md/raid5: don't record new size if resize_stripes fails.
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
a4456856
DW
226static void return_io(struct bio *return_bi)
227{
228 struct bio *bi = return_bi;
229 while (bi) {
a4456856
DW
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
4f024f37 233 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
0e13fe23 236 bio_endio(bi, 0);
a4456856
DW
237 bi = return_bi;
238 }
239}
240
d1688a6d 241static void print_raid5_conf (struct r5conf *conf);
1da177e4 242
600aa109
DW
243static int stripe_operations_active(struct stripe_head *sh)
244{
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248}
249
851c30c9
SL
250static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251{
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
bfc90cb0 254 int thread_cnt;
851c30c9
SL
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
266 group->stripes_cnt++;
267 sh->group = group;
851c30c9
SL
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
bfc90cb0
SL
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
851c30c9
SL
291}
292
566c09c5
SL
293static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
1da177e4 295{
4eb788df
SL
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 301 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
4eb788df
SL
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
566c09c5
SL
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
325 }
326}
d0dabf7e 327
566c09c5
SL
328static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
4eb788df
SL
330{
331 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
332 do_release_stripe(conf, sh, temp_inactive_list);
333}
334
335/*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345{
346 int size;
347 bool do_wakeup = false;
348 unsigned long flags;
349
350 if (hash == NR_STRIPE_HASH_LOCKS) {
351 size = NR_STRIPE_HASH_LOCKS;
352 hash = NR_STRIPE_HASH_LOCKS - 1;
353 } else
354 size = 1;
355 while (size) {
356 struct list_head *list = &temp_inactive_list[size - 1];
357
358 /*
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
361 */
362 if (!list_empty_careful(list)) {
363 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
364 if (list_empty(conf->inactive_list + hash) &&
365 !list_empty(list))
366 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5
SL
367 list_splice_tail_init(list, conf->inactive_list + hash);
368 do_wakeup = true;
369 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 }
371 size--;
372 hash--;
373 }
374
375 if (do_wakeup) {
376 wake_up(&conf->wait_for_stripe);
377 if (conf->retry_read_aligned)
378 md_wakeup_thread(conf->mddev->thread);
379 }
4eb788df
SL
380}
381
773ca82f 382/* should hold conf->device_lock already */
566c09c5
SL
383static int release_stripe_list(struct r5conf *conf,
384 struct list_head *temp_inactive_list)
773ca82f
SL
385{
386 struct stripe_head *sh;
387 int count = 0;
388 struct llist_node *head;
389
390 head = llist_del_all(&conf->released_stripes);
d265d9dc 391 head = llist_reverse_order(head);
773ca82f 392 while (head) {
566c09c5
SL
393 int hash;
394
773ca82f
SL
395 sh = llist_entry(head, struct stripe_head, release_list);
396 head = llist_next(head);
397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 smp_mb();
399 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 /*
401 * Don't worry the bit is set here, because if the bit is set
402 * again, the count is always > 1. This is true for
403 * STRIPE_ON_UNPLUG_LIST bit too.
404 */
566c09c5
SL
405 hash = sh->hash_lock_index;
406 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
407 count++;
408 }
409
410 return count;
411}
412
1da177e4
LT
413static void release_stripe(struct stripe_head *sh)
414{
d1688a6d 415 struct r5conf *conf = sh->raid_conf;
1da177e4 416 unsigned long flags;
566c09c5
SL
417 struct list_head list;
418 int hash;
773ca82f 419 bool wakeup;
16a53ecc 420
cf170f3f
ES
421 /* Avoid release_list until the last reference.
422 */
423 if (atomic_add_unless(&sh->count, -1, 1))
424 return;
425
ad4068de 426 if (unlikely(!conf->mddev->thread) ||
427 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
428 goto slow_path;
429 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 if (wakeup)
431 md_wakeup_thread(conf->mddev->thread);
432 return;
433slow_path:
4eb788df 434 local_irq_save(flags);
773ca82f 435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 436 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
437 INIT_LIST_HEAD(&list);
438 hash = sh->hash_lock_index;
439 do_release_stripe(conf, sh, &list);
4eb788df 440 spin_unlock(&conf->device_lock);
566c09c5 441 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
442 }
443 local_irq_restore(flags);
1da177e4
LT
444}
445
fccddba0 446static inline void remove_hash(struct stripe_head *sh)
1da177e4 447{
45b4233c
DW
448 pr_debug("remove_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
1da177e4 450
fccddba0 451 hlist_del_init(&sh->hash);
1da177e4
LT
452}
453
d1688a6d 454static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 455{
fccddba0 456 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 457
45b4233c
DW
458 pr_debug("insert_hash(), stripe %llu\n",
459 (unsigned long long)sh->sector);
1da177e4 460
fccddba0 461 hlist_add_head(&sh->hash, hp);
1da177e4
LT
462}
463
1da177e4 464/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 465static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
466{
467 struct stripe_head *sh = NULL;
468 struct list_head *first;
469
566c09c5 470 if (list_empty(conf->inactive_list + hash))
1da177e4 471 goto out;
566c09c5 472 first = (conf->inactive_list + hash)->next;
1da177e4
LT
473 sh = list_entry(first, struct stripe_head, lru);
474 list_del_init(first);
475 remove_hash(sh);
476 atomic_inc(&conf->active_stripes);
566c09c5 477 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
478 if (list_empty(conf->inactive_list + hash))
479 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
480out:
481 return sh;
482}
483
e4e11e38 484static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
485{
486 struct page *p;
487 int i;
e4e11e38 488 int num = sh->raid_conf->pool_size;
1da177e4 489
e4e11e38 490 for (i = 0; i < num ; i++) {
d592a996 491 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
492 p = sh->dev[i].page;
493 if (!p)
494 continue;
495 sh->dev[i].page = NULL;
2d1f3b5d 496 put_page(p);
1da177e4
LT
497 }
498}
499
a9683a79 500static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
501{
502 int i;
e4e11e38 503 int num = sh->raid_conf->pool_size;
1da177e4 504
e4e11e38 505 for (i = 0; i < num; i++) {
1da177e4
LT
506 struct page *page;
507
a9683a79 508 if (!(page = alloc_page(gfp))) {
1da177e4
LT
509 return 1;
510 }
511 sh->dev[i].page = page;
d592a996 512 sh->dev[i].orig_page = page;
1da177e4
LT
513 }
514 return 0;
515}
516
784052ec 517static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 518static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 519 struct stripe_head *sh);
1da177e4 520
b5663ba4 521static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 522{
d1688a6d 523 struct r5conf *conf = sh->raid_conf;
566c09c5 524 int i, seq;
1da177e4 525
78bafebd
ES
526 BUG_ON(atomic_read(&sh->count) != 0);
527 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 528 BUG_ON(stripe_operations_active(sh));
59fc630b 529 BUG_ON(sh->batch_head);
d84e0f10 530
45b4233c 531 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 532 (unsigned long long)sector);
566c09c5
SL
533retry:
534 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 535 sh->generation = conf->generation - previous;
b5663ba4 536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 537 sh->sector = sector;
911d4ee8 538 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
539 sh->state = 0;
540
7ecaa1e6 541 for (i = sh->disks; i--; ) {
1da177e4
LT
542 struct r5dev *dev = &sh->dev[i];
543
d84e0f10 544 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 545 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 546 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 547 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 548 dev->read, dev->towrite, dev->written,
1da177e4 549 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 550 WARN_ON(1);
1da177e4
LT
551 }
552 dev->flags = 0;
784052ec 553 raid5_build_block(sh, i, previous);
1da177e4 554 }
566c09c5
SL
555 if (read_seqcount_retry(&conf->gen_lock, seq))
556 goto retry;
7a87f434 557 sh->overwrite_disks = 0;
1da177e4 558 insert_hash(conf, sh);
851c30c9 559 sh->cpu = smp_processor_id();
da41ba65 560 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
561}
562
d1688a6d 563static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 564 short generation)
1da177e4
LT
565{
566 struct stripe_head *sh;
567
45b4233c 568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 569 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 570 if (sh->sector == sector && sh->generation == generation)
1da177e4 571 return sh;
45b4233c 572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
573 return NULL;
574}
575
674806d6
N
576/*
577 * Need to check if array has failed when deciding whether to:
578 * - start an array
579 * - remove non-faulty devices
580 * - add a spare
581 * - allow a reshape
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
588 */
908f4fbd 589static int calc_degraded(struct r5conf *conf)
674806d6 590{
908f4fbd 591 int degraded, degraded2;
674806d6 592 int i;
674806d6
N
593
594 rcu_read_lock();
595 degraded = 0;
596 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 597 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
600 if (!rdev || test_bit(Faulty, &rdev->flags))
601 degraded++;
602 else if (test_bit(In_sync, &rdev->flags))
603 ;
604 else
605 /* not in-sync or faulty.
606 * If the reshape increases the number of devices,
607 * this is being recovered by the reshape, so
608 * this 'previous' section is not in_sync.
609 * If the number of devices is being reduced however,
610 * the device can only be part of the array if
611 * we are reverting a reshape, so this section will
612 * be in-sync.
613 */
614 if (conf->raid_disks >= conf->previous_raid_disks)
615 degraded++;
616 }
617 rcu_read_unlock();
908f4fbd
N
618 if (conf->raid_disks == conf->previous_raid_disks)
619 return degraded;
674806d6 620 rcu_read_lock();
908f4fbd 621 degraded2 = 0;
674806d6 622 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 623 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
624 if (rdev && test_bit(Faulty, &rdev->flags))
625 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 626 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 627 degraded2++;
674806d6
N
628 else if (test_bit(In_sync, &rdev->flags))
629 ;
630 else
631 /* not in-sync or faulty.
632 * If reshape increases the number of devices, this
633 * section has already been recovered, else it
634 * almost certainly hasn't.
635 */
636 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 637 degraded2++;
674806d6
N
638 }
639 rcu_read_unlock();
908f4fbd
N
640 if (degraded2 > degraded)
641 return degraded2;
642 return degraded;
643}
644
645static int has_failed(struct r5conf *conf)
646{
647 int degraded;
648
649 if (conf->mddev->reshape_position == MaxSector)
650 return conf->mddev->degraded > conf->max_degraded;
651
652 degraded = calc_degraded(conf);
674806d6
N
653 if (degraded > conf->max_degraded)
654 return 1;
655 return 0;
656}
657
b5663ba4 658static struct stripe_head *
d1688a6d 659get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 660 int previous, int noblock, int noquiesce)
1da177e4
LT
661{
662 struct stripe_head *sh;
566c09c5 663 int hash = stripe_hash_locks_hash(sector);
1da177e4 664
45b4233c 665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 666
566c09c5 667 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
668
669 do {
72626685 670 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 671 conf->quiesce == 0 || noquiesce,
566c09c5 672 *(conf->hash_locks + hash));
86b42c71 673 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 674 if (!sh) {
edbe83ab 675 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 676 sh = get_free_stripe(conf, hash);
edbe83ab
N
677 if (!sh && llist_empty(&conf->released_stripes) &&
678 !test_bit(R5_DID_ALLOC, &conf->cache_state))
679 set_bit(R5_ALLOC_MORE,
680 &conf->cache_state);
681 }
1da177e4
LT
682 if (noblock && sh == NULL)
683 break;
684 if (!sh) {
5423399a
N
685 set_bit(R5_INACTIVE_BLOCKED,
686 &conf->cache_state);
566c09c5
SL
687 wait_event_lock_irq(
688 conf->wait_for_stripe,
689 !list_empty(conf->inactive_list + hash) &&
690 (atomic_read(&conf->active_stripes)
691 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
692 || !test_bit(R5_INACTIVE_BLOCKED,
693 &conf->cache_state)),
566c09c5 694 *(conf->hash_locks + hash));
5423399a
N
695 clear_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state);
7da9d450 697 } else {
b5663ba4 698 init_stripe(sh, sector, previous);
7da9d450
N
699 atomic_inc(&sh->count);
700 }
e240c183 701 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 702 spin_lock(&conf->device_lock);
e240c183 703 if (!atomic_read(&sh->count)) {
1da177e4
LT
704 if (!test_bit(STRIPE_HANDLE, &sh->state))
705 atomic_inc(&conf->active_stripes);
5af9bef7
N
706 BUG_ON(list_empty(&sh->lru) &&
707 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 708 list_del_init(&sh->lru);
bfc90cb0
SL
709 if (sh->group) {
710 sh->group->stripes_cnt--;
711 sh->group = NULL;
712 }
1da177e4 713 }
7da9d450 714 atomic_inc(&sh->count);
6d183de4 715 spin_unlock(&conf->device_lock);
1da177e4
LT
716 }
717 } while (sh == NULL);
718
566c09c5 719 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
720 return sh;
721}
722
7a87f434 723static bool is_full_stripe_write(struct stripe_head *sh)
724{
725 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727}
728
59fc630b 729static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730{
731 local_irq_disable();
732 if (sh1 > sh2) {
733 spin_lock(&sh2->stripe_lock);
734 spin_lock_nested(&sh1->stripe_lock, 1);
735 } else {
736 spin_lock(&sh1->stripe_lock);
737 spin_lock_nested(&sh2->stripe_lock, 1);
738 }
739}
740
741static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742{
743 spin_unlock(&sh1->stripe_lock);
744 spin_unlock(&sh2->stripe_lock);
745 local_irq_enable();
746}
747
748/* Only freshly new full stripe normal write stripe can be added to a batch list */
749static bool stripe_can_batch(struct stripe_head *sh)
750{
751 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752 is_full_stripe_write(sh);
753}
754
755/* we only do back search */
756static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
757{
758 struct stripe_head *head;
759 sector_t head_sector, tmp_sec;
760 int hash;
761 int dd_idx;
762
763 if (!stripe_can_batch(sh))
764 return;
765 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
766 tmp_sec = sh->sector;
767 if (!sector_div(tmp_sec, conf->chunk_sectors))
768 return;
769 head_sector = sh->sector - STRIPE_SECTORS;
770
771 hash = stripe_hash_locks_hash(head_sector);
772 spin_lock_irq(conf->hash_locks + hash);
773 head = __find_stripe(conf, head_sector, conf->generation);
774 if (head && !atomic_inc_not_zero(&head->count)) {
775 spin_lock(&conf->device_lock);
776 if (!atomic_read(&head->count)) {
777 if (!test_bit(STRIPE_HANDLE, &head->state))
778 atomic_inc(&conf->active_stripes);
779 BUG_ON(list_empty(&head->lru) &&
780 !test_bit(STRIPE_EXPANDING, &head->state));
781 list_del_init(&head->lru);
782 if (head->group) {
783 head->group->stripes_cnt--;
784 head->group = NULL;
785 }
786 }
787 atomic_inc(&head->count);
788 spin_unlock(&conf->device_lock);
789 }
790 spin_unlock_irq(conf->hash_locks + hash);
791
792 if (!head)
793 return;
794 if (!stripe_can_batch(head))
795 goto out;
796
797 lock_two_stripes(head, sh);
798 /* clear_batch_ready clear the flag */
799 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
800 goto unlock_out;
801
802 if (sh->batch_head)
803 goto unlock_out;
804
805 dd_idx = 0;
806 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
807 dd_idx++;
808 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
809 goto unlock_out;
810
811 if (head->batch_head) {
812 spin_lock(&head->batch_head->batch_lock);
813 /* This batch list is already running */
814 if (!stripe_can_batch(head)) {
815 spin_unlock(&head->batch_head->batch_lock);
816 goto unlock_out;
817 }
818
819 /*
820 * at this point, head's BATCH_READY could be cleared, but we
821 * can still add the stripe to batch list
822 */
823 list_add(&sh->batch_list, &head->batch_list);
824 spin_unlock(&head->batch_head->batch_lock);
825
826 sh->batch_head = head->batch_head;
827 } else {
828 head->batch_head = head;
829 sh->batch_head = head->batch_head;
830 spin_lock(&head->batch_lock);
831 list_add_tail(&sh->batch_list, &head->batch_list);
832 spin_unlock(&head->batch_lock);
833 }
834
835 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
836 if (atomic_dec_return(&conf->preread_active_stripes)
837 < IO_THRESHOLD)
838 md_wakeup_thread(conf->mddev->thread);
839
840 atomic_inc(&sh->count);
841unlock_out:
842 unlock_two_stripes(head, sh);
843out:
844 release_stripe(head);
845}
846
05616be5
N
847/* Determine if 'data_offset' or 'new_data_offset' should be used
848 * in this stripe_head.
849 */
850static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
851{
852 sector_t progress = conf->reshape_progress;
853 /* Need a memory barrier to make sure we see the value
854 * of conf->generation, or ->data_offset that was set before
855 * reshape_progress was updated.
856 */
857 smp_rmb();
858 if (progress == MaxSector)
859 return 0;
860 if (sh->generation == conf->generation - 1)
861 return 0;
862 /* We are in a reshape, and this is a new-generation stripe,
863 * so use new_data_offset.
864 */
865 return 1;
866}
867
6712ecf8
N
868static void
869raid5_end_read_request(struct bio *bi, int error);
870static void
871raid5_end_write_request(struct bio *bi, int error);
91c00924 872
c4e5ac0a 873static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 874{
d1688a6d 875 struct r5conf *conf = sh->raid_conf;
91c00924 876 int i, disks = sh->disks;
59fc630b 877 struct stripe_head *head_sh = sh;
91c00924
DW
878
879 might_sleep();
880
881 for (i = disks; i--; ) {
882 int rw;
9a3e1101 883 int replace_only = 0;
977df362
N
884 struct bio *bi, *rbi;
885 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 886
887 sh = head_sh;
e9c7469b
TH
888 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
889 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
890 rw = WRITE_FUA;
891 else
892 rw = WRITE;
9e444768 893 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 894 rw |= REQ_DISCARD;
e9c7469b 895 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 896 rw = READ;
9a3e1101
N
897 else if (test_and_clear_bit(R5_WantReplace,
898 &sh->dev[i].flags)) {
899 rw = WRITE;
900 replace_only = 1;
901 } else
91c00924 902 continue;
bc0934f0
SL
903 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
904 rw |= REQ_SYNC;
91c00924 905
59fc630b 906again:
91c00924 907 bi = &sh->dev[i].req;
977df362 908 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 909
91c00924 910 rcu_read_lock();
9a3e1101 911 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
912 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
913 rdev = rcu_dereference(conf->disks[i].rdev);
914 if (!rdev) {
915 rdev = rrdev;
916 rrdev = NULL;
917 }
9a3e1101
N
918 if (rw & WRITE) {
919 if (replace_only)
920 rdev = NULL;
dd054fce
N
921 if (rdev == rrdev)
922 /* We raced and saw duplicates */
923 rrdev = NULL;
9a3e1101 924 } else {
59fc630b 925 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
926 rdev = rrdev;
927 rrdev = NULL;
928 }
977df362 929
91c00924
DW
930 if (rdev && test_bit(Faulty, &rdev->flags))
931 rdev = NULL;
932 if (rdev)
933 atomic_inc(&rdev->nr_pending);
977df362
N
934 if (rrdev && test_bit(Faulty, &rrdev->flags))
935 rrdev = NULL;
936 if (rrdev)
937 atomic_inc(&rrdev->nr_pending);
91c00924
DW
938 rcu_read_unlock();
939
73e92e51 940 /* We have already checked bad blocks for reads. Now
977df362
N
941 * need to check for writes. We never accept write errors
942 * on the replacement, so we don't to check rrdev.
73e92e51
N
943 */
944 while ((rw & WRITE) && rdev &&
945 test_bit(WriteErrorSeen, &rdev->flags)) {
946 sector_t first_bad;
947 int bad_sectors;
948 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
949 &first_bad, &bad_sectors);
950 if (!bad)
951 break;
952
953 if (bad < 0) {
954 set_bit(BlockedBadBlocks, &rdev->flags);
955 if (!conf->mddev->external &&
956 conf->mddev->flags) {
957 /* It is very unlikely, but we might
958 * still need to write out the
959 * bad block log - better give it
960 * a chance*/
961 md_check_recovery(conf->mddev);
962 }
1850753d 963 /*
964 * Because md_wait_for_blocked_rdev
965 * will dec nr_pending, we must
966 * increment it first.
967 */
968 atomic_inc(&rdev->nr_pending);
73e92e51
N
969 md_wait_for_blocked_rdev(rdev, conf->mddev);
970 } else {
971 /* Acknowledged bad block - skip the write */
972 rdev_dec_pending(rdev, conf->mddev);
973 rdev = NULL;
974 }
975 }
976
91c00924 977 if (rdev) {
9a3e1101
N
978 if (s->syncing || s->expanding || s->expanded
979 || s->replacing)
91c00924
DW
980 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
981
2b7497f0
DW
982 set_bit(STRIPE_IO_STARTED, &sh->state);
983
2f6db2a7 984 bio_reset(bi);
91c00924 985 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
986 bi->bi_rw = rw;
987 bi->bi_end_io = (rw & WRITE)
988 ? raid5_end_write_request
989 : raid5_end_read_request;
990 bi->bi_private = sh;
991
91c00924 992 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 993 __func__, (unsigned long long)sh->sector,
91c00924
DW
994 bi->bi_rw, i);
995 atomic_inc(&sh->count);
59fc630b 996 if (sh != head_sh)
997 atomic_inc(&head_sh->count);
05616be5 998 if (use_new_offset(conf, sh))
4f024f37 999 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1000 + rdev->new_data_offset);
1001 else
4f024f37 1002 bi->bi_iter.bi_sector = (sh->sector
05616be5 1003 + rdev->data_offset);
59fc630b 1004 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1005 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1006
d592a996
SL
1007 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1008 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1009 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1010 bi->bi_vcnt = 1;
91c00924
DW
1011 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1012 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1013 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1014 /*
1015 * If this is discard request, set bi_vcnt 0. We don't
1016 * want to confuse SCSI because SCSI will replace payload
1017 */
1018 if (rw & REQ_DISCARD)
1019 bi->bi_vcnt = 0;
977df362
N
1020 if (rrdev)
1021 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1022
1023 if (conf->mddev->gendisk)
1024 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1025 bi, disk_devt(conf->mddev->gendisk),
1026 sh->dev[i].sector);
91c00924 1027 generic_make_request(bi);
977df362
N
1028 }
1029 if (rrdev) {
9a3e1101
N
1030 if (s->syncing || s->expanding || s->expanded
1031 || s->replacing)
977df362
N
1032 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1033
1034 set_bit(STRIPE_IO_STARTED, &sh->state);
1035
2f6db2a7 1036 bio_reset(rbi);
977df362 1037 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1038 rbi->bi_rw = rw;
1039 BUG_ON(!(rw & WRITE));
1040 rbi->bi_end_io = raid5_end_write_request;
1041 rbi->bi_private = sh;
1042
977df362
N
1043 pr_debug("%s: for %llu schedule op %ld on "
1044 "replacement disc %d\n",
1045 __func__, (unsigned long long)sh->sector,
1046 rbi->bi_rw, i);
1047 atomic_inc(&sh->count);
59fc630b 1048 if (sh != head_sh)
1049 atomic_inc(&head_sh->count);
05616be5 1050 if (use_new_offset(conf, sh))
4f024f37 1051 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1052 + rrdev->new_data_offset);
1053 else
4f024f37 1054 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1055 + rrdev->data_offset);
d592a996
SL
1056 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1057 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1058 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1059 rbi->bi_vcnt = 1;
977df362
N
1060 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1061 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1062 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1063 /*
1064 * If this is discard request, set bi_vcnt 0. We don't
1065 * want to confuse SCSI because SCSI will replace payload
1066 */
1067 if (rw & REQ_DISCARD)
1068 rbi->bi_vcnt = 0;
e3620a3a
JB
1069 if (conf->mddev->gendisk)
1070 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1071 rbi, disk_devt(conf->mddev->gendisk),
1072 sh->dev[i].sector);
977df362
N
1073 generic_make_request(rbi);
1074 }
1075 if (!rdev && !rrdev) {
b062962e 1076 if (rw & WRITE)
91c00924
DW
1077 set_bit(STRIPE_DEGRADED, &sh->state);
1078 pr_debug("skip op %ld on disc %d for sector %llu\n",
1079 bi->bi_rw, i, (unsigned long long)sh->sector);
1080 clear_bit(R5_LOCKED, &sh->dev[i].flags);
72ac7330 1081 if (sh->batch_head)
1082 set_bit(STRIPE_BATCH_ERR,
1083 &sh->batch_head->state);
91c00924
DW
1084 set_bit(STRIPE_HANDLE, &sh->state);
1085 }
59fc630b 1086
1087 if (!head_sh->batch_head)
1088 continue;
1089 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1090 batch_list);
1091 if (sh != head_sh)
1092 goto again;
91c00924
DW
1093 }
1094}
1095
1096static struct dma_async_tx_descriptor *
d592a996
SL
1097async_copy_data(int frombio, struct bio *bio, struct page **page,
1098 sector_t sector, struct dma_async_tx_descriptor *tx,
1099 struct stripe_head *sh)
91c00924 1100{
7988613b
KO
1101 struct bio_vec bvl;
1102 struct bvec_iter iter;
91c00924 1103 struct page *bio_page;
91c00924 1104 int page_offset;
a08abd8c 1105 struct async_submit_ctl submit;
0403e382 1106 enum async_tx_flags flags = 0;
91c00924 1107
4f024f37
KO
1108 if (bio->bi_iter.bi_sector >= sector)
1109 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1110 else
4f024f37 1111 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1112
0403e382
DW
1113 if (frombio)
1114 flags |= ASYNC_TX_FENCE;
1115 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1116
7988613b
KO
1117 bio_for_each_segment(bvl, bio, iter) {
1118 int len = bvl.bv_len;
91c00924
DW
1119 int clen;
1120 int b_offset = 0;
1121
1122 if (page_offset < 0) {
1123 b_offset = -page_offset;
1124 page_offset += b_offset;
1125 len -= b_offset;
1126 }
1127
1128 if (len > 0 && page_offset + len > STRIPE_SIZE)
1129 clen = STRIPE_SIZE - page_offset;
1130 else
1131 clen = len;
1132
1133 if (clen > 0) {
7988613b
KO
1134 b_offset += bvl.bv_offset;
1135 bio_page = bvl.bv_page;
d592a996
SL
1136 if (frombio) {
1137 if (sh->raid_conf->skip_copy &&
1138 b_offset == 0 && page_offset == 0 &&
1139 clen == STRIPE_SIZE)
1140 *page = bio_page;
1141 else
1142 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1143 b_offset, clen, &submit);
d592a996
SL
1144 } else
1145 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1146 page_offset, clen, &submit);
91c00924 1147 }
a08abd8c
DW
1148 /* chain the operations */
1149 submit.depend_tx = tx;
1150
91c00924
DW
1151 if (clen < len) /* hit end of page */
1152 break;
1153 page_offset += len;
1154 }
1155
1156 return tx;
1157}
1158
1159static void ops_complete_biofill(void *stripe_head_ref)
1160{
1161 struct stripe_head *sh = stripe_head_ref;
1162 struct bio *return_bi = NULL;
e4d84909 1163 int i;
91c00924 1164
e46b272b 1165 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1166 (unsigned long long)sh->sector);
1167
1168 /* clear completed biofills */
1169 for (i = sh->disks; i--; ) {
1170 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1171
1172 /* acknowledge completion of a biofill operation */
e4d84909
DW
1173 /* and check if we need to reply to a read request,
1174 * new R5_Wantfill requests are held off until
83de75cc 1175 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1176 */
1177 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1178 struct bio *rbi, *rbi2;
91c00924 1179
91c00924
DW
1180 BUG_ON(!dev->read);
1181 rbi = dev->read;
1182 dev->read = NULL;
4f024f37 1183 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1184 dev->sector + STRIPE_SECTORS) {
1185 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 1186 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
1187 rbi->bi_next = return_bi;
1188 return_bi = rbi;
1189 }
91c00924
DW
1190 rbi = rbi2;
1191 }
1192 }
1193 }
83de75cc 1194 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
1195
1196 return_io(return_bi);
1197
e4d84909 1198 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
1199 release_stripe(sh);
1200}
1201
1202static void ops_run_biofill(struct stripe_head *sh)
1203{
1204 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1205 struct async_submit_ctl submit;
91c00924
DW
1206 int i;
1207
59fc630b 1208 BUG_ON(sh->batch_head);
e46b272b 1209 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1210 (unsigned long long)sh->sector);
1211
1212 for (i = sh->disks; i--; ) {
1213 struct r5dev *dev = &sh->dev[i];
1214 if (test_bit(R5_Wantfill, &dev->flags)) {
1215 struct bio *rbi;
b17459c0 1216 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1217 dev->read = rbi = dev->toread;
1218 dev->toread = NULL;
b17459c0 1219 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1220 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1221 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1222 tx = async_copy_data(0, rbi, &dev->page,
1223 dev->sector, tx, sh);
91c00924
DW
1224 rbi = r5_next_bio(rbi, dev->sector);
1225 }
1226 }
1227 }
1228
1229 atomic_inc(&sh->count);
a08abd8c
DW
1230 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1231 async_trigger_callback(&submit);
91c00924
DW
1232}
1233
4e7d2c0a 1234static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1235{
4e7d2c0a 1236 struct r5dev *tgt;
91c00924 1237
4e7d2c0a
DW
1238 if (target < 0)
1239 return;
91c00924 1240
4e7d2c0a 1241 tgt = &sh->dev[target];
91c00924
DW
1242 set_bit(R5_UPTODATE, &tgt->flags);
1243 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1245}
1246
ac6b53b6 1247static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1248{
1249 struct stripe_head *sh = stripe_head_ref;
91c00924 1250
e46b272b 1251 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1252 (unsigned long long)sh->sector);
1253
ac6b53b6 1254 /* mark the computed target(s) as uptodate */
4e7d2c0a 1255 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1256 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1257
ecc65c9b
DW
1258 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1259 if (sh->check_state == check_state_compute_run)
1260 sh->check_state = check_state_compute_result;
91c00924
DW
1261 set_bit(STRIPE_HANDLE, &sh->state);
1262 release_stripe(sh);
1263}
1264
d6f38f31
DW
1265/* return a pointer to the address conversion region of the scribble buffer */
1266static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1267 struct raid5_percpu *percpu, int i)
d6f38f31 1268{
46d5b785 1269 void *addr;
1270
1271 addr = flex_array_get(percpu->scribble, i);
1272 return addr + sizeof(struct page *) * (sh->disks + 2);
1273}
1274
1275/* return a pointer to the address conversion region of the scribble buffer */
1276static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1277{
1278 void *addr;
1279
1280 addr = flex_array_get(percpu->scribble, i);
1281 return addr;
d6f38f31
DW
1282}
1283
1284static struct dma_async_tx_descriptor *
1285ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1286{
91c00924 1287 int disks = sh->disks;
46d5b785 1288 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1289 int target = sh->ops.target;
1290 struct r5dev *tgt = &sh->dev[target];
1291 struct page *xor_dest = tgt->page;
1292 int count = 0;
1293 struct dma_async_tx_descriptor *tx;
a08abd8c 1294 struct async_submit_ctl submit;
91c00924
DW
1295 int i;
1296
59fc630b 1297 BUG_ON(sh->batch_head);
1298
91c00924 1299 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1300 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1301 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1302
1303 for (i = disks; i--; )
1304 if (i != target)
1305 xor_srcs[count++] = sh->dev[i].page;
1306
1307 atomic_inc(&sh->count);
1308
0403e382 1309 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1310 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1311 if (unlikely(count == 1))
a08abd8c 1312 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1313 else
a08abd8c 1314 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1315
91c00924
DW
1316 return tx;
1317}
1318
ac6b53b6
DW
1319/* set_syndrome_sources - populate source buffers for gen_syndrome
1320 * @srcs - (struct page *) array of size sh->disks
1321 * @sh - stripe_head to parse
1322 *
1323 * Populates srcs in proper layout order for the stripe and returns the
1324 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1325 * destination buffer is recorded in srcs[count] and the Q destination
1326 * is recorded in srcs[count+1]].
