
N
2340 list_add(&nsh->lru, &newstripes);
2341 }
2342 if (i) {
2343 /* didn't get enough, give up */
2344 while (!list_empty(&newstripes)) {
2345 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2346 list_del(&nsh->lru);
2347 kmem_cache_free(sc, nsh);
2348 }
2349 kmem_cache_destroy(sc);
2d5b569b 2350 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2351 return -ENOMEM;
2352 }
2353 /* Step 2 - Must use GFP_NOIO now.
2354 * OK, we have enough stripes, start collecting inactive
2355 * stripes and copying them over
2356 */
566c09c5
SL
2357 hash = 0;
2358 cnt = 0;
ad01c9e3 2359 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2360 lock_device_hash_lock(conf, hash);
6ab2a4b8 2361 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2362 !list_empty(conf->inactive_list + hash),
2363 unlock_device_hash_lock(conf, hash),
2364 lock_device_hash_lock(conf, hash));
2365 osh = get_free_stripe(conf, hash);
2366 unlock_device_hash_lock(conf, hash);
f18c1a35 2367
d592a996 2368 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2369 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2370 nsh->dev[i].orig_page = osh->dev[i].page;
2371 }
566c09c5 2372 nsh->hash_lock_index = hash;
ad01c9e3 2373 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2374 cnt++;
2375 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2376 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2377 hash++;
2378 cnt = 0;
2379 }
ad01c9e3
N
2380 }
2381 kmem_cache_destroy(conf->slab_cache);
2382
2383 /* Step 3.
2384 * At this point, we are holding all the stripes so the array
2385 * is completely stalled, so now is a good time to resize
d6f38f31 2386 * conf->disks and the scribble region
ad01c9e3
N
2387 */
2388 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2389 if (ndisks) {
d7bd398e 2390 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2391 ndisks[i] = conf->disks[i];
d7bd398e
SL
2392
2393 for (i = conf->pool_size; i < newsize; i++) {
2394 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2395 if (!ndisks[i].extra_page)
2396 err = -ENOMEM;
2397 }
2398
2399 if (err) {
2400 for (i = conf->pool_size; i < newsize; i++)
2401 if (ndisks[i].extra_page)
2402 put_page(ndisks[i].extra_page);
2403 kfree(ndisks);
2404 } else {
2405 kfree(conf->disks);
2406 conf->disks = ndisks;
2407 }
ad01c9e3
N
2408 } else
2409 err = -ENOMEM;
2410
2d5b569b 2411 mutex_unlock(&conf->cache_size_mutex);
583da48e
DY
2412
2413 conf->slab_cache = sc;
2414 conf->active_name = 1-conf->active_name;
2415
ad01c9e3
N
2416 /* Step 4, return new stripes to service */
2417 while(!list_empty(&newstripes)) {
2418 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2419 list_del_init(&nsh->lru);
d6f38f31 2420
ad01c9e3
N
2421 for (i=conf->raid_disks; i < newsize; i++)
2422 if (nsh->dev[i].page == NULL) {
2423 struct page *p = alloc_page(GFP_NOIO);
2424 nsh->dev[i].page = p;
d592a996 2425 nsh->dev[i].orig_page = p;
ad01c9e3
N
2426 if (!p)
2427 err = -ENOMEM;
2428 }
6d036f7d 2429 raid5_release_stripe(nsh);
ad01c9e3
N
2430 }
2431 /* critical section pass, GFP_NOIO no longer needed */
2432
6e9eac2d
N
2433 if (!err)
2434 conf->pool_size = newsize;
ad01c9e3
N
2435 return err;
2436}
1da177e4 2437
486f0644 2438static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2439{
2440 struct stripe_head *sh;
49895bcc 2441 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2442
566c09c5
SL
2443 spin_lock_irq(conf->hash_locks + hash);
2444 sh = get_free_stripe(conf, hash);
2445 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2446 if (!sh)
2447 return 0;
78bafebd 2448 BUG_ON(atomic_read(&sh->count));
e4e11e38 2449 shrink_buffers(sh);
3f294f4f
N
2450 kmem_cache_free(conf->slab_cache, sh);
2451 atomic_dec(&conf->active_stripes);
486f0644 2452 conf->max_nr_stripes--;
3f294f4f
N
2453 return 1;
2454}
2455
d1688a6d 2456static void shrink_stripes(struct r5conf *conf)
3f294f4f 2457{
486f0644
N
2458 while (conf->max_nr_stripes &&
2459 drop_one_stripe(conf))
2460 ;
3f294f4f 2461
644df1a8 2462 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2463 conf->slab_cache = NULL;
2464}
2465
4246a0b6 2466static void raid5_end_read_request(struct bio * bi)
1da177e4 2467{
99c0fb5f 2468 struct stripe_head *sh = bi->bi_private;
d1688a6d 2469 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2470 int disks = sh->disks, i;
d6950432 2471 char b[BDEVNAME_SIZE];
dd054fce 2472 struct md_rdev *rdev = NULL;
05616be5 2473 sector_t s;
1da177e4
LT
2474
2475 for (i=0 ; i<disks; i++)
2476 if (bi == &sh->dev[i].req)
2477 break;
2478
4246a0b6 2479 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2480 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2481 bi->bi_error);
1da177e4 2482 if (i == disks) {
5f9d1fde 2483 bio_reset(bi);
1da177e4 2484 BUG();
6712ecf8 2485 return;
1da177e4 2486 }
14a75d3e 2487 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2488 /* If replacement finished while this request was outstanding,
2489 * 'replacement' might be NULL already.
2490 * In that case it moved down to 'rdev'.
2491 * rdev is not removed until all requests are finished.
2492 */
14a75d3e 2493 rdev = conf->disks[i].replacement;
dd054fce 2494 if (!rdev)
14a75d3e 2495 rdev = conf->disks[i].rdev;
1da177e4 2496
05616be5
N
2497 if (use_new_offset(conf, sh))
2498 s = sh->sector + rdev->new_data_offset;
2499 else
2500 s = sh->sector + rdev->data_offset;
4246a0b6 2501 if (!bi->bi_error) {
1da177e4 2502 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2503 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2504 /* Note that this cannot happen on a
2505 * replacement device. We just fail those on
2506 * any error
2507 */
cc6167b4
N
2508 pr_info_ratelimited(
2509 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
8bda470e 2510 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2511 (unsigned long long)s,
8bda470e 2512 bdevname(rdev->bdev, b));
ddd5115f 2513 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2514 clear_bit(R5_ReadError, &sh->dev[i].flags);
2515 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2516 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2517 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2518
86aa1397
SL
2519 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2520 /*
2521 * end read for a page in journal, this
2522 * must be preparing for prexor in rmw
2523 */
2524 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2525
14a75d3e
N
2526 if (atomic_read(&rdev->read_errors))
2527 atomic_set(&rdev->read_errors, 0);
1da177e4 2528 } else {
14a75d3e 2529 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2530 int retry = 0;
2e8ac303 2531 int set_bad = 0;
d6950432 2532
1da177e4 2533 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2534 atomic_inc(&rdev->read_errors);
14a75d3e 2535 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2536 pr_warn_ratelimited(
2537 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2538 mdname(conf->mddev),
05616be5 2539 (unsigned long long)s,
14a75d3e 2540 bdn);
2e8ac303 2541 else if (conf->mddev->degraded >= conf->max_degraded) {
2542 set_bad = 1;
cc6167b4
N
2543 pr_warn_ratelimited(
2544 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2545 mdname(conf->mddev),
05616be5 2546 (unsigned long long)s,
8bda470e 2547 bdn);
2e8ac303 2548 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2549 /* Oh, no!!! */
2e8ac303 2550 set_bad = 1;
cc6167b4
N
2551 pr_warn_ratelimited(
2552 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2553 mdname(conf->mddev),
05616be5 2554 (unsigned long long)s,
8bda470e 2555 bdn);
2e8ac303 2556 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2557 > conf->max_nr_stripes)
cc6167b4 2558 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2559 mdname(conf->mddev), bdn);
ba22dcbf
N
2560 else
2561 retry = 1;
edfa1f65
BY
2562 if (set_bad && test_bit(In_sync, &rdev->flags)
2563 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2564 retry = 1;
ba22dcbf 2565 if (retry)
3f9e7c14 2566 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2567 set_bit(R5_ReadError, &sh->dev[i].flags);
2568 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2569 } else
2570 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2571 else {
4e5314b5
N
2572 clear_bit(R5_ReadError, &sh->dev[i].flags);
2573 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2574 if (!(set_bad
2575 && test_bit(In_sync, &rdev->flags)
2576 && rdev_set_badblocks(
2577 rdev, sh->sector, STRIPE_SECTORS, 0)))
2578 md_error(conf->mddev, rdev);
ba22dcbf 2579 }
1da177e4 2580 }
14a75d3e 2581 rdev_dec_pending(rdev, conf->mddev);
c9445555 2582 bio_reset(bi);
1da177e4
LT
2583 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2584 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2585 raid5_release_stripe(sh);
1da177e4
LT
2586}
2587
4246a0b6 2588static void raid5_end_write_request(struct bio *bi)
1da177e4 2589{
99c0fb5f 2590 struct stripe_head *sh = bi->bi_private;
d1688a6d 2591 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2592 int disks = sh->disks, i;
977df362 2593 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2594 sector_t first_bad;
2595 int bad_sectors;
977df362 2596 int replacement = 0;
1da177e4 2597
977df362
N
2598 for (i = 0 ; i < disks; i++) {
2599 if (bi == &sh->dev[i].req) {
2600 rdev = conf->disks[i].rdev;
1da177e4 2601 break;
977df362
N
2602 }
2603 if (bi == &sh->dev[i].rreq) {
2604 rdev = conf->disks[i].replacement;
dd054fce
N
2605 if (rdev)
2606 replacement = 1;
2607 else
2608 /* rdev was removed and 'replacement'
2609 * replaced it. rdev is not removed
2610 * until all requests are finished.
2611 */
2612 rdev = conf->disks[i].rdev;
977df362
N
2613 break;
2614 }
2615 }
4246a0b6 2616 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2617 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2618 bi->bi_error);
1da177e4 2619 if (i == disks) {
5f9d1fde 2620 bio_reset(bi);
1da177e4 2621 BUG();
6712ecf8 2622 return;
1da177e4
LT
2623 }
2624
977df362 2625 if (replacement) {
4246a0b6 2626 if (bi->bi_error)
977df362
N
2627 md_error(conf->mddev, rdev);
2628 else if (is_badblock(rdev, sh->sector,
2629 STRIPE_SECTORS,
2630 &first_bad, &bad_sectors))
2631 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2632 } else {
4246a0b6 2633 if (bi->bi_error) {
9f97e4b1 2634 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2635 set_bit(WriteErrorSeen, &rdev->flags);
2636 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2637 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2638 set_bit(MD_RECOVERY_NEEDED,
2639 &rdev->mddev->recovery);
977df362
N
2640 } else if (is_badblock(rdev, sh->sector,
2641 STRIPE_SECTORS,
c0b32972 2642 &first_bad, &bad_sectors)) {
977df362 2643 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2644 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2645 /* That was a successful write so make
2646 * sure it looks like we already did
2647 * a re-write.
2648 */
2649 set_bit(R5_ReWrite, &sh->dev[i].flags);
2650 }
977df362
N
2651 }
2652 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2653
4246a0b6 2654 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2655 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2656
c9445555 2657 bio_reset(bi);
977df362
N
2658 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2659 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2660 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2661 raid5_release_stripe(sh);
59fc630b 2662
2663 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2664 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2665}
2666
784052ec 2667static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2668{
2669 struct r5dev *dev = &sh->dev[i];
2670
1da177e4 2671 dev->flags = 0;
6d036f7d 2672 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2673}
2674
849674e4 2675static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2676{
2677 char b[BDEVNAME_SIZE];
d1688a6d 2678 struct r5conf *conf = mddev->private;
908f4fbd 2679 unsigned long flags;
0c55e022 2680 pr_debug("raid456: error called\n");
1da177e4 2681
908f4fbd
N
2682 spin_lock_irqsave(&conf->device_lock, flags);
2683 clear_bit(In_sync, &rdev->flags);
2e38a37f 2684 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2685 spin_unlock_irqrestore(&conf->device_lock, flags);
2686 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2687
de393cde 2688 set_bit(Blocked, &rdev->flags);
6f8d0c77 2689 set_bit(Faulty, &rdev->flags);
2953079c
SL
2690 set_mask_bits(&mddev->sb_flags, 0,
2691 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2692 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2693 "md/raid:%s: Operation continuing on %d devices.\n",
2694 mdname(mddev),
2695 bdevname(rdev->bdev, b),
2696 mdname(mddev),
2697 conf->raid_disks - mddev->degraded);
2e38a37f 2698 r5c_update_on_rdev_error(mddev);
16a53ecc 2699}
1da177e4
LT
2700
2701/*
2702 * Input: a 'big' sector number,
2703 * Output: index of the data and parity disk, and the sector # in them.
2704 */
6d036f7d
SL
2705sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2706 int previous, int *dd_idx,
2707 struct stripe_head *sh)
1da177e4 2708{
6e3b96ed 2709 sector_t stripe, stripe2;
35f2a591 2710 sector_t chunk_number;
1da177e4 2711 unsigned int chunk_offset;
911d4ee8 2712 int pd_idx, qd_idx;
67cc2b81 2713 int ddf_layout = 0;
1da177e4 2714 sector_t new_sector;
e183eaed
N
2715 int algorithm = previous ? conf->prev_algo
2716 : conf->algorithm;
09c9e5fa
AN
2717 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2718 : conf->chunk_sectors;
112bf897
N
2719 int raid_disks = previous ? conf->previous_raid_disks
2720 : conf->raid_disks;
2721 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2722
2723 /* First compute the information on this sector */
2724
2725 /*
2726 * Compute the chunk number and the sector offset inside the chunk
2727 */
2728 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2729 chunk_number = r_sector;
1da177e4
LT
2730
2731 /*
2732 * Compute the stripe number
2733 */
35f2a591
N
2734 stripe = chunk_number;
2735 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2736 stripe2 = stripe;
1da177e4
LT
2737 /*
2738 * Select the parity disk based on the user selected algorithm.
2739 */
84789554 2740 pd_idx = qd_idx = -1;
16a53ecc
N
2741 switch(conf->level) {
2742 case 4:
911d4ee8 2743 pd_idx = data_disks;
16a53ecc
N
2744 break;
2745 case 5:
e183eaed 2746 switch (algorithm) {
1da177e4 2747 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2748 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2749 if (*dd_idx >= pd_idx)
1da177e4
LT
2750 (*dd_idx)++;
2751 break;
2752 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2753 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2754 if (*dd_idx >= pd_idx)
1da177e4
LT
2755 (*dd_idx)++;
2756 break;
2757 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2758 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2759 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2760 break;
2761 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2762 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2763 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2764 break;
99c0fb5f
N
2765 case ALGORITHM_PARITY_0:
2766 pd_idx = 0;
2767 (*dd_idx)++;
2768 break;
2769 case ALGORITHM_PARITY_N:
2770 pd_idx = data_disks;
2771 break;
1da177e4 2772 default:
99c0fb5f 2773 BUG();
16a53ecc
N
2774 }
2775 break;
2776 case 6:
2777
e183eaed 2778 switch (algorithm) {
16a53ecc 2779 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2780 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2781 qd_idx = pd_idx + 1;
2782 if (pd_idx == raid_disks-1) {
99c0fb5f 2783 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2784 qd_idx = 0;
2785 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2786 (*dd_idx) += 2; /* D D P Q D */
2787 break;
2788 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2789 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2790 qd_idx = pd_idx + 1;
2791 if (pd_idx == raid_disks-1) {
99c0fb5f 2792 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2793 qd_idx = 0;
2794 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2795 (*dd_idx) += 2; /* D D P Q D */
2796 break;
2797 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2798 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2799 qd_idx = (pd_idx + 1) % raid_disks;
2800 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2801 break;
2802 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2803 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2804 qd_idx = (pd_idx + 1) % raid_disks;
2805 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2806 break;
99c0fb5f
N
2807
2808 case ALGORITHM_PARITY_0:
2809 pd_idx = 0;
2810 qd_idx = 1;
2811 (*dd_idx) += 2;
2812 break;
2813 case ALGORITHM_PARITY_N:
2814 pd_idx = data_disks;
2815 qd_idx = data_disks + 1;
2816 break;
2817
2818 case ALGORITHM_ROTATING_ZERO_RESTART:
2819 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2820 * of blocks for computing Q is different.
2821 */
6e3b96ed 2822 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2823 qd_idx = pd_idx + 1;
2824 if (pd_idx == raid_disks-1) {
2825 (*dd_idx)++; /* Q D D D P */
2826 qd_idx = 0;
2827 } else if (*dd_idx >= pd_idx)
2828 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2829 ddf_layout = 1;
99c0fb5f
N
2830 break;
2831
2832 case ALGORITHM_ROTATING_N_RESTART:
2833 /* Same a left_asymmetric, by first stripe is
2834 * D D D P Q rather than
2835 * Q D D D P
2836 */
6e3b96ed
N
2837 stripe2 += 1;
2838 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2839 qd_idx = pd_idx + 1;
2840 if (pd_idx == raid_disks-1) {
2841 (*dd_idx)++; /* Q D D D P */
2842 qd_idx = 0;
2843 } else if (*dd_idx >= pd_idx)
2844 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2845 ddf_layout = 1;
99c0fb5f
N
2846 break;
2847
2848 case ALGORITHM_ROTATING_N_CONTINUE:
2849 /* Same as left_symmetric but Q is before P */
6e3b96ed 2850 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2851 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2852 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2853 ddf_layout = 1;
99c0fb5f
N
2854 break;
2855
2856 case ALGORITHM_LEFT_ASYMMETRIC_6:
2857 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2858 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2859 if (*dd_idx >= pd_idx)
2860 (*dd_idx)++;
2861 qd_idx = raid_disks - 1;
2862 break;
2863
2864 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2865 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2866 if (*dd_idx >= pd_idx)
2867 (*dd_idx)++;
2868 qd_idx = raid_disks - 1;
2869 break;
2870
2871 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2872 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2873 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2874 qd_idx = raid_disks - 1;
2875 break;
2876
2877 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2878 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2879 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2880 qd_idx = raid_disks - 1;
2881 break;
2882
2883 case ALGORITHM_PARITY_0_6:
2884 pd_idx = 0;
2885 (*dd_idx)++;
2886 qd_idx = raid_disks - 1;
2887 break;
2888
16a53ecc 2889 default:
99c0fb5f 2890 BUG();
16a53ecc
N
2891 }
2892 break;
1da177e4
LT
2893 }
2894
911d4ee8
N
2895 if (sh) {
2896 sh->pd_idx = pd_idx;
2897 sh->qd_idx = qd_idx;
67cc2b81 2898 sh->ddf_layout = ddf_layout;
911d4ee8 2899 }
1da177e4
LT
2900 /*
2901 * Finally, compute the new sector number
2902 */
2903 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2904 return new_sector;
2905}
2906
6d036f7d 2907sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2908{
d1688a6d 2909 struct r5conf *conf = sh->raid_conf;
b875e531
N
2910 int raid_disks = sh->disks;
2911 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2912 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2913 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2914 : conf->chunk_sectors;
e183eaed
N
2915 int algorithm = previous ? conf->prev_algo
2916 : conf->algorithm;
1da177e4
LT
2917 sector_t stripe;
2918 int chunk_offset;
35f2a591
N
2919 sector_t chunk_number;
2920 int dummy1, dd_idx = i;
1da177e4 2921 sector_t r_sector;
911d4ee8 2922 struct stripe_head sh2;
1da177e4
LT
2923
2924 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2925 stripe = new_sector;
1da177e4 2926
16a53ecc
N
2927 if (i == sh->pd_idx)
2928 return 0;
2929 switch(conf->level) {
2930 case 4: break;
2931 case 5:
e183eaed 2932 switch (algorithm) {
1da177e4
LT
2933 case ALGORITHM_LEFT_ASYMMETRIC:
2934 case ALGORITHM_RIGHT_ASYMMETRIC:
2935 if (i > sh->pd_idx)
2936 i--;
2937 break;
2938 case ALGORITHM_LEFT_SYMMETRIC:
2939 case ALGORITHM_RIGHT_SYMMETRIC:
2940 if (i < sh->pd_idx)
2941 i += raid_disks;
2942 i -= (sh->pd_idx + 1);
2943 break;
99c0fb5f
N
2944 case ALGORITHM_PARITY_0:
2945 i -= 1;
2946 break;
2947 case ALGORITHM_PARITY_N:
2948 break;
1da177e4 2949 default:
99c0fb5f 2950 BUG();
16a53ecc
N
2951 }
2952 break;
2953 case 6:
d0dabf7e 2954 if (i == sh->qd_idx)
16a53ecc 2955 return 0; /* It is the Q disk */
e183eaed 2956 switch (algorithm) {
16a53ecc
N
2957 case ALGORITHM_LEFT_ASYMMETRIC:
2958 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2959 case ALGORITHM_ROTATING_ZERO_RESTART:
2960 case ALGORITHM_ROTATING_N_RESTART:
2961 if (sh->pd_idx == raid_disks-1)
2962 i--; /* Q D D D P */
16a53ecc
N
2963 else if (i > sh->pd_idx)
2964 i -= 2; /* D D P Q D */
2965 break;
2966 case ALGORITHM_LEFT_SYMMETRIC:
2967 case ALGORITHM_RIGHT_SYMMETRIC:
2968 if (sh->pd_idx == raid_disks-1)
2969 i--; /* Q D D D P */
2970 else {
2971 /* D D P Q D */
2972 if (i < sh->pd_idx)
2973 i += raid_disks;
2974 i -= (sh->pd_idx + 2);
2975 }
2976 break;
99c0fb5f
N
2977 case ALGORITHM_PARITY_0:
2978 i -= 2;
2979 break;
2980 case ALGORITHM_PARITY_N:
2981 break;
2982 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2983 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2984 if (sh->pd_idx == 0)
2985 i--; /* P D D D Q */
e4424fee
N
2986 else {
2987 /* D D Q P D */
2988 if (i < sh->pd_idx)
2989 i += raid_disks;
2990 i -= (sh->pd_idx + 1);
2991 }
99c0fb5f
N
2992 break;
2993 case ALGORITHM_LEFT_ASYMMETRIC_6:
2994 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2995 if (i > sh->pd_idx)
2996 i--;
2997 break;
2998 case ALGORITHM_LEFT_SYMMETRIC_6:
2999 case ALGORITHM_RIGHT_SYMMETRIC_6:
3000 if (i < sh->pd_idx)
3001 i += data_disks + 1;
3002 i -= (sh->pd_idx + 1);
3003 break;
3004 case ALGORITHM_PARITY_0_6:
3005 i -= 1;
3006 break;
16a53ecc 3007 default:
99c0fb5f 3008 BUG();
16a53ecc
N
3009 }
3010 break;
1da177e4
LT
3011 }
3012
3013 chunk_number = stripe * data_disks + i;
35f2a591 3014 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3015
112bf897 3016 check = raid5_compute_sector(conf, r_sector,
784052ec 3017 previous, &dummy1, &sh2);
911d4ee8
N
3018 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3019 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3020 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3021 mdname(conf->mddev));
1da177e4
LT
3022 return 0;
3023 }
3024 return r_sector;
3025}
3026
07e83364
SL
3027/*
3028 * There are cases where we want handle_stripe_dirtying() and
3029 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3030 *
3031 * This function checks whether we want to delay the towrite. Specifically,
3032 * we delay the towrite when:
3033 *
3034 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3035 * stripe has data in journal (for other devices).
3036 *
3037 * In this case, when reading data for the non-overwrite dev, it is
3038 * necessary to handle complex rmw of write back cache (prexor with
3039 * orig_page, and xor with page). To keep read path simple, we would
3040 * like to flush data in journal to RAID disks first, so complex rmw
3041 * is handled in the write patch (handle_stripe_dirtying).
3042 *
39b99586
SL
3043 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3044 *
3045 * It is important to be able to flush all stripes in raid5-cache.
3046 * Therefore, we need reserve some space on the journal device for
3047 * these flushes. If flush operation includes pending writes to the
3048 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3049 * for the flush out. If we exclude these pending writes from flush
3050 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3051 * Therefore, excluding pending writes in these cases enables more
3052 * efficient use of the journal device.
3053 *
3054 * Note: To make sure the stripe makes progress, we only delay
3055 * towrite for stripes with data already in journal (injournal > 0).
3056 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3057 * no_space_stripes list.
3058 *
07e83364 3059 */
39b99586
SL
3060static inline bool delay_towrite(struct r5conf *conf,
3061 struct r5dev *dev,
3062 struct stripe_head_state *s)
07e83364 3063{
39b99586
SL
3064 /* case 1 above */
3065 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3066 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3067 return true;
3068 /* case 2 above */
3069 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3070 s->injournal > 0)
3071 return true;
3072 return false;
07e83364
SL
3073}
3074
600aa109 3075static void
c0f7bddb 3076schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3077 int rcw, int expand)
e33129d8 3078{
584acdd4 3079 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3080 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3081 int level = conf->level;
e33129d8
DW
3082
3083 if (rcw) {
1e6d690b
SL
3084 /*
3085 * In some cases, handle_stripe_dirtying initially decided to
3086 * run rmw and allocates extra page for prexor. However, rcw is
3087 * cheaper later on. We need to free the extra page now,
3088 * because we won't be able to do that in ops_complete_prexor().
