md: replace STRIPE_OP_{BIODRAIN,PREXOR,POSTXOR} with 'reconstruct_states'
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
1da177e4
LT
46#include <linux/module.h>
47#include <linux/slab.h>
1da177e4
LT
48#include <linux/highmem.h>
49#include <linux/bitops.h>
f6705578 50#include <linux/kthread.h>
1da177e4 51#include <asm/atomic.h>
16a53ecc 52#include "raid6.h"
1da177e4 53
72626685 54#include <linux/raid/bitmap.h>
91c00924 55#include <linux/async_tx.h>
72626685 56
1da177e4
LT
57/*
58 * Stripe cache
59 */
60
61#define NR_STRIPES 256
62#define STRIPE_SIZE PAGE_SIZE
63#define STRIPE_SHIFT (PAGE_SHIFT - 9)
64#define STRIPE_SECTORS (STRIPE_SIZE>>9)
65#define IO_THRESHOLD 1
8b3e6cdc 66#define BYPASS_THRESHOLD 1
fccddba0 67#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
68#define HASH_MASK (NR_HASH - 1)
69
fccddba0 70#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
71
72/* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
80 */
81#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82/*
83 * The following can be used to debug the driver
84 */
1da177e4
LT
85#define RAID5_PARANOIA 1
86#if RAID5_PARANOIA && defined(CONFIG_SMP)
87# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88#else
89# define CHECK_DEVLOCK()
90#endif
91
45b4233c 92#ifdef DEBUG
1da177e4
LT
93#define inline
94#define __inline__
95#endif
96
6be9d494
BS
97#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
16a53ecc
N
99#if !RAID6_USE_EMPTY_ZERO_PAGE
100/* In .bss so it's zeroed */
101const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102#endif
103
104static inline int raid6_next_disk(int disk, int raid_disks)
105{
106 disk++;
107 return (disk < raid_disks) ? disk : 0;
108}
a4456856
DW
109
110static void return_io(struct bio *return_bi)
111{
112 struct bio *bi = return_bi;
113 while (bi) {
a4456856
DW
114
115 return_bi = bi->bi_next;
116 bi->bi_next = NULL;
117 bi->bi_size = 0;
0e13fe23 118 bio_endio(bi, 0);
a4456856
DW
119 bi = return_bi;
120 }
121}
122
1da177e4
LT
123static void print_raid5_conf (raid5_conf_t *conf);
124
600aa109
DW
125static int stripe_operations_active(struct stripe_head *sh)
126{
127 return sh->check_state || sh->reconstruct_state ||
128 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
129 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
130}
131
858119e1 132static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
133{
134 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
135 BUG_ON(!list_empty(&sh->lru));
136 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 137 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 138 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 139 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
140 blk_plug_device(conf->mddev->queue);
141 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 142 sh->bm_seq - conf->seq_write > 0) {
72626685 143 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
144 blk_plug_device(conf->mddev->queue);
145 } else {
72626685 146 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 147 list_add_tail(&sh->lru, &conf->handle_list);
72626685 148 }
1da177e4
LT
149 md_wakeup_thread(conf->mddev->thread);
150 } else {
600aa109 151 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
152 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
153 atomic_dec(&conf->preread_active_stripes);
154 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
155 md_wakeup_thread(conf->mddev->thread);
156 }
1da177e4 157 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
158 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
159 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 160 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
161 if (conf->retry_read_aligned)
162 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 163 }
1da177e4
LT
164 }
165 }
166}
167static void release_stripe(struct stripe_head *sh)
168{
169 raid5_conf_t *conf = sh->raid_conf;
170 unsigned long flags;
16a53ecc 171
1da177e4
LT
172 spin_lock_irqsave(&conf->device_lock, flags);
173 __release_stripe(conf, sh);
174 spin_unlock_irqrestore(&conf->device_lock, flags);
175}
176
fccddba0 177static inline void remove_hash(struct stripe_head *sh)
1da177e4 178{
45b4233c
DW
179 pr_debug("remove_hash(), stripe %llu\n",
180 (unsigned long long)sh->sector);
1da177e4 181
fccddba0 182 hlist_del_init(&sh->hash);
1da177e4
LT
183}
184
16a53ecc 185static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 186{
fccddba0 187 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 188
45b4233c
DW
189 pr_debug("insert_hash(), stripe %llu\n",
190 (unsigned long long)sh->sector);
1da177e4
LT
191
192 CHECK_DEVLOCK();
fccddba0 193 hlist_add_head(&sh->hash, hp);
1da177e4
LT
194}
195
196
197/* find an idle stripe, make sure it is unhashed, and return it. */
198static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
199{
200 struct stripe_head *sh = NULL;
201 struct list_head *first;
202
203 CHECK_DEVLOCK();
204 if (list_empty(&conf->inactive_list))
205 goto out;
206 first = conf->inactive_list.next;
207 sh = list_entry(first, struct stripe_head, lru);
208 list_del_init(first);
209 remove_hash(sh);
210 atomic_inc(&conf->active_stripes);
211out:
212 return sh;
213}
214
215static void shrink_buffers(struct stripe_head *sh, int num)
216{
217 struct page *p;
218 int i;
219
220 for (i=0; i<num ; i++) {
221 p = sh->dev[i].page;
222 if (!p)
223 continue;
224 sh->dev[i].page = NULL;
2d1f3b5d 225 put_page(p);
1da177e4
LT
226 }
227}
228
229static int grow_buffers(struct stripe_head *sh, int num)
230{
231 int i;
232
233 for (i=0; i<num; i++) {
234 struct page *page;
235
236 if (!(page = alloc_page(GFP_KERNEL))) {
237 return 1;
238 }
239 sh->dev[i].page = page;
240 }
241 return 0;
242}
243
244static void raid5_build_block (struct stripe_head *sh, int i);
245
7ecaa1e6 246static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
247{
248 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 249 int i;
1da177e4 250
78bafebd
ES
251 BUG_ON(atomic_read(&sh->count) != 0);
252 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 253 BUG_ON(stripe_operations_active(sh));
d84e0f10 254
1da177e4 255 CHECK_DEVLOCK();
45b4233c 256 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
257 (unsigned long long)sh->sector);
258
259 remove_hash(sh);
16a53ecc 260
1da177e4
LT
261 sh->sector = sector;
262 sh->pd_idx = pd_idx;
263 sh->state = 0;
264
7ecaa1e6
N
265 sh->disks = disks;
266
267 for (i = sh->disks; i--; ) {
1da177e4
LT
268 struct r5dev *dev = &sh->dev[i];
269
d84e0f10 270 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 271 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 272 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 273 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 274 dev->read, dev->towrite, dev->written,
1da177e4
LT
275 test_bit(R5_LOCKED, &dev->flags));
276 BUG();
277 }
278 dev->flags = 0;
279 raid5_build_block(sh, i);
280 }
281 insert_hash(conf, sh);
282}
283
7ecaa1e6 284static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
285{
286 struct stripe_head *sh;
fccddba0 287 struct hlist_node *hn;
1da177e4
LT
288
289 CHECK_DEVLOCK();
45b4233c 290 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 291 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 292 if (sh->sector == sector && sh->disks == disks)
1da177e4 293 return sh;
45b4233c 294 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
295 return NULL;
296}
297
298static void unplug_slaves(mddev_t *mddev);
165125e1 299static void raid5_unplug_device(struct request_queue *q);
1da177e4 300
7ecaa1e6
N
301static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
302 int pd_idx, int noblock)
1da177e4
LT
303{
304 struct stripe_head *sh;
305
45b4233c 306 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
307
308 spin_lock_irq(&conf->device_lock);
309
310 do {
72626685
N
311 wait_event_lock_irq(conf->wait_for_stripe,
312 conf->quiesce == 0,
313 conf->device_lock, /* nothing */);
7ecaa1e6 314 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
315 if (!sh) {
316 if (!conf->inactive_blocked)
317 sh = get_free_stripe(conf);
318 if (noblock && sh == NULL)
319 break;
320 if (!sh) {
321 conf->inactive_blocked = 1;
322 wait_event_lock_irq(conf->wait_for_stripe,
323 !list_empty(&conf->inactive_list) &&
5036805b
N
324 (atomic_read(&conf->active_stripes)
325 < (conf->max_nr_stripes *3/4)
1da177e4
LT
326 || !conf->inactive_blocked),
327 conf->device_lock,
f4370781 328 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
329 );
330 conf->inactive_blocked = 0;
331 } else
7ecaa1e6 332 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
333 } else {
334 if (atomic_read(&sh->count)) {
78bafebd 335 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
336 } else {
337 if (!test_bit(STRIPE_HANDLE, &sh->state))
338 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
339 if (list_empty(&sh->lru) &&
340 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
341 BUG();
342 list_del_init(&sh->lru);
1da177e4
LT
343 }
344 }
345 } while (sh == NULL);
346
347 if (sh)
348 atomic_inc(&sh->count);
349
350 spin_unlock_irq(&conf->device_lock);
351 return sh;
352}
353
6712ecf8
N
354static void
355raid5_end_read_request(struct bio *bi, int error);
356static void
357raid5_end_write_request(struct bio *bi, int error);
91c00924 358
c4e5ac0a 359static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
360{
361 raid5_conf_t *conf = sh->raid_conf;
362 int i, disks = sh->disks;
363
364 might_sleep();
365
366 for (i = disks; i--; ) {
367 int rw;
368 struct bio *bi;
369 mdk_rdev_t *rdev;
370 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
371 rw = WRITE;
372 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
373 rw = READ;
374 else
375 continue;
376
377 bi = &sh->dev[i].req;
378
379 bi->bi_rw = rw;
380 if (rw == WRITE)
381 bi->bi_end_io = raid5_end_write_request;
382 else
383 bi->bi_end_io = raid5_end_read_request;
384
385 rcu_read_lock();
386 rdev = rcu_dereference(conf->disks[i].rdev);
387 if (rdev && test_bit(Faulty, &rdev->flags))
388 rdev = NULL;
389 if (rdev)
390 atomic_inc(&rdev->nr_pending);
391 rcu_read_unlock();
392
393 if (rdev) {
c4e5ac0a 394 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
395 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
396
2b7497f0
DW
397 set_bit(STRIPE_IO_STARTED, &sh->state);
398
91c00924
DW
399 bi->bi_bdev = rdev->bdev;
400 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 401 __func__, (unsigned long long)sh->sector,
91c00924
DW
402 bi->bi_rw, i);
403 atomic_inc(&sh->count);
404 bi->bi_sector = sh->sector + rdev->data_offset;
405 bi->bi_flags = 1 << BIO_UPTODATE;
406 bi->bi_vcnt = 1;
407 bi->bi_max_vecs = 1;
408 bi->bi_idx = 0;
409 bi->bi_io_vec = &sh->dev[i].vec;
410 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
411 bi->bi_io_vec[0].bv_offset = 0;
412 bi->bi_size = STRIPE_SIZE;
413 bi->bi_next = NULL;
414 if (rw == WRITE &&
415 test_bit(R5_ReWrite, &sh->dev[i].flags))
416 atomic_add(STRIPE_SECTORS,
417 &rdev->corrected_errors);
418 generic_make_request(bi);
419 } else {
420 if (rw == WRITE)
421 set_bit(STRIPE_DEGRADED, &sh->state);
422 pr_debug("skip op %ld on disc %d for sector %llu\n",
423 bi->bi_rw, i, (unsigned long long)sh->sector);
424 clear_bit(R5_LOCKED, &sh->dev[i].flags);
425 set_bit(STRIPE_HANDLE, &sh->state);
426 }
427 }
428}
429
430static struct dma_async_tx_descriptor *
431async_copy_data(int frombio, struct bio *bio, struct page *page,
432 sector_t sector, struct dma_async_tx_descriptor *tx)
433{
434 struct bio_vec *bvl;
435 struct page *bio_page;
436 int i;
437 int page_offset;
438
439 if (bio->bi_sector >= sector)
440 page_offset = (signed)(bio->bi_sector - sector) * 512;
441 else
442 page_offset = (signed)(sector - bio->bi_sector) * -512;
443 bio_for_each_segment(bvl, bio, i) {
444 int len = bio_iovec_idx(bio, i)->bv_len;
445 int clen;
446 int b_offset = 0;
447
448 if (page_offset < 0) {
449 b_offset = -page_offset;
450 page_offset += b_offset;
451 len -= b_offset;
452 }
453
454 if (len > 0 && page_offset + len > STRIPE_SIZE)
455 clen = STRIPE_SIZE - page_offset;
456 else
457 clen = len;
458
459 if (clen > 0) {
460 b_offset += bio_iovec_idx(bio, i)->bv_offset;
461 bio_page = bio_iovec_idx(bio, i)->bv_page;
462 if (frombio)
463 tx = async_memcpy(page, bio_page, page_offset,
464 b_offset, clen,
eb0645a8 465 ASYNC_TX_DEP_ACK,
91c00924
DW
466 tx, NULL, NULL);
467 else
468 tx = async_memcpy(bio_page, page, b_offset,
469 page_offset, clen,
eb0645a8 470 ASYNC_TX_DEP_ACK,
91c00924
DW
471 tx, NULL, NULL);
472 }
473 if (clen < len) /* hit end of page */
474 break;
475 page_offset += len;
476 }
477
478 return tx;
479}
480
481static void ops_complete_biofill(void *stripe_head_ref)
482{
483 struct stripe_head *sh = stripe_head_ref;
484 struct bio *return_bi = NULL;
485 raid5_conf_t *conf = sh->raid_conf;
e4d84909 486 int i;
91c00924 487
e46b272b 488 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
489 (unsigned long long)sh->sector);
490
491 /* clear completed biofills */
83de75cc 492 spin_lock_irq(&conf->device_lock);
91c00924
DW
493 for (i = sh->disks; i--; ) {
494 struct r5dev *dev = &sh->dev[i];
91c00924
DW
495
496 /* acknowledge completion of a biofill operation */
e4d84909
DW
497 /* and check if we need to reply to a read request,
498 * new R5_Wantfill requests are held off until
83de75cc 499 * !STRIPE_BIOFILL_RUN
e4d84909
DW
500 */
501 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 502 struct bio *rbi, *rbi2;
91c00924 503
91c00924
DW
504 BUG_ON(!dev->read);
505 rbi = dev->read;
506 dev->read = NULL;
507 while (rbi && rbi->bi_sector <
508 dev->sector + STRIPE_SECTORS) {
509 rbi2 = r5_next_bio(rbi, dev->sector);
91c00924
DW
510 if (--rbi->bi_phys_segments == 0) {
511 rbi->bi_next = return_bi;
512 return_bi = rbi;
513 }
91c00924
DW
514 rbi = rbi2;
515 }
516 }
517 }
83de75cc
DW
518 spin_unlock_irq(&conf->device_lock);
519 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
520
521 return_io(return_bi);
522
e4d84909 523 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
524 release_stripe(sh);
525}
526
527static void ops_run_biofill(struct stripe_head *sh)
528{
529 struct dma_async_tx_descriptor *tx = NULL;
530 raid5_conf_t *conf = sh->raid_conf;
531 int i;
532
e46b272b 533 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
534 (unsigned long long)sh->sector);
535
536 for (i = sh->disks; i--; ) {
537 struct r5dev *dev = &sh->dev[i];
538 if (test_bit(R5_Wantfill, &dev->flags)) {
539 struct bio *rbi;
540 spin_lock_irq(&conf->device_lock);
541 dev->read = rbi = dev->toread;
542 dev->toread = NULL;
543 spin_unlock_irq(&conf->device_lock);
544 while (rbi && rbi->bi_sector <
545 dev->sector + STRIPE_SECTORS) {
546 tx = async_copy_data(0, rbi, dev->page,
547 dev->sector, tx);
548 rbi = r5_next_bio(rbi, dev->sector);
549 }
550 }
551 }
552
553 atomic_inc(&sh->count);
554 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
555 ops_complete_biofill, sh);
556}
557
558static void ops_complete_compute5(void *stripe_head_ref)
559{
560 struct stripe_head *sh = stripe_head_ref;
561 int target = sh->ops.target;
562 struct r5dev *tgt = &sh->dev[target];
563
e46b272b 564 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
565 (unsigned long long)sh->sector);
566
567 set_bit(R5_UPTODATE, &tgt->flags);
568 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
569 clear_bit(R5_Wantcompute, &tgt->flags);
ecc65c9b
DW
570 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
571 if (sh->check_state == check_state_compute_run)
572 sh->check_state = check_state_compute_result;
91c00924
DW
573 set_bit(STRIPE_HANDLE, &sh->state);
574 release_stripe(sh);
575}
576
577static struct dma_async_tx_descriptor *
600aa109 578ops_run_compute5(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
579{
580 /* kernel stack size limits the total number of disks */
581 int disks = sh->disks;
582 struct page *xor_srcs[disks];
583 int target = sh->ops.target;
584 struct r5dev *tgt = &sh->dev[target];
585 struct page *xor_dest = tgt->page;
586 int count = 0;
587 struct dma_async_tx_descriptor *tx;
588 int i;
589
590 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 591 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
592 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
593
594 for (i = disks; i--; )
595 if (i != target)
596 xor_srcs[count++] = sh->dev[i].page;
597
598 atomic_inc(&sh->count);
599
600 if (unlikely(count == 1))
601 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
602 0, NULL, ops_complete_compute5, sh);
603 else
604 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
605 ASYNC_TX_XOR_ZERO_DST, NULL,
606 ops_complete_compute5, sh);
607
608 /* ack now if postxor is not set to be run */
600aa109 609 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
91c00924
DW
610 async_tx_ack(tx);
611
612 return tx;
613}
614
615static void ops_complete_prexor(void *stripe_head_ref)
616{
617 struct stripe_head *sh = stripe_head_ref;
618
e46b272b 619 pr_debug("%s: stripe %llu\n", __func__,
91c00924 620 (unsigned long long)sh->sector);
91c00924
DW
621}
622
623static struct dma_async_tx_descriptor *
624ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
625{
626 /* kernel stack size limits the total number of disks */
627 int disks = sh->disks;
628 struct page *xor_srcs[disks];
629 int count = 0, pd_idx = sh->pd_idx, i;
630
631 /* existing parity data subtracted */
632 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
633
e46b272b 634 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
635 (unsigned long long)sh->sector);
636
637 for (i = disks; i--; ) {
638 struct r5dev *dev = &sh->dev[i];
639 /* Only process blocks that are known to be uptodate */
640 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
641 xor_srcs[count++] = dev->page;
642 }
643
644 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
645 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
646 ops_complete_prexor, sh);
647
648 return tx;
649}
650
651static struct dma_async_tx_descriptor *
6c55be8b 652ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
600aa109 653 unsigned long ops_request)
91c00924
DW
654{
655 int disks = sh->disks;
656 int pd_idx = sh->pd_idx, i;
657
658 /* check if prexor is active which means only process blocks
659 * that are part of a read-modify-write (Wantprexor)
660 */
600aa109 661 int prexor = test_bit(STRIPE_OP_PREXOR, &ops_request);
91c00924 662
e46b272b 663 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
664 (unsigned long long)sh->sector);
665
666 for (i = disks; i--; ) {
667 struct r5dev *dev = &sh->dev[i];
668 struct bio *chosen;
669 int towrite;
670
671 towrite = 0;
672 if (prexor) { /* rmw */
673 if (dev->towrite &&
674 test_bit(R5_Wantprexor, &dev->flags))
675 towrite = 1;
676 } else { /* rcw */
677 if (i != pd_idx && dev->towrite &&
678 test_bit(R5_LOCKED, &dev->flags))
679 towrite = 1;
680 }
681
682 if (towrite) {
683 struct bio *wbi;
684
685 spin_lock(&sh->lock);
686 chosen = dev->towrite;
687 dev->towrite = NULL;
688 BUG_ON(dev->written);
689 wbi = dev->written = chosen;
690 spin_unlock(&sh->lock);
691
692 while (wbi && wbi->bi_sector <
693 dev->sector + STRIPE_SECTORS) {
694 tx = async_copy_data(1, wbi, dev->page,
695 dev->sector, tx);
696 wbi = r5_next_bio(wbi, dev->sector);
697 }
698 }
699 }
700
701 return tx;
702}
703
704static void ops_complete_postxor(void *stripe_head_ref)
705{
706 struct stripe_head *sh = stripe_head_ref;
707
e46b272b 708 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
709 (unsigned long long)sh->sector);
710
600aa109 711 sh->reconstruct_state = reconstruct_state_result;
91c00924
DW
712 set_bit(STRIPE_HANDLE, &sh->state);
713 release_stripe(sh);
714}
715
716static void ops_complete_write(void *stripe_head_ref)
717{
718 struct stripe_head *sh = stripe_head_ref;
719 int disks = sh->disks, i, pd_idx = sh->pd_idx;
720
e46b272b 721 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
722 (unsigned long long)sh->sector);
723
724 for (i = disks; i--; ) {
725 struct r5dev *dev = &sh->dev[i];
726 if (dev->written || i == pd_idx)
727 set_bit(R5_UPTODATE, &dev->flags);
728 }
729
600aa109 730 sh->reconstruct_state = reconstruct_state_drain_result;
91c00924
DW
731 set_bit(STRIPE_HANDLE, &sh->state);
732 release_stripe(sh);
733}
734
735static void
6c55be8b 736ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
600aa109 737 unsigned long ops_request)
91c00924
DW
738{
739 /* kernel stack size limits the total number of disks */
740 int disks = sh->disks;
741 struct page *xor_srcs[disks];
742
743 int count = 0, pd_idx = sh->pd_idx, i;
744 struct page *xor_dest;
600aa109 745 int prexor = test_bit(STRIPE_OP_PREXOR, &ops_request);
91c00924
DW
746 unsigned long flags;
747 dma_async_tx_callback callback;
748
e46b272b 749 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
750 (unsigned long long)sh->sector);
751
752 /* check if prexor is active which means only process blocks
753 * that are part of a read-modify-write (written)
754 */
755 if (prexor) {
756 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
757 for (i = disks; i--; ) {
758 struct r5dev *dev = &sh->dev[i];
759 if (dev->written)
760 xor_srcs[count++] = dev->page;
761 }
762 } else {
763 xor_dest = sh->dev[pd_idx].page;
764 for (i = disks; i--; ) {
765 struct r5dev *dev = &sh->dev[i];
766 if (i != pd_idx)
767 xor_srcs[count++] = dev->page;
768 }
769 }
770
771 /* check whether this postxor is part of a write */
600aa109 772 callback = test_bit(STRIPE_OP_BIODRAIN, &ops_request) ?
