raid5: export some functions
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
34a6f80e 226static void return_io(struct bio_list *return_bi)
a4456856 227{
34a6f80e
N
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
4f024f37 230 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
4246a0b6 233 bio_endio(bi);
a4456856
DW
234 }
235}
236
d1688a6d 237static void print_raid5_conf (struct r5conf *conf);
1da177e4 238
600aa109
DW
239static int stripe_operations_active(struct stripe_head *sh)
240{
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244}
245
851c30c9
SL
246static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247{
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
bfc90cb0 250 int thread_cnt;
851c30c9
SL
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
262 group->stripes_cnt++;
263 sh->group = group;
851c30c9
SL
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
bfc90cb0
SL
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
851c30c9
SL
287}
288
566c09c5
SL
289static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
1da177e4 291{
4eb788df
SL
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 297 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
4eb788df
SL
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
566c09c5
SL
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
321 }
322}
d0dabf7e 323
566c09c5
SL
324static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
4eb788df
SL
326{
327 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
328 do_release_stripe(conf, sh, temp_inactive_list);
329}
330
331/*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341{
342 int size;
e9e4c377
YL
343 unsigned long do_wakeup = 0;
344 int i = 0;
566c09c5
SL
345 unsigned long flags;
346
347 if (hash == NR_STRIPE_HASH_LOCKS) {
348 size = NR_STRIPE_HASH_LOCKS;
349 hash = NR_STRIPE_HASH_LOCKS - 1;
350 } else
351 size = 1;
352 while (size) {
353 struct list_head *list = &temp_inactive_list[size - 1];
354
355 /*
6d036f7d 356 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
357 * remove stripes from the list
358 */
359 if (!list_empty_careful(list)) {
360 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
361 if (list_empty(conf->inactive_list + hash) &&
362 !list_empty(list))
363 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 364 list_splice_tail_init(list, conf->inactive_list + hash);
e9e4c377 365 do_wakeup |= 1 << hash;
566c09c5
SL
366 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 }
368 size--;
369 hash--;
370 }
371
e9e4c377
YL
372 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 if (do_wakeup & (1 << i))
374 wake_up(&conf->wait_for_stripe[i]);
375 }
376
566c09c5 377 if (do_wakeup) {
b1b46486
YL
378 if (atomic_read(&conf->active_stripes) == 0)
379 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
380 if (conf->retry_read_aligned)
381 md_wakeup_thread(conf->mddev->thread);
382 }
4eb788df
SL
383}
384
773ca82f 385/* should hold conf->device_lock already */
566c09c5
SL
386static int release_stripe_list(struct r5conf *conf,
387 struct list_head *temp_inactive_list)
773ca82f
SL
388{
389 struct stripe_head *sh;
390 int count = 0;
391 struct llist_node *head;
392
393 head = llist_del_all(&conf->released_stripes);
d265d9dc 394 head = llist_reverse_order(head);
773ca82f 395 while (head) {
566c09c5
SL
396 int hash;
397
773ca82f
SL
398 sh = llist_entry(head, struct stripe_head, release_list);
399 head = llist_next(head);
400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 smp_mb();
402 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 /*
404 * Don't worry the bit is set here, because if the bit is set
405 * again, the count is always > 1. This is true for
406 * STRIPE_ON_UNPLUG_LIST bit too.
407 */
566c09c5
SL
408 hash = sh->hash_lock_index;
409 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
410 count++;
411 }
412
413 return count;
414}
415
6d036f7d 416void raid5_release_stripe(struct stripe_head *sh)
1da177e4 417{
d1688a6d 418 struct r5conf *conf = sh->raid_conf;
1da177e4 419 unsigned long flags;
566c09c5
SL
420 struct list_head list;
421 int hash;
773ca82f 422 bool wakeup;
16a53ecc 423
cf170f3f
ES
424 /* Avoid release_list until the last reference.
425 */
426 if (atomic_add_unless(&sh->count, -1, 1))
427 return;
428
ad4068de 429 if (unlikely(!conf->mddev->thread) ||
430 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
431 goto slow_path;
432 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 if (wakeup)
434 md_wakeup_thread(conf->mddev->thread);
435 return;
436slow_path:
4eb788df 437 local_irq_save(flags);
773ca82f 438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 439 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
440 INIT_LIST_HEAD(&list);
441 hash = sh->hash_lock_index;
442 do_release_stripe(conf, sh, &list);
4eb788df 443 spin_unlock(&conf->device_lock);
566c09c5 444 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
445 }
446 local_irq_restore(flags);
1da177e4
LT
447}
448
fccddba0 449static inline void remove_hash(struct stripe_head *sh)
1da177e4 450{
45b4233c
DW
451 pr_debug("remove_hash(), stripe %llu\n",
452 (unsigned long long)sh->sector);
1da177e4 453
fccddba0 454 hlist_del_init(&sh->hash);
1da177e4
LT
455}
456
d1688a6d 457static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 458{
fccddba0 459 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 460
45b4233c
DW
461 pr_debug("insert_hash(), stripe %llu\n",
462 (unsigned long long)sh->sector);
1da177e4 463
fccddba0 464 hlist_add_head(&sh->hash, hp);
1da177e4
LT
465}
466
1da177e4 467/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 468static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
469{
470 struct stripe_head *sh = NULL;
471 struct list_head *first;
472
566c09c5 473 if (list_empty(conf->inactive_list + hash))
1da177e4 474 goto out;
566c09c5 475 first = (conf->inactive_list + hash)->next;
1da177e4
LT
476 sh = list_entry(first, struct stripe_head, lru);
477 list_del_init(first);
478 remove_hash(sh);
479 atomic_inc(&conf->active_stripes);
566c09c5 480 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
481 if (list_empty(conf->inactive_list + hash))
482 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
483out:
484 return sh;
485}
486
e4e11e38 487static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
488{
489 struct page *p;
490 int i;
e4e11e38 491 int num = sh->raid_conf->pool_size;
1da177e4 492
e4e11e38 493 for (i = 0; i < num ; i++) {
d592a996 494 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
495 p = sh->dev[i].page;
496 if (!p)
497 continue;
498 sh->dev[i].page = NULL;
2d1f3b5d 499 put_page(p);
1da177e4
LT
500 }
501}
502
a9683a79 503static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
504{
505 int i;
e4e11e38 506 int num = sh->raid_conf->pool_size;
1da177e4 507
e4e11e38 508 for (i = 0; i < num; i++) {
1da177e4
LT
509 struct page *page;
510
a9683a79 511 if (!(page = alloc_page(gfp))) {
1da177e4
LT
512 return 1;
513 }
514 sh->dev[i].page = page;
d592a996 515 sh->dev[i].orig_page = page;
1da177e4
LT
516 }
517 return 0;
518}
519
784052ec 520static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 521static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 522 struct stripe_head *sh);
1da177e4 523
b5663ba4 524static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 525{
d1688a6d 526 struct r5conf *conf = sh->raid_conf;
566c09c5 527 int i, seq;
1da177e4 528
78bafebd
ES
529 BUG_ON(atomic_read(&sh->count) != 0);
530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 531 BUG_ON(stripe_operations_active(sh));
59fc630b 532 BUG_ON(sh->batch_head);
d84e0f10 533
45b4233c 534 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 535 (unsigned long long)sector);
566c09c5
SL
536retry:
537 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 538 sh->generation = conf->generation - previous;
b5663ba4 539 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 540 sh->sector = sector;
911d4ee8 541 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
542 sh->state = 0;
543
7ecaa1e6 544 for (i = sh->disks; i--; ) {
1da177e4
LT
545 struct r5dev *dev = &sh->dev[i];
546
d84e0f10 547 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 548 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 549 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 550 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 551 dev->read, dev->towrite, dev->written,
1da177e4 552 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 553 WARN_ON(1);
1da177e4
LT
554 }
555 dev->flags = 0;
784052ec 556 raid5_build_block(sh, i, previous);
1da177e4 557 }
566c09c5
SL
558 if (read_seqcount_retry(&conf->gen_lock, seq))
559 goto retry;
7a87f434 560 sh->overwrite_disks = 0;
1da177e4 561 insert_hash(conf, sh);
851c30c9 562 sh->cpu = smp_processor_id();
da41ba65 563 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
564}
565
d1688a6d 566static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 567 short generation)
1da177e4
LT
568{
569 struct stripe_head *sh;
570
45b4233c 571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 573 if (sh->sector == sector && sh->generation == generation)
1da177e4 574 return sh;
45b4233c 575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
576 return NULL;
577}
578
674806d6
N
579/*
580 * Need to check if array has failed when deciding whether to:
581 * - start an array
582 * - remove non-faulty devices
583 * - add a spare
584 * - allow a reshape
585 * This determination is simple when no reshape is happening.
586 * However if there is a reshape, we need to carefully check
587 * both the before and after sections.
588 * This is because some failed devices may only affect one
589 * of the two sections, and some non-in_sync devices may
590 * be insync in the section most affected by failed devices.
591 */
908f4fbd 592static int calc_degraded(struct r5conf *conf)
674806d6 593{
908f4fbd 594 int degraded, degraded2;
674806d6 595 int i;
674806d6
N
596
597 rcu_read_lock();
598 degraded = 0;
599 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
601 if (rdev && test_bit(Faulty, &rdev->flags))
602 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
603 if (!rdev || test_bit(Faulty, &rdev->flags))
604 degraded++;
605 else if (test_bit(In_sync, &rdev->flags))
606 ;
607 else
608 /* not in-sync or faulty.
609 * If the reshape increases the number of devices,
610 * this is being recovered by the reshape, so
611 * this 'previous' section is not in_sync.
612 * If the number of devices is being reduced however,
613 * the device can only be part of the array if
614 * we are reverting a reshape, so this section will
615 * be in-sync.
616 */
617 if (conf->raid_disks >= conf->previous_raid_disks)
618 degraded++;
619 }
620 rcu_read_unlock();
908f4fbd
N
621 if (conf->raid_disks == conf->previous_raid_disks)
622 return degraded;
674806d6 623 rcu_read_lock();
908f4fbd 624 degraded2 = 0;
674806d6 625 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
627 if (rdev && test_bit(Faulty, &rdev->flags))
628 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 629 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 630 degraded2++;
674806d6
N
631 else if (test_bit(In_sync, &rdev->flags))
632 ;
633 else
634 /* not in-sync or faulty.
635 * If reshape increases the number of devices, this
636 * section has already been recovered, else it
637 * almost certainly hasn't.
638 */
639 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 640 degraded2++;
674806d6
N
641 }
642 rcu_read_unlock();
908f4fbd
N
643 if (degraded2 > degraded)
644 return degraded2;
645 return degraded;
646}
647
648static int has_failed(struct r5conf *conf)
649{
650 int degraded;
651
652 if (conf->mddev->reshape_position == MaxSector)
653 return conf->mddev->degraded > conf->max_degraded;
654
655 degraded = calc_degraded(conf);
674806d6
N
656 if (degraded > conf->max_degraded)
657 return 1;
658 return 0;
659}
660
6d036f7d
SL
661struct stripe_head *
662raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663 int previous, int noblock, int noquiesce)
1da177e4
LT
664{
665 struct stripe_head *sh;
566c09c5 666 int hash = stripe_hash_locks_hash(sector);
1da177e4 667
45b4233c 668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 669
566c09c5 670 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
671
672 do {
b1b46486 673 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 674 conf->quiesce == 0 || noquiesce,
566c09c5 675 *(conf->hash_locks + hash));
86b42c71 676 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 677 if (!sh) {
edbe83ab 678 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 679 sh = get_free_stripe(conf, hash);
713bc5c2
SL
680 if (!sh && !test_bit(R5_DID_ALLOC,
681 &conf->cache_state))
edbe83ab
N
682 set_bit(R5_ALLOC_MORE,
683 &conf->cache_state);
684 }
1da177e4
LT
685 if (noblock && sh == NULL)
686 break;
687 if (!sh) {
5423399a
N
688 set_bit(R5_INACTIVE_BLOCKED,
689 &conf->cache_state);
e9e4c377
YL
690 wait_event_exclusive_cmd(
691 conf->wait_for_stripe[hash],
566c09c5
SL
692 !list_empty(conf->inactive_list + hash) &&
693 (atomic_read(&conf->active_stripes)
694 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
695 || !test_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state)),
e9e4c377
YL
697 spin_unlock_irq(conf->hash_locks + hash),
698 spin_lock_irq(conf->hash_locks + hash));
5423399a
N
699 clear_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state);
7da9d450 701 } else {
b5663ba4 702 init_stripe(sh, sector, previous);
7da9d450
N
703 atomic_inc(&sh->count);
704 }
e240c183 705 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 706 spin_lock(&conf->device_lock);
e240c183 707 if (!atomic_read(&sh->count)) {
1da177e4
LT
708 if (!test_bit(STRIPE_HANDLE, &sh->state))
709 atomic_inc(&conf->active_stripes);
5af9bef7
N
710 BUG_ON(list_empty(&sh->lru) &&
711 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 712 list_del_init(&sh->lru);
bfc90cb0
SL
713 if (sh->group) {
714 sh->group->stripes_cnt--;
715 sh->group = NULL;
716 }
1da177e4 717 }
7da9d450 718 atomic_inc(&sh->count);
6d183de4 719 spin_unlock(&conf->device_lock);
1da177e4
LT
720 }
721 } while (sh == NULL);
722
e9e4c377
YL
723 if (!list_empty(conf->inactive_list + hash))
724 wake_up(&conf->wait_for_stripe[hash]);
725
566c09c5 726 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
727 return sh;
728}
729
7a87f434 730static bool is_full_stripe_write(struct stripe_head *sh)
731{
732 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734}
735
59fc630b 736static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737{
738 local_irq_disable();
739 if (sh1 > sh2) {
740 spin_lock(&sh2->stripe_lock);
741 spin_lock_nested(&sh1->stripe_lock, 1);
742 } else {
743 spin_lock(&sh1->stripe_lock);
744 spin_lock_nested(&sh2->stripe_lock, 1);
745 }
746}
747
748static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749{
750 spin_unlock(&sh1->stripe_lock);
751 spin_unlock(&sh2->stripe_lock);
752 local_irq_enable();
753}
754
755/* Only freshly new full stripe normal write stripe can be added to a batch list */
756static bool stripe_can_batch(struct stripe_head *sh)
757{
758 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 759 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 760 is_full_stripe_write(sh);
761}
762
763/* we only do back search */
764static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
765{
766 struct stripe_head *head;
767 sector_t head_sector, tmp_sec;
768 int hash;
769 int dd_idx;
770
771 if (!stripe_can_batch(sh))
772 return;
773 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774 tmp_sec = sh->sector;
775 if (!sector_div(tmp_sec, conf->chunk_sectors))
776 return;
777 head_sector = sh->sector - STRIPE_SECTORS;
778
779 hash = stripe_hash_locks_hash(head_sector);
780 spin_lock_irq(conf->hash_locks + hash);
781 head = __find_stripe(conf, head_sector, conf->generation);
782 if (head && !atomic_inc_not_zero(&head->count)) {
783 spin_lock(&conf->device_lock);
784 if (!atomic_read(&head->count)) {
785 if (!test_bit(STRIPE_HANDLE, &head->state))
786 atomic_inc(&conf->active_stripes);
787 BUG_ON(list_empty(&head->lru) &&
788 !test_bit(STRIPE_EXPANDING, &head->state));
789 list_del_init(&head->lru);
790 if (head->group) {
791 head->group->stripes_cnt--;
792 head->group = NULL;
793 }
794 }
795 atomic_inc(&head->count);
796 spin_unlock(&conf->device_lock);
797 }
798 spin_unlock_irq(conf->hash_locks + hash);
799
800 if (!head)
801 return;
802 if (!stripe_can_batch(head))
803 goto out;
804
805 lock_two_stripes(head, sh);
806 /* clear_batch_ready clear the flag */
807 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
808 goto unlock_out;
809
810 if (sh->batch_head)
811 goto unlock_out;
812
813 dd_idx = 0;
814 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
815 dd_idx++;
816 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
817 goto unlock_out;
818
819 if (head->batch_head) {
820 spin_lock(&head->batch_head->batch_lock);
821 /* This batch list is already running */
822 if (!stripe_can_batch(head)) {
823 spin_unlock(&head->batch_head->batch_lock);
824 goto unlock_out;
825 }
826
827 /*
828 * at this point, head's BATCH_READY could be cleared, but we
829 * can still add the stripe to batch list
830 */
831 list_add(&sh->batch_list, &head->batch_list);
832 spin_unlock(&head->batch_head->batch_lock);
833
834 sh->batch_head = head->batch_head;
835 } else {
836 head->batch_head = head;
837 sh->batch_head = head->batch_head;
838 spin_lock(&head->batch_lock);
839 list_add_tail(&sh->batch_list, &head->batch_list);
840 spin_unlock(&head->batch_lock);
841 }
842
843 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
844 if (atomic_dec_return(&conf->preread_active_stripes)
845 < IO_THRESHOLD)
846 md_wakeup_thread(conf->mddev->thread);
847
2b6b2457
N
848 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
849 int seq = sh->bm_seq;
850 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
851 sh->batch_head->bm_seq > seq)
852 seq = sh->batch_head->bm_seq;
853 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
854 sh->batch_head->bm_seq = seq;
855 }
856
59fc630b 857 atomic_inc(&sh->count);
858unlock_out:
859 unlock_two_stripes(head, sh);
860out:
6d036f7d 861 raid5_release_stripe(head);
59fc630b 862}
863
05616be5
N
864/* Determine if 'data_offset' or 'new_data_offset' should be used
865 * in this stripe_head.
866 */
867static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
868{
869 sector_t progress = conf->reshape_progress;
870 /* Need a memory barrier to make sure we see the value
871 * of conf->generation, or ->data_offset that was set before
872 * reshape_progress was updated.
873 */
874 smp_rmb();
875 if (progress == MaxSector)
876 return 0;
877 if (sh->generation == conf->generation - 1)
878 return 0;
879 /* We are in a reshape, and this is a new-generation stripe,
880 * so use new_data_offset.
881 */
882 return 1;
883}
884
6712ecf8 885static void
4246a0b6 886raid5_end_read_request(struct bio *bi);
6712ecf8 887static void
4246a0b6 888raid5_end_write_request(struct bio *bi);
91c00924 889
c4e5ac0a 890static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 891{
d1688a6d 892 struct r5conf *conf = sh->raid_conf;
91c00924 893 int i, disks = sh->disks;
59fc630b 894 struct stripe_head *head_sh = sh;
91c00924
DW
895
896 might_sleep();
897
898 for (i = disks; i--; ) {
899 int rw;
9a3e1101 900 int replace_only = 0;
977df362
N
901 struct bio *bi, *rbi;
902 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 903
904 sh = head_sh;
e9c7469b
TH
905 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
906 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
907 rw = WRITE_FUA;
908 else
909 rw = WRITE;
9e444768 910 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 911 rw |= REQ_DISCARD;
e9c7469b 912 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 913 rw = READ;
9a3e1101
N
914 else if (test_and_clear_bit(R5_WantReplace,
915 &sh->dev[i].flags)) {
916 rw = WRITE;
917 replace_only = 1;
918 } else
91c00924 919 continue;
bc0934f0
SL
920 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
921 rw |= REQ_SYNC;
91c00924 922
59fc630b 923again:
91c00924 924 bi = &sh->dev[i].req;
977df362 925 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 926
91c00924 927 rcu_read_lock();
9a3e1101 928 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
929 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
930 rdev = rcu_dereference(conf->disks[i].rdev);
931 if (!rdev) {
932 rdev = rrdev;
933 rrdev = NULL;
934 }
9a3e1101
N
935 if (rw & WRITE) {
936 if (replace_only)
937 rdev = NULL;
dd054fce
N
938 if (rdev == rrdev)
939 /* We raced and saw duplicates */
940 rrdev = NULL;
9a3e1101 941 } else {
59fc630b 942 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
943 rdev = rrdev;
944 rrdev = NULL;
945 }
977df362 946
91c00924
DW
947 if (rdev && test_bit(Faulty, &rdev->flags))
948 rdev = NULL;
949 if (rdev)
950 atomic_inc(&rdev->nr_pending);
977df362
N
951 if (rrdev && test_bit(Faulty, &rrdev->flags))
952 rrdev = NULL;
953 if (rrdev)
954 atomic_inc(&rrdev->nr_pending);
91c00924
DW
955 rcu_read_unlock();
956
73e92e51 957 /* We have already checked bad blocks for reads. Now
977df362
N
958 * need to check for writes. We never accept write errors
959 * on the replacement, so we don't to check rrdev.
73e92e51
N
960 */
961 while ((rw & WRITE) && rdev &&
962 test_bit(WriteErrorSeen, &rdev->flags)) {
963 sector_t first_bad;
964 int bad_sectors;
965 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
966 &first_bad, &bad_sectors);
967 if (!bad)
968 break;
969
970 if (bad < 0) {
971 set_bit(BlockedBadBlocks, &rdev->flags);
972 if (!conf->mddev->external &&
973 conf->mddev->flags) {
974 /* It is very unlikely, but we might
975 * still need to write out the
976 * bad block log - better give it
977 * a chance*/
978 md_check_recovery(conf->mddev);
979 }
1850753d 980 /*
981 * Because md_wait_for_blocked_rdev
982 * will dec nr_pending, we must
983 * increment it first.
984 */
985 atomic_inc(&rdev->nr_pending);
73e92e51
N
986 md_wait_for_blocked_rdev(rdev, conf->mddev);
987 } else {
988 /* Acknowledged bad block - skip the write */
989 rdev_dec_pending(rdev, conf->mddev);
990 rdev = NULL;
991 }
992 }
993
91c00924 994 if (rdev) {
9a3e1101
N
995 if (s->syncing || s->expanding || s->expanded
996 || s->replacing)
91c00924
DW
997 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
998
2b7497f0
DW
999 set_bit(STRIPE_IO_STARTED, &sh->state);
1000
2f6db2a7 1001 bio_reset(bi);
91c00924 1002 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
1003 bi->bi_rw = rw;
1004 bi->bi_end_io = (rw & WRITE)
1005 ? raid5_end_write_request
1006 : raid5_end_read_request;
1007 bi->bi_private = sh;
1008
91c00924 1009 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 1010 __func__, (unsigned long long)sh->sector,
91c00924
DW
1011 bi->bi_rw, i);
1012 atomic_inc(&sh->count);
59fc630b 1013 if (sh != head_sh)
1014 atomic_inc(&head_sh->count);
05616be5 1015 if (use_new_offset(conf, sh))
4f024f37 1016 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1017 + rdev->new_data_offset);
1018 else
4f024f37 1019 bi->bi_iter.bi_sector = (sh->sector
05616be5 1020 + rdev->data_offset);
59fc630b 1021 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1022 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1023
d592a996
SL
1024 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1025 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1026 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1027 bi->bi_vcnt = 1;
91c00924
DW
1028 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1029 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1030 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1031 /*
1032 * If this is discard request, set bi_vcnt 0. We don't
1033 * want to confuse SCSI because SCSI will replace payload
1034 */
1035 if (rw & REQ_DISCARD)
1036 bi->bi_vcnt = 0;
977df362
N
1037 if (rrdev)
1038 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1039
1040 if (conf->mddev->gendisk)
1041 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1042 bi, disk_devt(conf->mddev->gendisk),
1043 sh->dev[i].sector);
91c00924 1044 generic_make_request(bi);
977df362
N
1045 }
1046 if (rrdev) {
9a3e1101
N
1047 if (s->syncing || s->expanding || s->expanded
1048 || s->replacing)
977df362
N
1049 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1050
1051 set_bit(STRIPE_IO_STARTED, &sh->state);
1052
2f6db2a7 1053 bio_reset(rbi);
977df362 1054 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1055 rbi->bi_rw = rw;
1056 BUG_ON(!(rw & WRITE));
1057 rbi->bi_end_io = raid5_end_write_request;
1058 rbi->bi_private = sh;
1059
977df362
N
1060 pr_debug("%s: for %llu schedule op %ld on "
1061 "replacement disc %d\n",
1062 __func__, (unsigned long long)sh->sector,
1063 rbi->bi_rw, i);
1064 atomic_inc(&sh->count);
59fc630b 1065 if (sh != head_sh)
1066 atomic_inc(&head_sh->count);
05616be5 1067 if (use_new_offset(conf, sh))
4f024f37 1068 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1069 + rrdev->new_data_offset);
1070 else
4f024f37 1071 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1072 + rrdev->data_offset);
d592a996
SL
1073 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1074 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1075 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1076 rbi->bi_vcnt = 1;
977df362
N
1077 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1078 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1079 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1080 /*
1081 * If this is discard request, set bi_vcnt 0. We don't
1082 * want to confuse SCSI because SCSI will replace payload
1083 */
1084 if (rw & REQ_DISCARD)
1085 rbi->bi_vcnt = 0;
e3620a3a
JB
1086 if (conf->mddev->gendisk)
1087 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1088 rbi, disk_devt(conf->mddev->gendisk),
1089 sh->dev[i].sector);
977df362
N
1090 generic_make_request(rbi);
1091 }
1092 if (!rdev && !rrdev) {
b062962e 1093 if (rw & WRITE)
91c00924
DW
1094 set_bit(STRIPE_DEGRADED, &sh->state);
1095 pr_debug("skip op %ld on disc %d for sector %llu\n",
1096 bi->bi_rw, i, (unsigned long long)sh->sector);
1097 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1098 set_bit(STRIPE_HANDLE, &sh->state);
1099 }
59fc630b 1100
1101 if (!head_sh->batch_head)
1102 continue;
1103 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1104 batch_list);
1105 if (sh != head_sh)
1106 goto again;
91c00924
DW
1107 }
1108}
1109
1110static struct dma_async_tx_descriptor *
d592a996
SL
1111async_copy_data(int frombio, struct bio *bio, struct page **page,
1112 sector_t sector, struct dma_async_tx_descriptor *tx,
1113 struct stripe_head *sh)
91c00924 1114{
7988613b
KO
1115 struct bio_vec bvl;
1116 struct bvec_iter iter;
91c00924 1117 struct page *bio_page;
91c00924 1118 int page_offset;
a08abd8c 1119 struct async_submit_ctl submit;
0403e382 1120 enum async_tx_flags flags = 0;
91c00924 1121
4f024f37
KO
1122 if (bio->bi_iter.bi_sector >= sector)
1123 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1124 else
4f024f37 1125 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1126
0403e382
DW
1127 if (frombio)
1128 flags |= ASYNC_TX_FENCE;
1129 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1130
7988613b
KO
1131 bio_for_each_segment(bvl, bio, iter) {
1132 int len = bvl.bv_len;
91c00924
DW
1133 int clen;
1134 int b_offset = 0;
1135
1136 if (page_offset < 0) {
1137 b_offset = -page_offset;
1138 page_offset += b_offset;
1139 len -= b_offset;
1140 }
1141
1142 if (len > 0 && page_offset + len > STRIPE_SIZE)
1143 clen = STRIPE_SIZE - page_offset;
1144 else
1145 clen = len;
1146
1147 if (clen > 0) {
7988613b
KO
1148 b_offset += bvl.bv_offset;
1149 bio_page = bvl.bv_page;
d592a996
SL
1150 if (frombio) {
1151 if (sh->raid_conf->skip_copy &&
1152 b_offset == 0 && page_offset == 0 &&
1153 clen == STRIPE_SIZE)
1154 *page = bio_page;
1155 else
1156 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1157 b_offset, clen, &submit);
d592a996
SL
1158 } else
1159 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1160 page_offset, clen, &submit);
91c00924 1161 }
a08abd8c
DW
1162 /* chain the operations */
1163 submit.depend_tx = tx;
1164
91c00924
DW
1165 if (clen < len) /* hit end of page */
1166 break;
1167 page_offset += len;
1168 }
1169
1170 return tx;
1171}
1172
1173static void ops_complete_biofill(void *stripe_head_ref)
1174{
1175 struct stripe_head *sh = stripe_head_ref;
34a6f80e 1176 struct bio_list return_bi = BIO_EMPTY_LIST;
e4d84909 1177 int i;
91c00924 1178
e46b272b 1179 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1180 (unsigned long long)sh->sector);
1181
1182 /* clear completed biofills */
1183 for (i = sh->disks; i--; ) {
1184 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1185
1186 /* acknowledge completion of a biofill operation */
e4d84909
DW
1187 /* and check if we need to reply to a read request,
1188 * new R5_Wantfill requests are held off until
83de75cc 1189 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1190 */
1191 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1192 struct bio *rbi, *rbi2;
91c00924 1193
91c00924
DW
1194 BUG_ON(!dev->read);
1195 rbi = dev->read;
1196 dev->read = NULL;
4f024f37 1197 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1198 dev->sector + STRIPE_SECTORS) {
1199 rbi2 = r5_next_bio(rbi, dev->sector);
34a6f80e
N
1200 if (!raid5_dec_bi_active_stripes(rbi))
1201 bio_list_add(&return_bi, rbi);
91c00924
DW
1202 rbi = rbi2;
1203 }
1204 }
1205 }
83de75cc 1206 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1207
34a6f80e 1208 return_io(&return_bi);
91c00924 1209
e4d84909 1210 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1211 raid5_release_stripe(sh);
91c00924
DW
1212}
1213
1214static void ops_run_biofill(struct stripe_head *sh)
1215{
1216 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1217 struct async_submit_ctl submit;
91c00924
DW
1218 int i;
1219
59fc630b 1220 BUG_ON(sh->batch_head);
e46b272b 1221 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1222 (unsigned long long)sh->sector);
1223
1224 for (i = sh->disks; i--; ) {
1225 struct r5dev *dev = &sh->dev[i];
1226 if (test_bit(R5_Wantfill, &dev->flags)) {
1227 struct bio *rbi;
b17459c0 1228 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1229 dev->read = rbi = dev->toread;
1230 dev->toread = NULL;
b17459c0 1231 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1232 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1233 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1234 tx = async_copy_data(0, rbi, &dev->page,
1235 dev->sector, tx, sh);
91c00924
DW
1236 rbi = r5_next_bio(rbi, dev->sector);
1237 }
1238 }
1239 }
1240
1241 atomic_inc(&sh->count);
a08abd8c
DW
1242 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1243 async_trigger_callback(&submit);
91c00924
DW
1244}
1245
4e7d2c0a 1246static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1247{
4e7d2c0a 1248 struct r5dev *tgt;
91c00924 1249
4e7d2c0a
DW
1250 if (target < 0)
1251 return;
91c00924 1252
4e7d2c0a 1253 tgt = &sh->dev[target];
91c00924
DW
1254 set_bit(R5_UPTODATE, &tgt->flags);
1255 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1256 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1257}
1258
ac6b53b6 1259static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1260{
1261 struct stripe_head *sh = stripe_head_ref;
91c00924 1262
e46b272b 1263 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1264 (unsigned long long)sh->sector);
1265
ac6b53b6 1266 /* mark the computed target(s) as uptodate */
4e7d2c0a 1267 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1268 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1269
ecc65c9b
DW
1270 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1271 if (sh->check_state == check_state_compute_run)
1272 sh->check_state = check_state_compute_result;
91c00924 1273 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1274 raid5_release_stripe(sh);
91c00924
DW
1275}
1276
d6f38f31
DW
1277/* return a pointer to the address conversion region of the scribble buffer */
1278static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1279 struct raid5_percpu *percpu, int i)
d6f38f31 1280{
46d5b785 1281 void *addr;
1282
1283 addr = flex_array_get(percpu->scribble, i);
1284 return addr + sizeof(struct page *) * (sh->disks + 2);
1285}
1286
1287/* return a pointer to the address conversion region of the scribble buffer */
1288static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1289{
1290 void *addr;
1291
1292 addr = flex_array_get(percpu->scribble, i);
1293 return addr;
d6f38f31
DW
1294}
1295
1296static struct dma_async_tx_descriptor *
1297ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1298{
91c00924 1299 int disks = sh->disks;
46d5b785 1300 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1301 int target = sh->ops.target;
1302 struct r5dev *tgt = &sh->dev[target];
1303 struct page *xor_dest = tgt->page;
1304 int count = 0;
1305 struct dma_async_tx_descriptor *tx;
a08abd8c 1306 struct async_submit_ctl submit;
91c00924
DW
1307 int i;
1308
59fc630b 1309 BUG_ON(sh->batch_head);
1310
91c00924 1311 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1312 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1313 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1314
1315 for (i = disks; i--; )
1316 if (i != target)
1317 xor_srcs[count++] = sh->dev[i].page;
1318
1319 atomic_inc(&sh->count);
1320
0403e382 1321 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1322 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1323 if (unlikely(count == 1))
a08abd8c 1324 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1325 else
a08abd8c 1326 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1327
91c00924
DW
1328 return tx;
1329}
1330
ac6b53b6
DW
1331/* set_syndrome_sources - populate source buffers for gen_syndrome
1332 * @srcs - (struct page *) array of size sh->disks
1333 * @sh - stripe_head to parse
1334 *
1335 * Populates srcs in proper layout order for the stripe and returns the
1336 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1337 * destination buffer is recorded in srcs[count] and the Q destination
1338 * is recorded in srcs[count+1]].
