Merge tag 'xtensa-20170612' of git://github.com/jcmvbkbc/linux-xtensa
[linux-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
3f07c014
IM
58#include <linux/sched/signal.h>
59
a9add5d9 60#include <trace/events/block.h>
aaf9f12e 61#include <linux/list_sort.h>
a9add5d9 62
43b2e5d8 63#include "md.h"
bff61975 64#include "raid5.h"
54071b38 65#include "raid0.h"
ef740c37 66#include "bitmap.h"
ff875738 67#include "raid5-log.h"
72626685 68
394ed8e4
SL
69#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70
851c30c9
SL
71#define cpu_to_group(cpu) cpu_to_node(cpu)
72#define ANY_GROUP NUMA_NO_NODE
73
8e0e99ba
N
74static bool devices_handle_discard_safely = false;
75module_param(devices_handle_discard_safely, bool, 0644);
76MODULE_PARM_DESC(devices_handle_discard_safely,
77 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 78static struct workqueue_struct *raid5_wq;
1da177e4 79
d1688a6d 80static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
81{
82 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 return &conf->stripe_hashtbl[hash];
84}
1da177e4 85
566c09c5
SL
86static inline int stripe_hash_locks_hash(sector_t sect)
87{
88 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89}
90
91static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92{
93 spin_lock_irq(conf->hash_locks + hash);
94 spin_lock(&conf->device_lock);
95}
96
97static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98{
99 spin_unlock(&conf->device_lock);
100 spin_unlock_irq(conf->hash_locks + hash);
101}
102
103static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104{
105 int i;
3d05f3ae 106 spin_lock_irq(conf->hash_locks);
566c09c5
SL
107 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
108 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
109 spin_lock(&conf->device_lock);
110}
111
112static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
113{
114 int i;
115 spin_unlock(&conf->device_lock);
3d05f3ae
JC
116 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
117 spin_unlock(conf->hash_locks + i);
118 spin_unlock_irq(conf->hash_locks);
566c09c5
SL
119}
120
d0dabf7e
N
121/* Find first data disk in a raid6 stripe */
122static inline int raid6_d0(struct stripe_head *sh)
123{
67cc2b81
N
124 if (sh->ddf_layout)
125 /* ddf always start from first device */
126 return 0;
127 /* md starts just after Q block */
d0dabf7e
N
128 if (sh->qd_idx == sh->disks - 1)
129 return 0;
130 else
131 return sh->qd_idx + 1;
132}
16a53ecc
N
133static inline int raid6_next_disk(int disk, int raid_disks)
134{
135 disk++;
136 return (disk < raid_disks) ? disk : 0;
137}
a4456856 138
d0dabf7e
N
139/* When walking through the disks in a raid5, starting at raid6_d0,
140 * We need to map each disk to a 'slot', where the data disks are slot
141 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
142 * is raid_disks-1. This help does that mapping.
143 */
67cc2b81
N
144static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
145 int *count, int syndrome_disks)
d0dabf7e 146{
6629542e 147 int slot = *count;
67cc2b81 148
e4424fee 149 if (sh->ddf_layout)
6629542e 150 (*count)++;
d0dabf7e 151 if (idx == sh->pd_idx)
67cc2b81 152 return syndrome_disks;
d0dabf7e 153 if (idx == sh->qd_idx)
67cc2b81 154 return syndrome_disks + 1;
e4424fee 155 if (!sh->ddf_layout)
6629542e 156 (*count)++;
d0dabf7e
N
157 return slot;
158}
159
d1688a6d 160static void print_raid5_conf (struct r5conf *conf);
1da177e4 161
600aa109
DW
162static int stripe_operations_active(struct stripe_head *sh)
163{
164 return sh->check_state || sh->reconstruct_state ||
165 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
166 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
167}
168
535ae4eb
SL
169static bool stripe_is_lowprio(struct stripe_head *sh)
170{
171 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
172 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
173 !test_bit(STRIPE_R5C_CACHING, &sh->state);
174}
175
851c30c9
SL
176static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177{
178 struct r5conf *conf = sh->raid_conf;
179 struct r5worker_group *group;
bfc90cb0 180 int thread_cnt;
851c30c9
SL
181 int i, cpu = sh->cpu;
182
183 if (!cpu_online(cpu)) {
184 cpu = cpumask_any(cpu_online_mask);
185 sh->cpu = cpu;
186 }
187
188 if (list_empty(&sh->lru)) {
189 struct r5worker_group *group;
190 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
191 if (stripe_is_lowprio(sh))
192 list_add_tail(&sh->lru, &group->loprio_list);
193 else
194 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
195 group->stripes_cnt++;
196 sh->group = group;
851c30c9
SL
197 }
198
199 if (conf->worker_cnt_per_group == 0) {
200 md_wakeup_thread(conf->mddev->thread);
201 return;
202 }
203
204 group = conf->worker_groups + cpu_to_group(sh->cpu);
205
bfc90cb0
SL
206 group->workers[0].working = true;
207 /* at least one worker should run to avoid race */
208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 /* wakeup more workers */
212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 if (group->workers[i].working == false) {
214 group->workers[i].working = true;
215 queue_work_on(sh->cpu, raid5_wq,
216 &group->workers[i].work);
217 thread_cnt--;
218 }
219 }
851c30c9
SL
220}
221
566c09c5
SL
222static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 struct list_head *temp_inactive_list)
1da177e4 224{
1e6d690b
SL
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
4eb788df
SL
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
a39f7afd 235 /*
5ddf0440
SL
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
a39f7afd 241 */
5ddf0440
SL
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
a39f7afd
SL
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
1e6d690b 249
4eb788df
SL
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 253 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 260 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
851c30c9
SL
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
4eb788df
SL
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
1e6d690b
SL
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 294 r5c_check_cached_full_stripe(conf);
03b047f4
SL
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
1e6d690b 301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
302 }
303 }
1da177e4
LT
304 }
305}
d0dabf7e 306
566c09c5
SL
307static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
4eb788df
SL
309{
310 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
311 do_release_stripe(conf, sh, temp_inactive_list);
312}
313
314/*
315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 *
317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318 * given time. Adding stripes only takes device lock, while deleting stripes
319 * only takes hash lock.
320 */
321static void release_inactive_stripe_list(struct r5conf *conf,
322 struct list_head *temp_inactive_list,
323 int hash)
324{
325 int size;
6ab2a4b8 326 bool do_wakeup = false;
566c09c5
SL
327 unsigned long flags;
328
329 if (hash == NR_STRIPE_HASH_LOCKS) {
330 size = NR_STRIPE_HASH_LOCKS;
331 hash = NR_STRIPE_HASH_LOCKS - 1;
332 } else
333 size = 1;
334 while (size) {
335 struct list_head *list = &temp_inactive_list[size - 1];
336
337 /*
6d036f7d 338 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
339 * remove stripes from the list
340 */
341 if (!list_empty_careful(list)) {
342 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
343 if (list_empty(conf->inactive_list + hash) &&
344 !list_empty(list))
345 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 346 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 347 do_wakeup = true;
566c09c5
SL
348 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349 }
350 size--;
351 hash--;
352 }
353
354 if (do_wakeup) {
6ab2a4b8 355 wake_up(&conf->wait_for_stripe);
b1b46486
YL
356 if (atomic_read(&conf->active_stripes) == 0)
357 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
358 if (conf->retry_read_aligned)
359 md_wakeup_thread(conf->mddev->thread);
360 }
4eb788df
SL
361}
362
773ca82f 363/* should hold conf->device_lock already */
566c09c5
SL
364static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
773ca82f 366{
eae8263f 367 struct stripe_head *sh, *t;
773ca82f
SL
368 int count = 0;
369 struct llist_node *head;
370
371 head = llist_del_all(&conf->released_stripes);
d265d9dc 372 head = llist_reverse_order(head);
eae8263f 373 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
374 int hash;
375
773ca82f
SL
376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 smp_mb();
378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379 /*
380 * Don't worry the bit is set here, because if the bit is set
381 * again, the count is always > 1. This is true for
382 * STRIPE_ON_UNPLUG_LIST bit too.
383 */
566c09c5
SL
384 hash = sh->hash_lock_index;
385 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
386 count++;
387 }
388
389 return count;
390}
391
6d036f7d 392void raid5_release_stripe(struct stripe_head *sh)
1da177e4 393{
d1688a6d 394 struct r5conf *conf = sh->raid_conf;
1da177e4 395 unsigned long flags;
566c09c5
SL
396 struct list_head list;
397 int hash;
773ca82f 398 bool wakeup;
16a53ecc 399
cf170f3f
ES
400 /* Avoid release_list until the last reference.
401 */
402 if (atomic_add_unless(&sh->count, -1, 1))
403 return;
404
ad4068de 405 if (unlikely(!conf->mddev->thread) ||
406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
407 goto slow_path;
408 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409 if (wakeup)
410 md_wakeup_thread(conf->mddev->thread);
411 return;
412slow_path:
4eb788df 413 local_irq_save(flags);
773ca82f 414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 415 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
4eb788df 419 spin_unlock(&conf->device_lock);
566c09c5 420 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
421 }
422 local_irq_restore(flags);
1da177e4
LT
423}
424
fccddba0 425static inline void remove_hash(struct stripe_head *sh)
1da177e4 426{
45b4233c
DW
427 pr_debug("remove_hash(), stripe %llu\n",
428 (unsigned long long)sh->sector);
1da177e4 429
fccddba0 430 hlist_del_init(&sh->hash);
1da177e4
LT
431}
432
d1688a6d 433static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 434{
fccddba0 435 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 436
45b4233c
DW
437 pr_debug("insert_hash(), stripe %llu\n",
438 (unsigned long long)sh->sector);
1da177e4 439
fccddba0 440 hlist_add_head(&sh->hash, hp);
1da177e4
LT
441}
442
1da177e4 443/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 444static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
445{
446 struct stripe_head *sh = NULL;
447 struct list_head *first;
448
566c09c5 449 if (list_empty(conf->inactive_list + hash))
1da177e4 450 goto out;
566c09c5 451 first = (conf->inactive_list + hash)->next;
1da177e4
LT
452 sh = list_entry(first, struct stripe_head, lru);
453 list_del_init(first);
454 remove_hash(sh);
455 atomic_inc(&conf->active_stripes);
566c09c5 456 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
457 if (list_empty(conf->inactive_list + hash))
458 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
459out:
460 return sh;
461}
462
e4e11e38 463static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
464{
465 struct page *p;
466 int i;
e4e11e38 467 int num = sh->raid_conf->pool_size;
1da177e4 468
e4e11e38 469 for (i = 0; i < num ; i++) {
d592a996 470 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
471 p = sh->dev[i].page;
472 if (!p)
473 continue;
474 sh->dev[i].page = NULL;
2d1f3b5d 475 put_page(p);
1da177e4
LT
476 }
477}
478
a9683a79 479static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
480{
481 int i;
e4e11e38 482 int num = sh->raid_conf->pool_size;
1da177e4 483
e4e11e38 484 for (i = 0; i < num; i++) {
1da177e4
LT
485 struct page *page;
486
a9683a79 487 if (!(page = alloc_page(gfp))) {
1da177e4
LT
488 return 1;
489 }
490 sh->dev[i].page = page;
d592a996 491 sh->dev[i].orig_page = page;
1da177e4 492 }
3418d036 493
1da177e4
LT
494 return 0;
495}
496
784052ec 497static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 498static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 499 struct stripe_head *sh);
1da177e4 500
b5663ba4 501static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 502{
d1688a6d 503 struct r5conf *conf = sh->raid_conf;
566c09c5 504 int i, seq;
1da177e4 505
78bafebd
ES
506 BUG_ON(atomic_read(&sh->count) != 0);
507 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 508 BUG_ON(stripe_operations_active(sh));
59fc630b 509 BUG_ON(sh->batch_head);
d84e0f10 510
45b4233c 511 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 512 (unsigned long long)sector);
566c09c5
SL
513retry:
514 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 515 sh->generation = conf->generation - previous;
b5663ba4 516 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 517 sh->sector = sector;
911d4ee8 518 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
519 sh->state = 0;
520
7ecaa1e6 521 for (i = sh->disks; i--; ) {
1da177e4
LT
522 struct r5dev *dev = &sh->dev[i];
523
d84e0f10 524 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 525 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 526 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 527 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 528 dev->read, dev->towrite, dev->written,
1da177e4 529 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 530 WARN_ON(1);
1da177e4
LT
531 }
532 dev->flags = 0;
784052ec 533 raid5_build_block(sh, i, previous);
1da177e4 534 }
566c09c5
SL
535 if (read_seqcount_retry(&conf->gen_lock, seq))
536 goto retry;
7a87f434 537 sh->overwrite_disks = 0;
1da177e4 538 insert_hash(conf, sh);
851c30c9 539 sh->cpu = smp_processor_id();
da41ba65 540 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
541}
542
d1688a6d 543static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 544 short generation)
1da177e4
LT
545{
546 struct stripe_head *sh;
547
45b4233c 548 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 549 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 550 if (sh->sector == sector && sh->generation == generation)
1da177e4 551 return sh;
45b4233c 552 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
553 return NULL;
554}
555
674806d6
N
556/*
557 * Need to check if array has failed when deciding whether to:
558 * - start an array
559 * - remove non-faulty devices
560 * - add a spare
561 * - allow a reshape
562 * This determination is simple when no reshape is happening.
563 * However if there is a reshape, we need to carefully check
564 * both the before and after sections.
565 * This is because some failed devices may only affect one
566 * of the two sections, and some non-in_sync devices may
567 * be insync in the section most affected by failed devices.
568 */
2e38a37f 569int raid5_calc_degraded(struct r5conf *conf)
674806d6 570{
908f4fbd 571 int degraded, degraded2;
674806d6 572 int i;
674806d6
N
573
574 rcu_read_lock();
575 degraded = 0;
576 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 577 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
578 if (rdev && test_bit(Faulty, &rdev->flags))
579 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
580 if (!rdev || test_bit(Faulty, &rdev->flags))
581 degraded++;
582 else if (test_bit(In_sync, &rdev->flags))
583 ;
584 else
585 /* not in-sync or faulty.
586 * If the reshape increases the number of devices,
587 * this is being recovered by the reshape, so
588 * this 'previous' section is not in_sync.
589 * If the number of devices is being reduced however,
590 * the device can only be part of the array if
591 * we are reverting a reshape, so this section will
592 * be in-sync.
593 */
594 if (conf->raid_disks >= conf->previous_raid_disks)
595 degraded++;
596 }
597 rcu_read_unlock();
908f4fbd
N
598 if (conf->raid_disks == conf->previous_raid_disks)
599 return degraded;
674806d6 600 rcu_read_lock();
908f4fbd 601 degraded2 = 0;
674806d6 602 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 603 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
604 if (rdev && test_bit(Faulty, &rdev->flags))
605 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 606 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 607 degraded2++;
674806d6
N
608 else if (test_bit(In_sync, &rdev->flags))
609 ;
610 else
611 /* not in-sync or faulty.
612 * If reshape increases the number of devices, this
613 * section has already been recovered, else it
614 * almost certainly hasn't.
615 */
616 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 617 degraded2++;
674806d6
N
618 }
619 rcu_read_unlock();
908f4fbd
N
620 if (degraded2 > degraded)
621 return degraded2;
622 return degraded;
623}
624
625static int has_failed(struct r5conf *conf)
626{
627 int degraded;
628
629 if (conf->mddev->reshape_position == MaxSector)
630 return conf->mddev->degraded > conf->max_degraded;
631
2e38a37f 632 degraded = raid5_calc_degraded(conf);
674806d6
N
633 if (degraded > conf->max_degraded)
634 return 1;
635 return 0;
636}
637
6d036f7d
SL
638struct stripe_head *
639raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
640 int previous, int noblock, int noquiesce)
1da177e4
LT
641{
642 struct stripe_head *sh;
566c09c5 643 int hash = stripe_hash_locks_hash(sector);
ff00d3b4 644 int inc_empty_inactive_list_flag;
1da177e4 645
45b4233c 646 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 647
566c09c5 648 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
649
650 do {
b1b46486 651 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 652 conf->quiesce == 0 || noquiesce,
566c09c5 653 *(conf->hash_locks + hash));
86b42c71 654 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 655 if (!sh) {
edbe83ab 656 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 657 sh = get_free_stripe(conf, hash);
713bc5c2
SL
658 if (!sh && !test_bit(R5_DID_ALLOC,
659 &conf->cache_state))
edbe83ab
N
660 set_bit(R5_ALLOC_MORE,
661 &conf->cache_state);
662 }
1da177e4
LT
663 if (noblock && sh == NULL)
664 break;
a39f7afd
SL
665
666 r5c_check_stripe_cache_usage(conf);
1da177e4 667 if (!sh) {
5423399a
N
668 set_bit(R5_INACTIVE_BLOCKED,
669 &conf->cache_state);
a39f7afd 670 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
671 wait_event_lock_irq(
672 conf->wait_for_stripe,
566c09c5
SL
673 !list_empty(conf->inactive_list + hash) &&
674 (atomic_read(&conf->active_stripes)
675 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
676 || !test_bit(R5_INACTIVE_BLOCKED,
677 &conf->cache_state)),
6ab2a4b8 678 *(conf->hash_locks + hash));
5423399a
N
679 clear_bit(R5_INACTIVE_BLOCKED,
680 &conf->cache_state);
7da9d450 681 } else {
b5663ba4 682 init_stripe(sh, sector, previous);
7da9d450
N
683 atomic_inc(&sh->count);
684 }
e240c183 685 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 686 spin_lock(&conf->device_lock);
e240c183 687 if (!atomic_read(&sh->count)) {
1da177e4
LT
688 if (!test_bit(STRIPE_HANDLE, &sh->state))
689 atomic_inc(&conf->active_stripes);
5af9bef7
N
690 BUG_ON(list_empty(&sh->lru) &&
691 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
692 inc_empty_inactive_list_flag = 0;
693 if (!list_empty(conf->inactive_list + hash))
694 inc_empty_inactive_list_flag = 1;
16a53ecc 695 list_del_init(&sh->lru);
ff00d3b4
ZL
696 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
697 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
698 if (sh->group) {
699 sh->group->stripes_cnt--;
700 sh->group = NULL;
701 }
1da177e4 702 }
7da9d450 703 atomic_inc(&sh->count);
6d183de4 704 spin_unlock(&conf->device_lock);
1da177e4
LT
705 }
706 } while (sh == NULL);
707
566c09c5 708 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
709 return sh;
710}
711
7a87f434 712static bool is_full_stripe_write(struct stripe_head *sh)
713{
714 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
715 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
716}
717
59fc630b 718static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719{
59fc630b 720 if (sh1 > sh2) {
3d05f3ae 721 spin_lock_irq(&sh2->stripe_lock);
59fc630b 722 spin_lock_nested(&sh1->stripe_lock, 1);
723 } else {
3d05f3ae 724 spin_lock_irq(&sh1->stripe_lock);
59fc630b 725 spin_lock_nested(&sh2->stripe_lock, 1);
726 }
727}
728
729static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730{
731 spin_unlock(&sh1->stripe_lock);
3d05f3ae 732 spin_unlock_irq(&sh2->stripe_lock);
59fc630b 733}
734
735/* Only freshly new full stripe normal write stripe can be added to a batch list */
736static bool stripe_can_batch(struct stripe_head *sh)
737{
9c3e333d
SL
738 struct r5conf *conf = sh->raid_conf;
739
3418d036 740 if (conf->log || raid5_has_ppl(conf))
9c3e333d 741 return false;
59fc630b 742 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 743 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 744 is_full_stripe_write(sh);
745}
746
747/* we only do back search */
748static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749{
750 struct stripe_head *head;
751 sector_t head_sector, tmp_sec;
752 int hash;
753 int dd_idx;
ff00d3b4 754 int inc_empty_inactive_list_flag;
59fc630b 755
59fc630b 756 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
757 tmp_sec = sh->sector;
758 if (!sector_div(tmp_sec, conf->chunk_sectors))
759 return;
760 head_sector = sh->sector - STRIPE_SECTORS;
761
762 hash = stripe_hash_locks_hash(head_sector);
763 spin_lock_irq(conf->hash_locks + hash);
764 head = __find_stripe(conf, head_sector, conf->generation);
765 if (head && !atomic_inc_not_zero(&head->count)) {
766 spin_lock(&conf->device_lock);
767 if (!atomic_read(&head->count)) {
768 if (!test_bit(STRIPE_HANDLE, &head->state))
769 atomic_inc(&conf->active_stripes);
770 BUG_ON(list_empty(&head->lru) &&
771 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
772 inc_empty_inactive_list_flag = 0;
773 if (!list_empty(conf->inactive_list + hash))
774 inc_empty_inactive_list_flag = 1;
59fc630b 775 list_del_init(&head->lru);
ff00d3b4
ZL
776 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
777 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 778 if (head->group) {
779 head->group->stripes_cnt--;
780 head->group = NULL;
781 }
782 }
783 atomic_inc(&head->count);
784 spin_unlock(&conf->device_lock);
785 }
786 spin_unlock_irq(conf->hash_locks + hash);
787
788 if (!head)
789 return;
790 if (!stripe_can_batch(head))
791 goto out;
792
793 lock_two_stripes(head, sh);
794 /* clear_batch_ready clear the flag */
795 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
796 goto unlock_out;
797
798 if (sh->batch_head)
799 goto unlock_out;
800
801 dd_idx = 0;
802 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
803 dd_idx++;
1eff9d32 804 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 805 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 806 goto unlock_out;
807
808 if (head->batch_head) {
809 spin_lock(&head->batch_head->batch_lock);
810 /* This batch list is already running */
811 if (!stripe_can_batch(head)) {
812 spin_unlock(&head->batch_head->batch_lock);
813 goto unlock_out;
814 }
815
816 /*
817 * at this point, head's BATCH_READY could be cleared, but we
818 * can still add the stripe to batch list
819 */
820 list_add(&sh->batch_list, &head->batch_list);
821 spin_unlock(&head->batch_head->batch_lock);
822
823 sh->batch_head = head->batch_head;
824 } else {
825 head->batch_head = head;
826 sh->batch_head = head->batch_head;
827 spin_lock(&head->batch_lock);
828 list_add_tail(&sh->batch_list, &head->batch_list);
829 spin_unlock(&head->batch_lock);
830 }
831
832 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
833 if (atomic_dec_return(&conf->preread_active_stripes)
834 < IO_THRESHOLD)
835 md_wakeup_thread(conf->mddev->thread);
836
2b6b2457
N
837 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
838 int seq = sh->bm_seq;
839 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
840 sh->batch_head->bm_seq > seq)
841 seq = sh->batch_head->bm_seq;
842 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
843 sh->batch_head->bm_seq = seq;
844 }
845
59fc630b 846 atomic_inc(&sh->count);
847unlock_out:
848 unlock_two_stripes(head, sh);
849out:
6d036f7d 850 raid5_release_stripe(head);
59fc630b 851}
852
05616be5
N
853/* Determine if 'data_offset' or 'new_data_offset' should be used
854 * in this stripe_head.
855 */
856static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
857{
858 sector_t progress = conf->reshape_progress;
859 /* Need a memory barrier to make sure we see the value
860 * of conf->generation, or ->data_offset that was set before
861 * reshape_progress was updated.
862 */
863 smp_rmb();
864 if (progress == MaxSector)
865 return 0;
866 if (sh->generation == conf->generation - 1)
867 return 0;
868 /* We are in a reshape, and this is a new-generation stripe,
869 * so use new_data_offset.
870 */
871 return 1;
872}
873
aaf9f12e 874static void dispatch_bio_list(struct bio_list *tmp)
765d704d 875{
765d704d
SL
876 struct bio *bio;
877
aaf9f12e
SL
878 while ((bio = bio_list_pop(tmp)))
879 generic_make_request(bio);
880}
881
882static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
883{
884 const struct r5pending_data *da = list_entry(a,
885 struct r5pending_data, sibling);
886 const struct r5pending_data *db = list_entry(b,
887 struct r5pending_data, sibling);
888 if (da->sector > db->sector)
889 return 1;
890 if (da->sector < db->sector)
891 return -1;
892 return 0;
893}
894
895static void dispatch_defer_bios(struct r5conf *conf, int target,
896 struct bio_list *list)
897{
898 struct r5pending_data *data;
899 struct list_head *first, *next = NULL;
900 int cnt = 0;
901
902 if (conf->pending_data_cnt == 0)
903 return;
904
905 list_sort(NULL, &conf->pending_list, cmp_stripe);
906
907 first = conf->pending_list.next;
908
909 /* temporarily move the head */
910 if (conf->next_pending_data)
911 list_move_tail(&conf->pending_list,
912 &conf->next_pending_data->sibling);
913
914 while (!list_empty(&conf->pending_list)) {
915 data = list_first_entry(&conf->pending_list,
916 struct r5pending_data, sibling);
917 if (&data->sibling == first)
918 first = data->sibling.next;
919 next = data->sibling.next;
920
921 bio_list_merge(list, &data->bios);
922 list_move(&data->sibling, &conf->free_list);
923 cnt++;
924 if (cnt >= target)
925 break;
926 }
927 conf->pending_data_cnt -= cnt;
928 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
929
930 if (next != &conf->pending_list)
931 conf->next_pending_data = list_entry(next,
932 struct r5pending_data, sibling);
933 else
934 conf->next_pending_data = NULL;
935 /* list isn't empty */
936 if (first != &conf->pending_list)
937 list_move_tail(&conf->pending_list, first);
938}
939
940static void flush_deferred_bios(struct r5conf *conf)
941{
942 struct bio_list tmp = BIO_EMPTY_LIST;
943
944 if (conf->pending_data_cnt == 0)
765d704d
SL
945 return;
946
765d704d 947 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
948 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
949 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
950 spin_unlock(&conf->pending_bios_lock);
951
aaf9f12e 952 dispatch_bio_list(&tmp);
765d704d
SL
953}
954
aaf9f12e
SL
955static void defer_issue_bios(struct r5conf *conf, sector_t sector,
956 struct bio_list *bios)
765d704d 957{
aaf9f12e
SL
958 struct bio_list tmp = BIO_EMPTY_LIST;
959 struct r5pending_data *ent;
960
765d704d 961 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
962 ent = list_first_entry(&conf->free_list, struct r5pending_data,
963 sibling);
964 list_move_tail(&ent->sibling, &conf->pending_list);
965 ent->sector = sector;
966 bio_list_init(&ent->bios);
967 bio_list_merge(&ent->bios, bios);
968 conf->pending_data_cnt++;
969 if (conf->pending_data_cnt >= PENDING_IO_MAX)
970 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
971
765d704d 972 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
973
974 dispatch_bio_list(&tmp);
765d704d
SL
975}
976
6712ecf8 977static void
4246a0b6 978raid5_end_read_request(struct bio *bi);
6712ecf8 979static void
4246a0b6 980raid5_end_write_request(struct bio *bi);
91c00924 981
c4e5ac0a 982static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 983{
d1688a6d 984 struct r5conf *conf = sh->raid_conf;
91c00924 985 int i, disks = sh->disks;
59fc630b 986 struct stripe_head *head_sh = sh;
aaf9f12e
SL
987 struct bio_list pending_bios = BIO_EMPTY_LIST;
988 bool should_defer;
91c00924
DW
989
990 might_sleep();
991
ff875738
AP
992 if (log_stripe(sh, s) == 0)
993 return;
1e6d690b 994
aaf9f12e 995 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1e6d690b 996
91c00924 997 for (i = disks; i--; ) {
796a5cf0 998 int op, op_flags = 0;
9a3e1101 999 int replace_only = 0;
977df362
N
1000 struct bio *bi, *rbi;
1001 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 1002
1003 sh = head_sh;
e9c7469b 1004 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1005 op = REQ_OP_WRITE;
e9c7469b 1006 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1007 op_flags = REQ_FUA;
9e444768 1008 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1009 op = REQ_OP_DISCARD;
e9c7469b 1010 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1011 op = REQ_OP_READ;
9a3e1101
N
1012 else if (test_and_clear_bit(R5_WantReplace,
1013 &sh->dev[i].flags)) {
796a5cf0 1014 op = REQ_OP_WRITE;
9a3e1101
N
1015 replace_only = 1;
1016 } else
91c00924 1017 continue;
bc0934f0 1018 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1019 op_flags |= REQ_SYNC;
91c00924 1020
59fc630b 1021again:
91c00924 1022 bi = &sh->dev[i].req;
977df362 1023 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 1024
91c00924 1025 rcu_read_lock();
9a3e1101 1026 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1027 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1028 rdev = rcu_dereference(conf->disks[i].rdev);
1029 if (!rdev) {
1030 rdev = rrdev;
1031 rrdev = NULL;
1032 }
796a5cf0 1033 if (op_is_write(op)) {
9a3e1101
N
1034 if (replace_only)
1035 rdev = NULL;
dd054fce
N
1036 if (rdev == rrdev)
1037 /* We raced and saw duplicates */
1038 rrdev = NULL;
9a3e1101 1039 } else {
59fc630b 1040 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1041 rdev = rrdev;
1042 rrdev = NULL;
1043 }
977df362 1044
91c00924
DW
1045 if (rdev && test_bit(Faulty, &rdev->flags))
1046 rdev = NULL;
1047 if (rdev)
1048 atomic_inc(&rdev->nr_pending);
977df362
N
1049 if (rrdev && test_bit(Faulty, &rrdev->flags))
1050 rrdev = NULL;
1051 if (rrdev)
1052 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1053 rcu_read_unlock();
1054
73e92e51 1055 /* We have already checked bad blocks for reads. Now
977df362
N
1056 * need to check for writes. We never accept write errors
1057 * on the replacement, so we don't to check rrdev.
73e92e51 1058 */
796a5cf0 1059 while (op_is_write(op) && rdev &&
73e92e51
N
1060 test_bit(WriteErrorSeen, &rdev->flags)) {
1061 sector_t first_bad;
1062 int bad_sectors;
1063 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1064 &first_bad, &bad_sectors);
1065 if (!bad)
1066 break;
1067
1068 if (bad < 0) {
1069 set_bit(BlockedBadBlocks, &rdev->flags);
1070 if (!conf->mddev->external &&
2953079c 1071 conf->mddev->sb_flags) {
73e92e51
N
1072 /* It is very unlikely, but we might
1073 * still need to write out the
1074 * bad block log - better give it
1075 * a chance*/
1076 md_check_recovery(conf->mddev);
1077 }
1850753d 1078 /*
1079 * Because md_wait_for_blocked_rdev
1080 * will dec nr_pending, we must
1081 * increment it first.