3089 */
3090 r5c_release_extra_page(sh);
e33129d8
DW
3091
3092 for (i = disks; i--; ) {
3093 struct r5dev *dev = &sh->dev[i];
3094
39b99586 3095 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3096 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3097 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3098 if (!expand)
3099 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3100 s->locked++;
1e6d690b
SL
3101 } else if (test_bit(R5_InJournal, &dev->flags)) {
3102 set_bit(R5_LOCKED, &dev->flags);
3103 s->locked++;
e33129d8
DW
3104 }
3105 }
ce7d363a
N
3106 /* if we are not expanding this is a proper write request, and
3107 * there will be bios with new data to be drained into the
3108 * stripe cache
3109 */
3110 if (!expand) {
3111 if (!s->locked)
3112 /* False alarm, nothing to do */
3113 return;
3114 sh->reconstruct_state = reconstruct_state_drain_run;
3115 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3116 } else
3117 sh->reconstruct_state = reconstruct_state_run;
3118
3119 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3120
c0f7bddb 3121 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3122 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3123 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3124 } else {
3125 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3126 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3127 BUG_ON(level == 6 &&
3128 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3129 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3130
e33129d8
DW
3131 for (i = disks; i--; ) {
3132 struct r5dev *dev = &sh->dev[i];
584acdd4 3133 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3134 continue;
3135
e33129d8
DW
3136 if (dev->towrite &&
3137 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3138 test_bit(R5_Wantcompute, &dev->flags))) {
3139 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3140 set_bit(R5_LOCKED, &dev->flags);
3141 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3142 s->locked++;
1e6d690b
SL
3143 } else if (test_bit(R5_InJournal, &dev->flags)) {
3144 set_bit(R5_LOCKED, &dev->flags);
3145 s->locked++;
e33129d8
DW
3146 }
3147 }
ce7d363a
N
3148 if (!s->locked)
3149 /* False alarm - nothing to do */
3150 return;
3151 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3152 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3153 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3154 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3155 }
3156
c0f7bddb 3157 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3158 * are in flight
3159 */
3160 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3161 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3162 s->locked++;
e33129d8 3163
c0f7bddb
YT
3164 if (level == 6) {
3165 int qd_idx = sh->qd_idx;
3166 struct r5dev *dev = &sh->dev[qd_idx];
3167
3168 set_bit(R5_LOCKED, &dev->flags);
3169 clear_bit(R5_UPTODATE, &dev->flags);
3170 s->locked++;
3171 }
3172
3418d036
AP
3173 if (raid5_has_ppl(sh->raid_conf) &&
3174 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3175 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3176 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3177 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3178
600aa109 3179 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3180 __func__, (unsigned long long)sh->sector,
600aa109 3181 s->locked, s->ops_request);
e33129d8 3182}
16a53ecc 3183
1da177e4
LT
3184/*
3185 * Each stripe/dev can have one or more bion attached.
16a53ecc 3186 * toread/towrite point to the first in a chain.
1da177e4
LT
3187 * The bi_next chain must be in order.
3188 */
da41ba65 3189static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3190 int forwrite, int previous)
1da177e4
LT
3191{
3192 struct bio **bip;
d1688a6d 3193 struct r5conf *conf = sh->raid_conf;
72626685 3194 int firstwrite=0;
1da177e4 3195
cbe47ec5 3196 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3197 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3198 (unsigned long long)sh->sector);
3199
b17459c0 3200 spin_lock_irq(&sh->stripe_lock);
59fc630b 3201 /* Don't allow new IO added to stripes in batch list */
3202 if (sh->batch_head)
3203 goto overlap;
72626685 3204 if (forwrite) {
1da177e4 3205 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3206 if (*bip == NULL)
72626685
N
3207 firstwrite = 1;
3208 } else
1da177e4 3209 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3210 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3211 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3212 goto overlap;
3213 bip = & (*bip)->bi_next;
3214 }
4f024f37 3215 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3216 goto overlap;
3217
3418d036
AP
3218 if (forwrite && raid5_has_ppl(conf)) {
3219 /*
3220 * With PPL only writes to consecutive data chunks within a
3221 * stripe are allowed because for a single stripe_head we can
3222 * only have one PPL entry at a time, which describes one data
3223 * range. Not really an overlap, but wait_for_overlap can be
3224 * used to handle this.
3225 */
3226 sector_t sector;
3227 sector_t first = 0;
3228 sector_t last = 0;
3229 int count = 0;
3230 int i;
3231
3232 for (i = 0; i < sh->disks; i++) {
3233 if (i != sh->pd_idx &&
3234 (i == dd_idx || sh->dev[i].towrite)) {
3235 sector = sh->dev[i].sector;
3236 if (count == 0 || sector < first)
3237 first = sector;
3238 if (sector > last)
3239 last = sector;
3240 count++;
3241 }
3242 }
3243
3244 if (first + conf->chunk_sectors * (count - 1) != last)
3245 goto overlap;
3246 }
3247
da41ba65 3248 if (!forwrite || previous)
3249 clear_bit(STRIPE_BATCH_READY, &sh->state);
3250
78bafebd 3251 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3252 if (*bip)
3253 bi->bi_next = *bip;
3254 *bip = bi;
016c76ac 3255 bio_inc_remaining(bi);
49728050 3256 md_write_inc(conf->mddev, bi);
72626685 3257
1da177e4
LT
3258 if (forwrite) {
3259 /* check if page is covered */
3260 sector_t sector = sh->dev[dd_idx].sector;
3261 for (bi=sh->dev[dd_idx].towrite;
3262 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3263 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3264 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3265 if (bio_end_sector(bi) >= sector)
3266 sector = bio_end_sector(bi);
1da177e4
LT
3267 }
3268 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3269 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3270 sh->overwrite_disks++;
1da177e4 3271 }
cbe47ec5
N
3272
3273 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3274 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3275 (unsigned long long)sh->sector, dd_idx);
3276
3277 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3278 /* Cannot hold spinlock over bitmap_startwrite,
3279 * but must ensure this isn't added to a batch until
3280 * we have added to the bitmap and set bm_seq.
3281 * So set STRIPE_BITMAP_PENDING to prevent
3282 * batching.
3283 * If multiple add_stripe_bio() calls race here they
3284 * much all set STRIPE_BITMAP_PENDING. So only the first one
3285 * to complete "bitmap_startwrite" gets to set
3286 * STRIPE_BIT_DELAY. This is important as once a stripe
3287 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3288 * any more.
3289 */
3290 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3291 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3292 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3293 STRIPE_SECTORS, 0);
d0852df5
N
3294 spin_lock_irq(&sh->stripe_lock);
3295 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3296 if (!sh->batch_head) {
3297 sh->bm_seq = conf->seq_flush+1;
3298 set_bit(STRIPE_BIT_DELAY, &sh->state);
3299 }
cbe47ec5 3300 }
d0852df5 3301 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3302
3303 if (stripe_can_batch(sh))
3304 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3305 return 1;
3306
3307 overlap:
3308 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3309 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3310 return 0;
3311}
3312
d1688a6d 3313static void end_reshape(struct r5conf *conf);
29269553 3314
d1688a6d 3315static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3316 struct stripe_head *sh)
ccfcc3c1 3317{
784052ec 3318 int sectors_per_chunk =
09c9e5fa 3319 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3320 int dd_idx;
2d2063ce 3321 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3322 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3323
112bf897
N
3324 raid5_compute_sector(conf,
3325 stripe * (disks - conf->max_degraded)
b875e531 3326 *sectors_per_chunk + chunk_offset,
112bf897 3327 previous,
911d4ee8 3328 &dd_idx, sh);
ccfcc3c1
N
3329}
3330
a4456856 3331static void
d1688a6d 3332handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3333 struct stripe_head_state *s, int disks)
a4456856
DW
3334{
3335 int i;
59fc630b 3336 BUG_ON(sh->batch_head);
a4456856
DW
3337 for (i = disks; i--; ) {
3338 struct bio *bi;
3339 int bitmap_end = 0;
3340
3341 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3342 struct md_rdev *rdev;
a4456856
DW
3343 rcu_read_lock();
3344 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3345 if (rdev && test_bit(In_sync, &rdev->flags) &&
3346 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3347 atomic_inc(&rdev->nr_pending);
3348 else
3349 rdev = NULL;
a4456856 3350 rcu_read_unlock();
7f0da59b
N
3351 if (rdev) {
3352 if (!rdev_set_badblocks(
3353 rdev,
3354 sh->sector,
3355 STRIPE_SECTORS, 0))
3356 md_error(conf->mddev, rdev);
3357 rdev_dec_pending(rdev, conf->mddev);
3358 }
a4456856 3359 }
b17459c0 3360 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3361 /* fail all writes first */
3362 bi = sh->dev[i].towrite;
3363 sh->dev[i].towrite = NULL;
7a87f434 3364 sh->overwrite_disks = 0;
b17459c0 3365 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3366 if (bi)
a4456856 3367 bitmap_end = 1;
a4456856 3368
ff875738 3369 log_stripe_write_finished(sh);
0576b1c6 3370
a4456856
DW
3371 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3372 wake_up(&conf->wait_for_overlap);
3373
4f024f37 3374 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3375 sh->dev[i].sector + STRIPE_SECTORS) {
3376 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3377
3378 bi->bi_error = -EIO;
49728050 3379 md_write_end(conf->mddev);
016c76ac 3380 bio_endio(bi);
a4456856
DW
3381 bi = nextbi;
3382 }
7eaf7e8e
SL
3383 if (bitmap_end)
3384 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3385 STRIPE_SECTORS, 0, 0);
3386 bitmap_end = 0;
a4456856
DW
3387 /* and fail all 'written' */
3388 bi = sh->dev[i].written;
3389 sh->dev[i].written = NULL;
d592a996
SL
3390 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3391 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3392 sh->dev[i].page = sh->dev[i].orig_page;
3393 }
3394
a4456856 3395 if (bi) bitmap_end = 1;
4f024f37 3396 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3397 sh->dev[i].sector + STRIPE_SECTORS) {
3398 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3399
3400 bi->bi_error = -EIO;
49728050 3401 md_write_end(conf->mddev);
016c76ac 3402 bio_endio(bi);
a4456856
DW
3403 bi = bi2;
3404 }
3405
b5e98d65
DW
3406 /* fail any reads if this device is non-operational and
3407 * the data has not reached the cache yet.
3408 */
3409 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3410 s->failed > conf->max_degraded &&
b5e98d65
DW
3411 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3412 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3413 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3414 bi = sh->dev[i].toread;
3415 sh->dev[i].toread = NULL;
143c4d05 3416 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3417 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3418 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3419 if (bi)
3420 s->to_read--;
4f024f37 3421 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3422 sh->dev[i].sector + STRIPE_SECTORS) {
3423 struct bio *nextbi =
3424 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3425
3426 bi->bi_error = -EIO;
016c76ac 3427 bio_endio(bi);
a4456856
DW
3428 bi = nextbi;
3429 }
3430 }
a4456856
DW
3431 if (bitmap_end)
3432 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3433 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3434 /* If we were in the middle of a write the parity block might
3435 * still be locked - so just clear all R5_LOCKED flags
3436 */
3437 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3438 }
ebda780b
SL
3439 s->to_write = 0;
3440 s->written = 0;
a4456856 3441
8b3e6cdc
DW
3442 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3443 if (atomic_dec_and_test(&conf->pending_full_writes))
3444 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3445}
3446
7f0da59b 3447static void
d1688a6d 3448handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3449 struct stripe_head_state *s)
3450{
3451 int abort = 0;
3452 int i;
3453
59fc630b 3454 BUG_ON(sh->batch_head);
7f0da59b 3455 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3456 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3457 wake_up(&conf->wait_for_overlap);
7f0da59b 3458 s->syncing = 0;
9a3e1101 3459 s->replacing = 0;
7f0da59b 3460 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3461 * Don't even need to abort as that is handled elsewhere
3462 * if needed, and not always wanted e.g. if there is a known
3463 * bad block here.
9a3e1101 3464 * For recover/replace we need to record a bad block on all
7f0da59b
N
3465 * non-sync devices, or abort the recovery
3466 */
18b9837e
N
3467 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3468 /* During recovery devices cannot be removed, so
3469 * locking and refcounting of rdevs is not needed
3470 */
e50d3992 3471 rcu_read_lock();
18b9837e 3472 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3473 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3474 if (rdev
3475 && !test_bit(Faulty, &rdev->flags)
3476 && !test_bit(In_sync, &rdev->flags)
3477 && !rdev_set_badblocks(rdev, sh->sector,
3478 STRIPE_SECTORS, 0))
3479 abort = 1;
e50d3992 3480 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3481 if (rdev
3482 && !test_bit(Faulty, &rdev->flags)
3483 && !test_bit(In_sync, &rdev->flags)
3484 && !rdev_set_badblocks(rdev, sh->sector,
3485 STRIPE_SECTORS, 0))
3486 abort = 1;
3487 }
e50d3992 3488 rcu_read_unlock();
18b9837e
N
3489 if (abort)
3490 conf->recovery_disabled =
3491 conf->mddev->recovery_disabled;
7f0da59b 3492 }
18b9837e 3493 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3494}
3495
9a3e1101
N
3496static int want_replace(struct stripe_head *sh, int disk_idx)
3497{
3498 struct md_rdev *rdev;
3499 int rv = 0;
3f232d6a
N
3500
3501 rcu_read_lock();
3502 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3503 if (rdev
3504 && !test_bit(Faulty, &rdev->flags)
3505 && !test_bit(In_sync, &rdev->flags)
3506 && (rdev->recovery_offset <= sh->sector
3507 || rdev->mddev->recovery_cp <= sh->sector))
3508 rv = 1;
3f232d6a 3509 rcu_read_unlock();
9a3e1101
N
3510 return rv;
3511}
3512
2c58f06e
N
3513static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3514 int disk_idx, int disks)
a4456856 3515{
5599becc 3516 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3517 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3518 &sh->dev[s->failed_num[1]] };
ea664c82 3519 int i;
5599becc 3520
a79cfe12
N
3521
3522 if (test_bit(R5_LOCKED, &dev->flags) ||
3523 test_bit(R5_UPTODATE, &dev->flags))
3524 /* No point reading this as we already have it or have
3525 * decided to get it.
3526 */
3527 return 0;
3528
3529 if (dev->toread ||
3530 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3531 /* We need this block to directly satisfy a request */
3532 return 1;
3533
3534 if (s->syncing || s->expanding ||
3535 (s->replacing && want_replace(sh, disk_idx)))
3536 /* When syncing, or expanding we read everything.
3537 * When replacing, we need the replaced block.
3538 */
3539 return 1;
3540
3541 if ((s->failed >= 1 && fdev[0]->toread) ||
3542 (s->failed >= 2 && fdev[1]->toread))
3543 /* If we want to read from a failed device, then
3544 * we need to actually read every other device.
3545 */
3546 return 1;
3547
a9d56950
N
3548 /* Sometimes neither read-modify-write nor reconstruct-write
3549 * cycles can work. In those cases we read every block we
3550 * can. Then the parity-update is certain to have enough to
3551 * work with.
3552 * This can only be a problem when we need to write something,
3553 * and some device has failed. If either of those tests
3554 * fail we need look no further.
3555 */
3556 if (!s->failed || !s->to_write)
3557 return 0;
3558
3559 if (test_bit(R5_Insync, &dev->flags) &&
3560 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3561 /* Pre-reads at not permitted until after short delay
3562 * to gather multiple requests. However if this
3560741e 3563 * device is no Insync, the block could only be computed
a9d56950
N
3564 * and there is no need to delay that.
3565 */
3566 return 0;
ea664c82 3567
36707bb2 3568 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3569 if (fdev[i]->towrite &&
3570 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3571 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3572 /* If we have a partial write to a failed
3573 * device, then we will need to reconstruct
3574 * the content of that device, so all other
3575 * devices must be read.
3576 */
3577 return 1;
3578 }
3579
3580 /* If we are forced to do a reconstruct-write, either because
3581 * the current RAID6 implementation only supports that, or
3560741e 3582 * because parity cannot be trusted and we are currently
ea664c82
N
3583 * recovering it, there is extra need to be careful.
3584 * If one of the devices that we would need to read, because
3585 * it is not being overwritten (and maybe not written at all)
3586 * is missing/faulty, then we need to read everything we can.
3587 */
3588 if (sh->raid_conf->level != 6 &&
3589 sh->sector < sh->raid_conf->mddev->recovery_cp)
3590 /* reconstruct-write isn't being forced */
3591 return 0;
36707bb2 3592 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3593 if (s->failed_num[i] != sh->pd_idx &&
3594 s->failed_num[i] != sh->qd_idx &&
3595 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3596 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3597 return 1;
3598 }
3599
2c58f06e
N
3600 return 0;
3601}
3602
ba02684d
SL
3603/* fetch_block - checks the given member device to see if its data needs
3604 * to be read or computed to satisfy a request.
3605 *
3606 * Returns 1 when no more member devices need to be checked, otherwise returns
3607 * 0 to tell the loop in handle_stripe_fill to continue
3608 */
2c58f06e
N
3609static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3610 int disk_idx, int disks)
3611{
3612 struct r5dev *dev = &sh->dev[disk_idx];
3613
3614 /* is the data in this block needed, and can we get it? */
3615 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3616 /* we would like to get this block, possibly by computing it,
3617 * otherwise read it if the backing disk is insync
3618 */
3619 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3620 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3621 BUG_ON(sh->batch_head);
7471fb77
N
3622
3623 /*
3624 * In the raid6 case if the only non-uptodate disk is P
3625 * then we already trusted P to compute the other failed
3626 * drives. It is safe to compute rather than re-read P.
3627 * In other cases we only compute blocks from failed
3628 * devices, otherwise check/repair might fail to detect
3629 * a real inconsistency.
3630 */
3631
5599becc 3632 if ((s->uptodate == disks - 1) &&
7471fb77 3633 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3634 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3635 disk_idx == s->failed_num[1])))) {
5599becc
YT
3636 /* have disk failed, and we're requested to fetch it;
3637 * do compute it
a4456856 3638 */
5599becc
YT
3639 pr_debug("Computing stripe %llu block %d\n",
3640 (unsigned long long)sh->sector, disk_idx);
3641 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3642 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3643 set_bit(R5_Wantcompute, &dev->flags);
3644 sh->ops.target = disk_idx;
3645 sh->ops.target2 = -1; /* no 2nd target */
3646 s->req_compute = 1;
93b3dbce
N
3647 /* Careful: from this point on 'uptodate' is in the eye
3648 * of raid_run_ops which services 'compute' operations
3649 * before writes. R5_Wantcompute flags a block that will
3650 * be R5_UPTODATE by the time it is needed for a
3651 * subsequent operation.
3652 */
5599becc
YT
3653 s->uptodate++;
3654 return 1;
3655 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3656 /* Computing 2-failure is *very* expensive; only
3657 * do it if failed >= 2
3658 */
3659 int other;
3660 for (other = disks; other--; ) {
3661 if (other == disk_idx)
3662 continue;
3663 if (!test_bit(R5_UPTODATE,
3664 &sh->dev[other].flags))
3665 break;
a4456856 3666 }
5599becc
YT
3667 BUG_ON(other < 0);
3668 pr_debug("Computing stripe %llu blocks %d,%d\n",
3669 (unsigned long long)sh->sector,
3670 disk_idx, other);
3671 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3672 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3673 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3674 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3675 sh->ops.target = disk_idx;
3676 sh->ops.target2 = other;
3677 s->uptodate += 2;
3678 s->req_compute = 1;
3679 return 1;
3680 } else if (test_bit(R5_Insync, &dev->flags)) {
3681 set_bit(R5_LOCKED, &dev->flags);
3682 set_bit(R5_Wantread, &dev->flags);
3683 s->locked++;
3684 pr_debug("Reading block %d (sync=%d)\n",
3685 disk_idx, s->syncing);
a4456856
DW
3686 }
3687 }
5599becc
YT
3688
3689 return 0;
3690}
3691
3692/**
93b3dbce 3693 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3694 */
93b3dbce
N
3695static void handle_stripe_fill(struct stripe_head *sh,
3696 struct stripe_head_state *s,
3697 int disks)
5599becc
YT
3698{
3699 int i;
3700
3701 /* look for blocks to read/compute, skip this if a compute
3702 * is already in flight, or if the stripe contents are in the
3703 * midst of changing due to a write
3704 */
3705 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3706 !sh->reconstruct_state) {
3707
3708 /*
3709 * For degraded stripe with data in journal, do not handle
3710 * read requests yet, instead, flush the stripe to raid
3711 * disks first, this avoids handling complex rmw of write
3712 * back cache (prexor with orig_page, and then xor with
3713 * page) in the read path
3714 */
3715 if (s->injournal && s->failed) {
3716 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3717 r5c_make_stripe_write_out(sh);
3718 goto out;
3719 }
3720
5599becc 3721 for (i = disks; i--; )
93b3dbce 3722 if (fetch_block(sh, s, i, disks))
5599becc 3723 break;
07e83364
SL
3724 }
3725out:
a4456856
DW
3726 set_bit(STRIPE_HANDLE, &sh->state);
3727}
3728
787b76fa
N
3729static void break_stripe_batch_list(struct stripe_head *head_sh,
3730 unsigned long handle_flags);
1fe797e6 3731/* handle_stripe_clean_event
a4456856
DW
3732 * any written block on an uptodate or failed drive can be returned.
3733 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3734 * never LOCKED, so we don't need to test 'failed' directly.
3735 */
d1688a6d 3736static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3737 struct stripe_head *sh, int disks)
a4456856
DW
3738{
3739 int i;
3740 struct r5dev *dev;
f8dfcffd 3741 int discard_pending = 0;
59fc630b 3742 struct stripe_head *head_sh = sh;
3743 bool do_endio = false;
a4456856
DW
3744
3745 for (i = disks; i--; )
3746 if (sh->dev[i].written) {
3747 dev = &sh->dev[i];
3748 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3749 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3750 test_bit(R5_Discard, &dev->flags) ||
3751 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3752 /* We can return any write requests */
3753 struct bio *wbi, *wbi2;
45b4233c 3754 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3755 if (test_and_clear_bit(R5_Discard, &dev->flags))
3756 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3757 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3758 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3759 }
59fc630b 3760 do_endio = true;
3761
3762returnbi:
3763 dev->page = dev->orig_page;
a4456856
DW
3764 wbi = dev->written;
3765 dev->written = NULL;
4f024f37 3766 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3767 dev->sector + STRIPE_SECTORS) {
3768 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 3769 md_write_end(conf->mddev);
016c76ac 3770 bio_endio(wbi);
a4456856
DW
3771 wbi = wbi2;
3772 }
7eaf7e8e
SL
3773 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3774 STRIPE_SECTORS,
a4456856 3775 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3776 0);
59fc630b 3777 if (head_sh->batch_head) {
3778 sh = list_first_entry(&sh->batch_list,
3779 struct stripe_head,
3780 batch_list);
3781 if (sh != head_sh) {
3782 dev = &sh->dev[i];
3783 goto returnbi;
3784 }
3785 }
3786 sh = head_sh;
3787 dev = &sh->dev[i];
f8dfcffd
N
3788 } else if (test_bit(R5_Discard, &dev->flags))
3789 discard_pending = 1;
3790 }
f6bed0ef 3791
ff875738 3792 log_stripe_write_finished(sh);
0576b1c6 3793
f8dfcffd
N
3794 if (!discard_pending &&
3795 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3796 int hash;
f8dfcffd
N
3797 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3798 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3799 if (sh->qd_idx >= 0) {
3800 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3801 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3802 }
3803 /* now that discard is done we can proceed with any sync */
3804 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3805 /*
3806 * SCSI discard will change some bio fields and the stripe has
3807 * no updated data, so remove it from hash list and the stripe
3808 * will be reinitialized
3809 */
59fc630b 3810unhash:
b8a9d66d
RG
3811 hash = sh->hash_lock_index;
3812 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3813 remove_hash(sh);
b8a9d66d 3814 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3815 if (head_sh->batch_head) {
3816 sh = list_first_entry(&sh->batch_list,
3817 struct stripe_head, batch_list);
3818 if (sh != head_sh)
3819 goto unhash;
3820 }
59fc630b 3821 sh = head_sh;
3822
f8dfcffd
N
3823 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3824 set_bit(STRIPE_HANDLE, &sh->state);
3825
3826 }
8b3e6cdc
DW
3827
3828 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3829 if (atomic_dec_and_test(&conf->pending_full_writes))
3830 md_wakeup_thread(conf->mddev->thread);
59fc630b 3831
787b76fa
N
3832 if (head_sh->batch_head && do_endio)
3833 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3834}
3835
86aa1397
SL
3836/*
3837 * For RMW in write back cache, we need extra page in prexor to store the
3838 * old data. This page is stored in dev->orig_page.
3839 *
3840 * This function checks whether we have data for prexor. The exact logic
3841 * is:
3842 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3843 */
3844static inline bool uptodate_for_rmw(struct r5dev *dev)
3845{
3846 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3847 (!test_bit(R5_InJournal, &dev->flags) ||
3848 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3849}
3850
d7bd398e
SL
3851static int handle_stripe_dirtying(struct r5conf *conf,
3852 struct stripe_head *sh,
3853 struct stripe_head_state *s,
3854 int disks)
a4456856
DW
3855{
3856 int rmw = 0, rcw = 0, i;
a7854487
AL
3857 sector_t recovery_cp = conf->mddev->recovery_cp;
3858
584acdd4 3859 /* Check whether resync is now happening or should start.
a7854487
AL
3860 * If yes, then the array is dirty (after unclean shutdown or
3861 * initial creation), so parity in some stripes might be inconsistent.
3862 * In this case, we need to always do reconstruct-write, to ensure
3863 * that in case of drive failure or read-error correction, we
3864 * generate correct data from the parity.