91c00924
DW
773 ops_complete_write : ops_complete_postxor;
774
775 /* 1/ if we prexor'd then the dest is reused as a source
776 * 2/ if we did not prexor then we are redoing the parity
777 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
778 * for the synchronous xor case
779 */
780 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
781 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
782
783 atomic_inc(&sh->count);
784
785 if (unlikely(count == 1)) {
786 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
787 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
788 flags, tx, callback, sh);
789 } else
790 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
791 flags, tx, callback, sh);
792}
793
794static void ops_complete_check(void *stripe_head_ref)
795{
796 struct stripe_head *sh = stripe_head_ref;
91c00924 797
e46b272b 798 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
799 (unsigned long long)sh->sector);
800
ecc65c9b 801 sh->check_state = check_state_check_result;
91c00924
DW
802 set_bit(STRIPE_HANDLE, &sh->state);
803 release_stripe(sh);
804}
805
806static void ops_run_check(struct stripe_head *sh)
807{
808 /* kernel stack size limits the total number of disks */
809 int disks = sh->disks;
810 struct page *xor_srcs[disks];
811 struct dma_async_tx_descriptor *tx;
812
813 int count = 0, pd_idx = sh->pd_idx, i;
814 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
815
e46b272b 816 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
817 (unsigned long long)sh->sector);
818
819 for (i = disks; i--; ) {
820 struct r5dev *dev = &sh->dev[i];
821 if (i != pd_idx)
822 xor_srcs[count++] = dev->page;
823 }
824
825 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
826 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
827
91c00924
DW
828 atomic_inc(&sh->count);
829 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
830 ops_complete_check, sh);
831}
832
600aa109 833static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
834{
835 int overlap_clear = 0, i, disks = sh->disks;
836 struct dma_async_tx_descriptor *tx = NULL;
837
83de75cc 838 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
839 ops_run_biofill(sh);
840 overlap_clear++;
841 }
842
976ea8d4 843 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request))
600aa109 844 tx = ops_run_compute5(sh, ops_request);
91c00924 845
600aa109 846 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
91c00924
DW
847 tx = ops_run_prexor(sh, tx);
848
600aa109
DW
849 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
850 tx = ops_run_biodrain(sh, tx, ops_request);
91c00924
DW
851 overlap_clear++;
852 }
853
600aa109
DW
854 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
855 ops_run_postxor(sh, tx, ops_request);
91c00924 856
ecc65c9b 857 if (test_bit(STRIPE_OP_CHECK, &ops_request))
91c00924
DW
858 ops_run_check(sh);
859
91c00924
DW
860 if (overlap_clear)
861 for (i = disks; i--; ) {
862 struct r5dev *dev = &sh->dev[i];
863 if (test_and_clear_bit(R5_Overlap, &dev->flags))
864 wake_up(&sh->raid_conf->wait_for_overlap);
865 }
866}
867
3f294f4f 868static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
869{
870 struct stripe_head *sh;
3f294f4f
N
871 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
872 if (!sh)
873 return 0;
874 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
875 sh->raid_conf = conf;
876 spin_lock_init(&sh->lock);
877
878 if (grow_buffers(sh, conf->raid_disks)) {
879 shrink_buffers(sh, conf->raid_disks);
880 kmem_cache_free(conf->slab_cache, sh);
881 return 0;
882 }
7ecaa1e6 883 sh->disks = conf->raid_disks;
3f294f4f
N
884 /* we just created an active stripe so... */
885 atomic_set(&sh->count, 1);
886 atomic_inc(&conf->active_stripes);
887 INIT_LIST_HEAD(&sh->lru);
888 release_stripe(sh);
889 return 1;
890}
891
892static int grow_stripes(raid5_conf_t *conf, int num)
893{
e18b890b 894 struct kmem_cache *sc;
1da177e4
LT
895 int devs = conf->raid_disks;
896
42b9bebe
N
897 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
898 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
ad01c9e3
N
899 conf->active_name = 0;
900 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 901 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 902 0, 0, NULL);
1da177e4
LT
903 if (!sc)
904 return 1;
905 conf->slab_cache = sc;
ad01c9e3 906 conf->pool_size = devs;
16a53ecc 907 while (num--)
3f294f4f 908 if (!grow_one_stripe(conf))
1da177e4 909 return 1;
1da177e4
LT
910 return 0;
911}
29269553
N
912
913#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
914static int resize_stripes(raid5_conf_t *conf, int newsize)
915{
916 /* Make all the stripes able to hold 'newsize' devices.
917 * New slots in each stripe get 'page' set to a new page.
918 *
919 * This happens in stages:
920 * 1/ create a new kmem_cache and allocate the required number of
921 * stripe_heads.
922 * 2/ gather all the old stripe_heads and tranfer the pages across
923 * to the new stripe_heads. This will have the side effect of
924 * freezing the array as once all stripe_heads have been collected,
925 * no IO will be possible. Old stripe heads are freed once their
926 * pages have been transferred over, and the old kmem_cache is
927 * freed when all stripes are done.
928 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
929 * we simple return a failre status - no need to clean anything up.
930 * 4/ allocate new pages for the new slots in the new stripe_heads.
931 * If this fails, we don't bother trying the shrink the
932 * stripe_heads down again, we just leave them as they are.
933 * As each stripe_head is processed the new one is released into
934 * active service.
935 *
936 * Once step2 is started, we cannot afford to wait for a write,
937 * so we use GFP_NOIO allocations.
938 */
939 struct stripe_head *osh, *nsh;
940 LIST_HEAD(newstripes);
941 struct disk_info *ndisks;
942 int err = 0;
e18b890b 943 struct kmem_cache *sc;
ad01c9e3
N
944 int i;
945
946 if (newsize <= conf->pool_size)
947 return 0; /* never bother to shrink */
948
2a2275d6
N
949 md_allow_write(conf->mddev);
950
ad01c9e3
N
951 /* Step 1 */
952 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
953 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 954 0, 0, NULL);
ad01c9e3
N
955 if (!sc)
956 return -ENOMEM;
957
958 for (i = conf->max_nr_stripes; i; i--) {
959 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
960 if (!nsh)
961 break;
962
963 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
964
965 nsh->raid_conf = conf;
966 spin_lock_init(&nsh->lock);
967
968 list_add(&nsh->lru, &newstripes);
969 }
970 if (i) {
971 /* didn't get enough, give up */
972 while (!list_empty(&newstripes)) {
973 nsh = list_entry(newstripes.next, struct stripe_head, lru);
974 list_del(&nsh->lru);
975 kmem_cache_free(sc, nsh);
976 }
977 kmem_cache_destroy(sc);
978 return -ENOMEM;
979 }
980 /* Step 2 - Must use GFP_NOIO now.
981 * OK, we have enough stripes, start collecting inactive
982 * stripes and copying them over
983 */
984 list_for_each_entry(nsh, &newstripes, lru) {
985 spin_lock_irq(&conf->device_lock);
986 wait_event_lock_irq(conf->wait_for_stripe,
987 !list_empty(&conf->inactive_list),
988 conf->device_lock,
b3b46be3 989 unplug_slaves(conf->mddev)
ad01c9e3
N
990 );
991 osh = get_free_stripe(conf);
992 spin_unlock_irq(&conf->device_lock);
993 atomic_set(&nsh->count, 1);
994 for(i=0; i<conf->pool_size; i++)
995 nsh->dev[i].page = osh->dev[i].page;
996 for( ; i<newsize; i++)
997 nsh->dev[i].page = NULL;
998 kmem_cache_free(conf->slab_cache, osh);
999 }
1000 kmem_cache_destroy(conf->slab_cache);
1001
1002 /* Step 3.
1003 * At this point, we are holding all the stripes so the array
1004 * is completely stalled, so now is a good time to resize
1005 * conf->disks.
1006 */
1007 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1008 if (ndisks) {
1009 for (i=0; i<conf->raid_disks; i++)
1010 ndisks[i] = conf->disks[i];
1011 kfree(conf->disks);
1012 conf->disks = ndisks;
1013 } else
1014 err = -ENOMEM;
1015
1016 /* Step 4, return new stripes to service */
1017 while(!list_empty(&newstripes)) {
1018 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1019 list_del_init(&nsh->lru);
1020 for (i=conf->raid_disks; i < newsize; i++)
1021 if (nsh->dev[i].page == NULL) {
1022 struct page *p = alloc_page(GFP_NOIO);
1023 nsh->dev[i].page = p;
1024 if (!p)
1025 err = -ENOMEM;
1026 }
1027 release_stripe(nsh);
1028 }
1029 /* critical section pass, GFP_NOIO no longer needed */
1030
1031 conf->slab_cache = sc;
1032 conf->active_name = 1-conf->active_name;
1033 conf->pool_size = newsize;
1034 return err;
1035}
29269553 1036#endif
1da177e4 1037
3f294f4f 1038static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1039{
1040 struct stripe_head *sh;
1041
3f294f4f
N
1042 spin_lock_irq(&conf->device_lock);
1043 sh = get_free_stripe(conf);
1044 spin_unlock_irq(&conf->device_lock);
1045 if (!sh)
1046 return 0;
78bafebd 1047 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1048 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1049 kmem_cache_free(conf->slab_cache, sh);
1050 atomic_dec(&conf->active_stripes);
1051 return 1;
1052}
1053
1054static void shrink_stripes(raid5_conf_t *conf)
1055{
1056 while (drop_one_stripe(conf))
1057 ;
1058
29fc7e3e
N
1059 if (conf->slab_cache)
1060 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1061 conf->slab_cache = NULL;
1062}
1063
6712ecf8 1064static void raid5_end_read_request(struct bio * bi, int error)
1da177e4
LT
1065{
1066 struct stripe_head *sh = bi->bi_private;
1067 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1068 int disks = sh->disks, i;
1da177e4 1069 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1070 char b[BDEVNAME_SIZE];
1071 mdk_rdev_t *rdev;
1da177e4 1072
1da177e4
LT
1073
1074 for (i=0 ; i<disks; i++)
1075 if (bi == &sh->dev[i].req)
1076 break;
1077
45b4233c
DW
1078 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1079 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1080 uptodate);
1081 if (i == disks) {
1082 BUG();
6712ecf8 1083 return;
1da177e4
LT
1084 }
1085
1086 if (uptodate) {
1da177e4 1087 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1088 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1089 rdev = conf->disks[i].rdev;
6be9d494
BS
1090 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1091 " (%lu sectors at %llu on %s)\n",
1092 mdname(conf->mddev), STRIPE_SECTORS,
1093 (unsigned long long)(sh->sector
1094 + rdev->data_offset),
1095 bdevname(rdev->bdev, b));
4e5314b5
N
1096 clear_bit(R5_ReadError, &sh->dev[i].flags);
1097 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1098 }
ba22dcbf
N
1099 if (atomic_read(&conf->disks[i].rdev->read_errors))
1100 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1101 } else {
d6950432 1102 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1103 int retry = 0;
d6950432
N
1104 rdev = conf->disks[i].rdev;
1105
1da177e4 1106 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1107 atomic_inc(&rdev->read_errors);
ba22dcbf 1108 if (conf->mddev->degraded)
6be9d494
BS
1109 printk_rl(KERN_WARNING
1110 "raid5:%s: read error not correctable "
1111 "(sector %llu on %s).\n",
1112 mdname(conf->mddev),
1113 (unsigned long long)(sh->sector
1114 + rdev->data_offset),
1115 bdn);
ba22dcbf 1116 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1117 /* Oh, no!!! */
6be9d494
BS
1118 printk_rl(KERN_WARNING
1119 "raid5:%s: read error NOT corrected!! "
1120 "(sector %llu on %s).\n",
1121 mdname(conf->mddev),
1122 (unsigned long long)(sh->sector
1123 + rdev->data_offset),
1124 bdn);
d6950432 1125 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1126 > conf->max_nr_stripes)
14f8d26b 1127 printk(KERN_WARNING
d6950432
N
1128 "raid5:%s: Too many read errors, failing device %s.\n",
1129 mdname(conf->mddev), bdn);
ba22dcbf
N
1130 else
1131 retry = 1;
1132 if (retry)
1133 set_bit(R5_ReadError, &sh->dev[i].flags);
1134 else {
4e5314b5
N
1135 clear_bit(R5_ReadError, &sh->dev[i].flags);
1136 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1137 md_error(conf->mddev, rdev);
ba22dcbf 1138 }
1da177e4
LT
1139 }
1140 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1141 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1142 set_bit(STRIPE_HANDLE, &sh->state);
1143 release_stripe(sh);
1da177e4
LT
1144}
1145
6712ecf8 1146static void raid5_end_write_request (struct bio *bi, int error)
1da177e4
LT
1147{
1148 struct stripe_head *sh = bi->bi_private;
1149 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1150 int disks = sh->disks, i;
1da177e4
LT
1151 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1152
1da177e4
LT
1153 for (i=0 ; i<disks; i++)
1154 if (bi == &sh->dev[i].req)
1155 break;
1156
45b4233c 1157 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1158 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1159 uptodate);
1160 if (i == disks) {
1161 BUG();
6712ecf8 1162 return;
1da177e4
LT
1163 }
1164
1da177e4
LT
1165 if (!uptodate)
1166 md_error(conf->mddev, conf->disks[i].rdev);
1167
1168 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1169
1170 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1171 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1172 release_stripe(sh);
1da177e4
LT
1173}
1174
1175
1176static sector_t compute_blocknr(struct stripe_head *sh, int i);
1177
1178static void raid5_build_block (struct stripe_head *sh, int i)
1179{
1180 struct r5dev *dev = &sh->dev[i];
1181
1182 bio_init(&dev->req);
1183 dev->req.bi_io_vec = &dev->vec;
1184 dev->req.bi_vcnt++;
1185 dev->req.bi_max_vecs++;
1186 dev->vec.bv_page = dev->page;
1187 dev->vec.bv_len = STRIPE_SIZE;
1188 dev->vec.bv_offset = 0;
1189
1190 dev->req.bi_sector = sh->sector;
1191 dev->req.bi_private = sh;
1192
1193 dev->flags = 0;
16a53ecc 1194 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
1195}
1196
1197static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1198{
1199 char b[BDEVNAME_SIZE];
1200 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1201 pr_debug("raid5: error called\n");
1da177e4 1202
b2d444d7 1203 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1204 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1205 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1206 unsigned long flags;
1207 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1208 mddev->degraded++;
c04be0aa 1209 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1210 /*
1211 * if recovery was running, make sure it aborts.
1212 */
dfc70645 1213 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1214 }
b2d444d7 1215 set_bit(Faulty, &rdev->flags);
1da177e4 1216 printk (KERN_ALERT
d7a420c9
NA
1217 "raid5: Disk failure on %s, disabling device.\n"
1218 "raid5: Operation continuing on %d devices.\n",
02c2de8c 1219 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1220 }
16a53ecc 1221}
1da177e4
LT
1222
1223/*
1224 * Input: a 'big' sector number,
1225 * Output: index of the data and parity disk, and the sector # in them.
1226 */
1227static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1228 unsigned int data_disks, unsigned int * dd_idx,
1229 unsigned int * pd_idx, raid5_conf_t *conf)
1230{
1231 long stripe;
1232 unsigned long chunk_number;
1233 unsigned int chunk_offset;
1234 sector_t new_sector;
1235 int sectors_per_chunk = conf->chunk_size >> 9;
1236
1237 /* First compute the information on this sector */
1238
1239 /*
1240 * Compute the chunk number and the sector offset inside the chunk
1241 */
1242 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1243 chunk_number = r_sector;
1244 BUG_ON(r_sector != chunk_number);
1245
1246 /*
1247 * Compute the stripe number
1248 */
1249 stripe = chunk_number / data_disks;
1250
1251 /*
1252 * Compute the data disk and parity disk indexes inside the stripe
1253 */
1254 *dd_idx = chunk_number % data_disks;
1255
1256 /*
1257 * Select the parity disk based on the user selected algorithm.
