md/raid5: add rcu protection to rdev accesses in want_replace
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
a9add5d9
N
58#include <trace/events/block.h>
59
43b2e5d8 60#include "md.h"
bff61975 61#include "raid5.h"
54071b38 62#include "raid0.h"
ef740c37 63#include "bitmap.h"
72626685 64
851c30c9
SL
65#define cpu_to_group(cpu) cpu_to_node(cpu)
66#define ANY_GROUP NUMA_NO_NODE
67
8e0e99ba
N
68static bool devices_handle_discard_safely = false;
69module_param(devices_handle_discard_safely, bool, 0644);
70MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 72static struct workqueue_struct *raid5_wq;
1da177e4
LT
73/*
74 * Stripe cache
75 */
76
77#define NR_STRIPES 256
78#define STRIPE_SIZE PAGE_SIZE
79#define STRIPE_SHIFT (PAGE_SHIFT - 9)
80#define STRIPE_SECTORS (STRIPE_SIZE>>9)
81#define IO_THRESHOLD 1
8b3e6cdc 82#define BYPASS_THRESHOLD 1
fccddba0 83#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4 84#define HASH_MASK (NR_HASH - 1)
bfc90cb0 85#define MAX_STRIPE_BATCH 8
1da177e4 86
d1688a6d 87static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
88{
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91}
1da177e4 92
566c09c5
SL
93static inline int stripe_hash_locks_hash(sector_t sect)
94{
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96}
97
98static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99{
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102}
103
104static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105{
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108}
109
110static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111{
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118}
119
120static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121{
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127}
128
1da177e4
LT
129/* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
db298e19 135 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
136 * of the current stripe+device
137 */
db298e19
N
138static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139{
aa8b57aa 140 int sectors = bio_sectors(bio);
4f024f37 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
db298e19
N
142 return bio->bi_next;
143 else
144 return NULL;
145}
1da177e4 146
960e739d 147/*
5b99c2ff
JA
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 150 */
e7836bd6 151static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 152{
e7836bd6
SL
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
155}
156
e7836bd6 157static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 158{
e7836bd6
SL
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
161}
162
e7836bd6 163static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 164{
e7836bd6
SL
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
960e739d
JA
167}
168
e7836bd6
SL
169static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
960e739d 171{
e7836bd6
SL
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
960e739d 174
e7836bd6
SL
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
179}
180
e7836bd6 181static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 182{
e7836bd6
SL
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
960e739d
JA
185}
186
d0dabf7e
N
187/* Find first data disk in a raid6 stripe */
188static inline int raid6_d0(struct stripe_head *sh)
189{
67cc2b81
N
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
d0dabf7e
N
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198}
16a53ecc
N
199static inline int raid6_next_disk(int disk, int raid_disks)
200{
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203}
a4456856 204
d0dabf7e
N
205/* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
67cc2b81
N
210static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
d0dabf7e 212{
6629542e 213 int slot = *count;
67cc2b81 214
e4424fee 215 if (sh->ddf_layout)
6629542e 216 (*count)++;
d0dabf7e 217 if (idx == sh->pd_idx)
67cc2b81 218 return syndrome_disks;
d0dabf7e 219 if (idx == sh->qd_idx)
67cc2b81 220 return syndrome_disks + 1;
e4424fee 221 if (!sh->ddf_layout)
6629542e 222 (*count)++;
d0dabf7e
N
223 return slot;
224}
225
34a6f80e 226static void return_io(struct bio_list *return_bi)
a4456856 227{
34a6f80e
N
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
4f024f37 230 bi->bi_iter.bi_size = 0;
0a82a8d1
LT
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
4246a0b6 233 bio_endio(bi);
a4456856
DW
234 }
235}
236
d1688a6d 237static void print_raid5_conf (struct r5conf *conf);
1da177e4 238
600aa109
DW
239static int stripe_operations_active(struct stripe_head *sh)
240{
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244}
245
851c30c9
SL
246static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247{
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
bfc90cb0 250 int thread_cnt;
851c30c9
SL
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
262 group->stripes_cnt++;
263 sh->group = group;
851c30c9
SL
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
bfc90cb0
SL
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
851c30c9
SL
287}
288
566c09c5
SL
289static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
1da177e4 291{
4eb788df
SL
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 297 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9
SL
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
4eb788df
SL
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
566c09c5
SL
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
1da177e4
LT
321 }
322}
d0dabf7e 323
566c09c5
SL
324static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
4eb788df
SL
326{
327 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
328 do_release_stripe(conf, sh, temp_inactive_list);
329}
330
331/*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341{
342 int size;
6ab2a4b8 343 bool do_wakeup = false;
566c09c5
SL
344 unsigned long flags;
345
346 if (hash == NR_STRIPE_HASH_LOCKS) {
347 size = NR_STRIPE_HASH_LOCKS;
348 hash = NR_STRIPE_HASH_LOCKS - 1;
349 } else
350 size = 1;
351 while (size) {
352 struct list_head *list = &temp_inactive_list[size - 1];
353
354 /*
6d036f7d 355 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
356 * remove stripes from the list
357 */
358 if (!list_empty_careful(list)) {
359 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
360 if (list_empty(conf->inactive_list + hash) &&
361 !list_empty(list))
362 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 363 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 364 do_wakeup = true;
566c09c5
SL
365 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366 }
367 size--;
368 hash--;
369 }
370
371 if (do_wakeup) {
6ab2a4b8 372 wake_up(&conf->wait_for_stripe);
b1b46486
YL
373 if (atomic_read(&conf->active_stripes) == 0)
374 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
375 if (conf->retry_read_aligned)
376 md_wakeup_thread(conf->mddev->thread);
377 }
4eb788df
SL
378}
379
773ca82f 380/* should hold conf->device_lock already */
566c09c5
SL
381static int release_stripe_list(struct r5conf *conf,
382 struct list_head *temp_inactive_list)
773ca82f
SL
383{
384 struct stripe_head *sh;
385 int count = 0;
386 struct llist_node *head;
387
388 head = llist_del_all(&conf->released_stripes);
d265d9dc 389 head = llist_reverse_order(head);
773ca82f 390 while (head) {
566c09c5
SL
391 int hash;
392
773ca82f
SL
393 sh = llist_entry(head, struct stripe_head, release_list);
394 head = llist_next(head);
395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 smp_mb();
397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 /*
399 * Don't worry the bit is set here, because if the bit is set
400 * again, the count is always > 1. This is true for
401 * STRIPE_ON_UNPLUG_LIST bit too.
402 */
566c09c5
SL
403 hash = sh->hash_lock_index;
404 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
405 count++;
406 }
407
408 return count;
409}
410
6d036f7d 411void raid5_release_stripe(struct stripe_head *sh)
1da177e4 412{
d1688a6d 413 struct r5conf *conf = sh->raid_conf;
1da177e4 414 unsigned long flags;
566c09c5
SL
415 struct list_head list;
416 int hash;
773ca82f 417 bool wakeup;
16a53ecc 418
cf170f3f
ES
419 /* Avoid release_list until the last reference.