3865 */
584acdd4 3866 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3867 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3868 s->failed == 0)) {
a7854487 3869 /* Calculate the real rcw later - for now make it
c8ac1803
N
3870 * look like rcw is cheaper
3871 */
3872 rcw = 1; rmw = 2;
584acdd4
MS
3873 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3874 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3875 (unsigned long long)sh->sector);
c8ac1803 3876 } else for (i = disks; i--; ) {
a4456856
DW
3877 /* would I have to read this buffer for read_modify_write */
3878 struct r5dev *dev = &sh->dev[i];
39b99586 3879 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 3880 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 3881 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3882 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3883 !(uptodate_for_rmw(dev) ||
f38e1219 3884 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3885 if (test_bit(R5_Insync, &dev->flags))
3886 rmw++;
3887 else
3888 rmw += 2*disks; /* cannot read it */
3889 }
3890 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3891 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3892 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3893 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3894 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 3895 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3896 if (test_bit(R5_Insync, &dev->flags))
3897 rcw++;
a4456856
DW
3898 else
3899 rcw += 2*disks;
3900 }
3901 }
1e6d690b 3902
39b99586
SL
3903 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3904 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 3905 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3906 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3907 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3908 if (conf->mddev->queue)
3909 blk_add_trace_msg(conf->mddev->queue,
3910 "raid5 rmw %llu %d",
3911 (unsigned long long)sh->sector, rmw);
a4456856
DW
3912 for (i = disks; i--; ) {
3913 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
3914 if (test_bit(R5_InJournal, &dev->flags) &&
3915 dev->page == dev->orig_page &&
3916 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3917 /* alloc page for prexor */
d7bd398e
SL
3918 struct page *p = alloc_page(GFP_NOIO);
3919
3920 if (p) {
3921 dev->orig_page = p;
3922 continue;
3923 }
3924
3925 /*
3926 * alloc_page() failed, try use
3927 * disk_info->extra_page
3928 */
3929 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3930 &conf->cache_state)) {
3931 r5c_use_extra_page(sh);
3932 break;
3933 }
1e6d690b 3934
d7bd398e
SL
3935 /* extra_page in use, add to delayed_list */
3936 set_bit(STRIPE_DELAYED, &sh->state);
3937 s->waiting_extra_page = 1;
3938 return -EAGAIN;
1e6d690b 3939 }
d7bd398e 3940 }
1e6d690b 3941
d7bd398e
SL
3942 for (i = disks; i--; ) {
3943 struct r5dev *dev = &sh->dev[i];
39b99586 3944 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
3945 i == sh->pd_idx || i == sh->qd_idx ||
3946 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3947 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3948 !(uptodate_for_rmw(dev) ||
1e6d690b 3949 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3950 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3951 if (test_bit(STRIPE_PREREAD_ACTIVE,
3952 &sh->state)) {
3953 pr_debug("Read_old block %d for r-m-w\n",
3954 i);
a4456856
DW
3955 set_bit(R5_LOCKED, &dev->flags);
3956 set_bit(R5_Wantread, &dev->flags);
3957 s->locked++;
3958 } else {
3959 set_bit(STRIPE_DELAYED, &sh->state);
3960 set_bit(STRIPE_HANDLE, &sh->state);
3961 }
3962 }
3963 }
a9add5d9 3964 }
41257580 3965 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3966 /* want reconstruct write, but need to get some data */
a9add5d9 3967 int qread =0;
c8ac1803 3968 rcw = 0;
a4456856
DW
3969 for (i = disks; i--; ) {
3970 struct r5dev *dev = &sh->dev[i];
3971 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3972 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3973 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3974 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3975 test_bit(R5_Wantcompute, &dev->flags))) {
3976 rcw++;
67f45548
N
3977 if (test_bit(R5_Insync, &dev->flags) &&
3978 test_bit(STRIPE_PREREAD_ACTIVE,
3979 &sh->state)) {
45b4233c 3980 pr_debug("Read_old block "
a4456856
DW
3981 "%d for Reconstruct\n", i);
3982 set_bit(R5_LOCKED, &dev->flags);
3983 set_bit(R5_Wantread, &dev->flags);
3984 s->locked++;
a9add5d9 3985 qread++;
a4456856
DW
3986 } else {
3987 set_bit(STRIPE_DELAYED, &sh->state);
3988 set_bit(STRIPE_HANDLE, &sh->state);
3989 }
3990 }
3991 }
e3620a3a 3992 if (rcw && conf->mddev->queue)
a9add5d9
N
3993 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3994 (unsigned long long)sh->sector,
3995 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3996 }
b1b02fe9
N
3997
3998 if (rcw > disks && rmw > disks &&
3999 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4000 set_bit(STRIPE_DELAYED, &sh->state);
4001
a4456856
DW
4002 /* now if nothing is locked, and if we have enough data,
4003 * we can start a write request
4004 */
f38e1219
DW
4005 /* since handle_stripe can be called at any time we need to handle the
4006 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4007 * subsequent call wants to start a write request. raid_run_ops only
4008 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4009 * simultaneously. If this is not the case then new writes need to be
4010 * held off until the compute completes.
4011 */
976ea8d4
DW
4012 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4013 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4014 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4015 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4016 return 0;
a4456856
DW
4017}
4018
d1688a6d 4019static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4020 struct stripe_head_state *s, int disks)
4021{
ecc65c9b 4022 struct r5dev *dev = NULL;
bd2ab670 4023
59fc630b 4024 BUG_ON(sh->batch_head);
a4456856 4025 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4026
ecc65c9b
DW
4027 switch (sh->check_state) {
4028 case check_state_idle:
4029 /* start a new check operation if there are no failures */
bd2ab670 4030 if (s->failed == 0) {
bd2ab670 4031 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4032 sh->check_state = check_state_run;
4033 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4034 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4035 s->uptodate--;
ecc65c9b 4036 break;
bd2ab670 4037 }
f2b3b44d 4038 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
4039 /* fall through */
4040 case check_state_compute_result:
4041 sh->check_state = check_state_idle;
4042 if (!dev)
4043 dev = &sh->dev[sh->pd_idx];
4044
4045 /* check that a write has not made the stripe insync */
4046 if (test_bit(STRIPE_INSYNC, &sh->state))
4047 break;
c8894419 4048
a4456856 4049 /* either failed parity check, or recovery is happening */
a4456856
DW
4050 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4051 BUG_ON(s->uptodate != disks);
4052
4053 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4054 s->locked++;
a4456856 4055 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4056
a4456856 4057 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4058 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4059 break;
4060 case check_state_run:
4061 break; /* we will be called again upon completion */
4062 case check_state_check_result:
4063 sh->check_state = check_state_idle;
4064
4065 /* if a failure occurred during the check operation, leave
4066 * STRIPE_INSYNC not set and let the stripe be handled again
4067 */
4068 if (s->failed)
4069 break;
4070
4071 /* handle a successful check operation, if parity is correct
4072 * we are done. Otherwise update the mismatch count and repair
4073 * parity if !MD_RECOVERY_CHECK
4074 */
ad283ea4 4075 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4076 /* parity is correct (on disc,
4077 * not in buffer any more)
4078 */
4079 set_bit(STRIPE_INSYNC, &sh->state);
4080 else {
7f7583d4 4081 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
4082 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4083 /* don't try to repair!! */
4084 set_bit(STRIPE_INSYNC, &sh->state);
4085 else {
4086 sh->check_state = check_state_compute_run;
976ea8d4 4087 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4088 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4089 set_bit(R5_Wantcompute,
4090 &sh->dev[sh->pd_idx].flags);
4091 sh->ops.target = sh->pd_idx;
ac6b53b6 4092 sh->ops.target2 = -1;
ecc65c9b
DW
4093 s->uptodate++;
4094 }
4095 }
4096 break;
4097 case check_state_compute_run:
4098 break;
4099 default:
cc6167b4 4100 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4101 __func__, sh->check_state,
4102 (unsigned long long) sh->sector);
4103 BUG();
a4456856
DW
4104 }
4105}
4106
d1688a6d 4107static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4108 struct stripe_head_state *s,
f2b3b44d 4109 int disks)
a4456856 4110{
a4456856 4111 int pd_idx = sh->pd_idx;
34e04e87 4112 int qd_idx = sh->qd_idx;
d82dfee0 4113 struct r5dev *dev;
a4456856 4114
59fc630b 4115 BUG_ON(sh->batch_head);
a4456856
DW
4116 set_bit(STRIPE_HANDLE, &sh->state);
4117
4118 BUG_ON(s->failed > 2);
d82dfee0 4119
a4456856
DW
4120 /* Want to check and possibly repair P and Q.
4121 * However there could be one 'failed' device, in which
4122 * case we can only check one of them, possibly using the
4123 * other to generate missing data
4124 */
4125
d82dfee0
DW
4126 switch (sh->check_state) {
4127 case check_state_idle:
4128 /* start a new check operation if there are < 2 failures */
f2b3b44d 4129 if (s->failed == s->q_failed) {
d82dfee0 4130 /* The only possible failed device holds Q, so it
a4456856
DW
4131 * makes sense to check P (If anything else were failed,
4132 * we would have used P to recreate it).
4133 */
d82dfee0 4134 sh->check_state = check_state_run;
a4456856 4135 }
f2b3b44d 4136 if (!s->q_failed && s->failed < 2) {
d82dfee0 4137 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4138 * anything, so it makes sense to check it
4139 */
d82dfee0
DW
4140 if (sh->check_state == check_state_run)
4141 sh->check_state = check_state_run_pq;
4142 else
4143 sh->check_state = check_state_run_q;
a4456856 4144 }
a4456856 4145
d82dfee0
DW
4146 /* discard potentially stale zero_sum_result */
4147 sh->ops.zero_sum_result = 0;
a4456856 4148
d82dfee0
DW
4149 if (sh->check_state == check_state_run) {
4150 /* async_xor_zero_sum destroys the contents of P */
4151 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4152 s->uptodate--;
a4456856 4153 }
d82dfee0
DW
4154 if (sh->check_state >= check_state_run &&
4155 sh->check_state <= check_state_run_pq) {
4156 /* async_syndrome_zero_sum preserves P and Q, so
4157 * no need to mark them !uptodate here
4158 */
4159 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4160 break;
a4456856
DW
4161 }
4162
d82dfee0
DW
4163 /* we have 2-disk failure */
4164 BUG_ON(s->failed != 2);
4165 /* fall through */
4166 case check_state_compute_result:
4167 sh->check_state = check_state_idle;
a4456856 4168
d82dfee0
DW
4169 /* check that a write has not made the stripe insync */
4170 if (test_bit(STRIPE_INSYNC, &sh->state))
4171 break;
a4456856
DW
4172
4173 /* now write out any block on a failed drive,
d82dfee0 4174 * or P or Q if they were recomputed
a4456856 4175 */
d82dfee0 4176 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 4177 if (s->failed == 2) {
f2b3b44d 4178 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4179 s->locked++;
4180 set_bit(R5_LOCKED, &dev->flags);
4181 set_bit(R5_Wantwrite, &dev->flags);
4182 }
4183 if (s->failed >= 1) {
f2b3b44d 4184 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4185 s->locked++;
4186 set_bit(R5_LOCKED, &dev->flags);
4187 set_bit(R5_Wantwrite, &dev->flags);
4188 }
d82dfee0 4189 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4190 dev = &sh->dev[pd_idx];
4191 s->locked++;
4192 set_bit(R5_LOCKED, &dev->flags);
4193 set_bit(R5_Wantwrite, &dev->flags);
4194 }
d82dfee0 4195 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4196 dev = &sh->dev[qd_idx];
4197 s->locked++;
4198 set_bit(R5_LOCKED, &dev->flags);
4199 set_bit(R5_Wantwrite, &dev->flags);
4200 }
4201 clear_bit(STRIPE_DEGRADED, &sh->state);
4202
4203 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4204 break;
4205 case check_state_run:
4206 case check_state_run_q:
4207 case check_state_run_pq:
4208 break; /* we will be called again upon completion */
4209 case check_state_check_result:
4210 sh->check_state = check_state_idle;
4211
4212 /* handle a successful check operation, if parity is correct
4213 * we are done. Otherwise update the mismatch count and repair
4214 * parity if !MD_RECOVERY_CHECK
4215 */
4216 if (sh->ops.zero_sum_result == 0) {
4217 /* both parities are correct */
4218 if (!s->failed)
4219 set_bit(STRIPE_INSYNC, &sh->state);
4220 else {
4221 /* in contrast to the raid5 case we can validate
4222 * parity, but still have a failure to write
4223 * back
4224 */
4225 sh->check_state = check_state_compute_result;
4226 /* Returning at this point means that we may go
4227 * off and bring p and/or q uptodate again so
4228 * we make sure to check zero_sum_result again
4229 * to verify if p or q need writeback
4230 */
4231 }
4232 } else {
7f7583d4 4233 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
4234 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4235 /* don't try to repair!! */
4236 set_bit(STRIPE_INSYNC, &sh->state);
4237 else {
4238 int *target = &sh->ops.target;
4239
4240 sh->ops.target = -1;
4241 sh->ops.target2 = -1;
4242 sh->check_state = check_state_compute_run;
4243 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4244 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4245 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4246 set_bit(R5_Wantcompute,
4247 &sh->dev[pd_idx].flags);
4248 *target = pd_idx;
4249 target = &sh->ops.target2;
4250 s->uptodate++;
4251 }
4252 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4253 set_bit(R5_Wantcompute,
4254 &sh->dev[qd_idx].flags);
4255 *target = qd_idx;
4256 s->uptodate++;
4257 }
4258 }
4259 }
4260 break;
4261 case check_state_compute_run:
4262 break;
4263 default:
cc6167b4
N
4264 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4265 __func__, sh->check_state,
4266 (unsigned long long) sh->sector);
d82dfee0 4267 BUG();
a4456856
DW
4268 }
4269}
4270
d1688a6d 4271static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4272{
4273 int i;
4274
4275 /* We have read all the blocks in this stripe and now we need to
4276 * copy some of them into a target stripe for expand.
4277 */
f0a50d37 4278 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4279 BUG_ON(sh->batch_head);
a4456856
DW
4280 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4281 for (i = 0; i < sh->disks; i++)
34e04e87 4282 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4283 int dd_idx, j;
a4456856 4284 struct stripe_head *sh2;
a08abd8c 4285 struct async_submit_ctl submit;
a4456856 4286
6d036f7d 4287 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4288 sector_t s = raid5_compute_sector(conf, bn, 0,
4289 &dd_idx, NULL);
6d036f7d 4290 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4291 if (sh2 == NULL)
4292 /* so far only the early blocks of this stripe
4293 * have been requested. When later blocks
4294 * get requested, we will try again
4295 */
4296 continue;
4297 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4298 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4299 /* must have already done this block */
6d036f7d 4300 raid5_release_stripe(sh2);
a4456856
DW
4301 continue;
4302 }
f0a50d37
DW
4303
4304 /* place all the copies on one channel */
a08abd8c 4305 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4306 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 4307 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 4308 &submit);
f0a50d37 4309
a4456856
DW
4310 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4311 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4312 for (j = 0; j < conf->raid_disks; j++)
4313 if (j != sh2->pd_idx &&
86c374ba 4314 j != sh2->qd_idx &&
a4456856
DW
4315 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4316 break;
4317 if (j == conf->raid_disks) {
4318 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4319 set_bit(STRIPE_HANDLE, &sh2->state);
4320 }
6d036f7d 4321 raid5_release_stripe(sh2);
f0a50d37 4322
a4456856 4323 }
a2e08551 4324 /* done submitting copies, wait for them to complete */
749586b7 4325 async_tx_quiesce(&tx);
a4456856 4326}
1da177e4
LT
4327
4328/*
4329 * handle_stripe - do things to a stripe.
4330 *
9a3e1101
N
4331 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4332 * state of various bits to see what needs to be done.
1da177e4 4333 * Possible results:
9a3e1101
N
4334 * return some read requests which now have data
4335 * return some write requests which are safely on storage
1da177e4
LT
4336 * schedule a read on some buffers
4337 * schedule a write of some buffers
4338 * return confirmation of parity correctness
4339 *
1da177e4 4340 */
a4456856 4341
acfe726b 4342static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4343{
d1688a6d 4344 struct r5conf *conf = sh->raid_conf;
f416885e 4345 int disks = sh->disks;
474af965
N
4346 struct r5dev *dev;
4347 int i;
9a3e1101 4348 int do_recovery = 0;
1da177e4 4349
acfe726b
N
4350 memset(s, 0, sizeof(*s));
4351
dabc4ec6 4352 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4353 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4354 s->failed_num[0] = -1;
4355 s->failed_num[1] = -1;
6e74a9cf 4356 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4357
acfe726b 4358 /* Now to look around and see what can be done */
1da177e4 4359 rcu_read_lock();
16a53ecc 4360 for (i=disks; i--; ) {
3cb03002 4361 struct md_rdev *rdev;
31c176ec
N
4362 sector_t first_bad;
4363 int bad_sectors;
4364 int is_bad = 0;
acfe726b 4365
16a53ecc 4366 dev = &sh->dev[i];
1da177e4 4367
45b4233c 4368 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4369 i, dev->flags,
4370 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4371 /* maybe we can reply to a read
4372 *
4373 * new wantfill requests are only permitted while
4374 * ops_complete_biofill is guaranteed to be inactive
4375 */
4376 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4377 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4378 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4379
16a53ecc 4380 /* now count some things */
cc94015a
N
4381 if (test_bit(R5_LOCKED, &dev->flags))
4382 s->locked++;
4383 if (test_bit(R5_UPTODATE, &dev->flags))
4384 s->uptodate++;
2d6e4ecc 4385 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4386 s->compute++;
4387 BUG_ON(s->compute > 2);
2d6e4ecc 4388 }
1da177e4 4389
acfe726b 4390 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4391 s->to_fill++;
acfe726b 4392 else if (dev->toread)
cc94015a 4393 s->to_read++;
16a53ecc 4394 if (dev->towrite) {
cc94015a 4395 s->to_write++;
16a53ecc 4396 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4397 s->non_overwrite++;
16a53ecc 4398 }
a4456856 4399 if (dev->written)
cc94015a 4400 s->written++;
14a75d3e
N
4401 /* Prefer to use the replacement for reads, but only
4402 * if it is recovered enough and has no bad blocks.
4403 */
4404 rdev = rcu_dereference(conf->disks[i].replacement);
4405 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4406 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4407 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4408 &first_bad, &bad_sectors))
4409 set_bit(R5_ReadRepl, &dev->flags);
4410 else {
e6030cb0 4411 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4412 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4413 else
4414 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4415 rdev = rcu_dereference(conf->disks[i].rdev);
4416 clear_bit(R5_ReadRepl, &dev->flags);
4417 }
9283d8c5
N
4418 if (rdev && test_bit(Faulty, &rdev->flags))
4419 rdev = NULL;
31c176ec
N
4420 if (rdev) {
4421 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4422 &first_bad, &bad_sectors);
4423 if (s->blocked_rdev == NULL
4424 && (test_bit(Blocked, &rdev->flags)
4425 || is_bad < 0)) {
4426 if (is_bad < 0)
4427 set_bit(BlockedBadBlocks,
4428 &rdev->flags);
4429 s->blocked_rdev = rdev;
4430 atomic_inc(&rdev->nr_pending);
4431 }
6bfe0b49 4432 }
415e72d0
N
4433 clear_bit(R5_Insync, &dev->flags);
4434 if (!rdev)
4435 /* Not in-sync */;
31c176ec
N
4436 else if (is_bad) {
4437 /* also not in-sync */
18b9837e
N
4438 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4439 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4440 /* treat as in-sync, but with a read error
4441 * which we can now try to correct
4442 */
4443 set_bit(R5_Insync, &dev->flags);
4444 set_bit(R5_ReadError, &dev->flags);
4445 }
4446 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4447 set_bit(R5_Insync, &dev->flags);
30d7a483 4448 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4449 /* in sync if before recovery_offset */
30d7a483
N
4450 set_bit(R5_Insync, &dev->flags);
4451 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4452 test_bit(R5_Expanded, &dev->flags))
4453 /* If we've reshaped into here, we assume it is Insync.
4454 * We will shortly update recovery_offset to make
4455 * it official.
4456 */
4457 set_bit(R5_Insync, &dev->flags);
4458
1cc03eb9 4459 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4460 /* This flag does not apply to '.replacement'
4461 * only to .rdev, so make sure to check that*/
4462 struct md_rdev *rdev2 = rcu_dereference(
4463 conf->disks[i].rdev);
4464 if (rdev2 == rdev)
4465 clear_bit(R5_Insync, &dev->flags);
4466 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4467 s->handle_bad_blocks = 1;
14a75d3e 4468 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4469 } else
4470 clear_bit(R5_WriteError, &dev->flags);
4471 }
1cc03eb9 4472 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4473 /* This flag does not apply to '.replacement'
4474 * only to .rdev, so make sure to check that*/
4475 struct md_rdev *rdev2 = rcu_dereference(
4476 conf->disks[i].rdev);
4477 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4478 s->handle_bad_blocks = 1;
14a75d3e 4479 atomic_inc(&rdev2->nr_pending);
b84db560
N
4480 } else
4481 clear_bit(R5_MadeGood, &dev->flags);
4482 }
977df362
N
4483 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4484 struct md_rdev *rdev2 = rcu_dereference(
4485 conf->disks[i].replacement);
4486 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4487 s->handle_bad_blocks = 1;
4488 atomic_inc(&rdev2->nr_pending);
4489 } else
4490 clear_bit(R5_MadeGoodRepl, &dev->flags);
4491 }
415e72d0 4492 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4493 /* The ReadError flag will just be confusing now */
4494 clear_bit(R5_ReadError, &dev->flags);
4495 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4496 }
415e72d0
N
4497 if (test_bit(R5_ReadError, &dev->flags))
4498 clear_bit(R5_Insync, &dev->flags);
4499 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4500 if (s->failed < 2)
4501 s->failed_num[s->failed] = i;
4502 s->failed++;
9a3e1101
N
4503 if (rdev && !test_bit(Faulty, &rdev->flags))
4504 do_recovery = 1;
415e72d0 4505 }
2ded3703
SL
4506
4507 if (test_bit(R5_InJournal, &dev->flags))
4508 s->injournal++;
1e6d690b
SL
4509 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4510 s->just_cached++;
1da177e4 4511 }
9a3e1101
N
4512 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4513 /* If there is a failed device being replaced,
4514 * we must be recovering.
4515 * else if we are after recovery_cp, we must be syncing
c6d2e084 4516 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4517 * else we can only be replacing
4518 * sync and recovery both need to read all devices, and so
4519 * use the same flag.
4520 */
4521 if (do_recovery ||
c6d2e084 4522 sh->sector >= conf->mddev->recovery_cp ||
4523 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4524 s->syncing = 1;
4525 else
4526 s->replacing = 1;
4527 }
1da177e4 4528 rcu_read_unlock();
cc94015a
N
4529}
4530
59fc630b 4531static int clear_batch_ready(struct stripe_head *sh)
4532{
b15a9dbd
N
4533 /* Return '1' if this is a member of batch, or
4534 * '0' if it is a lone stripe or a head which can now be
4535 * handled.
4536 */
59fc630b 4537 struct stripe_head *tmp;
4538 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4539 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4540 spin_lock(&sh->stripe_lock);
4541 if (!sh->batch_head) {
4542 spin_unlock(&sh->stripe_lock);
4543 return 0;
4544 }
4545
4546 /*
4547 * this stripe could be added to a batch list before we check
4548 * BATCH_READY, skips it
4549 */
4550 if (sh->batch_head != sh) {
4551 spin_unlock(&sh->stripe_lock);
4552 return 1;
4553 }
4554 spin_lock(&sh->batch_lock);
4555 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4556 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4557 spin_unlock(&sh->batch_lock);
4558 spin_unlock(&sh->stripe_lock);
4559
4560 /*
4561 * BATCH_READY is cleared, no new stripes can be added.
4562 * batch_list can be accessed without lock
4563 */
4564 return 0;
4565}
4566
3960ce79
N
4567static void break_stripe_batch_list(struct stripe_head *head_sh,
4568 unsigned long handle_flags)
72ac7330 4569{
4e3d62ff 4570 struct stripe_head *sh, *next;
72ac7330 4571 int i;
fb642b92 4572 int do_wakeup = 0;
72ac7330 4573
bb27051f
N
4574 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4575
72ac7330 4576 list_del_init(&sh->batch_list);
4577
fb3229d5 4578 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4579 (1 << STRIPE_SYNCING) |
4580 (1 << STRIPE_REPLACED) |
1b956f7a
N
4581 (1 << STRIPE_DELAYED) |
4582 (1 << STRIPE_BIT_DELAY) |
4583 (1 << STRIPE_FULL_WRITE) |
4584 (1 << STRIPE_BIOFILL_RUN) |
4585 (1 << STRIPE_COMPUTE_RUN) |
4586 (1 << STRIPE_OPS_REQ_PENDING) |
4587 (1 << STRIPE_DISCARD) |
4588 (1 << STRIPE_BATCH_READY) |
4589 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4590 (1 << STRIPE_BITMAP_PENDING)),
4591 "stripe state: %lx\n", sh->state);
4592 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4593 (1 << STRIPE_REPLACED)),
4594 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4595
4596 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4597 (1 << STRIPE_PREREAD_ACTIVE) |
1b956f7a
N
4598 (1 << STRIPE_DEGRADED)),
4599 head_sh->state & (1 << STRIPE_INSYNC));
4600
72ac7330 4601 sh->check_state = head_sh->check_state;
4602 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4603 for (i = 0; i < sh->disks; i++) {
4604 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4605 do_wakeup = 1;
72ac7330 4606 sh->dev[i].flags = head_sh->dev[i].flags &
4607 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4608 }
72ac7330 4609 spin_lock_irq(&sh->stripe_lock);
4610 sh->batch_head = NULL;
4611 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4612 if (handle_flags == 0 ||
4613 sh->state & handle_flags)
4614 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4615 raid5_release_stripe(sh);
72ac7330 4616 }
fb642b92
N
4617 spin_lock_irq(&head_sh->stripe_lock);
4618 head_sh->batch_head = NULL;
4619 spin_unlock_irq(&head_sh->stripe_lock);
4620 for (i = 0; i < head_sh->disks; i++)
4621 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4622 do_wakeup = 1;
3960ce79
N
4623 if (head_sh->state & handle_flags)
4624 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4625
4626 if (do_wakeup)
4627 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4628}
4629
cc94015a
N
4630static void handle_stripe(struct stripe_head *sh)
4631{
4632 struct stripe_head_state s;
d1688a6d 4633 struct r5conf *conf = sh->raid_conf;
3687c061 4634 int i;
84789554
N
4635 int prexor;
4636 int disks = sh->disks;
474af965 4637 struct r5dev *pdev, *qdev;
cc94015a
N
4638
4639 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4640 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4641 /* already being handled, ensure it gets handled
4642 * again when current action finishes */
4643 set_bit(STRIPE_HANDLE, &sh->state);
4644 return;
4645 }
4646
59fc630b 4647 if (clear_batch_ready(sh) ) {
4648 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4649 return;
4650 }
4651
4e3d62ff 4652 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4653 break_stripe_batch_list(sh, 0);
72ac7330 4654
dabc4ec6 4655 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4656 spin_lock(&sh->stripe_lock);
4657 /* Cannot process 'sync' concurrently with 'discard' */
4658 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4659 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4660 set_bit(STRIPE_SYNCING, &sh->state);
4661 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4662 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4663 }
4664 spin_unlock(&sh->stripe_lock);
cc94015a
N
4665 }
4666 clear_bit(STRIPE_DELAYED, &sh->state);
4667
4668 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4669 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4670 (unsigned long long)sh->sector, sh->state,
4671 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4672 sh->check_state, sh->reconstruct_state);
3687c061 4673
acfe726b 4674 analyse_stripe(sh, &s);
c5a31000 4675
b70abcb2
SL
4676 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4677 goto finish;
4678
16d997b7
N
4679 if (s.handle_bad_blocks ||
4680 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4681 set_bit(STRIPE_HANDLE, &sh->state);
4682 goto finish;
4683 }
4684
474af965
N
4685 if (unlikely(s.blocked_rdev)) {
4686 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4687 s.replacing || s.to_write || s.written) {
474af965
N
4688 set_bit(STRIPE_HANDLE, &sh->state);
4689 goto finish;
4690 }
4691 /* There is nothing for the blocked_rdev to block */
4692 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4693 s.blocked_rdev = NULL;
4694 }
4695
4696 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4697 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4698 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4699 }
4700
4701 pr_debug("locked=%d uptodate=%d to_read=%d"
4702 " to_write=%d failed=%d failed_num=%d,%d\n",
4703 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4704 s.failed_num[0], s.failed_num[1]);
4705 /* check if the array has lost more than max_degraded devices and,
4706 * if so, some requests might need to be failed.