1258 */
16a53ecc
N
1259 switch(conf->level) {
1260 case 4:
1da177e4 1261 *pd_idx = data_disks;
16a53ecc
N
1262 break;
1263 case 5:
1264 switch (conf->algorithm) {
1da177e4
LT
1265 case ALGORITHM_LEFT_ASYMMETRIC:
1266 *pd_idx = data_disks - stripe % raid_disks;
1267 if (*dd_idx >= *pd_idx)
1268 (*dd_idx)++;
1269 break;
1270 case ALGORITHM_RIGHT_ASYMMETRIC:
1271 *pd_idx = stripe % raid_disks;
1272 if (*dd_idx >= *pd_idx)
1273 (*dd_idx)++;
1274 break;
1275 case ALGORITHM_LEFT_SYMMETRIC:
1276 *pd_idx = data_disks - stripe % raid_disks;
1277 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1278 break;
1279 case ALGORITHM_RIGHT_SYMMETRIC:
1280 *pd_idx = stripe % raid_disks;
1281 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1282 break;
1283 default:
14f8d26b 1284 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 1285 conf->algorithm);
16a53ecc
N
1286 }
1287 break;
1288 case 6:
1289
1290 /**** FIX THIS ****/
1291 switch (conf->algorithm) {
1292 case ALGORITHM_LEFT_ASYMMETRIC:
1293 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1294 if (*pd_idx == raid_disks-1)
1295 (*dd_idx)++; /* Q D D D P */
1296 else if (*dd_idx >= *pd_idx)
1297 (*dd_idx) += 2; /* D D P Q D */
1298 break;
1299 case ALGORITHM_RIGHT_ASYMMETRIC:
1300 *pd_idx = stripe % raid_disks;
1301 if (*pd_idx == raid_disks-1)
1302 (*dd_idx)++; /* Q D D D P */
1303 else if (*dd_idx >= *pd_idx)
1304 (*dd_idx) += 2; /* D D P Q D */
1305 break;
1306 case ALGORITHM_LEFT_SYMMETRIC:
1307 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1308 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1309 break;
1310 case ALGORITHM_RIGHT_SYMMETRIC:
1311 *pd_idx = stripe % raid_disks;
1312 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1313 break;
1314 default:
1315 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1316 conf->algorithm);
1317 }
1318 break;
1da177e4
LT
1319 }
1320
1321 /*
1322 * Finally, compute the new sector number
1323 */
1324 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1325 return new_sector;
1326}
1327
1328
1329static sector_t compute_blocknr(struct stripe_head *sh, int i)
1330{
1331 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1332 int raid_disks = sh->disks;
1333 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1334 sector_t new_sector = sh->sector, check;
1335 int sectors_per_chunk = conf->chunk_size >> 9;
1336 sector_t stripe;
1337 int chunk_offset;
1338 int chunk_number, dummy1, dummy2, dd_idx = i;
1339 sector_t r_sector;
1340
16a53ecc 1341
1da177e4
LT
1342 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1343 stripe = new_sector;
1344 BUG_ON(new_sector != stripe);
1345
16a53ecc
N
1346 if (i == sh->pd_idx)
1347 return 0;
1348 switch(conf->level) {
1349 case 4: break;
1350 case 5:
1351 switch (conf->algorithm) {
1da177e4
LT
1352 case ALGORITHM_LEFT_ASYMMETRIC:
1353 case ALGORITHM_RIGHT_ASYMMETRIC:
1354 if (i > sh->pd_idx)
1355 i--;
1356 break;
1357 case ALGORITHM_LEFT_SYMMETRIC:
1358 case ALGORITHM_RIGHT_SYMMETRIC:
1359 if (i < sh->pd_idx)
1360 i += raid_disks;
1361 i -= (sh->pd_idx + 1);
1362 break;
1363 default:
14f8d26b 1364 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
1365 conf->algorithm);
1366 }
1367 break;
1368 case 6:
16a53ecc
N
1369 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1370 return 0; /* It is the Q disk */
1371 switch (conf->algorithm) {
1372 case ALGORITHM_LEFT_ASYMMETRIC:
1373 case ALGORITHM_RIGHT_ASYMMETRIC:
1374 if (sh->pd_idx == raid_disks-1)
1375 i--; /* Q D D D P */
1376 else if (i > sh->pd_idx)
1377 i -= 2; /* D D P Q D */
1378 break;
1379 case ALGORITHM_LEFT_SYMMETRIC:
1380 case ALGORITHM_RIGHT_SYMMETRIC:
1381 if (sh->pd_idx == raid_disks-1)
1382 i--; /* Q D D D P */
1383 else {
1384 /* D D P Q D */
1385 if (i < sh->pd_idx)
1386 i += raid_disks;
1387 i -= (sh->pd_idx + 2);
1388 }
1389 break;
1390 default:
1391 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1da177e4 1392 conf->algorithm);
16a53ecc
N
1393 }
1394 break;
1da177e4
LT
1395 }
1396
1397 chunk_number = stripe * data_disks + i;
1398 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1399
1400 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1401 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 1402 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1403 return 0;
1404 }
1405 return r_sector;
1406}
1407
1408
1409
1410/*
16a53ecc
N
1411 * Copy data between a page in the stripe cache, and one or more bion
1412 * The page could align with the middle of the bio, or there could be
1413 * several bion, each with several bio_vecs, which cover part of the page
1414 * Multiple bion are linked together on bi_next. There may be extras
1415 * at the end of this list. We ignore them.
1da177e4
LT
1416 */
1417static void copy_data(int frombio, struct bio *bio,
1418 struct page *page,
1419 sector_t sector)
1420{
1421 char *pa = page_address(page);
1422 struct bio_vec *bvl;
1423 int i;
1424 int page_offset;
1425
1426 if (bio->bi_sector >= sector)
1427 page_offset = (signed)(bio->bi_sector - sector) * 512;
1428 else
1429 page_offset = (signed)(sector - bio->bi_sector) * -512;
1430 bio_for_each_segment(bvl, bio, i) {
1431 int len = bio_iovec_idx(bio,i)->bv_len;
1432 int clen;
1433 int b_offset = 0;
1434
1435 if (page_offset < 0) {
1436 b_offset = -page_offset;
1437 page_offset += b_offset;
1438 len -= b_offset;
1439 }
1440
1441 if (len > 0 && page_offset + len > STRIPE_SIZE)
1442 clen = STRIPE_SIZE - page_offset;
1443 else clen = len;
16a53ecc 1444
1da177e4
LT
1445 if (clen > 0) {
1446 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1447 if (frombio)
1448 memcpy(pa+page_offset, ba+b_offset, clen);
1449 else
1450 memcpy(ba+b_offset, pa+page_offset, clen);
1451 __bio_kunmap_atomic(ba, KM_USER0);
1452 }
1453 if (clen < len) /* hit end of page */
1454 break;
1455 page_offset += len;
1456 }
1457}
1458
9bc89cd8
DW
1459#define check_xor() do { \
1460 if (count == MAX_XOR_BLOCKS) { \
1461 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1462 count = 0; \
1463 } \
1da177e4
LT
1464 } while(0)
1465
16a53ecc
N
1466static void compute_parity6(struct stripe_head *sh, int method)
1467{
1468 raid6_conf_t *conf = sh->raid_conf;
f416885e 1469 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
16a53ecc
N
1470 struct bio *chosen;
1471 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1472 void *ptrs[disks];
1473
1474 qd_idx = raid6_next_disk(pd_idx, disks);
1475 d0_idx = raid6_next_disk(qd_idx, disks);
1476
45b4233c 1477 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1478 (unsigned long long)sh->sector, method);
1479
1480 switch(method) {
1481 case READ_MODIFY_WRITE:
1482 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1483 case RECONSTRUCT_WRITE:
1484 for (i= disks; i-- ;)
1485 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1486 chosen = sh->dev[i].towrite;
1487 sh->dev[i].towrite = NULL;
1488
1489 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1490 wake_up(&conf->wait_for_overlap);
1491
52e5f9d1 1492 BUG_ON(sh->dev[i].written);
16a53ecc
N
1493 sh->dev[i].written = chosen;
1494 }
1495 break;
1496 case CHECK_PARITY:
1497 BUG(); /* Not implemented yet */
1498 }
1499
1500 for (i = disks; i--;)
1501 if (sh->dev[i].written) {
1502 sector_t sector = sh->dev[i].sector;
1503 struct bio *wbi = sh->dev[i].written;
1504 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1505 copy_data(1, wbi, sh->dev[i].page, sector);
1506 wbi = r5_next_bio(wbi, sector);
1507 }
1508
1509 set_bit(R5_LOCKED, &sh->dev[i].flags);
1510 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1511 }
1512
1513// switch(method) {
1514// case RECONSTRUCT_WRITE:
1515// case CHECK_PARITY:
1516// case UPDATE_PARITY:
1517 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1518 /* FIX: Is this ordering of drives even remotely optimal? */
1519 count = 0;
1520 i = d0_idx;
1521 do {
1522 ptrs[count++] = page_address(sh->dev[i].page);
1523 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1524 printk("block %d/%d not uptodate on parity calc\n", i,count);
1525 i = raid6_next_disk(i, disks);
1526 } while ( i != d0_idx );
1527// break;
1528// }
1529
1530 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1531
1532 switch(method) {
1533 case RECONSTRUCT_WRITE:
1534 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1535 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1536 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1537 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1538 break;
1539 case UPDATE_PARITY:
1540 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1541 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1542 break;
1543 }
1544}
1545
1546
1547/* Compute one missing block */
1548static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1549{
f416885e 1550 int i, count, disks = sh->disks;
9bc89cd8 1551 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
16a53ecc
N
1552 int pd_idx = sh->pd_idx;
1553 int qd_idx = raid6_next_disk(pd_idx, disks);
1554
45b4233c 1555 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1556 (unsigned long long)sh->sector, dd_idx);
1557
1558 if ( dd_idx == qd_idx ) {
1559 /* We're actually computing the Q drive */
1560 compute_parity6(sh, UPDATE_PARITY);
1561 } else {
9bc89cd8
DW
1562 dest = page_address(sh->dev[dd_idx].page);
1563 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1564 count = 0;
16a53ecc
N
1565 for (i = disks ; i--; ) {
1566 if (i == dd_idx || i == qd_idx)
1567 continue;
1568 p = page_address(sh->dev[i].page);
1569 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1570 ptr[count++] = p;
1571 else
1572 printk("compute_block() %d, stripe %llu, %d"
1573 " not present\n", dd_idx,
1574 (unsigned long long)sh->sector, i);
1575
1576 check_xor();
1577 }
9bc89cd8
DW
1578 if (count)
1579 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1580 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1581 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1582 }
1583}
1584
1585/* Compute two missing blocks */
1586static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1587{
f416885e 1588 int i, count, disks = sh->disks;
16a53ecc
N
1589 int pd_idx = sh->pd_idx;
1590 int qd_idx = raid6_next_disk(pd_idx, disks);
1591 int d0_idx = raid6_next_disk(qd_idx, disks);
1592 int faila, failb;
1593
1594 /* faila and failb are disk numbers relative to d0_idx */
1595 /* pd_idx become disks-2 and qd_idx become disks-1 */
1596 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1597 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1598
1599 BUG_ON(faila == failb);
1600 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1601
45b4233c 1602 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
16a53ecc
N
1603 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1604
1605 if ( failb == disks-1 ) {
1606 /* Q disk is one of the missing disks */
1607 if ( faila == disks-2 ) {
1608 /* Missing P+Q, just recompute */
1609 compute_parity6(sh, UPDATE_PARITY);
1610 return;
1611 } else {
1612 /* We're missing D+Q; recompute D from P */
1613 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1614 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1615 return;
1616 }
1617 }
1618
1619 /* We're missing D+P or D+D; build pointer table */
1620 {
1621 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1622 void *ptrs[disks];
1623
1624 count = 0;
1625 i = d0_idx;
1626 do {
1627 ptrs[count++] = page_address(sh->dev[i].page);
1628 i = raid6_next_disk(i, disks);
1629 if (i != dd_idx1 && i != dd_idx2 &&
1630 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1631 printk("compute_2 with missing block %d/%d\n", count, i);
1632 } while ( i != d0_idx );
1633
1634 if ( failb == disks-2 ) {
1635 /* We're missing D+P. */
1636 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1637 } else {
1638 /* We're missing D+D. */
1639 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1640 }
1641
1642 /* Both the above update both missing blocks */
1643 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1644 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1645 }
1646}
1647
600aa109
DW
1648static void
1649handle_write_operations5(struct stripe_head *sh, struct stripe_head_state *s,
1650 int rcw, int expand)
e33129d8
DW
1651{
1652 int i, pd_idx = sh->pd_idx, disks = sh->disks;
e33129d8
DW
1653
1654 if (rcw) {
1655 /* if we are not expanding this is a proper write request, and
1656 * there will be bios with new data to be drained into the
1657 * stripe cache
1658 */
1659 if (!expand) {
600aa109
DW
1660 sh->reconstruct_state = reconstruct_state_drain_run;
1661 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1662 } else
1663 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 1664
600aa109 1665 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1666
1667 for (i = disks; i--; ) {
1668 struct r5dev *dev = &sh->dev[i];
1669
1670 if (dev->towrite) {
1671 set_bit(R5_LOCKED, &dev->flags);
1672 if (!expand)
1673 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1674 s->locked++;
e33129d8
DW
1675 }
1676 }
600aa109 1677 if (s->locked + 1 == disks)
8b3e6cdc
DW
1678 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1679 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1680 } else {
1681 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1682 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1683
600aa109
DW
1684 sh->reconstruct_state = reconstruct_state_drain_run;
1685 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1686 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1687 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1688
1689 for (i = disks; i--; ) {
1690 struct r5dev *dev = &sh->dev[i];
1691 if (i == pd_idx)
1692 continue;
1693
1694 /* For a read-modify write there may be blocks that are
1695 * locked for reading while others are ready to be
1696 * written so we distinguish these blocks by the
1697 * R5_Wantprexor bit
1698 */
1699 if (dev->towrite &&
1700 (test_bit(R5_UPTODATE, &dev->flags) ||
1701 test_bit(R5_Wantcompute, &dev->flags))) {
1702 set_bit(R5_Wantprexor, &dev->flags);
1703 set_bit(R5_LOCKED, &dev->flags);
1704 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1705 s->locked++;
e33129d8
DW
1706 }
1707 }
1708 }
1709
1710 /* keep the parity disk locked while asynchronous operations
1711 * are in flight
1712 */
1713 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1714 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 1715 s->locked++;
e33129d8 1716
600aa109 1717 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 1718 __func__, (unsigned long long)sh->sector,
600aa109 1719 s->locked, s->ops_request);
e33129d8 1720}
16a53ecc 1721
1da177e4
LT
1722/*
1723 * Each stripe/dev can have one or more bion attached.
16a53ecc 1724 * toread/towrite point to the first in a chain.
1da177e4
LT
1725 * The bi_next chain must be in order.
1726 */
1727static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1728{
1729 struct bio **bip;
1730 raid5_conf_t *conf = sh->raid_conf;
72626685 1731 int firstwrite=0;
1da177e4 1732
45b4233c 1733 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1734 (unsigned long long)bi->bi_sector,
1735 (unsigned long long)sh->sector);
1736
1737
1738 spin_lock(&sh->lock);
1739 spin_lock_irq(&conf->device_lock);
72626685 1740 if (forwrite) {
1da177e4 1741 bip = &sh->dev[dd_idx].towrite;
72626685
N
1742 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1743 firstwrite = 1;
1744 } else
1da177e4
LT
1745 bip = &sh->dev[dd_idx].toread;
1746 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1747 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1748 goto overlap;
1749 bip = & (*bip)->bi_next;
1750 }
1751 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1752 goto overlap;
1753
78bafebd 1754 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1755 if (*bip)
1756 bi->bi_next = *bip;
1757 *bip = bi;
1758 bi->bi_phys_segments ++;
1759 spin_unlock_irq(&conf->device_lock);
1760 spin_unlock(&sh->lock);
1761
45b4233c 1762 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1763 (unsigned long long)bi->bi_sector,
1764 (unsigned long long)sh->sector, dd_idx);
1765
72626685 1766 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1767 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1768 STRIPE_SECTORS, 0);
ae3c20cc 1769 sh->bm_seq = conf->seq_flush+1;
72626685
N
1770 set_bit(STRIPE_BIT_DELAY, &sh->state);
1771 }
1772
1da177e4
LT
1773 if (forwrite) {
1774 /* check if page is covered */
1775 sector_t sector = sh->dev[dd_idx].sector;
1776 for (bi=sh->dev[dd_idx].towrite;
1777 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1778 bi && bi->bi_sector <= sector;
1779 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1780 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1781 sector = bi->bi_sector + (bi->bi_size>>9);
1782 }
1783 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1784 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1785 }
1786 return 1;
1787
1788 overlap:
1789 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1790 spin_unlock_irq(&conf->device_lock);
1791 spin_unlock(&sh->lock);
1792 return 0;
1793}
1794
29269553
N
1795static void end_reshape(raid5_conf_t *conf);
1796
16a53ecc
N
1797static int page_is_zero(struct page *p)
1798{
1799 char *a = page_address(p);
1800 return ((*(u32*)a) == 0 &&
1801 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1802}
1803
ccfcc3c1
N
1804static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1805{
1806 int sectors_per_chunk = conf->chunk_size >> 9;
ccfcc3c1 1807 int pd_idx, dd_idx;
2d2063ce
CQH
1808 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1809
b875e531
N
1810 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1811 *sectors_per_chunk + chunk_offset,
1812 disks, disks - conf->max_degraded,
1813 &dd_idx, &pd_idx, conf);
ccfcc3c1
N
1814 return pd_idx;
1815}
1816
a4456856
DW
1817static void
1818handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1819 struct stripe_head_state *s, int disks,
1820 struct bio **return_bi)
1821{
1822 int i;
1823 for (i = disks; i--; ) {
1824 struct bio *bi;
1825 int bitmap_end = 0;
1826
1827 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1828 mdk_rdev_t *rdev;
1829 rcu_read_lock();
1830 rdev = rcu_dereference(conf->disks[i].rdev);
1831 if (rdev && test_bit(In_sync, &rdev->flags))
1832 /* multiple read failures in one stripe */
1833 md_error(conf->mddev, rdev);
1834 rcu_read_unlock();
1835 }
1836 spin_lock_irq(&conf->device_lock);
1837 /* fail all writes first */
1838 bi = sh->dev[i].towrite;
1839 sh->dev[i].towrite = NULL;
1840 if (bi) {
1841 s->to_write--;
1842 bitmap_end = 1;
1843 }
1844
1845 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1846 wake_up(&conf->wait_for_overlap);
1847
1848 while (bi && bi->bi_sector <
1849 sh->dev[i].sector + STRIPE_SECTORS) {
1850 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1851 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1852 if (--bi->bi_phys_segments == 0) {
1853 md_write_end(conf->mddev);
1854 bi->bi_next = *return_bi;
1855 *return_bi = bi;
1856 }
1857 bi = nextbi;
1858 }
1859 /* and fail all 'written' */
1860 bi = sh->dev[i].written;
1861 sh->dev[i].written = NULL;
1862 if (bi) bitmap_end = 1;
1863 while (bi && bi->bi_sector <
1864 sh->dev[i].sector + STRIPE_SECTORS) {
1865 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1866 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1867 if (--bi->bi_phys_segments == 0) {
1868 md_write_end(conf->mddev);
1869 bi->bi_next = *return_bi;
1870 *return_bi = bi;
1871 }
1872 bi = bi2;
1873 }
1874
b5e98d65
DW
1875 /* fail any reads if this device is non-operational and
1876 * the data has not reached the cache yet.