1339 */
584acdd4
MS
1340static int set_syndrome_sources(struct page **srcs,
1341 struct stripe_head *sh,
1342 int srctype)
ac6b53b6
DW
1343{
1344 int disks = sh->disks;
1345 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1346 int d0_idx = raid6_d0(sh);
1347 int count;
1348 int i;
1349
1350 for (i = 0; i < disks; i++)
5dd33c9a 1351 srcs[i] = NULL;
ac6b53b6
DW
1352
1353 count = 0;
1354 i = d0_idx;
1355 do {
1356 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1357 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1358
584acdd4
MS
1359 if (i == sh->qd_idx || i == sh->pd_idx ||
1360 (srctype == SYNDROME_SRC_ALL) ||
1361 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1362 test_bit(R5_Wantdrain, &dev->flags)) ||
1363 (srctype == SYNDROME_SRC_WRITTEN &&
1364 dev->written))
1365 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1366 i = raid6_next_disk(i, disks);
1367 } while (i != d0_idx);
ac6b53b6 1368
e4424fee 1369 return syndrome_disks;
ac6b53b6
DW
1370}
1371
1372static struct dma_async_tx_descriptor *
1373ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1374{
1375 int disks = sh->disks;
46d5b785 1376 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1377 int target;
1378 int qd_idx = sh->qd_idx;
1379 struct dma_async_tx_descriptor *tx;
1380 struct async_submit_ctl submit;
1381 struct r5dev *tgt;
1382 struct page *dest;
1383 int i;
1384 int count;
1385
59fc630b 1386 BUG_ON(sh->batch_head);
ac6b53b6
DW
1387 if (sh->ops.target < 0)
1388 target = sh->ops.target2;
1389 else if (sh->ops.target2 < 0)
1390 target = sh->ops.target;
91c00924 1391 else
ac6b53b6
DW
1392 /* we should only have one valid target */
1393 BUG();
1394 BUG_ON(target < 0);
1395 pr_debug("%s: stripe %llu block: %d\n",
1396 __func__, (unsigned long long)sh->sector, target);
1397
1398 tgt = &sh->dev[target];
1399 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1400 dest = tgt->page;
1401
1402 atomic_inc(&sh->count);
1403
1404 if (target == qd_idx) {
584acdd4 1405 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1406 blocks[count] = NULL; /* regenerating p is not necessary */
1407 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1408 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1409 ops_complete_compute, sh,
46d5b785 1410 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1411 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1412 } else {
1413 /* Compute any data- or p-drive using XOR */
1414 count = 0;
1415 for (i = disks; i-- ; ) {
1416 if (i == target || i == qd_idx)
1417 continue;
1418 blocks[count++] = sh->dev[i].page;
1419 }
1420
0403e382
DW
1421 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1422 NULL, ops_complete_compute, sh,
46d5b785 1423 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1424 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1425 }
91c00924 1426
91c00924
DW
1427 return tx;
1428}
1429
ac6b53b6
DW
1430static struct dma_async_tx_descriptor *
1431ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1432{
1433 int i, count, disks = sh->disks;
1434 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1435 int d0_idx = raid6_d0(sh);
1436 int faila = -1, failb = -1;
1437 int target = sh->ops.target;
1438 int target2 = sh->ops.target2;
1439 struct r5dev *tgt = &sh->dev[target];
1440 struct r5dev *tgt2 = &sh->dev[target2];
1441 struct dma_async_tx_descriptor *tx;
46d5b785 1442 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1443 struct async_submit_ctl submit;
1444
59fc630b 1445 BUG_ON(sh->batch_head);
ac6b53b6
DW
1446 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1447 __func__, (unsigned long long)sh->sector, target, target2);
1448 BUG_ON(target < 0 || target2 < 0);
1449 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1450 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1451
6c910a78 1452 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1453 * slot number conversion for 'faila' and 'failb'
1454 */
1455 for (i = 0; i < disks ; i++)
5dd33c9a 1456 blocks[i] = NULL;
ac6b53b6
DW
1457 count = 0;
1458 i = d0_idx;
1459 do {
1460 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1461
1462 blocks[slot] = sh->dev[i].page;
1463
1464 if (i == target)
1465 faila = slot;
1466 if (i == target2)
1467 failb = slot;
1468 i = raid6_next_disk(i, disks);
1469 } while (i != d0_idx);
ac6b53b6
DW
1470
1471 BUG_ON(faila == failb);
1472 if (failb < faila)
1473 swap(faila, failb);
1474 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1475 __func__, (unsigned long long)sh->sector, faila, failb);
1476
1477 atomic_inc(&sh->count);
1478
1479 if (failb == syndrome_disks+1) {
1480 /* Q disk is one of the missing disks */
1481 if (faila == syndrome_disks) {
1482 /* Missing P+Q, just recompute */
0403e382
DW
1483 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1484 ops_complete_compute, sh,
46d5b785 1485 to_addr_conv(sh, percpu, 0));
e4424fee 1486 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1487 STRIPE_SIZE, &submit);
1488 } else {
1489 struct page *dest;
1490 int data_target;
1491 int qd_idx = sh->qd_idx;
1492
1493 /* Missing D+Q: recompute D from P, then recompute Q */
1494 if (target == qd_idx)
1495 data_target = target2;
1496 else
1497 data_target = target;
1498
1499 count = 0;
1500 for (i = disks; i-- ; ) {
1501 if (i == data_target || i == qd_idx)
1502 continue;
1503 blocks[count++] = sh->dev[i].page;
1504 }
1505 dest = sh->dev[data_target].page;
0403e382
DW
1506 init_async_submit(&submit,
1507 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1508 NULL, NULL, NULL,
46d5b785 1509 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1510 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1511 &submit);
1512
584acdd4 1513 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1514 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1515 ops_complete_compute, sh,
46d5b785 1516 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1517 return async_gen_syndrome(blocks, 0, count+2,
1518 STRIPE_SIZE, &submit);
1519 }
ac6b53b6 1520 } else {
6c910a78
DW
1521 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1522 ops_complete_compute, sh,
46d5b785 1523 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1524 if (failb == syndrome_disks) {
1525 /* We're missing D+P. */
1526 return async_raid6_datap_recov(syndrome_disks+2,
1527 STRIPE_SIZE, faila,
1528 blocks, &submit);
1529 } else {
1530 /* We're missing D+D. */
1531 return async_raid6_2data_recov(syndrome_disks+2,
1532 STRIPE_SIZE, faila, failb,
1533 blocks, &submit);
1534 }
ac6b53b6
DW
1535 }
1536}
1537
91c00924
DW
1538static void ops_complete_prexor(void *stripe_head_ref)
1539{
1540 struct stripe_head *sh = stripe_head_ref;
1541
e46b272b 1542 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1543 (unsigned long long)sh->sector);
91c00924
DW
1544}
1545
1546static struct dma_async_tx_descriptor *
584acdd4
MS
1547ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1548 struct dma_async_tx_descriptor *tx)
91c00924 1549{
91c00924 1550 int disks = sh->disks;
46d5b785 1551 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1552 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1553 struct async_submit_ctl submit;
91c00924
DW
1554
1555 /* existing parity data subtracted */
1556 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1557
59fc630b 1558 BUG_ON(sh->batch_head);
e46b272b 1559 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1560 (unsigned long long)sh->sector);
1561
1562 for (i = disks; i--; ) {
1563 struct r5dev *dev = &sh->dev[i];
1564 /* Only process blocks that are known to be uptodate */
d8ee0728 1565 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1566 xor_srcs[count++] = dev->page;
1567 }
1568
0403e382 1569 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1570 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1571 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1572
1573 return tx;
1574}
1575
584acdd4
MS
1576static struct dma_async_tx_descriptor *
1577ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1578 struct dma_async_tx_descriptor *tx)
1579{
1580 struct page **blocks = to_addr_page(percpu, 0);
1581 int count;
1582 struct async_submit_ctl submit;
1583
1584 pr_debug("%s: stripe %llu\n", __func__,
1585 (unsigned long long)sh->sector);
1586
1587 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1588
1589 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1590 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1591 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1592
1593 return tx;
1594}
1595
91c00924 1596static struct dma_async_tx_descriptor *
d8ee0728 1597ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1598{
1599 int disks = sh->disks;
d8ee0728 1600 int i;
59fc630b 1601 struct stripe_head *head_sh = sh;
91c00924 1602
e46b272b 1603 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1604 (unsigned long long)sh->sector);
1605
1606 for (i = disks; i--; ) {
59fc630b 1607 struct r5dev *dev;
91c00924 1608 struct bio *chosen;
91c00924 1609
59fc630b 1610 sh = head_sh;
1611 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1612 struct bio *wbi;
1613
59fc630b 1614again:
1615 dev = &sh->dev[i];
b17459c0 1616 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1617 chosen = dev->towrite;
1618 dev->towrite = NULL;
7a87f434 1619 sh->overwrite_disks = 0;
91c00924
DW
1620 BUG_ON(dev->written);
1621 wbi = dev->written = chosen;
b17459c0 1622 spin_unlock_irq(&sh->stripe_lock);
d592a996 1623 WARN_ON(dev->page != dev->orig_page);
91c00924 1624
4f024f37 1625 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1626 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1627 if (wbi->bi_rw & REQ_FUA)
1628 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1629 if (wbi->bi_rw & REQ_SYNC)
1630 set_bit(R5_SyncIO, &dev->flags);
9e444768 1631 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1632 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1633 else {
1634 tx = async_copy_data(1, wbi, &dev->page,
1635 dev->sector, tx, sh);
1636 if (dev->page != dev->orig_page) {
1637 set_bit(R5_SkipCopy, &dev->flags);
1638 clear_bit(R5_UPTODATE, &dev->flags);
1639 clear_bit(R5_OVERWRITE, &dev->flags);
1640 }
1641 }
91c00924
DW
1642 wbi = r5_next_bio(wbi, dev->sector);
1643 }
59fc630b 1644
1645 if (head_sh->batch_head) {
1646 sh = list_first_entry(&sh->batch_list,
1647 struct stripe_head,
1648 batch_list);
1649 if (sh == head_sh)
1650 continue;
1651 goto again;
1652 }
91c00924
DW
1653 }
1654 }
1655
1656 return tx;
1657}
1658
ac6b53b6 1659static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1660{
1661 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1662 int disks = sh->disks;
1663 int pd_idx = sh->pd_idx;
1664 int qd_idx = sh->qd_idx;
1665 int i;
9e444768 1666 bool fua = false, sync = false, discard = false;
91c00924 1667
e46b272b 1668 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1669 (unsigned long long)sh->sector);
1670
bc0934f0 1671 for (i = disks; i--; ) {
e9c7469b 1672 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1673 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1674 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1675 }
e9c7469b 1676
91c00924
DW
1677 for (i = disks; i--; ) {
1678 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1679
e9c7469b 1680 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1681 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1682 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1683 if (fua)
1684 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1685 if (sync)
1686 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1687 }
91c00924
DW
1688 }
1689
d8ee0728
DW
1690 if (sh->reconstruct_state == reconstruct_state_drain_run)
1691 sh->reconstruct_state = reconstruct_state_drain_result;
1692 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1693 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1694 else {
1695 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1696 sh->reconstruct_state = reconstruct_state_result;
1697 }
91c00924
DW
1698
1699 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1700 raid5_release_stripe(sh);
91c00924
DW
1701}
1702
1703static void
ac6b53b6
DW
1704ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1705 struct dma_async_tx_descriptor *tx)
91c00924 1706{
91c00924 1707 int disks = sh->disks;
59fc630b 1708 struct page **xor_srcs;
a08abd8c 1709 struct async_submit_ctl submit;
59fc630b 1710 int count, pd_idx = sh->pd_idx, i;
91c00924 1711 struct page *xor_dest;
d8ee0728 1712 int prexor = 0;
91c00924 1713 unsigned long flags;
59fc630b 1714 int j = 0;
1715 struct stripe_head *head_sh = sh;
1716 int last_stripe;
91c00924 1717
e46b272b 1718 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1719 (unsigned long long)sh->sector);
1720
620125f2
SL
1721 for (i = 0; i < sh->disks; i++) {
1722 if (pd_idx == i)
1723 continue;
1724 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1725 break;
1726 }
1727 if (i >= sh->disks) {
1728 atomic_inc(&sh->count);
620125f2
SL
1729 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1730 ops_complete_reconstruct(sh);
1731 return;
1732 }
59fc630b 1733again:
1734 count = 0;
1735 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1736 /* check if prexor is active which means only process blocks
1737 * that are part of a read-modify-write (written)
1738 */
59fc630b 1739 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1740 prexor = 1;
91c00924
DW
1741 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1742 for (i = disks; i--; ) {
1743 struct r5dev *dev = &sh->dev[i];
59fc630b 1744 if (head_sh->dev[i].written)
91c00924
DW
1745 xor_srcs[count++] = dev->page;
1746 }
1747 } else {
1748 xor_dest = sh->dev[pd_idx].page;
1749 for (i = disks; i--; ) {
1750 struct r5dev *dev = &sh->dev[i];
1751 if (i != pd_idx)
1752 xor_srcs[count++] = dev->page;
1753 }
1754 }
1755
91c00924
DW
1756 /* 1/ if we prexor'd then the dest is reused as a source
1757 * 2/ if we did not prexor then we are redoing the parity
1758 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1759 * for the synchronous xor case
1760 */
59fc630b 1761 last_stripe = !head_sh->batch_head ||
1762 list_first_entry(&sh->batch_list,
1763 struct stripe_head, batch_list) == head_sh;
1764 if (last_stripe) {
1765 flags = ASYNC_TX_ACK |
1766 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1767
1768 atomic_inc(&head_sh->count);
1769 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1770 to_addr_conv(sh, percpu, j));
1771 } else {
1772 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1773 init_async_submit(&submit, flags, tx, NULL, NULL,
1774 to_addr_conv(sh, percpu, j));
1775 }
91c00924 1776
a08abd8c
DW
1777 if (unlikely(count == 1))
1778 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1779 else
1780 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1781 if (!last_stripe) {
1782 j++;
1783 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1784 batch_list);
1785 goto again;
1786 }
91c00924
DW
1787}
1788
ac6b53b6
DW
1789static void
1790ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1791 struct dma_async_tx_descriptor *tx)
1792{
1793 struct async_submit_ctl submit;
59fc630b 1794 struct page **blocks;
1795 int count, i, j = 0;
1796 struct stripe_head *head_sh = sh;
1797 int last_stripe;
584acdd4
MS
1798 int synflags;
1799 unsigned long txflags;
ac6b53b6
DW
1800
1801 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1802
620125f2
SL
1803 for (i = 0; i < sh->disks; i++) {
1804 if (sh->pd_idx == i || sh->qd_idx == i)
1805 continue;
1806 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1807 break;
1808 }
1809 if (i >= sh->disks) {
1810 atomic_inc(&sh->count);
620125f2
SL
1811 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1812 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1813 ops_complete_reconstruct(sh);
1814 return;
1815 }
1816
59fc630b 1817again:
1818 blocks = to_addr_page(percpu, j);
584acdd4
MS
1819
1820 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1821 synflags = SYNDROME_SRC_WRITTEN;
1822 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1823 } else {
1824 synflags = SYNDROME_SRC_ALL;
1825 txflags = ASYNC_TX_ACK;
1826 }
1827
1828 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1829 last_stripe = !head_sh->batch_head ||
1830 list_first_entry(&sh->batch_list,
1831 struct stripe_head, batch_list) == head_sh;
1832
1833 if (last_stripe) {
1834 atomic_inc(&head_sh->count);
584acdd4 1835 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1836 head_sh, to_addr_conv(sh, percpu, j));
1837 } else
1838 init_async_submit(&submit, 0, tx, NULL, NULL,
1839 to_addr_conv(sh, percpu, j));
48769695 1840 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1841 if (!last_stripe) {
1842 j++;
1843 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1844 batch_list);
1845 goto again;
1846 }
91c00924
DW
1847}
1848
1849static void ops_complete_check(void *stripe_head_ref)
1850{
1851 struct stripe_head *sh = stripe_head_ref;
91c00924 1852
e46b272b 1853 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1854 (unsigned long long)sh->sector);
1855
ecc65c9b 1856 sh->check_state = check_state_check_result;
91c00924 1857 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1858 raid5_release_stripe(sh);
91c00924
DW
1859}
1860
ac6b53b6 1861static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1862{
91c00924 1863 int disks = sh->disks;
ac6b53b6
DW
1864 int pd_idx = sh->pd_idx;
1865 int qd_idx = sh->qd_idx;
1866 struct page *xor_dest;
46d5b785 1867 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1868 struct dma_async_tx_descriptor *tx;
a08abd8c 1869 struct async_submit_ctl submit;
ac6b53b6
DW
1870 int count;
1871 int i;
91c00924 1872
e46b272b 1873 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1874 (unsigned long long)sh->sector);
1875
59fc630b 1876 BUG_ON(sh->batch_head);
ac6b53b6
DW
1877 count = 0;
1878 xor_dest = sh->dev[pd_idx].page;
1879 xor_srcs[count++] = xor_dest;
91c00924 1880 for (i = disks; i--; ) {
ac6b53b6
DW
1881 if (i == pd_idx || i == qd_idx)
1882 continue;
1883 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1884 }
1885
d6f38f31 1886 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1887 to_addr_conv(sh, percpu, 0));
099f53cb 1888 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1889 &sh->ops.zero_sum_result, &submit);
91c00924 1890
91c00924 1891 atomic_inc(&sh->count);
a08abd8c
DW
1892 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1893 tx = async_trigger_callback(&submit);
91c00924
DW
1894}
1895
ac6b53b6
DW
1896static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1897{
46d5b785 1898 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1899 struct async_submit_ctl submit;
1900 int count;
1901
1902 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1903 (unsigned long long)sh->sector, checkp);
1904
59fc630b 1905 BUG_ON(sh->batch_head);
584acdd4 1906 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1907 if (!checkp)
1908 srcs[count] = NULL;
91c00924 1909
91c00924 1910 atomic_inc(&sh->count);
ac6b53b6 1911 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1912 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1913 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1914 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1915}
1916
51acbcec 1917static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1918{
1919 int overlap_clear = 0, i, disks = sh->disks;
1920 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1921 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1922 int level = conf->level;
d6f38f31
DW
1923 struct raid5_percpu *percpu;
1924 unsigned long cpu;
91c00924 1925
d6f38f31
DW
1926 cpu = get_cpu();
1927 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1928 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1929 ops_run_biofill(sh);
1930 overlap_clear++;
1931 }
1932
7b3a871e 1933 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1934 if (level < 6)
1935 tx = ops_run_compute5(sh, percpu);
1936 else {
1937 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1938 tx = ops_run_compute6_1(sh, percpu);
1939 else
1940 tx = ops_run_compute6_2(sh, percpu);
1941 }
1942 /* terminate the chain if reconstruct is not set to be run */
1943 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1944 async_tx_ack(tx);
1945 }
91c00924 1946
584acdd4
MS
1947 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1948 if (level < 6)
1949 tx = ops_run_prexor5(sh, percpu, tx);
1950 else
1951 tx = ops_run_prexor6(sh, percpu, tx);
1952 }
91c00924 1953
600aa109 1954 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1955 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1956 overlap_clear++;
1957 }
1958
ac6b53b6
DW
1959 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1960 if (level < 6)
1961 ops_run_reconstruct5(sh, percpu, tx);
1962 else
1963 ops_run_reconstruct6(sh, percpu, tx);
1964 }
91c00924 1965
ac6b53b6
DW
1966 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1967 if (sh->check_state == check_state_run)
1968 ops_run_check_p(sh, percpu);
1969 else if (sh->check_state == check_state_run_q)
1970 ops_run_check_pq(sh, percpu, 0);
1971 else if (sh->check_state == check_state_run_pq)
1972 ops_run_check_pq(sh, percpu, 1);
1973 else
1974 BUG();
1975 }
91c00924 1976
59fc630b 1977 if (overlap_clear && !sh->batch_head)
91c00924
DW
1978 for (i = disks; i--; ) {
1979 struct r5dev *dev = &sh->dev[i];
1980 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1981 wake_up(&sh->raid_conf->wait_for_overlap);
1982 }
d6f38f31 1983 put_cpu();
91c00924
DW
1984}
1985
f18c1a35
N
1986static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1987{
1988 struct stripe_head *sh;
1989
1990 sh = kmem_cache_zalloc(sc, gfp);
1991 if (sh) {
1992 spin_lock_init(&sh->stripe_lock);
1993 spin_lock_init(&sh->batch_lock);
1994 INIT_LIST_HEAD(&sh->batch_list);
1995 INIT_LIST_HEAD(&sh->lru);
1996 atomic_set(&sh->count, 1);
1997 }
1998 return sh;
1999}
486f0644 2000static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2001{
2002 struct stripe_head *sh;
f18c1a35
N
2003
2004 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
2005 if (!sh)
2006 return 0;
6ce32846 2007
3f294f4f 2008 sh->raid_conf = conf;
3f294f4f 2009
a9683a79 2010 if (grow_buffers(sh, gfp)) {
e4e11e38 2011 shrink_buffers(sh);
3f294f4f
N
2012 kmem_cache_free(conf->slab_cache, sh);
2013 return 0;
2014 }
486f0644
N
2015 sh->hash_lock_index =
2016 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2017 /* we just created an active stripe so... */
3f294f4f 2018 atomic_inc(&conf->active_stripes);
59fc630b 2019
6d036f7d 2020 raid5_release_stripe(sh);
486f0644 2021 conf->max_nr_stripes++;
3f294f4f
N
2022 return 1;
2023}
2024
d1688a6d 2025static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2026{
e18b890b 2027 struct kmem_cache *sc;
5e5e3e78 2028 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2029
f4be6b43
N
2030 if (conf->mddev->gendisk)
2031 sprintf(conf->cache_name[0],
2032 "raid%d-%s", conf->level, mdname(conf->mddev));
2033 else
2034 sprintf(conf->cache_name[0],
2035 "raid%d-%p", conf->level, conf->mddev);
2036 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2037
ad01c9e3
N
2038 conf->active_name = 0;
2039 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2040 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2041 0, 0, NULL);
1da177e4
LT
2042 if (!sc)
2043 return 1;
2044 conf->slab_cache = sc;
ad01c9e3 2045 conf->pool_size = devs;
486f0644
N
2046 while (num--)
2047 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2048 return 1;
486f0644 2049
1da177e4
LT
2050 return 0;
2051}
29269553 2052
d6f38f31
DW
2053/**
2054 * scribble_len - return the required size of the scribble region
2055 * @num - total number of disks in the array
2056 *
2057 * The size must be enough to contain:
2058 * 1/ a struct page pointer for each device in the array +2
2059 * 2/ room to convert each entry in (1) to its corresponding dma
2060 * (dma_map_page()) or page (page_address()) address.
2061 *
2062 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2063 * calculate over all devices (not just the data blocks), using zeros in place
2064 * of the P and Q blocks.
2065 */
46d5b785 2066static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2067{
46d5b785 2068 struct flex_array *ret;
d6f38f31
DW
2069 size_t len;
2070
2071 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2072 ret = flex_array_alloc(len, cnt, flags);
2073 if (!ret)
2074 return NULL;
2075 /* always prealloc all elements, so no locking is required */
2076 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2077 flex_array_free(ret);
2078 return NULL;
2079 }
2080 return ret;
d6f38f31
DW
2081}
2082
738a2738
N
2083static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2084{
2085 unsigned long cpu;
2086 int err = 0;
2087
2088 mddev_suspend(conf->mddev);
2089 get_online_cpus();
2090 for_each_present_cpu(cpu) {
2091 struct raid5_percpu *percpu;
2092 struct flex_array *scribble;
2093
2094 percpu = per_cpu_ptr(conf->percpu, cpu);
2095 scribble = scribble_alloc(new_disks,
2096 new_sectors / STRIPE_SECTORS,
2097 GFP_NOIO);
2098
2099 if (scribble) {
2100 flex_array_free(percpu->scribble);
2101 percpu->scribble = scribble;
2102 } else {
2103 err = -ENOMEM;
2104 break;
2105 }
2106 }
2107 put_online_cpus();
2108 mddev_resume(conf->mddev);
2109 return err;
2110}
2111
d1688a6d 2112static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2113{
2114 /* Make all the stripes able to hold 'newsize' devices.
2115 * New slots in each stripe get 'page' set to a new page.
2116 *
2117 * This happens in stages:
2118 * 1/ create a new kmem_cache and allocate the required number of
2119 * stripe_heads.
83f0d77a 2120 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2121 * to the new stripe_heads. This will have the side effect of
2122 * freezing the array as once all stripe_heads have been collected,
2123 * no IO will be possible. Old stripe heads are freed once their
2124 * pages have been transferred over, and the old kmem_cache is
2125 * freed when all stripes are done.
2126 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2127 * we simple return a failre status - no need to clean anything up.
2128 * 4/ allocate new pages for the new slots in the new stripe_heads.
2129 * If this fails, we don't bother trying the shrink the
2130 * stripe_heads down again, we just leave them as they are.
2131 * As each stripe_head is processed the new one is released into
2132 * active service.
2133 *
2134 * Once step2 is started, we cannot afford to wait for a write,
2135 * so we use GFP_NOIO allocations.
2136 */
2137 struct stripe_head *osh, *nsh;
2138 LIST_HEAD(newstripes);
2139 struct disk_info *ndisks;
b5470dc5 2140 int err;
e18b890b 2141 struct kmem_cache *sc;
ad01c9e3 2142 int i;
566c09c5 2143 int hash, cnt;
ad01c9e3
N
2144
2145 if (newsize <= conf->pool_size)
2146 return 0; /* never bother to shrink */
2147
b5470dc5
DW
2148 err = md_allow_write(conf->mddev);
2149 if (err)
2150 return err;
2a2275d6 2151
ad01c9e3
N
2152 /* Step 1 */
2153 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2154 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2155 0, 0, NULL);
ad01c9e3
N
2156 if (!sc)
2157 return -ENOMEM;
2158
2d5b569b
N
2159 /* Need to ensure auto-resizing doesn't interfere */
2160 mutex_lock(&conf->cache_size_mutex);
2161
ad01c9e3 2162 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2163 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2164 if (!nsh)
2165 break;
2166
ad01c9e3 2167 nsh->raid_conf = conf;
ad01c9e3
N
2168 list_add(&nsh->lru, &newstripes);
2169 }
2170 if (i) {
2171 /* didn't get enough, give up */
2172 while (!list_empty(&newstripes)) {
2173 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2174 list_del(&nsh->lru);
2175 kmem_cache_free(sc, nsh);
2176 }
2177 kmem_cache_destroy(sc);
2d5b569b 2178 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2179 return -ENOMEM;
2180 }
2181 /* Step 2 - Must use GFP_NOIO now.
2182 * OK, we have enough stripes, start collecting inactive
2183 * stripes and copying them over
2184 */
566c09c5
SL
2185 hash = 0;
2186 cnt = 0;
ad01c9e3 2187 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2188 lock_device_hash_lock(conf, hash);
e9e4c377 2189 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
566c09c5
SL
2190 !list_empty(conf->inactive_list + hash),
2191 unlock_device_hash_lock(conf, hash),
2192 lock_device_hash_lock(conf, hash));
2193 osh = get_free_stripe(conf, hash);
2194 unlock_device_hash_lock(conf, hash);
f18c1a35 2195
d592a996 2196 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2197 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2198 nsh->dev[i].orig_page = osh->dev[i].page;
2199 }
566c09c5 2200 nsh->hash_lock_index = hash;
ad01c9e3 2201 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2202 cnt++;
2203 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2204 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2205 hash++;
2206 cnt = 0;
2207 }
ad01c9e3
N
2208 }
2209 kmem_cache_destroy(conf->slab_cache);
2210
2211 /* Step 3.
2212 * At this point, we are holding all the stripes so the array
2213 * is completely stalled, so now is a good time to resize
d6f38f31 2214 * conf->disks and the scribble region
ad01c9e3
N
2215 */
2216 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2217 if (ndisks) {
2218 for (i=0; i<conf->raid_disks; i++)
2219 ndisks[i] = conf->disks[i];
2220 kfree(conf->disks);
2221 conf->disks = ndisks;
2222 } else
2223 err = -ENOMEM;
2224
2d5b569b 2225 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2226 /* Step 4, return new stripes to service */
2227 while(!list_empty(&newstripes)) {
2228 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2229 list_del_init(&nsh->lru);
d6f38f31 2230
ad01c9e3
N
2231 for (i=conf->raid_disks; i < newsize; i++)
2232 if (nsh->dev[i].page == NULL) {
2233 struct page *p = alloc_page(GFP_NOIO);
2234 nsh->dev[i].page = p;
d592a996 2235 nsh->dev[i].orig_page = p;
ad01c9e3
N
2236 if (!p)
2237 err = -ENOMEM;
2238 }
6d036f7d 2239 raid5_release_stripe(nsh);
ad01c9e3
N
2240 }
2241 /* critical section pass, GFP_NOIO no longer needed */
2242
2243 conf->slab_cache = sc;
2244 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2245 if (!err)
2246 conf->pool_size = newsize;
ad01c9e3
N
2247 return err;
2248}
1da177e4 2249
486f0644 2250static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2251{
2252 struct stripe_head *sh;
49895bcc 2253 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2254
566c09c5
SL
2255 spin_lock_irq(conf->hash_locks + hash);
2256 sh = get_free_stripe(conf, hash);
2257 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2258 if (!sh)
2259 return 0;
78bafebd 2260 BUG_ON(atomic_read(&sh->count));
e4e11e38 2261 shrink_buffers(sh);
3f294f4f
N
2262 kmem_cache_free(conf->slab_cache, sh);
2263 atomic_dec(&conf->active_stripes);
486f0644 2264 conf->max_nr_stripes--;
3f294f4f
N
2265 return 1;
2266}
2267
d1688a6d 2268static void shrink_stripes(struct r5conf *conf)
3f294f4f 2269{
486f0644
N
2270 while (conf->max_nr_stripes &&
2271 drop_one_stripe(conf))
2272 ;
3f294f4f 2273
644df1a8 2274 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2275 conf->slab_cache = NULL;
2276}
2277
4246a0b6 2278static void raid5_end_read_request(struct bio * bi)
1da177e4 2279{
99c0fb5f 2280 struct stripe_head *sh = bi->bi_private;
d1688a6d 2281 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2282 int disks = sh->disks, i;
d6950432 2283 char b[BDEVNAME_SIZE];
dd054fce 2284 struct md_rdev *rdev = NULL;
05616be5 2285 sector_t s;
1da177e4
LT
2286
2287 for (i=0 ; i<disks; i++)
2288 if (bi == &sh->dev[i].req)
2289 break;
2290
4246a0b6 2291 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2292 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2293 bi->bi_error);
1da177e4
LT
2294 if (i == disks) {
2295 BUG();
6712ecf8 2296 return;
1da177e4 2297 }
14a75d3e 2298 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2299 /* If replacement finished while this request was outstanding,
2300 * 'replacement' might be NULL already.
2301 * In that case it moved down to 'rdev'.
2302 * rdev is not removed until all requests are finished.