1327 */
584acdd4
MS
1328static int set_syndrome_sources(struct page **srcs,
1329 struct stripe_head *sh,
1330 int srctype)
ac6b53b6
DW
1331{
1332 int disks = sh->disks;
1333 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1334 int d0_idx = raid6_d0(sh);
1335 int count;
1336 int i;
1337
1338 for (i = 0; i < disks; i++)
5dd33c9a 1339 srcs[i] = NULL;
ac6b53b6
DW
1340
1341 count = 0;
1342 i = d0_idx;
1343 do {
1344 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1345 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1346
584acdd4
MS
1347 if (i == sh->qd_idx || i == sh->pd_idx ||
1348 (srctype == SYNDROME_SRC_ALL) ||
1349 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1350 test_bit(R5_Wantdrain, &dev->flags)) ||
1351 (srctype == SYNDROME_SRC_WRITTEN &&
1352 dev->written))
1353 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1354 i = raid6_next_disk(i, disks);
1355 } while (i != d0_idx);
ac6b53b6 1356
e4424fee 1357 return syndrome_disks;
ac6b53b6
DW
1358}
1359
1360static struct dma_async_tx_descriptor *
1361ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1362{
1363 int disks = sh->disks;
46d5b785 1364 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1365 int target;
1366 int qd_idx = sh->qd_idx;
1367 struct dma_async_tx_descriptor *tx;
1368 struct async_submit_ctl submit;
1369 struct r5dev *tgt;
1370 struct page *dest;
1371 int i;
1372 int count;
1373
59fc630b 1374 BUG_ON(sh->batch_head);
ac6b53b6
DW
1375 if (sh->ops.target < 0)
1376 target = sh->ops.target2;
1377 else if (sh->ops.target2 < 0)
1378 target = sh->ops.target;
91c00924 1379 else
ac6b53b6
DW
1380 /* we should only have one valid target */
1381 BUG();
1382 BUG_ON(target < 0);
1383 pr_debug("%s: stripe %llu block: %d\n",
1384 __func__, (unsigned long long)sh->sector, target);
1385
1386 tgt = &sh->dev[target];
1387 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1388 dest = tgt->page;
1389
1390 atomic_inc(&sh->count);
1391
1392 if (target == qd_idx) {
584acdd4 1393 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1394 blocks[count] = NULL; /* regenerating p is not necessary */
1395 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1396 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1397 ops_complete_compute, sh,
46d5b785 1398 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1399 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1400 } else {
1401 /* Compute any data- or p-drive using XOR */
1402 count = 0;
1403 for (i = disks; i-- ; ) {
1404 if (i == target || i == qd_idx)
1405 continue;
1406 blocks[count++] = sh->dev[i].page;
1407 }
1408
0403e382
DW
1409 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1410 NULL, ops_complete_compute, sh,
46d5b785 1411 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1412 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1413 }
91c00924 1414
91c00924
DW
1415 return tx;
1416}
1417
ac6b53b6
DW
1418static struct dma_async_tx_descriptor *
1419ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1420{
1421 int i, count, disks = sh->disks;
1422 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1423 int d0_idx = raid6_d0(sh);
1424 int faila = -1, failb = -1;
1425 int target = sh->ops.target;
1426 int target2 = sh->ops.target2;
1427 struct r5dev *tgt = &sh->dev[target];
1428 struct r5dev *tgt2 = &sh->dev[target2];
1429 struct dma_async_tx_descriptor *tx;
46d5b785 1430 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1431 struct async_submit_ctl submit;
1432
59fc630b 1433 BUG_ON(sh->batch_head);
ac6b53b6
DW
1434 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1435 __func__, (unsigned long long)sh->sector, target, target2);
1436 BUG_ON(target < 0 || target2 < 0);
1437 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1438 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1439
6c910a78 1440 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1441 * slot number conversion for 'faila' and 'failb'
1442 */
1443 for (i = 0; i < disks ; i++)
5dd33c9a 1444 blocks[i] = NULL;
ac6b53b6
DW
1445 count = 0;
1446 i = d0_idx;
1447 do {
1448 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1449
1450 blocks[slot] = sh->dev[i].page;
1451
1452 if (i == target)
1453 faila = slot;
1454 if (i == target2)
1455 failb = slot;
1456 i = raid6_next_disk(i, disks);
1457 } while (i != d0_idx);
ac6b53b6
DW
1458
1459 BUG_ON(faila == failb);
1460 if (failb < faila)
1461 swap(faila, failb);
1462 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1463 __func__, (unsigned long long)sh->sector, faila, failb);
1464
1465 atomic_inc(&sh->count);
1466
1467 if (failb == syndrome_disks+1) {
1468 /* Q disk is one of the missing disks */
1469 if (faila == syndrome_disks) {
1470 /* Missing P+Q, just recompute */
0403e382
DW
1471 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1472 ops_complete_compute, sh,
46d5b785 1473 to_addr_conv(sh, percpu, 0));
e4424fee 1474 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1475 STRIPE_SIZE, &submit);
1476 } else {
1477 struct page *dest;
1478 int data_target;
1479 int qd_idx = sh->qd_idx;
1480
1481 /* Missing D+Q: recompute D from P, then recompute Q */
1482 if (target == qd_idx)
1483 data_target = target2;
1484 else
1485 data_target = target;
1486
1487 count = 0;
1488 for (i = disks; i-- ; ) {
1489 if (i == data_target || i == qd_idx)
1490 continue;
1491 blocks[count++] = sh->dev[i].page;
1492 }
1493 dest = sh->dev[data_target].page;
0403e382
DW
1494 init_async_submit(&submit,
1495 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1496 NULL, NULL, NULL,
46d5b785 1497 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1498 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1499 &submit);
1500
584acdd4 1501 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1502 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1503 ops_complete_compute, sh,
46d5b785 1504 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1505 return async_gen_syndrome(blocks, 0, count+2,
1506 STRIPE_SIZE, &submit);
1507 }
ac6b53b6 1508 } else {
6c910a78
DW
1509 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1510 ops_complete_compute, sh,
46d5b785 1511 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1512 if (failb == syndrome_disks) {
1513 /* We're missing D+P. */
1514 return async_raid6_datap_recov(syndrome_disks+2,
1515 STRIPE_SIZE, faila,
1516 blocks, &submit);
1517 } else {
1518 /* We're missing D+D. */
1519 return async_raid6_2data_recov(syndrome_disks+2,
1520 STRIPE_SIZE, faila, failb,
1521 blocks, &submit);
1522 }
ac6b53b6
DW
1523 }
1524}
1525
91c00924
DW
1526static void ops_complete_prexor(void *stripe_head_ref)
1527{
1528 struct stripe_head *sh = stripe_head_ref;
1529
e46b272b 1530 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1531 (unsigned long long)sh->sector);
91c00924
DW
1532}
1533
1534static struct dma_async_tx_descriptor *
584acdd4
MS
1535ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1536 struct dma_async_tx_descriptor *tx)
91c00924 1537{
91c00924 1538 int disks = sh->disks;
46d5b785 1539 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1540 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1541 struct async_submit_ctl submit;
91c00924
DW
1542
1543 /* existing parity data subtracted */
1544 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1545
59fc630b 1546 BUG_ON(sh->batch_head);
e46b272b 1547 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1548 (unsigned long long)sh->sector);
1549
1550 for (i = disks; i--; ) {
1551 struct r5dev *dev = &sh->dev[i];
1552 /* Only process blocks that are known to be uptodate */
d8ee0728 1553 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1554 xor_srcs[count++] = dev->page;
1555 }
1556
0403e382 1557 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1558 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1559 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1560
1561 return tx;
1562}
1563
584acdd4
MS
1564static struct dma_async_tx_descriptor *
1565ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1566 struct dma_async_tx_descriptor *tx)
1567{
1568 struct page **blocks = to_addr_page(percpu, 0);
1569 int count;
1570 struct async_submit_ctl submit;
1571
1572 pr_debug("%s: stripe %llu\n", __func__,
1573 (unsigned long long)sh->sector);
1574
1575 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1576
1577 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1578 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1579 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1580
1581 return tx;
1582}
1583
91c00924 1584static struct dma_async_tx_descriptor *
d8ee0728 1585ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1586{
1587 int disks = sh->disks;
d8ee0728 1588 int i;
59fc630b 1589 struct stripe_head *head_sh = sh;
91c00924 1590
e46b272b 1591 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1592 (unsigned long long)sh->sector);
1593
1594 for (i = disks; i--; ) {
59fc630b 1595 struct r5dev *dev;
91c00924 1596 struct bio *chosen;
91c00924 1597
59fc630b 1598 sh = head_sh;
1599 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1600 struct bio *wbi;
1601
59fc630b 1602again:
1603 dev = &sh->dev[i];
b17459c0 1604 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1605 chosen = dev->towrite;
1606 dev->towrite = NULL;
7a87f434 1607 sh->overwrite_disks = 0;
91c00924
DW
1608 BUG_ON(dev->written);
1609 wbi = dev->written = chosen;
b17459c0 1610 spin_unlock_irq(&sh->stripe_lock);
d592a996 1611 WARN_ON(dev->page != dev->orig_page);
91c00924 1612
4f024f37 1613 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1614 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1615 if (wbi->bi_rw & REQ_FUA)
1616 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1617 if (wbi->bi_rw & REQ_SYNC)
1618 set_bit(R5_SyncIO, &dev->flags);
9e444768 1619 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1620 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1621 else {
1622 tx = async_copy_data(1, wbi, &dev->page,
1623 dev->sector, tx, sh);
1624 if (dev->page != dev->orig_page) {
1625 set_bit(R5_SkipCopy, &dev->flags);
1626 clear_bit(R5_UPTODATE, &dev->flags);
1627 clear_bit(R5_OVERWRITE, &dev->flags);
1628 }
1629 }
91c00924
DW
1630 wbi = r5_next_bio(wbi, dev->sector);
1631 }
59fc630b 1632
1633 if (head_sh->batch_head) {
1634 sh = list_first_entry(&sh->batch_list,
1635 struct stripe_head,
1636 batch_list);
1637 if (sh == head_sh)
1638 continue;
1639 goto again;
1640 }
91c00924
DW
1641 }
1642 }
1643
1644 return tx;
1645}
1646
ac6b53b6 1647static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1648{
1649 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1650 int disks = sh->disks;
1651 int pd_idx = sh->pd_idx;
1652 int qd_idx = sh->qd_idx;
1653 int i;
9e444768 1654 bool fua = false, sync = false, discard = false;
91c00924 1655
e46b272b 1656 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1657 (unsigned long long)sh->sector);
1658
bc0934f0 1659 for (i = disks; i--; ) {
e9c7469b 1660 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1661 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1662 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1663 }
e9c7469b 1664
91c00924
DW
1665 for (i = disks; i--; ) {
1666 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1667
e9c7469b 1668 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1669 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1670 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1671 if (fua)
1672 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1673 if (sync)
1674 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1675 }
91c00924
DW
1676 }
1677
d8ee0728
DW
1678 if (sh->reconstruct_state == reconstruct_state_drain_run)
1679 sh->reconstruct_state = reconstruct_state_drain_result;
1680 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1681 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1682 else {
1683 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1684 sh->reconstruct_state = reconstruct_state_result;
1685 }
91c00924
DW
1686
1687 set_bit(STRIPE_HANDLE, &sh->state);
1688 release_stripe(sh);
1689}
1690
1691static void
ac6b53b6
DW
1692ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1693 struct dma_async_tx_descriptor *tx)
91c00924 1694{
91c00924 1695 int disks = sh->disks;
59fc630b 1696 struct page **xor_srcs;
a08abd8c 1697 struct async_submit_ctl submit;
59fc630b 1698 int count, pd_idx = sh->pd_idx, i;
91c00924 1699 struct page *xor_dest;
d8ee0728 1700 int prexor = 0;
91c00924 1701 unsigned long flags;
59fc630b 1702 int j = 0;
1703 struct stripe_head *head_sh = sh;
1704 int last_stripe;
91c00924 1705
e46b272b 1706 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1707 (unsigned long long)sh->sector);
1708
620125f2
SL
1709 for (i = 0; i < sh->disks; i++) {
1710 if (pd_idx == i)
1711 continue;
1712 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1713 break;
1714 }
1715 if (i >= sh->disks) {
1716 atomic_inc(&sh->count);
620125f2
SL
1717 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1718 ops_complete_reconstruct(sh);
1719 return;
1720 }
59fc630b 1721again:
1722 count = 0;
1723 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1724 /* check if prexor is active which means only process blocks
1725 * that are part of a read-modify-write (written)
1726 */
59fc630b 1727 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1728 prexor = 1;
91c00924
DW
1729 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1730 for (i = disks; i--; ) {
1731 struct r5dev *dev = &sh->dev[i];
59fc630b 1732 if (head_sh->dev[i].written)
91c00924
DW
1733 xor_srcs[count++] = dev->page;
1734 }
1735 } else {
1736 xor_dest = sh->dev[pd_idx].page;
1737 for (i = disks; i--; ) {
1738 struct r5dev *dev = &sh->dev[i];
1739 if (i != pd_idx)
1740 xor_srcs[count++] = dev->page;
1741 }
1742 }
1743
91c00924
DW
1744 /* 1/ if we prexor'd then the dest is reused as a source
1745 * 2/ if we did not prexor then we are redoing the parity
1746 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1747 * for the synchronous xor case
1748 */
59fc630b 1749 last_stripe = !head_sh->batch_head ||
1750 list_first_entry(&sh->batch_list,
1751 struct stripe_head, batch_list) == head_sh;
1752 if (last_stripe) {
1753 flags = ASYNC_TX_ACK |
1754 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1755
1756 atomic_inc(&head_sh->count);
1757 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1758 to_addr_conv(sh, percpu, j));
1759 } else {
1760 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1761 init_async_submit(&submit, flags, tx, NULL, NULL,
1762 to_addr_conv(sh, percpu, j));
1763 }
91c00924 1764
a08abd8c
DW
1765 if (unlikely(count == 1))
1766 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1767 else
1768 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1769 if (!last_stripe) {
1770 j++;
1771 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1772 batch_list);
1773 goto again;
1774 }
91c00924
DW
1775}
1776
ac6b53b6
DW
1777static void
1778ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1779 struct dma_async_tx_descriptor *tx)
1780{
1781 struct async_submit_ctl submit;
59fc630b 1782 struct page **blocks;
1783 int count, i, j = 0;
1784 struct stripe_head *head_sh = sh;
1785 int last_stripe;
584acdd4
MS
1786 int synflags;
1787 unsigned long txflags;
ac6b53b6
DW
1788
1789 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1790
620125f2
SL
1791 for (i = 0; i < sh->disks; i++) {
1792 if (sh->pd_idx == i || sh->qd_idx == i)
1793 continue;
1794 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1795 break;
1796 }
1797 if (i >= sh->disks) {
1798 atomic_inc(&sh->count);
620125f2
SL
1799 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1800 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1801 ops_complete_reconstruct(sh);
1802 return;
1803 }
1804
59fc630b 1805again:
1806 blocks = to_addr_page(percpu, j);
584acdd4
MS
1807
1808 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1809 synflags = SYNDROME_SRC_WRITTEN;
1810 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1811 } else {
1812 synflags = SYNDROME_SRC_ALL;
1813 txflags = ASYNC_TX_ACK;
1814 }
1815
1816 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1817 last_stripe = !head_sh->batch_head ||
1818 list_first_entry(&sh->batch_list,
1819 struct stripe_head, batch_list) == head_sh;
1820
1821 if (last_stripe) {
1822 atomic_inc(&head_sh->count);
584acdd4 1823 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1824 head_sh, to_addr_conv(sh, percpu, j));
1825 } else
1826 init_async_submit(&submit, 0, tx, NULL, NULL,
1827 to_addr_conv(sh, percpu, j));
ac6b53b6 1828 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1829 if (!last_stripe) {
1830 j++;
1831 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1832 batch_list);
1833 goto again;
1834 }
91c00924
DW
1835}
1836
1837static void ops_complete_check(void *stripe_head_ref)
1838{
1839 struct stripe_head *sh = stripe_head_ref;
91c00924 1840
e46b272b 1841 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1842 (unsigned long long)sh->sector);
1843
ecc65c9b 1844 sh->check_state = check_state_check_result;
91c00924
DW
1845 set_bit(STRIPE_HANDLE, &sh->state);
1846 release_stripe(sh);
1847}
1848
ac6b53b6 1849static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1850{
91c00924 1851 int disks = sh->disks;
ac6b53b6
DW
1852 int pd_idx = sh->pd_idx;
1853 int qd_idx = sh->qd_idx;
1854 struct page *xor_dest;
46d5b785 1855 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1856 struct dma_async_tx_descriptor *tx;
a08abd8c 1857 struct async_submit_ctl submit;
ac6b53b6
DW
1858 int count;
1859 int i;
91c00924 1860
e46b272b 1861 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1862 (unsigned long long)sh->sector);
1863
59fc630b 1864 BUG_ON(sh->batch_head);
ac6b53b6
DW
1865 count = 0;
1866 xor_dest = sh->dev[pd_idx].page;
1867 xor_srcs[count++] = xor_dest;
91c00924 1868 for (i = disks; i--; ) {
ac6b53b6
DW
1869 if (i == pd_idx || i == qd_idx)
1870 continue;
1871 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1872 }
1873
d6f38f31 1874 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1875 to_addr_conv(sh, percpu, 0));
099f53cb 1876 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1877 &sh->ops.zero_sum_result, &submit);
91c00924 1878
91c00924 1879 atomic_inc(&sh->count);
a08abd8c
DW
1880 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1881 tx = async_trigger_callback(&submit);
91c00924
DW
1882}
1883
ac6b53b6
DW
1884static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1885{
46d5b785 1886 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1887 struct async_submit_ctl submit;
1888 int count;
1889
1890 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1891 (unsigned long long)sh->sector, checkp);
1892
59fc630b 1893 BUG_ON(sh->batch_head);
584acdd4 1894 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1895 if (!checkp)
1896 srcs[count] = NULL;
91c00924 1897
91c00924 1898 atomic_inc(&sh->count);
ac6b53b6 1899 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1900 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1901 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1902 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1903}
1904
51acbcec 1905static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1906{
1907 int overlap_clear = 0, i, disks = sh->disks;
1908 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1909 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1910 int level = conf->level;
d6f38f31
DW
1911 struct raid5_percpu *percpu;
1912 unsigned long cpu;
91c00924 1913
d6f38f31
DW
1914 cpu = get_cpu();
1915 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1916 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1917 ops_run_biofill(sh);
1918 overlap_clear++;
1919 }
1920
7b3a871e 1921 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1922 if (level < 6)
1923 tx = ops_run_compute5(sh, percpu);
1924 else {
1925 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1926 tx = ops_run_compute6_1(sh, percpu);
1927 else
1928 tx = ops_run_compute6_2(sh, percpu);
1929 }
1930 /* terminate the chain if reconstruct is not set to be run */
1931 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1932 async_tx_ack(tx);
1933 }
91c00924 1934
584acdd4
MS
1935 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1936 if (level < 6)
1937 tx = ops_run_prexor5(sh, percpu, tx);
1938 else
1939 tx = ops_run_prexor6(sh, percpu, tx);
1940 }
91c00924 1941
600aa109 1942 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1943 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1944 overlap_clear++;
1945 }
1946
ac6b53b6
DW
1947 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1948 if (level < 6)
1949 ops_run_reconstruct5(sh, percpu, tx);
1950 else
1951 ops_run_reconstruct6(sh, percpu, tx);
1952 }
91c00924 1953
ac6b53b6
DW
1954 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1955 if (sh->check_state == check_state_run)
1956 ops_run_check_p(sh, percpu);
1957 else if (sh->check_state == check_state_run_q)
1958 ops_run_check_pq(sh, percpu, 0);
1959 else if (sh->check_state == check_state_run_pq)
1960 ops_run_check_pq(sh, percpu, 1);
1961 else
1962 BUG();
1963 }
91c00924 1964
59fc630b 1965 if (overlap_clear && !sh->batch_head)
91c00924
DW
1966 for (i = disks; i--; ) {
1967 struct r5dev *dev = &sh->dev[i];
1968 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1969 wake_up(&sh->raid_conf->wait_for_overlap);
1970 }
d6f38f31 1971 put_cpu();
91c00924
DW
1972}
1973
f18c1a35
N
1974static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1975{
1976 struct stripe_head *sh;
1977
1978 sh = kmem_cache_zalloc(sc, gfp);
1979 if (sh) {
1980 spin_lock_init(&sh->stripe_lock);
1981 spin_lock_init(&sh->batch_lock);
1982 INIT_LIST_HEAD(&sh->batch_list);
1983 INIT_LIST_HEAD(&sh->lru);
1984 atomic_set(&sh->count, 1);
1985 }
1986 return sh;
1987}
486f0644 1988static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
1989{
1990 struct stripe_head *sh;
f18c1a35
N
1991
1992 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
1993 if (!sh)
1994 return 0;
6ce32846 1995
3f294f4f 1996 sh->raid_conf = conf;
3f294f4f 1997
a9683a79 1998 if (grow_buffers(sh, gfp)) {
e4e11e38 1999 shrink_buffers(sh);
3f294f4f
N
2000 kmem_cache_free(conf->slab_cache, sh);
2001 return 0;
2002 }
486f0644
N
2003 sh->hash_lock_index =
2004 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2005 /* we just created an active stripe so... */
3f294f4f 2006 atomic_inc(&conf->active_stripes);
59fc630b 2007
3f294f4f 2008 release_stripe(sh);
486f0644 2009 conf->max_nr_stripes++;
3f294f4f
N
2010 return 1;
2011}
2012
d1688a6d 2013static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2014{
e18b890b 2015 struct kmem_cache *sc;
5e5e3e78 2016 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2017
f4be6b43
N
2018 if (conf->mddev->gendisk)
2019 sprintf(conf->cache_name[0],
2020 "raid%d-%s", conf->level, mdname(conf->mddev));
2021 else
2022 sprintf(conf->cache_name[0],
2023 "raid%d-%p", conf->level, conf->mddev);
2024 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2025
ad01c9e3
N
2026 conf->active_name = 0;
2027 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2028 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2029 0, 0, NULL);
1da177e4
LT
2030 if (!sc)
2031 return 1;
2032 conf->slab_cache = sc;
ad01c9e3 2033 conf->pool_size = devs;
486f0644
N
2034 while (num--)
2035 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2036 return 1;
486f0644 2037
1da177e4
LT
2038 return 0;
2039}
29269553 2040
d6f38f31
DW
2041/**
2042 * scribble_len - return the required size of the scribble region
2043 * @num - total number of disks in the array
2044 *
2045 * The size must be enough to contain:
2046 * 1/ a struct page pointer for each device in the array +2
2047 * 2/ room to convert each entry in (1) to its corresponding dma
2048 * (dma_map_page()) or page (page_address()) address.
2049 *
2050 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2051 * calculate over all devices (not just the data blocks), using zeros in place
2052 * of the P and Q blocks.
2053 */
46d5b785 2054static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2055{
46d5b785 2056 struct flex_array *ret;
d6f38f31
DW
2057 size_t len;
2058
2059 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2060 ret = flex_array_alloc(len, cnt, flags);
2061 if (!ret)
2062 return NULL;
2063 /* always prealloc all elements, so no locking is required */
2064 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2065 flex_array_free(ret);
2066 return NULL;
2067 }
2068 return ret;
d6f38f31
DW
2069}
2070
d1688a6d 2071static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2072{
2073 /* Make all the stripes able to hold 'newsize' devices.
2074 * New slots in each stripe get 'page' set to a new page.
2075 *
2076 * This happens in stages:
2077 * 1/ create a new kmem_cache and allocate the required number of
2078 * stripe_heads.
83f0d77a 2079 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2080 * to the new stripe_heads. This will have the side effect of
2081 * freezing the array as once all stripe_heads have been collected,
2082 * no IO will be possible. Old stripe heads are freed once their
2083 * pages have been transferred over, and the old kmem_cache is
2084 * freed when all stripes are done.
2085 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2086 * we simple return a failre status - no need to clean anything up.
2087 * 4/ allocate new pages for the new slots in the new stripe_heads.
2088 * If this fails, we don't bother trying the shrink the
2089 * stripe_heads down again, we just leave them as they are.
2090 * As each stripe_head is processed the new one is released into
2091 * active service.
2092 *
2093 * Once step2 is started, we cannot afford to wait for a write,
2094 * so we use GFP_NOIO allocations.
2095 */
2096 struct stripe_head *osh, *nsh;
2097 LIST_HEAD(newstripes);
2098 struct disk_info *ndisks;
d6f38f31 2099 unsigned long cpu;
b5470dc5 2100 int err;
e18b890b 2101 struct kmem_cache *sc;
ad01c9e3 2102 int i;
566c09c5 2103 int hash, cnt;
ad01c9e3
N
2104
2105 if (newsize <= conf->pool_size)
2106 return 0; /* never bother to shrink */
2107
b5470dc5
DW
2108 err = md_allow_write(conf->mddev);
2109 if (err)
2110 return err;
2a2275d6 2111
ad01c9e3
N
2112 /* Step 1 */
2113 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2114 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2115 0, 0, NULL);
ad01c9e3
N
2116 if (!sc)
2117 return -ENOMEM;
2118
2119 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2120 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2121 if (!nsh)
2122 break;
2123
ad01c9e3 2124 nsh->raid_conf = conf;
ad01c9e3
N
2125 list_add(&nsh->lru, &newstripes);
2126 }
2127 if (i) {
2128 /* didn't get enough, give up */
2129 while (!list_empty(&newstripes)) {
2130 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2131 list_del(&nsh->lru);
2132 kmem_cache_free(sc, nsh);
2133 }
2134 kmem_cache_destroy(sc);
2135 return -ENOMEM;
2136 }
2137 /* Step 2 - Must use GFP_NOIO now.
2138 * OK, we have enough stripes, start collecting inactive
2139 * stripes and copying them over
2140 */
566c09c5
SL
2141 hash = 0;
2142 cnt = 0;
ad01c9e3 2143 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5
SL
2144 lock_device_hash_lock(conf, hash);
2145 wait_event_cmd(conf->wait_for_stripe,
2146 !list_empty(conf->inactive_list + hash),
2147 unlock_device_hash_lock(conf, hash),
2148 lock_device_hash_lock(conf, hash));
2149 osh = get_free_stripe(conf, hash);
2150 unlock_device_hash_lock(conf, hash);
f18c1a35 2151
d592a996 2152 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2153 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2154 nsh->dev[i].orig_page = osh->dev[i].page;
2155 }
566c09c5 2156 nsh->hash_lock_index = hash;
ad01c9e3 2157 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2158 cnt++;
2159 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2160 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2161 hash++;
2162 cnt = 0;
2163 }
ad01c9e3
N
2164 }
2165 kmem_cache_destroy(conf->slab_cache);
2166
2167 /* Step 3.
2168 * At this point, we are holding all the stripes so the array
2169 * is completely stalled, so now is a good time to resize
d6f38f31 2170 * conf->disks and the scribble region
ad01c9e3
N
2171 */
2172 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2173 if (ndisks) {
2174 for (i=0; i<conf->raid_disks; i++)
2175 ndisks[i] = conf->disks[i];
2176 kfree(conf->disks);
2177 conf->disks = ndisks;
2178 } else
2179 err = -ENOMEM;
2180
d6f38f31 2181 get_online_cpus();
d6f38f31
DW
2182 for_each_present_cpu(cpu) {
2183 struct raid5_percpu *percpu;
46d5b785 2184 struct flex_array *scribble;
d6f38f31
DW
2185
2186 percpu = per_cpu_ptr(conf->percpu, cpu);
46d5b785 2187 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2188 STRIPE_SECTORS, GFP_NOIO);
d6f38f31
DW
2189
2190 if (scribble) {
46d5b785 2191 flex_array_free(percpu->scribble);
d6f38f31
DW
2192 percpu->scribble = scribble;
2193 } else {
2194 err = -ENOMEM;
2195 break;
2196 }
2197 }
2198 put_online_cpus();
2199
ad01c9e3
N
2200 /* Step 4, return new stripes to service */
2201 while(!list_empty(&newstripes)) {
2202 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2203 list_del_init(&nsh->lru);
d6f38f31 2204
ad01c9e3
N
2205 for (i=conf->raid_disks; i < newsize; i++)
2206 if (nsh->dev[i].page == NULL) {
2207 struct page *p = alloc_page(GFP_NOIO);
2208 nsh->dev[i].page = p;
d592a996 2209 nsh->dev[i].orig_page = p;
ad01c9e3
N
2210 if (!p)
2211 err = -ENOMEM;
2212 }
2213 release_stripe(nsh);
2214 }
2215 /* critical section pass, GFP_NOIO no longer needed */
2216
2217 conf->slab_cache = sc;
2218 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2219 if (!err)
2220 conf->pool_size = newsize;
ad01c9e3
N
2221 return err;
2222}
1da177e4 2223
486f0644 2224static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2225{
2226 struct stripe_head *sh;
486f0644 2227 int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
1da177e4 2228
566c09c5
SL
2229 spin_lock_irq(conf->hash_locks + hash);
2230 sh = get_free_stripe(conf, hash);
2231 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2232 if (!sh)
2233 return 0;
78bafebd 2234 BUG_ON(atomic_read(&sh->count));
e4e11e38 2235 shrink_buffers(sh);
3f294f4f
N
2236 kmem_cache_free(conf->slab_cache, sh);
2237 atomic_dec(&conf->active_stripes);
486f0644 2238 conf->max_nr_stripes--;
3f294f4f
N
2239 return 1;
2240}
2241
d1688a6d 2242static void shrink_stripes(struct r5conf *conf)
3f294f4f 2243{
486f0644
N
2244 while (conf->max_nr_stripes &&
2245 drop_one_stripe(conf))
2246 ;
3f294f4f 2247
29fc7e3e
N
2248 if (conf->slab_cache)
2249 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2250 conf->slab_cache = NULL;
2251}
2252
6712ecf8 2253static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 2254{
99c0fb5f 2255 struct stripe_head *sh = bi->bi_private;
d1688a6d 2256 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2257 int disks = sh->disks, i;
1da177e4 2258 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 2259 char b[BDEVNAME_SIZE];
dd054fce 2260 struct md_rdev *rdev = NULL;
05616be5 2261 sector_t s;
1da177e4
LT
2262
2263 for (i=0 ; i<disks; i++)
2264 if (bi == &sh->dev[i].req)
2265 break;
2266
45b4233c
DW
2267 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2268 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
2269 uptodate);
2270 if (i == disks) {
2271 BUG();
6712ecf8 2272 return;
1da177e4 2273 }
14a75d3e 2274 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2275 /* If replacement finished while this request was outstanding,
2276 * 'replacement' might be NULL already.
2277 * In that case it moved down to 'rdev'.
2278 * rdev is not removed until all requests are finished.