1877 */
1878 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1879 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1880 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
1881 bi = sh->dev[i].toread;
1882 sh->dev[i].toread = NULL;
1883 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1884 wake_up(&conf->wait_for_overlap);
1885 if (bi) s->to_read--;
1886 while (bi && bi->bi_sector <
1887 sh->dev[i].sector + STRIPE_SECTORS) {
1888 struct bio *nextbi =
1889 r5_next_bio(bi, sh->dev[i].sector);
1890 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1891 if (--bi->bi_phys_segments == 0) {
1892 bi->bi_next = *return_bi;
1893 *return_bi = bi;
1894 }
1895 bi = nextbi;
1896 }
1897 }
1898 spin_unlock_irq(&conf->device_lock);
1899 if (bitmap_end)
1900 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1901 STRIPE_SECTORS, 0, 0);
1902 }
1903
8b3e6cdc
DW
1904 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1905 if (atomic_dec_and_test(&conf->pending_full_writes))
1906 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
1907}
1908
f38e1219
DW
1909/* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1910 * to process
1911 */
1912static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1913 struct stripe_head_state *s, int disk_idx, int disks)
1914{
1915 struct r5dev *dev = &sh->dev[disk_idx];
1916 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1917
f38e1219
DW
1918 /* is the data in this block needed, and can we get it? */
1919 if (!test_bit(R5_LOCKED, &dev->flags) &&
1920 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1921 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1922 s->syncing || s->expanding || (s->failed &&
1923 (failed_dev->toread || (failed_dev->towrite &&
1924 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1925 ))))) {
976ea8d4
DW
1926 /* We would like to get this block, possibly by computing it,
1927 * otherwise read it if the backing disk is insync
f38e1219 1928 */
976ea8d4 1929 if ((s->uptodate == disks - 1) &&
ecc65c9b 1930 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
1931 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1932 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
1933 set_bit(R5_Wantcompute, &dev->flags);
1934 sh->ops.target = disk_idx;
1935 s->req_compute = 1;
f38e1219
DW
1936 /* Careful: from this point on 'uptodate' is in the eye
1937 * of raid5_run_ops which services 'compute' operations
1938 * before writes. R5_Wantcompute flags a block that will
1939 * be R5_UPTODATE by the time it is needed for a
1940 * subsequent operation.
1941 */
1942 s->uptodate++;
1943 return 0; /* uptodate + compute == disks */
976ea8d4 1944 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
1945 set_bit(R5_LOCKED, &dev->flags);
1946 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
1947 s->locked++;
1948 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1949 s->syncing);
1950 }
1951 }
1952
1953 return ~0;
1954}
1955
a4456856
DW
1956static void handle_issuing_new_read_requests5(struct stripe_head *sh,
1957 struct stripe_head_state *s, int disks)
1958{
1959 int i;
f38e1219 1960
f38e1219
DW
1961 /* look for blocks to read/compute, skip this if a compute
1962 * is already in flight, or if the stripe contents are in the
1963 * midst of changing due to a write
1964 */
976ea8d4 1965 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
600aa109 1966 !sh->reconstruct_state) {
f38e1219
DW
1967 for (i = disks; i--; )
1968 if (__handle_issuing_new_read_requests5(
1969 sh, s, i, disks) == 0)
1970 break;
a4456856
DW
1971 }
1972 set_bit(STRIPE_HANDLE, &sh->state);
1973}
1974
1975static void handle_issuing_new_read_requests6(struct stripe_head *sh,
1976 struct stripe_head_state *s, struct r6_state *r6s,
1977 int disks)
1978{
1979 int i;
1980 for (i = disks; i--; ) {
1981 struct r5dev *dev = &sh->dev[i];
1982 if (!test_bit(R5_LOCKED, &dev->flags) &&
1983 !test_bit(R5_UPTODATE, &dev->flags) &&
1984 (dev->toread || (dev->towrite &&
1985 !test_bit(R5_OVERWRITE, &dev->flags)) ||
1986 s->syncing || s->expanding ||
1987 (s->failed >= 1 &&
1988 (sh->dev[r6s->failed_num[0]].toread ||
1989 s->to_write)) ||
1990 (s->failed >= 2 &&
1991 (sh->dev[r6s->failed_num[1]].toread ||
1992 s->to_write)))) {
1993 /* we would like to get this block, possibly
1994 * by computing it, but we might not be able to
1995 */
c337869d
DW
1996 if ((s->uptodate == disks - 1) &&
1997 (s->failed && (i == r6s->failed_num[0] ||
1998 i == r6s->failed_num[1]))) {
45b4233c 1999 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2000 (unsigned long long)sh->sector, i);
2001 compute_block_1(sh, i, 0);
2002 s->uptodate++;
2003 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2004 /* Computing 2-failure is *very* expensive; only
2005 * do it if failed >= 2
2006 */
2007 int other;
2008 for (other = disks; other--; ) {
2009 if (other == i)
2010 continue;
2011 if (!test_bit(R5_UPTODATE,
2012 &sh->dev[other].flags))
2013 break;
2014 }
2015 BUG_ON(other < 0);
45b4233c 2016 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2017 (unsigned long long)sh->sector,
2018 i, other);
2019 compute_block_2(sh, i, other);
2020 s->uptodate += 2;
2021 } else if (test_bit(R5_Insync, &dev->flags)) {
2022 set_bit(R5_LOCKED, &dev->flags);
2023 set_bit(R5_Wantread, &dev->flags);
2024 s->locked++;
45b4233c 2025 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2026 i, s->syncing);
2027 }
2028 }
2029 }
2030 set_bit(STRIPE_HANDLE, &sh->state);
2031}
2032
2033
2034/* handle_completed_write_requests
2035 * any written block on an uptodate or failed drive can be returned.
2036 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2037 * never LOCKED, so we don't need to test 'failed' directly.
2038 */
2039static void handle_completed_write_requests(raid5_conf_t *conf,
2040 struct stripe_head *sh, int disks, struct bio **return_bi)
2041{
2042 int i;
2043 struct r5dev *dev;
2044
2045 for (i = disks; i--; )
2046 if (sh->dev[i].written) {
2047 dev = &sh->dev[i];
2048 if (!test_bit(R5_LOCKED, &dev->flags) &&
2049 test_bit(R5_UPTODATE, &dev->flags)) {
2050 /* We can return any write requests */
2051 struct bio *wbi, *wbi2;
2052 int bitmap_end = 0;
45b4233c 2053 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2054 spin_lock_irq(&conf->device_lock);
2055 wbi = dev->written;
2056 dev->written = NULL;
2057 while (wbi && wbi->bi_sector <
2058 dev->sector + STRIPE_SECTORS) {
2059 wbi2 = r5_next_bio(wbi, dev->sector);
2060 if (--wbi->bi_phys_segments == 0) {
2061 md_write_end(conf->mddev);
2062 wbi->bi_next = *return_bi;
2063 *return_bi = wbi;
2064 }
2065 wbi = wbi2;
2066 }
2067 if (dev->towrite == NULL)
2068 bitmap_end = 1;
2069 spin_unlock_irq(&conf->device_lock);
2070 if (bitmap_end)
2071 bitmap_endwrite(conf->mddev->bitmap,
2072 sh->sector,
2073 STRIPE_SECTORS,
2074 !test_bit(STRIPE_DEGRADED, &sh->state),
2075 0);
2076 }
2077 }
8b3e6cdc
DW
2078
2079 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2080 if (atomic_dec_and_test(&conf->pending_full_writes))
2081 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2082}
2083
2084static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2085 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2086{
2087 int rmw = 0, rcw = 0, i;
2088 for (i = disks; i--; ) {
2089 /* would I have to read this buffer for read_modify_write */
2090 struct r5dev *dev = &sh->dev[i];
2091 if ((dev->towrite || i == sh->pd_idx) &&
2092 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2093 !(test_bit(R5_UPTODATE, &dev->flags) ||
2094 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2095 if (test_bit(R5_Insync, &dev->flags))
2096 rmw++;
2097 else
2098 rmw += 2*disks; /* cannot read it */
2099 }
2100 /* Would I have to read this buffer for reconstruct_write */
2101 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2102 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2103 !(test_bit(R5_UPTODATE, &dev->flags) ||
2104 test_bit(R5_Wantcompute, &dev->flags))) {
2105 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2106 else
2107 rcw += 2*disks;
2108 }
2109 }
45b4233c 2110 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2111 (unsigned long long)sh->sector, rmw, rcw);
2112 set_bit(STRIPE_HANDLE, &sh->state);
2113 if (rmw < rcw && rmw > 0)
2114 /* prefer read-modify-write, but need to get some data */
2115 for (i = disks; i--; ) {
2116 struct r5dev *dev = &sh->dev[i];
2117 if ((dev->towrite || i == sh->pd_idx) &&
2118 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2119 !(test_bit(R5_UPTODATE, &dev->flags) ||
2120 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2121 test_bit(R5_Insync, &dev->flags)) {
2122 if (
2123 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2124 pr_debug("Read_old block "
a4456856
DW
2125 "%d for r-m-w\n", i);
2126 set_bit(R5_LOCKED, &dev->flags);
2127 set_bit(R5_Wantread, &dev->flags);
2128 s->locked++;
2129 } else {
2130 set_bit(STRIPE_DELAYED, &sh->state);
2131 set_bit(STRIPE_HANDLE, &sh->state);
2132 }
2133 }
2134 }
2135 if (rcw <= rmw && rcw > 0)
2136 /* want reconstruct write, but need to get some data */
2137 for (i = disks; i--; ) {
2138 struct r5dev *dev = &sh->dev[i];
2139 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2140 i != sh->pd_idx &&
2141 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2142 !(test_bit(R5_UPTODATE, &dev->flags) ||
2143 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2144 test_bit(R5_Insync, &dev->flags)) {
2145 if (
2146 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2147 pr_debug("Read_old block "
a4456856
DW
2148 "%d for Reconstruct\n", i);
2149 set_bit(R5_LOCKED, &dev->flags);
2150 set_bit(R5_Wantread, &dev->flags);
2151 s->locked++;
2152 } else {
2153 set_bit(STRIPE_DELAYED, &sh->state);
2154 set_bit(STRIPE_HANDLE, &sh->state);
2155 }
2156 }
2157 }
2158 /* now if nothing is locked, and if we have enough data,
2159 * we can start a write request
2160 */
f38e1219
DW
2161 /* since handle_stripe can be called at any time we need to handle the
2162 * case where a compute block operation has been submitted and then a
2163 * subsequent call wants to start a write request. raid5_run_ops only
2164 * handles the case where compute block and postxor are requested
2165 * simultaneously. If this is not the case then new writes need to be
2166 * held off until the compute completes.
2167 */
976ea8d4
DW
2168 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2169 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2170 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
600aa109 2171 handle_write_operations5(sh, s, rcw == 0, 0);
a4456856
DW
2172}
2173
2174static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2175 struct stripe_head *sh, struct stripe_head_state *s,
2176 struct r6_state *r6s, int disks)
2177{
2178 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2179 int qd_idx = r6s->qd_idx;
2180 for (i = disks; i--; ) {
2181 struct r5dev *dev = &sh->dev[i];
2182 /* Would I have to read this buffer for reconstruct_write */
2183 if (!test_bit(R5_OVERWRITE, &dev->flags)
2184 && i != pd_idx && i != qd_idx
2185 && (!test_bit(R5_LOCKED, &dev->flags)
2186 ) &&
2187 !test_bit(R5_UPTODATE, &dev->flags)) {
2188 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2189 else {
45b4233c 2190 pr_debug("raid6: must_compute: "
a4456856
DW
2191 "disk %d flags=%#lx\n", i, dev->flags);
2192 must_compute++;
2193 }
2194 }
2195 }
45b4233c 2196 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2197 (unsigned long long)sh->sector, rcw, must_compute);
2198 set_bit(STRIPE_HANDLE, &sh->state);
2199
2200 if (rcw > 0)
2201 /* want reconstruct write, but need to get some data */
2202 for (i = disks; i--; ) {
2203 struct r5dev *dev = &sh->dev[i];
2204 if (!test_bit(R5_OVERWRITE, &dev->flags)
2205 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2206 && !test_bit(R5_LOCKED, &dev->flags) &&
2207 !test_bit(R5_UPTODATE, &dev->flags) &&
2208 test_bit(R5_Insync, &dev->flags)) {
2209 if (
2210 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2211 pr_debug("Read_old stripe %llu "
a4456856
DW
2212 "block %d for Reconstruct\n",
2213 (unsigned long long)sh->sector, i);
2214 set_bit(R5_LOCKED, &dev->flags);
2215 set_bit(R5_Wantread, &dev->flags);
2216 s->locked++;
2217 } else {
45b4233c 2218 pr_debug("Request delayed stripe %llu "
a4456856
DW
2219 "block %d for Reconstruct\n",
2220 (unsigned long long)sh->sector, i);
2221 set_bit(STRIPE_DELAYED, &sh->state);
2222 set_bit(STRIPE_HANDLE, &sh->state);
2223 }
2224 }
2225 }
2226 /* now if nothing is locked, and if we have enough data, we can start a
2227 * write request
2228 */
2229 if (s->locked == 0 && rcw == 0 &&
2230 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2231 if (must_compute > 0) {
2232 /* We have failed blocks and need to compute them */
2233 switch (s->failed) {
2234 case 0:
2235 BUG();
2236 case 1:
2237 compute_block_1(sh, r6s->failed_num[0], 0);
2238 break;
2239 case 2:
2240 compute_block_2(sh, r6s->failed_num[0],
2241 r6s->failed_num[1]);
2242 break;
2243 default: /* This request should have been failed? */
2244 BUG();
2245 }
2246 }
2247
45b4233c 2248 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2249 (unsigned long long)sh->sector);
2250 compute_parity6(sh, RECONSTRUCT_WRITE);
2251 /* now every locked buffer is ready to be written */
2252 for (i = disks; i--; )
2253 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2254 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2255 (unsigned long long)sh->sector, i);
2256 s->locked++;
2257 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2258 }
8b3e6cdc
DW
2259 if (s->locked == disks)
2260 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2261 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2262 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2263 set_bit(STRIPE_INSYNC, &sh->state);
2264
2265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2266 atomic_dec(&conf->preread_active_stripes);
2267 if (atomic_read(&conf->preread_active_stripes) <
2268 IO_THRESHOLD)
2269 md_wakeup_thread(conf->mddev->thread);
2270 }
2271 }
2272}
2273
2274static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2275 struct stripe_head_state *s, int disks)
2276{
ecc65c9b 2277 struct r5dev *dev = NULL;
bd2ab670 2278
a4456856 2279 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2280
ecc65c9b
DW
2281 switch (sh->check_state) {
2282 case check_state_idle:
2283 /* start a new check operation if there are no failures */
bd2ab670 2284 if (s->failed == 0) {
bd2ab670 2285 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2286 sh->check_state = check_state_run;
2287 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2288 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2289 s->uptodate--;
ecc65c9b 2290 break;
bd2ab670 2291 }
ecc65c9b
DW
2292 dev = &sh->dev[s->failed_num];
2293 /* fall through */
2294 case check_state_compute_result:
2295 sh->check_state = check_state_idle;
2296 if (!dev)
2297 dev = &sh->dev[sh->pd_idx];
2298
2299 /* check that a write has not made the stripe insync */
2300 if (test_bit(STRIPE_INSYNC, &sh->state))
2301 break;
c8894419 2302
a4456856 2303 /* either failed parity check, or recovery is happening */
a4456856
DW
2304 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2305 BUG_ON(s->uptodate != disks);
2306
2307 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2308 s->locked++;
a4456856 2309 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2310
a4456856 2311 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2312 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2313 break;
2314 case check_state_run:
2315 break; /* we will be called again upon completion */
2316 case check_state_check_result:
2317 sh->check_state = check_state_idle;
2318
2319 /* if a failure occurred during the check operation, leave
2320 * STRIPE_INSYNC not set and let the stripe be handled again
2321 */
2322 if (s->failed)
2323 break;
2324
2325 /* handle a successful check operation, if parity is correct
2326 * we are done. Otherwise update the mismatch count and repair
2327 * parity if !MD_RECOVERY_CHECK
2328 */
2329 if (sh->ops.zero_sum_result == 0)
2330 /* parity is correct (on disc,
2331 * not in buffer any more)
2332 */
2333 set_bit(STRIPE_INSYNC, &sh->state);
2334 else {
2335 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2336 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2337 /* don't try to repair!! */
2338 set_bit(STRIPE_INSYNC, &sh->state);
2339 else {
2340 sh->check_state = check_state_compute_run;
976ea8d4 2341 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2342 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2343 set_bit(R5_Wantcompute,
2344 &sh->dev[sh->pd_idx].flags);
2345 sh->ops.target = sh->pd_idx;
2346 s->uptodate++;
2347 }
2348 }
2349 break;
2350 case check_state_compute_run:
2351 break;
2352 default:
2353 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2354 __func__, sh->check_state,
2355 (unsigned long long) sh->sector);
2356 BUG();
a4456856
DW
2357 }
2358}
2359
2360
2361static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2362 struct stripe_head_state *s,
2363 struct r6_state *r6s, struct page *tmp_page,
2364 int disks)
2365{
2366 int update_p = 0, update_q = 0;
2367 struct r5dev *dev;
2368 int pd_idx = sh->pd_idx;
2369 int qd_idx = r6s->qd_idx;
2370
2371 set_bit(STRIPE_HANDLE, &sh->state);
2372
2373 BUG_ON(s->failed > 2);
2374 BUG_ON(s->uptodate < disks);
2375 /* Want to check and possibly repair P and Q.
2376 * However there could be one 'failed' device, in which
2377 * case we can only check one of them, possibly using the
2378 * other to generate missing data
2379 */
2380
2381 /* If !tmp_page, we cannot do the calculations,
2382 * but as we have set STRIPE_HANDLE, we will soon be called
2383 * by stripe_handle with a tmp_page - just wait until then.
2384 */
2385 if (tmp_page) {
2386 if (s->failed == r6s->q_failed) {
2387 /* The only possible failed device holds 'Q', so it
2388 * makes sense to check P (If anything else were failed,
2389 * we would have used P to recreate it).
2390 */
2391 compute_block_1(sh, pd_idx, 1);
2392 if (!page_is_zero(sh->dev[pd_idx].page)) {
2393 compute_block_1(sh, pd_idx, 0);
2394 update_p = 1;
2395 }
2396 }
2397 if (!r6s->q_failed && s->failed < 2) {
2398 /* q is not failed, and we didn't use it to generate
2399 * anything, so it makes sense to check it
2400 */
2401 memcpy(page_address(tmp_page),
2402 page_address(sh->dev[qd_idx].page),
2403 STRIPE_SIZE);
2404 compute_parity6(sh, UPDATE_PARITY);
2405 if (memcmp(page_address(tmp_page),
2406 page_address(sh->dev[qd_idx].page),
2407 STRIPE_SIZE) != 0) {
2408 clear_bit(STRIPE_INSYNC, &sh->state);
2409 update_q = 1;
2410 }
2411 }
2412 if (update_p || update_q) {
2413 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2414 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2415 /* don't try to repair!! */
2416 update_p = update_q = 0;
2417 }
2418
2419 /* now write out any block on a failed drive,
2420 * or P or Q if they need it
2421 */
2422
2423 if (s->failed == 2) {
2424 dev = &sh->dev[r6s->failed_num[1]];
2425 s->locked++;
2426 set_bit(R5_LOCKED, &dev->flags);
2427 set_bit(R5_Wantwrite, &dev->flags);
2428 }
2429 if (s->failed >= 1) {
2430 dev = &sh->dev[r6s->failed_num[0]];
2431 s->locked++;
2432 set_bit(R5_LOCKED, &dev->flags);
2433 set_bit(R5_Wantwrite, &dev->flags);
2434 }
2435
2436 if (update_p) {
2437 dev = &sh->dev[pd_idx];
2438 s->locked++;
2439 set_bit(R5_LOCKED, &dev->flags);
2440 set_bit(R5_Wantwrite, &dev->flags);
2441 }
2442 if (update_q) {
2443 dev = &sh->dev[qd_idx];
2444 s->locked++;
2445 set_bit(R5_LOCKED, &dev->flags);
2446 set_bit(R5_Wantwrite, &dev->flags);
2447 }
2448 clear_bit(STRIPE_DEGRADED, &sh->state);
2449
2450 set_bit(STRIPE_INSYNC, &sh->state);
2451 }
2452}
2453
2454static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2455 struct r6_state *r6s)
2456{
2457 int i;
2458
2459 /* We have read all the blocks in this stripe and now we need to
2460 * copy some of them into a target stripe for expand.