2303 */
14a75d3e 2304 rdev = conf->disks[i].replacement;
dd054fce 2305 if (!rdev)
14a75d3e 2306 rdev = conf->disks[i].rdev;
1da177e4 2307
05616be5
N
2308 if (use_new_offset(conf, sh))
2309 s = sh->sector + rdev->new_data_offset;
2310 else
2311 s = sh->sector + rdev->data_offset;
4246a0b6 2312 if (!bi->bi_error) {
1da177e4 2313 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2314 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2315 /* Note that this cannot happen on a
2316 * replacement device. We just fail those on
2317 * any error
2318 */
8bda470e
CD
2319 printk_ratelimited(
2320 KERN_INFO
2321 "md/raid:%s: read error corrected"
2322 " (%lu sectors at %llu on %s)\n",
2323 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2324 (unsigned long long)s,
8bda470e 2325 bdevname(rdev->bdev, b));
ddd5115f 2326 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2327 clear_bit(R5_ReadError, &sh->dev[i].flags);
2328 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2329 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2330 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2331
14a75d3e
N
2332 if (atomic_read(&rdev->read_errors))
2333 atomic_set(&rdev->read_errors, 0);
1da177e4 2334 } else {
14a75d3e 2335 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2336 int retry = 0;
2e8ac303 2337 int set_bad = 0;
d6950432 2338
1da177e4 2339 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2340 atomic_inc(&rdev->read_errors);
14a75d3e
N
2341 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2342 printk_ratelimited(
2343 KERN_WARNING
2344 "md/raid:%s: read error on replacement device "
2345 "(sector %llu on %s).\n",
2346 mdname(conf->mddev),
05616be5 2347 (unsigned long long)s,
14a75d3e 2348 bdn);
2e8ac303 2349 else if (conf->mddev->degraded >= conf->max_degraded) {
2350 set_bad = 1;
8bda470e
CD
2351 printk_ratelimited(
2352 KERN_WARNING
2353 "md/raid:%s: read error not correctable "
2354 "(sector %llu on %s).\n",
2355 mdname(conf->mddev),
05616be5 2356 (unsigned long long)s,
8bda470e 2357 bdn);
2e8ac303 2358 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2359 /* Oh, no!!! */
2e8ac303 2360 set_bad = 1;
8bda470e
CD
2361 printk_ratelimited(
2362 KERN_WARNING
2363 "md/raid:%s: read error NOT corrected!! "
2364 "(sector %llu on %s).\n",
2365 mdname(conf->mddev),
05616be5 2366 (unsigned long long)s,
8bda470e 2367 bdn);
2e8ac303 2368 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2369 > conf->max_nr_stripes)
14f8d26b 2370 printk(KERN_WARNING
0c55e022 2371 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2372 mdname(conf->mddev), bdn);
ba22dcbf
N
2373 else
2374 retry = 1;
edfa1f65
BY
2375 if (set_bad && test_bit(In_sync, &rdev->flags)
2376 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2377 retry = 1;
ba22dcbf 2378 if (retry)
3f9e7c14 2379 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2380 set_bit(R5_ReadError, &sh->dev[i].flags);
2381 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2382 } else
2383 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2384 else {
4e5314b5
N
2385 clear_bit(R5_ReadError, &sh->dev[i].flags);
2386 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2387 if (!(set_bad
2388 && test_bit(In_sync, &rdev->flags)
2389 && rdev_set_badblocks(
2390 rdev, sh->sector, STRIPE_SECTORS, 0)))
2391 md_error(conf->mddev, rdev);
ba22dcbf 2392 }
1da177e4 2393 }
14a75d3e 2394 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2395 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2396 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2397 raid5_release_stripe(sh);
1da177e4
LT
2398}
2399
4246a0b6 2400static void raid5_end_write_request(struct bio *bi)
1da177e4 2401{
99c0fb5f 2402 struct stripe_head *sh = bi->bi_private;
d1688a6d 2403 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2404 int disks = sh->disks, i;
977df362 2405 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2406 sector_t first_bad;
2407 int bad_sectors;
977df362 2408 int replacement = 0;
1da177e4 2409
977df362
N
2410 for (i = 0 ; i < disks; i++) {
2411 if (bi == &sh->dev[i].req) {
2412 rdev = conf->disks[i].rdev;
1da177e4 2413 break;
977df362
N
2414 }
2415 if (bi == &sh->dev[i].rreq) {
2416 rdev = conf->disks[i].replacement;
dd054fce
N
2417 if (rdev)
2418 replacement = 1;
2419 else
2420 /* rdev was removed and 'replacement'
2421 * replaced it. rdev is not removed
2422 * until all requests are finished.
2423 */
2424 rdev = conf->disks[i].rdev;
977df362
N
2425 break;
2426 }
2427 }
4246a0b6 2428 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2429 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2430 bi->bi_error);
1da177e4
LT
2431 if (i == disks) {
2432 BUG();
6712ecf8 2433 return;
1da177e4
LT
2434 }
2435
977df362 2436 if (replacement) {
4246a0b6 2437 if (bi->bi_error)
977df362
N
2438 md_error(conf->mddev, rdev);
2439 else if (is_badblock(rdev, sh->sector,
2440 STRIPE_SECTORS,
2441 &first_bad, &bad_sectors))
2442 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2443 } else {
4246a0b6 2444 if (bi->bi_error) {
9f97e4b1 2445 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2446 set_bit(WriteErrorSeen, &rdev->flags);
2447 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2448 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2449 set_bit(MD_RECOVERY_NEEDED,
2450 &rdev->mddev->recovery);
977df362
N
2451 } else if (is_badblock(rdev, sh->sector,
2452 STRIPE_SECTORS,
c0b32972 2453 &first_bad, &bad_sectors)) {
977df362 2454 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2455 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2456 /* That was a successful write so make
2457 * sure it looks like we already did
2458 * a re-write.
2459 */
2460 set_bit(R5_ReWrite, &sh->dev[i].flags);
2461 }
977df362
N
2462 }
2463 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2464
4246a0b6 2465 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2466 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2467
977df362
N
2468 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2469 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2470 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2471 raid5_release_stripe(sh);
59fc630b 2472
2473 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2474 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2475}
2476
784052ec 2477static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2478{
2479 struct r5dev *dev = &sh->dev[i];
2480
2481 bio_init(&dev->req);
2482 dev->req.bi_io_vec = &dev->vec;
d592a996 2483 dev->req.bi_max_vecs = 1;
1da177e4
LT
2484 dev->req.bi_private = sh;
2485
977df362
N
2486 bio_init(&dev->rreq);
2487 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2488 dev->rreq.bi_max_vecs = 1;
977df362 2489 dev->rreq.bi_private = sh;
977df362 2490
1da177e4 2491 dev->flags = 0;
6d036f7d 2492 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2493}
2494
fd01b88c 2495static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2496{
2497 char b[BDEVNAME_SIZE];
d1688a6d 2498 struct r5conf *conf = mddev->private;
908f4fbd 2499 unsigned long flags;
0c55e022 2500 pr_debug("raid456: error called\n");
1da177e4 2501
908f4fbd
N
2502 spin_lock_irqsave(&conf->device_lock, flags);
2503 clear_bit(In_sync, &rdev->flags);
2504 mddev->degraded = calc_degraded(conf);
2505 spin_unlock_irqrestore(&conf->device_lock, flags);
2506 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2507
de393cde 2508 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
2509 set_bit(Faulty, &rdev->flags);
2510 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c3cce6cd 2511 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6f8d0c77
N
2512 printk(KERN_ALERT
2513 "md/raid:%s: Disk failure on %s, disabling device.\n"
2514 "md/raid:%s: Operation continuing on %d devices.\n",
2515 mdname(mddev),
2516 bdevname(rdev->bdev, b),
2517 mdname(mddev),
2518 conf->raid_disks - mddev->degraded);
16a53ecc 2519}
1da177e4
LT
2520
2521/*
2522 * Input: a 'big' sector number,
2523 * Output: index of the data and parity disk, and the sector # in them.
2524 */
6d036f7d
SL
2525sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2526 int previous, int *dd_idx,
2527 struct stripe_head *sh)
1da177e4 2528{
6e3b96ed 2529 sector_t stripe, stripe2;
35f2a591 2530 sector_t chunk_number;
1da177e4 2531 unsigned int chunk_offset;
911d4ee8 2532 int pd_idx, qd_idx;
67cc2b81 2533 int ddf_layout = 0;
1da177e4 2534 sector_t new_sector;
e183eaed
N
2535 int algorithm = previous ? conf->prev_algo
2536 : conf->algorithm;
09c9e5fa
AN
2537 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2538 : conf->chunk_sectors;
112bf897
N
2539 int raid_disks = previous ? conf->previous_raid_disks
2540 : conf->raid_disks;
2541 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2542
2543 /* First compute the information on this sector */
2544
2545 /*
2546 * Compute the chunk number and the sector offset inside the chunk
2547 */
2548 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2549 chunk_number = r_sector;
1da177e4
LT
2550
2551 /*
2552 * Compute the stripe number
2553 */
35f2a591
N
2554 stripe = chunk_number;
2555 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2556 stripe2 = stripe;
1da177e4
LT
2557 /*
2558 * Select the parity disk based on the user selected algorithm.
2559 */
84789554 2560 pd_idx = qd_idx = -1;
16a53ecc
N
2561 switch(conf->level) {
2562 case 4:
911d4ee8 2563 pd_idx = data_disks;
16a53ecc
N
2564 break;
2565 case 5:
e183eaed 2566 switch (algorithm) {
1da177e4 2567 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2568 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2569 if (*dd_idx >= pd_idx)
1da177e4
LT
2570 (*dd_idx)++;
2571 break;
2572 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2573 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2574 if (*dd_idx >= pd_idx)
1da177e4
LT
2575 (*dd_idx)++;
2576 break;
2577 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2578 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2579 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2580 break;
2581 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2582 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2583 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2584 break;
99c0fb5f
N
2585 case ALGORITHM_PARITY_0:
2586 pd_idx = 0;
2587 (*dd_idx)++;
2588 break;
2589 case ALGORITHM_PARITY_N:
2590 pd_idx = data_disks;
2591 break;
1da177e4 2592 default:
99c0fb5f 2593 BUG();
16a53ecc
N
2594 }
2595 break;
2596 case 6:
2597
e183eaed 2598 switch (algorithm) {
16a53ecc 2599 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2600 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2601 qd_idx = pd_idx + 1;
2602 if (pd_idx == raid_disks-1) {
99c0fb5f 2603 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2604 qd_idx = 0;
2605 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2606 (*dd_idx) += 2; /* D D P Q D */
2607 break;
2608 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2609 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2610 qd_idx = pd_idx + 1;
2611 if (pd_idx == raid_disks-1) {
99c0fb5f 2612 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2613 qd_idx = 0;
2614 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2615 (*dd_idx) += 2; /* D D P Q D */
2616 break;
2617 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2618 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2619 qd_idx = (pd_idx + 1) % raid_disks;
2620 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2621 break;
2622 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2623 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2624 qd_idx = (pd_idx + 1) % raid_disks;
2625 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2626 break;
99c0fb5f
N
2627
2628 case ALGORITHM_PARITY_0:
2629 pd_idx = 0;
2630 qd_idx = 1;
2631 (*dd_idx) += 2;
2632 break;
2633 case ALGORITHM_PARITY_N:
2634 pd_idx = data_disks;
2635 qd_idx = data_disks + 1;
2636 break;
2637
2638 case ALGORITHM_ROTATING_ZERO_RESTART:
2639 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2640 * of blocks for computing Q is different.
2641 */
6e3b96ed 2642 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2643 qd_idx = pd_idx + 1;
2644 if (pd_idx == raid_disks-1) {
2645 (*dd_idx)++; /* Q D D D P */
2646 qd_idx = 0;
2647 } else if (*dd_idx >= pd_idx)
2648 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2649 ddf_layout = 1;
99c0fb5f
N
2650 break;
2651
2652 case ALGORITHM_ROTATING_N_RESTART:
2653 /* Same a left_asymmetric, by first stripe is
2654 * D D D P Q rather than
2655 * Q D D D P
2656 */
6e3b96ed
N
2657 stripe2 += 1;
2658 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2659 qd_idx = pd_idx + 1;
2660 if (pd_idx == raid_disks-1) {
2661 (*dd_idx)++; /* Q D D D P */
2662 qd_idx = 0;
2663 } else if (*dd_idx >= pd_idx)
2664 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2665 ddf_layout = 1;
99c0fb5f
N
2666 break;
2667
2668 case ALGORITHM_ROTATING_N_CONTINUE:
2669 /* Same as left_symmetric but Q is before P */
6e3b96ed 2670 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2671 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2672 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2673 ddf_layout = 1;
99c0fb5f
N
2674 break;
2675
2676 case ALGORITHM_LEFT_ASYMMETRIC_6:
2677 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2678 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2679 if (*dd_idx >= pd_idx)
2680 (*dd_idx)++;
2681 qd_idx = raid_disks - 1;
2682 break;
2683
2684 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2685 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2686 if (*dd_idx >= pd_idx)
2687 (*dd_idx)++;
2688 qd_idx = raid_disks - 1;
2689 break;
2690
2691 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2692 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2693 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2694 qd_idx = raid_disks - 1;
2695 break;
2696
2697 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2698 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2699 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2700 qd_idx = raid_disks - 1;
2701 break;
2702
2703 case ALGORITHM_PARITY_0_6:
2704 pd_idx = 0;
2705 (*dd_idx)++;
2706 qd_idx = raid_disks - 1;
2707 break;
2708
16a53ecc 2709 default:
99c0fb5f 2710 BUG();
16a53ecc
N
2711 }
2712 break;
1da177e4
LT
2713 }
2714
911d4ee8
N
2715 if (sh) {
2716 sh->pd_idx = pd_idx;
2717 sh->qd_idx = qd_idx;
67cc2b81 2718 sh->ddf_layout = ddf_layout;
911d4ee8 2719 }
1da177e4
LT
2720 /*
2721 * Finally, compute the new sector number
2722 */
2723 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2724 return new_sector;
2725}
2726
6d036f7d 2727sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2728{
d1688a6d 2729 struct r5conf *conf = sh->raid_conf;
b875e531
N
2730 int raid_disks = sh->disks;
2731 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2732 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2733 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2734 : conf->chunk_sectors;
e183eaed
N
2735 int algorithm = previous ? conf->prev_algo
2736 : conf->algorithm;
1da177e4
LT
2737 sector_t stripe;
2738 int chunk_offset;
35f2a591
N
2739 sector_t chunk_number;
2740 int dummy1, dd_idx = i;
1da177e4 2741 sector_t r_sector;
911d4ee8 2742 struct stripe_head sh2;
1da177e4
LT
2743
2744 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2745 stripe = new_sector;
1da177e4 2746
16a53ecc
N
2747 if (i == sh->pd_idx)
2748 return 0;
2749 switch(conf->level) {
2750 case 4: break;
2751 case 5:
e183eaed 2752 switch (algorithm) {
1da177e4
LT
2753 case ALGORITHM_LEFT_ASYMMETRIC:
2754 case ALGORITHM_RIGHT_ASYMMETRIC:
2755 if (i > sh->pd_idx)
2756 i--;
2757 break;
2758 case ALGORITHM_LEFT_SYMMETRIC:
2759 case ALGORITHM_RIGHT_SYMMETRIC:
2760 if (i < sh->pd_idx)
2761 i += raid_disks;
2762 i -= (sh->pd_idx + 1);
2763 break;
99c0fb5f
N
2764 case ALGORITHM_PARITY_0:
2765 i -= 1;
2766 break;
2767 case ALGORITHM_PARITY_N:
2768 break;
1da177e4 2769 default:
99c0fb5f 2770 BUG();
16a53ecc
N
2771 }
2772 break;
2773 case 6:
d0dabf7e 2774 if (i == sh->qd_idx)
16a53ecc 2775 return 0; /* It is the Q disk */
e183eaed 2776 switch (algorithm) {
16a53ecc
N
2777 case ALGORITHM_LEFT_ASYMMETRIC:
2778 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2779 case ALGORITHM_ROTATING_ZERO_RESTART:
2780 case ALGORITHM_ROTATING_N_RESTART:
2781 if (sh->pd_idx == raid_disks-1)
2782 i--; /* Q D D D P */
16a53ecc
N
2783 else if (i > sh->pd_idx)
2784 i -= 2; /* D D P Q D */
2785 break;
2786 case ALGORITHM_LEFT_SYMMETRIC:
2787 case ALGORITHM_RIGHT_SYMMETRIC:
2788 if (sh->pd_idx == raid_disks-1)
2789 i--; /* Q D D D P */
2790 else {
2791 /* D D P Q D */
2792 if (i < sh->pd_idx)
2793 i += raid_disks;
2794 i -= (sh->pd_idx + 2);
2795 }
2796 break;
99c0fb5f
N
2797 case ALGORITHM_PARITY_0:
2798 i -= 2;
2799 break;
2800 case ALGORITHM_PARITY_N:
2801 break;
2802 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2803 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2804 if (sh->pd_idx == 0)
2805 i--; /* P D D D Q */
e4424fee
N
2806 else {
2807 /* D D Q P D */
2808 if (i < sh->pd_idx)
2809 i += raid_disks;
2810 i -= (sh->pd_idx + 1);
2811 }
99c0fb5f
N
2812 break;
2813 case ALGORITHM_LEFT_ASYMMETRIC_6:
2814 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2815 if (i > sh->pd_idx)
2816 i--;
2817 break;
2818 case ALGORITHM_LEFT_SYMMETRIC_6:
2819 case ALGORITHM_RIGHT_SYMMETRIC_6:
2820 if (i < sh->pd_idx)
2821 i += data_disks + 1;
2822 i -= (sh->pd_idx + 1);
2823 break;
2824 case ALGORITHM_PARITY_0_6:
2825 i -= 1;
2826 break;
16a53ecc 2827 default:
99c0fb5f 2828 BUG();
16a53ecc
N
2829 }
2830 break;
1da177e4
LT
2831 }
2832
2833 chunk_number = stripe * data_disks + i;
35f2a591 2834 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2835
112bf897 2836 check = raid5_compute_sector(conf, r_sector,
784052ec 2837 previous, &dummy1, &sh2);
911d4ee8
N
2838 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2839 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2840 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2841 mdname(conf->mddev));
1da177e4
LT
2842 return 0;
2843 }
2844 return r_sector;
2845}
2846
600aa109 2847static void
c0f7bddb 2848schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2849 int rcw, int expand)
e33129d8 2850{
584acdd4 2851 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2852 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2853 int level = conf->level;
e33129d8
DW
2854
2855 if (rcw) {
e33129d8
DW
2856
2857 for (i = disks; i--; ) {
2858 struct r5dev *dev = &sh->dev[i];
2859
2860 if (dev->towrite) {
2861 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2862 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2863 if (!expand)
2864 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2865 s->locked++;
e33129d8
DW
2866 }
2867 }
ce7d363a
N
2868 /* if we are not expanding this is a proper write request, and
2869 * there will be bios with new data to be drained into the
2870 * stripe cache
2871 */
2872 if (!expand) {
2873 if (!s->locked)
2874 /* False alarm, nothing to do */
2875 return;
2876 sh->reconstruct_state = reconstruct_state_drain_run;
2877 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2878 } else
2879 sh->reconstruct_state = reconstruct_state_run;
2880
2881 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2882
c0f7bddb 2883 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2884 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2885 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2886 } else {
2887 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2888 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2889 BUG_ON(level == 6 &&
2890 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2891 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2892
e33129d8
DW
2893 for (i = disks; i--; ) {
2894 struct r5dev *dev = &sh->dev[i];
584acdd4 2895 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2896 continue;
2897
e33129d8
DW
2898 if (dev->towrite &&
2899 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2900 test_bit(R5_Wantcompute, &dev->flags))) {
2901 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2902 set_bit(R5_LOCKED, &dev->flags);
2903 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2904 s->locked++;
e33129d8
DW
2905 }
2906 }
ce7d363a
N
2907 if (!s->locked)
2908 /* False alarm - nothing to do */
2909 return;
2910 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2911 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2912 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2913 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2914 }
2915
c0f7bddb 2916 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2917 * are in flight
2918 */
2919 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2920 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2921 s->locked++;
e33129d8 2922
c0f7bddb
YT
2923 if (level == 6) {
2924 int qd_idx = sh->qd_idx;
2925 struct r5dev *dev = &sh->dev[qd_idx];
2926
2927 set_bit(R5_LOCKED, &dev->flags);
2928 clear_bit(R5_UPTODATE, &dev->flags);
2929 s->locked++;
2930 }
2931
600aa109 2932 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2933 __func__, (unsigned long long)sh->sector,
600aa109 2934 s->locked, s->ops_request);
e33129d8 2935}
16a53ecc 2936
1da177e4
LT
2937/*
2938 * Each stripe/dev can have one or more bion attached.
16a53ecc 2939 * toread/towrite point to the first in a chain.
1da177e4
LT
2940 * The bi_next chain must be in order.
2941 */
da41ba65 2942static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2943 int forwrite, int previous)
1da177e4
LT
2944{
2945 struct bio **bip;
d1688a6d 2946 struct r5conf *conf = sh->raid_conf;
72626685 2947 int firstwrite=0;
1da177e4 2948
cbe47ec5 2949 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2950 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2951 (unsigned long long)sh->sector);
2952
b17459c0
SL
2953 /*
2954 * If several bio share a stripe. The bio bi_phys_segments acts as a
2955 * reference count to avoid race. The reference count should already be
2956 * increased before this function is called (for example, in
2957 * make_request()), so other bio sharing this stripe will not free the
2958 * stripe. If a stripe is owned by one stripe, the stripe lock will
2959 * protect it.
2960 */
2961 spin_lock_irq(&sh->stripe_lock);
59fc630b 2962 /* Don't allow new IO added to stripes in batch list */
2963 if (sh->batch_head)
2964 goto overlap;
72626685 2965 if (forwrite) {
1da177e4 2966 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2967 if (*bip == NULL)
72626685
N
2968 firstwrite = 1;
2969 } else
1da177e4 2970 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2971 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2972 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2973 goto overlap;
2974 bip = & (*bip)->bi_next;
2975 }
4f024f37 2976 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2977 goto overlap;
2978
da41ba65 2979 if (!forwrite || previous)
2980 clear_bit(STRIPE_BATCH_READY, &sh->state);
2981
78bafebd 2982 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2983 if (*bip)
2984 bi->bi_next = *bip;
2985 *bip = bi;
e7836bd6 2986 raid5_inc_bi_active_stripes(bi);
72626685 2987
1da177e4
LT
2988 if (forwrite) {
2989 /* check if page is covered */
2990 sector_t sector = sh->dev[dd_idx].sector;
2991 for (bi=sh->dev[dd_idx].towrite;
2992 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 2993 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 2994 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
2995 if (bio_end_sector(bi) >= sector)
2996 sector = bio_end_sector(bi);
1da177e4
LT
2997 }
2998 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 2999 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3000 sh->overwrite_disks++;
1da177e4 3001 }
cbe47ec5
N
3002
3003 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3004 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3005 (unsigned long long)sh->sector, dd_idx);
3006
3007 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3008 /* Cannot hold spinlock over bitmap_startwrite,
3009 * but must ensure this isn't added to a batch until
3010 * we have added to the bitmap and set bm_seq.
3011 * So set STRIPE_BITMAP_PENDING to prevent
3012 * batching.
3013 * If multiple add_stripe_bio() calls race here they
3014 * much all set STRIPE_BITMAP_PENDING. So only the first one
3015 * to complete "bitmap_startwrite" gets to set
3016 * STRIPE_BIT_DELAY. This is important as once a stripe
3017 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3018 * any more.
3019 */
3020 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3021 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3022 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3023 STRIPE_SECTORS, 0);
d0852df5
N
3024 spin_lock_irq(&sh->stripe_lock);
3025 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3026 if (!sh->batch_head) {
3027 sh->bm_seq = conf->seq_flush+1;
3028 set_bit(STRIPE_BIT_DELAY, &sh->state);
3029 }
cbe47ec5 3030 }
d0852df5 3031 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3032
3033 if (stripe_can_batch(sh))
3034 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3035 return 1;
3036
3037 overlap:
3038 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3039 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3040 return 0;
3041}
3042
d1688a6d 3043static void end_reshape(struct r5conf *conf);
29269553 3044
d1688a6d 3045static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3046 struct stripe_head *sh)
ccfcc3c1 3047{
784052ec 3048 int sectors_per_chunk =
09c9e5fa 3049 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3050 int dd_idx;
2d2063ce 3051 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3052 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3053
112bf897
N
3054 raid5_compute_sector(conf,
3055 stripe * (disks - conf->max_degraded)
b875e531 3056 *sectors_per_chunk + chunk_offset,
112bf897 3057 previous,
911d4ee8 3058 &dd_idx, sh);
ccfcc3c1
N
3059}
3060
a4456856 3061static void
d1688a6d 3062handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856 3063 struct stripe_head_state *s, int disks,
34a6f80e 3064 struct bio_list *return_bi)
a4456856
DW
3065{
3066 int i;
59fc630b 3067 BUG_ON(sh->batch_head);
a4456856
DW
3068 for (i = disks; i--; ) {
3069 struct bio *bi;
3070 int bitmap_end = 0;
3071
3072 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3073 struct md_rdev *rdev;
a4456856
DW
3074 rcu_read_lock();
3075 rdev = rcu_dereference(conf->disks[i].rdev);
3076 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3077 atomic_inc(&rdev->nr_pending);
3078 else
3079 rdev = NULL;
a4456856 3080 rcu_read_unlock();
7f0da59b
N
3081 if (rdev) {
3082 if (!rdev_set_badblocks(
3083 rdev,
3084 sh->sector,
3085 STRIPE_SECTORS, 0))
3086 md_error(conf->mddev, rdev);
3087 rdev_dec_pending(rdev, conf->mddev);
3088 }
a4456856 3089 }
b17459c0 3090 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3091 /* fail all writes first */
3092 bi = sh->dev[i].towrite;
3093 sh->dev[i].towrite = NULL;
7a87f434 3094 sh->overwrite_disks = 0;
b17459c0 3095 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3096 if (bi)
a4456856 3097 bitmap_end = 1;
a4456856
DW
3098
3099 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3100 wake_up(&conf->wait_for_overlap);
3101
4f024f37 3102 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3103 sh->dev[i].sector + STRIPE_SECTORS) {
3104 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3105
3106 bi->bi_error = -EIO;
e7836bd6 3107 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3108 md_write_end(conf->mddev);
34a6f80e 3109 bio_list_add(return_bi, bi);
a4456856
DW
3110 }
3111 bi = nextbi;
3112 }
7eaf7e8e
SL
3113 if (bitmap_end)
3114 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3115 STRIPE_SECTORS, 0, 0);
3116 bitmap_end = 0;
a4456856
DW
3117 /* and fail all 'written' */
3118 bi = sh->dev[i].written;
3119 sh->dev[i].written = NULL;
d592a996
SL
3120 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3121 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3122 sh->dev[i].page = sh->dev[i].orig_page;
3123 }
3124
a4456856 3125 if (bi) bitmap_end = 1;
4f024f37 3126 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3127 sh->dev[i].sector + STRIPE_SECTORS) {
3128 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3129
3130 bi->bi_error = -EIO;
e7836bd6 3131 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3132 md_write_end(conf->mddev);
34a6f80e 3133 bio_list_add(return_bi, bi);
a4456856
DW
3134 }
3135 bi = bi2;
3136 }
3137
b5e98d65
DW
3138 /* fail any reads if this device is non-operational and
3139 * the data has not reached the cache yet.
3140 */
3141 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3142 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3143 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3144 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3145 bi = sh->dev[i].toread;
3146 sh->dev[i].toread = NULL;
143c4d05 3147 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3148 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3149 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3150 if (bi)
3151 s->to_read--;
4f024f37 3152 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3153 sh->dev[i].sector + STRIPE_SECTORS) {
3154 struct bio *nextbi =
3155 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3156
3157 bi->bi_error = -EIO;
34a6f80e
N
3158 if (!raid5_dec_bi_active_stripes(bi))
3159 bio_list_add(return_bi, bi);
a4456856
DW
3160 bi = nextbi;
3161 }
3162 }
a4456856
DW
3163 if (bitmap_end)
3164 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3165 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3166 /* If we were in the middle of a write the parity block might
3167 * still be locked - so just clear all R5_LOCKED flags
3168 */
3169 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3170 }
ebda780b
SL
3171 s->to_write = 0;
3172 s->written = 0;
a4456856 3173
8b3e6cdc
DW
3174 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3175 if (atomic_dec_and_test(&conf->pending_full_writes))
3176 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3177}
3178
7f0da59b 3179static void
d1688a6d 3180handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3181 struct stripe_head_state *s)
3182{
3183 int abort = 0;
3184 int i;
3185
59fc630b 3186 BUG_ON(sh->batch_head);
7f0da59b 3187 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3188 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3189 wake_up(&conf->wait_for_overlap);
7f0da59b 3190 s->syncing = 0;
9a3e1101 3191 s->replacing = 0;
7f0da59b 3192 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3193 * Don't even need to abort as that is handled elsewhere
3194 * if needed, and not always wanted e.g. if there is a known
3195 * bad block here.
9a3e1101 3196 * For recover/replace we need to record a bad block on all
7f0da59b
N
3197 * non-sync devices, or abort the recovery
3198 */
18b9837e
N
3199 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3200 /* During recovery devices cannot be removed, so
3201 * locking and refcounting of rdevs is not needed
3202 */
3203 for (i = 0; i < conf->raid_disks; i++) {
3204 struct md_rdev *rdev = conf->disks[i].rdev;
3205 if (rdev
3206 && !test_bit(Faulty, &rdev->flags)
3207 && !test_bit(In_sync, &rdev->flags)
3208 && !rdev_set_badblocks(rdev, sh->sector,
3209 STRIPE_SECTORS, 0))
3210 abort = 1;
3211 rdev = conf->disks[i].replacement;
3212 if (rdev
3213 && !test_bit(Faulty, &rdev->flags)
3214 && !test_bit(In_sync, &rdev->flags)
3215 && !rdev_set_badblocks(rdev, sh->sector,
3216 STRIPE_SECTORS, 0))
3217 abort = 1;
3218 }
3219 if (abort)
3220 conf->recovery_disabled =
3221 conf->mddev->recovery_disabled;
7f0da59b 3222 }
18b9837e 3223 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3224}
3225
9a3e1101
N
3226static int want_replace(struct stripe_head *sh, int disk_idx)
3227{
3228 struct md_rdev *rdev;
3229 int rv = 0;
3230 /* Doing recovery so rcu locking not required */
3231 rdev = sh->raid_conf->disks[disk_idx].replacement;
3232 if (rdev
3233 && !test_bit(Faulty, &rdev->flags)
3234 && !test_bit(In_sync, &rdev->flags)
3235 && (rdev->recovery_offset <= sh->sector
3236 || rdev->mddev->recovery_cp <= sh->sector))
3237 rv = 1;
3238
3239 return rv;
3240}
3241
93b3dbce 3242/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3243 * to be read or computed to satisfy a request.
3244 *
3245 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3246 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3247 */
2c58f06e
N
3248
3249static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3250 int disk_idx, int disks)
a4456856 3251{
5599becc 3252 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3253 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3254 &sh->dev[s->failed_num[1]] };
ea664c82 3255 int i;
5599becc 3256
a79cfe12
N
3257
3258 if (test_bit(R5_LOCKED, &dev->flags) ||
3259 test_bit(R5_UPTODATE, &dev->flags))
3260 /* No point reading this as we already have it or have
3261 * decided to get it.
3262 */
3263 return 0;
3264
3265 if (dev->toread ||
3266 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3267 /* We need this block to directly satisfy a request */
3268 return 1;
3269
3270 if (s->syncing || s->expanding ||
3271 (s->replacing && want_replace(sh, disk_idx)))
3272 /* When syncing, or expanding we read everything.
3273 * When replacing, we need the replaced block.
3274 */
3275 return 1;
3276
3277 if ((s->failed >= 1 && fdev[0]->toread) ||
3278 (s->failed >= 2 && fdev[1]->toread))
3279 /* If we want to read from a failed device, then
3280 * we need to actually read every other device.
3281 */
3282 return 1;
3283
a9d56950
N
3284 /* Sometimes neither read-modify-write nor reconstruct-write
3285 * cycles can work. In those cases we read every block we
3286 * can. Then the parity-update is certain to have enough to
3287 * work with.
