block: remove support for bio remapping from ->make_request
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
07a3b417 50#include <linux/async.h>
bff61975 51#include <linux/seq_file.h>
36d1c647 52#include <linux/cpu.h>
5a0e3ad6 53#include <linux/slab.h>
8bda470e 54#include <linux/ratelimit.h>
43b2e5d8 55#include "md.h"
bff61975 56#include "raid5.h"
54071b38 57#include "raid0.h"
ef740c37 58#include "bitmap.h"
72626685 59
1da177e4
LT
60/*
61 * Stripe cache
62 */
63
64#define NR_STRIPES 256
65#define STRIPE_SIZE PAGE_SIZE
66#define STRIPE_SHIFT (PAGE_SHIFT - 9)
67#define STRIPE_SECTORS (STRIPE_SIZE>>9)
68#define IO_THRESHOLD 1
8b3e6cdc 69#define BYPASS_THRESHOLD 1
fccddba0 70#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
71#define HASH_MASK (NR_HASH - 1)
72
fccddba0 73#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
74
75/* bio's attached to a stripe+device for I/O are linked together in bi_sector
76 * order without overlap. There may be several bio's per stripe+device, and
77 * a bio could span several devices.
78 * When walking this list for a particular stripe+device, we must never proceed
79 * beyond a bio that extends past this device, as the next bio might no longer
80 * be valid.
81 * This macro is used to determine the 'next' bio in the list, given the sector
82 * of the current stripe+device
83 */
84#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85/*
86 * The following can be used to debug the driver
87 */
1da177e4
LT
88#define RAID5_PARANOIA 1
89#if RAID5_PARANOIA && defined(CONFIG_SMP)
90# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91#else
92# define CHECK_DEVLOCK()
93#endif
94
45b4233c 95#ifdef DEBUG
1da177e4
LT
96#define inline
97#define __inline__
98#endif
99
960e739d 100/*
5b99c2ff
JA
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
103 */
104static inline int raid5_bi_phys_segments(struct bio *bio)
105{
5b99c2ff 106 return bio->bi_phys_segments & 0xffff;
960e739d
JA
107}
108
109static inline int raid5_bi_hw_segments(struct bio *bio)
110{
5b99c2ff 111 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
112}
113
114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115{
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
118}
119
120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121{
122 unsigned short val = raid5_bi_hw_segments(bio);
123
124 --val;
5b99c2ff 125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
126 return val;
127}
128
129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130{
9b2dc8b6 131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
960e739d
JA
132}
133
d0dabf7e
N
134/* Find first data disk in a raid6 stripe */
135static inline int raid6_d0(struct stripe_head *sh)
136{
67cc2b81
N
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
d0dabf7e
N
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
145}
16a53ecc
N
146static inline int raid6_next_disk(int disk, int raid_disks)
147{
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
150}
a4456856 151
d0dabf7e
N
152/* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
156 */
67cc2b81
N
157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
d0dabf7e 159{
6629542e 160 int slot = *count;
67cc2b81 161
e4424fee 162 if (sh->ddf_layout)
6629542e 163 (*count)++;
d0dabf7e 164 if (idx == sh->pd_idx)
67cc2b81 165 return syndrome_disks;
d0dabf7e 166 if (idx == sh->qd_idx)
67cc2b81 167 return syndrome_disks + 1;
e4424fee 168 if (!sh->ddf_layout)
6629542e 169 (*count)++;
d0dabf7e
N
170 return slot;
171}
172
a4456856
DW
173static void return_io(struct bio *return_bi)
174{
175 struct bio *bi = return_bi;
176 while (bi) {
a4456856
DW
177
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
0e13fe23 181 bio_endio(bi, 0);
a4456856
DW
182 bi = return_bi;
183 }
184}
185
1da177e4
LT
186static void print_raid5_conf (raid5_conf_t *conf);
187
600aa109
DW
188static int stripe_operations_active(struct stripe_head *sh)
189{
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193}
194
858119e1 195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
196{
197 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
482c0834 201 if (test_bit(STRIPE_DELAYED, &sh->state))
1da177e4 202 list_add_tail(&sh->lru, &conf->delayed_list);
482c0834
N
203 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0)
72626685 205 list_add_tail(&sh->lru, &conf->bitmap_list);
482c0834 206 else {
72626685 207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 208 list_add_tail(&sh->lru, &conf->handle_list);
72626685 209 }
1da177e4
LT
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
600aa109 212 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214 atomic_dec(&conf->preread_active_stripes);
215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 }
1da177e4 218 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
219 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 221 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
222 if (conf->retry_read_aligned)
223 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 224 }
1da177e4
LT
225 }
226 }
227}
d0dabf7e 228
1da177e4
LT
229static void release_stripe(struct stripe_head *sh)
230{
231 raid5_conf_t *conf = sh->raid_conf;
232 unsigned long flags;
16a53ecc 233
1da177e4
LT
234 spin_lock_irqsave(&conf->device_lock, flags);
235 __release_stripe(conf, sh);
236 spin_unlock_irqrestore(&conf->device_lock, flags);
237}
238
fccddba0 239static inline void remove_hash(struct stripe_head *sh)
1da177e4 240{
45b4233c
DW
241 pr_debug("remove_hash(), stripe %llu\n",
242 (unsigned long long)sh->sector);
1da177e4 243
fccddba0 244 hlist_del_init(&sh->hash);
1da177e4
LT
245}
246
16a53ecc 247static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 248{
fccddba0 249 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 250
45b4233c
DW
251 pr_debug("insert_hash(), stripe %llu\n",
252 (unsigned long long)sh->sector);
1da177e4
LT
253
254 CHECK_DEVLOCK();
fccddba0 255 hlist_add_head(&sh->hash, hp);
1da177e4
LT
256}
257
258
259/* find an idle stripe, make sure it is unhashed, and return it. */
260static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261{
262 struct stripe_head *sh = NULL;
263 struct list_head *first;
264
265 CHECK_DEVLOCK();
266 if (list_empty(&conf->inactive_list))
267 goto out;
268 first = conf->inactive_list.next;
269 sh = list_entry(first, struct stripe_head, lru);
270 list_del_init(first);
271 remove_hash(sh);
272 atomic_inc(&conf->active_stripes);
273out:
274 return sh;
275}
276
e4e11e38 277static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
278{
279 struct page *p;
280 int i;
e4e11e38 281 int num = sh->raid_conf->pool_size;
1da177e4 282
e4e11e38 283 for (i = 0; i < num ; i++) {
1da177e4
LT
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
2d1f3b5d 288 put_page(p);
1da177e4
LT
289 }
290}
291
e4e11e38 292static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
293{
294 int i;
e4e11e38 295 int num = sh->raid_conf->pool_size;
1da177e4 296
e4e11e38 297 for (i = 0; i < num; i++) {
1da177e4
LT
298 struct page *page;
299
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
302 }
303 sh->dev[i].page = page;
304 }
305 return 0;
306}
307
784052ec 308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
1da177e4 311
b5663ba4 312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
313{
314 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 315 int i;
1da177e4 316
78bafebd
ES
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 319 BUG_ON(stripe_operations_active(sh));
d84e0f10 320
1da177e4 321 CHECK_DEVLOCK();
45b4233c 322 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
323 (unsigned long long)sh->sector);
324
325 remove_hash(sh);
16a53ecc 326
86b42c71 327 sh->generation = conf->generation - previous;
b5663ba4 328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 329 sh->sector = sector;
911d4ee8 330 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
331 sh->state = 0;
332
7ecaa1e6
N
333
334 for (i = sh->disks; i--; ) {
1da177e4
LT
335 struct r5dev *dev = &sh->dev[i];
336
d84e0f10 337 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 338 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 340 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 341 dev->read, dev->towrite, dev->written,
1da177e4 342 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 343 WARN_ON(1);
1da177e4
LT
344 }
345 dev->flags = 0;
784052ec 346 raid5_build_block(sh, i, previous);
1da177e4
LT
347 }
348 insert_hash(conf, sh);
349}
350
86b42c71
N
351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
1da177e4
LT
353{
354 struct stripe_head *sh;
fccddba0 355 struct hlist_node *hn;
1da177e4
LT
356
357 CHECK_DEVLOCK();
45b4233c 358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 360 if (sh->sector == sector && sh->generation == generation)
1da177e4 361 return sh;
45b4233c 362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
363 return NULL;
364}
365
674806d6
N
366/*
367 * Need to check if array has failed when deciding whether to:
368 * - start an array
369 * - remove non-faulty devices
370 * - add a spare
371 * - allow a reshape
372 * This determination is simple when no reshape is happening.
373 * However if there is a reshape, we need to carefully check
374 * both the before and after sections.
375 * This is because some failed devices may only affect one
376 * of the two sections, and some non-in_sync devices may
377 * be insync in the section most affected by failed devices.
378 */
379static int has_failed(raid5_conf_t *conf)
380{
381 int degraded;
382 int i;
383 if (conf->mddev->reshape_position == MaxSector)
384 return conf->mddev->degraded > conf->max_degraded;
385
386 rcu_read_lock();
387 degraded = 0;
388 for (i = 0; i < conf->previous_raid_disks; i++) {
389 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390 if (!rdev || test_bit(Faulty, &rdev->flags))
391 degraded++;
392 else if (test_bit(In_sync, &rdev->flags))
393 ;
394 else
395 /* not in-sync or faulty.
396 * If the reshape increases the number of devices,
397 * this is being recovered by the reshape, so
398 * this 'previous' section is not in_sync.
399 * If the number of devices is being reduced however,
400 * the device can only be part of the array if
401 * we are reverting a reshape, so this section will
402 * be in-sync.
403 */
404 if (conf->raid_disks >= conf->previous_raid_disks)
405 degraded++;
406 }
407 rcu_read_unlock();
408 if (degraded > conf->max_degraded)
409 return 1;
410 rcu_read_lock();
411 degraded = 0;
412 for (i = 0; i < conf->raid_disks; i++) {
413 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414 if (!rdev || test_bit(Faulty, &rdev->flags))
415 degraded++;
416 else if (test_bit(In_sync, &rdev->flags))
417 ;
418 else
419 /* not in-sync or faulty.
420 * If reshape increases the number of devices, this
421 * section has already been recovered, else it
422 * almost certainly hasn't.
423 */
424 if (conf->raid_disks <= conf->previous_raid_disks)
425 degraded++;
426 }
427 rcu_read_unlock();
428 if (degraded > conf->max_degraded)
429 return 1;
430 return 0;
431}
432
b5663ba4
N
433static struct stripe_head *
434get_active_stripe(raid5_conf_t *conf, sector_t sector,
a8c906ca 435 int previous, int noblock, int noquiesce)
1da177e4
LT
436{
437 struct stripe_head *sh;
438
45b4233c 439 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
440
441 spin_lock_irq(&conf->device_lock);
442
443 do {
72626685 444 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 445 conf->quiesce == 0 || noquiesce,
72626685 446 conf->device_lock, /* nothing */);
86b42c71 447 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
448 if (!sh) {
449 if (!conf->inactive_blocked)
450 sh = get_free_stripe(conf);
451 if (noblock && sh == NULL)
452 break;
453 if (!sh) {
454 conf->inactive_blocked = 1;
455 wait_event_lock_irq(conf->wait_for_stripe,
456 !list_empty(&conf->inactive_list) &&
5036805b
N
457 (atomic_read(&conf->active_stripes)
458 < (conf->max_nr_stripes *3/4)
1da177e4
LT
459 || !conf->inactive_blocked),
460 conf->device_lock,
7c13edc8 461 );
1da177e4
LT
462 conf->inactive_blocked = 0;
463 } else
b5663ba4 464 init_stripe(sh, sector, previous);
1da177e4
LT
465 } else {
466 if (atomic_read(&sh->count)) {
ab69ae12
N
467 BUG_ON(!list_empty(&sh->lru)
468 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
469 } else {
470 if (!test_bit(STRIPE_HANDLE, &sh->state))
471 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
472 if (list_empty(&sh->lru) &&
473 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
474 BUG();
475 list_del_init(&sh->lru);
1da177e4
LT
476 }
477 }
478 } while (sh == NULL);
479
480 if (sh)
481 atomic_inc(&sh->count);
482
483 spin_unlock_irq(&conf->device_lock);
484 return sh;
485}
486
6712ecf8
N
487static void
488raid5_end_read_request(struct bio *bi, int error);
489static void
490raid5_end_write_request(struct bio *bi, int error);
91c00924 491
c4e5ac0a 492static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
493{
494 raid5_conf_t *conf = sh->raid_conf;
495 int i, disks = sh->disks;
496
497 might_sleep();
498
499 for (i = disks; i--; ) {
500 int rw;
501 struct bio *bi;
502 mdk_rdev_t *rdev;
e9c7469b
TH
503 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505 rw = WRITE_FUA;
506 else
507 rw = WRITE;
508 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924
DW
509 rw = READ;
510 else
511 continue;
512
513 bi = &sh->dev[i].req;
514
515 bi->bi_rw = rw;
b062962e 516 if (rw & WRITE)
91c00924
DW
517 bi->bi_end_io = raid5_end_write_request;
518 else
519 bi->bi_end_io = raid5_end_read_request;
520
521 rcu_read_lock();
522 rdev = rcu_dereference(conf->disks[i].rdev);
523 if (rdev && test_bit(Faulty, &rdev->flags))
524 rdev = NULL;
525 if (rdev)
526 atomic_inc(&rdev->nr_pending);
527 rcu_read_unlock();
528
73e92e51
N
529 /* We have already checked bad blocks for reads. Now
530 * need to check for writes.
531 */
532 while ((rw & WRITE) && rdev &&
533 test_bit(WriteErrorSeen, &rdev->flags)) {
534 sector_t first_bad;
535 int bad_sectors;
536 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
537 &first_bad, &bad_sectors);
538 if (!bad)
539 break;
540
541 if (bad < 0) {
542 set_bit(BlockedBadBlocks, &rdev->flags);
543 if (!conf->mddev->external &&
544 conf->mddev->flags) {
545 /* It is very unlikely, but we might
546 * still need to write out the
547 * bad block log - better give it
548 * a chance*/
549 md_check_recovery(conf->mddev);
550 }
551 md_wait_for_blocked_rdev(rdev, conf->mddev);
552 } else {
553 /* Acknowledged bad block - skip the write */
554 rdev_dec_pending(rdev, conf->mddev);
555 rdev = NULL;
556 }
557 }
558
91c00924 559 if (rdev) {
c4e5ac0a 560 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
561 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
562
2b7497f0
DW
563 set_bit(STRIPE_IO_STARTED, &sh->state);
564
91c00924
DW
565 bi->bi_bdev = rdev->bdev;
566 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 567 __func__, (unsigned long long)sh->sector,
91c00924
DW
568 bi->bi_rw, i);
569 atomic_inc(&sh->count);
570 bi->bi_sector = sh->sector + rdev->data_offset;
571 bi->bi_flags = 1 << BIO_UPTODATE;
572 bi->bi_vcnt = 1;
573 bi->bi_max_vecs = 1;
574 bi->bi_idx = 0;
575 bi->bi_io_vec = &sh->dev[i].vec;
576 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
577 bi->bi_io_vec[0].bv_offset = 0;
578 bi->bi_size = STRIPE_SIZE;
579 bi->bi_next = NULL;
91c00924
DW
580 generic_make_request(bi);
581 } else {
b062962e 582 if (rw & WRITE)
91c00924
DW
583 set_bit(STRIPE_DEGRADED, &sh->state);
584 pr_debug("skip op %ld on disc %d for sector %llu\n",
585 bi->bi_rw, i, (unsigned long long)sh->sector);
586 clear_bit(R5_LOCKED, &sh->dev[i].flags);
587 set_bit(STRIPE_HANDLE, &sh->state);
588 }
589 }
590}
591
592static struct dma_async_tx_descriptor *
593async_copy_data(int frombio, struct bio *bio, struct page *page,
594 sector_t sector, struct dma_async_tx_descriptor *tx)
595{
596 struct bio_vec *bvl;
597 struct page *bio_page;
598 int i;
599 int page_offset;
a08abd8c 600 struct async_submit_ctl submit;
0403e382 601 enum async_tx_flags flags = 0;
91c00924
DW
602
603 if (bio->bi_sector >= sector)
604 page_offset = (signed)(bio->bi_sector - sector) * 512;
605 else
606 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 607
0403e382
DW
608 if (frombio)
609 flags |= ASYNC_TX_FENCE;
610 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
611
91c00924 612 bio_for_each_segment(bvl, bio, i) {
fcde9075 613 int len = bvl->bv_len;
91c00924
DW
614 int clen;
615 int b_offset = 0;
616
617 if (page_offset < 0) {
618 b_offset = -page_offset;
619 page_offset += b_offset;
620 len -= b_offset;
621 }
622
623 if (len > 0 && page_offset + len > STRIPE_SIZE)
624 clen = STRIPE_SIZE - page_offset;
625 else
626 clen = len;
627
628 if (clen > 0) {
fcde9075
NK
629 b_offset += bvl->bv_offset;
630 bio_page = bvl->bv_page;
91c00924
DW
631 if (frombio)
632 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 633 b_offset, clen, &submit);
91c00924
DW
634 else
635 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 636 page_offset, clen, &submit);
91c00924 637 }
a08abd8c
DW
638 /* chain the operations */
639 submit.depend_tx = tx;
640
91c00924
DW
641 if (clen < len) /* hit end of page */
642 break;
643 page_offset += len;
644 }
645
646 return tx;
647}
648
649static void ops_complete_biofill(void *stripe_head_ref)
650{
651 struct stripe_head *sh = stripe_head_ref;
652 struct bio *return_bi = NULL;
653 raid5_conf_t *conf = sh->raid_conf;
e4d84909 654 int i;
91c00924 655
e46b272b 656 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
657 (unsigned long long)sh->sector);
658
659 /* clear completed biofills */
83de75cc 660 spin_lock_irq(&conf->device_lock);
91c00924
DW
661 for (i = sh->disks; i--; ) {
662 struct r5dev *dev = &sh->dev[i];
91c00924
DW
663
664 /* acknowledge completion of a biofill operation */
e4d84909
DW
665 /* and check if we need to reply to a read request,
666 * new R5_Wantfill requests are held off until
83de75cc 667 * !STRIPE_BIOFILL_RUN
e4d84909
DW
668 */
669 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 670 struct bio *rbi, *rbi2;
91c00924 671
91c00924
DW
672 BUG_ON(!dev->read);
673 rbi = dev->read;
674 dev->read = NULL;
675 while (rbi && rbi->bi_sector <
676 dev->sector + STRIPE_SECTORS) {
677 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 678 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
679 rbi->bi_next = return_bi;
680 return_bi = rbi;
681 }
91c00924
DW
682 rbi = rbi2;
683 }
684 }
685 }
83de75cc
DW
686 spin_unlock_irq(&conf->device_lock);
687 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
688
689 return_io(return_bi);
690
e4d84909 691 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
692 release_stripe(sh);
693}
694
695static void ops_run_biofill(struct stripe_head *sh)
696{
697 struct dma_async_tx_descriptor *tx = NULL;
698 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 699 struct async_submit_ctl submit;
91c00924
DW
700 int i;
701
e46b272b 702 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
703 (unsigned long long)sh->sector);
704
705 for (i = sh->disks; i--; ) {
706 struct r5dev *dev = &sh->dev[i];
707 if (test_bit(R5_Wantfill, &dev->flags)) {
708 struct bio *rbi;
709 spin_lock_irq(&conf->device_lock);
710 dev->read = rbi = dev->toread;
711 dev->toread = NULL;
712 spin_unlock_irq(&conf->device_lock);
713 while (rbi && rbi->bi_sector <
714 dev->sector + STRIPE_SECTORS) {
715 tx = async_copy_data(0, rbi, dev->page,
716 dev->sector, tx);
717 rbi = r5_next_bio(rbi, dev->sector);
718 }
719 }
720 }
721
722 atomic_inc(&sh->count);
a08abd8c
DW
723 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
724 async_trigger_callback(&submit);
91c00924
DW
725}
726
4e7d2c0a 727static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 728{
4e7d2c0a 729 struct r5dev *tgt;
91c00924 730
4e7d2c0a
DW
731 if (target < 0)
732 return;
91c00924 733
4e7d2c0a 734 tgt = &sh->dev[target];
91c00924
DW
735 set_bit(R5_UPTODATE, &tgt->flags);
736 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
737 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
738}
739
ac6b53b6 740static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
741{
742 struct stripe_head *sh = stripe_head_ref;
91c00924 743
e46b272b 744 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
745 (unsigned long long)sh->sector);
746
ac6b53b6 747 /* mark the computed target(s) as uptodate */
4e7d2c0a 748 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 749 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 750
ecc65c9b
DW
751 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
752 if (sh->check_state == check_state_compute_run)
753 sh->check_state = check_state_compute_result;
91c00924
DW
754 set_bit(STRIPE_HANDLE, &sh->state);
755 release_stripe(sh);
756}
757
d6f38f31
DW
758/* return a pointer to the address conversion region of the scribble buffer */
759static addr_conv_t *to_addr_conv(struct stripe_head *sh,
760 struct raid5_percpu *percpu)
761{
762 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
763}
764
765static struct dma_async_tx_descriptor *
766ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 767{
91c00924 768 int disks = sh->disks;
d6f38f31 769 struct page **xor_srcs = percpu->scribble;
91c00924
DW
770 int target = sh->ops.target;
771 struct r5dev *tgt = &sh->dev[target];
772 struct page *xor_dest = tgt->page;
773 int count = 0;
774 struct dma_async_tx_descriptor *tx;
a08abd8c 775 struct async_submit_ctl submit;
91c00924
DW
776 int i;
777
778 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 779 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
780 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
781
782 for (i = disks; i--; )
783 if (i != target)
784 xor_srcs[count++] = sh->dev[i].page;
785
786 atomic_inc(&sh->count);
787
0403e382 788 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 789 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 790 if (unlikely(count == 1))
a08abd8c 791 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 792 else
a08abd8c 793 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 794
91c00924
DW
795 return tx;
796}
797
ac6b53b6
DW
798/* set_syndrome_sources - populate source buffers for gen_syndrome
799 * @srcs - (struct page *) array of size sh->disks
800 * @sh - stripe_head to parse
801 *
802 * Populates srcs in proper layout order for the stripe and returns the
803 * 'count' of sources to be used in a call to async_gen_syndrome. The P
804 * destination buffer is recorded in srcs[count] and the Q destination
805 * is recorded in srcs[count+1]].