2461 */
f0a50d37 2462 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2463 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2464 for (i = 0; i < sh->disks; i++)
a2e08551 2465 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
a4456856
DW
2466 int dd_idx, pd_idx, j;
2467 struct stripe_head *sh2;
2468
2469 sector_t bn = compute_blocknr(sh, i);
2470 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2471 conf->raid_disks -
2472 conf->max_degraded, &dd_idx,
2473 &pd_idx, conf);
2474 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2475 pd_idx, 1);
2476 if (sh2 == NULL)
2477 /* so far only the early blocks of this stripe
2478 * have been requested. When later blocks
2479 * get requested, we will try again
2480 */
2481 continue;
2482 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2483 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2484 /* must have already done this block */
2485 release_stripe(sh2);
2486 continue;
2487 }
f0a50d37
DW
2488
2489 /* place all the copies on one channel */
2490 tx = async_memcpy(sh2->dev[dd_idx].page,
2491 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2492 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2493
a4456856
DW
2494 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2495 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2496 for (j = 0; j < conf->raid_disks; j++)
2497 if (j != sh2->pd_idx &&
a2e08551
N
2498 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2499 sh2->disks)) &&
a4456856
DW
2500 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2501 break;
2502 if (j == conf->raid_disks) {
2503 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2504 set_bit(STRIPE_HANDLE, &sh2->state);
2505 }
2506 release_stripe(sh2);
f0a50d37 2507
a4456856 2508 }
a2e08551
N
2509 /* done submitting copies, wait for them to complete */
2510 if (tx) {
2511 async_tx_ack(tx);
2512 dma_wait_for_async_tx(tx);
2513 }
a4456856 2514}
1da177e4 2515
6bfe0b49 2516
1da177e4
LT
2517/*
2518 * handle_stripe - do things to a stripe.
2519 *
2520 * We lock the stripe and then examine the state of various bits
2521 * to see what needs to be done.
2522 * Possible results:
2523 * return some read request which now have data
2524 * return some write requests which are safely on disc
2525 * schedule a read on some buffers
2526 * schedule a write of some buffers
2527 * return confirmation of parity correctness
2528 *
1da177e4
LT
2529 * buffers are taken off read_list or write_list, and bh_cache buffers
2530 * get BH_Lock set before the stripe lock is released.
2531 *
2532 */
a4456856 2533
16a53ecc 2534static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2535{
2536 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2537 int disks = sh->disks, i;
2538 struct bio *return_bi = NULL;
2539 struct stripe_head_state s;
1da177e4 2540 struct r5dev *dev;
6bfe0b49 2541 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2542 int prexor;
1da177e4 2543
a4456856 2544 memset(&s, 0, sizeof(s));
600aa109
DW
2545 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2546 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2547 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2548 sh->reconstruct_state);
1da177e4
LT
2549
2550 spin_lock(&sh->lock);
2551 clear_bit(STRIPE_HANDLE, &sh->state);
2552 clear_bit(STRIPE_DELAYED, &sh->state);
2553
a4456856
DW
2554 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2555 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2556 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 2557
83de75cc 2558 /* Now to look around and see what can be done */
9910f16a 2559 rcu_read_lock();
1da177e4
LT
2560 for (i=disks; i--; ) {
2561 mdk_rdev_t *rdev;
a4456856 2562 struct r5dev *dev = &sh->dev[i];
1da177e4 2563 clear_bit(R5_Insync, &dev->flags);
1da177e4 2564
b5e98d65
DW
2565 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2566 "written %p\n", i, dev->flags, dev->toread, dev->read,
2567 dev->towrite, dev->written);
2568
2569 /* maybe we can request a biofill operation
2570 *
2571 * new wantfill requests are only permitted while
83de75cc 2572 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
2573 */
2574 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 2575 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 2576 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2577
2578 /* now count some things */
a4456856
DW
2579 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2580 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2581 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2582
b5e98d65
DW
2583 if (test_bit(R5_Wantfill, &dev->flags))
2584 s.to_fill++;
2585 else if (dev->toread)
a4456856 2586 s.to_read++;
1da177e4 2587 if (dev->towrite) {
a4456856 2588 s.to_write++;
1da177e4 2589 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2590 s.non_overwrite++;
1da177e4 2591 }
a4456856
DW
2592 if (dev->written)
2593 s.written++;
9910f16a 2594 rdev = rcu_dereference(conf->disks[i].rdev);
6bfe0b49
DW
2595 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2596 blocked_rdev = rdev;
2597 atomic_inc(&rdev->nr_pending);
2598 break;
2599 }
b2d444d7 2600 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2601 /* The ReadError flag will just be confusing now */
4e5314b5
N
2602 clear_bit(R5_ReadError, &dev->flags);
2603 clear_bit(R5_ReWrite, &dev->flags);
2604 }
b2d444d7 2605 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2606 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2607 s.failed++;
2608 s.failed_num = i;
1da177e4
LT
2609 } else
2610 set_bit(R5_Insync, &dev->flags);
2611 }
9910f16a 2612 rcu_read_unlock();
b5e98d65 2613
6bfe0b49
DW
2614 if (unlikely(blocked_rdev)) {
2615 set_bit(STRIPE_HANDLE, &sh->state);
2616 goto unlock;
2617 }
2618
83de75cc
DW
2619 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2620 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2621 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2622 }
b5e98d65 2623
45b4233c 2624 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2625 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2626 s.locked, s.uptodate, s.to_read, s.to_write,
2627 s.failed, s.failed_num);
1da177e4
LT
2628 /* check if the array has lost two devices and, if so, some requests might
2629 * need to be failed
2630 */
a4456856
DW
2631 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2632 handle_requests_to_failed_array(conf, sh, &s, disks,
2633 &return_bi);
2634 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2635 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2636 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2637 s.syncing = 0;
1da177e4
LT
2638 }
2639
2640 /* might be able to return some write requests if the parity block
2641 * is safe, or on a failed drive
2642 */
2643 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2644 if ( s.written &&
2645 ((test_bit(R5_Insync, &dev->flags) &&
2646 !test_bit(R5_LOCKED, &dev->flags) &&
2647 test_bit(R5_UPTODATE, &dev->flags)) ||
2648 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2649 handle_completed_write_requests(conf, sh, disks, &return_bi);
1da177e4
LT
2650
2651 /* Now we might consider reading some blocks, either to check/generate
2652 * parity, or to satisfy requests
2653 * or to load a block that is being partially written.
2654 */
a4456856 2655 if (s.to_read || s.non_overwrite ||
976ea8d4 2656 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
a4456856 2657 handle_issuing_new_read_requests5(sh, &s, disks);
1da177e4 2658
e33129d8
DW
2659 /* Now we check to see if any write operations have recently
2660 * completed
2661 */
e0a115e5 2662 prexor = 0;
600aa109
DW
2663 if (sh->reconstruct_state == reconstruct_state_drain_result) {
2664 sh->reconstruct_state = reconstruct_state_idle;
e33129d8 2665 for (i = disks; i--; )
600aa109
DW
2666 prexor += test_and_clear_bit(R5_Wantprexor,
2667 &sh->dev[i].flags);
e33129d8
DW
2668
2669 /* All the 'written' buffers and the parity block are ready to
2670 * be written back to disk
2671 */
2672 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2673 for (i = disks; i--; ) {
2674 dev = &sh->dev[i];
2675 if (test_bit(R5_LOCKED, &dev->flags) &&
2676 (i == sh->pd_idx || dev->written)) {
2677 pr_debug("Writing block %d\n", i);
2678 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
2679 if (prexor)
2680 continue;
e33129d8
DW
2681 if (!test_bit(R5_Insync, &dev->flags) ||
2682 (i == sh->pd_idx && s.failed == 0))
2683 set_bit(STRIPE_INSYNC, &sh->state);
2684 }
2685 }
2686 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2687 atomic_dec(&conf->preread_active_stripes);
2688 if (atomic_read(&conf->preread_active_stripes) <
2689 IO_THRESHOLD)
2690 md_wakeup_thread(conf->mddev->thread);
2691 }
2692 }
2693
2694 /* Now to consider new write requests and what else, if anything
2695 * should be read. We do not handle new writes when:
2696 * 1/ A 'write' operation (copy+xor) is already in flight.
2697 * 2/ A 'check' operation is in flight, as it may clobber the parity
2698 * block.
2699 */
600aa109 2700 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
a4456856 2701 handle_issuing_new_write_requests5(conf, sh, &s, disks);
1da177e4
LT
2702
2703 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2704 * Any reads will already have been scheduled, so we just see if enough
2705 * data is available. The parity check is held off while parity
2706 * dependent operations are in flight.
1da177e4 2707 */
ecc65c9b
DW
2708 if (sh->check_state ||
2709 (s.syncing && s.locked == 0 &&
976ea8d4 2710 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 2711 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 2712 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2713
a4456856 2714 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2715 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2716 clear_bit(STRIPE_SYNCING, &sh->state);
2717 }
4e5314b5
N
2718
2719 /* If the failed drive is just a ReadError, then we might need to progress
2720 * the repair/check process
2721 */
a4456856
DW
2722 if (s.failed == 1 && !conf->mddev->ro &&
2723 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2724 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2725 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2726 ) {
a4456856 2727 dev = &sh->dev[s.failed_num];
4e5314b5
N
2728 if (!test_bit(R5_ReWrite, &dev->flags)) {
2729 set_bit(R5_Wantwrite, &dev->flags);
2730 set_bit(R5_ReWrite, &dev->flags);
2731 set_bit(R5_LOCKED, &dev->flags);
a4456856 2732 s.locked++;
4e5314b5
N
2733 } else {
2734 /* let's read it back */
2735 set_bit(R5_Wantread, &dev->flags);
2736 set_bit(R5_LOCKED, &dev->flags);
a4456856 2737 s.locked++;
4e5314b5
N
2738 }
2739 }
2740
600aa109
DW
2741 /* Finish reconstruct operations initiated by the expansion process */
2742 if (sh->reconstruct_state == reconstruct_state_result) {
2743 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 2744 clear_bit(STRIPE_EXPANDING, &sh->state);
2b7497f0 2745 for (i = conf->raid_disks; i--; )
ccfcc3c1 2746 set_bit(R5_Wantwrite, &sh->dev[i].flags);
efe31143
NB
2747 set_bit(R5_LOCKED, &dev->flags);
2748 s.locked++;
f0a50d37
DW
2749 }
2750
2751 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 2752 !sh->reconstruct_state) {
f0a50d37
DW
2753 /* Need to write out all blocks after computing parity */
2754 sh->disks = conf->raid_disks;
2755 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2756 conf->raid_disks);
600aa109
DW
2757 handle_write_operations5(sh, &s, 1, 1);
2758 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 2759 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2760 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2761 wake_up(&conf->wait_for_overlap);
2762 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2763 }
2764
0f94e87c 2765 if (s.expanding && s.locked == 0 &&
976ea8d4 2766 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 2767 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2768
6bfe0b49 2769 unlock:
1da177e4
LT
2770 spin_unlock(&sh->lock);
2771
6bfe0b49
DW
2772 /* wait for this device to become unblocked */
2773 if (unlikely(blocked_rdev))
2774 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2775
600aa109
DW
2776 if (s.ops_request)
2777 raid5_run_ops(sh, s.ops_request);
d84e0f10 2778
c4e5ac0a 2779 ops_run_io(sh, &s);
2b7497f0 2780
a4456856 2781 return_io(return_bi);
1da177e4
LT
2782}
2783
16a53ecc 2784static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 2785{
16a53ecc 2786 raid6_conf_t *conf = sh->raid_conf;
f416885e 2787 int disks = sh->disks;
a4456856
DW
2788 struct bio *return_bi = NULL;
2789 int i, pd_idx = sh->pd_idx;
2790 struct stripe_head_state s;
2791 struct r6_state r6s;
16a53ecc 2792 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 2793 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 2794
a4456856 2795 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
45b4233c 2796 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
2797 "pd_idx=%d, qd_idx=%d\n",
2798 (unsigned long long)sh->sector, sh->state,
2799 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2800 memset(&s, 0, sizeof(s));
72626685 2801
16a53ecc
N
2802 spin_lock(&sh->lock);
2803 clear_bit(STRIPE_HANDLE, &sh->state);
2804 clear_bit(STRIPE_DELAYED, &sh->state);
2805
a4456856
DW
2806 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2807 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2808 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 2809 /* Now to look around and see what can be done */
1da177e4
LT
2810
2811 rcu_read_lock();
16a53ecc
N
2812 for (i=disks; i--; ) {
2813 mdk_rdev_t *rdev;
2814 dev = &sh->dev[i];
2815 clear_bit(R5_Insync, &dev->flags);
1da177e4 2816
45b4233c 2817 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
2818 i, dev->flags, dev->toread, dev->towrite, dev->written);
2819 /* maybe we can reply to a read */
2820 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2821 struct bio *rbi, *rbi2;
45b4233c 2822 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
2823 spin_lock_irq(&conf->device_lock);
2824 rbi = dev->toread;
2825 dev->toread = NULL;
2826 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2827 wake_up(&conf->wait_for_overlap);
2828 spin_unlock_irq(&conf->device_lock);
2829 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2830 copy_data(0, rbi, dev->page, dev->sector);
2831 rbi2 = r5_next_bio(rbi, dev->sector);
2832 spin_lock_irq(&conf->device_lock);
2833 if (--rbi->bi_phys_segments == 0) {
2834 rbi->bi_next = return_bi;
2835 return_bi = rbi;
2836 }
2837 spin_unlock_irq(&conf->device_lock);
2838 rbi = rbi2;
2839 }
2840 }
1da177e4 2841
16a53ecc 2842 /* now count some things */
a4456856
DW
2843 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2844 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 2845
16a53ecc 2846
a4456856
DW
2847 if (dev->toread)
2848 s.to_read++;
16a53ecc 2849 if (dev->towrite) {
a4456856 2850 s.to_write++;
16a53ecc 2851 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2852 s.non_overwrite++;
16a53ecc 2853 }
a4456856
DW
2854 if (dev->written)
2855 s.written++;
16a53ecc 2856 rdev = rcu_dereference(conf->disks[i].rdev);
6bfe0b49
DW
2857 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2858 blocked_rdev = rdev;
2859 atomic_inc(&rdev->nr_pending);
2860 break;
2861 }
16a53ecc
N
2862 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2863 /* The ReadError flag will just be confusing now */
2864 clear_bit(R5_ReadError, &dev->flags);
2865 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 2866 }
16a53ecc
N
2867 if (!rdev || !test_bit(In_sync, &rdev->flags)
2868 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2869 if (s.failed < 2)
2870 r6s.failed_num[s.failed] = i;
2871 s.failed++;
16a53ecc
N
2872 } else
2873 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
2874 }
2875 rcu_read_unlock();
6bfe0b49
DW
2876
2877 if (unlikely(blocked_rdev)) {
2878 set_bit(STRIPE_HANDLE, &sh->state);
2879 goto unlock;
2880 }
45b4233c 2881 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 2882 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
2883 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2884 r6s.failed_num[0], r6s.failed_num[1]);
2885 /* check if the array has lost >2 devices and, if so, some requests
2886 * might need to be failed
16a53ecc 2887 */
a4456856
DW
2888 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2889 handle_requests_to_failed_array(conf, sh, &s, disks,
2890 &return_bi);
2891 if (s.failed > 2 && s.syncing) {
16a53ecc
N
2892 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2893 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2894 s.syncing = 0;
16a53ecc
N
2895 }
2896
2897 /*
2898 * might be able to return some write requests if the parity blocks
2899 * are safe, or on a failed drive
2900 */
2901 pdev = &sh->dev[pd_idx];
a4456856
DW
2902 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2903 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2904 qdev = &sh->dev[r6s.qd_idx];
2905 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2906 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2907
2908 if ( s.written &&
2909 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 2910 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
2911 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2912 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 2913 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856
DW
2914 && test_bit(R5_UPTODATE, &qdev->flags)))))
2915 handle_completed_write_requests(conf, sh, disks, &return_bi);
16a53ecc
N
2916
2917 /* Now we might consider reading some blocks, either to check/generate
2918 * parity, or to satisfy requests
2919 * or to load a block that is being partially written.
2920 */
a4456856
DW
2921 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2922 (s.syncing && (s.uptodate < disks)) || s.expanding)
2923 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
16a53ecc
N
2924
2925 /* now to consider writing and what else, if anything should be read */
a4456856
DW
2926 if (s.to_write)
2927 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
16a53ecc
N
2928
2929 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
2930 * Any reads will already have been scheduled, so we just see if enough
2931 * data is available
16a53ecc 2932 */
a4456856
DW
2933 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2934 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 2935
a4456856 2936 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
2937 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2938 clear_bit(STRIPE_SYNCING, &sh->state);
2939 }
2940
2941 /* If the failed drives are just a ReadError, then we might need
2942 * to progress the repair/check process
2943 */
a4456856
DW
2944 if (s.failed <= 2 && !conf->mddev->ro)
2945 for (i = 0; i < s.failed; i++) {
2946 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
2947 if (test_bit(R5_ReadError, &dev->flags)
2948 && !test_bit(R5_LOCKED, &dev->flags)
2949 && test_bit(R5_UPTODATE, &dev->flags)
2950 ) {
2951 if (!test_bit(R5_ReWrite, &dev->flags)) {
2952 set_bit(R5_Wantwrite, &dev->flags);
2953 set_bit(R5_ReWrite, &dev->flags);
2954 set_bit(R5_LOCKED, &dev->flags);
2955 } else {
2956 /* let's read it back */
2957 set_bit(R5_Wantread, &dev->flags);
2958 set_bit(R5_LOCKED, &dev->flags);
2959 }
2960 }
2961 }
f416885e 2962
a4456856 2963 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
2964 /* Need to write out all blocks after computing P&Q */
2965 sh->disks = conf->raid_disks;
2966 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2967 conf->raid_disks);
2968 compute_parity6(sh, RECONSTRUCT_WRITE);
2969 for (i = conf->raid_disks ; i-- ; ) {
2970 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 2971 s.locked++;
f416885e
N
2972 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2973 }
2974 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 2975 } else if (s.expanded) {
f416885e
N
2976 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2977 atomic_dec(&conf->reshape_stripes);
2978 wake_up(&conf->wait_for_overlap);
2979 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2980 }
2981
0f94e87c 2982 if (s.expanding && s.locked == 0 &&
976ea8d4 2983 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 2984 handle_stripe_expansion(conf, sh, &r6s);
f416885e 2985
6bfe0b49 2986 unlock:
16a53ecc
N
2987 spin_unlock(&sh->lock);
2988
6bfe0b49
DW
2989 /* wait for this device to become unblocked */
2990 if (unlikely(blocked_rdev))
2991 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2992
f0e43bcd 2993 ops_run_io(sh, &s);
16a53ecc 2994
f0e43bcd 2995 return_io(return_bi);
16a53ecc
N
2996}
2997
2998static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2999{
3000 if (sh->raid_conf->level == 6)
3001 handle_stripe6(sh, tmp_page);
3002 else
3003 handle_stripe5(sh);
3004}
3005
3006
3007
3008static void raid5_activate_delayed(raid5_conf_t *conf)
3009{
3010 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3011 while (!list_empty(&conf->delayed_list)) {
3012 struct list_head *l = conf->delayed_list.next;
3013 struct stripe_head *sh;
3014 sh = list_entry(l, struct stripe_head, lru);
3015 list_del_init(l);
3016 clear_bit(STRIPE_DELAYED, &sh->state);
3017 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3018 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3019 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3020 }
6ed3003c
N
3021 } else
3022 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3023}
3024
3025static void activate_bit_delay(raid5_conf_t *conf)
3026{
3027 /* device_lock is held */
3028 struct list_head head;
3029 list_add(&head, &conf->bitmap_list);
3030 list_del_init(&conf->bitmap_list);
3031 while (!list_empty(&head)) {
3032 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3033 list_del_init(&sh->lru);
3034 atomic_inc(&sh->count);
3035 __release_stripe(conf, sh);
3036 }
3037}
3038
3039static void unplug_slaves(mddev_t *mddev)
3040{
3041 raid5_conf_t *conf = mddev_to_conf(mddev);
3042 int i;
3043
3044 rcu_read_lock();
3045 for (i=0; i<mddev->raid_disks; i++) {
3046 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3047 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3048 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3049
3050 atomic_inc(&rdev->nr_pending);
3051 rcu_read_unlock();
3052
2ad8b1ef 3053 blk_unplug(r_queue);
16a53ecc
N
3054
3055 rdev_dec_pending(rdev, mddev);
3056 rcu_read_lock();
3057 }
3058 }
3059 rcu_read_unlock();
3060}
3061
165125e1 3062static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3063{
3064 mddev_t *mddev = q->queuedata;
3065 raid5_conf_t *conf = mddev_to_conf(mddev);
3066 unsigned long flags;
3067
3068 spin_lock_irqsave(&conf->device_lock, flags);
3069
3070 if (blk_remove_plug(q)) {
3071 conf->seq_flush++;
3072 raid5_activate_delayed(conf);
72626685 3073 }
1da177e4
LT
3074 md_wakeup_thread(mddev->thread);
3075
3076 spin_unlock_irqrestore(&conf->device_lock, flags);
3077
3078 unplug_slaves(mddev);
3079}
3080
f022b2fd
N
3081static int raid5_congested(void *data, int bits)
3082{
3083 mddev_t *mddev = data;
3084 raid5_conf_t *conf = mddev_to_conf(mddev);
3085
3086 /* No difference between reads and writes. Just check
3087 * how busy the stripe_cache is
3088 */
3089 if (conf->inactive_blocked)
3090 return 1;
3091 if (conf->quiesce)
3092 return 1;
3093 if (list_empty_careful(&conf->inactive_list))
3094 return 1;
3095
3096 return 0;
3097}
3098
23032a0e
RBJ
3099/* We want read requests to align with chunks where possible,
3100 * but write requests don't need to.