1082 */
1083 atomic_inc(&rdev->nr_pending);
73e92e51
N
1084 md_wait_for_blocked_rdev(rdev, conf->mddev);
1085 } else {
1086 /* Acknowledged bad block - skip the write */
1087 rdev_dec_pending(rdev, conf->mddev);
1088 rdev = NULL;
1089 }
1090 }
1091
91c00924 1092 if (rdev) {
9a3e1101
N
1093 if (s->syncing || s->expanding || s->expanded
1094 || s->replacing)
91c00924
DW
1095 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1096
2b7497f0
DW
1097 set_bit(STRIPE_IO_STARTED, &sh->state);
1098
91c00924 1099 bi->bi_bdev = rdev->bdev;
796a5cf0
MC
1100 bio_set_op_attrs(bi, op, op_flags);
1101 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1102 ? raid5_end_write_request
1103 : raid5_end_read_request;
1104 bi->bi_private = sh;
1105
6296b960 1106 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1107 __func__, (unsigned long long)sh->sector,
1eff9d32 1108 bi->bi_opf, i);
91c00924 1109 atomic_inc(&sh->count);
59fc630b 1110 if (sh != head_sh)
1111 atomic_inc(&head_sh->count);
05616be5 1112 if (use_new_offset(conf, sh))
4f024f37 1113 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1114 + rdev->new_data_offset);
1115 else
4f024f37 1116 bi->bi_iter.bi_sector = (sh->sector
05616be5 1117 + rdev->data_offset);
59fc630b 1118 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1119 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1120
d592a996
SL
1121 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1122 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1123
1124 if (!op_is_write(op) &&
1125 test_bit(R5_InJournal, &sh->dev[i].flags))
1126 /*
1127 * issuing read for a page in journal, this
1128 * must be preparing for prexor in rmw; read
1129 * the data into orig_page
1130 */
1131 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1132 else
1133 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1134 bi->bi_vcnt = 1;
91c00924
DW
1135 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1136 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1137 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1138 /*
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1141 */
796a5cf0 1142 if (op == REQ_OP_DISCARD)
37c61ff3 1143 bi->bi_vcnt = 0;
977df362
N
1144 if (rrdev)
1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1146
1147 if (conf->mddev->gendisk)
1148 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1149 bi, disk_devt(conf->mddev->gendisk),
1150 sh->dev[i].sector);
aaf9f12e
SL
1151 if (should_defer && op_is_write(op))
1152 bio_list_add(&pending_bios, bi);
1153 else
1154 generic_make_request(bi);
977df362
N
1155 }
1156 if (rrdev) {
9a3e1101
N
1157 if (s->syncing || s->expanding || s->expanded
1158 || s->replacing)
977df362
N
1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161 set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163 rbi->bi_bdev = rrdev->bdev;
796a5cf0
MC
1164 bio_set_op_attrs(rbi, op, op_flags);
1165 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1166 rbi->bi_end_io = raid5_end_write_request;
1167 rbi->bi_private = sh;
1168
6296b960 1169 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1170 "replacement disc %d\n",
1171 __func__, (unsigned long long)sh->sector,
1eff9d32 1172 rbi->bi_opf, i);
977df362 1173 atomic_inc(&sh->count);
59fc630b 1174 if (sh != head_sh)
1175 atomic_inc(&head_sh->count);
05616be5 1176 if (use_new_offset(conf, sh))
4f024f37 1177 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1178 + rrdev->new_data_offset);
1179 else
4f024f37 1180 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1181 + rrdev->data_offset);
d592a996
SL
1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1185 rbi->bi_vcnt = 1;
977df362
N
1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1188 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1189 /*
1190 * If this is discard request, set bi_vcnt 0. We don't
1191 * want to confuse SCSI because SCSI will replace payload
1192 */
796a5cf0 1193 if (op == REQ_OP_DISCARD)
37c61ff3 1194 rbi->bi_vcnt = 0;
e3620a3a
JB
1195 if (conf->mddev->gendisk)
1196 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1197 rbi, disk_devt(conf->mddev->gendisk),
1198 sh->dev[i].sector);
aaf9f12e
SL
1199 if (should_defer && op_is_write(op))
1200 bio_list_add(&pending_bios, rbi);
1201 else
1202 generic_make_request(rbi);
977df362
N
1203 }
1204 if (!rdev && !rrdev) {
796a5cf0 1205 if (op_is_write(op))
91c00924 1206 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1207 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1208 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1209 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210 set_bit(STRIPE_HANDLE, &sh->state);
1211 }
59fc630b 1212
1213 if (!head_sh->batch_head)
1214 continue;
1215 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1216 batch_list);
1217 if (sh != head_sh)
1218 goto again;
91c00924 1219 }
aaf9f12e
SL
1220
1221 if (should_defer && !bio_list_empty(&pending_bios))
1222 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1223}
1224
1225static struct dma_async_tx_descriptor *
d592a996
SL
1226async_copy_data(int frombio, struct bio *bio, struct page **page,
1227 sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1228 struct stripe_head *sh, int no_skipcopy)
91c00924 1229{
7988613b
KO
1230 struct bio_vec bvl;
1231 struct bvec_iter iter;
91c00924 1232 struct page *bio_page;
91c00924 1233 int page_offset;
a08abd8c 1234 struct async_submit_ctl submit;
0403e382 1235 enum async_tx_flags flags = 0;
91c00924 1236
4f024f37
KO
1237 if (bio->bi_iter.bi_sector >= sector)
1238 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1239 else
4f024f37 1240 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1241
0403e382
DW
1242 if (frombio)
1243 flags |= ASYNC_TX_FENCE;
1244 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1245
7988613b
KO
1246 bio_for_each_segment(bvl, bio, iter) {
1247 int len = bvl.bv_len;
91c00924
DW
1248 int clen;
1249 int b_offset = 0;
1250
1251 if (page_offset < 0) {
1252 b_offset = -page_offset;
1253 page_offset += b_offset;
1254 len -= b_offset;
1255 }
1256
1257 if (len > 0 && page_offset + len > STRIPE_SIZE)
1258 clen = STRIPE_SIZE - page_offset;
1259 else
1260 clen = len;
1261
1262 if (clen > 0) {
7988613b
KO
1263 b_offset += bvl.bv_offset;
1264 bio_page = bvl.bv_page;
d592a996
SL
1265 if (frombio) {
1266 if (sh->raid_conf->skip_copy &&
1267 b_offset == 0 && page_offset == 0 &&
1e6d690b
SL
1268 clen == STRIPE_SIZE &&
1269 !no_skipcopy)
d592a996
SL
1270 *page = bio_page;
1271 else
1272 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1273 b_offset, clen, &submit);
d592a996
SL
1274 } else
1275 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1276 page_offset, clen, &submit);
91c00924 1277 }
a08abd8c
DW
1278 /* chain the operations */
1279 submit.depend_tx = tx;
1280
91c00924
DW
1281 if (clen < len) /* hit end of page */
1282 break;
1283 page_offset += len;
1284 }
1285
1286 return tx;
1287}
1288
1289static void ops_complete_biofill(void *stripe_head_ref)
1290{
1291 struct stripe_head *sh = stripe_head_ref;
e4d84909 1292 int i;
91c00924 1293
e46b272b 1294 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1295 (unsigned long long)sh->sector);
1296
1297 /* clear completed biofills */
1298 for (i = sh->disks; i--; ) {
1299 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1300
1301 /* acknowledge completion of a biofill operation */
e4d84909
DW
1302 /* and check if we need to reply to a read request,
1303 * new R5_Wantfill requests are held off until
83de75cc 1304 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1305 */
1306 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1307 struct bio *rbi, *rbi2;
91c00924 1308
91c00924
DW
1309 BUG_ON(!dev->read);
1310 rbi = dev->read;
1311 dev->read = NULL;
4f024f37 1312 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1313 dev->sector + STRIPE_SECTORS) {
1314 rbi2 = r5_next_bio(rbi, dev->sector);
016c76ac 1315 bio_endio(rbi);
91c00924
DW
1316 rbi = rbi2;
1317 }
1318 }
1319 }
83de75cc 1320 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1321
e4d84909 1322 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1323 raid5_release_stripe(sh);
91c00924
DW
1324}
1325
1326static void ops_run_biofill(struct stripe_head *sh)
1327{
1328 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1329 struct async_submit_ctl submit;
91c00924
DW
1330 int i;
1331
59fc630b 1332 BUG_ON(sh->batch_head);
e46b272b 1333 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1334 (unsigned long long)sh->sector);
1335
1336 for (i = sh->disks; i--; ) {
1337 struct r5dev *dev = &sh->dev[i];
1338 if (test_bit(R5_Wantfill, &dev->flags)) {
1339 struct bio *rbi;
b17459c0 1340 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1341 dev->read = rbi = dev->toread;
1342 dev->toread = NULL;
b17459c0 1343 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1344 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1345 dev->sector + STRIPE_SECTORS) {
d592a996 1346 tx = async_copy_data(0, rbi, &dev->page,
1e6d690b 1347 dev->sector, tx, sh, 0);
91c00924
DW
1348 rbi = r5_next_bio(rbi, dev->sector);
1349 }
1350 }
1351 }
1352
1353 atomic_inc(&sh->count);
a08abd8c
DW
1354 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1355 async_trigger_callback(&submit);
91c00924
DW
1356}
1357
4e7d2c0a 1358static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1359{
4e7d2c0a 1360 struct r5dev *tgt;
91c00924 1361
4e7d2c0a
DW
1362 if (target < 0)
1363 return;
91c00924 1364
4e7d2c0a 1365 tgt = &sh->dev[target];
91c00924
DW
1366 set_bit(R5_UPTODATE, &tgt->flags);
1367 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1368 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1369}
1370
ac6b53b6 1371static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1372{
1373 struct stripe_head *sh = stripe_head_ref;
91c00924 1374
e46b272b 1375 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1376 (unsigned long long)sh->sector);
1377
ac6b53b6 1378 /* mark the computed target(s) as uptodate */
4e7d2c0a 1379 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1380 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1381
ecc65c9b
DW
1382 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1383 if (sh->check_state == check_state_compute_run)
1384 sh->check_state = check_state_compute_result;
91c00924 1385 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1386 raid5_release_stripe(sh);
91c00924
DW
1387}
1388
d6f38f31
DW
1389/* return a pointer to the address conversion region of the scribble buffer */
1390static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1391 struct raid5_percpu *percpu, int i)
d6f38f31 1392{
46d5b785 1393 void *addr;
1394
1395 addr = flex_array_get(percpu->scribble, i);
1396 return addr + sizeof(struct page *) * (sh->disks + 2);
1397}
1398
1399/* return a pointer to the address conversion region of the scribble buffer */
1400static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1401{
1402 void *addr;
1403
1404 addr = flex_array_get(percpu->scribble, i);
1405 return addr;
d6f38f31
DW
1406}
1407
1408static struct dma_async_tx_descriptor *
1409ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1410{
91c00924 1411 int disks = sh->disks;
46d5b785 1412 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1413 int target = sh->ops.target;
1414 struct r5dev *tgt = &sh->dev[target];
1415 struct page *xor_dest = tgt->page;
1416 int count = 0;
1417 struct dma_async_tx_descriptor *tx;
a08abd8c 1418 struct async_submit_ctl submit;
91c00924
DW
1419 int i;
1420
59fc630b 1421 BUG_ON(sh->batch_head);
1422
91c00924 1423 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1424 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1425 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1426
1427 for (i = disks; i--; )
1428 if (i != target)
1429 xor_srcs[count++] = sh->dev[i].page;
1430
1431 atomic_inc(&sh->count);
1432
0403e382 1433 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1434 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1435 if (unlikely(count == 1))
a08abd8c 1436 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1437 else
a08abd8c 1438 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1439
91c00924
DW
1440 return tx;
1441}
1442
ac6b53b6
DW
1443/* set_syndrome_sources - populate source buffers for gen_syndrome
1444 * @srcs - (struct page *) array of size sh->disks
1445 * @sh - stripe_head to parse
1446 *
1447 * Populates srcs in proper layout order for the stripe and returns the
1448 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1449 * destination buffer is recorded in srcs[count] and the Q destination
1450 * is recorded in srcs[count+1]].
1451 */
584acdd4
MS
1452static int set_syndrome_sources(struct page **srcs,
1453 struct stripe_head *sh,
1454 int srctype)
ac6b53b6
DW
1455{
1456 int disks = sh->disks;
1457 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1458 int d0_idx = raid6_d0(sh);
1459 int count;
1460 int i;
1461
1462 for (i = 0; i < disks; i++)
5dd33c9a 1463 srcs[i] = NULL;
ac6b53b6
DW
1464
1465 count = 0;
1466 i = d0_idx;
1467 do {
1468 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1469 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1470
584acdd4
MS
1471 if (i == sh->qd_idx || i == sh->pd_idx ||
1472 (srctype == SYNDROME_SRC_ALL) ||
1473 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1474 (test_bit(R5_Wantdrain, &dev->flags) ||
1475 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1476 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1477 (dev->written ||
1478 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1479 if (test_bit(R5_InJournal, &dev->flags))
1480 srcs[slot] = sh->dev[i].orig_page;
1481 else
1482 srcs[slot] = sh->dev[i].page;
1483 }
ac6b53b6
DW
1484 i = raid6_next_disk(i, disks);
1485 } while (i != d0_idx);
ac6b53b6 1486
e4424fee 1487 return syndrome_disks;
ac6b53b6
DW
1488}
1489
1490static struct dma_async_tx_descriptor *
1491ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1492{
1493 int disks = sh->disks;
46d5b785 1494 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1495 int target;
1496 int qd_idx = sh->qd_idx;
1497 struct dma_async_tx_descriptor *tx;
1498 struct async_submit_ctl submit;
1499 struct r5dev *tgt;
1500 struct page *dest;
1501 int i;
1502 int count;
1503
59fc630b 1504 BUG_ON(sh->batch_head);
ac6b53b6
DW
1505 if (sh->ops.target < 0)
1506 target = sh->ops.target2;
1507 else if (sh->ops.target2 < 0)
1508 target = sh->ops.target;
91c00924 1509 else
ac6b53b6
DW
1510 /* we should only have one valid target */
1511 BUG();
1512 BUG_ON(target < 0);
1513 pr_debug("%s: stripe %llu block: %d\n",
1514 __func__, (unsigned long long)sh->sector, target);
1515
1516 tgt = &sh->dev[target];
1517 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1518 dest = tgt->page;
1519
1520 atomic_inc(&sh->count);
1521
1522 if (target == qd_idx) {
584acdd4 1523 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1524 blocks[count] = NULL; /* regenerating p is not necessary */
1525 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1526 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527 ops_complete_compute, sh,
46d5b785 1528 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1529 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1530 } else {
1531 /* Compute any data- or p-drive using XOR */
1532 count = 0;
1533 for (i = disks; i-- ; ) {
1534 if (i == target || i == qd_idx)
1535 continue;
1536 blocks[count++] = sh->dev[i].page;
1537 }
1538
0403e382
DW
1539 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1540 NULL, ops_complete_compute, sh,
46d5b785 1541 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1542 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1543 }
91c00924 1544
91c00924
DW
1545 return tx;
1546}
1547
ac6b53b6
DW
1548static struct dma_async_tx_descriptor *
1549ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1550{
1551 int i, count, disks = sh->disks;
1552 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1553 int d0_idx = raid6_d0(sh);
1554 int faila = -1, failb = -1;
1555 int target = sh->ops.target;
1556 int target2 = sh->ops.target2;
1557 struct r5dev *tgt = &sh->dev[target];
1558 struct r5dev *tgt2 = &sh->dev[target2];
1559 struct dma_async_tx_descriptor *tx;
46d5b785 1560 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1561 struct async_submit_ctl submit;
1562
59fc630b 1563 BUG_ON(sh->batch_head);
ac6b53b6
DW
1564 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1565 __func__, (unsigned long long)sh->sector, target, target2);
1566 BUG_ON(target < 0 || target2 < 0);
1567 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1568 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1569
6c910a78 1570 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1571 * slot number conversion for 'faila' and 'failb'
1572 */
1573 for (i = 0; i < disks ; i++)
5dd33c9a 1574 blocks[i] = NULL;
ac6b53b6
DW
1575 count = 0;
1576 i = d0_idx;
1577 do {
1578 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1579
1580 blocks[slot] = sh->dev[i].page;
1581
1582 if (i == target)
1583 faila = slot;
1584 if (i == target2)
1585 failb = slot;
1586 i = raid6_next_disk(i, disks);
1587 } while (i != d0_idx);
ac6b53b6
DW
1588
1589 BUG_ON(faila == failb);
1590 if (failb < faila)
1591 swap(faila, failb);
1592 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1593 __func__, (unsigned long long)sh->sector, faila, failb);
1594
1595 atomic_inc(&sh->count);
1596
1597 if (failb == syndrome_disks+1) {
1598 /* Q disk is one of the missing disks */
1599 if (faila == syndrome_disks) {
1600 /* Missing P+Q, just recompute */
0403e382
DW
1601 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1602 ops_complete_compute, sh,
46d5b785 1603 to_addr_conv(sh, percpu, 0));
e4424fee 1604 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1605 STRIPE_SIZE, &submit);
1606 } else {
1607 struct page *dest;
1608 int data_target;
1609 int qd_idx = sh->qd_idx;
1610
1611 /* Missing D+Q: recompute D from P, then recompute Q */
1612 if (target == qd_idx)
1613 data_target = target2;
1614 else
1615 data_target = target;
1616
1617 count = 0;
1618 for (i = disks; i-- ; ) {
1619 if (i == data_target || i == qd_idx)
1620 continue;
1621 blocks[count++] = sh->dev[i].page;
1622 }
1623 dest = sh->dev[data_target].page;
0403e382
DW
1624 init_async_submit(&submit,
1625 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1626 NULL, NULL, NULL,
46d5b785 1627 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1628 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1629 &submit);
1630
584acdd4 1631 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1632 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1633 ops_complete_compute, sh,
46d5b785 1634 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1635 return async_gen_syndrome(blocks, 0, count+2,
1636 STRIPE_SIZE, &submit);
1637 }
ac6b53b6 1638 } else {
6c910a78
DW
1639 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1640 ops_complete_compute, sh,
46d5b785 1641 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1642 if (failb == syndrome_disks) {
1643 /* We're missing D+P. */
1644 return async_raid6_datap_recov(syndrome_disks+2,
1645 STRIPE_SIZE, faila,
1646 blocks, &submit);
1647 } else {
1648 /* We're missing D+D. */
1649 return async_raid6_2data_recov(syndrome_disks+2,
1650 STRIPE_SIZE, faila, failb,
1651 blocks, &submit);
1652 }
ac6b53b6
DW
1653 }
1654}
1655
91c00924
DW
1656static void ops_complete_prexor(void *stripe_head_ref)
1657{
1658 struct stripe_head *sh = stripe_head_ref;
1659
e46b272b 1660 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1661 (unsigned long long)sh->sector);
1e6d690b
SL
1662
1663 if (r5c_is_writeback(sh->raid_conf->log))
1664 /*
1665 * raid5-cache write back uses orig_page during prexor.
1666 * After prexor, it is time to free orig_page
1667 */
1668 r5c_release_extra_page(sh);
91c00924
DW
1669}
1670
1671static struct dma_async_tx_descriptor *
584acdd4
MS
1672ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1673 struct dma_async_tx_descriptor *tx)
91c00924 1674{
91c00924 1675 int disks = sh->disks;
46d5b785 1676 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1677 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1678 struct async_submit_ctl submit;
91c00924
DW
1679
1680 /* existing parity data subtracted */
1681 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1682
59fc630b 1683 BUG_ON(sh->batch_head);
e46b272b 1684 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1685 (unsigned long long)sh->sector);
1686
1687 for (i = disks; i--; ) {
1688 struct r5dev *dev = &sh->dev[i];
1689 /* Only process blocks that are known to be uptodate */
1e6d690b
SL
1690 if (test_bit(R5_InJournal, &dev->flags))
1691 xor_srcs[count++] = dev->orig_page;
1692 else if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1693 xor_srcs[count++] = dev->page;
1694 }
1695
0403e382 1696 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1697 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1698 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1699
1700 return tx;
1701}
1702
584acdd4
MS
1703static struct dma_async_tx_descriptor *
1704ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1705 struct dma_async_tx_descriptor *tx)
1706{
1707 struct page **blocks = to_addr_page(percpu, 0);
1708 int count;
1709 struct async_submit_ctl submit;
1710
1711 pr_debug("%s: stripe %llu\n", __func__,
1712 (unsigned long long)sh->sector);
1713
1714 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1715
1716 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1717 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1718 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1719
1720 return tx;
1721}
1722
91c00924 1723static struct dma_async_tx_descriptor *
d8ee0728 1724ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1725{
1e6d690b 1726 struct r5conf *conf = sh->raid_conf;
91c00924 1727 int disks = sh->disks;
d8ee0728 1728 int i;
59fc630b 1729 struct stripe_head *head_sh = sh;
91c00924 1730
e46b272b 1731 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1732 (unsigned long long)sh->sector);
1733
1734 for (i = disks; i--; ) {
59fc630b 1735 struct r5dev *dev;
91c00924 1736 struct bio *chosen;
91c00924 1737
59fc630b 1738 sh = head_sh;
1739 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1740 struct bio *wbi;
1741
59fc630b 1742again:
1743 dev = &sh->dev[i];
1e6d690b
SL
1744 /*
1745 * clear R5_InJournal, so when rewriting a page in
1746 * journal, it is not skipped by r5l_log_stripe()
1747 */
1748 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1749 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1750 chosen = dev->towrite;
1751 dev->towrite = NULL;
7a87f434 1752 sh->overwrite_disks = 0;
91c00924
DW
1753 BUG_ON(dev->written);
1754 wbi = dev->written = chosen;
b17459c0 1755 spin_unlock_irq(&sh->stripe_lock);
d592a996 1756 WARN_ON(dev->page != dev->orig_page);
91c00924 1757
4f024f37 1758 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1759 dev->sector + STRIPE_SECTORS) {
1eff9d32 1760 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1761 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1762 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1763 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1764 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1765 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1766 else {
1767 tx = async_copy_data(1, wbi, &dev->page,
1e6d690b
SL
1768 dev->sector, tx, sh,
1769 r5c_is_writeback(conf->log));
1770 if (dev->page != dev->orig_page &&
1771 !r5c_is_writeback(conf->log)) {
d592a996
SL
1772 set_bit(R5_SkipCopy, &dev->flags);
1773 clear_bit(R5_UPTODATE, &dev->flags);
1774 clear_bit(R5_OVERWRITE, &dev->flags);
1775 }
1776 }
91c00924
DW
1777 wbi = r5_next_bio(wbi, dev->sector);
1778 }
59fc630b 1779
1780 if (head_sh->batch_head) {
1781 sh = list_first_entry(&sh->batch_list,
1782 struct stripe_head,
1783 batch_list);
1784 if (sh == head_sh)
1785 continue;
1786 goto again;
1787 }
91c00924
DW
1788 }
1789 }
1790
1791 return tx;
1792}
1793
ac6b53b6 1794static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1795{
1796 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1797 int disks = sh->disks;
1798 int pd_idx = sh->pd_idx;
1799 int qd_idx = sh->qd_idx;
1800 int i;
9e444768 1801 bool fua = false, sync = false, discard = false;
91c00924 1802
e46b272b 1803 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1804 (unsigned long long)sh->sector);
1805
bc0934f0 1806 for (i = disks; i--; ) {
e9c7469b 1807 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1808 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1809 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1810 }
e9c7469b 1811
91c00924
DW
1812 for (i = disks; i--; ) {
1813 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1814
e9c7469b 1815 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1816 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1817 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1818 if (fua)
1819 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1820 if (sync)
1821 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1822 }
91c00924
DW
1823 }
1824
d8ee0728
DW
1825 if (sh->reconstruct_state == reconstruct_state_drain_run)
1826 sh->reconstruct_state = reconstruct_state_drain_result;
1827 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1828 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1829 else {
1830 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1831 sh->reconstruct_state = reconstruct_state_result;
1832 }
91c00924
DW
1833
1834 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1835 raid5_release_stripe(sh);
91c00924
DW
1836}
1837
1838static void
ac6b53b6
DW
1839ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1840 struct dma_async_tx_descriptor *tx)
91c00924 1841{
91c00924 1842 int disks = sh->disks;
59fc630b 1843 struct page **xor_srcs;
a08abd8c 1844 struct async_submit_ctl submit;
59fc630b 1845 int count, pd_idx = sh->pd_idx, i;
91c00924 1846 struct page *xor_dest;
d8ee0728 1847 int prexor = 0;
91c00924 1848 unsigned long flags;
59fc630b 1849 int j = 0;
1850 struct stripe_head *head_sh = sh;
1851 int last_stripe;
91c00924 1852
e46b272b 1853 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1854 (unsigned long long)sh->sector);
1855
620125f2
SL
1856 for (i = 0; i < sh->disks; i++) {
1857 if (pd_idx == i)
1858 continue;
1859 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1860 break;
1861 }
1862 if (i >= sh->disks) {
1863 atomic_inc(&sh->count);
620125f2
SL
1864 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1865 ops_complete_reconstruct(sh);
1866 return;
1867 }
59fc630b 1868again:
1869 count = 0;
1870 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1871 /* check if prexor is active which means only process blocks
1872 * that are part of a read-modify-write (written)
1873 */
59fc630b 1874 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1875 prexor = 1;
91c00924
DW
1876 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1877 for (i = disks; i--; ) {
1878 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
1879 if (head_sh->dev[i].written ||
1880 test_bit(R5_InJournal, &head_sh->dev[i].flags))
91c00924
DW
1881 xor_srcs[count++] = dev->page;
1882 }
1883 } else {
1884 xor_dest = sh->dev[pd_idx].page;
1885 for (i = disks; i--; ) {
1886 struct r5dev *dev = &sh->dev[i];
1887 if (i != pd_idx)
1888 xor_srcs[count++] = dev->page;
1889 }
1890 }
1891
91c00924
DW
1892 /* 1/ if we prexor'd then the dest is reused as a source
1893 * 2/ if we did not prexor then we are redoing the parity
1894 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1895 * for the synchronous xor case
1896 */
59fc630b 1897 last_stripe = !head_sh->batch_head ||
1898 list_first_entry(&sh->batch_list,
1899 struct stripe_head, batch_list) == head_sh;
1900 if (last_stripe) {
1901 flags = ASYNC_TX_ACK |
1902 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1903
1904 atomic_inc(&head_sh->count);
1905 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1906 to_addr_conv(sh, percpu, j));
1907 } else {
1908 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1909 init_async_submit(&submit, flags, tx, NULL, NULL,
1910 to_addr_conv(sh, percpu, j));
1911 }
91c00924 1912
a08abd8c
DW
1913 if (unlikely(count == 1))
1914 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1915 else
1916 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1917 if (!last_stripe) {
1918 j++;
1919 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1920 batch_list);
1921 goto again;
1922 }
91c00924
DW
1923}
1924
ac6b53b6
DW
1925static void
1926ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1927 struct dma_async_tx_descriptor *tx)
1928{
1929 struct async_submit_ctl submit;
59fc630b 1930 struct page **blocks;
1931 int count, i, j = 0;
1932 struct stripe_head *head_sh = sh;
1933 int last_stripe;
584acdd4
MS
1934 int synflags;
1935 unsigned long txflags;
ac6b53b6
DW
1936
1937 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1938
620125f2
SL
1939 for (i = 0; i < sh->disks; i++) {
1940 if (sh->pd_idx == i || sh->qd_idx == i)
1941 continue;
1942 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1943 break;
1944 }
1945 if (i >= sh->disks) {
1946 atomic_inc(&sh->count);
620125f2
SL
1947 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1948 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1949 ops_complete_reconstruct(sh);
1950 return;
1951 }
1952
59fc630b 1953again:
1954 blocks = to_addr_page(percpu, j);
584acdd4
MS
1955
1956 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1957 synflags = SYNDROME_SRC_WRITTEN;
1958 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1959 } else {
1960 synflags = SYNDROME_SRC_ALL;
1961 txflags = ASYNC_TX_ACK;
1962 }
1963
1964 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1965 last_stripe = !head_sh->batch_head ||
1966 list_first_entry(&sh->batch_list,
1967 struct stripe_head, batch_list) == head_sh;
1968
1969 if (last_stripe) {
1970 atomic_inc(&head_sh->count);
584acdd4 1971 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1972 head_sh, to_addr_conv(sh, percpu, j));
1973 } else
1974 init_async_submit(&submit, 0, tx, NULL, NULL,
1975 to_addr_conv(sh, percpu, j));
48769695 1976 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1977 if (!last_stripe) {
1978 j++;
1979 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1980 batch_list);
1981 goto again;
1982 }
91c00924
DW
1983}
1984
1985static void ops_complete_check(void *stripe_head_ref)
1986{
1987 struct stripe_head *sh = stripe_head_ref;
91c00924 1988
e46b272b 1989 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1990 (unsigned long long)sh->sector);
1991
ecc65c9b 1992 sh->check_state = check_state_check_result;
91c00924 1993 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1994 raid5_release_stripe(sh);
91c00924
DW
1995}
1996
ac6b53b6 1997static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1998{
91c00924 1999 int disks = sh->disks;
ac6b53b6
DW
2000 int pd_idx = sh->pd_idx;
2001 int qd_idx = sh->qd_idx;
2002 struct page *xor_dest;
46d5b785 2003 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 2004 struct dma_async_tx_descriptor *tx;
a08abd8c 2005 struct async_submit_ctl submit;
ac6b53b6
DW
2006 int count;
2007 int i;
91c00924 2008
e46b272b 2009 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2010 (unsigned long long)sh->sector);
2011
59fc630b 2012 BUG_ON(sh->batch_head);
ac6b53b6
DW
2013 count = 0;
2014 xor_dest = sh->dev[pd_idx].page;
2015 xor_srcs[count++] = xor_dest;
91c00924 2016 for (i = disks; i--; ) {
ac6b53b6
DW
2017 if (i == pd_idx || i == qd_idx)
2018 continue;
2019 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2020 }
2021
d6f38f31 2022 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2023 to_addr_conv(sh, percpu, 0));
099f53cb 2024 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 2025 &sh->ops.zero_sum_result, &submit);
91c00924 2026
91c00924 2027 atomic_inc(&sh->count);
a08abd8c
DW
2028 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2029 tx = async_trigger_callback(&submit);
91c00924
DW
2030}
2031
ac6b53b6
DW
2032static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2033{
46d5b785 2034 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
2035 struct async_submit_ctl submit;
2036 int count;
2037
2038 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2039 (unsigned long long)sh->sector, checkp);
2040
59fc630b 2041 BUG_ON(sh->batch_head);
584acdd4 2042 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2043 if (!checkp)
2044 srcs[count] = NULL;
91c00924 2045
91c00924 2046 atomic_inc(&sh->count);
ac6b53b6 2047 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2048 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
2049 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2050 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
2051}
2052
51acbcec 2053static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2054{
2055 int overlap_clear = 0, i, disks = sh->disks;
2056 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2057 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2058 int level = conf->level;
d6f38f31
DW
2059 struct raid5_percpu *percpu;
2060 unsigned long cpu;
91c00924 2061
d6f38f31
DW
2062 cpu = get_cpu();
2063 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 2064 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2065 ops_run_biofill(sh);
2066 overlap_clear++;
2067 }
2068
7b3a871e 2069 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2070 if (level < 6)
2071 tx = ops_run_compute5(sh, percpu);
2072 else {
2073 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2074 tx = ops_run_compute6_1(sh, percpu);
2075 else
2076 tx = ops_run_compute6_2(sh, percpu);
2077 }
2078 /* terminate the chain if reconstruct is not set to be run */
2079 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2080 async_tx_ack(tx);
2081 }
91c00924 2082
584acdd4
MS
2083 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2084 if (level < 6)
2085 tx = ops_run_prexor5(sh, percpu, tx);
2086 else
2087 tx = ops_run_prexor6(sh, percpu, tx);
2088 }
91c00924 2089
ae1713e2
AP
2090 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2091 tx = ops_run_partial_parity(sh, percpu, tx);
2092
600aa109 2093 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2094 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2095 overlap_clear++;
2096 }
2097
ac6b53b6
DW
2098 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2099 if (level < 6)
2100 ops_run_reconstruct5(sh, percpu, tx);
2101 else
2102 ops_run_reconstruct6(sh, percpu, tx);
2103 }
91c00924 2104
ac6b53b6
DW
2105 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2106 if (sh->check_state == check_state_run)
2107 ops_run_check_p(sh, percpu);
2108 else if (sh->check_state == check_state_run_q)
2109 ops_run_check_pq(sh, percpu, 0);
2110 else if (sh->check_state == check_state_run_pq)
2111 ops_run_check_pq(sh, percpu, 1);
2112 else
2113 BUG();
2114 }
91c00924 2115
59fc630b 2116 if (overlap_clear && !sh->batch_head)
91c00924
DW
2117 for (i = disks; i--; ) {
2118 struct r5dev *dev = &sh->dev[i];
2119 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2120 wake_up(&sh->raid_conf->wait_for_overlap);
2121 }
d6f38f31 2122 put_cpu();
91c00924
DW
2123}
2124
845b9e22
AP
2125static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2126{
2127 if (sh->ppl_page)
2128 __free_page(sh->ppl_page);
2129 kmem_cache_free(sc, sh);
2130}
2131
5f9d1fde 2132static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
845b9e22 2133 int disks, struct r5conf *conf)
f18c1a35
N
2134{
2135 struct stripe_head *sh;
5f9d1fde 2136 int i;
f18c1a35
N
2137
2138 sh = kmem_cache_zalloc(sc, gfp);
2139 if (sh) {
2140 spin_lock_init(&sh->stripe_lock);
2141 spin_lock_init(&sh->batch_lock);
2142 INIT_LIST_HEAD(&sh->batch_list);
2143 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2144 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2145 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2146 atomic_set(&sh->count, 1);
845b9e22 2147 sh->raid_conf = conf;
a39f7afd 2148 sh->log_start = MaxSector;
5f9d1fde
SL
2149 for (i = 0; i < disks; i++) {
2150 struct r5dev *dev = &sh->dev[i];
2151
3a83f467
ML
2152 bio_init(&dev->req, &dev->vec, 1);
2153 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2154 }
845b9e22
AP
2155
2156 if (raid5_has_ppl(conf)) {
2157 sh->ppl_page = alloc_page(gfp);
2158 if (!sh->ppl_page) {
2159 free_stripe(sc, sh);
2160 sh = NULL;
2161 }
2162 }
f18c1a35
N
2163 }
2164 return sh;
2165}
486f0644 2166static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2167{
2168 struct stripe_head *sh;
f18c1a35 2169
845b9e22 2170 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
3f294f4f
N
2171 if (!sh)
2172 return 0;
6ce32846 2173
a9683a79 2174 if (grow_buffers(sh, gfp)) {
e4e11e38 2175 shrink_buffers(sh);
845b9e22 2176 free_stripe(conf->slab_cache, sh);
3f294f4f
N
2177 return 0;
2178 }
486f0644
N
2179 sh->hash_lock_index =
2180 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2181 /* we just created an active stripe so... */
3f294f4f 2182 atomic_inc(&conf->active_stripes);
59fc630b 2183
6d036f7d 2184 raid5_release_stripe(sh);
486f0644 2185 conf->max_nr_stripes++;
3f294f4f
N
2186 return 1;
2187}
2188
d1688a6d 2189static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2190{
e18b890b 2191 struct kmem_cache *sc;
5e5e3e78 2192 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2193
f4be6b43
N
2194 if (conf->mddev->gendisk)
2195 sprintf(conf->cache_name[0],
2196 "raid%d-%s", conf->level, mdname(conf->mddev));
2197 else
2198 sprintf(conf->cache_name[0],
2199 "raid%d-%p", conf->level, conf->mddev);
2200 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2201
ad01c9e3
N
2202 conf->active_name = 0;
2203 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2205 0, 0, NULL);
1da177e4
LT
2206 if (!sc)
2207 return 1;
2208 conf->slab_cache = sc;
ad01c9e3 2209 conf->pool_size = devs;
486f0644
N
2210 while (num--)
2211 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2212 return 1;
486f0644 2213
1da177e4
LT
2214 return 0;
2215}
29269553 2216
d6f38f31
DW
2217/**
2218 * scribble_len - return the required size of the scribble region
2219 * @num - total number of disks in the array
2220 *
2221 * The size must be enough to contain:
2222 * 1/ a struct page pointer for each device in the array +2
2223 * 2/ room to convert each entry in (1) to its corresponding dma
2224 * (dma_map_page()) or page (page_address()) address.
2225 *
2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227 * calculate over all devices (not just the data blocks), using zeros in place
2228 * of the P and Q blocks.
2229 */
46d5b785 2230static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2231{
46d5b785 2232 struct flex_array *ret;
d6f38f31
DW
2233 size_t len;
2234
2235 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2236 ret = flex_array_alloc(len, cnt, flags);
2237 if (!ret)
2238 return NULL;
2239 /* always prealloc all elements, so no locking is required */
2240 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2241 flex_array_free(ret);
2242 return NULL;
2243 }
2244 return ret;
d6f38f31
DW
2245}
2246
738a2738
N
2247static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2248{
2249 unsigned long cpu;
2250 int err = 0;
2251
27a353c0
SL
2252 /*
2253 * Never shrink. And mddev_suspend() could deadlock if this is called
2254 * from raid5d. In that case, scribble_disks and scribble_sectors
2255 * should equal to new_disks and new_sectors
2256 */
2257 if (conf->scribble_disks >= new_disks &&
2258 conf->scribble_sectors >= new_sectors)
2259 return 0;
738a2738
N
2260 mddev_suspend(conf->mddev);
2261 get_online_cpus();
2262 for_each_present_cpu(cpu) {
2263 struct raid5_percpu *percpu;
2264 struct flex_array *scribble;
2265
2266 percpu = per_cpu_ptr(conf->percpu, cpu);
2267 scribble = scribble_alloc(new_disks,
2268 new_sectors / STRIPE_SECTORS,
2269 GFP_NOIO);
2270
2271 if (scribble) {
2272 flex_array_free(percpu->scribble);
2273 percpu->scribble = scribble;
2274 } else {
2275 err = -ENOMEM;
2276 break;
2277 }
2278 }
2279 put_online_cpus();
2280 mddev_resume(conf->mddev);
27a353c0
SL
2281 if (!err) {
2282 conf->scribble_disks = new_disks;
2283 conf->scribble_sectors = new_sectors;
2284 }
738a2738
N
2285 return err;
2286}
2287
d1688a6d 2288static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2289{
2290 /* Make all the stripes able to hold 'newsize' devices.
2291 * New slots in each stripe get 'page' set to a new page.
2292 *
2293 * This happens in stages:
2294 * 1/ create a new kmem_cache and allocate the required number of
2295 * stripe_heads.
83f0d77a 2296 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2297 * to the new stripe_heads. This will have the side effect of
2298 * freezing the array as once all stripe_heads have been collected,
2299 * no IO will be possible. Old stripe heads are freed once their
2300 * pages have been transferred over, and the old kmem_cache is
2301 * freed when all stripes are done.
2302 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2303 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2304 * 4/ allocate new pages for the new slots in the new stripe_heads.
2305 * If this fails, we don't bother trying the shrink the
2306 * stripe_heads down again, we just leave them as they are.
2307 * As each stripe_head is processed the new one is released into
2308 * active service.
2309 *
2310 * Once step2 is started, we cannot afford to wait for a write,
2311 * so we use GFP_NOIO allocations.
2312 */
2313 struct stripe_head *osh, *nsh;
2314 LIST_HEAD(newstripes);
2315 struct disk_info *ndisks;
2214c260 2316 int err = 0;
e18b890b 2317 struct kmem_cache *sc;
ad01c9e3 2318 int i;
566c09c5 2319 int hash, cnt;
ad01c9e3 2320
2214c260 2321 md_allow_write(conf->mddev);
2a2275d6 2322
ad01c9e3
N
2323 /* Step 1 */
2324 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2325 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2326 0, 0, NULL);
ad01c9e3
N
2327 if (!sc)
2328 return -ENOMEM;
2329
2d5b569b
N
2330 /* Need to ensure auto-resizing doesn't interfere */
2331 mutex_lock(&conf->cache_size_mutex);
2332
ad01c9e3 2333 for (i = conf->max_nr_stripes; i; i--) {
845b9e22 2334 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
ad01c9e3
N
2335 if (!nsh)
2336 break;
2337
ad01c9e3
N
2338 list_add(&nsh->lru, &newstripes);
2339 }
2340 if (i) {
2341 /* didn't get enough, give up */
2342 while (!list_empty(&newstripes)) {
2343 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2344 list_del(&nsh->lru);
845b9e22 2345 free_stripe(sc, nsh);
ad01c9e3
N
2346 }
2347 kmem_cache_destroy(sc);
2d5b569b 2348 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2349 return -ENOMEM;
2350 }
2351 /* Step 2 - Must use GFP_NOIO now.