3288 * This can only be a problem when we need to write something,
3289 * and some device has failed. If either of those tests
3290 * fail we need look no further.
3291 */
3292 if (!s->failed || !s->to_write)
3293 return 0;
3294
3295 if (test_bit(R5_Insync, &dev->flags) &&
3296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3297 /* Pre-reads at not permitted until after short delay
3298 * to gather multiple requests. However if this
3299 * device is no Insync, the block could only be be computed
3300 * and there is no need to delay that.
3301 */
3302 return 0;
ea664c82 3303
36707bb2 3304 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3305 if (fdev[i]->towrite &&
3306 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3307 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3308 /* If we have a partial write to a failed
3309 * device, then we will need to reconstruct
3310 * the content of that device, so all other
3311 * devices must be read.
3312 */
3313 return 1;
3314 }
3315
3316 /* If we are forced to do a reconstruct-write, either because
3317 * the current RAID6 implementation only supports that, or
3318 * or because parity cannot be trusted and we are currently
3319 * recovering it, there is extra need to be careful.
3320 * If one of the devices that we would need to read, because
3321 * it is not being overwritten (and maybe not written at all)
3322 * is missing/faulty, then we need to read everything we can.
3323 */
3324 if (sh->raid_conf->level != 6 &&
3325 sh->sector < sh->raid_conf->mddev->recovery_cp)
3326 /* reconstruct-write isn't being forced */
3327 return 0;
36707bb2 3328 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3329 if (s->failed_num[i] != sh->pd_idx &&
3330 s->failed_num[i] != sh->qd_idx &&
3331 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3332 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3333 return 1;
3334 }
3335
2c58f06e
N
3336 return 0;
3337}
3338
3339static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3340 int disk_idx, int disks)
3341{
3342 struct r5dev *dev = &sh->dev[disk_idx];
3343
3344 /* is the data in this block needed, and can we get it? */
3345 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3346 /* we would like to get this block, possibly by computing it,
3347 * otherwise read it if the backing disk is insync
3348 */
3349 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3350 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3351 BUG_ON(sh->batch_head);
5599becc 3352 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3353 (s->failed && (disk_idx == s->failed_num[0] ||
3354 disk_idx == s->failed_num[1]))) {
5599becc
YT
3355 /* have disk failed, and we're requested to fetch it;
3356 * do compute it
a4456856 3357 */
5599becc
YT
3358 pr_debug("Computing stripe %llu block %d\n",
3359 (unsigned long long)sh->sector, disk_idx);
3360 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3361 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3362 set_bit(R5_Wantcompute, &dev->flags);
3363 sh->ops.target = disk_idx;
3364 sh->ops.target2 = -1; /* no 2nd target */
3365 s->req_compute = 1;
93b3dbce
N
3366 /* Careful: from this point on 'uptodate' is in the eye
3367 * of raid_run_ops which services 'compute' operations
3368 * before writes. R5_Wantcompute flags a block that will
3369 * be R5_UPTODATE by the time it is needed for a
3370 * subsequent operation.
3371 */
5599becc
YT
3372 s->uptodate++;
3373 return 1;
3374 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3375 /* Computing 2-failure is *very* expensive; only
3376 * do it if failed >= 2
3377 */
3378 int other;
3379 for (other = disks; other--; ) {
3380 if (other == disk_idx)
3381 continue;
3382 if (!test_bit(R5_UPTODATE,
3383 &sh->dev[other].flags))
3384 break;
a4456856 3385 }
5599becc
YT
3386 BUG_ON(other < 0);
3387 pr_debug("Computing stripe %llu blocks %d,%d\n",
3388 (unsigned long long)sh->sector,
3389 disk_idx, other);
3390 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3391 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3392 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3393 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3394 sh->ops.target = disk_idx;
3395 sh->ops.target2 = other;
3396 s->uptodate += 2;
3397 s->req_compute = 1;
3398 return 1;
3399 } else if (test_bit(R5_Insync, &dev->flags)) {
3400 set_bit(R5_LOCKED, &dev->flags);
3401 set_bit(R5_Wantread, &dev->flags);
3402 s->locked++;
3403 pr_debug("Reading block %d (sync=%d)\n",
3404 disk_idx, s->syncing);
a4456856
DW
3405 }
3406 }
5599becc
YT
3407
3408 return 0;
3409}
3410
3411/**
93b3dbce 3412 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3413 */
93b3dbce
N
3414static void handle_stripe_fill(struct stripe_head *sh,
3415 struct stripe_head_state *s,
3416 int disks)
5599becc
YT
3417{
3418 int i;
3419
3420 /* look for blocks to read/compute, skip this if a compute
3421 * is already in flight, or if the stripe contents are in the
3422 * midst of changing due to a write
3423 */
3424 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3425 !sh->reconstruct_state)
3426 for (i = disks; i--; )
93b3dbce 3427 if (fetch_block(sh, s, i, disks))
5599becc 3428 break;
a4456856
DW
3429 set_bit(STRIPE_HANDLE, &sh->state);
3430}
3431
787b76fa
N
3432static void break_stripe_batch_list(struct stripe_head *head_sh,
3433 unsigned long handle_flags);
1fe797e6 3434/* handle_stripe_clean_event
a4456856
DW
3435 * any written block on an uptodate or failed drive can be returned.
3436 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3437 * never LOCKED, so we don't need to test 'failed' directly.
3438 */
d1688a6d 3439static void handle_stripe_clean_event(struct r5conf *conf,
34a6f80e 3440 struct stripe_head *sh, int disks, struct bio_list *return_bi)
a4456856
DW
3441{
3442 int i;
3443 struct r5dev *dev;
f8dfcffd 3444 int discard_pending = 0;
59fc630b 3445 struct stripe_head *head_sh = sh;
3446 bool do_endio = false;
a4456856
DW
3447
3448 for (i = disks; i--; )
3449 if (sh->dev[i].written) {
3450 dev = &sh->dev[i];
3451 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3452 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3453 test_bit(R5_Discard, &dev->flags) ||
3454 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3455 /* We can return any write requests */
3456 struct bio *wbi, *wbi2;
45b4233c 3457 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3458 if (test_and_clear_bit(R5_Discard, &dev->flags))
3459 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3460 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3461 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3462 }
59fc630b 3463 do_endio = true;
3464
3465returnbi:
3466 dev->page = dev->orig_page;
a4456856
DW
3467 wbi = dev->written;
3468 dev->written = NULL;
4f024f37 3469 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3470 dev->sector + STRIPE_SECTORS) {
3471 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3472 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856 3473 md_write_end(conf->mddev);
34a6f80e 3474 bio_list_add(return_bi, wbi);
a4456856
DW
3475 }
3476 wbi = wbi2;
3477 }
7eaf7e8e
SL
3478 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3479 STRIPE_SECTORS,
a4456856 3480 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3481 0);
59fc630b 3482 if (head_sh->batch_head) {
3483 sh = list_first_entry(&sh->batch_list,
3484 struct stripe_head,
3485 batch_list);
3486 if (sh != head_sh) {
3487 dev = &sh->dev[i];
3488 goto returnbi;
3489 }
3490 }
3491 sh = head_sh;
3492 dev = &sh->dev[i];
f8dfcffd
N
3493 } else if (test_bit(R5_Discard, &dev->flags))
3494 discard_pending = 1;
d592a996
SL
3495 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3496 WARN_ON(dev->page != dev->orig_page);
f8dfcffd
N
3497 }
3498 if (!discard_pending &&
3499 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3500 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3501 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3502 if (sh->qd_idx >= 0) {
3503 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3504 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3505 }
3506 /* now that discard is done we can proceed with any sync */
3507 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3508 /*
3509 * SCSI discard will change some bio fields and the stripe has
3510 * no updated data, so remove it from hash list and the stripe
3511 * will be reinitialized
3512 */
3513 spin_lock_irq(&conf->device_lock);
59fc630b 3514unhash:
d47648fc 3515 remove_hash(sh);
59fc630b 3516 if (head_sh->batch_head) {
3517 sh = list_first_entry(&sh->batch_list,
3518 struct stripe_head, batch_list);
3519 if (sh != head_sh)
3520 goto unhash;
3521 }
d47648fc 3522 spin_unlock_irq(&conf->device_lock);
59fc630b 3523 sh = head_sh;
3524
f8dfcffd
N
3525 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3526 set_bit(STRIPE_HANDLE, &sh->state);
3527
3528 }
8b3e6cdc
DW
3529
3530 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3531 if (atomic_dec_and_test(&conf->pending_full_writes))
3532 md_wakeup_thread(conf->mddev->thread);
59fc630b 3533
787b76fa
N
3534 if (head_sh->batch_head && do_endio)
3535 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3536}
3537
d1688a6d 3538static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3539 struct stripe_head *sh,
3540 struct stripe_head_state *s,
3541 int disks)
a4456856
DW
3542{
3543 int rmw = 0, rcw = 0, i;
a7854487
AL
3544 sector_t recovery_cp = conf->mddev->recovery_cp;
3545
584acdd4 3546 /* Check whether resync is now happening or should start.
a7854487
AL
3547 * If yes, then the array is dirty (after unclean shutdown or
3548 * initial creation), so parity in some stripes might be inconsistent.
3549 * In this case, we need to always do reconstruct-write, to ensure
3550 * that in case of drive failure or read-error correction, we
3551 * generate correct data from the parity.
3552 */
584acdd4 3553 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3554 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3555 s->failed == 0)) {
a7854487 3556 /* Calculate the real rcw later - for now make it
c8ac1803
N
3557 * look like rcw is cheaper
3558 */
3559 rcw = 1; rmw = 2;
584acdd4
MS
3560 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3561 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3562 (unsigned long long)sh->sector);
c8ac1803 3563 } else for (i = disks; i--; ) {
a4456856
DW
3564 /* would I have to read this buffer for read_modify_write */
3565 struct r5dev *dev = &sh->dev[i];
584acdd4 3566 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3567 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3568 !(test_bit(R5_UPTODATE, &dev->flags) ||
3569 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3570 if (test_bit(R5_Insync, &dev->flags))
3571 rmw++;
3572 else
3573 rmw += 2*disks; /* cannot read it */
3574 }
3575 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3576 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3577 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3578 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3579 !(test_bit(R5_UPTODATE, &dev->flags) ||
3580 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3581 if (test_bit(R5_Insync, &dev->flags))
3582 rcw++;
a4456856
DW
3583 else
3584 rcw += 2*disks;
3585 }
3586 }
45b4233c 3587 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3588 (unsigned long long)sh->sector, rmw, rcw);
3589 set_bit(STRIPE_HANDLE, &sh->state);
584acdd4 3590 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
a4456856 3591 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3592 if (conf->mddev->queue)
3593 blk_add_trace_msg(conf->mddev->queue,
3594 "raid5 rmw %llu %d",
3595 (unsigned long long)sh->sector, rmw);
a4456856
DW
3596 for (i = disks; i--; ) {
3597 struct r5dev *dev = &sh->dev[i];
584acdd4 3598 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3599 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3600 !(test_bit(R5_UPTODATE, &dev->flags) ||
3601 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3602 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3603 if (test_bit(STRIPE_PREREAD_ACTIVE,
3604 &sh->state)) {
3605 pr_debug("Read_old block %d for r-m-w\n",
3606 i);
a4456856
DW
3607 set_bit(R5_LOCKED, &dev->flags);
3608 set_bit(R5_Wantread, &dev->flags);
3609 s->locked++;
3610 } else {
3611 set_bit(STRIPE_DELAYED, &sh->state);
3612 set_bit(STRIPE_HANDLE, &sh->state);
3613 }
3614 }
3615 }
a9add5d9 3616 }
584acdd4 3617 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
a4456856 3618 /* want reconstruct write, but need to get some data */
a9add5d9 3619 int qread =0;
c8ac1803 3620 rcw = 0;
a4456856
DW
3621 for (i = disks; i--; ) {
3622 struct r5dev *dev = &sh->dev[i];
3623 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3624 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3625 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3626 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3627 test_bit(R5_Wantcompute, &dev->flags))) {
3628 rcw++;
67f45548
N
3629 if (test_bit(R5_Insync, &dev->flags) &&
3630 test_bit(STRIPE_PREREAD_ACTIVE,
3631 &sh->state)) {
45b4233c 3632 pr_debug("Read_old block "
a4456856
DW
3633 "%d for Reconstruct\n", i);
3634 set_bit(R5_LOCKED, &dev->flags);
3635 set_bit(R5_Wantread, &dev->flags);
3636 s->locked++;
a9add5d9 3637 qread++;
a4456856
DW
3638 } else {
3639 set_bit(STRIPE_DELAYED, &sh->state);
3640 set_bit(STRIPE_HANDLE, &sh->state);
3641 }
3642 }
3643 }
e3620a3a 3644 if (rcw && conf->mddev->queue)
a9add5d9
N
3645 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3646 (unsigned long long)sh->sector,
3647 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3648 }
b1b02fe9
N
3649
3650 if (rcw > disks && rmw > disks &&
3651 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3652 set_bit(STRIPE_DELAYED, &sh->state);
3653
a4456856
DW
3654 /* now if nothing is locked, and if we have enough data,
3655 * we can start a write request
3656 */
f38e1219
DW
3657 /* since handle_stripe can be called at any time we need to handle the
3658 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3659 * subsequent call wants to start a write request. raid_run_ops only
3660 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3661 * simultaneously. If this is not the case then new writes need to be
3662 * held off until the compute completes.
3663 */
976ea8d4
DW
3664 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3665 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3666 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3667 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3668}
3669
d1688a6d 3670static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3671 struct stripe_head_state *s, int disks)
3672{
ecc65c9b 3673 struct r5dev *dev = NULL;
bd2ab670 3674
59fc630b 3675 BUG_ON(sh->batch_head);
a4456856 3676 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3677
ecc65c9b
DW
3678 switch (sh->check_state) {
3679 case check_state_idle:
3680 /* start a new check operation if there are no failures */
bd2ab670 3681 if (s->failed == 0) {
bd2ab670 3682 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3683 sh->check_state = check_state_run;
3684 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3685 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3686 s->uptodate--;
ecc65c9b 3687 break;
bd2ab670 3688 }
f2b3b44d 3689 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3690 /* fall through */
3691 case check_state_compute_result:
3692 sh->check_state = check_state_idle;
3693 if (!dev)
3694 dev = &sh->dev[sh->pd_idx];
3695
3696 /* check that a write has not made the stripe insync */
3697 if (test_bit(STRIPE_INSYNC, &sh->state))
3698 break;
c8894419 3699
a4456856 3700 /* either failed parity check, or recovery is happening */
a4456856
DW
3701 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3702 BUG_ON(s->uptodate != disks);
3703
3704 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3705 s->locked++;
a4456856 3706 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3707
a4456856 3708 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3709 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3710 break;
3711 case check_state_run:
3712 break; /* we will be called again upon completion */
3713 case check_state_check_result:
3714 sh->check_state = check_state_idle;
3715
3716 /* if a failure occurred during the check operation, leave
3717 * STRIPE_INSYNC not set and let the stripe be handled again
3718 */
3719 if (s->failed)
3720 break;
3721
3722 /* handle a successful check operation, if parity is correct
3723 * we are done. Otherwise update the mismatch count and repair
3724 * parity if !MD_RECOVERY_CHECK
3725 */
ad283ea4 3726 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3727 /* parity is correct (on disc,
3728 * not in buffer any more)
3729 */
3730 set_bit(STRIPE_INSYNC, &sh->state);
3731 else {
7f7583d4 3732 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3733 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3734 /* don't try to repair!! */
3735 set_bit(STRIPE_INSYNC, &sh->state);
3736 else {
3737 sh->check_state = check_state_compute_run;
976ea8d4 3738 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3739 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3740 set_bit(R5_Wantcompute,
3741 &sh->dev[sh->pd_idx].flags);
3742 sh->ops.target = sh->pd_idx;
ac6b53b6 3743 sh->ops.target2 = -1;
ecc65c9b
DW
3744 s->uptodate++;
3745 }
3746 }
3747 break;
3748 case check_state_compute_run:
3749 break;
3750 default:
3751 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3752 __func__, sh->check_state,
3753 (unsigned long long) sh->sector);
3754 BUG();
a4456856
DW
3755 }
3756}
3757
d1688a6d 3758static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3759 struct stripe_head_state *s,
f2b3b44d 3760 int disks)
a4456856 3761{
a4456856 3762 int pd_idx = sh->pd_idx;
34e04e87 3763 int qd_idx = sh->qd_idx;
d82dfee0 3764 struct r5dev *dev;
a4456856 3765
59fc630b 3766 BUG_ON(sh->batch_head);
a4456856
DW
3767 set_bit(STRIPE_HANDLE, &sh->state);
3768
3769 BUG_ON(s->failed > 2);
d82dfee0 3770
a4456856
DW
3771 /* Want to check and possibly repair P and Q.
3772 * However there could be one 'failed' device, in which
3773 * case we can only check one of them, possibly using the
3774 * other to generate missing data
3775 */
3776
d82dfee0
DW
3777 switch (sh->check_state) {
3778 case check_state_idle:
3779 /* start a new check operation if there are < 2 failures */
f2b3b44d 3780 if (s->failed == s->q_failed) {
d82dfee0 3781 /* The only possible failed device holds Q, so it
a4456856
DW
3782 * makes sense to check P (If anything else were failed,
3783 * we would have used P to recreate it).
3784 */
d82dfee0 3785 sh->check_state = check_state_run;
a4456856 3786 }
f2b3b44d 3787 if (!s->q_failed && s->failed < 2) {
d82dfee0 3788 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3789 * anything, so it makes sense to check it
3790 */
d82dfee0
DW
3791 if (sh->check_state == check_state_run)
3792 sh->check_state = check_state_run_pq;
3793 else
3794 sh->check_state = check_state_run_q;
a4456856 3795 }
a4456856 3796
d82dfee0
DW
3797 /* discard potentially stale zero_sum_result */
3798 sh->ops.zero_sum_result = 0;
a4456856 3799
d82dfee0
DW
3800 if (sh->check_state == check_state_run) {
3801 /* async_xor_zero_sum destroys the contents of P */
3802 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3803 s->uptodate--;
a4456856 3804 }
d82dfee0
DW
3805 if (sh->check_state >= check_state_run &&
3806 sh->check_state <= check_state_run_pq) {
3807 /* async_syndrome_zero_sum preserves P and Q, so
3808 * no need to mark them !uptodate here
3809 */
3810 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3811 break;
a4456856
DW
3812 }
3813
d82dfee0
DW
3814 /* we have 2-disk failure */
3815 BUG_ON(s->failed != 2);
3816 /* fall through */
3817 case check_state_compute_result:
3818 sh->check_state = check_state_idle;
a4456856 3819
d82dfee0
DW
3820 /* check that a write has not made the stripe insync */
3821 if (test_bit(STRIPE_INSYNC, &sh->state))
3822 break;
a4456856
DW
3823
3824 /* now write out any block on a failed drive,
d82dfee0 3825 * or P or Q if they were recomputed
a4456856 3826 */
d82dfee0 3827 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3828 if (s->failed == 2) {
f2b3b44d 3829 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3830 s->locked++;
3831 set_bit(R5_LOCKED, &dev->flags);
3832 set_bit(R5_Wantwrite, &dev->flags);
3833 }
3834 if (s->failed >= 1) {
f2b3b44d 3835 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3836 s->locked++;
3837 set_bit(R5_LOCKED, &dev->flags);
3838 set_bit(R5_Wantwrite, &dev->flags);
3839 }
d82dfee0 3840 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3841 dev = &sh->dev[pd_idx];
3842 s->locked++;
3843 set_bit(R5_LOCKED, &dev->flags);
3844 set_bit(R5_Wantwrite, &dev->flags);
3845 }
d82dfee0 3846 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3847 dev = &sh->dev[qd_idx];
3848 s->locked++;
3849 set_bit(R5_LOCKED, &dev->flags);
3850 set_bit(R5_Wantwrite, &dev->flags);
3851 }
3852 clear_bit(STRIPE_DEGRADED, &sh->state);
3853
3854 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3855 break;
3856 case check_state_run:
3857 case check_state_run_q:
3858 case check_state_run_pq:
3859 break; /* we will be called again upon completion */
3860 case check_state_check_result:
3861 sh->check_state = check_state_idle;
3862
3863 /* handle a successful check operation, if parity is correct
3864 * we are done. Otherwise update the mismatch count and repair
3865 * parity if !MD_RECOVERY_CHECK
3866 */
3867 if (sh->ops.zero_sum_result == 0) {
3868 /* both parities are correct */
3869 if (!s->failed)
3870 set_bit(STRIPE_INSYNC, &sh->state);
3871 else {
3872 /* in contrast to the raid5 case we can validate
3873 * parity, but still have a failure to write
3874 * back
3875 */
3876 sh->check_state = check_state_compute_result;
3877 /* Returning at this point means that we may go
3878 * off and bring p and/or q uptodate again so
3879 * we make sure to check zero_sum_result again
3880 * to verify if p or q need writeback
3881 */
3882 }
3883 } else {
7f7583d4 3884 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3885 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3886 /* don't try to repair!! */
3887 set_bit(STRIPE_INSYNC, &sh->state);
3888 else {
3889 int *target = &sh->ops.target;
3890
3891 sh->ops.target = -1;
3892 sh->ops.target2 = -1;
3893 sh->check_state = check_state_compute_run;
3894 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3895 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3896 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3897 set_bit(R5_Wantcompute,
3898 &sh->dev[pd_idx].flags);
3899 *target = pd_idx;
3900 target = &sh->ops.target2;
3901 s->uptodate++;
3902 }
3903 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3904 set_bit(R5_Wantcompute,
3905 &sh->dev[qd_idx].flags);
3906 *target = qd_idx;
3907 s->uptodate++;
3908 }
3909 }
3910 }
3911 break;
3912 case check_state_compute_run:
3913 break;
3914 default:
3915 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3916 __func__, sh->check_state,
3917 (unsigned long long) sh->sector);
3918 BUG();
a4456856
DW
3919 }
3920}
3921
d1688a6d 3922static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3923{
3924 int i;
3925
3926 /* We have read all the blocks in this stripe and now we need to
3927 * copy some of them into a target stripe for expand.
3928 */
f0a50d37 3929 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3930 BUG_ON(sh->batch_head);
a4456856
DW
3931 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3932 for (i = 0; i < sh->disks; i++)
34e04e87 3933 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3934 int dd_idx, j;
a4456856 3935 struct stripe_head *sh2;
a08abd8c 3936 struct async_submit_ctl submit;
a4456856 3937
6d036f7d 3938 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
3939 sector_t s = raid5_compute_sector(conf, bn, 0,
3940 &dd_idx, NULL);
6d036f7d 3941 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3942 if (sh2 == NULL)
3943 /* so far only the early blocks of this stripe
3944 * have been requested. When later blocks
3945 * get requested, we will try again
3946 */
3947 continue;
3948 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3949 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3950 /* must have already done this block */
6d036f7d 3951 raid5_release_stripe(sh2);
a4456856
DW
3952 continue;
3953 }
f0a50d37
DW
3954
3955 /* place all the copies on one channel */
a08abd8c 3956 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3957 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3958 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3959 &submit);
f0a50d37 3960
a4456856
DW
3961 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3962 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3963 for (j = 0; j < conf->raid_disks; j++)
3964 if (j != sh2->pd_idx &&
86c374ba 3965 j != sh2->qd_idx &&
a4456856
DW
3966 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3967 break;
3968 if (j == conf->raid_disks) {
3969 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3970 set_bit(STRIPE_HANDLE, &sh2->state);
3971 }
6d036f7d 3972 raid5_release_stripe(sh2);
f0a50d37 3973
a4456856 3974 }
a2e08551 3975 /* done submitting copies, wait for them to complete */
749586b7 3976 async_tx_quiesce(&tx);
a4456856 3977}
1da177e4
LT
3978
3979/*
3980 * handle_stripe - do things to a stripe.
3981 *
9a3e1101
N
3982 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3983 * state of various bits to see what needs to be done.
1da177e4 3984 * Possible results:
9a3e1101
N
3985 * return some read requests which now have data
3986 * return some write requests which are safely on storage
1da177e4
LT
3987 * schedule a read on some buffers
3988 * schedule a write of some buffers
3989 * return confirmation of parity correctness
3990 *
1da177e4 3991 */
a4456856 3992
acfe726b 3993static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3994{
d1688a6d 3995 struct r5conf *conf = sh->raid_conf;
f416885e 3996 int disks = sh->disks;
474af965
N
3997 struct r5dev *dev;
3998 int i;
9a3e1101 3999 int do_recovery = 0;
1da177e4 4000
acfe726b
N
4001 memset(s, 0, sizeof(*s));
4002
dabc4ec6 4003 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4004 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4005 s->failed_num[0] = -1;
4006 s->failed_num[1] = -1;
1da177e4 4007
acfe726b 4008 /* Now to look around and see what can be done */
1da177e4 4009 rcu_read_lock();
16a53ecc 4010 for (i=disks; i--; ) {
3cb03002 4011 struct md_rdev *rdev;
31c176ec
N
4012 sector_t first_bad;
4013 int bad_sectors;
4014 int is_bad = 0;
acfe726b 4015
16a53ecc 4016 dev = &sh->dev[i];
1da177e4 4017
45b4233c 4018 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4019 i, dev->flags,
4020 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4021 /* maybe we can reply to a read
4022 *
4023 * new wantfill requests are only permitted while
4024 * ops_complete_biofill is guaranteed to be inactive
4025 */
4026 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4027 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4028 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4029
16a53ecc 4030 /* now count some things */
cc94015a
N
4031 if (test_bit(R5_LOCKED, &dev->flags))
4032 s->locked++;
4033 if (test_bit(R5_UPTODATE, &dev->flags))
4034 s->uptodate++;
2d6e4ecc 4035 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4036 s->compute++;
4037 BUG_ON(s->compute > 2);
2d6e4ecc 4038 }
1da177e4 4039
acfe726b 4040 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4041 s->to_fill++;
acfe726b 4042 else if (dev->toread)
cc94015a 4043 s->to_read++;
16a53ecc 4044 if (dev->towrite) {
cc94015a 4045 s->to_write++;
16a53ecc 4046 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4047 s->non_overwrite++;
16a53ecc 4048 }
a4456856 4049 if (dev->written)
cc94015a 4050 s->written++;
14a75d3e
N
4051 /* Prefer to use the replacement for reads, but only
4052 * if it is recovered enough and has no bad blocks.
4053 */
4054 rdev = rcu_dereference(conf->disks[i].replacement);
4055 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4056 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4057 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4058 &first_bad, &bad_sectors))
4059 set_bit(R5_ReadRepl, &dev->flags);
4060 else {
e6030cb0 4061 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4062 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4063 else
4064 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4065 rdev = rcu_dereference(conf->disks[i].rdev);
4066 clear_bit(R5_ReadRepl, &dev->flags);
4067 }
9283d8c5
N
4068 if (rdev && test_bit(Faulty, &rdev->flags))
4069 rdev = NULL;
31c176ec
N
4070 if (rdev) {
4071 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4072 &first_bad, &bad_sectors);
4073 if (s->blocked_rdev == NULL
4074 && (test_bit(Blocked, &rdev->flags)
4075 || is_bad < 0)) {
4076 if (is_bad < 0)
4077 set_bit(BlockedBadBlocks,
4078 &rdev->flags);
4079 s->blocked_rdev = rdev;
4080 atomic_inc(&rdev->nr_pending);
4081 }
6bfe0b49 4082 }
415e72d0
N
4083 clear_bit(R5_Insync, &dev->flags);
4084 if (!rdev)
4085 /* Not in-sync */;
31c176ec
N
4086 else if (is_bad) {
4087 /* also not in-sync */
18b9837e
N
4088 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4089 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4090 /* treat as in-sync, but with a read error
4091 * which we can now try to correct
4092 */
4093 set_bit(R5_Insync, &dev->flags);
4094 set_bit(R5_ReadError, &dev->flags);
4095 }
4096 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4097 set_bit(R5_Insync, &dev->flags);
30d7a483 4098 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4099 /* in sync if before recovery_offset */
30d7a483
N
4100 set_bit(R5_Insync, &dev->flags);
4101 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4102 test_bit(R5_Expanded, &dev->flags))
4103 /* If we've reshaped into here, we assume it is Insync.
4104 * We will shortly update recovery_offset to make
4105 * it official.
4106 */
4107 set_bit(R5_Insync, &dev->flags);
4108
1cc03eb9 4109 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4110 /* This flag does not apply to '.replacement'
4111 * only to .rdev, so make sure to check that*/
4112 struct md_rdev *rdev2 = rcu_dereference(
4113 conf->disks[i].rdev);
4114 if (rdev2 == rdev)
4115 clear_bit(R5_Insync, &dev->flags);
4116 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4117 s->handle_bad_blocks = 1;
14a75d3e 4118 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4119 } else
4120 clear_bit(R5_WriteError, &dev->flags);
4121 }
1cc03eb9 4122 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4123 /* This flag does not apply to '.replacement'
4124 * only to .rdev, so make sure to check that*/
4125 struct md_rdev *rdev2 = rcu_dereference(
4126 conf->disks[i].rdev);
4127 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4128 s->handle_bad_blocks = 1;
14a75d3e 4129 atomic_inc(&rdev2->nr_pending);
b84db560
N
4130 } else
4131 clear_bit(R5_MadeGood, &dev->flags);
4132 }
977df362
N
4133 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4134 struct md_rdev *rdev2 = rcu_dereference(
4135 conf->disks[i].replacement);
4136 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4137 s->handle_bad_blocks = 1;
4138 atomic_inc(&rdev2->nr_pending);
4139 } else
4140 clear_bit(R5_MadeGoodRepl, &dev->flags);
4141 }
415e72d0 4142 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4143 /* The ReadError flag will just be confusing now */
4144 clear_bit(R5_ReadError, &dev->flags);
4145 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4146 }
415e72d0
N
4147 if (test_bit(R5_ReadError, &dev->flags))
4148 clear_bit(R5_Insync, &dev->flags);
4149 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4150 if (s->failed < 2)
4151 s->failed_num[s->failed] = i;
4152 s->failed++;
9a3e1101
N
4153 if (rdev && !test_bit(Faulty, &rdev->flags))
4154 do_recovery = 1;
415e72d0 4155 }
1da177e4 4156 }
9a3e1101
N
4157 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4158 /* If there is a failed device being replaced,
4159 * we must be recovering.
4160 * else if we are after recovery_cp, we must be syncing
c6d2e084 4161 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4162 * else we can only be replacing
4163 * sync and recovery both need to read all devices, and so
4164 * use the same flag.
4165 */
4166 if (do_recovery ||
c6d2e084 4167 sh->sector >= conf->mddev->recovery_cp ||
4168 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4169 s->syncing = 1;
4170 else
4171 s->replacing = 1;
4172 }
1da177e4 4173 rcu_read_unlock();
cc94015a
N
4174}
4175
59fc630b 4176static int clear_batch_ready(struct stripe_head *sh)
4177{
b15a9dbd
N
4178 /* Return '1' if this is a member of batch, or
4179 * '0' if it is a lone stripe or a head which can now be
4180 * handled.
4181 */
59fc630b 4182 struct stripe_head *tmp;
4183 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4184 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4185 spin_lock(&sh->stripe_lock);
4186 if (!sh->batch_head) {
4187 spin_unlock(&sh->stripe_lock);
4188 return 0;
4189 }
4190
4191 /*
4192 * this stripe could be added to a batch list before we check
4193 * BATCH_READY, skips it
4194 */
4195 if (sh->batch_head != sh) {
4196 spin_unlock(&sh->stripe_lock);
4197 return 1;
4198 }
4199 spin_lock(&sh->batch_lock);
4200 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4201 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4202 spin_unlock(&sh->batch_lock);
4203 spin_unlock(&sh->stripe_lock);
4204
4205 /*
4206 * BATCH_READY is cleared, no new stripes can be added.