3101 */
165125e1 3102static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
23032a0e
RBJ
3103{
3104 mddev_t *mddev = q->queuedata;
3105 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3106 int max;
3107 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3108 unsigned int bio_sectors = bio->bi_size >> 9;
3109
802ba064 3110 if (bio_data_dir(bio) == WRITE)
23032a0e
RBJ
3111 return biovec->bv_len; /* always allow writes to be mergeable */
3112
3113 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3114 if (max < 0) max = 0;
3115 if (max <= biovec->bv_len && bio_sectors == 0)
3116 return biovec->bv_len;
3117 else
3118 return max;
3119}
3120
f679623f
RBJ
3121
3122static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3123{
3124 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3125 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3126 unsigned int bio_sectors = bio->bi_size >> 9;
3127
3128 return chunk_sectors >=
3129 ((sector & (chunk_sectors - 1)) + bio_sectors);
3130}
3131
46031f9a
RBJ
3132/*
3133 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3134 * later sampled by raid5d.
3135 */
3136static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3137{
3138 unsigned long flags;
3139
3140 spin_lock_irqsave(&conf->device_lock, flags);
3141
3142 bi->bi_next = conf->retry_read_aligned_list;
3143 conf->retry_read_aligned_list = bi;
3144
3145 spin_unlock_irqrestore(&conf->device_lock, flags);
3146 md_wakeup_thread(conf->mddev->thread);
3147}
3148
3149
3150static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3151{
3152 struct bio *bi;
3153
3154 bi = conf->retry_read_aligned;
3155 if (bi) {
3156 conf->retry_read_aligned = NULL;
3157 return bi;
3158 }
3159 bi = conf->retry_read_aligned_list;
3160 if(bi) {
387bb173 3161 conf->retry_read_aligned_list = bi->bi_next;
46031f9a
RBJ
3162 bi->bi_next = NULL;
3163 bi->bi_phys_segments = 1; /* biased count of active stripes */
3164 bi->bi_hw_segments = 0; /* count of processed stripes */
3165 }
3166
3167 return bi;
3168}
3169
3170
f679623f
RBJ
3171/*
3172 * The "raid5_align_endio" should check if the read succeeded and if it
3173 * did, call bio_endio on the original bio (having bio_put the new bio
3174 * first).
3175 * If the read failed..
3176 */
6712ecf8 3177static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3178{
3179 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3180 mddev_t *mddev;
3181 raid5_conf_t *conf;
3182 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3183 mdk_rdev_t *rdev;
3184
f679623f 3185 bio_put(bi);
46031f9a
RBJ
3186
3187 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3188 conf = mddev_to_conf(mddev);
3189 rdev = (void*)raid_bi->bi_next;
3190 raid_bi->bi_next = NULL;
3191
3192 rdev_dec_pending(rdev, conf->mddev);
3193
3194 if (!error && uptodate) {
6712ecf8 3195 bio_endio(raid_bi, 0);
46031f9a
RBJ
3196 if (atomic_dec_and_test(&conf->active_aligned_reads))
3197 wake_up(&conf->wait_for_stripe);
6712ecf8 3198 return;
46031f9a
RBJ
3199 }
3200
3201
45b4233c 3202 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3203
3204 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3205}
3206
387bb173
NB
3207static int bio_fits_rdev(struct bio *bi)
3208{
165125e1 3209 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3210
3211 if ((bi->bi_size>>9) > q->max_sectors)
3212 return 0;
3213 blk_recount_segments(q, bi);
3214 if (bi->bi_phys_segments > q->max_phys_segments ||
3215 bi->bi_hw_segments > q->max_hw_segments)
3216 return 0;
3217
3218 if (q->merge_bvec_fn)
3219 /* it's too hard to apply the merge_bvec_fn at this stage,
3220 * just just give up
3221 */
3222 return 0;
3223
3224 return 1;
3225}
3226
3227
165125e1 3228static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3229{
3230 mddev_t *mddev = q->queuedata;
3231 raid5_conf_t *conf = mddev_to_conf(mddev);
3232 const unsigned int raid_disks = conf->raid_disks;
46031f9a 3233 const unsigned int data_disks = raid_disks - conf->max_degraded;
f679623f
RBJ
3234 unsigned int dd_idx, pd_idx;
3235 struct bio* align_bi;
3236 mdk_rdev_t *rdev;
3237
3238 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3239 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3240 return 0;
3241 }
3242 /*
3243 * use bio_clone to make a copy of the bio
3244 */
3245 align_bi = bio_clone(raid_bio, GFP_NOIO);
3246 if (!align_bi)
3247 return 0;
3248 /*
3249 * set bi_end_io to a new function, and set bi_private to the
3250 * original bio.
3251 */
3252 align_bi->bi_end_io = raid5_align_endio;
3253 align_bi->bi_private = raid_bio;
3254 /*
3255 * compute position
3256 */
3257 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3258 raid_disks,
3259 data_disks,
3260 &dd_idx,
3261 &pd_idx,
3262 conf);
3263
3264 rcu_read_lock();
3265 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3266 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3267 atomic_inc(&rdev->nr_pending);
3268 rcu_read_unlock();
46031f9a
RBJ
3269 raid_bio->bi_next = (void*)rdev;
3270 align_bi->bi_bdev = rdev->bdev;
3271 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3272 align_bi->bi_sector += rdev->data_offset;
3273
387bb173
NB
3274 if (!bio_fits_rdev(align_bi)) {
3275 /* too big in some way */
3276 bio_put(align_bi);
3277 rdev_dec_pending(rdev, mddev);
3278 return 0;
3279 }
3280
46031f9a
RBJ
3281 spin_lock_irq(&conf->device_lock);
3282 wait_event_lock_irq(conf->wait_for_stripe,
3283 conf->quiesce == 0,
3284 conf->device_lock, /* nothing */);
3285 atomic_inc(&conf->active_aligned_reads);
3286 spin_unlock_irq(&conf->device_lock);
3287
f679623f
RBJ
3288 generic_make_request(align_bi);
3289 return 1;
3290 } else {
3291 rcu_read_unlock();
46031f9a 3292 bio_put(align_bi);
f679623f
RBJ
3293 return 0;
3294 }
3295}
3296
8b3e6cdc
DW
3297/* __get_priority_stripe - get the next stripe to process
3298 *
3299 * Full stripe writes are allowed to pass preread active stripes up until
3300 * the bypass_threshold is exceeded. In general the bypass_count
3301 * increments when the handle_list is handled before the hold_list; however, it
3302 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3303 * stripe with in flight i/o. The bypass_count will be reset when the
3304 * head of the hold_list has changed, i.e. the head was promoted to the
3305 * handle_list.
3306 */
3307static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3308{
3309 struct stripe_head *sh;
3310
3311 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3312 __func__,
3313 list_empty(&conf->handle_list) ? "empty" : "busy",
3314 list_empty(&conf->hold_list) ? "empty" : "busy",
3315 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3316
3317 if (!list_empty(&conf->handle_list)) {
3318 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3319
3320 if (list_empty(&conf->hold_list))
3321 conf->bypass_count = 0;
3322 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3323 if (conf->hold_list.next == conf->last_hold)
3324 conf->bypass_count++;
3325 else {
3326 conf->last_hold = conf->hold_list.next;
3327 conf->bypass_count -= conf->bypass_threshold;
3328 if (conf->bypass_count < 0)
3329 conf->bypass_count = 0;
3330 }
3331 }
3332 } else if (!list_empty(&conf->hold_list) &&
3333 ((conf->bypass_threshold &&
3334 conf->bypass_count > conf->bypass_threshold) ||
3335 atomic_read(&conf->pending_full_writes) == 0)) {
3336 sh = list_entry(conf->hold_list.next,
3337 typeof(*sh), lru);
3338 conf->bypass_count -= conf->bypass_threshold;
3339 if (conf->bypass_count < 0)
3340 conf->bypass_count = 0;
3341 } else
3342 return NULL;
3343
3344 list_del_init(&sh->lru);
3345 atomic_inc(&sh->count);
3346 BUG_ON(atomic_read(&sh->count) != 1);
3347 return sh;
3348}
f679623f 3349
165125e1 3350static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3351{
3352 mddev_t *mddev = q->queuedata;
3353 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
3354 unsigned int dd_idx, pd_idx;
3355 sector_t new_sector;
3356 sector_t logical_sector, last_sector;
3357 struct stripe_head *sh;
a362357b 3358 const int rw = bio_data_dir(bi);
f6344757 3359 int remaining;
1da177e4 3360
e5dcdd80 3361 if (unlikely(bio_barrier(bi))) {
6712ecf8 3362 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3363 return 0;
3364 }
3365
3d310eb7 3366 md_write_start(mddev, bi);
06d91a5f 3367
a362357b
JA
3368 disk_stat_inc(mddev->gendisk, ios[rw]);
3369 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4 3370
802ba064 3371 if (rw == READ &&
52488615
RBJ
3372 mddev->reshape_position == MaxSector &&
3373 chunk_aligned_read(q,bi))
3374 return 0;
3375
1da177e4
LT
3376 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3377 last_sector = bi->bi_sector + (bi->bi_size>>9);
3378 bi->bi_next = NULL;
3379 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3380
1da177e4
LT
3381 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3382 DEFINE_WAIT(w);
16a53ecc 3383 int disks, data_disks;
b578d55f 3384
7ecaa1e6 3385 retry:
b578d55f 3386 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
3387 if (likely(conf->expand_progress == MaxSector))
3388 disks = conf->raid_disks;
3389 else {
df8e7f76
N
3390 /* spinlock is needed as expand_progress may be
3391 * 64bit on a 32bit platform, and so it might be
3392 * possible to see a half-updated value
3393 * Ofcourse expand_progress could change after
3394 * the lock is dropped, so once we get a reference
3395 * to the stripe that we think it is, we will have
3396 * to check again.
3397 */
7ecaa1e6
N
3398 spin_lock_irq(&conf->device_lock);
3399 disks = conf->raid_disks;
3400 if (logical_sector >= conf->expand_progress)
3401 disks = conf->previous_raid_disks;
b578d55f
N
3402 else {
3403 if (logical_sector >= conf->expand_lo) {
3404 spin_unlock_irq(&conf->device_lock);
3405 schedule();
3406 goto retry;
3407 }
3408 }
7ecaa1e6
N
3409 spin_unlock_irq(&conf->device_lock);
3410 }
16a53ecc
N
3411 data_disks = disks - conf->max_degraded;
3412
3413 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
7ecaa1e6 3414 &dd_idx, &pd_idx, conf);
45b4233c 3415 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3416 (unsigned long long)new_sector,
3417 (unsigned long long)logical_sector);
3418
7ecaa1e6 3419 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 3420 if (sh) {
7ecaa1e6
N
3421 if (unlikely(conf->expand_progress != MaxSector)) {
3422 /* expansion might have moved on while waiting for a
df8e7f76
N
3423 * stripe, so we must do the range check again.
3424 * Expansion could still move past after this
3425 * test, but as we are holding a reference to
3426 * 'sh', we know that if that happens,
3427 * STRIPE_EXPANDING will get set and the expansion
3428 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3429 */
3430 int must_retry = 0;
3431 spin_lock_irq(&conf->device_lock);
3432 if (logical_sector < conf->expand_progress &&
3433 disks == conf->previous_raid_disks)
3434 /* mismatch, need to try again */
3435 must_retry = 1;
3436 spin_unlock_irq(&conf->device_lock);
3437 if (must_retry) {
3438 release_stripe(sh);
3439 goto retry;
3440 }
3441 }
e464eafd
N
3442 /* FIXME what if we get a false positive because these
3443 * are being updated.
3444 */
3445 if (logical_sector >= mddev->suspend_lo &&
3446 logical_sector < mddev->suspend_hi) {
3447 release_stripe(sh);
3448 schedule();
3449 goto retry;
3450 }
7ecaa1e6
N
3451
3452 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3453 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3454 /* Stripe is busy expanding or
3455 * add failed due to overlap. Flush everything
1da177e4
LT
3456 * and wait a while
3457 */
3458 raid5_unplug_device(mddev->queue);
3459 release_stripe(sh);
3460 schedule();
3461 goto retry;
3462 }
3463 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3464 set_bit(STRIPE_HANDLE, &sh->state);
3465 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3466 release_stripe(sh);
1da177e4
LT
3467 } else {
3468 /* cannot get stripe for read-ahead, just give-up */
3469 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3470 finish_wait(&conf->wait_for_overlap, &w);
3471 break;
3472 }
3473
3474 }
3475 spin_lock_irq(&conf->device_lock);
f6344757
N
3476 remaining = --bi->bi_phys_segments;
3477 spin_unlock_irq(&conf->device_lock);
3478 if (remaining == 0) {
1da177e4 3479
16a53ecc 3480 if ( rw == WRITE )
1da177e4 3481 md_write_end(mddev);
6712ecf8 3482
0e13fe23 3483 bio_endio(bi, 0);
1da177e4 3484 }
1da177e4
LT
3485 return 0;
3486}
3487
52c03291 3488static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3489{
52c03291
N
3490 /* reshaping is quite different to recovery/resync so it is
3491 * handled quite separately ... here.
3492 *
3493 * On each call to sync_request, we gather one chunk worth of
3494 * destination stripes and flag them as expanding.
3495 * Then we find all the source stripes and request reads.
3496 * As the reads complete, handle_stripe will copy the data
3497 * into the destination stripe and release that stripe.
3498 */
1da177e4
LT
3499 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3500 struct stripe_head *sh;
ccfcc3c1
N
3501 int pd_idx;
3502 sector_t first_sector, last_sector;
f416885e
N
3503 int raid_disks = conf->previous_raid_disks;
3504 int data_disks = raid_disks - conf->max_degraded;
3505 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3506 int i;
3507 int dd_idx;
3508 sector_t writepos, safepos, gap;
3509
3510 if (sector_nr == 0 &&
3511 conf->expand_progress != 0) {
3512 /* restarting in the middle, skip the initial sectors */
3513 sector_nr = conf->expand_progress;
f416885e 3514 sector_div(sector_nr, new_data_disks);
52c03291
N
3515 *skipped = 1;
3516 return sector_nr;
3517 }
3518
3519 /* we update the metadata when there is more than 3Meg
3520 * in the block range (that is rather arbitrary, should
3521 * probably be time based) or when the data about to be
3522 * copied would over-write the source of the data at
3523 * the front of the range.
3524 * i.e. one new_stripe forward from expand_progress new_maps
3525 * to after where expand_lo old_maps to
3526 */
3527 writepos = conf->expand_progress +
f416885e
N
3528 conf->chunk_size/512*(new_data_disks);
3529 sector_div(writepos, new_data_disks);
52c03291 3530 safepos = conf->expand_lo;
f416885e 3531 sector_div(safepos, data_disks);
52c03291
N
3532 gap = conf->expand_progress - conf->expand_lo;
3533
3534 if (writepos >= safepos ||
f416885e 3535 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
3536 /* Cannot proceed until we've updated the superblock... */
3537 wait_event(conf->wait_for_overlap,
3538 atomic_read(&conf->reshape_stripes)==0);
3539 mddev->reshape_position = conf->expand_progress;
850b2b42 3540 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3541 md_wakeup_thread(mddev->thread);
850b2b42 3542 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3543 kthread_should_stop());
3544 spin_lock_irq(&conf->device_lock);
3545 conf->expand_lo = mddev->reshape_position;
3546 spin_unlock_irq(&conf->device_lock);
3547 wake_up(&conf->wait_for_overlap);
3548 }
3549
3550 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3551 int j;
3552 int skipped = 0;
3553 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3554 sh = get_active_stripe(conf, sector_nr+i,
3555 conf->raid_disks, pd_idx, 0);
3556 set_bit(STRIPE_EXPANDING, &sh->state);
3557 atomic_inc(&conf->reshape_stripes);
3558 /* If any of this stripe is beyond the end of the old
3559 * array, then we need to zero those blocks
3560 */
3561 for (j=sh->disks; j--;) {
3562 sector_t s;
3563 if (j == sh->pd_idx)
3564 continue;
f416885e
N
3565 if (conf->level == 6 &&
3566 j == raid6_next_disk(sh->pd_idx, sh->disks))
3567 continue;
52c03291
N
3568 s = compute_blocknr(sh, j);
3569 if (s < (mddev->array_size<<1)) {
3570 skipped = 1;
3571 continue;
3572 }
3573 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3574 set_bit(R5_Expanded, &sh->dev[j].flags);
3575 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3576 }
3577 if (!skipped) {
3578 set_bit(STRIPE_EXPAND_READY, &sh->state);
3579 set_bit(STRIPE_HANDLE, &sh->state);
3580 }
3581 release_stripe(sh);
3582 }
3583 spin_lock_irq(&conf->device_lock);
6d3baf2e 3584 conf->expand_progress = (sector_nr + i) * new_data_disks;
52c03291
N
3585 spin_unlock_irq(&conf->device_lock);
3586 /* Ok, those stripe are ready. We can start scheduling
3587 * reads on the source stripes.
3588 * The source stripes are determined by mapping the first and last
3589 * block on the destination stripes.