2279 */
14a75d3e 2280 rdev = conf->disks[i].replacement;
dd054fce 2281 if (!rdev)
14a75d3e 2282 rdev = conf->disks[i].rdev;
1da177e4 2283
05616be5
N
2284 if (use_new_offset(conf, sh))
2285 s = sh->sector + rdev->new_data_offset;
2286 else
2287 s = sh->sector + rdev->data_offset;
1da177e4 2288 if (uptodate) {
1da177e4 2289 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2290 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2291 /* Note that this cannot happen on a
2292 * replacement device. We just fail those on
2293 * any error
2294 */
8bda470e
CD
2295 printk_ratelimited(
2296 KERN_INFO
2297 "md/raid:%s: read error corrected"
2298 " (%lu sectors at %llu on %s)\n",
2299 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2300 (unsigned long long)s,
8bda470e 2301 bdevname(rdev->bdev, b));
ddd5115f 2302 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2303 clear_bit(R5_ReadError, &sh->dev[i].flags);
2304 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2305 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2306 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2307
14a75d3e
N
2308 if (atomic_read(&rdev->read_errors))
2309 atomic_set(&rdev->read_errors, 0);
1da177e4 2310 } else {
14a75d3e 2311 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2312 int retry = 0;
2e8ac303 2313 int set_bad = 0;
d6950432 2314
1da177e4 2315 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2316 atomic_inc(&rdev->read_errors);
14a75d3e
N
2317 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2318 printk_ratelimited(
2319 KERN_WARNING
2320 "md/raid:%s: read error on replacement device "
2321 "(sector %llu on %s).\n",
2322 mdname(conf->mddev),
05616be5 2323 (unsigned long long)s,
14a75d3e 2324 bdn);
2e8ac303 2325 else if (conf->mddev->degraded >= conf->max_degraded) {
2326 set_bad = 1;
8bda470e
CD
2327 printk_ratelimited(
2328 KERN_WARNING
2329 "md/raid:%s: read error not correctable "
2330 "(sector %llu on %s).\n",
2331 mdname(conf->mddev),
05616be5 2332 (unsigned long long)s,
8bda470e 2333 bdn);
2e8ac303 2334 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2335 /* Oh, no!!! */
2e8ac303 2336 set_bad = 1;
8bda470e
CD
2337 printk_ratelimited(
2338 KERN_WARNING
2339 "md/raid:%s: read error NOT corrected!! "
2340 "(sector %llu on %s).\n",
2341 mdname(conf->mddev),
05616be5 2342 (unsigned long long)s,
8bda470e 2343 bdn);
2e8ac303 2344 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2345 > conf->max_nr_stripes)
14f8d26b 2346 printk(KERN_WARNING
0c55e022 2347 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2348 mdname(conf->mddev), bdn);
ba22dcbf
N
2349 else
2350 retry = 1;
edfa1f65
BY
2351 if (set_bad && test_bit(In_sync, &rdev->flags)
2352 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2353 retry = 1;
ba22dcbf 2354 if (retry)
3f9e7c14 2355 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2356 set_bit(R5_ReadError, &sh->dev[i].flags);
2357 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2358 } else
2359 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2360 else {
4e5314b5
N
2361 clear_bit(R5_ReadError, &sh->dev[i].flags);
2362 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2363 if (!(set_bad
2364 && test_bit(In_sync, &rdev->flags)
2365 && rdev_set_badblocks(
2366 rdev, sh->sector, STRIPE_SECTORS, 0)))
2367 md_error(conf->mddev, rdev);
ba22dcbf 2368 }
1da177e4 2369 }
14a75d3e 2370 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2371 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2372 set_bit(STRIPE_HANDLE, &sh->state);
2373 release_stripe(sh);
1da177e4
LT
2374}
2375
d710e138 2376static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 2377{
99c0fb5f 2378 struct stripe_head *sh = bi->bi_private;
d1688a6d 2379 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2380 int disks = sh->disks, i;
977df362 2381 struct md_rdev *uninitialized_var(rdev);
1da177e4 2382 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
2383 sector_t first_bad;
2384 int bad_sectors;
977df362 2385 int replacement = 0;
1da177e4 2386
977df362
N
2387 for (i = 0 ; i < disks; i++) {
2388 if (bi == &sh->dev[i].req) {
2389 rdev = conf->disks[i].rdev;
1da177e4 2390 break;
977df362
N
2391 }
2392 if (bi == &sh->dev[i].rreq) {
2393 rdev = conf->disks[i].replacement;
dd054fce
N
2394 if (rdev)
2395 replacement = 1;
2396 else
2397 /* rdev was removed and 'replacement'
2398 * replaced it. rdev is not removed
2399 * until all requests are finished.
2400 */
2401 rdev = conf->disks[i].rdev;
977df362
N
2402 break;
2403 }
2404 }
45b4233c 2405 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
2406 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2407 uptodate);
2408 if (i == disks) {
2409 BUG();
6712ecf8 2410 return;
1da177e4
LT
2411 }
2412
977df362
N
2413 if (replacement) {
2414 if (!uptodate)
2415 md_error(conf->mddev, rdev);
2416 else if (is_badblock(rdev, sh->sector,
2417 STRIPE_SECTORS,
2418 &first_bad, &bad_sectors))
2419 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2420 } else {
2421 if (!uptodate) {
9f97e4b1 2422 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2423 set_bit(WriteErrorSeen, &rdev->flags);
2424 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2425 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2426 set_bit(MD_RECOVERY_NEEDED,
2427 &rdev->mddev->recovery);
977df362
N
2428 } else if (is_badblock(rdev, sh->sector,
2429 STRIPE_SECTORS,
c0b32972 2430 &first_bad, &bad_sectors)) {
977df362 2431 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2432 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2433 /* That was a successful write so make
2434 * sure it looks like we already did
2435 * a re-write.
2436 */
2437 set_bit(R5_ReWrite, &sh->dev[i].flags);
2438 }
977df362
N
2439 }
2440 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2441
72ac7330 2442 if (sh->batch_head && !uptodate)
2443 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2444
977df362
N
2445 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2446 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2447 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 2448 release_stripe(sh);
59fc630b 2449
2450 if (sh->batch_head && sh != sh->batch_head)
2451 release_stripe(sh->batch_head);
1da177e4
LT
2452}
2453
784052ec 2454static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
d592a996 2455
784052ec 2456static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2457{
2458 struct r5dev *dev = &sh->dev[i];
2459
2460 bio_init(&dev->req);
2461 dev->req.bi_io_vec = &dev->vec;
d592a996 2462 dev->req.bi_max_vecs = 1;
1da177e4
LT
2463 dev->req.bi_private = sh;
2464
977df362
N
2465 bio_init(&dev->rreq);
2466 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2467 dev->rreq.bi_max_vecs = 1;
977df362 2468 dev->rreq.bi_private = sh;
977df362 2469
1da177e4 2470 dev->flags = 0;
784052ec 2471 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
2472}
2473
fd01b88c 2474static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2475{
2476 char b[BDEVNAME_SIZE];
d1688a6d 2477 struct r5conf *conf = mddev->private;
908f4fbd 2478 unsigned long flags;
0c55e022 2479 pr_debug("raid456: error called\n");
1da177e4 2480
908f4fbd
N
2481 spin_lock_irqsave(&conf->device_lock, flags);
2482 clear_bit(In_sync, &rdev->flags);
2483 mddev->degraded = calc_degraded(conf);
2484 spin_unlock_irqrestore(&conf->device_lock, flags);
2485 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2486
de393cde 2487 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2488 set_bit(Faulty, &rdev->flags);
2489 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2490 printk(KERN_ALERT
2491 "md/raid:%s: Disk failure on %s, disabling device.\n"
2492 "md/raid:%s: Operation continuing on %d devices.\n",
2493 mdname(mddev),
2494 bdevname(rdev->bdev, b),
2495 mdname(mddev),
2496 conf->raid_disks - mddev->degraded);
16a53ecc 2497}
1da177e4
LT
2498
2499/*
2500 * Input: a 'big' sector number,
2501 * Output: index of the data and parity disk, and the sector # in them.
2502 */
d1688a6d 2503static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
2504 int previous, int *dd_idx,
2505 struct stripe_head *sh)
1da177e4 2506{
6e3b96ed 2507 sector_t stripe, stripe2;
35f2a591 2508 sector_t chunk_number;
1da177e4 2509 unsigned int chunk_offset;
911d4ee8 2510 int pd_idx, qd_idx;
67cc2b81 2511 int ddf_layout = 0;
1da177e4 2512 sector_t new_sector;
e183eaed
N
2513 int algorithm = previous ? conf->prev_algo
2514 : conf->algorithm;
09c9e5fa
AN
2515 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2516 : conf->chunk_sectors;
112bf897
N
2517 int raid_disks = previous ? conf->previous_raid_disks
2518 : conf->raid_disks;
2519 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2520
2521 /* First compute the information on this sector */
2522
2523 /*
2524 * Compute the chunk number and the sector offset inside the chunk
2525 */
2526 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2527 chunk_number = r_sector;
1da177e4
LT
2528
2529 /*
2530 * Compute the stripe number
2531 */
35f2a591
N
2532 stripe = chunk_number;
2533 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2534 stripe2 = stripe;
1da177e4
LT
2535 /*
2536 * Select the parity disk based on the user selected algorithm.
2537 */
84789554 2538 pd_idx = qd_idx = -1;
16a53ecc
N
2539 switch(conf->level) {
2540 case 4:
911d4ee8 2541 pd_idx = data_disks;
16a53ecc
N
2542 break;
2543 case 5:
e183eaed 2544 switch (algorithm) {
1da177e4 2545 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2546 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2547 if (*dd_idx >= pd_idx)
1da177e4
LT
2548 (*dd_idx)++;
2549 break;
2550 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2551 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2552 if (*dd_idx >= pd_idx)
1da177e4
LT
2553 (*dd_idx)++;
2554 break;
2555 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2556 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2557 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2558 break;
2559 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2560 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2561 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2562 break;
99c0fb5f
N
2563 case ALGORITHM_PARITY_0:
2564 pd_idx = 0;
2565 (*dd_idx)++;
2566 break;
2567 case ALGORITHM_PARITY_N:
2568 pd_idx = data_disks;
2569 break;
1da177e4 2570 default:
99c0fb5f 2571 BUG();
16a53ecc
N
2572 }
2573 break;
2574 case 6:
2575
e183eaed 2576 switch (algorithm) {
16a53ecc 2577 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2578 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2579 qd_idx = pd_idx + 1;
2580 if (pd_idx == raid_disks-1) {
99c0fb5f 2581 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2582 qd_idx = 0;
2583 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2584 (*dd_idx) += 2; /* D D P Q D */
2585 break;
2586 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2587 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2588 qd_idx = pd_idx + 1;
2589 if (pd_idx == raid_disks-1) {
99c0fb5f 2590 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2591 qd_idx = 0;
2592 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2593 (*dd_idx) += 2; /* D D P Q D */
2594 break;
2595 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2596 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2597 qd_idx = (pd_idx + 1) % raid_disks;
2598 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2599 break;
2600 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2601 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2602 qd_idx = (pd_idx + 1) % raid_disks;
2603 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2604 break;
99c0fb5f
N
2605
2606 case ALGORITHM_PARITY_0:
2607 pd_idx = 0;
2608 qd_idx = 1;
2609 (*dd_idx) += 2;
2610 break;
2611 case ALGORITHM_PARITY_N:
2612 pd_idx = data_disks;
2613 qd_idx = data_disks + 1;
2614 break;
2615
2616 case ALGORITHM_ROTATING_ZERO_RESTART:
2617 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2618 * of blocks for computing Q is different.
2619 */
6e3b96ed 2620 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2621 qd_idx = pd_idx + 1;
2622 if (pd_idx == raid_disks-1) {
2623 (*dd_idx)++; /* Q D D D P */
2624 qd_idx = 0;
2625 } else if (*dd_idx >= pd_idx)
2626 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2627 ddf_layout = 1;
99c0fb5f
N
2628 break;
2629
2630 case ALGORITHM_ROTATING_N_RESTART:
2631 /* Same a left_asymmetric, by first stripe is
2632 * D D D P Q rather than
2633 * Q D D D P
2634 */
6e3b96ed
N
2635 stripe2 += 1;
2636 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2637 qd_idx = pd_idx + 1;
2638 if (pd_idx == raid_disks-1) {
2639 (*dd_idx)++; /* Q D D D P */
2640 qd_idx = 0;
2641 } else if (*dd_idx >= pd_idx)
2642 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2643 ddf_layout = 1;
99c0fb5f
N
2644 break;
2645
2646 case ALGORITHM_ROTATING_N_CONTINUE:
2647 /* Same as left_symmetric but Q is before P */
6e3b96ed 2648 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2649 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2650 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2651 ddf_layout = 1;
99c0fb5f
N
2652 break;
2653
2654 case ALGORITHM_LEFT_ASYMMETRIC_6:
2655 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2656 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2657 if (*dd_idx >= pd_idx)
2658 (*dd_idx)++;
2659 qd_idx = raid_disks - 1;
2660 break;
2661
2662 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2663 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2664 if (*dd_idx >= pd_idx)
2665 (*dd_idx)++;
2666 qd_idx = raid_disks - 1;
2667 break;
2668
2669 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2670 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2671 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2672 qd_idx = raid_disks - 1;
2673 break;
2674
2675 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2676 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2677 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2678 qd_idx = raid_disks - 1;
2679 break;
2680
2681 case ALGORITHM_PARITY_0_6:
2682 pd_idx = 0;
2683 (*dd_idx)++;
2684 qd_idx = raid_disks - 1;
2685 break;
2686
16a53ecc 2687 default:
99c0fb5f 2688 BUG();
16a53ecc
N
2689 }
2690 break;
1da177e4
LT
2691 }
2692
911d4ee8
N
2693 if (sh) {
2694 sh->pd_idx = pd_idx;
2695 sh->qd_idx = qd_idx;
67cc2b81 2696 sh->ddf_layout = ddf_layout;
911d4ee8 2697 }
1da177e4
LT
2698 /*
2699 * Finally, compute the new sector number
2700 */
2701 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2702 return new_sector;
2703}
2704
784052ec 2705static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2706{
d1688a6d 2707 struct r5conf *conf = sh->raid_conf;
b875e531
N
2708 int raid_disks = sh->disks;
2709 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2710 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2711 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2712 : conf->chunk_sectors;
e183eaed
N
2713 int algorithm = previous ? conf->prev_algo
2714 : conf->algorithm;
1da177e4
LT
2715 sector_t stripe;
2716 int chunk_offset;
35f2a591
N
2717 sector_t chunk_number;
2718 int dummy1, dd_idx = i;
1da177e4 2719 sector_t r_sector;
911d4ee8 2720 struct stripe_head sh2;
1da177e4
LT
2721
2722 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2723 stripe = new_sector;
1da177e4 2724
16a53ecc
N
2725 if (i == sh->pd_idx)
2726 return 0;
2727 switch(conf->level) {
2728 case 4: break;
2729 case 5:
e183eaed 2730 switch (algorithm) {
1da177e4
LT
2731 case ALGORITHM_LEFT_ASYMMETRIC:
2732 case ALGORITHM_RIGHT_ASYMMETRIC:
2733 if (i > sh->pd_idx)
2734 i--;
2735 break;
2736 case ALGORITHM_LEFT_SYMMETRIC:
2737 case ALGORITHM_RIGHT_SYMMETRIC:
2738 if (i < sh->pd_idx)
2739 i += raid_disks;
2740 i -= (sh->pd_idx + 1);
2741 break;
99c0fb5f
N
2742 case ALGORITHM_PARITY_0:
2743 i -= 1;
2744 break;
2745 case ALGORITHM_PARITY_N:
2746 break;
1da177e4 2747 default:
99c0fb5f 2748 BUG();
16a53ecc
N
2749 }
2750 break;
2751 case 6:
d0dabf7e 2752 if (i == sh->qd_idx)
16a53ecc 2753 return 0; /* It is the Q disk */
e183eaed 2754 switch (algorithm) {
16a53ecc
N
2755 case ALGORITHM_LEFT_ASYMMETRIC:
2756 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2757 case ALGORITHM_ROTATING_ZERO_RESTART:
2758 case ALGORITHM_ROTATING_N_RESTART:
2759 if (sh->pd_idx == raid_disks-1)
2760 i--; /* Q D D D P */
16a53ecc
N
2761 else if (i > sh->pd_idx)
2762 i -= 2; /* D D P Q D */
2763 break;
2764 case ALGORITHM_LEFT_SYMMETRIC:
2765 case ALGORITHM_RIGHT_SYMMETRIC:
2766 if (sh->pd_idx == raid_disks-1)
2767 i--; /* Q D D D P */
2768 else {
2769 /* D D P Q D */
2770 if (i < sh->pd_idx)
2771 i += raid_disks;
2772 i -= (sh->pd_idx + 2);
2773 }
2774 break;
99c0fb5f
N
2775 case ALGORITHM_PARITY_0:
2776 i -= 2;
2777 break;
2778 case ALGORITHM_PARITY_N:
2779 break;
2780 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2781 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2782 if (sh->pd_idx == 0)
2783 i--; /* P D D D Q */
e4424fee
N
2784 else {
2785 /* D D Q P D */
2786 if (i < sh->pd_idx)
2787 i += raid_disks;
2788 i -= (sh->pd_idx + 1);
2789 }
99c0fb5f
N
2790 break;
2791 case ALGORITHM_LEFT_ASYMMETRIC_6:
2792 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2793 if (i > sh->pd_idx)
2794 i--;
2795 break;
2796 case ALGORITHM_LEFT_SYMMETRIC_6:
2797 case ALGORITHM_RIGHT_SYMMETRIC_6:
2798 if (i < sh->pd_idx)
2799 i += data_disks + 1;
2800 i -= (sh->pd_idx + 1);
2801 break;
2802 case ALGORITHM_PARITY_0_6:
2803 i -= 1;
2804 break;
16a53ecc 2805 default:
99c0fb5f 2806 BUG();
16a53ecc
N
2807 }
2808 break;
1da177e4
LT
2809 }
2810
2811 chunk_number = stripe * data_disks + i;
35f2a591 2812 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2813
112bf897 2814 check = raid5_compute_sector(conf, r_sector,
784052ec 2815 previous, &dummy1, &sh2);
911d4ee8
N
2816 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2817 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2818 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2819 mdname(conf->mddev));
1da177e4
LT
2820 return 0;
2821 }
2822 return r_sector;
2823}
2824
600aa109 2825static void
c0f7bddb 2826schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2827 int rcw, int expand)
e33129d8 2828{
584acdd4 2829 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2830 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2831 int level = conf->level;
e33129d8
DW
2832
2833 if (rcw) {
e33129d8
DW
2834
2835 for (i = disks; i--; ) {
2836 struct r5dev *dev = &sh->dev[i];
2837
2838 if (dev->towrite) {
2839 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2840 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2841 if (!expand)
2842 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2843 s->locked++;
e33129d8
DW
2844 }
2845 }
ce7d363a
N
2846 /* if we are not expanding this is a proper write request, and
2847 * there will be bios with new data to be drained into the
2848 * stripe cache
2849 */
2850 if (!expand) {
2851 if (!s->locked)
2852 /* False alarm, nothing to do */
2853 return;
2854 sh->reconstruct_state = reconstruct_state_drain_run;
2855 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2856 } else
2857 sh->reconstruct_state = reconstruct_state_run;
2858
2859 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2860
c0f7bddb 2861 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2862 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2863 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2864 } else {
2865 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2866 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2867 BUG_ON(level == 6 &&
2868 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2869 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2870
e33129d8
DW
2871 for (i = disks; i--; ) {
2872 struct r5dev *dev = &sh->dev[i];
584acdd4 2873 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2874 continue;
2875
e33129d8
DW
2876 if (dev->towrite &&
2877 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2878 test_bit(R5_Wantcompute, &dev->flags))) {
2879 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2880 set_bit(R5_LOCKED, &dev->flags);
2881 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2882 s->locked++;
e33129d8
DW
2883 }
2884 }
ce7d363a
N
2885 if (!s->locked)
2886 /* False alarm - nothing to do */
2887 return;
2888 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2889 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2890 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2891 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2892 }
2893
c0f7bddb 2894 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2895 * are in flight
2896 */
2897 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2898 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2899 s->locked++;
e33129d8 2900
c0f7bddb
YT
2901 if (level == 6) {
2902 int qd_idx = sh->qd_idx;
2903 struct r5dev *dev = &sh->dev[qd_idx];
2904
2905 set_bit(R5_LOCKED, &dev->flags);
2906 clear_bit(R5_UPTODATE, &dev->flags);
2907 s->locked++;
2908 }
2909
600aa109 2910 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2911 __func__, (unsigned long long)sh->sector,
600aa109 2912 s->locked, s->ops_request);
e33129d8 2913}
16a53ecc 2914
1da177e4
LT
2915/*
2916 * Each stripe/dev can have one or more bion attached.
16a53ecc 2917 * toread/towrite point to the first in a chain.
1da177e4
LT
2918 * The bi_next chain must be in order.
2919 */
da41ba65 2920static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2921 int forwrite, int previous)
1da177e4
LT
2922{
2923 struct bio **bip;
d1688a6d 2924 struct r5conf *conf = sh->raid_conf;
72626685 2925 int firstwrite=0;
1da177e4 2926
cbe47ec5 2927 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2928 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2929 (unsigned long long)sh->sector);
2930
b17459c0
SL
2931 /*
2932 * If several bio share a stripe. The bio bi_phys_segments acts as a
2933 * reference count to avoid race. The reference count should already be
2934 * increased before this function is called (for example, in
2935 * make_request()), so other bio sharing this stripe will not free the
2936 * stripe. If a stripe is owned by one stripe, the stripe lock will
2937 * protect it.
2938 */
2939 spin_lock_irq(&sh->stripe_lock);
59fc630b 2940 /* Don't allow new IO added to stripes in batch list */
2941 if (sh->batch_head)
2942 goto overlap;
72626685 2943 if (forwrite) {
1da177e4 2944 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2945 if (*bip == NULL)
72626685
N
2946 firstwrite = 1;
2947 } else
1da177e4 2948 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2949 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2950 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2951 goto overlap;
2952 bip = & (*bip)->bi_next;
2953 }
4f024f37 2954 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2955 goto overlap;
2956
da41ba65 2957 if (!forwrite || previous)
2958 clear_bit(STRIPE_BATCH_READY, &sh->state);
2959
78bafebd 2960 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2961 if (*bip)
2962 bi->bi_next = *bip;
2963 *bip = bi;
e7836bd6 2964 raid5_inc_bi_active_stripes(bi);
72626685 2965
1da177e4
LT
2966 if (forwrite) {
2967 /* check if page is covered */
2968 sector_t sector = sh->dev[dd_idx].sector;
2969 for (bi=sh->dev[dd_idx].towrite;
2970 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2971 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2972 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2973 if (bio_end_sector(bi) >= sector)
2974 sector = bio_end_sector(bi);
1da177e4
LT
2975 }
2976 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 2977 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2978 sh->overwrite_disks++;
1da177e4 2979 }
cbe47ec5
N
2980
2981 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 2982 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5 2983 (unsigned long long)sh->sector, dd_idx);
b97390ae 2984 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
2985
2986 if (conf->mddev->bitmap && firstwrite) {
2987 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2988 STRIPE_SECTORS, 0);
2989 sh->bm_seq = conf->seq_flush+1;
2990 set_bit(STRIPE_BIT_DELAY, &sh->state);
2991 }
59fc630b 2992
2993 if (stripe_can_batch(sh))
2994 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
2995 return 1;
2996
2997 overlap:
2998 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 2999 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3000 return 0;
3001}
3002
d1688a6d 3003static void end_reshape(struct r5conf *conf);
29269553 3004
d1688a6d 3005static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3006 struct stripe_head *sh)
ccfcc3c1 3007{
784052ec 3008 int sectors_per_chunk =
09c9e5fa 3009 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3010 int dd_idx;
2d2063ce 3011 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3012 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3013
112bf897
N
3014 raid5_compute_sector(conf,
3015 stripe * (disks - conf->max_degraded)
b875e531 3016 *sectors_per_chunk + chunk_offset,
112bf897 3017 previous,
911d4ee8 3018 &dd_idx, sh);
ccfcc3c1
N
3019}
3020
a4456856 3021static void
d1688a6d 3022handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3023 struct stripe_head_state *s, int disks,
3024 struct bio **return_bi)
3025{
3026 int i;
59fc630b 3027 BUG_ON(sh->batch_head);
a4456856
DW
3028 for (i = disks; i--; ) {
3029 struct bio *bi;
3030 int bitmap_end = 0;
3031
3032 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3033 struct md_rdev *rdev;
a4456856
DW
3034 rcu_read_lock();
3035 rdev = rcu_dereference(conf->disks[i].rdev);
3036 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3037 atomic_inc(&rdev->nr_pending);
3038 else
3039 rdev = NULL;
a4456856 3040 rcu_read_unlock();
7f0da59b
N
3041 if (rdev) {
3042 if (!rdev_set_badblocks(
3043 rdev,
3044 sh->sector,
3045 STRIPE_SECTORS, 0))
3046 md_error(conf->mddev, rdev);
3047 rdev_dec_pending(rdev, conf->mddev);
3048 }
a4456856 3049 }
b17459c0 3050 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3051 /* fail all writes first */
3052 bi = sh->dev[i].towrite;
3053 sh->dev[i].towrite = NULL;
7a87f434 3054 sh->overwrite_disks = 0;
b17459c0 3055 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3056 if (bi)
a4456856 3057 bitmap_end = 1;
a4456856
DW
3058
3059 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3060 wake_up(&conf->wait_for_overlap);
3061
4f024f37 3062 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3063 sh->dev[i].sector + STRIPE_SECTORS) {
3064 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3065 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3066 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3067 md_write_end(conf->mddev);
3068 bi->bi_next = *return_bi;
3069 *return_bi = bi;
3070 }
3071 bi = nextbi;
3072 }
7eaf7e8e
SL
3073 if (bitmap_end)
3074 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3075 STRIPE_SECTORS, 0, 0);
3076 bitmap_end = 0;
a4456856
DW
3077 /* and fail all 'written' */
3078 bi = sh->dev[i].written;
3079 sh->dev[i].written = NULL;
d592a996
SL
3080 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3081 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3082 sh->dev[i].page = sh->dev[i].orig_page;
3083 }
3084
a4456856 3085 if (bi) bitmap_end = 1;
4f024f37 3086 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3087 sh->dev[i].sector + STRIPE_SECTORS) {
3088 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3089 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3090 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3091 md_write_end(conf->mddev);
3092 bi->bi_next = *return_bi;
3093 *return_bi = bi;
3094 }
3095 bi = bi2;
3096 }
3097
b5e98d65
DW
3098 /* fail any reads if this device is non-operational and
3099 * the data has not reached the cache yet.
3100 */
3101 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3102 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3103 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3104 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3105 bi = sh->dev[i].toread;
3106 sh->dev[i].toread = NULL;
143c4d05 3107 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3108 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3109 wake_up(&conf->wait_for_overlap);
4f024f37 3110 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3111 sh->dev[i].sector + STRIPE_SECTORS) {
3112 struct bio *nextbi =
3113 r5_next_bio(bi, sh->dev[i].sector);
3114 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 3115 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
3116 bi->bi_next = *return_bi;
3117 *return_bi = bi;
3118 }
3119 bi = nextbi;
3120 }
3121 }
a4456856
DW
3122 if (bitmap_end)
3123 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3124 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3125 /* If we were in the middle of a write the parity block might
3126 * still be locked - so just clear all R5_LOCKED flags
3127 */
3128 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
3129 }
3130
8b3e6cdc
DW
3131 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3132 if (atomic_dec_and_test(&conf->pending_full_writes))
3133 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3134}
3135
7f0da59b 3136static void
d1688a6d 3137handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3138 struct stripe_head_state *s)
3139{
3140 int abort = 0;
3141 int i;
3142
59fc630b 3143 BUG_ON(sh->batch_head);
7f0da59b 3144 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3145 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3146 wake_up(&conf->wait_for_overlap);
7f0da59b 3147 s->syncing = 0;
9a3e1101 3148 s->replacing = 0;
7f0da59b 3149 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3150 * Don't even need to abort as that is handled elsewhere
3151 * if needed, and not always wanted e.g. if there is a known
3152 * bad block here.
9a3e1101 3153 * For recover/replace we need to record a bad block on all
7f0da59b
N
3154 * non-sync devices, or abort the recovery
3155 */
18b9837e
N
3156 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3157 /* During recovery devices cannot be removed, so
3158 * locking and refcounting of rdevs is not needed
3159 */
3160 for (i = 0; i < conf->raid_disks; i++) {
3161 struct md_rdev *rdev = conf->disks[i].rdev;
3162 if (rdev
3163 && !test_bit(Faulty, &rdev->flags)
3164 && !test_bit(In_sync, &rdev->flags)
3165 && !rdev_set_badblocks(rdev, sh->sector,
3166 STRIPE_SECTORS, 0))
3167 abort = 1;
3168 rdev = conf->disks[i].replacement;
3169 if (rdev
3170 && !test_bit(Faulty, &rdev->flags)
3171 && !test_bit(In_sync, &rdev->flags)
3172 && !rdev_set_badblocks(rdev, sh->sector,
3173 STRIPE_SECTORS, 0))
3174 abort = 1;
3175 }
3176 if (abort)
3177 conf->recovery_disabled =
3178 conf->mddev->recovery_disabled;
7f0da59b 3179 }
18b9837e 3180 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3181}
3182
9a3e1101
N
3183static int want_replace(struct stripe_head *sh, int disk_idx)
3184{
3185 struct md_rdev *rdev;
3186 int rv = 0;
3187 /* Doing recovery so rcu locking not required */
3188 rdev = sh->raid_conf->disks[disk_idx].replacement;
3189 if (rdev
3190 && !test_bit(Faulty, &rdev->flags)
3191 && !test_bit(In_sync, &rdev->flags)
3192 && (rdev->recovery_offset <= sh->sector
3193 || rdev->mddev->recovery_cp <= sh->sector))
3194 rv = 1;
3195
3196 return rv;
3197}
3198
93b3dbce 3199/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3200 * to be read or computed to satisfy a request.
3201 *
3202 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3203 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3204 */
2c58f06e
N
3205
3206static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3207 int disk_idx, int disks)
a4456856 3208{
5599becc 3209 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3210 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3211 &sh->dev[s->failed_num[1]] };
ea664c82 3212 int i;
5599becc 3213
a79cfe12
N
3214
3215 if (test_bit(R5_LOCKED, &dev->flags) ||
3216 test_bit(R5_UPTODATE, &dev->flags))
3217 /* No point reading this as we already have it or have
3218 * decided to get it.
3219 */
3220 return 0;
3221
3222 if (dev->toread ||
3223 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3224 /* We need this block to directly satisfy a request */
3225 return 1;
3226
3227 if (s->syncing || s->expanding ||
3228 (s->replacing && want_replace(sh, disk_idx)))
3229 /* When syncing, or expanding we read everything.
3230 * When replacing, we need the replaced block.
3231 */
3232 return 1;
3233
3234 if ((s->failed >= 1 && fdev[0]->toread) ||
3235 (s->failed >= 2 && fdev[1]->toread))
3236 /* If we want to read from a failed device, then
3237 * we need to actually read every other device.
3238 */
3239 return 1;
3240
a9d56950
N
3241 /* Sometimes neither read-modify-write nor reconstruct-write
3242 * cycles can work. In those cases we read every block we
3243 * can. Then the parity-update is certain to have enough to
3244 * work with.
3245 * This can only be a problem when we need to write something,
3246 * and some device has failed. If either of those tests
3247 * fail we need look no further.
3248 */
3249 if (!s->failed || !s->to_write)
3250 return 0;
3251
3252 if (test_bit(R5_Insync, &dev->flags) &&
3253 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3254 /* Pre-reads at not permitted until after short delay
3255 * to gather multiple requests. However if this
3256 * device is no Insync, the block could only be be computed
3257 * and there is no need to delay that.
3258 */
3259 return 0;
ea664c82
N
3260
3261 for (i = 0; i < s->failed; i++) {
3262 if (fdev[i]->towrite &&
3263 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3264 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3265 /* If we have a partial write to a failed
3266 * device, then we will need to reconstruct
3267 * the content of that device, so all other
3268 * devices must be read.