4707 */
6e74a9cf 4708 if (s.failed > conf->max_degraded || s.log_failed) {
9a3f530f
N
4709 sh->check_state = 0;
4710 sh->reconstruct_state = 0;
626f2092 4711 break_stripe_batch_list(sh, 0);
9a3f530f 4712 if (s.to_read+s.to_write+s.written)
bd83d0a2 4713 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4714 if (s.syncing + s.replacing)
9a3f530f
N
4715 handle_failed_sync(conf, sh, &s);
4716 }
474af965 4717
84789554
N
4718 /* Now we check to see if any write operations have recently
4719 * completed
4720 */
4721 prexor = 0;
4722 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4723 prexor = 1;
4724 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4725 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4726 sh->reconstruct_state = reconstruct_state_idle;
4727
4728 /* All the 'written' buffers and the parity block are ready to
4729 * be written back to disk
4730 */
9e444768
SL
4731 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4732 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4733 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4734 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4735 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4736 for (i = disks; i--; ) {
4737 struct r5dev *dev = &sh->dev[i];
4738 if (test_bit(R5_LOCKED, &dev->flags) &&
4739 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
4740 dev->written || test_bit(R5_InJournal,
4741 &dev->flags))) {
84789554
N
4742 pr_debug("Writing block %d\n", i);
4743 set_bit(R5_Wantwrite, &dev->flags);
4744 if (prexor)
4745 continue;
9c4bdf69
N
4746 if (s.failed > 1)
4747 continue;
84789554
N
4748 if (!test_bit(R5_Insync, &dev->flags) ||
4749 ((i == sh->pd_idx || i == sh->qd_idx) &&
4750 s.failed == 0))
4751 set_bit(STRIPE_INSYNC, &sh->state);
4752 }
4753 }
4754 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4755 s.dec_preread_active = 1;
4756 }
4757
ef5b7c69
N
4758 /*
4759 * might be able to return some write requests if the parity blocks
4760 * are safe, or on a failed drive
4761 */
4762 pdev = &sh->dev[sh->pd_idx];
4763 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4764 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4765 qdev = &sh->dev[sh->qd_idx];
4766 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4767 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4768 || conf->level < 6;
4769
4770 if (s.written &&
4771 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4772 && !test_bit(R5_LOCKED, &pdev->flags)
4773 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4774 test_bit(R5_Discard, &pdev->flags))))) &&
4775 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4776 && !test_bit(R5_LOCKED, &qdev->flags)
4777 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4778 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 4779 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 4780
1e6d690b 4781 if (s.just_cached)
bd83d0a2 4782 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 4783 log_stripe_write_finished(sh);
1e6d690b 4784
ef5b7c69
N
4785 /* Now we might consider reading some blocks, either to check/generate
4786 * parity, or to satisfy requests
4787 * or to load a block that is being partially written.
4788 */
4789 if (s.to_read || s.non_overwrite
4790 || (conf->level == 6 && s.to_write && s.failed)
4791 || (s.syncing && (s.uptodate + s.compute < disks))
4792 || s.replacing
4793 || s.expanding)
4794 handle_stripe_fill(sh, &s, disks);
4795
2ded3703
SL
4796 /*
4797 * When the stripe finishes full journal write cycle (write to journal
4798 * and raid disk), this is the clean up procedure so it is ready for
4799 * next operation.
4800 */
4801 r5c_finish_stripe_write_out(conf, sh, &s);
4802
4803 /*
4804 * Now to consider new write requests, cache write back and what else,
4805 * if anything should be read. We do not handle new writes when:
84789554
N
4806 * 1/ A 'write' operation (copy+xor) is already in flight.
4807 * 2/ A 'check' operation is in flight, as it may clobber the parity
4808 * block.
2ded3703 4809 * 3/ A r5c cache log write is in flight.
84789554 4810 */
2ded3703
SL
4811
4812 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4813 if (!r5c_is_writeback(conf->log)) {
4814 if (s.to_write)
4815 handle_stripe_dirtying(conf, sh, &s, disks);
4816 } else { /* write back cache */
4817 int ret = 0;
4818
4819 /* First, try handle writes in caching phase */
4820 if (s.to_write)
4821 ret = r5c_try_caching_write(conf, sh, &s,
4822 disks);
4823 /*
4824 * If caching phase failed: ret == -EAGAIN
4825 * OR
4826 * stripe under reclaim: !caching && injournal
4827 *
4828 * fall back to handle_stripe_dirtying()
4829 */
4830 if (ret == -EAGAIN ||
4831 /* stripe under reclaim: !caching && injournal */
4832 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
4833 s.injournal > 0)) {
4834 ret = handle_stripe_dirtying(conf, sh, &s,
4835 disks);
4836 if (ret == -EAGAIN)
4837 goto finish;
4838 }
2ded3703
SL
4839 }
4840 }
84789554
N
4841
4842 /* maybe we need to check and possibly fix the parity for this stripe
4843 * Any reads will already have been scheduled, so we just see if enough
4844 * data is available. The parity check is held off while parity
4845 * dependent operations are in flight.
4846 */
4847 if (sh->check_state ||
4848 (s.syncing && s.locked == 0 &&
4849 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4850 !test_bit(STRIPE_INSYNC, &sh->state))) {
4851 if (conf->level == 6)
4852 handle_parity_checks6(conf, sh, &s, disks);
4853 else
4854 handle_parity_checks5(conf, sh, &s, disks);
4855 }
c5a31000 4856
f94c0b66
N
4857 if ((s.replacing || s.syncing) && s.locked == 0
4858 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4859 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4860 /* Write out to replacement devices where possible */
4861 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4862 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4863 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4864 set_bit(R5_WantReplace, &sh->dev[i].flags);
4865 set_bit(R5_LOCKED, &sh->dev[i].flags);
4866 s.locked++;
4867 }
f94c0b66
N
4868 if (s.replacing)
4869 set_bit(STRIPE_INSYNC, &sh->state);
4870 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4871 }
4872 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4873 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4874 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4875 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4876 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4877 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4878 wake_up(&conf->wait_for_overlap);
c5a31000
N
4879 }
4880
4881 /* If the failed drives are just a ReadError, then we might need
4882 * to progress the repair/check process
4883 */
4884 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4885 for (i = 0; i < s.failed; i++) {
4886 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4887 if (test_bit(R5_ReadError, &dev->flags)
4888 && !test_bit(R5_LOCKED, &dev->flags)
4889 && test_bit(R5_UPTODATE, &dev->flags)
4890 ) {
4891 if (!test_bit(R5_ReWrite, &dev->flags)) {
4892 set_bit(R5_Wantwrite, &dev->flags);
4893 set_bit(R5_ReWrite, &dev->flags);
4894 set_bit(R5_LOCKED, &dev->flags);
4895 s.locked++;
4896 } else {
4897 /* let's read it back */
4898 set_bit(R5_Wantread, &dev->flags);
4899 set_bit(R5_LOCKED, &dev->flags);
4900 s.locked++;
4901 }
4902 }
4903 }
4904
3687c061
N
4905 /* Finish reconstruct operations initiated by the expansion process */
4906 if (sh->reconstruct_state == reconstruct_state_result) {
4907 struct stripe_head *sh_src
6d036f7d 4908 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4909 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4910 /* sh cannot be written until sh_src has been read.
4911 * so arrange for sh to be delayed a little
4912 */
4913 set_bit(STRIPE_DELAYED, &sh->state);
4914 set_bit(STRIPE_HANDLE, &sh->state);
4915 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4916 &sh_src->state))
4917 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4918 raid5_release_stripe(sh_src);
3687c061
N
4919 goto finish;
4920 }
4921 if (sh_src)
6d036f7d 4922 raid5_release_stripe(sh_src);
3687c061
N
4923
4924 sh->reconstruct_state = reconstruct_state_idle;
4925 clear_bit(STRIPE_EXPANDING, &sh->state);
4926 for (i = conf->raid_disks; i--; ) {
4927 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4928 set_bit(R5_LOCKED, &sh->dev[i].flags);
4929 s.locked++;
4930 }
4931 }
f416885e 4932
3687c061
N
4933 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4934 !sh->reconstruct_state) {
4935 /* Need to write out all blocks after computing parity */
4936 sh->disks = conf->raid_disks;
4937 stripe_set_idx(sh->sector, conf, 0, sh);
4938 schedule_reconstruction(sh, &s, 1, 1);
4939 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4940 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4941 atomic_dec(&conf->reshape_stripes);
4942 wake_up(&conf->wait_for_overlap);
4943 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4944 }
4945
4946 if (s.expanding && s.locked == 0 &&
4947 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4948 handle_stripe_expansion(conf, sh);
16a53ecc 4949
3687c061 4950finish:
6bfe0b49 4951 /* wait for this device to become unblocked */
5f066c63
N
4952 if (unlikely(s.blocked_rdev)) {
4953 if (conf->mddev->external)
4954 md_wait_for_blocked_rdev(s.blocked_rdev,
4955 conf->mddev);
4956 else
4957 /* Internal metadata will immediately
4958 * be written by raid5d, so we don't
4959 * need to wait here.
4960 */
4961 rdev_dec_pending(s.blocked_rdev,
4962 conf->mddev);
4963 }
6bfe0b49 4964
bc2607f3
N
4965 if (s.handle_bad_blocks)
4966 for (i = disks; i--; ) {
3cb03002 4967 struct md_rdev *rdev;
bc2607f3
N
4968 struct r5dev *dev = &sh->dev[i];
4969 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4970 /* We own a safe reference to the rdev */
4971 rdev = conf->disks[i].rdev;
4972 if (!rdev_set_badblocks(rdev, sh->sector,
4973 STRIPE_SECTORS, 0))
4974 md_error(conf->mddev, rdev);
4975 rdev_dec_pending(rdev, conf->mddev);
4976 }
b84db560
N
4977 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4978 rdev = conf->disks[i].rdev;
4979 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4980 STRIPE_SECTORS, 0);
b84db560
N
4981 rdev_dec_pending(rdev, conf->mddev);
4982 }
977df362
N
4983 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4984 rdev = conf->disks[i].replacement;
dd054fce
N
4985 if (!rdev)
4986 /* rdev have been moved down */
4987 rdev = conf->disks[i].rdev;
977df362 4988 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4989 STRIPE_SECTORS, 0);
977df362
N
4990 rdev_dec_pending(rdev, conf->mddev);
4991 }
bc2607f3
N
4992 }
4993
6c0069c0
YT
4994 if (s.ops_request)
4995 raid_run_ops(sh, s.ops_request);
4996
f0e43bcd 4997 ops_run_io(sh, &s);
16a53ecc 4998
c5709ef6 4999 if (s.dec_preread_active) {
729a1866 5000 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5001 * is waiting on a flush, it won't continue until the writes
729a1866
N
5002 * have actually been submitted.
5003 */
5004 atomic_dec(&conf->preread_active_stripes);
5005 if (atomic_read(&conf->preread_active_stripes) <
5006 IO_THRESHOLD)
5007 md_wakeup_thread(conf->mddev->thread);
5008 }
5009
257a4b42 5010 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5011}
5012
d1688a6d 5013static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
5014{
5015 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5016 while (!list_empty(&conf->delayed_list)) {
5017 struct list_head *l = conf->delayed_list.next;
5018 struct stripe_head *sh;
5019 sh = list_entry(l, struct stripe_head, lru);
5020 list_del_init(l);
5021 clear_bit(STRIPE_DELAYED, &sh->state);
5022 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5023 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5024 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5025 raid5_wakeup_stripe_thread(sh);
16a53ecc 5026 }
482c0834 5027 }
16a53ecc
N
5028}
5029
566c09c5
SL
5030static void activate_bit_delay(struct r5conf *conf,
5031 struct list_head *temp_inactive_list)
16a53ecc
N
5032{
5033 /* device_lock is held */
5034 struct list_head head;
5035 list_add(&head, &conf->bitmap_list);
5036 list_del_init(&conf->bitmap_list);
5037 while (!list_empty(&head)) {
5038 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5039 int hash;
16a53ecc
N
5040 list_del_init(&sh->lru);
5041 atomic_inc(&sh->count);
566c09c5
SL
5042 hash = sh->hash_lock_index;
5043 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5044 }
5045}
5046
5c675f83 5047static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 5048{
d1688a6d 5049 struct r5conf *conf = mddev->private;
f022b2fd
N
5050
5051 /* No difference between reads and writes. Just check
5052 * how busy the stripe_cache is
5053 */
3fa841d7 5054
5423399a 5055 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd 5056 return 1;
a39f7afd
SL
5057
5058 /* Also checks whether there is pressure on r5cache log space */
5059 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5060 return 1;
f022b2fd
N
5061 if (conf->quiesce)
5062 return 1;
4bda556a 5063 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
5064 return 1;
5065
5066 return 0;
5067}
5068
fd01b88c 5069static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5070{
3cb5edf4 5071 struct r5conf *conf = mddev->private;
4f024f37 5072 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 5073 unsigned int chunk_sectors;
aa8b57aa 5074 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5075
3cb5edf4 5076 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5077 return chunk_sectors >=
5078 ((sector & (chunk_sectors - 1)) + bio_sectors);
5079}
5080
46031f9a
RBJ
5081/*
5082 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5083 * later sampled by raid5d.
5084 */
d1688a6d 5085static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5086{
5087 unsigned long flags;
5088
5089 spin_lock_irqsave(&conf->device_lock, flags);
5090
5091 bi->bi_next = conf->retry_read_aligned_list;
5092 conf->retry_read_aligned_list = bi;
5093
5094 spin_unlock_irqrestore(&conf->device_lock, flags);
5095 md_wakeup_thread(conf->mddev->thread);
5096}
5097
0472a42b
N
5098static struct bio *remove_bio_from_retry(struct r5conf *conf,
5099 unsigned int *offset)
46031f9a
RBJ
5100{
5101 struct bio *bi;
5102
5103 bi = conf->retry_read_aligned;
5104 if (bi) {
0472a42b 5105 *offset = conf->retry_read_offset;
46031f9a
RBJ
5106 conf->retry_read_aligned = NULL;
5107 return bi;
5108 }
5109 bi = conf->retry_read_aligned_list;
5110 if(bi) {
387bb173 5111 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5112 bi->bi_next = NULL;
0472a42b 5113 *offset = 0;
46031f9a
RBJ
5114 }
5115
5116 return bi;
5117}
5118
f679623f
RBJ
5119/*
5120 * The "raid5_align_endio" should check if the read succeeded and if it
5121 * did, call bio_endio on the original bio (having bio_put the new bio
5122 * first).
5123 * If the read failed..
5124 */
4246a0b6 5125static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5126{
5127 struct bio* raid_bi = bi->bi_private;
fd01b88c 5128 struct mddev *mddev;
d1688a6d 5129 struct r5conf *conf;
3cb03002 5130 struct md_rdev *rdev;
9b81c842 5131 int error = bi->bi_error;
46031f9a 5132
f679623f 5133 bio_put(bi);
46031f9a 5134
46031f9a
RBJ
5135 rdev = (void*)raid_bi->bi_next;
5136 raid_bi->bi_next = NULL;
2b7f2228
N
5137 mddev = rdev->mddev;
5138 conf = mddev->private;
46031f9a
RBJ
5139
5140 rdev_dec_pending(rdev, conf->mddev);
5141
9b81c842 5142 if (!error) {
0a82a8d1
LT
5143 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
5144 raid_bi, 0);
4246a0b6 5145 bio_endio(raid_bi);
46031f9a 5146 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5147 wake_up(&conf->wait_for_quiescent);
6712ecf8 5148 return;
46031f9a
RBJ
5149 }
5150
45b4233c 5151 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5152
5153 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5154}
5155
7ef6b12a 5156static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5157{
d1688a6d 5158 struct r5conf *conf = mddev->private;
8553fe7e 5159 int dd_idx;
f679623f 5160 struct bio* align_bi;
3cb03002 5161 struct md_rdev *rdev;
671488cc 5162 sector_t end_sector;
f679623f
RBJ
5163
5164 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5165 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5166 return 0;
5167 }
5168 /*
d7a10308 5169 * use bio_clone_fast to make a copy of the bio
f679623f 5170 */
d7a10308 5171 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
f679623f
RBJ
5172 if (!align_bi)
5173 return 0;
5174 /*
5175 * set bi_end_io to a new function, and set bi_private to the
5176 * original bio.
5177 */
5178 align_bi->bi_end_io = raid5_align_endio;
5179 align_bi->bi_private = raid_bio;
5180 /*
5181 * compute position
5182 */
4f024f37
KO
5183 align_bi->bi_iter.bi_sector =
5184 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5185 0, &dd_idx, NULL);
f679623f 5186
f73a1c7d 5187 end_sector = bio_end_sector(align_bi);
f679623f 5188 rcu_read_lock();
671488cc
N
5189 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5190 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5191 rdev->recovery_offset < end_sector) {
5192 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5193 if (rdev &&
5194 (test_bit(Faulty, &rdev->flags) ||
5195 !(test_bit(In_sync, &rdev->flags) ||
5196 rdev->recovery_offset >= end_sector)))
5197 rdev = NULL;
5198 }
03b047f4
SL
5199
5200 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5201 rcu_read_unlock();
5202 bio_put(align_bi);
5203 return 0;
5204 }
5205
671488cc 5206 if (rdev) {
31c176ec
N
5207 sector_t first_bad;
5208 int bad_sectors;
5209
f679623f
RBJ
5210 atomic_inc(&rdev->nr_pending);
5211 rcu_read_unlock();
46031f9a
RBJ
5212 raid_bio->bi_next = (void*)rdev;
5213 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 5214 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 5215
7140aafc 5216 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 5217 bio_sectors(align_bi),
31c176ec 5218 &first_bad, &bad_sectors)) {
387bb173
NB
5219 bio_put(align_bi);
5220 rdev_dec_pending(rdev, mddev);
5221 return 0;
5222 }
5223
6c0544e2 5224 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 5225 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 5226
46031f9a 5227 spin_lock_irq(&conf->device_lock);
b1b46486 5228 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 5229 conf->quiesce == 0,
eed8c02e 5230 conf->device_lock);
46031f9a
RBJ
5231 atomic_inc(&conf->active_aligned_reads);
5232 spin_unlock_irq(&conf->device_lock);
5233
e3620a3a
JB
5234 if (mddev->gendisk)
5235 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5236 align_bi, disk_devt(mddev->gendisk),
4f024f37 5237 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
5238 generic_make_request(align_bi);
5239 return 1;
5240 } else {
5241 rcu_read_unlock();
46031f9a 5242 bio_put(align_bi);
f679623f
RBJ
5243 return 0;
5244 }
5245}
5246
7ef6b12a
ML
5247static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5248{
5249 struct bio *split;
5250
5251 do {
5252 sector_t sector = raid_bio->bi_iter.bi_sector;
5253 unsigned chunk_sects = mddev->chunk_sectors;
5254 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5255
5256 if (sectors < bio_sectors(raid_bio)) {
5257 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5258 bio_chain(split, raid_bio);
5259 } else
5260 split = raid_bio;
5261
5262 if (!raid5_read_one_chunk(mddev, split)) {
5263 if (split != raid_bio)
5264 generic_make_request(raid_bio);
5265 return split;
5266 }
5267 } while (split != raid_bio);
5268
5269 return NULL;
5270}
5271
8b3e6cdc
DW
5272/* __get_priority_stripe - get the next stripe to process
5273 *
5274 * Full stripe writes are allowed to pass preread active stripes up until
5275 * the bypass_threshold is exceeded. In general the bypass_count
5276 * increments when the handle_list is handled before the hold_list; however, it
5277 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5278 * stripe with in flight i/o. The bypass_count will be reset when the
5279 * head of the hold_list has changed, i.e. the head was promoted to the
5280 * handle_list.
5281 */
851c30c9 5282static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5283{
535ae4eb 5284 struct stripe_head *sh, *tmp;
851c30c9 5285 struct list_head *handle_list = NULL;
535ae4eb
SL
5286 struct r5worker_group *wg;
5287 bool second_try = !r5c_is_writeback(conf->log);
5288 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state);
851c30c9 5289
535ae4eb
SL
5290again:
5291 wg = NULL;
5292 sh = NULL;
851c30c9 5293 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5294 handle_list = try_loprio ? &conf->loprio_list :
5295 &conf->handle_list;
851c30c9 5296 } else if (group != ANY_GROUP) {
535ae4eb
SL
5297 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5298 &conf->worker_groups[group].handle_list;
bfc90cb0 5299 wg = &conf->worker_groups[group];
851c30c9
SL
5300 } else {
5301 int i;
5302 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5303 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5304 &conf->worker_groups[i].handle_list;
bfc90cb0 5305 wg = &conf->worker_groups[i];
851c30c9
SL
5306 if (!list_empty(handle_list))
5307 break;
5308 }
5309 }
8b3e6cdc
DW
5310
5311 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5312 __func__,
851c30c9 5313 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5314 list_empty(&conf->hold_list) ? "empty" : "busy",
5315 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5316
851c30c9
SL
5317 if (!list_empty(handle_list)) {
5318 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5319
5320 if (list_empty(&conf->hold_list))
5321 conf->bypass_count = 0;
5322 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5323 if (conf->hold_list.next == conf->last_hold)
5324 conf->bypass_count++;
5325 else {
5326 conf->last_hold = conf->hold_list.next;
5327 conf->bypass_count -= conf->bypass_threshold;
5328 if (conf->bypass_count < 0)
5329 conf->bypass_count = 0;
5330 }
5331 }
5332 } else if (!list_empty(&conf->hold_list) &&
5333 ((conf->bypass_threshold &&
5334 conf->bypass_count > conf->bypass_threshold) ||
5335 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5336
5337 list_for_each_entry(tmp, &conf->hold_list, lru) {
5338 if (conf->worker_cnt_per_group == 0 ||
5339 group == ANY_GROUP ||
5340 !cpu_online(tmp->cpu) ||
5341 cpu_to_group(tmp->cpu) == group) {
5342 sh = tmp;
5343 break;
5344 }
5345 }
5346
5347 if (sh) {
5348 conf->bypass_count -= conf->bypass_threshold;
5349 if (conf->bypass_count < 0)
5350 conf->bypass_count = 0;
5351 }
bfc90cb0 5352 wg = NULL;
851c30c9
SL
5353 }
5354
535ae4eb
SL
5355 if (!sh) {
5356 if (second_try)
5357 return NULL;
5358 second_try = true;
5359 try_loprio = !try_loprio;
5360 goto again;
5361 }
8b3e6cdc 5362
bfc90cb0
SL
5363 if (wg) {
5364 wg->stripes_cnt--;
5365 sh->group = NULL;
5366 }
8b3e6cdc 5367 list_del_init(&sh->lru);
c7a6d35e 5368 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5369 return sh;
5370}
f679623f 5371
8811b596
SL
5372struct raid5_plug_cb {
5373 struct blk_plug_cb cb;
5374 struct list_head list;
566c09c5 5375 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5376};
5377
5378static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5379{
5380 struct raid5_plug_cb *cb = container_of(
5381 blk_cb, struct raid5_plug_cb, cb);
5382 struct stripe_head *sh;
5383 struct mddev *mddev = cb->cb.data;
5384 struct r5conf *conf = mddev->private;
a9add5d9 5385 int cnt = 0;
566c09c5 5386 int hash;
8811b596
SL
5387
5388 if (cb->list.next && !list_empty(&cb->list)) {
5389 spin_lock_irq(&conf->device_lock);
5390 while (!list_empty(&cb->list)) {
5391 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5392 list_del_init(&sh->lru);
5393 /*
5394 * avoid race release_stripe_plug() sees
5395 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5396 * is still in our list
5397 */
4e857c58 5398 smp_mb__before_atomic();
8811b596 5399 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5400 /*
5401 * STRIPE_ON_RELEASE_LIST could be set here. In that
5402 * case, the count is always > 1 here
5403 */
566c09c5
SL
5404 hash = sh->hash_lock_index;
5405 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5406 cnt++;
8811b596
SL
5407 }
5408 spin_unlock_irq(&conf->device_lock);
5409 }
566c09c5
SL
5410 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5411 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5412 if (mddev->queue)
5413 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5414 kfree(cb);
5415}
5416
5417static void release_stripe_plug(struct mddev *mddev,
5418 struct stripe_head *sh)
5419{
5420 struct blk_plug_cb *blk_cb = blk_check_plugged(
5421 raid5_unplug, mddev,
5422 sizeof(struct raid5_plug_cb));
5423 struct raid5_plug_cb *cb;
5424
5425 if (!blk_cb) {
6d036f7d 5426 raid5_release_stripe(sh);
8811b596
SL
5427 return;
5428 }
5429
5430 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5431
566c09c5
SL
5432 if (cb->list.next == NULL) {
5433 int i;
8811b596 5434 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5435 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5436 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5437 }
8811b596
SL
5438
5439 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5440 list_add_tail(&sh->lru, &cb->list);
5441 else
6d036f7d 5442 raid5_release_stripe(sh);
8811b596
SL
5443}
5444
620125f2
SL
5445static void make_discard_request(struct mddev *mddev, struct bio *bi)
5446{
5447 struct r5conf *conf = mddev->private;
5448 sector_t logical_sector, last_sector;
5449 struct stripe_head *sh;
620125f2
SL
5450 int stripe_sectors;
5451
5452 if (mddev->reshape_position != MaxSector)
5453 /* Skip discard while reshape is happening */
5454 return;
5455
4f024f37
KO
5456 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5457 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5458
5459 bi->bi_next = NULL;
49728050 5460 md_write_start(mddev, bi);
620125f2
SL
5461
5462 stripe_sectors = conf->chunk_sectors *
5463 (conf->raid_disks - conf->max_degraded);
5464 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5465 stripe_sectors);
5466 sector_div(last_sector, stripe_sectors);
5467
5468 logical_sector *= conf->chunk_sectors;
5469 last_sector *= conf->chunk_sectors;
5470
5471 for (; logical_sector < last_sector;
5472 logical_sector += STRIPE_SECTORS) {
5473 DEFINE_WAIT(w);
5474 int d;
5475 again:
6d036f7d 5476 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5477 prepare_to_wait(&conf->wait_for_overlap, &w,
5478 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5479 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5480 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5481 raid5_release_stripe(sh);
f8dfcffd
N
5482 schedule();
5483 goto again;
5484 }
5485 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5486 spin_lock_irq(&sh->stripe_lock);
5487 for (d = 0; d < conf->raid_disks; d++) {
5488 if (d == sh->pd_idx || d == sh->qd_idx)
5489 continue;
5490 if (sh->dev[d].towrite || sh->dev[d].toread) {
5491 set_bit(R5_Overlap, &sh->dev[d].flags);
5492 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5493 raid5_release_stripe(sh);
620125f2
SL
5494 schedule();
5495 goto again;
5496 }
5497 }
f8dfcffd 5498 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5499 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5500 sh->overwrite_disks = 0;
620125f2
SL
5501 for (d = 0; d < conf->raid_disks; d++) {
5502 if (d == sh->pd_idx || d == sh->qd_idx)
5503 continue;
5504 sh->dev[d].towrite = bi;
5505 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5506 bio_inc_remaining(bi);
49728050 5507 md_write_inc(mddev, bi);
7a87f434 5508 sh->overwrite_disks++;
620125f2
SL
5509 }
5510 spin_unlock_irq(&sh->stripe_lock);
5511 if (conf->mddev->bitmap) {
5512 for (d = 0;
5513 d < conf->raid_disks - conf->max_degraded;
5514 d++)
5515 bitmap_startwrite(mddev->bitmap,
5516 sh->sector,
5517 STRIPE_SECTORS,
5518 0);
5519 sh->bm_seq = conf->seq_flush + 1;
5520 set_bit(STRIPE_BIT_DELAY, &sh->state);
5521 }
5522
5523 set_bit(STRIPE_HANDLE, &sh->state);
5524 clear_bit(STRIPE_DELAYED, &sh->state);
5525 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5526 atomic_inc(&conf->preread_active_stripes);
5527 release_stripe_plug(mddev, sh);
5528 }
5529
49728050 5530 md_write_end(mddev);
016c76ac 5531 bio_endio(bi);
620125f2
SL
5532}
5533
849674e4 5534static void raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5535{
d1688a6d 5536 struct r5conf *conf = mddev->private;
911d4ee8 5537 int dd_idx;
1da177e4
LT
5538 sector_t new_sector;
5539 sector_t logical_sector, last_sector;
5540 struct stripe_head *sh;
a362357b 5541 const int rw = bio_data_dir(bi);
27c0f68f
SL
5542 DEFINE_WAIT(w);
5543 bool do_prepare;
3bddb7f8 5544 bool do_flush = false;
1da177e4 5545
1eff9d32 5546 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
828cbe98
SL
5547 int ret = r5l_handle_flush_request(conf->log, bi);
5548
5549 if (ret == 0)
5550 return;
5551 if (ret == -ENODEV) {
5552 md_flush_request(mddev, bi);
5553 return;
5554 }
5555 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5556 /*
5557 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5558 * we need to flush journal device
5559 */
5560 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5561 }
5562
9ffc8f7c
EM
5563 /*
5564 * If array is degraded, better not do chunk aligned read because
5565 * later we might have to read it again in order to reconstruct
5566 * data on failed drives.