3590 */
52c03291 3591 first_sector =
f416885e 3592 raid5_compute_sector(sector_nr*(new_data_disks),
52c03291
N
3593 raid_disks, data_disks,
3594 &dd_idx, &pd_idx, conf);
3595 last_sector =
3596 raid5_compute_sector((sector_nr+conf->chunk_size/512)
f416885e 3597 *(new_data_disks) -1,
52c03291
N
3598 raid_disks, data_disks,
3599 &dd_idx, &pd_idx, conf);
3600 if (last_sector >= (mddev->size<<1))
3601 last_sector = (mddev->size<<1)-1;
3602 while (first_sector <= last_sector) {
f416885e
N
3603 pd_idx = stripe_to_pdidx(first_sector, conf,
3604 conf->previous_raid_disks);
52c03291
N
3605 sh = get_active_stripe(conf, first_sector,
3606 conf->previous_raid_disks, pd_idx, 0);
3607 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3608 set_bit(STRIPE_HANDLE, &sh->state);
3609 release_stripe(sh);
3610 first_sector += STRIPE_SECTORS;
3611 }
c6207277
N
3612 /* If this takes us to the resync_max point where we have to pause,
3613 * then we need to write out the superblock.
3614 */
3615 sector_nr += conf->chunk_size>>9;
3616 if (sector_nr >= mddev->resync_max) {
3617 /* Cannot proceed until we've updated the superblock... */
3618 wait_event(conf->wait_for_overlap,
3619 atomic_read(&conf->reshape_stripes) == 0);
3620 mddev->reshape_position = conf->expand_progress;
3621 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3622 md_wakeup_thread(mddev->thread);
3623 wait_event(mddev->sb_wait,
3624 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3625 || kthread_should_stop());
3626 spin_lock_irq(&conf->device_lock);
3627 conf->expand_lo = mddev->reshape_position;
3628 spin_unlock_irq(&conf->device_lock);
3629 wake_up(&conf->wait_for_overlap);
3630 }
52c03291
N
3631 return conf->chunk_size>>9;
3632}
3633
3634/* FIXME go_faster isn't used */
3635static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3636{
3637 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3638 struct stripe_head *sh;
3639 int pd_idx;
1da177e4 3640 int raid_disks = conf->raid_disks;
72626685
N
3641 sector_t max_sector = mddev->size << 1;
3642 int sync_blocks;
16a53ecc
N
3643 int still_degraded = 0;
3644 int i;
1da177e4 3645
72626685 3646 if (sector_nr >= max_sector) {
1da177e4
LT
3647 /* just being told to finish up .. nothing much to do */
3648 unplug_slaves(mddev);
29269553
N
3649 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3650 end_reshape(conf);
3651 return 0;
3652 }
72626685
N
3653
3654 if (mddev->curr_resync < max_sector) /* aborted */
3655 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3656 &sync_blocks, 1);
16a53ecc 3657 else /* completed sync */
72626685
N
3658 conf->fullsync = 0;
3659 bitmap_close_sync(mddev->bitmap);
3660
1da177e4
LT
3661 return 0;
3662 }
ccfcc3c1 3663
52c03291
N
3664 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3665 return reshape_request(mddev, sector_nr, skipped);
f6705578 3666
c6207277
N
3667 /* No need to check resync_max as we never do more than one
3668 * stripe, and as resync_max will always be on a chunk boundary,
3669 * if the check in md_do_sync didn't fire, there is no chance
3670 * of overstepping resync_max here
3671 */
3672
16a53ecc 3673 /* if there is too many failed drives and we are trying
1da177e4
LT
3674 * to resync, then assert that we are finished, because there is
3675 * nothing we can do.
3676 */
3285edf1 3677 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3678 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
3679 sector_t rv = (mddev->size << 1) - sector_nr;
3680 *skipped = 1;
1da177e4
LT
3681 return rv;
3682 }
72626685 3683 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3684 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3685 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3686 /* we can skip this block, and probably more */
3687 sync_blocks /= STRIPE_SECTORS;
3688 *skipped = 1;
3689 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3690 }
1da177e4 3691
b47490c9
N
3692
3693 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3694
ccfcc3c1 3695 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 3696 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 3697 if (sh == NULL) {
7ecaa1e6 3698 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4 3699 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3700 * is trying to get access
1da177e4 3701 */
66c006a5 3702 schedule_timeout_uninterruptible(1);
1da177e4 3703 }
16a53ecc
N
3704 /* Need to check if array will still be degraded after recovery/resync
3705 * We don't need to check the 'failed' flag as when that gets set,
3706 * recovery aborts.
3707 */
3708 for (i=0; i<mddev->raid_disks; i++)
3709 if (conf->disks[i].rdev == NULL)
3710 still_degraded = 1;
3711
3712 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3713
3714 spin_lock(&sh->lock);
1da177e4
LT
3715 set_bit(STRIPE_SYNCING, &sh->state);
3716 clear_bit(STRIPE_INSYNC, &sh->state);
3717 spin_unlock(&sh->lock);
3718
16a53ecc 3719 handle_stripe(sh, NULL);
1da177e4
LT
3720 release_stripe(sh);
3721
3722 return STRIPE_SECTORS;
3723}
3724
46031f9a
RBJ
3725static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3726{
3727 /* We may not be able to submit a whole bio at once as there
3728 * may not be enough stripe_heads available.
3729 * We cannot pre-allocate enough stripe_heads as we may need
3730 * more than exist in the cache (if we allow ever large chunks).
3731 * So we do one stripe head at a time and record in
3732 * ->bi_hw_segments how many have been done.
3733 *
3734 * We *know* that this entire raid_bio is in one chunk, so
3735 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3736 */
3737 struct stripe_head *sh;
3738 int dd_idx, pd_idx;
3739 sector_t sector, logical_sector, last_sector;
3740 int scnt = 0;
3741 int remaining;
3742 int handled = 0;
3743
3744 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3745 sector = raid5_compute_sector( logical_sector,
3746 conf->raid_disks,
3747 conf->raid_disks - conf->max_degraded,
3748 &dd_idx,
3749 &pd_idx,
3750 conf);
3751 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3752
3753 for (; logical_sector < last_sector;
387bb173
NB
3754 logical_sector += STRIPE_SECTORS,
3755 sector += STRIPE_SECTORS,
3756 scnt++) {
46031f9a
RBJ
3757
3758 if (scnt < raid_bio->bi_hw_segments)
3759 /* already done this stripe */
3760 continue;
3761
3762 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3763
3764 if (!sh) {
3765 /* failed to get a stripe - must wait */
3766 raid_bio->bi_hw_segments = scnt;
3767 conf->retry_read_aligned = raid_bio;
3768 return handled;
3769 }
3770
3771 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
3772 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3773 release_stripe(sh);
3774 raid_bio->bi_hw_segments = scnt;
3775 conf->retry_read_aligned = raid_bio;
3776 return handled;
3777 }
3778
46031f9a
RBJ
3779 handle_stripe(sh, NULL);
3780 release_stripe(sh);
3781 handled++;
3782 }
3783 spin_lock_irq(&conf->device_lock);
3784 remaining = --raid_bio->bi_phys_segments;
3785 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
3786 if (remaining == 0)
3787 bio_endio(raid_bio, 0);
46031f9a
RBJ
3788 if (atomic_dec_and_test(&conf->active_aligned_reads))
3789 wake_up(&conf->wait_for_stripe);
3790 return handled;
3791}
3792
3793
3794
1da177e4
LT
3795/*
3796 * This is our raid5 kernel thread.
3797 *
3798 * We scan the hash table for stripes which can be handled now.
3799 * During the scan, completed stripes are saved for us by the interrupt
3800 * handler, so that they will not have to wait for our next wakeup.
3801 */
6ed3003c 3802static void raid5d(mddev_t *mddev)
1da177e4
LT
3803{
3804 struct stripe_head *sh;
3805 raid5_conf_t *conf = mddev_to_conf(mddev);
3806 int handled;
3807
45b4233c 3808 pr_debug("+++ raid5d active\n");
1da177e4
LT
3809
3810 md_check_recovery(mddev);
1da177e4
LT
3811
3812 handled = 0;
3813 spin_lock_irq(&conf->device_lock);
3814 while (1) {
46031f9a 3815 struct bio *bio;
1da177e4 3816
ae3c20cc 3817 if (conf->seq_flush != conf->seq_write) {
72626685 3818 int seq = conf->seq_flush;
700e432d 3819 spin_unlock_irq(&conf->device_lock);
72626685 3820 bitmap_unplug(mddev->bitmap);
700e432d 3821 spin_lock_irq(&conf->device_lock);
72626685
N
3822 conf->seq_write = seq;
3823 activate_bit_delay(conf);
3824 }
3825
46031f9a
RBJ
3826 while ((bio = remove_bio_from_retry(conf))) {
3827 int ok;
3828 spin_unlock_irq(&conf->device_lock);
3829 ok = retry_aligned_read(conf, bio);
3830 spin_lock_irq(&conf->device_lock);
3831 if (!ok)
3832 break;
3833 handled++;
3834 }
3835
8b3e6cdc
DW
3836 sh = __get_priority_stripe(conf);
3837
3838 if (!sh) {
d84e0f10 3839 async_tx_issue_pending_all();
1da177e4 3840 break;
d84e0f10 3841 }
1da177e4
LT
3842 spin_unlock_irq(&conf->device_lock);
3843
3844 handled++;
16a53ecc 3845 handle_stripe(sh, conf->spare_page);
1da177e4
LT
3846 release_stripe(sh);
3847
3848 spin_lock_irq(&conf->device_lock);
3849 }
45b4233c 3850 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
3851
3852 spin_unlock_irq(&conf->device_lock);
3853
3854 unplug_slaves(mddev);
3855
45b4233c 3856 pr_debug("--- raid5d inactive\n");
1da177e4
LT
3857}
3858
3f294f4f 3859static ssize_t
007583c9 3860raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 3861{
007583c9 3862 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3863 if (conf)
3864 return sprintf(page, "%d\n", conf->max_nr_stripes);
3865 else
3866 return 0;
3f294f4f
N
3867}
3868
3869static ssize_t
007583c9 3870raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 3871{
007583c9 3872 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 3873 unsigned long new;
3f294f4f
N
3874 if (len >= PAGE_SIZE)
3875 return -EINVAL;
96de1e66
N
3876 if (!conf)
3877 return -ENODEV;
3f294f4f 3878
4ef197d8 3879 if (strict_strtoul(page, 10, &new))
3f294f4f
N
3880 return -EINVAL;
3881 if (new <= 16 || new > 32768)
3882 return -EINVAL;
3883 while (new < conf->max_nr_stripes) {
3884 if (drop_one_stripe(conf))
3885 conf->max_nr_stripes--;
3886 else
3887 break;
3888 }
2a2275d6 3889 md_allow_write(mddev);
3f294f4f
N
3890 while (new > conf->max_nr_stripes) {
3891 if (grow_one_stripe(conf))
3892 conf->max_nr_stripes++;
3893 else break;
3894 }
3895 return len;
3896}
007583c9 3897
96de1e66
N
3898static struct md_sysfs_entry
3899raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3900 raid5_show_stripe_cache_size,
3901 raid5_store_stripe_cache_size);
3f294f4f 3902
8b3e6cdc
DW
3903static ssize_t
3904raid5_show_preread_threshold(mddev_t *mddev, char *page)
3905{
3906 raid5_conf_t *conf = mddev_to_conf(mddev);
3907 if (conf)
3908 return sprintf(page, "%d\n", conf->bypass_threshold);
3909 else
3910 return 0;
3911}
3912
3913static ssize_t
3914raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3915{
3916 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 3917 unsigned long new;
8b3e6cdc
DW
3918 if (len >= PAGE_SIZE)
3919 return -EINVAL;
3920 if (!conf)
3921 return -ENODEV;
3922
4ef197d8 3923 if (strict_strtoul(page, 10, &new))
8b3e6cdc 3924 return -EINVAL;
4ef197d8 3925 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
3926 return -EINVAL;
3927 conf->bypass_threshold = new;
3928 return len;
3929}
3930
3931static struct md_sysfs_entry
3932raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3933 S_IRUGO | S_IWUSR,
3934 raid5_show_preread_threshold,
3935 raid5_store_preread_threshold);
3936
3f294f4f 3937static ssize_t
96de1e66 3938stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 3939{
007583c9 3940 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
3941 if (conf)
3942 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3943 else
3944 return 0;
3f294f4f
N
3945}
3946
96de1e66
N
3947static struct md_sysfs_entry
3948raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 3949
007583c9 3950static struct attribute *raid5_attrs[] = {
3f294f4f
N
3951 &raid5_stripecache_size.attr,
3952 &raid5_stripecache_active.attr,
8b3e6cdc 3953 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
3954 NULL,
3955};
007583c9
N
3956static struct attribute_group raid5_attrs_group = {
3957 .name = NULL,
3958 .attrs = raid5_attrs,
3f294f4f
N
3959};
3960
72626685 3961static int run(mddev_t *mddev)
1da177e4
LT
3962{
3963 raid5_conf_t *conf;
3964 int raid_disk, memory;
3965 mdk_rdev_t *rdev;
3966 struct disk_info *disk;
3967 struct list_head *tmp;
02c2de8c 3968 int working_disks = 0;
1da177e4 3969
16a53ecc
N
3970 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3971 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 3972 mdname(mddev), mddev->level);
1da177e4
LT
3973 return -EIO;
3974 }
3975
f6705578
N
3976 if (mddev->reshape_position != MaxSector) {
3977 /* Check that we can continue the reshape.
3978 * Currently only disks can change, it must
3979 * increase, and we must be past the point where
3980 * a stripe over-writes itself
3981 */
3982 sector_t here_new, here_old;
3983 int old_disks;
f416885e 3984 int max_degraded = (mddev->level == 5 ? 1 : 2);
f6705578
N
3985
3986 if (mddev->new_level != mddev->level ||
3987 mddev->new_layout != mddev->layout ||
3988 mddev->new_chunk != mddev->chunk_size) {
f416885e
N
3989 printk(KERN_ERR "raid5: %s: unsupported reshape "
3990 "required - aborting.\n",
f6705578
N
3991 mdname(mddev));
3992 return -EINVAL;
3993 }
3994 if (mddev->delta_disks <= 0) {
f416885e
N
3995 printk(KERN_ERR "raid5: %s: unsupported reshape "
3996 "(reduce disks) required - aborting.\n",
f6705578
N
3997 mdname(mddev));
3998 return -EINVAL;
3999 }
4000 old_disks = mddev->raid_disks - mddev->delta_disks;
4001 /* reshape_position must be on a new-stripe boundary, and one
f416885e
N
4002 * further up in new geometry must map after here in old
4003 * geometry.