3269 */
3270 return 1;
3271 }
3272
3273 /* If we are forced to do a reconstruct-write, either because
3274 * the current RAID6 implementation only supports that, or
3275 * or because parity cannot be trusted and we are currently
3276 * recovering it, there is extra need to be careful.
3277 * If one of the devices that we would need to read, because
3278 * it is not being overwritten (and maybe not written at all)
3279 * is missing/faulty, then we need to read everything we can.
3280 */
3281 if (sh->raid_conf->level != 6 &&
3282 sh->sector < sh->raid_conf->mddev->recovery_cp)
3283 /* reconstruct-write isn't being forced */
3284 return 0;
3285 for (i = 0; i < s->failed; i++) {
10d82c5f
N
3286 if (s->failed_num[i] != sh->pd_idx &&
3287 s->failed_num[i] != sh->qd_idx &&
3288 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3289 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3290 return 1;
3291 }
3292
2c58f06e
N
3293 return 0;
3294}
3295
3296static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3297 int disk_idx, int disks)
3298{
3299 struct r5dev *dev = &sh->dev[disk_idx];
3300
3301 /* is the data in this block needed, and can we get it? */
3302 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3303 /* we would like to get this block, possibly by computing it,
3304 * otherwise read it if the backing disk is insync
3305 */
3306 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3307 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3308 BUG_ON(sh->batch_head);
5599becc 3309 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3310 (s->failed && (disk_idx == s->failed_num[0] ||
3311 disk_idx == s->failed_num[1]))) {
5599becc
YT
3312 /* have disk failed, and we're requested to fetch it;
3313 * do compute it
a4456856 3314 */
5599becc
YT
3315 pr_debug("Computing stripe %llu block %d\n",
3316 (unsigned long long)sh->sector, disk_idx);
3317 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3318 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3319 set_bit(R5_Wantcompute, &dev->flags);
3320 sh->ops.target = disk_idx;
3321 sh->ops.target2 = -1; /* no 2nd target */
3322 s->req_compute = 1;
93b3dbce
N
3323 /* Careful: from this point on 'uptodate' is in the eye
3324 * of raid_run_ops which services 'compute' operations
3325 * before writes. R5_Wantcompute flags a block that will
3326 * be R5_UPTODATE by the time it is needed for a
3327 * subsequent operation.
3328 */
5599becc
YT
3329 s->uptodate++;
3330 return 1;
3331 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3332 /* Computing 2-failure is *very* expensive; only
3333 * do it if failed >= 2
3334 */
3335 int other;
3336 for (other = disks; other--; ) {
3337 if (other == disk_idx)
3338 continue;
3339 if (!test_bit(R5_UPTODATE,
3340 &sh->dev[other].flags))
3341 break;
a4456856 3342 }
5599becc
YT
3343 BUG_ON(other < 0);
3344 pr_debug("Computing stripe %llu blocks %d,%d\n",
3345 (unsigned long long)sh->sector,
3346 disk_idx, other);
3347 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3348 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3349 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3350 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3351 sh->ops.target = disk_idx;
3352 sh->ops.target2 = other;
3353 s->uptodate += 2;
3354 s->req_compute = 1;
3355 return 1;
3356 } else if (test_bit(R5_Insync, &dev->flags)) {
3357 set_bit(R5_LOCKED, &dev->flags);
3358 set_bit(R5_Wantread, &dev->flags);
3359 s->locked++;
3360 pr_debug("Reading block %d (sync=%d)\n",
3361 disk_idx, s->syncing);
a4456856
DW
3362 }
3363 }
5599becc
YT
3364
3365 return 0;
3366}
3367
3368/**
93b3dbce 3369 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3370 */
93b3dbce
N
3371static void handle_stripe_fill(struct stripe_head *sh,
3372 struct stripe_head_state *s,
3373 int disks)
5599becc
YT
3374{
3375 int i;
3376
3377 /* look for blocks to read/compute, skip this if a compute
3378 * is already in flight, or if the stripe contents are in the
3379 * midst of changing due to a write
3380 */
3381 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3382 !sh->reconstruct_state)
3383 for (i = disks; i--; )
93b3dbce 3384 if (fetch_block(sh, s, i, disks))
5599becc 3385 break;
a4456856
DW
3386 set_bit(STRIPE_HANDLE, &sh->state);
3387}
3388
1fe797e6 3389/* handle_stripe_clean_event
a4456856
DW
3390 * any written block on an uptodate or failed drive can be returned.
3391 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3392 * never LOCKED, so we don't need to test 'failed' directly.
3393 */
d1688a6d 3394static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
3395 struct stripe_head *sh, int disks, struct bio **return_bi)
3396{
3397 int i;
3398 struct r5dev *dev;
f8dfcffd 3399 int discard_pending = 0;
59fc630b 3400 struct stripe_head *head_sh = sh;
3401 bool do_endio = false;
3402 int wakeup_nr = 0;
a4456856
DW
3403
3404 for (i = disks; i--; )
3405 if (sh->dev[i].written) {
3406 dev = &sh->dev[i];
3407 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3408 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3409 test_bit(R5_Discard, &dev->flags) ||
3410 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3411 /* We can return any write requests */
3412 struct bio *wbi, *wbi2;
45b4233c 3413 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3414 if (test_and_clear_bit(R5_Discard, &dev->flags))
3415 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3416 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3417 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3418 }
59fc630b 3419 do_endio = true;
3420
3421returnbi:
3422 dev->page = dev->orig_page;
a4456856
DW
3423 wbi = dev->written;
3424 dev->written = NULL;
4f024f37 3425 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3426 dev->sector + STRIPE_SECTORS) {
3427 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3428 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
3429 md_write_end(conf->mddev);
3430 wbi->bi_next = *return_bi;
3431 *return_bi = wbi;
3432 }
3433 wbi = wbi2;
3434 }
7eaf7e8e
SL
3435 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3436 STRIPE_SECTORS,
a4456856 3437 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3438 0);
59fc630b 3439 if (head_sh->batch_head) {
3440 sh = list_first_entry(&sh->batch_list,
3441 struct stripe_head,
3442 batch_list);
3443 if (sh != head_sh) {
3444 dev = &sh->dev[i];
3445 goto returnbi;
3446 }
3447 }
3448 sh = head_sh;
3449 dev = &sh->dev[i];
f8dfcffd
N
3450 } else if (test_bit(R5_Discard, &dev->flags))
3451 discard_pending = 1;
d592a996
SL
3452 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3453 WARN_ON(dev->page != dev->orig_page);
f8dfcffd
N
3454 }
3455 if (!discard_pending &&
3456 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3457 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3458 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3459 if (sh->qd_idx >= 0) {
3460 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3461 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3462 }
3463 /* now that discard is done we can proceed with any sync */
3464 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3465 /*
3466 * SCSI discard will change some bio fields and the stripe has
3467 * no updated data, so remove it from hash list and the stripe
3468 * will be reinitialized
3469 */
3470 spin_lock_irq(&conf->device_lock);
59fc630b 3471unhash:
d47648fc 3472 remove_hash(sh);
59fc630b 3473 if (head_sh->batch_head) {
3474 sh = list_first_entry(&sh->batch_list,
3475 struct stripe_head, batch_list);
3476 if (sh != head_sh)
3477 goto unhash;
3478 }
d47648fc 3479 spin_unlock_irq(&conf->device_lock);
59fc630b 3480 sh = head_sh;
3481
f8dfcffd
N
3482 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3483 set_bit(STRIPE_HANDLE, &sh->state);
3484
3485 }
8b3e6cdc
DW
3486
3487 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3488 if (atomic_dec_and_test(&conf->pending_full_writes))
3489 md_wakeup_thread(conf->mddev->thread);
59fc630b 3490
3491 if (!head_sh->batch_head || !do_endio)
3492 return;
3493 for (i = 0; i < head_sh->disks; i++) {
3494 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3495 wakeup_nr++;
3496 }
3497 while (!list_empty(&head_sh->batch_list)) {
3498 int i;
3499 sh = list_first_entry(&head_sh->batch_list,
3500 struct stripe_head, batch_list);
3501 list_del_init(&sh->batch_list);
3502
dabc4ec6 3503 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3504 head_sh->state & ~((1 << STRIPE_ACTIVE) |
3505 (1 << STRIPE_PREREAD_ACTIVE) |
3506 STRIPE_EXPAND_SYNC_FLAG));
59fc630b 3507 sh->check_state = head_sh->check_state;
3508 sh->reconstruct_state = head_sh->reconstruct_state;
3509 for (i = 0; i < sh->disks; i++) {
3510 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3511 wakeup_nr++;
3512 sh->dev[i].flags = head_sh->dev[i].flags;
3513 }
3514
3515 spin_lock_irq(&sh->stripe_lock);
3516 sh->batch_head = NULL;
3517 spin_unlock_irq(&sh->stripe_lock);
dabc4ec6 3518 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3519 set_bit(STRIPE_HANDLE, &sh->state);
59fc630b 3520 release_stripe(sh);
3521 }
3522
3523 spin_lock_irq(&head_sh->stripe_lock);
3524 head_sh->batch_head = NULL;
3525 spin_unlock_irq(&head_sh->stripe_lock);
3526 wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
dabc4ec6 3527 if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3528 set_bit(STRIPE_HANDLE, &head_sh->state);
a4456856
DW
3529}
3530
d1688a6d 3531static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3532 struct stripe_head *sh,
3533 struct stripe_head_state *s,
3534 int disks)
a4456856
DW
3535{
3536 int rmw = 0, rcw = 0, i;
a7854487
AL
3537 sector_t recovery_cp = conf->mddev->recovery_cp;
3538
584acdd4 3539 /* Check whether resync is now happening or should start.
a7854487
AL
3540 * If yes, then the array is dirty (after unclean shutdown or
3541 * initial creation), so parity in some stripes might be inconsistent.
3542 * In this case, we need to always do reconstruct-write, to ensure
3543 * that in case of drive failure or read-error correction, we
3544 * generate correct data from the parity.
3545 */
584acdd4 3546 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3547 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3548 s->failed == 0)) {
a7854487 3549 /* Calculate the real rcw later - for now make it
c8ac1803
N
3550 * look like rcw is cheaper
3551 */
3552 rcw = 1; rmw = 2;
584acdd4
MS
3553 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3554 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3555 (unsigned long long)sh->sector);
c8ac1803 3556 } else for (i = disks; i--; ) {
a4456856
DW
3557 /* would I have to read this buffer for read_modify_write */
3558 struct r5dev *dev = &sh->dev[i];
584acdd4 3559 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3560 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3561 !(test_bit(R5_UPTODATE, &dev->flags) ||
3562 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3563 if (test_bit(R5_Insync, &dev->flags))
3564 rmw++;
3565 else
3566 rmw += 2*disks; /* cannot read it */
3567 }
3568 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3569 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3570 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3571 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3572 !(test_bit(R5_UPTODATE, &dev->flags) ||
3573 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3574 if (test_bit(R5_Insync, &dev->flags))
3575 rcw++;
a4456856
DW
3576 else
3577 rcw += 2*disks;
3578 }
3579 }
45b4233c 3580 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3581 (unsigned long long)sh->sector, rmw, rcw);
3582 set_bit(STRIPE_HANDLE, &sh->state);
584acdd4 3583 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
a4456856 3584 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3585 if (conf->mddev->queue)
3586 blk_add_trace_msg(conf->mddev->queue,
3587 "raid5 rmw %llu %d",
3588 (unsigned long long)sh->sector, rmw);
a4456856
DW
3589 for (i = disks; i--; ) {
3590 struct r5dev *dev = &sh->dev[i];
584acdd4 3591 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3592 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3593 !(test_bit(R5_UPTODATE, &dev->flags) ||
3594 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3595 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3596 if (test_bit(STRIPE_PREREAD_ACTIVE,
3597 &sh->state)) {
3598 pr_debug("Read_old block %d for r-m-w\n",
3599 i);
a4456856
DW
3600 set_bit(R5_LOCKED, &dev->flags);
3601 set_bit(R5_Wantread, &dev->flags);
3602 s->locked++;
3603 } else {
3604 set_bit(STRIPE_DELAYED, &sh->state);
3605 set_bit(STRIPE_HANDLE, &sh->state);
3606 }
3607 }
3608 }
a9add5d9 3609 }
584acdd4 3610 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
a4456856 3611 /* want reconstruct write, but need to get some data */
a9add5d9 3612 int qread =0;
c8ac1803 3613 rcw = 0;
a4456856
DW
3614 for (i = disks; i--; ) {
3615 struct r5dev *dev = &sh->dev[i];
3616 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3617 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3618 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3619 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3620 test_bit(R5_Wantcompute, &dev->flags))) {
3621 rcw++;
67f45548
N
3622 if (test_bit(R5_Insync, &dev->flags) &&
3623 test_bit(STRIPE_PREREAD_ACTIVE,
3624 &sh->state)) {
45b4233c 3625 pr_debug("Read_old block "
a4456856
DW
3626 "%d for Reconstruct\n", i);
3627 set_bit(R5_LOCKED, &dev->flags);
3628 set_bit(R5_Wantread, &dev->flags);
3629 s->locked++;
a9add5d9 3630 qread++;
a4456856
DW
3631 } else {
3632 set_bit(STRIPE_DELAYED, &sh->state);
3633 set_bit(STRIPE_HANDLE, &sh->state);
3634 }
3635 }
3636 }
e3620a3a 3637 if (rcw && conf->mddev->queue)
a9add5d9
N
3638 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3639 (unsigned long long)sh->sector,
3640 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3641 }
b1b02fe9
N
3642
3643 if (rcw > disks && rmw > disks &&
3644 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3645 set_bit(STRIPE_DELAYED, &sh->state);
3646
a4456856
DW
3647 /* now if nothing is locked, and if we have enough data,
3648 * we can start a write request
3649 */
f38e1219
DW
3650 /* since handle_stripe can be called at any time we need to handle the
3651 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3652 * subsequent call wants to start a write request. raid_run_ops only
3653 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3654 * simultaneously. If this is not the case then new writes need to be
3655 * held off until the compute completes.
3656 */
976ea8d4
DW
3657 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3658 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3659 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3660 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3661}
3662
d1688a6d 3663static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3664 struct stripe_head_state *s, int disks)
3665{
ecc65c9b 3666 struct r5dev *dev = NULL;
bd2ab670 3667
59fc630b 3668 BUG_ON(sh->batch_head);
a4456856 3669 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3670
ecc65c9b
DW
3671 switch (sh->check_state) {
3672 case check_state_idle:
3673 /* start a new check operation if there are no failures */
bd2ab670 3674 if (s->failed == 0) {
bd2ab670 3675 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3676 sh->check_state = check_state_run;
3677 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3678 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3679 s->uptodate--;
ecc65c9b 3680 break;
bd2ab670 3681 }
f2b3b44d 3682 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3683 /* fall through */
3684 case check_state_compute_result:
3685 sh->check_state = check_state_idle;
3686 if (!dev)
3687 dev = &sh->dev[sh->pd_idx];
3688
3689 /* check that a write has not made the stripe insync */
3690 if (test_bit(STRIPE_INSYNC, &sh->state))
3691 break;
c8894419 3692
a4456856 3693 /* either failed parity check, or recovery is happening */
a4456856
DW
3694 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3695 BUG_ON(s->uptodate != disks);
3696
3697 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3698 s->locked++;
a4456856 3699 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3700
a4456856 3701 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3702 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3703 break;
3704 case check_state_run:
3705 break; /* we will be called again upon completion */
3706 case check_state_check_result:
3707 sh->check_state = check_state_idle;
3708
3709 /* if a failure occurred during the check operation, leave
3710 * STRIPE_INSYNC not set and let the stripe be handled again
3711 */
3712 if (s->failed)
3713 break;
3714
3715 /* handle a successful check operation, if parity is correct
3716 * we are done. Otherwise update the mismatch count and repair
3717 * parity if !MD_RECOVERY_CHECK
3718 */
ad283ea4 3719 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3720 /* parity is correct (on disc,
3721 * not in buffer any more)
3722 */
3723 set_bit(STRIPE_INSYNC, &sh->state);
3724 else {
7f7583d4 3725 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3726 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3727 /* don't try to repair!! */
3728 set_bit(STRIPE_INSYNC, &sh->state);
3729 else {
3730 sh->check_state = check_state_compute_run;
976ea8d4 3731 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3732 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3733 set_bit(R5_Wantcompute,
3734 &sh->dev[sh->pd_idx].flags);
3735 sh->ops.target = sh->pd_idx;
ac6b53b6 3736 sh->ops.target2 = -1;
ecc65c9b
DW
3737 s->uptodate++;
3738 }
3739 }
3740 break;
3741 case check_state_compute_run:
3742 break;
3743 default:
3744 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3745 __func__, sh->check_state,
3746 (unsigned long long) sh->sector);
3747 BUG();
a4456856
DW
3748 }
3749}
3750
d1688a6d 3751static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3752 struct stripe_head_state *s,
f2b3b44d 3753 int disks)
a4456856 3754{
a4456856 3755 int pd_idx = sh->pd_idx;
34e04e87 3756 int qd_idx = sh->qd_idx;
d82dfee0 3757 struct r5dev *dev;
a4456856 3758
59fc630b 3759 BUG_ON(sh->batch_head);
a4456856
DW
3760 set_bit(STRIPE_HANDLE, &sh->state);
3761
3762 BUG_ON(s->failed > 2);
d82dfee0 3763
a4456856
DW
3764 /* Want to check and possibly repair P and Q.
3765 * However there could be one 'failed' device, in which
3766 * case we can only check one of them, possibly using the
3767 * other to generate missing data
3768 */
3769
d82dfee0
DW
3770 switch (sh->check_state) {
3771 case check_state_idle:
3772 /* start a new check operation if there are < 2 failures */
f2b3b44d 3773 if (s->failed == s->q_failed) {
d82dfee0 3774 /* The only possible failed device holds Q, so it
a4456856
DW
3775 * makes sense to check P (If anything else were failed,
3776 * we would have used P to recreate it).
3777 */
d82dfee0 3778 sh->check_state = check_state_run;
a4456856 3779 }
f2b3b44d 3780 if (!s->q_failed && s->failed < 2) {
d82dfee0 3781 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3782 * anything, so it makes sense to check it
3783 */
d82dfee0
DW
3784 if (sh->check_state == check_state_run)
3785 sh->check_state = check_state_run_pq;
3786 else
3787 sh->check_state = check_state_run_q;
a4456856 3788 }
a4456856 3789
d82dfee0
DW
3790 /* discard potentially stale zero_sum_result */
3791 sh->ops.zero_sum_result = 0;
a4456856 3792
d82dfee0
DW
3793 if (sh->check_state == check_state_run) {
3794 /* async_xor_zero_sum destroys the contents of P */
3795 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3796 s->uptodate--;
a4456856 3797 }
d82dfee0
DW
3798 if (sh->check_state >= check_state_run &&
3799 sh->check_state <= check_state_run_pq) {
3800 /* async_syndrome_zero_sum preserves P and Q, so
3801 * no need to mark them !uptodate here
3802 */
3803 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3804 break;
a4456856
DW
3805 }
3806
d82dfee0
DW
3807 /* we have 2-disk failure */
3808 BUG_ON(s->failed != 2);
3809 /* fall through */
3810 case check_state_compute_result:
3811 sh->check_state = check_state_idle;
a4456856 3812
d82dfee0
DW
3813 /* check that a write has not made the stripe insync */
3814 if (test_bit(STRIPE_INSYNC, &sh->state))
3815 break;
a4456856
DW
3816
3817 /* now write out any block on a failed drive,
d82dfee0 3818 * or P or Q if they were recomputed
a4456856 3819 */
d82dfee0 3820 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3821 if (s->failed == 2) {
f2b3b44d 3822 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3823 s->locked++;
3824 set_bit(R5_LOCKED, &dev->flags);
3825 set_bit(R5_Wantwrite, &dev->flags);
3826 }
3827 if (s->failed >= 1) {
f2b3b44d 3828 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3829 s->locked++;
3830 set_bit(R5_LOCKED, &dev->flags);
3831 set_bit(R5_Wantwrite, &dev->flags);
3832 }
d82dfee0 3833 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3834 dev = &sh->dev[pd_idx];
3835 s->locked++;
3836 set_bit(R5_LOCKED, &dev->flags);
3837 set_bit(R5_Wantwrite, &dev->flags);
3838 }
d82dfee0 3839 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3840 dev = &sh->dev[qd_idx];
3841 s->locked++;
3842 set_bit(R5_LOCKED, &dev->flags);
3843 set_bit(R5_Wantwrite, &dev->flags);
3844 }
3845 clear_bit(STRIPE_DEGRADED, &sh->state);
3846
3847 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3848 break;
3849 case check_state_run:
3850 case check_state_run_q:
3851 case check_state_run_pq:
3852 break; /* we will be called again upon completion */
3853 case check_state_check_result:
3854 sh->check_state = check_state_idle;
3855
3856 /* handle a successful check operation, if parity is correct
3857 * we are done. Otherwise update the mismatch count and repair
3858 * parity if !MD_RECOVERY_CHECK
3859 */
3860 if (sh->ops.zero_sum_result == 0) {
3861 /* both parities are correct */
3862 if (!s->failed)
3863 set_bit(STRIPE_INSYNC, &sh->state);
3864 else {
3865 /* in contrast to the raid5 case we can validate
3866 * parity, but still have a failure to write
3867 * back
3868 */
3869 sh->check_state = check_state_compute_result;
3870 /* Returning at this point means that we may go
3871 * off and bring p and/or q uptodate again so
3872 * we make sure to check zero_sum_result again
3873 * to verify if p or q need writeback
3874 */
3875 }
3876 } else {
7f7583d4 3877 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3878 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3879 /* don't try to repair!! */
3880 set_bit(STRIPE_INSYNC, &sh->state);
3881 else {
3882 int *target = &sh->ops.target;
3883
3884 sh->ops.target = -1;
3885 sh->ops.target2 = -1;
3886 sh->check_state = check_state_compute_run;
3887 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3888 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3889 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3890 set_bit(R5_Wantcompute,
3891 &sh->dev[pd_idx].flags);
3892 *target = pd_idx;
3893 target = &sh->ops.target2;
3894 s->uptodate++;
3895 }
3896 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3897 set_bit(R5_Wantcompute,
3898 &sh->dev[qd_idx].flags);
3899 *target = qd_idx;
3900 s->uptodate++;
3901 }
3902 }
3903 }
3904 break;
3905 case check_state_compute_run:
3906 break;
3907 default:
3908 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3909 __func__, sh->check_state,
3910 (unsigned long long) sh->sector);
3911 BUG();
a4456856
DW
3912 }
3913}
3914
d1688a6d 3915static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3916{
3917 int i;
3918
3919 /* We have read all the blocks in this stripe and now we need to
3920 * copy some of them into a target stripe for expand.
3921 */
f0a50d37 3922 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3923 BUG_ON(sh->batch_head);
a4456856
DW
3924 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3925 for (i = 0; i < sh->disks; i++)
34e04e87 3926 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3927 int dd_idx, j;
a4456856 3928 struct stripe_head *sh2;
a08abd8c 3929 struct async_submit_ctl submit;
a4456856 3930
784052ec 3931 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3932 sector_t s = raid5_compute_sector(conf, bn, 0,
3933 &dd_idx, NULL);
a8c906ca 3934 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3935 if (sh2 == NULL)
3936 /* so far only the early blocks of this stripe
3937 * have been requested. When later blocks
3938 * get requested, we will try again
3939 */
3940 continue;
3941 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3942 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3943 /* must have already done this block */
3944 release_stripe(sh2);
3945 continue;
3946 }
f0a50d37
DW
3947
3948 /* place all the copies on one channel */
a08abd8c 3949 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3950 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3951 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3952 &submit);
f0a50d37 3953
a4456856
DW
3954 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3955 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3956 for (j = 0; j < conf->raid_disks; j++)
3957 if (j != sh2->pd_idx &&
86c374ba 3958 j != sh2->qd_idx &&
a4456856
DW
3959 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3960 break;
3961 if (j == conf->raid_disks) {
3962 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3963 set_bit(STRIPE_HANDLE, &sh2->state);
3964 }
3965 release_stripe(sh2);
f0a50d37 3966
a4456856 3967 }
a2e08551 3968 /* done submitting copies, wait for them to complete */
749586b7 3969 async_tx_quiesce(&tx);
a4456856 3970}
1da177e4
LT
3971
3972/*
3973 * handle_stripe - do things to a stripe.
3974 *
9a3e1101
N
3975 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3976 * state of various bits to see what needs to be done.
1da177e4 3977 * Possible results:
9a3e1101
N
3978 * return some read requests which now have data
3979 * return some write requests which are safely on storage
1da177e4
LT
3980 * schedule a read on some buffers
3981 * schedule a write of some buffers
3982 * return confirmation of parity correctness
3983 *
1da177e4 3984 */
a4456856 3985
acfe726b 3986static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3987{
d1688a6d 3988 struct r5conf *conf = sh->raid_conf;
f416885e 3989 int disks = sh->disks;
474af965
N
3990 struct r5dev *dev;
3991 int i;
9a3e1101 3992 int do_recovery = 0;
1da177e4 3993
acfe726b
N
3994 memset(s, 0, sizeof(*s));
3995
dabc4ec6 3996 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3997 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
3998 s->failed_num[0] = -1;
3999 s->failed_num[1] = -1;
1da177e4 4000
acfe726b 4001 /* Now to look around and see what can be done */
1da177e4 4002 rcu_read_lock();
16a53ecc 4003 for (i=disks; i--; ) {
3cb03002 4004 struct md_rdev *rdev;
31c176ec
N
4005 sector_t first_bad;
4006 int bad_sectors;
4007 int is_bad = 0;
acfe726b 4008
16a53ecc 4009 dev = &sh->dev[i];
1da177e4 4010
45b4233c 4011 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4012 i, dev->flags,
4013 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4014 /* maybe we can reply to a read
4015 *
4016 * new wantfill requests are only permitted while
4017 * ops_complete_biofill is guaranteed to be inactive
4018 */
4019 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4020 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4021 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4022
16a53ecc 4023 /* now count some things */
cc94015a
N
4024 if (test_bit(R5_LOCKED, &dev->flags))
4025 s->locked++;
4026 if (test_bit(R5_UPTODATE, &dev->flags))
4027 s->uptodate++;
2d6e4ecc 4028 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4029 s->compute++;
4030 BUG_ON(s->compute > 2);
2d6e4ecc 4031 }
1da177e4 4032
acfe726b 4033 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4034 s->to_fill++;
acfe726b 4035 else if (dev->toread)
cc94015a 4036 s->to_read++;
16a53ecc 4037 if (dev->towrite) {
cc94015a 4038 s->to_write++;
16a53ecc 4039 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4040 s->non_overwrite++;
16a53ecc 4041 }
a4456856 4042 if (dev->written)
cc94015a 4043 s->written++;
14a75d3e
N
4044 /* Prefer to use the replacement for reads, but only
4045 * if it is recovered enough and has no bad blocks.
4046 */
4047 rdev = rcu_dereference(conf->disks[i].replacement);
4048 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4049 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4050 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4051 &first_bad, &bad_sectors))
4052 set_bit(R5_ReadRepl, &dev->flags);
4053 else {
9a3e1101
N
4054 if (rdev)
4055 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4056 rdev = rcu_dereference(conf->disks[i].rdev);
4057 clear_bit(R5_ReadRepl, &dev->flags);
4058 }
9283d8c5
N
4059 if (rdev && test_bit(Faulty, &rdev->flags))
4060 rdev = NULL;
31c176ec
N
4061 if (rdev) {
4062 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4063 &first_bad, &bad_sectors);
4064 if (s->blocked_rdev == NULL
4065 && (test_bit(Blocked, &rdev->flags)
4066 || is_bad < 0)) {
4067 if (is_bad < 0)
4068 set_bit(BlockedBadBlocks,
4069 &rdev->flags);
4070 s->blocked_rdev = rdev;
4071 atomic_inc(&rdev->nr_pending);
4072 }
6bfe0b49 4073 }
415e72d0
N
4074 clear_bit(R5_Insync, &dev->flags);
4075 if (!rdev)
4076 /* Not in-sync */;
31c176ec
N
4077 else if (is_bad) {
4078 /* also not in-sync */
18b9837e
N
4079 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4080 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4081 /* treat as in-sync, but with a read error
4082 * which we can now try to correct
4083 */
4084 set_bit(R5_Insync, &dev->flags);
4085 set_bit(R5_ReadError, &dev->flags);
4086 }
4087 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4088 set_bit(R5_Insync, &dev->flags);
30d7a483 4089 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4090 /* in sync if before recovery_offset */
30d7a483
N
4091 set_bit(R5_Insync, &dev->flags);
4092 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4093 test_bit(R5_Expanded, &dev->flags))
4094 /* If we've reshaped into here, we assume it is Insync.
4095 * We will shortly update recovery_offset to make
4096 * it official.
4097 */
4098 set_bit(R5_Insync, &dev->flags);
4099
1cc03eb9 4100 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4101 /* This flag does not apply to '.replacement'
4102 * only to .rdev, so make sure to check that*/
4103 struct md_rdev *rdev2 = rcu_dereference(
4104 conf->disks[i].rdev);
4105 if (rdev2 == rdev)
4106 clear_bit(R5_Insync, &dev->flags);
4107 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4108 s->handle_bad_blocks = 1;
14a75d3e 4109 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4110 } else
4111 clear_bit(R5_WriteError, &dev->flags);
4112 }
1cc03eb9 4113 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4114 /* This flag does not apply to '.replacement'
4115 * only to .rdev, so make sure to check that*/
4116 struct md_rdev *rdev2 = rcu_dereference(
4117 conf->disks[i].rdev);
4118 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4119 s->handle_bad_blocks = 1;
14a75d3e 4120 atomic_inc(&rdev2->nr_pending);
b84db560
N
4121 } else
4122 clear_bit(R5_MadeGood, &dev->flags);
4123 }
977df362
N
4124 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4125 struct md_rdev *rdev2 = rcu_dereference(
4126 conf->disks[i].replacement);
4127 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4128 s->handle_bad_blocks = 1;
4129 atomic_inc(&rdev2->nr_pending);
4130 } else
4131 clear_bit(R5_MadeGoodRepl, &dev->flags);
4132 }
415e72d0 4133 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4134 /* The ReadError flag will just be confusing now */
4135 clear_bit(R5_ReadError, &dev->flags);
4136 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4137 }
415e72d0
N
4138 if (test_bit(R5_ReadError, &dev->flags))
4139 clear_bit(R5_Insync, &dev->flags);
4140 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4141 if (s->failed < 2)
4142 s->failed_num[s->failed] = i;
4143 s->failed++;
9a3e1101
N
4144 if (rdev && !test_bit(Faulty, &rdev->flags))
4145 do_recovery = 1;
415e72d0 4146 }
1da177e4 4147 }
9a3e1101
N
4148 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4149 /* If there is a failed device being replaced,
4150 * we must be recovering.
4151 * else if we are after recovery_cp, we must be syncing
c6d2e084 4152 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4153 * else we can only be replacing
4154 * sync and recovery both need to read all devices, and so
4155 * use the same flag.
4156 */
4157 if (do_recovery ||
c6d2e084 4158 sh->sector >= conf->mddev->recovery_cp ||
4159 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4160 s->syncing = 1;
4161 else
4162 s->replacing = 1;
4163 }
1da177e4 4164 rcu_read_unlock();
cc94015a
N
4165}
4166
59fc630b 4167static int clear_batch_ready(struct stripe_head *sh)
4168{
4169 struct stripe_head *tmp;
4170 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4171 return 0;
4172 spin_lock(&sh->stripe_lock);
4173 if (!sh->batch_head) {
4174 spin_unlock(&sh->stripe_lock);
4175 return 0;
4176 }
4177
4178 /*
4179 * this stripe could be added to a batch list before we check
4180 * BATCH_READY, skips it
4181 */
4182 if (sh->batch_head != sh) {
4183 spin_unlock(&sh->stripe_lock);
4184 return 1;
4185 }
4186 spin_lock(&sh->batch_lock);
4187 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4188 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4189 spin_unlock(&sh->batch_lock);
4190 spin_unlock(&sh->stripe_lock);
4191
4192 /*
4193 * BATCH_READY is cleared, no new stripes can be added.