420 */
421 if (atomic_add_unless(&sh->count, -1, 1))
422 return;
423
ad4068de 424 if (unlikely(!conf->mddev->thread) ||
425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
426 goto slow_path;
427 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 if (wakeup)
429 md_wakeup_thread(conf->mddev->thread);
430 return;
431slow_path:
4eb788df 432 local_irq_save(flags);
773ca82f 433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
435 INIT_LIST_HEAD(&list);
436 hash = sh->hash_lock_index;
437 do_release_stripe(conf, sh, &list);
4eb788df 438 spin_unlock(&conf->device_lock);
566c09c5 439 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
440 }
441 local_irq_restore(flags);
1da177e4
LT
442}
443
fccddba0 444static inline void remove_hash(struct stripe_head *sh)
1da177e4 445{
45b4233c
DW
446 pr_debug("remove_hash(), stripe %llu\n",
447 (unsigned long long)sh->sector);
1da177e4 448
fccddba0 449 hlist_del_init(&sh->hash);
1da177e4
LT
450}
451
d1688a6d 452static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 453{
fccddba0 454 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 455
45b4233c
DW
456 pr_debug("insert_hash(), stripe %llu\n",
457 (unsigned long long)sh->sector);
1da177e4 458
fccddba0 459 hlist_add_head(&sh->hash, hp);
1da177e4
LT
460}
461
1da177e4 462/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 463static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
464{
465 struct stripe_head *sh = NULL;
466 struct list_head *first;
467
566c09c5 468 if (list_empty(conf->inactive_list + hash))
1da177e4 469 goto out;
566c09c5 470 first = (conf->inactive_list + hash)->next;
1da177e4
LT
471 sh = list_entry(first, struct stripe_head, lru);
472 list_del_init(first);
473 remove_hash(sh);
474 atomic_inc(&conf->active_stripes);
566c09c5 475 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
476 if (list_empty(conf->inactive_list + hash))
477 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
478out:
479 return sh;
480}
481
e4e11e38 482static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
483{
484 struct page *p;
485 int i;
e4e11e38 486 int num = sh->raid_conf->pool_size;
1da177e4 487
e4e11e38 488 for (i = 0; i < num ; i++) {
d592a996 489 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
490 p = sh->dev[i].page;
491 if (!p)
492 continue;
493 sh->dev[i].page = NULL;
2d1f3b5d 494 put_page(p);
1da177e4
LT
495 }
496}
497
a9683a79 498static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
499{
500 int i;
e4e11e38 501 int num = sh->raid_conf->pool_size;
1da177e4 502
e4e11e38 503 for (i = 0; i < num; i++) {
1da177e4
LT
504 struct page *page;
505
a9683a79 506 if (!(page = alloc_page(gfp))) {
1da177e4
LT
507 return 1;
508 }
509 sh->dev[i].page = page;
d592a996 510 sh->dev[i].orig_page = page;
1da177e4
LT
511 }
512 return 0;
513}
514
784052ec 515static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 516static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 517 struct stripe_head *sh);
1da177e4 518
b5663ba4 519static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 520{
d1688a6d 521 struct r5conf *conf = sh->raid_conf;
566c09c5 522 int i, seq;
1da177e4 523
78bafebd
ES
524 BUG_ON(atomic_read(&sh->count) != 0);
525 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 526 BUG_ON(stripe_operations_active(sh));
59fc630b 527 BUG_ON(sh->batch_head);
d84e0f10 528
45b4233c 529 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 530 (unsigned long long)sector);
566c09c5
SL
531retry:
532 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 533 sh->generation = conf->generation - previous;
b5663ba4 534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 535 sh->sector = sector;
911d4ee8 536 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
537 sh->state = 0;
538
7ecaa1e6 539 for (i = sh->disks; i--; ) {
1da177e4
LT
540 struct r5dev *dev = &sh->dev[i];
541
d84e0f10 542 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 543 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 545 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 546 dev->read, dev->towrite, dev->written,
1da177e4 547 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 548 WARN_ON(1);
1da177e4
LT
549 }
550 dev->flags = 0;
784052ec 551 raid5_build_block(sh, i, previous);
1da177e4 552 }
566c09c5
SL
553 if (read_seqcount_retry(&conf->gen_lock, seq))
554 goto retry;
7a87f434 555 sh->overwrite_disks = 0;
1da177e4 556 insert_hash(conf, sh);
851c30c9 557 sh->cpu = smp_processor_id();
da41ba65 558 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
559}
560
d1688a6d 561static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 562 short generation)
1da177e4
LT
563{
564 struct stripe_head *sh;
565
45b4233c 566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 567 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 568 if (sh->sector == sector && sh->generation == generation)
1da177e4 569 return sh;
45b4233c 570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
571 return NULL;
572}
573
674806d6
N
574/*
575 * Need to check if array has failed when deciding whether to:
576 * - start an array
577 * - remove non-faulty devices
578 * - add a spare
579 * - allow a reshape
580 * This determination is simple when no reshape is happening.
581 * However if there is a reshape, we need to carefully check
582 * both the before and after sections.
583 * This is because some failed devices may only affect one
584 * of the two sections, and some non-in_sync devices may
585 * be insync in the section most affected by failed devices.
586 */
908f4fbd 587static int calc_degraded(struct r5conf *conf)
674806d6 588{
908f4fbd 589 int degraded, degraded2;
674806d6 590 int i;
674806d6
N
591
592 rcu_read_lock();
593 degraded = 0;
594 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 595 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
596 if (rdev && test_bit(Faulty, &rdev->flags))
597 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
598 if (!rdev || test_bit(Faulty, &rdev->flags))
599 degraded++;
600 else if (test_bit(In_sync, &rdev->flags))
601 ;
602 else
603 /* not in-sync or faulty.
604 * If the reshape increases the number of devices,
605 * this is being recovered by the reshape, so
606 * this 'previous' section is not in_sync.
607 * If the number of devices is being reduced however,
608 * the device can only be part of the array if
609 * we are reverting a reshape, so this section will
610 * be in-sync.
611 */
612 if (conf->raid_disks >= conf->previous_raid_disks)
613 degraded++;
614 }
615 rcu_read_unlock();
908f4fbd
N
616 if (conf->raid_disks == conf->previous_raid_disks)
617 return degraded;
674806d6 618 rcu_read_lock();
908f4fbd 619 degraded2 = 0;
674806d6 620 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 621 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
622 if (rdev && test_bit(Faulty, &rdev->flags))
623 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 624 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 625 degraded2++;
674806d6
N
626 else if (test_bit(In_sync, &rdev->flags))
627 ;
628 else
629 /* not in-sync or faulty.