2352 * OK, we have enough stripes, start collecting inactive
2353 * stripes and copying them over
2354 */
566c09c5
SL
2355 hash = 0;
2356 cnt = 0;
ad01c9e3 2357 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2358 lock_device_hash_lock(conf, hash);
6ab2a4b8 2359 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2360 !list_empty(conf->inactive_list + hash),
2361 unlock_device_hash_lock(conf, hash),
2362 lock_device_hash_lock(conf, hash));
2363 osh = get_free_stripe(conf, hash);
2364 unlock_device_hash_lock(conf, hash);
f18c1a35 2365
d592a996 2366 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2367 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2368 nsh->dev[i].orig_page = osh->dev[i].page;
2369 }
566c09c5 2370 nsh->hash_lock_index = hash;
845b9e22 2371 free_stripe(conf->slab_cache, osh);
566c09c5
SL
2372 cnt++;
2373 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2374 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2375 hash++;
2376 cnt = 0;
2377 }
ad01c9e3
N
2378 }
2379 kmem_cache_destroy(conf->slab_cache);
2380
2381 /* Step 3.
2382 * At this point, we are holding all the stripes so the array
2383 * is completely stalled, so now is a good time to resize
d6f38f31 2384 * conf->disks and the scribble region
ad01c9e3
N
2385 */
2386 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2387 if (ndisks) {
d7bd398e 2388 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2389 ndisks[i] = conf->disks[i];
d7bd398e
SL
2390
2391 for (i = conf->pool_size; i < newsize; i++) {
2392 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2393 if (!ndisks[i].extra_page)
2394 err = -ENOMEM;
2395 }
2396
2397 if (err) {
2398 for (i = conf->pool_size; i < newsize; i++)
2399 if (ndisks[i].extra_page)
2400 put_page(ndisks[i].extra_page);
2401 kfree(ndisks);
2402 } else {
2403 kfree(conf->disks);
2404 conf->disks = ndisks;
2405 }
ad01c9e3
N
2406 } else
2407 err = -ENOMEM;
2408
2d5b569b 2409 mutex_unlock(&conf->cache_size_mutex);
583da48e
DY
2410
2411 conf->slab_cache = sc;
2412 conf->active_name = 1-conf->active_name;
2413
ad01c9e3
N
2414 /* Step 4, return new stripes to service */
2415 while(!list_empty(&newstripes)) {
2416 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2417 list_del_init(&nsh->lru);
d6f38f31 2418
ad01c9e3
N
2419 for (i=conf->raid_disks; i < newsize; i++)
2420 if (nsh->dev[i].page == NULL) {
2421 struct page *p = alloc_page(GFP_NOIO);
2422 nsh->dev[i].page = p;
d592a996 2423 nsh->dev[i].orig_page = p;
ad01c9e3
N
2424 if (!p)
2425 err = -ENOMEM;
2426 }
6d036f7d 2427 raid5_release_stripe(nsh);
ad01c9e3
N
2428 }
2429 /* critical section pass, GFP_NOIO no longer needed */
2430
6e9eac2d
N
2431 if (!err)
2432 conf->pool_size = newsize;
ad01c9e3
N
2433 return err;
2434}
1da177e4 2435
486f0644 2436static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2437{
2438 struct stripe_head *sh;
49895bcc 2439 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2440
566c09c5
SL
2441 spin_lock_irq(conf->hash_locks + hash);
2442 sh = get_free_stripe(conf, hash);
2443 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2444 if (!sh)
2445 return 0;
78bafebd 2446 BUG_ON(atomic_read(&sh->count));
e4e11e38 2447 shrink_buffers(sh);
845b9e22 2448 free_stripe(conf->slab_cache, sh);
3f294f4f 2449 atomic_dec(&conf->active_stripes);
486f0644 2450 conf->max_nr_stripes--;
3f294f4f
N
2451 return 1;
2452}
2453
d1688a6d 2454static void shrink_stripes(struct r5conf *conf)
3f294f4f 2455{
486f0644
N
2456 while (conf->max_nr_stripes &&
2457 drop_one_stripe(conf))
2458 ;
3f294f4f 2459
644df1a8 2460 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2461 conf->slab_cache = NULL;
2462}
2463
4246a0b6 2464static void raid5_end_read_request(struct bio * bi)
1da177e4 2465{
99c0fb5f 2466 struct stripe_head *sh = bi->bi_private;
d1688a6d 2467 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2468 int disks = sh->disks, i;
d6950432 2469 char b[BDEVNAME_SIZE];
dd054fce 2470 struct md_rdev *rdev = NULL;
05616be5 2471 sector_t s;
1da177e4
LT
2472
2473 for (i=0 ; i<disks; i++)
2474 if (bi == &sh->dev[i].req)
2475 break;
2476
4246a0b6 2477 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2478 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2479 bi->bi_error);
1da177e4 2480 if (i == disks) {
5f9d1fde 2481 bio_reset(bi);
1da177e4 2482 BUG();
6712ecf8 2483 return;
1da177e4 2484 }
14a75d3e 2485 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2486 /* If replacement finished while this request was outstanding,
2487 * 'replacement' might be NULL already.
2488 * In that case it moved down to 'rdev'.
2489 * rdev is not removed until all requests are finished.
2490 */
14a75d3e 2491 rdev = conf->disks[i].replacement;
dd054fce 2492 if (!rdev)
14a75d3e 2493 rdev = conf->disks[i].rdev;
1da177e4 2494
05616be5
N
2495 if (use_new_offset(conf, sh))
2496 s = sh->sector + rdev->new_data_offset;
2497 else
2498 s = sh->sector + rdev->data_offset;
4246a0b6 2499 if (!bi->bi_error) {
1da177e4 2500 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2501 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2502 /* Note that this cannot happen on a
2503 * replacement device. We just fail those on
2504 * any error
2505 */
cc6167b4
N
2506 pr_info_ratelimited(
2507 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
8bda470e 2508 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2509 (unsigned long long)s,
8bda470e 2510 bdevname(rdev->bdev, b));
ddd5115f 2511 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2512 clear_bit(R5_ReadError, &sh->dev[i].flags);
2513 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2514 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2515 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2516
86aa1397
SL
2517 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2518 /*
2519 * end read for a page in journal, this
2520 * must be preparing for prexor in rmw
2521 */
2522 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2523
14a75d3e
N
2524 if (atomic_read(&rdev->read_errors))
2525 atomic_set(&rdev->read_errors, 0);
1da177e4 2526 } else {
14a75d3e 2527 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2528 int retry = 0;
2e8ac303 2529 int set_bad = 0;
d6950432 2530
1da177e4 2531 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2532 atomic_inc(&rdev->read_errors);
14a75d3e 2533 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2534 pr_warn_ratelimited(
2535 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2536 mdname(conf->mddev),
05616be5 2537 (unsigned long long)s,
14a75d3e 2538 bdn);
2e8ac303 2539 else if (conf->mddev->degraded >= conf->max_degraded) {
2540 set_bad = 1;
cc6167b4
N
2541 pr_warn_ratelimited(
2542 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2543 mdname(conf->mddev),
05616be5 2544 (unsigned long long)s,
8bda470e 2545 bdn);
2e8ac303 2546 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2547 /* Oh, no!!! */
2e8ac303 2548 set_bad = 1;
cc6167b4
N
2549 pr_warn_ratelimited(
2550 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2551 mdname(conf->mddev),
05616be5 2552 (unsigned long long)s,
8bda470e 2553 bdn);
2e8ac303 2554 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2555 > conf->max_nr_stripes)
cc6167b4 2556 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2557 mdname(conf->mddev), bdn);
ba22dcbf
N
2558 else
2559 retry = 1;
edfa1f65
BY
2560 if (set_bad && test_bit(In_sync, &rdev->flags)
2561 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2562 retry = 1;
ba22dcbf 2563 if (retry)
3f9e7c14 2564 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2565 set_bit(R5_ReadError, &sh->dev[i].flags);
2566 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2567 } else
2568 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2569 else {
4e5314b5
N
2570 clear_bit(R5_ReadError, &sh->dev[i].flags);
2571 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2572 if (!(set_bad
2573 && test_bit(In_sync, &rdev->flags)
2574 && rdev_set_badblocks(
2575 rdev, sh->sector, STRIPE_SECTORS, 0)))
2576 md_error(conf->mddev, rdev);
ba22dcbf 2577 }
1da177e4 2578 }
14a75d3e 2579 rdev_dec_pending(rdev, conf->mddev);
c9445555 2580 bio_reset(bi);
1da177e4
LT
2581 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2582 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2583 raid5_release_stripe(sh);
1da177e4
LT
2584}
2585
4246a0b6 2586static void raid5_end_write_request(struct bio *bi)
1da177e4 2587{
99c0fb5f 2588 struct stripe_head *sh = bi->bi_private;
d1688a6d 2589 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2590 int disks = sh->disks, i;
977df362 2591 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2592 sector_t first_bad;
2593 int bad_sectors;
977df362 2594 int replacement = 0;
1da177e4 2595
977df362
N
2596 for (i = 0 ; i < disks; i++) {
2597 if (bi == &sh->dev[i].req) {
2598 rdev = conf->disks[i].rdev;
1da177e4 2599 break;
977df362
N
2600 }
2601 if (bi == &sh->dev[i].rreq) {
2602 rdev = conf->disks[i].replacement;
dd054fce
N
2603 if (rdev)
2604 replacement = 1;
2605 else
2606 /* rdev was removed and 'replacement'
2607 * replaced it. rdev is not removed
2608 * until all requests are finished.
2609 */
2610 rdev = conf->disks[i].rdev;
977df362
N
2611 break;
2612 }
2613 }
4246a0b6 2614 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2615 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2616 bi->bi_error);
1da177e4 2617 if (i == disks) {
5f9d1fde 2618 bio_reset(bi);
1da177e4 2619 BUG();
6712ecf8 2620 return;
1da177e4
LT
2621 }
2622
977df362 2623 if (replacement) {
4246a0b6 2624 if (bi->bi_error)
977df362
N
2625 md_error(conf->mddev, rdev);
2626 else if (is_badblock(rdev, sh->sector,
2627 STRIPE_SECTORS,
2628 &first_bad, &bad_sectors))
2629 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2630 } else {
4246a0b6 2631 if (bi->bi_error) {
9f97e4b1 2632 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2633 set_bit(WriteErrorSeen, &rdev->flags);
2634 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2635 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2636 set_bit(MD_RECOVERY_NEEDED,
2637 &rdev->mddev->recovery);
977df362
N
2638 } else if (is_badblock(rdev, sh->sector,
2639 STRIPE_SECTORS,
c0b32972 2640 &first_bad, &bad_sectors)) {
977df362 2641 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2642 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2643 /* That was a successful write so make
2644 * sure it looks like we already did
2645 * a re-write.
2646 */
2647 set_bit(R5_ReWrite, &sh->dev[i].flags);
2648 }
977df362
N
2649 }
2650 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2651
4246a0b6 2652 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2653 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2654
c9445555 2655 bio_reset(bi);
977df362
N
2656 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2657 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2658 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2659 raid5_release_stripe(sh);
59fc630b 2660
2661 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2662 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2663}
2664
784052ec 2665static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2666{
2667 struct r5dev *dev = &sh->dev[i];
2668
1da177e4 2669 dev->flags = 0;
6d036f7d 2670 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2671}
2672
849674e4 2673static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2674{
2675 char b[BDEVNAME_SIZE];
d1688a6d 2676 struct r5conf *conf = mddev->private;
908f4fbd 2677 unsigned long flags;
0c55e022 2678 pr_debug("raid456: error called\n");
1da177e4 2679
908f4fbd
N
2680 spin_lock_irqsave(&conf->device_lock, flags);
2681 clear_bit(In_sync, &rdev->flags);
2e38a37f 2682 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2683 spin_unlock_irqrestore(&conf->device_lock, flags);
2684 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2685
de393cde 2686 set_bit(Blocked, &rdev->flags);
6f8d0c77 2687 set_bit(Faulty, &rdev->flags);
2953079c
SL
2688 set_mask_bits(&mddev->sb_flags, 0,
2689 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2690 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691 "md/raid:%s: Operation continuing on %d devices.\n",
2692 mdname(mddev),
2693 bdevname(rdev->bdev, b),
2694 mdname(mddev),
2695 conf->raid_disks - mddev->degraded);
70d466f7 2696 r5c_update_on_rdev_error(mddev, rdev);
16a53ecc 2697}
1da177e4
LT
2698
2699/*
2700 * Input: a 'big' sector number,
2701 * Output: index of the data and parity disk, and the sector # in them.
2702 */
6d036f7d
SL
2703sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704 int previous, int *dd_idx,
2705 struct stripe_head *sh)
1da177e4 2706{
6e3b96ed 2707 sector_t stripe, stripe2;
35f2a591 2708 sector_t chunk_number;
1da177e4 2709 unsigned int chunk_offset;
911d4ee8 2710 int pd_idx, qd_idx;
67cc2b81 2711 int ddf_layout = 0;
1da177e4 2712 sector_t new_sector;
e183eaed
N
2713 int algorithm = previous ? conf->prev_algo
2714 : conf->algorithm;
09c9e5fa
AN
2715 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716 : conf->chunk_sectors;
112bf897
N
2717 int raid_disks = previous ? conf->previous_raid_disks
2718 : conf->raid_disks;
2719 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2720
2721 /* First compute the information on this sector */
2722
2723 /*
2724 * Compute the chunk number and the sector offset inside the chunk
2725 */
2726 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727 chunk_number = r_sector;
1da177e4
LT
2728
2729 /*
2730 * Compute the stripe number
2731 */
35f2a591
N
2732 stripe = chunk_number;
2733 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2734 stripe2 = stripe;
1da177e4
LT
2735 /*
2736 * Select the parity disk based on the user selected algorithm.
2737 */
84789554 2738 pd_idx = qd_idx = -1;
16a53ecc
N
2739 switch(conf->level) {
2740 case 4:
911d4ee8 2741 pd_idx = data_disks;
16a53ecc
N
2742 break;
2743 case 5:
e183eaed 2744 switch (algorithm) {
1da177e4 2745 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2746 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2747 if (*dd_idx >= pd_idx)
1da177e4
LT
2748 (*dd_idx)++;
2749 break;
2750 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2751 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2752 if (*dd_idx >= pd_idx)
1da177e4
LT
2753 (*dd_idx)++;
2754 break;
2755 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2756 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2757 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2758 break;
2759 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2760 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2761 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2762 break;
99c0fb5f
N
2763 case ALGORITHM_PARITY_0:
2764 pd_idx = 0;
2765 (*dd_idx)++;
2766 break;
2767 case ALGORITHM_PARITY_N:
2768 pd_idx = data_disks;
2769 break;
1da177e4 2770 default:
99c0fb5f 2771 BUG();
16a53ecc
N
2772 }
2773 break;
2774 case 6:
2775
e183eaed 2776 switch (algorithm) {
16a53ecc 2777 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2778 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2779 qd_idx = pd_idx + 1;
2780 if (pd_idx == raid_disks-1) {
99c0fb5f 2781 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2782 qd_idx = 0;
2783 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2784 (*dd_idx) += 2; /* D D P Q D */
2785 break;
2786 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2787 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2788 qd_idx = pd_idx + 1;
2789 if (pd_idx == raid_disks-1) {
99c0fb5f 2790 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2791 qd_idx = 0;
2792 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2793 (*dd_idx) += 2; /* D D P Q D */
2794 break;
2795 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2796 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2797 qd_idx = (pd_idx + 1) % raid_disks;
2798 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2799 break;
2800 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2801 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2802 qd_idx = (pd_idx + 1) % raid_disks;
2803 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2804 break;
99c0fb5f
N
2805
2806 case ALGORITHM_PARITY_0:
2807 pd_idx = 0;
2808 qd_idx = 1;
2809 (*dd_idx) += 2;
2810 break;
2811 case ALGORITHM_PARITY_N:
2812 pd_idx = data_disks;
2813 qd_idx = data_disks + 1;
2814 break;
2815
2816 case ALGORITHM_ROTATING_ZERO_RESTART:
2817 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2818 * of blocks for computing Q is different.
2819 */
6e3b96ed 2820 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2821 qd_idx = pd_idx + 1;
2822 if (pd_idx == raid_disks-1) {
2823 (*dd_idx)++; /* Q D D D P */
2824 qd_idx = 0;
2825 } else if (*dd_idx >= pd_idx)
2826 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2827 ddf_layout = 1;
99c0fb5f
N
2828 break;
2829
2830 case ALGORITHM_ROTATING_N_RESTART:
2831 /* Same a left_asymmetric, by first stripe is
2832 * D D D P Q rather than
2833 * Q D D D P
2834 */
6e3b96ed
N
2835 stripe2 += 1;
2836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2837 qd_idx = pd_idx + 1;
2838 if (pd_idx == raid_disks-1) {
2839 (*dd_idx)++; /* Q D D D P */
2840 qd_idx = 0;
2841 } else if (*dd_idx >= pd_idx)
2842 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2843 ddf_layout = 1;
99c0fb5f
N
2844 break;
2845
2846 case ALGORITHM_ROTATING_N_CONTINUE:
2847 /* Same as left_symmetric but Q is before P */
6e3b96ed 2848 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2849 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2851 ddf_layout = 1;
99c0fb5f
N
2852 break;
2853
2854 case ALGORITHM_LEFT_ASYMMETRIC_6:
2855 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2856 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2857 if (*dd_idx >= pd_idx)
2858 (*dd_idx)++;
2859 qd_idx = raid_disks - 1;
2860 break;
2861
2862 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2863 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2864 if (*dd_idx >= pd_idx)
2865 (*dd_idx)++;
2866 qd_idx = raid_disks - 1;
2867 break;
2868
2869 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2870 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2871 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872 qd_idx = raid_disks - 1;
2873 break;
2874
2875 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2876 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2877 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878 qd_idx = raid_disks - 1;
2879 break;
2880
2881 case ALGORITHM_PARITY_0_6:
2882 pd_idx = 0;
2883 (*dd_idx)++;
2884 qd_idx = raid_disks - 1;
2885 break;
2886
16a53ecc 2887 default:
99c0fb5f 2888 BUG();
16a53ecc
N
2889 }
2890 break;
1da177e4
LT
2891 }
2892
911d4ee8
N
2893 if (sh) {
2894 sh->pd_idx = pd_idx;
2895 sh->qd_idx = qd_idx;
67cc2b81 2896 sh->ddf_layout = ddf_layout;
911d4ee8 2897 }
1da177e4
LT
2898 /*
2899 * Finally, compute the new sector number
2900 */
2901 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902 return new_sector;
2903}
2904
6d036f7d 2905sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2906{
d1688a6d 2907 struct r5conf *conf = sh->raid_conf;
b875e531
N
2908 int raid_disks = sh->disks;
2909 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2910 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2911 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912 : conf->chunk_sectors;
e183eaed
N
2913 int algorithm = previous ? conf->prev_algo
2914 : conf->algorithm;
1da177e4
LT
2915 sector_t stripe;
2916 int chunk_offset;
35f2a591
N
2917 sector_t chunk_number;
2918 int dummy1, dd_idx = i;
1da177e4 2919 sector_t r_sector;
911d4ee8 2920 struct stripe_head sh2;
1da177e4
LT
2921
2922 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923 stripe = new_sector;
1da177e4 2924
16a53ecc
N
2925 if (i == sh->pd_idx)
2926 return 0;
2927 switch(conf->level) {
2928 case 4: break;
2929 case 5:
e183eaed 2930 switch (algorithm) {
1da177e4
LT
2931 case ALGORITHM_LEFT_ASYMMETRIC:
2932 case ALGORITHM_RIGHT_ASYMMETRIC:
2933 if (i > sh->pd_idx)
2934 i--;
2935 break;
2936 case ALGORITHM_LEFT_SYMMETRIC:
2937 case ALGORITHM_RIGHT_SYMMETRIC:
2938 if (i < sh->pd_idx)
2939 i += raid_disks;
2940 i -= (sh->pd_idx + 1);
2941 break;
99c0fb5f
N
2942 case ALGORITHM_PARITY_0:
2943 i -= 1;
2944 break;
2945 case ALGORITHM_PARITY_N:
2946 break;
1da177e4 2947 default:
99c0fb5f 2948 BUG();
16a53ecc
N
2949 }
2950 break;
2951 case 6:
d0dabf7e 2952 if (i == sh->qd_idx)
16a53ecc 2953 return 0; /* It is the Q disk */
e183eaed 2954 switch (algorithm) {
16a53ecc
N
2955 case ALGORITHM_LEFT_ASYMMETRIC:
2956 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2957 case ALGORITHM_ROTATING_ZERO_RESTART:
2958 case ALGORITHM_ROTATING_N_RESTART:
2959 if (sh->pd_idx == raid_disks-1)
2960 i--; /* Q D D D P */
16a53ecc
N
2961 else if (i > sh->pd_idx)
2962 i -= 2; /* D D P Q D */
2963 break;
2964 case ALGORITHM_LEFT_SYMMETRIC:
2965 case ALGORITHM_RIGHT_SYMMETRIC:
2966 if (sh->pd_idx == raid_disks-1)
2967 i--; /* Q D D D P */
2968 else {
2969 /* D D P Q D */
2970 if (i < sh->pd_idx)
2971 i += raid_disks;
2972 i -= (sh->pd_idx + 2);
2973 }
2974 break;
99c0fb5f
N
2975 case ALGORITHM_PARITY_0:
2976 i -= 2;
2977 break;
2978 case ALGORITHM_PARITY_N:
2979 break;
2980 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2981 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2982 if (sh->pd_idx == 0)
2983 i--; /* P D D D Q */
e4424fee
N
2984 else {
2985 /* D D Q P D */
2986 if (i < sh->pd_idx)
2987 i += raid_disks;
2988 i -= (sh->pd_idx + 1);
2989 }
99c0fb5f
N
2990 break;
2991 case ALGORITHM_LEFT_ASYMMETRIC_6:
2992 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993 if (i > sh->pd_idx)
2994 i--;
2995 break;
2996 case ALGORITHM_LEFT_SYMMETRIC_6:
2997 case ALGORITHM_RIGHT_SYMMETRIC_6:
2998 if (i < sh->pd_idx)
2999 i += data_disks + 1;
3000 i -= (sh->pd_idx + 1);
3001 break;
3002 case ALGORITHM_PARITY_0_6:
3003 i -= 1;
3004 break;
16a53ecc 3005 default:
99c0fb5f 3006 BUG();
16a53ecc
N
3007 }
3008 break;
1da177e4
LT
3009 }
3010
3011 chunk_number = stripe * data_disks + i;
35f2a591 3012 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3013
112bf897 3014 check = raid5_compute_sector(conf, r_sector,
784052ec 3015 previous, &dummy1, &sh2);
911d4ee8
N
3016 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3018 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019 mdname(conf->mddev));
1da177e4
LT
3020 return 0;
3021 }
3022 return r_sector;
3023}
3024
07e83364
SL
3025/*
3026 * There are cases where we want handle_stripe_dirtying() and
3027 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028 *
3029 * This function checks whether we want to delay the towrite. Specifically,
3030 * we delay the towrite when:
3031 *
3032 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3033 * stripe has data in journal (for other devices).
3034 *
3035 * In this case, when reading data for the non-overwrite dev, it is
3036 * necessary to handle complex rmw of write back cache (prexor with
3037 * orig_page, and xor with page). To keep read path simple, we would
3038 * like to flush data in journal to RAID disks first, so complex rmw
3039 * is handled in the write patch (handle_stripe_dirtying).
3040 *
39b99586
SL
3041 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042 *
3043 * It is important to be able to flush all stripes in raid5-cache.
3044 * Therefore, we need reserve some space on the journal device for
3045 * these flushes. If flush operation includes pending writes to the
3046 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047 * for the flush out. If we exclude these pending writes from flush
3048 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3049 * Therefore, excluding pending writes in these cases enables more
3050 * efficient use of the journal device.
3051 *
3052 * Note: To make sure the stripe makes progress, we only delay
3053 * towrite for stripes with data already in journal (injournal > 0).
3054 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055 * no_space_stripes list.
3056 *
70d466f7
SL
3057 * 3. during journal failure
3058 * In journal failure, we try to flush all cached data to raid disks
3059 * based on data in stripe cache. The array is read-only to upper
3060 * layers, so we would skip all pending writes.
3061 *
07e83364 3062 */
39b99586
SL
3063static inline bool delay_towrite(struct r5conf *conf,
3064 struct r5dev *dev,
3065 struct stripe_head_state *s)
07e83364 3066{
39b99586
SL
3067 /* case 1 above */
3068 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070 return true;
3071 /* case 2 above */
3072 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073 s->injournal > 0)
3074 return true;
70d466f7
SL
3075 /* case 3 above */
3076 if (s->log_failed && s->injournal)
3077 return true;
39b99586 3078 return false;
07e83364
SL
3079}
3080
600aa109 3081static void
c0f7bddb 3082schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3083 int rcw, int expand)
e33129d8 3084{
584acdd4 3085 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3086 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3087 int level = conf->level;
e33129d8
DW
3088
3089 if (rcw) {
1e6d690b
SL
3090 /*
3091 * In some cases, handle_stripe_dirtying initially decided to
3092 * run rmw and allocates extra page for prexor. However, rcw is
3093 * cheaper later on. We need to free the extra page now,
3094 * because we won't be able to do that in ops_complete_prexor().
3095 */
3096 r5c_release_extra_page(sh);
e33129d8
DW
3097
3098 for (i = disks; i--; ) {
3099 struct r5dev *dev = &sh->dev[i];
3100
39b99586 3101 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3102 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3103 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3104 if (!expand)
3105 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3106 s->locked++;
1e6d690b
SL
3107 } else if (test_bit(R5_InJournal, &dev->flags)) {
3108 set_bit(R5_LOCKED, &dev->flags);
3109 s->locked++;
e33129d8
DW
3110 }
3111 }
ce7d363a
N
3112 /* if we are not expanding this is a proper write request, and
3113 * there will be bios with new data to be drained into the
3114 * stripe cache
3115 */
3116 if (!expand) {
3117 if (!s->locked)
3118 /* False alarm, nothing to do */
3119 return;
3120 sh->reconstruct_state = reconstruct_state_drain_run;
3121 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122 } else
3123 sh->reconstruct_state = reconstruct_state_run;
3124
3125 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126
c0f7bddb 3127 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3128 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3129 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3130 } else {
3131 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3133 BUG_ON(level == 6 &&
3134 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3136
e33129d8
DW
3137 for (i = disks; i--; ) {
3138 struct r5dev *dev = &sh->dev[i];
584acdd4 3139 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3140 continue;
3141
e33129d8
DW
3142 if (dev->towrite &&
3143 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3144 test_bit(R5_Wantcompute, &dev->flags))) {
3145 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3146 set_bit(R5_LOCKED, &dev->flags);
3147 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3148 s->locked++;
1e6d690b
SL
3149 } else if (test_bit(R5_InJournal, &dev->flags)) {
3150 set_bit(R5_LOCKED, &dev->flags);
3151 s->locked++;
e33129d8
DW
3152 }
3153 }
ce7d363a
N
3154 if (!s->locked)
3155 /* False alarm - nothing to do */
3156 return;
3157 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3161 }
3162
c0f7bddb 3163 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3164 * are in flight
3165 */
3166 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3168 s->locked++;
e33129d8 3169
c0f7bddb
YT
3170 if (level == 6) {
3171 int qd_idx = sh->qd_idx;
3172 struct r5dev *dev = &sh->dev[qd_idx];
3173
3174 set_bit(R5_LOCKED, &dev->flags);
3175 clear_bit(R5_UPTODATE, &dev->flags);
3176 s->locked++;
3177 }
3178
845b9e22 3179 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3418d036
AP
3180 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184
600aa109 3185 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3186 __func__, (unsigned long long)sh->sector,
600aa109 3187 s->locked, s->ops_request);
e33129d8 3188}
16a53ecc 3189
1da177e4
LT
3190/*
3191 * Each stripe/dev can have one or more bion attached.
16a53ecc 3192 * toread/towrite point to the first in a chain.
1da177e4
LT
3193 * The bi_next chain must be in order.
3194 */
da41ba65 3195static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196 int forwrite, int previous)
1da177e4
LT
3197{
3198 struct bio **bip;
d1688a6d 3199 struct r5conf *conf = sh->raid_conf;
72626685 3200 int firstwrite=0;
1da177e4 3201
cbe47ec5 3202 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3203 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3204 (unsigned long long)sh->sector);
3205
b17459c0 3206 spin_lock_irq(&sh->stripe_lock);
59fc630b 3207 /* Don't allow new IO added to stripes in batch list */
3208 if (sh->batch_head)
3209 goto overlap;
72626685 3210 if (forwrite) {
1da177e4 3211 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3212 if (*bip == NULL)
72626685
N
3213 firstwrite = 1;
3214 } else
1da177e4 3215 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3216 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3218 goto overlap;
3219 bip = & (*bip)->bi_next;
3220 }
4f024f37 3221 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3222 goto overlap;
3223
3418d036
AP
3224 if (forwrite && raid5_has_ppl(conf)) {
3225 /*
3226 * With PPL only writes to consecutive data chunks within a
3227 * stripe are allowed because for a single stripe_head we can
3228 * only have one PPL entry at a time, which describes one data
3229 * range. Not really an overlap, but wait_for_overlap can be
3230 * used to handle this.
3231 */
3232 sector_t sector;
3233 sector_t first = 0;
3234 sector_t last = 0;
3235 int count = 0;
3236 int i;
3237
3238 for (i = 0; i < sh->disks; i++) {
3239 if (i != sh->pd_idx &&
3240 (i == dd_idx || sh->dev[i].towrite)) {
3241 sector = sh->dev[i].sector;
3242 if (count == 0 || sector < first)
3243 first = sector;
3244 if (sector > last)
3245 last = sector;
3246 count++;
3247 }
3248 }
3249
3250 if (first + conf->chunk_sectors * (count - 1) != last)
3251 goto overlap;
3252 }
3253
da41ba65 3254 if (!forwrite || previous)
3255 clear_bit(STRIPE_BATCH_READY, &sh->state);
3256
78bafebd 3257 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3258 if (*bip)
3259 bi->bi_next = *bip;
3260 *bip = bi;
016c76ac 3261 bio_inc_remaining(bi);
49728050 3262 md_write_inc(conf->mddev, bi);
72626685 3263
1da177e4
LT
3264 if (forwrite) {
3265 /* check if page is covered */
3266 sector_t sector = sh->dev[dd_idx].sector;
3267 for (bi=sh->dev[dd_idx].towrite;
3268 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3269 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3270 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3271 if (bio_end_sector(bi) >= sector)
3272 sector = bio_end_sector(bi);
1da177e4
LT
3273 }
3274 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3275 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276 sh->overwrite_disks++;
1da177e4 3277 }
cbe47ec5
N
3278
3279 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3280 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3281 (unsigned long long)sh->sector, dd_idx);
3282
3283 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3284 /* Cannot hold spinlock over bitmap_startwrite,
3285 * but must ensure this isn't added to a batch until
3286 * we have added to the bitmap and set bm_seq.
3287 * So set STRIPE_BITMAP_PENDING to prevent
3288 * batching.
3289 * If multiple add_stripe_bio() calls race here they
3290 * much all set STRIPE_BITMAP_PENDING. So only the first one
3291 * to complete "bitmap_startwrite" gets to set
3292 * STRIPE_BIT_DELAY. This is important as once a stripe
3293 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294 * any more.
3295 */
3296 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3298 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299 STRIPE_SECTORS, 0);
d0852df5
N
3300 spin_lock_irq(&sh->stripe_lock);
3301 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302 if (!sh->batch_head) {
3303 sh->bm_seq = conf->seq_flush+1;
3304 set_bit(STRIPE_BIT_DELAY, &sh->state);
3305 }
cbe47ec5 3306 }
d0852df5 3307 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3308
3309 if (stripe_can_batch(sh))
3310 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3311 return 1;
3312
3313 overlap:
3314 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3315 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3316 return 0;
3317}
3318
d1688a6d 3319static void end_reshape(struct r5conf *conf);
29269553 3320
d1688a6d 3321static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3322 struct stripe_head *sh)
ccfcc3c1 3323{
784052ec 3324 int sectors_per_chunk =
09c9e5fa 3325 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3326 int dd_idx;
2d2063ce 3327 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3328 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3329
112bf897
N
3330 raid5_compute_sector(conf,
3331 stripe * (disks - conf->max_degraded)
b875e531 3332 *sectors_per_chunk + chunk_offset,
112bf897 3333 previous,
911d4ee8 3334 &dd_idx, sh);
ccfcc3c1
N
3335}
3336
a4456856 3337static void
d1688a6d 3338handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3339 struct stripe_head_state *s, int disks)
a4456856
DW
3340{
3341 int i;
59fc630b 3342 BUG_ON(sh->batch_head);
a4456856
DW
3343 for (i = disks; i--; ) {
3344 struct bio *bi;
3345 int bitmap_end = 0;
3346
3347 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3348 struct md_rdev *rdev;
a4456856
DW
3349 rcu_read_lock();
3350 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3351 if (rdev && test_bit(In_sync, &rdev->flags) &&
3352 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3353 atomic_inc(&rdev->nr_pending);
3354 else
3355 rdev = NULL;
a4456856 3356 rcu_read_unlock();
7f0da59b
N
3357 if (rdev) {
3358 if (!rdev_set_badblocks(
3359 rdev,
3360 sh->sector,
3361 STRIPE_SECTORS, 0))
3362 md_error(conf->mddev, rdev);
3363 rdev_dec_pending(rdev, conf->mddev);
3364 }
a4456856 3365 }
b17459c0 3366 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3367 /* fail all writes first */
3368 bi = sh->dev[i].towrite;
3369 sh->dev[i].towrite = NULL;
7a87f434 3370 sh->overwrite_disks = 0;
b17459c0 3371 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3372 if (bi)
a4456856 3373 bitmap_end = 1;
a4456856 3374
ff875738 3375 log_stripe_write_finished(sh);
0576b1c6 3376
a4456856
DW
3377 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378 wake_up(&conf->wait_for_overlap);
3379
4f024f37 3380 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3381 sh->dev[i].sector + STRIPE_SECTORS) {
3382 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3383
3384 bi->bi_error = -EIO;
49728050 3385 md_write_end(conf->mddev);
016c76ac 3386 bio_endio(bi);
a4456856
DW
3387 bi = nextbi;
3388 }
7eaf7e8e
SL
3389 if (bitmap_end)
3390 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3391 STRIPE_SECTORS, 0, 0);
3392 bitmap_end = 0;
a4456856
DW
3393 /* and fail all 'written' */
3394 bi = sh->dev[i].written;
3395 sh->dev[i].written = NULL;
d592a996
SL
3396 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3397 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3398 sh->dev[i].page = sh->dev[i].orig_page;
3399 }
3400
a4456856 3401 if (bi) bitmap_end = 1;
4f024f37 3402 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3403 sh->dev[i].sector + STRIPE_SECTORS) {
3404 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3405
3406 bi->bi_error = -EIO;
49728050 3407 md_write_end(conf->mddev);
016c76ac 3408 bio_endio(bi);
a4456856
DW
3409 bi = bi2;
3410 }
3411
b5e98d65
DW
3412 /* fail any reads if this device is non-operational and
3413 * the data has not reached the cache yet.