4194 * batch_list can be accessed without lock
4195 */
4196 return 0;
4197}
4198
72ac7330 4199static void check_break_stripe_batch_list(struct stripe_head *sh)
4200{
4201 struct stripe_head *head_sh, *next;
4202 int i;
4203
4204 if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4205 return;
4206
4207 head_sh = sh;
4208 do {
4209 sh = list_first_entry(&sh->batch_list,
4210 struct stripe_head, batch_list);
4211 BUG_ON(sh == head_sh);
4212 } while (!test_bit(STRIPE_DEGRADED, &sh->state));
4213
4214 while (sh != head_sh) {
4215 next = list_first_entry(&sh->batch_list,
4216 struct stripe_head, batch_list);
4217 list_del_init(&sh->batch_list);
4218
dabc4ec6 4219 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4220 head_sh->state & ~((1 << STRIPE_ACTIVE) |
4221 (1 << STRIPE_PREREAD_ACTIVE) |
4222 (1 << STRIPE_DEGRADED) |
4223 STRIPE_EXPAND_SYNC_FLAG));
72ac7330 4224 sh->check_state = head_sh->check_state;
4225 sh->reconstruct_state = head_sh->reconstruct_state;
4226 for (i = 0; i < sh->disks; i++)
4227 sh->dev[i].flags = head_sh->dev[i].flags &
4228 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4229
4230 spin_lock_irq(&sh->stripe_lock);
4231 sh->batch_head = NULL;
4232 spin_unlock_irq(&sh->stripe_lock);
4233
4234 set_bit(STRIPE_HANDLE, &sh->state);
4235 release_stripe(sh);
4236
4237 sh = next;
4238 }
4239}
4240
cc94015a
N
4241static void handle_stripe(struct stripe_head *sh)
4242{
4243 struct stripe_head_state s;
d1688a6d 4244 struct r5conf *conf = sh->raid_conf;
3687c061 4245 int i;
84789554
N
4246 int prexor;
4247 int disks = sh->disks;
474af965 4248 struct r5dev *pdev, *qdev;
cc94015a
N
4249
4250 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4251 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4252 /* already being handled, ensure it gets handled
4253 * again when current action finishes */
4254 set_bit(STRIPE_HANDLE, &sh->state);
4255 return;
4256 }
4257
59fc630b 4258 if (clear_batch_ready(sh) ) {
4259 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4260 return;
4261 }
4262
72ac7330 4263 check_break_stripe_batch_list(sh);
4264
dabc4ec6 4265 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4266 spin_lock(&sh->stripe_lock);
4267 /* Cannot process 'sync' concurrently with 'discard' */
4268 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4269 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4270 set_bit(STRIPE_SYNCING, &sh->state);
4271 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4272 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4273 }
4274 spin_unlock(&sh->stripe_lock);
cc94015a
N
4275 }
4276 clear_bit(STRIPE_DELAYED, &sh->state);
4277
4278 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4279 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4280 (unsigned long long)sh->sector, sh->state,
4281 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4282 sh->check_state, sh->reconstruct_state);
3687c061 4283
acfe726b 4284 analyse_stripe(sh, &s);
c5a31000 4285
bc2607f3
N
4286 if (s.handle_bad_blocks) {
4287 set_bit(STRIPE_HANDLE, &sh->state);
4288 goto finish;
4289 }
4290
474af965
N
4291 if (unlikely(s.blocked_rdev)) {
4292 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4293 s.replacing || s.to_write || s.written) {
474af965
N
4294 set_bit(STRIPE_HANDLE, &sh->state);
4295 goto finish;
4296 }
4297 /* There is nothing for the blocked_rdev to block */
4298 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4299 s.blocked_rdev = NULL;
4300 }
4301
4302 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4303 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4304 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4305 }
4306
4307 pr_debug("locked=%d uptodate=%d to_read=%d"
4308 " to_write=%d failed=%d failed_num=%d,%d\n",
4309 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4310 s.failed_num[0], s.failed_num[1]);
4311 /* check if the array has lost more than max_degraded devices and,
4312 * if so, some requests might need to be failed.
4313 */
9a3f530f
N
4314 if (s.failed > conf->max_degraded) {
4315 sh->check_state = 0;
4316 sh->reconstruct_state = 0;
4317 if (s.to_read+s.to_write+s.written)
4318 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4319 if (s.syncing + s.replacing)
9a3f530f
N
4320 handle_failed_sync(conf, sh, &s);
4321 }
474af965 4322
84789554
N
4323 /* Now we check to see if any write operations have recently
4324 * completed
4325 */
4326 prexor = 0;
4327 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4328 prexor = 1;
4329 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4330 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4331 sh->reconstruct_state = reconstruct_state_idle;
4332
4333 /* All the 'written' buffers and the parity block are ready to
4334 * be written back to disk
4335 */
9e444768
SL
4336 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4337 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4338 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4339 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4340 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4341 for (i = disks; i--; ) {
4342 struct r5dev *dev = &sh->dev[i];
4343 if (test_bit(R5_LOCKED, &dev->flags) &&
4344 (i == sh->pd_idx || i == sh->qd_idx ||
4345 dev->written)) {
4346 pr_debug("Writing block %d\n", i);
4347 set_bit(R5_Wantwrite, &dev->flags);
4348 if (prexor)
4349 continue;
9c4bdf69
N
4350 if (s.failed > 1)
4351 continue;
84789554
N
4352 if (!test_bit(R5_Insync, &dev->flags) ||
4353 ((i == sh->pd_idx || i == sh->qd_idx) &&
4354 s.failed == 0))
4355 set_bit(STRIPE_INSYNC, &sh->state);
4356 }
4357 }
4358 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4359 s.dec_preread_active = 1;
4360 }
4361
ef5b7c69
N
4362 /*
4363 * might be able to return some write requests if the parity blocks
4364 * are safe, or on a failed drive
4365 */
4366 pdev = &sh->dev[sh->pd_idx];
4367 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4368 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4369 qdev = &sh->dev[sh->qd_idx];
4370 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4371 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4372 || conf->level < 6;
4373
4374 if (s.written &&
4375 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4376 && !test_bit(R5_LOCKED, &pdev->flags)
4377 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4378 test_bit(R5_Discard, &pdev->flags))))) &&
4379 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4380 && !test_bit(R5_LOCKED, &qdev->flags)
4381 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4382 test_bit(R5_Discard, &qdev->flags))))))
4383 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4384
4385 /* Now we might consider reading some blocks, either to check/generate
4386 * parity, or to satisfy requests
4387 * or to load a block that is being partially written.
4388 */
4389 if (s.to_read || s.non_overwrite
4390 || (conf->level == 6 && s.to_write && s.failed)
4391 || (s.syncing && (s.uptodate + s.compute < disks))
4392 || s.replacing
4393 || s.expanding)
4394 handle_stripe_fill(sh, &s, disks);
4395
84789554
N
4396 /* Now to consider new write requests and what else, if anything
4397 * should be read. We do not handle new writes when:
4398 * 1/ A 'write' operation (copy+xor) is already in flight.
4399 * 2/ A 'check' operation is in flight, as it may clobber the parity
4400 * block.
4401 */
4402 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4403 handle_stripe_dirtying(conf, sh, &s, disks);
4404
4405 /* maybe we need to check and possibly fix the parity for this stripe
4406 * Any reads will already have been scheduled, so we just see if enough
4407 * data is available. The parity check is held off while parity
4408 * dependent operations are in flight.
4409 */
4410 if (sh->check_state ||
4411 (s.syncing && s.locked == 0 &&
4412 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4413 !test_bit(STRIPE_INSYNC, &sh->state))) {
4414 if (conf->level == 6)
4415 handle_parity_checks6(conf, sh, &s, disks);
4416 else
4417 handle_parity_checks5(conf, sh, &s, disks);
4418 }
c5a31000 4419
f94c0b66
N
4420 if ((s.replacing || s.syncing) && s.locked == 0
4421 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4422 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4423 /* Write out to replacement devices where possible */
4424 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4425 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4426 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4427 set_bit(R5_WantReplace, &sh->dev[i].flags);
4428 set_bit(R5_LOCKED, &sh->dev[i].flags);
4429 s.locked++;
4430 }
f94c0b66
N
4431 if (s.replacing)
4432 set_bit(STRIPE_INSYNC, &sh->state);
4433 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4434 }
4435 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4436 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4437 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4438 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4439 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4440 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4441 wake_up(&conf->wait_for_overlap);
c5a31000
N
4442 }
4443
4444 /* If the failed drives are just a ReadError, then we might need
4445 * to progress the repair/check process
4446 */
4447 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4448 for (i = 0; i < s.failed; i++) {
4449 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4450 if (test_bit(R5_ReadError, &dev->flags)
4451 && !test_bit(R5_LOCKED, &dev->flags)
4452 && test_bit(R5_UPTODATE, &dev->flags)
4453 ) {
4454 if (!test_bit(R5_ReWrite, &dev->flags)) {
4455 set_bit(R5_Wantwrite, &dev->flags);
4456 set_bit(R5_ReWrite, &dev->flags);
4457 set_bit(R5_LOCKED, &dev->flags);
4458 s.locked++;
4459 } else {
4460 /* let's read it back */
4461 set_bit(R5_Wantread, &dev->flags);
4462 set_bit(R5_LOCKED, &dev->flags);
4463 s.locked++;
4464 }
4465 }
4466 }
4467
3687c061
N
4468 /* Finish reconstruct operations initiated by the expansion process */
4469 if (sh->reconstruct_state == reconstruct_state_result) {
4470 struct stripe_head *sh_src
4471 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4472 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4473 /* sh cannot be written until sh_src has been read.
4474 * so arrange for sh to be delayed a little
4475 */
4476 set_bit(STRIPE_DELAYED, &sh->state);
4477 set_bit(STRIPE_HANDLE, &sh->state);
4478 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4479 &sh_src->state))
4480 atomic_inc(&conf->preread_active_stripes);
4481 release_stripe(sh_src);
4482 goto finish;
4483 }
4484 if (sh_src)
4485 release_stripe(sh_src);
4486
4487 sh->reconstruct_state = reconstruct_state_idle;
4488 clear_bit(STRIPE_EXPANDING, &sh->state);
4489 for (i = conf->raid_disks; i--; ) {
4490 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4491 set_bit(R5_LOCKED, &sh->dev[i].flags);
4492 s.locked++;
4493 }
4494 }
f416885e 4495
3687c061
N
4496 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4497 !sh->reconstruct_state) {
4498 /* Need to write out all blocks after computing parity */
4499 sh->disks = conf->raid_disks;
4500 stripe_set_idx(sh->sector, conf, 0, sh);
4501 schedule_reconstruction(sh, &s, 1, 1);
4502 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4503 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4504 atomic_dec(&conf->reshape_stripes);
4505 wake_up(&conf->wait_for_overlap);
4506 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4507 }
4508
4509 if (s.expanding && s.locked == 0 &&
4510 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4511 handle_stripe_expansion(conf, sh);
16a53ecc 4512
3687c061 4513finish:
6bfe0b49 4514 /* wait for this device to become unblocked */
5f066c63
N
4515 if (unlikely(s.blocked_rdev)) {
4516 if (conf->mddev->external)
4517 md_wait_for_blocked_rdev(s.blocked_rdev,
4518 conf->mddev);
4519 else
4520 /* Internal metadata will immediately
4521 * be written by raid5d, so we don't
4522 * need to wait here.
4523 */
4524 rdev_dec_pending(s.blocked_rdev,
4525 conf->mddev);
4526 }
6bfe0b49 4527
bc2607f3
N
4528 if (s.handle_bad_blocks)
4529 for (i = disks; i--; ) {
3cb03002 4530 struct md_rdev *rdev;
bc2607f3
N
4531 struct r5dev *dev = &sh->dev[i];
4532 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4533 /* We own a safe reference to the rdev */
4534 rdev = conf->disks[i].rdev;
4535 if (!rdev_set_badblocks(rdev, sh->sector,
4536 STRIPE_SECTORS, 0))
4537 md_error(conf->mddev, rdev);
4538 rdev_dec_pending(rdev, conf->mddev);
4539 }
b84db560
N
4540 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4541 rdev = conf->disks[i].rdev;
4542 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4543 STRIPE_SECTORS, 0);
b84db560
N
4544 rdev_dec_pending(rdev, conf->mddev);
4545 }
977df362
N
4546 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4547 rdev = conf->disks[i].replacement;
dd054fce
N
4548 if (!rdev)
4549 /* rdev have been moved down */
4550 rdev = conf->disks[i].rdev;
977df362 4551 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4552 STRIPE_SECTORS, 0);
977df362
N
4553 rdev_dec_pending(rdev, conf->mddev);
4554 }
bc2607f3
N
4555 }
4556
6c0069c0
YT
4557 if (s.ops_request)
4558 raid_run_ops(sh, s.ops_request);
4559
f0e43bcd 4560 ops_run_io(sh, &s);
16a53ecc 4561
c5709ef6 4562 if (s.dec_preread_active) {
729a1866 4563 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4564 * is waiting on a flush, it won't continue until the writes
729a1866
N
4565 * have actually been submitted.
4566 */
4567 atomic_dec(&conf->preread_active_stripes);
4568 if (atomic_read(&conf->preread_active_stripes) <
4569 IO_THRESHOLD)
4570 md_wakeup_thread(conf->mddev->thread);
4571 }
4572
c5709ef6 4573 return_io(s.return_bi);
16a53ecc 4574
257a4b42 4575 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4576}
4577
d1688a6d 4578static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4579{
4580 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4581 while (!list_empty(&conf->delayed_list)) {
4582 struct list_head *l = conf->delayed_list.next;
4583 struct stripe_head *sh;
4584 sh = list_entry(l, struct stripe_head, lru);
4585 list_del_init(l);
4586 clear_bit(STRIPE_DELAYED, &sh->state);
4587 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4588 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4589 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4590 raid5_wakeup_stripe_thread(sh);
16a53ecc 4591 }
482c0834 4592 }
16a53ecc
N
4593}
4594
566c09c5
SL
4595static void activate_bit_delay(struct r5conf *conf,
4596 struct list_head *temp_inactive_list)
16a53ecc
N
4597{
4598 /* device_lock is held */
4599 struct list_head head;
4600 list_add(&head, &conf->bitmap_list);
4601 list_del_init(&conf->bitmap_list);
4602 while (!list_empty(&head)) {
4603 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4604 int hash;
16a53ecc
N
4605 list_del_init(&sh->lru);
4606 atomic_inc(&sh->count);
566c09c5
SL
4607 hash = sh->hash_lock_index;
4608 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4609 }
4610}
4611
5c675f83 4612static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4613{
d1688a6d 4614 struct r5conf *conf = mddev->private;
f022b2fd
N
4615
4616 /* No difference between reads and writes. Just check
4617 * how busy the stripe_cache is
4618 */
3fa841d7 4619
5423399a 4620 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4621 return 1;
4622 if (conf->quiesce)
4623 return 1;
4bda556a 4624 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4625 return 1;
4626
4627 return 0;
4628}
4629
23032a0e
RBJ
4630/* We want read requests to align with chunks where possible,
4631 * but write requests don't need to.
4632 */
64590f45 4633static int raid5_mergeable_bvec(struct mddev *mddev,
cc371e66
AK
4634 struct bvec_merge_data *bvm,
4635 struct bio_vec *biovec)
23032a0e 4636{
cc371e66 4637 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 4638 int max;
9d8f0363 4639 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 4640 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 4641
9ffc8f7c
EM
4642 /*
4643 * always allow writes to be mergeable, read as well if array
4644 * is degraded as we'll go through stripe cache anyway.
4645 */
4646 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4647 return biovec->bv_len;
23032a0e 4648
664e7c41
AN
4649 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4650 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
4651 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4652 if (max < 0) max = 0;
4653 if (max <= biovec->bv_len && bio_sectors == 0)
4654 return biovec->bv_len;
4655 else
4656 return max;
4657}
4658
fd01b88c 4659static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4660{
4f024f37 4661 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 4662 unsigned int chunk_sectors = mddev->chunk_sectors;
aa8b57aa 4663 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4664
664e7c41
AN
4665 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4666 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
4667 return chunk_sectors >=
4668 ((sector & (chunk_sectors - 1)) + bio_sectors);
4669}
4670
46031f9a
RBJ
4671/*
4672 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4673 * later sampled by raid5d.
4674 */
d1688a6d 4675static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4676{
4677 unsigned long flags;
4678
4679 spin_lock_irqsave(&conf->device_lock, flags);
4680
4681 bi->bi_next = conf->retry_read_aligned_list;
4682 conf->retry_read_aligned_list = bi;
4683
4684 spin_unlock_irqrestore(&conf->device_lock, flags);
4685 md_wakeup_thread(conf->mddev->thread);
4686}
4687
d1688a6d 4688static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4689{
4690 struct bio *bi;
4691
4692 bi = conf->retry_read_aligned;
4693 if (bi) {
4694 conf->retry_read_aligned = NULL;
4695 return bi;
4696 }
4697 bi = conf->retry_read_aligned_list;
4698 if(bi) {
387bb173 4699 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4700 bi->bi_next = NULL;
960e739d
JA
4701 /*
4702 * this sets the active strip count to 1 and the processed
4703 * strip count to zero (upper 8 bits)
4704 */
e7836bd6 4705 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4706 }
4707
4708 return bi;
4709}
4710
f679623f
RBJ
4711/*
4712 * The "raid5_align_endio" should check if the read succeeded and if it
4713 * did, call bio_endio on the original bio (having bio_put the new bio
4714 * first).
4715 * If the read failed..
4716 */
6712ecf8 4717static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
4718{
4719 struct bio* raid_bi = bi->bi_private;
fd01b88c 4720 struct mddev *mddev;
d1688a6d 4721 struct r5conf *conf;
46031f9a 4722 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 4723 struct md_rdev *rdev;
46031f9a 4724
f679623f 4725 bio_put(bi);
46031f9a 4726
46031f9a
RBJ
4727 rdev = (void*)raid_bi->bi_next;
4728 raid_bi->bi_next = NULL;
2b7f2228
N
4729 mddev = rdev->mddev;
4730 conf = mddev->private;
46031f9a
RBJ
4731
4732 rdev_dec_pending(rdev, conf->mddev);
4733
4734 if (!error && uptodate) {
0a82a8d1
LT
4735 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4736 raid_bi, 0);
6712ecf8 4737 bio_endio(raid_bi, 0);
46031f9a
RBJ
4738 if (atomic_dec_and_test(&conf->active_aligned_reads))
4739 wake_up(&conf->wait_for_stripe);
6712ecf8 4740 return;
46031f9a
RBJ
4741 }
4742
45b4233c 4743 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4744
4745 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4746}
4747
387bb173
NB
4748static int bio_fits_rdev(struct bio *bi)
4749{
165125e1 4750 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 4751
aa8b57aa 4752 if (bio_sectors(bi) > queue_max_sectors(q))
387bb173
NB
4753 return 0;
4754 blk_recount_segments(q, bi);
8a78362c 4755 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
4756 return 0;
4757
4758 if (q->merge_bvec_fn)
4759 /* it's too hard to apply the merge_bvec_fn at this stage,
4760 * just just give up
4761 */
4762 return 0;
4763
4764 return 1;
4765}
4766
fd01b88c 4767static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 4768{
d1688a6d 4769 struct r5conf *conf = mddev->private;
8553fe7e 4770 int dd_idx;
f679623f 4771 struct bio* align_bi;
3cb03002 4772 struct md_rdev *rdev;
671488cc 4773 sector_t end_sector;
f679623f
RBJ
4774
4775 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 4776 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
4777 return 0;
4778 }
4779 /*
a167f663 4780 * use bio_clone_mddev to make a copy of the bio
f679623f 4781 */
a167f663 4782 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4783 if (!align_bi)
4784 return 0;
4785 /*
4786 * set bi_end_io to a new function, and set bi_private to the
4787 * original bio.
4788 */
4789 align_bi->bi_end_io = raid5_align_endio;
4790 align_bi->bi_private = raid_bio;
4791 /*
4792 * compute position
4793 */
4f024f37
KO
4794 align_bi->bi_iter.bi_sector =
4795 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4796 0, &dd_idx, NULL);
f679623f 4797
f73a1c7d 4798 end_sector = bio_end_sector(align_bi);
f679623f 4799 rcu_read_lock();
671488cc
N
4800 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4801 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4802 rdev->recovery_offset < end_sector) {
4803 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4804 if (rdev &&
4805 (test_bit(Faulty, &rdev->flags) ||
4806 !(test_bit(In_sync, &rdev->flags) ||
4807 rdev->recovery_offset >= end_sector)))
4808 rdev = NULL;
4809 }
4810 if (rdev) {
31c176ec
N
4811 sector_t first_bad;
4812 int bad_sectors;
4813
f679623f
RBJ
4814 atomic_inc(&rdev->nr_pending);
4815 rcu_read_unlock();
46031f9a
RBJ
4816 raid_bio->bi_next = (void*)rdev;
4817 align_bi->bi_bdev = rdev->bdev;
3fd83717 4818 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
46031f9a 4819
31c176ec 4820 if (!bio_fits_rdev(align_bi) ||
4f024f37
KO
4821 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4822 bio_sectors(align_bi),
31c176ec
N
4823 &first_bad, &bad_sectors)) {
4824 /* too big in some way, or has a known bad block */
387bb173
NB
4825 bio_put(align_bi);
4826 rdev_dec_pending(rdev, mddev);
4827 return 0;
4828 }
4829
6c0544e2 4830 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4831 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4832
46031f9a
RBJ
4833 spin_lock_irq(&conf->device_lock);
4834 wait_event_lock_irq(conf->wait_for_stripe,
4835 conf->quiesce == 0,
eed8c02e 4836 conf->device_lock);
46031f9a
RBJ
4837 atomic_inc(&conf->active_aligned_reads);
4838 spin_unlock_irq(&conf->device_lock);
4839
e3620a3a
JB
4840 if (mddev->gendisk)
4841 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4842 align_bi, disk_devt(mddev->gendisk),
4f024f37 4843 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4844 generic_make_request(align_bi);
4845 return 1;
4846 } else {
4847 rcu_read_unlock();
46031f9a 4848 bio_put(align_bi);
f679623f
RBJ
4849 return 0;
4850 }
4851}
4852
8b3e6cdc
DW
4853/* __get_priority_stripe - get the next stripe to process
4854 *
4855 * Full stripe writes are allowed to pass preread active stripes up until
4856 * the bypass_threshold is exceeded. In general the bypass_count
4857 * increments when the handle_list is handled before the hold_list; however, it
4858 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4859 * stripe with in flight i/o. The bypass_count will be reset when the
4860 * head of the hold_list has changed, i.e. the head was promoted to the
4861 * handle_list.
4862 */
851c30c9 4863static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4864{
851c30c9
SL
4865 struct stripe_head *sh = NULL, *tmp;
4866 struct list_head *handle_list = NULL;
bfc90cb0 4867 struct r5worker_group *wg = NULL;
851c30c9
SL
4868
4869 if (conf->worker_cnt_per_group == 0) {
4870 handle_list = &conf->handle_list;
4871 } else if (group != ANY_GROUP) {
4872 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4873 wg = &conf->worker_groups[group];
851c30c9
SL
4874 } else {
4875 int i;
4876 for (i = 0; i < conf->group_cnt; i++) {
4877 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4878 wg = &conf->worker_groups[i];
851c30c9
SL
4879 if (!list_empty(handle_list))
4880 break;
4881 }
4882 }
8b3e6cdc
DW
4883
4884 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4885 __func__,
851c30c9 4886 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4887 list_empty(&conf->hold_list) ? "empty" : "busy",
4888 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4889
851c30c9
SL
4890 if (!list_empty(handle_list)) {
4891 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4892
4893 if (list_empty(&conf->hold_list))
4894 conf->bypass_count = 0;
4895 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4896 if (conf->hold_list.next == conf->last_hold)
4897 conf->bypass_count++;
4898 else {
4899 conf->last_hold = conf->hold_list.next;
4900 conf->bypass_count -= conf->bypass_threshold;
4901 if (conf->bypass_count < 0)
4902 conf->bypass_count = 0;
4903 }
4904 }
4905 } else if (!list_empty(&conf->hold_list) &&
4906 ((conf->bypass_threshold &&
4907 conf->bypass_count > conf->bypass_threshold) ||
4908 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4909
4910 list_for_each_entry(tmp, &conf->hold_list, lru) {
4911 if (conf->worker_cnt_per_group == 0 ||
4912 group == ANY_GROUP ||
4913 !cpu_online(tmp->cpu) ||
4914 cpu_to_group(tmp->cpu) == group) {
4915 sh = tmp;
4916 break;
4917 }
4918 }
4919
4920 if (sh) {
4921 conf->bypass_count -= conf->bypass_threshold;
4922 if (conf->bypass_count < 0)
4923 conf->bypass_count = 0;
4924 }
bfc90cb0 4925 wg = NULL;
851c30c9
SL
4926 }
4927
4928 if (!sh)
8b3e6cdc
DW
4929 return NULL;
4930
bfc90cb0
SL
4931 if (wg) {
4932 wg->stripes_cnt--;
4933 sh->group = NULL;
4934 }
8b3e6cdc 4935 list_del_init(&sh->lru);
c7a6d35e 4936 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4937 return sh;
4938}
f679623f 4939
8811b596
SL
4940struct raid5_plug_cb {
4941 struct blk_plug_cb cb;
4942 struct list_head list;
566c09c5 4943 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4944};
4945
4946static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4947{
4948 struct raid5_plug_cb *cb = container_of(
4949 blk_cb, struct raid5_plug_cb, cb);
4950 struct stripe_head *sh;
4951 struct mddev *mddev = cb->cb.data;
4952 struct r5conf *conf = mddev->private;
a9add5d9 4953 int cnt = 0;
566c09c5 4954 int hash;
8811b596
SL
4955
4956 if (cb->list.next && !list_empty(&cb->list)) {
4957 spin_lock_irq(&conf->device_lock);
4958 while (!list_empty(&cb->list)) {
4959 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4960 list_del_init(&sh->lru);
4961 /*
4962 * avoid race release_stripe_plug() sees
4963 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4964 * is still in our list
4965 */
4e857c58 4966 smp_mb__before_atomic();
8811b596 4967 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4968 /*
4969 * STRIPE_ON_RELEASE_LIST could be set here. In that
4970 * case, the count is always > 1 here
4971 */
566c09c5
SL
4972 hash = sh->hash_lock_index;
4973 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 4974 cnt++;
8811b596
SL
4975 }
4976 spin_unlock_irq(&conf->device_lock);
4977 }
566c09c5
SL
4978 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4979 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
4980 if (mddev->queue)
4981 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
4982 kfree(cb);
4983}
4984
4985static void release_stripe_plug(struct mddev *mddev,
4986 struct stripe_head *sh)
4987{
4988 struct blk_plug_cb *blk_cb = blk_check_plugged(
4989 raid5_unplug, mddev,
4990 sizeof(struct raid5_plug_cb));
4991 struct raid5_plug_cb *cb;
4992
4993 if (!blk_cb) {
4994 release_stripe(sh);
4995 return;
4996 }
4997
4998 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4999
566c09c5
SL
5000 if (cb->list.next == NULL) {
5001 int i;
8811b596 5002 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5003 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5004 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5005 }
8811b596
SL
5006
5007 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5008 list_add_tail(&sh->lru, &cb->list);
5009 else
5010 release_stripe(sh);
5011}
5012
620125f2
SL
5013static void make_discard_request(struct mddev *mddev, struct bio *bi)
5014{
5015 struct r5conf *conf = mddev->private;
5016 sector_t logical_sector, last_sector;
5017 struct stripe_head *sh;
5018 int remaining;
5019 int stripe_sectors;
5020
5021 if (mddev->reshape_position != MaxSector)
5022 /* Skip discard while reshape is happening */
5023 return;
5024
4f024f37
KO
5025 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5026 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5027
5028 bi->bi_next = NULL;
5029 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5030
5031 stripe_sectors = conf->chunk_sectors *
5032 (conf->raid_disks - conf->max_degraded);
5033 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5034 stripe_sectors);
5035 sector_div(last_sector, stripe_sectors);
5036
5037 logical_sector *= conf->chunk_sectors;
5038 last_sector *= conf->chunk_sectors;
5039
5040 for (; logical_sector < last_sector;
5041 logical_sector += STRIPE_SECTORS) {
5042 DEFINE_WAIT(w);
5043 int d;
5044 again:
5045 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5046 prepare_to_wait(&conf->wait_for_overlap, &w,
5047 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5048 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5049 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5050 release_stripe(sh);
5051 schedule();
5052 goto again;
5053 }
5054 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5055 spin_lock_irq(&sh->stripe_lock);
5056 for (d = 0; d < conf->raid_disks; d++) {
5057 if (d == sh->pd_idx || d == sh->qd_idx)
5058 continue;
5059 if (sh->dev[d].towrite || sh->dev[d].toread) {
5060 set_bit(R5_Overlap, &sh->dev[d].flags);
5061 spin_unlock_irq(&sh->stripe_lock);
5062 release_stripe(sh);
5063 schedule();
5064 goto again;
5065 }
5066 }
f8dfcffd 5067 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5068 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5069 sh->overwrite_disks = 0;
620125f2
SL
5070 for (d = 0; d < conf->raid_disks; d++) {
5071 if (d == sh->pd_idx || d == sh->qd_idx)
5072 continue;
5073 sh->dev[d].towrite = bi;
5074 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5075 raid5_inc_bi_active_stripes(bi);
7a87f434 5076 sh->overwrite_disks++;
620125f2
SL
5077 }
5078 spin_unlock_irq(&sh->stripe_lock);
5079 if (conf->mddev->bitmap) {
5080 for (d = 0;
5081 d < conf->raid_disks - conf->max_degraded;
5082 d++)
5083 bitmap_startwrite(mddev->bitmap,
5084 sh->sector,
5085 STRIPE_SECTORS,
5086 0);
5087 sh->bm_seq = conf->seq_flush + 1;
5088 set_bit(STRIPE_BIT_DELAY, &sh->state);
5089 }
5090
5091 set_bit(STRIPE_HANDLE, &sh->state);
5092 clear_bit(STRIPE_DELAYED, &sh->state);
5093 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5094 atomic_inc(&conf->preread_active_stripes);
5095 release_stripe_plug(mddev, sh);
5096 }
5097
5098 remaining = raid5_dec_bi_active_stripes(bi);
5099 if (remaining == 0) {
5100 md_write_end(mddev);
5101 bio_endio(bi, 0);
5102 }
5103}
5104
b4fdcb02 5105static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5106{
d1688a6d 5107 struct r5conf *conf = mddev->private;
911d4ee8 5108 int dd_idx;
1da177e4
LT
5109 sector_t new_sector;
5110 sector_t logical_sector, last_sector;
5111 struct stripe_head *sh;
a362357b 5112 const int rw = bio_data_dir(bi);
49077326 5113 int remaining;
27c0f68f
SL
5114 DEFINE_WAIT(w);
5115 bool do_prepare;
1da177e4 5116
e9c7469b
TH
5117 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5118 md_flush_request(mddev, bi);
5a7bbad2 5119 return;
e5dcdd80
N
5120 }
5121
3d310eb7 5122 md_write_start(mddev, bi);
06d91a5f 5123
9ffc8f7c
EM
5124 /*
5125 * If array is degraded, better not do chunk aligned read because
5126 * later we might have to read it again in order to reconstruct
5127 * data on failed drives.