630 * If reshape increases the number of devices, this
631 * section has already been recovered, else it
632 * almost certainly hasn't.
633 */
634 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 635 degraded2++;
674806d6
N
636 }
637 rcu_read_unlock();
908f4fbd
N
638 if (degraded2 > degraded)
639 return degraded2;
640 return degraded;
641}
642
643static int has_failed(struct r5conf *conf)
644{
645 int degraded;
646
647 if (conf->mddev->reshape_position == MaxSector)
648 return conf->mddev->degraded > conf->max_degraded;
649
650 degraded = calc_degraded(conf);
674806d6
N
651 if (degraded > conf->max_degraded)
652 return 1;
653 return 0;
654}
655
6d036f7d
SL
656struct stripe_head *
657raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658 int previous, int noblock, int noquiesce)
1da177e4
LT
659{
660 struct stripe_head *sh;
566c09c5 661 int hash = stripe_hash_locks_hash(sector);
1da177e4 662
45b4233c 663 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 664
566c09c5 665 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
666
667 do {
b1b46486 668 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 669 conf->quiesce == 0 || noquiesce,
566c09c5 670 *(conf->hash_locks + hash));
86b42c71 671 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 672 if (!sh) {
edbe83ab 673 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 674 sh = get_free_stripe(conf, hash);
713bc5c2
SL
675 if (!sh && !test_bit(R5_DID_ALLOC,
676 &conf->cache_state))
edbe83ab
N
677 set_bit(R5_ALLOC_MORE,
678 &conf->cache_state);
679 }
1da177e4
LT
680 if (noblock && sh == NULL)
681 break;
682 if (!sh) {
5423399a
N
683 set_bit(R5_INACTIVE_BLOCKED,
684 &conf->cache_state);
6ab2a4b8
SL
685 wait_event_lock_irq(
686 conf->wait_for_stripe,
566c09c5
SL
687 !list_empty(conf->inactive_list + hash) &&
688 (atomic_read(&conf->active_stripes)
689 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
690 || !test_bit(R5_INACTIVE_BLOCKED,
691 &conf->cache_state)),
6ab2a4b8 692 *(conf->hash_locks + hash));
5423399a
N
693 clear_bit(R5_INACTIVE_BLOCKED,
694 &conf->cache_state);
7da9d450 695 } else {
b5663ba4 696 init_stripe(sh, sector, previous);
7da9d450
N
697 atomic_inc(&sh->count);
698 }
e240c183 699 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 700 spin_lock(&conf->device_lock);
e240c183 701 if (!atomic_read(&sh->count)) {
1da177e4
LT
702 if (!test_bit(STRIPE_HANDLE, &sh->state))
703 atomic_inc(&conf->active_stripes);
5af9bef7
N
704 BUG_ON(list_empty(&sh->lru) &&
705 !test_bit(STRIPE_EXPANDING, &sh->state));
16a53ecc 706 list_del_init(&sh->lru);
bfc90cb0
SL
707 if (sh->group) {
708 sh->group->stripes_cnt--;
709 sh->group = NULL;
710 }
1da177e4 711 }
7da9d450 712 atomic_inc(&sh->count);
6d183de4 713 spin_unlock(&conf->device_lock);
1da177e4
LT
714 }
715 } while (sh == NULL);
716
566c09c5 717 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
718 return sh;
719}
720
7a87f434 721static bool is_full_stripe_write(struct stripe_head *sh)
722{
723 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
724 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
725}
726
59fc630b 727static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728{
729 local_irq_disable();
730 if (sh1 > sh2) {
731 spin_lock(&sh2->stripe_lock);
732 spin_lock_nested(&sh1->stripe_lock, 1);
733 } else {
734 spin_lock(&sh1->stripe_lock);
735 spin_lock_nested(&sh2->stripe_lock, 1);
736 }
737}
738
739static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
740{
741 spin_unlock(&sh1->stripe_lock);
742 spin_unlock(&sh2->stripe_lock);
743 local_irq_enable();
744}
745
746/* Only freshly new full stripe normal write stripe can be added to a batch list */
747static bool stripe_can_batch(struct stripe_head *sh)
748{
9c3e333d
SL
749 struct r5conf *conf = sh->raid_conf;
750
751 if (conf->log)
752 return false;
59fc630b 753 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 754 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 755 is_full_stripe_write(sh);
756}
757
758/* we only do back search */
759static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
760{
761 struct stripe_head *head;
762 sector_t head_sector, tmp_sec;
763 int hash;
764 int dd_idx;
765
59fc630b 766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 tmp_sec = sh->sector;
768 if (!sector_div(tmp_sec, conf->chunk_sectors))
769 return;
770 head_sector = sh->sector - STRIPE_SECTORS;
771
772 hash = stripe_hash_locks_hash(head_sector);
773 spin_lock_irq(conf->hash_locks + hash);
774 head = __find_stripe(conf, head_sector, conf->generation);
775 if (head && !atomic_inc_not_zero(&head->count)) {
776 spin_lock(&conf->device_lock);
777 if (!atomic_read(&head->count)) {
778 if (!test_bit(STRIPE_HANDLE, &head->state))
779 atomic_inc(&conf->active_stripes);
780 BUG_ON(list_empty(&head->lru) &&
781 !test_bit(STRIPE_EXPANDING, &head->state));
782 list_del_init(&head->lru);
783 if (head->group) {
784 head->group->stripes_cnt--;
785 head->group = NULL;
786 }
787 }
788 atomic_inc(&head->count);
789 spin_unlock(&conf->device_lock);
790 }
791 spin_unlock_irq(conf->hash_locks + hash);
792
793 if (!head)
794 return;
795 if (!stripe_can_batch(head))
796 goto out;
797
798 lock_two_stripes(head, sh);
799 /* clear_batch_ready clear the flag */
800 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801 goto unlock_out;
802
803 if (sh->batch_head)
804 goto unlock_out;
805
806 dd_idx = 0;
807 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808 dd_idx++;
809 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810 goto unlock_out;
811
812 if (head->batch_head) {
813 spin_lock(&head->batch_head->batch_lock);
814 /* This batch list is already running */
815 if (!stripe_can_batch(head)) {
816 spin_unlock(&head->batch_head->batch_lock);
817 goto unlock_out;
818 }
819
820 /*
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
823 */
824 list_add(&sh->batch_list, &head->batch_list);
825 spin_unlock(&head->batch_head->batch_lock);
826
827 sh->batch_head = head->batch_head;
828 } else {
829 head->batch_head = head;
830 sh->batch_head = head->batch_head;
831 spin_lock(&head->batch_lock);
832 list_add_tail(&sh->batch_list, &head->batch_list);
833 spin_unlock(&head->batch_lock);
834 }
835
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 if (atomic_dec_return(&conf->preread_active_stripes)
838 < IO_THRESHOLD)
839 md_wakeup_thread(conf->mddev->thread);
840
2b6b2457
N
841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 int seq = sh->bm_seq;
843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 sh->batch_head->bm_seq > seq)
845 seq = sh->batch_head->bm_seq;
846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 sh->batch_head->bm_seq = seq;
848 }
849