806 */
807static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
808{
809 int disks = sh->disks;
810 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
811 int d0_idx = raid6_d0(sh);
812 int count;
813 int i;
814
815 for (i = 0; i < disks; i++)
5dd33c9a 816 srcs[i] = NULL;
ac6b53b6
DW
817
818 count = 0;
819 i = d0_idx;
820 do {
821 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822
823 srcs[slot] = sh->dev[i].page;
824 i = raid6_next_disk(i, disks);
825 } while (i != d0_idx);
ac6b53b6 826
e4424fee 827 return syndrome_disks;
ac6b53b6
DW
828}
829
830static struct dma_async_tx_descriptor *
831ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
832{
833 int disks = sh->disks;
834 struct page **blocks = percpu->scribble;
835 int target;
836 int qd_idx = sh->qd_idx;
837 struct dma_async_tx_descriptor *tx;
838 struct async_submit_ctl submit;
839 struct r5dev *tgt;
840 struct page *dest;
841 int i;
842 int count;
843
844 if (sh->ops.target < 0)
845 target = sh->ops.target2;
846 else if (sh->ops.target2 < 0)
847 target = sh->ops.target;
91c00924 848 else
ac6b53b6
DW
849 /* we should only have one valid target */
850 BUG();
851 BUG_ON(target < 0);
852 pr_debug("%s: stripe %llu block: %d\n",
853 __func__, (unsigned long long)sh->sector, target);
854
855 tgt = &sh->dev[target];
856 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
857 dest = tgt->page;
858
859 atomic_inc(&sh->count);
860
861 if (target == qd_idx) {
862 count = set_syndrome_sources(blocks, sh);
863 blocks[count] = NULL; /* regenerating p is not necessary */
864 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
865 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
866 ops_complete_compute, sh,
ac6b53b6
DW
867 to_addr_conv(sh, percpu));
868 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
869 } else {
870 /* Compute any data- or p-drive using XOR */
871 count = 0;
872 for (i = disks; i-- ; ) {
873 if (i == target || i == qd_idx)
874 continue;
875 blocks[count++] = sh->dev[i].page;
876 }
877
0403e382
DW
878 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
879 NULL, ops_complete_compute, sh,
ac6b53b6
DW
880 to_addr_conv(sh, percpu));
881 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
882 }
91c00924 883
91c00924
DW
884 return tx;
885}
886
ac6b53b6
DW
887static struct dma_async_tx_descriptor *
888ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
889{
890 int i, count, disks = sh->disks;
891 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
892 int d0_idx = raid6_d0(sh);
893 int faila = -1, failb = -1;
894 int target = sh->ops.target;
895 int target2 = sh->ops.target2;
896 struct r5dev *tgt = &sh->dev[target];
897 struct r5dev *tgt2 = &sh->dev[target2];
898 struct dma_async_tx_descriptor *tx;
899 struct page **blocks = percpu->scribble;
900 struct async_submit_ctl submit;
901
902 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
903 __func__, (unsigned long long)sh->sector, target, target2);
904 BUG_ON(target < 0 || target2 < 0);
905 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
906 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
907
6c910a78 908 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
909 * slot number conversion for 'faila' and 'failb'
910 */
911 for (i = 0; i < disks ; i++)
5dd33c9a 912 blocks[i] = NULL;
ac6b53b6
DW
913 count = 0;
914 i = d0_idx;
915 do {
916 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
917
918 blocks[slot] = sh->dev[i].page;
919
920 if (i == target)
921 faila = slot;
922 if (i == target2)
923 failb = slot;
924 i = raid6_next_disk(i, disks);
925 } while (i != d0_idx);
ac6b53b6
DW
926
927 BUG_ON(faila == failb);
928 if (failb < faila)
929 swap(faila, failb);
930 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
931 __func__, (unsigned long long)sh->sector, faila, failb);
932
933 atomic_inc(&sh->count);
934
935 if (failb == syndrome_disks+1) {
936 /* Q disk is one of the missing disks */
937 if (faila == syndrome_disks) {
938 /* Missing P+Q, just recompute */
0403e382
DW
939 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
940 ops_complete_compute, sh,
941 to_addr_conv(sh, percpu));
e4424fee 942 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
943 STRIPE_SIZE, &submit);
944 } else {
945 struct page *dest;
946 int data_target;
947 int qd_idx = sh->qd_idx;
948
949 /* Missing D+Q: recompute D from P, then recompute Q */
950 if (target == qd_idx)
951 data_target = target2;
952 else
953 data_target = target;
954
955 count = 0;
956 for (i = disks; i-- ; ) {
957 if (i == data_target || i == qd_idx)
958 continue;
959 blocks[count++] = sh->dev[i].page;
960 }
961 dest = sh->dev[data_target].page;
0403e382
DW
962 init_async_submit(&submit,
963 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
964 NULL, NULL, NULL,
965 to_addr_conv(sh, percpu));
ac6b53b6
DW
966 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
967 &submit);
968
969 count = set_syndrome_sources(blocks, sh);
0403e382
DW
970 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
971 ops_complete_compute, sh,
972 to_addr_conv(sh, percpu));
ac6b53b6
DW
973 return async_gen_syndrome(blocks, 0, count+2,
974 STRIPE_SIZE, &submit);
975 }
ac6b53b6 976 } else {
6c910a78
DW
977 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978 ops_complete_compute, sh,
979 to_addr_conv(sh, percpu));
980 if (failb == syndrome_disks) {
981 /* We're missing D+P. */
982 return async_raid6_datap_recov(syndrome_disks+2,
983 STRIPE_SIZE, faila,
984 blocks, &submit);
985 } else {
986 /* We're missing D+D. */
987 return async_raid6_2data_recov(syndrome_disks+2,
988 STRIPE_SIZE, faila, failb,
989 blocks, &submit);
990 }
ac6b53b6
DW
991 }
992}
993
994
91c00924
DW
995static void ops_complete_prexor(void *stripe_head_ref)
996{
997 struct stripe_head *sh = stripe_head_ref;
998
e46b272b 999 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1000 (unsigned long long)sh->sector);
91c00924
DW
1001}
1002
1003static struct dma_async_tx_descriptor *
d6f38f31
DW
1004ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1005 struct dma_async_tx_descriptor *tx)
91c00924 1006{
91c00924 1007 int disks = sh->disks;
d6f38f31 1008 struct page **xor_srcs = percpu->scribble;
91c00924 1009 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1010 struct async_submit_ctl submit;
91c00924
DW
1011
1012 /* existing parity data subtracted */
1013 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1014
e46b272b 1015 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1016 (unsigned long long)sh->sector);
1017
1018 for (i = disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1020 /* Only process blocks that are known to be uptodate */
d8ee0728 1021 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1022 xor_srcs[count++] = dev->page;
1023 }
1024
0403e382 1025 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1026 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1027 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1028
1029 return tx;
1030}
1031
1032static struct dma_async_tx_descriptor *
d8ee0728 1033ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1034{
1035 int disks = sh->disks;
d8ee0728 1036 int i;
91c00924 1037
e46b272b 1038 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1039 (unsigned long long)sh->sector);
1040
1041 for (i = disks; i--; ) {
1042 struct r5dev *dev = &sh->dev[i];
1043 struct bio *chosen;
91c00924 1044
d8ee0728 1045 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1046 struct bio *wbi;
1047
cbe47ec5 1048 spin_lock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1049 chosen = dev->towrite;
1050 dev->towrite = NULL;
1051 BUG_ON(dev->written);
1052 wbi = dev->written = chosen;
cbe47ec5 1053 spin_unlock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1054
1055 while (wbi && wbi->bi_sector <
1056 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1057 if (wbi->bi_rw & REQ_FUA)
1058 set_bit(R5_WantFUA, &dev->flags);
91c00924
DW
1059 tx = async_copy_data(1, wbi, dev->page,
1060 dev->sector, tx);
1061 wbi = r5_next_bio(wbi, dev->sector);
1062 }
1063 }
1064 }
1065
1066 return tx;
1067}
1068
ac6b53b6 1069static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1070{
1071 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1072 int disks = sh->disks;
1073 int pd_idx = sh->pd_idx;
1074 int qd_idx = sh->qd_idx;
1075 int i;
e9c7469b 1076 bool fua = false;
91c00924 1077
e46b272b 1078 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1079 (unsigned long long)sh->sector);
1080
e9c7469b
TH
1081 for (i = disks; i--; )
1082 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1083
91c00924
DW
1084 for (i = disks; i--; ) {
1085 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1086
e9c7469b 1087 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1088 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1089 if (fua)
1090 set_bit(R5_WantFUA, &dev->flags);
1091 }
91c00924
DW
1092 }
1093
d8ee0728
DW
1094 if (sh->reconstruct_state == reconstruct_state_drain_run)
1095 sh->reconstruct_state = reconstruct_state_drain_result;
1096 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1097 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1098 else {
1099 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1100 sh->reconstruct_state = reconstruct_state_result;
1101 }
91c00924
DW
1102
1103 set_bit(STRIPE_HANDLE, &sh->state);
1104 release_stripe(sh);
1105}
1106
1107static void
ac6b53b6
DW
1108ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1109 struct dma_async_tx_descriptor *tx)
91c00924 1110{
91c00924 1111 int disks = sh->disks;
d6f38f31 1112 struct page **xor_srcs = percpu->scribble;
a08abd8c 1113 struct async_submit_ctl submit;
91c00924
DW
1114 int count = 0, pd_idx = sh->pd_idx, i;
1115 struct page *xor_dest;
d8ee0728 1116 int prexor = 0;
91c00924 1117 unsigned long flags;
91c00924 1118
e46b272b 1119 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1120 (unsigned long long)sh->sector);
1121
1122 /* check if prexor is active which means only process blocks
1123 * that are part of a read-modify-write (written)
1124 */
d8ee0728
DW
1125 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1126 prexor = 1;
91c00924
DW
1127 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128 for (i = disks; i--; ) {
1129 struct r5dev *dev = &sh->dev[i];
1130 if (dev->written)
1131 xor_srcs[count++] = dev->page;
1132 }
1133 } else {
1134 xor_dest = sh->dev[pd_idx].page;
1135 for (i = disks; i--; ) {
1136 struct r5dev *dev = &sh->dev[i];
1137 if (i != pd_idx)
1138 xor_srcs[count++] = dev->page;
1139 }
1140 }
1141
91c00924
DW
1142 /* 1/ if we prexor'd then the dest is reused as a source
1143 * 2/ if we did not prexor then we are redoing the parity
1144 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1145 * for the synchronous xor case
1146 */
88ba2aa5 1147 flags = ASYNC_TX_ACK |
91c00924
DW
1148 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1149
1150 atomic_inc(&sh->count);
1151
ac6b53b6 1152 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1153 to_addr_conv(sh, percpu));
a08abd8c
DW
1154 if (unlikely(count == 1))
1155 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1156 else
1157 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1158}
1159
ac6b53b6
DW
1160static void
1161ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1162 struct dma_async_tx_descriptor *tx)
1163{
1164 struct async_submit_ctl submit;
1165 struct page **blocks = percpu->scribble;
1166 int count;
1167
1168 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1169
1170 count = set_syndrome_sources(blocks, sh);
1171
1172 atomic_inc(&sh->count);
1173
1174 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1175 sh, to_addr_conv(sh, percpu));
1176 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1177}
1178
1179static void ops_complete_check(void *stripe_head_ref)
1180{
1181 struct stripe_head *sh = stripe_head_ref;
91c00924 1182
e46b272b 1183 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1184 (unsigned long long)sh->sector);
1185
ecc65c9b 1186 sh->check_state = check_state_check_result;
91c00924
DW
1187 set_bit(STRIPE_HANDLE, &sh->state);
1188 release_stripe(sh);
1189}
1190
ac6b53b6 1191static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1192{
91c00924 1193 int disks = sh->disks;
ac6b53b6
DW
1194 int pd_idx = sh->pd_idx;
1195 int qd_idx = sh->qd_idx;
1196 struct page *xor_dest;
d6f38f31 1197 struct page **xor_srcs = percpu->scribble;
91c00924 1198 struct dma_async_tx_descriptor *tx;
a08abd8c 1199 struct async_submit_ctl submit;
ac6b53b6
DW
1200 int count;
1201 int i;
91c00924 1202
e46b272b 1203 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1204 (unsigned long long)sh->sector);
1205
ac6b53b6
DW
1206 count = 0;
1207 xor_dest = sh->dev[pd_idx].page;
1208 xor_srcs[count++] = xor_dest;
91c00924 1209 for (i = disks; i--; ) {
ac6b53b6
DW
1210 if (i == pd_idx || i == qd_idx)
1211 continue;
1212 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1213 }
1214
d6f38f31
DW
1215 init_async_submit(&submit, 0, NULL, NULL, NULL,
1216 to_addr_conv(sh, percpu));
099f53cb 1217 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1218 &sh->ops.zero_sum_result, &submit);
91c00924 1219
91c00924 1220 atomic_inc(&sh->count);
a08abd8c
DW
1221 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1222 tx = async_trigger_callback(&submit);
91c00924
DW
1223}
1224
ac6b53b6
DW
1225static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1226{
1227 struct page **srcs = percpu->scribble;
1228 struct async_submit_ctl submit;
1229 int count;
1230
1231 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1232 (unsigned long long)sh->sector, checkp);
1233
1234 count = set_syndrome_sources(srcs, sh);
1235 if (!checkp)
1236 srcs[count] = NULL;
91c00924 1237
91c00924 1238 atomic_inc(&sh->count);
ac6b53b6
DW
1239 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1240 sh, to_addr_conv(sh, percpu));
1241 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1242 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1243}
1244
417b8d4a 1245static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1246{
1247 int overlap_clear = 0, i, disks = sh->disks;
1248 struct dma_async_tx_descriptor *tx = NULL;
d6f38f31 1249 raid5_conf_t *conf = sh->raid_conf;
ac6b53b6 1250 int level = conf->level;
d6f38f31
DW
1251 struct raid5_percpu *percpu;
1252 unsigned long cpu;
91c00924 1253
d6f38f31
DW
1254 cpu = get_cpu();
1255 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1256 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1257 ops_run_biofill(sh);
1258 overlap_clear++;
1259 }
1260
7b3a871e 1261 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1262 if (level < 6)
1263 tx = ops_run_compute5(sh, percpu);
1264 else {
1265 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1266 tx = ops_run_compute6_1(sh, percpu);
1267 else
1268 tx = ops_run_compute6_2(sh, percpu);
1269 }
1270 /* terminate the chain if reconstruct is not set to be run */
1271 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1272 async_tx_ack(tx);
1273 }
91c00924 1274
600aa109 1275 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1276 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1277
600aa109 1278 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1279 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1280 overlap_clear++;
1281 }
1282
ac6b53b6
DW
1283 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1284 if (level < 6)
1285 ops_run_reconstruct5(sh, percpu, tx);
1286 else
1287 ops_run_reconstruct6(sh, percpu, tx);
1288 }
91c00924 1289
ac6b53b6
DW
1290 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1291 if (sh->check_state == check_state_run)
1292 ops_run_check_p(sh, percpu);
1293 else if (sh->check_state == check_state_run_q)
1294 ops_run_check_pq(sh, percpu, 0);
1295 else if (sh->check_state == check_state_run_pq)
1296 ops_run_check_pq(sh, percpu, 1);
1297 else
1298 BUG();
1299 }
91c00924 1300
91c00924
DW
1301 if (overlap_clear)
1302 for (i = disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
1304 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1305 wake_up(&sh->raid_conf->wait_for_overlap);
1306 }
d6f38f31 1307 put_cpu();
91c00924
DW
1308}
1309
417b8d4a
DW
1310#ifdef CONFIG_MULTICORE_RAID456
1311static void async_run_ops(void *param, async_cookie_t cookie)
1312{
1313 struct stripe_head *sh = param;
1314 unsigned long ops_request = sh->ops.request;
1315
1316 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1317 wake_up(&sh->ops.wait_for_ops);
1318
1319 __raid_run_ops(sh, ops_request);
1320 release_stripe(sh);
1321}
1322
1323static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1324{
1325 /* since handle_stripe can be called outside of raid5d context
1326 * we need to ensure sh->ops.request is de-staged before another
1327 * request arrives
1328 */
1329 wait_event(sh->ops.wait_for_ops,
1330 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1331 sh->ops.request = ops_request;
1332
1333 atomic_inc(&sh->count);
1334 async_schedule(async_run_ops, sh);
1335}
1336#else
1337#define raid_run_ops __raid_run_ops
1338#endif
1339
3f294f4f 1340static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1341{
1342 struct stripe_head *sh;
6ce32846 1343 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1344 if (!sh)
1345 return 0;
6ce32846 1346
3f294f4f 1347 sh->raid_conf = conf;
417b8d4a
DW
1348 #ifdef CONFIG_MULTICORE_RAID456
1349 init_waitqueue_head(&sh->ops.wait_for_ops);
1350 #endif
3f294f4f 1351
e4e11e38
N
1352 if (grow_buffers(sh)) {
1353 shrink_buffers(sh);
3f294f4f
N
1354 kmem_cache_free(conf->slab_cache, sh);
1355 return 0;
1356 }
1357 /* we just created an active stripe so... */
1358 atomic_set(&sh->count, 1);
1359 atomic_inc(&conf->active_stripes);
1360 INIT_LIST_HEAD(&sh->lru);
1361 release_stripe(sh);
1362 return 1;
1363}
1364
1365static int grow_stripes(raid5_conf_t *conf, int num)
1366{
e18b890b 1367 struct kmem_cache *sc;
5e5e3e78 1368 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1369
f4be6b43
N
1370 if (conf->mddev->gendisk)
1371 sprintf(conf->cache_name[0],
1372 "raid%d-%s", conf->level, mdname(conf->mddev));
1373 else
1374 sprintf(conf->cache_name[0],
1375 "raid%d-%p", conf->level, conf->mddev);
1376 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1377
ad01c9e3
N
1378 conf->active_name = 0;
1379 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1380 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1381 0, 0, NULL);
1da177e4
LT
1382 if (!sc)
1383 return 1;
1384 conf->slab_cache = sc;
ad01c9e3 1385 conf->pool_size = devs;
16a53ecc 1386 while (num--)
3f294f4f 1387 if (!grow_one_stripe(conf))
1da177e4 1388 return 1;
1da177e4
LT
1389 return 0;
1390}
29269553 1391
d6f38f31
DW
1392/**
1393 * scribble_len - return the required size of the scribble region
1394 * @num - total number of disks in the array
1395 *
1396 * The size must be enough to contain:
1397 * 1/ a struct page pointer for each device in the array +2
1398 * 2/ room to convert each entry in (1) to its corresponding dma
1399 * (dma_map_page()) or page (page_address()) address.
1400 *
1401 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1402 * calculate over all devices (not just the data blocks), using zeros in place
1403 * of the P and Q blocks.
1404 */
1405static size_t scribble_len(int num)
1406{
1407 size_t len;
1408
1409 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1410
1411 return len;
1412}
1413
ad01c9e3
N
1414static int resize_stripes(raid5_conf_t *conf, int newsize)
1415{
1416 /* Make all the stripes able to hold 'newsize' devices.
1417 * New slots in each stripe get 'page' set to a new page.
1418 *
1419 * This happens in stages:
1420 * 1/ create a new kmem_cache and allocate the required number of
1421 * stripe_heads.
1422 * 2/ gather all the old stripe_heads and tranfer the pages across
1423 * to the new stripe_heads. This will have the side effect of
1424 * freezing the array as once all stripe_heads have been collected,
1425 * no IO will be possible. Old stripe heads are freed once their
1426 * pages have been transferred over, and the old kmem_cache is
1427 * freed when all stripes are done.
1428 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1429 * we simple return a failre status - no need to clean anything up.
1430 * 4/ allocate new pages for the new slots in the new stripe_heads.
1431 * If this fails, we don't bother trying the shrink the
1432 * stripe_heads down again, we just leave them as they are.
1433 * As each stripe_head is processed the new one is released into
1434 * active service.
1435 *
1436 * Once step2 is started, we cannot afford to wait for a write,
1437 * so we use GFP_NOIO allocations.
1438 */
1439 struct stripe_head *osh, *nsh;
1440 LIST_HEAD(newstripes);
1441 struct disk_info *ndisks;
d6f38f31 1442 unsigned long cpu;
b5470dc5 1443 int err;
e18b890b 1444 struct kmem_cache *sc;
ad01c9e3
N
1445 int i;
1446
1447 if (newsize <= conf->pool_size)
1448 return 0; /* never bother to shrink */
1449
b5470dc5
DW
1450 err = md_allow_write(conf->mddev);
1451 if (err)
1452 return err;
2a2275d6 1453
ad01c9e3
N
1454 /* Step 1 */
1455 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1456 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1457 0, 0, NULL);
ad01c9e3
N
1458 if (!sc)
1459 return -ENOMEM;
1460
1461 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1462 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1463 if (!nsh)
1464 break;
1465
ad01c9e3 1466 nsh->raid_conf = conf;
417b8d4a
DW
1467 #ifdef CONFIG_MULTICORE_RAID456
1468 init_waitqueue_head(&nsh->ops.wait_for_ops);
1469 #endif
ad01c9e3
N
1470
1471 list_add(&nsh->lru, &newstripes);
1472 }
1473 if (i) {
1474 /* didn't get enough, give up */
1475 while (!list_empty(&newstripes)) {
1476 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1477 list_del(&nsh->lru);
1478 kmem_cache_free(sc, nsh);
1479 }
1480 kmem_cache_destroy(sc);
1481 return -ENOMEM;
1482 }
1483 /* Step 2 - Must use GFP_NOIO now.
1484 * OK, we have enough stripes, start collecting inactive
1485 * stripes and copying them over
1486 */
1487 list_for_each_entry(nsh, &newstripes, lru) {
1488 spin_lock_irq(&conf->device_lock);
1489 wait_event_lock_irq(conf->wait_for_stripe,
1490 !list_empty(&conf->inactive_list),
1491 conf->device_lock,
482c0834 1492 );
ad01c9e3
N
1493 osh = get_free_stripe(conf);
1494 spin_unlock_irq(&conf->device_lock);
1495 atomic_set(&nsh->count, 1);
1496 for(i=0; i<conf->pool_size; i++)
1497 nsh->dev[i].page = osh->dev[i].page;
1498 for( ; i<newsize; i++)
1499 nsh->dev[i].page = NULL;
1500 kmem_cache_free(conf->slab_cache, osh);
1501 }
1502 kmem_cache_destroy(conf->slab_cache);
1503
1504 /* Step 3.