f6705578
N
4004 */
4005 here_new = mddev->reshape_position;
f416885e
N
4006 if (sector_div(here_new, (mddev->chunk_size>>9)*
4007 (mddev->raid_disks - max_degraded))) {
4008 printk(KERN_ERR "raid5: reshape_position not "
4009 "on a stripe boundary\n");
f6705578
N
4010 return -EINVAL;
4011 }
4012 /* here_new is the stripe we will write to */
4013 here_old = mddev->reshape_position;
f416885e
N
4014 sector_div(here_old, (mddev->chunk_size>>9)*
4015 (old_disks-max_degraded));
4016 /* here_old is the first stripe that we might need to read
4017 * from */
f6705578
N
4018 if (here_new >= here_old) {
4019 /* Reading from the same stripe as writing to - bad */
f416885e
N
4020 printk(KERN_ERR "raid5: reshape_position too early for "
4021 "auto-recovery - aborting.\n");
f6705578
N
4022 return -EINVAL;
4023 }
4024 printk(KERN_INFO "raid5: reshape will continue\n");
4025 /* OK, we should be able to continue; */
4026 }
4027
4028
b55e6bfc 4029 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
4030 if ((conf = mddev->private) == NULL)
4031 goto abort;
f6705578
N
4032 if (mddev->reshape_position == MaxSector) {
4033 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4034 } else {
4035 conf->raid_disks = mddev->raid_disks;
4036 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4037 }
4038
4039 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4040 GFP_KERNEL);
4041 if (!conf->disks)
4042 goto abort;
9ffae0cf 4043
1da177e4
LT
4044 conf->mddev = mddev;
4045
fccddba0 4046 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4047 goto abort;
1da177e4 4048
16a53ecc
N
4049 if (mddev->level == 6) {
4050 conf->spare_page = alloc_page(GFP_KERNEL);
4051 if (!conf->spare_page)
4052 goto abort;
4053 }
1da177e4 4054 spin_lock_init(&conf->device_lock);
e7e72bf6 4055 mddev->queue->queue_lock = &conf->device_lock;
1da177e4
LT
4056 init_waitqueue_head(&conf->wait_for_stripe);
4057 init_waitqueue_head(&conf->wait_for_overlap);
4058 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4059 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4060 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4061 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4062 INIT_LIST_HEAD(&conf->inactive_list);
4063 atomic_set(&conf->active_stripes, 0);
4064 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4065 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4066 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4067
45b4233c 4068 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4069
d089c6af 4070 rdev_for_each(rdev, tmp, mddev) {
1da177e4 4071 raid_disk = rdev->raid_disk;
f6705578 4072 if (raid_disk >= conf->raid_disks
1da177e4
LT
4073 || raid_disk < 0)
4074 continue;
4075 disk = conf->disks + raid_disk;
4076
4077 disk->rdev = rdev;
4078
b2d444d7 4079 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4080 char b[BDEVNAME_SIZE];
4081 printk(KERN_INFO "raid5: device %s operational as raid"
4082 " disk %d\n", bdevname(rdev->bdev,b),
4083 raid_disk);
02c2de8c 4084 working_disks++;
8c2e870a
NB
4085 } else
4086 /* Cannot rely on bitmap to complete recovery */
4087 conf->fullsync = 1;
1da177e4
LT
4088 }
4089
1da177e4 4090 /*
16a53ecc 4091 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4 4092 */
02c2de8c 4093 mddev->degraded = conf->raid_disks - working_disks;
1da177e4
LT
4094 conf->mddev = mddev;
4095 conf->chunk_size = mddev->chunk_size;
4096 conf->level = mddev->level;
16a53ecc
N
4097 if (conf->level == 6)
4098 conf->max_degraded = 2;
4099 else
4100 conf->max_degraded = 1;
1da177e4
LT
4101 conf->algorithm = mddev->layout;
4102 conf->max_nr_stripes = NR_STRIPES;
f6705578 4103 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
4104
4105 /* device size must be a multiple of chunk size */
4106 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 4107 mddev->resync_max_sectors = mddev->size << 1;
1da177e4 4108
16a53ecc
N
4109 if (conf->level == 6 && conf->raid_disks < 4) {
4110 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4111 mdname(mddev), conf->raid_disks);
4112 goto abort;
4113 }
1da177e4
LT
4114 if (!conf->chunk_size || conf->chunk_size % 4) {
4115 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4116 conf->chunk_size, mdname(mddev));
4117 goto abort;
4118 }
4119 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4120 printk(KERN_ERR
4121 "raid5: unsupported parity algorithm %d for %s\n",
4122 conf->algorithm, mdname(mddev));
4123 goto abort;
4124 }
16a53ecc 4125 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4126 printk(KERN_ERR "raid5: not enough operational devices for %s"
4127 " (%d/%d failed)\n",
02c2de8c 4128 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4129 goto abort;
4130 }
4131
16a53ecc 4132 if (mddev->degraded > 0 &&
1da177e4 4133 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4134 if (mddev->ok_start_degraded)
4135 printk(KERN_WARNING
4136 "raid5: starting dirty degraded array: %s"
4137 "- data corruption possible.\n",
4138 mdname(mddev));
4139 else {
4140 printk(KERN_ERR
4141 "raid5: cannot start dirty degraded array for %s\n",
4142 mdname(mddev));
4143 goto abort;
4144 }
1da177e4
LT
4145 }
4146
4147 {
4148 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4149 if (!mddev->thread) {
4150 printk(KERN_ERR
4151 "raid5: couldn't allocate thread for %s\n",
4152 mdname(mddev));
4153 goto abort;
4154 }
4155 }
5036805b 4156 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
4157 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4158 if (grow_stripes(conf, conf->max_nr_stripes)) {
4159 printk(KERN_ERR
4160 "raid5: couldn't allocate %dkB for buffers\n", memory);
4161 shrink_stripes(conf);
4162 md_unregister_thread(mddev->thread);
4163 goto abort;
4164 } else
4165 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4166 memory, mdname(mddev));
4167
4168 if (mddev->degraded == 0)
4169 printk("raid5: raid level %d set %s active with %d out of %d"
4170 " devices, algorithm %d\n", conf->level, mdname(mddev),
4171 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4172 conf->algorithm);
4173 else
4174 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4175 " out of %d devices, algorithm %d\n", conf->level,
4176 mdname(mddev), mddev->raid_disks - mddev->degraded,
4177 mddev->raid_disks, conf->algorithm);
4178
4179 print_raid5_conf(conf);
4180
f6705578
N
4181 if (conf->expand_progress != MaxSector) {
4182 printk("...ok start reshape thread\n");
b578d55f 4183 conf->expand_lo = conf->expand_progress;
f6705578
N
4184 atomic_set(&conf->reshape_stripes, 0);
4185 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4186 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4187 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4188 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4189 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4190 "%s_reshape");
f6705578
N
4191 }
4192
1da177e4 4193 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4194 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4195 */
4196 {
16a53ecc
N
4197 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4198 int stripe = data_disks *
8932c2e0 4199 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4200 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4201 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4202 }
4203
4204 /* Ok, everything is just fine now */
5e55e2f5
N
4205 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4206 printk(KERN_WARNING
4207 "raid5: failed to create sysfs attributes for %s\n",
4208 mdname(mddev));
7a5febe9
N
4209
4210 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4211 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4212 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4213
16a53ecc
N
4214 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4215 conf->max_degraded);
7a5febe9 4216
23032a0e
RBJ
4217 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4218
1da177e4
LT
4219 return 0;
4220abort:
4221 if (conf) {
4222 print_raid5_conf(conf);
16a53ecc 4223 safe_put_page(conf->spare_page);
b55e6bfc 4224 kfree(conf->disks);
fccddba0 4225 kfree(conf->stripe_hashtbl);
1da177e4
LT
4226 kfree(conf);
4227 }
4228 mddev->private = NULL;
4229 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4230 return -EIO;
4231}
4232
4233
4234
3f294f4f 4235static int stop(mddev_t *mddev)
1da177e4
LT
4236{
4237 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4238
4239 md_unregister_thread(mddev->thread);
4240 mddev->thread = NULL;
4241 shrink_stripes(conf);
fccddba0 4242 kfree(conf->stripe_hashtbl);
041ae52e 4243 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4244 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4245 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4246 kfree(conf->disks);
96de1e66 4247 kfree(conf);
1da177e4
LT
4248 mddev->private = NULL;
4249 return 0;
4250}
4251
45b4233c 4252#ifdef DEBUG
16a53ecc 4253static void print_sh (struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4254{
4255 int i;
4256
16a53ecc
N
4257 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4258 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4259 seq_printf(seq, "sh %llu, count %d.\n",
4260 (unsigned long long)sh->sector, atomic_read(&sh->count));
4261 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4262 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4263 seq_printf(seq, "(cache%d: %p %ld) ",
4264 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4265 }
16a53ecc 4266 seq_printf(seq, "\n");
1da177e4
LT
4267}
4268
16a53ecc 4269static void printall (struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4270{
4271 struct stripe_head *sh;
fccddba0 4272 struct hlist_node *hn;
1da177e4
LT
4273 int i;
4274
4275 spin_lock_irq(&conf->device_lock);
4276 for (i = 0; i < NR_HASH; i++) {
fccddba0 4277 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4278 if (sh->raid_conf != conf)
4279 continue;
16a53ecc 4280 print_sh(seq, sh);
1da177e4
LT
4281 }
4282 }
4283 spin_unlock_irq(&conf->device_lock);
4284}
4285#endif
4286
4287static void status (struct seq_file *seq, mddev_t *mddev)
4288{
4289 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4290 int i;
4291
4292 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4293 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4294 for (i = 0; i < conf->raid_disks; i++)
4295 seq_printf (seq, "%s",
4296 conf->disks[i].rdev &&
b2d444d7 4297 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4298 seq_printf (seq, "]");
45b4233c 4299#ifdef DEBUG
16a53ecc
N
4300 seq_printf (seq, "\n");
4301 printall(seq, conf);
1da177e4
LT
4302#endif
4303}
4304
4305static void print_raid5_conf (raid5_conf_t *conf)
4306{
4307 int i;
4308 struct disk_info *tmp;
4309
4310 printk("RAID5 conf printout:\n");
4311 if (!conf) {
4312 printk("(conf==NULL)\n");
4313 return;
4314 }
02c2de8c
N
4315 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4316 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4317
4318 for (i = 0; i < conf->raid_disks; i++) {
4319 char b[BDEVNAME_SIZE];
4320 tmp = conf->disks + i;
4321 if (tmp->rdev)
4322 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4323 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4324 bdevname(tmp->rdev->bdev,b));
4325 }
4326}
4327
4328static int raid5_spare_active(mddev_t *mddev)
4329{
4330 int i;
4331 raid5_conf_t *conf = mddev->private;
4332 struct disk_info *tmp;
4333
4334 for (i = 0; i < conf->raid_disks; i++) {
4335 tmp = conf->disks + i;
4336 if (tmp->rdev
b2d444d7 4337 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4338 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4339 unsigned long flags;
4340 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4341 mddev->degraded--;
c04be0aa 4342 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4343 }
4344 }
4345 print_raid5_conf(conf);
4346 return 0;
4347}
4348
4349static int raid5_remove_disk(mddev_t *mddev, int number)
4350{
4351 raid5_conf_t *conf = mddev->private;
4352 int err = 0;
4353 mdk_rdev_t *rdev;
4354 struct disk_info *p = conf->disks + number;
4355
4356 print_raid5_conf(conf);
4357 rdev = p->rdev;
4358 if (rdev) {
b2d444d7 4359 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4360 atomic_read(&rdev->nr_pending)) {
4361 err = -EBUSY;
4362 goto abort;
4363 }
dfc70645
N
4364 /* Only remove non-faulty devices if recovery
4365 * isn't possible.
4366 */
4367 if (!test_bit(Faulty, &rdev->flags) &&
4368 mddev->degraded <= conf->max_degraded) {
4369 err = -EBUSY;
4370 goto abort;
4371 }
1da177e4 4372 p->rdev = NULL;
fbd568a3 4373 synchronize_rcu();
1da177e4
LT
4374 if (atomic_read(&rdev->nr_pending)) {
4375 /* lost the race, try later */
4376 err = -EBUSY;
4377 p->rdev = rdev;
4378 }
4379 }
4380abort:
4381
4382 print_raid5_conf(conf);
4383 return err;
4384}
4385
4386static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4387{
4388 raid5_conf_t *conf = mddev->private;
199050ea 4389 int err = -EEXIST;
1da177e4
LT
4390 int disk;
4391 struct disk_info *p;
6c2fce2e
NB
4392 int first = 0;
4393 int last = conf->raid_disks - 1;
1da177e4 4394
16a53ecc 4395 if (mddev->degraded > conf->max_degraded)
1da177e4 4396 /* no point adding a device */
199050ea 4397 return -EINVAL;
1da177e4 4398
6c2fce2e
NB
4399 if (rdev->raid_disk >= 0)
4400 first = last = rdev->raid_disk;
4401
1da177e4 4402 /*
16a53ecc
N
4403 * find the disk ... but prefer rdev->saved_raid_disk
4404 * if possible.
1da177e4 4405 */
16a53ecc 4406 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 4407 rdev->saved_raid_disk >= first &&
16a53ecc
N
4408 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4409 disk = rdev->saved_raid_disk;
4410 else
6c2fce2e
NB
4411 disk = first;
4412 for ( ; disk <= last ; disk++)
1da177e4 4413 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4414 clear_bit(In_sync, &rdev->flags);
1da177e4 4415 rdev->raid_disk = disk;
199050ea 4416 err = 0;
72626685
N
4417 if (rdev->saved_raid_disk != disk)
4418 conf->fullsync = 1;
d6065f7b 4419 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4420 break;
4421 }
4422 print_raid5_conf(conf);
199050ea 4423 return err;
1da177e4
LT
4424}
4425
4426static int raid5_resize(mddev_t *mddev, sector_t sectors)
4427{
4428 /* no resync is happening, and there is enough space
4429 * on all devices, so we can resize.
4430 * We need to make sure resync covers any new space.
4431 * If the array is shrinking we should possibly wait until
4432 * any io in the removed space completes, but it hardly seems
4433 * worth it.
4434 */
16a53ecc
N
4435 raid5_conf_t *conf = mddev_to_conf(mddev);
4436
1da177e4 4437 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
16a53ecc 4438 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
1da177e4 4439 set_capacity(mddev->gendisk, mddev->array_size << 1);
44ce6294 4440 mddev->changed = 1;
1da177e4
LT
4441 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4442 mddev->recovery_cp = mddev->size << 1;
4443 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4444 }
4445 mddev->size = sectors /2;
4b5c7ae8 4446 mddev->resync_max_sectors = sectors;
1da177e4
LT
4447 return 0;
4448}
4449
29269553 4450#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 4451static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4452{
4453 raid5_conf_t *conf = mddev_to_conf(mddev);
4454 int err;
29269553 4455
63c70c4f
N
4456 if (mddev->delta_disks < 0 ||
4457 mddev->new_level != mddev->level)
4458 return -EINVAL; /* Cannot shrink array or change level yet */
4459 if (mddev->delta_disks == 0)
29269553
N
4460 return 0; /* nothing to do */
4461
4462 /* Can only proceed if there are plenty of stripe_heads.
4463 * We need a minimum of one full stripe,, and for sensible progress
4464 * it is best to have about 4 times that.
4465 * If we require 4 times, then the default 256 4K stripe_heads will
4466 * allow for chunk sizes up to 256K, which is probably OK.
4467 * If the chunk size is greater, user-space should request more
4468 * stripe_heads first.
4469 */
63c70c4f
N
4470 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4471 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
4472 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4473 (mddev->chunk_size / STRIPE_SIZE)*4);
4474 return -ENOSPC;
4475 }
4476
63c70c4f
N
4477 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4478 if (err)
4479 return err;
4480
b4c4c7b8
N
4481 if (mddev->degraded > conf->max_degraded)
4482 return -EINVAL;
63c70c4f
N
4483 /* looks like we might be able to manage this */
4484 return 0;
4485}
4486
4487static int raid5_start_reshape(mddev_t *mddev)
4488{
4489 raid5_conf_t *conf = mddev_to_conf(mddev);
4490 mdk_rdev_t *rdev;
4491 struct list_head *rtmp;
4492 int spares = 0;
4493 int added_devices = 0;
c04be0aa 4494 unsigned long flags;
63c70c4f 4495
f416885e 4496 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4497 return -EBUSY;
4498
d089c6af 4499 rdev_for_each(rdev, rtmp, mddev)
29269553
N
4500 if (rdev->raid_disk < 0 &&
4501 !test_bit(Faulty, &rdev->flags))
4502 spares++;
63c70c4f 4503
f416885e 4504 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4505 /* Not enough devices even to make a degraded array
4506 * of that size
4507 */
4508 return -EINVAL;
4509
f6705578 4510 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4511 spin_lock_irq(&conf->device_lock);
4512 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4513 conf->raid_disks += mddev->delta_disks;
29269553 4514 conf->expand_progress = 0;
b578d55f 4515 conf->expand_lo = 0;
29269553
N
4516 spin_unlock_irq(&conf->device_lock);
4517
4518 /* Add some new drives, as many as will fit.
4519 * We know there are enough to make the newly sized array work.
4520 */
d089c6af 4521 rdev_for_each(rdev, rtmp, mddev)
29269553
N
4522 if (rdev->raid_disk < 0 &&
4523 !test_bit(Faulty, &rdev->flags)) {
199050ea 4524 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
4525 char nm[20];
4526 set_bit(In_sync, &rdev->flags);
29269553 4527 added_devices++;
5fd6c1dc 4528 rdev->recovery_offset = 0;
29269553 4529 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4530 if (sysfs_create_link(&mddev->kobj,
4531 &rdev->kobj, nm))
4532 printk(KERN_WARNING
4533 "raid5: failed to create "
4534 " link %s for %s\n",
4535 nm, mdname(mddev));
29269553
N
4536 } else
4537 break;
4538 }
4539
c04be0aa 4540 spin_lock_irqsave(&conf->device_lock, flags);
63c70c4f 4541 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
c04be0aa 4542 spin_unlock_irqrestore(&conf->device_lock, flags);
63c70c4f 4543 mddev->raid_disks = conf->raid_disks;
f6705578 4544 mddev->reshape_position = 0;
850b2b42 4545 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4546
29269553
N
4547 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4548 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4549 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4550 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4551 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4552 "%s_reshape");
4553 if (!mddev->sync_thread) {
4554 mddev->recovery = 0;
4555 spin_lock_irq(&conf->device_lock);
4556 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4557 conf->expand_progress = MaxSector;
4558 spin_unlock_irq(&conf->device_lock);
4559 return -EAGAIN;
4560 }
4561 md_wakeup_thread(mddev->sync_thread);
4562 md_new_event(mddev);
4563 return 0;
4564}
4565#endif
4566
4567static void end_reshape(raid5_conf_t *conf)
4568{
4569 struct block_device *bdev;
4570
f6705578 4571 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f416885e
N
4572 conf->mddev->array_size = conf->mddev->size *
4573 (conf->raid_disks - conf->max_degraded);
f6705578 4574 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
44ce6294 4575 conf->mddev->changed = 1;
f6705578
N
4576
4577 bdev = bdget_disk(conf->mddev->gendisk, 0);
4578 if (bdev) {
4579 mutex_lock(&bdev->bd_inode->i_mutex);
0692c6b1 4580 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
f6705578
N
4581 mutex_unlock(&bdev->bd_inode->i_mutex);
4582 bdput(bdev);
4583 }
4584 spin_lock_irq(&conf->device_lock);
4585 conf->expand_progress = MaxSector;
4586 spin_unlock_irq(&conf->device_lock);
4587 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
4588
4589 /* read-ahead size must cover two whole stripes, which is
4590 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4591 */
4592 {
4593 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4594 int stripe = data_disks *
4595 (conf->mddev->chunk_size / PAGE_SIZE);
4596 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4597 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4598 }
29269553 4599 }
29269553
N
4600}
4601
72626685
N
4602static void raid5_quiesce(mddev_t *mddev, int state)
4603{
4604 raid5_conf_t *conf = mddev_to_conf(mddev);
4605
4606 switch(state) {
e464eafd
N
4607 case 2: /* resume for a suspend */
4608 wake_up(&conf->wait_for_overlap);
4609 break;
4610
72626685
N
4611 case 1: /* stop all writes */
4612 spin_lock_irq(&conf->device_lock);
4613 conf->quiesce = 1;
4614 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
4615 atomic_read(&conf->active_stripes) == 0 &&
4616 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
4617 conf->device_lock, /* nothing */);
4618 spin_unlock_irq(&conf->device_lock);
4619 break;
4620
4621 case 0: /* re-enable writes */
4622 spin_lock_irq(&conf->device_lock);
4623 conf->quiesce = 0;
4624 wake_up(&conf->wait_for_stripe);
e464eafd 4625 wake_up(&conf->wait_for_overlap);
72626685
N
4626 spin_unlock_irq(&conf->device_lock);
4627 break;
4628 }
72626685 4629}
b15c2e57 4630
16a53ecc
N
4631static struct mdk_personality raid6_personality =
4632{
4633 .name = "raid6",
4634 .level = 6,
4635 .owner = THIS_MODULE,
4636 .make_request = make_request,
4637 .run = run,
4638 .stop = stop,
4639 .status = status,
4640 .error_handler = error,
4641 .hot_add_disk = raid5_add_disk,
4642 .hot_remove_disk= raid5_remove_disk,
4643 .spare_active = raid5_spare_active,
4644 .sync_request = sync_request,
4645 .resize = raid5_resize,
f416885e
N
4646#ifdef CONFIG_MD_RAID5_RESHAPE
4647 .check_reshape = raid5_check_reshape,
4648 .start_reshape = raid5_start_reshape,
4649#endif
16a53ecc
N
4650 .quiesce = raid5_quiesce,
4651};
2604b703 4652static struct mdk_personality raid5_personality =
1da177e4
LT
4653{
4654 .name = "raid5",
2604b703 4655 .level = 5,
1da177e4
LT
4656 .owner = THIS_MODULE,
4657 .make_request = make_request,
4658 .run = run,
4659 .stop = stop,
4660 .status = status,
4661 .error_handler = error,
4662 .hot_add_disk = raid5_add_disk,
4663 .hot_remove_disk= raid5_remove_disk,
4664 .spare_active = raid5_spare_active,
4665 .sync_request = sync_request,
4666 .resize = raid5_resize,
29269553 4667#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
4668 .check_reshape = raid5_check_reshape,
4669 .start_reshape = raid5_start_reshape,
29269553 4670#endif
72626685 4671 .quiesce = raid5_quiesce,
1da177e4
LT
4672};
4673
2604b703 4674static struct mdk_personality raid4_personality =
1da177e4 4675{
2604b703
N
4676 .name = "raid4",
4677 .level = 4,
4678 .owner = THIS_MODULE,
4679 .make_request = make_request,
4680 .run = run,
4681 .stop = stop,
4682 .status = status,
4683 .error_handler = error,
4684 .hot_add_disk = raid5_add_disk,
4685 .hot_remove_disk= raid5_remove_disk,
4686 .spare_active = raid5_spare_active,
4687 .sync_request = sync_request,
4688 .resize = raid5_resize,
3d37890b
N
4689#ifdef CONFIG_MD_RAID5_RESHAPE
4690 .check_reshape = raid5_check_reshape,
4691 .start_reshape = raid5_start_reshape,
4692#endif
2604b703
N
4693 .quiesce = raid5_quiesce,
4694};
4695
4696static int __init raid5_init(void)
4697{
16a53ecc
N
4698 int e;
4699
4700 e = raid6_select_algo();
4701 if ( e )
4702 return e;
4703 register_md_personality(&raid6_personality);
2604b703
N
4704 register_md_personality(&raid5_personality);
4705 register_md_personality(&raid4_personality);
4706 return 0;
1da177e4
LT
4707}
4708
2604b703 4709static void raid5_exit(void)
1da177e4 4710{
16a53ecc 4711 unregister_md_personality(&raid6_personality);
2604b703
N
4712 unregister_md_personality(&raid5_personality);
4713 unregister_md_personality(&raid4_personality);
1da177e4
LT
4714}
4715
4716module_init(raid5_init);
4717module_exit(raid5_exit);
4718MODULE_LICENSE("GPL");
4719MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
4720MODULE_ALIAS("md-raid5");
4721MODULE_ALIAS("md-raid4");
2604b703
N
4722MODULE_ALIAS("md-level-5");
4723MODULE_ALIAS("md-level-4");
16a53ecc
N
4724MODULE_ALIAS("md-personality-8"); /* RAID6 */
4725MODULE_ALIAS("md-raid6");
4726MODULE_ALIAS("md-level-6");
4727
4728/* This used to be two separate modules, they were: */
4729MODULE_ALIAS("raid5");
4730MODULE_ALIAS("raid6");