4207 * batch_list can be accessed without lock
4208 */
4209 return 0;
4210}
4211
3960ce79
N
4212static void break_stripe_batch_list(struct stripe_head *head_sh,
4213 unsigned long handle_flags)
72ac7330 4214{
4e3d62ff 4215 struct stripe_head *sh, *next;
72ac7330 4216 int i;
fb642b92 4217 int do_wakeup = 0;
72ac7330 4218
bb27051f
N
4219 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4220
72ac7330 4221 list_del_init(&sh->batch_list);
4222
1b956f7a
N
4223 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4224 (1 << STRIPE_SYNCING) |
4225 (1 << STRIPE_REPLACED) |
4226 (1 << STRIPE_PREREAD_ACTIVE) |
4227 (1 << STRIPE_DELAYED) |
4228 (1 << STRIPE_BIT_DELAY) |
4229 (1 << STRIPE_FULL_WRITE) |
4230 (1 << STRIPE_BIOFILL_RUN) |
4231 (1 << STRIPE_COMPUTE_RUN) |
4232 (1 << STRIPE_OPS_REQ_PENDING) |
4233 (1 << STRIPE_DISCARD) |
4234 (1 << STRIPE_BATCH_READY) |
4235 (1 << STRIPE_BATCH_ERR) |
4236 (1 << STRIPE_BITMAP_PENDING)));
4237 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4238 (1 << STRIPE_REPLACED)));
4239
4240 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4241 (1 << STRIPE_DEGRADED)),
4242 head_sh->state & (1 << STRIPE_INSYNC));
4243
72ac7330 4244 sh->check_state = head_sh->check_state;
4245 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4246 for (i = 0; i < sh->disks; i++) {
4247 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4248 do_wakeup = 1;
72ac7330 4249 sh->dev[i].flags = head_sh->dev[i].flags &
4250 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4251 }
72ac7330 4252 spin_lock_irq(&sh->stripe_lock);
4253 sh->batch_head = NULL;
4254 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4255 if (handle_flags == 0 ||
4256 sh->state & handle_flags)
4257 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4258 raid5_release_stripe(sh);
72ac7330 4259 }
fb642b92
N
4260 spin_lock_irq(&head_sh->stripe_lock);
4261 head_sh->batch_head = NULL;
4262 spin_unlock_irq(&head_sh->stripe_lock);
4263 for (i = 0; i < head_sh->disks; i++)
4264 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4265 do_wakeup = 1;
3960ce79
N
4266 if (head_sh->state & handle_flags)
4267 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4268
4269 if (do_wakeup)
4270 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4271}
4272
cc94015a
N
4273static void handle_stripe(struct stripe_head *sh)
4274{
4275 struct stripe_head_state s;
d1688a6d 4276 struct r5conf *conf = sh->raid_conf;
3687c061 4277 int i;
84789554
N
4278 int prexor;
4279 int disks = sh->disks;
474af965 4280 struct r5dev *pdev, *qdev;
cc94015a
N
4281
4282 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4283 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4284 /* already being handled, ensure it gets handled
4285 * again when current action finishes */
4286 set_bit(STRIPE_HANDLE, &sh->state);
4287 return;
4288 }
4289
59fc630b 4290 if (clear_batch_ready(sh) ) {
4291 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4292 return;
4293 }
4294
4e3d62ff 4295 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4296 break_stripe_batch_list(sh, 0);
72ac7330 4297
dabc4ec6 4298 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4299 spin_lock(&sh->stripe_lock);
4300 /* Cannot process 'sync' concurrently with 'discard' */
4301 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4302 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4303 set_bit(STRIPE_SYNCING, &sh->state);
4304 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4305 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4306 }
4307 spin_unlock(&sh->stripe_lock);
cc94015a
N
4308 }
4309 clear_bit(STRIPE_DELAYED, &sh->state);
4310
4311 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4312 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4313 (unsigned long long)sh->sector, sh->state,
4314 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4315 sh->check_state, sh->reconstruct_state);
3687c061 4316
acfe726b 4317 analyse_stripe(sh, &s);
c5a31000 4318
bc2607f3
N
4319 if (s.handle_bad_blocks) {
4320 set_bit(STRIPE_HANDLE, &sh->state);
4321 goto finish;
4322 }
4323
474af965
N
4324 if (unlikely(s.blocked_rdev)) {
4325 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4326 s.replacing || s.to_write || s.written) {
474af965
N
4327 set_bit(STRIPE_HANDLE, &sh->state);
4328 goto finish;
4329 }
4330 /* There is nothing for the blocked_rdev to block */
4331 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4332 s.blocked_rdev = NULL;
4333 }
4334
4335 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4336 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4337 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4338 }
4339
4340 pr_debug("locked=%d uptodate=%d to_read=%d"
4341 " to_write=%d failed=%d failed_num=%d,%d\n",
4342 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4343 s.failed_num[0], s.failed_num[1]);
4344 /* check if the array has lost more than max_degraded devices and,
4345 * if so, some requests might need to be failed.
4346 */
9a3f530f
N
4347 if (s.failed > conf->max_degraded) {
4348 sh->check_state = 0;
4349 sh->reconstruct_state = 0;
626f2092 4350 break_stripe_batch_list(sh, 0);
9a3f530f
N
4351 if (s.to_read+s.to_write+s.written)
4352 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4353 if (s.syncing + s.replacing)
9a3f530f
N
4354 handle_failed_sync(conf, sh, &s);
4355 }
474af965 4356
84789554
N
4357 /* Now we check to see if any write operations have recently
4358 * completed
4359 */
4360 prexor = 0;
4361 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4362 prexor = 1;
4363 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4364 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4365 sh->reconstruct_state = reconstruct_state_idle;
4366
4367 /* All the 'written' buffers and the parity block are ready to
4368 * be written back to disk
4369 */
9e444768
SL
4370 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4371 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4372 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4373 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4374 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4375 for (i = disks; i--; ) {
4376 struct r5dev *dev = &sh->dev[i];
4377 if (test_bit(R5_LOCKED, &dev->flags) &&
4378 (i == sh->pd_idx || i == sh->qd_idx ||
4379 dev->written)) {
4380 pr_debug("Writing block %d\n", i);
4381 set_bit(R5_Wantwrite, &dev->flags);
4382 if (prexor)
4383 continue;
9c4bdf69
N
4384 if (s.failed > 1)
4385 continue;
84789554
N
4386 if (!test_bit(R5_Insync, &dev->flags) ||
4387 ((i == sh->pd_idx || i == sh->qd_idx) &&
4388 s.failed == 0))
4389 set_bit(STRIPE_INSYNC, &sh->state);
4390 }
4391 }
4392 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4393 s.dec_preread_active = 1;
4394 }
4395
ef5b7c69
N
4396 /*
4397 * might be able to return some write requests if the parity blocks
4398 * are safe, or on a failed drive
4399 */
4400 pdev = &sh->dev[sh->pd_idx];
4401 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4402 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4403 qdev = &sh->dev[sh->qd_idx];
4404 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4405 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4406 || conf->level < 6;
4407
4408 if (s.written &&
4409 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4410 && !test_bit(R5_LOCKED, &pdev->flags)
4411 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4412 test_bit(R5_Discard, &pdev->flags))))) &&
4413 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4414 && !test_bit(R5_LOCKED, &qdev->flags)
4415 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4416 test_bit(R5_Discard, &qdev->flags))))))
4417 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4418
4419 /* Now we might consider reading some blocks, either to check/generate
4420 * parity, or to satisfy requests
4421 * or to load a block that is being partially written.
4422 */
4423 if (s.to_read || s.non_overwrite
4424 || (conf->level == 6 && s.to_write && s.failed)
4425 || (s.syncing && (s.uptodate + s.compute < disks))
4426 || s.replacing
4427 || s.expanding)
4428 handle_stripe_fill(sh, &s, disks);
4429
84789554
N
4430 /* Now to consider new write requests and what else, if anything
4431 * should be read. We do not handle new writes when:
4432 * 1/ A 'write' operation (copy+xor) is already in flight.
4433 * 2/ A 'check' operation is in flight, as it may clobber the parity
4434 * block.
4435 */
4436 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4437 handle_stripe_dirtying(conf, sh, &s, disks);
4438
4439 /* maybe we need to check and possibly fix the parity for this stripe
4440 * Any reads will already have been scheduled, so we just see if enough
4441 * data is available. The parity check is held off while parity
4442 * dependent operations are in flight.
4443 */
4444 if (sh->check_state ||
4445 (s.syncing && s.locked == 0 &&
4446 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4447 !test_bit(STRIPE_INSYNC, &sh->state))) {
4448 if (conf->level == 6)
4449 handle_parity_checks6(conf, sh, &s, disks);
4450 else
4451 handle_parity_checks5(conf, sh, &s, disks);
4452 }
c5a31000 4453
f94c0b66
N
4454 if ((s.replacing || s.syncing) && s.locked == 0
4455 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4456 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4457 /* Write out to replacement devices where possible */
4458 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4459 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4460 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4461 set_bit(R5_WantReplace, &sh->dev[i].flags);
4462 set_bit(R5_LOCKED, &sh->dev[i].flags);
4463 s.locked++;
4464 }
f94c0b66
N
4465 if (s.replacing)
4466 set_bit(STRIPE_INSYNC, &sh->state);
4467 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4468 }
4469 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4470 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4471 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4472 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4473 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4474 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4475 wake_up(&conf->wait_for_overlap);
c5a31000
N
4476 }
4477
4478 /* If the failed drives are just a ReadError, then we might need
4479 * to progress the repair/check process
4480 */
4481 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4482 for (i = 0; i < s.failed; i++) {
4483 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4484 if (test_bit(R5_ReadError, &dev->flags)
4485 && !test_bit(R5_LOCKED, &dev->flags)
4486 && test_bit(R5_UPTODATE, &dev->flags)
4487 ) {
4488 if (!test_bit(R5_ReWrite, &dev->flags)) {
4489 set_bit(R5_Wantwrite, &dev->flags);
4490 set_bit(R5_ReWrite, &dev->flags);
4491 set_bit(R5_LOCKED, &dev->flags);
4492 s.locked++;
4493 } else {
4494 /* let's read it back */
4495 set_bit(R5_Wantread, &dev->flags);
4496 set_bit(R5_LOCKED, &dev->flags);
4497 s.locked++;
4498 }
4499 }
4500 }
4501
3687c061
N
4502 /* Finish reconstruct operations initiated by the expansion process */
4503 if (sh->reconstruct_state == reconstruct_state_result) {
4504 struct stripe_head *sh_src
6d036f7d 4505 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4506 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4507 /* sh cannot be written until sh_src has been read.
4508 * so arrange for sh to be delayed a little
4509 */
4510 set_bit(STRIPE_DELAYED, &sh->state);
4511 set_bit(STRIPE_HANDLE, &sh->state);
4512 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4513 &sh_src->state))
4514 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4515 raid5_release_stripe(sh_src);
3687c061
N
4516 goto finish;
4517 }
4518 if (sh_src)
6d036f7d 4519 raid5_release_stripe(sh_src);
3687c061
N
4520
4521 sh->reconstruct_state = reconstruct_state_idle;
4522 clear_bit(STRIPE_EXPANDING, &sh->state);
4523 for (i = conf->raid_disks; i--; ) {
4524 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4525 set_bit(R5_LOCKED, &sh->dev[i].flags);
4526 s.locked++;
4527 }
4528 }
f416885e 4529
3687c061
N
4530 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4531 !sh->reconstruct_state) {
4532 /* Need to write out all blocks after computing parity */
4533 sh->disks = conf->raid_disks;
4534 stripe_set_idx(sh->sector, conf, 0, sh);
4535 schedule_reconstruction(sh, &s, 1, 1);
4536 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4537 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4538 atomic_dec(&conf->reshape_stripes);
4539 wake_up(&conf->wait_for_overlap);
4540 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4541 }
4542
4543 if (s.expanding && s.locked == 0 &&
4544 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4545 handle_stripe_expansion(conf, sh);
16a53ecc 4546
3687c061 4547finish:
6bfe0b49 4548 /* wait for this device to become unblocked */
5f066c63
N
4549 if (unlikely(s.blocked_rdev)) {
4550 if (conf->mddev->external)
4551 md_wait_for_blocked_rdev(s.blocked_rdev,
4552 conf->mddev);
4553 else
4554 /* Internal metadata will immediately
4555 * be written by raid5d, so we don't
4556 * need to wait here.
4557 */
4558 rdev_dec_pending(s.blocked_rdev,
4559 conf->mddev);
4560 }
6bfe0b49 4561
bc2607f3
N
4562 if (s.handle_bad_blocks)
4563 for (i = disks; i--; ) {
3cb03002 4564 struct md_rdev *rdev;
bc2607f3
N
4565 struct r5dev *dev = &sh->dev[i];
4566 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4567 /* We own a safe reference to the rdev */
4568 rdev = conf->disks[i].rdev;
4569 if (!rdev_set_badblocks(rdev, sh->sector,
4570 STRIPE_SECTORS, 0))
4571 md_error(conf->mddev, rdev);
4572 rdev_dec_pending(rdev, conf->mddev);
4573 }
b84db560
N
4574 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4575 rdev = conf->disks[i].rdev;
4576 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4577 STRIPE_SECTORS, 0);
b84db560
N
4578 rdev_dec_pending(rdev, conf->mddev);
4579 }
977df362
N
4580 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4581 rdev = conf->disks[i].replacement;
dd054fce
N
4582 if (!rdev)
4583 /* rdev have been moved down */
4584 rdev = conf->disks[i].rdev;
977df362 4585 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4586 STRIPE_SECTORS, 0);
977df362
N
4587 rdev_dec_pending(rdev, conf->mddev);
4588 }
bc2607f3
N
4589 }
4590
6c0069c0
YT
4591 if (s.ops_request)
4592 raid_run_ops(sh, s.ops_request);
4593
f0e43bcd 4594 ops_run_io(sh, &s);
16a53ecc 4595
c5709ef6 4596 if (s.dec_preread_active) {
729a1866 4597 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4598 * is waiting on a flush, it won't continue until the writes
729a1866
N
4599 * have actually been submitted.
4600 */
4601 atomic_dec(&conf->preread_active_stripes);
4602 if (atomic_read(&conf->preread_active_stripes) <
4603 IO_THRESHOLD)
4604 md_wakeup_thread(conf->mddev->thread);
4605 }
4606
c3cce6cd
N
4607 if (!bio_list_empty(&s.return_bi)) {
4608 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4609 spin_lock_irq(&conf->device_lock);
4610 bio_list_merge(&conf->return_bi, &s.return_bi);
4611 spin_unlock_irq(&conf->device_lock);
4612 md_wakeup_thread(conf->mddev->thread);
4613 } else
4614 return_io(&s.return_bi);
4615 }
16a53ecc 4616
257a4b42 4617 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4618}
4619
d1688a6d 4620static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4621{
4622 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4623 while (!list_empty(&conf->delayed_list)) {
4624 struct list_head *l = conf->delayed_list.next;
4625 struct stripe_head *sh;
4626 sh = list_entry(l, struct stripe_head, lru);
4627 list_del_init(l);
4628 clear_bit(STRIPE_DELAYED, &sh->state);
4629 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4630 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4631 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4632 raid5_wakeup_stripe_thread(sh);
16a53ecc 4633 }
482c0834 4634 }
16a53ecc
N
4635}
4636
566c09c5
SL
4637static void activate_bit_delay(struct r5conf *conf,
4638 struct list_head *temp_inactive_list)
16a53ecc
N
4639{
4640 /* device_lock is held */
4641 struct list_head head;
4642 list_add(&head, &conf->bitmap_list);
4643 list_del_init(&conf->bitmap_list);
4644 while (!list_empty(&head)) {
4645 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4646 int hash;
16a53ecc
N
4647 list_del_init(&sh->lru);
4648 atomic_inc(&sh->count);
566c09c5
SL
4649 hash = sh->hash_lock_index;
4650 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4651 }
4652}
4653
5c675f83 4654static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4655{
d1688a6d 4656 struct r5conf *conf = mddev->private;
f022b2fd
N
4657
4658 /* No difference between reads and writes. Just check
4659 * how busy the stripe_cache is
4660 */
3fa841d7 4661
5423399a 4662 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4663 return 1;
4664 if (conf->quiesce)
4665 return 1;
4bda556a 4666 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4667 return 1;
4668
4669 return 0;
4670}
4671
fd01b88c 4672static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4673{
3cb5edf4 4674 struct r5conf *conf = mddev->private;
4f024f37 4675 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 4676 unsigned int chunk_sectors;
aa8b57aa 4677 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4678
3cb5edf4 4679 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
4680 return chunk_sectors >=
4681 ((sector & (chunk_sectors - 1)) + bio_sectors);
4682}
4683
46031f9a
RBJ
4684/*
4685 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4686 * later sampled by raid5d.
4687 */
d1688a6d 4688static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4689{
4690 unsigned long flags;
4691
4692 spin_lock_irqsave(&conf->device_lock, flags);
4693
4694 bi->bi_next = conf->retry_read_aligned_list;
4695 conf->retry_read_aligned_list = bi;
4696
4697 spin_unlock_irqrestore(&conf->device_lock, flags);
4698 md_wakeup_thread(conf->mddev->thread);
4699}
4700
d1688a6d 4701static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4702{
4703 struct bio *bi;
4704
4705 bi = conf->retry_read_aligned;
4706 if (bi) {
4707 conf->retry_read_aligned = NULL;
4708 return bi;
4709 }
4710 bi = conf->retry_read_aligned_list;
4711 if(bi) {
387bb173 4712 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4713 bi->bi_next = NULL;
960e739d
JA
4714 /*
4715 * this sets the active strip count to 1 and the processed
4716 * strip count to zero (upper 8 bits)
4717 */
e7836bd6 4718 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4719 }
4720
4721 return bi;
4722}
4723
f679623f
RBJ
4724/*
4725 * The "raid5_align_endio" should check if the read succeeded and if it
4726 * did, call bio_endio on the original bio (having bio_put the new bio
4727 * first).
4728 * If the read failed..
4729 */
4246a0b6 4730static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
4731{
4732 struct bio* raid_bi = bi->bi_private;
fd01b88c 4733 struct mddev *mddev;
d1688a6d 4734 struct r5conf *conf;
3cb03002 4735 struct md_rdev *rdev;
9b81c842 4736 int error = bi->bi_error;
46031f9a 4737
f679623f 4738 bio_put(bi);
46031f9a 4739
46031f9a
RBJ
4740 rdev = (void*)raid_bi->bi_next;
4741 raid_bi->bi_next = NULL;
2b7f2228
N
4742 mddev = rdev->mddev;
4743 conf = mddev->private;
46031f9a
RBJ
4744
4745 rdev_dec_pending(rdev, conf->mddev);
4746
9b81c842 4747 if (!error) {
0a82a8d1
LT
4748 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4749 raid_bi, 0);
4246a0b6 4750 bio_endio(raid_bi);
46031f9a 4751 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 4752 wake_up(&conf->wait_for_quiescent);
6712ecf8 4753 return;
46031f9a
RBJ
4754 }
4755
45b4233c 4756 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4757
4758 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4759}
4760
7ef6b12a 4761static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 4762{
d1688a6d 4763 struct r5conf *conf = mddev->private;
8553fe7e 4764 int dd_idx;
f679623f 4765 struct bio* align_bi;
3cb03002 4766 struct md_rdev *rdev;
671488cc 4767 sector_t end_sector;
f679623f
RBJ
4768
4769 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 4770 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
4771 return 0;
4772 }
4773 /*
a167f663 4774 * use bio_clone_mddev to make a copy of the bio
f679623f 4775 */
a167f663 4776 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4777 if (!align_bi)
4778 return 0;
4779 /*
4780 * set bi_end_io to a new function, and set bi_private to the
4781 * original bio.
4782 */
4783 align_bi->bi_end_io = raid5_align_endio;
4784 align_bi->bi_private = raid_bio;
4785 /*
4786 * compute position
4787 */
4f024f37
KO
4788 align_bi->bi_iter.bi_sector =
4789 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4790 0, &dd_idx, NULL);
f679623f 4791
f73a1c7d 4792 end_sector = bio_end_sector(align_bi);
f679623f 4793 rcu_read_lock();
671488cc
N
4794 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4795 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4796 rdev->recovery_offset < end_sector) {
4797 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4798 if (rdev &&
4799 (test_bit(Faulty, &rdev->flags) ||
4800 !(test_bit(In_sync, &rdev->flags) ||
4801 rdev->recovery_offset >= end_sector)))
4802 rdev = NULL;
4803 }
4804 if (rdev) {
31c176ec
N
4805 sector_t first_bad;
4806 int bad_sectors;
4807
f679623f
RBJ
4808 atomic_inc(&rdev->nr_pending);
4809 rcu_read_unlock();
46031f9a
RBJ
4810 raid_bio->bi_next = (void*)rdev;
4811 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 4812 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 4813
7140aafc 4814 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 4815 bio_sectors(align_bi),
31c176ec 4816 &first_bad, &bad_sectors)) {
387bb173
NB
4817 bio_put(align_bi);
4818 rdev_dec_pending(rdev, mddev);
4819 return 0;
4820 }
4821
6c0544e2 4822 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4823 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4824
46031f9a 4825 spin_lock_irq(&conf->device_lock);
b1b46486 4826 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 4827 conf->quiesce == 0,
eed8c02e 4828 conf->device_lock);
46031f9a
RBJ
4829 atomic_inc(&conf->active_aligned_reads);
4830 spin_unlock_irq(&conf->device_lock);
4831
e3620a3a
JB
4832 if (mddev->gendisk)
4833 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4834 align_bi, disk_devt(mddev->gendisk),
4f024f37 4835 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4836 generic_make_request(align_bi);
4837 return 1;
4838 } else {
4839 rcu_read_unlock();
46031f9a 4840 bio_put(align_bi);
f679623f
RBJ
4841 return 0;
4842 }
4843}
4844
7ef6b12a
ML
4845static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4846{
4847 struct bio *split;
4848
4849 do {
4850 sector_t sector = raid_bio->bi_iter.bi_sector;
4851 unsigned chunk_sects = mddev->chunk_sectors;
4852 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4853
4854 if (sectors < bio_sectors(raid_bio)) {
4855 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4856 bio_chain(split, raid_bio);
4857 } else
4858 split = raid_bio;
4859
4860 if (!raid5_read_one_chunk(mddev, split)) {
4861 if (split != raid_bio)
4862 generic_make_request(raid_bio);
4863 return split;
4864 }
4865 } while (split != raid_bio);
4866
4867 return NULL;
4868}
4869
8b3e6cdc
DW
4870/* __get_priority_stripe - get the next stripe to process
4871 *
4872 * Full stripe writes are allowed to pass preread active stripes up until
4873 * the bypass_threshold is exceeded. In general the bypass_count
4874 * increments when the handle_list is handled before the hold_list; however, it
4875 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4876 * stripe with in flight i/o. The bypass_count will be reset when the
4877 * head of the hold_list has changed, i.e. the head was promoted to the
4878 * handle_list.
4879 */
851c30c9 4880static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4881{
851c30c9
SL
4882 struct stripe_head *sh = NULL, *tmp;
4883 struct list_head *handle_list = NULL;
bfc90cb0 4884 struct r5worker_group *wg = NULL;
851c30c9
SL
4885
4886 if (conf->worker_cnt_per_group == 0) {
4887 handle_list = &conf->handle_list;
4888 } else if (group != ANY_GROUP) {
4889 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4890 wg = &conf->worker_groups[group];
851c30c9
SL
4891 } else {
4892 int i;
4893 for (i = 0; i < conf->group_cnt; i++) {
4894 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4895 wg = &conf->worker_groups[i];
851c30c9
SL
4896 if (!list_empty(handle_list))
4897 break;
4898 }
4899 }
8b3e6cdc
DW
4900
4901 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4902 __func__,
851c30c9 4903 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4904 list_empty(&conf->hold_list) ? "empty" : "busy",
4905 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4906
851c30c9
SL
4907 if (!list_empty(handle_list)) {
4908 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4909
4910 if (list_empty(&conf->hold_list))
4911 conf->bypass_count = 0;
4912 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4913 if (conf->hold_list.next == conf->last_hold)
4914 conf->bypass_count++;
4915 else {
4916 conf->last_hold = conf->hold_list.next;
4917 conf->bypass_count -= conf->bypass_threshold;
4918 if (conf->bypass_count < 0)
4919 conf->bypass_count = 0;
4920 }
4921 }
4922 } else if (!list_empty(&conf->hold_list) &&
4923 ((conf->bypass_threshold &&
4924 conf->bypass_count > conf->bypass_threshold) ||
4925 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4926
4927 list_for_each_entry(tmp, &conf->hold_list, lru) {
4928 if (conf->worker_cnt_per_group == 0 ||
4929 group == ANY_GROUP ||
4930 !cpu_online(tmp->cpu) ||
4931 cpu_to_group(tmp->cpu) == group) {
4932 sh = tmp;
4933 break;
4934 }
4935 }
4936
4937 if (sh) {
4938 conf->bypass_count -= conf->bypass_threshold;
4939 if (conf->bypass_count < 0)
4940 conf->bypass_count = 0;
4941 }
bfc90cb0 4942 wg = NULL;
851c30c9
SL
4943 }
4944
4945 if (!sh)
8b3e6cdc
DW
4946 return NULL;
4947
bfc90cb0
SL
4948 if (wg) {
4949 wg->stripes_cnt--;
4950 sh->group = NULL;
4951 }
8b3e6cdc 4952 list_del_init(&sh->lru);
c7a6d35e 4953 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4954 return sh;
4955}
f679623f 4956
8811b596
SL
4957struct raid5_plug_cb {
4958 struct blk_plug_cb cb;
4959 struct list_head list;
566c09c5 4960 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4961};
4962
4963static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4964{
4965 struct raid5_plug_cb *cb = container_of(
4966 blk_cb, struct raid5_plug_cb, cb);
4967 struct stripe_head *sh;
4968 struct mddev *mddev = cb->cb.data;
4969 struct r5conf *conf = mddev->private;
a9add5d9 4970 int cnt = 0;
566c09c5 4971 int hash;
8811b596
SL
4972
4973 if (cb->list.next && !list_empty(&cb->list)) {
4974 spin_lock_irq(&conf->device_lock);
4975 while (!list_empty(&cb->list)) {
4976 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4977 list_del_init(&sh->lru);
4978 /*
4979 * avoid race release_stripe_plug() sees
4980 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4981 * is still in our list
4982 */
4e857c58 4983 smp_mb__before_atomic();
8811b596 4984 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
4985 /*
4986 * STRIPE_ON_RELEASE_LIST could be set here. In that
4987 * case, the count is always > 1 here
4988 */
566c09c5
SL
4989 hash = sh->hash_lock_index;
4990 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 4991 cnt++;
8811b596
SL
4992 }
4993 spin_unlock_irq(&conf->device_lock);
4994 }
566c09c5
SL
4995 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4996 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
4997 if (mddev->queue)
4998 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
4999 kfree(cb);
5000}
5001
5002static void release_stripe_plug(struct mddev *mddev,
5003 struct stripe_head *sh)
5004{
5005 struct blk_plug_cb *blk_cb = blk_check_plugged(
5006 raid5_unplug, mddev,
5007 sizeof(struct raid5_plug_cb));
5008 struct raid5_plug_cb *cb;
5009
5010 if (!blk_cb) {
6d036f7d 5011 raid5_release_stripe(sh);
8811b596
SL
5012 return;
5013 }
5014
5015 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5016
566c09c5
SL
5017 if (cb->list.next == NULL) {
5018 int i;
8811b596 5019 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5020 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5021 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5022 }
8811b596
SL
5023
5024 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5025 list_add_tail(&sh->lru, &cb->list);
5026 else
6d036f7d 5027 raid5_release_stripe(sh);
8811b596
SL
5028}
5029
620125f2
SL
5030static void make_discard_request(struct mddev *mddev, struct bio *bi)
5031{
5032 struct r5conf *conf = mddev->private;
5033 sector_t logical_sector, last_sector;
5034 struct stripe_head *sh;
5035 int remaining;
5036 int stripe_sectors;
5037
5038 if (mddev->reshape_position != MaxSector)
5039 /* Skip discard while reshape is happening */
5040 return;
5041
4f024f37
KO
5042 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5043 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5044
5045 bi->bi_next = NULL;
5046 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5047
5048 stripe_sectors = conf->chunk_sectors *
5049 (conf->raid_disks - conf->max_degraded);
5050 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5051 stripe_sectors);
5052 sector_div(last_sector, stripe_sectors);
5053
5054 logical_sector *= conf->chunk_sectors;
5055 last_sector *= conf->chunk_sectors;
5056
5057 for (; logical_sector < last_sector;
5058 logical_sector += STRIPE_SECTORS) {
5059 DEFINE_WAIT(w);
5060 int d;
5061 again:
6d036f7d 5062 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5063 prepare_to_wait(&conf->wait_for_overlap, &w,
5064 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5065 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5066 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5067 raid5_release_stripe(sh);
f8dfcffd
N
5068 schedule();
5069 goto again;
5070 }
5071 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5072 spin_lock_irq(&sh->stripe_lock);
5073 for (d = 0; d < conf->raid_disks; d++) {
5074 if (d == sh->pd_idx || d == sh->qd_idx)
5075 continue;
5076 if (sh->dev[d].towrite || sh->dev[d].toread) {
5077 set_bit(R5_Overlap, &sh->dev[d].flags);
5078 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5079 raid5_release_stripe(sh);
620125f2
SL
5080 schedule();
5081 goto again;
5082 }
5083 }
f8dfcffd 5084 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5085 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5086 sh->overwrite_disks = 0;
620125f2
SL
5087 for (d = 0; d < conf->raid_disks; d++) {
5088 if (d == sh->pd_idx || d == sh->qd_idx)
5089 continue;
5090 sh->dev[d].towrite = bi;
5091 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5092 raid5_inc_bi_active_stripes(bi);
7a87f434 5093 sh->overwrite_disks++;
620125f2
SL
5094 }
5095 spin_unlock_irq(&sh->stripe_lock);
5096 if (conf->mddev->bitmap) {
5097 for (d = 0;
5098 d < conf->raid_disks - conf->max_degraded;
5099 d++)
5100 bitmap_startwrite(mddev->bitmap,
5101 sh->sector,
5102 STRIPE_SECTORS,
5103 0);
5104 sh->bm_seq = conf->seq_flush + 1;
5105 set_bit(STRIPE_BIT_DELAY, &sh->state);
5106 }
5107
5108 set_bit(STRIPE_HANDLE, &sh->state);
5109 clear_bit(STRIPE_DELAYED, &sh->state);
5110 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5111 atomic_inc(&conf->preread_active_stripes);
5112 release_stripe_plug(mddev, sh);
5113 }
5114
5115 remaining = raid5_dec_bi_active_stripes(bi);
5116 if (remaining == 0) {
5117 md_write_end(mddev);
4246a0b6 5118 bio_endio(bi);
620125f2
SL
5119 }
5120}
5121
b4fdcb02 5122static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5123{
d1688a6d 5124 struct r5conf *conf = mddev->private;
911d4ee8 5125 int dd_idx;
1da177e4
LT
5126 sector_t new_sector;
5127 sector_t logical_sector, last_sector;
5128 struct stripe_head *sh;
a362357b 5129 const int rw = bio_data_dir(bi);
49077326 5130 int remaining;
27c0f68f
SL
5131 DEFINE_WAIT(w);
5132 bool do_prepare;
1da177e4 5133
e9c7469b
TH
5134 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5135 md_flush_request(mddev, bi);
5a7bbad2 5136 return;
e5dcdd80
N
5137 }
5138
3d310eb7 5139 md_write_start(mddev, bi);
06d91a5f 5140
9ffc8f7c
EM
5141 /*
5142 * If array is degraded, better not do chunk aligned read because
5143 * later we might have to read it again in order to reconstruct
5144 * data on failed drives.
5145 */
5146 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5147 mddev->reshape_position == MaxSector) {
5148 bi = chunk_aligned_read(mddev, bi);
5149 if (!bi)
5150 return;
5151 }
52488615 5152
620125f2
SL
5153 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5154 make_discard_request(mddev, bi);
5155 return;
5156 }
5157
4f024f37 5158 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5159 last_sector = bio_end_sector(bi);
1da177e4
LT
5160 bi->bi_next = NULL;
5161 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5162
27c0f68f 5163 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5164 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5165 int previous;
c46501b2 5166 int seq;
b578d55f 5167
27c0f68f 5168 do_prepare = false;
7ecaa1e6 5169 retry:
c46501b2 5170 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5171 previous = 0;
27c0f68f
SL
5172 if (do_prepare)
5173 prepare_to_wait(&conf->wait_for_overlap, &w,
5174 TASK_UNINTERRUPTIBLE);
b0f9ec04 5175 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5176 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5177 * 64bit on a 32bit platform, and so it might be
5178 * possible to see a half-updated value
aeb878b0 5179 * Of course reshape_progress could change after
df8e7f76
N
5180 * the lock is dropped, so once we get a reference
5181 * to the stripe that we think it is, we will have
5182 * to check again.