1505 * At this point, we are holding all the stripes so the array
1506 * is completely stalled, so now is a good time to resize
d6f38f31 1507 * conf->disks and the scribble region
ad01c9e3
N
1508 */
1509 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1510 if (ndisks) {
1511 for (i=0; i<conf->raid_disks; i++)
1512 ndisks[i] = conf->disks[i];
1513 kfree(conf->disks);
1514 conf->disks = ndisks;
1515 } else
1516 err = -ENOMEM;
1517
d6f38f31
DW
1518 get_online_cpus();
1519 conf->scribble_len = scribble_len(newsize);
1520 for_each_present_cpu(cpu) {
1521 struct raid5_percpu *percpu;
1522 void *scribble;
1523
1524 percpu = per_cpu_ptr(conf->percpu, cpu);
1525 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1526
1527 if (scribble) {
1528 kfree(percpu->scribble);
1529 percpu->scribble = scribble;
1530 } else {
1531 err = -ENOMEM;
1532 break;
1533 }
1534 }
1535 put_online_cpus();
1536
ad01c9e3
N
1537 /* Step 4, return new stripes to service */
1538 while(!list_empty(&newstripes)) {
1539 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1540 list_del_init(&nsh->lru);
d6f38f31 1541
ad01c9e3
N
1542 for (i=conf->raid_disks; i < newsize; i++)
1543 if (nsh->dev[i].page == NULL) {
1544 struct page *p = alloc_page(GFP_NOIO);
1545 nsh->dev[i].page = p;
1546 if (!p)
1547 err = -ENOMEM;
1548 }
1549 release_stripe(nsh);
1550 }
1551 /* critical section pass, GFP_NOIO no longer needed */
1552
1553 conf->slab_cache = sc;
1554 conf->active_name = 1-conf->active_name;
1555 conf->pool_size = newsize;
1556 return err;
1557}
1da177e4 1558
3f294f4f 1559static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1560{
1561 struct stripe_head *sh;
1562
3f294f4f
N
1563 spin_lock_irq(&conf->device_lock);
1564 sh = get_free_stripe(conf);
1565 spin_unlock_irq(&conf->device_lock);
1566 if (!sh)
1567 return 0;
78bafebd 1568 BUG_ON(atomic_read(&sh->count));
e4e11e38 1569 shrink_buffers(sh);
3f294f4f
N
1570 kmem_cache_free(conf->slab_cache, sh);
1571 atomic_dec(&conf->active_stripes);
1572 return 1;
1573}
1574
1575static void shrink_stripes(raid5_conf_t *conf)
1576{
1577 while (drop_one_stripe(conf))
1578 ;
1579
29fc7e3e
N
1580 if (conf->slab_cache)
1581 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1582 conf->slab_cache = NULL;
1583}
1584
6712ecf8 1585static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1586{
99c0fb5f 1587 struct stripe_head *sh = bi->bi_private;
1da177e4 1588 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1589 int disks = sh->disks, i;
1da177e4 1590 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1591 char b[BDEVNAME_SIZE];
1592 mdk_rdev_t *rdev;
1da177e4 1593
1da177e4
LT
1594
1595 for (i=0 ; i<disks; i++)
1596 if (bi == &sh->dev[i].req)
1597 break;
1598
45b4233c
DW
1599 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1600 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1601 uptodate);
1602 if (i == disks) {
1603 BUG();
6712ecf8 1604 return;
1da177e4
LT
1605 }
1606
1607 if (uptodate) {
1da177e4 1608 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1609 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1610 rdev = conf->disks[i].rdev;
8bda470e
CD
1611 printk_ratelimited(
1612 KERN_INFO
1613 "md/raid:%s: read error corrected"
1614 " (%lu sectors at %llu on %s)\n",
1615 mdname(conf->mddev), STRIPE_SECTORS,
1616 (unsigned long long)(sh->sector
1617 + rdev->data_offset),
1618 bdevname(rdev->bdev, b));
ddd5115f 1619 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1620 clear_bit(R5_ReadError, &sh->dev[i].flags);
1621 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1622 }
ba22dcbf
N
1623 if (atomic_read(&conf->disks[i].rdev->read_errors))
1624 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1625 } else {
d6950432 1626 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1627 int retry = 0;
d6950432
N
1628 rdev = conf->disks[i].rdev;
1629
1da177e4 1630 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1631 atomic_inc(&rdev->read_errors);
7b0bb536 1632 if (conf->mddev->degraded >= conf->max_degraded)
8bda470e
CD
1633 printk_ratelimited(
1634 KERN_WARNING
1635 "md/raid:%s: read error not correctable "
1636 "(sector %llu on %s).\n",
1637 mdname(conf->mddev),
1638 (unsigned long long)(sh->sector
1639 + rdev->data_offset),
1640 bdn);
ba22dcbf 1641 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1642 /* Oh, no!!! */
8bda470e
CD
1643 printk_ratelimited(
1644 KERN_WARNING
1645 "md/raid:%s: read error NOT corrected!! "
1646 "(sector %llu on %s).\n",
1647 mdname(conf->mddev),
1648 (unsigned long long)(sh->sector
1649 + rdev->data_offset),
1650 bdn);
d6950432 1651 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1652 > conf->max_nr_stripes)
14f8d26b 1653 printk(KERN_WARNING
0c55e022 1654 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1655 mdname(conf->mddev), bdn);
ba22dcbf
N
1656 else
1657 retry = 1;
1658 if (retry)
1659 set_bit(R5_ReadError, &sh->dev[i].flags);
1660 else {
4e5314b5
N
1661 clear_bit(R5_ReadError, &sh->dev[i].flags);
1662 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1663 md_error(conf->mddev, rdev);
ba22dcbf 1664 }
1da177e4
LT
1665 }
1666 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1667 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1668 set_bit(STRIPE_HANDLE, &sh->state);
1669 release_stripe(sh);
1da177e4
LT
1670}
1671
d710e138 1672static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1673{
99c0fb5f 1674 struct stripe_head *sh = bi->bi_private;
1da177e4 1675 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1676 int disks = sh->disks, i;
1da177e4 1677 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
1678 sector_t first_bad;
1679 int bad_sectors;
1da177e4 1680
1da177e4
LT
1681 for (i=0 ; i<disks; i++)
1682 if (bi == &sh->dev[i].req)
1683 break;
1684
45b4233c 1685 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1686 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1687 uptodate);
1688 if (i == disks) {
1689 BUG();
6712ecf8 1690 return;
1da177e4
LT
1691 }
1692
bc2607f3
N
1693 if (!uptodate) {
1694 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1695 set_bit(R5_WriteError, &sh->dev[i].flags);
b84db560
N
1696 } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1697 &first_bad, &bad_sectors))
1698 set_bit(R5_MadeGood, &sh->dev[i].flags);
1da177e4
LT
1699
1700 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1701
1702 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1703 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1704 release_stripe(sh);
1da177e4
LT
1705}
1706
1707
784052ec 1708static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1709
784052ec 1710static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1711{
1712 struct r5dev *dev = &sh->dev[i];
1713
1714 bio_init(&dev->req);
1715 dev->req.bi_io_vec = &dev->vec;
1716 dev->req.bi_vcnt++;
1717 dev->req.bi_max_vecs++;
1718 dev->vec.bv_page = dev->page;
1719 dev->vec.bv_len = STRIPE_SIZE;
1720 dev->vec.bv_offset = 0;
1721
1722 dev->req.bi_sector = sh->sector;
1723 dev->req.bi_private = sh;
1724
1725 dev->flags = 0;
784052ec 1726 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1727}
1728
1729static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1730{
1731 char b[BDEVNAME_SIZE];
7b92813c 1732 raid5_conf_t *conf = mddev->private;
0c55e022 1733 pr_debug("raid456: error called\n");
1da177e4 1734
6f8d0c77
N
1735 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1736 unsigned long flags;
1737 spin_lock_irqsave(&conf->device_lock, flags);
1738 mddev->degraded++;
1739 spin_unlock_irqrestore(&conf->device_lock, flags);
1740 /*
1741 * if recovery was running, make sure it aborts.
1742 */
1743 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1744 }
de393cde 1745 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
1746 set_bit(Faulty, &rdev->flags);
1747 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1748 printk(KERN_ALERT
1749 "md/raid:%s: Disk failure on %s, disabling device.\n"
1750 "md/raid:%s: Operation continuing on %d devices.\n",
1751 mdname(mddev),
1752 bdevname(rdev->bdev, b),
1753 mdname(mddev),
1754 conf->raid_disks - mddev->degraded);
16a53ecc 1755}
1da177e4
LT
1756
1757/*
1758 * Input: a 'big' sector number,
1759 * Output: index of the data and parity disk, and the sector # in them.
1760 */
112bf897 1761static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1762 int previous, int *dd_idx,
1763 struct stripe_head *sh)
1da177e4 1764{
6e3b96ed 1765 sector_t stripe, stripe2;
35f2a591 1766 sector_t chunk_number;
1da177e4 1767 unsigned int chunk_offset;
911d4ee8 1768 int pd_idx, qd_idx;
67cc2b81 1769 int ddf_layout = 0;
1da177e4 1770 sector_t new_sector;
e183eaed
N
1771 int algorithm = previous ? conf->prev_algo
1772 : conf->algorithm;
09c9e5fa
AN
1773 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1774 : conf->chunk_sectors;
112bf897
N
1775 int raid_disks = previous ? conf->previous_raid_disks
1776 : conf->raid_disks;
1777 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1778
1779 /* First compute the information on this sector */
1780
1781 /*
1782 * Compute the chunk number and the sector offset inside the chunk
1783 */
1784 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1785 chunk_number = r_sector;
1da177e4
LT
1786
1787 /*
1788 * Compute the stripe number
1789 */
35f2a591
N
1790 stripe = chunk_number;
1791 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1792 stripe2 = stripe;
1da177e4
LT
1793 /*
1794 * Select the parity disk based on the user selected algorithm.
1795 */
84789554 1796 pd_idx = qd_idx = -1;
16a53ecc
N
1797 switch(conf->level) {
1798 case 4:
911d4ee8 1799 pd_idx = data_disks;
16a53ecc
N
1800 break;
1801 case 5:
e183eaed 1802 switch (algorithm) {
1da177e4 1803 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1804 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1805 if (*dd_idx >= pd_idx)
1da177e4
LT
1806 (*dd_idx)++;
1807 break;
1808 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1809 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1810 if (*dd_idx >= pd_idx)
1da177e4
LT
1811 (*dd_idx)++;
1812 break;
1813 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1814 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1815 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1816 break;
1817 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1818 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1819 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1820 break;
99c0fb5f
N
1821 case ALGORITHM_PARITY_0:
1822 pd_idx = 0;
1823 (*dd_idx)++;
1824 break;
1825 case ALGORITHM_PARITY_N:
1826 pd_idx = data_disks;
1827 break;
1da177e4 1828 default:
99c0fb5f 1829 BUG();
16a53ecc
N
1830 }
1831 break;
1832 case 6:
1833
e183eaed 1834 switch (algorithm) {
16a53ecc 1835 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1837 qd_idx = pd_idx + 1;
1838 if (pd_idx == raid_disks-1) {
99c0fb5f 1839 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1840 qd_idx = 0;
1841 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1842 (*dd_idx) += 2; /* D D P Q D */
1843 break;
1844 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1845 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1846 qd_idx = pd_idx + 1;
1847 if (pd_idx == raid_disks-1) {
99c0fb5f 1848 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1849 qd_idx = 0;
1850 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1851 (*dd_idx) += 2; /* D D P Q D */
1852 break;
1853 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1854 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1855 qd_idx = (pd_idx + 1) % raid_disks;
1856 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1857 break;
1858 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1859 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1860 qd_idx = (pd_idx + 1) % raid_disks;
1861 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1862 break;
99c0fb5f
N
1863
1864 case ALGORITHM_PARITY_0:
1865 pd_idx = 0;
1866 qd_idx = 1;
1867 (*dd_idx) += 2;
1868 break;
1869 case ALGORITHM_PARITY_N:
1870 pd_idx = data_disks;
1871 qd_idx = data_disks + 1;
1872 break;
1873
1874 case ALGORITHM_ROTATING_ZERO_RESTART:
1875 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1876 * of blocks for computing Q is different.
1877 */
6e3b96ed 1878 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
1879 qd_idx = pd_idx + 1;
1880 if (pd_idx == raid_disks-1) {
1881 (*dd_idx)++; /* Q D D D P */
1882 qd_idx = 0;
1883 } else if (*dd_idx >= pd_idx)
1884 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1885 ddf_layout = 1;
99c0fb5f
N
1886 break;
1887
1888 case ALGORITHM_ROTATING_N_RESTART:
1889 /* Same a left_asymmetric, by first stripe is
1890 * D D D P Q rather than
1891 * Q D D D P
1892 */
6e3b96ed
N
1893 stripe2 += 1;
1894 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1895 qd_idx = pd_idx + 1;
1896 if (pd_idx == raid_disks-1) {
1897 (*dd_idx)++; /* Q D D D P */
1898 qd_idx = 0;
1899 } else if (*dd_idx >= pd_idx)
1900 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1901 ddf_layout = 1;
99c0fb5f
N
1902 break;
1903
1904 case ALGORITHM_ROTATING_N_CONTINUE:
1905 /* Same as left_symmetric but Q is before P */
6e3b96ed 1906 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1907 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1908 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1909 ddf_layout = 1;
99c0fb5f
N
1910 break;
1911
1912 case ALGORITHM_LEFT_ASYMMETRIC_6:
1913 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 1914 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1915 if (*dd_idx >= pd_idx)
1916 (*dd_idx)++;
1917 qd_idx = raid_disks - 1;
1918 break;
1919
1920 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 1921 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1922 if (*dd_idx >= pd_idx)
1923 (*dd_idx)++;
1924 qd_idx = raid_disks - 1;
1925 break;
1926
1927 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 1928 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1929 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1930 qd_idx = raid_disks - 1;
1931 break;
1932
1933 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 1934 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1935 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1936 qd_idx = raid_disks - 1;
1937 break;
1938
1939 case ALGORITHM_PARITY_0_6:
1940 pd_idx = 0;
1941 (*dd_idx)++;
1942 qd_idx = raid_disks - 1;
1943 break;
1944
16a53ecc 1945 default:
99c0fb5f 1946 BUG();
16a53ecc
N
1947 }
1948 break;
1da177e4
LT
1949 }
1950
911d4ee8
N
1951 if (sh) {
1952 sh->pd_idx = pd_idx;
1953 sh->qd_idx = qd_idx;
67cc2b81 1954 sh->ddf_layout = ddf_layout;
911d4ee8 1955 }
1da177e4
LT
1956 /*
1957 * Finally, compute the new sector number
1958 */
1959 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1960 return new_sector;
1961}
1962
1963
784052ec 1964static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1965{
1966 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1967 int raid_disks = sh->disks;
1968 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1969 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
1970 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1971 : conf->chunk_sectors;
e183eaed
N
1972 int algorithm = previous ? conf->prev_algo
1973 : conf->algorithm;
1da177e4
LT
1974 sector_t stripe;
1975 int chunk_offset;
35f2a591
N
1976 sector_t chunk_number;
1977 int dummy1, dd_idx = i;
1da177e4 1978 sector_t r_sector;
911d4ee8 1979 struct stripe_head sh2;
1da177e4 1980
16a53ecc 1981
1da177e4
LT
1982 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1983 stripe = new_sector;
1da177e4 1984
16a53ecc
N
1985 if (i == sh->pd_idx)
1986 return 0;
1987 switch(conf->level) {
1988 case 4: break;
1989 case 5:
e183eaed 1990 switch (algorithm) {
1da177e4
LT
1991 case ALGORITHM_LEFT_ASYMMETRIC:
1992 case ALGORITHM_RIGHT_ASYMMETRIC:
1993 if (i > sh->pd_idx)
1994 i--;
1995 break;
1996 case ALGORITHM_LEFT_SYMMETRIC:
1997 case ALGORITHM_RIGHT_SYMMETRIC:
1998 if (i < sh->pd_idx)
1999 i += raid_disks;
2000 i -= (sh->pd_idx + 1);
2001 break;
99c0fb5f
N
2002 case ALGORITHM_PARITY_0:
2003 i -= 1;
2004 break;
2005 case ALGORITHM_PARITY_N:
2006 break;
1da177e4 2007 default:
99c0fb5f 2008 BUG();
16a53ecc
N
2009 }
2010 break;
2011 case 6:
d0dabf7e 2012 if (i == sh->qd_idx)
16a53ecc 2013 return 0; /* It is the Q disk */
e183eaed 2014 switch (algorithm) {
16a53ecc
N
2015 case ALGORITHM_LEFT_ASYMMETRIC:
2016 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2017 case ALGORITHM_ROTATING_ZERO_RESTART:
2018 case ALGORITHM_ROTATING_N_RESTART:
2019 if (sh->pd_idx == raid_disks-1)
2020 i--; /* Q D D D P */
16a53ecc
N
2021 else if (i > sh->pd_idx)
2022 i -= 2; /* D D P Q D */
2023 break;
2024 case ALGORITHM_LEFT_SYMMETRIC:
2025 case ALGORITHM_RIGHT_SYMMETRIC:
2026 if (sh->pd_idx == raid_disks-1)
2027 i--; /* Q D D D P */
2028 else {
2029 /* D D P Q D */
2030 if (i < sh->pd_idx)
2031 i += raid_disks;
2032 i -= (sh->pd_idx + 2);
2033 }
2034 break;
99c0fb5f
N
2035 case ALGORITHM_PARITY_0:
2036 i -= 2;
2037 break;
2038 case ALGORITHM_PARITY_N:
2039 break;
2040 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2041 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2042 if (sh->pd_idx == 0)
2043 i--; /* P D D D Q */
e4424fee
N
2044 else {
2045 /* D D Q P D */
2046 if (i < sh->pd_idx)
2047 i += raid_disks;
2048 i -= (sh->pd_idx + 1);
2049 }
99c0fb5f
N
2050 break;
2051 case ALGORITHM_LEFT_ASYMMETRIC_6:
2052 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2053 if (i > sh->pd_idx)
2054 i--;
2055 break;
2056 case ALGORITHM_LEFT_SYMMETRIC_6:
2057 case ALGORITHM_RIGHT_SYMMETRIC_6:
2058 if (i < sh->pd_idx)
2059 i += data_disks + 1;
2060 i -= (sh->pd_idx + 1);
2061 break;
2062 case ALGORITHM_PARITY_0_6:
2063 i -= 1;
2064 break;
16a53ecc 2065 default:
99c0fb5f 2066 BUG();
16a53ecc
N
2067 }
2068 break;
1da177e4
LT
2069 }
2070
2071 chunk_number = stripe * data_disks + i;
35f2a591 2072 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2073
112bf897 2074 check = raid5_compute_sector(conf, r_sector,
784052ec 2075 previous, &dummy1, &sh2);
911d4ee8
N
2076 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2077 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2078 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2079 mdname(conf->mddev));
1da177e4
LT
2080 return 0;
2081 }
2082 return r_sector;
2083}
2084
2085
600aa109 2086static void
c0f7bddb 2087schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2088 int rcw, int expand)
e33129d8
DW
2089{
2090 int i, pd_idx = sh->pd_idx, disks = sh->disks;
c0f7bddb
YT
2091 raid5_conf_t *conf = sh->raid_conf;
2092 int level = conf->level;
e33129d8
DW
2093
2094 if (rcw) {
2095 /* if we are not expanding this is a proper write request, and
2096 * there will be bios with new data to be drained into the
2097 * stripe cache
2098 */
2099 if (!expand) {
600aa109
DW
2100 sh->reconstruct_state = reconstruct_state_drain_run;
2101 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2102 } else
2103 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2104
ac6b53b6 2105 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2106
2107 for (i = disks; i--; ) {
2108 struct r5dev *dev = &sh->dev[i];
2109
2110 if (dev->towrite) {
2111 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2112 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2113 if (!expand)
2114 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2115 s->locked++;
e33129d8
DW
2116 }
2117 }
c0f7bddb 2118 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2119 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2120 atomic_inc(&conf->pending_full_writes);
e33129d8 2121 } else {
c0f7bddb 2122 BUG_ON(level == 6);
e33129d8
DW
2123 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2124 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2125
d8ee0728 2126 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2127 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2128 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2129 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2130
2131 for (i = disks; i--; ) {
2132 struct r5dev *dev = &sh->dev[i];
2133 if (i == pd_idx)
2134 continue;
2135
e33129d8
DW
2136 if (dev->towrite &&
2137 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2138 test_bit(R5_Wantcompute, &dev->flags))) {
2139 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2140 set_bit(R5_LOCKED, &dev->flags);
2141 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2142 s->locked++;
e33129d8
DW
2143 }
2144 }
2145 }
2146
c0f7bddb 2147 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2148 * are in flight
2149 */
2150 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2151 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2152 s->locked++;
e33129d8 2153
c0f7bddb
YT
2154 if (level == 6) {
2155 int qd_idx = sh->qd_idx;
2156 struct r5dev *dev = &sh->dev[qd_idx];
2157
2158 set_bit(R5_LOCKED, &dev->flags);
2159 clear_bit(R5_UPTODATE, &dev->flags);
2160 s->locked++;
2161 }
2162
600aa109 2163 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2164 __func__, (unsigned long long)sh->sector,
600aa109 2165 s->locked, s->ops_request);
e33129d8 2166}
16a53ecc 2167
1da177e4
LT
2168/*
2169 * Each stripe/dev can have one or more bion attached.
16a53ecc 2170 * toread/towrite point to the first in a chain.
1da177e4
LT
2171 * The bi_next chain must be in order.
2172 */
2173static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2174{
2175 struct bio **bip;
2176 raid5_conf_t *conf = sh->raid_conf;
72626685 2177 int firstwrite=0;
1da177e4 2178
cbe47ec5 2179 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2180 (unsigned long long)bi->bi_sector,
2181 (unsigned long long)sh->sector);
2182
2183
1da177e4 2184 spin_lock_irq(&conf->device_lock);
72626685 2185 if (forwrite) {
1da177e4 2186 bip = &sh->dev[dd_idx].towrite;
72626685
N
2187 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2188 firstwrite = 1;
2189 } else
1da177e4
LT
2190 bip = &sh->dev[dd_idx].toread;
2191 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2192 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2193 goto overlap;
2194 bip = & (*bip)->bi_next;
2195 }
2196 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2197 goto overlap;
2198
78bafebd 2199 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2200 if (*bip)
2201 bi->bi_next = *bip;
2202 *bip = bi;
960e739d 2203 bi->bi_phys_segments++;
72626685 2204
1da177e4
LT
2205 if (forwrite) {
2206 /* check if page is covered */
2207 sector_t sector = sh->dev[dd_idx].sector;
2208 for (bi=sh->dev[dd_idx].towrite;
2209 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2210 bi && bi->bi_sector <= sector;
2211 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2212 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2213 sector = bi->bi_sector + (bi->bi_size>>9);
2214 }
2215 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2216 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2217 }
cbe47ec5 2218 spin_unlock_irq(&conf->device_lock);
cbe47ec5
N
2219
2220 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2221 (unsigned long long)(*bip)->bi_sector,
2222 (unsigned long long)sh->sector, dd_idx);
2223
2224 if (conf->mddev->bitmap && firstwrite) {
2225 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2226 STRIPE_SECTORS, 0);
2227 sh->bm_seq = conf->seq_flush+1;
2228 set_bit(STRIPE_BIT_DELAY, &sh->state);
2229 }
1da177e4
LT
2230 return 1;
2231
2232 overlap:
2233 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2234 spin_unlock_irq(&conf->device_lock);
1da177e4
LT
2235 return 0;
2236}
2237
29269553
N
2238static void end_reshape(raid5_conf_t *conf);
2239
911d4ee8
N
2240static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2241 struct stripe_head *sh)
ccfcc3c1 2242{
784052ec 2243 int sectors_per_chunk =
09c9e5fa 2244 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2245 int dd_idx;
2d2063ce 2246 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2247 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2248
112bf897
N
2249 raid5_compute_sector(conf,
2250 stripe * (disks - conf->max_degraded)
b875e531 2251 *sectors_per_chunk + chunk_offset,
112bf897 2252 previous,
911d4ee8 2253 &dd_idx, sh);
ccfcc3c1
N
2254}
2255
a4456856 2256static void
1fe797e6 2257handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2258 struct stripe_head_state *s, int disks,
2259 struct bio **return_bi)
2260{
2261 int i;
2262 for (i = disks; i--; ) {
2263 struct bio *bi;
2264 int bitmap_end = 0;
2265
2266 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2267 mdk_rdev_t *rdev;
2268 rcu_read_lock();
2269 rdev = rcu_dereference(conf->disks[i].rdev);
2270 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2271 atomic_inc(&rdev->nr_pending);
2272 else
2273 rdev = NULL;
a4456856 2274 rcu_read_unlock();
7f0da59b
N
2275 if (rdev) {
2276 if (!rdev_set_badblocks(
2277 rdev,
2278 sh->sector,
2279 STRIPE_SECTORS, 0))
2280 md_error(conf->mddev, rdev);
2281 rdev_dec_pending(rdev, conf->mddev);
2282 }
a4456856
DW
2283 }
2284 spin_lock_irq(&conf->device_lock);
2285 /* fail all writes first */
2286 bi = sh->dev[i].towrite;
2287 sh->dev[i].towrite = NULL;
2288 if (bi) {
2289 s->to_write--;
2290 bitmap_end = 1;
2291 }
2292
2293 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2294 wake_up(&conf->wait_for_overlap);
2295
2296 while (bi && bi->bi_sector <
2297 sh->dev[i].sector + STRIPE_SECTORS) {
2298 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2299 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2300 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2301 md_write_end(conf->mddev);
2302 bi->bi_next = *return_bi;
2303 *return_bi = bi;
2304 }
2305 bi = nextbi;
2306 }
2307 /* and fail all 'written' */
2308 bi = sh->dev[i].written;
2309 sh->dev[i].written = NULL;
2310 if (bi) bitmap_end = 1;
2311 while (bi && bi->bi_sector <
2312 sh->dev[i].sector + STRIPE_SECTORS) {
2313 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2314 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2315 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2316 md_write_end(conf->mddev);
2317 bi->bi_next = *return_bi;
2318 *return_bi = bi;
2319 }
2320 bi = bi2;
2321 }
2322
b5e98d65
DW
2323 /* fail any reads if this device is non-operational and
2324 * the data has not reached the cache yet.
2325 */
2326 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2327 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2328 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2329 bi = sh->dev[i].toread;
2330 sh->dev[i].toread = NULL;
2331 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2332 wake_up(&conf->wait_for_overlap);
2333 if (bi) s->to_read--;
2334 while (bi && bi->bi_sector <
2335 sh->dev[i].sector + STRIPE_SECTORS) {
2336 struct bio *nextbi =
2337 r5_next_bio(bi, sh->dev[i].sector);
2338 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2339 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2340 bi->bi_next = *return_bi;
2341 *return_bi = bi;
2342 }
2343 bi = nextbi;
2344 }
2345 }
2346 spin_unlock_irq(&conf->device_lock);
2347 if (bitmap_end)
2348 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2349 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2350 /* If we were in the middle of a write the parity block might
2351 * still be locked - so just clear all R5_LOCKED flags
2352 */
2353 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2354 }
2355
8b3e6cdc
DW
2356 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2357 if (atomic_dec_and_test(&conf->pending_full_writes))
2358 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2359}
2360
7f0da59b
N
2361static void
2362handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2363 struct stripe_head_state *s)
2364{
2365 int abort = 0;
2366 int i;
2367
2368 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2369 clear_bit(STRIPE_SYNCING, &sh->state);
2370 s->syncing = 0;
2371 /* There is nothing more to do for sync/check/repair.