5567 */
5568 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5569 mddev->reshape_position == MaxSector) {
5570 bi = chunk_aligned_read(mddev, bi);
5571 if (!bi)
5572 return;
5573 }
52488615 5574
796a5cf0 5575 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2
SL
5576 make_discard_request(mddev, bi);
5577 return;
5578 }
5579
4f024f37 5580 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5581 last_sector = bio_end_sector(bi);
1da177e4 5582 bi->bi_next = NULL;
49728050 5583 md_write_start(mddev, bi);
06d91a5f 5584
27c0f68f 5585 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5586 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5587 int previous;
c46501b2 5588 int seq;
b578d55f 5589
27c0f68f 5590 do_prepare = false;
7ecaa1e6 5591 retry:
c46501b2 5592 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5593 previous = 0;
27c0f68f
SL
5594 if (do_prepare)
5595 prepare_to_wait(&conf->wait_for_overlap, &w,
5596 TASK_UNINTERRUPTIBLE);
b0f9ec04 5597 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5598 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5599 * 64bit on a 32bit platform, and so it might be
5600 * possible to see a half-updated value
aeb878b0 5601 * Of course reshape_progress could change after
df8e7f76
N
5602 * the lock is dropped, so once we get a reference
5603 * to the stripe that we think it is, we will have
5604 * to check again.
5605 */
7ecaa1e6 5606 spin_lock_irq(&conf->device_lock);
2c810cdd 5607 if (mddev->reshape_backwards
fef9c61f
N
5608 ? logical_sector < conf->reshape_progress
5609 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5610 previous = 1;
5611 } else {
2c810cdd 5612 if (mddev->reshape_backwards
fef9c61f
N
5613 ? logical_sector < conf->reshape_safe
5614 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5615 spin_unlock_irq(&conf->device_lock);
5616 schedule();
27c0f68f 5617 do_prepare = true;
b578d55f
N
5618 goto retry;
5619 }
5620 }
7ecaa1e6
N
5621 spin_unlock_irq(&conf->device_lock);
5622 }
16a53ecc 5623
112bf897
N
5624 new_sector = raid5_compute_sector(conf, logical_sector,
5625 previous,
911d4ee8 5626 &dd_idx, NULL);
849674e4 5627 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5628 (unsigned long long)new_sector,
1da177e4
LT
5629 (unsigned long long)logical_sector);
5630
6d036f7d 5631 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5632 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5633 if (sh) {
b0f9ec04 5634 if (unlikely(previous)) {
7ecaa1e6 5635 /* expansion might have moved on while waiting for a
df8e7f76
N
5636 * stripe, so we must do the range check again.
5637 * Expansion could still move past after this
5638 * test, but as we are holding a reference to
5639 * 'sh', we know that if that happens,
5640 * STRIPE_EXPANDING will get set and the expansion
5641 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5642 */
5643 int must_retry = 0;
5644 spin_lock_irq(&conf->device_lock);
2c810cdd 5645 if (mddev->reshape_backwards
b0f9ec04
N
5646 ? logical_sector >= conf->reshape_progress
5647 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5648 /* mismatch, need to try again */
5649 must_retry = 1;
5650 spin_unlock_irq(&conf->device_lock);
5651 if (must_retry) {
6d036f7d 5652 raid5_release_stripe(sh);
7a3ab908 5653 schedule();
27c0f68f 5654 do_prepare = true;
7ecaa1e6
N
5655 goto retry;
5656 }
5657 }
c46501b2
N
5658 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5659 /* Might have got the wrong stripe_head
5660 * by accident
5661 */
6d036f7d 5662 raid5_release_stripe(sh);
c46501b2
N
5663 goto retry;
5664 }
e62e58a5 5665
ffd96e35 5666 if (rw == WRITE &&
a5c308d4 5667 logical_sector >= mddev->suspend_lo &&
e464eafd 5668 logical_sector < mddev->suspend_hi) {
6d036f7d 5669 raid5_release_stripe(sh);
e62e58a5
N
5670 /* As the suspend_* range is controlled by
5671 * userspace, we want an interruptible
5672 * wait.
5673 */
5674 flush_signals(current);
5675 prepare_to_wait(&conf->wait_for_overlap,
5676 &w, TASK_INTERRUPTIBLE);
5677 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5678 logical_sector < mddev->suspend_hi) {
e62e58a5 5679 schedule();
27c0f68f
SL
5680 do_prepare = true;
5681 }
e464eafd
N
5682 goto retry;
5683 }
7ecaa1e6
N
5684
5685 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5686 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5687 /* Stripe is busy expanding or
5688 * add failed due to overlap. Flush everything
1da177e4
LT
5689 * and wait a while
5690 */
482c0834 5691 md_wakeup_thread(mddev->thread);
6d036f7d 5692 raid5_release_stripe(sh);
1da177e4 5693 schedule();
27c0f68f 5694 do_prepare = true;
1da177e4
LT
5695 goto retry;
5696 }
3bddb7f8
SL
5697 if (do_flush) {
5698 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5699 /* we only need flush for one stripe */
5700 do_flush = false;
5701 }
5702
6ed3003c
N
5703 set_bit(STRIPE_HANDLE, &sh->state);
5704 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5705 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5706 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5707 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5708 atomic_inc(&conf->preread_active_stripes);
8811b596 5709 release_stripe_plug(mddev, sh);
1da177e4
LT
5710 } else {
5711 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5712 bi->bi_error = -EIO;
1da177e4
LT
5713 break;
5714 }
1da177e4 5715 }
27c0f68f 5716 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5717
49728050
N
5718 if (rw == WRITE)
5719 md_write_end(mddev);
016c76ac 5720 bio_endio(bi);
1da177e4
LT
5721}
5722
fd01b88c 5723static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5724
fd01b88c 5725static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5726{
52c03291
N
5727 /* reshaping is quite different to recovery/resync so it is
5728 * handled quite separately ... here.
5729 *
5730 * On each call to sync_request, we gather one chunk worth of
5731 * destination stripes and flag them as expanding.
5732 * Then we find all the source stripes and request reads.
5733 * As the reads complete, handle_stripe will copy the data
5734 * into the destination stripe and release that stripe.
5735 */
d1688a6d 5736 struct r5conf *conf = mddev->private;
1da177e4 5737 struct stripe_head *sh;
ccfcc3c1 5738 sector_t first_sector, last_sector;
f416885e
N
5739 int raid_disks = conf->previous_raid_disks;
5740 int data_disks = raid_disks - conf->max_degraded;
5741 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5742 int i;
5743 int dd_idx;
c8f517c4 5744 sector_t writepos, readpos, safepos;
ec32a2bd 5745 sector_t stripe_addr;
7a661381 5746 int reshape_sectors;
ab69ae12 5747 struct list_head stripes;
92140480 5748 sector_t retn;
52c03291 5749
fef9c61f
N
5750 if (sector_nr == 0) {
5751 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5752 if (mddev->reshape_backwards &&
fef9c61f
N
5753 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5754 sector_nr = raid5_size(mddev, 0, 0)
5755 - conf->reshape_progress;
6cbd8148
N
5756 } else if (mddev->reshape_backwards &&
5757 conf->reshape_progress == MaxSector) {
5758 /* shouldn't happen, but just in case, finish up.*/
5759 sector_nr = MaxSector;
2c810cdd 5760 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5761 conf->reshape_progress > 0)
5762 sector_nr = conf->reshape_progress;
f416885e 5763 sector_div(sector_nr, new_data_disks);
fef9c61f 5764 if (sector_nr) {
8dee7211
N
5765 mddev->curr_resync_completed = sector_nr;
5766 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5767 *skipped = 1;
92140480
N
5768 retn = sector_nr;
5769 goto finish;
fef9c61f 5770 }
52c03291
N
5771 }
5772
7a661381
N
5773 /* We need to process a full chunk at a time.
5774 * If old and new chunk sizes differ, we need to process the
5775 * largest of these
5776 */
3cb5edf4
N
5777
5778 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5779
b5254dd5
N
5780 /* We update the metadata at least every 10 seconds, or when
5781 * the data about to be copied would over-write the source of
5782 * the data at the front of the range. i.e. one new_stripe
5783 * along from reshape_progress new_maps to after where
5784 * reshape_safe old_maps to
52c03291 5785 */
fef9c61f 5786 writepos = conf->reshape_progress;
f416885e 5787 sector_div(writepos, new_data_disks);
c8f517c4
N
5788 readpos = conf->reshape_progress;
5789 sector_div(readpos, data_disks);
fef9c61f 5790 safepos = conf->reshape_safe;
f416885e 5791 sector_div(safepos, data_disks);
2c810cdd 5792 if (mddev->reshape_backwards) {
c74c0d76
N
5793 BUG_ON(writepos < reshape_sectors);
5794 writepos -= reshape_sectors;
c8f517c4 5795 readpos += reshape_sectors;
7a661381 5796 safepos += reshape_sectors;
fef9c61f 5797 } else {
7a661381 5798 writepos += reshape_sectors;
c74c0d76
N
5799 /* readpos and safepos are worst-case calculations.
5800 * A negative number is overly pessimistic, and causes
5801 * obvious problems for unsigned storage. So clip to 0.
5802 */
ed37d83e
N
5803 readpos -= min_t(sector_t, reshape_sectors, readpos);
5804 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5805 }
52c03291 5806
b5254dd5
N
5807 /* Having calculated the 'writepos' possibly use it
5808 * to set 'stripe_addr' which is where we will write to.
5809 */
5810 if (mddev->reshape_backwards) {
5811 BUG_ON(conf->reshape_progress == 0);
5812 stripe_addr = writepos;
5813 BUG_ON((mddev->dev_sectors &
5814 ~((sector_t)reshape_sectors - 1))
5815 - reshape_sectors - stripe_addr
5816 != sector_nr);
5817 } else {
5818 BUG_ON(writepos != sector_nr + reshape_sectors);
5819 stripe_addr = sector_nr;
5820 }
5821
c8f517c4
N
5822 /* 'writepos' is the most advanced device address we might write.
5823 * 'readpos' is the least advanced device address we might read.
5824 * 'safepos' is the least address recorded in the metadata as having
5825 * been reshaped.
b5254dd5
N
5826 * If there is a min_offset_diff, these are adjusted either by
5827 * increasing the safepos/readpos if diff is negative, or
5828 * increasing writepos if diff is positive.
5829 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5830 * ensure safety in the face of a crash - that must be done by userspace
5831 * making a backup of the data. So in that case there is no particular
5832 * rush to update metadata.
5833 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5834 * update the metadata to advance 'safepos' to match 'readpos' so that
5835 * we can be safe in the event of a crash.
5836 * So we insist on updating metadata if safepos is behind writepos and
5837 * readpos is beyond writepos.
5838 * In any case, update the metadata every 10 seconds.
5839 * Maybe that number should be configurable, but I'm not sure it is
5840 * worth it.... maybe it could be a multiple of safemode_delay???
5841 */
b5254dd5
N
5842 if (conf->min_offset_diff < 0) {
5843 safepos += -conf->min_offset_diff;
5844 readpos += -conf->min_offset_diff;
5845 } else
5846 writepos += conf->min_offset_diff;
5847
2c810cdd 5848 if ((mddev->reshape_backwards
c8f517c4
N
5849 ? (safepos > writepos && readpos < writepos)
5850 : (safepos < writepos && readpos > writepos)) ||
5851 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5852 /* Cannot proceed until we've updated the superblock... */
5853 wait_event(conf->wait_for_overlap,
c91abf5a
N
5854 atomic_read(&conf->reshape_stripes)==0
5855 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5856 if (atomic_read(&conf->reshape_stripes) != 0)
5857 return 0;
fef9c61f 5858 mddev->reshape_position = conf->reshape_progress;
75d3da43 5859 mddev->curr_resync_completed = sector_nr;
c8f517c4 5860 conf->reshape_checkpoint = jiffies;
2953079c 5861 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 5862 md_wakeup_thread(mddev->thread);
2953079c 5863 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
5864 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5865 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5866 return 0;
52c03291 5867 spin_lock_irq(&conf->device_lock);
fef9c61f 5868 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5869 spin_unlock_irq(&conf->device_lock);
5870 wake_up(&conf->wait_for_overlap);
acb180b0 5871 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5872 }
5873
ab69ae12 5874 INIT_LIST_HEAD(&stripes);
7a661381 5875 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5876 int j;
a9f326eb 5877 int skipped_disk = 0;
6d036f7d 5878 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5879 set_bit(STRIPE_EXPANDING, &sh->state);
5880 atomic_inc(&conf->reshape_stripes);
5881 /* If any of this stripe is beyond the end of the old
5882 * array, then we need to zero those blocks
5883 */
5884 for (j=sh->disks; j--;) {
5885 sector_t s;
5886 if (j == sh->pd_idx)
5887 continue;
f416885e 5888 if (conf->level == 6 &&
d0dabf7e 5889 j == sh->qd_idx)
f416885e 5890 continue;
6d036f7d 5891 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5892 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5893 skipped_disk = 1;
52c03291
N
5894 continue;
5895 }
5896 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5897 set_bit(R5_Expanded, &sh->dev[j].flags);
5898 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5899 }
a9f326eb 5900 if (!skipped_disk) {
52c03291
N
5901 set_bit(STRIPE_EXPAND_READY, &sh->state);
5902 set_bit(STRIPE_HANDLE, &sh->state);
5903 }
ab69ae12 5904 list_add(&sh->lru, &stripes);
52c03291
N
5905 }
5906 spin_lock_irq(&conf->device_lock);
2c810cdd 5907 if (mddev->reshape_backwards)
7a661381 5908 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5909 else
7a661381 5910 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5911 spin_unlock_irq(&conf->device_lock);
5912 /* Ok, those stripe are ready. We can start scheduling
5913 * reads on the source stripes.
5914 * The source stripes are determined by mapping the first and last
5915 * block on the destination stripes.
5916 */
52c03291 5917 first_sector =
ec32a2bd 5918 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5919 1, &dd_idx, NULL);
52c03291 5920 last_sector =
0e6e0271 5921 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5922 * new_data_disks - 1),
911d4ee8 5923 1, &dd_idx, NULL);
58c0fed4
AN
5924 if (last_sector >= mddev->dev_sectors)
5925 last_sector = mddev->dev_sectors - 1;
52c03291 5926 while (first_sector <= last_sector) {
6d036f7d 5927 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5928 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5929 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5930 raid5_release_stripe(sh);
52c03291
N
5931 first_sector += STRIPE_SECTORS;
5932 }
ab69ae12
N
5933 /* Now that the sources are clearly marked, we can release
5934 * the destination stripes
5935 */
5936 while (!list_empty(&stripes)) {
5937 sh = list_entry(stripes.next, struct stripe_head, lru);
5938 list_del_init(&sh->lru);
6d036f7d 5939 raid5_release_stripe(sh);
ab69ae12 5940 }
c6207277
N
5941 /* If this takes us to the resync_max point where we have to pause,
5942 * then we need to write out the superblock.
5943 */
7a661381 5944 sector_nr += reshape_sectors;
92140480
N
5945 retn = reshape_sectors;
5946finish:
c5e19d90
N
5947 if (mddev->curr_resync_completed > mddev->resync_max ||
5948 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5949 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5950 /* Cannot proceed until we've updated the superblock... */
5951 wait_event(conf->wait_for_overlap,
c91abf5a
N
5952 atomic_read(&conf->reshape_stripes) == 0
5953 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5954 if (atomic_read(&conf->reshape_stripes) != 0)
5955 goto ret;
fef9c61f 5956 mddev->reshape_position = conf->reshape_progress;
75d3da43 5957 mddev->curr_resync_completed = sector_nr;
c8f517c4 5958 conf->reshape_checkpoint = jiffies;
2953079c 5959 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
5960 md_wakeup_thread(mddev->thread);
5961 wait_event(mddev->sb_wait,
2953079c 5962 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
5963 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5964 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5965 goto ret;
c6207277 5966 spin_lock_irq(&conf->device_lock);
fef9c61f 5967 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5968 spin_unlock_irq(&conf->device_lock);
5969 wake_up(&conf->wait_for_overlap);
acb180b0 5970 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5971 }
c91abf5a 5972ret:
92140480 5973 return retn;
52c03291
N
5974}
5975
849674e4
SL
5976static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5977 int *skipped)
52c03291 5978{
d1688a6d 5979 struct r5conf *conf = mddev->private;
52c03291 5980 struct stripe_head *sh;
58c0fed4 5981 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5982 sector_t sync_blocks;
16a53ecc
N
5983 int still_degraded = 0;
5984 int i;
1da177e4 5985
72626685 5986 if (sector_nr >= max_sector) {
1da177e4 5987 /* just being told to finish up .. nothing much to do */
cea9c228 5988
29269553
N
5989 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5990 end_reshape(conf);
5991 return 0;
5992 }
72626685
N
5993
5994 if (mddev->curr_resync < max_sector) /* aborted */
5995 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5996 &sync_blocks, 1);
16a53ecc 5997 else /* completed sync */
72626685
N
5998 conf->fullsync = 0;
5999 bitmap_close_sync(mddev->bitmap);
6000
1da177e4
LT
6001 return 0;
6002 }
ccfcc3c1 6003
64bd660b
N
6004 /* Allow raid5_quiesce to complete */
6005 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6006
52c03291
N
6007 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6008 return reshape_request(mddev, sector_nr, skipped);
f6705578 6009
c6207277
N
6010 /* No need to check resync_max as we never do more than one
6011 * stripe, and as resync_max will always be on a chunk boundary,
6012 * if the check in md_do_sync didn't fire, there is no chance
6013 * of overstepping resync_max here
6014 */
6015
16a53ecc 6016 /* if there is too many failed drives and we are trying
1da177e4
LT
6017 * to resync, then assert that we are finished, because there is
6018 * nothing we can do.
6019 */
3285edf1 6020 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6021 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6022 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6023 *skipped = 1;
1da177e4
LT
6024 return rv;
6025 }
6f608040 6026 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6027 !conf->fullsync &&
6028 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6029 sync_blocks >= STRIPE_SECTORS) {
72626685
N
6030 /* we can skip this block, and probably more */
6031 sync_blocks /= STRIPE_SECTORS;
6032 *skipped = 1;
6033 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6034 }
1da177e4 6035
c40f341f 6036 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6037
6d036f7d 6038 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 6039 if (sh == NULL) {
6d036f7d 6040 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 6041 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6042 * is trying to get access
1da177e4 6043 */
66c006a5 6044 schedule_timeout_uninterruptible(1);
1da177e4 6045 }
16a53ecc 6046 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6047 * Note in case of > 1 drive failures it's possible we're rebuilding
6048 * one drive while leaving another faulty drive in array.
16a53ecc 6049 */
16d9cfab
EM
6050 rcu_read_lock();
6051 for (i = 0; i < conf->raid_disks; i++) {
6052 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6053
6054 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6055 still_degraded = 1;
16d9cfab
EM
6056 }
6057 rcu_read_unlock();
16a53ecc
N
6058
6059 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6060
83206d66 6061 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6062 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6063
6d036f7d 6064 raid5_release_stripe(sh);
1da177e4
LT
6065
6066 return STRIPE_SECTORS;
6067}
6068
0472a42b
N
6069static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6070 unsigned int offset)
46031f9a
RBJ
6071{
6072 /* We may not be able to submit a whole bio at once as there
6073 * may not be enough stripe_heads available.
6074 * We cannot pre-allocate enough stripe_heads as we may need
6075 * more than exist in the cache (if we allow ever large chunks).
6076 * So we do one stripe head at a time and record in
6077 * ->bi_hw_segments how many have been done.
6078 *
6079 * We *know* that this entire raid_bio is in one chunk, so
6080 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6081 */
6082 struct stripe_head *sh;
911d4ee8 6083 int dd_idx;
46031f9a
RBJ
6084 sector_t sector, logical_sector, last_sector;
6085 int scnt = 0;
46031f9a
RBJ
6086 int handled = 0;
6087
4f024f37
KO
6088 logical_sector = raid_bio->bi_iter.bi_sector &
6089 ~((sector_t)STRIPE_SECTORS-1);
112bf897 6090 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6091 0, &dd_idx, NULL);
f73a1c7d 6092 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6093
6094 for (; logical_sector < last_sector;
387bb173
NB
6095 logical_sector += STRIPE_SECTORS,
6096 sector += STRIPE_SECTORS,
6097 scnt++) {
46031f9a 6098
0472a42b 6099 if (scnt < offset)
46031f9a
RBJ
6100 /* already done this stripe */
6101 continue;
6102
6d036f7d 6103 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
6104
6105 if (!sh) {
6106 /* failed to get a stripe - must wait */
46031f9a 6107 conf->retry_read_aligned = raid_bio;
0472a42b 6108 conf->retry_read_offset = scnt;
46031f9a
RBJ
6109 return handled;
6110 }
6111
da41ba65 6112 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6113 raid5_release_stripe(sh);
387bb173 6114 conf->retry_read_aligned = raid_bio;
0472a42b 6115 conf->retry_read_offset = scnt;
387bb173
NB
6116 return handled;
6117 }
6118
3f9e7c14 6119 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6120 handle_stripe(sh);
6d036f7d 6121 raid5_release_stripe(sh);
46031f9a
RBJ
6122 handled++;
6123 }
016c76ac
N
6124
6125 bio_endio(raid_bio);
6126
46031f9a 6127 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6128 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6129 return handled;
6130}
6131
bfc90cb0 6132static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6133 struct r5worker *worker,
6134 struct list_head *temp_inactive_list)
46a06401
SL
6135{
6136 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6137 int i, batch_size = 0, hash;
6138 bool release_inactive = false;
46a06401
SL
6139
6140 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6141 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6142 batch[batch_size++] = sh;
6143
566c09c5
SL
6144 if (batch_size == 0) {
6145 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6146 if (!list_empty(temp_inactive_list + i))
6147 break;
a8c34f91
SL
6148 if (i == NR_STRIPE_HASH_LOCKS) {
6149 spin_unlock_irq(&conf->device_lock);
6150 r5l_flush_stripe_to_raid(conf->log);
6151 spin_lock_irq(&conf->device_lock);
566c09c5 6152 return batch_size;
a8c34f91 6153 }
566c09c5
SL
6154 release_inactive = true;
6155 }
46a06401
SL
6156 spin_unlock_irq(&conf->device_lock);
6157
566c09c5
SL
6158 release_inactive_stripe_list(conf, temp_inactive_list,
6159 NR_STRIPE_HASH_LOCKS);
6160
a8c34f91 6161 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6162 if (release_inactive) {
6163 spin_lock_irq(&conf->device_lock);
6164 return 0;
6165 }
6166
46a06401
SL
6167 for (i = 0; i < batch_size; i++)
6168 handle_stripe(batch[i]);
ff875738 6169 log_write_stripe_run(conf);
46a06401
SL
6170
6171 cond_resched();
6172
6173 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6174 for (i = 0; i < batch_size; i++) {
6175 hash = batch[i]->hash_lock_index;
6176 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6177 }
46a06401
SL
6178 return batch_size;
6179}
46031f9a 6180
851c30c9
SL
6181static void raid5_do_work(struct work_struct *work)
6182{
6183 struct r5worker *worker = container_of(work, struct r5worker, work);
6184 struct r5worker_group *group = worker->group;
6185 struct r5conf *conf = group->conf;
16d997b7 6186 struct mddev *mddev = conf->mddev;
851c30c9
SL
6187 int group_id = group - conf->worker_groups;
6188 int handled;
6189 struct blk_plug plug;
6190
6191 pr_debug("+++ raid5worker active\n");
6192
6193 blk_start_plug(&plug);
6194 handled = 0;
6195 spin_lock_irq(&conf->device_lock);
6196 while (1) {
6197 int batch_size, released;
6198
566c09c5 6199 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6200
566c09c5
SL
6201 batch_size = handle_active_stripes(conf, group_id, worker,
6202 worker->temp_inactive_list);
bfc90cb0 6203 worker->working = false;
851c30c9
SL
6204 if (!batch_size && !released)
6205 break;
6206 handled += batch_size;
16d997b7
N
6207 wait_event_lock_irq(mddev->sb_wait,
6208 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6209 conf->device_lock);
851c30c9
SL
6210 }
6211 pr_debug("%d stripes handled\n", handled);
6212
6213 spin_unlock_irq(&conf->device_lock);
6214 blk_finish_plug(&plug);
6215
6216 pr_debug("--- raid5worker inactive\n");
6217}
6218
1da177e4
LT
6219/*
6220 * This is our raid5 kernel thread.