59fc630b 850 atomic_inc(&sh->count);
851unlock_out:
852 unlock_two_stripes(head, sh);
853out:
6d036f7d 854 raid5_release_stripe(head);
59fc630b 855}
856
05616be5
N
857/* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
859 */
860static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861{
862 sector_t progress = conf->reshape_progress;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
866 */
867 smp_rmb();
868 if (progress == MaxSector)
869 return 0;
870 if (sh->generation == conf->generation - 1)
871 return 0;
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
874 */
875 return 1;
876}
877
6712ecf8 878static void
4246a0b6 879raid5_end_read_request(struct bio *bi);
6712ecf8 880static void
4246a0b6 881raid5_end_write_request(struct bio *bi);
91c00924 882
c4e5ac0a 883static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 884{
d1688a6d 885 struct r5conf *conf = sh->raid_conf;
91c00924 886 int i, disks = sh->disks;
59fc630b 887 struct stripe_head *head_sh = sh;
91c00924
DW
888
889 might_sleep();
890
f6bed0ef
SL
891 if (r5l_write_stripe(conf->log, sh) == 0)
892 return;
91c00924
DW
893 for (i = disks; i--; ) {
894 int rw;
9a3e1101 895 int replace_only = 0;
977df362
N
896 struct bio *bi, *rbi;
897 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 898
899 sh = head_sh;
e9c7469b
TH
900 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
901 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
902 rw = WRITE_FUA;
903 else
904 rw = WRITE;
9e444768 905 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 906 rw |= REQ_DISCARD;
e9c7469b 907 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 908 rw = READ;
9a3e1101
N
909 else if (test_and_clear_bit(R5_WantReplace,
910 &sh->dev[i].flags)) {
911 rw = WRITE;
912 replace_only = 1;
913 } else
91c00924 914 continue;
bc0934f0
SL
915 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
916 rw |= REQ_SYNC;
91c00924 917
59fc630b 918again:
91c00924 919 bi = &sh->dev[i].req;
977df362 920 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 921
91c00924 922 rcu_read_lock();
9a3e1101 923 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
924 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
925 rdev = rcu_dereference(conf->disks[i].rdev);
926 if (!rdev) {
927 rdev = rrdev;
928 rrdev = NULL;
929 }
9a3e1101
N
930 if (rw & WRITE) {
931 if (replace_only)
932 rdev = NULL;
dd054fce
N
933 if (rdev == rrdev)
934 /* We raced and saw duplicates */
935 rrdev = NULL;
9a3e1101 936 } else {
59fc630b 937 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
938 rdev = rrdev;
939 rrdev = NULL;
940 }
977df362 941
91c00924
DW
942 if (rdev && test_bit(Faulty, &rdev->flags))
943 rdev = NULL;
944 if (rdev)
945 atomic_inc(&rdev->nr_pending);
977df362
N
946 if (rrdev && test_bit(Faulty, &rrdev->flags))
947 rrdev = NULL;
948 if (rrdev)
949 atomic_inc(&rrdev->nr_pending);
91c00924
DW
950 rcu_read_unlock();
951
73e92e51 952 /* We have already checked bad blocks for reads. Now
977df362
N
953 * need to check for writes. We never accept write errors
954 * on the replacement, so we don't to check rrdev.
73e92e51
N
955 */
956 while ((rw & WRITE) && rdev &&
957 test_bit(WriteErrorSeen, &rdev->flags)) {
958 sector_t first_bad;
959 int bad_sectors;
960 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
961 &first_bad, &bad_sectors);
962 if (!bad)
963 break;
964
965 if (bad < 0) {
966 set_bit(BlockedBadBlocks, &rdev->flags);
967 if (!conf->mddev->external &&
968 conf->mddev->flags) {
969 /* It is very unlikely, but we might
970 * still need to write out the
971 * bad block log - better give it
972 * a chance*/
973 md_check_recovery(conf->mddev);
974 }
1850753d 975 /*
976 * Because md_wait_for_blocked_rdev
977 * will dec nr_pending, we must
978 * increment it first.
979 */
980 atomic_inc(&rdev->nr_pending);
73e92e51
N
981 md_wait_for_blocked_rdev(rdev, conf->mddev);
982 } else {
983 /* Acknowledged bad block - skip the write */
984 rdev_dec_pending(rdev, conf->mddev);
985 rdev = NULL;
986 }
987 }
988
91c00924 989 if (rdev) {
9a3e1101
N
990 if (s->syncing || s->expanding || s->expanded
991 || s->replacing)
91c00924
DW
992 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
993
2b7497f0
DW
994 set_bit(STRIPE_IO_STARTED, &sh->state);
995
2f6db2a7 996 bio_reset(bi);
91c00924 997 bi->bi_bdev = rdev->bdev;
2f6db2a7
KO
998 bi->bi_rw = rw;
999 bi->bi_end_io = (rw & WRITE)
1000 ? raid5_end_write_request
1001 : raid5_end_read_request;
1002 bi->bi_private = sh;
1003
91c00924 1004 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 1005 __func__, (unsigned long long)sh->sector,
91c00924
DW
1006 bi->bi_rw, i);
1007 atomic_inc(&sh->count);
59fc630b 1008 if (sh != head_sh)
1009 atomic_inc(&head_sh->count);
05616be5 1010 if (use_new_offset(conf, sh))
4f024f37 1011 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1012 + rdev->new_data_offset);
1013 else
4f024f37 1014 bi->bi_iter.bi_sector = (sh->sector
05616be5 1015 + rdev->data_offset);
59fc630b 1016 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
e59aa23f 1017 bi->bi_rw |= REQ_NOMERGE;
3f9e7c14 1018
d592a996
SL
1019 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1020 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1021 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1022 bi->bi_vcnt = 1;
91c00924
DW
1023 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1024 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1025 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1026 /*
1027 * If this is discard request, set bi_vcnt 0. We don't
1028 * want to confuse SCSI because SCSI will replace payload
1029 */
1030 if (rw & REQ_DISCARD)
1031 bi->bi_vcnt = 0;
977df362
N
1032 if (rrdev)
1033 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1034
1035 if (conf->mddev->gendisk)
1036 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1037 bi, disk_devt(conf->mddev->gendisk),
1038 sh->dev[i].sector);
91c00924 1039 generic_make_request(bi);
977df362
N
1040 }
1041 if (rrdev) {
9a3e1101
N
1042 if (s->syncing || s->expanding || s->expanded
1043 || s->replacing)
977df362
N
1044 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1045
1046 set_bit(STRIPE_IO_STARTED, &sh->state);
1047
2f6db2a7 1048 bio_reset(rbi);
977df362 1049 rbi->bi_bdev = rrdev->bdev;
2f6db2a7
KO
1050 rbi->bi_rw = rw;
1051 BUG_ON(!(rw & WRITE));
1052 rbi->bi_end_io = raid5_end_write_request;
1053 rbi->bi_private = sh;
1054
977df362
N
1055 pr_debug("%s: for %llu schedule op %ld on "
1056 "replacement disc %d\n",
1057 __func__, (unsigned long long)sh->sector,
1058 rbi->bi_rw, i);
1059 atomic_inc(&sh->count);
59fc630b 1060 if (sh != head_sh)
1061 atomic_inc(&head_sh->count);
05616be5 1062 if (use_new_offset(conf, sh))