3414 */
3415 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3416 s->failed > conf->max_degraded &&
b5e98d65
DW
3417 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3418 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3419 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3420 bi = sh->dev[i].toread;
3421 sh->dev[i].toread = NULL;
143c4d05 3422 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3423 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3424 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3425 if (bi)
3426 s->to_read--;
4f024f37 3427 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3428 sh->dev[i].sector + STRIPE_SECTORS) {
3429 struct bio *nextbi =
3430 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3431
3432 bi->bi_error = -EIO;
016c76ac 3433 bio_endio(bi);
a4456856
DW
3434 bi = nextbi;
3435 }
3436 }
a4456856
DW
3437 if (bitmap_end)
3438 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3439 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3440 /* If we were in the middle of a write the parity block might
3441 * still be locked - so just clear all R5_LOCKED flags
3442 */
3443 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3444 }
ebda780b
SL
3445 s->to_write = 0;
3446 s->written = 0;
a4456856 3447
8b3e6cdc
DW
3448 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3449 if (atomic_dec_and_test(&conf->pending_full_writes))
3450 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3451}
3452
7f0da59b 3453static void
d1688a6d 3454handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3455 struct stripe_head_state *s)
3456{
3457 int abort = 0;
3458 int i;
3459
59fc630b 3460 BUG_ON(sh->batch_head);
7f0da59b 3461 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3462 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3463 wake_up(&conf->wait_for_overlap);
7f0da59b 3464 s->syncing = 0;
9a3e1101 3465 s->replacing = 0;
7f0da59b 3466 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3467 * Don't even need to abort as that is handled elsewhere
3468 * if needed, and not always wanted e.g. if there is a known
3469 * bad block here.
9a3e1101 3470 * For recover/replace we need to record a bad block on all
7f0da59b
N
3471 * non-sync devices, or abort the recovery
3472 */
18b9837e
N
3473 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3474 /* During recovery devices cannot be removed, so
3475 * locking and refcounting of rdevs is not needed
3476 */
e50d3992 3477 rcu_read_lock();
18b9837e 3478 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3479 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3480 if (rdev
3481 && !test_bit(Faulty, &rdev->flags)
3482 && !test_bit(In_sync, &rdev->flags)
3483 && !rdev_set_badblocks(rdev, sh->sector,
3484 STRIPE_SECTORS, 0))
3485 abort = 1;
e50d3992 3486 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3487 if (rdev
3488 && !test_bit(Faulty, &rdev->flags)
3489 && !test_bit(In_sync, &rdev->flags)
3490 && !rdev_set_badblocks(rdev, sh->sector,
3491 STRIPE_SECTORS, 0))
3492 abort = 1;
3493 }
e50d3992 3494 rcu_read_unlock();
18b9837e
N
3495 if (abort)
3496 conf->recovery_disabled =
3497 conf->mddev->recovery_disabled;
7f0da59b 3498 }
18b9837e 3499 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3500}
3501
9a3e1101
N
3502static int want_replace(struct stripe_head *sh, int disk_idx)
3503{
3504 struct md_rdev *rdev;
3505 int rv = 0;
3f232d6a
N
3506
3507 rcu_read_lock();
3508 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3509 if (rdev
3510 && !test_bit(Faulty, &rdev->flags)
3511 && !test_bit(In_sync, &rdev->flags)
3512 && (rdev->recovery_offset <= sh->sector
3513 || rdev->mddev->recovery_cp <= sh->sector))
3514 rv = 1;
3f232d6a 3515 rcu_read_unlock();
9a3e1101
N
3516 return rv;
3517}
3518
2c58f06e
N
3519static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3520 int disk_idx, int disks)
a4456856 3521{
5599becc 3522 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3523 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3524 &sh->dev[s->failed_num[1]] };
ea664c82 3525 int i;
5599becc 3526
a79cfe12
N
3527
3528 if (test_bit(R5_LOCKED, &dev->flags) ||
3529 test_bit(R5_UPTODATE, &dev->flags))
3530 /* No point reading this as we already have it or have
3531 * decided to get it.
3532 */
3533 return 0;
3534
3535 if (dev->toread ||
3536 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3537 /* We need this block to directly satisfy a request */
3538 return 1;
3539
3540 if (s->syncing || s->expanding ||
3541 (s->replacing && want_replace(sh, disk_idx)))
3542 /* When syncing, or expanding we read everything.
3543 * When replacing, we need the replaced block.
3544 */
3545 return 1;
3546
3547 if ((s->failed >= 1 && fdev[0]->toread) ||
3548 (s->failed >= 2 && fdev[1]->toread))
3549 /* If we want to read from a failed device, then
3550 * we need to actually read every other device.
3551 */
3552 return 1;
3553
a9d56950
N
3554 /* Sometimes neither read-modify-write nor reconstruct-write
3555 * cycles can work. In those cases we read every block we
3556 * can. Then the parity-update is certain to have enough to
3557 * work with.
3558 * This can only be a problem when we need to write something,
3559 * and some device has failed. If either of those tests
3560 * fail we need look no further.
3561 */
3562 if (!s->failed || !s->to_write)
3563 return 0;
3564
3565 if (test_bit(R5_Insync, &dev->flags) &&
3566 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3567 /* Pre-reads at not permitted until after short delay
3568 * to gather multiple requests. However if this
3560741e 3569 * device is no Insync, the block could only be computed
a9d56950
N
3570 * and there is no need to delay that.
3571 */
3572 return 0;
ea664c82 3573
36707bb2 3574 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3575 if (fdev[i]->towrite &&
3576 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3577 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3578 /* If we have a partial write to a failed
3579 * device, then we will need to reconstruct
3580 * the content of that device, so all other
3581 * devices must be read.
3582 */
3583 return 1;
3584 }
3585
3586 /* If we are forced to do a reconstruct-write, either because
3587 * the current RAID6 implementation only supports that, or
3560741e 3588 * because parity cannot be trusted and we are currently
ea664c82
N
3589 * recovering it, there is extra need to be careful.
3590 * If one of the devices that we would need to read, because
3591 * it is not being overwritten (and maybe not written at all)
3592 * is missing/faulty, then we need to read everything we can.
3593 */
3594 if (sh->raid_conf->level != 6 &&
3595 sh->sector < sh->raid_conf->mddev->recovery_cp)
3596 /* reconstruct-write isn't being forced */
3597 return 0;
36707bb2 3598 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3599 if (s->failed_num[i] != sh->pd_idx &&
3600 s->failed_num[i] != sh->qd_idx &&
3601 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3602 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3603 return 1;
3604 }
3605
2c58f06e
N
3606 return 0;
3607}
3608
ba02684d
SL
3609/* fetch_block - checks the given member device to see if its data needs
3610 * to be read or computed to satisfy a request.
3611 *
3612 * Returns 1 when no more member devices need to be checked, otherwise returns
3613 * 0 to tell the loop in handle_stripe_fill to continue
3614 */
2c58f06e
N
3615static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3616 int disk_idx, int disks)
3617{
3618 struct r5dev *dev = &sh->dev[disk_idx];
3619
3620 /* is the data in this block needed, and can we get it? */
3621 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3622 /* we would like to get this block, possibly by computing it,
3623 * otherwise read it if the backing disk is insync
3624 */
3625 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3626 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3627 BUG_ON(sh->batch_head);
7471fb77
N
3628
3629 /*
3630 * In the raid6 case if the only non-uptodate disk is P
3631 * then we already trusted P to compute the other failed
3632 * drives. It is safe to compute rather than re-read P.
3633 * In other cases we only compute blocks from failed
3634 * devices, otherwise check/repair might fail to detect
3635 * a real inconsistency.
3636 */
3637
5599becc 3638 if ((s->uptodate == disks - 1) &&
7471fb77 3639 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3640 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3641 disk_idx == s->failed_num[1])))) {
5599becc
YT
3642 /* have disk failed, and we're requested to fetch it;
3643 * do compute it
a4456856 3644 */
5599becc
YT
3645 pr_debug("Computing stripe %llu block %d\n",
3646 (unsigned long long)sh->sector, disk_idx);
3647 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3648 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3649 set_bit(R5_Wantcompute, &dev->flags);
3650 sh->ops.target = disk_idx;
3651 sh->ops.target2 = -1; /* no 2nd target */
3652 s->req_compute = 1;
93b3dbce
N
3653 /* Careful: from this point on 'uptodate' is in the eye
3654 * of raid_run_ops which services 'compute' operations
3655 * before writes. R5_Wantcompute flags a block that will
3656 * be R5_UPTODATE by the time it is needed for a
3657 * subsequent operation.
3658 */
5599becc
YT
3659 s->uptodate++;
3660 return 1;
3661 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3662 /* Computing 2-failure is *very* expensive; only
3663 * do it if failed >= 2
3664 */
3665 int other;
3666 for (other = disks; other--; ) {
3667 if (other == disk_idx)
3668 continue;
3669 if (!test_bit(R5_UPTODATE,
3670 &sh->dev[other].flags))
3671 break;
a4456856 3672 }
5599becc
YT
3673 BUG_ON(other < 0);
3674 pr_debug("Computing stripe %llu blocks %d,%d\n",
3675 (unsigned long long)sh->sector,
3676 disk_idx, other);
3677 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3678 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3679 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3680 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3681 sh->ops.target = disk_idx;
3682 sh->ops.target2 = other;
3683 s->uptodate += 2;
3684 s->req_compute = 1;
3685 return 1;
3686 } else if (test_bit(R5_Insync, &dev->flags)) {
3687 set_bit(R5_LOCKED, &dev->flags);
3688 set_bit(R5_Wantread, &dev->flags);
3689 s->locked++;
3690 pr_debug("Reading block %d (sync=%d)\n",
3691 disk_idx, s->syncing);
a4456856
DW
3692 }
3693 }
5599becc
YT
3694
3695 return 0;
3696}
3697
3698/**
93b3dbce 3699 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3700 */
93b3dbce
N
3701static void handle_stripe_fill(struct stripe_head *sh,
3702 struct stripe_head_state *s,
3703 int disks)
5599becc
YT
3704{
3705 int i;
3706
3707 /* look for blocks to read/compute, skip this if a compute
3708 * is already in flight, or if the stripe contents are in the
3709 * midst of changing due to a write
3710 */
3711 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3712 !sh->reconstruct_state) {
3713
3714 /*
3715 * For degraded stripe with data in journal, do not handle
3716 * read requests yet, instead, flush the stripe to raid
3717 * disks first, this avoids handling complex rmw of write
3718 * back cache (prexor with orig_page, and then xor with
3719 * page) in the read path
3720 */
3721 if (s->injournal && s->failed) {
3722 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3723 r5c_make_stripe_write_out(sh);
3724 goto out;
3725 }
3726
5599becc 3727 for (i = disks; i--; )
93b3dbce 3728 if (fetch_block(sh, s, i, disks))
5599becc 3729 break;
07e83364
SL
3730 }
3731out:
a4456856
DW
3732 set_bit(STRIPE_HANDLE, &sh->state);
3733}
3734
787b76fa
N
3735static void break_stripe_batch_list(struct stripe_head *head_sh,
3736 unsigned long handle_flags);
1fe797e6 3737/* handle_stripe_clean_event
a4456856
DW
3738 * any written block on an uptodate or failed drive can be returned.
3739 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3740 * never LOCKED, so we don't need to test 'failed' directly.
3741 */
d1688a6d 3742static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3743 struct stripe_head *sh, int disks)
a4456856
DW
3744{
3745 int i;
3746 struct r5dev *dev;
f8dfcffd 3747 int discard_pending = 0;
59fc630b 3748 struct stripe_head *head_sh = sh;
3749 bool do_endio = false;
a4456856
DW
3750
3751 for (i = disks; i--; )
3752 if (sh->dev[i].written) {
3753 dev = &sh->dev[i];
3754 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3755 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3756 test_bit(R5_Discard, &dev->flags) ||
3757 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3758 /* We can return any write requests */
3759 struct bio *wbi, *wbi2;
45b4233c 3760 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3761 if (test_and_clear_bit(R5_Discard, &dev->flags))
3762 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3763 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3764 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3765 }
59fc630b 3766 do_endio = true;
3767
3768returnbi:
3769 dev->page = dev->orig_page;
a4456856
DW
3770 wbi = dev->written;
3771 dev->written = NULL;
4f024f37 3772 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3773 dev->sector + STRIPE_SECTORS) {
3774 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 3775 md_write_end(conf->mddev);
016c76ac 3776 bio_endio(wbi);
a4456856
DW
3777 wbi = wbi2;
3778 }
7eaf7e8e
SL
3779 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3780 STRIPE_SECTORS,
a4456856 3781 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3782 0);
59fc630b 3783 if (head_sh->batch_head) {
3784 sh = list_first_entry(&sh->batch_list,
3785 struct stripe_head,
3786 batch_list);
3787 if (sh != head_sh) {
3788 dev = &sh->dev[i];
3789 goto returnbi;
3790 }
3791 }
3792 sh = head_sh;
3793 dev = &sh->dev[i];
f8dfcffd
N
3794 } else if (test_bit(R5_Discard, &dev->flags))
3795 discard_pending = 1;
3796 }
f6bed0ef 3797
ff875738 3798 log_stripe_write_finished(sh);
0576b1c6 3799
f8dfcffd
N
3800 if (!discard_pending &&
3801 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3802 int hash;
f8dfcffd
N
3803 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3804 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3805 if (sh->qd_idx >= 0) {
3806 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3807 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3808 }
3809 /* now that discard is done we can proceed with any sync */
3810 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3811 /*
3812 * SCSI discard will change some bio fields and the stripe has
3813 * no updated data, so remove it from hash list and the stripe
3814 * will be reinitialized
3815 */
59fc630b 3816unhash:
b8a9d66d
RG
3817 hash = sh->hash_lock_index;
3818 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3819 remove_hash(sh);
b8a9d66d 3820 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3821 if (head_sh->batch_head) {
3822 sh = list_first_entry(&sh->batch_list,
3823 struct stripe_head, batch_list);
3824 if (sh != head_sh)
3825 goto unhash;
3826 }
59fc630b 3827 sh = head_sh;
3828
f8dfcffd
N
3829 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3830 set_bit(STRIPE_HANDLE, &sh->state);
3831
3832 }
8b3e6cdc
DW
3833
3834 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3835 if (atomic_dec_and_test(&conf->pending_full_writes))
3836 md_wakeup_thread(conf->mddev->thread);
59fc630b 3837
787b76fa
N
3838 if (head_sh->batch_head && do_endio)
3839 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3840}
3841
86aa1397
SL
3842/*
3843 * For RMW in write back cache, we need extra page in prexor to store the
3844 * old data. This page is stored in dev->orig_page.
3845 *
3846 * This function checks whether we have data for prexor. The exact logic
3847 * is:
3848 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3849 */
3850static inline bool uptodate_for_rmw(struct r5dev *dev)
3851{
3852 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3853 (!test_bit(R5_InJournal, &dev->flags) ||
3854 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3855}
3856
d7bd398e
SL
3857static int handle_stripe_dirtying(struct r5conf *conf,
3858 struct stripe_head *sh,
3859 struct stripe_head_state *s,
3860 int disks)
a4456856
DW
3861{
3862 int rmw = 0, rcw = 0, i;
a7854487
AL
3863 sector_t recovery_cp = conf->mddev->recovery_cp;
3864
584acdd4 3865 /* Check whether resync is now happening or should start.
a7854487
AL
3866 * If yes, then the array is dirty (after unclean shutdown or
3867 * initial creation), so parity in some stripes might be inconsistent.
3868 * In this case, we need to always do reconstruct-write, to ensure
3869 * that in case of drive failure or read-error correction, we
3870 * generate correct data from the parity.
3871 */
584acdd4 3872 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3873 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3874 s->failed == 0)) {
a7854487 3875 /* Calculate the real rcw later - for now make it
c8ac1803
N
3876 * look like rcw is cheaper
3877 */
3878 rcw = 1; rmw = 2;
584acdd4
MS
3879 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3880 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3881 (unsigned long long)sh->sector);
c8ac1803 3882 } else for (i = disks; i--; ) {
a4456856
DW
3883 /* would I have to read this buffer for read_modify_write */
3884 struct r5dev *dev = &sh->dev[i];
39b99586 3885 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 3886 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 3887 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3888 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3889 !(uptodate_for_rmw(dev) ||
f38e1219 3890 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3891 if (test_bit(R5_Insync, &dev->flags))
3892 rmw++;
3893 else
3894 rmw += 2*disks; /* cannot read it */
3895 }
3896 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3897 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3898 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3899 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3900 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 3901 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3902 if (test_bit(R5_Insync, &dev->flags))
3903 rcw++;
a4456856
DW
3904 else
3905 rcw += 2*disks;
3906 }
3907 }
1e6d690b 3908
39b99586
SL
3909 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3910 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 3911 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3912 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3913 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3914 if (conf->mddev->queue)
3915 blk_add_trace_msg(conf->mddev->queue,
3916 "raid5 rmw %llu %d",
3917 (unsigned long long)sh->sector, rmw);
a4456856
DW
3918 for (i = disks; i--; ) {
3919 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
3920 if (test_bit(R5_InJournal, &dev->flags) &&
3921 dev->page == dev->orig_page &&
3922 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3923 /* alloc page for prexor */
d7bd398e
SL
3924 struct page *p = alloc_page(GFP_NOIO);
3925
3926 if (p) {
3927 dev->orig_page = p;
3928 continue;
3929 }
3930
3931 /*
3932 * alloc_page() failed, try use
3933 * disk_info->extra_page
3934 */
3935 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3936 &conf->cache_state)) {
3937 r5c_use_extra_page(sh);
3938 break;
3939 }
1e6d690b 3940
d7bd398e
SL
3941 /* extra_page in use, add to delayed_list */
3942 set_bit(STRIPE_DELAYED, &sh->state);
3943 s->waiting_extra_page = 1;
3944 return -EAGAIN;
1e6d690b 3945 }
d7bd398e 3946 }
1e6d690b 3947
d7bd398e
SL
3948 for (i = disks; i--; ) {
3949 struct r5dev *dev = &sh->dev[i];
39b99586 3950 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
3951 i == sh->pd_idx || i == sh->qd_idx ||
3952 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3953 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3954 !(uptodate_for_rmw(dev) ||
1e6d690b 3955 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3956 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3957 if (test_bit(STRIPE_PREREAD_ACTIVE,
3958 &sh->state)) {
3959 pr_debug("Read_old block %d for r-m-w\n",
3960 i);
a4456856
DW
3961 set_bit(R5_LOCKED, &dev->flags);
3962 set_bit(R5_Wantread, &dev->flags);
3963 s->locked++;
3964 } else {
3965 set_bit(STRIPE_DELAYED, &sh->state);
3966 set_bit(STRIPE_HANDLE, &sh->state);
3967 }
3968 }
3969 }
a9add5d9 3970 }
41257580 3971 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3972 /* want reconstruct write, but need to get some data */
a9add5d9 3973 int qread =0;
c8ac1803 3974 rcw = 0;
a4456856
DW
3975 for (i = disks; i--; ) {
3976 struct r5dev *dev = &sh->dev[i];
3977 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3978 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3979 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3980 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3981 test_bit(R5_Wantcompute, &dev->flags))) {
3982 rcw++;
67f45548
N
3983 if (test_bit(R5_Insync, &dev->flags) &&
3984 test_bit(STRIPE_PREREAD_ACTIVE,
3985 &sh->state)) {
45b4233c 3986 pr_debug("Read_old block "
a4456856
DW
3987 "%d for Reconstruct\n", i);
3988 set_bit(R5_LOCKED, &dev->flags);
3989 set_bit(R5_Wantread, &dev->flags);
3990 s->locked++;
a9add5d9 3991 qread++;
a4456856
DW
3992 } else {
3993 set_bit(STRIPE_DELAYED, &sh->state);
3994 set_bit(STRIPE_HANDLE, &sh->state);
3995 }
3996 }
3997 }
e3620a3a 3998 if (rcw && conf->mddev->queue)
a9add5d9
N
3999 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4000 (unsigned long long)sh->sector,
4001 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 4002 }
b1b02fe9
N
4003
4004 if (rcw > disks && rmw > disks &&
4005 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4006 set_bit(STRIPE_DELAYED, &sh->state);
4007
a4456856
DW
4008 /* now if nothing is locked, and if we have enough data,
4009 * we can start a write request
4010 */
f38e1219
DW
4011 /* since handle_stripe can be called at any time we need to handle the
4012 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4013 * subsequent call wants to start a write request. raid_run_ops only
4014 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4015 * simultaneously. If this is not the case then new writes need to be
4016 * held off until the compute completes.
4017 */
976ea8d4
DW
4018 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4019 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4020 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4021 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4022 return 0;
a4456856
DW
4023}
4024
d1688a6d 4025static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4026 struct stripe_head_state *s, int disks)
4027{
ecc65c9b 4028 struct r5dev *dev = NULL;
bd2ab670 4029
59fc630b 4030 BUG_ON(sh->batch_head);
a4456856 4031 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4032
ecc65c9b
DW
4033 switch (sh->check_state) {
4034 case check_state_idle:
4035 /* start a new check operation if there are no failures */
bd2ab670 4036 if (s->failed == 0) {
bd2ab670 4037 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4038 sh->check_state = check_state_run;
4039 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4040 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4041 s->uptodate--;
ecc65c9b 4042 break;
bd2ab670 4043 }
f2b3b44d 4044 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
4045 /* fall through */
4046 case check_state_compute_result:
4047 sh->check_state = check_state_idle;
4048 if (!dev)
4049 dev = &sh->dev[sh->pd_idx];
4050
4051 /* check that a write has not made the stripe insync */
4052 if (test_bit(STRIPE_INSYNC, &sh->state))
4053 break;
c8894419 4054
a4456856 4055 /* either failed parity check, or recovery is happening */
a4456856
DW
4056 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4057 BUG_ON(s->uptodate != disks);
4058
4059 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4060 s->locked++;
a4456856 4061 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4062
a4456856 4063 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4064 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4065 break;
4066 case check_state_run:
4067 break; /* we will be called again upon completion */
4068 case check_state_check_result:
4069 sh->check_state = check_state_idle;
4070
4071 /* if a failure occurred during the check operation, leave
4072 * STRIPE_INSYNC not set and let the stripe be handled again
4073 */
4074 if (s->failed)
4075 break;
4076
4077 /* handle a successful check operation, if parity is correct
4078 * we are done. Otherwise update the mismatch count and repair
4079 * parity if !MD_RECOVERY_CHECK
4080 */
ad283ea4 4081 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4082 /* parity is correct (on disc,
4083 * not in buffer any more)
4084 */
4085 set_bit(STRIPE_INSYNC, &sh->state);
4086 else {
7f7583d4 4087 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
e1539036 4088 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
ecc65c9b
DW
4089 /* don't try to repair!! */
4090 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4091 pr_warn_ratelimited("%s: mismatch sector in range "
4092 "%llu-%llu\n", mdname(conf->mddev),
4093 (unsigned long long) sh->sector,
4094 (unsigned long long) sh->sector +
4095 STRIPE_SECTORS);
4096 } else {
ecc65c9b 4097 sh->check_state = check_state_compute_run;
976ea8d4 4098 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4099 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4100 set_bit(R5_Wantcompute,
4101 &sh->dev[sh->pd_idx].flags);
4102 sh->ops.target = sh->pd_idx;
ac6b53b6 4103 sh->ops.target2 = -1;
ecc65c9b
DW
4104 s->uptodate++;
4105 }
4106 }
4107 break;
4108 case check_state_compute_run:
4109 break;
4110 default:
cc6167b4 4111 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4112 __func__, sh->check_state,
4113 (unsigned long long) sh->sector);
4114 BUG();
a4456856
DW
4115 }
4116}
4117
d1688a6d 4118static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4119 struct stripe_head_state *s,
f2b3b44d 4120 int disks)
a4456856 4121{
a4456856 4122 int pd_idx = sh->pd_idx;
34e04e87 4123 int qd_idx = sh->qd_idx;
d82dfee0 4124 struct r5dev *dev;
a4456856 4125
59fc630b 4126 BUG_ON(sh->batch_head);
a4456856
DW
4127 set_bit(STRIPE_HANDLE, &sh->state);
4128
4129 BUG_ON(s->failed > 2);
d82dfee0 4130
a4456856
DW
4131 /* Want to check and possibly repair P and Q.
4132 * However there could be one 'failed' device, in which
4133 * case we can only check one of them, possibly using the
4134 * other to generate missing data
4135 */
4136
d82dfee0
DW
4137 switch (sh->check_state) {
4138 case check_state_idle:
4139 /* start a new check operation if there are < 2 failures */
f2b3b44d 4140 if (s->failed == s->q_failed) {
d82dfee0 4141 /* The only possible failed device holds Q, so it
a4456856
DW
4142 * makes sense to check P (If anything else were failed,
4143 * we would have used P to recreate it).
4144 */
d82dfee0 4145 sh->check_state = check_state_run;
a4456856 4146 }
f2b3b44d 4147 if (!s->q_failed && s->failed < 2) {
d82dfee0 4148 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4149 * anything, so it makes sense to check it
4150 */
d82dfee0
DW
4151 if (sh->check_state == check_state_run)
4152 sh->check_state = check_state_run_pq;
4153 else
4154 sh->check_state = check_state_run_q;
a4456856 4155 }
a4456856 4156
d82dfee0
DW
4157 /* discard potentially stale zero_sum_result */
4158 sh->ops.zero_sum_result = 0;
a4456856 4159
d82dfee0
DW
4160 if (sh->check_state == check_state_run) {
4161 /* async_xor_zero_sum destroys the contents of P */
4162 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4163 s->uptodate--;
a4456856 4164 }
d82dfee0
DW
4165 if (sh->check_state >= check_state_run &&
4166 sh->check_state <= check_state_run_pq) {
4167 /* async_syndrome_zero_sum preserves P and Q, so
4168 * no need to mark them !uptodate here
4169 */
4170 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4171 break;
a4456856
DW
4172 }
4173
d82dfee0
DW
4174 /* we have 2-disk failure */
4175 BUG_ON(s->failed != 2);
4176 /* fall through */
4177 case check_state_compute_result:
4178 sh->check_state = check_state_idle;
a4456856 4179
d82dfee0
DW
4180 /* check that a write has not made the stripe insync */
4181 if (test_bit(STRIPE_INSYNC, &sh->state))
4182 break;
a4456856
DW
4183
4184 /* now write out any block on a failed drive,
d82dfee0 4185 * or P or Q if they were recomputed
a4456856 4186 */
d82dfee0 4187 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 4188 if (s->failed == 2) {
f2b3b44d 4189 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4190 s->locked++;
4191 set_bit(R5_LOCKED, &dev->flags);
4192 set_bit(R5_Wantwrite, &dev->flags);
4193 }
4194 if (s->failed >= 1) {
f2b3b44d 4195 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4196 s->locked++;
4197 set_bit(R5_LOCKED, &dev->flags);
4198 set_bit(R5_Wantwrite, &dev->flags);
4199 }
d82dfee0 4200 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4201 dev = &sh->dev[pd_idx];
4202 s->locked++;
4203 set_bit(R5_LOCKED, &dev->flags);
4204 set_bit(R5_Wantwrite, &dev->flags);
4205 }
d82dfee0 4206 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4207 dev = &sh->dev[qd_idx];
4208 s->locked++;
4209 set_bit(R5_LOCKED, &dev->flags);
4210 set_bit(R5_Wantwrite, &dev->flags);
4211 }
4212 clear_bit(STRIPE_DEGRADED, &sh->state);
4213
4214 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4215 break;
4216 case check_state_run:
4217 case check_state_run_q:
4218 case check_state_run_pq:
4219 break; /* we will be called again upon completion */
4220 case check_state_check_result:
4221 sh->check_state = check_state_idle;
4222
4223 /* handle a successful check operation, if parity is correct
4224 * we are done. Otherwise update the mismatch count and repair
4225 * parity if !MD_RECOVERY_CHECK
4226 */
4227 if (sh->ops.zero_sum_result == 0) {
4228 /* both parities are correct */
4229 if (!s->failed)
4230 set_bit(STRIPE_INSYNC, &sh->state);
4231 else {
4232 /* in contrast to the raid5 case we can validate
4233 * parity, but still have a failure to write
4234 * back
4235 */
4236 sh->check_state = check_state_compute_result;
4237 /* Returning at this point means that we may go
4238 * off and bring p and/or q uptodate again so
4239 * we make sure to check zero_sum_result again
4240 * to verify if p or q need writeback
4241 */
4242 }
4243 } else {
7f7583d4 4244 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
e1539036 4245 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
d82dfee0
DW
4246 /* don't try to repair!! */
4247 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4248 pr_warn_ratelimited("%s: mismatch sector in range "
4249 "%llu-%llu\n", mdname(conf->mddev),
4250 (unsigned long long) sh->sector,
4251 (unsigned long long) sh->sector +
4252 STRIPE_SECTORS);
4253 } else {
d82dfee0
DW
4254 int *target = &sh->ops.target;
4255
4256 sh->ops.target = -1;
4257 sh->ops.target2 = -1;
4258 sh->check_state = check_state_compute_run;
4259 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4260 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4261 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4262 set_bit(R5_Wantcompute,
4263 &sh->dev[pd_idx].flags);
4264 *target = pd_idx;
4265 target = &sh->ops.target2;
4266 s->uptodate++;
4267 }
4268 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4269 set_bit(R5_Wantcompute,
4270 &sh->dev[qd_idx].flags);
4271 *target = qd_idx;
4272 s->uptodate++;
4273 }
4274 }
4275 }
4276 break;
4277 case check_state_compute_run:
4278 break;
4279 default:
cc6167b4
N
4280 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4281 __func__, sh->check_state,
4282 (unsigned long long) sh->sector);
d82dfee0 4283 BUG();
a4456856
DW
4284 }
4285}
4286
d1688a6d 4287static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4288{
4289 int i;
4290
4291 /* We have read all the blocks in this stripe and now we need to
4292 * copy some of them into a target stripe for expand.
4293 */
f0a50d37 4294 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4295 BUG_ON(sh->batch_head);
a4456856
DW
4296 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4297 for (i = 0; i < sh->disks; i++)
34e04e87 4298 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4299 int dd_idx, j;
a4456856 4300 struct stripe_head *sh2;
a08abd8c 4301 struct async_submit_ctl submit;
a4456856 4302
6d036f7d 4303 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4304 sector_t s = raid5_compute_sector(conf, bn, 0,
4305 &dd_idx, NULL);
6d036f7d 4306 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4307 if (sh2 == NULL)
4308 /* so far only the early blocks of this stripe
4309 * have been requested. When later blocks
4310 * get requested, we will try again
4311 */
4312 continue;
4313 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4314 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4315 /* must have already done this block */
6d036f7d 4316 raid5_release_stripe(sh2);
a4456856
DW
4317 continue;
4318 }
f0a50d37
DW
4319
4320 /* place all the copies on one channel */
a08abd8c 4321 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4322 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 4323 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 4324 &submit);
f0a50d37 4325
a4456856
DW
4326 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4327 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4328 for (j = 0; j < conf->raid_disks; j++)
4329 if (j != sh2->pd_idx &&
86c374ba 4330 j != sh2->qd_idx &&
a4456856
DW
4331 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4332 break;
4333 if (j == conf->raid_disks) {
4334 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4335 set_bit(STRIPE_HANDLE, &sh2->state);
4336 }
6d036f7d 4337 raid5_release_stripe(sh2);
f0a50d37 4338
a4456856 4339 }
a2e08551 4340 /* done submitting copies, wait for them to complete */
749586b7 4341 async_tx_quiesce(&tx);
a4456856 4342}
1da177e4
LT
4343
4344/*
4345 * handle_stripe - do things to a stripe.
4346 *
9a3e1101
N
4347 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4348 * state of various bits to see what needs to be done.
1da177e4 4349 * Possible results:
9a3e1101
N
4350 * return some read requests which now have data
4351 * return some write requests which are safely on storage
1da177e4
LT
4352 * schedule a read on some buffers
4353 * schedule a write of some buffers
4354 * return confirmation of parity correctness
4355 *
1da177e4 4356 */
a4456856 4357
acfe726b 4358static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4359{
d1688a6d 4360 struct r5conf *conf = sh->raid_conf;
f416885e 4361 int disks = sh->disks;
474af965
N
4362 struct r5dev *dev;
4363 int i;
9a3e1101 4364 int do_recovery = 0;
1da177e4 4365
acfe726b
N
4366 memset(s, 0, sizeof(*s));
4367
dabc4ec6 4368 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4369 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4370 s->failed_num[0] = -1;
4371 s->failed_num[1] = -1;
6e74a9cf 4372 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4373
acfe726b 4374 /* Now to look around and see what can be done */
1da177e4 4375 rcu_read_lock();
16a53ecc 4376 for (i=disks; i--; ) {
3cb03002 4377 struct md_rdev *rdev;
31c176ec
N
4378 sector_t first_bad;
4379 int bad_sectors;
4380 int is_bad = 0;
acfe726b 4381
16a53ecc 4382 dev = &sh->dev[i];
1da177e4 4383
45b4233c 4384 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4385 i, dev->flags,
4386 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4387 /* maybe we can reply to a read
4388 *
4389 * new wantfill requests are only permitted while
4390 * ops_complete_biofill is guaranteed to be inactive
4391 */
4392 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4393 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4394 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4395
16a53ecc 4396 /* now count some things */
cc94015a
N
4397 if (test_bit(R5_LOCKED, &dev->flags))
4398 s->locked++;
4399 if (test_bit(R5_UPTODATE, &dev->flags))
4400 s->uptodate++;
2d6e4ecc 4401 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4402 s->compute++;
4403 BUG_ON(s->compute > 2);
2d6e4ecc 4404 }
1da177e4 4405
acfe726b 4406 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4407 s->to_fill++;
acfe726b 4408 else if (dev->toread)
cc94015a 4409 s->to_read++;
16a53ecc 4410 if (dev->towrite) {
cc94015a 4411 s->to_write++;
16a53ecc 4412 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4413 s->non_overwrite++;
16a53ecc 4414 }
a4456856 4415 if (dev->written)
cc94015a 4416 s->written++;
14a75d3e
N
4417 /* Prefer to use the replacement for reads, but only
4418 * if it is recovered enough and has no bad blocks.
4419 */
4420 rdev = rcu_dereference(conf->disks[i].replacement);
4421 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4422 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4423 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4424 &first_bad, &bad_sectors))
4425 set_bit(R5_ReadRepl, &dev->flags);
4426 else {
e6030cb0 4427 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4428 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4429 else
4430 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4431 rdev = rcu_dereference(conf->disks[i].rdev);
4432 clear_bit(R5_ReadRepl, &dev->flags);
4433 }
9283d8c5
N
4434 if (rdev && test_bit(Faulty, &rdev->flags))
4435 rdev = NULL;
31c176ec
N
4436 if (rdev) {
4437 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4438 &first_bad, &bad_sectors);
4439 if (s->blocked_rdev == NULL
4440 && (test_bit(Blocked, &rdev->flags)
4441 || is_bad < 0)) {
4442 if (is_bad < 0)
4443 set_bit(BlockedBadBlocks,
4444 &rdev->flags);
4445 s->blocked_rdev = rdev;
4446 atomic_inc(&rdev->nr_pending);
4447 }
6bfe0b49 4448 }
415e72d0
N
4449 clear_bit(R5_Insync, &dev->flags);
4450 if (!rdev)
4451 /* Not in-sync */;
31c176ec
N
4452 else if (is_bad) {
4453 /* also not in-sync */
18b9837e
N
4454 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4455 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4456 /* treat as in-sync, but with a read error
4457 * which we can now try to correct
4458 */
4459 set_bit(R5_Insync, &dev->flags);
4460 set_bit(R5_ReadError, &dev->flags);
4461 }
4462 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4463 set_bit(R5_Insync, &dev->flags);
30d7a483 4464 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4465 /* in sync if before recovery_offset */
30d7a483
N
4466 set_bit(R5_Insync, &dev->flags);
4467 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4468 test_bit(R5_Expanded, &dev->flags))
4469 /* If we've reshaped into here, we assume it is Insync.