6221 *
6222 * We scan the hash table for stripes which can be handled now.
6223 * During the scan, completed stripes are saved for us by the interrupt
6224 * handler, so that they will not have to wait for our next wakeup.
6225 */
4ed8731d 6226static void raid5d(struct md_thread *thread)
1da177e4 6227{
4ed8731d 6228 struct mddev *mddev = thread->mddev;
d1688a6d 6229 struct r5conf *conf = mddev->private;
1da177e4 6230 int handled;
e1dfa0a2 6231 struct blk_plug plug;
1da177e4 6232
45b4233c 6233 pr_debug("+++ raid5d active\n");
1da177e4
LT
6234
6235 md_check_recovery(mddev);
1da177e4 6236
e1dfa0a2 6237 blk_start_plug(&plug);
1da177e4
LT
6238 handled = 0;
6239 spin_lock_irq(&conf->device_lock);
6240 while (1) {
46031f9a 6241 struct bio *bio;
773ca82f 6242 int batch_size, released;
0472a42b 6243 unsigned int offset;
773ca82f 6244
566c09c5 6245 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6246 if (released)
6247 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6248
0021b7bc 6249 if (
7c13edc8
N
6250 !list_empty(&conf->bitmap_list)) {
6251 /* Now is a good time to flush some bitmap updates */
6252 conf->seq_flush++;
700e432d 6253 spin_unlock_irq(&conf->device_lock);
72626685 6254 bitmap_unplug(mddev->bitmap);
700e432d 6255 spin_lock_irq(&conf->device_lock);
7c13edc8 6256 conf->seq_write = conf->seq_flush;
566c09c5 6257 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6258 }
0021b7bc 6259 raid5_activate_delayed(conf);
72626685 6260
0472a42b 6261 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6262 int ok;
6263 spin_unlock_irq(&conf->device_lock);
0472a42b 6264 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6265 spin_lock_irq(&conf->device_lock);
6266 if (!ok)
6267 break;
6268 handled++;
6269 }
6270
566c09c5
SL
6271 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6272 conf->temp_inactive_list);
773ca82f 6273 if (!batch_size && !released)
1da177e4 6274 break;
46a06401 6275 handled += batch_size;
1da177e4 6276
2953079c 6277 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6278 spin_unlock_irq(&conf->device_lock);
de393cde 6279 md_check_recovery(mddev);
46a06401
SL
6280 spin_lock_irq(&conf->device_lock);
6281 }
1da177e4 6282 }
45b4233c 6283 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6284
6285 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6286 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6287 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6288 grow_one_stripe(conf, __GFP_NOWARN);
6289 /* Set flag even if allocation failed. This helps
6290 * slow down allocation requests when mem is short
6291 */
6292 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6293 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6294 }
1da177e4 6295
765d704d
SL
6296 flush_deferred_bios(conf);
6297
0576b1c6
SL
6298 r5l_flush_stripe_to_raid(conf->log);
6299
c9f21aaf 6300 async_tx_issue_pending_all();
e1dfa0a2 6301 blk_finish_plug(&plug);
1da177e4 6302
45b4233c 6303 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6304}
6305
3f294f4f 6306static ssize_t
fd01b88c 6307raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6308{
7b1485ba
N
6309 struct r5conf *conf;
6310 int ret = 0;
6311 spin_lock(&mddev->lock);
6312 conf = mddev->private;
96de1e66 6313 if (conf)
edbe83ab 6314 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6315 spin_unlock(&mddev->lock);
6316 return ret;
3f294f4f
N
6317}
6318
c41d4ac4 6319int
fd01b88c 6320raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6321{
d1688a6d 6322 struct r5conf *conf = mddev->private;
b5470dc5
DW
6323 int err;
6324
c41d4ac4 6325 if (size <= 16 || size > 32768)
3f294f4f 6326 return -EINVAL;
486f0644 6327
edbe83ab 6328 conf->min_nr_stripes = size;
2d5b569b 6329 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6330 while (size < conf->max_nr_stripes &&
6331 drop_one_stripe(conf))
6332 ;
2d5b569b 6333 mutex_unlock(&conf->cache_size_mutex);
486f0644 6334
edbe83ab 6335
b5470dc5
DW
6336 err = md_allow_write(mddev);
6337 if (err)
6338 return err;
486f0644 6339
2d5b569b 6340 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6341 while (size > conf->max_nr_stripes)
6342 if (!grow_one_stripe(conf, GFP_KERNEL))
6343 break;
2d5b569b 6344 mutex_unlock(&conf->cache_size_mutex);
486f0644 6345
c41d4ac4
N
6346 return 0;
6347}
6348EXPORT_SYMBOL(raid5_set_cache_size);
6349
6350static ssize_t
fd01b88c 6351raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6352{
6791875e 6353 struct r5conf *conf;
c41d4ac4
N
6354 unsigned long new;
6355 int err;
6356
6357 if (len >= PAGE_SIZE)
6358 return -EINVAL;
b29bebd6 6359 if (kstrtoul(page, 10, &new))
c41d4ac4 6360 return -EINVAL;
6791875e 6361 err = mddev_lock(mddev);
c41d4ac4
N
6362 if (err)
6363 return err;
6791875e
N
6364 conf = mddev->private;
6365 if (!conf)
6366 err = -ENODEV;
6367 else
6368 err = raid5_set_cache_size(mddev, new);
6369 mddev_unlock(mddev);
6370
6371 return err ?: len;
3f294f4f 6372}
007583c9 6373
96de1e66
N
6374static struct md_sysfs_entry
6375raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6376 raid5_show_stripe_cache_size,
6377 raid5_store_stripe_cache_size);
3f294f4f 6378
d06f191f
MS
6379static ssize_t
6380raid5_show_rmw_level(struct mddev *mddev, char *page)
6381{
6382 struct r5conf *conf = mddev->private;
6383 if (conf)
6384 return sprintf(page, "%d\n", conf->rmw_level);
6385 else
6386 return 0;
6387}
6388
6389static ssize_t
6390raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6391{
6392 struct r5conf *conf = mddev->private;
6393 unsigned long new;
6394
6395 if (!conf)
6396 return -ENODEV;
6397
6398 if (len >= PAGE_SIZE)
6399 return -EINVAL;
6400
6401 if (kstrtoul(page, 10, &new))
6402 return -EINVAL;
6403
6404 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6405 return -EINVAL;
6406
6407 if (new != PARITY_DISABLE_RMW &&
6408 new != PARITY_ENABLE_RMW &&
6409 new != PARITY_PREFER_RMW)
6410 return -EINVAL;
6411
6412 conf->rmw_level = new;
6413 return len;
6414}
6415
6416static struct md_sysfs_entry
6417raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6418 raid5_show_rmw_level,
6419 raid5_store_rmw_level);
6420
6421
8b3e6cdc 6422static ssize_t
fd01b88c 6423raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6424{
7b1485ba
N
6425 struct r5conf *conf;
6426 int ret = 0;
6427 spin_lock(&mddev->lock);
6428 conf = mddev->private;
8b3e6cdc 6429 if (conf)
7b1485ba
N
6430 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6431 spin_unlock(&mddev->lock);
6432 return ret;
8b3e6cdc
DW
6433}
6434
6435static ssize_t
fd01b88c 6436raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6437{
6791875e 6438 struct r5conf *conf;
4ef197d8 6439 unsigned long new;
6791875e
N
6440 int err;
6441
8b3e6cdc
DW
6442 if (len >= PAGE_SIZE)
6443 return -EINVAL;
b29bebd6 6444 if (kstrtoul(page, 10, &new))
8b3e6cdc 6445 return -EINVAL;
6791875e
N
6446
6447 err = mddev_lock(mddev);
6448 if (err)
6449 return err;
6450 conf = mddev->private;
6451 if (!conf)
6452 err = -ENODEV;
edbe83ab 6453 else if (new > conf->min_nr_stripes)
6791875e
N
6454 err = -EINVAL;
6455 else
6456 conf->bypass_threshold = new;
6457 mddev_unlock(mddev);
6458 return err ?: len;
8b3e6cdc
DW
6459}
6460
6461static struct md_sysfs_entry
6462raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6463 S_IRUGO | S_IWUSR,
6464 raid5_show_preread_threshold,
6465 raid5_store_preread_threshold);
6466
d592a996
SL
6467static ssize_t
6468raid5_show_skip_copy(struct mddev *mddev, char *page)
6469{
7b1485ba
N
6470 struct r5conf *conf;
6471 int ret = 0;
6472 spin_lock(&mddev->lock);
6473 conf = mddev->private;
d592a996 6474 if (conf)
7b1485ba
N
6475 ret = sprintf(page, "%d\n", conf->skip_copy);
6476 spin_unlock(&mddev->lock);
6477 return ret;
d592a996
SL
6478}
6479
6480static ssize_t
6481raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6482{
6791875e 6483 struct r5conf *conf;
d592a996 6484 unsigned long new;
6791875e
N
6485 int err;
6486
d592a996
SL
6487 if (len >= PAGE_SIZE)
6488 return -EINVAL;
d592a996
SL
6489 if (kstrtoul(page, 10, &new))
6490 return -EINVAL;
6491 new = !!new;
6791875e
N
6492
6493 err = mddev_lock(mddev);
6494 if (err)
6495 return err;
6496 conf = mddev->private;
6497 if (!conf)
6498 err = -ENODEV;
6499 else if (new != conf->skip_copy) {
6500 mddev_suspend(mddev);
6501 conf->skip_copy = new;
6502 if (new)
dc3b17cc 6503 mddev->queue->backing_dev_info->capabilities |=
6791875e
N
6504 BDI_CAP_STABLE_WRITES;
6505 else
dc3b17cc 6506 mddev->queue->backing_dev_info->capabilities &=
6791875e
N
6507 ~BDI_CAP_STABLE_WRITES;
6508 mddev_resume(mddev);
6509 }
6510 mddev_unlock(mddev);
6511 return err ?: len;
d592a996
SL
6512}
6513
6514static struct md_sysfs_entry
6515raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6516 raid5_show_skip_copy,
6517 raid5_store_skip_copy);
6518
3f294f4f 6519static ssize_t
fd01b88c 6520stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6521{
d1688a6d 6522 struct r5conf *conf = mddev->private;
96de1e66
N
6523 if (conf)
6524 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6525 else
6526 return 0;
3f294f4f
N
6527}
6528
96de1e66
N
6529static struct md_sysfs_entry
6530raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6531
b721420e
SL
6532static ssize_t
6533raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6534{
7b1485ba
N
6535 struct r5conf *conf;
6536 int ret = 0;
6537 spin_lock(&mddev->lock);
6538 conf = mddev->private;
b721420e 6539 if (conf)
7b1485ba
N
6540 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6541 spin_unlock(&mddev->lock);
6542 return ret;
b721420e
SL
6543}
6544
60aaf933 6545static int alloc_thread_groups(struct r5conf *conf, int cnt,
6546 int *group_cnt,
6547 int *worker_cnt_per_group,
6548 struct r5worker_group **worker_groups);
b721420e
SL
6549static ssize_t
6550raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6551{
6791875e 6552 struct r5conf *conf;
b721420e
SL
6553 unsigned long new;
6554 int err;
60aaf933 6555 struct r5worker_group *new_groups, *old_groups;
6556 int group_cnt, worker_cnt_per_group;
b721420e
SL
6557
6558 if (len >= PAGE_SIZE)
6559 return -EINVAL;
b721420e
SL
6560 if (kstrtoul(page, 10, &new))
6561 return -EINVAL;
6562
6791875e
N
6563 err = mddev_lock(mddev);
6564 if (err)
6565 return err;
6566 conf = mddev->private;
6567 if (!conf)
6568 err = -ENODEV;
6569 else if (new != conf->worker_cnt_per_group) {
6570 mddev_suspend(mddev);
b721420e 6571
6791875e
N
6572 old_groups = conf->worker_groups;
6573 if (old_groups)
6574 flush_workqueue(raid5_wq);
d206dcfa 6575
6791875e
N
6576 err = alloc_thread_groups(conf, new,
6577 &group_cnt, &worker_cnt_per_group,
6578 &new_groups);
6579 if (!err) {
6580 spin_lock_irq(&conf->device_lock);
6581 conf->group_cnt = group_cnt;
6582 conf->worker_cnt_per_group = worker_cnt_per_group;
6583 conf->worker_groups = new_groups;
6584 spin_unlock_irq(&conf->device_lock);
b721420e 6585
6791875e
N
6586 if (old_groups)
6587 kfree(old_groups[0].workers);
6588 kfree(old_groups);
6589 }
6590 mddev_resume(mddev);
b721420e 6591 }
6791875e 6592 mddev_unlock(mddev);
b721420e 6593
6791875e 6594 return err ?: len;
b721420e
SL
6595}
6596
6597static struct md_sysfs_entry
6598raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6599 raid5_show_group_thread_cnt,
6600 raid5_store_group_thread_cnt);
6601
007583c9 6602static struct attribute *raid5_attrs[] = {
3f294f4f
N
6603 &raid5_stripecache_size.attr,
6604 &raid5_stripecache_active.attr,
8b3e6cdc 6605 &raid5_preread_bypass_threshold.attr,
b721420e 6606 &raid5_group_thread_cnt.attr,
d592a996 6607 &raid5_skip_copy.attr,
d06f191f 6608 &raid5_rmw_level.attr,
2c7da14b 6609 &r5c_journal_mode.attr,
3f294f4f
N
6610 NULL,
6611};
007583c9
N
6612static struct attribute_group raid5_attrs_group = {
6613 .name = NULL,
6614 .attrs = raid5_attrs,
3f294f4f
N
6615};
6616
60aaf933 6617static int alloc_thread_groups(struct r5conf *conf, int cnt,
6618 int *group_cnt,
6619 int *worker_cnt_per_group,
6620 struct r5worker_group **worker_groups)
851c30c9 6621{
566c09c5 6622 int i, j, k;
851c30c9
SL
6623 ssize_t size;
6624 struct r5worker *workers;
6625
60aaf933 6626 *worker_cnt_per_group = cnt;
851c30c9 6627 if (cnt == 0) {
60aaf933 6628 *group_cnt = 0;
6629 *worker_groups = NULL;
851c30c9
SL
6630 return 0;
6631 }
60aaf933 6632 *group_cnt = num_possible_nodes();
851c30c9 6633 size = sizeof(struct r5worker) * cnt;
60aaf933 6634 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6635 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6636 *group_cnt, GFP_NOIO);
6637 if (!*worker_groups || !workers) {
851c30c9 6638 kfree(workers);
60aaf933 6639 kfree(*worker_groups);
851c30c9
SL
6640 return -ENOMEM;
6641 }
6642
60aaf933 6643 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6644 struct r5worker_group *group;
6645
0c775d52 6646 group = &(*worker_groups)[i];
851c30c9 6647 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 6648 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
6649 group->conf = conf;
6650 group->workers = workers + i * cnt;
6651
6652 for (j = 0; j < cnt; j++) {
566c09c5
SL
6653 struct r5worker *worker = group->workers + j;
6654 worker->group = group;
6655 INIT_WORK(&worker->work, raid5_do_work);
6656
6657 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6658 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6659 }
6660 }
6661
6662 return 0;
6663}
6664
6665static void free_thread_groups(struct r5conf *conf)
6666{
6667 if (conf->worker_groups)
6668 kfree(conf->worker_groups[0].workers);
6669 kfree(conf->worker_groups);
6670 conf->worker_groups = NULL;
6671}
6672
80c3a6ce 6673static sector_t
fd01b88c 6674raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6675{
d1688a6d 6676 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6677
6678 if (!sectors)
6679 sectors = mddev->dev_sectors;
5e5e3e78 6680 if (!raid_disks)
7ec05478 6681 /* size is defined by the smallest of previous and new size */
5e5e3e78 6682 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6683
3cb5edf4
N
6684 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6685 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6686 return sectors * (raid_disks - conf->max_degraded);
6687}
6688
789b5e03
ON
6689static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6690{
6691 safe_put_page(percpu->spare_page);
46d5b785 6692 if (percpu->scribble)
6693 flex_array_free(percpu->scribble);
789b5e03
ON
6694 percpu->spare_page = NULL;
6695 percpu->scribble = NULL;
6696}
6697
6698static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6699{
6700 if (conf->level == 6 && !percpu->spare_page)
6701 percpu->spare_page = alloc_page(GFP_KERNEL);
6702 if (!percpu->scribble)
46d5b785 6703 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6704 conf->previous_raid_disks),
6705 max(conf->chunk_sectors,
6706 conf->prev_chunk_sectors)
6707 / STRIPE_SECTORS,
6708 GFP_KERNEL);
789b5e03
ON
6709
6710 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6711 free_scratch_buffer(conf, percpu);
6712 return -ENOMEM;
6713 }
6714
6715 return 0;
6716}
6717
29c6d1bb 6718static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 6719{
29c6d1bb
SAS
6720 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6721
6722 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6723 return 0;
6724}
36d1c647 6725
29c6d1bb
SAS
6726static void raid5_free_percpu(struct r5conf *conf)
6727{
36d1c647
DW
6728 if (!conf->percpu)
6729 return;
6730
29c6d1bb 6731 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
6732 free_percpu(conf->percpu);
6733}
6734
d1688a6d 6735static void free_conf(struct r5conf *conf)
95fc17aa 6736{
d7bd398e
SL
6737 int i;
6738
ff875738
AP
6739 log_exit(conf);
6740
30c89465 6741 if (conf->shrinker.nr_deferred)
edbe83ab 6742 unregister_shrinker(&conf->shrinker);
5c7e81c3 6743
851c30c9 6744 free_thread_groups(conf);
95fc17aa 6745 shrink_stripes(conf);
36d1c647 6746 raid5_free_percpu(conf);
d7bd398e
SL
6747 for (i = 0; i < conf->pool_size; i++)
6748 if (conf->disks[i].extra_page)
6749 put_page(conf->disks[i].extra_page);
95fc17aa
DW
6750 kfree(conf->disks);
6751 kfree(conf->stripe_hashtbl);
aaf9f12e 6752 kfree(conf->pending_data);
95fc17aa
DW
6753 kfree(conf);
6754}
6755
29c6d1bb 6756static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 6757{
29c6d1bb 6758 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
6759 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6760
29c6d1bb 6761 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
6762 pr_warn("%s: failed memory allocation for cpu%u\n",
6763 __func__, cpu);
29c6d1bb 6764 return -ENOMEM;
36d1c647 6765 }
29c6d1bb 6766 return 0;
36d1c647 6767}
36d1c647 6768
d1688a6d 6769static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 6770{
789b5e03 6771 int err = 0;
36d1c647 6772
789b5e03
ON
6773 conf->percpu = alloc_percpu(struct raid5_percpu);
6774 if (!conf->percpu)
36d1c647 6775 return -ENOMEM;
789b5e03 6776
29c6d1bb 6777 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
6778 if (!err) {
6779 conf->scribble_disks = max(conf->raid_disks,
6780 conf->previous_raid_disks);
6781 conf->scribble_sectors = max(conf->chunk_sectors,
6782 conf->prev_chunk_sectors);
6783 }
36d1c647
DW
6784 return err;
6785}
6786
edbe83ab
N
6787static unsigned long raid5_cache_scan(struct shrinker *shrink,
6788 struct shrink_control *sc)
6789{
6790 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6791 unsigned long ret = SHRINK_STOP;
6792
6793 if (mutex_trylock(&conf->cache_size_mutex)) {
6794 ret= 0;
49895bcc
N
6795 while (ret < sc->nr_to_scan &&
6796 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6797 if (drop_one_stripe(conf) == 0) {
6798 ret = SHRINK_STOP;
6799 break;
6800 }
6801 ret++;
6802 }
6803 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6804 }
6805 return ret;
6806}
6807
6808static unsigned long raid5_cache_count(struct shrinker *shrink,
6809 struct shrink_control *sc)
6810{
6811 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6812
6813 if (conf->max_nr_stripes < conf->min_nr_stripes)
6814 /* unlikely, but not impossible */
6815 return 0;
6816 return conf->max_nr_stripes - conf->min_nr_stripes;
6817}
6818
d1688a6d 6819static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6820{
d1688a6d 6821 struct r5conf *conf;
5e5e3e78 6822 int raid_disk, memory, max_disks;
3cb03002 6823 struct md_rdev *rdev;
1da177e4 6824 struct disk_info *disk;
0232605d 6825 char pers_name[6];
566c09c5 6826 int i;
60aaf933 6827 int group_cnt, worker_cnt_per_group;
6828 struct r5worker_group *new_group;
1da177e4 6829
91adb564
N
6830 if (mddev->new_level != 5
6831 && mddev->new_level != 4
6832 && mddev->new_level != 6) {
cc6167b4
N
6833 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6834 mdname(mddev), mddev->new_level);
91adb564 6835 return ERR_PTR(-EIO);
1da177e4 6836 }
91adb564
N
6837 if ((mddev->new_level == 5
6838 && !algorithm_valid_raid5(mddev->new_layout)) ||
6839 (mddev->new_level == 6
6840 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
6841 pr_warn("md/raid:%s: layout %d not supported\n",
6842 mdname(mddev), mddev->new_layout);
91adb564 6843 return ERR_PTR(-EIO);
99c0fb5f 6844 }
91adb564 6845 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
6846 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6847 mdname(mddev), mddev->raid_disks);
91adb564 6848 return ERR_PTR(-EINVAL);
4bbf3771
N
6849 }
6850
664e7c41
AN
6851 if (!mddev->new_chunk_sectors ||
6852 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6853 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
6854 pr_warn("md/raid:%s: invalid chunk size %d\n",
6855 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6856 return ERR_PTR(-EINVAL);
f6705578
N
6857 }
6858
d1688a6d 6859 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6860 if (conf == NULL)
1da177e4 6861 goto abort;
aaf9f12e
SL
6862 INIT_LIST_HEAD(&conf->free_list);
6863 INIT_LIST_HEAD(&conf->pending_list);
6864 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6865 PENDING_IO_MAX, GFP_KERNEL);
6866 if (!conf->pending_data)
6867 goto abort;
6868 for (i = 0; i < PENDING_IO_MAX; i++)
6869 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 6870 /* Don't enable multi-threading by default*/
60aaf933 6871 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6872 &new_group)) {
6873 conf->group_cnt = group_cnt;
6874 conf->worker_cnt_per_group = worker_cnt_per_group;
6875 conf->worker_groups = new_group;
6876 } else
851c30c9 6877 goto abort;
f5efd45a 6878 spin_lock_init(&conf->device_lock);
c46501b2 6879 seqcount_init(&conf->gen_lock);
2d5b569b 6880 mutex_init(&conf->cache_size_mutex);
b1b46486 6881 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6882 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6883 init_waitqueue_head(&conf->wait_for_overlap);
6884 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 6885 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
6886 INIT_LIST_HEAD(&conf->hold_list);
6887 INIT_LIST_HEAD(&conf->delayed_list);
6888 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6889 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6890 atomic_set(&conf->active_stripes, 0);
6891 atomic_set(&conf->preread_active_stripes, 0);
6892 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
6893 spin_lock_init(&conf->pending_bios_lock);
6894 conf->batch_bio_dispatch = true;
6895 rdev_for_each(rdev, mddev) {
6896 if (test_bit(Journal, &rdev->flags))
6897 continue;
6898 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6899 conf->batch_bio_dispatch = false;
6900 break;
6901 }
6902 }
6903
f5efd45a 6904 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6905 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6906
6907 conf->raid_disks = mddev->raid_disks;
6908 if (mddev->reshape_position == MaxSector)
6909 conf->previous_raid_disks = mddev->raid_disks;
6910 else
f6705578 6911 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6912 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6913
5e5e3e78 6914 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc 6915 GFP_KERNEL);
d7bd398e 6916
b55e6bfc
N
6917 if (!conf->disks)
6918 goto abort;
9ffae0cf 6919
d7bd398e
SL
6920 for (i = 0; i < max_disks; i++) {
6921 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6922 if (!conf->disks[i].extra_page)
6923 goto abort;
6924 }
6925
1da177e4
LT
6926 conf->mddev = mddev;
6927
fccddba0 6928 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6929 goto abort;
1da177e4 6930
566c09c5
SL
6931 /* We init hash_locks[0] separately to that it can be used
6932 * as the reference lock in the spin_lock_nest_lock() call
6933 * in lock_all_device_hash_locks_irq in order to convince
6934 * lockdep that we know what we are doing.
6935 */
6936 spin_lock_init(conf->hash_locks);
6937 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6938 spin_lock_init(conf->hash_locks + i);
6939
6940 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6941 INIT_LIST_HEAD(conf->inactive_list + i);
6942
6943 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6944 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6945
1e6d690b
SL
6946 atomic_set(&conf->r5c_cached_full_stripes, 0);
6947 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6948 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6949 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
6950 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6951 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 6952
36d1c647 6953 conf->level = mddev->new_level;
46d5b785 6954 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6955 if (raid5_alloc_percpu(conf) != 0)
6956 goto abort;
6957
0c55e022 6958 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6959
dafb20fa 6960 rdev_for_each(rdev, mddev) {
1da177e4 6961 raid_disk = rdev->raid_disk;
5e5e3e78 6962 if (raid_disk >= max_disks
f2076e7d 6963 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
6964 continue;
6965 disk = conf->disks + raid_disk;
6966
17045f52
N
6967 if (test_bit(Replacement, &rdev->flags)) {
6968 if (disk->replacement)
6969 goto abort;
6970 disk->replacement = rdev;
6971 } else {
6972 if (disk->rdev)
6973 goto abort;
6974 disk->rdev = rdev;
6975 }
1da177e4 6976
b2d444d7 6977 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6978 char b[BDEVNAME_SIZE];
cc6167b4
N
6979 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6980 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6981 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6982 /* Cannot rely on bitmap to complete recovery */
6983 conf->fullsync = 1;
1da177e4
LT
6984 }
6985
91adb564 6986 conf->level = mddev->new_level;
584acdd4 6987 if (conf->level == 6) {
16a53ecc 6988 conf->max_degraded = 2;
584acdd4
MS
6989 if (raid6_call.xor_syndrome)
6990 conf->rmw_level = PARITY_ENABLE_RMW;
6991 else
6992 conf->rmw_level = PARITY_DISABLE_RMW;
6993 } else {
16a53ecc 6994 conf->max_degraded = 1;
584acdd4
MS
6995 conf->rmw_level = PARITY_ENABLE_RMW;
6996 }
91adb564 6997 conf->algorithm = mddev->new_layout;
fef9c61f 6998 conf->reshape_progress = mddev->reshape_position;
e183eaed 6999 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7000 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7001 conf->prev_algo = mddev->layout;
5cac6bcb
N
7002 } else {
7003 conf->prev_chunk_sectors = conf->chunk_sectors;
7004 conf->prev_algo = conf->algorithm;
e183eaed 7005 }
1da177e4 7006
edbe83ab 7007 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7008 if (mddev->reshape_position != MaxSector) {
7009 int stripes = max_t(int,
7010 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7011 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7012 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7013 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7014 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7015 mdname(mddev), conf->min_nr_stripes);
7016 }
edbe83ab 7017 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7018 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7019 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7020 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7021 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7022 mdname(mddev), memory);
91adb564
N
7023 goto abort;
7024 } else
cc6167b4 7025 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7026 /*
7027 * Losing a stripe head costs more than the time to refill it,
7028 * it reduces the queue depth and so can hurt throughput.