2372 * For recover we need to record a bad block on all
2373 * non-sync devices, or abort the recovery
2374 */
2375 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2376 return;
2377 /* During recovery devices cannot be removed, so locking and
2378 * refcounting of rdevs is not needed
2379 */
2380 for (i = 0; i < conf->raid_disks; i++) {
2381 mdk_rdev_t *rdev = conf->disks[i].rdev;
2382 if (!rdev
2383 || test_bit(Faulty, &rdev->flags)
2384 || test_bit(In_sync, &rdev->flags))
2385 continue;
2386 if (!rdev_set_badblocks(rdev, sh->sector,
2387 STRIPE_SECTORS, 0))
2388 abort = 1;
2389 }
2390 if (abort) {
2391 conf->recovery_disabled = conf->mddev->recovery_disabled;
2392 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2393 }
2394}
2395
93b3dbce 2396/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2397 * to be read or computed to satisfy a request.
2398 *
2399 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2400 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2401 */
93b3dbce
N
2402static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2403 int disk_idx, int disks)
a4456856 2404{
5599becc 2405 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2406 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2407 &sh->dev[s->failed_num[1]] };
5599becc 2408
93b3dbce 2409 /* is the data in this block needed, and can we get it? */
5599becc
YT
2410 if (!test_bit(R5_LOCKED, &dev->flags) &&
2411 !test_bit(R5_UPTODATE, &dev->flags) &&
2412 (dev->toread ||
2413 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2414 s->syncing || s->expanding ||
5d35e09c
N
2415 (s->failed >= 1 && fdev[0]->toread) ||
2416 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2417 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2418 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2419 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2420 /* we would like to get this block, possibly by computing it,
2421 * otherwise read it if the backing disk is insync
2422 */
2423 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2424 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2425 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2426 (s->failed && (disk_idx == s->failed_num[0] ||
2427 disk_idx == s->failed_num[1]))) {
5599becc
YT
2428 /* have disk failed, and we're requested to fetch it;
2429 * do compute it
a4456856 2430 */
5599becc
YT
2431 pr_debug("Computing stripe %llu block %d\n",
2432 (unsigned long long)sh->sector, disk_idx);
2433 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2434 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2435 set_bit(R5_Wantcompute, &dev->flags);
2436 sh->ops.target = disk_idx;
2437 sh->ops.target2 = -1; /* no 2nd target */
2438 s->req_compute = 1;
93b3dbce
N
2439 /* Careful: from this point on 'uptodate' is in the eye
2440 * of raid_run_ops which services 'compute' operations
2441 * before writes. R5_Wantcompute flags a block that will
2442 * be R5_UPTODATE by the time it is needed for a
2443 * subsequent operation.
2444 */
5599becc
YT
2445 s->uptodate++;
2446 return 1;
2447 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2448 /* Computing 2-failure is *very* expensive; only
2449 * do it if failed >= 2
2450 */
2451 int other;
2452 for (other = disks; other--; ) {
2453 if (other == disk_idx)
2454 continue;
2455 if (!test_bit(R5_UPTODATE,
2456 &sh->dev[other].flags))
2457 break;
a4456856 2458 }
5599becc
YT
2459 BUG_ON(other < 0);
2460 pr_debug("Computing stripe %llu blocks %d,%d\n",
2461 (unsigned long long)sh->sector,
2462 disk_idx, other);
2463 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2464 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2465 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2466 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2467 sh->ops.target = disk_idx;
2468 sh->ops.target2 = other;
2469 s->uptodate += 2;
2470 s->req_compute = 1;
2471 return 1;
2472 } else if (test_bit(R5_Insync, &dev->flags)) {
2473 set_bit(R5_LOCKED, &dev->flags);
2474 set_bit(R5_Wantread, &dev->flags);
2475 s->locked++;
2476 pr_debug("Reading block %d (sync=%d)\n",
2477 disk_idx, s->syncing);
a4456856
DW
2478 }
2479 }
5599becc
YT
2480
2481 return 0;
2482}
2483
2484/**
93b3dbce 2485 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2486 */
93b3dbce
N
2487static void handle_stripe_fill(struct stripe_head *sh,
2488 struct stripe_head_state *s,
2489 int disks)
5599becc
YT
2490{
2491 int i;
2492
2493 /* look for blocks to read/compute, skip this if a compute
2494 * is already in flight, or if the stripe contents are in the
2495 * midst of changing due to a write
2496 */
2497 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2498 !sh->reconstruct_state)
2499 for (i = disks; i--; )
93b3dbce 2500 if (fetch_block(sh, s, i, disks))
5599becc 2501 break;
a4456856
DW
2502 set_bit(STRIPE_HANDLE, &sh->state);
2503}
2504
2505
1fe797e6 2506/* handle_stripe_clean_event
a4456856
DW
2507 * any written block on an uptodate or failed drive can be returned.
2508 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2509 * never LOCKED, so we don't need to test 'failed' directly.
2510 */
1fe797e6 2511static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2512 struct stripe_head *sh, int disks, struct bio **return_bi)
2513{
2514 int i;
2515 struct r5dev *dev;
2516
2517 for (i = disks; i--; )
2518 if (sh->dev[i].written) {
2519 dev = &sh->dev[i];
2520 if (!test_bit(R5_LOCKED, &dev->flags) &&
2521 test_bit(R5_UPTODATE, &dev->flags)) {
2522 /* We can return any write requests */
2523 struct bio *wbi, *wbi2;
2524 int bitmap_end = 0;
45b4233c 2525 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2526 spin_lock_irq(&conf->device_lock);
2527 wbi = dev->written;
2528 dev->written = NULL;
2529 while (wbi && wbi->bi_sector <
2530 dev->sector + STRIPE_SECTORS) {
2531 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2532 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2533 md_write_end(conf->mddev);
2534 wbi->bi_next = *return_bi;
2535 *return_bi = wbi;
2536 }
2537 wbi = wbi2;
2538 }
2539 if (dev->towrite == NULL)
2540 bitmap_end = 1;
2541 spin_unlock_irq(&conf->device_lock);
2542 if (bitmap_end)
2543 bitmap_endwrite(conf->mddev->bitmap,
2544 sh->sector,
2545 STRIPE_SECTORS,
2546 !test_bit(STRIPE_DEGRADED, &sh->state),
2547 0);
2548 }
2549 }
8b3e6cdc
DW
2550
2551 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2552 if (atomic_dec_and_test(&conf->pending_full_writes))
2553 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2554}
2555
c8ac1803
N
2556static void handle_stripe_dirtying(raid5_conf_t *conf,
2557 struct stripe_head *sh,
2558 struct stripe_head_state *s,
2559 int disks)
a4456856
DW
2560{
2561 int rmw = 0, rcw = 0, i;
c8ac1803
N
2562 if (conf->max_degraded == 2) {
2563 /* RAID6 requires 'rcw' in current implementation
2564 * Calculate the real rcw later - for now fake it
2565 * look like rcw is cheaper
2566 */
2567 rcw = 1; rmw = 2;
2568 } else for (i = disks; i--; ) {
a4456856
DW
2569 /* would I have to read this buffer for read_modify_write */
2570 struct r5dev *dev = &sh->dev[i];
2571 if ((dev->towrite || i == sh->pd_idx) &&
2572 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2573 !(test_bit(R5_UPTODATE, &dev->flags) ||
2574 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2575 if (test_bit(R5_Insync, &dev->flags))
2576 rmw++;
2577 else
2578 rmw += 2*disks; /* cannot read it */
2579 }
2580 /* Would I have to read this buffer for reconstruct_write */
2581 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2582 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2583 !(test_bit(R5_UPTODATE, &dev->flags) ||
2584 test_bit(R5_Wantcompute, &dev->flags))) {
2585 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2586 else
2587 rcw += 2*disks;
2588 }
2589 }
45b4233c 2590 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2591 (unsigned long long)sh->sector, rmw, rcw);
2592 set_bit(STRIPE_HANDLE, &sh->state);
2593 if (rmw < rcw && rmw > 0)
2594 /* prefer read-modify-write, but need to get some data */
2595 for (i = disks; i--; ) {
2596 struct r5dev *dev = &sh->dev[i];
2597 if ((dev->towrite || i == sh->pd_idx) &&
2598 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2599 !(test_bit(R5_UPTODATE, &dev->flags) ||
2600 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2601 test_bit(R5_Insync, &dev->flags)) {
2602 if (
2603 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2604 pr_debug("Read_old block "
a4456856
DW
2605 "%d for r-m-w\n", i);
2606 set_bit(R5_LOCKED, &dev->flags);
2607 set_bit(R5_Wantread, &dev->flags);
2608 s->locked++;
2609 } else {
2610 set_bit(STRIPE_DELAYED, &sh->state);
2611 set_bit(STRIPE_HANDLE, &sh->state);
2612 }
2613 }
2614 }
c8ac1803 2615 if (rcw <= rmw && rcw > 0) {
a4456856 2616 /* want reconstruct write, but need to get some data */
c8ac1803 2617 rcw = 0;
a4456856
DW
2618 for (i = disks; i--; ) {
2619 struct r5dev *dev = &sh->dev[i];
2620 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 2621 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 2622 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 2623 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
2624 test_bit(R5_Wantcompute, &dev->flags))) {
2625 rcw++;
2626 if (!test_bit(R5_Insync, &dev->flags))
2627 continue; /* it's a failed drive */
a4456856
DW
2628 if (
2629 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2630 pr_debug("Read_old block "
a4456856
DW
2631 "%d for Reconstruct\n", i);
2632 set_bit(R5_LOCKED, &dev->flags);
2633 set_bit(R5_Wantread, &dev->flags);
2634 s->locked++;
2635 } else {
2636 set_bit(STRIPE_DELAYED, &sh->state);
2637 set_bit(STRIPE_HANDLE, &sh->state);
2638 }
2639 }
2640 }
c8ac1803 2641 }
a4456856
DW
2642 /* now if nothing is locked, and if we have enough data,
2643 * we can start a write request
2644 */
f38e1219
DW
2645 /* since handle_stripe can be called at any time we need to handle the
2646 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2647 * subsequent call wants to start a write request. raid_run_ops only
2648 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2649 * simultaneously. If this is not the case then new writes need to be
2650 * held off until the compute completes.
2651 */
976ea8d4
DW
2652 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2653 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2654 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2655 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2656}
2657
a4456856
DW
2658static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2659 struct stripe_head_state *s, int disks)
2660{
ecc65c9b 2661 struct r5dev *dev = NULL;
bd2ab670 2662
a4456856 2663 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2664
ecc65c9b
DW
2665 switch (sh->check_state) {
2666 case check_state_idle:
2667 /* start a new check operation if there are no failures */
bd2ab670 2668 if (s->failed == 0) {
bd2ab670 2669 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2670 sh->check_state = check_state_run;
2671 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2672 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2673 s->uptodate--;
ecc65c9b 2674 break;
bd2ab670 2675 }
f2b3b44d 2676 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
2677 /* fall through */
2678 case check_state_compute_result:
2679 sh->check_state = check_state_idle;
2680 if (!dev)
2681 dev = &sh->dev[sh->pd_idx];
2682
2683 /* check that a write has not made the stripe insync */
2684 if (test_bit(STRIPE_INSYNC, &sh->state))
2685 break;
c8894419 2686
a4456856 2687 /* either failed parity check, or recovery is happening */
a4456856
DW
2688 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2689 BUG_ON(s->uptodate != disks);
2690
2691 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2692 s->locked++;
a4456856 2693 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2694
a4456856 2695 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2696 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2697 break;
2698 case check_state_run:
2699 break; /* we will be called again upon completion */
2700 case check_state_check_result:
2701 sh->check_state = check_state_idle;
2702
2703 /* if a failure occurred during the check operation, leave
2704 * STRIPE_INSYNC not set and let the stripe be handled again
2705 */
2706 if (s->failed)
2707 break;
2708
2709 /* handle a successful check operation, if parity is correct
2710 * we are done. Otherwise update the mismatch count and repair
2711 * parity if !MD_RECOVERY_CHECK
2712 */
ad283ea4 2713 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2714 /* parity is correct (on disc,
2715 * not in buffer any more)
2716 */
2717 set_bit(STRIPE_INSYNC, &sh->state);
2718 else {
2719 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2720 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2721 /* don't try to repair!! */
2722 set_bit(STRIPE_INSYNC, &sh->state);
2723 else {
2724 sh->check_state = check_state_compute_run;
976ea8d4 2725 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2726 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2727 set_bit(R5_Wantcompute,
2728 &sh->dev[sh->pd_idx].flags);
2729 sh->ops.target = sh->pd_idx;
ac6b53b6 2730 sh->ops.target2 = -1;
ecc65c9b
DW
2731 s->uptodate++;
2732 }
2733 }
2734 break;
2735 case check_state_compute_run:
2736 break;
2737 default:
2738 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2739 __func__, sh->check_state,
2740 (unsigned long long) sh->sector);
2741 BUG();
a4456856
DW
2742 }
2743}
2744
2745
2746static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
36d1c647 2747 struct stripe_head_state *s,
f2b3b44d 2748 int disks)
a4456856 2749{
a4456856 2750 int pd_idx = sh->pd_idx;
34e04e87 2751 int qd_idx = sh->qd_idx;
d82dfee0 2752 struct r5dev *dev;
a4456856
DW
2753
2754 set_bit(STRIPE_HANDLE, &sh->state);
2755
2756 BUG_ON(s->failed > 2);
d82dfee0 2757
a4456856
DW
2758 /* Want to check and possibly repair P and Q.
2759 * However there could be one 'failed' device, in which
2760 * case we can only check one of them, possibly using the
2761 * other to generate missing data
2762 */
2763
d82dfee0
DW
2764 switch (sh->check_state) {
2765 case check_state_idle:
2766 /* start a new check operation if there are < 2 failures */
f2b3b44d 2767 if (s->failed == s->q_failed) {
d82dfee0 2768 /* The only possible failed device holds Q, so it
a4456856
DW
2769 * makes sense to check P (If anything else were failed,
2770 * we would have used P to recreate it).
2771 */
d82dfee0 2772 sh->check_state = check_state_run;
a4456856 2773 }
f2b3b44d 2774 if (!s->q_failed && s->failed < 2) {
d82dfee0 2775 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2776 * anything, so it makes sense to check it
2777 */
d82dfee0
DW
2778 if (sh->check_state == check_state_run)
2779 sh->check_state = check_state_run_pq;
2780 else
2781 sh->check_state = check_state_run_q;
a4456856 2782 }
a4456856 2783
d82dfee0
DW
2784 /* discard potentially stale zero_sum_result */
2785 sh->ops.zero_sum_result = 0;
a4456856 2786
d82dfee0
DW
2787 if (sh->check_state == check_state_run) {
2788 /* async_xor_zero_sum destroys the contents of P */
2789 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2790 s->uptodate--;
a4456856 2791 }
d82dfee0
DW
2792 if (sh->check_state >= check_state_run &&
2793 sh->check_state <= check_state_run_pq) {
2794 /* async_syndrome_zero_sum preserves P and Q, so
2795 * no need to mark them !uptodate here
2796 */
2797 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2798 break;
a4456856
DW
2799 }
2800
d82dfee0
DW
2801 /* we have 2-disk failure */
2802 BUG_ON(s->failed != 2);
2803 /* fall through */
2804 case check_state_compute_result:
2805 sh->check_state = check_state_idle;
a4456856 2806
d82dfee0
DW
2807 /* check that a write has not made the stripe insync */
2808 if (test_bit(STRIPE_INSYNC, &sh->state))
2809 break;
a4456856
DW
2810
2811 /* now write out any block on a failed drive,
d82dfee0 2812 * or P or Q if they were recomputed
a4456856 2813 */
d82dfee0 2814 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 2815 if (s->failed == 2) {
f2b3b44d 2816 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
2817 s->locked++;
2818 set_bit(R5_LOCKED, &dev->flags);
2819 set_bit(R5_Wantwrite, &dev->flags);
2820 }
2821 if (s->failed >= 1) {
f2b3b44d 2822 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
2823 s->locked++;
2824 set_bit(R5_LOCKED, &dev->flags);
2825 set_bit(R5_Wantwrite, &dev->flags);
2826 }
d82dfee0 2827 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2828 dev = &sh->dev[pd_idx];
2829 s->locked++;
2830 set_bit(R5_LOCKED, &dev->flags);
2831 set_bit(R5_Wantwrite, &dev->flags);
2832 }
d82dfee0 2833 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2834 dev = &sh->dev[qd_idx];
2835 s->locked++;
2836 set_bit(R5_LOCKED, &dev->flags);
2837 set_bit(R5_Wantwrite, &dev->flags);
2838 }
2839 clear_bit(STRIPE_DEGRADED, &sh->state);
2840
2841 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2842 break;
2843 case check_state_run:
2844 case check_state_run_q:
2845 case check_state_run_pq:
2846 break; /* we will be called again upon completion */
2847 case check_state_check_result:
2848 sh->check_state = check_state_idle;
2849
2850 /* handle a successful check operation, if parity is correct
2851 * we are done. Otherwise update the mismatch count and repair
2852 * parity if !MD_RECOVERY_CHECK
2853 */
2854 if (sh->ops.zero_sum_result == 0) {
2855 /* both parities are correct */
2856 if (!s->failed)
2857 set_bit(STRIPE_INSYNC, &sh->state);
2858 else {
2859 /* in contrast to the raid5 case we can validate
2860 * parity, but still have a failure to write
2861 * back
2862 */
2863 sh->check_state = check_state_compute_result;
2864 /* Returning at this point means that we may go
2865 * off and bring p and/or q uptodate again so
2866 * we make sure to check zero_sum_result again
2867 * to verify if p or q need writeback
2868 */
2869 }
2870 } else {
2871 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2872 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2873 /* don't try to repair!! */
2874 set_bit(STRIPE_INSYNC, &sh->state);
2875 else {
2876 int *target = &sh->ops.target;
2877
2878 sh->ops.target = -1;
2879 sh->ops.target2 = -1;
2880 sh->check_state = check_state_compute_run;
2881 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2882 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2883 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2884 set_bit(R5_Wantcompute,
2885 &sh->dev[pd_idx].flags);
2886 *target = pd_idx;
2887 target = &sh->ops.target2;
2888 s->uptodate++;
2889 }
2890 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2891 set_bit(R5_Wantcompute,
2892 &sh->dev[qd_idx].flags);
2893 *target = qd_idx;
2894 s->uptodate++;
2895 }
2896 }
2897 }
2898 break;
2899 case check_state_compute_run:
2900 break;
2901 default:
2902 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2903 __func__, sh->check_state,
2904 (unsigned long long) sh->sector);
2905 BUG();
a4456856
DW
2906 }
2907}
2908
86c374ba 2909static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
a4456856
DW
2910{
2911 int i;
2912
2913 /* We have read all the blocks in this stripe and now we need to
2914 * copy some of them into a target stripe for expand.
2915 */
f0a50d37 2916 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2917 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2918 for (i = 0; i < sh->disks; i++)
34e04e87 2919 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2920 int dd_idx, j;
a4456856 2921 struct stripe_head *sh2;
a08abd8c 2922 struct async_submit_ctl submit;
a4456856 2923
784052ec 2924 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2925 sector_t s = raid5_compute_sector(conf, bn, 0,
2926 &dd_idx, NULL);
a8c906ca 2927 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
2928 if (sh2 == NULL)
2929 /* so far only the early blocks of this stripe
2930 * have been requested. When later blocks
2931 * get requested, we will try again
2932 */
2933 continue;
2934 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2935 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2936 /* must have already done this block */
2937 release_stripe(sh2);
2938 continue;
2939 }
f0a50d37
DW
2940
2941 /* place all the copies on one channel */
a08abd8c 2942 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2943 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2944 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2945 &submit);
f0a50d37 2946
a4456856
DW
2947 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2948 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2949 for (j = 0; j < conf->raid_disks; j++)
2950 if (j != sh2->pd_idx &&
86c374ba 2951 j != sh2->qd_idx &&
a4456856
DW
2952 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2953 break;
2954 if (j == conf->raid_disks) {
2955 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2956 set_bit(STRIPE_HANDLE, &sh2->state);
2957 }
2958 release_stripe(sh2);
f0a50d37 2959
a4456856 2960 }
a2e08551
N
2961 /* done submitting copies, wait for them to complete */
2962 if (tx) {
2963 async_tx_ack(tx);
2964 dma_wait_for_async_tx(tx);
2965 }
a4456856 2966}
1da177e4 2967
6bfe0b49 2968
1da177e4
LT
2969/*
2970 * handle_stripe - do things to a stripe.
2971 *
2972 * We lock the stripe and then examine the state of various bits
2973 * to see what needs to be done.
2974 * Possible results:
2975 * return some read request which now have data
2976 * return some write requests which are safely on disc
2977 * schedule a read on some buffers
2978 * schedule a write of some buffers
2979 * return confirmation of parity correctness
2980 *
1da177e4
LT
2981 * buffers are taken off read_list or write_list, and bh_cache buffers
2982 * get BH_Lock set before the stripe lock is released.