4f024f37 1063 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1064 + rrdev->new_data_offset);
1065 else
4f024f37 1066 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1067 + rrdev->data_offset);
d592a996
SL
1068 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1069 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1070 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1071 rbi->bi_vcnt = 1;
977df362
N
1072 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1073 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1074 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1075 /*
1076 * If this is discard request, set bi_vcnt 0. We don't
1077 * want to confuse SCSI because SCSI will replace payload
1078 */
1079 if (rw & REQ_DISCARD)
1080 rbi->bi_vcnt = 0;
e3620a3a
JB
1081 if (conf->mddev->gendisk)
1082 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1083 rbi, disk_devt(conf->mddev->gendisk),
1084 sh->dev[i].sector);
977df362
N
1085 generic_make_request(rbi);
1086 }
1087 if (!rdev && !rrdev) {
b062962e 1088 if (rw & WRITE)
91c00924
DW
1089 set_bit(STRIPE_DEGRADED, &sh->state);
1090 pr_debug("skip op %ld on disc %d for sector %llu\n",
1091 bi->bi_rw, i, (unsigned long long)sh->sector);
1092 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1093 set_bit(STRIPE_HANDLE, &sh->state);
1094 }
59fc630b 1095
1096 if (!head_sh->batch_head)
1097 continue;
1098 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1099 batch_list);
1100 if (sh != head_sh)
1101 goto again;
91c00924
DW
1102 }
1103}
1104
1105static struct dma_async_tx_descriptor *
d592a996
SL
1106async_copy_data(int frombio, struct bio *bio, struct page **page,
1107 sector_t sector, struct dma_async_tx_descriptor *tx,
1108 struct stripe_head *sh)
91c00924 1109{
7988613b
KO
1110 struct bio_vec bvl;
1111 struct bvec_iter iter;
91c00924 1112 struct page *bio_page;
91c00924 1113 int page_offset;
a08abd8c 1114 struct async_submit_ctl submit;
0403e382 1115 enum async_tx_flags flags = 0;
91c00924 1116
4f024f37
KO
1117 if (bio->bi_iter.bi_sector >= sector)
1118 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1119 else
4f024f37 1120 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1121
0403e382
DW
1122 if (frombio)
1123 flags |= ASYNC_TX_FENCE;
1124 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1125
7988613b
KO
1126 bio_for_each_segment(bvl, bio, iter) {
1127 int len = bvl.bv_len;
91c00924
DW
1128 int clen;
1129 int b_offset = 0;
1130
1131 if (page_offset < 0) {
1132 b_offset = -page_offset;
1133 page_offset += b_offset;
1134 len -= b_offset;
1135 }
1136
1137 if (len > 0 && page_offset + len > STRIPE_SIZE)
1138 clen = STRIPE_SIZE - page_offset;
1139 else
1140 clen = len;
1141
1142 if (clen > 0) {
7988613b
KO
1143 b_offset += bvl.bv_offset;
1144 bio_page = bvl.bv_page;
d592a996
SL
1145 if (frombio) {
1146 if (sh->raid_conf->skip_copy &&
1147 b_offset == 0 && page_offset == 0 &&
1148 clen == STRIPE_SIZE)
1149 *page = bio_page;
1150 else
1151 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1152 b_offset, clen, &submit);
d592a996
SL
1153 } else
1154 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1155 page_offset, clen, &submit);
91c00924 1156 }
a08abd8c
DW
1157 /* chain the operations */
1158 submit.depend_tx = tx;
1159
91c00924
DW
1160 if (clen < len) /* hit end of page */
1161 break;
1162 page_offset += len;
1163 }
1164
1165 return tx;
1166}
1167
1168static void ops_complete_biofill(void *stripe_head_ref)
1169{
1170 struct stripe_head *sh = stripe_head_ref;
34a6f80e 1171 struct bio_list return_bi = BIO_EMPTY_LIST;
e4d84909 1172 int i;
91c00924 1173
e46b272b 1174 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1175 (unsigned long long)sh->sector);
1176
1177 /* clear completed biofills */
1178 for (i = sh->disks; i--; ) {
1179 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1180
1181 /* acknowledge completion of a biofill operation */
e4d84909
DW
1182 /* and check if we need to reply to a read request,
1183 * new R5_Wantfill requests are held off until
83de75cc 1184 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1185 */
1186 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1187 struct bio *rbi, *rbi2;
91c00924 1188
91c00924
DW
1189 BUG_ON(!dev->read);
1190 rbi = dev->read;
1191 dev->read = NULL;
4f024f37 1192 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1193 dev->sector + STRIPE_SECTORS) {
1194 rbi2 = r5_next_bio(rbi, dev->sector);
34a6f80e
N
1195 if (!raid5_dec_bi_active_stripes(rbi))
1196 bio_list_add(&return_bi, rbi);
91c00924
DW
1197 rbi = rbi2;
1198 }
1199 }
1200 }
83de75cc 1201 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1202
34a6f80e 1203 return_io(&return_bi);
91c00924 1204
e4d84909 1205 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1206 raid5_release_stripe(sh);
91c00924
DW
1207}
1208
1209static void ops_run_biofill(struct stripe_head *sh)
1210{
1211 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1212 struct async_submit_ctl submit;
91c00924
DW
1213 int i;
1214
59fc630b 1215 BUG_ON(sh->batch_head);
e46b272b 1216 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1217 (unsigned long long)sh->sector);
1218
1219 for (i = sh->disks; i--; ) {
1220 struct r5dev *dev = &sh->dev[i];
1221 if (test_bit(R5_Wantfill, &dev->flags)) {
1222 struct bio *rbi;
b17459c0 1223 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1224 dev->read = rbi = dev->toread;
1225 dev->toread = NULL;
b17459c0 1226 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1227 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1228 dev->sector + STRIPE_SECTORS) {
d592a996
SL
1229 tx = async_copy_data(0, rbi, &dev->page,
1230 dev->sector, tx, sh);
91c00924
DW
1231 rbi = r5_next_bio(rbi, dev->sector);
1232 }
1233 }
1234 }
1235
1236 atomic_inc(&sh->count);
a08abd8c
DW
1237 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238 async_trigger_callback(&submit);
91c00924
DW
1239}
1240
4e7d2c0a 1241static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1242{
4e7d2c0a 1243 struct r5dev *tgt;
91c00924 1244
4e7d2c0a
DW
1245 if (target < 0)
1246 return;
91c00924 1247
4e7d2c0a 1248 tgt = &sh->dev[target];
91c00924
DW
1249 set_bit(R5_UPTODATE, &tgt->flags);
1250 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1252}
1253
ac6b53b6 1254static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1255{
1256 struct stripe_head *sh = stripe_head_ref;
91c00924 1257
e46b272b 1258 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1259 (unsigned long long)sh->sector);
1260
ac6b53b6 1261 /* mark the computed target(s) as uptodate */
4e7d2c0a 1262 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1263 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1264