7029 * So set it rather large, scaled by number of devices.
7030 */
7031 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7032 conf->shrinker.scan_objects = raid5_cache_scan;
7033 conf->shrinker.count_objects = raid5_cache_count;
7034 conf->shrinker.batch = 128;
7035 conf->shrinker.flags = 0;
6a0f53ff 7036 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
7037 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7038 mdname(mddev));
6a0f53ff
CY
7039 goto abort;
7040 }
1da177e4 7041
0232605d
N
7042 sprintf(pers_name, "raid%d", mddev->new_level);
7043 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7044 if (!conf->thread) {
cc6167b4
N
7045 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7046 mdname(mddev));
16a53ecc
N
7047 goto abort;
7048 }
91adb564
N
7049
7050 return conf;
7051
7052 abort:
7053 if (conf) {
95fc17aa 7054 free_conf(conf);
91adb564
N
7055 return ERR_PTR(-EIO);
7056 } else
7057 return ERR_PTR(-ENOMEM);
7058}
7059
c148ffdc
N
7060static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7061{
7062 switch (algo) {
7063 case ALGORITHM_PARITY_0:
7064 if (raid_disk < max_degraded)
7065 return 1;
7066 break;
7067 case ALGORITHM_PARITY_N:
7068 if (raid_disk >= raid_disks - max_degraded)
7069 return 1;
7070 break;
7071 case ALGORITHM_PARITY_0_6:
f72ffdd6 7072 if (raid_disk == 0 ||
c148ffdc
N
7073 raid_disk == raid_disks - 1)
7074 return 1;
7075 break;
7076 case ALGORITHM_LEFT_ASYMMETRIC_6:
7077 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7078 case ALGORITHM_LEFT_SYMMETRIC_6:
7079 case ALGORITHM_RIGHT_SYMMETRIC_6:
7080 if (raid_disk == raid_disks - 1)
7081 return 1;
7082 }
7083 return 0;
7084}
7085
849674e4 7086static int raid5_run(struct mddev *mddev)
91adb564 7087{
d1688a6d 7088 struct r5conf *conf;
9f7c2220 7089 int working_disks = 0;
c148ffdc 7090 int dirty_parity_disks = 0;
3cb03002 7091 struct md_rdev *rdev;
713cf5a6 7092 struct md_rdev *journal_dev = NULL;
c148ffdc 7093 sector_t reshape_offset = 0;
17045f52 7094 int i;
b5254dd5
N
7095 long long min_offset_diff = 0;
7096 int first = 1;
91adb564 7097
8c6ac868 7098 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7099 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7100 mdname(mddev));
b5254dd5
N
7101
7102 rdev_for_each(rdev, mddev) {
7103 long long diff;
713cf5a6 7104
f2076e7d 7105 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7106 journal_dev = rdev;
f2076e7d
SL
7107 continue;
7108 }
b5254dd5
N
7109 if (rdev->raid_disk < 0)
7110 continue;
7111 diff = (rdev->new_data_offset - rdev->data_offset);
7112 if (first) {
7113 min_offset_diff = diff;
7114 first = 0;
7115 } else if (mddev->reshape_backwards &&
7116 diff < min_offset_diff)
7117 min_offset_diff = diff;
7118 else if (!mddev->reshape_backwards &&
7119 diff > min_offset_diff)
7120 min_offset_diff = diff;
7121 }
7122
91adb564
N
7123 if (mddev->reshape_position != MaxSector) {
7124 /* Check that we can continue the reshape.
b5254dd5
N
7125 * Difficulties arise if the stripe we would write to
7126 * next is at or after the stripe we would read from next.
7127 * For a reshape that changes the number of devices, this
7128 * is only possible for a very short time, and mdadm makes
7129 * sure that time appears to have past before assembling
7130 * the array. So we fail if that time hasn't passed.
7131 * For a reshape that keeps the number of devices the same
7132 * mdadm must be monitoring the reshape can keeping the
7133 * critical areas read-only and backed up. It will start
7134 * the array in read-only mode, so we check for that.
91adb564
N
7135 */
7136 sector_t here_new, here_old;
7137 int old_disks;
18b00334 7138 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7139 int chunk_sectors;
7140 int new_data_disks;
91adb564 7141
713cf5a6 7142 if (journal_dev) {
cc6167b4
N
7143 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7144 mdname(mddev));
713cf5a6
SL
7145 return -EINVAL;
7146 }
7147
88ce4930 7148 if (mddev->new_level != mddev->level) {
cc6167b4
N
7149 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7150 mdname(mddev));
91adb564
N
7151 return -EINVAL;
7152 }
91adb564
N
7153 old_disks = mddev->raid_disks - mddev->delta_disks;
7154 /* reshape_position must be on a new-stripe boundary, and one
7155 * further up in new geometry must map after here in old
7156 * geometry.
05256d98
N
7157 * If the chunk sizes are different, then as we perform reshape
7158 * in units of the largest of the two, reshape_position needs
7159 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7160 */
7161 here_new = mddev->reshape_position;
05256d98
N
7162 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7163 new_data_disks = mddev->raid_disks - max_degraded;
7164 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7165 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7166 mdname(mddev));
91adb564
N
7167 return -EINVAL;
7168 }
05256d98 7169 reshape_offset = here_new * chunk_sectors;
91adb564
N
7170 /* here_new is the stripe we will write to */
7171 here_old = mddev->reshape_position;
05256d98 7172 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7173 /* here_old is the first stripe that we might need to read
7174 * from */
67ac6011
N
7175 if (mddev->delta_disks == 0) {
7176 /* We cannot be sure it is safe to start an in-place
b5254dd5 7177 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7178 * and taking constant backups.
7179 * mdadm always starts a situation like this in
7180 * readonly mode so it can take control before
7181 * allowing any writes. So just check for that.
7182 */
b5254dd5
N
7183 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7184 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7185 /* not really in-place - so OK */;
7186 else if (mddev->ro == 0) {
cc6167b4
N
7187 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7188 mdname(mddev));
67ac6011
N
7189 return -EINVAL;
7190 }
2c810cdd 7191 } else if (mddev->reshape_backwards
05256d98
N
7192 ? (here_new * chunk_sectors + min_offset_diff <=
7193 here_old * chunk_sectors)
7194 : (here_new * chunk_sectors >=
7195 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7196 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7197 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7198 mdname(mddev));
91adb564
N
7199 return -EINVAL;
7200 }
cc6167b4 7201 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7202 /* OK, we should be able to continue; */
7203 } else {
7204 BUG_ON(mddev->level != mddev->new_level);
7205 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7206 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7207 BUG_ON(mddev->delta_disks != 0);
1da177e4 7208 }
91adb564 7209
3418d036
AP
7210 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7211 test_bit(MD_HAS_PPL, &mddev->flags)) {
7212 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7213 mdname(mddev));
7214 clear_bit(MD_HAS_PPL, &mddev->flags);
7215 }
7216
245f46c2
N
7217 if (mddev->private == NULL)
7218 conf = setup_conf(mddev);
7219 else
7220 conf = mddev->private;
7221
91adb564
N
7222 if (IS_ERR(conf))
7223 return PTR_ERR(conf);
7224
486b0f7b
SL
7225 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7226 if (!journal_dev) {
cc6167b4
N
7227 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7228 mdname(mddev));
486b0f7b
SL
7229 mddev->ro = 1;
7230 set_disk_ro(mddev->gendisk, 1);
7231 } else if (mddev->recovery_cp == MaxSector)
7232 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7233 }
7234
b5254dd5 7235 conf->min_offset_diff = min_offset_diff;
91adb564
N
7236 mddev->thread = conf->thread;
7237 conf->thread = NULL;
7238 mddev->private = conf;
7239
17045f52
N
7240 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7241 i++) {
7242 rdev = conf->disks[i].rdev;
7243 if (!rdev && conf->disks[i].replacement) {
7244 /* The replacement is all we have yet */
7245 rdev = conf->disks[i].replacement;
7246 conf->disks[i].replacement = NULL;
7247 clear_bit(Replacement, &rdev->flags);
7248 conf->disks[i].rdev = rdev;
7249 }
7250 if (!rdev)
c148ffdc 7251 continue;
17045f52
N
7252 if (conf->disks[i].replacement &&
7253 conf->reshape_progress != MaxSector) {
7254 /* replacements and reshape simply do not mix. */
cc6167b4 7255 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7256 goto abort;
7257 }
2f115882 7258 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7259 working_disks++;
2f115882
N
7260 continue;
7261 }
c148ffdc
N
7262 /* This disc is not fully in-sync. However if it
7263 * just stored parity (beyond the recovery_offset),
7264 * when we don't need to be concerned about the
7265 * array being dirty.
7266 * When reshape goes 'backwards', we never have
7267 * partially completed devices, so we only need
7268 * to worry about reshape going forwards.
7269 */
7270 /* Hack because v0.91 doesn't store recovery_offset properly. */
7271 if (mddev->major_version == 0 &&
7272 mddev->minor_version > 90)
7273 rdev->recovery_offset = reshape_offset;
5026d7a9 7274
c148ffdc
N
7275 if (rdev->recovery_offset < reshape_offset) {
7276 /* We need to check old and new layout */
7277 if (!only_parity(rdev->raid_disk,
7278 conf->algorithm,
7279 conf->raid_disks,
7280 conf->max_degraded))
7281 continue;
7282 }
7283 if (!only_parity(rdev->raid_disk,
7284 conf->prev_algo,
7285 conf->previous_raid_disks,
7286 conf->max_degraded))
7287 continue;
7288 dirty_parity_disks++;
7289 }
91adb564 7290
17045f52
N
7291 /*
7292 * 0 for a fully functional array, 1 or 2 for a degraded array.
7293 */
2e38a37f 7294 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7295
674806d6 7296 if (has_failed(conf)) {
cc6167b4 7297 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7298 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7299 goto abort;
7300 }
7301
91adb564 7302 /* device size must be a multiple of chunk size */
9d8f0363 7303 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
7304 mddev->resync_max_sectors = mddev->dev_sectors;
7305
c148ffdc 7306 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7307 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7308 if (test_bit(MD_HAS_PPL, &mddev->flags))
7309 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7310 mdname(mddev));
7311 else if (mddev->ok_start_degraded)
cc6167b4
N
7312 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7313 mdname(mddev));
6ff8d8ec 7314 else {
cc6167b4
N
7315 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7316 mdname(mddev));
6ff8d8ec
N
7317 goto abort;
7318 }
1da177e4
LT
7319 }
7320
cc6167b4
N
7321 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7322 mdname(mddev), conf->level,
7323 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7324 mddev->new_layout);
1da177e4
LT
7325
7326 print_raid5_conf(conf);
7327
fef9c61f 7328 if (conf->reshape_progress != MaxSector) {
fef9c61f 7329 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7330 atomic_set(&conf->reshape_stripes, 0);
7331 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7332 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7333 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7334 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7335 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7336 "reshape");
f6705578
N
7337 }
7338
1da177e4 7339 /* Ok, everything is just fine now */
a64c876f
N
7340 if (mddev->to_remove == &raid5_attrs_group)
7341 mddev->to_remove = NULL;
00bcb4ac
N
7342 else if (mddev->kobj.sd &&
7343 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7344 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7345 mdname(mddev));
4a5add49 7346 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7347
4a5add49 7348 if (mddev->queue) {
9f7c2220 7349 int chunk_size;
620125f2 7350 bool discard_supported = true;
4a5add49
N
7351 /* read-ahead size must cover two whole stripes, which
7352 * is 2 * (datadisks) * chunksize where 'n' is the
7353 * number of raid devices
7354 */
7355 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7356 int stripe = data_disks *
7357 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
dc3b17cc
JK
7358 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7359 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
91adb564 7360
9f7c2220
N
7361 chunk_size = mddev->chunk_sectors << 9;
7362 blk_queue_io_min(mddev->queue, chunk_size);
7363 blk_queue_io_opt(mddev->queue, chunk_size *
7364 (conf->raid_disks - conf->max_degraded));
c78afc62 7365 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7366 /*
7367 * We can only discard a whole stripe. It doesn't make sense to
7368 * discard data disk but write parity disk
7369 */
7370 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7371 /* Round up to power of 2, as discard handling
7372 * currently assumes that */
7373 while ((stripe-1) & stripe)
7374 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7375 mddev->queue->limits.discard_alignment = stripe;
7376 mddev->queue->limits.discard_granularity = stripe;
7377 /*
7378 * unaligned part of discard request will be ignored, so can't
8e0e99ba 7379 * guarantee discard_zeroes_data
620125f2
SL
7380 */
7381 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 7382
5026d7a9
PA
7383 blk_queue_max_write_same_sectors(mddev->queue, 0);
7384
05616be5 7385 rdev_for_each(rdev, mddev) {
9f7c2220
N
7386 disk_stack_limits(mddev->gendisk, rdev->bdev,
7387 rdev->data_offset << 9);
05616be5
N
7388 disk_stack_limits(mddev->gendisk, rdev->bdev,
7389 rdev->new_data_offset << 9);
620125f2
SL
7390 /*
7391 * discard_zeroes_data is required, otherwise data
7392 * could be lost. Consider a scenario: discard a stripe
7393 * (the stripe could be inconsistent if
7394 * discard_zeroes_data is 0); write one disk of the
7395 * stripe (the stripe could be inconsistent again
7396 * depending on which disks are used to calculate
7397 * parity); the disk is broken; The stripe data of this
7398 * disk is lost.
7399 */
7400 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7401 !bdev_get_queue(rdev->bdev)->
7402 limits.discard_zeroes_data)
7403 discard_supported = false;
8e0e99ba
N
7404 /* Unfortunately, discard_zeroes_data is not currently
7405 * a guarantee - just a hint. So we only allow DISCARD
7406 * if the sysadmin has confirmed that only safe devices
7407 * are in use by setting a module parameter.
7408 */
7409 if (!devices_handle_discard_safely) {
7410 if (discard_supported) {
7411 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7412 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7413 }
7414 discard_supported = false;
7415 }
05616be5 7416 }
620125f2
SL
7417
7418 if (discard_supported &&
e7597e69
JS
7419 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7420 mddev->queue->limits.discard_granularity >= stripe)
620125f2
SL
7421 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7422 mddev->queue);
7423 else
7424 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7425 mddev->queue);
1dffdddd
SL
7426
7427 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7428 }
23032a0e 7429
ff875738
AP
7430 if (log_init(conf, journal_dev))
7431 goto abort;
5c7e81c3 7432
1da177e4
LT
7433 return 0;
7434abort:
01f96c0a 7435 md_unregister_thread(&mddev->thread);
e4f869d9
N
7436 print_raid5_conf(conf);
7437 free_conf(conf);
1da177e4 7438 mddev->private = NULL;
cc6167b4 7439 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7440 return -EIO;
7441}
7442
afa0f557 7443static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7444{
afa0f557 7445 struct r5conf *conf = priv;
1da177e4 7446
95fc17aa 7447 free_conf(conf);
a64c876f 7448 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7449}
7450
849674e4 7451static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7452{
d1688a6d 7453 struct r5conf *conf = mddev->private;
1da177e4
LT
7454 int i;
7455
9d8f0363 7456 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7457 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7458 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7459 rcu_read_lock();
7460 for (i = 0; i < conf->raid_disks; i++) {
7461 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7462 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7463 }
7464 rcu_read_unlock();
1da177e4 7465 seq_printf (seq, "]");
1da177e4
LT
7466}
7467
d1688a6d 7468static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7469{
7470 int i;
7471 struct disk_info *tmp;
7472
cc6167b4 7473 pr_debug("RAID conf printout:\n");
1da177e4 7474 if (!conf) {
cc6167b4 7475 pr_debug("(conf==NULL)\n");
1da177e4
LT
7476 return;
7477 }
cc6167b4 7478 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7479 conf->raid_disks,
7480 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7481
7482 for (i = 0; i < conf->raid_disks; i++) {
7483 char b[BDEVNAME_SIZE];
7484 tmp = conf->disks + i;
7485 if (tmp->rdev)
cc6167b4 7486 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7487 i, !test_bit(Faulty, &tmp->rdev->flags),
7488 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7489 }
7490}
7491
fd01b88c 7492static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7493{
7494 int i;
d1688a6d 7495 struct r5conf *conf = mddev->private;
1da177e4 7496 struct disk_info *tmp;
6b965620
N
7497 int count = 0;
7498 unsigned long flags;
1da177e4
LT
7499
7500 for (i = 0; i < conf->raid_disks; i++) {
7501 tmp = conf->disks + i;
dd054fce
N
7502 if (tmp->replacement
7503 && tmp->replacement->recovery_offset == MaxSector
7504 && !test_bit(Faulty, &tmp->replacement->flags)
7505 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7506 /* Replacement has just become active. */
7507 if (!tmp->rdev
7508 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7509 count++;
7510 if (tmp->rdev) {
7511 /* Replaced device not technically faulty,
7512 * but we need to be sure it gets removed
7513 * and never re-added.
7514 */
7515 set_bit(Faulty, &tmp->rdev->flags);
7516 sysfs_notify_dirent_safe(
7517 tmp->rdev->sysfs_state);
7518 }
7519 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7520 } else if (tmp->rdev
70fffd0b 7521 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7522 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7523 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7524 count++;
43c73ca4 7525 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7526 }
7527 }
6b965620 7528 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7529 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7530 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7531 print_raid5_conf(conf);
6b965620 7532 return count;
1da177e4
LT
7533}
7534
b8321b68 7535static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7536{
d1688a6d 7537 struct r5conf *conf = mddev->private;
1da177e4 7538 int err = 0;
b8321b68 7539 int number = rdev->raid_disk;
657e3e4d 7540 struct md_rdev **rdevp;
1da177e4
LT
7541 struct disk_info *p = conf->disks + number;
7542
7543 print_raid5_conf(conf);
f6b6ec5c 7544 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 7545 /*
f6b6ec5c
SL
7546 * we can't wait pending write here, as this is called in
7547 * raid5d, wait will deadlock.
84dd97a6
N
7548 * neilb: there is no locking about new writes here,
7549 * so this cannot be safe.
c2bb6242 7550 */
84dd97a6 7551 if (atomic_read(&conf->active_stripes)) {
f6b6ec5c 7552 return -EBUSY;
84dd97a6 7553 }
ff875738 7554 log_exit(conf);
f6b6ec5c 7555 return 0;
c2bb6242 7556 }
657e3e4d
N
7557 if (rdev == p->rdev)
7558 rdevp = &p->rdev;
7559 else if (rdev == p->replacement)
7560 rdevp = &p->replacement;
7561 else
7562 return 0;
7563
7564 if (number >= conf->raid_disks &&
7565 conf->reshape_progress == MaxSector)
7566 clear_bit(In_sync, &rdev->flags);
7567
7568 if (test_bit(In_sync, &rdev->flags) ||
7569 atomic_read(&rdev->nr_pending)) {
7570 err = -EBUSY;
7571 goto abort;
7572 }
7573 /* Only remove non-faulty devices if recovery
7574 * isn't possible.
7575 */
7576 if (!test_bit(Faulty, &rdev->flags) &&
7577 mddev->recovery_disabled != conf->recovery_disabled &&
7578 !has_failed(conf) &&
dd054fce 7579 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7580 number < conf->raid_disks) {
7581 err = -EBUSY;
7582 goto abort;
7583 }
7584 *rdevp = NULL;
d787be40
N
7585 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7586 synchronize_rcu();
7587 if (atomic_read(&rdev->nr_pending)) {
7588 /* lost the race, try later */
7589 err = -EBUSY;
7590 *rdevp = rdev;
7591 }
7592 }
6358c239
AP
7593 if (!err) {
7594 err = log_modify(conf, rdev, false);
7595 if (err)
7596 goto abort;
7597 }
d787be40 7598 if (p->replacement) {
dd054fce
N
7599 /* We must have just cleared 'rdev' */
7600 p->rdev = p->replacement;
7601 clear_bit(Replacement, &p->replacement->flags);
7602 smp_mb(); /* Make sure other CPUs may see both as identical
7603 * but will never see neither - if they are careful
7604 */
7605 p->replacement = NULL;
7606 clear_bit(WantReplacement, &rdev->flags);
6358c239
AP
7607
7608 if (!err)
7609 err = log_modify(conf, p->rdev, true);
dd054fce
N
7610 } else
7611 /* We might have just removed the Replacement as faulty-
7612 * clear the bit just in case
7613 */
7614 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7615abort:
7616
7617 print_raid5_conf(conf);
7618 return err;
7619}
7620
fd01b88c 7621static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7622{
d1688a6d 7623 struct r5conf *conf = mddev->private;
199050ea 7624 int err = -EEXIST;
1da177e4
LT
7625 int disk;
7626 struct disk_info *p;
6c2fce2e
NB
7627 int first = 0;
7628 int last = conf->raid_disks - 1;
1da177e4 7629
f6b6ec5c 7630 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
7631 if (conf->log)
7632 return -EBUSY;
7633
7634 rdev->raid_disk = 0;
7635 /*
7636 * The array is in readonly mode if journal is missing, so no
7637 * write requests running. We should be safe
7638 */
ff875738 7639 log_init(conf, rdev);
f6b6ec5c
SL
7640 return 0;
7641 }
7f0da59b
N
7642 if (mddev->recovery_disabled == conf->recovery_disabled)
7643 return -EBUSY;
7644
dc10c643 7645 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7646 /* no point adding a device */
199050ea 7647 return -EINVAL;
1da177e4 7648
6c2fce2e
NB
7649 if (rdev->raid_disk >= 0)
7650 first = last = rdev->raid_disk;
1da177e4
LT
7651
7652 /*
16a53ecc
N
7653 * find the disk ... but prefer rdev->saved_raid_disk
7654 * if possible.
1da177e4 7655 */
16a53ecc 7656 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7657 rdev->saved_raid_disk >= first &&
16a53ecc 7658 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7659 first = rdev->saved_raid_disk;
7660
7661 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7662 p = conf->disks + disk;
7663 if (p->rdev == NULL) {
b2d444d7 7664 clear_bit(In_sync, &rdev->flags);
1da177e4 7665 rdev->raid_disk = disk;
72626685
N
7666 if (rdev->saved_raid_disk != disk)
7667 conf->fullsync = 1;
d6065f7b 7668 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
7669
7670 err = log_modify(conf, rdev, true);
7671
5cfb22a1 7672 goto out;
1da177e4 7673 }
5cfb22a1
N
7674 }
7675 for (disk = first; disk <= last; disk++) {
7676 p = conf->disks + disk;
7bfec5f3
N
7677 if (test_bit(WantReplacement, &p->rdev->flags) &&
7678 p->replacement == NULL) {
7679 clear_bit(In_sync, &rdev->flags);
7680 set_bit(Replacement, &rdev->flags);
7681 rdev->raid_disk = disk;
7682 err = 0;
7683 conf->fullsync = 1;
7684 rcu_assign_pointer(p->replacement, rdev);
7685 break;
7686 }
7687 }
5cfb22a1 7688out:
1da177e4 7689 print_raid5_conf(conf);
199050ea 7690 return err;
1da177e4
LT
7691}
7692
fd01b88c 7693static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7694{
7695 /* no resync is happening, and there is enough space
7696 * on all devices, so we can resize.
7697 * We need to make sure resync covers any new space.
7698 * If the array is shrinking we should possibly wait until
7699 * any io in the removed space completes, but it hardly seems
7700 * worth it.
7701 */
a4a6125a 7702 sector_t newsize;
3cb5edf4
N
7703 struct r5conf *conf = mddev->private;
7704
3418d036 7705 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7706 return -EINVAL;
3cb5edf4 7707 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7708 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7709 if (mddev->external_size &&
7710 mddev->array_sectors > newsize)
b522adcd 7711 return -EINVAL;
a4a6125a
N
7712 if (mddev->bitmap) {
7713 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7714 if (ret)
7715 return ret;
7716 }
7717 md_set_array_sectors(mddev, newsize);
b098636c
N
7718 if (sectors > mddev->dev_sectors &&
7719 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7720 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7721 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7722 }
58c0fed4 7723 mddev->dev_sectors = sectors;
4b5c7ae8 7724 mddev->resync_max_sectors = sectors;
1da177e4
LT
7725 return 0;
7726}
7727
fd01b88c 7728static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7729{
7730 /* Can only proceed if there are plenty of stripe_heads.
7731 * We need a minimum of one full stripe,, and for sensible progress
7732 * it is best to have about 4 times that.
7733 * If we require 4 times, then the default 256 4K stripe_heads will
7734 * allow for chunk sizes up to 256K, which is probably OK.
7735 * If the chunk size is greater, user-space should request more
7736 * stripe_heads first.
7737 */
d1688a6d 7738 struct r5conf *conf = mddev->private;
01ee22b4 7739 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7740 > conf->min_nr_stripes ||
01ee22b4 7741 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7742 > conf->min_nr_stripes) {
cc6167b4
N
7743 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7744 mdname(mddev),
7745 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7746 / STRIPE_SIZE)*4);
01ee22b4
N
7747 return 0;
7748 }
7749 return 1;
7750}
7751
fd01b88c 7752static int check_reshape(struct mddev *mddev)
29269553 7753{
d1688a6d 7754 struct r5conf *conf = mddev->private;
29269553 7755
3418d036 7756 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7757 return -EINVAL;
88ce4930
N
7758 if (mddev->delta_disks == 0 &&
7759 mddev->new_layout == mddev->layout &&
664e7c41 7760 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7761 return 0; /* nothing to do */
674806d6 7762 if (has_failed(conf))
ec32a2bd 7763 return -EINVAL;
fdcfbbb6 7764 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7765 /* We might be able to shrink, but the devices must
7766 * be made bigger first.