5128 */
5129 if (rw == READ && mddev->degraded == 0 &&
52488615 5130 mddev->reshape_position == MaxSector &&
21a52c6d 5131 chunk_aligned_read(mddev,bi))
5a7bbad2 5132 return;
52488615 5133
620125f2
SL
5134 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5135 make_discard_request(mddev, bi);
5136 return;
5137 }
5138
4f024f37 5139 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5140 last_sector = bio_end_sector(bi);
1da177e4
LT
5141 bi->bi_next = NULL;
5142 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5143
27c0f68f 5144 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5145 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5146 int previous;
c46501b2 5147 int seq;
b578d55f 5148
27c0f68f 5149 do_prepare = false;
7ecaa1e6 5150 retry:
c46501b2 5151 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5152 previous = 0;
27c0f68f
SL
5153 if (do_prepare)
5154 prepare_to_wait(&conf->wait_for_overlap, &w,
5155 TASK_UNINTERRUPTIBLE);
b0f9ec04 5156 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5157 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5158 * 64bit on a 32bit platform, and so it might be
5159 * possible to see a half-updated value
aeb878b0 5160 * Of course reshape_progress could change after
df8e7f76
N
5161 * the lock is dropped, so once we get a reference
5162 * to the stripe that we think it is, we will have
5163 * to check again.
5164 */
7ecaa1e6 5165 spin_lock_irq(&conf->device_lock);
2c810cdd 5166 if (mddev->reshape_backwards
fef9c61f
N
5167 ? logical_sector < conf->reshape_progress
5168 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5169 previous = 1;
5170 } else {
2c810cdd 5171 if (mddev->reshape_backwards
fef9c61f
N
5172 ? logical_sector < conf->reshape_safe
5173 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5174 spin_unlock_irq(&conf->device_lock);
5175 schedule();
27c0f68f 5176 do_prepare = true;
b578d55f
N
5177 goto retry;
5178 }
5179 }
7ecaa1e6
N
5180 spin_unlock_irq(&conf->device_lock);
5181 }
16a53ecc 5182
112bf897
N
5183 new_sector = raid5_compute_sector(conf, logical_sector,
5184 previous,
911d4ee8 5185 &dd_idx, NULL);
0c55e022 5186 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 5187 (unsigned long long)new_sector,
1da177e4
LT
5188 (unsigned long long)logical_sector);
5189
b5663ba4 5190 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 5191 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5192 if (sh) {
b0f9ec04 5193 if (unlikely(previous)) {
7ecaa1e6 5194 /* expansion might have moved on while waiting for a
df8e7f76
N
5195 * stripe, so we must do the range check again.
5196 * Expansion could still move past after this
5197 * test, but as we are holding a reference to
5198 * 'sh', we know that if that happens,
5199 * STRIPE_EXPANDING will get set and the expansion
5200 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5201 */
5202 int must_retry = 0;
5203 spin_lock_irq(&conf->device_lock);
2c810cdd 5204 if (mddev->reshape_backwards
b0f9ec04
N
5205 ? logical_sector >= conf->reshape_progress
5206 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5207 /* mismatch, need to try again */
5208 must_retry = 1;
5209 spin_unlock_irq(&conf->device_lock);
5210 if (must_retry) {
5211 release_stripe(sh);
7a3ab908 5212 schedule();
27c0f68f 5213 do_prepare = true;
7ecaa1e6
N
5214 goto retry;
5215 }
5216 }
c46501b2
N
5217 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5218 /* Might have got the wrong stripe_head
5219 * by accident
5220 */
5221 release_stripe(sh);
5222 goto retry;
5223 }
e62e58a5 5224
ffd96e35 5225 if (rw == WRITE &&
a5c308d4 5226 logical_sector >= mddev->suspend_lo &&
e464eafd
N
5227 logical_sector < mddev->suspend_hi) {
5228 release_stripe(sh);
e62e58a5
N
5229 /* As the suspend_* range is controlled by
5230 * userspace, we want an interruptible
5231 * wait.
5232 */
5233 flush_signals(current);
5234 prepare_to_wait(&conf->wait_for_overlap,
5235 &w, TASK_INTERRUPTIBLE);
5236 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5237 logical_sector < mddev->suspend_hi) {
e62e58a5 5238 schedule();
27c0f68f
SL
5239 do_prepare = true;
5240 }
e464eafd
N
5241 goto retry;
5242 }
7ecaa1e6
N
5243
5244 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5245 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5246 /* Stripe is busy expanding or
5247 * add failed due to overlap. Flush everything
1da177e4
LT
5248 * and wait a while
5249 */
482c0834 5250 md_wakeup_thread(mddev->thread);
1da177e4
LT
5251 release_stripe(sh);
5252 schedule();
27c0f68f 5253 do_prepare = true;
1da177e4
LT
5254 goto retry;
5255 }
6ed3003c
N
5256 set_bit(STRIPE_HANDLE, &sh->state);
5257 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5258 if ((!sh->batch_head || sh == sh->batch_head) &&
5259 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5260 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5261 atomic_inc(&conf->preread_active_stripes);
8811b596 5262 release_stripe_plug(mddev, sh);
1da177e4
LT
5263 } else {
5264 /* cannot get stripe for read-ahead, just give-up */
5265 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1da177e4
LT
5266 break;
5267 }
1da177e4 5268 }
27c0f68f 5269 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5270
e7836bd6 5271 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5272 if (remaining == 0) {
1da177e4 5273
16a53ecc 5274 if ( rw == WRITE )
1da177e4 5275 md_write_end(mddev);
6712ecf8 5276
0a82a8d1
LT
5277 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5278 bi, 0);
0e13fe23 5279 bio_endio(bi, 0);
1da177e4 5280 }
1da177e4
LT
5281}
5282
fd01b88c 5283static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5284
fd01b88c 5285static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5286{
52c03291
N
5287 /* reshaping is quite different to recovery/resync so it is
5288 * handled quite separately ... here.
5289 *
5290 * On each call to sync_request, we gather one chunk worth of
5291 * destination stripes and flag them as expanding.
5292 * Then we find all the source stripes and request reads.
5293 * As the reads complete, handle_stripe will copy the data
5294 * into the destination stripe and release that stripe.
5295 */
d1688a6d 5296 struct r5conf *conf = mddev->private;
1da177e4 5297 struct stripe_head *sh;
ccfcc3c1 5298 sector_t first_sector, last_sector;
f416885e
N
5299 int raid_disks = conf->previous_raid_disks;
5300 int data_disks = raid_disks - conf->max_degraded;
5301 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5302 int i;
5303 int dd_idx;
c8f517c4 5304 sector_t writepos, readpos, safepos;
ec32a2bd 5305 sector_t stripe_addr;
7a661381 5306 int reshape_sectors;
ab69ae12 5307 struct list_head stripes;
52c03291 5308
fef9c61f
N
5309 if (sector_nr == 0) {
5310 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5311 if (mddev->reshape_backwards &&
fef9c61f
N
5312 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5313 sector_nr = raid5_size(mddev, 0, 0)
5314 - conf->reshape_progress;
2c810cdd 5315 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5316 conf->reshape_progress > 0)
5317 sector_nr = conf->reshape_progress;
f416885e 5318 sector_div(sector_nr, new_data_disks);
fef9c61f 5319 if (sector_nr) {
8dee7211
N
5320 mddev->curr_resync_completed = sector_nr;
5321 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
5322 *skipped = 1;
5323 return sector_nr;
5324 }
52c03291
N
5325 }
5326
7a661381
N
5327 /* We need to process a full chunk at a time.
5328 * If old and new chunk sizes differ, we need to process the
5329 * largest of these
5330 */
664e7c41
AN
5331 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5332 reshape_sectors = mddev->new_chunk_sectors;
7a661381 5333 else
9d8f0363 5334 reshape_sectors = mddev->chunk_sectors;
7a661381 5335
b5254dd5
N
5336 /* We update the metadata at least every 10 seconds, or when
5337 * the data about to be copied would over-write the source of
5338 * the data at the front of the range. i.e. one new_stripe
5339 * along from reshape_progress new_maps to after where
5340 * reshape_safe old_maps to
52c03291 5341 */
fef9c61f 5342 writepos = conf->reshape_progress;
f416885e 5343 sector_div(writepos, new_data_disks);
c8f517c4
N
5344 readpos = conf->reshape_progress;
5345 sector_div(readpos, data_disks);
fef9c61f 5346 safepos = conf->reshape_safe;
f416885e 5347 sector_div(safepos, data_disks);
2c810cdd 5348 if (mddev->reshape_backwards) {
ed37d83e 5349 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 5350 readpos += reshape_sectors;
7a661381 5351 safepos += reshape_sectors;
fef9c61f 5352 } else {
7a661381 5353 writepos += reshape_sectors;
ed37d83e
N
5354 readpos -= min_t(sector_t, reshape_sectors, readpos);
5355 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5356 }
52c03291 5357
b5254dd5
N
5358 /* Having calculated the 'writepos' possibly use it
5359 * to set 'stripe_addr' which is where we will write to.
5360 */
5361 if (mddev->reshape_backwards) {
5362 BUG_ON(conf->reshape_progress == 0);
5363 stripe_addr = writepos;
5364 BUG_ON((mddev->dev_sectors &
5365 ~((sector_t)reshape_sectors - 1))
5366 - reshape_sectors - stripe_addr
5367 != sector_nr);
5368 } else {
5369 BUG_ON(writepos != sector_nr + reshape_sectors);
5370 stripe_addr = sector_nr;
5371 }
5372
c8f517c4
N
5373 /* 'writepos' is the most advanced device address we might write.
5374 * 'readpos' is the least advanced device address we might read.
5375 * 'safepos' is the least address recorded in the metadata as having
5376 * been reshaped.
b5254dd5
N
5377 * If there is a min_offset_diff, these are adjusted either by
5378 * increasing the safepos/readpos if diff is negative, or
5379 * increasing writepos if diff is positive.
5380 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5381 * ensure safety in the face of a crash - that must be done by userspace
5382 * making a backup of the data. So in that case there is no particular
5383 * rush to update metadata.
5384 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5385 * update the metadata to advance 'safepos' to match 'readpos' so that
5386 * we can be safe in the event of a crash.
5387 * So we insist on updating metadata if safepos is behind writepos and
5388 * readpos is beyond writepos.
5389 * In any case, update the metadata every 10 seconds.
5390 * Maybe that number should be configurable, but I'm not sure it is
5391 * worth it.... maybe it could be a multiple of safemode_delay???
5392 */
b5254dd5
N
5393 if (conf->min_offset_diff < 0) {
5394 safepos += -conf->min_offset_diff;
5395 readpos += -conf->min_offset_diff;
5396 } else
5397 writepos += conf->min_offset_diff;
5398
2c810cdd 5399 if ((mddev->reshape_backwards
c8f517c4
N
5400 ? (safepos > writepos && readpos < writepos)
5401 : (safepos < writepos && readpos > writepos)) ||
5402 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5403 /* Cannot proceed until we've updated the superblock... */
5404 wait_event(conf->wait_for_overlap,
c91abf5a
N
5405 atomic_read(&conf->reshape_stripes)==0
5406 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5407 if (atomic_read(&conf->reshape_stripes) != 0)
5408 return 0;
fef9c61f 5409 mddev->reshape_position = conf->reshape_progress;
75d3da43 5410 mddev->curr_resync_completed = sector_nr;
c8f517c4 5411 conf->reshape_checkpoint = jiffies;
850b2b42 5412 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5413 md_wakeup_thread(mddev->thread);
850b2b42 5414 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5415 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5416 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5417 return 0;
52c03291 5418 spin_lock_irq(&conf->device_lock);
fef9c61f 5419 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5420 spin_unlock_irq(&conf->device_lock);
5421 wake_up(&conf->wait_for_overlap);
acb180b0 5422 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5423 }
5424
ab69ae12 5425 INIT_LIST_HEAD(&stripes);
7a661381 5426 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5427 int j;
a9f326eb 5428 int skipped_disk = 0;
a8c906ca 5429 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5430 set_bit(STRIPE_EXPANDING, &sh->state);
5431 atomic_inc(&conf->reshape_stripes);
5432 /* If any of this stripe is beyond the end of the old
5433 * array, then we need to zero those blocks
5434 */
5435 for (j=sh->disks; j--;) {
5436 sector_t s;
5437 if (j == sh->pd_idx)
5438 continue;
f416885e 5439 if (conf->level == 6 &&
d0dabf7e 5440 j == sh->qd_idx)
f416885e 5441 continue;
784052ec 5442 s = compute_blocknr(sh, j, 0);
b522adcd 5443 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5444 skipped_disk = 1;
52c03291
N
5445 continue;
5446 }
5447 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5448 set_bit(R5_Expanded, &sh->dev[j].flags);
5449 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5450 }
a9f326eb 5451 if (!skipped_disk) {
52c03291
N
5452 set_bit(STRIPE_EXPAND_READY, &sh->state);
5453 set_bit(STRIPE_HANDLE, &sh->state);
5454 }
ab69ae12 5455 list_add(&sh->lru, &stripes);
52c03291
N
5456 }
5457 spin_lock_irq(&conf->device_lock);
2c810cdd 5458 if (mddev->reshape_backwards)
7a661381 5459 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5460 else
7a661381 5461 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5462 spin_unlock_irq(&conf->device_lock);
5463 /* Ok, those stripe are ready. We can start scheduling
5464 * reads on the source stripes.
5465 * The source stripes are determined by mapping the first and last
5466 * block on the destination stripes.
5467 */
52c03291 5468 first_sector =
ec32a2bd 5469 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5470 1, &dd_idx, NULL);
52c03291 5471 last_sector =
0e6e0271 5472 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5473 * new_data_disks - 1),
911d4ee8 5474 1, &dd_idx, NULL);
58c0fed4
AN
5475 if (last_sector >= mddev->dev_sectors)
5476 last_sector = mddev->dev_sectors - 1;
52c03291 5477 while (first_sector <= last_sector) {
a8c906ca 5478 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5479 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5480 set_bit(STRIPE_HANDLE, &sh->state);
5481 release_stripe(sh);
5482 first_sector += STRIPE_SECTORS;
5483 }
ab69ae12
N
5484 /* Now that the sources are clearly marked, we can release
5485 * the destination stripes
5486 */
5487 while (!list_empty(&stripes)) {
5488 sh = list_entry(stripes.next, struct stripe_head, lru);
5489 list_del_init(&sh->lru);
5490 release_stripe(sh);
5491 }
c6207277
N
5492 /* If this takes us to the resync_max point where we have to pause,
5493 * then we need to write out the superblock.
5494 */
7a661381 5495 sector_nr += reshape_sectors;
c03f6a19
N
5496 if ((sector_nr - mddev->curr_resync_completed) * 2
5497 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5498 /* Cannot proceed until we've updated the superblock... */
5499 wait_event(conf->wait_for_overlap,
c91abf5a
N
5500 atomic_read(&conf->reshape_stripes) == 0
5501 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5502 if (atomic_read(&conf->reshape_stripes) != 0)
5503 goto ret;
fef9c61f 5504 mddev->reshape_position = conf->reshape_progress;
75d3da43 5505 mddev->curr_resync_completed = sector_nr;
c8f517c4 5506 conf->reshape_checkpoint = jiffies;
c6207277
N
5507 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5508 md_wakeup_thread(mddev->thread);
5509 wait_event(mddev->sb_wait,
5510 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5511 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5512 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5513 goto ret;
c6207277 5514 spin_lock_irq(&conf->device_lock);
fef9c61f 5515 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5516 spin_unlock_irq(&conf->device_lock);
5517 wake_up(&conf->wait_for_overlap);
acb180b0 5518 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5519 }
c91abf5a 5520ret:
7a661381 5521 return reshape_sectors;
52c03291
N
5522}
5523
09314799 5524static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
52c03291 5525{
d1688a6d 5526 struct r5conf *conf = mddev->private;
52c03291 5527 struct stripe_head *sh;
58c0fed4 5528 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5529 sector_t sync_blocks;
16a53ecc
N
5530 int still_degraded = 0;
5531 int i;
1da177e4 5532
72626685 5533 if (sector_nr >= max_sector) {
1da177e4 5534 /* just being told to finish up .. nothing much to do */
cea9c228 5535
29269553
N
5536 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5537 end_reshape(conf);
5538 return 0;
5539 }
72626685
N
5540
5541 if (mddev->curr_resync < max_sector) /* aborted */
5542 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5543 &sync_blocks, 1);
16a53ecc 5544 else /* completed sync */
72626685
N
5545 conf->fullsync = 0;
5546 bitmap_close_sync(mddev->bitmap);
5547
1da177e4
LT
5548 return 0;
5549 }
ccfcc3c1 5550
64bd660b
N
5551 /* Allow raid5_quiesce to complete */
5552 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5553
52c03291
N
5554 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5555 return reshape_request(mddev, sector_nr, skipped);
f6705578 5556
c6207277
N
5557 /* No need to check resync_max as we never do more than one
5558 * stripe, and as resync_max will always be on a chunk boundary,
5559 * if the check in md_do_sync didn't fire, there is no chance
5560 * of overstepping resync_max here
5561 */
5562
16a53ecc 5563 /* if there is too many failed drives and we are trying
1da177e4
LT
5564 * to resync, then assert that we are finished, because there is
5565 * nothing we can do.
5566 */
3285edf1 5567 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5568 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5569 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5570 *skipped = 1;
1da177e4
LT
5571 return rv;
5572 }
6f608040 5573 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5574 !conf->fullsync &&
5575 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5576 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5577 /* we can skip this block, and probably more */
5578 sync_blocks /= STRIPE_SECTORS;
5579 *skipped = 1;
5580 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5581 }
1da177e4 5582
b47490c9
N
5583 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5584
a8c906ca 5585 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5586 if (sh == NULL) {
a8c906ca 5587 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5588 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5589 * is trying to get access
1da177e4 5590 */
66c006a5 5591 schedule_timeout_uninterruptible(1);
1da177e4 5592 }
16a53ecc 5593 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5594 * Note in case of > 1 drive failures it's possible we're rebuilding
5595 * one drive while leaving another faulty drive in array.
16a53ecc 5596 */
16d9cfab
EM
5597 rcu_read_lock();
5598 for (i = 0; i < conf->raid_disks; i++) {
5599 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5600
5601 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5602 still_degraded = 1;
16d9cfab
EM
5603 }
5604 rcu_read_unlock();
16a53ecc
N
5605
5606 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5607
83206d66 5608 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5609 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5610
1da177e4
LT
5611 release_stripe(sh);
5612
5613 return STRIPE_SECTORS;
5614}
5615
d1688a6d 5616static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5617{
5618 /* We may not be able to submit a whole bio at once as there
5619 * may not be enough stripe_heads available.
5620 * We cannot pre-allocate enough stripe_heads as we may need
5621 * more than exist in the cache (if we allow ever large chunks).
5622 * So we do one stripe head at a time and record in
5623 * ->bi_hw_segments how many have been done.
5624 *
5625 * We *know* that this entire raid_bio is in one chunk, so
5626 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5627 */
5628 struct stripe_head *sh;
911d4ee8 5629 int dd_idx;
46031f9a
RBJ
5630 sector_t sector, logical_sector, last_sector;
5631 int scnt = 0;
5632 int remaining;
5633 int handled = 0;
5634
4f024f37
KO
5635 logical_sector = raid_bio->bi_iter.bi_sector &
5636 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5637 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5638 0, &dd_idx, NULL);
f73a1c7d 5639 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5640
5641 for (; logical_sector < last_sector;
387bb173
NB
5642 logical_sector += STRIPE_SECTORS,
5643 sector += STRIPE_SECTORS,
5644 scnt++) {
46031f9a 5645
e7836bd6 5646 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5647 /* already done this stripe */
5648 continue;
5649
2844dc32 5650 sh = get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5651
5652 if (!sh) {
5653 /* failed to get a stripe - must wait */
e7836bd6 5654 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5655 conf->retry_read_aligned = raid_bio;
5656 return handled;
5657 }
5658
da41ba65 5659 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
387bb173 5660 release_stripe(sh);
e7836bd6 5661 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5662 conf->retry_read_aligned = raid_bio;
5663 return handled;
5664 }
5665
3f9e7c14 5666 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5667 handle_stripe(sh);
46031f9a
RBJ
5668 release_stripe(sh);
5669 handled++;
5670 }
e7836bd6 5671 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5672 if (remaining == 0) {
5673 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5674 raid_bio, 0);
0e13fe23 5675 bio_endio(raid_bio, 0);
0a82a8d1 5676 }
46031f9a
RBJ
5677 if (atomic_dec_and_test(&conf->active_aligned_reads))
5678 wake_up(&conf->wait_for_stripe);
5679 return handled;
5680}
5681
bfc90cb0 5682static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5683 struct r5worker *worker,
5684 struct list_head *temp_inactive_list)
46a06401
SL
5685{
5686 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5687 int i, batch_size = 0, hash;
5688 bool release_inactive = false;
46a06401
SL
5689
5690 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5691 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5692 batch[batch_size++] = sh;
5693
566c09c5
SL
5694 if (batch_size == 0) {
5695 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5696 if (!list_empty(temp_inactive_list + i))
5697 break;
5698 if (i == NR_STRIPE_HASH_LOCKS)
5699 return batch_size;
5700 release_inactive = true;
5701 }
46a06401
SL
5702 spin_unlock_irq(&conf->device_lock);
5703
566c09c5
SL
5704 release_inactive_stripe_list(conf, temp_inactive_list,
5705 NR_STRIPE_HASH_LOCKS);
5706
5707 if (release_inactive) {
5708 spin_lock_irq(&conf->device_lock);
5709 return 0;
5710 }
5711
46a06401
SL
5712 for (i = 0; i < batch_size; i++)
5713 handle_stripe(batch[i]);
5714
5715 cond_resched();
5716
5717 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5718 for (i = 0; i < batch_size; i++) {
5719 hash = batch[i]->hash_lock_index;
5720 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5721 }
46a06401
SL
5722 return batch_size;
5723}
46031f9a 5724
851c30c9
SL
5725static void raid5_do_work(struct work_struct *work)
5726{
5727 struct r5worker *worker = container_of(work, struct r5worker, work);
5728 struct r5worker_group *group = worker->group;
5729 struct r5conf *conf = group->conf;
5730 int group_id = group - conf->worker_groups;
5731 int handled;
5732 struct blk_plug plug;
5733
5734 pr_debug("+++ raid5worker active\n");
5735
5736 blk_start_plug(&plug);
5737 handled = 0;
5738 spin_lock_irq(&conf->device_lock);
5739 while (1) {
5740 int batch_size, released;
5741
566c09c5 5742 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5743
566c09c5
SL
5744 batch_size = handle_active_stripes(conf, group_id, worker,
5745 worker->temp_inactive_list);
bfc90cb0 5746 worker->working = false;
851c30c9
SL
5747 if (!batch_size && !released)
5748 break;
5749 handled += batch_size;
5750 }
5751 pr_debug("%d stripes handled\n", handled);
5752
5753 spin_unlock_irq(&conf->device_lock);
5754 blk_finish_plug(&plug);
5755
5756 pr_debug("--- raid5worker inactive\n");
5757}
5758
1da177e4
LT
5759/*
5760 * This is our raid5 kernel thread.
5761 *
5762 * We scan the hash table for stripes which can be handled now.
5763 * During the scan, completed stripes are saved for us by the interrupt
5764 * handler, so that they will not have to wait for our next wakeup.