ecc65c9b
DW
1265 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266 if (sh->check_state == check_state_compute_run)
1267 sh->check_state = check_state_compute_result;
91c00924 1268 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1269 raid5_release_stripe(sh);
91c00924
DW
1270}
1271
d6f38f31
DW
1272/* return a pointer to the address conversion region of the scribble buffer */
1273static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1274 struct raid5_percpu *percpu, int i)
d6f38f31 1275{
46d5b785 1276 void *addr;
1277
1278 addr = flex_array_get(percpu->scribble, i);
1279 return addr + sizeof(struct page *) * (sh->disks + 2);
1280}
1281
1282/* return a pointer to the address conversion region of the scribble buffer */
1283static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284{
1285 void *addr;
1286
1287 addr = flex_array_get(percpu->scribble, i);
1288 return addr;
d6f38f31
DW
1289}
1290
1291static struct dma_async_tx_descriptor *
1292ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1293{
91c00924 1294 int disks = sh->disks;
46d5b785 1295 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1296 int target = sh->ops.target;
1297 struct r5dev *tgt = &sh->dev[target];
1298 struct page *xor_dest = tgt->page;
1299 int count = 0;
1300 struct dma_async_tx_descriptor *tx;
a08abd8c 1301 struct async_submit_ctl submit;
91c00924
DW
1302 int i;
1303
59fc630b 1304 BUG_ON(sh->batch_head);
1305
91c00924 1306 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1307 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1308 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309
1310 for (i = disks; i--; )
1311 if (i != target)
1312 xor_srcs[count++] = sh->dev[i].page;
1313
1314 atomic_inc(&sh->count);
1315
0403e382 1316 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1317 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1318 if (unlikely(count == 1))
a08abd8c 1319 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1320 else
a08abd8c 1321 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1322
91c00924
DW
1323 return tx;
1324}
1325
ac6b53b6
DW
1326/* set_syndrome_sources - populate source buffers for gen_syndrome
1327 * @srcs - (struct page *) array of size sh->disks
1328 * @sh - stripe_head to parse
1329 *
1330 * Populates srcs in proper layout order for the stripe and returns the
1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1332 * destination buffer is recorded in srcs[count] and the Q destination
1333 * is recorded in srcs[count+1]].
1334 */
584acdd4
MS
1335static int set_syndrome_sources(struct page **srcs,
1336 struct stripe_head *sh,
1337 int srctype)
ac6b53b6
DW
1338{
1339 int disks = sh->disks;
1340 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341 int d0_idx = raid6_d0(sh);
1342 int count;
1343 int i;
1344
1345 for (i = 0; i < disks; i++)
5dd33c9a 1346 srcs[i] = NULL;
ac6b53b6
DW
1347
1348 count = 0;
1349 i = d0_idx;
1350 do {
1351 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1352 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1353
584acdd4
MS
1354 if (i == sh->qd_idx || i == sh->pd_idx ||
1355 (srctype == SYNDROME_SRC_ALL) ||
1356 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357 test_bit(R5_Wantdrain, &dev->flags)) ||
1358 (srctype == SYNDROME_SRC_WRITTEN &&
1359 dev->written))
1360 srcs[slot] = sh->dev[i].page;
ac6b53b6
DW
1361 i = raid6_next_disk(i, disks);
1362 } while (i != d0_idx);
ac6b53b6 1363
e4424fee 1364 return syndrome_disks;
ac6b53b6
DW
1365}
1366
1367static struct dma_async_tx_descriptor *
1368ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369{
1370 int disks = sh->disks;
46d5b785 1371 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1372 int target;
1373 int qd_idx = sh->qd_idx;
1374 struct dma_async_tx_descriptor *tx;
1375 struct async_submit_ctl submit;
1376 struct r5dev *tgt;
1377 struct page *dest;
1378 int i;
1379 int count;
1380
59fc630b 1381 BUG_ON(sh->batch_head);
ac6b53b6
DW
1382 if (sh->ops.target < 0)
1383 target = sh->ops.target2;
1384 else if (sh->ops.target2 < 0)
1385 target = sh->ops.target;
91c00924 1386 else
ac6b53b6
DW
1387 /* we should only have one valid target */
1388 BUG();
1389 BUG_ON(target < 0);
1390 pr_debug("%s: stripe %llu block: %d\n",
1391 __func__, (unsigned long long)sh->sector, target);
1392
1393 tgt = &sh->dev[target];
1394 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395 dest = tgt->page;
1396
1397 atomic_inc(&sh->count);
1398
1399 if (target == qd_idx) {
584acdd4 1400 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1401 blocks[count] = NULL; /* regenerating p is not necessary */
1402 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1403 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404 ops_complete_compute, sh,
46d5b785 1405 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1406 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407 } else {
1408 /* Compute any data- or p-drive using XOR */
1409 count = 0;
1410 for (i = disks; i-- ; ) {
1411 if (i == target || i == qd_idx)
1412 continue;
1413 blocks[count++] = sh->dev[i].page;
1414 }
1415
0403e382
DW
1416 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417 NULL, ops_complete_compute, sh,
46d5b785 1418 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1419 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420 }
91c00924 1421
91c00924
DW
1422 return tx;
1423}
1424
ac6b53b6
DW
1425static struct dma_async_tx_descriptor *
1426ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427{
1428 int i, count, disks = sh->disks;
1429 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430 int d0_idx = raid6_d0(sh);
1431 int faila = -1, failb = -1;
1432 int target = sh->ops.target;
1433 int target2 = sh->ops.target2;
1434 struct r5dev *tgt = &sh->dev[target];
1435 struct r5dev *tgt2 = &sh->dev[target2];
1436 struct dma_async_tx_descriptor *tx;
46d5b785 1437 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1438 struct async_submit_ctl submit;
1439
59fc630b 1440 BUG_ON(sh->batch_head);
ac6b53b6
DW
1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 __func__, (unsigned long long)sh->sector, target, target2);
1443 BUG_ON(target < 0 || target2 < 0);
1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446
6c910a78 1447 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1448 * slot number conversion for 'faila' and 'failb'
1449 */
1450 for (i = 0; i < disks ; i++)
5dd33c9a 1451 blocks[i] = NULL;
ac6b53b6
DW
1452 count = 0;
1453 i = d0_idx;
1454 do {
1455 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456
1457 blocks[slot] = sh->dev[i].page;
1458
1459 if (i == target)
1460 faila = slot;