7767 * For raid6, 4 is the minimum size.
7768 * Otherwise 2 is the minimum
7769 */
7770 int min = 2;
7771 if (mddev->level == 6)
7772 min = 4;
7773 if (mddev->raid_disks + mddev->delta_disks < min)
7774 return -EINVAL;
7775 }
29269553 7776
01ee22b4 7777 if (!check_stripe_cache(mddev))
29269553 7778 return -ENOSPC;
29269553 7779
738a2738
N
7780 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7781 mddev->delta_disks > 0)
7782 if (resize_chunks(conf,
7783 conf->previous_raid_disks
7784 + max(0, mddev->delta_disks),
7785 max(mddev->new_chunk_sectors,
7786 mddev->chunk_sectors)
7787 ) < 0)
7788 return -ENOMEM;
e56108d6
N
7789 return resize_stripes(conf, (conf->previous_raid_disks
7790 + mddev->delta_disks));
63c70c4f
N
7791}
7792
fd01b88c 7793static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7794{
d1688a6d 7795 struct r5conf *conf = mddev->private;
3cb03002 7796 struct md_rdev *rdev;
63c70c4f 7797 int spares = 0;
c04be0aa 7798 unsigned long flags;
63c70c4f 7799
f416885e 7800 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7801 return -EBUSY;
7802
01ee22b4
N
7803 if (!check_stripe_cache(mddev))
7804 return -ENOSPC;
7805
30b67645
N
7806 if (has_failed(conf))
7807 return -EINVAL;
7808
c6563a8c 7809 rdev_for_each(rdev, mddev) {
469518a3
N
7810 if (!test_bit(In_sync, &rdev->flags)
7811 && !test_bit(Faulty, &rdev->flags))
29269553 7812 spares++;
c6563a8c 7813 }
63c70c4f 7814
f416885e 7815 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7816 /* Not enough devices even to make a degraded array
7817 * of that size
7818 */
7819 return -EINVAL;
7820
ec32a2bd
N
7821 /* Refuse to reduce size of the array. Any reductions in
7822 * array size must be through explicit setting of array_size
7823 * attribute.
7824 */
7825 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7826 < mddev->array_sectors) {
cc6167b4
N
7827 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7828 mdname(mddev));
ec32a2bd
N
7829 return -EINVAL;
7830 }
7831
f6705578 7832 atomic_set(&conf->reshape_stripes, 0);
29269553 7833 spin_lock_irq(&conf->device_lock);
c46501b2 7834 write_seqcount_begin(&conf->gen_lock);
29269553 7835 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7836 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7837 conf->prev_chunk_sectors = conf->chunk_sectors;
7838 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7839 conf->prev_algo = conf->algorithm;
7840 conf->algorithm = mddev->new_layout;
05616be5
N
7841 conf->generation++;
7842 /* Code that selects data_offset needs to see the generation update
7843 * if reshape_progress has been set - so a memory barrier needed.
7844 */
7845 smp_mb();
2c810cdd 7846 if (mddev->reshape_backwards)
fef9c61f
N
7847 conf->reshape_progress = raid5_size(mddev, 0, 0);
7848 else
7849 conf->reshape_progress = 0;
7850 conf->reshape_safe = conf->reshape_progress;
c46501b2 7851 write_seqcount_end(&conf->gen_lock);
29269553
N
7852 spin_unlock_irq(&conf->device_lock);
7853
4d77e3ba
N
7854 /* Now make sure any requests that proceeded on the assumption
7855 * the reshape wasn't running - like Discard or Read - have
7856 * completed.
7857 */
7858 mddev_suspend(mddev);
7859 mddev_resume(mddev);
7860
29269553
N
7861 /* Add some new drives, as many as will fit.
7862 * We know there are enough to make the newly sized array work.
3424bf6a
N
7863 * Don't add devices if we are reducing the number of
7864 * devices in the array. This is because it is not possible
7865 * to correctly record the "partially reconstructed" state of
7866 * such devices during the reshape and confusion could result.
29269553 7867 */
87a8dec9 7868 if (mddev->delta_disks >= 0) {
dafb20fa 7869 rdev_for_each(rdev, mddev)
87a8dec9
N
7870 if (rdev->raid_disk < 0 &&
7871 !test_bit(Faulty, &rdev->flags)) {
7872 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7873 if (rdev->raid_disk
9d4c7d87 7874 >= conf->previous_raid_disks)
87a8dec9 7875 set_bit(In_sync, &rdev->flags);
9d4c7d87 7876 else
87a8dec9 7877 rdev->recovery_offset = 0;
36fad858
NK
7878
7879 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7880 /* Failure here is OK */;
50da0840 7881 }
87a8dec9
N
7882 } else if (rdev->raid_disk >= conf->previous_raid_disks
7883 && !test_bit(Faulty, &rdev->flags)) {
7884 /* This is a spare that was manually added */
7885 set_bit(In_sync, &rdev->flags);
87a8dec9 7886 }
29269553 7887
87a8dec9
N
7888 /* When a reshape changes the number of devices,
7889 * ->degraded is measured against the larger of the
7890 * pre and post number of devices.
7891 */
ec32a2bd 7892 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7893 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
7894 spin_unlock_irqrestore(&conf->device_lock, flags);
7895 }
63c70c4f 7896 mddev->raid_disks = conf->raid_disks;
e516402c 7897 mddev->reshape_position = conf->reshape_progress;
2953079c 7898 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 7899
29269553
N
7900 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7901 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7902 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7903 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7904 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7905 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7906 "reshape");
29269553
N
7907 if (!mddev->sync_thread) {
7908 mddev->recovery = 0;
7909 spin_lock_irq(&conf->device_lock);
ba8805b9 7910 write_seqcount_begin(&conf->gen_lock);
29269553 7911 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7912 mddev->new_chunk_sectors =
7913 conf->chunk_sectors = conf->prev_chunk_sectors;
7914 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7915 rdev_for_each(rdev, mddev)
7916 rdev->new_data_offset = rdev->data_offset;
7917 smp_wmb();
ba8805b9 7918 conf->generation --;
fef9c61f 7919 conf->reshape_progress = MaxSector;
1e3fa9bd 7920 mddev->reshape_position = MaxSector;
ba8805b9 7921 write_seqcount_end(&conf->gen_lock);
29269553
N
7922 spin_unlock_irq(&conf->device_lock);
7923 return -EAGAIN;
7924 }
c8f517c4 7925 conf->reshape_checkpoint = jiffies;
29269553
N
7926 md_wakeup_thread(mddev->sync_thread);
7927 md_new_event(mddev);
7928 return 0;
7929}
29269553 7930
ec32a2bd
N
7931/* This is called from the reshape thread and should make any
7932 * changes needed in 'conf'
7933 */
d1688a6d 7934static void end_reshape(struct r5conf *conf)
29269553 7935{
29269553 7936
f6705578 7937 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7938 struct md_rdev *rdev;
f6705578 7939
f6705578 7940 spin_lock_irq(&conf->device_lock);
cea9c228 7941 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7942 rdev_for_each(rdev, conf->mddev)
7943 rdev->data_offset = rdev->new_data_offset;
7944 smp_wmb();
fef9c61f 7945 conf->reshape_progress = MaxSector;
6cbd8148 7946 conf->mddev->reshape_position = MaxSector;
f6705578 7947 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7948 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7949
7950 /* read-ahead size must cover two whole stripes, which is
7951 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7952 */
4a5add49 7953 if (conf->mddev->queue) {
cea9c228 7954 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7955 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7956 / PAGE_SIZE);
dc3b17cc
JK
7957 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7958 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
16a53ecc 7959 }
29269553 7960 }
29269553
N
7961}
7962
ec32a2bd
N
7963/* This is called from the raid5d thread with mddev_lock held.
7964 * It makes config changes to the device.
7965 */
fd01b88c 7966static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7967{
d1688a6d 7968 struct r5conf *conf = mddev->private;
cea9c228
N
7969
7970 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7971
ec32a2bd
N
7972 if (mddev->delta_disks > 0) {
7973 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
fe67d19a
HM
7974 if (mddev->queue) {
7975 set_capacity(mddev->gendisk, mddev->array_sectors);
7976 revalidate_disk(mddev->gendisk);
7977 }
ec32a2bd
N
7978 } else {
7979 int d;
908f4fbd 7980 spin_lock_irq(&conf->device_lock);
2e38a37f 7981 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 7982 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7983 for (d = conf->raid_disks ;
7984 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7985 d++) {
3cb03002 7986 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7987 if (rdev)
7988 clear_bit(In_sync, &rdev->flags);
7989 rdev = conf->disks[d].replacement;
7990 if (rdev)
7991 clear_bit(In_sync, &rdev->flags);
1a67dde0 7992 }
cea9c228 7993 }
88ce4930 7994 mddev->layout = conf->algorithm;
09c9e5fa 7995 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7996 mddev->reshape_position = MaxSector;
7997 mddev->delta_disks = 0;
2c810cdd 7998 mddev->reshape_backwards = 0;
cea9c228
N
7999 }
8000}
8001
fd01b88c 8002static void raid5_quiesce(struct mddev *mddev, int state)
72626685 8003{
d1688a6d 8004 struct r5conf *conf = mddev->private;
72626685
N
8005
8006 switch(state) {
e464eafd
N
8007 case 2: /* resume for a suspend */
8008 wake_up(&conf->wait_for_overlap);
8009 break;
8010
72626685 8011 case 1: /* stop all writes */
566c09c5 8012 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8013 /* '2' tells resync/reshape to pause so that all
8014 * active stripes can drain
8015 */
a39f7afd 8016 r5c_flush_cache(conf, INT_MAX);
64bd660b 8017 conf->quiesce = 2;
b1b46486 8018 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8019 atomic_read(&conf->active_stripes) == 0 &&
8020 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8021 unlock_all_device_hash_locks_irq(conf),
8022 lock_all_device_hash_locks_irq(conf));
64bd660b 8023 conf->quiesce = 1;
566c09c5 8024 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
8025 /* allow reshape to continue */
8026 wake_up(&conf->wait_for_overlap);
72626685
N
8027 break;
8028
8029 case 0: /* re-enable writes */
566c09c5 8030 lock_all_device_hash_locks_irq(conf);
72626685 8031 conf->quiesce = 0;
b1b46486 8032 wake_up(&conf->wait_for_quiescent);
e464eafd 8033 wake_up(&conf->wait_for_overlap);
566c09c5 8034 unlock_all_device_hash_locks_irq(conf);
72626685
N
8035 break;
8036 }
e6c033f7 8037 r5l_quiesce(conf->log, state);
72626685 8038}
b15c2e57 8039
fd01b88c 8040static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8041{
e373ab10 8042 struct r0conf *raid0_conf = mddev->private;
d76c8420 8043 sector_t sectors;
54071b38 8044
f1b29bca 8045 /* for raid0 takeover only one zone is supported */
e373ab10 8046 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8047 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8048 mdname(mddev));
f1b29bca
DW
8049 return ERR_PTR(-EINVAL);
8050 }
8051
e373ab10
N
8052 sectors = raid0_conf->strip_zone[0].zone_end;
8053 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8054 mddev->dev_sectors = sectors;
f1b29bca 8055 mddev->new_level = level;
54071b38
TM
8056 mddev->new_layout = ALGORITHM_PARITY_N;
8057 mddev->new_chunk_sectors = mddev->chunk_sectors;
8058 mddev->raid_disks += 1;
8059 mddev->delta_disks = 1;
8060 /* make sure it will be not marked as dirty */
8061 mddev->recovery_cp = MaxSector;
8062
8063 return setup_conf(mddev);
8064}
8065
fd01b88c 8066static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8067{
8068 int chunksect;
6995f0b2 8069 void *ret;
d562b0c4
N
8070
8071 if (mddev->raid_disks != 2 ||
8072 mddev->degraded > 1)
8073 return ERR_PTR(-EINVAL);
8074
8075 /* Should check if there are write-behind devices? */
8076
8077 chunksect = 64*2; /* 64K by default */
8078
8079 /* The array must be an exact multiple of chunksize */
8080 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8081 chunksect >>= 1;
8082
8083 if ((chunksect<<9) < STRIPE_SIZE)
8084 /* array size does not allow a suitable chunk size */
8085 return ERR_PTR(-EINVAL);
8086
8087 mddev->new_level = 5;
8088 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8089 mddev->new_chunk_sectors = chunksect;
d562b0c4 8090
6995f0b2 8091 ret = setup_conf(mddev);
32cd7cbb 8092 if (!IS_ERR(ret))
394ed8e4
SL
8093 mddev_clear_unsupported_flags(mddev,
8094 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8095 return ret;
d562b0c4
N
8096}
8097
fd01b88c 8098static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8099{
8100 int new_layout;
8101
8102 switch (mddev->layout) {
8103 case ALGORITHM_LEFT_ASYMMETRIC_6:
8104 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8105 break;
8106 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8107 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8108 break;
8109 case ALGORITHM_LEFT_SYMMETRIC_6:
8110 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8111 break;
8112 case ALGORITHM_RIGHT_SYMMETRIC_6:
8113 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8114 break;
8115 case ALGORITHM_PARITY_0_6:
8116 new_layout = ALGORITHM_PARITY_0;
8117 break;
8118 case ALGORITHM_PARITY_N:
8119 new_layout = ALGORITHM_PARITY_N;
8120 break;
8121 default:
8122 return ERR_PTR(-EINVAL);
8123 }
8124 mddev->new_level = 5;
8125 mddev->new_layout = new_layout;
8126 mddev->delta_disks = -1;
8127 mddev->raid_disks -= 1;
8128 return setup_conf(mddev);
8129}
8130
fd01b88c 8131static int raid5_check_reshape(struct mddev *mddev)
b3546035 8132{
88ce4930
N
8133 /* For a 2-drive array, the layout and chunk size can be changed
8134 * immediately as not restriping is needed.
8135 * For larger arrays we record the new value - after validation
8136 * to be used by a reshape pass.
b3546035 8137 */
d1688a6d 8138 struct r5conf *conf = mddev->private;
597a711b 8139 int new_chunk = mddev->new_chunk_sectors;
b3546035 8140
597a711b 8141 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8142 return -EINVAL;
8143 if (new_chunk > 0) {
0ba459d2 8144 if (!is_power_of_2(new_chunk))
b3546035 8145 return -EINVAL;
597a711b 8146 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8147 return -EINVAL;
597a711b 8148 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8149 /* not factor of array size */
8150 return -EINVAL;
8151 }
8152
8153 /* They look valid */
8154
88ce4930 8155 if (mddev->raid_disks == 2) {
597a711b
N
8156 /* can make the change immediately */
8157 if (mddev->new_layout >= 0) {
8158 conf->algorithm = mddev->new_layout;
8159 mddev->layout = mddev->new_layout;
88ce4930
N
8160 }
8161 if (new_chunk > 0) {
597a711b
N
8162 conf->chunk_sectors = new_chunk ;
8163 mddev->chunk_sectors = new_chunk;
88ce4930 8164 }
2953079c 8165 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8166 md_wakeup_thread(mddev->thread);
b3546035 8167 }
50ac168a 8168 return check_reshape(mddev);
88ce4930
N
8169}
8170
fd01b88c 8171static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8172{
597a711b 8173 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8174
597a711b 8175 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8176 return -EINVAL;
b3546035 8177 if (new_chunk > 0) {
0ba459d2 8178 if (!is_power_of_2(new_chunk))
88ce4930 8179 return -EINVAL;
597a711b 8180 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8181 return -EINVAL;
597a711b 8182 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8183 /* not factor of array size */
8184 return -EINVAL;
b3546035 8185 }
88ce4930
N
8186
8187 /* They look valid */
50ac168a 8188 return check_reshape(mddev);
b3546035
N
8189}
8190
fd01b88c 8191static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8192{
8193 /* raid5 can take over:
f1b29bca 8194 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8195 * raid1 - if there are two drives. We need to know the chunk size
8196 * raid4 - trivial - just use a raid4 layout.
8197 * raid6 - Providing it is a *_6 layout
d562b0c4 8198 */
f1b29bca
DW
8199 if (mddev->level == 0)
8200 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8201 if (mddev->level == 1)
8202 return raid5_takeover_raid1(mddev);
e9d4758f
N
8203 if (mddev->level == 4) {
8204 mddev->new_layout = ALGORITHM_PARITY_N;
8205 mddev->new_level = 5;
8206 return setup_conf(mddev);
8207 }
fc9739c6
N
8208 if (mddev->level == 6)
8209 return raid5_takeover_raid6(mddev);
d562b0c4
N
8210
8211 return ERR_PTR(-EINVAL);
8212}
8213
fd01b88c 8214static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8215{
f1b29bca
DW
8216 /* raid4 can take over:
8217 * raid0 - if there is only one strip zone
8218 * raid5 - if layout is right
a78d38a1 8219 */
f1b29bca
DW
8220 if (mddev->level == 0)
8221 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8222 if (mddev->level == 5 &&
8223 mddev->layout == ALGORITHM_PARITY_N) {
8224 mddev->new_layout = 0;
8225 mddev->new_level = 4;
8226 return setup_conf(mddev);
8227 }
8228 return ERR_PTR(-EINVAL);
8229}
d562b0c4 8230
84fc4b56 8231static struct md_personality raid5_personality;
245f46c2 8232
fd01b88c 8233static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8234{
8235 /* Currently can only take over a raid5. We map the
8236 * personality to an equivalent raid6 personality
8237 * with the Q block at the end.
8238 */
8239 int new_layout;
8240
8241 if (mddev->pers != &raid5_personality)
8242 return ERR_PTR(-EINVAL);
8243 if (mddev->degraded > 1)
8244 return ERR_PTR(-EINVAL);
8245 if (mddev->raid_disks > 253)
8246 return ERR_PTR(-EINVAL);
8247 if (mddev->raid_disks < 3)
8248 return ERR_PTR(-EINVAL);
8249
8250 switch (mddev->layout) {
8251 case ALGORITHM_LEFT_ASYMMETRIC:
8252 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8253 break;
8254 case ALGORITHM_RIGHT_ASYMMETRIC:
8255 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8256 break;
8257 case ALGORITHM_LEFT_SYMMETRIC:
8258 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8259 break;
8260 case ALGORITHM_RIGHT_SYMMETRIC:
8261 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8262 break;
8263 case ALGORITHM_PARITY_0:
8264 new_layout = ALGORITHM_PARITY_0_6;
8265 break;
8266 case ALGORITHM_PARITY_N:
8267 new_layout = ALGORITHM_PARITY_N;
8268 break;
8269 default:
8270 return ERR_PTR(-EINVAL);
8271 }
8272 mddev->new_level = 6;
8273 mddev->new_layout = new_layout;
8274 mddev->delta_disks = 1;
8275 mddev->raid_disks += 1;
8276 return setup_conf(mddev);
8277}
8278
ba903a3e
AP
8279static void raid5_reset_stripe_cache(struct mddev *mddev)
8280{
8281 struct r5conf *conf = mddev->private;
8282
8283 mutex_lock(&conf->cache_size_mutex);
8284 while (conf->max_nr_stripes &&
8285 drop_one_stripe(conf))
8286 ;
8287 while (conf->min_nr_stripes > conf->max_nr_stripes &&
8288 grow_one_stripe(conf, GFP_KERNEL))
8289 ;
8290 mutex_unlock(&conf->cache_size_mutex);
8291}
8292
8293static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8294{
8295 struct r5conf *conf;
8296 int err;
8297
8298 err = mddev_lock(mddev);
8299 if (err)
8300 return err;
8301 conf = mddev->private;
8302 if (!conf) {
8303 mddev_unlock(mddev);
8304 return -ENODEV;
8305 }
8306
8307 if (strncmp(buf, "ppl", 3) == 0 && !raid5_has_ppl(conf)) {
0bb0c105
SL
8308 /* ppl only works with RAID 5 */
8309 if (conf->level == 5) {
8310 mddev_suspend(mddev);
8311 set_bit(MD_HAS_PPL, &mddev->flags);
8312 err = log_init(conf, NULL);
8313 if (!err)
8314 raid5_reset_stripe_cache(mddev);
8315 mddev_resume(mddev);
8316 } else
8317 err = -EINVAL;
8318 } else if (strncmp(buf, "resync", 6) == 0) {
8319 if (raid5_has_ppl(conf)) {
8320 mddev_suspend(mddev);
8321 log_exit(conf);
ba903a3e 8322 raid5_reset_stripe_cache(mddev);
0bb0c105
SL
8323 mddev_resume(mddev);
8324 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8325 r5l_log_disk_error(conf)) {
8326 bool journal_dev_exists = false;
8327 struct md_rdev *rdev;
8328
8329 rdev_for_each(rdev, mddev)
8330 if (test_bit(Journal, &rdev->flags)) {
8331 journal_dev_exists = true;
8332 break;
8333 }
8334
8335 if (!journal_dev_exists) {
8336 mddev_suspend(mddev);
8337 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8338 mddev_resume(mddev);
8339 } else /* need remove journal device first */
8340 err = -EBUSY;
8341 } else
8342 err = -EINVAL;
ba903a3e
AP
8343 } else {
8344 err = -EINVAL;
8345 }
8346
8347 if (!err)
8348 md_update_sb(mddev, 1);
8349
8350 mddev_unlock(mddev);
8351
8352 return err;
8353}
8354
84fc4b56 8355static struct md_personality raid6_personality =
16a53ecc
N
8356{
8357 .name = "raid6",
8358 .level = 6,
8359 .owner = THIS_MODULE,
849674e4
SL
8360 .make_request = raid5_make_request,
8361 .run = raid5_run,
afa0f557 8362 .free = raid5_free,
849674e4
SL
8363 .status = raid5_status,
8364 .error_handler = raid5_error,
16a53ecc
N
8365 .hot_add_disk = raid5_add_disk,
8366 .hot_remove_disk= raid5_remove_disk,
8367 .spare_active = raid5_spare_active,
849674e4 8368 .sync_request = raid5_sync_request,
16a53ecc 8369 .resize = raid5_resize,
80c3a6ce 8370 .size = raid5_size,
50ac168a 8371 .check_reshape = raid6_check_reshape,
f416885e 8372 .start_reshape = raid5_start_reshape,
cea9c228 8373 .finish_reshape = raid5_finish_reshape,
16a53ecc 8374 .quiesce = raid5_quiesce,
245f46c2 8375 .takeover = raid6_takeover,
5c675f83 8376 .congested = raid5_congested,
0bb0c105 8377 .change_consistency_policy = raid5_change_consistency_policy,
16a53ecc 8378};
84fc4b56 8379static struct md_personality raid5_personality =
1da177e4
LT
8380{
8381 .name = "raid5",
2604b703 8382 .level = 5,
1da177e4 8383 .owner = THIS_MODULE,
849674e4
SL
8384 .make_request = raid5_make_request,
8385 .run = raid5_run,
afa0f557 8386 .free = raid5_free,
849674e4
SL
8387 .status = raid5_status,
8388 .error_handler = raid5_error,
1da177e4
LT
8389 .hot_add_disk = raid5_add_disk,
8390 .hot_remove_disk= raid5_remove_disk,
8391 .spare_active = raid5_spare_active,
849674e4 8392 .sync_request = raid5_sync_request,
1da177e4 8393 .resize = raid5_resize,
80c3a6ce 8394 .size = raid5_size,
63c70c4f
N
8395 .check_reshape = raid5_check_reshape,
8396 .start_reshape = raid5_start_reshape,
cea9c228 8397 .finish_reshape = raid5_finish_reshape,
72626685 8398 .quiesce = raid5_quiesce,
d562b0c4 8399 .takeover = raid5_takeover,
5c675f83 8400 .congested = raid5_congested,
ba903a3e 8401 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
8402};
8403
84fc4b56 8404static struct md_personality raid4_personality =
1da177e4 8405{
2604b703
N
8406 .name = "raid4",
8407 .level = 4,
8408 .owner = THIS_MODULE,
849674e4
SL
8409 .make_request = raid5_make_request,
8410 .run = raid5_run,
afa0f557 8411 .free = raid5_free,
849674e4
SL
8412 .status = raid5_status,
8413 .error_handler = raid5_error,
2604b703
N
8414 .hot_add_disk = raid5_add_disk,
8415 .hot_remove_disk= raid5_remove_disk,
8416 .spare_active = raid5_spare_active,
849674e4 8417 .sync_request = raid5_sync_request,
2604b703 8418 .resize = raid5_resize,
80c3a6ce 8419 .size = raid5_size,
3d37890b
N
8420 .check_reshape = raid5_check_reshape,
8421 .start_reshape = raid5_start_reshape,
cea9c228 8422 .finish_reshape = raid5_finish_reshape,
2604b703 8423 .quiesce = raid5_quiesce,
a78d38a1 8424 .takeover = raid4_takeover,
5c675f83 8425 .congested = raid5_congested,
0bb0c105 8426 .change_consistency_policy = raid5_change_consistency_policy,
2604b703
N
8427};
8428
8429static int __init raid5_init(void)
8430{
29c6d1bb
SAS
8431 int ret;
8432
851c30c9
SL
8433 raid5_wq = alloc_workqueue("raid5wq",
8434 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8435 if (!raid5_wq)
8436 return -ENOMEM;
29c6d1bb
SAS
8437
8438 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8439 "md/raid5:prepare",
8440 raid456_cpu_up_prepare,
8441 raid456_cpu_dead);
8442 if (ret) {
8443 destroy_workqueue(raid5_wq);
8444 return ret;
8445 }
16a53ecc 8446 register_md_personality(&raid6_personality);
2604b703
N
8447 register_md_personality(&raid5_personality);
8448 register_md_personality(&raid4_personality);
8449 return 0;
1da177e4
LT
8450}
8451
2604b703 8452static void raid5_exit(void)
1da177e4 8453{
16a53ecc 8454 unregister_md_personality(&raid6_personality);
2604b703
N
8455 unregister_md_personality(&raid5_personality);
8456 unregister_md_personality(&raid4_personality);
29c6d1bb 8457 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8458 destroy_workqueue(raid5_wq);
1da177e4
LT
8459}
8460
8461module_init(raid5_init);
8462module_exit(raid5_exit);
8463MODULE_LICENSE("GPL");
0efb9e61 8464MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8465MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8466MODULE_ALIAS("md-raid5");
8467MODULE_ALIAS("md-raid4");
2604b703
N
8468MODULE_ALIAS("md-level-5");
8469MODULE_ALIAS("md-level-4");
16a53ecc
N
8470MODULE_ALIAS("md-personality-8"); /* RAID6 */
8471MODULE_ALIAS("md-raid6");
8472MODULE_ALIAS("md-level-6");
8473
8474/* This used to be two separate modules, they were: */
8475MODULE_ALIAS("raid5");
8476MODULE_ALIAS("raid6");