2983 *
2984 */
a4456856 2985
acfe726b 2986static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 2987{
bff61975 2988 raid5_conf_t *conf = sh->raid_conf;
f416885e 2989 int disks = sh->disks;
474af965
N
2990 struct r5dev *dev;
2991 int i;
1da177e4 2992
acfe726b
N
2993 memset(s, 0, sizeof(*s));
2994
2995 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2996 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2997 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2998 s->failed_num[0] = -1;
2999 s->failed_num[1] = -1;
1da177e4 3000
acfe726b 3001 /* Now to look around and see what can be done */
1da177e4 3002 rcu_read_lock();
c4c1663b 3003 spin_lock_irq(&conf->device_lock);
16a53ecc
N
3004 for (i=disks; i--; ) {
3005 mdk_rdev_t *rdev;
31c176ec
N
3006 sector_t first_bad;
3007 int bad_sectors;
3008 int is_bad = 0;
acfe726b 3009
16a53ecc 3010 dev = &sh->dev[i];
1da177e4 3011
45b4233c 3012 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc 3013 i, dev->flags, dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3014 /* maybe we can reply to a read
3015 *
3016 * new wantfill requests are only permitted while
3017 * ops_complete_biofill is guaranteed to be inactive
3018 */
3019 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3020 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3021 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3022
16a53ecc 3023 /* now count some things */
cc94015a
N
3024 if (test_bit(R5_LOCKED, &dev->flags))
3025 s->locked++;
3026 if (test_bit(R5_UPTODATE, &dev->flags))
3027 s->uptodate++;
2d6e4ecc 3028 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3029 s->compute++;
3030 BUG_ON(s->compute > 2);
2d6e4ecc 3031 }
1da177e4 3032
acfe726b 3033 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3034 s->to_fill++;
acfe726b 3035 else if (dev->toread)
cc94015a 3036 s->to_read++;
16a53ecc 3037 if (dev->towrite) {
cc94015a 3038 s->to_write++;
16a53ecc 3039 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3040 s->non_overwrite++;
16a53ecc 3041 }
a4456856 3042 if (dev->written)
cc94015a 3043 s->written++;
16a53ecc 3044 rdev = rcu_dereference(conf->disks[i].rdev);
31c176ec
N
3045 if (rdev) {
3046 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3047 &first_bad, &bad_sectors);
3048 if (s->blocked_rdev == NULL
3049 && (test_bit(Blocked, &rdev->flags)
3050 || is_bad < 0)) {
3051 if (is_bad < 0)
3052 set_bit(BlockedBadBlocks,
3053 &rdev->flags);
3054 s->blocked_rdev = rdev;
3055 atomic_inc(&rdev->nr_pending);
3056 }
6bfe0b49 3057 }
415e72d0
N
3058 clear_bit(R5_Insync, &dev->flags);
3059 if (!rdev)
3060 /* Not in-sync */;
31c176ec
N
3061 else if (is_bad) {
3062 /* also not in-sync */
3063 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3064 /* treat as in-sync, but with a read error
3065 * which we can now try to correct
3066 */
3067 set_bit(R5_Insync, &dev->flags);
3068 set_bit(R5_ReadError, &dev->flags);
3069 }
3070 } else if (test_bit(In_sync, &rdev->flags))
415e72d0
N
3071 set_bit(R5_Insync, &dev->flags);
3072 else {
3073 /* in sync if before recovery_offset */
3074 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3075 set_bit(R5_Insync, &dev->flags);
3076 }
bc2607f3
N
3077 if (test_bit(R5_WriteError, &dev->flags)) {
3078 clear_bit(R5_Insync, &dev->flags);
3079 if (!test_bit(Faulty, &rdev->flags)) {
3080 s->handle_bad_blocks = 1;
3081 atomic_inc(&rdev->nr_pending);
3082 } else
3083 clear_bit(R5_WriteError, &dev->flags);
3084 }
b84db560
N
3085 if (test_bit(R5_MadeGood, &dev->flags)) {
3086 if (!test_bit(Faulty, &rdev->flags)) {
3087 s->handle_bad_blocks = 1;
3088 atomic_inc(&rdev->nr_pending);
3089 } else
3090 clear_bit(R5_MadeGood, &dev->flags);
3091 }
415e72d0 3092 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3093 /* The ReadError flag will just be confusing now */
3094 clear_bit(R5_ReadError, &dev->flags);
3095 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3096 }
415e72d0
N
3097 if (test_bit(R5_ReadError, &dev->flags))
3098 clear_bit(R5_Insync, &dev->flags);
3099 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3100 if (s->failed < 2)
3101 s->failed_num[s->failed] = i;
3102 s->failed++;
415e72d0 3103 }
1da177e4 3104 }
c4c1663b 3105 spin_unlock_irq(&conf->device_lock);
1da177e4 3106 rcu_read_unlock();
cc94015a
N
3107}
3108
3109static void handle_stripe(struct stripe_head *sh)
3110{
3111 struct stripe_head_state s;
474af965 3112 raid5_conf_t *conf = sh->raid_conf;
3687c061 3113 int i;
84789554
N
3114 int prexor;
3115 int disks = sh->disks;
474af965 3116 struct r5dev *pdev, *qdev;
cc94015a
N
3117
3118 clear_bit(STRIPE_HANDLE, &sh->state);
3119 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3120 /* already being handled, ensure it gets handled
3121 * again when current action finishes */
3122 set_bit(STRIPE_HANDLE, &sh->state);
3123 return;
3124 }
3125
3126 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3127 set_bit(STRIPE_SYNCING, &sh->state);
3128 clear_bit(STRIPE_INSYNC, &sh->state);
3129 }
3130 clear_bit(STRIPE_DELAYED, &sh->state);
3131
3132 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3133 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3134 (unsigned long long)sh->sector, sh->state,
3135 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3136 sh->check_state, sh->reconstruct_state);
3687c061 3137
acfe726b 3138 analyse_stripe(sh, &s);
c5a31000 3139
bc2607f3
N
3140 if (s.handle_bad_blocks) {
3141 set_bit(STRIPE_HANDLE, &sh->state);
3142 goto finish;
3143 }
3144
474af965
N
3145 if (unlikely(s.blocked_rdev)) {
3146 if (s.syncing || s.expanding || s.expanded ||
3147 s.to_write || s.written) {
3148 set_bit(STRIPE_HANDLE, &sh->state);
3149 goto finish;
3150 }
3151 /* There is nothing for the blocked_rdev to block */
3152 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3153 s.blocked_rdev = NULL;
3154 }
3155
3156 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3157 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3158 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3159 }
3160
3161 pr_debug("locked=%d uptodate=%d to_read=%d"
3162 " to_write=%d failed=%d failed_num=%d,%d\n",
3163 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3164 s.failed_num[0], s.failed_num[1]);
3165 /* check if the array has lost more than max_degraded devices and,
3166 * if so, some requests might need to be failed.
3167 */
3168 if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3169 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
7f0da59b
N
3170 if (s.failed > conf->max_degraded && s.syncing)
3171 handle_failed_sync(conf, sh, &s);
474af965
N
3172
3173 /*
3174 * might be able to return some write requests if the parity blocks
3175 * are safe, or on a failed drive
3176 */
3177 pdev = &sh->dev[sh->pd_idx];
3178 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3179 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3180 qdev = &sh->dev[sh->qd_idx];
3181 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3182 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3183 || conf->level < 6;
3184
3185 if (s.written &&
3186 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3187 && !test_bit(R5_LOCKED, &pdev->flags)
3188 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3189 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3190 && !test_bit(R5_LOCKED, &qdev->flags)
3191 && test_bit(R5_UPTODATE, &qdev->flags)))))
3192 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3193
3194 /* Now we might consider reading some blocks, either to check/generate
3195 * parity, or to satisfy requests
3196 * or to load a block that is being partially written.
3197 */
3198 if (s.to_read || s.non_overwrite
3199 || (conf->level == 6 && s.to_write && s.failed)
3200 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3201 handle_stripe_fill(sh, &s, disks);
3202
84789554
N
3203 /* Now we check to see if any write operations have recently
3204 * completed
3205 */
3206 prexor = 0;
3207 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3208 prexor = 1;
3209 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3210 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3211 sh->reconstruct_state = reconstruct_state_idle;
3212
3213 /* All the 'written' buffers and the parity block are ready to
3214 * be written back to disk
3215 */
3216 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3217 BUG_ON(sh->qd_idx >= 0 &&
3218 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3219 for (i = disks; i--; ) {
3220 struct r5dev *dev = &sh->dev[i];
3221 if (test_bit(R5_LOCKED, &dev->flags) &&
3222 (i == sh->pd_idx || i == sh->qd_idx ||
3223 dev->written)) {
3224 pr_debug("Writing block %d\n", i);
3225 set_bit(R5_Wantwrite, &dev->flags);
3226 if (prexor)
3227 continue;
3228 if (!test_bit(R5_Insync, &dev->flags) ||
3229 ((i == sh->pd_idx || i == sh->qd_idx) &&
3230 s.failed == 0))
3231 set_bit(STRIPE_INSYNC, &sh->state);
3232 }
3233 }
3234 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3235 s.dec_preread_active = 1;
3236 }
3237
3238 /* Now to consider new write requests and what else, if anything
3239 * should be read. We do not handle new writes when:
3240 * 1/ A 'write' operation (copy+xor) is already in flight.
3241 * 2/ A 'check' operation is in flight, as it may clobber the parity
3242 * block.
3243 */
3244 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3245 handle_stripe_dirtying(conf, sh, &s, disks);
3246
3247 /* maybe we need to check and possibly fix the parity for this stripe
3248 * Any reads will already have been scheduled, so we just see if enough
3249 * data is available. The parity check is held off while parity
3250 * dependent operations are in flight.
3251 */
3252 if (sh->check_state ||
3253 (s.syncing && s.locked == 0 &&
3254 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3255 !test_bit(STRIPE_INSYNC, &sh->state))) {
3256 if (conf->level == 6)
3257 handle_parity_checks6(conf, sh, &s, disks);
3258 else
3259 handle_parity_checks5(conf, sh, &s, disks);
3260 }
c5a31000
N
3261
3262 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3263 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3264 clear_bit(STRIPE_SYNCING, &sh->state);
3265 }
3266
3267 /* If the failed drives are just a ReadError, then we might need
3268 * to progress the repair/check process
3269 */
3270 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3271 for (i = 0; i < s.failed; i++) {
3272 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3273 if (test_bit(R5_ReadError, &dev->flags)
3274 && !test_bit(R5_LOCKED, &dev->flags)
3275 && test_bit(R5_UPTODATE, &dev->flags)
3276 ) {
3277 if (!test_bit(R5_ReWrite, &dev->flags)) {
3278 set_bit(R5_Wantwrite, &dev->flags);
3279 set_bit(R5_ReWrite, &dev->flags);
3280 set_bit(R5_LOCKED, &dev->flags);
3281 s.locked++;
3282 } else {
3283 /* let's read it back */
3284 set_bit(R5_Wantread, &dev->flags);
3285 set_bit(R5_LOCKED, &dev->flags);
3286 s.locked++;
3287 }
3288 }
3289 }
3290
3291
3687c061
N
3292 /* Finish reconstruct operations initiated by the expansion process */
3293 if (sh->reconstruct_state == reconstruct_state_result) {
3294 struct stripe_head *sh_src
3295 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3296 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3297 /* sh cannot be written until sh_src has been read.
3298 * so arrange for sh to be delayed a little
3299 */
3300 set_bit(STRIPE_DELAYED, &sh->state);
3301 set_bit(STRIPE_HANDLE, &sh->state);
3302 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3303 &sh_src->state))
3304 atomic_inc(&conf->preread_active_stripes);
3305 release_stripe(sh_src);
3306 goto finish;
3307 }
3308 if (sh_src)
3309 release_stripe(sh_src);
3310
3311 sh->reconstruct_state = reconstruct_state_idle;
3312 clear_bit(STRIPE_EXPANDING, &sh->state);
3313 for (i = conf->raid_disks; i--; ) {
3314 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3315 set_bit(R5_LOCKED, &sh->dev[i].flags);
3316 s.locked++;
3317 }
3318 }
f416885e 3319
3687c061
N
3320 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3321 !sh->reconstruct_state) {
3322 /* Need to write out all blocks after computing parity */
3323 sh->disks = conf->raid_disks;
3324 stripe_set_idx(sh->sector, conf, 0, sh);
3325 schedule_reconstruction(sh, &s, 1, 1);
3326 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3327 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3328 atomic_dec(&conf->reshape_stripes);
3329 wake_up(&conf->wait_for_overlap);
3330 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3331 }
3332
3333 if (s.expanding && s.locked == 0 &&
3334 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3335 handle_stripe_expansion(conf, sh);
16a53ecc 3336
3687c061 3337finish:
6bfe0b49 3338 /* wait for this device to become unblocked */
c5709ef6
N
3339 if (unlikely(s.blocked_rdev))
3340 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
6bfe0b49 3341
bc2607f3
N
3342 if (s.handle_bad_blocks)
3343 for (i = disks; i--; ) {
3344 mdk_rdev_t *rdev;
3345 struct r5dev *dev = &sh->dev[i];
3346 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3347 /* We own a safe reference to the rdev */
3348 rdev = conf->disks[i].rdev;
3349 if (!rdev_set_badblocks(rdev, sh->sector,
3350 STRIPE_SECTORS, 0))
3351 md_error(conf->mddev, rdev);
3352 rdev_dec_pending(rdev, conf->mddev);
3353 }
b84db560
N
3354 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3355 rdev = conf->disks[i].rdev;
3356 rdev_clear_badblocks(rdev, sh->sector,
3357 STRIPE_SECTORS);
3358 rdev_dec_pending(rdev, conf->mddev);
3359 }
bc2607f3
N
3360 }
3361
6c0069c0
YT
3362 if (s.ops_request)
3363 raid_run_ops(sh, s.ops_request);
3364
f0e43bcd 3365 ops_run_io(sh, &s);
16a53ecc 3366
c5709ef6 3367 if (s.dec_preread_active) {
729a1866 3368 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3369 * is waiting on a flush, it won't continue until the writes
729a1866
N
3370 * have actually been submitted.
3371 */
3372 atomic_dec(&conf->preread_active_stripes);
3373 if (atomic_read(&conf->preread_active_stripes) <
3374 IO_THRESHOLD)
3375 md_wakeup_thread(conf->mddev->thread);
3376 }
3377
c5709ef6 3378 return_io(s.return_bi);
16a53ecc 3379
c4c1663b 3380 clear_bit(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3381}
3382
16a53ecc
N
3383static void raid5_activate_delayed(raid5_conf_t *conf)
3384{
3385 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3386 while (!list_empty(&conf->delayed_list)) {
3387 struct list_head *l = conf->delayed_list.next;
3388 struct stripe_head *sh;
3389 sh = list_entry(l, struct stripe_head, lru);
3390 list_del_init(l);
3391 clear_bit(STRIPE_DELAYED, &sh->state);
3392 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3393 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3394 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3395 }
482c0834 3396 }
16a53ecc
N
3397}
3398
3399static void activate_bit_delay(raid5_conf_t *conf)
3400{
3401 /* device_lock is held */
3402 struct list_head head;
3403 list_add(&head, &conf->bitmap_list);
3404 list_del_init(&conf->bitmap_list);
3405 while (!list_empty(&head)) {
3406 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3407 list_del_init(&sh->lru);
3408 atomic_inc(&sh->count);
3409 __release_stripe(conf, sh);
3410 }
3411}
3412
11d8a6e3 3413int md_raid5_congested(mddev_t *mddev, int bits)
f022b2fd 3414{
070ec55d 3415 raid5_conf_t *conf = mddev->private;
f022b2fd
N
3416
3417 /* No difference between reads and writes. Just check
3418 * how busy the stripe_cache is
3419 */
3fa841d7 3420
f022b2fd
N
3421 if (conf->inactive_blocked)
3422 return 1;
3423 if (conf->quiesce)
3424 return 1;
3425 if (list_empty_careful(&conf->inactive_list))
3426 return 1;
3427
3428 return 0;
3429}
11d8a6e3
N
3430EXPORT_SYMBOL_GPL(md_raid5_congested);
3431
3432static int raid5_congested(void *data, int bits)
3433{
3434 mddev_t *mddev = data;
3435
3436 return mddev_congested(mddev, bits) ||
3437 md_raid5_congested(mddev, bits);
3438}
f022b2fd 3439
23032a0e
RBJ
3440/* We want read requests to align with chunks where possible,
3441 * but write requests don't need to.
3442 */
cc371e66
AK
3443static int raid5_mergeable_bvec(struct request_queue *q,
3444 struct bvec_merge_data *bvm,
3445 struct bio_vec *biovec)
23032a0e
RBJ
3446{
3447 mddev_t *mddev = q->queuedata;
cc371e66 3448 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3449 int max;
9d8f0363 3450 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3451 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3452
cc371e66 3453 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3454 return biovec->bv_len; /* always allow writes to be mergeable */
3455
664e7c41
AN
3456 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3457 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3459 if (max < 0) max = 0;
3460 if (max <= biovec->bv_len && bio_sectors == 0)
3461 return biovec->bv_len;
3462 else
3463 return max;
3464}
3465
f679623f
RBJ
3466
3467static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3468{
3469 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3470 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3471 unsigned int bio_sectors = bio->bi_size >> 9;
3472
664e7c41
AN
3473 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3474 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3475 return chunk_sectors >=
3476 ((sector & (chunk_sectors - 1)) + bio_sectors);
3477}
3478
46031f9a
RBJ
3479/*
3480 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3481 * later sampled by raid5d.
3482 */
3483static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3484{
3485 unsigned long flags;
3486
3487 spin_lock_irqsave(&conf->device_lock, flags);
3488
3489 bi->bi_next = conf->retry_read_aligned_list;
3490 conf->retry_read_aligned_list = bi;
3491
3492 spin_unlock_irqrestore(&conf->device_lock, flags);
3493 md_wakeup_thread(conf->mddev->thread);
3494}
3495
3496
3497static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3498{
3499 struct bio *bi;
3500
3501 bi = conf->retry_read_aligned;
3502 if (bi) {
3503 conf->retry_read_aligned = NULL;
3504 return bi;
3505 }
3506 bi = conf->retry_read_aligned_list;
3507 if(bi) {
387bb173 3508 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3509 bi->bi_next = NULL;
960e739d
JA
3510 /*
3511 * this sets the active strip count to 1 and the processed
3512 * strip count to zero (upper 8 bits)
3513 */
46031f9a 3514 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3515 }
3516
3517 return bi;
3518}
3519
3520
f679623f
RBJ
3521/*
3522 * The "raid5_align_endio" should check if the read succeeded and if it
3523 * did, call bio_endio on the original bio (having bio_put the new bio
3524 * first).
3525 * If the read failed..
3526 */
6712ecf8 3527static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3528{
3529 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3530 mddev_t *mddev;
3531 raid5_conf_t *conf;
3532 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3533 mdk_rdev_t *rdev;
3534
f679623f 3535 bio_put(bi);
46031f9a 3536
46031f9a
RBJ
3537 rdev = (void*)raid_bi->bi_next;
3538 raid_bi->bi_next = NULL;
2b7f2228
N
3539 mddev = rdev->mddev;
3540 conf = mddev->private;
46031f9a
RBJ
3541
3542 rdev_dec_pending(rdev, conf->mddev);
3543
3544 if (!error && uptodate) {
6712ecf8 3545 bio_endio(raid_bi, 0);
46031f9a
RBJ
3546 if (atomic_dec_and_test(&conf->active_aligned_reads))
3547 wake_up(&conf->wait_for_stripe);
6712ecf8 3548 return;
46031f9a
RBJ
3549 }
3550
3551
45b4233c 3552 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3553
3554 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3555}
3556
387bb173
NB
3557static int bio_fits_rdev(struct bio *bi)
3558{
165125e1 3559 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3560
ae03bf63 3561 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3562 return 0;
3563 blk_recount_segments(q, bi);
8a78362c 3564 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3565 return 0;
3566
3567 if (q->merge_bvec_fn)
3568 /* it's too hard to apply the merge_bvec_fn at this stage,
3569 * just just give up
3570 */
3571 return 0;
3572
3573 return 1;
3574}
3575
3576
21a52c6d 3577static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
f679623f 3578{
070ec55d 3579 raid5_conf_t *conf = mddev->private;
8553fe7e 3580 int dd_idx;
f679623f
RBJ
3581 struct bio* align_bi;
3582 mdk_rdev_t *rdev;
3583
3584 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3585 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3586 return 0;
3587 }
3588 /*
a167f663 3589 * use bio_clone_mddev to make a copy of the bio
f679623f 3590 */
a167f663 3591 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3592 if (!align_bi)
3593 return 0;
3594 /*
3595 * set bi_end_io to a new function, and set bi_private to the
3596 * original bio.
3597 */
3598 align_bi->bi_end_io = raid5_align_endio;
3599 align_bi->bi_private = raid_bio;
3600 /*
3601 * compute position
3602 */
112bf897
N
3603 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3604 0,
911d4ee8 3605 &dd_idx, NULL);
f679623f
RBJ
3606
3607 rcu_read_lock();
3608 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3609 if (rdev && test_bit(In_sync, &rdev->flags)) {
31c176ec
N
3610 sector_t first_bad;
3611 int bad_sectors;
3612
f679623f
RBJ
3613 atomic_inc(&rdev->nr_pending);
3614 rcu_read_unlock();
46031f9a
RBJ
3615 raid_bio->bi_next = (void*)rdev;
3616 align_bi->bi_bdev = rdev->bdev;
3617 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3618 align_bi->bi_sector += rdev->data_offset;
3619
31c176ec
N
3620 if (!bio_fits_rdev(align_bi) ||
3621 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3622 &first_bad, &bad_sectors)) {
3623 /* too big in some way, or has a known bad block */
387bb173
NB
3624 bio_put(align_bi);
3625 rdev_dec_pending(rdev, mddev);
3626 return 0;
3627 }
3628
46031f9a
RBJ
3629 spin_lock_irq(&conf->device_lock);
3630 wait_event_lock_irq(conf->wait_for_stripe,
3631 conf->quiesce == 0,
3632 conf->device_lock, /* nothing */);
3633 atomic_inc(&conf->active_aligned_reads);
3634 spin_unlock_irq(&conf->device_lock);
3635
f679623f
RBJ
3636 generic_make_request(align_bi);
3637 return 1;
3638 } else {
3639 rcu_read_unlock();
46031f9a 3640 bio_put(align_bi);
f679623f
RBJ
3641 return 0;
3642 }
3643}
3644
8b3e6cdc
DW
3645/* __get_priority_stripe - get the next stripe to process
3646 *
3647 * Full stripe writes are allowed to pass preread active stripes up until
3648 * the bypass_threshold is exceeded. In general the bypass_count
3649 * increments when the handle_list is handled before the hold_list; however, it
3650 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3651 * stripe with in flight i/o. The bypass_count will be reset when the
3652 * head of the hold_list has changed, i.e. the head was promoted to the
3653 * handle_list.
3654 */
3655static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3656{
3657 struct stripe_head *sh;
3658
3659 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3660 __func__,
3661 list_empty(&conf->handle_list) ? "empty" : "busy",
3662 list_empty(&conf->hold_list) ? "empty" : "busy",
3663 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3664
3665 if (!list_empty(&conf->handle_list)) {
3666 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3667
3668 if (list_empty(&conf->hold_list))
3669 conf->bypass_count = 0;
3670 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3671 if (conf->hold_list.next == conf->last_hold)
3672 conf->bypass_count++;
3673 else {
3674 conf->last_hold = conf->hold_list.next;
3675 conf->bypass_count -= conf->bypass_threshold;
3676 if (conf->bypass_count < 0)
3677 conf->bypass_count = 0;
3678 }
3679 }
3680 } else if (!list_empty(&conf->hold_list) &&
3681 ((conf->bypass_threshold &&
3682 conf->bypass_count > conf->bypass_threshold) ||
3683 atomic_read(&conf->pending_full_writes) == 0)) {
3684 sh = list_entry(conf->hold_list.next,
3685 typeof(*sh), lru);
3686 conf->bypass_count -= conf->bypass_threshold;
3687 if (conf->bypass_count < 0)
3688 conf->bypass_count = 0;
3689 } else
3690 return NULL;
3691
3692 list_del_init(&sh->lru);
3693 atomic_inc(&sh->count);
3694 BUG_ON(atomic_read(&sh->count) != 1);
3695 return sh;
3696}
f679623f 3697
5a7bbad2 3698static void make_request(mddev_t *mddev, struct bio * bi)
1da177e4 3699{
070ec55d 3700 raid5_conf_t *conf = mddev->private;
911d4ee8 3701 int dd_idx;
1da177e4
LT
3702 sector_t new_sector;
3703 sector_t logical_sector, last_sector;
3704 struct stripe_head *sh;
a362357b 3705 const int rw = bio_data_dir(bi);
49077326 3706 int remaining;
7c13edc8 3707 int plugged;
1da177e4 3708
e9c7469b
TH
3709 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3710 md_flush_request(mddev, bi);
5a7bbad2 3711 return;
e5dcdd80
N
3712 }
3713
3d310eb7 3714 md_write_start(mddev, bi);
06d91a5f 3715
802ba064 3716 if (rw == READ &&
52488615 3717 mddev->reshape_position == MaxSector &&
21a52c6d 3718 chunk_aligned_read(mddev,bi))
5a7bbad2 3719 return;
52488615 3720
1da177e4
LT
3721 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3722 last_sector = bi->bi_sector + (bi->bi_size>>9);
3723 bi->bi_next = NULL;
3724 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3725
7c13edc8 3726 plugged = mddev_check_plugged(mddev);
1da177e4
LT
3727 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3728 DEFINE_WAIT(w);
16a53ecc 3729 int disks, data_disks;
b5663ba4 3730 int previous;
b578d55f 3731
7ecaa1e6 3732 retry:
b5663ba4 3733 previous = 0;
b0f9ec04 3734 disks = conf->raid_disks;
b578d55f 3735 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3736 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3737 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3738 * 64bit on a 32bit platform, and so it might be
3739 * possible to see a half-updated value
aeb878b0 3740 * Of course reshape_progress could change after
df8e7f76
N
3741 * the lock is dropped, so once we get a reference
3742 * to the stripe that we think it is, we will have
3743 * to check again.
3744 */
7ecaa1e6 3745 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3746 if (mddev->delta_disks < 0
3747 ? logical_sector < conf->reshape_progress
3748 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3749 disks = conf->previous_raid_disks;
b5663ba4
N
3750 previous = 1;
3751 } else {
fef9c61f
N
3752 if (mddev->delta_disks < 0
3753 ? logical_sector < conf->reshape_safe
3754 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3755 spin_unlock_irq(&conf->device_lock);
3756 schedule();
3757 goto retry;
3758 }
3759 }
7ecaa1e6
N
3760 spin_unlock_irq(&conf->device_lock);
3761 }
16a53ecc
N
3762 data_disks = disks - conf->max_degraded;
3763
112bf897
N
3764 new_sector = raid5_compute_sector(conf, logical_sector,
3765 previous,
911d4ee8 3766 &dd_idx, NULL);
0c55e022 3767 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
3768 (unsigned long long)new_sector,
3769 (unsigned long long)logical_sector);
3770
b5663ba4 3771 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 3772 (bi->bi_rw&RWA_MASK), 0);
1da177e4 3773 if (sh) {
b0f9ec04 3774 if (unlikely(previous)) {
7ecaa1e6 3775 /* expansion might have moved on while waiting for a
df8e7f76
N
3776 * stripe, so we must do the range check again.