5183 */
7ecaa1e6 5184 spin_lock_irq(&conf->device_lock);
2c810cdd 5185 if (mddev->reshape_backwards
fef9c61f
N
5186 ? logical_sector < conf->reshape_progress
5187 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5188 previous = 1;
5189 } else {
2c810cdd 5190 if (mddev->reshape_backwards
fef9c61f
N
5191 ? logical_sector < conf->reshape_safe
5192 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5193 spin_unlock_irq(&conf->device_lock);
5194 schedule();
27c0f68f 5195 do_prepare = true;
b578d55f
N
5196 goto retry;
5197 }
5198 }
7ecaa1e6
N
5199 spin_unlock_irq(&conf->device_lock);
5200 }
16a53ecc 5201
112bf897
N
5202 new_sector = raid5_compute_sector(conf, logical_sector,
5203 previous,
911d4ee8 5204 &dd_idx, NULL);
0c55e022 5205 pr_debug("raid456: make_request, sector %llu logical %llu\n",
c46501b2 5206 (unsigned long long)new_sector,
1da177e4
LT
5207 (unsigned long long)logical_sector);
5208
6d036f7d 5209 sh = raid5_get_active_stripe(conf, new_sector, previous,
a8c906ca 5210 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5211 if (sh) {
b0f9ec04 5212 if (unlikely(previous)) {
7ecaa1e6 5213 /* expansion might have moved on while waiting for a
df8e7f76
N
5214 * stripe, so we must do the range check again.
5215 * Expansion could still move past after this
5216 * test, but as we are holding a reference to
5217 * 'sh', we know that if that happens,
5218 * STRIPE_EXPANDING will get set and the expansion
5219 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5220 */
5221 int must_retry = 0;
5222 spin_lock_irq(&conf->device_lock);
2c810cdd 5223 if (mddev->reshape_backwards
b0f9ec04
N
5224 ? logical_sector >= conf->reshape_progress
5225 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5226 /* mismatch, need to try again */
5227 must_retry = 1;
5228 spin_unlock_irq(&conf->device_lock);
5229 if (must_retry) {
6d036f7d 5230 raid5_release_stripe(sh);
7a3ab908 5231 schedule();
27c0f68f 5232 do_prepare = true;
7ecaa1e6
N
5233 goto retry;
5234 }
5235 }
c46501b2
N
5236 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5237 /* Might have got the wrong stripe_head
5238 * by accident
5239 */
6d036f7d 5240 raid5_release_stripe(sh);
c46501b2
N
5241 goto retry;
5242 }
e62e58a5 5243
ffd96e35 5244 if (rw == WRITE &&
a5c308d4 5245 logical_sector >= mddev->suspend_lo &&
e464eafd 5246 logical_sector < mddev->suspend_hi) {
6d036f7d 5247 raid5_release_stripe(sh);
e62e58a5
N
5248 /* As the suspend_* range is controlled by
5249 * userspace, we want an interruptible
5250 * wait.
5251 */
5252 flush_signals(current);
5253 prepare_to_wait(&conf->wait_for_overlap,
5254 &w, TASK_INTERRUPTIBLE);
5255 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5256 logical_sector < mddev->suspend_hi) {
e62e58a5 5257 schedule();
27c0f68f
SL
5258 do_prepare = true;
5259 }
e464eafd
N
5260 goto retry;
5261 }
7ecaa1e6
N
5262
5263 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5264 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5265 /* Stripe is busy expanding or
5266 * add failed due to overlap. Flush everything
1da177e4
LT
5267 * and wait a while
5268 */
482c0834 5269 md_wakeup_thread(mddev->thread);
6d036f7d 5270 raid5_release_stripe(sh);
1da177e4 5271 schedule();
27c0f68f 5272 do_prepare = true;
1da177e4
LT
5273 goto retry;
5274 }
6ed3003c
N
5275 set_bit(STRIPE_HANDLE, &sh->state);
5276 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5277 if ((!sh->batch_head || sh == sh->batch_head) &&
5278 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5279 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5280 atomic_inc(&conf->preread_active_stripes);
8811b596 5281 release_stripe_plug(mddev, sh);
1da177e4
LT
5282 } else {
5283 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5284 bi->bi_error = -EIO;
1da177e4
LT
5285 break;
5286 }
1da177e4 5287 }
27c0f68f 5288 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5289
e7836bd6 5290 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5291 if (remaining == 0) {
1da177e4 5292
16a53ecc 5293 if ( rw == WRITE )
1da177e4 5294 md_write_end(mddev);
6712ecf8 5295
0a82a8d1
LT
5296 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5297 bi, 0);
4246a0b6 5298 bio_endio(bi);
1da177e4 5299 }
1da177e4
LT
5300}
5301
fd01b88c 5302static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5303
fd01b88c 5304static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5305{
52c03291
N
5306 /* reshaping is quite different to recovery/resync so it is
5307 * handled quite separately ... here.
5308 *
5309 * On each call to sync_request, we gather one chunk worth of
5310 * destination stripes and flag them as expanding.
5311 * Then we find all the source stripes and request reads.
5312 * As the reads complete, handle_stripe will copy the data
5313 * into the destination stripe and release that stripe.
5314 */
d1688a6d 5315 struct r5conf *conf = mddev->private;
1da177e4 5316 struct stripe_head *sh;
ccfcc3c1 5317 sector_t first_sector, last_sector;
f416885e
N
5318 int raid_disks = conf->previous_raid_disks;
5319 int data_disks = raid_disks - conf->max_degraded;
5320 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5321 int i;
5322 int dd_idx;
c8f517c4 5323 sector_t writepos, readpos, safepos;
ec32a2bd 5324 sector_t stripe_addr;
7a661381 5325 int reshape_sectors;
ab69ae12 5326 struct list_head stripes;
92140480 5327 sector_t retn;
52c03291 5328
fef9c61f
N
5329 if (sector_nr == 0) {
5330 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5331 if (mddev->reshape_backwards &&
fef9c61f
N
5332 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5333 sector_nr = raid5_size(mddev, 0, 0)
5334 - conf->reshape_progress;
6cbd8148
N
5335 } else if (mddev->reshape_backwards &&
5336 conf->reshape_progress == MaxSector) {
5337 /* shouldn't happen, but just in case, finish up.*/
5338 sector_nr = MaxSector;
2c810cdd 5339 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5340 conf->reshape_progress > 0)
5341 sector_nr = conf->reshape_progress;
f416885e 5342 sector_div(sector_nr, new_data_disks);
fef9c61f 5343 if (sector_nr) {
8dee7211
N
5344 mddev->curr_resync_completed = sector_nr;
5345 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5346 *skipped = 1;
92140480
N
5347 retn = sector_nr;
5348 goto finish;
fef9c61f 5349 }
52c03291
N
5350 }
5351
7a661381
N
5352 /* We need to process a full chunk at a time.
5353 * If old and new chunk sizes differ, we need to process the
5354 * largest of these
5355 */
3cb5edf4
N
5356
5357 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5358
b5254dd5
N
5359 /* We update the metadata at least every 10 seconds, or when
5360 * the data about to be copied would over-write the source of
5361 * the data at the front of the range. i.e. one new_stripe
5362 * along from reshape_progress new_maps to after where
5363 * reshape_safe old_maps to
52c03291 5364 */
fef9c61f 5365 writepos = conf->reshape_progress;
f416885e 5366 sector_div(writepos, new_data_disks);
c8f517c4
N
5367 readpos = conf->reshape_progress;
5368 sector_div(readpos, data_disks);
fef9c61f 5369 safepos = conf->reshape_safe;
f416885e 5370 sector_div(safepos, data_disks);
2c810cdd 5371 if (mddev->reshape_backwards) {
c74c0d76
N
5372 BUG_ON(writepos < reshape_sectors);
5373 writepos -= reshape_sectors;
c8f517c4 5374 readpos += reshape_sectors;
7a661381 5375 safepos += reshape_sectors;
fef9c61f 5376 } else {
7a661381 5377 writepos += reshape_sectors;
c74c0d76
N
5378 /* readpos and safepos are worst-case calculations.
5379 * A negative number is overly pessimistic, and causes
5380 * obvious problems for unsigned storage. So clip to 0.
5381 */
ed37d83e
N
5382 readpos -= min_t(sector_t, reshape_sectors, readpos);
5383 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5384 }
52c03291 5385
b5254dd5
N
5386 /* Having calculated the 'writepos' possibly use it
5387 * to set 'stripe_addr' which is where we will write to.
5388 */
5389 if (mddev->reshape_backwards) {
5390 BUG_ON(conf->reshape_progress == 0);
5391 stripe_addr = writepos;
5392 BUG_ON((mddev->dev_sectors &
5393 ~((sector_t)reshape_sectors - 1))
5394 - reshape_sectors - stripe_addr
5395 != sector_nr);
5396 } else {
5397 BUG_ON(writepos != sector_nr + reshape_sectors);
5398 stripe_addr = sector_nr;
5399 }
5400
c8f517c4
N
5401 /* 'writepos' is the most advanced device address we might write.
5402 * 'readpos' is the least advanced device address we might read.
5403 * 'safepos' is the least address recorded in the metadata as having
5404 * been reshaped.
b5254dd5
N
5405 * If there is a min_offset_diff, these are adjusted either by
5406 * increasing the safepos/readpos if diff is negative, or
5407 * increasing writepos if diff is positive.
5408 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5409 * ensure safety in the face of a crash - that must be done by userspace
5410 * making a backup of the data. So in that case there is no particular
5411 * rush to update metadata.
5412 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5413 * update the metadata to advance 'safepos' to match 'readpos' so that
5414 * we can be safe in the event of a crash.
5415 * So we insist on updating metadata if safepos is behind writepos and
5416 * readpos is beyond writepos.
5417 * In any case, update the metadata every 10 seconds.
5418 * Maybe that number should be configurable, but I'm not sure it is
5419 * worth it.... maybe it could be a multiple of safemode_delay???
5420 */
b5254dd5
N
5421 if (conf->min_offset_diff < 0) {
5422 safepos += -conf->min_offset_diff;
5423 readpos += -conf->min_offset_diff;
5424 } else
5425 writepos += conf->min_offset_diff;
5426
2c810cdd 5427 if ((mddev->reshape_backwards
c8f517c4
N
5428 ? (safepos > writepos && readpos < writepos)
5429 : (safepos < writepos && readpos > writepos)) ||
5430 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5431 /* Cannot proceed until we've updated the superblock... */
5432 wait_event(conf->wait_for_overlap,
c91abf5a
N
5433 atomic_read(&conf->reshape_stripes)==0
5434 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5435 if (atomic_read(&conf->reshape_stripes) != 0)
5436 return 0;
fef9c61f 5437 mddev->reshape_position = conf->reshape_progress;
75d3da43 5438 mddev->curr_resync_completed = sector_nr;
c8f517c4 5439 conf->reshape_checkpoint = jiffies;
850b2b42 5440 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5441 md_wakeup_thread(mddev->thread);
850b2b42 5442 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5443 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5444 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5445 return 0;
52c03291 5446 spin_lock_irq(&conf->device_lock);
fef9c61f 5447 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5448 spin_unlock_irq(&conf->device_lock);
5449 wake_up(&conf->wait_for_overlap);
acb180b0 5450 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5451 }
5452
ab69ae12 5453 INIT_LIST_HEAD(&stripes);
7a661381 5454 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5455 int j;
a9f326eb 5456 int skipped_disk = 0;
6d036f7d 5457 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5458 set_bit(STRIPE_EXPANDING, &sh->state);
5459 atomic_inc(&conf->reshape_stripes);
5460 /* If any of this stripe is beyond the end of the old
5461 * array, then we need to zero those blocks
5462 */
5463 for (j=sh->disks; j--;) {
5464 sector_t s;
5465 if (j == sh->pd_idx)
5466 continue;
f416885e 5467 if (conf->level == 6 &&
d0dabf7e 5468 j == sh->qd_idx)
f416885e 5469 continue;
6d036f7d 5470 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5471 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5472 skipped_disk = 1;
52c03291
N
5473 continue;
5474 }
5475 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5476 set_bit(R5_Expanded, &sh->dev[j].flags);
5477 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5478 }
a9f326eb 5479 if (!skipped_disk) {
52c03291
N
5480 set_bit(STRIPE_EXPAND_READY, &sh->state);
5481 set_bit(STRIPE_HANDLE, &sh->state);
5482 }
ab69ae12 5483 list_add(&sh->lru, &stripes);
52c03291
N
5484 }
5485 spin_lock_irq(&conf->device_lock);
2c810cdd 5486 if (mddev->reshape_backwards)
7a661381 5487 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5488 else
7a661381 5489 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5490 spin_unlock_irq(&conf->device_lock);
5491 /* Ok, those stripe are ready. We can start scheduling
5492 * reads on the source stripes.
5493 * The source stripes are determined by mapping the first and last
5494 * block on the destination stripes.
5495 */
52c03291 5496 first_sector =
ec32a2bd 5497 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5498 1, &dd_idx, NULL);
52c03291 5499 last_sector =
0e6e0271 5500 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5501 * new_data_disks - 1),
911d4ee8 5502 1, &dd_idx, NULL);
58c0fed4
AN
5503 if (last_sector >= mddev->dev_sectors)
5504 last_sector = mddev->dev_sectors - 1;
52c03291 5505 while (first_sector <= last_sector) {
6d036f7d 5506 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5507 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5508 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5509 raid5_release_stripe(sh);
52c03291
N
5510 first_sector += STRIPE_SECTORS;
5511 }
ab69ae12
N
5512 /* Now that the sources are clearly marked, we can release
5513 * the destination stripes
5514 */
5515 while (!list_empty(&stripes)) {
5516 sh = list_entry(stripes.next, struct stripe_head, lru);
5517 list_del_init(&sh->lru);
6d036f7d 5518 raid5_release_stripe(sh);
ab69ae12 5519 }
c6207277
N
5520 /* If this takes us to the resync_max point where we have to pause,
5521 * then we need to write out the superblock.
5522 */
7a661381 5523 sector_nr += reshape_sectors;
92140480
N
5524 retn = reshape_sectors;
5525finish:
c5e19d90
N
5526 if (mddev->curr_resync_completed > mddev->resync_max ||
5527 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5528 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5529 /* Cannot proceed until we've updated the superblock... */
5530 wait_event(conf->wait_for_overlap,
c91abf5a
N
5531 atomic_read(&conf->reshape_stripes) == 0
5532 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5533 if (atomic_read(&conf->reshape_stripes) != 0)
5534 goto ret;
fef9c61f 5535 mddev->reshape_position = conf->reshape_progress;
75d3da43 5536 mddev->curr_resync_completed = sector_nr;
c8f517c4 5537 conf->reshape_checkpoint = jiffies;
c6207277
N
5538 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5539 md_wakeup_thread(mddev->thread);
5540 wait_event(mddev->sb_wait,
5541 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5542 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5543 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5544 goto ret;
c6207277 5545 spin_lock_irq(&conf->device_lock);
fef9c61f 5546 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5547 spin_unlock_irq(&conf->device_lock);
5548 wake_up(&conf->wait_for_overlap);
acb180b0 5549 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5550 }
c91abf5a 5551ret:
92140480 5552 return retn;
52c03291
N
5553}
5554
09314799 5555static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
52c03291 5556{
d1688a6d 5557 struct r5conf *conf = mddev->private;
52c03291 5558 struct stripe_head *sh;
58c0fed4 5559 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5560 sector_t sync_blocks;
16a53ecc
N
5561 int still_degraded = 0;
5562 int i;
1da177e4 5563
72626685 5564 if (sector_nr >= max_sector) {
1da177e4 5565 /* just being told to finish up .. nothing much to do */
cea9c228 5566
29269553
N
5567 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5568 end_reshape(conf);
5569 return 0;
5570 }
72626685
N
5571
5572 if (mddev->curr_resync < max_sector) /* aborted */
5573 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5574 &sync_blocks, 1);
16a53ecc 5575 else /* completed sync */
72626685
N
5576 conf->fullsync = 0;
5577 bitmap_close_sync(mddev->bitmap);
5578
1da177e4
LT
5579 return 0;
5580 }
ccfcc3c1 5581
64bd660b
N
5582 /* Allow raid5_quiesce to complete */
5583 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5584
52c03291
N
5585 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5586 return reshape_request(mddev, sector_nr, skipped);
f6705578 5587
c6207277
N
5588 /* No need to check resync_max as we never do more than one
5589 * stripe, and as resync_max will always be on a chunk boundary,
5590 * if the check in md_do_sync didn't fire, there is no chance
5591 * of overstepping resync_max here
5592 */
5593
16a53ecc 5594 /* if there is too many failed drives and we are trying
1da177e4
LT
5595 * to resync, then assert that we are finished, because there is
5596 * nothing we can do.
5597 */
3285edf1 5598 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5599 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5600 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5601 *skipped = 1;
1da177e4
LT
5602 return rv;
5603 }
6f608040 5604 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5605 !conf->fullsync &&
5606 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5607 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5608 /* we can skip this block, and probably more */
5609 sync_blocks /= STRIPE_SECTORS;
5610 *skipped = 1;
5611 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5612 }
1da177e4 5613
c40f341f 5614 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 5615
6d036f7d 5616 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5617 if (sh == NULL) {
6d036f7d 5618 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5619 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5620 * is trying to get access
1da177e4 5621 */
66c006a5 5622 schedule_timeout_uninterruptible(1);
1da177e4 5623 }
16a53ecc 5624 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5625 * Note in case of > 1 drive failures it's possible we're rebuilding
5626 * one drive while leaving another faulty drive in array.
16a53ecc 5627 */
16d9cfab
EM
5628 rcu_read_lock();
5629 for (i = 0; i < conf->raid_disks; i++) {
5630 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5631
5632 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5633 still_degraded = 1;
16d9cfab
EM
5634 }
5635 rcu_read_unlock();
16a53ecc
N
5636
5637 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5638
83206d66 5639 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5640 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5641
6d036f7d 5642 raid5_release_stripe(sh);
1da177e4
LT
5643
5644 return STRIPE_SECTORS;
5645}
5646
d1688a6d 5647static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5648{
5649 /* We may not be able to submit a whole bio at once as there
5650 * may not be enough stripe_heads available.
5651 * We cannot pre-allocate enough stripe_heads as we may need
5652 * more than exist in the cache (if we allow ever large chunks).
5653 * So we do one stripe head at a time and record in
5654 * ->bi_hw_segments how many have been done.
5655 *
5656 * We *know* that this entire raid_bio is in one chunk, so
5657 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5658 */
5659 struct stripe_head *sh;
911d4ee8 5660 int dd_idx;
46031f9a
RBJ
5661 sector_t sector, logical_sector, last_sector;
5662 int scnt = 0;
5663 int remaining;
5664 int handled = 0;
5665
4f024f37
KO
5666 logical_sector = raid_bio->bi_iter.bi_sector &
5667 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5668 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5669 0, &dd_idx, NULL);
f73a1c7d 5670 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5671
5672 for (; logical_sector < last_sector;
387bb173
NB
5673 logical_sector += STRIPE_SECTORS,
5674 sector += STRIPE_SECTORS,
5675 scnt++) {
46031f9a 5676
e7836bd6 5677 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5678 /* already done this stripe */
5679 continue;
5680
6d036f7d 5681 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5682
5683 if (!sh) {
5684 /* failed to get a stripe - must wait */
e7836bd6 5685 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5686 conf->retry_read_aligned = raid_bio;
5687 return handled;
5688 }
5689
da41ba65 5690 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 5691 raid5_release_stripe(sh);
e7836bd6 5692 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5693 conf->retry_read_aligned = raid_bio;
5694 return handled;
5695 }
5696
3f9e7c14 5697 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5698 handle_stripe(sh);
6d036f7d 5699 raid5_release_stripe(sh);
46031f9a
RBJ
5700 handled++;
5701 }
e7836bd6 5702 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5703 if (remaining == 0) {
5704 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5705 raid_bio, 0);
4246a0b6 5706 bio_endio(raid_bio);
0a82a8d1 5707 }
46031f9a 5708 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5709 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
5710 return handled;
5711}
5712
bfc90cb0 5713static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5714 struct r5worker *worker,
5715 struct list_head *temp_inactive_list)
46a06401
SL
5716{
5717 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5718 int i, batch_size = 0, hash;
5719 bool release_inactive = false;
46a06401
SL
5720
5721 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5722 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5723 batch[batch_size++] = sh;
5724
566c09c5
SL
5725 if (batch_size == 0) {
5726 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5727 if (!list_empty(temp_inactive_list + i))
5728 break;
5729 if (i == NR_STRIPE_HASH_LOCKS)
5730 return batch_size;
5731 release_inactive = true;
5732 }
46a06401
SL
5733 spin_unlock_irq(&conf->device_lock);
5734
566c09c5
SL
5735 release_inactive_stripe_list(conf, temp_inactive_list,
5736 NR_STRIPE_HASH_LOCKS);
5737
5738 if (release_inactive) {
5739 spin_lock_irq(&conf->device_lock);
5740 return 0;
5741 }
5742
46a06401
SL
5743 for (i = 0; i < batch_size; i++)
5744 handle_stripe(batch[i]);
5745
5746 cond_resched();
5747
5748 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5749 for (i = 0; i < batch_size; i++) {
5750 hash = batch[i]->hash_lock_index;
5751 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5752 }
46a06401
SL
5753 return batch_size;
5754}
46031f9a 5755
851c30c9
SL
5756static void raid5_do_work(struct work_struct *work)
5757{
5758 struct r5worker *worker = container_of(work, struct r5worker, work);
5759 struct r5worker_group *group = worker->group;
5760 struct r5conf *conf = group->conf;
5761 int group_id = group - conf->worker_groups;
5762 int handled;
5763 struct blk_plug plug;
5764
5765 pr_debug("+++ raid5worker active\n");
5766
5767 blk_start_plug(&plug);
5768 handled = 0;
5769 spin_lock_irq(&conf->device_lock);
5770 while (1) {
5771 int batch_size, released;
5772
566c09c5 5773 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5774
566c09c5
SL
5775 batch_size = handle_active_stripes(conf, group_id, worker,
5776 worker->temp_inactive_list);
bfc90cb0 5777 worker->working = false;
851c30c9
SL
5778 if (!batch_size && !released)
5779 break;
5780 handled += batch_size;
5781 }
5782 pr_debug("%d stripes handled\n", handled);
5783
5784 spin_unlock_irq(&conf->device_lock);
5785 blk_finish_plug(&plug);
5786
5787 pr_debug("--- raid5worker inactive\n");
5788}
5789
1da177e4
LT
5790/*
5791 * This is our raid5 kernel thread.
5792 *
5793 * We scan the hash table for stripes which can be handled now.
5794 * During the scan, completed stripes are saved for us by the interrupt
5795 * handler, so that they will not have to wait for our next wakeup.