1461 if (i == target2)
1462 failb = slot;
1463 i = raid6_next_disk(i, disks);
1464 } while (i != d0_idx);
ac6b53b6
DW
1465
1466 BUG_ON(faila == failb);
1467 if (failb < faila)
1468 swap(faila, failb);
1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 __func__, (unsigned long long)sh->sector, faila, failb);
1471
1472 atomic_inc(&sh->count);
1473
1474 if (failb == syndrome_disks+1) {
1475 /* Q disk is one of the missing disks */
1476 if (faila == syndrome_disks) {
1477 /* Missing P+Q, just recompute */
0403e382
DW
1478 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479 ops_complete_compute, sh,
46d5b785 1480 to_addr_conv(sh, percpu, 0));
e4424fee 1481 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1482 STRIPE_SIZE, &submit);
1483 } else {
1484 struct page *dest;
1485 int data_target;
1486 int qd_idx = sh->qd_idx;
1487
1488 /* Missing D+Q: recompute D from P, then recompute Q */
1489 if (target == qd_idx)
1490 data_target = target2;
1491 else
1492 data_target = target;
1493
1494 count = 0;
1495 for (i = disks; i-- ; ) {
1496 if (i == data_target || i == qd_idx)
1497 continue;
1498 blocks[count++] = sh->dev[i].page;
1499 }
1500 dest = sh->dev[data_target].page;
0403e382
DW
1501 init_async_submit(&submit,
1502 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503 NULL, NULL, NULL,
46d5b785 1504 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1505 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506 &submit);
1507
584acdd4 1508 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1509 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510 ops_complete_compute, sh,
46d5b785 1511 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1512 return async_gen_syndrome(blocks, 0, count+2,
1513 STRIPE_SIZE, &submit);
1514 }
ac6b53b6 1515 } else {
6c910a78
DW
1516 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517 ops_complete_compute, sh,
46d5b785 1518 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1519 if (failb == syndrome_disks) {
1520 /* We're missing D+P. */
1521 return async_raid6_datap_recov(syndrome_disks+2,
1522 STRIPE_SIZE, faila,
1523 blocks, &submit);
1524 } else {
1525 /* We're missing D+D. */
1526 return async_raid6_2data_recov(syndrome_disks+2,
1527 STRIPE_SIZE, faila, failb,
1528 blocks, &submit);
1529 }
ac6b53b6
DW
1530 }
1531}
1532
91c00924
DW
1533static void ops_complete_prexor(void *stripe_head_ref)
1534{
1535 struct stripe_head *sh = stripe_head_ref;
1536
e46b272b 1537 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1538 (unsigned long long)sh->sector);
91c00924
DW
1539}
1540
1541static struct dma_async_tx_descriptor *
584acdd4
MS
1542ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 struct dma_async_tx_descriptor *tx)
91c00924 1544{
91c00924 1545 int disks = sh->disks;
46d5b785 1546 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1547 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1548 struct async_submit_ctl submit;
91c00924
DW
1549
1550 /* existing parity data subtracted */
1551 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552
59fc630b 1553 BUG_ON(sh->batch_head);
e46b272b 1554 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1555 (unsigned long long)sh->sector);
1556
1557 for (i = disks; i--; ) {
1558 struct r5dev *dev = &sh->dev[i];
1559 /* Only process blocks that are known to be uptodate */
d8ee0728 1560 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1561 xor_srcs[count++] = dev->page;
1562 }
1563
0403e382 1564 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1565 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1566 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1567
1568 return tx;
1569}
1570
584acdd4
MS
1571static struct dma_async_tx_descriptor *
1572ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573 struct dma_async_tx_descriptor *tx)
1574{
1575 struct page **blocks = to_addr_page(percpu, 0);
1576 int count;
1577 struct async_submit_ctl submit;
1578
1579 pr_debug("%s: stripe %llu\n", __func__,
1580 (unsigned long long)sh->sector);
1581
1582 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583
1584 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1587
1588 return tx;
1589}
1590
91c00924 1591static struct dma_async_tx_descriptor *
d8ee0728 1592ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1593{
1594 int disks = sh->disks;
d8ee0728 1595 int i;
59fc630b 1596 struct stripe_head *head_sh = sh;
91c00924 1597
e46b272b 1598 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1599 (unsigned long long)sh->sector);
1600
1601 for (i = disks; i--; ) {
59fc630b 1602 struct r5dev *dev;
91c00924 1603 struct bio *chosen;
91c00924 1604
59fc630b 1605 sh = head_sh;
1606 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1607 struct bio *wbi;
1608
59fc630b 1609again:
1610 dev = &sh->dev[i];
b17459c0 1611 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1612 chosen = dev->towrite;
1613 dev->towrite = NULL;
7a87f434 1614 sh->overwrite_disks = 0;
91c00924
DW
1615 BUG_ON(dev->written);
1616 wbi = dev->written = chosen;
b17459c0 1617 spin_unlock_irq(&sh->stripe_lock);
d592a996 1618 WARN_ON(dev->page != dev->orig_page);
91c00924 1619
4f024f37 1620 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1621 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1622 if (wbi->bi_rw & REQ_FUA)
1623 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1624 if (wbi->bi_rw & REQ_SYNC)
1625 set_bit(R5_SyncIO, &dev->flags);
9e444768 1626 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1627 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1628 else {
1629 tx = async_copy_data(1, wbi, &dev->page,
1630 dev->sector, tx, sh);
1631 if (dev->page != dev->orig_page) {
1632 set_bit(R5_SkipCopy, &dev->flags);
1633 clear_bit(R5_UPTODATE, &dev->flags);
1634 clear_bit(R5_OVERWRITE, &dev->flags);
1635 }
1636 }
91c00924
DW
1637 wbi = r5_next_bio(wbi, dev->sector);
1638 }
59fc630b 1639
1640 if (head_sh->batch_head) {
1641 sh = list_first_entry(&sh->batch_list,
1642 struct stripe_head,
1643 batch_list);
1644 if (sh == head_sh)
1645 continue;
1646 goto again;
1647 }
91c00924
DW
1648 }
1649 }
1650
1651 return tx;
1652}
1653
ac6b53b6 1654static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1655{
1656 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1657 int disks = sh->disks;
1658 int pd_idx = sh->pd_idx;
1659 int qd_idx = sh->qd_idx;
1660 int i;
9e444768 1661 bool fua = false, sync = false, discard = false;
91c00924 1662
e46b272b 1663 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1664 (unsigned long long)sh->sector);
1665
bc0934f0 1666 for (i = disks; i--; ) {