3777 * Expansion could still move past after this
3778 * test, but as we are holding a reference to
3779 * 'sh', we know that if that happens,
3780 * STRIPE_EXPANDING will get set and the expansion
3781 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3782 */
3783 int must_retry = 0;
3784 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
3785 if (mddev->delta_disks < 0
3786 ? logical_sector >= conf->reshape_progress
3787 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
3788 /* mismatch, need to try again */
3789 must_retry = 1;
3790 spin_unlock_irq(&conf->device_lock);
3791 if (must_retry) {
3792 release_stripe(sh);
7a3ab908 3793 schedule();
7ecaa1e6
N
3794 goto retry;
3795 }
3796 }
e62e58a5 3797
ffd96e35 3798 if (rw == WRITE &&
a5c308d4 3799 logical_sector >= mddev->suspend_lo &&
e464eafd
N
3800 logical_sector < mddev->suspend_hi) {
3801 release_stripe(sh);
e62e58a5
N
3802 /* As the suspend_* range is controlled by
3803 * userspace, we want an interruptible
3804 * wait.
3805 */
3806 flush_signals(current);
3807 prepare_to_wait(&conf->wait_for_overlap,
3808 &w, TASK_INTERRUPTIBLE);
3809 if (logical_sector >= mddev->suspend_lo &&
3810 logical_sector < mddev->suspend_hi)
3811 schedule();
e464eafd
N
3812 goto retry;
3813 }
7ecaa1e6
N
3814
3815 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 3816 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
3817 /* Stripe is busy expanding or
3818 * add failed due to overlap. Flush everything
1da177e4
LT
3819 * and wait a while
3820 */
482c0834 3821 md_wakeup_thread(mddev->thread);
1da177e4
LT
3822 release_stripe(sh);
3823 schedule();
3824 goto retry;
3825 }
3826 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3827 set_bit(STRIPE_HANDLE, &sh->state);
3828 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 3829 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
3830 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3831 atomic_inc(&conf->preread_active_stripes);
1da177e4 3832 release_stripe(sh);
1da177e4
LT
3833 } else {
3834 /* cannot get stripe for read-ahead, just give-up */
3835 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3836 finish_wait(&conf->wait_for_overlap, &w);
3837 break;
3838 }
3839
3840 }
7c13edc8
N
3841 if (!plugged)
3842 md_wakeup_thread(mddev->thread);
3843
1da177e4 3844 spin_lock_irq(&conf->device_lock);
960e739d 3845 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3846 spin_unlock_irq(&conf->device_lock);
3847 if (remaining == 0) {
1da177e4 3848
16a53ecc 3849 if ( rw == WRITE )
1da177e4 3850 md_write_end(mddev);
6712ecf8 3851
0e13fe23 3852 bio_endio(bi, 0);
1da177e4 3853 }
1da177e4
LT
3854}
3855
b522adcd
DW
3856static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3857
52c03291 3858static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3859{
52c03291
N
3860 /* reshaping is quite different to recovery/resync so it is
3861 * handled quite separately ... here.
3862 *
3863 * On each call to sync_request, we gather one chunk worth of
3864 * destination stripes and flag them as expanding.
3865 * Then we find all the source stripes and request reads.
3866 * As the reads complete, handle_stripe will copy the data
3867 * into the destination stripe and release that stripe.
3868 */
7b92813c 3869 raid5_conf_t *conf = mddev->private;
1da177e4 3870 struct stripe_head *sh;
ccfcc3c1 3871 sector_t first_sector, last_sector;
f416885e
N
3872 int raid_disks = conf->previous_raid_disks;
3873 int data_disks = raid_disks - conf->max_degraded;
3874 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3875 int i;
3876 int dd_idx;
c8f517c4 3877 sector_t writepos, readpos, safepos;
ec32a2bd 3878 sector_t stripe_addr;
7a661381 3879 int reshape_sectors;
ab69ae12 3880 struct list_head stripes;
52c03291 3881
fef9c61f
N
3882 if (sector_nr == 0) {
3883 /* If restarting in the middle, skip the initial sectors */
3884 if (mddev->delta_disks < 0 &&
3885 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3886 sector_nr = raid5_size(mddev, 0, 0)
3887 - conf->reshape_progress;
a639755c 3888 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
3889 conf->reshape_progress > 0)
3890 sector_nr = conf->reshape_progress;
f416885e 3891 sector_div(sector_nr, new_data_disks);
fef9c61f 3892 if (sector_nr) {
8dee7211
N
3893 mddev->curr_resync_completed = sector_nr;
3894 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
3895 *skipped = 1;
3896 return sector_nr;
3897 }
52c03291
N
3898 }
3899
7a661381
N
3900 /* We need to process a full chunk at a time.
3901 * If old and new chunk sizes differ, we need to process the
3902 * largest of these
3903 */
664e7c41
AN
3904 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3905 reshape_sectors = mddev->new_chunk_sectors;
7a661381 3906 else
9d8f0363 3907 reshape_sectors = mddev->chunk_sectors;
7a661381 3908
52c03291
N
3909 /* we update the metadata when there is more than 3Meg
3910 * in the block range (that is rather arbitrary, should
3911 * probably be time based) or when the data about to be
3912 * copied would over-write the source of the data at
3913 * the front of the range.
fef9c61f
N
3914 * i.e. one new_stripe along from reshape_progress new_maps
3915 * to after where reshape_safe old_maps to
52c03291 3916 */
fef9c61f 3917 writepos = conf->reshape_progress;
f416885e 3918 sector_div(writepos, new_data_disks);
c8f517c4
N
3919 readpos = conf->reshape_progress;
3920 sector_div(readpos, data_disks);
fef9c61f 3921 safepos = conf->reshape_safe;
f416885e 3922 sector_div(safepos, data_disks);
fef9c61f 3923 if (mddev->delta_disks < 0) {
ed37d83e 3924 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 3925 readpos += reshape_sectors;
7a661381 3926 safepos += reshape_sectors;
fef9c61f 3927 } else {
7a661381 3928 writepos += reshape_sectors;
ed37d83e
N
3929 readpos -= min_t(sector_t, reshape_sectors, readpos);
3930 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 3931 }
52c03291 3932
c8f517c4
N
3933 /* 'writepos' is the most advanced device address we might write.
3934 * 'readpos' is the least advanced device address we might read.
3935 * 'safepos' is the least address recorded in the metadata as having
3936 * been reshaped.
3937 * If 'readpos' is behind 'writepos', then there is no way that we can
3938 * ensure safety in the face of a crash - that must be done by userspace
3939 * making a backup of the data. So in that case there is no particular
3940 * rush to update metadata.
3941 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3942 * update the metadata to advance 'safepos' to match 'readpos' so that
3943 * we can be safe in the event of a crash.
3944 * So we insist on updating metadata if safepos is behind writepos and
3945 * readpos is beyond writepos.
3946 * In any case, update the metadata every 10 seconds.
3947 * Maybe that number should be configurable, but I'm not sure it is
3948 * worth it.... maybe it could be a multiple of safemode_delay???
3949 */
fef9c61f 3950 if ((mddev->delta_disks < 0
c8f517c4
N
3951 ? (safepos > writepos && readpos < writepos)
3952 : (safepos < writepos && readpos > writepos)) ||
3953 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
3954 /* Cannot proceed until we've updated the superblock... */
3955 wait_event(conf->wait_for_overlap,
3956 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 3957 mddev->reshape_position = conf->reshape_progress;
75d3da43 3958 mddev->curr_resync_completed = sector_nr;
c8f517c4 3959 conf->reshape_checkpoint = jiffies;
850b2b42 3960 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3961 md_wakeup_thread(mddev->thread);
850b2b42 3962 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3963 kthread_should_stop());
3964 spin_lock_irq(&conf->device_lock);
fef9c61f 3965 conf->reshape_safe = mddev->reshape_position;
52c03291
N
3966 spin_unlock_irq(&conf->device_lock);
3967 wake_up(&conf->wait_for_overlap);
acb180b0 3968 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
3969 }
3970
ec32a2bd
N
3971 if (mddev->delta_disks < 0) {
3972 BUG_ON(conf->reshape_progress == 0);
3973 stripe_addr = writepos;
3974 BUG_ON((mddev->dev_sectors &
7a661381
N
3975 ~((sector_t)reshape_sectors - 1))
3976 - reshape_sectors - stripe_addr
ec32a2bd
N
3977 != sector_nr);
3978 } else {
7a661381 3979 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
3980 stripe_addr = sector_nr;
3981 }
ab69ae12 3982 INIT_LIST_HEAD(&stripes);
7a661381 3983 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 3984 int j;
a9f326eb 3985 int skipped_disk = 0;
a8c906ca 3986 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
3987 set_bit(STRIPE_EXPANDING, &sh->state);
3988 atomic_inc(&conf->reshape_stripes);
3989 /* If any of this stripe is beyond the end of the old
3990 * array, then we need to zero those blocks
3991 */
3992 for (j=sh->disks; j--;) {
3993 sector_t s;
3994 if (j == sh->pd_idx)
3995 continue;
f416885e 3996 if (conf->level == 6 &&
d0dabf7e 3997 j == sh->qd_idx)
f416885e 3998 continue;
784052ec 3999 s = compute_blocknr(sh, j, 0);
b522adcd 4000 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4001 skipped_disk = 1;
52c03291
N
4002 continue;
4003 }
4004 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4005 set_bit(R5_Expanded, &sh->dev[j].flags);
4006 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4007 }
a9f326eb 4008 if (!skipped_disk) {
52c03291
N
4009 set_bit(STRIPE_EXPAND_READY, &sh->state);
4010 set_bit(STRIPE_HANDLE, &sh->state);
4011 }
ab69ae12 4012 list_add(&sh->lru, &stripes);
52c03291
N
4013 }
4014 spin_lock_irq(&conf->device_lock);
fef9c61f 4015 if (mddev->delta_disks < 0)
7a661381 4016 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4017 else
7a661381 4018 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4019 spin_unlock_irq(&conf->device_lock);
4020 /* Ok, those stripe are ready. We can start scheduling
4021 * reads on the source stripes.
4022 * The source stripes are determined by mapping the first and last
4023 * block on the destination stripes.
4024 */
52c03291 4025 first_sector =
ec32a2bd 4026 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4027 1, &dd_idx, NULL);
52c03291 4028 last_sector =
0e6e0271 4029 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4030 * new_data_disks - 1),
911d4ee8 4031 1, &dd_idx, NULL);
58c0fed4
AN
4032 if (last_sector >= mddev->dev_sectors)
4033 last_sector = mddev->dev_sectors - 1;
52c03291 4034 while (first_sector <= last_sector) {
a8c906ca 4035 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4036 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4037 set_bit(STRIPE_HANDLE, &sh->state);
4038 release_stripe(sh);
4039 first_sector += STRIPE_SECTORS;
4040 }
ab69ae12
N
4041 /* Now that the sources are clearly marked, we can release
4042 * the destination stripes
4043 */
4044 while (!list_empty(&stripes)) {
4045 sh = list_entry(stripes.next, struct stripe_head, lru);
4046 list_del_init(&sh->lru);
4047 release_stripe(sh);
4048 }
c6207277
N
4049 /* If this takes us to the resync_max point where we have to pause,
4050 * then we need to write out the superblock.
4051 */
7a661381 4052 sector_nr += reshape_sectors;
c03f6a19
N
4053 if ((sector_nr - mddev->curr_resync_completed) * 2
4054 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4055 /* Cannot proceed until we've updated the superblock... */
4056 wait_event(conf->wait_for_overlap,
4057 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4058 mddev->reshape_position = conf->reshape_progress;
75d3da43 4059 mddev->curr_resync_completed = sector_nr;
c8f517c4 4060 conf->reshape_checkpoint = jiffies;
c6207277
N
4061 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4062 md_wakeup_thread(mddev->thread);
4063 wait_event(mddev->sb_wait,
4064 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4065 || kthread_should_stop());
4066 spin_lock_irq(&conf->device_lock);
fef9c61f 4067 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4068 spin_unlock_irq(&conf->device_lock);
4069 wake_up(&conf->wait_for_overlap);
acb180b0 4070 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4071 }
7a661381 4072 return reshape_sectors;
52c03291
N
4073}
4074
4075/* FIXME go_faster isn't used */
4076static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4077{
7b92813c 4078 raid5_conf_t *conf = mddev->private;
52c03291 4079 struct stripe_head *sh;
58c0fed4 4080 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4081 sector_t sync_blocks;
16a53ecc
N
4082 int still_degraded = 0;
4083 int i;
1da177e4 4084
72626685 4085 if (sector_nr >= max_sector) {
1da177e4 4086 /* just being told to finish up .. nothing much to do */
cea9c228 4087
29269553
N
4088 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4089 end_reshape(conf);
4090 return 0;
4091 }
72626685
N
4092
4093 if (mddev->curr_resync < max_sector) /* aborted */
4094 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4095 &sync_blocks, 1);
16a53ecc 4096 else /* completed sync */
72626685
N
4097 conf->fullsync = 0;
4098 bitmap_close_sync(mddev->bitmap);
4099
1da177e4
LT
4100 return 0;
4101 }
ccfcc3c1 4102
64bd660b
N
4103 /* Allow raid5_quiesce to complete */
4104 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4105
52c03291
N
4106 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4107 return reshape_request(mddev, sector_nr, skipped);
f6705578 4108
c6207277
N
4109 /* No need to check resync_max as we never do more than one
4110 * stripe, and as resync_max will always be on a chunk boundary,
4111 * if the check in md_do_sync didn't fire, there is no chance
4112 * of overstepping resync_max here
4113 */
4114
16a53ecc 4115 /* if there is too many failed drives and we are trying
1da177e4
LT
4116 * to resync, then assert that we are finished, because there is
4117 * nothing we can do.
4118 */
3285edf1 4119 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4120 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4121 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4122 *skipped = 1;
1da177e4
LT
4123 return rv;
4124 }
72626685 4125 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4126 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4127 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4128 /* we can skip this block, and probably more */
4129 sync_blocks /= STRIPE_SECTORS;
4130 *skipped = 1;
4131 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4132 }
1da177e4 4133
b47490c9
N
4134
4135 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4136
a8c906ca 4137 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4138 if (sh == NULL) {
a8c906ca 4139 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4140 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4141 * is trying to get access
1da177e4 4142 */
66c006a5 4143 schedule_timeout_uninterruptible(1);
1da177e4 4144 }
16a53ecc
N
4145 /* Need to check if array will still be degraded after recovery/resync
4146 * We don't need to check the 'failed' flag as when that gets set,
4147 * recovery aborts.
4148 */
f001a70c 4149 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4150 if (conf->disks[i].rdev == NULL)
4151 still_degraded = 1;
4152
4153 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4154
83206d66 4155 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4156
1442577b 4157 handle_stripe(sh);
1da177e4
LT
4158 release_stripe(sh);
4159
4160 return STRIPE_SECTORS;
4161}
4162
46031f9a
RBJ
4163static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4164{
4165 /* We may not be able to submit a whole bio at once as there
4166 * may not be enough stripe_heads available.
4167 * We cannot pre-allocate enough stripe_heads as we may need
4168 * more than exist in the cache (if we allow ever large chunks).
4169 * So we do one stripe head at a time and record in
4170 * ->bi_hw_segments how many have been done.
4171 *
4172 * We *know* that this entire raid_bio is in one chunk, so
4173 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4174 */
4175 struct stripe_head *sh;
911d4ee8 4176 int dd_idx;
46031f9a
RBJ
4177 sector_t sector, logical_sector, last_sector;
4178 int scnt = 0;
4179 int remaining;
4180 int handled = 0;
4181
4182 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4183 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4184 0, &dd_idx, NULL);
46031f9a
RBJ
4185 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4186
4187 for (; logical_sector < last_sector;
387bb173
NB
4188 logical_sector += STRIPE_SECTORS,
4189 sector += STRIPE_SECTORS,
4190 scnt++) {
46031f9a 4191
960e739d 4192 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4193 /* already done this stripe */
4194 continue;
4195
a8c906ca 4196 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4197
4198 if (!sh) {
4199 /* failed to get a stripe - must wait */
960e739d 4200 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4201 conf->retry_read_aligned = raid_bio;
4202 return handled;
4203 }
4204
4205 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4206 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4207 release_stripe(sh);
960e739d 4208 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4209 conf->retry_read_aligned = raid_bio;
4210 return handled;
4211 }
4212
36d1c647 4213 handle_stripe(sh);
46031f9a
RBJ
4214 release_stripe(sh);
4215 handled++;
4216 }
4217 spin_lock_irq(&conf->device_lock);
960e739d 4218 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4219 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4220 if (remaining == 0)
4221 bio_endio(raid_bio, 0);
46031f9a
RBJ
4222 if (atomic_dec_and_test(&conf->active_aligned_reads))
4223 wake_up(&conf->wait_for_stripe);
4224 return handled;
4225}
4226
46031f9a 4227
1da177e4
LT
4228/*
4229 * This is our raid5 kernel thread.
4230 *
4231 * We scan the hash table for stripes which can be handled now.
4232 * During the scan, completed stripes are saved for us by the interrupt
4233 * handler, so that they will not have to wait for our next wakeup.