5765 */
4ed8731d 5766static void raid5d(struct md_thread *thread)
1da177e4 5767{
4ed8731d 5768 struct mddev *mddev = thread->mddev;
d1688a6d 5769 struct r5conf *conf = mddev->private;
1da177e4 5770 int handled;
e1dfa0a2 5771 struct blk_plug plug;
1da177e4 5772
45b4233c 5773 pr_debug("+++ raid5d active\n");
1da177e4
LT
5774
5775 md_check_recovery(mddev);
1da177e4 5776
e1dfa0a2 5777 blk_start_plug(&plug);
1da177e4
LT
5778 handled = 0;
5779 spin_lock_irq(&conf->device_lock);
5780 while (1) {
46031f9a 5781 struct bio *bio;
773ca82f
SL
5782 int batch_size, released;
5783
566c09c5 5784 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5785 if (released)
5786 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5787
0021b7bc 5788 if (
7c13edc8
N
5789 !list_empty(&conf->bitmap_list)) {
5790 /* Now is a good time to flush some bitmap updates */
5791 conf->seq_flush++;
700e432d 5792 spin_unlock_irq(&conf->device_lock);
72626685 5793 bitmap_unplug(mddev->bitmap);
700e432d 5794 spin_lock_irq(&conf->device_lock);
7c13edc8 5795 conf->seq_write = conf->seq_flush;
566c09c5 5796 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5797 }
0021b7bc 5798 raid5_activate_delayed(conf);
72626685 5799
46031f9a
RBJ
5800 while ((bio = remove_bio_from_retry(conf))) {
5801 int ok;
5802 spin_unlock_irq(&conf->device_lock);
5803 ok = retry_aligned_read(conf, bio);
5804 spin_lock_irq(&conf->device_lock);
5805 if (!ok)
5806 break;
5807 handled++;
5808 }
5809
566c09c5
SL
5810 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5811 conf->temp_inactive_list);
773ca82f 5812 if (!batch_size && !released)
1da177e4 5813 break;
46a06401 5814 handled += batch_size;
1da177e4 5815
46a06401
SL
5816 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5817 spin_unlock_irq(&conf->device_lock);
de393cde 5818 md_check_recovery(mddev);
46a06401
SL
5819 spin_lock_irq(&conf->device_lock);
5820 }
1da177e4 5821 }
45b4233c 5822 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5823
5824 spin_unlock_irq(&conf->device_lock);
edbe83ab
N
5825 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5826 grow_one_stripe(conf, __GFP_NOWARN);
5827 /* Set flag even if allocation failed. This helps
5828 * slow down allocation requests when mem is short
5829 */
5830 set_bit(R5_DID_ALLOC, &conf->cache_state);
5831 }
1da177e4 5832
c9f21aaf 5833 async_tx_issue_pending_all();
e1dfa0a2 5834 blk_finish_plug(&plug);
1da177e4 5835
45b4233c 5836 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5837}
5838
3f294f4f 5839static ssize_t
fd01b88c 5840raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5841{
7b1485ba
N
5842 struct r5conf *conf;
5843 int ret = 0;
5844 spin_lock(&mddev->lock);
5845 conf = mddev->private;
96de1e66 5846 if (conf)
edbe83ab 5847 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5848 spin_unlock(&mddev->lock);
5849 return ret;
3f294f4f
N
5850}
5851
c41d4ac4 5852int
fd01b88c 5853raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5854{
d1688a6d 5855 struct r5conf *conf = mddev->private;
b5470dc5
DW
5856 int err;
5857
c41d4ac4 5858 if (size <= 16 || size > 32768)
3f294f4f 5859 return -EINVAL;
486f0644 5860
edbe83ab 5861 conf->min_nr_stripes = size;
486f0644
N
5862 while (size < conf->max_nr_stripes &&
5863 drop_one_stripe(conf))
5864 ;
5865
edbe83ab 5866
b5470dc5
DW
5867 err = md_allow_write(mddev);
5868 if (err)
5869 return err;
486f0644
N
5870
5871 while (size > conf->max_nr_stripes)
5872 if (!grow_one_stripe(conf, GFP_KERNEL))
5873 break;
5874
c41d4ac4
N
5875 return 0;
5876}
5877EXPORT_SYMBOL(raid5_set_cache_size);
5878
5879static ssize_t
fd01b88c 5880raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5881{
6791875e 5882 struct r5conf *conf;
c41d4ac4
N
5883 unsigned long new;
5884 int err;
5885
5886 if (len >= PAGE_SIZE)
5887 return -EINVAL;
b29bebd6 5888 if (kstrtoul(page, 10, &new))
c41d4ac4 5889 return -EINVAL;
6791875e 5890 err = mddev_lock(mddev);
c41d4ac4
N
5891 if (err)
5892 return err;
6791875e
N
5893 conf = mddev->private;
5894 if (!conf)
5895 err = -ENODEV;
5896 else
5897 err = raid5_set_cache_size(mddev, new);
5898 mddev_unlock(mddev);
5899
5900 return err ?: len;
3f294f4f 5901}
007583c9 5902
96de1e66
N
5903static struct md_sysfs_entry
5904raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5905 raid5_show_stripe_cache_size,
5906 raid5_store_stripe_cache_size);
3f294f4f 5907
d06f191f
MS
5908static ssize_t
5909raid5_show_rmw_level(struct mddev *mddev, char *page)
5910{
5911 struct r5conf *conf = mddev->private;
5912 if (conf)
5913 return sprintf(page, "%d\n", conf->rmw_level);
5914 else
5915 return 0;
5916}
5917
5918static ssize_t
5919raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5920{
5921 struct r5conf *conf = mddev->private;
5922 unsigned long new;
5923
5924 if (!conf)
5925 return -ENODEV;
5926
5927 if (len >= PAGE_SIZE)
5928 return -EINVAL;
5929
5930 if (kstrtoul(page, 10, &new))
5931 return -EINVAL;
5932
5933 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5934 return -EINVAL;
5935
5936 if (new != PARITY_DISABLE_RMW &&
5937 new != PARITY_ENABLE_RMW &&
5938 new != PARITY_PREFER_RMW)
5939 return -EINVAL;
5940
5941 conf->rmw_level = new;
5942 return len;
5943}
5944
5945static struct md_sysfs_entry
5946raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5947 raid5_show_rmw_level,
5948 raid5_store_rmw_level);
5949
5950
8b3e6cdc 5951static ssize_t
fd01b88c 5952raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 5953{
7b1485ba
N
5954 struct r5conf *conf;
5955 int ret = 0;
5956 spin_lock(&mddev->lock);
5957 conf = mddev->private;
8b3e6cdc 5958 if (conf)
7b1485ba
N
5959 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5960 spin_unlock(&mddev->lock);
5961 return ret;
8b3e6cdc
DW
5962}
5963
5964static ssize_t
fd01b88c 5965raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 5966{
6791875e 5967 struct r5conf *conf;
4ef197d8 5968 unsigned long new;
6791875e
N
5969 int err;
5970
8b3e6cdc
DW
5971 if (len >= PAGE_SIZE)
5972 return -EINVAL;
b29bebd6 5973 if (kstrtoul(page, 10, &new))
8b3e6cdc 5974 return -EINVAL;
6791875e
N
5975
5976 err = mddev_lock(mddev);
5977 if (err)
5978 return err;
5979 conf = mddev->private;
5980 if (!conf)
5981 err = -ENODEV;
edbe83ab 5982 else if (new > conf->min_nr_stripes)
6791875e
N
5983 err = -EINVAL;
5984 else
5985 conf->bypass_threshold = new;
5986 mddev_unlock(mddev);
5987 return err ?: len;
8b3e6cdc
DW
5988}
5989
5990static struct md_sysfs_entry
5991raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5992 S_IRUGO | S_IWUSR,
5993 raid5_show_preread_threshold,
5994 raid5_store_preread_threshold);
5995
d592a996
SL
5996static ssize_t
5997raid5_show_skip_copy(struct mddev *mddev, char *page)
5998{
7b1485ba
N
5999 struct r5conf *conf;
6000 int ret = 0;
6001 spin_lock(&mddev->lock);
6002 conf = mddev->private;
d592a996 6003 if (conf)
7b1485ba
N
6004 ret = sprintf(page, "%d\n", conf->skip_copy);
6005 spin_unlock(&mddev->lock);
6006 return ret;
d592a996
SL
6007}
6008
6009static ssize_t
6010raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6011{
6791875e 6012 struct r5conf *conf;
d592a996 6013 unsigned long new;
6791875e
N
6014 int err;
6015
d592a996
SL
6016 if (len >= PAGE_SIZE)
6017 return -EINVAL;
d592a996
SL
6018 if (kstrtoul(page, 10, &new))
6019 return -EINVAL;
6020 new = !!new;
6791875e
N
6021
6022 err = mddev_lock(mddev);
6023 if (err)
6024 return err;
6025 conf = mddev->private;
6026 if (!conf)
6027 err = -ENODEV;
6028 else if (new != conf->skip_copy) {
6029 mddev_suspend(mddev);
6030 conf->skip_copy = new;
6031 if (new)
6032 mddev->queue->backing_dev_info.capabilities |=
6033 BDI_CAP_STABLE_WRITES;
6034 else
6035 mddev->queue->backing_dev_info.capabilities &=
6036 ~BDI_CAP_STABLE_WRITES;
6037 mddev_resume(mddev);
6038 }
6039 mddev_unlock(mddev);
6040 return err ?: len;
d592a996
SL
6041}
6042
6043static struct md_sysfs_entry
6044raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6045 raid5_show_skip_copy,
6046 raid5_store_skip_copy);
6047
3f294f4f 6048static ssize_t
fd01b88c 6049stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6050{
d1688a6d 6051 struct r5conf *conf = mddev->private;
96de1e66
N
6052 if (conf)
6053 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6054 else
6055 return 0;
3f294f4f
N
6056}
6057
96de1e66
N
6058static struct md_sysfs_entry
6059raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6060
b721420e
SL
6061static ssize_t
6062raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6063{
7b1485ba
N
6064 struct r5conf *conf;
6065 int ret = 0;
6066 spin_lock(&mddev->lock);
6067 conf = mddev->private;
b721420e 6068 if (conf)
7b1485ba
N
6069 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6070 spin_unlock(&mddev->lock);
6071 return ret;
b721420e
SL
6072}
6073
60aaf933 6074static int alloc_thread_groups(struct r5conf *conf, int cnt,
6075 int *group_cnt,
6076 int *worker_cnt_per_group,
6077 struct r5worker_group **worker_groups);
b721420e
SL
6078static ssize_t
6079raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6080{
6791875e 6081 struct r5conf *conf;
b721420e
SL
6082 unsigned long new;
6083 int err;
60aaf933 6084 struct r5worker_group *new_groups, *old_groups;
6085 int group_cnt, worker_cnt_per_group;
b721420e
SL
6086
6087 if (len >= PAGE_SIZE)
6088 return -EINVAL;
b721420e
SL
6089 if (kstrtoul(page, 10, &new))
6090 return -EINVAL;
6091
6791875e
N
6092 err = mddev_lock(mddev);
6093 if (err)
6094 return err;
6095 conf = mddev->private;
6096 if (!conf)
6097 err = -ENODEV;
6098 else if (new != conf->worker_cnt_per_group) {
6099 mddev_suspend(mddev);
b721420e 6100
6791875e
N
6101 old_groups = conf->worker_groups;
6102 if (old_groups)
6103 flush_workqueue(raid5_wq);
d206dcfa 6104
6791875e
N
6105 err = alloc_thread_groups(conf, new,
6106 &group_cnt, &worker_cnt_per_group,
6107 &new_groups);
6108 if (!err) {
6109 spin_lock_irq(&conf->device_lock);
6110 conf->group_cnt = group_cnt;
6111 conf->worker_cnt_per_group = worker_cnt_per_group;
6112 conf->worker_groups = new_groups;
6113 spin_unlock_irq(&conf->device_lock);
b721420e 6114
6791875e
N
6115 if (old_groups)
6116 kfree(old_groups[0].workers);
6117 kfree(old_groups);
6118 }
6119 mddev_resume(mddev);
b721420e 6120 }
6791875e 6121 mddev_unlock(mddev);
b721420e 6122
6791875e 6123 return err ?: len;
b721420e
SL
6124}
6125
6126static struct md_sysfs_entry
6127raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6128 raid5_show_group_thread_cnt,
6129 raid5_store_group_thread_cnt);
6130
007583c9 6131static struct attribute *raid5_attrs[] = {
3f294f4f
N
6132 &raid5_stripecache_size.attr,
6133 &raid5_stripecache_active.attr,
8b3e6cdc 6134 &raid5_preread_bypass_threshold.attr,
b721420e 6135 &raid5_group_thread_cnt.attr,
d592a996 6136 &raid5_skip_copy.attr,
d06f191f 6137 &raid5_rmw_level.attr,
3f294f4f
N
6138 NULL,
6139};
007583c9
N
6140static struct attribute_group raid5_attrs_group = {
6141 .name = NULL,
6142 .attrs = raid5_attrs,
3f294f4f
N
6143};
6144
60aaf933 6145static int alloc_thread_groups(struct r5conf *conf, int cnt,
6146 int *group_cnt,
6147 int *worker_cnt_per_group,
6148 struct r5worker_group **worker_groups)
851c30c9 6149{
566c09c5 6150 int i, j, k;
851c30c9
SL
6151 ssize_t size;
6152 struct r5worker *workers;
6153
60aaf933 6154 *worker_cnt_per_group = cnt;
851c30c9 6155 if (cnt == 0) {
60aaf933 6156 *group_cnt = 0;
6157 *worker_groups = NULL;
851c30c9
SL
6158 return 0;
6159 }
60aaf933 6160 *group_cnt = num_possible_nodes();
851c30c9 6161 size = sizeof(struct r5worker) * cnt;
60aaf933 6162 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6163 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6164 *group_cnt, GFP_NOIO);
6165 if (!*worker_groups || !workers) {
851c30c9 6166 kfree(workers);
60aaf933 6167 kfree(*worker_groups);
851c30c9
SL
6168 return -ENOMEM;
6169 }
6170
60aaf933 6171 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6172 struct r5worker_group *group;
6173
0c775d52 6174 group = &(*worker_groups)[i];
851c30c9
SL
6175 INIT_LIST_HEAD(&group->handle_list);
6176 group->conf = conf;
6177 group->workers = workers + i * cnt;
6178
6179 for (j = 0; j < cnt; j++) {
566c09c5
SL
6180 struct r5worker *worker = group->workers + j;
6181 worker->group = group;
6182 INIT_WORK(&worker->work, raid5_do_work);
6183
6184 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6185 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6186 }
6187 }
6188
6189 return 0;
6190}
6191
6192static void free_thread_groups(struct r5conf *conf)
6193{
6194 if (conf->worker_groups)
6195 kfree(conf->worker_groups[0].workers);
6196 kfree(conf->worker_groups);
6197 conf->worker_groups = NULL;
6198}
6199
80c3a6ce 6200static sector_t
fd01b88c 6201raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6202{
d1688a6d 6203 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6204
6205 if (!sectors)
6206 sectors = mddev->dev_sectors;
5e5e3e78 6207 if (!raid_disks)
7ec05478 6208 /* size is defined by the smallest of previous and new size */
5e5e3e78 6209 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6210
9d8f0363 6211 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 6212 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
6213 return sectors * (raid_disks - conf->max_degraded);
6214}
6215
789b5e03
ON
6216static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6217{
6218 safe_put_page(percpu->spare_page);
46d5b785 6219 if (percpu->scribble)
6220 flex_array_free(percpu->scribble);
789b5e03
ON
6221 percpu->spare_page = NULL;
6222 percpu->scribble = NULL;
6223}
6224
6225static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6226{
6227 if (conf->level == 6 && !percpu->spare_page)
6228 percpu->spare_page = alloc_page(GFP_KERNEL);
6229 if (!percpu->scribble)
46d5b785 6230 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6231 conf->previous_raid_disks), conf->chunk_sectors /
6232 STRIPE_SECTORS, GFP_KERNEL);
789b5e03
ON
6233
6234 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6235 free_scratch_buffer(conf, percpu);
6236 return -ENOMEM;
6237 }
6238
6239 return 0;
6240}
6241
d1688a6d 6242static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6243{
36d1c647
DW
6244 unsigned long cpu;
6245
6246 if (!conf->percpu)
6247 return;
6248
36d1c647
DW
6249#ifdef CONFIG_HOTPLUG_CPU
6250 unregister_cpu_notifier(&conf->cpu_notify);
6251#endif
789b5e03
ON
6252
6253 get_online_cpus();
6254 for_each_possible_cpu(cpu)
6255 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6256 put_online_cpus();
6257
6258 free_percpu(conf->percpu);
6259}
6260
d1688a6d 6261static void free_conf(struct r5conf *conf)
95fc17aa 6262{
edbe83ab
N
6263 if (conf->shrinker.seeks)
6264 unregister_shrinker(&conf->shrinker);
851c30c9 6265 free_thread_groups(conf);
95fc17aa 6266 shrink_stripes(conf);
36d1c647 6267 raid5_free_percpu(conf);
95fc17aa
DW
6268 kfree(conf->disks);
6269 kfree(conf->stripe_hashtbl);
6270 kfree(conf);
6271}
6272
36d1c647
DW
6273#ifdef CONFIG_HOTPLUG_CPU
6274static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6275 void *hcpu)
6276{
d1688a6d 6277 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6278 long cpu = (long)hcpu;
6279 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6280
6281 switch (action) {
6282 case CPU_UP_PREPARE:
6283 case CPU_UP_PREPARE_FROZEN:
789b5e03 6284 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6285 pr_err("%s: failed memory allocation for cpu%ld\n",
6286 __func__, cpu);
55af6bb5 6287 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6288 }
6289 break;
6290 case CPU_DEAD:
6291 case CPU_DEAD_FROZEN:
789b5e03 6292 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6293 break;
6294 default:
6295 break;
6296 }
6297 return NOTIFY_OK;
6298}
6299#endif
6300
d1688a6d 6301static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6302{
6303 unsigned long cpu;
789b5e03 6304 int err = 0;
36d1c647 6305
789b5e03
ON
6306 conf->percpu = alloc_percpu(struct raid5_percpu);
6307 if (!conf->percpu)
36d1c647 6308 return -ENOMEM;
789b5e03
ON
6309
6310#ifdef CONFIG_HOTPLUG_CPU
6311 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6312 conf->cpu_notify.priority = 0;
6313 err = register_cpu_notifier(&conf->cpu_notify);
6314 if (err)
6315 return err;
6316#endif
36d1c647
DW
6317
6318 get_online_cpus();
36d1c647 6319 for_each_present_cpu(cpu) {
789b5e03
ON
6320 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6321 if (err) {
6322 pr_err("%s: failed memory allocation for cpu%ld\n",
6323 __func__, cpu);
36d1c647
DW
6324 break;
6325 }
36d1c647 6326 }
36d1c647
DW
6327 put_online_cpus();
6328
6329 return err;
6330}
6331
edbe83ab
N
6332static unsigned long raid5_cache_scan(struct shrinker *shrink,
6333 struct shrink_control *sc)
6334{
6335 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6336 int ret = 0;
6337 while (ret < sc->nr_to_scan) {
6338 if (drop_one_stripe(conf) == 0)
6339 return SHRINK_STOP;
6340 ret++;
6341 }
6342 return ret;
6343}
6344
6345static unsigned long raid5_cache_count(struct shrinker *shrink,
6346 struct shrink_control *sc)
6347{
6348 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6349
6350 if (conf->max_nr_stripes < conf->min_nr_stripes)
6351 /* unlikely, but not impossible */
6352 return 0;
6353 return conf->max_nr_stripes - conf->min_nr_stripes;
6354}
6355
d1688a6d 6356static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6357{
d1688a6d 6358 struct r5conf *conf;
5e5e3e78 6359 int raid_disk, memory, max_disks;
3cb03002 6360 struct md_rdev *rdev;
1da177e4 6361 struct disk_info *disk;
0232605d 6362 char pers_name[6];
566c09c5 6363 int i;
60aaf933 6364 int group_cnt, worker_cnt_per_group;
6365 struct r5worker_group *new_group;
1da177e4 6366
91adb564
N
6367 if (mddev->new_level != 5
6368 && mddev->new_level != 4
6369 && mddev->new_level != 6) {
0c55e022 6370 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6371 mdname(mddev), mddev->new_level);
6372 return ERR_PTR(-EIO);
1da177e4 6373 }
91adb564
N
6374 if ((mddev->new_level == 5
6375 && !algorithm_valid_raid5(mddev->new_layout)) ||
6376 (mddev->new_level == 6
6377 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6378 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6379 mdname(mddev), mddev->new_layout);
6380 return ERR_PTR(-EIO);
99c0fb5f 6381 }
91adb564 6382 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6383 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6384 mdname(mddev), mddev->raid_disks);
6385 return ERR_PTR(-EINVAL);
4bbf3771
N
6386 }
6387
664e7c41
AN
6388 if (!mddev->new_chunk_sectors ||
6389 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6390 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6391 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6392 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6393 return ERR_PTR(-EINVAL);
f6705578
N
6394 }
6395
d1688a6d 6396 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6397 if (conf == NULL)
1da177e4 6398 goto abort;
851c30c9 6399 /* Don't enable multi-threading by default*/
60aaf933 6400 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6401 &new_group)) {
6402 conf->group_cnt = group_cnt;
6403 conf->worker_cnt_per_group = worker_cnt_per_group;
6404 conf->worker_groups = new_group;
6405 } else
851c30c9 6406 goto abort;
f5efd45a 6407 spin_lock_init(&conf->device_lock);
c46501b2 6408 seqcount_init(&conf->gen_lock);
f5efd45a
DW
6409 init_waitqueue_head(&conf->wait_for_stripe);
6410 init_waitqueue_head(&conf->wait_for_overlap);
6411 INIT_LIST_HEAD(&conf->handle_list);
6412 INIT_LIST_HEAD(&conf->hold_list);
6413 INIT_LIST_HEAD(&conf->delayed_list);
6414 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6415 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6416 atomic_set(&conf->active_stripes, 0);
6417 atomic_set(&conf->preread_active_stripes, 0);
6418 atomic_set(&conf->active_aligned_reads, 0);
6419 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6420 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6421
6422 conf->raid_disks = mddev->raid_disks;
6423 if (mddev->reshape_position == MaxSector)
6424 conf->previous_raid_disks = mddev->raid_disks;
6425 else
f6705578 6426 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6427 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6428
5e5e3e78 6429 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6430 GFP_KERNEL);
6431 if (!conf->disks)
6432 goto abort;
9ffae0cf 6433
1da177e4
LT
6434 conf->mddev = mddev;
6435
fccddba0 6436 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6437 goto abort;
1da177e4 6438
566c09c5
SL
6439 /* We init hash_locks[0] separately to that it can be used
6440 * as the reference lock in the spin_lock_nest_lock() call
6441 * in lock_all_device_hash_locks_irq in order to convince
6442 * lockdep that we know what we are doing.
6443 */
6444 spin_lock_init(conf->hash_locks);
6445 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6446 spin_lock_init(conf->hash_locks + i);
6447
6448 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6449 INIT_LIST_HEAD(conf->inactive_list + i);
6450
6451 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6452 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6453
36d1c647 6454 conf->level = mddev->new_level;
46d5b785 6455 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6456 if (raid5_alloc_percpu(conf) != 0)
6457 goto abort;
6458
0c55e022 6459 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6460
dafb20fa 6461 rdev_for_each(rdev, mddev) {
1da177e4 6462 raid_disk = rdev->raid_disk;
5e5e3e78 6463 if (raid_disk >= max_disks
1da177e4
LT
6464 || raid_disk < 0)
6465 continue;
6466 disk = conf->disks + raid_disk;
6467
17045f52
N
6468 if (test_bit(Replacement, &rdev->flags)) {
6469 if (disk->replacement)
6470 goto abort;
6471 disk->replacement = rdev;
6472 } else {
6473 if (disk->rdev)
6474 goto abort;
6475 disk->rdev = rdev;
6476 }
1da177e4 6477
b2d444d7 6478 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6479 char b[BDEVNAME_SIZE];
0c55e022
N
6480 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6481 " disk %d\n",
6482 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6483 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6484 /* Cannot rely on bitmap to complete recovery */
6485 conf->fullsync = 1;
1da177e4
LT
6486 }
6487
91adb564 6488 conf->level = mddev->new_level;
584acdd4 6489 if (conf->level == 6) {
16a53ecc 6490 conf->max_degraded = 2;
584acdd4
MS
6491 if (raid6_call.xor_syndrome)
6492 conf->rmw_level = PARITY_ENABLE_RMW;
6493 else
6494 conf->rmw_level = PARITY_DISABLE_RMW;
6495 } else {
16a53ecc 6496 conf->max_degraded = 1;
584acdd4
MS
6497 conf->rmw_level = PARITY_ENABLE_RMW;
6498 }
91adb564 6499 conf->algorithm = mddev->new_layout;
fef9c61f 6500 conf->reshape_progress = mddev->reshape_position;
e183eaed 6501 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6502 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
6503 conf->prev_algo = mddev->layout;
6504 }
1da177e4 6505
edbe83ab
N
6506 conf->min_nr_stripes = NR_STRIPES;
6507 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6508 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6509 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6510 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6511 printk(KERN_ERR
0c55e022
N
6512 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6513 mdname(mddev), memory);
91adb564
N
6514 goto abort;
6515 } else
0c55e022
N
6516 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6517 mdname(mddev), memory);
edbe83ab
N
6518 /*
6519 * Losing a stripe head costs more than the time to refill it,
6520 * it reduces the queue depth and so can hurt throughput.
6521 * So set it rather large, scaled by number of devices.
6522 */
6523 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6524 conf->shrinker.scan_objects = raid5_cache_scan;
6525 conf->shrinker.count_objects = raid5_cache_count;
6526 conf->shrinker.batch = 128;
6527 conf->shrinker.flags = 0;
6528 register_shrinker(&conf->shrinker);
1da177e4 6529
0232605d
N
6530 sprintf(pers_name, "raid%d", mddev->new_level);
6531 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6532 if (!conf->thread) {
6533 printk(KERN_ERR
0c55e022 6534 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6535 mdname(mddev));
16a53ecc
N
6536 goto abort;
6537 }
91adb564
N
6538
6539 return conf;
6540
6541 abort:
6542 if (conf) {
95fc17aa 6543 free_conf(conf);
91adb564
N
6544 return ERR_PTR(-EIO);
6545 } else
6546 return ERR_PTR(-ENOMEM);
6547}
6548
c148ffdc
N
6549static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6550{
6551 switch (algo) {
6552 case ALGORITHM_PARITY_0:
6553 if (raid_disk < max_degraded)
6554 return 1;
6555 break;
6556 case ALGORITHM_PARITY_N:
6557 if (raid_disk >= raid_disks - max_degraded)
6558 return 1;
6559 break;
6560 case ALGORITHM_PARITY_0_6:
f72ffdd6 6561 if (raid_disk == 0 ||
c148ffdc
N
6562 raid_disk == raid_disks - 1)
6563 return 1;
6564 break;
6565 case ALGORITHM_LEFT_ASYMMETRIC_6:
6566 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6567 case ALGORITHM_LEFT_SYMMETRIC_6:
6568 case ALGORITHM_RIGHT_SYMMETRIC_6:
6569 if (raid_disk == raid_disks - 1)
6570 return 1;
6571 }
6572 return 0;
6573}
6574
fd01b88c 6575static int run(struct mddev *mddev)
91adb564 6576{
d1688a6d 6577 struct r5conf *conf;
9f7c2220 6578 int working_disks = 0;
c148ffdc 6579 int dirty_parity_disks = 0;
3cb03002 6580 struct md_rdev *rdev;
c148ffdc 6581 sector_t reshape_offset = 0;
17045f52 6582 int i;
b5254dd5
N
6583 long long min_offset_diff = 0;
6584 int first = 1;
91adb564 6585
8c6ac868 6586 if (mddev->recovery_cp != MaxSector)
0c55e022 6587 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6588 " -- starting background reconstruction\n",
6589 mdname(mddev));
b5254dd5
N
6590
6591 rdev_for_each(rdev, mddev) {
6592 long long diff;
6593 if (rdev->raid_disk < 0)
6594 continue;
6595 diff = (rdev->new_data_offset - rdev->data_offset);
6596 if (first) {
6597 min_offset_diff = diff;
6598 first = 0;
6599 } else if (mddev->reshape_backwards &&
6600 diff < min_offset_diff)
6601 min_offset_diff = diff;
6602 else if (!mddev->reshape_backwards &&
6603 diff > min_offset_diff)
6604 min_offset_diff = diff;
6605 }
6606
91adb564
N
6607 if (mddev->reshape_position != MaxSector) {
6608 /* Check that we can continue the reshape.
b5254dd5
N
6609 * Difficulties arise if the stripe we would write to
6610 * next is at or after the stripe we would read from next.
6611 * For a reshape that changes the number of devices, this
6612 * is only possible for a very short time, and mdadm makes
6613 * sure that time appears to have past before assembling
6614 * the array. So we fail if that time hasn't passed.
6615 * For a reshape that keeps the number of devices the same
6616 * mdadm must be monitoring the reshape can keeping the
6617 * critical areas read-only and backed up. It will start
6618 * the array in read-only mode, so we check for that.
91adb564
N
6619 */
6620 sector_t here_new, here_old;
6621 int old_disks;
18b00334 6622 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 6623
88ce4930 6624 if (mddev->new_level != mddev->level) {
0c55e022 6625 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6626 "required - aborting.\n",
6627 mdname(mddev));
6628 return -EINVAL;
6629 }
91adb564
N
6630 old_disks = mddev->raid_disks - mddev->delta_disks;
6631 /* reshape_position must be on a new-stripe boundary, and one
6632 * further up in new geometry must map after here in old
6633 * geometry.
6634 */
6635 here_new = mddev->reshape_position;
664e7c41 6636 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 6637 (mddev->raid_disks - max_degraded))) {
0c55e022
N
6638 printk(KERN_ERR "md/raid:%s: reshape_position not "
6639 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6640 return -EINVAL;
6641 }
c148ffdc 6642 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
6643 /* here_new is the stripe we will write to */
6644 here_old = mddev->reshape_position;
9d8f0363 6645 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
6646 (old_disks-max_degraded));
6647 /* here_old is the first stripe that we might need to read
6648 * from */
67ac6011 6649 if (mddev->delta_disks == 0) {
b5254dd5
N
6650 if ((here_new * mddev->new_chunk_sectors !=
6651 here_old * mddev->chunk_sectors)) {
6652 printk(KERN_ERR "md/raid:%s: reshape position is"
6653 " confused - aborting\n", mdname(mddev));
6654 return -EINVAL;
6655 }
67ac6011 6656 /* We cannot be sure it is safe to start an in-place
b5254dd5 6657 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6658 * and taking constant backups.
6659 * mdadm always starts a situation like this in
6660 * readonly mode so it can take control before
6661 * allowing any writes. So just check for that.
6662 */
b5254dd5
N
6663 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6664 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6665 /* not really in-place - so OK */;
6666 else if (mddev->ro == 0) {
6667 printk(KERN_ERR "md/raid:%s: in-place reshape "
6668 "must be started in read-only mode "
6669 "- aborting\n",
0c55e022 6670 mdname(mddev));
67ac6011
N
6671 return -EINVAL;
6672 }
2c810cdd 6673 } else if (mddev->reshape_backwards
b5254dd5 6674 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
6675 here_old * mddev->chunk_sectors)
6676 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 6677 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 6678 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6679 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6680 "auto-recovery - aborting.\n",
6681 mdname(mddev));
91adb564
N
6682 return -EINVAL;
6683 }
0c55e022
N
6684 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6685 mdname(mddev));
91adb564
N
6686 /* OK, we should be able to continue; */
6687 } else {
6688 BUG_ON(mddev->level != mddev->new_level);
6689 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6690 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6691 BUG_ON(mddev->delta_disks != 0);
1da177e4 6692 }
91adb564 6693
245f46c2
N
6694 if (mddev->private == NULL)
6695 conf = setup_conf(mddev);
6696 else
6697 conf = mddev->private;
6698
91adb564
N
6699 if (IS_ERR(conf))
6700 return PTR_ERR(conf);
6701
b5254dd5 6702 conf->min_offset_diff = min_offset_diff;
91adb564
N
6703 mddev->thread = conf->thread;
6704 conf->thread = NULL;
6705 mddev->private = conf;
6706
17045f52
N
6707 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6708 i++) {
6709 rdev = conf->disks[i].rdev;
6710 if (!rdev && conf->disks[i].replacement) {
6711 /* The replacement is all we have yet */
6712 rdev = conf->disks[i].replacement;
6713 conf->disks[i].replacement = NULL;
6714 clear_bit(Replacement, &rdev->flags);
6715 conf->disks[i].rdev = rdev;
6716 }
6717 if (!rdev)
c148ffdc 6718 continue;
17045f52
N
6719 if (conf->disks[i].replacement &&
6720 conf->reshape_progress != MaxSector) {
6721 /* replacements and reshape simply do not mix. */
6722 printk(KERN_ERR "md: cannot handle concurrent "
6723 "replacement and reshape.\n");
6724 goto abort;
6725 }
2f115882 6726 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6727 working_disks++;
2f115882
N
6728 continue;
6729 }
c148ffdc
N
6730 /* This disc is not fully in-sync. However if it
6731 * just stored parity (beyond the recovery_offset),
6732 * when we don't need to be concerned about the
6733 * array being dirty.
6734 * When reshape goes 'backwards', we never have
6735 * partially completed devices, so we only need
6736 * to worry about reshape going forwards.
6737 */
6738 /* Hack because v0.91 doesn't store recovery_offset properly. */
6739 if (mddev->major_version == 0 &&
6740 mddev->minor_version > 90)
6741 rdev->recovery_offset = reshape_offset;
5026d7a9 6742
c148ffdc
N
6743 if (rdev->recovery_offset < reshape_offset) {
6744 /* We need to check old and new layout */
6745 if (!only_parity(rdev->raid_disk,
6746 conf->algorithm,
6747 conf->raid_disks,
6748 conf->max_degraded))
6749 continue;
6750 }
6751 if (!only_parity(rdev->raid_disk,
6752 conf->prev_algo,
6753 conf->previous_raid_disks,
6754 conf->max_degraded))
6755 continue;
6756 dirty_parity_disks++;
6757 }
91adb564 6758
17045f52
N
6759 /*
6760 * 0 for a fully functional array, 1 or 2 for a degraded array.
6761 */
908f4fbd 6762 mddev->degraded = calc_degraded(conf);
91adb564 6763
674806d6 6764 if (has_failed(conf)) {
0c55e022 6765 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6766 " (%d/%d failed)\n",
02c2de8c 6767 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6768 goto abort;
6769 }
6770
91adb564 6771 /* device size must be a multiple of chunk size */
9d8f0363 6772 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6773 mddev->resync_max_sectors = mddev->dev_sectors;
6774
c148ffdc 6775 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6776 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6777 if (mddev->ok_start_degraded)
6778 printk(KERN_WARNING
0c55e022
N
6779 "md/raid:%s: starting dirty degraded array"
6780 " - data corruption possible.\n",
6ff8d8ec
N
6781 mdname(mddev));
6782 else {
6783 printk(KERN_ERR
0c55e022 6784 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6785 mdname(mddev));
6786 goto abort;
6787 }
1da177e4
LT
6788 }
6789
1da177e4 6790 if (mddev->degraded == 0)
0c55e022
N
6791 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6792 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6793 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6794 mddev->new_layout);
1da177e4 6795 else
0c55e022
N
6796 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6797 " out of %d devices, algorithm %d\n",
6798 mdname(mddev), conf->level,
6799 mddev->raid_disks - mddev->degraded,
6800 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6801
6802 print_raid5_conf(conf);
6803
fef9c61f 6804 if (conf->reshape_progress != MaxSector) {
fef9c61f 6805 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6806 atomic_set(&conf->reshape_stripes, 0);
6807 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6808 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6809 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6810 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6811 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6812 "reshape");
f6705578
N
6813 }
6814
1da177e4 6815 /* Ok, everything is just fine now */
a64c876f
N
6816 if (mddev->to_remove == &raid5_attrs_group)
6817 mddev->to_remove = NULL;
00bcb4ac
N
6818 else if (mddev->kobj.sd &&
6819 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6820 printk(KERN_WARNING
4a5add49 6821 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6822 mdname(mddev));
4a5add49 6823 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6824
4a5add49 6825 if (mddev->queue) {
9f7c2220 6826 int chunk_size;
620125f2 6827 bool discard_supported = true;
4a5add49
N
6828 /* read-ahead size must cover two whole stripes, which
6829 * is 2 * (datadisks) * chunksize where 'n' is the
6830 * number of raid devices
6831 */
6832 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6833 int stripe = data_disks *
6834 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6835 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6836 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6837
9f7c2220
N
6838 chunk_size = mddev->chunk_sectors << 9;
6839 blk_queue_io_min(mddev->queue, chunk_size);
6840 blk_queue_io_opt(mddev->queue, chunk_size *
6841 (conf->raid_disks - conf->max_degraded));
c78afc62 6842 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6843 /*
6844 * We can only discard a whole stripe. It doesn't make sense to
6845 * discard data disk but write parity disk
6846 */
6847 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6848 /* Round up to power of 2, as discard handling
6849 * currently assumes that */
6850 while ((stripe-1) & stripe)
6851 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6852 mddev->queue->limits.discard_alignment = stripe;
6853 mddev->queue->limits.discard_granularity = stripe;
6854 /*
6855 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6856 * guarantee discard_zeroes_data
620125f2
SL
6857 */
6858 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6859
5026d7a9
PA
6860 blk_queue_max_write_same_sectors(mddev->queue, 0);
6861
05616be5 6862 rdev_for_each(rdev, mddev) {
9f7c2220
N
6863 disk_stack_limits(mddev->gendisk, rdev->bdev,
6864 rdev->data_offset << 9);
05616be5
N
6865 disk_stack_limits(mddev->gendisk, rdev->bdev,
6866 rdev->new_data_offset << 9);
620125f2
SL
6867 /*
6868 * discard_zeroes_data is required, otherwise data
6869 * could be lost. Consider a scenario: discard a stripe
6870 * (the stripe could be inconsistent if
6871 * discard_zeroes_data is 0); write one disk of the
6872 * stripe (the stripe could be inconsistent again
6873 * depending on which disks are used to calculate
6874 * parity); the disk is broken; The stripe data of this
6875 * disk is lost.
6876 */
6877 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6878 !bdev_get_queue(rdev->bdev)->
6879 limits.discard_zeroes_data)
6880 discard_supported = false;
8e0e99ba
N
6881 /* Unfortunately, discard_zeroes_data is not currently
6882 * a guarantee - just a hint. So we only allow DISCARD
6883 * if the sysadmin has confirmed that only safe devices
6884 * are in use by setting a module parameter.