4470 * We will shortly update recovery_offset to make
4471 * it official.
4472 */
4473 set_bit(R5_Insync, &dev->flags);
4474
1cc03eb9 4475 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4476 /* This flag does not apply to '.replacement'
4477 * only to .rdev, so make sure to check that*/
4478 struct md_rdev *rdev2 = rcu_dereference(
4479 conf->disks[i].rdev);
4480 if (rdev2 == rdev)
4481 clear_bit(R5_Insync, &dev->flags);
4482 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4483 s->handle_bad_blocks = 1;
14a75d3e 4484 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4485 } else
4486 clear_bit(R5_WriteError, &dev->flags);
4487 }
1cc03eb9 4488 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4489 /* This flag does not apply to '.replacement'
4490 * only to .rdev, so make sure to check that*/
4491 struct md_rdev *rdev2 = rcu_dereference(
4492 conf->disks[i].rdev);
4493 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4494 s->handle_bad_blocks = 1;
14a75d3e 4495 atomic_inc(&rdev2->nr_pending);
b84db560
N
4496 } else
4497 clear_bit(R5_MadeGood, &dev->flags);
4498 }
977df362
N
4499 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4500 struct md_rdev *rdev2 = rcu_dereference(
4501 conf->disks[i].replacement);
4502 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4503 s->handle_bad_blocks = 1;
4504 atomic_inc(&rdev2->nr_pending);
4505 } else
4506 clear_bit(R5_MadeGoodRepl, &dev->flags);
4507 }
415e72d0 4508 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4509 /* The ReadError flag will just be confusing now */
4510 clear_bit(R5_ReadError, &dev->flags);
4511 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4512 }
415e72d0
N
4513 if (test_bit(R5_ReadError, &dev->flags))
4514 clear_bit(R5_Insync, &dev->flags);
4515 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4516 if (s->failed < 2)
4517 s->failed_num[s->failed] = i;
4518 s->failed++;
9a3e1101
N
4519 if (rdev && !test_bit(Faulty, &rdev->flags))
4520 do_recovery = 1;
415e72d0 4521 }
2ded3703
SL
4522
4523 if (test_bit(R5_InJournal, &dev->flags))
4524 s->injournal++;
1e6d690b
SL
4525 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4526 s->just_cached++;
1da177e4 4527 }
9a3e1101
N
4528 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4529 /* If there is a failed device being replaced,
4530 * we must be recovering.
4531 * else if we are after recovery_cp, we must be syncing
c6d2e084 4532 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4533 * else we can only be replacing
4534 * sync and recovery both need to read all devices, and so
4535 * use the same flag.
4536 */
4537 if (do_recovery ||
c6d2e084 4538 sh->sector >= conf->mddev->recovery_cp ||
4539 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4540 s->syncing = 1;
4541 else
4542 s->replacing = 1;
4543 }
1da177e4 4544 rcu_read_unlock();
cc94015a
N
4545}
4546
59fc630b 4547static int clear_batch_ready(struct stripe_head *sh)
4548{
b15a9dbd
N
4549 /* Return '1' if this is a member of batch, or
4550 * '0' if it is a lone stripe or a head which can now be
4551 * handled.
4552 */
59fc630b 4553 struct stripe_head *tmp;
4554 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4555 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4556 spin_lock(&sh->stripe_lock);
4557 if (!sh->batch_head) {
4558 spin_unlock(&sh->stripe_lock);
4559 return 0;
4560 }
4561
4562 /*
4563 * this stripe could be added to a batch list before we check
4564 * BATCH_READY, skips it
4565 */
4566 if (sh->batch_head != sh) {
4567 spin_unlock(&sh->stripe_lock);
4568 return 1;
4569 }
4570 spin_lock(&sh->batch_lock);
4571 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4572 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4573 spin_unlock(&sh->batch_lock);
4574 spin_unlock(&sh->stripe_lock);
4575
4576 /*
4577 * BATCH_READY is cleared, no new stripes can be added.
4578 * batch_list can be accessed without lock
4579 */
4580 return 0;
4581}
4582
3960ce79
N
4583static void break_stripe_batch_list(struct stripe_head *head_sh,
4584 unsigned long handle_flags)
72ac7330 4585{
4e3d62ff 4586 struct stripe_head *sh, *next;
72ac7330 4587 int i;
fb642b92 4588 int do_wakeup = 0;
72ac7330 4589
bb27051f
N
4590 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4591
72ac7330 4592 list_del_init(&sh->batch_list);
4593
fb3229d5 4594 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4595 (1 << STRIPE_SYNCING) |
4596 (1 << STRIPE_REPLACED) |
1b956f7a
N
4597 (1 << STRIPE_DELAYED) |
4598 (1 << STRIPE_BIT_DELAY) |
4599 (1 << STRIPE_FULL_WRITE) |
4600 (1 << STRIPE_BIOFILL_RUN) |
4601 (1 << STRIPE_COMPUTE_RUN) |
4602 (1 << STRIPE_OPS_REQ_PENDING) |
4603 (1 << STRIPE_DISCARD) |
4604 (1 << STRIPE_BATCH_READY) |
4605 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4606 (1 << STRIPE_BITMAP_PENDING)),
4607 "stripe state: %lx\n", sh->state);
4608 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4609 (1 << STRIPE_REPLACED)),
4610 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4611
4612 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4613 (1 << STRIPE_PREREAD_ACTIVE) |
1b956f7a
N
4614 (1 << STRIPE_DEGRADED)),
4615 head_sh->state & (1 << STRIPE_INSYNC));
4616
72ac7330 4617 sh->check_state = head_sh->check_state;
4618 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4619 for (i = 0; i < sh->disks; i++) {
4620 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4621 do_wakeup = 1;
72ac7330 4622 sh->dev[i].flags = head_sh->dev[i].flags &
4623 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4624 }
72ac7330 4625 spin_lock_irq(&sh->stripe_lock);
4626 sh->batch_head = NULL;
4627 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4628 if (handle_flags == 0 ||
4629 sh->state & handle_flags)
4630 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4631 raid5_release_stripe(sh);
72ac7330 4632 }
fb642b92
N
4633 spin_lock_irq(&head_sh->stripe_lock);
4634 head_sh->batch_head = NULL;
4635 spin_unlock_irq(&head_sh->stripe_lock);
4636 for (i = 0; i < head_sh->disks; i++)
4637 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4638 do_wakeup = 1;
3960ce79
N
4639 if (head_sh->state & handle_flags)
4640 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4641
4642 if (do_wakeup)
4643 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4644}
4645
cc94015a
N
4646static void handle_stripe(struct stripe_head *sh)
4647{
4648 struct stripe_head_state s;
d1688a6d 4649 struct r5conf *conf = sh->raid_conf;
3687c061 4650 int i;
84789554
N
4651 int prexor;
4652 int disks = sh->disks;
474af965 4653 struct r5dev *pdev, *qdev;
cc94015a
N
4654
4655 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4656 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4657 /* already being handled, ensure it gets handled
4658 * again when current action finishes */
4659 set_bit(STRIPE_HANDLE, &sh->state);
4660 return;
4661 }
4662
59fc630b 4663 if (clear_batch_ready(sh) ) {
4664 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4665 return;
4666 }
4667
4e3d62ff 4668 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4669 break_stripe_batch_list(sh, 0);
72ac7330 4670
dabc4ec6 4671 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd 4672 spin_lock(&sh->stripe_lock);
5ddf0440
SL
4673 /*
4674 * Cannot process 'sync' concurrently with 'discard'.
4675 * Flush data in r5cache before 'sync'.
4676 */
4677 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4678 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4679 !test_bit(STRIPE_DISCARD, &sh->state) &&
f8dfcffd
N
4680 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4681 set_bit(STRIPE_SYNCING, &sh->state);
4682 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4683 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4684 }
4685 spin_unlock(&sh->stripe_lock);
cc94015a
N
4686 }
4687 clear_bit(STRIPE_DELAYED, &sh->state);
4688
4689 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4690 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4691 (unsigned long long)sh->sector, sh->state,
4692 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4693 sh->check_state, sh->reconstruct_state);
3687c061 4694
acfe726b 4695 analyse_stripe(sh, &s);
c5a31000 4696
b70abcb2
SL
4697 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4698 goto finish;
4699
16d997b7
N
4700 if (s.handle_bad_blocks ||
4701 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4702 set_bit(STRIPE_HANDLE, &sh->state);
4703 goto finish;
4704 }
4705
474af965
N
4706 if (unlikely(s.blocked_rdev)) {
4707 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4708 s.replacing || s.to_write || s.written) {
474af965
N
4709 set_bit(STRIPE_HANDLE, &sh->state);
4710 goto finish;
4711 }
4712 /* There is nothing for the blocked_rdev to block */
4713 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4714 s.blocked_rdev = NULL;
4715 }
4716
4717 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4718 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4719 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4720 }
4721
4722 pr_debug("locked=%d uptodate=%d to_read=%d"
4723 " to_write=%d failed=%d failed_num=%d,%d\n",
4724 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4725 s.failed_num[0], s.failed_num[1]);
70d466f7
SL
4726 /*
4727 * check if the array has lost more than max_degraded devices and,
474af965 4728 * if so, some requests might need to be failed.
70d466f7
SL
4729 *
4730 * When journal device failed (log_failed), we will only process
4731 * the stripe if there is data need write to raid disks
474af965 4732 */
70d466f7
SL
4733 if (s.failed > conf->max_degraded ||
4734 (s.log_failed && s.injournal == 0)) {
9a3f530f
N
4735 sh->check_state = 0;
4736 sh->reconstruct_state = 0;
626f2092 4737 break_stripe_batch_list(sh, 0);
9a3f530f 4738 if (s.to_read+s.to_write+s.written)
bd83d0a2 4739 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4740 if (s.syncing + s.replacing)
9a3f530f
N
4741 handle_failed_sync(conf, sh, &s);
4742 }
474af965 4743
84789554
N
4744 /* Now we check to see if any write operations have recently
4745 * completed
4746 */
4747 prexor = 0;
4748 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4749 prexor = 1;
4750 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4751 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4752 sh->reconstruct_state = reconstruct_state_idle;
4753
4754 /* All the 'written' buffers and the parity block are ready to
4755 * be written back to disk
4756 */
9e444768
SL
4757 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4758 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4759 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4760 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4761 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4762 for (i = disks; i--; ) {
4763 struct r5dev *dev = &sh->dev[i];
4764 if (test_bit(R5_LOCKED, &dev->flags) &&
4765 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
4766 dev->written || test_bit(R5_InJournal,
4767 &dev->flags))) {
84789554
N
4768 pr_debug("Writing block %d\n", i);
4769 set_bit(R5_Wantwrite, &dev->flags);
4770 if (prexor)
4771 continue;
9c4bdf69
N
4772 if (s.failed > 1)
4773 continue;
84789554
N
4774 if (!test_bit(R5_Insync, &dev->flags) ||
4775 ((i == sh->pd_idx || i == sh->qd_idx) &&
4776 s.failed == 0))
4777 set_bit(STRIPE_INSYNC, &sh->state);
4778 }
4779 }
4780 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4781 s.dec_preread_active = 1;
4782 }
4783
ef5b7c69
N
4784 /*
4785 * might be able to return some write requests if the parity blocks
4786 * are safe, or on a failed drive
4787 */
4788 pdev = &sh->dev[sh->pd_idx];
4789 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4790 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4791 qdev = &sh->dev[sh->qd_idx];
4792 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4793 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4794 || conf->level < 6;
4795
4796 if (s.written &&
4797 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4798 && !test_bit(R5_LOCKED, &pdev->flags)
4799 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4800 test_bit(R5_Discard, &pdev->flags))))) &&
4801 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4802 && !test_bit(R5_LOCKED, &qdev->flags)
4803 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4804 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 4805 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 4806
1e6d690b 4807 if (s.just_cached)
bd83d0a2 4808 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 4809 log_stripe_write_finished(sh);
1e6d690b 4810
ef5b7c69
N
4811 /* Now we might consider reading some blocks, either to check/generate
4812 * parity, or to satisfy requests
4813 * or to load a block that is being partially written.
4814 */
4815 if (s.to_read || s.non_overwrite
4816 || (conf->level == 6 && s.to_write && s.failed)
4817 || (s.syncing && (s.uptodate + s.compute < disks))
4818 || s.replacing
4819 || s.expanding)
4820 handle_stripe_fill(sh, &s, disks);
4821
2ded3703
SL
4822 /*
4823 * When the stripe finishes full journal write cycle (write to journal
4824 * and raid disk), this is the clean up procedure so it is ready for
4825 * next operation.
4826 */
4827 r5c_finish_stripe_write_out(conf, sh, &s);
4828
4829 /*
4830 * Now to consider new write requests, cache write back and what else,
4831 * if anything should be read. We do not handle new writes when:
84789554
N
4832 * 1/ A 'write' operation (copy+xor) is already in flight.
4833 * 2/ A 'check' operation is in flight, as it may clobber the parity
4834 * block.
2ded3703 4835 * 3/ A r5c cache log write is in flight.
84789554 4836 */
2ded3703
SL
4837
4838 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4839 if (!r5c_is_writeback(conf->log)) {
4840 if (s.to_write)
4841 handle_stripe_dirtying(conf, sh, &s, disks);
4842 } else { /* write back cache */
4843 int ret = 0;
4844
4845 /* First, try handle writes in caching phase */
4846 if (s.to_write)
4847 ret = r5c_try_caching_write(conf, sh, &s,
4848 disks);
4849 /*
4850 * If caching phase failed: ret == -EAGAIN
4851 * OR
4852 * stripe under reclaim: !caching && injournal
4853 *
4854 * fall back to handle_stripe_dirtying()
4855 */
4856 if (ret == -EAGAIN ||
4857 /* stripe under reclaim: !caching && injournal */
4858 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
4859 s.injournal > 0)) {
4860 ret = handle_stripe_dirtying(conf, sh, &s,
4861 disks);
4862 if (ret == -EAGAIN)
4863 goto finish;
4864 }
2ded3703
SL
4865 }
4866 }
84789554
N
4867
4868 /* maybe we need to check and possibly fix the parity for this stripe
4869 * Any reads will already have been scheduled, so we just see if enough
4870 * data is available. The parity check is held off while parity
4871 * dependent operations are in flight.
4872 */
4873 if (sh->check_state ||
4874 (s.syncing && s.locked == 0 &&
4875 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4876 !test_bit(STRIPE_INSYNC, &sh->state))) {
4877 if (conf->level == 6)
4878 handle_parity_checks6(conf, sh, &s, disks);
4879 else
4880 handle_parity_checks5(conf, sh, &s, disks);
4881 }
c5a31000 4882
f94c0b66
N
4883 if ((s.replacing || s.syncing) && s.locked == 0
4884 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4885 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4886 /* Write out to replacement devices where possible */
4887 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4888 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4889 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4890 set_bit(R5_WantReplace, &sh->dev[i].flags);
4891 set_bit(R5_LOCKED, &sh->dev[i].flags);
4892 s.locked++;
4893 }
f94c0b66
N
4894 if (s.replacing)
4895 set_bit(STRIPE_INSYNC, &sh->state);
4896 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4897 }
4898 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4899 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4900 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4901 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4902 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4903 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4904 wake_up(&conf->wait_for_overlap);
c5a31000
N
4905 }
4906
4907 /* If the failed drives are just a ReadError, then we might need
4908 * to progress the repair/check process
4909 */
4910 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4911 for (i = 0; i < s.failed; i++) {
4912 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4913 if (test_bit(R5_ReadError, &dev->flags)
4914 && !test_bit(R5_LOCKED, &dev->flags)
4915 && test_bit(R5_UPTODATE, &dev->flags)
4916 ) {
4917 if (!test_bit(R5_ReWrite, &dev->flags)) {
4918 set_bit(R5_Wantwrite, &dev->flags);
4919 set_bit(R5_ReWrite, &dev->flags);
4920 set_bit(R5_LOCKED, &dev->flags);
4921 s.locked++;
4922 } else {
4923 /* let's read it back */
4924 set_bit(R5_Wantread, &dev->flags);
4925 set_bit(R5_LOCKED, &dev->flags);
4926 s.locked++;
4927 }
4928 }
4929 }
4930
3687c061
N
4931 /* Finish reconstruct operations initiated by the expansion process */
4932 if (sh->reconstruct_state == reconstruct_state_result) {
4933 struct stripe_head *sh_src
6d036f7d 4934 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4935 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4936 /* sh cannot be written until sh_src has been read.
4937 * so arrange for sh to be delayed a little
4938 */
4939 set_bit(STRIPE_DELAYED, &sh->state);
4940 set_bit(STRIPE_HANDLE, &sh->state);
4941 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4942 &sh_src->state))
4943 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4944 raid5_release_stripe(sh_src);
3687c061
N
4945 goto finish;
4946 }
4947 if (sh_src)
6d036f7d 4948 raid5_release_stripe(sh_src);
3687c061
N
4949
4950 sh->reconstruct_state = reconstruct_state_idle;
4951 clear_bit(STRIPE_EXPANDING, &sh->state);
4952 for (i = conf->raid_disks; i--; ) {
4953 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4954 set_bit(R5_LOCKED, &sh->dev[i].flags);
4955 s.locked++;
4956 }
4957 }
f416885e 4958
3687c061
N
4959 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4960 !sh->reconstruct_state) {
4961 /* Need to write out all blocks after computing parity */
4962 sh->disks = conf->raid_disks;
4963 stripe_set_idx(sh->sector, conf, 0, sh);
4964 schedule_reconstruction(sh, &s, 1, 1);
4965 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4966 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4967 atomic_dec(&conf->reshape_stripes);
4968 wake_up(&conf->wait_for_overlap);
4969 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4970 }
4971
4972 if (s.expanding && s.locked == 0 &&
4973 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4974 handle_stripe_expansion(conf, sh);
16a53ecc 4975
3687c061 4976finish:
6bfe0b49 4977 /* wait for this device to become unblocked */
5f066c63
N
4978 if (unlikely(s.blocked_rdev)) {
4979 if (conf->mddev->external)
4980 md_wait_for_blocked_rdev(s.blocked_rdev,
4981 conf->mddev);
4982 else
4983 /* Internal metadata will immediately
4984 * be written by raid5d, so we don't
4985 * need to wait here.
4986 */
4987 rdev_dec_pending(s.blocked_rdev,
4988 conf->mddev);
4989 }
6bfe0b49 4990
bc2607f3
N
4991 if (s.handle_bad_blocks)
4992 for (i = disks; i--; ) {
3cb03002 4993 struct md_rdev *rdev;
bc2607f3
N
4994 struct r5dev *dev = &sh->dev[i];
4995 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4996 /* We own a safe reference to the rdev */
4997 rdev = conf->disks[i].rdev;
4998 if (!rdev_set_badblocks(rdev, sh->sector,
4999 STRIPE_SECTORS, 0))
5000 md_error(conf->mddev, rdev);
5001 rdev_dec_pending(rdev, conf->mddev);
5002 }
b84db560
N
5003 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5004 rdev = conf->disks[i].rdev;
5005 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 5006 STRIPE_SECTORS, 0);
b84db560
N
5007 rdev_dec_pending(rdev, conf->mddev);
5008 }
977df362
N
5009 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5010 rdev = conf->disks[i].replacement;
dd054fce
N
5011 if (!rdev)
5012 /* rdev have been moved down */
5013 rdev = conf->disks[i].rdev;
977df362 5014 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 5015 STRIPE_SECTORS, 0);
977df362
N
5016 rdev_dec_pending(rdev, conf->mddev);
5017 }
bc2607f3
N
5018 }
5019
6c0069c0
YT
5020 if (s.ops_request)
5021 raid_run_ops(sh, s.ops_request);
5022
f0e43bcd 5023 ops_run_io(sh, &s);
16a53ecc 5024
c5709ef6 5025 if (s.dec_preread_active) {
729a1866 5026 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5027 * is waiting on a flush, it won't continue until the writes
729a1866
N
5028 * have actually been submitted.
5029 */
5030 atomic_dec(&conf->preread_active_stripes);
5031 if (atomic_read(&conf->preread_active_stripes) <
5032 IO_THRESHOLD)
5033 md_wakeup_thread(conf->mddev->thread);
5034 }
5035
257a4b42 5036 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5037}
5038
d1688a6d 5039static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
5040{
5041 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5042 while (!list_empty(&conf->delayed_list)) {
5043 struct list_head *l = conf->delayed_list.next;
5044 struct stripe_head *sh;
5045 sh = list_entry(l, struct stripe_head, lru);
5046 list_del_init(l);
5047 clear_bit(STRIPE_DELAYED, &sh->state);
5048 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5049 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5050 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5051 raid5_wakeup_stripe_thread(sh);
16a53ecc 5052 }
482c0834 5053 }
16a53ecc
N
5054}
5055
566c09c5
SL
5056static void activate_bit_delay(struct r5conf *conf,
5057 struct list_head *temp_inactive_list)
16a53ecc
N
5058{
5059 /* device_lock is held */
5060 struct list_head head;
5061 list_add(&head, &conf->bitmap_list);
5062 list_del_init(&conf->bitmap_list);
5063 while (!list_empty(&head)) {
5064 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5065 int hash;
16a53ecc
N
5066 list_del_init(&sh->lru);
5067 atomic_inc(&sh->count);
566c09c5
SL
5068 hash = sh->hash_lock_index;
5069 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5070 }
5071}
5072
5c675f83 5073static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 5074{
d1688a6d 5075 struct r5conf *conf = mddev->private;
f022b2fd
N
5076
5077 /* No difference between reads and writes. Just check
5078 * how busy the stripe_cache is
5079 */
3fa841d7 5080
5423399a 5081 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd 5082 return 1;
a39f7afd
SL
5083
5084 /* Also checks whether there is pressure on r5cache log space */
5085 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5086 return 1;
f022b2fd
N
5087 if (conf->quiesce)
5088 return 1;
4bda556a 5089 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
5090 return 1;
5091
5092 return 0;
5093}
5094
fd01b88c 5095static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5096{
3cb5edf4 5097 struct r5conf *conf = mddev->private;
4f024f37 5098 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 5099 unsigned int chunk_sectors;
aa8b57aa 5100 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5101
3cb5edf4 5102 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5103 return chunk_sectors >=
5104 ((sector & (chunk_sectors - 1)) + bio_sectors);
5105}
5106
46031f9a
RBJ
5107/*
5108 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5109 * later sampled by raid5d.
5110 */
d1688a6d 5111static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5112{
5113 unsigned long flags;
5114
5115 spin_lock_irqsave(&conf->device_lock, flags);
5116
5117 bi->bi_next = conf->retry_read_aligned_list;
5118 conf->retry_read_aligned_list = bi;
5119
5120 spin_unlock_irqrestore(&conf->device_lock, flags);
5121 md_wakeup_thread(conf->mddev->thread);
5122}
5123
0472a42b
N
5124static struct bio *remove_bio_from_retry(struct r5conf *conf,
5125 unsigned int *offset)
46031f9a
RBJ
5126{
5127 struct bio *bi;
5128
5129 bi = conf->retry_read_aligned;
5130 if (bi) {
0472a42b 5131 *offset = conf->retry_read_offset;
46031f9a
RBJ
5132 conf->retry_read_aligned = NULL;
5133 return bi;
5134 }
5135 bi = conf->retry_read_aligned_list;
5136 if(bi) {
387bb173 5137 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5138 bi->bi_next = NULL;
0472a42b 5139 *offset = 0;
46031f9a
RBJ
5140 }
5141
5142 return bi;
5143}
5144
f679623f
RBJ
5145/*
5146 * The "raid5_align_endio" should check if the read succeeded and if it
5147 * did, call bio_endio on the original bio (having bio_put the new bio
5148 * first).
5149 * If the read failed..
5150 */
4246a0b6 5151static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5152{
5153 struct bio* raid_bi = bi->bi_private;
fd01b88c 5154 struct mddev *mddev;
d1688a6d 5155 struct r5conf *conf;
3cb03002 5156 struct md_rdev *rdev;
9b81c842 5157 int error = bi->bi_error;
46031f9a 5158
f679623f 5159 bio_put(bi);
46031f9a 5160
46031f9a
RBJ
5161 rdev = (void*)raid_bi->bi_next;
5162 raid_bi->bi_next = NULL;
2b7f2228
N
5163 mddev = rdev->mddev;
5164 conf = mddev->private;
46031f9a
RBJ
5165
5166 rdev_dec_pending(rdev, conf->mddev);
5167
9b81c842 5168 if (!error) {
4246a0b6 5169 bio_endio(raid_bi);
46031f9a 5170 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5171 wake_up(&conf->wait_for_quiescent);
6712ecf8 5172 return;
46031f9a
RBJ
5173 }
5174
45b4233c 5175 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5176
5177 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5178}
5179
7ef6b12a 5180static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5181{
d1688a6d 5182 struct r5conf *conf = mddev->private;
8553fe7e 5183 int dd_idx;
f679623f 5184 struct bio* align_bi;
3cb03002 5185 struct md_rdev *rdev;
671488cc 5186 sector_t end_sector;
f679623f
RBJ
5187
5188 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5189 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5190 return 0;
5191 }
5192 /*
d7a10308 5193 * use bio_clone_fast to make a copy of the bio
f679623f 5194 */
d7a10308 5195 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
f679623f
RBJ
5196 if (!align_bi)
5197 return 0;
5198 /*
5199 * set bi_end_io to a new function, and set bi_private to the
5200 * original bio.
5201 */
5202 align_bi->bi_end_io = raid5_align_endio;
5203 align_bi->bi_private = raid_bio;
5204 /*
5205 * compute position
5206 */
4f024f37
KO
5207 align_bi->bi_iter.bi_sector =
5208 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5209 0, &dd_idx, NULL);
f679623f 5210
f73a1c7d 5211 end_sector = bio_end_sector(align_bi);
f679623f 5212 rcu_read_lock();
671488cc
N
5213 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5214 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5215 rdev->recovery_offset < end_sector) {
5216 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5217 if (rdev &&
5218 (test_bit(Faulty, &rdev->flags) ||
5219 !(test_bit(In_sync, &rdev->flags) ||
5220 rdev->recovery_offset >= end_sector)))
5221 rdev = NULL;
5222 }
03b047f4
SL
5223
5224 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5225 rcu_read_unlock();
5226 bio_put(align_bi);
5227 return 0;
5228 }
5229
671488cc 5230 if (rdev) {
31c176ec
N
5231 sector_t first_bad;
5232 int bad_sectors;
5233
f679623f
RBJ
5234 atomic_inc(&rdev->nr_pending);
5235 rcu_read_unlock();
46031f9a
RBJ
5236 raid_bio->bi_next = (void*)rdev;
5237 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 5238 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 5239
7140aafc 5240 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 5241 bio_sectors(align_bi),
31c176ec 5242 &first_bad, &bad_sectors)) {
387bb173
NB
5243 bio_put(align_bi);
5244 rdev_dec_pending(rdev, mddev);
5245 return 0;
5246 }
5247
6c0544e2 5248 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 5249 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 5250
46031f9a 5251 spin_lock_irq(&conf->device_lock);
b1b46486 5252 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 5253 conf->quiesce == 0,
eed8c02e 5254 conf->device_lock);
46031f9a
RBJ
5255 atomic_inc(&conf->active_aligned_reads);
5256 spin_unlock_irq(&conf->device_lock);
5257
e3620a3a
JB
5258 if (mddev->gendisk)
5259 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5260 align_bi, disk_devt(mddev->gendisk),
4f024f37 5261 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
5262 generic_make_request(align_bi);
5263 return 1;
5264 } else {
5265 rcu_read_unlock();
46031f9a 5266 bio_put(align_bi);
f679623f
RBJ
5267 return 0;
5268 }
5269}
5270
7ef6b12a
ML
5271static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5272{
5273 struct bio *split;
dd7a8f5d
N
5274 sector_t sector = raid_bio->bi_iter.bi_sector;
5275 unsigned chunk_sects = mddev->chunk_sectors;
5276 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
7ef6b12a 5277
dd7a8f5d
N
5278 if (sectors < bio_sectors(raid_bio)) {
5279 struct r5conf *conf = mddev->private;
5280 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5281 bio_chain(split, raid_bio);
5282 generic_make_request(raid_bio);
5283 raid_bio = split;
5284 }
7ef6b12a 5285
dd7a8f5d
N
5286 if (!raid5_read_one_chunk(mddev, raid_bio))
5287 return raid_bio;
7ef6b12a
ML
5288
5289 return NULL;
5290}
5291
8b3e6cdc
DW
5292/* __get_priority_stripe - get the next stripe to process
5293 *
5294 * Full stripe writes are allowed to pass preread active stripes up until
5295 * the bypass_threshold is exceeded. In general the bypass_count
5296 * increments when the handle_list is handled before the hold_list; however, it
5297 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5298 * stripe with in flight i/o. The bypass_count will be reset when the
5299 * head of the hold_list has changed, i.e. the head was promoted to the
5300 * handle_list.
5301 */
851c30c9 5302static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5303{
535ae4eb 5304 struct stripe_head *sh, *tmp;
851c30c9 5305 struct list_head *handle_list = NULL;
535ae4eb 5306 struct r5worker_group *wg;
70d466f7
SL
5307 bool second_try = !r5c_is_writeback(conf->log) &&
5308 !r5l_log_disk_error(conf);
5309 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5310 r5l_log_disk_error(conf);
851c30c9 5311
535ae4eb
SL
5312again:
5313 wg = NULL;
5314 sh = NULL;
851c30c9 5315 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5316 handle_list = try_loprio ? &conf->loprio_list :
5317 &conf->handle_list;
851c30c9 5318 } else if (group != ANY_GROUP) {
535ae4eb
SL
5319 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5320 &conf->worker_groups[group].handle_list;
bfc90cb0 5321 wg = &conf->worker_groups[group];
851c30c9
SL
5322 } else {
5323 int i;
5324 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5325 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5326 &conf->worker_groups[i].handle_list;
bfc90cb0 5327 wg = &conf->worker_groups[i];
851c30c9
SL
5328 if (!list_empty(handle_list))
5329 break;
5330 }
5331 }
8b3e6cdc
DW
5332
5333 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5334 __func__,
851c30c9 5335 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5336 list_empty(&conf->hold_list) ? "empty" : "busy",
5337 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5338
851c30c9
SL
5339 if (!list_empty(handle_list)) {
5340 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5341
5342 if (list_empty(&conf->hold_list))
5343 conf->bypass_count = 0;
5344 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5345 if (conf->hold_list.next == conf->last_hold)
5346 conf->bypass_count++;
5347 else {
5348 conf->last_hold = conf->hold_list.next;
5349 conf->bypass_count -= conf->bypass_threshold;
5350 if (conf->bypass_count < 0)
5351 conf->bypass_count = 0;
5352 }
5353 }
5354 } else if (!list_empty(&conf->hold_list) &&
5355 ((conf->bypass_threshold &&
5356 conf->bypass_count > conf->bypass_threshold) ||
5357 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5358
5359 list_for_each_entry(tmp, &conf->hold_list, lru) {
5360 if (conf->worker_cnt_per_group == 0 ||
5361 group == ANY_GROUP ||
5362 !cpu_online(tmp->cpu) ||
5363 cpu_to_group(tmp->cpu) == group) {
5364 sh = tmp;
5365 break;
5366 }
5367 }
5368
5369 if (sh) {
5370 conf->bypass_count -= conf->bypass_threshold;
5371 if (conf->bypass_count < 0)
5372 conf->bypass_count = 0;
5373 }
bfc90cb0 5374 wg = NULL;
851c30c9
SL
5375 }
5376
535ae4eb
SL
5377 if (!sh) {
5378 if (second_try)
5379 return NULL;
5380 second_try = true;
5381 try_loprio = !try_loprio;
5382 goto again;
5383 }
8b3e6cdc 5384
bfc90cb0
SL
5385 if (wg) {
5386 wg->stripes_cnt--;
5387 sh->group = NULL;
5388 }
8b3e6cdc 5389 list_del_init(&sh->lru);
c7a6d35e 5390 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5391 return sh;
5392}
f679623f 5393
8811b596
SL
5394struct raid5_plug_cb {
5395 struct blk_plug_cb cb;
5396 struct list_head list;
566c09c5 5397 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5398};
5399
5400static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5401{
5402 struct raid5_plug_cb *cb = container_of(
5403 blk_cb, struct raid5_plug_cb, cb);
5404 struct stripe_head *sh;
5405 struct mddev *mddev = cb->cb.data;
5406 struct r5conf *conf = mddev->private;
a9add5d9 5407 int cnt = 0;
566c09c5 5408 int hash;
8811b596
SL
5409
5410 if (cb->list.next && !list_empty(&cb->list)) {
5411 spin_lock_irq(&conf->device_lock);
5412 while (!list_empty(&cb->list)) {
5413 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5414 list_del_init(&sh->lru);
5415 /*
5416 * avoid race release_stripe_plug() sees
5417 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5418 * is still in our list
5419 */
4e857c58 5420 smp_mb__before_atomic();
8811b596 5421 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5422 /*
5423 * STRIPE_ON_RELEASE_LIST could be set here. In that
5424 * case, the count is always > 1 here
5425 */
566c09c5
SL
5426 hash = sh->hash_lock_index;
5427 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5428 cnt++;
8811b596
SL
5429 }
5430 spin_unlock_irq(&conf->device_lock);
5431 }
566c09c5
SL
5432 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5433 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5434 if (mddev->queue)
5435 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5436 kfree(cb);
5437}
5438
5439static void release_stripe_plug(struct mddev *mddev,
5440 struct stripe_head *sh)
5441{
5442 struct blk_plug_cb *blk_cb = blk_check_plugged(
5443 raid5_unplug, mddev,
5444 sizeof(struct raid5_plug_cb));
5445 struct raid5_plug_cb *cb;
5446
5447 if (!blk_cb) {
6d036f7d 5448 raid5_release_stripe(sh);
8811b596
SL
5449 return;
5450 }
5451
5452 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5453
566c09c5
SL
5454 if (cb->list.next == NULL) {
5455 int i;
8811b596 5456 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5457 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5458 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5459 }
8811b596
SL
5460
5461 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5462 list_add_tail(&sh->lru, &cb->list);
5463 else
6d036f7d 5464 raid5_release_stripe(sh);
8811b596
SL
5465}
5466
620125f2
SL
5467static void make_discard_request(struct mddev *mddev, struct bio *bi)
5468{
5469 struct r5conf *conf = mddev->private;
5470 sector_t logical_sector, last_sector;
5471 struct stripe_head *sh;
620125f2
SL
5472 int stripe_sectors;
5473
5474 if (mddev->reshape_position != MaxSector)
5475 /* Skip discard while reshape is happening */
5476 return;
5477
4f024f37
KO
5478 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5479 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5480
5481 bi->bi_next = NULL;
49728050 5482 md_write_start(mddev, bi);
620125f2
SL
5483
5484 stripe_sectors = conf->chunk_sectors *
5485 (conf->raid_disks - conf->max_degraded);
5486 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5487 stripe_sectors);
5488 sector_div(last_sector, stripe_sectors);
5489
5490 logical_sector *= conf->chunk_sectors;
5491 last_sector *= conf->chunk_sectors;
5492
5493 for (; logical_sector < last_sector;
5494 logical_sector += STRIPE_SECTORS) {
5495 DEFINE_WAIT(w);
5496 int d;
5497 again:
6d036f7d 5498 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5499 prepare_to_wait(&conf->wait_for_overlap, &w,
5500 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5501 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5502 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5503 raid5_release_stripe(sh);
f8dfcffd
N
5504 schedule();
5505 goto again;
5506 }
5507 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5508 spin_lock_irq(&sh->stripe_lock);
5509 for (d = 0; d < conf->raid_disks; d++) {
5510 if (d == sh->pd_idx || d == sh->qd_idx)
5511 continue;
5512 if (sh->dev[d].towrite || sh->dev[d].toread) {
5513 set_bit(R5_Overlap, &sh->dev[d].flags);
5514 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5515 raid5_release_stripe(sh);
620125f2
SL
5516 schedule();
5517 goto again;
5518 }
5519 }
f8dfcffd 5520 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5521 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5522 sh->overwrite_disks = 0;
620125f2
SL
5523 for (d = 0; d < conf->raid_disks; d++) {
5524 if (d == sh->pd_idx || d == sh->qd_idx)
5525 continue;
5526 sh->dev[d].towrite = bi;
5527 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5528 bio_inc_remaining(bi);
49728050 5529 md_write_inc(mddev, bi);
7a87f434 5530 sh->overwrite_disks++;
620125f2
SL
5531 }
5532 spin_unlock_irq(&sh->stripe_lock);
5533 if (conf->mddev->bitmap) {
5534 for (d = 0;
5535 d < conf->raid_disks - conf->max_degraded;
5536 d++)
5537 bitmap_startwrite(mddev->bitmap,
5538 sh->sector,
5539 STRIPE_SECTORS,
5540 0);
5541 sh->bm_seq = conf->seq_flush + 1;
5542 set_bit(STRIPE_BIT_DELAY, &sh->state);
5543 }
5544
5545 set_bit(STRIPE_HANDLE, &sh->state);
5546 clear_bit(STRIPE_DELAYED, &sh->state);
5547 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5548 atomic_inc(&conf->preread_active_stripes);
5549 release_stripe_plug(mddev, sh);
5550 }
5551
49728050 5552 md_write_end(mddev);
016c76ac 5553 bio_endio(bi);
620125f2
SL
5554}
5555
849674e4 5556static void raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5557{
d1688a6d 5558 struct r5conf *conf = mddev->private;
911d4ee8 5559 int dd_idx;
1da177e4
LT
5560 sector_t new_sector;
5561 sector_t logical_sector, last_sector;
5562 struct stripe_head *sh;
a362357b 5563 const int rw = bio_data_dir(bi);
27c0f68f
SL
5564 DEFINE_WAIT(w);
5565 bool do_prepare;
3bddb7f8 5566 bool do_flush = false;
1da177e4 5567
1eff9d32 5568 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
828cbe98
SL
5569 int ret = r5l_handle_flush_request(conf->log, bi);
5570
5571 if (ret == 0)
5572 return;
5573 if (ret == -ENODEV) {
5574 md_flush_request(mddev, bi);
5575 return;
5576 }
5577 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5578 /*
5579 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5580 * we need to flush journal device
5581 */
5582 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5583 }
5584
9ffc8f7c
EM
5585 /*
5586 * If array is degraded, better not do chunk aligned read because
5587 * later we might have to read it again in order to reconstruct
5588 * data on failed drives.