4234 */
6ed3003c 4235static void raid5d(mddev_t *mddev)
1da177e4
LT
4236{
4237 struct stripe_head *sh;
070ec55d 4238 raid5_conf_t *conf = mddev->private;
1da177e4 4239 int handled;
e1dfa0a2 4240 struct blk_plug plug;
1da177e4 4241
45b4233c 4242 pr_debug("+++ raid5d active\n");
1da177e4
LT
4243
4244 md_check_recovery(mddev);
1da177e4 4245
e1dfa0a2 4246 blk_start_plug(&plug);
1da177e4
LT
4247 handled = 0;
4248 spin_lock_irq(&conf->device_lock);
4249 while (1) {
46031f9a 4250 struct bio *bio;
1da177e4 4251
7c13edc8
N
4252 if (atomic_read(&mddev->plug_cnt) == 0 &&
4253 !list_empty(&conf->bitmap_list)) {
4254 /* Now is a good time to flush some bitmap updates */
4255 conf->seq_flush++;
700e432d 4256 spin_unlock_irq(&conf->device_lock);
72626685 4257 bitmap_unplug(mddev->bitmap);
700e432d 4258 spin_lock_irq(&conf->device_lock);
7c13edc8 4259 conf->seq_write = conf->seq_flush;
72626685
N
4260 activate_bit_delay(conf);
4261 }
7c13edc8
N
4262 if (atomic_read(&mddev->plug_cnt) == 0)
4263 raid5_activate_delayed(conf);
72626685 4264
46031f9a
RBJ
4265 while ((bio = remove_bio_from_retry(conf))) {
4266 int ok;
4267 spin_unlock_irq(&conf->device_lock);
4268 ok = retry_aligned_read(conf, bio);
4269 spin_lock_irq(&conf->device_lock);
4270 if (!ok)
4271 break;
4272 handled++;
4273 }
4274
8b3e6cdc
DW
4275 sh = __get_priority_stripe(conf);
4276
c9f21aaf 4277 if (!sh)
1da177e4 4278 break;
1da177e4
LT
4279 spin_unlock_irq(&conf->device_lock);
4280
4281 handled++;
417b8d4a
DW
4282 handle_stripe(sh);
4283 release_stripe(sh);
4284 cond_resched();
1da177e4 4285
de393cde
N
4286 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4287 md_check_recovery(mddev);
4288
1da177e4
LT
4289 spin_lock_irq(&conf->device_lock);
4290 }
45b4233c 4291 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4292
4293 spin_unlock_irq(&conf->device_lock);
4294
c9f21aaf 4295 async_tx_issue_pending_all();
e1dfa0a2 4296 blk_finish_plug(&plug);
1da177e4 4297
45b4233c 4298 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4299}
4300
3f294f4f 4301static ssize_t
007583c9 4302raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4303{
070ec55d 4304 raid5_conf_t *conf = mddev->private;
96de1e66
N
4305 if (conf)
4306 return sprintf(page, "%d\n", conf->max_nr_stripes);
4307 else
4308 return 0;
3f294f4f
N
4309}
4310
c41d4ac4
N
4311int
4312raid5_set_cache_size(mddev_t *mddev, int size)
3f294f4f 4313{
070ec55d 4314 raid5_conf_t *conf = mddev->private;
b5470dc5
DW
4315 int err;
4316
c41d4ac4 4317 if (size <= 16 || size > 32768)
3f294f4f 4318 return -EINVAL;
c41d4ac4 4319 while (size < conf->max_nr_stripes) {
3f294f4f
N
4320 if (drop_one_stripe(conf))
4321 conf->max_nr_stripes--;
4322 else
4323 break;
4324 }
b5470dc5
DW
4325 err = md_allow_write(mddev);
4326 if (err)
4327 return err;
c41d4ac4 4328 while (size > conf->max_nr_stripes) {
3f294f4f
N
4329 if (grow_one_stripe(conf))
4330 conf->max_nr_stripes++;
4331 else break;
4332 }
c41d4ac4
N
4333 return 0;
4334}
4335EXPORT_SYMBOL(raid5_set_cache_size);
4336
4337static ssize_t
4338raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4339{
4340 raid5_conf_t *conf = mddev->private;
4341 unsigned long new;
4342 int err;
4343
4344 if (len >= PAGE_SIZE)
4345 return -EINVAL;
4346 if (!conf)
4347 return -ENODEV;
4348
4349 if (strict_strtoul(page, 10, &new))
4350 return -EINVAL;
4351 err = raid5_set_cache_size(mddev, new);
4352 if (err)
4353 return err;
3f294f4f
N
4354 return len;
4355}
007583c9 4356
96de1e66
N
4357static struct md_sysfs_entry
4358raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4359 raid5_show_stripe_cache_size,
4360 raid5_store_stripe_cache_size);
3f294f4f 4361
8b3e6cdc
DW
4362static ssize_t
4363raid5_show_preread_threshold(mddev_t *mddev, char *page)
4364{
070ec55d 4365 raid5_conf_t *conf = mddev->private;
8b3e6cdc
DW
4366 if (conf)
4367 return sprintf(page, "%d\n", conf->bypass_threshold);
4368 else
4369 return 0;
4370}
4371
4372static ssize_t
4373raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4374{
070ec55d 4375 raid5_conf_t *conf = mddev->private;
4ef197d8 4376 unsigned long new;
8b3e6cdc
DW
4377 if (len >= PAGE_SIZE)
4378 return -EINVAL;
4379 if (!conf)
4380 return -ENODEV;
4381
4ef197d8 4382 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4383 return -EINVAL;
4ef197d8 4384 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4385 return -EINVAL;
4386 conf->bypass_threshold = new;
4387 return len;
4388}
4389
4390static struct md_sysfs_entry
4391raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4392 S_IRUGO | S_IWUSR,
4393 raid5_show_preread_threshold,
4394 raid5_store_preread_threshold);
4395
3f294f4f 4396static ssize_t
96de1e66 4397stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4398{
070ec55d 4399 raid5_conf_t *conf = mddev->private;
96de1e66
N
4400 if (conf)
4401 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4402 else
4403 return 0;
3f294f4f
N
4404}
4405
96de1e66
N
4406static struct md_sysfs_entry
4407raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4408
007583c9 4409static struct attribute *raid5_attrs[] = {
3f294f4f
N
4410 &raid5_stripecache_size.attr,
4411 &raid5_stripecache_active.attr,
8b3e6cdc 4412 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4413 NULL,
4414};
007583c9
N
4415static struct attribute_group raid5_attrs_group = {
4416 .name = NULL,
4417 .attrs = raid5_attrs,
3f294f4f
N
4418};
4419
80c3a6ce
DW
4420static sector_t
4421raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4422{
070ec55d 4423 raid5_conf_t *conf = mddev->private;
80c3a6ce
DW
4424
4425 if (!sectors)
4426 sectors = mddev->dev_sectors;
5e5e3e78 4427 if (!raid_disks)
7ec05478 4428 /* size is defined by the smallest of previous and new size */
5e5e3e78 4429 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4430
9d8f0363 4431 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4432 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4433 return sectors * (raid_disks - conf->max_degraded);
4434}
4435
36d1c647
DW
4436static void raid5_free_percpu(raid5_conf_t *conf)
4437{
4438 struct raid5_percpu *percpu;
4439 unsigned long cpu;
4440
4441 if (!conf->percpu)
4442 return;
4443
4444 get_online_cpus();
4445 for_each_possible_cpu(cpu) {
4446 percpu = per_cpu_ptr(conf->percpu, cpu);
4447 safe_put_page(percpu->spare_page);
d6f38f31 4448 kfree(percpu->scribble);
36d1c647
DW
4449 }
4450#ifdef CONFIG_HOTPLUG_CPU
4451 unregister_cpu_notifier(&conf->cpu_notify);
4452#endif
4453 put_online_cpus();
4454
4455 free_percpu(conf->percpu);
4456}
4457
95fc17aa
DW
4458static void free_conf(raid5_conf_t *conf)
4459{
4460 shrink_stripes(conf);
36d1c647 4461 raid5_free_percpu(conf);
95fc17aa
DW
4462 kfree(conf->disks);
4463 kfree(conf->stripe_hashtbl);
4464 kfree(conf);
4465}
4466
36d1c647
DW
4467#ifdef CONFIG_HOTPLUG_CPU
4468static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4469 void *hcpu)
4470{
4471 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4472 long cpu = (long)hcpu;
4473 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4474
4475 switch (action) {
4476 case CPU_UP_PREPARE:
4477 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4478 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4479 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4480 if (!percpu->scribble)
4481 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4482
4483 if (!percpu->scribble ||
4484 (conf->level == 6 && !percpu->spare_page)) {
4485 safe_put_page(percpu->spare_page);
4486 kfree(percpu->scribble);
36d1c647
DW
4487 pr_err("%s: failed memory allocation for cpu%ld\n",
4488 __func__, cpu);
55af6bb5 4489 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4490 }
4491 break;
4492 case CPU_DEAD:
4493 case CPU_DEAD_FROZEN:
4494 safe_put_page(percpu->spare_page);
d6f38f31 4495 kfree(percpu->scribble);
36d1c647 4496 percpu->spare_page = NULL;
d6f38f31 4497 percpu->scribble = NULL;
36d1c647
DW
4498 break;
4499 default:
4500 break;
4501 }
4502 return NOTIFY_OK;
4503}
4504#endif
4505
4506static int raid5_alloc_percpu(raid5_conf_t *conf)
4507{
4508 unsigned long cpu;
4509 struct page *spare_page;
a29d8b8e 4510 struct raid5_percpu __percpu *allcpus;
d6f38f31 4511 void *scribble;
36d1c647
DW
4512 int err;
4513
36d1c647
DW
4514 allcpus = alloc_percpu(struct raid5_percpu);
4515 if (!allcpus)
4516 return -ENOMEM;
4517 conf->percpu = allcpus;
4518
4519 get_online_cpus();
4520 err = 0;
4521 for_each_present_cpu(cpu) {
d6f38f31
DW
4522 if (conf->level == 6) {
4523 spare_page = alloc_page(GFP_KERNEL);
4524 if (!spare_page) {
4525 err = -ENOMEM;
4526 break;
4527 }
4528 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4529 }
5e5e3e78 4530 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4531 if (!scribble) {
36d1c647
DW
4532 err = -ENOMEM;
4533 break;
4534 }
d6f38f31 4535 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4536 }
4537#ifdef CONFIG_HOTPLUG_CPU
4538 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4539 conf->cpu_notify.priority = 0;
4540 if (err == 0)
4541 err = register_cpu_notifier(&conf->cpu_notify);
4542#endif
4543 put_online_cpus();
4544
4545 return err;
4546}
4547
91adb564 4548static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4549{
4550 raid5_conf_t *conf;
5e5e3e78 4551 int raid_disk, memory, max_disks;
1da177e4
LT
4552 mdk_rdev_t *rdev;
4553 struct disk_info *disk;
1da177e4 4554
91adb564
N
4555 if (mddev->new_level != 5
4556 && mddev->new_level != 4
4557 && mddev->new_level != 6) {
0c55e022 4558 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4559 mdname(mddev), mddev->new_level);
4560 return ERR_PTR(-EIO);
1da177e4 4561 }
91adb564
N
4562 if ((mddev->new_level == 5
4563 && !algorithm_valid_raid5(mddev->new_layout)) ||
4564 (mddev->new_level == 6
4565 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4566 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4567 mdname(mddev), mddev->new_layout);
4568 return ERR_PTR(-EIO);
99c0fb5f 4569 }
91adb564 4570 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4571 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4572 mdname(mddev), mddev->raid_disks);
4573 return ERR_PTR(-EINVAL);
4bbf3771
N
4574 }
4575
664e7c41
AN
4576 if (!mddev->new_chunk_sectors ||
4577 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4578 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4579 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4580 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4581 return ERR_PTR(-EINVAL);
f6705578
N
4582 }
4583
91adb564
N
4584 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4585 if (conf == NULL)
1da177e4 4586 goto abort;
f5efd45a
DW
4587 spin_lock_init(&conf->device_lock);
4588 init_waitqueue_head(&conf->wait_for_stripe);
4589 init_waitqueue_head(&conf->wait_for_overlap);
4590 INIT_LIST_HEAD(&conf->handle_list);
4591 INIT_LIST_HEAD(&conf->hold_list);
4592 INIT_LIST_HEAD(&conf->delayed_list);
4593 INIT_LIST_HEAD(&conf->bitmap_list);
4594 INIT_LIST_HEAD(&conf->inactive_list);
4595 atomic_set(&conf->active_stripes, 0);
4596 atomic_set(&conf->preread_active_stripes, 0);
4597 atomic_set(&conf->active_aligned_reads, 0);
4598 conf->bypass_threshold = BYPASS_THRESHOLD;
91adb564
N
4599
4600 conf->raid_disks = mddev->raid_disks;
4601 if (mddev->reshape_position == MaxSector)
4602 conf->previous_raid_disks = mddev->raid_disks;
4603 else
f6705578 4604 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4605 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4606 conf->scribble_len = scribble_len(max_disks);
f6705578 4607
5e5e3e78 4608 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4609 GFP_KERNEL);
4610 if (!conf->disks)
4611 goto abort;
9ffae0cf 4612
1da177e4
LT
4613 conf->mddev = mddev;
4614
fccddba0 4615 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4616 goto abort;
1da177e4 4617
36d1c647
DW
4618 conf->level = mddev->new_level;
4619 if (raid5_alloc_percpu(conf) != 0)
4620 goto abort;
4621
0c55e022 4622 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4623
159ec1fc 4624 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4625 raid_disk = rdev->raid_disk;
5e5e3e78 4626 if (raid_disk >= max_disks
1da177e4
LT
4627 || raid_disk < 0)
4628 continue;
4629 disk = conf->disks + raid_disk;
4630
4631 disk->rdev = rdev;
4632
b2d444d7 4633 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4634 char b[BDEVNAME_SIZE];
0c55e022
N
4635 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4636 " disk %d\n",
4637 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 4638 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
4639 /* Cannot rely on bitmap to complete recovery */
4640 conf->fullsync = 1;
1da177e4
LT
4641 }
4642
09c9e5fa 4643 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4644 conf->level = mddev->new_level;
16a53ecc
N
4645 if (conf->level == 6)
4646 conf->max_degraded = 2;
4647 else
4648 conf->max_degraded = 1;
91adb564 4649 conf->algorithm = mddev->new_layout;
1da177e4 4650 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4651 conf->reshape_progress = mddev->reshape_position;
e183eaed 4652 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4653 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4654 conf->prev_algo = mddev->layout;
4655 }
1da177e4 4656
91adb564 4657 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4658 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4659 if (grow_stripes(conf, conf->max_nr_stripes)) {
4660 printk(KERN_ERR
0c55e022
N
4661 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4662 mdname(mddev), memory);
91adb564
N
4663 goto abort;
4664 } else
0c55e022
N
4665 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4666 mdname(mddev), memory);
1da177e4 4667
0da3c619 4668 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4669 if (!conf->thread) {
4670 printk(KERN_ERR
0c55e022 4671 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4672 mdname(mddev));
16a53ecc
N
4673 goto abort;
4674 }
91adb564
N
4675
4676 return conf;
4677
4678 abort:
4679 if (conf) {
95fc17aa 4680 free_conf(conf);
91adb564
N
4681 return ERR_PTR(-EIO);
4682 } else
4683 return ERR_PTR(-ENOMEM);
4684}
4685
c148ffdc
N
4686
4687static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4688{
4689 switch (algo) {
4690 case ALGORITHM_PARITY_0:
4691 if (raid_disk < max_degraded)
4692 return 1;
4693 break;
4694 case ALGORITHM_PARITY_N:
4695 if (raid_disk >= raid_disks - max_degraded)
4696 return 1;
4697 break;
4698 case ALGORITHM_PARITY_0_6:
4699 if (raid_disk == 0 ||
4700 raid_disk == raid_disks - 1)
4701 return 1;
4702 break;
4703 case ALGORITHM_LEFT_ASYMMETRIC_6:
4704 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4705 case ALGORITHM_LEFT_SYMMETRIC_6:
4706 case ALGORITHM_RIGHT_SYMMETRIC_6:
4707 if (raid_disk == raid_disks - 1)
4708 return 1;
4709 }
4710 return 0;
4711}
4712
91adb564
N
4713static int run(mddev_t *mddev)
4714{
4715 raid5_conf_t *conf;
9f7c2220 4716 int working_disks = 0;
c148ffdc 4717 int dirty_parity_disks = 0;
91adb564 4718 mdk_rdev_t *rdev;
c148ffdc 4719 sector_t reshape_offset = 0;
91adb564 4720
8c6ac868 4721 if (mddev->recovery_cp != MaxSector)
0c55e022 4722 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
4723 " -- starting background reconstruction\n",
4724 mdname(mddev));
91adb564
N
4725 if (mddev->reshape_position != MaxSector) {
4726 /* Check that we can continue the reshape.
4727 * Currently only disks can change, it must
4728 * increase, and we must be past the point where
4729 * a stripe over-writes itself
4730 */
4731 sector_t here_new, here_old;
4732 int old_disks;
18b00334 4733 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4734
88ce4930 4735 if (mddev->new_level != mddev->level) {
0c55e022 4736 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
4737 "required - aborting.\n",
4738 mdname(mddev));
4739 return -EINVAL;
4740 }
91adb564
N
4741 old_disks = mddev->raid_disks - mddev->delta_disks;
4742 /* reshape_position must be on a new-stripe boundary, and one
4743 * further up in new geometry must map after here in old
4744 * geometry.
4745 */
4746 here_new = mddev->reshape_position;
664e7c41 4747 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 4748 (mddev->raid_disks - max_degraded))) {
0c55e022
N
4749 printk(KERN_ERR "md/raid:%s: reshape_position not "
4750 "on a stripe boundary\n", mdname(mddev));
91adb564
N
4751 return -EINVAL;
4752 }
c148ffdc 4753 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
4754 /* here_new is the stripe we will write to */
4755 here_old = mddev->reshape_position;
9d8f0363 4756 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
4757 (old_disks-max_degraded));
4758 /* here_old is the first stripe that we might need to read
4759 * from */
67ac6011
N
4760 if (mddev->delta_disks == 0) {
4761 /* We cannot be sure it is safe to start an in-place
4762 * reshape. It is only safe if user-space if monitoring
4763 * and taking constant backups.
4764 * mdadm always starts a situation like this in
4765 * readonly mode so it can take control before
4766 * allowing any writes. So just check for that.
4767 */
4768 if ((here_new * mddev->new_chunk_sectors !=
4769 here_old * mddev->chunk_sectors) ||
4770 mddev->ro == 0) {
0c55e022
N
4771 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4772 " in read-only mode - aborting\n",
4773 mdname(mddev));
67ac6011
N
4774 return -EINVAL;
4775 }
4776 } else if (mddev->delta_disks < 0
4777 ? (here_new * mddev->new_chunk_sectors <=
4778 here_old * mddev->chunk_sectors)
4779 : (here_new * mddev->new_chunk_sectors >=
4780 here_old * mddev->chunk_sectors)) {
91adb564 4781 /* Reading from the same stripe as writing to - bad */
0c55e022
N
4782 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4783 "auto-recovery - aborting.\n",
4784 mdname(mddev));
91adb564
N
4785 return -EINVAL;
4786 }
0c55e022
N
4787 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4788 mdname(mddev));
91adb564
N
4789 /* OK, we should be able to continue; */
4790 } else {
4791 BUG_ON(mddev->level != mddev->new_level);
4792 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 4793 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 4794 BUG_ON(mddev->delta_disks != 0);
1da177e4 4795 }
91adb564 4796
245f46c2
N
4797 if (mddev->private == NULL)
4798 conf = setup_conf(mddev);
4799 else
4800 conf = mddev->private;
4801
91adb564
N
4802 if (IS_ERR(conf))
4803 return PTR_ERR(conf);
4804
4805 mddev->thread = conf->thread;
4806 conf->thread = NULL;
4807 mddev->private = conf;
4808
4809 /*
4810 * 0 for a fully functional array, 1 or 2 for a degraded array.
4811 */
c148ffdc
N
4812 list_for_each_entry(rdev, &mddev->disks, same_set) {
4813 if (rdev->raid_disk < 0)
4814 continue;
2f115882 4815 if (test_bit(In_sync, &rdev->flags)) {
91adb564 4816 working_disks++;
2f115882
N
4817 continue;
4818 }
c148ffdc
N
4819 /* This disc is not fully in-sync. However if it
4820 * just stored parity (beyond the recovery_offset),
4821 * when we don't need to be concerned about the
4822 * array being dirty.
4823 * When reshape goes 'backwards', we never have
4824 * partially completed devices, so we only need
4825 * to worry about reshape going forwards.
4826 */
4827 /* Hack because v0.91 doesn't store recovery_offset properly. */
4828 if (mddev->major_version == 0 &&
4829 mddev->minor_version > 90)
4830 rdev->recovery_offset = reshape_offset;
4831
c148ffdc
N
4832 if (rdev->recovery_offset < reshape_offset) {
4833 /* We need to check old and new layout */
4834 if (!only_parity(rdev->raid_disk,
4835 conf->algorithm,
4836 conf->raid_disks,
4837 conf->max_degraded))
4838 continue;
4839 }
4840 if (!only_parity(rdev->raid_disk,
4841 conf->prev_algo,
4842 conf->previous_raid_disks,
4843 conf->max_degraded))
4844 continue;
4845 dirty_parity_disks++;
4846 }
91adb564 4847
5e5e3e78
N
4848 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4849 - working_disks);
91adb564 4850
674806d6 4851 if (has_failed(conf)) {
0c55e022 4852 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 4853 " (%d/%d failed)\n",
02c2de8c 4854 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4855 goto abort;
4856 }
4857
91adb564 4858 /* device size must be a multiple of chunk size */
9d8f0363 4859 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
4860 mddev->resync_max_sectors = mddev->dev_sectors;
4861
c148ffdc 4862 if (mddev->degraded > dirty_parity_disks &&
1da177e4 4863 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4864 if (mddev->ok_start_degraded)
4865 printk(KERN_WARNING
0c55e022
N
4866 "md/raid:%s: starting dirty degraded array"
4867 " - data corruption possible.\n",
6ff8d8ec
N
4868 mdname(mddev));
4869 else {
4870 printk(KERN_ERR
0c55e022 4871 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
4872 mdname(mddev));
4873 goto abort;
4874 }
1da177e4
LT
4875 }
4876
1da177e4 4877 if (mddev->degraded == 0)
0c55e022
N
4878 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4879 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
4880 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4881 mddev->new_layout);
1da177e4 4882 else
0c55e022
N
4883 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4884 " out of %d devices, algorithm %d\n",
4885 mdname(mddev), conf->level,
4886 mddev->raid_disks - mddev->degraded,
4887 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
4888
4889 print_raid5_conf(conf);
4890
fef9c61f 4891 if (conf->reshape_progress != MaxSector) {
fef9c61f 4892 conf->reshape_safe = conf->reshape_progress;
f6705578
N
4893 atomic_set(&conf->reshape_stripes, 0);
4894 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4895 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4896 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4897 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4898 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 4899 "reshape");
f6705578
N
4900 }
4901
1da177e4
LT
4902
4903 /* Ok, everything is just fine now */
a64c876f
N
4904 if (mddev->to_remove == &raid5_attrs_group)
4905 mddev->to_remove = NULL;
00bcb4ac
N
4906 else if (mddev->kobj.sd &&
4907 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 4908 printk(KERN_WARNING
4a5add49 4909 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 4910 mdname(mddev));
4a5add49 4911 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 4912
4a5add49 4913 if (mddev->queue) {
9f7c2220 4914 int chunk_size;
4a5add49
N
4915 /* read-ahead size must cover two whole stripes, which
4916 * is 2 * (datadisks) * chunksize where 'n' is the
4917 * number of raid devices
4918 */
4919 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4920 int stripe = data_disks *
4921 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4922 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4923 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 4924
4a5add49 4925 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 4926
11d8a6e3
N
4927 mddev->queue->backing_dev_info.congested_data = mddev;
4928 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 4929
9f7c2220
N
4930 chunk_size = mddev->chunk_sectors << 9;
4931 blk_queue_io_min(mddev->queue, chunk_size);
4932 blk_queue_io_opt(mddev->queue, chunk_size *
4933 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 4934
9f7c2220
N
4935 list_for_each_entry(rdev, &mddev->disks, same_set)
4936 disk_stack_limits(mddev->gendisk, rdev->bdev,
4937 rdev->data_offset << 9);
4938 }
23032a0e 4939
1da177e4
LT
4940 return 0;
4941abort:
e0cf8f04 4942 md_unregister_thread(mddev->thread);
91adb564 4943 mddev->thread = NULL;
1da177e4
LT
4944 if (conf) {
4945 print_raid5_conf(conf);
95fc17aa 4946 free_conf(conf);
1da177e4
LT
4947 }
4948 mddev->private = NULL;
0c55e022 4949 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
4950 return -EIO;
4951}
4952
3f294f4f 4953static int stop(mddev_t *mddev)
1da177e4 4954{
7b92813c 4955 raid5_conf_t *conf = mddev->private;
1da177e4
LT
4956
4957 md_unregister_thread(mddev->thread);
4958 mddev->thread = NULL;
11d8a6e3
N
4959 if (mddev->queue)
4960 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 4961 free_conf(conf);
a64c876f
N
4962 mddev->private = NULL;
4963 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
4964 return 0;
4965}
4966
45b4233c 4967#ifdef DEBUG
d710e138 4968static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4969{
4970 int i;
4971
16a53ecc
N
4972 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4973 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4974 seq_printf(seq, "sh %llu, count %d.\n",
4975 (unsigned long long)sh->sector, atomic_read(&sh->count));
4976 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4977 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4978 seq_printf(seq, "(cache%d: %p %ld) ",
4979 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4980 }
16a53ecc 4981 seq_printf(seq, "\n");
1da177e4
LT
4982}
4983
d710e138 4984static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4985{
4986 struct stripe_head *sh;
fccddba0 4987 struct hlist_node *hn;
1da177e4
LT
4988 int i;
4989
4990 spin_lock_irq(&conf->device_lock);
4991 for (i = 0; i < NR_HASH; i++) {
fccddba0 4992 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4993 if (sh->raid_conf != conf)
4994 continue;
16a53ecc 4995 print_sh(seq, sh);
1da177e4
LT
4996 }
4997 }
4998 spin_unlock_irq(&conf->device_lock);
4999}
5000#endif
5001
d710e138 5002static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4 5003{
7b92813c 5004 raid5_conf_t *conf = mddev->private;
1da177e4
LT
5005 int i;
5006
9d8f0363
AN
5007 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5008 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5009 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5010 for (i = 0; i < conf->raid_disks; i++)
5011 seq_printf (seq, "%s",
5012 conf->disks[i].rdev &&
b2d444d7 5013 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5014 seq_printf (seq, "]");
45b4233c 5015#ifdef DEBUG
16a53ecc
N
5016 seq_printf (seq, "\n");
5017 printall(seq, conf);
1da177e4
LT
5018#endif
5019}
5020
5021static void print_raid5_conf (raid5_conf_t *conf)
5022{
5023 int i;
5024 struct disk_info *tmp;
5025
0c55e022 5026 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5027 if (!conf) {
5028 printk("(conf==NULL)\n");
5029 return;
5030 }
0c55e022
N
5031 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5032 conf->raid_disks,
5033 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5034
5035 for (i = 0; i < conf->raid_disks; i++) {
5036 char b[BDEVNAME_SIZE];
5037 tmp = conf->disks + i;
5038 if (tmp->rdev)
0c55e022
N
5039 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5040 i, !test_bit(Faulty, &tmp->rdev->flags),
5041 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5042 }
5043}
5044
5045static int raid5_spare_active(mddev_t *mddev)
5046{
5047 int i;
5048 raid5_conf_t *conf = mddev->private;
5049 struct disk_info *tmp;
6b965620
N
5050 int count = 0;
5051 unsigned long flags;
1da177e4
LT
5052
5053 for (i = 0; i < conf->raid_disks; i++) {
5054 tmp = conf->disks + i;
5055 if (tmp->rdev
70fffd0b 5056 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5057 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5058 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5059 count++;
43c73ca4 5060 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5061 }
5062 }
6b965620
N
5063 spin_lock_irqsave(&conf->device_lock, flags);
5064 mddev->degraded -= count;
5065 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5066 print_raid5_conf(conf);
6b965620 5067 return count;
1da177e4
LT
5068}
5069
5070static int raid5_remove_disk(mddev_t *mddev, int number)
5071{
5072 raid5_conf_t *conf = mddev->private;
5073 int err = 0;
5074 mdk_rdev_t *rdev;
5075 struct disk_info *p = conf->disks + number;
5076
5077 print_raid5_conf(conf);
5078 rdev = p->rdev;
5079 if (rdev) {
ec32a2bd
N
5080 if (number >= conf->raid_disks &&
5081 conf->reshape_progress == MaxSector)
5082 clear_bit(In_sync, &rdev->flags);
5083
b2d444d7 5084 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
5085 atomic_read(&rdev->nr_pending)) {
5086 err = -EBUSY;
5087 goto abort;
5088 }
dfc70645
N
5089 /* Only remove non-faulty devices if recovery
5090 * isn't possible.
5091 */
5092 if (!test_bit(Faulty, &rdev->flags) &&
7f0da59b 5093 mddev->recovery_disabled != conf->recovery_disabled &&
674806d6 5094 !has_failed(conf) &&
ec32a2bd 5095 number < conf->raid_disks) {
dfc70645
N
5096 err = -EBUSY;
5097 goto abort;
5098 }
1da177e4 5099 p->rdev = NULL;
fbd568a3 5100 synchronize_rcu();
1da177e4
LT
5101 if (atomic_read(&rdev->nr_pending)) {
5102 /* lost the race, try later */
5103 err = -EBUSY;
5104 p->rdev = rdev;
5105 }
5106 }
5107abort:
5108
5109 print_raid5_conf(conf);
5110 return err;
5111}
5112
5113static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5114{
5115 raid5_conf_t *conf = mddev->private;
199050ea 5116 int err = -EEXIST;
1da177e4
LT
5117 int disk;
5118 struct disk_info *p;
6c2fce2e
NB
5119 int first = 0;
5120 int last = conf->raid_disks - 1;
1da177e4 5121
7f0da59b
N
5122 if (mddev->recovery_disabled == conf->recovery_disabled)
5123 return -EBUSY;
5124
674806d6 5125 if (has_failed(conf))
1da177e4 5126 /* no point adding a device */
199050ea 5127 return -EINVAL;
1da177e4 5128
6c2fce2e
NB
5129 if (rdev->raid_disk >= 0)
5130 first = last = rdev->raid_disk;
1da177e4
LT
5131
5132 /*
16a53ecc
N
5133 * find the disk ... but prefer rdev->saved_raid_disk
5134 * if possible.