5796 */
4ed8731d 5797static void raid5d(struct md_thread *thread)
1da177e4 5798{
4ed8731d 5799 struct mddev *mddev = thread->mddev;
d1688a6d 5800 struct r5conf *conf = mddev->private;
1da177e4 5801 int handled;
e1dfa0a2 5802 struct blk_plug plug;
1da177e4 5803
45b4233c 5804 pr_debug("+++ raid5d active\n");
1da177e4
LT
5805
5806 md_check_recovery(mddev);
1da177e4 5807
c3cce6cd
N
5808 if (!bio_list_empty(&conf->return_bi) &&
5809 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5810 struct bio_list tmp = BIO_EMPTY_LIST;
5811 spin_lock_irq(&conf->device_lock);
5812 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5813 bio_list_merge(&tmp, &conf->return_bi);
5814 bio_list_init(&conf->return_bi);
5815 }
5816 spin_unlock_irq(&conf->device_lock);
5817 return_io(&tmp);
5818 }
5819
e1dfa0a2 5820 blk_start_plug(&plug);
1da177e4
LT
5821 handled = 0;
5822 spin_lock_irq(&conf->device_lock);
5823 while (1) {
46031f9a 5824 struct bio *bio;
773ca82f
SL
5825 int batch_size, released;
5826
566c09c5 5827 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5828 if (released)
5829 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5830
0021b7bc 5831 if (
7c13edc8
N
5832 !list_empty(&conf->bitmap_list)) {
5833 /* Now is a good time to flush some bitmap updates */
5834 conf->seq_flush++;
700e432d 5835 spin_unlock_irq(&conf->device_lock);
72626685 5836 bitmap_unplug(mddev->bitmap);
700e432d 5837 spin_lock_irq(&conf->device_lock);
7c13edc8 5838 conf->seq_write = conf->seq_flush;
566c09c5 5839 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5840 }
0021b7bc 5841 raid5_activate_delayed(conf);
72626685 5842
46031f9a
RBJ
5843 while ((bio = remove_bio_from_retry(conf))) {
5844 int ok;
5845 spin_unlock_irq(&conf->device_lock);
5846 ok = retry_aligned_read(conf, bio);
5847 spin_lock_irq(&conf->device_lock);
5848 if (!ok)
5849 break;
5850 handled++;
5851 }
5852
566c09c5
SL
5853 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5854 conf->temp_inactive_list);
773ca82f 5855 if (!batch_size && !released)
1da177e4 5856 break;
46a06401 5857 handled += batch_size;
1da177e4 5858
46a06401
SL
5859 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5860 spin_unlock_irq(&conf->device_lock);
de393cde 5861 md_check_recovery(mddev);
46a06401
SL
5862 spin_lock_irq(&conf->device_lock);
5863 }
1da177e4 5864 }
45b4233c 5865 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5866
5867 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
5868 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5869 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
5870 grow_one_stripe(conf, __GFP_NOWARN);
5871 /* Set flag even if allocation failed. This helps
5872 * slow down allocation requests when mem is short
5873 */
5874 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 5875 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 5876 }
1da177e4 5877
c9f21aaf 5878 async_tx_issue_pending_all();
e1dfa0a2 5879 blk_finish_plug(&plug);
1da177e4 5880
45b4233c 5881 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5882}
5883
3f294f4f 5884static ssize_t
fd01b88c 5885raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5886{
7b1485ba
N
5887 struct r5conf *conf;
5888 int ret = 0;
5889 spin_lock(&mddev->lock);
5890 conf = mddev->private;
96de1e66 5891 if (conf)
edbe83ab 5892 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5893 spin_unlock(&mddev->lock);
5894 return ret;
3f294f4f
N
5895}
5896
c41d4ac4 5897int
fd01b88c 5898raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5899{
d1688a6d 5900 struct r5conf *conf = mddev->private;
b5470dc5
DW
5901 int err;
5902
c41d4ac4 5903 if (size <= 16 || size > 32768)
3f294f4f 5904 return -EINVAL;
486f0644 5905
edbe83ab 5906 conf->min_nr_stripes = size;
2d5b569b 5907 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5908 while (size < conf->max_nr_stripes &&
5909 drop_one_stripe(conf))
5910 ;
2d5b569b 5911 mutex_unlock(&conf->cache_size_mutex);
486f0644 5912
edbe83ab 5913
b5470dc5
DW
5914 err = md_allow_write(mddev);
5915 if (err)
5916 return err;
486f0644 5917
2d5b569b 5918 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5919 while (size > conf->max_nr_stripes)
5920 if (!grow_one_stripe(conf, GFP_KERNEL))
5921 break;
2d5b569b 5922 mutex_unlock(&conf->cache_size_mutex);
486f0644 5923
c41d4ac4
N
5924 return 0;
5925}
5926EXPORT_SYMBOL(raid5_set_cache_size);
5927
5928static ssize_t
fd01b88c 5929raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5930{
6791875e 5931 struct r5conf *conf;
c41d4ac4
N
5932 unsigned long new;
5933 int err;
5934
5935 if (len >= PAGE_SIZE)
5936 return -EINVAL;
b29bebd6 5937 if (kstrtoul(page, 10, &new))
c41d4ac4 5938 return -EINVAL;
6791875e 5939 err = mddev_lock(mddev);
c41d4ac4
N
5940 if (err)
5941 return err;
6791875e
N
5942 conf = mddev->private;
5943 if (!conf)
5944 err = -ENODEV;
5945 else
5946 err = raid5_set_cache_size(mddev, new);
5947 mddev_unlock(mddev);
5948
5949 return err ?: len;
3f294f4f 5950}
007583c9 5951
96de1e66
N
5952static struct md_sysfs_entry
5953raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5954 raid5_show_stripe_cache_size,
5955 raid5_store_stripe_cache_size);
3f294f4f 5956
d06f191f
MS
5957static ssize_t
5958raid5_show_rmw_level(struct mddev *mddev, char *page)
5959{
5960 struct r5conf *conf = mddev->private;
5961 if (conf)
5962 return sprintf(page, "%d\n", conf->rmw_level);
5963 else
5964 return 0;
5965}
5966
5967static ssize_t
5968raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5969{
5970 struct r5conf *conf = mddev->private;
5971 unsigned long new;
5972
5973 if (!conf)
5974 return -ENODEV;
5975
5976 if (len >= PAGE_SIZE)
5977 return -EINVAL;
5978
5979 if (kstrtoul(page, 10, &new))
5980 return -EINVAL;
5981
5982 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5983 return -EINVAL;
5984
5985 if (new != PARITY_DISABLE_RMW &&
5986 new != PARITY_ENABLE_RMW &&
5987 new != PARITY_PREFER_RMW)
5988 return -EINVAL;
5989
5990 conf->rmw_level = new;
5991 return len;
5992}
5993
5994static struct md_sysfs_entry
5995raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5996 raid5_show_rmw_level,
5997 raid5_store_rmw_level);
5998
5999
8b3e6cdc 6000static ssize_t
fd01b88c 6001raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6002{
7b1485ba
N
6003 struct r5conf *conf;
6004 int ret = 0;
6005 spin_lock(&mddev->lock);
6006 conf = mddev->private;
8b3e6cdc 6007 if (conf)
7b1485ba
N
6008 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6009 spin_unlock(&mddev->lock);
6010 return ret;
8b3e6cdc
DW
6011}
6012
6013static ssize_t
fd01b88c 6014raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6015{
6791875e 6016 struct r5conf *conf;
4ef197d8 6017 unsigned long new;
6791875e
N
6018 int err;
6019
8b3e6cdc
DW
6020 if (len >= PAGE_SIZE)
6021 return -EINVAL;
b29bebd6 6022 if (kstrtoul(page, 10, &new))
8b3e6cdc 6023 return -EINVAL;
6791875e
N
6024
6025 err = mddev_lock(mddev);
6026 if (err)
6027 return err;
6028 conf = mddev->private;
6029 if (!conf)
6030 err = -ENODEV;
edbe83ab 6031 else if (new > conf->min_nr_stripes)
6791875e
N
6032 err = -EINVAL;
6033 else
6034 conf->bypass_threshold = new;
6035 mddev_unlock(mddev);
6036 return err ?: len;
8b3e6cdc
DW
6037}
6038
6039static struct md_sysfs_entry
6040raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6041 S_IRUGO | S_IWUSR,
6042 raid5_show_preread_threshold,
6043 raid5_store_preread_threshold);
6044
d592a996
SL
6045static ssize_t
6046raid5_show_skip_copy(struct mddev *mddev, char *page)
6047{
7b1485ba
N
6048 struct r5conf *conf;
6049 int ret = 0;
6050 spin_lock(&mddev->lock);
6051 conf = mddev->private;
d592a996 6052 if (conf)
7b1485ba
N
6053 ret = sprintf(page, "%d\n", conf->skip_copy);
6054 spin_unlock(&mddev->lock);
6055 return ret;
d592a996
SL
6056}
6057
6058static ssize_t
6059raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6060{
6791875e 6061 struct r5conf *conf;
d592a996 6062 unsigned long new;
6791875e
N
6063 int err;
6064
d592a996
SL
6065 if (len >= PAGE_SIZE)
6066 return -EINVAL;
d592a996
SL
6067 if (kstrtoul(page, 10, &new))
6068 return -EINVAL;
6069 new = !!new;
6791875e
N
6070
6071 err = mddev_lock(mddev);
6072 if (err)
6073 return err;
6074 conf = mddev->private;
6075 if (!conf)
6076 err = -ENODEV;
6077 else if (new != conf->skip_copy) {
6078 mddev_suspend(mddev);
6079 conf->skip_copy = new;
6080 if (new)
6081 mddev->queue->backing_dev_info.capabilities |=
6082 BDI_CAP_STABLE_WRITES;
6083 else
6084 mddev->queue->backing_dev_info.capabilities &=
6085 ~BDI_CAP_STABLE_WRITES;
6086 mddev_resume(mddev);
6087 }
6088 mddev_unlock(mddev);
6089 return err ?: len;
d592a996
SL
6090}
6091
6092static struct md_sysfs_entry
6093raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6094 raid5_show_skip_copy,
6095 raid5_store_skip_copy);
6096
3f294f4f 6097static ssize_t
fd01b88c 6098stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6099{
d1688a6d 6100 struct r5conf *conf = mddev->private;
96de1e66
N
6101 if (conf)
6102 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6103 else
6104 return 0;
3f294f4f
N
6105}
6106
96de1e66
N
6107static struct md_sysfs_entry
6108raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6109
b721420e
SL
6110static ssize_t
6111raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6112{
7b1485ba
N
6113 struct r5conf *conf;
6114 int ret = 0;
6115 spin_lock(&mddev->lock);
6116 conf = mddev->private;
b721420e 6117 if (conf)
7b1485ba
N
6118 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6119 spin_unlock(&mddev->lock);
6120 return ret;
b721420e
SL
6121}
6122
60aaf933 6123static int alloc_thread_groups(struct r5conf *conf, int cnt,
6124 int *group_cnt,
6125 int *worker_cnt_per_group,
6126 struct r5worker_group **worker_groups);
b721420e
SL
6127static ssize_t
6128raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6129{
6791875e 6130 struct r5conf *conf;
b721420e
SL
6131 unsigned long new;
6132 int err;
60aaf933 6133 struct r5worker_group *new_groups, *old_groups;
6134 int group_cnt, worker_cnt_per_group;
b721420e
SL
6135
6136 if (len >= PAGE_SIZE)
6137 return -EINVAL;
b721420e
SL
6138 if (kstrtoul(page, 10, &new))
6139 return -EINVAL;
6140
6791875e
N
6141 err = mddev_lock(mddev);
6142 if (err)
6143 return err;
6144 conf = mddev->private;
6145 if (!conf)
6146 err = -ENODEV;
6147 else if (new != conf->worker_cnt_per_group) {
6148 mddev_suspend(mddev);
b721420e 6149
6791875e
N
6150 old_groups = conf->worker_groups;
6151 if (old_groups)
6152 flush_workqueue(raid5_wq);
d206dcfa 6153
6791875e
N
6154 err = alloc_thread_groups(conf, new,
6155 &group_cnt, &worker_cnt_per_group,
6156 &new_groups);
6157 if (!err) {
6158 spin_lock_irq(&conf->device_lock);
6159 conf->group_cnt = group_cnt;
6160 conf->worker_cnt_per_group = worker_cnt_per_group;
6161 conf->worker_groups = new_groups;
6162 spin_unlock_irq(&conf->device_lock);
b721420e 6163
6791875e
N
6164 if (old_groups)
6165 kfree(old_groups[0].workers);
6166 kfree(old_groups);
6167 }
6168 mddev_resume(mddev);
b721420e 6169 }
6791875e 6170 mddev_unlock(mddev);
b721420e 6171
6791875e 6172 return err ?: len;
b721420e
SL
6173}
6174
6175static struct md_sysfs_entry
6176raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6177 raid5_show_group_thread_cnt,
6178 raid5_store_group_thread_cnt);
6179
007583c9 6180static struct attribute *raid5_attrs[] = {
3f294f4f
N
6181 &raid5_stripecache_size.attr,
6182 &raid5_stripecache_active.attr,
8b3e6cdc 6183 &raid5_preread_bypass_threshold.attr,
b721420e 6184 &raid5_group_thread_cnt.attr,
d592a996 6185 &raid5_skip_copy.attr,
d06f191f 6186 &raid5_rmw_level.attr,
3f294f4f
N
6187 NULL,
6188};
007583c9
N
6189static struct attribute_group raid5_attrs_group = {
6190 .name = NULL,
6191 .attrs = raid5_attrs,
3f294f4f
N
6192};
6193
60aaf933 6194static int alloc_thread_groups(struct r5conf *conf, int cnt,
6195 int *group_cnt,
6196 int *worker_cnt_per_group,
6197 struct r5worker_group **worker_groups)
851c30c9 6198{
566c09c5 6199 int i, j, k;
851c30c9
SL
6200 ssize_t size;
6201 struct r5worker *workers;
6202
60aaf933 6203 *worker_cnt_per_group = cnt;
851c30c9 6204 if (cnt == 0) {
60aaf933 6205 *group_cnt = 0;
6206 *worker_groups = NULL;
851c30c9
SL
6207 return 0;
6208 }
60aaf933 6209 *group_cnt = num_possible_nodes();
851c30c9 6210 size = sizeof(struct r5worker) * cnt;
60aaf933 6211 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6212 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6213 *group_cnt, GFP_NOIO);
6214 if (!*worker_groups || !workers) {
851c30c9 6215 kfree(workers);
60aaf933 6216 kfree(*worker_groups);
851c30c9
SL
6217 return -ENOMEM;
6218 }
6219
60aaf933 6220 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6221 struct r5worker_group *group;
6222
0c775d52 6223 group = &(*worker_groups)[i];
851c30c9
SL
6224 INIT_LIST_HEAD(&group->handle_list);
6225 group->conf = conf;
6226 group->workers = workers + i * cnt;
6227
6228 for (j = 0; j < cnt; j++) {
566c09c5
SL
6229 struct r5worker *worker = group->workers + j;
6230 worker->group = group;
6231 INIT_WORK(&worker->work, raid5_do_work);
6232
6233 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6234 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6235 }
6236 }
6237
6238 return 0;
6239}
6240
6241static void free_thread_groups(struct r5conf *conf)
6242{
6243 if (conf->worker_groups)
6244 kfree(conf->worker_groups[0].workers);
6245 kfree(conf->worker_groups);
6246 conf->worker_groups = NULL;
6247}
6248
80c3a6ce 6249static sector_t
fd01b88c 6250raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6251{
d1688a6d 6252 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6253
6254 if (!sectors)
6255 sectors = mddev->dev_sectors;
5e5e3e78 6256 if (!raid_disks)
7ec05478 6257 /* size is defined by the smallest of previous and new size */
5e5e3e78 6258 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6259
3cb5edf4
N
6260 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6261 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6262 return sectors * (raid_disks - conf->max_degraded);
6263}
6264
789b5e03
ON
6265static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6266{
6267 safe_put_page(percpu->spare_page);
46d5b785 6268 if (percpu->scribble)
6269 flex_array_free(percpu->scribble);
789b5e03
ON
6270 percpu->spare_page = NULL;
6271 percpu->scribble = NULL;
6272}
6273
6274static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6275{
6276 if (conf->level == 6 && !percpu->spare_page)
6277 percpu->spare_page = alloc_page(GFP_KERNEL);
6278 if (!percpu->scribble)
46d5b785 6279 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6280 conf->previous_raid_disks),
6281 max(conf->chunk_sectors,
6282 conf->prev_chunk_sectors)
6283 / STRIPE_SECTORS,
6284 GFP_KERNEL);
789b5e03
ON
6285
6286 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6287 free_scratch_buffer(conf, percpu);
6288 return -ENOMEM;
6289 }
6290
6291 return 0;
6292}
6293
d1688a6d 6294static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6295{
36d1c647
DW
6296 unsigned long cpu;
6297
6298 if (!conf->percpu)
6299 return;
6300
36d1c647
DW
6301#ifdef CONFIG_HOTPLUG_CPU
6302 unregister_cpu_notifier(&conf->cpu_notify);
6303#endif
789b5e03
ON
6304
6305 get_online_cpus();
6306 for_each_possible_cpu(cpu)
6307 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6308 put_online_cpus();
6309
6310 free_percpu(conf->percpu);
6311}
6312
d1688a6d 6313static void free_conf(struct r5conf *conf)
95fc17aa 6314{
edbe83ab
N
6315 if (conf->shrinker.seeks)
6316 unregister_shrinker(&conf->shrinker);
851c30c9 6317 free_thread_groups(conf);
95fc17aa 6318 shrink_stripes(conf);
36d1c647 6319 raid5_free_percpu(conf);
95fc17aa
DW
6320 kfree(conf->disks);
6321 kfree(conf->stripe_hashtbl);
6322 kfree(conf);
6323}
6324
36d1c647
DW
6325#ifdef CONFIG_HOTPLUG_CPU
6326static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6327 void *hcpu)
6328{
d1688a6d 6329 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6330 long cpu = (long)hcpu;
6331 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6332
6333 switch (action) {
6334 case CPU_UP_PREPARE:
6335 case CPU_UP_PREPARE_FROZEN:
789b5e03 6336 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6337 pr_err("%s: failed memory allocation for cpu%ld\n",
6338 __func__, cpu);
55af6bb5 6339 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6340 }
6341 break;
6342 case CPU_DEAD:
6343 case CPU_DEAD_FROZEN:
789b5e03 6344 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6345 break;
6346 default:
6347 break;
6348 }
6349 return NOTIFY_OK;
6350}
6351#endif
6352
d1688a6d 6353static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6354{
6355 unsigned long cpu;
789b5e03 6356 int err = 0;
36d1c647 6357
789b5e03
ON
6358 conf->percpu = alloc_percpu(struct raid5_percpu);
6359 if (!conf->percpu)
36d1c647 6360 return -ENOMEM;
789b5e03
ON
6361
6362#ifdef CONFIG_HOTPLUG_CPU
6363 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6364 conf->cpu_notify.priority = 0;
6365 err = register_cpu_notifier(&conf->cpu_notify);
6366 if (err)
6367 return err;
6368#endif
36d1c647
DW
6369
6370 get_online_cpus();
36d1c647 6371 for_each_present_cpu(cpu) {
789b5e03
ON
6372 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6373 if (err) {
6374 pr_err("%s: failed memory allocation for cpu%ld\n",
6375 __func__, cpu);
36d1c647
DW
6376 break;
6377 }
36d1c647 6378 }
36d1c647
DW
6379 put_online_cpus();
6380
6381 return err;
6382}
6383
edbe83ab
N
6384static unsigned long raid5_cache_scan(struct shrinker *shrink,
6385 struct shrink_control *sc)
6386{
6387 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6388 unsigned long ret = SHRINK_STOP;
6389
6390 if (mutex_trylock(&conf->cache_size_mutex)) {
6391 ret= 0;
49895bcc
N
6392 while (ret < sc->nr_to_scan &&
6393 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6394 if (drop_one_stripe(conf) == 0) {
6395 ret = SHRINK_STOP;
6396 break;
6397 }
6398 ret++;
6399 }
6400 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6401 }
6402 return ret;
6403}
6404
6405static unsigned long raid5_cache_count(struct shrinker *shrink,
6406 struct shrink_control *sc)
6407{
6408 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6409
6410 if (conf->max_nr_stripes < conf->min_nr_stripes)
6411 /* unlikely, but not impossible */
6412 return 0;
6413 return conf->max_nr_stripes - conf->min_nr_stripes;
6414}
6415
d1688a6d 6416static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6417{
d1688a6d 6418 struct r5conf *conf;
5e5e3e78 6419 int raid_disk, memory, max_disks;
3cb03002 6420 struct md_rdev *rdev;
1da177e4 6421 struct disk_info *disk;
0232605d 6422 char pers_name[6];
566c09c5 6423 int i;
60aaf933 6424 int group_cnt, worker_cnt_per_group;
6425 struct r5worker_group *new_group;
1da177e4 6426
91adb564
N
6427 if (mddev->new_level != 5
6428 && mddev->new_level != 4
6429 && mddev->new_level != 6) {
0c55e022 6430 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6431 mdname(mddev), mddev->new_level);
6432 return ERR_PTR(-EIO);
1da177e4 6433 }
91adb564
N
6434 if ((mddev->new_level == 5
6435 && !algorithm_valid_raid5(mddev->new_layout)) ||
6436 (mddev->new_level == 6
6437 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6438 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6439 mdname(mddev), mddev->new_layout);
6440 return ERR_PTR(-EIO);
99c0fb5f 6441 }
91adb564 6442 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6443 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6444 mdname(mddev), mddev->raid_disks);
6445 return ERR_PTR(-EINVAL);
4bbf3771
N
6446 }
6447
664e7c41
AN
6448 if (!mddev->new_chunk_sectors ||
6449 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6450 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6451 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6452 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6453 return ERR_PTR(-EINVAL);
f6705578
N
6454 }
6455
d1688a6d 6456 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6457 if (conf == NULL)
1da177e4 6458 goto abort;
851c30c9 6459 /* Don't enable multi-threading by default*/
60aaf933 6460 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6461 &new_group)) {
6462 conf->group_cnt = group_cnt;
6463 conf->worker_cnt_per_group = worker_cnt_per_group;
6464 conf->worker_groups = new_group;
6465 } else
851c30c9 6466 goto abort;
f5efd45a 6467 spin_lock_init(&conf->device_lock);
c46501b2 6468 seqcount_init(&conf->gen_lock);
2d5b569b 6469 mutex_init(&conf->cache_size_mutex);
b1b46486 6470 init_waitqueue_head(&conf->wait_for_quiescent);
e9e4c377
YL
6471 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6472 init_waitqueue_head(&conf->wait_for_stripe[i]);
6473 }
f5efd45a
DW
6474 init_waitqueue_head(&conf->wait_for_overlap);
6475 INIT_LIST_HEAD(&conf->handle_list);
6476 INIT_LIST_HEAD(&conf->hold_list);
6477 INIT_LIST_HEAD(&conf->delayed_list);
6478 INIT_LIST_HEAD(&conf->bitmap_list);
c3cce6cd 6479 bio_list_init(&conf->return_bi);
773ca82f 6480 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6481 atomic_set(&conf->active_stripes, 0);
6482 atomic_set(&conf->preread_active_stripes, 0);
6483 atomic_set(&conf->active_aligned_reads, 0);
6484 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6485 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6486
6487 conf->raid_disks = mddev->raid_disks;
6488 if (mddev->reshape_position == MaxSector)
6489 conf->previous_raid_disks = mddev->raid_disks;
6490 else
f6705578 6491 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6492 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6493
5e5e3e78 6494 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6495 GFP_KERNEL);
6496 if (!conf->disks)
6497 goto abort;
9ffae0cf 6498
1da177e4
LT
6499 conf->mddev = mddev;
6500
fccddba0 6501 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6502 goto abort;
1da177e4 6503
566c09c5
SL
6504 /* We init hash_locks[0] separately to that it can be used
6505 * as the reference lock in the spin_lock_nest_lock() call
6506 * in lock_all_device_hash_locks_irq in order to convince
6507 * lockdep that we know what we are doing.
6508 */
6509 spin_lock_init(conf->hash_locks);
6510 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6511 spin_lock_init(conf->hash_locks + i);
6512
6513 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6514 INIT_LIST_HEAD(conf->inactive_list + i);
6515
6516 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6517 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6518
36d1c647 6519 conf->level = mddev->new_level;
46d5b785 6520 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6521 if (raid5_alloc_percpu(conf) != 0)
6522 goto abort;
6523
0c55e022 6524 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6525
dafb20fa 6526 rdev_for_each(rdev, mddev) {
1da177e4 6527 raid_disk = rdev->raid_disk;
5e5e3e78 6528 if (raid_disk >= max_disks
1da177e4
LT
6529 || raid_disk < 0)
6530 continue;
6531 disk = conf->disks + raid_disk;
6532
17045f52
N
6533 if (test_bit(Replacement, &rdev->flags)) {
6534 if (disk->replacement)
6535 goto abort;
6536 disk->replacement = rdev;
6537 } else {
6538 if (disk->rdev)
6539 goto abort;
6540 disk->rdev = rdev;
6541 }
1da177e4 6542
b2d444d7 6543 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6544 char b[BDEVNAME_SIZE];
0c55e022
N
6545 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6546 " disk %d\n",
6547 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6548 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6549 /* Cannot rely on bitmap to complete recovery */
6550 conf->fullsync = 1;
1da177e4
LT
6551 }
6552
91adb564 6553 conf->level = mddev->new_level;
584acdd4 6554 if (conf->level == 6) {
16a53ecc 6555 conf->max_degraded = 2;
584acdd4
MS
6556 if (raid6_call.xor_syndrome)
6557 conf->rmw_level = PARITY_ENABLE_RMW;
6558 else
6559 conf->rmw_level = PARITY_DISABLE_RMW;
6560 } else {
16a53ecc 6561 conf->max_degraded = 1;
584acdd4
MS
6562 conf->rmw_level = PARITY_ENABLE_RMW;
6563 }
91adb564 6564 conf->algorithm = mddev->new_layout;
fef9c61f 6565 conf->reshape_progress = mddev->reshape_position;
e183eaed 6566 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6567 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 6568 conf->prev_algo = mddev->layout;
5cac6bcb
N
6569 } else {
6570 conf->prev_chunk_sectors = conf->chunk_sectors;
6571 conf->prev_algo = conf->algorithm;
e183eaed 6572 }
1da177e4 6573
edbe83ab
N
6574 conf->min_nr_stripes = NR_STRIPES;
6575 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6576 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6577 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6578 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6579 printk(KERN_ERR
0c55e022
N
6580 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6581 mdname(mddev), memory);
91adb564
N
6582 goto abort;
6583 } else
0c55e022
N
6584 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6585 mdname(mddev), memory);
edbe83ab
N
6586 /*
6587 * Losing a stripe head costs more than the time to refill it,
6588 * it reduces the queue depth and so can hurt throughput.
6589 * So set it rather large, scaled by number of devices.
6590 */
6591 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6592 conf->shrinker.scan_objects = raid5_cache_scan;
6593 conf->shrinker.count_objects = raid5_cache_count;
6594 conf->shrinker.batch = 128;
6595 conf->shrinker.flags = 0;
6596 register_shrinker(&conf->shrinker);
1da177e4 6597
0232605d
N
6598 sprintf(pers_name, "raid%d", mddev->new_level);
6599 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6600 if (!conf->thread) {
6601 printk(KERN_ERR
0c55e022 6602 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6603 mdname(mddev));
16a53ecc
N
6604 goto abort;
6605 }
91adb564
N
6606
6607 return conf;
6608
6609 abort:
6610 if (conf) {
95fc17aa 6611 free_conf(conf);
91adb564
N
6612 return ERR_PTR(-EIO);
6613 } else
6614 return ERR_PTR(-ENOMEM);
6615}
6616
c148ffdc
N
6617static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6618{
6619 switch (algo) {
6620 case ALGORITHM_PARITY_0:
6621 if (raid_disk < max_degraded)
6622 return 1;
6623 break;
6624 case ALGORITHM_PARITY_N:
6625 if (raid_disk >= raid_disks - max_degraded)
6626 return 1;
6627 break;
6628 case ALGORITHM_PARITY_0_6:
f72ffdd6 6629 if (raid_disk == 0 ||
c148ffdc
N
6630 raid_disk == raid_disks - 1)
6631 return 1;
6632 break;
6633 case ALGORITHM_LEFT_ASYMMETRIC_6:
6634 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6635 case ALGORITHM_LEFT_SYMMETRIC_6:
6636 case ALGORITHM_RIGHT_SYMMETRIC_6:
6637 if (raid_disk == raid_disks - 1)
6638 return 1;
6639 }
6640 return 0;
6641}
6642
fd01b88c 6643static int run(struct mddev *mddev)
91adb564 6644{
d1688a6d 6645 struct r5conf *conf;
9f7c2220 6646 int working_disks = 0;
c148ffdc 6647 int dirty_parity_disks = 0;
3cb03002 6648 struct md_rdev *rdev;
c148ffdc 6649 sector_t reshape_offset = 0;
17045f52 6650 int i;
b5254dd5
N
6651 long long min_offset_diff = 0;
6652 int first = 1;
91adb564 6653
8c6ac868 6654 if (mddev->recovery_cp != MaxSector)
0c55e022 6655 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6656 " -- starting background reconstruction\n",
6657 mdname(mddev));
b5254dd5
N
6658
6659 rdev_for_each(rdev, mddev) {
6660 long long diff;
6661 if (rdev->raid_disk < 0)
6662 continue;
6663 diff = (rdev->new_data_offset - rdev->data_offset);
6664 if (first) {
6665 min_offset_diff = diff;
6666 first = 0;
6667 } else if (mddev->reshape_backwards &&
6668 diff < min_offset_diff)
6669 min_offset_diff = diff;
6670 else if (!mddev->reshape_backwards &&
6671 diff > min_offset_diff)
6672 min_offset_diff = diff;
6673 }
6674
91adb564
N
6675 if (mddev->reshape_position != MaxSector) {
6676 /* Check that we can continue the reshape.
b5254dd5
N
6677 * Difficulties arise if the stripe we would write to
6678 * next is at or after the stripe we would read from next.
6679 * For a reshape that changes the number of devices, this
6680 * is only possible for a very short time, and mdadm makes
6681 * sure that time appears to have past before assembling
6682 * the array. So we fail if that time hasn't passed.
6683 * For a reshape that keeps the number of devices the same
6684 * mdadm must be monitoring the reshape can keeping the
6685 * critical areas read-only and backed up. It will start
6686 * the array in read-only mode, so we check for that.
91adb564
N
6687 */
6688 sector_t here_new, here_old;
6689 int old_disks;
18b00334 6690 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
6691 int chunk_sectors;
6692 int new_data_disks;
91adb564 6693
88ce4930 6694 if (mddev->new_level != mddev->level) {
0c55e022 6695 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6696 "required - aborting.\n",
6697 mdname(mddev));
6698 return -EINVAL;
6699 }
91adb564
N
6700 old_disks = mddev->raid_disks - mddev->delta_disks;
6701 /* reshape_position must be on a new-stripe boundary, and one
6702 * further up in new geometry must map after here in old
6703 * geometry.
05256d98
N
6704 * If the chunk sizes are different, then as we perform reshape
6705 * in units of the largest of the two, reshape_position needs
6706 * be a multiple of the largest chunk size times new data disks.
91adb564
N
6707 */
6708 here_new = mddev->reshape_position;
05256d98
N
6709 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6710 new_data_disks = mddev->raid_disks - max_degraded;
6711 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
0c55e022
N
6712 printk(KERN_ERR "md/raid:%s: reshape_position not "
6713 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6714 return -EINVAL;
6715 }
05256d98 6716 reshape_offset = here_new * chunk_sectors;
91adb564
N
6717 /* here_new is the stripe we will write to */
6718 here_old = mddev->reshape_position;
05256d98 6719 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
6720 /* here_old is the first stripe that we might need to read
6721 * from */
67ac6011
N
6722 if (mddev->delta_disks == 0) {
6723 /* We cannot be sure it is safe to start an in-place
b5254dd5 6724 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6725 * and taking constant backups.
6726 * mdadm always starts a situation like this in
6727 * readonly mode so it can take control before
6728 * allowing any writes. So just check for that.
6729 */
b5254dd5
N
6730 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6731 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6732 /* not really in-place - so OK */;
6733 else if (mddev->ro == 0) {
6734 printk(KERN_ERR "md/raid:%s: in-place reshape "
6735 "must be started in read-only mode "
6736 "- aborting\n",
0c55e022 6737 mdname(mddev));
67ac6011
N
6738 return -EINVAL;
6739 }
2c810cdd 6740 } else if (mddev->reshape_backwards
05256d98
N
6741 ? (here_new * chunk_sectors + min_offset_diff <=
6742 here_old * chunk_sectors)
6743 : (here_new * chunk_sectors >=
6744 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 6745 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6746 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6747 "auto-recovery - aborting.\n",
6748 mdname(mddev));
91adb564
N
6749 return -EINVAL;
6750 }
0c55e022
N
6751 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6752 mdname(mddev));
91adb564
N
6753 /* OK, we should be able to continue; */
6754 } else {
6755 BUG_ON(mddev->level != mddev->new_level);
6756 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6757 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6758 BUG_ON(mddev->delta_disks != 0);
1da177e4 6759 }
91adb564 6760
245f46c2
N
6761 if (mddev->private == NULL)
6762 conf = setup_conf(mddev);
6763 else
6764 conf = mddev->private;
6765
91adb564
N
6766 if (IS_ERR(conf))
6767 return PTR_ERR(conf);
6768
b5254dd5 6769 conf->min_offset_diff = min_offset_diff;
91adb564
N
6770 mddev->thread = conf->thread;
6771 conf->thread = NULL;
6772 mddev->private = conf;
6773
17045f52
N
6774 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6775 i++) {
6776 rdev = conf->disks[i].rdev;
6777 if (!rdev && conf->disks[i].replacement) {
6778 /* The replacement is all we have yet */
6779 rdev = conf->disks[i].replacement;
6780 conf->disks[i].replacement = NULL;
6781 clear_bit(Replacement, &rdev->flags);
6782 conf->disks[i].rdev = rdev;
6783 }
6784 if (!rdev)
c148ffdc 6785 continue;
17045f52
N
6786 if (conf->disks[i].replacement &&
6787 conf->reshape_progress != MaxSector) {
6788 /* replacements and reshape simply do not mix. */
6789 printk(KERN_ERR "md: cannot handle concurrent "
6790 "replacement and reshape.\n");
6791 goto abort;
6792 }
2f115882 6793 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6794 working_disks++;
2f115882
N
6795 continue;
6796 }
c148ffdc
N
6797 /* This disc is not fully in-sync. However if it
6798 * just stored parity (beyond the recovery_offset),
6799 * when we don't need to be concerned about the
6800 * array being dirty.
6801 * When reshape goes 'backwards', we never have
6802 * partially completed devices, so we only need
6803 * to worry about reshape going forwards.
6804 */
6805 /* Hack because v0.91 doesn't store recovery_offset properly. */
6806 if (mddev->major_version == 0 &&
6807 mddev->minor_version > 90)
6808 rdev->recovery_offset = reshape_offset;
5026d7a9 6809
c148ffdc
N
6810 if (rdev->recovery_offset < reshape_offset) {
6811 /* We need to check old and new layout */
6812 if (!only_parity(rdev->raid_disk,
6813 conf->algorithm,
6814 conf->raid_disks,
6815 conf->max_degraded))
6816 continue;
6817 }
6818 if (!only_parity(rdev->raid_disk,
6819 conf->prev_algo,
6820 conf->previous_raid_disks,
6821 conf->max_degraded))
6822 continue;
6823 dirty_parity_disks++;
6824 }
91adb564 6825
17045f52
N
6826 /*
6827 * 0 for a fully functional array, 1 or 2 for a degraded array.
6828 */
908f4fbd 6829 mddev->degraded = calc_degraded(conf);
91adb564 6830
674806d6 6831 if (has_failed(conf)) {
0c55e022 6832 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6833 " (%d/%d failed)\n",
02c2de8c 6834 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6835 goto abort;
6836 }
6837
91adb564 6838 /* device size must be a multiple of chunk size */
9d8f0363 6839 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6840 mddev->resync_max_sectors = mddev->dev_sectors;
6841
c148ffdc 6842 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6843 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6844 if (mddev->ok_start_degraded)
6845 printk(KERN_WARNING
0c55e022
N
6846 "md/raid:%s: starting dirty degraded array"
6847 " - data corruption possible.\n",
6ff8d8ec
N
6848 mdname(mddev));
6849 else {
6850 printk(KERN_ERR
0c55e022 6851 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6852 mdname(mddev));
6853 goto abort;
6854 }
1da177e4
LT
6855 }
6856
1da177e4 6857 if (mddev->degraded == 0)
0c55e022
N
6858 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6859 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6860 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6861 mddev->new_layout);
1da177e4 6862 else
0c55e022
N
6863 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6864 " out of %d devices, algorithm %d\n",
6865 mdname(mddev), conf->level,
6866 mddev->raid_disks - mddev->degraded,
6867 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6868
6869 print_raid5_conf(conf);
6870
fef9c61f 6871 if (conf->reshape_progress != MaxSector) {
fef9c61f 6872 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6873 atomic_set(&conf->reshape_stripes, 0);
6874 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6875 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6876 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6877 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6878 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6879 "reshape");
f6705578
N
6880 }
6881
1da177e4 6882 /* Ok, everything is just fine now */
a64c876f
N
6883 if (mddev->to_remove == &raid5_attrs_group)
6884 mddev->to_remove = NULL;
00bcb4ac
N
6885 else if (mddev->kobj.sd &&
6886 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6887 printk(KERN_WARNING
4a5add49 6888 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6889 mdname(mddev));
4a5add49 6890 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6891
4a5add49 6892 if (mddev->queue) {
9f7c2220 6893 int chunk_size;
620125f2 6894 bool discard_supported = true;
4a5add49
N
6895 /* read-ahead size must cover two whole stripes, which
6896 * is 2 * (datadisks) * chunksize where 'n' is the
6897 * number of raid devices
6898 */
6899 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6900 int stripe = data_disks *
6901 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6902 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6903 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6904
9f7c2220
N
6905 chunk_size = mddev->chunk_sectors << 9;
6906 blk_queue_io_min(mddev->queue, chunk_size);
6907 blk_queue_io_opt(mddev->queue, chunk_size *
6908 (conf->raid_disks - conf->max_degraded));
c78afc62 6909 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6910 /*
6911 * We can only discard a whole stripe. It doesn't make sense to
6912 * discard data disk but write parity disk
6913 */
6914 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6915 /* Round up to power of 2, as discard handling
6916 * currently assumes that */
6917 while ((stripe-1) & stripe)
6918 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6919 mddev->queue->limits.discard_alignment = stripe;
6920 mddev->queue->limits.discard_granularity = stripe;
6921 /*
6922 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6923 * guarantee discard_zeroes_data
620125f2
SL
6924 */
6925 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6926
5026d7a9
PA
6927 blk_queue_max_write_same_sectors(mddev->queue, 0);
6928
05616be5 6929 rdev_for_each(rdev, mddev) {
9f7c2220
N
6930 disk_stack_limits(mddev->gendisk, rdev->bdev,
6931 rdev->data_offset << 9);
05616be5
N
6932 disk_stack_limits(mddev->gendisk, rdev->bdev,
6933 rdev->new_data_offset << 9);
620125f2
SL
6934 /*
6935 * discard_zeroes_data is required, otherwise data
6936 * could be lost. Consider a scenario: discard a stripe
6937 * (the stripe could be inconsistent if
6938 * discard_zeroes_data is 0); write one disk of the
6939 * stripe (the stripe could be inconsistent again
6940 * depending on which disks are used to calculate
6941 * parity); the disk is broken; The stripe data of this
6942 * disk is lost.
6943 */
6944 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6945 !bdev_get_queue(rdev->bdev)->
6946 limits.discard_zeroes_data)
6947 discard_supported = false;
8e0e99ba
N
6948 /* Unfortunately, discard_zeroes_data is not currently
6949 * a guarantee - just a hint. So we only allow DISCARD
6950 * if the sysadmin has confirmed that only safe devices
6951 * are in use by setting a module parameter.