5589 */
5590 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5591 mddev->reshape_position == MaxSector) {
5592 bi = chunk_aligned_read(mddev, bi);
5593 if (!bi)
5594 return;
5595 }
52488615 5596
796a5cf0 5597 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2
SL
5598 make_discard_request(mddev, bi);
5599 return;
5600 }
5601
4f024f37 5602 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5603 last_sector = bio_end_sector(bi);
1da177e4 5604 bi->bi_next = NULL;
49728050 5605 md_write_start(mddev, bi);
06d91a5f 5606
27c0f68f 5607 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5608 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5609 int previous;
c46501b2 5610 int seq;
b578d55f 5611
27c0f68f 5612 do_prepare = false;
7ecaa1e6 5613 retry:
c46501b2 5614 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5615 previous = 0;
27c0f68f
SL
5616 if (do_prepare)
5617 prepare_to_wait(&conf->wait_for_overlap, &w,
5618 TASK_UNINTERRUPTIBLE);
b0f9ec04 5619 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5620 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5621 * 64bit on a 32bit platform, and so it might be
5622 * possible to see a half-updated value
aeb878b0 5623 * Of course reshape_progress could change after
df8e7f76
N
5624 * the lock is dropped, so once we get a reference
5625 * to the stripe that we think it is, we will have
5626 * to check again.
5627 */
7ecaa1e6 5628 spin_lock_irq(&conf->device_lock);
2c810cdd 5629 if (mddev->reshape_backwards
fef9c61f
N
5630 ? logical_sector < conf->reshape_progress
5631 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5632 previous = 1;
5633 } else {
2c810cdd 5634 if (mddev->reshape_backwards
fef9c61f
N
5635 ? logical_sector < conf->reshape_safe
5636 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5637 spin_unlock_irq(&conf->device_lock);
5638 schedule();
27c0f68f 5639 do_prepare = true;
b578d55f
N
5640 goto retry;
5641 }
5642 }
7ecaa1e6
N
5643 spin_unlock_irq(&conf->device_lock);
5644 }
16a53ecc 5645
112bf897
N
5646 new_sector = raid5_compute_sector(conf, logical_sector,
5647 previous,
911d4ee8 5648 &dd_idx, NULL);
849674e4 5649 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5650 (unsigned long long)new_sector,
1da177e4
LT
5651 (unsigned long long)logical_sector);
5652
6d036f7d 5653 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5654 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5655 if (sh) {
b0f9ec04 5656 if (unlikely(previous)) {
7ecaa1e6 5657 /* expansion might have moved on while waiting for a
df8e7f76
N
5658 * stripe, so we must do the range check again.
5659 * Expansion could still move past after this
5660 * test, but as we are holding a reference to
5661 * 'sh', we know that if that happens,
5662 * STRIPE_EXPANDING will get set and the expansion
5663 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5664 */
5665 int must_retry = 0;
5666 spin_lock_irq(&conf->device_lock);
2c810cdd 5667 if (mddev->reshape_backwards
b0f9ec04
N
5668 ? logical_sector >= conf->reshape_progress
5669 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5670 /* mismatch, need to try again */
5671 must_retry = 1;
5672 spin_unlock_irq(&conf->device_lock);
5673 if (must_retry) {
6d036f7d 5674 raid5_release_stripe(sh);
7a3ab908 5675 schedule();
27c0f68f 5676 do_prepare = true;
7ecaa1e6
N
5677 goto retry;
5678 }
5679 }
c46501b2
N
5680 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5681 /* Might have got the wrong stripe_head
5682 * by accident
5683 */
6d036f7d 5684 raid5_release_stripe(sh);
c46501b2
N
5685 goto retry;
5686 }
e62e58a5 5687
ffd96e35 5688 if (rw == WRITE &&
a5c308d4 5689 logical_sector >= mddev->suspend_lo &&
e464eafd 5690 logical_sector < mddev->suspend_hi) {
6d036f7d 5691 raid5_release_stripe(sh);
e62e58a5
N
5692 /* As the suspend_* range is controlled by
5693 * userspace, we want an interruptible
5694 * wait.
5695 */
5696 flush_signals(current);
5697 prepare_to_wait(&conf->wait_for_overlap,
5698 &w, TASK_INTERRUPTIBLE);
5699 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5700 logical_sector < mddev->suspend_hi) {
e62e58a5 5701 schedule();
27c0f68f
SL
5702 do_prepare = true;
5703 }
e464eafd
N
5704 goto retry;
5705 }
7ecaa1e6
N
5706
5707 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5708 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5709 /* Stripe is busy expanding or
5710 * add failed due to overlap. Flush everything
1da177e4
LT
5711 * and wait a while
5712 */
482c0834 5713 md_wakeup_thread(mddev->thread);
6d036f7d 5714 raid5_release_stripe(sh);
1da177e4 5715 schedule();
27c0f68f 5716 do_prepare = true;
1da177e4
LT
5717 goto retry;
5718 }
3bddb7f8
SL
5719 if (do_flush) {
5720 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5721 /* we only need flush for one stripe */
5722 do_flush = false;
5723 }
5724
6ed3003c
N
5725 set_bit(STRIPE_HANDLE, &sh->state);
5726 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5727 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5728 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5729 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5730 atomic_inc(&conf->preread_active_stripes);
8811b596 5731 release_stripe_plug(mddev, sh);
1da177e4
LT
5732 } else {
5733 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5734 bi->bi_error = -EIO;
1da177e4
LT
5735 break;
5736 }
1da177e4 5737 }
27c0f68f 5738 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5739
49728050
N
5740 if (rw == WRITE)
5741 md_write_end(mddev);
016c76ac 5742 bio_endio(bi);
1da177e4
LT
5743}
5744
fd01b88c 5745static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5746
fd01b88c 5747static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5748{
52c03291
N
5749 /* reshaping is quite different to recovery/resync so it is
5750 * handled quite separately ... here.
5751 *
5752 * On each call to sync_request, we gather one chunk worth of
5753 * destination stripes and flag them as expanding.
5754 * Then we find all the source stripes and request reads.
5755 * As the reads complete, handle_stripe will copy the data
5756 * into the destination stripe and release that stripe.
5757 */
d1688a6d 5758 struct r5conf *conf = mddev->private;
1da177e4 5759 struct stripe_head *sh;
ccfcc3c1 5760 sector_t first_sector, last_sector;
f416885e
N
5761 int raid_disks = conf->previous_raid_disks;
5762 int data_disks = raid_disks - conf->max_degraded;
5763 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5764 int i;
5765 int dd_idx;
c8f517c4 5766 sector_t writepos, readpos, safepos;
ec32a2bd 5767 sector_t stripe_addr;
7a661381 5768 int reshape_sectors;
ab69ae12 5769 struct list_head stripes;
92140480 5770 sector_t retn;
52c03291 5771
fef9c61f
N
5772 if (sector_nr == 0) {
5773 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5774 if (mddev->reshape_backwards &&
fef9c61f
N
5775 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5776 sector_nr = raid5_size(mddev, 0, 0)
5777 - conf->reshape_progress;
6cbd8148
N
5778 } else if (mddev->reshape_backwards &&
5779 conf->reshape_progress == MaxSector) {
5780 /* shouldn't happen, but just in case, finish up.*/
5781 sector_nr = MaxSector;
2c810cdd 5782 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5783 conf->reshape_progress > 0)
5784 sector_nr = conf->reshape_progress;
f416885e 5785 sector_div(sector_nr, new_data_disks);
fef9c61f 5786 if (sector_nr) {
8dee7211
N
5787 mddev->curr_resync_completed = sector_nr;
5788 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5789 *skipped = 1;
92140480
N
5790 retn = sector_nr;
5791 goto finish;
fef9c61f 5792 }
52c03291
N
5793 }
5794
7a661381
N
5795 /* We need to process a full chunk at a time.
5796 * If old and new chunk sizes differ, we need to process the
5797 * largest of these
5798 */
3cb5edf4
N
5799
5800 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5801
b5254dd5
N
5802 /* We update the metadata at least every 10 seconds, or when
5803 * the data about to be copied would over-write the source of
5804 * the data at the front of the range. i.e. one new_stripe
5805 * along from reshape_progress new_maps to after where
5806 * reshape_safe old_maps to
52c03291 5807 */
fef9c61f 5808 writepos = conf->reshape_progress;
f416885e 5809 sector_div(writepos, new_data_disks);
c8f517c4
N
5810 readpos = conf->reshape_progress;
5811 sector_div(readpos, data_disks);
fef9c61f 5812 safepos = conf->reshape_safe;
f416885e 5813 sector_div(safepos, data_disks);
2c810cdd 5814 if (mddev->reshape_backwards) {
c74c0d76
N
5815 BUG_ON(writepos < reshape_sectors);
5816 writepos -= reshape_sectors;
c8f517c4 5817 readpos += reshape_sectors;
7a661381 5818 safepos += reshape_sectors;
fef9c61f 5819 } else {
7a661381 5820 writepos += reshape_sectors;
c74c0d76
N
5821 /* readpos and safepos are worst-case calculations.
5822 * A negative number is overly pessimistic, and causes
5823 * obvious problems for unsigned storage. So clip to 0.
5824 */
ed37d83e
N
5825 readpos -= min_t(sector_t, reshape_sectors, readpos);
5826 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5827 }
52c03291 5828
b5254dd5
N
5829 /* Having calculated the 'writepos' possibly use it
5830 * to set 'stripe_addr' which is where we will write to.
5831 */
5832 if (mddev->reshape_backwards) {
5833 BUG_ON(conf->reshape_progress == 0);
5834 stripe_addr = writepos;
5835 BUG_ON((mddev->dev_sectors &
5836 ~((sector_t)reshape_sectors - 1))
5837 - reshape_sectors - stripe_addr
5838 != sector_nr);
5839 } else {
5840 BUG_ON(writepos != sector_nr + reshape_sectors);
5841 stripe_addr = sector_nr;
5842 }
5843
c8f517c4
N
5844 /* 'writepos' is the most advanced device address we might write.
5845 * 'readpos' is the least advanced device address we might read.
5846 * 'safepos' is the least address recorded in the metadata as having
5847 * been reshaped.
b5254dd5
N
5848 * If there is a min_offset_diff, these are adjusted either by
5849 * increasing the safepos/readpos if diff is negative, or
5850 * increasing writepos if diff is positive.
5851 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5852 * ensure safety in the face of a crash - that must be done by userspace
5853 * making a backup of the data. So in that case there is no particular
5854 * rush to update metadata.
5855 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5856 * update the metadata to advance 'safepos' to match 'readpos' so that
5857 * we can be safe in the event of a crash.
5858 * So we insist on updating metadata if safepos is behind writepos and
5859 * readpos is beyond writepos.
5860 * In any case, update the metadata every 10 seconds.
5861 * Maybe that number should be configurable, but I'm not sure it is
5862 * worth it.... maybe it could be a multiple of safemode_delay???
5863 */
b5254dd5
N
5864 if (conf->min_offset_diff < 0) {
5865 safepos += -conf->min_offset_diff;
5866 readpos += -conf->min_offset_diff;
5867 } else
5868 writepos += conf->min_offset_diff;
5869
2c810cdd 5870 if ((mddev->reshape_backwards
c8f517c4
N
5871 ? (safepos > writepos && readpos < writepos)
5872 : (safepos < writepos && readpos > writepos)) ||
5873 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5874 /* Cannot proceed until we've updated the superblock... */
5875 wait_event(conf->wait_for_overlap,
c91abf5a
N
5876 atomic_read(&conf->reshape_stripes)==0
5877 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5878 if (atomic_read(&conf->reshape_stripes) != 0)
5879 return 0;
fef9c61f 5880 mddev->reshape_position = conf->reshape_progress;
75d3da43 5881 mddev->curr_resync_completed = sector_nr;
c8f517c4 5882 conf->reshape_checkpoint = jiffies;
2953079c 5883 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 5884 md_wakeup_thread(mddev->thread);
2953079c 5885 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
5886 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5887 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5888 return 0;
52c03291 5889 spin_lock_irq(&conf->device_lock);
fef9c61f 5890 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5891 spin_unlock_irq(&conf->device_lock);
5892 wake_up(&conf->wait_for_overlap);
acb180b0 5893 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5894 }
5895
ab69ae12 5896 INIT_LIST_HEAD(&stripes);
7a661381 5897 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5898 int j;
a9f326eb 5899 int skipped_disk = 0;
6d036f7d 5900 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5901 set_bit(STRIPE_EXPANDING, &sh->state);
5902 atomic_inc(&conf->reshape_stripes);
5903 /* If any of this stripe is beyond the end of the old
5904 * array, then we need to zero those blocks
5905 */
5906 for (j=sh->disks; j--;) {
5907 sector_t s;
5908 if (j == sh->pd_idx)
5909 continue;
f416885e 5910 if (conf->level == 6 &&
d0dabf7e 5911 j == sh->qd_idx)
f416885e 5912 continue;
6d036f7d 5913 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5914 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5915 skipped_disk = 1;
52c03291
N
5916 continue;
5917 }
5918 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5919 set_bit(R5_Expanded, &sh->dev[j].flags);
5920 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5921 }
a9f326eb 5922 if (!skipped_disk) {
52c03291
N
5923 set_bit(STRIPE_EXPAND_READY, &sh->state);
5924 set_bit(STRIPE_HANDLE, &sh->state);
5925 }
ab69ae12 5926 list_add(&sh->lru, &stripes);
52c03291
N
5927 }
5928 spin_lock_irq(&conf->device_lock);
2c810cdd 5929 if (mddev->reshape_backwards)
7a661381 5930 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5931 else
7a661381 5932 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5933 spin_unlock_irq(&conf->device_lock);
5934 /* Ok, those stripe are ready. We can start scheduling
5935 * reads on the source stripes.
5936 * The source stripes are determined by mapping the first and last
5937 * block on the destination stripes.
5938 */
52c03291 5939 first_sector =
ec32a2bd 5940 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5941 1, &dd_idx, NULL);
52c03291 5942 last_sector =
0e6e0271 5943 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5944 * new_data_disks - 1),
911d4ee8 5945 1, &dd_idx, NULL);
58c0fed4
AN
5946 if (last_sector >= mddev->dev_sectors)
5947 last_sector = mddev->dev_sectors - 1;
52c03291 5948 while (first_sector <= last_sector) {
6d036f7d 5949 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5950 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5951 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5952 raid5_release_stripe(sh);
52c03291
N
5953 first_sector += STRIPE_SECTORS;
5954 }
ab69ae12
N
5955 /* Now that the sources are clearly marked, we can release
5956 * the destination stripes
5957 */
5958 while (!list_empty(&stripes)) {
5959 sh = list_entry(stripes.next, struct stripe_head, lru);
5960 list_del_init(&sh->lru);
6d036f7d 5961 raid5_release_stripe(sh);
ab69ae12 5962 }
c6207277
N
5963 /* If this takes us to the resync_max point where we have to pause,
5964 * then we need to write out the superblock.
5965 */
7a661381 5966 sector_nr += reshape_sectors;
92140480
N
5967 retn = reshape_sectors;
5968finish:
c5e19d90
N
5969 if (mddev->curr_resync_completed > mddev->resync_max ||
5970 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5971 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5972 /* Cannot proceed until we've updated the superblock... */
5973 wait_event(conf->wait_for_overlap,
c91abf5a
N
5974 atomic_read(&conf->reshape_stripes) == 0
5975 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5976 if (atomic_read(&conf->reshape_stripes) != 0)
5977 goto ret;
fef9c61f 5978 mddev->reshape_position = conf->reshape_progress;
75d3da43 5979 mddev->curr_resync_completed = sector_nr;
c8f517c4 5980 conf->reshape_checkpoint = jiffies;
2953079c 5981 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
5982 md_wakeup_thread(mddev->thread);
5983 wait_event(mddev->sb_wait,
2953079c 5984 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
5985 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5986 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5987 goto ret;
c6207277 5988 spin_lock_irq(&conf->device_lock);
fef9c61f 5989 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5990 spin_unlock_irq(&conf->device_lock);
5991 wake_up(&conf->wait_for_overlap);
acb180b0 5992 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5993 }
c91abf5a 5994ret:
92140480 5995 return retn;
52c03291
N
5996}
5997
849674e4
SL
5998static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5999 int *skipped)
52c03291 6000{
d1688a6d 6001 struct r5conf *conf = mddev->private;
52c03291 6002 struct stripe_head *sh;
58c0fed4 6003 sector_t max_sector = mddev->dev_sectors;
57dab0bd 6004 sector_t sync_blocks;
16a53ecc
N
6005 int still_degraded = 0;
6006 int i;
1da177e4 6007
72626685 6008 if (sector_nr >= max_sector) {
1da177e4 6009 /* just being told to finish up .. nothing much to do */
cea9c228 6010
29269553
N
6011 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6012 end_reshape(conf);
6013 return 0;
6014 }
72626685
N
6015
6016 if (mddev->curr_resync < max_sector) /* aborted */
6017 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6018 &sync_blocks, 1);
16a53ecc 6019 else /* completed sync */
72626685
N
6020 conf->fullsync = 0;
6021 bitmap_close_sync(mddev->bitmap);
6022
1da177e4
LT
6023 return 0;
6024 }
ccfcc3c1 6025
64bd660b
N
6026 /* Allow raid5_quiesce to complete */
6027 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6028
52c03291
N
6029 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6030 return reshape_request(mddev, sector_nr, skipped);
f6705578 6031
c6207277
N
6032 /* No need to check resync_max as we never do more than one
6033 * stripe, and as resync_max will always be on a chunk boundary,
6034 * if the check in md_do_sync didn't fire, there is no chance
6035 * of overstepping resync_max here
6036 */
6037
16a53ecc 6038 /* if there is too many failed drives and we are trying
1da177e4
LT
6039 * to resync, then assert that we are finished, because there is
6040 * nothing we can do.
6041 */
3285edf1 6042 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6043 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6044 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6045 *skipped = 1;
1da177e4
LT
6046 return rv;
6047 }
6f608040 6048 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6049 !conf->fullsync &&
6050 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6051 sync_blocks >= STRIPE_SECTORS) {
72626685
N
6052 /* we can skip this block, and probably more */
6053 sync_blocks /= STRIPE_SECTORS;
6054 *skipped = 1;
6055 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6056 }
1da177e4 6057
c40f341f 6058 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6059
6d036f7d 6060 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 6061 if (sh == NULL) {
6d036f7d 6062 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 6063 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6064 * is trying to get access
1da177e4 6065 */
66c006a5 6066 schedule_timeout_uninterruptible(1);
1da177e4 6067 }
16a53ecc 6068 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6069 * Note in case of > 1 drive failures it's possible we're rebuilding
6070 * one drive while leaving another faulty drive in array.
16a53ecc 6071 */
16d9cfab
EM
6072 rcu_read_lock();
6073 for (i = 0; i < conf->raid_disks; i++) {
6074 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6075
6076 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6077 still_degraded = 1;
16d9cfab
EM
6078 }
6079 rcu_read_unlock();
16a53ecc
N
6080
6081 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6082
83206d66 6083 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6084 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6085
6d036f7d 6086 raid5_release_stripe(sh);
1da177e4
LT
6087
6088 return STRIPE_SECTORS;
6089}
6090
0472a42b
N
6091static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6092 unsigned int offset)
46031f9a
RBJ
6093{
6094 /* We may not be able to submit a whole bio at once as there
6095 * may not be enough stripe_heads available.
6096 * We cannot pre-allocate enough stripe_heads as we may need
6097 * more than exist in the cache (if we allow ever large chunks).
6098 * So we do one stripe head at a time and record in
6099 * ->bi_hw_segments how many have been done.
6100 *
6101 * We *know* that this entire raid_bio is in one chunk, so
6102 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6103 */
6104 struct stripe_head *sh;
911d4ee8 6105 int dd_idx;
46031f9a
RBJ
6106 sector_t sector, logical_sector, last_sector;
6107 int scnt = 0;
46031f9a
RBJ
6108 int handled = 0;
6109
4f024f37
KO
6110 logical_sector = raid_bio->bi_iter.bi_sector &
6111 ~((sector_t)STRIPE_SECTORS-1);
112bf897 6112 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6113 0, &dd_idx, NULL);
f73a1c7d 6114 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6115
6116 for (; logical_sector < last_sector;
387bb173
NB
6117 logical_sector += STRIPE_SECTORS,
6118 sector += STRIPE_SECTORS,
6119 scnt++) {
46031f9a 6120
0472a42b 6121 if (scnt < offset)
46031f9a
RBJ
6122 /* already done this stripe */
6123 continue;
6124
6d036f7d 6125 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
6126
6127 if (!sh) {
6128 /* failed to get a stripe - must wait */
46031f9a 6129 conf->retry_read_aligned = raid_bio;
0472a42b 6130 conf->retry_read_offset = scnt;
46031f9a
RBJ
6131 return handled;
6132 }
6133
da41ba65 6134 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6135 raid5_release_stripe(sh);
387bb173 6136 conf->retry_read_aligned = raid_bio;
0472a42b 6137 conf->retry_read_offset = scnt;
387bb173
NB
6138 return handled;
6139 }
6140
3f9e7c14 6141 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6142 handle_stripe(sh);
6d036f7d 6143 raid5_release_stripe(sh);
46031f9a
RBJ
6144 handled++;
6145 }
016c76ac
N
6146
6147 bio_endio(raid_bio);
6148
46031f9a 6149 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6150 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6151 return handled;
6152}
6153
bfc90cb0 6154static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6155 struct r5worker *worker,
6156 struct list_head *temp_inactive_list)
46a06401
SL
6157{
6158 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6159 int i, batch_size = 0, hash;
6160 bool release_inactive = false;
46a06401
SL
6161
6162 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6163 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6164 batch[batch_size++] = sh;
6165
566c09c5
SL
6166 if (batch_size == 0) {
6167 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6168 if (!list_empty(temp_inactive_list + i))
6169 break;
a8c34f91
SL
6170 if (i == NR_STRIPE_HASH_LOCKS) {
6171 spin_unlock_irq(&conf->device_lock);
6172 r5l_flush_stripe_to_raid(conf->log);
6173 spin_lock_irq(&conf->device_lock);
566c09c5 6174 return batch_size;
a8c34f91 6175 }
566c09c5
SL
6176 release_inactive = true;
6177 }
46a06401
SL
6178 spin_unlock_irq(&conf->device_lock);
6179
566c09c5
SL
6180 release_inactive_stripe_list(conf, temp_inactive_list,
6181 NR_STRIPE_HASH_LOCKS);
6182
a8c34f91 6183 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6184 if (release_inactive) {
6185 spin_lock_irq(&conf->device_lock);
6186 return 0;
6187 }
6188
46a06401
SL
6189 for (i = 0; i < batch_size; i++)
6190 handle_stripe(batch[i]);
ff875738 6191 log_write_stripe_run(conf);
46a06401
SL
6192
6193 cond_resched();
6194
6195 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6196 for (i = 0; i < batch_size; i++) {
6197 hash = batch[i]->hash_lock_index;
6198 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6199 }
46a06401
SL
6200 return batch_size;
6201}
46031f9a 6202
851c30c9
SL
6203static void raid5_do_work(struct work_struct *work)
6204{
6205 struct r5worker *worker = container_of(work, struct r5worker, work);
6206 struct r5worker_group *group = worker->group;
6207 struct r5conf *conf = group->conf;
16d997b7 6208 struct mddev *mddev = conf->mddev;
851c30c9
SL
6209 int group_id = group - conf->worker_groups;
6210 int handled;
6211 struct blk_plug plug;
6212
6213 pr_debug("+++ raid5worker active\n");
6214
6215 blk_start_plug(&plug);
6216 handled = 0;
6217 spin_lock_irq(&conf->device_lock);
6218 while (1) {
6219 int batch_size, released;
6220
566c09c5 6221 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6222
566c09c5
SL
6223 batch_size = handle_active_stripes(conf, group_id, worker,
6224 worker->temp_inactive_list);
bfc90cb0 6225 worker->working = false;
851c30c9
SL
6226 if (!batch_size && !released)
6227 break;
6228 handled += batch_size;
16d997b7
N
6229 wait_event_lock_irq(mddev->sb_wait,
6230 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6231 conf->device_lock);
851c30c9
SL
6232 }
6233 pr_debug("%d stripes handled\n", handled);
6234
6235 spin_unlock_irq(&conf->device_lock);
6236 blk_finish_plug(&plug);
6237
6238 pr_debug("--- raid5worker inactive\n");
6239}
6240
1da177e4
LT
6241/*
6242 * This is our raid5 kernel thread.
6243 *
6244 * We scan the hash table for stripes which can be handled now.
6245 * During the scan, completed stripes are saved for us by the interrupt
6246 * handler, so that they will not have to wait for our next wakeup.