1da177e4 5135 */
16a53ecc 5136 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5137 rdev->saved_raid_disk >= first &&
16a53ecc
N
5138 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5139 disk = rdev->saved_raid_disk;
5140 else
6c2fce2e
NB
5141 disk = first;
5142 for ( ; disk <= last ; disk++)
1da177e4 5143 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5144 clear_bit(In_sync, &rdev->flags);
1da177e4 5145 rdev->raid_disk = disk;
199050ea 5146 err = 0;
72626685
N
5147 if (rdev->saved_raid_disk != disk)
5148 conf->fullsync = 1;
d6065f7b 5149 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5150 break;
5151 }
5152 print_raid5_conf(conf);
199050ea 5153 return err;
1da177e4
LT
5154}
5155
5156static int raid5_resize(mddev_t *mddev, sector_t sectors)
5157{
5158 /* no resync is happening, and there is enough space
5159 * on all devices, so we can resize.
5160 * We need to make sure resync covers any new space.
5161 * If the array is shrinking we should possibly wait until
5162 * any io in the removed space completes, but it hardly seems
5163 * worth it.
5164 */
9d8f0363 5165 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5166 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5167 mddev->raid_disks));
b522adcd
DW
5168 if (mddev->array_sectors >
5169 raid5_size(mddev, sectors, mddev->raid_disks))
5170 return -EINVAL;
f233ea5c 5171 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5172 revalidate_disk(mddev->gendisk);
b098636c
N
5173 if (sectors > mddev->dev_sectors &&
5174 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5175 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5176 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5177 }
58c0fed4 5178 mddev->dev_sectors = sectors;
4b5c7ae8 5179 mddev->resync_max_sectors = sectors;
1da177e4
LT
5180 return 0;
5181}
5182
01ee22b4
N
5183static int check_stripe_cache(mddev_t *mddev)
5184{
5185 /* Can only proceed if there are plenty of stripe_heads.
5186 * We need a minimum of one full stripe,, and for sensible progress
5187 * it is best to have about 4 times that.
5188 * If we require 4 times, then the default 256 4K stripe_heads will
5189 * allow for chunk sizes up to 256K, which is probably OK.
5190 * If the chunk size is greater, user-space should request more
5191 * stripe_heads first.
5192 */
5193 raid5_conf_t *conf = mddev->private;
5194 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5195 > conf->max_nr_stripes ||
5196 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5197 > conf->max_nr_stripes) {
0c55e022
N
5198 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5199 mdname(mddev),
01ee22b4
N
5200 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5201 / STRIPE_SIZE)*4);
5202 return 0;
5203 }
5204 return 1;
5205}
5206
50ac168a 5207static int check_reshape(mddev_t *mddev)
29269553 5208{
070ec55d 5209 raid5_conf_t *conf = mddev->private;
29269553 5210
88ce4930
N
5211 if (mddev->delta_disks == 0 &&
5212 mddev->new_layout == mddev->layout &&
664e7c41 5213 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5214 return 0; /* nothing to do */
dba034ee
N
5215 if (mddev->bitmap)
5216 /* Cannot grow a bitmap yet */
5217 return -EBUSY;
674806d6 5218 if (has_failed(conf))
ec32a2bd
N
5219 return -EINVAL;
5220 if (mddev->delta_disks < 0) {
5221 /* We might be able to shrink, but the devices must
5222 * be made bigger first.
5223 * For raid6, 4 is the minimum size.
5224 * Otherwise 2 is the minimum
5225 */
5226 int min = 2;
5227 if (mddev->level == 6)
5228 min = 4;
5229 if (mddev->raid_disks + mddev->delta_disks < min)
5230 return -EINVAL;
5231 }
29269553 5232
01ee22b4 5233 if (!check_stripe_cache(mddev))
29269553 5234 return -ENOSPC;
29269553 5235
ec32a2bd 5236 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5237}
5238
5239static int raid5_start_reshape(mddev_t *mddev)
5240{
070ec55d 5241 raid5_conf_t *conf = mddev->private;
63c70c4f 5242 mdk_rdev_t *rdev;
63c70c4f 5243 int spares = 0;
c04be0aa 5244 unsigned long flags;
63c70c4f 5245
f416885e 5246 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5247 return -EBUSY;
5248
01ee22b4
N
5249 if (!check_stripe_cache(mddev))
5250 return -ENOSPC;
5251
159ec1fc 5252 list_for_each_entry(rdev, &mddev->disks, same_set)
469518a3
N
5253 if (!test_bit(In_sync, &rdev->flags)
5254 && !test_bit(Faulty, &rdev->flags))
29269553 5255 spares++;
63c70c4f 5256
f416885e 5257 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5258 /* Not enough devices even to make a degraded array
5259 * of that size
5260 */
5261 return -EINVAL;
5262
ec32a2bd
N
5263 /* Refuse to reduce size of the array. Any reductions in
5264 * array size must be through explicit setting of array_size
5265 * attribute.
5266 */
5267 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5268 < mddev->array_sectors) {
0c55e022 5269 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5270 "before number of disks\n", mdname(mddev));
5271 return -EINVAL;
5272 }
5273
f6705578 5274 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5275 spin_lock_irq(&conf->device_lock);
5276 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5277 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5278 conf->prev_chunk_sectors = conf->chunk_sectors;
5279 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5280 conf->prev_algo = conf->algorithm;
5281 conf->algorithm = mddev->new_layout;
fef9c61f
N
5282 if (mddev->delta_disks < 0)
5283 conf->reshape_progress = raid5_size(mddev, 0, 0);
5284 else
5285 conf->reshape_progress = 0;
5286 conf->reshape_safe = conf->reshape_progress;
86b42c71 5287 conf->generation++;
29269553
N
5288 spin_unlock_irq(&conf->device_lock);
5289
5290 /* Add some new drives, as many as will fit.
5291 * We know there are enough to make the newly sized array work.
3424bf6a
N
5292 * Don't add devices if we are reducing the number of
5293 * devices in the array. This is because it is not possible
5294 * to correctly record the "partially reconstructed" state of
5295 * such devices during the reshape and confusion could result.
29269553 5296 */
87a8dec9
N
5297 if (mddev->delta_disks >= 0) {
5298 int added_devices = 0;
5299 list_for_each_entry(rdev, &mddev->disks, same_set)
5300 if (rdev->raid_disk < 0 &&
5301 !test_bit(Faulty, &rdev->flags)) {
5302 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9
N
5303 if (rdev->raid_disk
5304 >= conf->previous_raid_disks) {
5305 set_bit(In_sync, &rdev->flags);
5306 added_devices++;
5307 } else
5308 rdev->recovery_offset = 0;
36fad858
NK
5309
5310 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 5311 /* Failure here is OK */;
50da0840 5312 }
87a8dec9
N
5313 } else if (rdev->raid_disk >= conf->previous_raid_disks
5314 && !test_bit(Faulty, &rdev->flags)) {
5315 /* This is a spare that was manually added */
5316 set_bit(In_sync, &rdev->flags);
5317 added_devices++;
5318 }
29269553 5319
87a8dec9
N
5320 /* When a reshape changes the number of devices,
5321 * ->degraded is measured against the larger of the
5322 * pre and post number of devices.
5323 */
ec32a2bd 5324 spin_lock_irqsave(&conf->device_lock, flags);
9eb07c25 5325 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
ec32a2bd
N
5326 - added_devices;
5327 spin_unlock_irqrestore(&conf->device_lock, flags);
5328 }
63c70c4f 5329 mddev->raid_disks = conf->raid_disks;
e516402c 5330 mddev->reshape_position = conf->reshape_progress;
850b2b42 5331 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5332
29269553
N
5333 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5334 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5335 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5336 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5337 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5338 "reshape");
29269553
N
5339 if (!mddev->sync_thread) {
5340 mddev->recovery = 0;
5341 spin_lock_irq(&conf->device_lock);
5342 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5343 conf->reshape_progress = MaxSector;
29269553
N
5344 spin_unlock_irq(&conf->device_lock);
5345 return -EAGAIN;
5346 }
c8f517c4 5347 conf->reshape_checkpoint = jiffies;
29269553
N
5348 md_wakeup_thread(mddev->sync_thread);
5349 md_new_event(mddev);
5350 return 0;
5351}
29269553 5352
ec32a2bd
N
5353/* This is called from the reshape thread and should make any
5354 * changes needed in 'conf'
5355 */
29269553
N
5356static void end_reshape(raid5_conf_t *conf)
5357{
29269553 5358
f6705578 5359 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5360
f6705578 5361 spin_lock_irq(&conf->device_lock);
cea9c228 5362 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5363 conf->reshape_progress = MaxSector;
f6705578 5364 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5365 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5366
5367 /* read-ahead size must cover two whole stripes, which is
5368 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5369 */
4a5add49 5370 if (conf->mddev->queue) {
cea9c228 5371 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5372 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5373 / PAGE_SIZE);
16a53ecc
N
5374 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5375 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5376 }
29269553 5377 }
29269553
N
5378}
5379
ec32a2bd
N
5380/* This is called from the raid5d thread with mddev_lock held.
5381 * It makes config changes to the device.
5382 */
cea9c228
N
5383static void raid5_finish_reshape(mddev_t *mddev)
5384{
070ec55d 5385 raid5_conf_t *conf = mddev->private;
cea9c228
N
5386
5387 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5388
ec32a2bd
N
5389 if (mddev->delta_disks > 0) {
5390 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5391 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5392 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5393 } else {
5394 int d;
ec32a2bd
N
5395 mddev->degraded = conf->raid_disks;
5396 for (d = 0; d < conf->raid_disks ; d++)
5397 if (conf->disks[d].rdev &&
5398 test_bit(In_sync,
5399 &conf->disks[d].rdev->flags))
5400 mddev->degraded--;
5401 for (d = conf->raid_disks ;
5402 d < conf->raid_disks - mddev->delta_disks;
1a67dde0
N
5403 d++) {
5404 mdk_rdev_t *rdev = conf->disks[d].rdev;
5405 if (rdev && raid5_remove_disk(mddev, d) == 0) {
36fad858 5406 sysfs_unlink_rdev(mddev, rdev);
1a67dde0
N
5407 rdev->raid_disk = -1;
5408 }
5409 }
cea9c228 5410 }
88ce4930 5411 mddev->layout = conf->algorithm;
09c9e5fa 5412 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5413 mddev->reshape_position = MaxSector;
5414 mddev->delta_disks = 0;
cea9c228
N
5415 }
5416}
5417
72626685
N
5418static void raid5_quiesce(mddev_t *mddev, int state)
5419{
070ec55d 5420 raid5_conf_t *conf = mddev->private;
72626685
N
5421
5422 switch(state) {
e464eafd
N
5423 case 2: /* resume for a suspend */
5424 wake_up(&conf->wait_for_overlap);
5425 break;
5426
72626685
N
5427 case 1: /* stop all writes */
5428 spin_lock_irq(&conf->device_lock);
64bd660b
N
5429 /* '2' tells resync/reshape to pause so that all
5430 * active stripes can drain
5431 */
5432 conf->quiesce = 2;
72626685 5433 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5434 atomic_read(&conf->active_stripes) == 0 &&
5435 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5436 conf->device_lock, /* nothing */);
64bd660b 5437 conf->quiesce = 1;
72626685 5438 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5439 /* allow reshape to continue */
5440 wake_up(&conf->wait_for_overlap);
72626685
N
5441 break;
5442
5443 case 0: /* re-enable writes */
5444 spin_lock_irq(&conf->device_lock);
5445 conf->quiesce = 0;
5446 wake_up(&conf->wait_for_stripe);
e464eafd 5447 wake_up(&conf->wait_for_overlap);
72626685
N
5448 spin_unlock_irq(&conf->device_lock);
5449 break;
5450 }
72626685 5451}
b15c2e57 5452
d562b0c4 5453
f1b29bca 5454static void *raid45_takeover_raid0(mddev_t *mddev, int level)
54071b38 5455{
f1b29bca 5456 struct raid0_private_data *raid0_priv = mddev->private;
d76c8420 5457 sector_t sectors;
54071b38 5458
f1b29bca
DW
5459 /* for raid0 takeover only one zone is supported */
5460 if (raid0_priv->nr_strip_zones > 1) {
0c55e022
N
5461 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5462 mdname(mddev));
f1b29bca
DW
5463 return ERR_PTR(-EINVAL);
5464 }
5465
3b71bd93
N
5466 sectors = raid0_priv->strip_zone[0].zone_end;
5467 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5468 mddev->dev_sectors = sectors;
f1b29bca 5469 mddev->new_level = level;
54071b38
TM
5470 mddev->new_layout = ALGORITHM_PARITY_N;
5471 mddev->new_chunk_sectors = mddev->chunk_sectors;
5472 mddev->raid_disks += 1;
5473 mddev->delta_disks = 1;
5474 /* make sure it will be not marked as dirty */
5475 mddev->recovery_cp = MaxSector;
5476
5477 return setup_conf(mddev);
5478}
5479
5480
d562b0c4
N
5481static void *raid5_takeover_raid1(mddev_t *mddev)
5482{
5483 int chunksect;
5484
5485 if (mddev->raid_disks != 2 ||
5486 mddev->degraded > 1)
5487 return ERR_PTR(-EINVAL);
5488
5489 /* Should check if there are write-behind devices? */
5490
5491 chunksect = 64*2; /* 64K by default */
5492
5493 /* The array must be an exact multiple of chunksize */
5494 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5495 chunksect >>= 1;
5496
5497 if ((chunksect<<9) < STRIPE_SIZE)
5498 /* array size does not allow a suitable chunk size */
5499 return ERR_PTR(-EINVAL);
5500
5501 mddev->new_level = 5;
5502 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5503 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5504
5505 return setup_conf(mddev);
5506}
5507
fc9739c6
N
5508static void *raid5_takeover_raid6(mddev_t *mddev)
5509{
5510 int new_layout;
5511
5512 switch (mddev->layout) {
5513 case ALGORITHM_LEFT_ASYMMETRIC_6:
5514 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5515 break;
5516 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5517 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5518 break;
5519 case ALGORITHM_LEFT_SYMMETRIC_6:
5520 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5521 break;
5522 case ALGORITHM_RIGHT_SYMMETRIC_6:
5523 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5524 break;
5525 case ALGORITHM_PARITY_0_6:
5526 new_layout = ALGORITHM_PARITY_0;
5527 break;
5528 case ALGORITHM_PARITY_N:
5529 new_layout = ALGORITHM_PARITY_N;
5530 break;
5531 default:
5532 return ERR_PTR(-EINVAL);
5533 }
5534 mddev->new_level = 5;
5535 mddev->new_layout = new_layout;
5536 mddev->delta_disks = -1;
5537 mddev->raid_disks -= 1;
5538 return setup_conf(mddev);
5539}
5540
d562b0c4 5541
50ac168a 5542static int raid5_check_reshape(mddev_t *mddev)
b3546035 5543{
88ce4930
N
5544 /* For a 2-drive array, the layout and chunk size can be changed
5545 * immediately as not restriping is needed.
5546 * For larger arrays we record the new value - after validation
5547 * to be used by a reshape pass.
b3546035 5548 */
070ec55d 5549 raid5_conf_t *conf = mddev->private;
597a711b 5550 int new_chunk = mddev->new_chunk_sectors;
b3546035 5551
597a711b 5552 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5553 return -EINVAL;
5554 if (new_chunk > 0) {
0ba459d2 5555 if (!is_power_of_2(new_chunk))
b3546035 5556 return -EINVAL;
597a711b 5557 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5558 return -EINVAL;
597a711b 5559 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5560 /* not factor of array size */
5561 return -EINVAL;
5562 }
5563
5564 /* They look valid */
5565
88ce4930 5566 if (mddev->raid_disks == 2) {
597a711b
N
5567 /* can make the change immediately */
5568 if (mddev->new_layout >= 0) {
5569 conf->algorithm = mddev->new_layout;
5570 mddev->layout = mddev->new_layout;
88ce4930
N
5571 }
5572 if (new_chunk > 0) {
597a711b
N
5573 conf->chunk_sectors = new_chunk ;
5574 mddev->chunk_sectors = new_chunk;
88ce4930
N
5575 }
5576 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5577 md_wakeup_thread(mddev->thread);
b3546035 5578 }
50ac168a 5579 return check_reshape(mddev);
88ce4930
N
5580}
5581
50ac168a 5582static int raid6_check_reshape(mddev_t *mddev)
88ce4930 5583{
597a711b 5584 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5585
597a711b 5586 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5587 return -EINVAL;
b3546035 5588 if (new_chunk > 0) {
0ba459d2 5589 if (!is_power_of_2(new_chunk))
88ce4930 5590 return -EINVAL;
597a711b 5591 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5592 return -EINVAL;
597a711b 5593 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5594 /* not factor of array size */
5595 return -EINVAL;
b3546035 5596 }
88ce4930
N
5597
5598 /* They look valid */
50ac168a 5599 return check_reshape(mddev);
b3546035
N
5600}
5601
d562b0c4
N
5602static void *raid5_takeover(mddev_t *mddev)
5603{
5604 /* raid5 can take over:
f1b29bca 5605 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5606 * raid1 - if there are two drives. We need to know the chunk size
5607 * raid4 - trivial - just use a raid4 layout.
5608 * raid6 - Providing it is a *_6 layout
d562b0c4 5609 */
f1b29bca
DW
5610 if (mddev->level == 0)
5611 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5612 if (mddev->level == 1)
5613 return raid5_takeover_raid1(mddev);
e9d4758f
N
5614 if (mddev->level == 4) {
5615 mddev->new_layout = ALGORITHM_PARITY_N;
5616 mddev->new_level = 5;
5617 return setup_conf(mddev);
5618 }
fc9739c6
N
5619 if (mddev->level == 6)
5620 return raid5_takeover_raid6(mddev);
d562b0c4
N
5621
5622 return ERR_PTR(-EINVAL);
5623}
5624
a78d38a1
N
5625static void *raid4_takeover(mddev_t *mddev)
5626{
f1b29bca
DW
5627 /* raid4 can take over:
5628 * raid0 - if there is only one strip zone
5629 * raid5 - if layout is right
a78d38a1 5630 */
f1b29bca
DW
5631 if (mddev->level == 0)
5632 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5633 if (mddev->level == 5 &&
5634 mddev->layout == ALGORITHM_PARITY_N) {
5635 mddev->new_layout = 0;
5636 mddev->new_level = 4;
5637 return setup_conf(mddev);
5638 }
5639 return ERR_PTR(-EINVAL);
5640}
d562b0c4 5641
245f46c2
N
5642static struct mdk_personality raid5_personality;
5643
5644static void *raid6_takeover(mddev_t *mddev)
5645{
5646 /* Currently can only take over a raid5. We map the
5647 * personality to an equivalent raid6 personality
5648 * with the Q block at the end.
5649 */
5650 int new_layout;
5651
5652 if (mddev->pers != &raid5_personality)
5653 return ERR_PTR(-EINVAL);
5654 if (mddev->degraded > 1)
5655 return ERR_PTR(-EINVAL);
5656 if (mddev->raid_disks > 253)
5657 return ERR_PTR(-EINVAL);
5658 if (mddev->raid_disks < 3)
5659 return ERR_PTR(-EINVAL);
5660
5661 switch (mddev->layout) {
5662 case ALGORITHM_LEFT_ASYMMETRIC:
5663 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5664 break;
5665 case ALGORITHM_RIGHT_ASYMMETRIC:
5666 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5667 break;
5668 case ALGORITHM_LEFT_SYMMETRIC:
5669 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5670 break;
5671 case ALGORITHM_RIGHT_SYMMETRIC:
5672 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5673 break;
5674 case ALGORITHM_PARITY_0:
5675 new_layout = ALGORITHM_PARITY_0_6;
5676 break;
5677 case ALGORITHM_PARITY_N:
5678 new_layout = ALGORITHM_PARITY_N;
5679 break;
5680 default:
5681 return ERR_PTR(-EINVAL);
5682 }
5683 mddev->new_level = 6;
5684 mddev->new_layout = new_layout;
5685 mddev->delta_disks = 1;
5686 mddev->raid_disks += 1;
5687 return setup_conf(mddev);
5688}
5689
5690
16a53ecc
N
5691static struct mdk_personality raid6_personality =
5692{
5693 .name = "raid6",
5694 .level = 6,
5695 .owner = THIS_MODULE,
5696 .make_request = make_request,
5697 .run = run,
5698 .stop = stop,
5699 .status = status,
5700 .error_handler = error,
5701 .hot_add_disk = raid5_add_disk,
5702 .hot_remove_disk= raid5_remove_disk,
5703 .spare_active = raid5_spare_active,
5704 .sync_request = sync_request,
5705 .resize = raid5_resize,
80c3a6ce 5706 .size = raid5_size,
50ac168a 5707 .check_reshape = raid6_check_reshape,
f416885e 5708 .start_reshape = raid5_start_reshape,
cea9c228 5709 .finish_reshape = raid5_finish_reshape,
16a53ecc 5710 .quiesce = raid5_quiesce,
245f46c2 5711 .takeover = raid6_takeover,
16a53ecc 5712};
2604b703 5713static struct mdk_personality raid5_personality =
1da177e4
LT
5714{
5715 .name = "raid5",
2604b703 5716 .level = 5,
1da177e4
LT
5717 .owner = THIS_MODULE,
5718 .make_request = make_request,
5719 .run = run,
5720 .stop = stop,
5721 .status = status,
5722 .error_handler = error,
5723 .hot_add_disk = raid5_add_disk,
5724 .hot_remove_disk= raid5_remove_disk,
5725 .spare_active = raid5_spare_active,
5726 .sync_request = sync_request,
5727 .resize = raid5_resize,
80c3a6ce 5728 .size = raid5_size,
63c70c4f
N
5729 .check_reshape = raid5_check_reshape,
5730 .start_reshape = raid5_start_reshape,
cea9c228 5731 .finish_reshape = raid5_finish_reshape,
72626685 5732 .quiesce = raid5_quiesce,
d562b0c4 5733 .takeover = raid5_takeover,
1da177e4
LT
5734};
5735
2604b703 5736static struct mdk_personality raid4_personality =
1da177e4 5737{
2604b703
N
5738 .name = "raid4",
5739 .level = 4,
5740 .owner = THIS_MODULE,
5741 .make_request = make_request,
5742 .run = run,
5743 .stop = stop,
5744 .status = status,
5745 .error_handler = error,
5746 .hot_add_disk = raid5_add_disk,
5747 .hot_remove_disk= raid5_remove_disk,
5748 .spare_active = raid5_spare_active,
5749 .sync_request = sync_request,
5750 .resize = raid5_resize,
80c3a6ce 5751 .size = raid5_size,
3d37890b
N
5752 .check_reshape = raid5_check_reshape,
5753 .start_reshape = raid5_start_reshape,
cea9c228 5754 .finish_reshape = raid5_finish_reshape,
2604b703 5755 .quiesce = raid5_quiesce,
a78d38a1 5756 .takeover = raid4_takeover,
2604b703
N
5757};
5758
5759static int __init raid5_init(void)
5760{
16a53ecc 5761 register_md_personality(&raid6_personality);
2604b703
N
5762 register_md_personality(&raid5_personality);
5763 register_md_personality(&raid4_personality);
5764 return 0;
1da177e4
LT
5765}
5766
2604b703 5767static void raid5_exit(void)
1da177e4 5768{
16a53ecc 5769 unregister_md_personality(&raid6_personality);
2604b703
N
5770 unregister_md_personality(&raid5_personality);
5771 unregister_md_personality(&raid4_personality);
1da177e4
LT
5772}
5773
5774module_init(raid5_init);
5775module_exit(raid5_exit);
5776MODULE_LICENSE("GPL");
0efb9e61 5777MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 5778MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5779MODULE_ALIAS("md-raid5");
5780MODULE_ALIAS("md-raid4");
2604b703
N
5781MODULE_ALIAS("md-level-5");
5782MODULE_ALIAS("md-level-4");
16a53ecc
N
5783MODULE_ALIAS("md-personality-8"); /* RAID6 */
5784MODULE_ALIAS("md-raid6");
5785MODULE_ALIAS("md-level-6");
5786
5787/* This used to be two separate modules, they were: */
5788MODULE_ALIAS("raid5");
5789MODULE_ALIAS("raid6");