6952 */
6953 if (!devices_handle_discard_safely) {
6954 if (discard_supported) {
6955 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6956 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6957 }
6958 discard_supported = false;
6959 }
05616be5 6960 }
620125f2
SL
6961
6962 if (discard_supported &&
6963 mddev->queue->limits.max_discard_sectors >= stripe &&
6964 mddev->queue->limits.discard_granularity >= stripe)
6965 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6966 mddev->queue);
6967 else
6968 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6969 mddev->queue);
9f7c2220 6970 }
23032a0e 6971
1da177e4
LT
6972 return 0;
6973abort:
01f96c0a 6974 md_unregister_thread(&mddev->thread);
e4f869d9
N
6975 print_raid5_conf(conf);
6976 free_conf(conf);
1da177e4 6977 mddev->private = NULL;
0c55e022 6978 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
6979 return -EIO;
6980}
6981
afa0f557 6982static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 6983{
afa0f557 6984 struct r5conf *conf = priv;
1da177e4 6985
95fc17aa 6986 free_conf(conf);
a64c876f 6987 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
6988}
6989
fd01b88c 6990static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 6991{
d1688a6d 6992 struct r5conf *conf = mddev->private;
1da177e4
LT
6993 int i;
6994
9d8f0363 6995 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 6996 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 6997 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
6998 for (i = 0; i < conf->raid_disks; i++)
6999 seq_printf (seq, "%s",
7000 conf->disks[i].rdev &&
b2d444d7 7001 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 7002 seq_printf (seq, "]");
1da177e4
LT
7003}
7004
d1688a6d 7005static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7006{
7007 int i;
7008 struct disk_info *tmp;
7009
0c55e022 7010 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
7011 if (!conf) {
7012 printk("(conf==NULL)\n");
7013 return;
7014 }
0c55e022
N
7015 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7016 conf->raid_disks,
7017 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7018
7019 for (i = 0; i < conf->raid_disks; i++) {
7020 char b[BDEVNAME_SIZE];
7021 tmp = conf->disks + i;
7022 if (tmp->rdev)
0c55e022
N
7023 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7024 i, !test_bit(Faulty, &tmp->rdev->flags),
7025 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7026 }
7027}
7028
fd01b88c 7029static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7030{
7031 int i;
d1688a6d 7032 struct r5conf *conf = mddev->private;
1da177e4 7033 struct disk_info *tmp;
6b965620
N
7034 int count = 0;
7035 unsigned long flags;
1da177e4
LT
7036
7037 for (i = 0; i < conf->raid_disks; i++) {
7038 tmp = conf->disks + i;
dd054fce
N
7039 if (tmp->replacement
7040 && tmp->replacement->recovery_offset == MaxSector
7041 && !test_bit(Faulty, &tmp->replacement->flags)
7042 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7043 /* Replacement has just become active. */
7044 if (!tmp->rdev
7045 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7046 count++;
7047 if (tmp->rdev) {
7048 /* Replaced device not technically faulty,
7049 * but we need to be sure it gets removed
7050 * and never re-added.
7051 */
7052 set_bit(Faulty, &tmp->rdev->flags);
7053 sysfs_notify_dirent_safe(
7054 tmp->rdev->sysfs_state);
7055 }
7056 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7057 } else if (tmp->rdev
70fffd0b 7058 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7059 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7060 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7061 count++;
43c73ca4 7062 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7063 }
7064 }
6b965620 7065 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7066 mddev->degraded = calc_degraded(conf);
6b965620 7067 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7068 print_raid5_conf(conf);
6b965620 7069 return count;
1da177e4
LT
7070}
7071
b8321b68 7072static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7073{
d1688a6d 7074 struct r5conf *conf = mddev->private;
1da177e4 7075 int err = 0;
b8321b68 7076 int number = rdev->raid_disk;
657e3e4d 7077 struct md_rdev **rdevp;
1da177e4
LT
7078 struct disk_info *p = conf->disks + number;
7079
7080 print_raid5_conf(conf);
657e3e4d
N
7081 if (rdev == p->rdev)
7082 rdevp = &p->rdev;
7083 else if (rdev == p->replacement)
7084 rdevp = &p->replacement;
7085 else
7086 return 0;
7087
7088 if (number >= conf->raid_disks &&
7089 conf->reshape_progress == MaxSector)
7090 clear_bit(In_sync, &rdev->flags);
7091
7092 if (test_bit(In_sync, &rdev->flags) ||
7093 atomic_read(&rdev->nr_pending)) {
7094 err = -EBUSY;
7095 goto abort;
7096 }
7097 /* Only remove non-faulty devices if recovery
7098 * isn't possible.
7099 */
7100 if (!test_bit(Faulty, &rdev->flags) &&
7101 mddev->recovery_disabled != conf->recovery_disabled &&
7102 !has_failed(conf) &&
dd054fce 7103 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7104 number < conf->raid_disks) {
7105 err = -EBUSY;
7106 goto abort;
7107 }
7108 *rdevp = NULL;
7109 synchronize_rcu();
7110 if (atomic_read(&rdev->nr_pending)) {
7111 /* lost the race, try later */
7112 err = -EBUSY;
7113 *rdevp = rdev;
dd054fce
N
7114 } else if (p->replacement) {
7115 /* We must have just cleared 'rdev' */
7116 p->rdev = p->replacement;
7117 clear_bit(Replacement, &p->replacement->flags);
7118 smp_mb(); /* Make sure other CPUs may see both as identical
7119 * but will never see neither - if they are careful
7120 */
7121 p->replacement = NULL;
7122 clear_bit(WantReplacement, &rdev->flags);
7123 } else
7124 /* We might have just removed the Replacement as faulty-
7125 * clear the bit just in case
7126 */
7127 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7128abort:
7129
7130 print_raid5_conf(conf);
7131 return err;
7132}
7133
fd01b88c 7134static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7135{
d1688a6d 7136 struct r5conf *conf = mddev->private;
199050ea 7137 int err = -EEXIST;
1da177e4
LT
7138 int disk;
7139 struct disk_info *p;
6c2fce2e
NB
7140 int first = 0;
7141 int last = conf->raid_disks - 1;
1da177e4 7142
7f0da59b
N
7143 if (mddev->recovery_disabled == conf->recovery_disabled)
7144 return -EBUSY;
7145
dc10c643 7146 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7147 /* no point adding a device */
199050ea 7148 return -EINVAL;
1da177e4 7149
6c2fce2e
NB
7150 if (rdev->raid_disk >= 0)
7151 first = last = rdev->raid_disk;
1da177e4
LT
7152
7153 /*
16a53ecc
N
7154 * find the disk ... but prefer rdev->saved_raid_disk
7155 * if possible.
1da177e4 7156 */
16a53ecc 7157 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7158 rdev->saved_raid_disk >= first &&
16a53ecc 7159 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7160 first = rdev->saved_raid_disk;
7161
7162 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7163 p = conf->disks + disk;
7164 if (p->rdev == NULL) {
b2d444d7 7165 clear_bit(In_sync, &rdev->flags);
1da177e4 7166 rdev->raid_disk = disk;
199050ea 7167 err = 0;
72626685
N
7168 if (rdev->saved_raid_disk != disk)
7169 conf->fullsync = 1;
d6065f7b 7170 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7171 goto out;
1da177e4 7172 }
5cfb22a1
N
7173 }
7174 for (disk = first; disk <= last; disk++) {
7175 p = conf->disks + disk;
7bfec5f3
N
7176 if (test_bit(WantReplacement, &p->rdev->flags) &&
7177 p->replacement == NULL) {
7178 clear_bit(In_sync, &rdev->flags);
7179 set_bit(Replacement, &rdev->flags);
7180 rdev->raid_disk = disk;
7181 err = 0;
7182 conf->fullsync = 1;
7183 rcu_assign_pointer(p->replacement, rdev);
7184 break;
7185 }
7186 }
5cfb22a1 7187out:
1da177e4 7188 print_raid5_conf(conf);
199050ea 7189 return err;
1da177e4
LT
7190}
7191
fd01b88c 7192static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7193{
7194 /* no resync is happening, and there is enough space
7195 * on all devices, so we can resize.
7196 * We need to make sure resync covers any new space.
7197 * If the array is shrinking we should possibly wait until
7198 * any io in the removed space completes, but it hardly seems
7199 * worth it.
7200 */
a4a6125a 7201 sector_t newsize;
3cb5edf4
N
7202 struct r5conf *conf = mddev->private;
7203
7204 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7205 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7206 if (mddev->external_size &&
7207 mddev->array_sectors > newsize)
b522adcd 7208 return -EINVAL;
a4a6125a
N
7209 if (mddev->bitmap) {
7210 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7211 if (ret)
7212 return ret;
7213 }
7214 md_set_array_sectors(mddev, newsize);
f233ea5c 7215 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7216 revalidate_disk(mddev->gendisk);
b098636c
N
7217 if (sectors > mddev->dev_sectors &&
7218 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7219 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7220 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7221 }
58c0fed4 7222 mddev->dev_sectors = sectors;
4b5c7ae8 7223 mddev->resync_max_sectors = sectors;
1da177e4
LT
7224 return 0;
7225}
7226
fd01b88c 7227static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7228{
7229 /* Can only proceed if there are plenty of stripe_heads.
7230 * We need a minimum of one full stripe,, and for sensible progress
7231 * it is best to have about 4 times that.
7232 * If we require 4 times, then the default 256 4K stripe_heads will
7233 * allow for chunk sizes up to 256K, which is probably OK.
7234 * If the chunk size is greater, user-space should request more
7235 * stripe_heads first.
7236 */
d1688a6d 7237 struct r5conf *conf = mddev->private;
01ee22b4 7238 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7239 > conf->min_nr_stripes ||
01ee22b4 7240 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7241 > conf->min_nr_stripes) {
0c55e022
N
7242 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7243 mdname(mddev),
01ee22b4
N
7244 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7245 / STRIPE_SIZE)*4);
7246 return 0;
7247 }
7248 return 1;
7249}
7250
fd01b88c 7251static int check_reshape(struct mddev *mddev)
29269553 7252{
d1688a6d 7253 struct r5conf *conf = mddev->private;
29269553 7254
88ce4930
N
7255 if (mddev->delta_disks == 0 &&
7256 mddev->new_layout == mddev->layout &&
664e7c41 7257 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7258 return 0; /* nothing to do */
674806d6 7259 if (has_failed(conf))
ec32a2bd 7260 return -EINVAL;
fdcfbbb6 7261 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7262 /* We might be able to shrink, but the devices must
7263 * be made bigger first.
7264 * For raid6, 4 is the minimum size.
7265 * Otherwise 2 is the minimum
7266 */
7267 int min = 2;
7268 if (mddev->level == 6)
7269 min = 4;
7270 if (mddev->raid_disks + mddev->delta_disks < min)
7271 return -EINVAL;
7272 }
29269553 7273
01ee22b4 7274 if (!check_stripe_cache(mddev))
29269553 7275 return -ENOSPC;
29269553 7276
738a2738
N
7277 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7278 mddev->delta_disks > 0)
7279 if (resize_chunks(conf,
7280 conf->previous_raid_disks
7281 + max(0, mddev->delta_disks),
7282 max(mddev->new_chunk_sectors,
7283 mddev->chunk_sectors)
7284 ) < 0)
7285 return -ENOMEM;
e56108d6
N
7286 return resize_stripes(conf, (conf->previous_raid_disks
7287 + mddev->delta_disks));
63c70c4f
N
7288}
7289
fd01b88c 7290static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7291{
d1688a6d 7292 struct r5conf *conf = mddev->private;
3cb03002 7293 struct md_rdev *rdev;
63c70c4f 7294 int spares = 0;
c04be0aa 7295 unsigned long flags;
63c70c4f 7296
f416885e 7297 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7298 return -EBUSY;
7299
01ee22b4
N
7300 if (!check_stripe_cache(mddev))
7301 return -ENOSPC;
7302
30b67645
N
7303 if (has_failed(conf))
7304 return -EINVAL;
7305
c6563a8c 7306 rdev_for_each(rdev, mddev) {
469518a3
N
7307 if (!test_bit(In_sync, &rdev->flags)
7308 && !test_bit(Faulty, &rdev->flags))
29269553 7309 spares++;
c6563a8c 7310 }
63c70c4f 7311
f416885e 7312 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7313 /* Not enough devices even to make a degraded array
7314 * of that size
7315 */
7316 return -EINVAL;
7317
ec32a2bd
N
7318 /* Refuse to reduce size of the array. Any reductions in
7319 * array size must be through explicit setting of array_size
7320 * attribute.
7321 */
7322 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7323 < mddev->array_sectors) {
0c55e022 7324 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7325 "before number of disks\n", mdname(mddev));
7326 return -EINVAL;
7327 }
7328
f6705578 7329 atomic_set(&conf->reshape_stripes, 0);
29269553 7330 spin_lock_irq(&conf->device_lock);
c46501b2 7331 write_seqcount_begin(&conf->gen_lock);
29269553 7332 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7333 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7334 conf->prev_chunk_sectors = conf->chunk_sectors;
7335 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7336 conf->prev_algo = conf->algorithm;
7337 conf->algorithm = mddev->new_layout;
05616be5
N
7338 conf->generation++;
7339 /* Code that selects data_offset needs to see the generation update
7340 * if reshape_progress has been set - so a memory barrier needed.
7341 */
7342 smp_mb();
2c810cdd 7343 if (mddev->reshape_backwards)
fef9c61f
N
7344 conf->reshape_progress = raid5_size(mddev, 0, 0);
7345 else
7346 conf->reshape_progress = 0;
7347 conf->reshape_safe = conf->reshape_progress;
c46501b2 7348 write_seqcount_end(&conf->gen_lock);
29269553
N
7349 spin_unlock_irq(&conf->device_lock);
7350
4d77e3ba
N
7351 /* Now make sure any requests that proceeded on the assumption
7352 * the reshape wasn't running - like Discard or Read - have
7353 * completed.
7354 */
7355 mddev_suspend(mddev);
7356 mddev_resume(mddev);
7357
29269553
N
7358 /* Add some new drives, as many as will fit.
7359 * We know there are enough to make the newly sized array work.
3424bf6a
N
7360 * Don't add devices if we are reducing the number of
7361 * devices in the array. This is because it is not possible
7362 * to correctly record the "partially reconstructed" state of
7363 * such devices during the reshape and confusion could result.
29269553 7364 */
87a8dec9 7365 if (mddev->delta_disks >= 0) {
dafb20fa 7366 rdev_for_each(rdev, mddev)
87a8dec9
N
7367 if (rdev->raid_disk < 0 &&
7368 !test_bit(Faulty, &rdev->flags)) {
7369 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7370 if (rdev->raid_disk
9d4c7d87 7371 >= conf->previous_raid_disks)
87a8dec9 7372 set_bit(In_sync, &rdev->flags);
9d4c7d87 7373 else
87a8dec9 7374 rdev->recovery_offset = 0;
36fad858
NK
7375
7376 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7377 /* Failure here is OK */;
50da0840 7378 }
87a8dec9
N
7379 } else if (rdev->raid_disk >= conf->previous_raid_disks
7380 && !test_bit(Faulty, &rdev->flags)) {
7381 /* This is a spare that was manually added */
7382 set_bit(In_sync, &rdev->flags);
87a8dec9 7383 }
29269553 7384
87a8dec9
N
7385 /* When a reshape changes the number of devices,
7386 * ->degraded is measured against the larger of the
7387 * pre and post number of devices.
7388 */
ec32a2bd 7389 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7390 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7391 spin_unlock_irqrestore(&conf->device_lock, flags);
7392 }
63c70c4f 7393 mddev->raid_disks = conf->raid_disks;
e516402c 7394 mddev->reshape_position = conf->reshape_progress;
850b2b42 7395 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7396
29269553
N
7397 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7398 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7399 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7400 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7401 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7402 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7403 "reshape");
29269553
N
7404 if (!mddev->sync_thread) {
7405 mddev->recovery = 0;
7406 spin_lock_irq(&conf->device_lock);
ba8805b9 7407 write_seqcount_begin(&conf->gen_lock);
29269553 7408 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7409 mddev->new_chunk_sectors =
7410 conf->chunk_sectors = conf->prev_chunk_sectors;
7411 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7412 rdev_for_each(rdev, mddev)
7413 rdev->new_data_offset = rdev->data_offset;
7414 smp_wmb();
ba8805b9 7415 conf->generation --;
fef9c61f 7416 conf->reshape_progress = MaxSector;
1e3fa9bd 7417 mddev->reshape_position = MaxSector;
ba8805b9 7418 write_seqcount_end(&conf->gen_lock);
29269553
N
7419 spin_unlock_irq(&conf->device_lock);
7420 return -EAGAIN;
7421 }
c8f517c4 7422 conf->reshape_checkpoint = jiffies;
29269553
N
7423 md_wakeup_thread(mddev->sync_thread);
7424 md_new_event(mddev);
7425 return 0;
7426}
29269553 7427
ec32a2bd
N
7428/* This is called from the reshape thread and should make any
7429 * changes needed in 'conf'
7430 */
d1688a6d 7431static void end_reshape(struct r5conf *conf)
29269553 7432{
29269553 7433
f6705578 7434 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7435 struct md_rdev *rdev;
f6705578 7436
f6705578 7437 spin_lock_irq(&conf->device_lock);
cea9c228 7438 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7439 rdev_for_each(rdev, conf->mddev)
7440 rdev->data_offset = rdev->new_data_offset;
7441 smp_wmb();
fef9c61f 7442 conf->reshape_progress = MaxSector;
6cbd8148 7443 conf->mddev->reshape_position = MaxSector;
f6705578 7444 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7445 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7446
7447 /* read-ahead size must cover two whole stripes, which is
7448 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7449 */
4a5add49 7450 if (conf->mddev->queue) {
cea9c228 7451 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7452 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7453 / PAGE_SIZE);
16a53ecc
N
7454 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7455 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7456 }
29269553 7457 }
29269553
N
7458}
7459
ec32a2bd
N
7460/* This is called from the raid5d thread with mddev_lock held.
7461 * It makes config changes to the device.
7462 */
fd01b88c 7463static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7464{
d1688a6d 7465 struct r5conf *conf = mddev->private;
cea9c228
N
7466
7467 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7468
ec32a2bd
N
7469 if (mddev->delta_disks > 0) {
7470 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7471 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7472 revalidate_disk(mddev->gendisk);
ec32a2bd
N
7473 } else {
7474 int d;
908f4fbd
N
7475 spin_lock_irq(&conf->device_lock);
7476 mddev->degraded = calc_degraded(conf);
7477 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7478 for (d = conf->raid_disks ;
7479 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7480 d++) {
3cb03002 7481 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7482 if (rdev)
7483 clear_bit(In_sync, &rdev->flags);
7484 rdev = conf->disks[d].replacement;
7485 if (rdev)
7486 clear_bit(In_sync, &rdev->flags);
1a67dde0 7487 }
cea9c228 7488 }
88ce4930 7489 mddev->layout = conf->algorithm;
09c9e5fa 7490 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7491 mddev->reshape_position = MaxSector;
7492 mddev->delta_disks = 0;
2c810cdd 7493 mddev->reshape_backwards = 0;
cea9c228
N
7494 }
7495}
7496
fd01b88c 7497static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7498{
d1688a6d 7499 struct r5conf *conf = mddev->private;
72626685
N
7500
7501 switch(state) {
e464eafd
N
7502 case 2: /* resume for a suspend */
7503 wake_up(&conf->wait_for_overlap);
7504 break;
7505
72626685 7506 case 1: /* stop all writes */
566c09c5 7507 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7508 /* '2' tells resync/reshape to pause so that all
7509 * active stripes can drain
7510 */
7511 conf->quiesce = 2;
b1b46486 7512 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7513 atomic_read(&conf->active_stripes) == 0 &&
7514 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7515 unlock_all_device_hash_locks_irq(conf),
7516 lock_all_device_hash_locks_irq(conf));
64bd660b 7517 conf->quiesce = 1;
566c09c5 7518 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7519 /* allow reshape to continue */
7520 wake_up(&conf->wait_for_overlap);
72626685
N
7521 break;
7522
7523 case 0: /* re-enable writes */
566c09c5 7524 lock_all_device_hash_locks_irq(conf);
72626685 7525 conf->quiesce = 0;
b1b46486 7526 wake_up(&conf->wait_for_quiescent);
e464eafd 7527 wake_up(&conf->wait_for_overlap);
566c09c5 7528 unlock_all_device_hash_locks_irq(conf);
72626685
N
7529 break;
7530 }
72626685 7531}
b15c2e57 7532
fd01b88c 7533static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7534{
e373ab10 7535 struct r0conf *raid0_conf = mddev->private;
d76c8420 7536 sector_t sectors;
54071b38 7537
f1b29bca 7538 /* for raid0 takeover only one zone is supported */
e373ab10 7539 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7540 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7541 mdname(mddev));
f1b29bca
DW
7542 return ERR_PTR(-EINVAL);
7543 }
7544
e373ab10
N
7545 sectors = raid0_conf->strip_zone[0].zone_end;
7546 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7547 mddev->dev_sectors = sectors;
f1b29bca 7548 mddev->new_level = level;
54071b38
TM
7549 mddev->new_layout = ALGORITHM_PARITY_N;
7550 mddev->new_chunk_sectors = mddev->chunk_sectors;
7551 mddev->raid_disks += 1;
7552 mddev->delta_disks = 1;
7553 /* make sure it will be not marked as dirty */
7554 mddev->recovery_cp = MaxSector;
7555
7556 return setup_conf(mddev);
7557}
7558
fd01b88c 7559static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7560{
7561 int chunksect;
7562
7563 if (mddev->raid_disks != 2 ||
7564 mddev->degraded > 1)
7565 return ERR_PTR(-EINVAL);
7566
7567 /* Should check if there are write-behind devices? */
7568
7569 chunksect = 64*2; /* 64K by default */
7570
7571 /* The array must be an exact multiple of chunksize */
7572 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7573 chunksect >>= 1;
7574
7575 if ((chunksect<<9) < STRIPE_SIZE)
7576 /* array size does not allow a suitable chunk size */
7577 return ERR_PTR(-EINVAL);
7578
7579 mddev->new_level = 5;
7580 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7581 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7582
7583 return setup_conf(mddev);
7584}
7585
fd01b88c 7586static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7587{
7588 int new_layout;
7589
7590 switch (mddev->layout) {
7591 case ALGORITHM_LEFT_ASYMMETRIC_6:
7592 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7593 break;
7594 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7595 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7596 break;
7597 case ALGORITHM_LEFT_SYMMETRIC_6:
7598 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7599 break;
7600 case ALGORITHM_RIGHT_SYMMETRIC_6:
7601 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7602 break;
7603 case ALGORITHM_PARITY_0_6:
7604 new_layout = ALGORITHM_PARITY_0;
7605 break;
7606 case ALGORITHM_PARITY_N:
7607 new_layout = ALGORITHM_PARITY_N;
7608 break;
7609 default:
7610 return ERR_PTR(-EINVAL);
7611 }
7612 mddev->new_level = 5;
7613 mddev->new_layout = new_layout;
7614 mddev->delta_disks = -1;
7615 mddev->raid_disks -= 1;
7616 return setup_conf(mddev);
7617}
7618
fd01b88c 7619static int raid5_check_reshape(struct mddev *mddev)
b3546035 7620{
88ce4930
N
7621 /* For a 2-drive array, the layout and chunk size can be changed
7622 * immediately as not restriping is needed.
7623 * For larger arrays we record the new value - after validation
7624 * to be used by a reshape pass.
b3546035 7625 */
d1688a6d 7626 struct r5conf *conf = mddev->private;
597a711b 7627 int new_chunk = mddev->new_chunk_sectors;
b3546035 7628
597a711b 7629 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7630 return -EINVAL;
7631 if (new_chunk > 0) {
0ba459d2 7632 if (!is_power_of_2(new_chunk))
b3546035 7633 return -EINVAL;
597a711b 7634 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7635 return -EINVAL;
597a711b 7636 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7637 /* not factor of array size */
7638 return -EINVAL;
7639 }
7640
7641 /* They look valid */
7642
88ce4930 7643 if (mddev->raid_disks == 2) {
597a711b
N
7644 /* can make the change immediately */
7645 if (mddev->new_layout >= 0) {
7646 conf->algorithm = mddev->new_layout;
7647 mddev->layout = mddev->new_layout;
88ce4930
N
7648 }
7649 if (new_chunk > 0) {
597a711b
N
7650 conf->chunk_sectors = new_chunk ;
7651 mddev->chunk_sectors = new_chunk;
88ce4930
N
7652 }
7653 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7654 md_wakeup_thread(mddev->thread);
b3546035 7655 }
50ac168a 7656 return check_reshape(mddev);
88ce4930
N
7657}
7658
fd01b88c 7659static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7660{
597a711b 7661 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7662
597a711b 7663 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7664 return -EINVAL;
b3546035 7665 if (new_chunk > 0) {
0ba459d2 7666 if (!is_power_of_2(new_chunk))
88ce4930 7667 return -EINVAL;
597a711b 7668 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7669 return -EINVAL;
597a711b 7670 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7671 /* not factor of array size */
7672 return -EINVAL;
b3546035 7673 }
88ce4930
N
7674
7675 /* They look valid */
50ac168a 7676 return check_reshape(mddev);
b3546035
N
7677}
7678
fd01b88c 7679static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7680{
7681 /* raid5 can take over:
f1b29bca 7682 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7683 * raid1 - if there are two drives. We need to know the chunk size
7684 * raid4 - trivial - just use a raid4 layout.
7685 * raid6 - Providing it is a *_6 layout
d562b0c4 7686 */
f1b29bca
DW
7687 if (mddev->level == 0)
7688 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7689 if (mddev->level == 1)
7690 return raid5_takeover_raid1(mddev);
e9d4758f
N
7691 if (mddev->level == 4) {
7692 mddev->new_layout = ALGORITHM_PARITY_N;
7693 mddev->new_level = 5;
7694 return setup_conf(mddev);
7695 }
fc9739c6
N
7696 if (mddev->level == 6)
7697 return raid5_takeover_raid6(mddev);
d562b0c4
N
7698
7699 return ERR_PTR(-EINVAL);
7700}
7701
fd01b88c 7702static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7703{
f1b29bca
DW
7704 /* raid4 can take over:
7705 * raid0 - if there is only one strip zone
7706 * raid5 - if layout is right
a78d38a1 7707 */
f1b29bca
DW
7708 if (mddev->level == 0)
7709 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7710 if (mddev->level == 5 &&
7711 mddev->layout == ALGORITHM_PARITY_N) {
7712 mddev->new_layout = 0;
7713 mddev->new_level = 4;
7714 return setup_conf(mddev);
7715 }
7716 return ERR_PTR(-EINVAL);
7717}
d562b0c4 7718
84fc4b56 7719static struct md_personality raid5_personality;
245f46c2 7720
fd01b88c 7721static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7722{
7723 /* Currently can only take over a raid5. We map the
7724 * personality to an equivalent raid6 personality
7725 * with the Q block at the end.
7726 */
7727 int new_layout;
7728
7729 if (mddev->pers != &raid5_personality)
7730 return ERR_PTR(-EINVAL);
7731 if (mddev->degraded > 1)
7732 return ERR_PTR(-EINVAL);
7733 if (mddev->raid_disks > 253)
7734 return ERR_PTR(-EINVAL);
7735 if (mddev->raid_disks < 3)
7736 return ERR_PTR(-EINVAL);
7737
7738 switch (mddev->layout) {
7739 case ALGORITHM_LEFT_ASYMMETRIC:
7740 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7741 break;
7742 case ALGORITHM_RIGHT_ASYMMETRIC:
7743 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7744 break;
7745 case ALGORITHM_LEFT_SYMMETRIC:
7746 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7747 break;
7748 case ALGORITHM_RIGHT_SYMMETRIC:
7749 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7750 break;
7751 case ALGORITHM_PARITY_0:
7752 new_layout = ALGORITHM_PARITY_0_6;
7753 break;
7754 case ALGORITHM_PARITY_N:
7755 new_layout = ALGORITHM_PARITY_N;
7756 break;
7757 default:
7758 return ERR_PTR(-EINVAL);
7759 }
7760 mddev->new_level = 6;
7761 mddev->new_layout = new_layout;
7762 mddev->delta_disks = 1;
7763 mddev->raid_disks += 1;
7764 return setup_conf(mddev);
7765}
7766
84fc4b56 7767static struct md_personality raid6_personality =
16a53ecc
N
7768{
7769 .name = "raid6",
7770 .level = 6,
7771 .owner = THIS_MODULE,
7772 .make_request = make_request,
7773 .run = run,
afa0f557 7774 .free = raid5_free,
16a53ecc
N
7775 .status = status,
7776 .error_handler = error,
7777 .hot_add_disk = raid5_add_disk,
7778 .hot_remove_disk= raid5_remove_disk,
7779 .spare_active = raid5_spare_active,
7780 .sync_request = sync_request,
7781 .resize = raid5_resize,
80c3a6ce 7782 .size = raid5_size,
50ac168a 7783 .check_reshape = raid6_check_reshape,
f416885e 7784 .start_reshape = raid5_start_reshape,
cea9c228 7785 .finish_reshape = raid5_finish_reshape,
16a53ecc 7786 .quiesce = raid5_quiesce,
245f46c2 7787 .takeover = raid6_takeover,
5c675f83 7788 .congested = raid5_congested,
16a53ecc 7789};
84fc4b56 7790static struct md_personality raid5_personality =
1da177e4
LT
7791{
7792 .name = "raid5",
2604b703 7793 .level = 5,
1da177e4
LT
7794 .owner = THIS_MODULE,
7795 .make_request = make_request,
7796 .run = run,
afa0f557 7797 .free = raid5_free,
1da177e4
LT
7798 .status = status,
7799 .error_handler = error,
7800 .hot_add_disk = raid5_add_disk,
7801 .hot_remove_disk= raid5_remove_disk,
7802 .spare_active = raid5_spare_active,
7803 .sync_request = sync_request,
7804 .resize = raid5_resize,
80c3a6ce 7805 .size = raid5_size,
63c70c4f
N
7806 .check_reshape = raid5_check_reshape,
7807 .start_reshape = raid5_start_reshape,
cea9c228 7808 .finish_reshape = raid5_finish_reshape,
72626685 7809 .quiesce = raid5_quiesce,
d562b0c4 7810 .takeover = raid5_takeover,
5c675f83 7811 .congested = raid5_congested,
1da177e4
LT
7812};
7813
84fc4b56 7814static struct md_personality raid4_personality =
1da177e4 7815{
2604b703
N
7816 .name = "raid4",
7817 .level = 4,
7818 .owner = THIS_MODULE,
7819 .make_request = make_request,
7820 .run = run,
afa0f557 7821 .free = raid5_free,
2604b703
N
7822 .status = status,
7823 .error_handler = error,
7824 .hot_add_disk = raid5_add_disk,
7825 .hot_remove_disk= raid5_remove_disk,
7826 .spare_active = raid5_spare_active,
7827 .sync_request = sync_request,
7828 .resize = raid5_resize,
80c3a6ce 7829 .size = raid5_size,
3d37890b
N
7830 .check_reshape = raid5_check_reshape,
7831 .start_reshape = raid5_start_reshape,
cea9c228 7832 .finish_reshape = raid5_finish_reshape,
2604b703 7833 .quiesce = raid5_quiesce,
a78d38a1 7834 .takeover = raid4_takeover,
5c675f83 7835 .congested = raid5_congested,
2604b703
N
7836};
7837
7838static int __init raid5_init(void)
7839{
851c30c9
SL
7840 raid5_wq = alloc_workqueue("raid5wq",
7841 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7842 if (!raid5_wq)
7843 return -ENOMEM;
16a53ecc 7844 register_md_personality(&raid6_personality);
2604b703
N
7845 register_md_personality(&raid5_personality);
7846 register_md_personality(&raid4_personality);
7847 return 0;
1da177e4
LT
7848}
7849
2604b703 7850static void raid5_exit(void)
1da177e4 7851{
16a53ecc 7852 unregister_md_personality(&raid6_personality);
2604b703
N
7853 unregister_md_personality(&raid5_personality);
7854 unregister_md_personality(&raid4_personality);
851c30c9 7855 destroy_workqueue(raid5_wq);
1da177e4
LT
7856}
7857
7858module_init(raid5_init);
7859module_exit(raid5_exit);
7860MODULE_LICENSE("GPL");
0efb9e61 7861MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7862MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7863MODULE_ALIAS("md-raid5");
7864MODULE_ALIAS("md-raid4");
2604b703
N
7865MODULE_ALIAS("md-level-5");
7866MODULE_ALIAS("md-level-4");
16a53ecc
N
7867MODULE_ALIAS("md-personality-8"); /* RAID6 */
7868MODULE_ALIAS("md-raid6");
7869MODULE_ALIAS("md-level-6");
7870
7871/* This used to be two separate modules, they were: */
7872MODULE_ALIAS("raid5");
7873MODULE_ALIAS("raid6");