6247 */
4ed8731d 6248static void raid5d(struct md_thread *thread)
1da177e4 6249{
4ed8731d 6250 struct mddev *mddev = thread->mddev;
d1688a6d 6251 struct r5conf *conf = mddev->private;
1da177e4 6252 int handled;
e1dfa0a2 6253 struct blk_plug plug;
1da177e4 6254
45b4233c 6255 pr_debug("+++ raid5d active\n");
1da177e4
LT
6256
6257 md_check_recovery(mddev);
1da177e4 6258
e1dfa0a2 6259 blk_start_plug(&plug);
1da177e4
LT
6260 handled = 0;
6261 spin_lock_irq(&conf->device_lock);
6262 while (1) {
46031f9a 6263 struct bio *bio;
773ca82f 6264 int batch_size, released;
0472a42b 6265 unsigned int offset;
773ca82f 6266
566c09c5 6267 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6268 if (released)
6269 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6270
0021b7bc 6271 if (
7c13edc8
N
6272 !list_empty(&conf->bitmap_list)) {
6273 /* Now is a good time to flush some bitmap updates */
6274 conf->seq_flush++;
700e432d 6275 spin_unlock_irq(&conf->device_lock);
72626685 6276 bitmap_unplug(mddev->bitmap);
700e432d 6277 spin_lock_irq(&conf->device_lock);
7c13edc8 6278 conf->seq_write = conf->seq_flush;
566c09c5 6279 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6280 }
0021b7bc 6281 raid5_activate_delayed(conf);
72626685 6282
0472a42b 6283 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6284 int ok;
6285 spin_unlock_irq(&conf->device_lock);
0472a42b 6286 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6287 spin_lock_irq(&conf->device_lock);
6288 if (!ok)
6289 break;
6290 handled++;
6291 }
6292
566c09c5
SL
6293 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6294 conf->temp_inactive_list);
773ca82f 6295 if (!batch_size && !released)
1da177e4 6296 break;
46a06401 6297 handled += batch_size;
1da177e4 6298
2953079c 6299 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6300 spin_unlock_irq(&conf->device_lock);
de393cde 6301 md_check_recovery(mddev);
46a06401
SL
6302 spin_lock_irq(&conf->device_lock);
6303 }
1da177e4 6304 }
45b4233c 6305 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6306
6307 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6308 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6309 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6310 grow_one_stripe(conf, __GFP_NOWARN);
6311 /* Set flag even if allocation failed. This helps
6312 * slow down allocation requests when mem is short
6313 */
6314 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6315 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6316 }
1da177e4 6317
765d704d
SL
6318 flush_deferred_bios(conf);
6319
0576b1c6
SL
6320 r5l_flush_stripe_to_raid(conf->log);
6321
c9f21aaf 6322 async_tx_issue_pending_all();
e1dfa0a2 6323 blk_finish_plug(&plug);
1da177e4 6324
45b4233c 6325 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6326}
6327
3f294f4f 6328static ssize_t
fd01b88c 6329raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6330{
7b1485ba
N
6331 struct r5conf *conf;
6332 int ret = 0;
6333 spin_lock(&mddev->lock);
6334 conf = mddev->private;
96de1e66 6335 if (conf)
edbe83ab 6336 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6337 spin_unlock(&mddev->lock);
6338 return ret;
3f294f4f
N
6339}
6340
c41d4ac4 6341int
fd01b88c 6342raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6343{
d1688a6d 6344 struct r5conf *conf = mddev->private;
b5470dc5 6345
c41d4ac4 6346 if (size <= 16 || size > 32768)
3f294f4f 6347 return -EINVAL;
486f0644 6348
edbe83ab 6349 conf->min_nr_stripes = size;
2d5b569b 6350 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6351 while (size < conf->max_nr_stripes &&
6352 drop_one_stripe(conf))
6353 ;
2d5b569b 6354 mutex_unlock(&conf->cache_size_mutex);
486f0644 6355
2214c260 6356 md_allow_write(mddev);
486f0644 6357
2d5b569b 6358 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6359 while (size > conf->max_nr_stripes)
6360 if (!grow_one_stripe(conf, GFP_KERNEL))
6361 break;
2d5b569b 6362 mutex_unlock(&conf->cache_size_mutex);
486f0644 6363
c41d4ac4
N
6364 return 0;
6365}
6366EXPORT_SYMBOL(raid5_set_cache_size);
6367
6368static ssize_t
fd01b88c 6369raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6370{
6791875e 6371 struct r5conf *conf;
c41d4ac4
N
6372 unsigned long new;
6373 int err;
6374
6375 if (len >= PAGE_SIZE)
6376 return -EINVAL;
b29bebd6 6377 if (kstrtoul(page, 10, &new))
c41d4ac4 6378 return -EINVAL;
6791875e 6379 err = mddev_lock(mddev);
c41d4ac4
N
6380 if (err)
6381 return err;
6791875e
N
6382 conf = mddev->private;
6383 if (!conf)
6384 err = -ENODEV;
6385 else
6386 err = raid5_set_cache_size(mddev, new);
6387 mddev_unlock(mddev);
6388
6389 return err ?: len;
3f294f4f 6390}
007583c9 6391
96de1e66
N
6392static struct md_sysfs_entry
6393raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6394 raid5_show_stripe_cache_size,
6395 raid5_store_stripe_cache_size);
3f294f4f 6396
d06f191f
MS
6397static ssize_t
6398raid5_show_rmw_level(struct mddev *mddev, char *page)
6399{
6400 struct r5conf *conf = mddev->private;
6401 if (conf)
6402 return sprintf(page, "%d\n", conf->rmw_level);
6403 else
6404 return 0;
6405}
6406
6407static ssize_t
6408raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6409{
6410 struct r5conf *conf = mddev->private;
6411 unsigned long new;
6412
6413 if (!conf)
6414 return -ENODEV;
6415
6416 if (len >= PAGE_SIZE)
6417 return -EINVAL;
6418
6419 if (kstrtoul(page, 10, &new))
6420 return -EINVAL;
6421
6422 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6423 return -EINVAL;
6424
6425 if (new != PARITY_DISABLE_RMW &&
6426 new != PARITY_ENABLE_RMW &&
6427 new != PARITY_PREFER_RMW)
6428 return -EINVAL;
6429
6430 conf->rmw_level = new;
6431 return len;
6432}
6433
6434static struct md_sysfs_entry
6435raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6436 raid5_show_rmw_level,
6437 raid5_store_rmw_level);
6438
6439
8b3e6cdc 6440static ssize_t
fd01b88c 6441raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6442{
7b1485ba
N
6443 struct r5conf *conf;
6444 int ret = 0;
6445 spin_lock(&mddev->lock);
6446 conf = mddev->private;
8b3e6cdc 6447 if (conf)
7b1485ba
N
6448 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6449 spin_unlock(&mddev->lock);
6450 return ret;
8b3e6cdc
DW
6451}
6452
6453static ssize_t
fd01b88c 6454raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6455{
6791875e 6456 struct r5conf *conf;
4ef197d8 6457 unsigned long new;
6791875e
N
6458 int err;
6459
8b3e6cdc
DW
6460 if (len >= PAGE_SIZE)
6461 return -EINVAL;
b29bebd6 6462 if (kstrtoul(page, 10, &new))
8b3e6cdc 6463 return -EINVAL;
6791875e
N
6464
6465 err = mddev_lock(mddev);
6466 if (err)
6467 return err;
6468 conf = mddev->private;
6469 if (!conf)
6470 err = -ENODEV;
edbe83ab 6471 else if (new > conf->min_nr_stripes)
6791875e
N
6472 err = -EINVAL;
6473 else
6474 conf->bypass_threshold = new;
6475 mddev_unlock(mddev);
6476 return err ?: len;
8b3e6cdc
DW
6477}
6478
6479static struct md_sysfs_entry
6480raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6481 S_IRUGO | S_IWUSR,
6482 raid5_show_preread_threshold,
6483 raid5_store_preread_threshold);
6484
d592a996
SL
6485static ssize_t
6486raid5_show_skip_copy(struct mddev *mddev, char *page)
6487{
7b1485ba
N
6488 struct r5conf *conf;
6489 int ret = 0;
6490 spin_lock(&mddev->lock);
6491 conf = mddev->private;
d592a996 6492 if (conf)
7b1485ba
N
6493 ret = sprintf(page, "%d\n", conf->skip_copy);
6494 spin_unlock(&mddev->lock);
6495 return ret;
d592a996
SL
6496}
6497
6498static ssize_t
6499raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6500{
6791875e 6501 struct r5conf *conf;
d592a996 6502 unsigned long new;
6791875e
N
6503 int err;
6504
d592a996
SL
6505 if (len >= PAGE_SIZE)
6506 return -EINVAL;
d592a996
SL
6507 if (kstrtoul(page, 10, &new))
6508 return -EINVAL;
6509 new = !!new;
6791875e
N
6510
6511 err = mddev_lock(mddev);
6512 if (err)
6513 return err;
6514 conf = mddev->private;
6515 if (!conf)
6516 err = -ENODEV;
6517 else if (new != conf->skip_copy) {
6518 mddev_suspend(mddev);
6519 conf->skip_copy = new;
6520 if (new)
dc3b17cc 6521 mddev->queue->backing_dev_info->capabilities |=
6791875e
N
6522 BDI_CAP_STABLE_WRITES;
6523 else
dc3b17cc 6524 mddev->queue->backing_dev_info->capabilities &=
6791875e
N
6525 ~BDI_CAP_STABLE_WRITES;
6526 mddev_resume(mddev);
6527 }
6528 mddev_unlock(mddev);
6529 return err ?: len;
d592a996
SL
6530}
6531
6532static struct md_sysfs_entry
6533raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6534 raid5_show_skip_copy,
6535 raid5_store_skip_copy);
6536
3f294f4f 6537static ssize_t
fd01b88c 6538stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6539{
d1688a6d 6540 struct r5conf *conf = mddev->private;
96de1e66
N
6541 if (conf)
6542 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6543 else
6544 return 0;
3f294f4f
N
6545}
6546
96de1e66
N
6547static struct md_sysfs_entry
6548raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6549
b721420e
SL
6550static ssize_t
6551raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6552{
7b1485ba
N
6553 struct r5conf *conf;
6554 int ret = 0;
6555 spin_lock(&mddev->lock);
6556 conf = mddev->private;
b721420e 6557 if (conf)
7b1485ba
N
6558 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6559 spin_unlock(&mddev->lock);
6560 return ret;
b721420e
SL
6561}
6562
60aaf933 6563static int alloc_thread_groups(struct r5conf *conf, int cnt,
6564 int *group_cnt,
6565 int *worker_cnt_per_group,
6566 struct r5worker_group **worker_groups);
b721420e
SL
6567static ssize_t
6568raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6569{
6791875e 6570 struct r5conf *conf;
b721420e
SL
6571 unsigned long new;
6572 int err;
60aaf933 6573 struct r5worker_group *new_groups, *old_groups;
6574 int group_cnt, worker_cnt_per_group;
b721420e
SL
6575
6576 if (len >= PAGE_SIZE)
6577 return -EINVAL;
b721420e
SL
6578 if (kstrtoul(page, 10, &new))
6579 return -EINVAL;
6580
6791875e
N
6581 err = mddev_lock(mddev);
6582 if (err)
6583 return err;
6584 conf = mddev->private;
6585 if (!conf)
6586 err = -ENODEV;
6587 else if (new != conf->worker_cnt_per_group) {
6588 mddev_suspend(mddev);
b721420e 6589
6791875e
N
6590 old_groups = conf->worker_groups;
6591 if (old_groups)
6592 flush_workqueue(raid5_wq);
d206dcfa 6593
6791875e
N
6594 err = alloc_thread_groups(conf, new,
6595 &group_cnt, &worker_cnt_per_group,
6596 &new_groups);
6597 if (!err) {
6598 spin_lock_irq(&conf->device_lock);
6599 conf->group_cnt = group_cnt;
6600 conf->worker_cnt_per_group = worker_cnt_per_group;
6601 conf->worker_groups = new_groups;
6602 spin_unlock_irq(&conf->device_lock);
b721420e 6603
6791875e
N
6604 if (old_groups)
6605 kfree(old_groups[0].workers);
6606 kfree(old_groups);
6607 }
6608 mddev_resume(mddev);
b721420e 6609 }
6791875e 6610 mddev_unlock(mddev);
b721420e 6611
6791875e 6612 return err ?: len;
b721420e
SL
6613}
6614
6615static struct md_sysfs_entry
6616raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6617 raid5_show_group_thread_cnt,
6618 raid5_store_group_thread_cnt);
6619
007583c9 6620static struct attribute *raid5_attrs[] = {
3f294f4f
N
6621 &raid5_stripecache_size.attr,
6622 &raid5_stripecache_active.attr,
8b3e6cdc 6623 &raid5_preread_bypass_threshold.attr,
b721420e 6624 &raid5_group_thread_cnt.attr,
d592a996 6625 &raid5_skip_copy.attr,
d06f191f 6626 &raid5_rmw_level.attr,
2c7da14b 6627 &r5c_journal_mode.attr,
3f294f4f
N
6628 NULL,
6629};
007583c9
N
6630static struct attribute_group raid5_attrs_group = {
6631 .name = NULL,
6632 .attrs = raid5_attrs,
3f294f4f
N
6633};
6634
60aaf933 6635static int alloc_thread_groups(struct r5conf *conf, int cnt,
6636 int *group_cnt,
6637 int *worker_cnt_per_group,
6638 struct r5worker_group **worker_groups)
851c30c9 6639{
566c09c5 6640 int i, j, k;
851c30c9
SL
6641 ssize_t size;
6642 struct r5worker *workers;
6643
60aaf933 6644 *worker_cnt_per_group = cnt;
851c30c9 6645 if (cnt == 0) {
60aaf933 6646 *group_cnt = 0;
6647 *worker_groups = NULL;
851c30c9
SL
6648 return 0;
6649 }
60aaf933 6650 *group_cnt = num_possible_nodes();
851c30c9 6651 size = sizeof(struct r5worker) * cnt;
60aaf933 6652 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6653 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6654 *group_cnt, GFP_NOIO);
6655 if (!*worker_groups || !workers) {
851c30c9 6656 kfree(workers);
60aaf933 6657 kfree(*worker_groups);
851c30c9
SL
6658 return -ENOMEM;
6659 }
6660
60aaf933 6661 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6662 struct r5worker_group *group;
6663
0c775d52 6664 group = &(*worker_groups)[i];
851c30c9 6665 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 6666 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
6667 group->conf = conf;
6668 group->workers = workers + i * cnt;
6669
6670 for (j = 0; j < cnt; j++) {
566c09c5
SL
6671 struct r5worker *worker = group->workers + j;
6672 worker->group = group;
6673 INIT_WORK(&worker->work, raid5_do_work);
6674
6675 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6676 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6677 }
6678 }
6679
6680 return 0;
6681}
6682
6683static void free_thread_groups(struct r5conf *conf)
6684{
6685 if (conf->worker_groups)
6686 kfree(conf->worker_groups[0].workers);
6687 kfree(conf->worker_groups);
6688 conf->worker_groups = NULL;
6689}
6690
80c3a6ce 6691static sector_t
fd01b88c 6692raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6693{
d1688a6d 6694 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6695
6696 if (!sectors)
6697 sectors = mddev->dev_sectors;
5e5e3e78 6698 if (!raid_disks)
7ec05478 6699 /* size is defined by the smallest of previous and new size */
5e5e3e78 6700 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6701
3cb5edf4
N
6702 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6703 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6704 return sectors * (raid_disks - conf->max_degraded);
6705}
6706
789b5e03
ON
6707static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6708{
6709 safe_put_page(percpu->spare_page);
46d5b785 6710 if (percpu->scribble)
6711 flex_array_free(percpu->scribble);
789b5e03
ON
6712 percpu->spare_page = NULL;
6713 percpu->scribble = NULL;
6714}
6715
6716static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6717{
6718 if (conf->level == 6 && !percpu->spare_page)
6719 percpu->spare_page = alloc_page(GFP_KERNEL);
6720 if (!percpu->scribble)
46d5b785 6721 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6722 conf->previous_raid_disks),
6723 max(conf->chunk_sectors,
6724 conf->prev_chunk_sectors)
6725 / STRIPE_SECTORS,
6726 GFP_KERNEL);
789b5e03
ON
6727
6728 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6729 free_scratch_buffer(conf, percpu);
6730 return -ENOMEM;
6731 }
6732
6733 return 0;
6734}
6735
29c6d1bb 6736static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 6737{
29c6d1bb
SAS
6738 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6739
6740 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6741 return 0;
6742}
36d1c647 6743
29c6d1bb
SAS
6744static void raid5_free_percpu(struct r5conf *conf)
6745{
36d1c647
DW
6746 if (!conf->percpu)
6747 return;
6748
29c6d1bb 6749 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
6750 free_percpu(conf->percpu);
6751}
6752
d1688a6d 6753static void free_conf(struct r5conf *conf)
95fc17aa 6754{
d7bd398e
SL
6755 int i;
6756
ff875738
AP
6757 log_exit(conf);
6758
30c89465 6759 if (conf->shrinker.nr_deferred)
edbe83ab 6760 unregister_shrinker(&conf->shrinker);
5c7e81c3 6761
851c30c9 6762 free_thread_groups(conf);
95fc17aa 6763 shrink_stripes(conf);
36d1c647 6764 raid5_free_percpu(conf);
d7bd398e
SL
6765 for (i = 0; i < conf->pool_size; i++)
6766 if (conf->disks[i].extra_page)
6767 put_page(conf->disks[i].extra_page);
95fc17aa 6768 kfree(conf->disks);
dd7a8f5d
N
6769 if (conf->bio_split)
6770 bioset_free(conf->bio_split);
95fc17aa 6771 kfree(conf->stripe_hashtbl);
aaf9f12e 6772 kfree(conf->pending_data);
95fc17aa
DW
6773 kfree(conf);
6774}
6775
29c6d1bb 6776static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 6777{
29c6d1bb 6778 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
6779 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6780
29c6d1bb 6781 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
6782 pr_warn("%s: failed memory allocation for cpu%u\n",
6783 __func__, cpu);
29c6d1bb 6784 return -ENOMEM;
36d1c647 6785 }
29c6d1bb 6786 return 0;
36d1c647 6787}
36d1c647 6788
d1688a6d 6789static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 6790{
789b5e03 6791 int err = 0;
36d1c647 6792
789b5e03
ON
6793 conf->percpu = alloc_percpu(struct raid5_percpu);
6794 if (!conf->percpu)
36d1c647 6795 return -ENOMEM;
789b5e03 6796
29c6d1bb 6797 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
6798 if (!err) {
6799 conf->scribble_disks = max(conf->raid_disks,
6800 conf->previous_raid_disks);
6801 conf->scribble_sectors = max(conf->chunk_sectors,
6802 conf->prev_chunk_sectors);
6803 }
36d1c647
DW
6804 return err;
6805}
6806
edbe83ab
N
6807static unsigned long raid5_cache_scan(struct shrinker *shrink,
6808 struct shrink_control *sc)
6809{
6810 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6811 unsigned long ret = SHRINK_STOP;
6812
6813 if (mutex_trylock(&conf->cache_size_mutex)) {
6814 ret= 0;
49895bcc
N
6815 while (ret < sc->nr_to_scan &&
6816 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6817 if (drop_one_stripe(conf) == 0) {
6818 ret = SHRINK_STOP;
6819 break;
6820 }
6821 ret++;
6822 }
6823 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6824 }
6825 return ret;
6826}
6827
6828static unsigned long raid5_cache_count(struct shrinker *shrink,
6829 struct shrink_control *sc)
6830{
6831 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6832
6833 if (conf->max_nr_stripes < conf->min_nr_stripes)
6834 /* unlikely, but not impossible */
6835 return 0;
6836 return conf->max_nr_stripes - conf->min_nr_stripes;
6837}
6838
d1688a6d 6839static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6840{
d1688a6d 6841 struct r5conf *conf;
5e5e3e78 6842 int raid_disk, memory, max_disks;
3cb03002 6843 struct md_rdev *rdev;
1da177e4 6844 struct disk_info *disk;
0232605d 6845 char pers_name[6];
566c09c5 6846 int i;
60aaf933 6847 int group_cnt, worker_cnt_per_group;
6848 struct r5worker_group *new_group;
1da177e4 6849
91adb564
N
6850 if (mddev->new_level != 5
6851 && mddev->new_level != 4
6852 && mddev->new_level != 6) {
cc6167b4
N
6853 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6854 mdname(mddev), mddev->new_level);
91adb564 6855 return ERR_PTR(-EIO);
1da177e4 6856 }
91adb564
N
6857 if ((mddev->new_level == 5
6858 && !algorithm_valid_raid5(mddev->new_layout)) ||
6859 (mddev->new_level == 6
6860 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
6861 pr_warn("md/raid:%s: layout %d not supported\n",
6862 mdname(mddev), mddev->new_layout);
91adb564 6863 return ERR_PTR(-EIO);
99c0fb5f 6864 }
91adb564 6865 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
6866 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6867 mdname(mddev), mddev->raid_disks);
91adb564 6868 return ERR_PTR(-EINVAL);
4bbf3771
N
6869 }
6870
664e7c41
AN
6871 if (!mddev->new_chunk_sectors ||
6872 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6873 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
6874 pr_warn("md/raid:%s: invalid chunk size %d\n",
6875 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6876 return ERR_PTR(-EINVAL);
f6705578
N
6877 }
6878
d1688a6d 6879 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6880 if (conf == NULL)
1da177e4 6881 goto abort;
aaf9f12e
SL
6882 INIT_LIST_HEAD(&conf->free_list);
6883 INIT_LIST_HEAD(&conf->pending_list);
6884 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6885 PENDING_IO_MAX, GFP_KERNEL);
6886 if (!conf->pending_data)
6887 goto abort;
6888 for (i = 0; i < PENDING_IO_MAX; i++)
6889 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 6890 /* Don't enable multi-threading by default*/
60aaf933 6891 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6892 &new_group)) {
6893 conf->group_cnt = group_cnt;
6894 conf->worker_cnt_per_group = worker_cnt_per_group;
6895 conf->worker_groups = new_group;
6896 } else
851c30c9 6897 goto abort;
f5efd45a 6898 spin_lock_init(&conf->device_lock);
c46501b2 6899 seqcount_init(&conf->gen_lock);
2d5b569b 6900 mutex_init(&conf->cache_size_mutex);
b1b46486 6901 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6902 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6903 init_waitqueue_head(&conf->wait_for_overlap);
6904 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 6905 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
6906 INIT_LIST_HEAD(&conf->hold_list);
6907 INIT_LIST_HEAD(&conf->delayed_list);
6908 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6909 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6910 atomic_set(&conf->active_stripes, 0);
6911 atomic_set(&conf->preread_active_stripes, 0);
6912 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
6913 spin_lock_init(&conf->pending_bios_lock);
6914 conf->batch_bio_dispatch = true;
6915 rdev_for_each(rdev, mddev) {
6916 if (test_bit(Journal, &rdev->flags))
6917 continue;
6918 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6919 conf->batch_bio_dispatch = false;
6920 break;
6921 }
6922 }
6923
f5efd45a 6924 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6925 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6926
6927 conf->raid_disks = mddev->raid_disks;
6928 if (mddev->reshape_position == MaxSector)
6929 conf->previous_raid_disks = mddev->raid_disks;
6930 else
f6705578 6931 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6932 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6933
5e5e3e78 6934 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc 6935 GFP_KERNEL);
d7bd398e 6936
b55e6bfc
N
6937 if (!conf->disks)
6938 goto abort;
9ffae0cf 6939
d7bd398e
SL
6940 for (i = 0; i < max_disks; i++) {
6941 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6942 if (!conf->disks[i].extra_page)
6943 goto abort;
6944 }
6945
dd7a8f5d
N
6946 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
6947 if (!conf->bio_split)
6948 goto abort;
1da177e4
LT
6949 conf->mddev = mddev;
6950
fccddba0 6951 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6952 goto abort;
1da177e4 6953
566c09c5
SL
6954 /* We init hash_locks[0] separately to that it can be used
6955 * as the reference lock in the spin_lock_nest_lock() call
6956 * in lock_all_device_hash_locks_irq in order to convince
6957 * lockdep that we know what we are doing.
6958 */
6959 spin_lock_init(conf->hash_locks);
6960 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6961 spin_lock_init(conf->hash_locks + i);
6962
6963 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6964 INIT_LIST_HEAD(conf->inactive_list + i);
6965
6966 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6967 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6968
1e6d690b
SL
6969 atomic_set(&conf->r5c_cached_full_stripes, 0);
6970 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6971 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6972 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
6973 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6974 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 6975
36d1c647 6976 conf->level = mddev->new_level;
46d5b785 6977 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6978 if (raid5_alloc_percpu(conf) != 0)
6979 goto abort;
6980
0c55e022 6981 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6982
dafb20fa 6983 rdev_for_each(rdev, mddev) {
1da177e4 6984 raid_disk = rdev->raid_disk;
5e5e3e78 6985 if (raid_disk >= max_disks
f2076e7d 6986 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
6987 continue;
6988 disk = conf->disks + raid_disk;
6989
17045f52
N
6990 if (test_bit(Replacement, &rdev->flags)) {
6991 if (disk->replacement)
6992 goto abort;
6993 disk->replacement = rdev;
6994 } else {
6995 if (disk->rdev)
6996 goto abort;
6997 disk->rdev = rdev;
6998 }
1da177e4 6999
b2d444d7 7000 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 7001 char b[BDEVNAME_SIZE];
cc6167b4
N
7002 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7003 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 7004 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
7005 /* Cannot rely on bitmap to complete recovery */
7006 conf->fullsync = 1;
1da177e4
LT
7007 }
7008
91adb564 7009 conf->level = mddev->new_level;
584acdd4 7010 if (conf->level == 6) {
16a53ecc 7011 conf->max_degraded = 2;
584acdd4
MS
7012 if (raid6_call.xor_syndrome)
7013 conf->rmw_level = PARITY_ENABLE_RMW;
7014 else
7015 conf->rmw_level = PARITY_DISABLE_RMW;
7016 } else {
16a53ecc 7017 conf->max_degraded = 1;
584acdd4
MS
7018 conf->rmw_level = PARITY_ENABLE_RMW;
7019 }
91adb564 7020 conf->algorithm = mddev->new_layout;
fef9c61f 7021 conf->reshape_progress = mddev->reshape_position;
e183eaed 7022 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7023 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7024 conf->prev_algo = mddev->layout;
5cac6bcb
N
7025 } else {
7026 conf->prev_chunk_sectors = conf->chunk_sectors;
7027 conf->prev_algo = conf->algorithm;
e183eaed 7028 }
1da177e4 7029
edbe83ab 7030 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7031 if (mddev->reshape_position != MaxSector) {
7032 int stripes = max_t(int,
7033 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7034 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7035 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7036 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7037 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7038 mdname(mddev), conf->min_nr_stripes);
7039 }
edbe83ab 7040 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7041 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7042 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7043 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7044 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7045 mdname(mddev), memory);
91adb564
N
7046 goto abort;
7047 } else
cc6167b4 7048 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7049 /*
7050 * Losing a stripe head costs more than the time to refill it,
7051 * it reduces the queue depth and so can hurt throughput.
7052 * So set it rather large, scaled by number of devices.
7053 */
7054 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7055 conf->shrinker.scan_objects = raid5_cache_scan;
7056 conf->shrinker.count_objects = raid5_cache_count;
7057 conf->shrinker.batch = 128;
7058 conf->shrinker.flags = 0;
6a0f53ff 7059 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
7060 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7061 mdname(mddev));
6a0f53ff
CY
7062 goto abort;
7063 }
1da177e4 7064
0232605d
N
7065 sprintf(pers_name, "raid%d", mddev->new_level);
7066 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7067 if (!conf->thread) {
cc6167b4
N
7068 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7069 mdname(mddev));
16a53ecc
N
7070 goto abort;
7071 }
91adb564
N
7072
7073 return conf;
7074
7075 abort:
7076 if (conf) {
95fc17aa 7077 free_conf(conf);
91adb564
N
7078 return ERR_PTR(-EIO);
7079 } else
7080 return ERR_PTR(-ENOMEM);
7081}
7082
c148ffdc
N
7083static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7084{
7085 switch (algo) {
7086 case ALGORITHM_PARITY_0:
7087 if (raid_disk < max_degraded)
7088 return 1;
7089 break;
7090 case ALGORITHM_PARITY_N:
7091 if (raid_disk >= raid_disks - max_degraded)
7092 return 1;
7093 break;
7094 case ALGORITHM_PARITY_0_6:
f72ffdd6 7095 if (raid_disk == 0 ||
c148ffdc
N
7096 raid_disk == raid_disks - 1)
7097 return 1;
7098 break;
7099 case ALGORITHM_LEFT_ASYMMETRIC_6:
7100 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7101 case ALGORITHM_LEFT_SYMMETRIC_6:
7102 case ALGORITHM_RIGHT_SYMMETRIC_6:
7103 if (raid_disk == raid_disks - 1)
7104 return 1;
7105 }
7106 return 0;
7107}
7108
849674e4 7109static int raid5_run(struct mddev *mddev)
91adb564 7110{
d1688a6d 7111 struct r5conf *conf;
9f7c2220 7112 int working_disks = 0;
c148ffdc 7113 int dirty_parity_disks = 0;
3cb03002 7114 struct md_rdev *rdev;
713cf5a6 7115 struct md_rdev *journal_dev = NULL;
c148ffdc 7116 sector_t reshape_offset = 0;
17045f52 7117 int i;
b5254dd5
N
7118 long long min_offset_diff = 0;
7119 int first = 1;
91adb564 7120
a415c0f1
N
7121 if (mddev_init_writes_pending(mddev) < 0)
7122 return -ENOMEM;
7123
8c6ac868 7124 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7125 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7126 mdname(mddev));
b5254dd5
N
7127
7128 rdev_for_each(rdev, mddev) {
7129 long long diff;
713cf5a6 7130
f2076e7d 7131 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7132 journal_dev = rdev;
f2076e7d
SL
7133 continue;
7134 }
b5254dd5
N
7135 if (rdev->raid_disk < 0)
7136 continue;
7137 diff = (rdev->new_data_offset - rdev->data_offset);
7138 if (first) {
7139 min_offset_diff = diff;
7140 first = 0;
7141 } else if (mddev->reshape_backwards &&
7142 diff < min_offset_diff)
7143 min_offset_diff = diff;
7144 else if (!mddev->reshape_backwards &&
7145 diff > min_offset_diff)
7146 min_offset_diff = diff;
7147 }
7148
91adb564
N
7149 if (mddev->reshape_position != MaxSector) {
7150 /* Check that we can continue the reshape.
b5254dd5
N
7151 * Difficulties arise if the stripe we would write to
7152 * next is at or after the stripe we would read from next.
7153 * For a reshape that changes the number of devices, this
7154 * is only possible for a very short time, and mdadm makes
7155 * sure that time appears to have past before assembling
7156 * the array. So we fail if that time hasn't passed.
7157 * For a reshape that keeps the number of devices the same
7158 * mdadm must be monitoring the reshape can keeping the
7159 * critical areas read-only and backed up. It will start
7160 * the array in read-only mode, so we check for that.
91adb564
N
7161 */
7162 sector_t here_new, here_old;
7163 int old_disks;
18b00334 7164 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7165 int chunk_sectors;
7166 int new_data_disks;
91adb564 7167
713cf5a6 7168 if (journal_dev) {
cc6167b4
N
7169 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7170 mdname(mddev));
713cf5a6
SL
7171 return -EINVAL;
7172 }
7173
88ce4930 7174 if (mddev->new_level != mddev->level) {
cc6167b4
N
7175 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7176 mdname(mddev));
91adb564
N
7177 return -EINVAL;
7178 }
91adb564
N
7179 old_disks = mddev->raid_disks - mddev->delta_disks;
7180 /* reshape_position must be on a new-stripe boundary, and one
7181 * further up in new geometry must map after here in old
7182 * geometry.
05256d98
N
7183 * If the chunk sizes are different, then as we perform reshape
7184 * in units of the largest of the two, reshape_position needs
7185 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7186 */
7187 here_new = mddev->reshape_position;
05256d98
N
7188 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7189 new_data_disks = mddev->raid_disks - max_degraded;
7190 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7191 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7192 mdname(mddev));
91adb564
N
7193 return -EINVAL;
7194 }
05256d98 7195 reshape_offset = here_new * chunk_sectors;
91adb564
N
7196 /* here_new is the stripe we will write to */
7197 here_old = mddev->reshape_position;
05256d98 7198 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7199 /* here_old is the first stripe that we might need to read
7200 * from */
67ac6011
N
7201 if (mddev->delta_disks == 0) {
7202 /* We cannot be sure it is safe to start an in-place
b5254dd5 7203 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7204 * and taking constant backups.
7205 * mdadm always starts a situation like this in
7206 * readonly mode so it can take control before
7207 * allowing any writes. So just check for that.
7208 */
b5254dd5
N
7209 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7210 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7211 /* not really in-place - so OK */;
7212 else if (mddev->ro == 0) {
cc6167b4
N
7213 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7214 mdname(mddev));
67ac6011
N
7215 return -EINVAL;
7216 }
2c810cdd 7217 } else if (mddev->reshape_backwards
05256d98
N
7218 ? (here_new * chunk_sectors + min_offset_diff <=
7219 here_old * chunk_sectors)
7220 : (here_new * chunk_sectors >=
7221 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7222 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7223 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7224 mdname(mddev));
91adb564
N
7225 return -EINVAL;
7226 }
cc6167b4 7227 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7228 /* OK, we should be able to continue; */
7229 } else {
7230 BUG_ON(mddev->level != mddev->new_level);
7231 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7232 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7233 BUG_ON(mddev->delta_disks != 0);
1da177e4 7234 }
91adb564 7235
3418d036
AP
7236 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7237 test_bit(MD_HAS_PPL, &mddev->flags)) {
7238 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7239 mdname(mddev));
7240 clear_bit(MD_HAS_PPL, &mddev->flags);
7241 }
7242
245f46c2
N
7243 if (mddev->private == NULL)
7244 conf = setup_conf(mddev);
7245 else
7246 conf = mddev->private;
7247
91adb564
N
7248 if (IS_ERR(conf))
7249 return PTR_ERR(conf);
7250
486b0f7b
SL
7251 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7252 if (!journal_dev) {
cc6167b4
N
7253 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7254 mdname(mddev));
486b0f7b
SL
7255 mddev->ro = 1;
7256 set_disk_ro(mddev->gendisk, 1);
7257 } else if (mddev->recovery_cp == MaxSector)
7258 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7259 }
7260
b5254dd5 7261 conf->min_offset_diff = min_offset_diff;
91adb564
N
7262 mddev->thread = conf->thread;
7263 conf->thread = NULL;
7264 mddev->private = conf;
7265
17045f52
N
7266 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7267 i++) {
7268 rdev = conf->disks[i].rdev;
7269 if (!rdev && conf->disks[i].replacement) {
7270 /* The replacement is all we have yet */
7271 rdev = conf->disks[i].replacement;
7272 conf->disks[i].replacement = NULL;
7273 clear_bit(Replacement, &rdev->flags);
7274 conf->disks[i].rdev = rdev;
7275 }
7276 if (!rdev)
c148ffdc 7277 continue;
17045f52
N
7278 if (conf->disks[i].replacement &&
7279 conf->reshape_progress != MaxSector) {
7280 /* replacements and reshape simply do not mix. */
cc6167b4 7281 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7282 goto abort;
7283 }
2f115882 7284 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7285 working_disks++;
2f115882
N
7286 continue;
7287 }
c148ffdc
N
7288 /* This disc is not fully in-sync. However if it
7289 * just stored parity (beyond the recovery_offset),
7290 * when we don't need to be concerned about the
7291 * array being dirty.
7292 * When reshape goes 'backwards', we never have
7293 * partially completed devices, so we only need
7294 * to worry about reshape going forwards.
7295 */
7296 /* Hack because v0.91 doesn't store recovery_offset properly. */
7297 if (mddev->major_version == 0 &&
7298 mddev->minor_version > 90)
7299 rdev->recovery_offset = reshape_offset;
5026d7a9 7300
c148ffdc
N
7301 if (rdev->recovery_offset < reshape_offset) {
7302 /* We need to check old and new layout */
7303 if (!only_parity(rdev->raid_disk,
7304 conf->algorithm,
7305 conf->raid_disks,
7306 conf->max_degraded))
7307 continue;
7308 }
7309 if (!only_parity(rdev->raid_disk,
7310 conf->prev_algo,
7311 conf->previous_raid_disks,
7312 conf->max_degraded))
7313 continue;
7314 dirty_parity_disks++;
7315 }
91adb564 7316
17045f52
N
7317 /*
7318 * 0 for a fully functional array, 1 or 2 for a degraded array.
7319 */
2e38a37f 7320 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7321
674806d6 7322 if (has_failed(conf)) {
cc6167b4 7323 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7324 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7325 goto abort;
7326 }
7327
91adb564 7328 /* device size must be a multiple of chunk size */
9d8f0363 7329 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
7330 mddev->resync_max_sectors = mddev->dev_sectors;
7331
c148ffdc 7332 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7333 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7334 if (test_bit(MD_HAS_PPL, &mddev->flags))
7335 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7336 mdname(mddev));
7337 else if (mddev->ok_start_degraded)
cc6167b4
N
7338 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7339 mdname(mddev));
6ff8d8ec 7340 else {
cc6167b4
N
7341 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7342 mdname(mddev));
6ff8d8ec
N
7343 goto abort;
7344 }
1da177e4
LT
7345 }
7346
cc6167b4
N
7347 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7348 mdname(mddev), conf->level,
7349 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7350 mddev->new_layout);
1da177e4
LT
7351
7352 print_raid5_conf(conf);
7353
fef9c61f 7354 if (conf->reshape_progress != MaxSector) {
fef9c61f 7355 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7356 atomic_set(&conf->reshape_stripes, 0);
7357 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7358 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7359 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7360 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7361 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7362 "reshape");
f6705578
N
7363 }
7364
1da177e4 7365 /* Ok, everything is just fine now */
a64c876f
N
7366 if (mddev->to_remove == &raid5_attrs_group)
7367 mddev->to_remove = NULL;
00bcb4ac
N
7368 else if (mddev->kobj.sd &&
7369 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7370 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7371 mdname(mddev));
4a5add49 7372 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7373
4a5add49 7374 if (mddev->queue) {
9f7c2220 7375 int chunk_size;
4a5add49
N
7376 /* read-ahead size must cover two whole stripes, which
7377 * is 2 * (datadisks) * chunksize where 'n' is the
7378 * number of raid devices
7379 */
7380 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7381 int stripe = data_disks *
7382 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
dc3b17cc
JK
7383 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7384 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
91adb564 7385
9f7c2220
N
7386 chunk_size = mddev->chunk_sectors << 9;
7387 blk_queue_io_min(mddev->queue, chunk_size);
7388 blk_queue_io_opt(mddev->queue, chunk_size *
7389 (conf->raid_disks - conf->max_degraded));
c78afc62 7390 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7391 /*
7392 * We can only discard a whole stripe. It doesn't make sense to
7393 * discard data disk but write parity disk
7394 */
7395 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7396 /* Round up to power of 2, as discard handling
7397 * currently assumes that */
7398 while ((stripe-1) & stripe)
7399 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7400 mddev->queue->limits.discard_alignment = stripe;
7401 mddev->queue->limits.discard_granularity = stripe;
e8d7c332 7402
5026d7a9 7403 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 7404 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 7405
05616be5 7406 rdev_for_each(rdev, mddev) {
9f7c2220
N
7407 disk_stack_limits(mddev->gendisk, rdev->bdev,
7408 rdev->data_offset << 9);
05616be5
N
7409 disk_stack_limits(mddev->gendisk, rdev->bdev,
7410 rdev->new_data_offset << 9);
7411 }
620125f2 7412
48920ff2
CH
7413 /*
7414 * zeroing is required, otherwise data
7415 * could be lost. Consider a scenario: discard a stripe
7416 * (the stripe could be inconsistent if
7417 * discard_zeroes_data is 0); write one disk of the
7418 * stripe (the stripe could be inconsistent again
7419 * depending on which disks are used to calculate
7420 * parity); the disk is broken; The stripe data of this
7421 * disk is lost.
7422 *
7423 * We only allow DISCARD if the sysadmin has confirmed that
7424 * only safe devices are in use by setting a module parameter.
7425 * A better idea might be to turn DISCARD into WRITE_ZEROES
7426 * requests, as that is required to be safe.
7427 */
7428 if (devices_handle_discard_safely &&
e7597e69
JS
7429 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7430 mddev->queue->limits.discard_granularity >= stripe)
620125f2
SL
7431 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7432 mddev->queue);
7433 else
7434 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7435 mddev->queue);
1dffdddd
SL
7436
7437 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7438 }
23032a0e 7439
845b9e22 7440 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
ff875738 7441 goto abort;
5c7e81c3 7442
1da177e4
LT
7443 return 0;
7444abort:
01f96c0a 7445 md_unregister_thread(&mddev->thread);
e4f869d9
N
7446 print_raid5_conf(conf);
7447 free_conf(conf);
1da177e4 7448 mddev->private = NULL;
cc6167b4 7449 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7450 return -EIO;
7451}
7452
afa0f557 7453static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7454{
afa0f557 7455 struct r5conf *conf = priv;
1da177e4 7456
95fc17aa 7457 free_conf(conf);
a64c876f 7458 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7459}
7460
849674e4 7461static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7462{
d1688a6d 7463 struct r5conf *conf = mddev->private;
1da177e4
LT
7464 int i;
7465
9d8f0363 7466 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7467 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7468 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7469 rcu_read_lock();
7470 for (i = 0; i < conf->raid_disks; i++) {
7471 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7472 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7473 }
7474 rcu_read_unlock();
1da177e4 7475 seq_printf (seq, "]");
1da177e4
LT
7476}
7477
d1688a6d 7478static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7479{
7480 int i;
7481 struct disk_info *tmp;
7482
cc6167b4 7483 pr_debug("RAID conf printout:\n");
1da177e4 7484 if (!conf) {
cc6167b4 7485 pr_debug("(conf==NULL)\n");
1da177e4
LT
7486 return;
7487 }
cc6167b4 7488 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7489 conf->raid_disks,
7490 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7491
7492 for (i = 0; i < conf->raid_disks; i++) {
7493 char b[BDEVNAME_SIZE];
7494 tmp = conf->disks + i;
7495 if (tmp->rdev)
cc6167b4 7496 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7497 i, !test_bit(Faulty, &tmp->rdev->flags),
7498 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7499 }
7500}
7501
fd01b88c 7502static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7503{
7504 int i;
d1688a6d 7505 struct r5conf *conf = mddev->private;
1da177e4 7506 struct disk_info *tmp;
6b965620
N
7507 int count = 0;
7508 unsigned long flags;
1da177e4
LT
7509
7510 for (i = 0; i < conf->raid_disks; i++) {
7511 tmp = conf->disks + i;
dd054fce
N
7512 if (tmp->replacement
7513 && tmp->replacement->recovery_offset == MaxSector
7514 && !test_bit(Faulty, &tmp->replacement->flags)
7515 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7516 /* Replacement has just become active. */
7517 if (!tmp->rdev
7518 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7519 count++;
7520 if (tmp->rdev) {
7521 /* Replaced device not technically faulty,
7522 * but we need to be sure it gets removed
7523 * and never re-added.