6885 */
6886 if (!devices_handle_discard_safely) {
6887 if (discard_supported) {
6888 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6889 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6890 }
6891 discard_supported = false;
6892 }
05616be5 6893 }
620125f2
SL
6894
6895 if (discard_supported &&
6896 mddev->queue->limits.max_discard_sectors >= stripe &&
6897 mddev->queue->limits.discard_granularity >= stripe)
6898 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6899 mddev->queue);
6900 else
6901 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6902 mddev->queue);
9f7c2220 6903 }
23032a0e 6904
1da177e4
LT
6905 return 0;
6906abort:
01f96c0a 6907 md_unregister_thread(&mddev->thread);
e4f869d9
N
6908 print_raid5_conf(conf);
6909 free_conf(conf);
1da177e4 6910 mddev->private = NULL;
0c55e022 6911 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6912 return -EIO;
6913}
6914
afa0f557 6915static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 6916{
afa0f557 6917 struct r5conf *conf = priv;
1da177e4 6918
95fc17aa 6919 free_conf(conf);
a64c876f 6920 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6921}
6922
fd01b88c 6923static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6924{
d1688a6d 6925 struct r5conf *conf = mddev->private;
1da177e4
LT
6926 int i;
6927
9d8f0363
AN
6928 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6929 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 6930 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6931 for (i = 0; i < conf->raid_disks; i++)
6932 seq_printf (seq, "%s",
6933 conf->disks[i].rdev &&
b2d444d7 6934 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 6935 seq_printf (seq, "]");
1da177e4
LT
6936}
6937
d1688a6d 6938static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
6939{
6940 int i;
6941 struct disk_info *tmp;
6942
0c55e022 6943 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
6944 if (!conf) {
6945 printk("(conf==NULL)\n");
6946 return;
6947 }
0c55e022
N
6948 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6949 conf->raid_disks,
6950 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
6951
6952 for (i = 0; i < conf->raid_disks; i++) {
6953 char b[BDEVNAME_SIZE];
6954 tmp = conf->disks + i;
6955 if (tmp->rdev)
0c55e022
N
6956 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6957 i, !test_bit(Faulty, &tmp->rdev->flags),
6958 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
6959 }
6960}
6961
fd01b88c 6962static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
6963{
6964 int i;
d1688a6d 6965 struct r5conf *conf = mddev->private;
1da177e4 6966 struct disk_info *tmp;
6b965620
N
6967 int count = 0;
6968 unsigned long flags;
1da177e4
LT
6969
6970 for (i = 0; i < conf->raid_disks; i++) {
6971 tmp = conf->disks + i;
dd054fce
N
6972 if (tmp->replacement
6973 && tmp->replacement->recovery_offset == MaxSector
6974 && !test_bit(Faulty, &tmp->replacement->flags)
6975 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6976 /* Replacement has just become active. */
6977 if (!tmp->rdev
6978 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6979 count++;
6980 if (tmp->rdev) {
6981 /* Replaced device not technically faulty,
6982 * but we need to be sure it gets removed
6983 * and never re-added.
6984 */
6985 set_bit(Faulty, &tmp->rdev->flags);
6986 sysfs_notify_dirent_safe(
6987 tmp->rdev->sysfs_state);
6988 }
6989 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6990 } else if (tmp->rdev
70fffd0b 6991 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 6992 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 6993 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 6994 count++;
43c73ca4 6995 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
6996 }
6997 }
6b965620 6998 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 6999 mddev->degraded = calc_degraded(conf);
6b965620 7000 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7001 print_raid5_conf(conf);
6b965620 7002 return count;
1da177e4
LT
7003}
7004
b8321b68 7005static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7006{
d1688a6d 7007 struct r5conf *conf = mddev->private;
1da177e4 7008 int err = 0;
b8321b68 7009 int number = rdev->raid_disk;
657e3e4d 7010 struct md_rdev **rdevp;
1da177e4
LT
7011 struct disk_info *p = conf->disks + number;
7012
7013 print_raid5_conf(conf);
657e3e4d
N
7014 if (rdev == p->rdev)
7015 rdevp = &p->rdev;
7016 else if (rdev == p->replacement)
7017 rdevp = &p->replacement;
7018 else
7019 return 0;
7020
7021 if (number >= conf->raid_disks &&
7022 conf->reshape_progress == MaxSector)
7023 clear_bit(In_sync, &rdev->flags);
7024
7025 if (test_bit(In_sync, &rdev->flags) ||
7026 atomic_read(&rdev->nr_pending)) {
7027 err = -EBUSY;
7028 goto abort;
7029 }
7030 /* Only remove non-faulty devices if recovery
7031 * isn't possible.
7032 */
7033 if (!test_bit(Faulty, &rdev->flags) &&
7034 mddev->recovery_disabled != conf->recovery_disabled &&
7035 !has_failed(conf) &&
dd054fce 7036 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7037 number < conf->raid_disks) {
7038 err = -EBUSY;
7039 goto abort;
7040 }
7041 *rdevp = NULL;
7042 synchronize_rcu();
7043 if (atomic_read(&rdev->nr_pending)) {
7044 /* lost the race, try later */
7045 err = -EBUSY;
7046 *rdevp = rdev;
dd054fce
N
7047 } else if (p->replacement) {
7048 /* We must have just cleared 'rdev' */
7049 p->rdev = p->replacement;
7050 clear_bit(Replacement, &p->replacement->flags);
7051 smp_mb(); /* Make sure other CPUs may see both as identical
7052 * but will never see neither - if they are careful
7053 */
7054 p->replacement = NULL;
7055 clear_bit(WantReplacement, &rdev->flags);
7056 } else
7057 /* We might have just removed the Replacement as faulty-
7058 * clear the bit just in case
7059 */
7060 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7061abort:
7062
7063 print_raid5_conf(conf);
7064 return err;
7065}
7066
fd01b88c 7067static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7068{
d1688a6d 7069 struct r5conf *conf = mddev->private;
199050ea 7070 int err = -EEXIST;
1da177e4
LT
7071 int disk;
7072 struct disk_info *p;
6c2fce2e
NB
7073 int first = 0;
7074 int last = conf->raid_disks - 1;
1da177e4 7075
7f0da59b
N
7076 if (mddev->recovery_disabled == conf->recovery_disabled)
7077 return -EBUSY;
7078
dc10c643 7079 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7080 /* no point adding a device */
199050ea 7081 return -EINVAL;
1da177e4 7082
6c2fce2e
NB
7083 if (rdev->raid_disk >= 0)
7084 first = last = rdev->raid_disk;
1da177e4
LT
7085
7086 /*
16a53ecc
N
7087 * find the disk ... but prefer rdev->saved_raid_disk
7088 * if possible.
1da177e4 7089 */
16a53ecc 7090 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7091 rdev->saved_raid_disk >= first &&
16a53ecc 7092 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7093 first = rdev->saved_raid_disk;
7094
7095 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7096 p = conf->disks + disk;
7097 if (p->rdev == NULL) {
b2d444d7 7098 clear_bit(In_sync, &rdev->flags);
1da177e4 7099 rdev->raid_disk = disk;
199050ea 7100 err = 0;
72626685
N
7101 if (rdev->saved_raid_disk != disk)
7102 conf->fullsync = 1;
d6065f7b 7103 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7104 goto out;
1da177e4 7105 }
5cfb22a1
N
7106 }
7107 for (disk = first; disk <= last; disk++) {
7108 p = conf->disks + disk;
7bfec5f3
N
7109 if (test_bit(WantReplacement, &p->rdev->flags) &&
7110 p->replacement == NULL) {
7111 clear_bit(In_sync, &rdev->flags);
7112 set_bit(Replacement, &rdev->flags);
7113 rdev->raid_disk = disk;
7114 err = 0;
7115 conf->fullsync = 1;
7116 rcu_assign_pointer(p->replacement, rdev);
7117 break;
7118 }
7119 }
5cfb22a1 7120out:
1da177e4 7121 print_raid5_conf(conf);
199050ea 7122 return err;
1da177e4
LT
7123}
7124
fd01b88c 7125static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7126{
7127 /* no resync is happening, and there is enough space
7128 * on all devices, so we can resize.
7129 * We need to make sure resync covers any new space.
7130 * If the array is shrinking we should possibly wait until
7131 * any io in the removed space completes, but it hardly seems
7132 * worth it.
7133 */
a4a6125a 7134 sector_t newsize;
9d8f0363 7135 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
7136 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7137 if (mddev->external_size &&
7138 mddev->array_sectors > newsize)
b522adcd 7139 return -EINVAL;
a4a6125a
N
7140 if (mddev->bitmap) {
7141 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7142 if (ret)
7143 return ret;
7144 }
7145 md_set_array_sectors(mddev, newsize);
f233ea5c 7146 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7147 revalidate_disk(mddev->gendisk);
b098636c
N
7148 if (sectors > mddev->dev_sectors &&
7149 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7150 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7151 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7152 }
58c0fed4 7153 mddev->dev_sectors = sectors;
4b5c7ae8 7154 mddev->resync_max_sectors = sectors;
1da177e4
LT
7155 return 0;
7156}
7157
fd01b88c 7158static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7159{
7160 /* Can only proceed if there are plenty of stripe_heads.
7161 * We need a minimum of one full stripe,, and for sensible progress
7162 * it is best to have about 4 times that.
7163 * If we require 4 times, then the default 256 4K stripe_heads will
7164 * allow for chunk sizes up to 256K, which is probably OK.
7165 * If the chunk size is greater, user-space should request more
7166 * stripe_heads first.
7167 */
d1688a6d 7168 struct r5conf *conf = mddev->private;
01ee22b4 7169 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7170 > conf->min_nr_stripes ||
01ee22b4 7171 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7172 > conf->min_nr_stripes) {
0c55e022
N
7173 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7174 mdname(mddev),
01ee22b4
N
7175 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7176 / STRIPE_SIZE)*4);
7177 return 0;
7178 }
7179 return 1;
7180}
7181
fd01b88c 7182static int check_reshape(struct mddev *mddev)
29269553 7183{
d1688a6d 7184 struct r5conf *conf = mddev->private;
29269553 7185
88ce4930
N
7186 if (mddev->delta_disks == 0 &&
7187 mddev->new_layout == mddev->layout &&
664e7c41 7188 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7189 return 0; /* nothing to do */
674806d6 7190 if (has_failed(conf))
ec32a2bd 7191 return -EINVAL;
fdcfbbb6 7192 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7193 /* We might be able to shrink, but the devices must
7194 * be made bigger first.
7195 * For raid6, 4 is the minimum size.
7196 * Otherwise 2 is the minimum
7197 */
7198 int min = 2;
7199 if (mddev->level == 6)
7200 min = 4;
7201 if (mddev->raid_disks + mddev->delta_disks < min)
7202 return -EINVAL;
7203 }
29269553 7204
01ee22b4 7205 if (!check_stripe_cache(mddev))
29269553 7206 return -ENOSPC;
29269553 7207
e56108d6
N
7208 return resize_stripes(conf, (conf->previous_raid_disks
7209 + mddev->delta_disks));
63c70c4f
N
7210}
7211
fd01b88c 7212static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7213{
d1688a6d 7214 struct r5conf *conf = mddev->private;
3cb03002 7215 struct md_rdev *rdev;
63c70c4f 7216 int spares = 0;
c04be0aa 7217 unsigned long flags;
63c70c4f 7218
f416885e 7219 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7220 return -EBUSY;
7221
01ee22b4
N
7222 if (!check_stripe_cache(mddev))
7223 return -ENOSPC;
7224
30b67645
N
7225 if (has_failed(conf))
7226 return -EINVAL;
7227
c6563a8c 7228 rdev_for_each(rdev, mddev) {
469518a3
N
7229 if (!test_bit(In_sync, &rdev->flags)
7230 && !test_bit(Faulty, &rdev->flags))
29269553 7231 spares++;
c6563a8c 7232 }
63c70c4f 7233
f416885e 7234 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7235 /* Not enough devices even to make a degraded array
7236 * of that size
7237 */
7238 return -EINVAL;
7239
ec32a2bd
N
7240 /* Refuse to reduce size of the array. Any reductions in
7241 * array size must be through explicit setting of array_size
7242 * attribute.
7243 */
7244 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7245 < mddev->array_sectors) {
0c55e022 7246 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7247 "before number of disks\n", mdname(mddev));
7248 return -EINVAL;
7249 }
7250
f6705578 7251 atomic_set(&conf->reshape_stripes, 0);
29269553 7252 spin_lock_irq(&conf->device_lock);
c46501b2 7253 write_seqcount_begin(&conf->gen_lock);
29269553 7254 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7255 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7256 conf->prev_chunk_sectors = conf->chunk_sectors;
7257 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7258 conf->prev_algo = conf->algorithm;
7259 conf->algorithm = mddev->new_layout;
05616be5
N
7260 conf->generation++;
7261 /* Code that selects data_offset needs to see the generation update
7262 * if reshape_progress has been set - so a memory barrier needed.
7263 */
7264 smp_mb();
2c810cdd 7265 if (mddev->reshape_backwards)
fef9c61f
N
7266 conf->reshape_progress = raid5_size(mddev, 0, 0);
7267 else
7268 conf->reshape_progress = 0;
7269 conf->reshape_safe = conf->reshape_progress;
c46501b2 7270 write_seqcount_end(&conf->gen_lock);
29269553
N
7271 spin_unlock_irq(&conf->device_lock);
7272
4d77e3ba
N
7273 /* Now make sure any requests that proceeded on the assumption
7274 * the reshape wasn't running - like Discard or Read - have
7275 * completed.
7276 */
7277 mddev_suspend(mddev);
7278 mddev_resume(mddev);
7279
29269553
N
7280 /* Add some new drives, as many as will fit.
7281 * We know there are enough to make the newly sized array work.
3424bf6a
N
7282 * Don't add devices if we are reducing the number of
7283 * devices in the array. This is because it is not possible
7284 * to correctly record the "partially reconstructed" state of
7285 * such devices during the reshape and confusion could result.
29269553 7286 */
87a8dec9 7287 if (mddev->delta_disks >= 0) {
dafb20fa 7288 rdev_for_each(rdev, mddev)
87a8dec9
N
7289 if (rdev->raid_disk < 0 &&
7290 !test_bit(Faulty, &rdev->flags)) {
7291 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7292 if (rdev->raid_disk
9d4c7d87 7293 >= conf->previous_raid_disks)
87a8dec9 7294 set_bit(In_sync, &rdev->flags);
9d4c7d87 7295 else
87a8dec9 7296 rdev->recovery_offset = 0;
36fad858
NK
7297
7298 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7299 /* Failure here is OK */;
50da0840 7300 }
87a8dec9
N
7301 } else if (rdev->raid_disk >= conf->previous_raid_disks
7302 && !test_bit(Faulty, &rdev->flags)) {
7303 /* This is a spare that was manually added */
7304 set_bit(In_sync, &rdev->flags);
87a8dec9 7305 }
29269553 7306
87a8dec9
N
7307 /* When a reshape changes the number of devices,
7308 * ->degraded is measured against the larger of the
7309 * pre and post number of devices.
7310 */
ec32a2bd 7311 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7312 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7313 spin_unlock_irqrestore(&conf->device_lock, flags);
7314 }
63c70c4f 7315 mddev->raid_disks = conf->raid_disks;
e516402c 7316 mddev->reshape_position = conf->reshape_progress;
850b2b42 7317 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7318
29269553
N
7319 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7320 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7321 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7322 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7323 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7324 "reshape");
29269553
N
7325 if (!mddev->sync_thread) {
7326 mddev->recovery = 0;
7327 spin_lock_irq(&conf->device_lock);
ba8805b9 7328 write_seqcount_begin(&conf->gen_lock);
29269553 7329 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7330 mddev->new_chunk_sectors =
7331 conf->chunk_sectors = conf->prev_chunk_sectors;
7332 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7333 rdev_for_each(rdev, mddev)
7334 rdev->new_data_offset = rdev->data_offset;
7335 smp_wmb();
ba8805b9 7336 conf->generation --;
fef9c61f 7337 conf->reshape_progress = MaxSector;
1e3fa9bd 7338 mddev->reshape_position = MaxSector;
ba8805b9 7339 write_seqcount_end(&conf->gen_lock);
29269553
N
7340 spin_unlock_irq(&conf->device_lock);
7341 return -EAGAIN;
7342 }
c8f517c4 7343 conf->reshape_checkpoint = jiffies;
29269553
N
7344 md_wakeup_thread(mddev->sync_thread);
7345 md_new_event(mddev);
7346 return 0;
7347}
29269553 7348
ec32a2bd
N
7349/* This is called from the reshape thread and should make any
7350 * changes needed in 'conf'
7351 */
d1688a6d 7352static void end_reshape(struct r5conf *conf)
29269553 7353{
29269553 7354
f6705578 7355 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7356 struct md_rdev *rdev;
f6705578 7357
f6705578 7358 spin_lock_irq(&conf->device_lock);
cea9c228 7359 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7360 rdev_for_each(rdev, conf->mddev)
7361 rdev->data_offset = rdev->new_data_offset;
7362 smp_wmb();
fef9c61f 7363 conf->reshape_progress = MaxSector;
f6705578 7364 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7365 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7366
7367 /* read-ahead size must cover two whole stripes, which is
7368 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7369 */
4a5add49 7370 if (conf->mddev->queue) {
cea9c228 7371 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7372 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7373 / PAGE_SIZE);
16a53ecc
N
7374 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7375 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7376 }
29269553 7377 }
29269553
N
7378}
7379
ec32a2bd
N
7380/* This is called from the raid5d thread with mddev_lock held.
7381 * It makes config changes to the device.
7382 */
fd01b88c 7383static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7384{
d1688a6d 7385 struct r5conf *conf = mddev->private;
cea9c228
N
7386
7387 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7388
ec32a2bd
N
7389 if (mddev->delta_disks > 0) {
7390 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7391 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7392 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7393 } else {
7394 int d;
908f4fbd
N
7395 spin_lock_irq(&conf->device_lock);
7396 mddev->degraded = calc_degraded(conf);
7397 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7398 for (d = conf->raid_disks ;
7399 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7400 d++) {
3cb03002 7401 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7402 if (rdev)
7403 clear_bit(In_sync, &rdev->flags);
7404 rdev = conf->disks[d].replacement;
7405 if (rdev)
7406 clear_bit(In_sync, &rdev->flags);
1a67dde0 7407 }
cea9c228 7408 }
88ce4930 7409 mddev->layout = conf->algorithm;
09c9e5fa 7410 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7411 mddev->reshape_position = MaxSector;
7412 mddev->delta_disks = 0;
2c810cdd 7413 mddev->reshape_backwards = 0;
cea9c228
N
7414 }
7415}
7416
fd01b88c 7417static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7418{
d1688a6d 7419 struct r5conf *conf = mddev->private;
72626685
N
7420
7421 switch(state) {
e464eafd
N
7422 case 2: /* resume for a suspend */
7423 wake_up(&conf->wait_for_overlap);
7424 break;
7425
72626685 7426 case 1: /* stop all writes */
566c09c5 7427 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7428 /* '2' tells resync/reshape to pause so that all
7429 * active stripes can drain
7430 */
7431 conf->quiesce = 2;
566c09c5 7432 wait_event_cmd(conf->wait_for_stripe,
46031f9a
RBJ
7433 atomic_read(&conf->active_stripes) == 0 &&
7434 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7435 unlock_all_device_hash_locks_irq(conf),
7436 lock_all_device_hash_locks_irq(conf));
64bd660b 7437 conf->quiesce = 1;
566c09c5 7438 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7439 /* allow reshape to continue */
7440 wake_up(&conf->wait_for_overlap);
72626685
N
7441 break;
7442
7443 case 0: /* re-enable writes */
566c09c5 7444 lock_all_device_hash_locks_irq(conf);
72626685
N
7445 conf->quiesce = 0;
7446 wake_up(&conf->wait_for_stripe);
e464eafd 7447 wake_up(&conf->wait_for_overlap);
566c09c5 7448 unlock_all_device_hash_locks_irq(conf);
72626685
N
7449 break;
7450 }
72626685 7451}
b15c2e57 7452
fd01b88c 7453static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7454{
e373ab10 7455 struct r0conf *raid0_conf = mddev->private;
d76c8420 7456 sector_t sectors;
54071b38 7457
f1b29bca 7458 /* for raid0 takeover only one zone is supported */
e373ab10 7459 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7460 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7461 mdname(mddev));
f1b29bca
DW
7462 return ERR_PTR(-EINVAL);
7463 }
7464
e373ab10
N
7465 sectors = raid0_conf->strip_zone[0].zone_end;
7466 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7467 mddev->dev_sectors = sectors;
f1b29bca 7468 mddev->new_level = level;
54071b38
TM
7469 mddev->new_layout = ALGORITHM_PARITY_N;
7470 mddev->new_chunk_sectors = mddev->chunk_sectors;
7471 mddev->raid_disks += 1;
7472 mddev->delta_disks = 1;
7473 /* make sure it will be not marked as dirty */
7474 mddev->recovery_cp = MaxSector;
7475
7476 return setup_conf(mddev);
7477}
7478
fd01b88c 7479static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7480{
7481 int chunksect;
7482
7483 if (mddev->raid_disks != 2 ||
7484 mddev->degraded > 1)
7485 return ERR_PTR(-EINVAL);
7486
7487 /* Should check if there are write-behind devices? */
7488
7489 chunksect = 64*2; /* 64K by default */
7490
7491 /* The array must be an exact multiple of chunksize */
7492 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7493 chunksect >>= 1;
7494
7495 if ((chunksect<<9) < STRIPE_SIZE)
7496 /* array size does not allow a suitable chunk size */
7497 return ERR_PTR(-EINVAL);
7498
7499 mddev->new_level = 5;
7500 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7501 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7502
7503 return setup_conf(mddev);
7504}
7505
fd01b88c 7506static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7507{
7508 int new_layout;
7509
7510 switch (mddev->layout) {
7511 case ALGORITHM_LEFT_ASYMMETRIC_6:
7512 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7513 break;
7514 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7515 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7516 break;
7517 case ALGORITHM_LEFT_SYMMETRIC_6:
7518 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7519 break;
7520 case ALGORITHM_RIGHT_SYMMETRIC_6:
7521 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7522 break;
7523 case ALGORITHM_PARITY_0_6:
7524 new_layout = ALGORITHM_PARITY_0;
7525 break;
7526 case ALGORITHM_PARITY_N:
7527 new_layout = ALGORITHM_PARITY_N;
7528 break;
7529 default:
7530 return ERR_PTR(-EINVAL);
7531 }
7532 mddev->new_level = 5;
7533 mddev->new_layout = new_layout;
7534 mddev->delta_disks = -1;
7535 mddev->raid_disks -= 1;
7536 return setup_conf(mddev);
7537}
7538
fd01b88c 7539static int raid5_check_reshape(struct mddev *mddev)
b3546035 7540{
88ce4930
N
7541 /* For a 2-drive array, the layout and chunk size can be changed
7542 * immediately as not restriping is needed.
7543 * For larger arrays we record the new value - after validation
7544 * to be used by a reshape pass.
b3546035 7545 */
d1688a6d 7546 struct r5conf *conf = mddev->private;
597a711b 7547 int new_chunk = mddev->new_chunk_sectors;
b3546035 7548
597a711b 7549 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7550 return -EINVAL;
7551 if (new_chunk > 0) {
0ba459d2 7552 if (!is_power_of_2(new_chunk))
b3546035 7553 return -EINVAL;
597a711b 7554 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7555 return -EINVAL;
597a711b 7556 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7557 /* not factor of array size */
7558 return -EINVAL;
7559 }
7560
7561 /* They look valid */
7562
88ce4930 7563 if (mddev->raid_disks == 2) {
597a711b
N
7564 /* can make the change immediately */
7565 if (mddev->new_layout >= 0) {
7566 conf->algorithm = mddev->new_layout;
7567 mddev->layout = mddev->new_layout;
88ce4930
N
7568 }
7569 if (new_chunk > 0) {
597a711b
N
7570 conf->chunk_sectors = new_chunk ;
7571 mddev->chunk_sectors = new_chunk;
88ce4930
N
7572 }
7573 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7574 md_wakeup_thread(mddev->thread);
b3546035 7575 }
50ac168a 7576 return check_reshape(mddev);
88ce4930
N
7577}
7578
fd01b88c 7579static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7580{
597a711b 7581 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7582
597a711b 7583 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7584 return -EINVAL;
b3546035 7585 if (new_chunk > 0) {
0ba459d2 7586 if (!is_power_of_2(new_chunk))
88ce4930 7587 return -EINVAL;
597a711b 7588 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7589 return -EINVAL;
597a711b 7590 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7591 /* not factor of array size */
7592 return -EINVAL;
b3546035 7593 }
88ce4930
N
7594
7595 /* They look valid */
50ac168a 7596 return check_reshape(mddev);
b3546035
N
7597}
7598
fd01b88c 7599static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7600{
7601 /* raid5 can take over:
f1b29bca 7602 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7603 * raid1 - if there are two drives. We need to know the chunk size
7604 * raid4 - trivial - just use a raid4 layout.
7605 * raid6 - Providing it is a *_6 layout
d562b0c4 7606 */
f1b29bca
DW
7607 if (mddev->level == 0)
7608 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7609 if (mddev->level == 1)
7610 return raid5_takeover_raid1(mddev);
e9d4758f
N
7611 if (mddev->level == 4) {
7612 mddev->new_layout = ALGORITHM_PARITY_N;
7613 mddev->new_level = 5;
7614 return setup_conf(mddev);
7615 }
fc9739c6
N
7616 if (mddev->level == 6)
7617 return raid5_takeover_raid6(mddev);
d562b0c4
N
7618
7619 return ERR_PTR(-EINVAL);
7620}
7621
fd01b88c 7622static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7623{
f1b29bca
DW
7624 /* raid4 can take over:
7625 * raid0 - if there is only one strip zone
7626 * raid5 - if layout is right
a78d38a1 7627 */
f1b29bca
DW
7628 if (mddev->level == 0)
7629 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7630 if (mddev->level == 5 &&
7631 mddev->layout == ALGORITHM_PARITY_N) {
7632 mddev->new_layout = 0;
7633 mddev->new_level = 4;
7634 return setup_conf(mddev);
7635 }
7636 return ERR_PTR(-EINVAL);
7637}
d562b0c4 7638
84fc4b56 7639static struct md_personality raid5_personality;
245f46c2 7640
fd01b88c 7641static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7642{
7643 /* Currently can only take over a raid5. We map the
7644 * personality to an equivalent raid6 personality
7645 * with the Q block at the end.
7646 */
7647 int new_layout;
7648
7649 if (mddev->pers != &raid5_personality)
7650 return ERR_PTR(-EINVAL);
7651 if (mddev->degraded > 1)
7652 return ERR_PTR(-EINVAL);
7653 if (mddev->raid_disks > 253)
7654 return ERR_PTR(-EINVAL);
7655 if (mddev->raid_disks < 3)
7656 return ERR_PTR(-EINVAL);
7657
7658 switch (mddev->layout) {
7659 case ALGORITHM_LEFT_ASYMMETRIC:
7660 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7661 break;
7662 case ALGORITHM_RIGHT_ASYMMETRIC:
7663 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7664 break;
7665 case ALGORITHM_LEFT_SYMMETRIC:
7666 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7667 break;
7668 case ALGORITHM_RIGHT_SYMMETRIC:
7669 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7670 break;
7671 case ALGORITHM_PARITY_0:
7672 new_layout = ALGORITHM_PARITY_0_6;
7673 break;
7674 case ALGORITHM_PARITY_N:
7675 new_layout = ALGORITHM_PARITY_N;
7676 break;
7677 default:
7678 return ERR_PTR(-EINVAL);
7679 }
7680 mddev->new_level = 6;
7681 mddev->new_layout = new_layout;
7682 mddev->delta_disks = 1;
7683 mddev->raid_disks += 1;
7684 return setup_conf(mddev);
7685}
7686
84fc4b56 7687static struct md_personality raid6_personality =
16a53ecc
N
7688{
7689 .name = "raid6",
7690 .level = 6,
7691 .owner = THIS_MODULE,
7692 .make_request = make_request,
7693 .run = run,
afa0f557 7694 .free = raid5_free,
16a53ecc
N
7695 .status = status,
7696 .error_handler = error,
7697 .hot_add_disk = raid5_add_disk,
7698 .hot_remove_disk= raid5_remove_disk,
7699 .spare_active = raid5_spare_active,
7700 .sync_request = sync_request,
7701 .resize = raid5_resize,
80c3a6ce 7702 .size = raid5_size,
50ac168a 7703 .check_reshape = raid6_check_reshape,
f416885e 7704 .start_reshape = raid5_start_reshape,
cea9c228 7705 .finish_reshape = raid5_finish_reshape,
16a53ecc 7706 .quiesce = raid5_quiesce,
245f46c2 7707 .takeover = raid6_takeover,
5c675f83 7708 .congested = raid5_congested,
64590f45 7709 .mergeable_bvec = raid5_mergeable_bvec,
16a53ecc 7710};
84fc4b56 7711static struct md_personality raid5_personality =
1da177e4
LT
7712{
7713 .name = "raid5",
2604b703 7714 .level = 5,
1da177e4
LT
7715 .owner = THIS_MODULE,
7716 .make_request = make_request,
7717 .run = run,
afa0f557 7718 .free = raid5_free,
1da177e4
LT
7719 .status = status,
7720 .error_handler = error,
7721 .hot_add_disk = raid5_add_disk,
7722 .hot_remove_disk= raid5_remove_disk,
7723 .spare_active = raid5_spare_active,
7724 .sync_request = sync_request,
7725 .resize = raid5_resize,
80c3a6ce 7726 .size = raid5_size,
63c70c4f
N
7727 .check_reshape = raid5_check_reshape,
7728 .start_reshape = raid5_start_reshape,
cea9c228 7729 .finish_reshape = raid5_finish_reshape,
72626685 7730 .quiesce = raid5_quiesce,
d562b0c4 7731 .takeover = raid5_takeover,
5c675f83 7732 .congested = raid5_congested,
64590f45 7733 .mergeable_bvec = raid5_mergeable_bvec,
1da177e4
LT
7734};
7735
84fc4b56 7736static struct md_personality raid4_personality =
1da177e4 7737{
2604b703
N
7738 .name = "raid4",
7739 .level = 4,
7740 .owner = THIS_MODULE,
7741 .make_request = make_request,
7742 .run = run,
afa0f557 7743 .free = raid5_free,
2604b703
N
7744 .status = status,
7745 .error_handler = error,
7746 .hot_add_disk = raid5_add_disk,
7747 .hot_remove_disk= raid5_remove_disk,
7748 .spare_active = raid5_spare_active,
7749 .sync_request = sync_request,
7750 .resize = raid5_resize,
80c3a6ce 7751 .size = raid5_size,
3d37890b
N
7752 .check_reshape = raid5_check_reshape,
7753 .start_reshape = raid5_start_reshape,
cea9c228 7754 .finish_reshape = raid5_finish_reshape,
2604b703 7755 .quiesce = raid5_quiesce,
a78d38a1 7756 .takeover = raid4_takeover,
5c675f83 7757 .congested = raid5_congested,
64590f45 7758 .mergeable_bvec = raid5_mergeable_bvec,
2604b703
N
7759};
7760
7761static int __init raid5_init(void)
7762{
851c30c9
SL
7763 raid5_wq = alloc_workqueue("raid5wq",
7764 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7765 if (!raid5_wq)
7766 return -ENOMEM;
16a53ecc 7767 register_md_personality(&raid6_personality);
2604b703
N
7768 register_md_personality(&raid5_personality);
7769 register_md_personality(&raid4_personality);
7770 return 0;
1da177e4
LT
7771}
7772
2604b703 7773static void raid5_exit(void)
1da177e4 7774{
16a53ecc 7775 unregister_md_personality(&raid6_personality);
2604b703
N
7776 unregister_md_personality(&raid5_personality);
7777 unregister_md_personality(&raid4_personality);
851c30c9 7778 destroy_workqueue(raid5_wq);
1da177e4
LT
7779}
7780
7781module_init(raid5_init);
7782module_exit(raid5_exit);
7783MODULE_LICENSE("GPL");
0efb9e61 7784MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7785MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7786MODULE_ALIAS("md-raid5");
7787MODULE_ALIAS("md-raid4");
2604b703
N
7788MODULE_ALIAS("md-level-5");
7789MODULE_ALIAS("md-level-4");
16a53ecc
N
7790MODULE_ALIAS("md-personality-8"); /* RAID6 */
7791MODULE_ALIAS("md-raid6");
7792MODULE_ALIAS("md-level-6");
7793
7794/* This used to be two separate modules, they were: */
7795MODULE_ALIAS("raid5");
7796MODULE_ALIAS("raid6");