7524 */
7525 set_bit(Faulty, &tmp->rdev->flags);
7526 sysfs_notify_dirent_safe(
7527 tmp->rdev->sysfs_state);
7528 }
7529 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7530 } else if (tmp->rdev
70fffd0b 7531 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7532 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7533 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7534 count++;
43c73ca4 7535 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7536 }
7537 }
6b965620 7538 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7539 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7540 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7541 print_raid5_conf(conf);
6b965620 7542 return count;
1da177e4
LT
7543}
7544
b8321b68 7545static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7546{
d1688a6d 7547 struct r5conf *conf = mddev->private;
1da177e4 7548 int err = 0;
b8321b68 7549 int number = rdev->raid_disk;
657e3e4d 7550 struct md_rdev **rdevp;
1da177e4
LT
7551 struct disk_info *p = conf->disks + number;
7552
7553 print_raid5_conf(conf);
f6b6ec5c 7554 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 7555 /*
f6b6ec5c
SL
7556 * we can't wait pending write here, as this is called in
7557 * raid5d, wait will deadlock.
84dd97a6
N
7558 * neilb: there is no locking about new writes here,
7559 * so this cannot be safe.
c2bb6242 7560 */
70d466f7
SL
7561 if (atomic_read(&conf->active_stripes) ||
7562 atomic_read(&conf->r5c_cached_full_stripes) ||
7563 atomic_read(&conf->r5c_cached_partial_stripes)) {
f6b6ec5c 7564 return -EBUSY;
84dd97a6 7565 }
ff875738 7566 log_exit(conf);
f6b6ec5c 7567 return 0;
c2bb6242 7568 }
657e3e4d
N
7569 if (rdev == p->rdev)
7570 rdevp = &p->rdev;
7571 else if (rdev == p->replacement)
7572 rdevp = &p->replacement;
7573 else
7574 return 0;
7575
7576 if (number >= conf->raid_disks &&
7577 conf->reshape_progress == MaxSector)
7578 clear_bit(In_sync, &rdev->flags);
7579
7580 if (test_bit(In_sync, &rdev->flags) ||
7581 atomic_read(&rdev->nr_pending)) {
7582 err = -EBUSY;
7583 goto abort;
7584 }
7585 /* Only remove non-faulty devices if recovery
7586 * isn't possible.
7587 */
7588 if (!test_bit(Faulty, &rdev->flags) &&
7589 mddev->recovery_disabled != conf->recovery_disabled &&
7590 !has_failed(conf) &&
dd054fce 7591 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7592 number < conf->raid_disks) {
7593 err = -EBUSY;
7594 goto abort;
7595 }
7596 *rdevp = NULL;
d787be40
N
7597 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7598 synchronize_rcu();
7599 if (atomic_read(&rdev->nr_pending)) {
7600 /* lost the race, try later */
7601 err = -EBUSY;
7602 *rdevp = rdev;
7603 }
7604 }
6358c239
AP
7605 if (!err) {
7606 err = log_modify(conf, rdev, false);
7607 if (err)
7608 goto abort;
7609 }
d787be40 7610 if (p->replacement) {
dd054fce
N
7611 /* We must have just cleared 'rdev' */
7612 p->rdev = p->replacement;
7613 clear_bit(Replacement, &p->replacement->flags);
7614 smp_mb(); /* Make sure other CPUs may see both as identical
7615 * but will never see neither - if they are careful
7616 */
7617 p->replacement = NULL;
6358c239
AP
7618
7619 if (!err)
7620 err = log_modify(conf, p->rdev, true);
e5bc9c3c
GJ
7621 }
7622
7623 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7624abort:
7625
7626 print_raid5_conf(conf);
7627 return err;
7628}
7629
fd01b88c 7630static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7631{
d1688a6d 7632 struct r5conf *conf = mddev->private;
199050ea 7633 int err = -EEXIST;
1da177e4
LT
7634 int disk;
7635 struct disk_info *p;
6c2fce2e
NB
7636 int first = 0;
7637 int last = conf->raid_disks - 1;
1da177e4 7638
f6b6ec5c 7639 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
7640 if (conf->log)
7641 return -EBUSY;
7642
7643 rdev->raid_disk = 0;
7644 /*
7645 * The array is in readonly mode if journal is missing, so no
7646 * write requests running. We should be safe
7647 */
845b9e22 7648 log_init(conf, rdev, false);
f6b6ec5c
SL
7649 return 0;
7650 }
7f0da59b
N
7651 if (mddev->recovery_disabled == conf->recovery_disabled)
7652 return -EBUSY;
7653
dc10c643 7654 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7655 /* no point adding a device */
199050ea 7656 return -EINVAL;
1da177e4 7657
6c2fce2e
NB
7658 if (rdev->raid_disk >= 0)
7659 first = last = rdev->raid_disk;
1da177e4
LT
7660
7661 /*
16a53ecc
N
7662 * find the disk ... but prefer rdev->saved_raid_disk
7663 * if possible.
1da177e4 7664 */
16a53ecc 7665 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7666 rdev->saved_raid_disk >= first &&
16a53ecc 7667 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7668 first = rdev->saved_raid_disk;
7669
7670 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7671 p = conf->disks + disk;
7672 if (p->rdev == NULL) {
b2d444d7 7673 clear_bit(In_sync, &rdev->flags);
1da177e4 7674 rdev->raid_disk = disk;
72626685
N
7675 if (rdev->saved_raid_disk != disk)
7676 conf->fullsync = 1;
d6065f7b 7677 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
7678
7679 err = log_modify(conf, rdev, true);
7680
5cfb22a1 7681 goto out;
1da177e4 7682 }
5cfb22a1
N
7683 }
7684 for (disk = first; disk <= last; disk++) {
7685 p = conf->disks + disk;
7bfec5f3
N
7686 if (test_bit(WantReplacement, &p->rdev->flags) &&
7687 p->replacement == NULL) {
7688 clear_bit(In_sync, &rdev->flags);
7689 set_bit(Replacement, &rdev->flags);
7690 rdev->raid_disk = disk;
7691 err = 0;
7692 conf->fullsync = 1;
7693 rcu_assign_pointer(p->replacement, rdev);
7694 break;
7695 }
7696 }
5cfb22a1 7697out:
1da177e4 7698 print_raid5_conf(conf);
199050ea 7699 return err;
1da177e4
LT
7700}
7701
fd01b88c 7702static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7703{
7704 /* no resync is happening, and there is enough space
7705 * on all devices, so we can resize.
7706 * We need to make sure resync covers any new space.
7707 * If the array is shrinking we should possibly wait until
7708 * any io in the removed space completes, but it hardly seems
7709 * worth it.
7710 */
a4a6125a 7711 sector_t newsize;
3cb5edf4
N
7712 struct r5conf *conf = mddev->private;
7713
3418d036 7714 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7715 return -EINVAL;
3cb5edf4 7716 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7717 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7718 if (mddev->external_size &&
7719 mddev->array_sectors > newsize)
b522adcd 7720 return -EINVAL;
a4a6125a
N
7721 if (mddev->bitmap) {
7722 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7723 if (ret)
7724 return ret;
7725 }
7726 md_set_array_sectors(mddev, newsize);
b098636c
N
7727 if (sectors > mddev->dev_sectors &&
7728 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7729 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7730 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7731 }
58c0fed4 7732 mddev->dev_sectors = sectors;
4b5c7ae8 7733 mddev->resync_max_sectors = sectors;
1da177e4
LT
7734 return 0;
7735}
7736
fd01b88c 7737static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7738{
7739 /* Can only proceed if there are plenty of stripe_heads.
7740 * We need a minimum of one full stripe,, and for sensible progress
7741 * it is best to have about 4 times that.
7742 * If we require 4 times, then the default 256 4K stripe_heads will
7743 * allow for chunk sizes up to 256K, which is probably OK.
7744 * If the chunk size is greater, user-space should request more
7745 * stripe_heads first.
7746 */
d1688a6d 7747 struct r5conf *conf = mddev->private;
01ee22b4 7748 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7749 > conf->min_nr_stripes ||
01ee22b4 7750 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7751 > conf->min_nr_stripes) {
cc6167b4
N
7752 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7753 mdname(mddev),
7754 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7755 / STRIPE_SIZE)*4);
01ee22b4
N
7756 return 0;
7757 }
7758 return 1;
7759}
7760
fd01b88c 7761static int check_reshape(struct mddev *mddev)
29269553 7762{
d1688a6d 7763 struct r5conf *conf = mddev->private;
29269553 7764
3418d036 7765 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7766 return -EINVAL;
88ce4930
N
7767 if (mddev->delta_disks == 0 &&
7768 mddev->new_layout == mddev->layout &&
664e7c41 7769 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7770 return 0; /* nothing to do */
674806d6 7771 if (has_failed(conf))
ec32a2bd 7772 return -EINVAL;
fdcfbbb6 7773 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7774 /* We might be able to shrink, but the devices must
7775 * be made bigger first.
7776 * For raid6, 4 is the minimum size.
7777 * Otherwise 2 is the minimum
7778 */
7779 int min = 2;
7780 if (mddev->level == 6)
7781 min = 4;
7782 if (mddev->raid_disks + mddev->delta_disks < min)
7783 return -EINVAL;
7784 }
29269553 7785
01ee22b4 7786 if (!check_stripe_cache(mddev))
29269553 7787 return -ENOSPC;
29269553 7788
738a2738
N
7789 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7790 mddev->delta_disks > 0)
7791 if (resize_chunks(conf,
7792 conf->previous_raid_disks
7793 + max(0, mddev->delta_disks),
7794 max(mddev->new_chunk_sectors,
7795 mddev->chunk_sectors)
7796 ) < 0)
7797 return -ENOMEM;
845b9e22
AP
7798
7799 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7800 return 0; /* never bother to shrink */
e56108d6
N
7801 return resize_stripes(conf, (conf->previous_raid_disks
7802 + mddev->delta_disks));
63c70c4f
N
7803}
7804
fd01b88c 7805static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7806{
d1688a6d 7807 struct r5conf *conf = mddev->private;
3cb03002 7808 struct md_rdev *rdev;
63c70c4f 7809 int spares = 0;
c04be0aa 7810 unsigned long flags;
63c70c4f 7811
f416885e 7812 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7813 return -EBUSY;
7814
01ee22b4
N
7815 if (!check_stripe_cache(mddev))
7816 return -ENOSPC;
7817
30b67645
N
7818 if (has_failed(conf))
7819 return -EINVAL;
7820
c6563a8c 7821 rdev_for_each(rdev, mddev) {
469518a3
N
7822 if (!test_bit(In_sync, &rdev->flags)
7823 && !test_bit(Faulty, &rdev->flags))
29269553 7824 spares++;
c6563a8c 7825 }
63c70c4f 7826
f416885e 7827 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7828 /* Not enough devices even to make a degraded array
7829 * of that size
7830 */
7831 return -EINVAL;
7832
ec32a2bd
N
7833 /* Refuse to reduce size of the array. Any reductions in
7834 * array size must be through explicit setting of array_size
7835 * attribute.
7836 */
7837 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7838 < mddev->array_sectors) {
cc6167b4
N
7839 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7840 mdname(mddev));
ec32a2bd
N
7841 return -EINVAL;
7842 }
7843
f6705578 7844 atomic_set(&conf->reshape_stripes, 0);
29269553 7845 spin_lock_irq(&conf->device_lock);
c46501b2 7846 write_seqcount_begin(&conf->gen_lock);
29269553 7847 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7848 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7849 conf->prev_chunk_sectors = conf->chunk_sectors;
7850 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7851 conf->prev_algo = conf->algorithm;
7852 conf->algorithm = mddev->new_layout;
05616be5
N
7853 conf->generation++;
7854 /* Code that selects data_offset needs to see the generation update
7855 * if reshape_progress has been set - so a memory barrier needed.
7856 */
7857 smp_mb();
2c810cdd 7858 if (mddev->reshape_backwards)
fef9c61f
N
7859 conf->reshape_progress = raid5_size(mddev, 0, 0);
7860 else
7861 conf->reshape_progress = 0;
7862 conf->reshape_safe = conf->reshape_progress;
c46501b2 7863 write_seqcount_end(&conf->gen_lock);
29269553
N
7864 spin_unlock_irq(&conf->device_lock);
7865
4d77e3ba
N
7866 /* Now make sure any requests that proceeded on the assumption
7867 * the reshape wasn't running - like Discard or Read - have
7868 * completed.
7869 */
7870 mddev_suspend(mddev);
7871 mddev_resume(mddev);
7872
29269553
N
7873 /* Add some new drives, as many as will fit.
7874 * We know there are enough to make the newly sized array work.
3424bf6a
N
7875 * Don't add devices if we are reducing the number of
7876 * devices in the array. This is because it is not possible
7877 * to correctly record the "partially reconstructed" state of
7878 * such devices during the reshape and confusion could result.
29269553 7879 */
87a8dec9 7880 if (mddev->delta_disks >= 0) {
dafb20fa 7881 rdev_for_each(rdev, mddev)
87a8dec9
N
7882 if (rdev->raid_disk < 0 &&
7883 !test_bit(Faulty, &rdev->flags)) {
7884 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7885 if (rdev->raid_disk
9d4c7d87 7886 >= conf->previous_raid_disks)
87a8dec9 7887 set_bit(In_sync, &rdev->flags);
9d4c7d87 7888 else
87a8dec9 7889 rdev->recovery_offset = 0;
36fad858
NK
7890
7891 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7892 /* Failure here is OK */;
50da0840 7893 }
87a8dec9
N
7894 } else if (rdev->raid_disk >= conf->previous_raid_disks
7895 && !test_bit(Faulty, &rdev->flags)) {
7896 /* This is a spare that was manually added */
7897 set_bit(In_sync, &rdev->flags);
87a8dec9 7898 }
29269553 7899
87a8dec9
N
7900 /* When a reshape changes the number of devices,
7901 * ->degraded is measured against the larger of the
7902 * pre and post number of devices.
7903 */
ec32a2bd 7904 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7905 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
7906 spin_unlock_irqrestore(&conf->device_lock, flags);
7907 }
63c70c4f 7908 mddev->raid_disks = conf->raid_disks;
e516402c 7909 mddev->reshape_position = conf->reshape_progress;
2953079c 7910 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 7911
29269553
N
7912 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7913 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7914 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7915 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7916 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7917 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7918 "reshape");
29269553
N
7919 if (!mddev->sync_thread) {
7920 mddev->recovery = 0;
7921 spin_lock_irq(&conf->device_lock);
ba8805b9 7922 write_seqcount_begin(&conf->gen_lock);
29269553 7923 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7924 mddev->new_chunk_sectors =
7925 conf->chunk_sectors = conf->prev_chunk_sectors;
7926 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7927 rdev_for_each(rdev, mddev)
7928 rdev->new_data_offset = rdev->data_offset;
7929 smp_wmb();
ba8805b9 7930 conf->generation --;
fef9c61f 7931 conf->reshape_progress = MaxSector;
1e3fa9bd 7932 mddev->reshape_position = MaxSector;
ba8805b9 7933 write_seqcount_end(&conf->gen_lock);
29269553
N
7934 spin_unlock_irq(&conf->device_lock);
7935 return -EAGAIN;
7936 }
c8f517c4 7937 conf->reshape_checkpoint = jiffies;
29269553
N
7938 md_wakeup_thread(mddev->sync_thread);
7939 md_new_event(mddev);
7940 return 0;
7941}
29269553 7942
ec32a2bd
N
7943/* This is called from the reshape thread and should make any
7944 * changes needed in 'conf'
7945 */
d1688a6d 7946static void end_reshape(struct r5conf *conf)
29269553 7947{
29269553 7948
f6705578 7949 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7950 struct md_rdev *rdev;
f6705578 7951
f6705578 7952 spin_lock_irq(&conf->device_lock);
cea9c228 7953 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7954 rdev_for_each(rdev, conf->mddev)
7955 rdev->data_offset = rdev->new_data_offset;
7956 smp_wmb();
fef9c61f 7957 conf->reshape_progress = MaxSector;
6cbd8148 7958 conf->mddev->reshape_position = MaxSector;
f6705578 7959 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7960 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7961
7962 /* read-ahead size must cover two whole stripes, which is
7963 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7964 */
4a5add49 7965 if (conf->mddev->queue) {
cea9c228 7966 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7967 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7968 / PAGE_SIZE);
dc3b17cc
JK
7969 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7970 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
16a53ecc 7971 }
29269553 7972 }
29269553
N
7973}
7974
ec32a2bd
N
7975/* This is called from the raid5d thread with mddev_lock held.
7976 * It makes config changes to the device.
7977 */
fd01b88c 7978static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7979{
d1688a6d 7980 struct r5conf *conf = mddev->private;
cea9c228
N
7981
7982 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7983
ec32a2bd
N
7984 if (mddev->delta_disks > 0) {
7985 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
fe67d19a
HM
7986 if (mddev->queue) {
7987 set_capacity(mddev->gendisk, mddev->array_sectors);
7988 revalidate_disk(mddev->gendisk);
7989 }
ec32a2bd
N
7990 } else {
7991 int d;
908f4fbd 7992 spin_lock_irq(&conf->device_lock);
2e38a37f 7993 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 7994 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7995 for (d = conf->raid_disks ;
7996 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7997 d++) {
3cb03002 7998 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7999 if (rdev)
8000 clear_bit(In_sync, &rdev->flags);
8001 rdev = conf->disks[d].replacement;
8002 if (rdev)
8003 clear_bit(In_sync, &rdev->flags);
1a67dde0 8004 }
cea9c228 8005 }
88ce4930 8006 mddev->layout = conf->algorithm;
09c9e5fa 8007 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
8008 mddev->reshape_position = MaxSector;
8009 mddev->delta_disks = 0;
2c810cdd 8010 mddev->reshape_backwards = 0;
cea9c228
N
8011 }
8012}
8013
fd01b88c 8014static void raid5_quiesce(struct mddev *mddev, int state)
72626685 8015{
d1688a6d 8016 struct r5conf *conf = mddev->private;
72626685
N
8017
8018 switch(state) {
e464eafd
N
8019 case 2: /* resume for a suspend */
8020 wake_up(&conf->wait_for_overlap);
8021 break;
8022
72626685 8023 case 1: /* stop all writes */
566c09c5 8024 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8025 /* '2' tells resync/reshape to pause so that all
8026 * active stripes can drain
8027 */
a39f7afd 8028 r5c_flush_cache(conf, INT_MAX);
64bd660b 8029 conf->quiesce = 2;
b1b46486 8030 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8031 atomic_read(&conf->active_stripes) == 0 &&
8032 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8033 unlock_all_device_hash_locks_irq(conf),
8034 lock_all_device_hash_locks_irq(conf));
64bd660b 8035 conf->quiesce = 1;
566c09c5 8036 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
8037 /* allow reshape to continue */
8038 wake_up(&conf->wait_for_overlap);
72626685
N
8039 break;
8040
8041 case 0: /* re-enable writes */
566c09c5 8042 lock_all_device_hash_locks_irq(conf);
72626685 8043 conf->quiesce = 0;
b1b46486 8044 wake_up(&conf->wait_for_quiescent);
e464eafd 8045 wake_up(&conf->wait_for_overlap);
566c09c5 8046 unlock_all_device_hash_locks_irq(conf);
72626685
N
8047 break;
8048 }
e6c033f7 8049 r5l_quiesce(conf->log, state);
72626685 8050}
b15c2e57 8051
fd01b88c 8052static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8053{
e373ab10 8054 struct r0conf *raid0_conf = mddev->private;
d76c8420 8055 sector_t sectors;
54071b38 8056
f1b29bca 8057 /* for raid0 takeover only one zone is supported */
e373ab10 8058 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8059 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8060 mdname(mddev));
f1b29bca
DW
8061 return ERR_PTR(-EINVAL);
8062 }
8063
e373ab10
N
8064 sectors = raid0_conf->strip_zone[0].zone_end;
8065 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8066 mddev->dev_sectors = sectors;
f1b29bca 8067 mddev->new_level = level;
54071b38
TM
8068 mddev->new_layout = ALGORITHM_PARITY_N;
8069 mddev->new_chunk_sectors = mddev->chunk_sectors;
8070 mddev->raid_disks += 1;
8071 mddev->delta_disks = 1;
8072 /* make sure it will be not marked as dirty */
8073 mddev->recovery_cp = MaxSector;
8074
8075 return setup_conf(mddev);
8076}
8077
fd01b88c 8078static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8079{
8080 int chunksect;
6995f0b2 8081 void *ret;
d562b0c4
N
8082
8083 if (mddev->raid_disks != 2 ||
8084 mddev->degraded > 1)
8085 return ERR_PTR(-EINVAL);
8086
8087 /* Should check if there are write-behind devices? */
8088
8089 chunksect = 64*2; /* 64K by default */
8090
8091 /* The array must be an exact multiple of chunksize */
8092 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8093 chunksect >>= 1;
8094
8095 if ((chunksect<<9) < STRIPE_SIZE)
8096 /* array size does not allow a suitable chunk size */
8097 return ERR_PTR(-EINVAL);
8098
8099 mddev->new_level = 5;
8100 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8101 mddev->new_chunk_sectors = chunksect;
d562b0c4 8102
6995f0b2 8103 ret = setup_conf(mddev);
32cd7cbb 8104 if (!IS_ERR(ret))
394ed8e4
SL
8105 mddev_clear_unsupported_flags(mddev,
8106 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8107 return ret;
d562b0c4
N
8108}
8109
fd01b88c 8110static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8111{
8112 int new_layout;
8113
8114 switch (mddev->layout) {
8115 case ALGORITHM_LEFT_ASYMMETRIC_6:
8116 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8117 break;
8118 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8119 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8120 break;
8121 case ALGORITHM_LEFT_SYMMETRIC_6:
8122 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8123 break;
8124 case ALGORITHM_RIGHT_SYMMETRIC_6:
8125 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8126 break;
8127 case ALGORITHM_PARITY_0_6:
8128 new_layout = ALGORITHM_PARITY_0;
8129 break;
8130 case ALGORITHM_PARITY_N:
8131 new_layout = ALGORITHM_PARITY_N;
8132 break;
8133 default:
8134 return ERR_PTR(-EINVAL);
8135 }
8136 mddev->new_level = 5;
8137 mddev->new_layout = new_layout;
8138 mddev->delta_disks = -1;
8139 mddev->raid_disks -= 1;
8140 return setup_conf(mddev);
8141}
8142
fd01b88c 8143static int raid5_check_reshape(struct mddev *mddev)
b3546035 8144{
88ce4930
N
8145 /* For a 2-drive array, the layout and chunk size can be changed
8146 * immediately as not restriping is needed.
8147 * For larger arrays we record the new value - after validation
8148 * to be used by a reshape pass.
b3546035 8149 */
d1688a6d 8150 struct r5conf *conf = mddev->private;
597a711b 8151 int new_chunk = mddev->new_chunk_sectors;
b3546035 8152
597a711b 8153 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8154 return -EINVAL;
8155 if (new_chunk > 0) {
0ba459d2 8156 if (!is_power_of_2(new_chunk))
b3546035 8157 return -EINVAL;
597a711b 8158 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8159 return -EINVAL;
597a711b 8160 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8161 /* not factor of array size */
8162 return -EINVAL;
8163 }
8164
8165 /* They look valid */
8166
88ce4930 8167 if (mddev->raid_disks == 2) {
597a711b
N
8168 /* can make the change immediately */
8169 if (mddev->new_layout >= 0) {
8170 conf->algorithm = mddev->new_layout;
8171 mddev->layout = mddev->new_layout;
88ce4930
N
8172 }
8173 if (new_chunk > 0) {
597a711b
N
8174 conf->chunk_sectors = new_chunk ;
8175 mddev->chunk_sectors = new_chunk;
88ce4930 8176 }
2953079c 8177 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8178 md_wakeup_thread(mddev->thread);
b3546035 8179 }
50ac168a 8180 return check_reshape(mddev);
88ce4930
N
8181}
8182
fd01b88c 8183static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8184{
597a711b 8185 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8186
597a711b 8187 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8188 return -EINVAL;
b3546035 8189 if (new_chunk > 0) {
0ba459d2 8190 if (!is_power_of_2(new_chunk))
88ce4930 8191 return -EINVAL;
597a711b 8192 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8193 return -EINVAL;
597a711b 8194 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8195 /* not factor of array size */
8196 return -EINVAL;
b3546035 8197 }
88ce4930
N
8198
8199 /* They look valid */
50ac168a 8200 return check_reshape(mddev);
b3546035
N
8201}
8202
fd01b88c 8203static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8204{
8205 /* raid5 can take over:
f1b29bca 8206 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8207 * raid1 - if there are two drives. We need to know the chunk size
8208 * raid4 - trivial - just use a raid4 layout.
8209 * raid6 - Providing it is a *_6 layout
d562b0c4 8210 */
f1b29bca
DW
8211 if (mddev->level == 0)
8212 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8213 if (mddev->level == 1)
8214 return raid5_takeover_raid1(mddev);
e9d4758f
N
8215 if (mddev->level == 4) {
8216 mddev->new_layout = ALGORITHM_PARITY_N;
8217 mddev->new_level = 5;
8218 return setup_conf(mddev);
8219 }
fc9739c6
N
8220 if (mddev->level == 6)
8221 return raid5_takeover_raid6(mddev);
d562b0c4
N
8222
8223 return ERR_PTR(-EINVAL);
8224}
8225
fd01b88c 8226static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8227{
f1b29bca
DW
8228 /* raid4 can take over:
8229 * raid0 - if there is only one strip zone
8230 * raid5 - if layout is right
a78d38a1 8231 */
f1b29bca
DW
8232 if (mddev->level == 0)
8233 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8234 if (mddev->level == 5 &&
8235 mddev->layout == ALGORITHM_PARITY_N) {
8236 mddev->new_layout = 0;
8237 mddev->new_level = 4;
8238 return setup_conf(mddev);
8239 }
8240 return ERR_PTR(-EINVAL);
8241}
d562b0c4 8242
84fc4b56 8243static struct md_personality raid5_personality;
245f46c2 8244
fd01b88c 8245static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8246{
8247 /* Currently can only take over a raid5. We map the
8248 * personality to an equivalent raid6 personality
8249 * with the Q block at the end.
8250 */
8251 int new_layout;
8252
8253 if (mddev->pers != &raid5_personality)
8254 return ERR_PTR(-EINVAL);
8255 if (mddev->degraded > 1)
8256 return ERR_PTR(-EINVAL);
8257 if (mddev->raid_disks > 253)
8258 return ERR_PTR(-EINVAL);
8259 if (mddev->raid_disks < 3)
8260 return ERR_PTR(-EINVAL);
8261
8262 switch (mddev->layout) {
8263 case ALGORITHM_LEFT_ASYMMETRIC:
8264 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8265 break;
8266 case ALGORITHM_RIGHT_ASYMMETRIC:
8267 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8268 break;
8269 case ALGORITHM_LEFT_SYMMETRIC:
8270 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8271 break;
8272 case ALGORITHM_RIGHT_SYMMETRIC:
8273 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8274 break;
8275 case ALGORITHM_PARITY_0:
8276 new_layout = ALGORITHM_PARITY_0_6;
8277 break;
8278 case ALGORITHM_PARITY_N:
8279 new_layout = ALGORITHM_PARITY_N;
8280 break;
8281 default:
8282 return ERR_PTR(-EINVAL);
8283 }
8284 mddev->new_level = 6;
8285 mddev->new_layout = new_layout;
8286 mddev->delta_disks = 1;
8287 mddev->raid_disks += 1;
8288 return setup_conf(mddev);
8289}
8290
ba903a3e
AP
8291static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8292{
8293 struct r5conf *conf;
8294 int err;
8295
8296 err = mddev_lock(mddev);
8297 if (err)
8298 return err;
8299 conf = mddev->private;
8300 if (!conf) {
8301 mddev_unlock(mddev);
8302 return -ENODEV;
8303 }
8304
845b9e22 8305 if (strncmp(buf, "ppl", 3) == 0) {
0bb0c105 8306 /* ppl only works with RAID 5 */
845b9e22
AP
8307 if (!raid5_has_ppl(conf) && conf->level == 5) {
8308 err = log_init(conf, NULL, true);
8309 if (!err) {
8310 err = resize_stripes(conf, conf->pool_size);
8311 if (err)
8312 log_exit(conf);
8313 }
0bb0c105
SL
8314 } else
8315 err = -EINVAL;
8316 } else if (strncmp(buf, "resync", 6) == 0) {
8317 if (raid5_has_ppl(conf)) {
8318 mddev_suspend(mddev);
8319 log_exit(conf);
0bb0c105 8320 mddev_resume(mddev);
845b9e22 8321 err = resize_stripes(conf, conf->pool_size);
0bb0c105
SL
8322 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8323 r5l_log_disk_error(conf)) {
8324 bool journal_dev_exists = false;
8325 struct md_rdev *rdev;
8326
8327 rdev_for_each(rdev, mddev)
8328 if (test_bit(Journal, &rdev->flags)) {
8329 journal_dev_exists = true;
8330 break;
8331 }
8332
8333 if (!journal_dev_exists) {
8334 mddev_suspend(mddev);
8335 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8336 mddev_resume(mddev);
8337 } else /* need remove journal device first */
8338 err = -EBUSY;
8339 } else
8340 err = -EINVAL;
ba903a3e
AP
8341 } else {
8342 err = -EINVAL;
8343 }
8344
8345 if (!err)
8346 md_update_sb(mddev, 1);
8347
8348 mddev_unlock(mddev);
8349
8350 return err;
8351}
8352
84fc4b56 8353static struct md_personality raid6_personality =
16a53ecc
N
8354{
8355 .name = "raid6",
8356 .level = 6,
8357 .owner = THIS_MODULE,
849674e4
SL
8358 .make_request = raid5_make_request,
8359 .run = raid5_run,
afa0f557 8360 .free = raid5_free,
849674e4
SL
8361 .status = raid5_status,
8362 .error_handler = raid5_error,
16a53ecc
N
8363 .hot_add_disk = raid5_add_disk,
8364 .hot_remove_disk= raid5_remove_disk,
8365 .spare_active = raid5_spare_active,
849674e4 8366 .sync_request = raid5_sync_request,
16a53ecc 8367 .resize = raid5_resize,
80c3a6ce 8368 .size = raid5_size,
50ac168a 8369 .check_reshape = raid6_check_reshape,
f416885e 8370 .start_reshape = raid5_start_reshape,
cea9c228 8371 .finish_reshape = raid5_finish_reshape,
16a53ecc 8372 .quiesce = raid5_quiesce,
245f46c2 8373 .takeover = raid6_takeover,
5c675f83 8374 .congested = raid5_congested,
0bb0c105 8375 .change_consistency_policy = raid5_change_consistency_policy,
16a53ecc 8376};
84fc4b56 8377static struct md_personality raid5_personality =
1da177e4
LT
8378{
8379 .name = "raid5",
2604b703 8380 .level = 5,
1da177e4 8381 .owner = THIS_MODULE,
849674e4
SL
8382 .make_request = raid5_make_request,
8383 .run = raid5_run,
afa0f557 8384 .free = raid5_free,
849674e4
SL
8385 .status = raid5_status,
8386 .error_handler = raid5_error,
1da177e4
LT
8387 .hot_add_disk = raid5_add_disk,
8388 .hot_remove_disk= raid5_remove_disk,
8389 .spare_active = raid5_spare_active,
849674e4 8390 .sync_request = raid5_sync_request,
1da177e4 8391 .resize = raid5_resize,
80c3a6ce 8392 .size = raid5_size,
63c70c4f
N
8393 .check_reshape = raid5_check_reshape,
8394 .start_reshape = raid5_start_reshape,
cea9c228 8395 .finish_reshape = raid5_finish_reshape,
72626685 8396 .quiesce = raid5_quiesce,
d562b0c4 8397 .takeover = raid5_takeover,
5c675f83 8398 .congested = raid5_congested,
ba903a3e 8399 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
8400};
8401
84fc4b56 8402static struct md_personality raid4_personality =
1da177e4 8403{
2604b703
N
8404 .name = "raid4",
8405 .level = 4,
8406 .owner = THIS_MODULE,
849674e4
SL
8407 .make_request = raid5_make_request,
8408 .run = raid5_run,
afa0f557 8409 .free = raid5_free,
849674e4
SL
8410 .status = raid5_status,
8411 .error_handler = raid5_error,
2604b703
N
8412 .hot_add_disk = raid5_add_disk,
8413 .hot_remove_disk= raid5_remove_disk,
8414 .spare_active = raid5_spare_active,
849674e4 8415 .sync_request = raid5_sync_request,
2604b703 8416 .resize = raid5_resize,
80c3a6ce 8417 .size = raid5_size,
3d37890b
N
8418 .check_reshape = raid5_check_reshape,
8419 .start_reshape = raid5_start_reshape,
cea9c228 8420 .finish_reshape = raid5_finish_reshape,
2604b703 8421 .quiesce = raid5_quiesce,
a78d38a1 8422 .takeover = raid4_takeover,
5c675f83 8423 .congested = raid5_congested,
0bb0c105 8424 .change_consistency_policy = raid5_change_consistency_policy,
2604b703
N
8425};
8426
8427static int __init raid5_init(void)
8428{
29c6d1bb
SAS
8429 int ret;
8430
851c30c9
SL
8431 raid5_wq = alloc_workqueue("raid5wq",
8432 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8433 if (!raid5_wq)
8434 return -ENOMEM;
29c6d1bb
SAS
8435
8436 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8437 "md/raid5:prepare",
8438 raid456_cpu_up_prepare,
8439 raid456_cpu_dead);
8440 if (ret) {
8441 destroy_workqueue(raid5_wq);
8442 return ret;
8443 }
16a53ecc 8444 register_md_personality(&raid6_personality);
2604b703
N
8445 register_md_personality(&raid5_personality);
8446 register_md_personality(&raid4_personality);
8447 return 0;
1da177e4
LT
8448}
8449
2604b703 8450static void raid5_exit(void)
1da177e4 8451{
16a53ecc 8452 unregister_md_personality(&raid6_personality);
2604b703
N
8453 unregister_md_personality(&raid5_personality);
8454 unregister_md_personality(&raid4_personality);
29c6d1bb 8455 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8456 destroy_workqueue(raid5_wq);
1da177e4
LT
8457}
8458
8459module_init(raid5_init);
8460module_exit(raid5_exit);
8461MODULE_LICENSE("GPL");
0efb9e61 8462MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8463MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8464MODULE_ALIAS("md-raid5");
8465MODULE_ALIAS("md-raid4");
2604b703
N
8466MODULE_ALIAS("md-level-5");
8467MODULE_ALIAS("md-level-4");
16a53ecc
N
8468MODULE_ALIAS("md-personality-8"); /* RAID6 */
8469MODULE_ALIAS("md-raid6");
8470MODULE_ALIAS("md-level-6");
8471
8472/* This used to be two separate modules, they were: */
8473MODULE_ALIAS("raid5");
8474MODULE_ALIAS("raid6");