e9c7469b 1667 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1668 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1669 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1670 }
e9c7469b 1671
91c00924
DW
1672 for (i = disks; i--; ) {
1673 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1674
e9c7469b 1675 if (dev->written || i == pd_idx || i == qd_idx) {
d592a996 1676 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
9e444768 1677 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1678 if (fua)
1679 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1680 if (sync)
1681 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1682 }
91c00924
DW
1683 }
1684
d8ee0728
DW
1685 if (sh->reconstruct_state == reconstruct_state_drain_run)
1686 sh->reconstruct_state = reconstruct_state_drain_result;
1687 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689 else {
1690 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691 sh->reconstruct_state = reconstruct_state_result;
1692 }
91c00924
DW
1693
1694 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1695 raid5_release_stripe(sh);
91c00924
DW
1696}
1697
1698static void
ac6b53b6
DW
1699ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700 struct dma_async_tx_descriptor *tx)
91c00924 1701{
91c00924 1702 int disks = sh->disks;
59fc630b 1703 struct page **xor_srcs;
a08abd8c 1704 struct async_submit_ctl submit;
59fc630b 1705 int count, pd_idx = sh->pd_idx, i;
91c00924 1706 struct page *xor_dest;
d8ee0728 1707 int prexor = 0;
91c00924 1708 unsigned long flags;
59fc630b 1709 int j = 0;
1710 struct stripe_head *head_sh = sh;
1711 int last_stripe;
91c00924 1712
e46b272b 1713 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1714 (unsigned long long)sh->sector);
1715
620125f2
SL
1716 for (i = 0; i < sh->disks; i++) {
1717 if (pd_idx == i)
1718 continue;
1719 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720 break;
1721 }
1722 if (i >= sh->disks) {
1723 atomic_inc(&sh->count);
620125f2
SL
1724 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725 ops_complete_reconstruct(sh);
1726 return;
1727 }
59fc630b 1728again:
1729 count = 0;
1730 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1731 /* check if prexor is active which means only process blocks
1732 * that are part of a read-modify-write (written)
1733 */
59fc630b 1734 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1735 prexor = 1;
91c00924
DW
1736 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737 for (i = disks; i--; ) {
1738 struct r5dev *dev = &sh->dev[i];
59fc630b 1739 if (head_sh->dev[i].written)
91c00924
DW
1740 xor_srcs[count++] = dev->page;
1741 }
1742 } else {
1743 xor_dest = sh->dev[pd_idx].page;
1744 for (i = disks; i--; ) {
1745 struct r5dev *dev = &sh->dev[i];
1746 if (i != pd_idx)
1747 xor_srcs[count++] = dev->page;
1748 }
1749 }
1750
91c00924
DW
1751 /* 1/ if we prexor'd then the dest is reused as a source
1752 * 2/ if we did not prexor then we are redoing the parity
1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 * for the synchronous xor case
1755 */
59fc630b 1756 last_stripe = !head_sh->batch_head ||
1757 list_first_entry(&sh->batch_list,
1758 struct stripe_head, batch_list) == head_sh;
1759 if (last_stripe) {
1760 flags = ASYNC_TX_ACK |
1761 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762
1763 atomic_inc(&head_sh->count);
1764 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765 to_addr_conv(sh, percpu, j));
1766 } else {
1767 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768 init_async_submit(&submit, flags, tx, NULL, NULL,
1769 to_addr_conv(sh, percpu, j));
1770 }
91c00924 1771
a08abd8c
DW
1772 if (unlikely(count == 1))
1773 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774 else
1775 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1776 if (!last_stripe) {
1777 j++;
1778 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779 batch_list);
1780 goto again;
1781 }
91c00924
DW
1782}
1783
ac6b53b6
DW
1784static void
1785ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786 struct dma_async_tx_descriptor *tx)
1787{
1788 struct async_submit_ctl submit;
59fc630b 1789 struct page **blocks;
1790 int count, i, j = 0;
1791 struct stripe_head *head_sh = sh;
1792 int last_stripe;
584acdd4
MS
1793 int synflags;
1794 unsigned long txflags;
ac6b53b6
DW
1795
1796 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797
620125f2
SL
1798 for (i = 0; i < sh->disks; i++) {
1799 if (sh->pd_idx == i || sh->qd_idx == i)
1800 continue;
1801 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802 break;
1803 }
1804 if (i >= sh->disks) {
1805 atomic_inc(&sh->count);
620125f2
SL
1806 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808 ops_complete_reconstruct(sh);
1809 return;
1810 }
1811
59fc630b 1812again:
1813 blocks = to_addr_page(percpu, j);
584acdd4
MS
1814
1815 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816 synflags = SYNDROME_SRC_WRITTEN;
1817 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818 } else {
1819 synflags = SYNDROME_SRC_ALL;
1820 txflags = ASYNC_TX_ACK;
1821 }
1822
1823 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1824 last_stripe = !head_sh->batch_head ||
1825 list_first_entry(&sh->batch_list,
1826 struct stripe_head, batch_list) == head_sh;
1827
1828 if (last_stripe) {
1829 atomic_inc(&head_sh->count);
584acdd4 1830 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1831 head_sh, to_addr_conv(sh, percpu, j));
1832 } else
1833 init_async_submit(&submit, 0, tx, NULL, NULL,
1834 to_addr_conv(sh, percpu, j));
48769695 1835 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1836 if (!last_stripe) {
1837 j++;
1838 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839 batch_list);
1840 goto again;
1841 }
91c00924
DW
1842}
1843
1844static void ops_complete_check(void *stripe_head_ref)
1845{
1846 struct stripe_head *sh = stripe_head_ref;
91c00924 1847
e46b272b 1848 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1849 (unsigned long long)sh->sector);
1850
ecc65c9b 1851 sh->check_state = check_state_check_result;
91c00924 1852 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1853 raid5_release_stripe(sh);
91c00924
DW
1854}
1855
ac6b53b6 1856static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1857{
91c00924 1858 int disks = sh->disks;
ac6b53b6
DW
1859 int pd_idx = sh->pd_idx;
1860 int qd_idx = sh->qd_idx;
1861 struct page *xor_dest;
46d5b785 1862 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1863 struct dma_async_tx_descriptor *tx;
a08abd8c 1864 struct async_submit_ctl submit;
ac6b53b6
DW
1865 int count;
1866 int i;
91c00924 1867
e46b272b 1868 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1869 (unsigned long long)sh->sector);
1870
59fc630b 1871 BUG_ON(sh->batch_head);
ac6b53b6
DW
1872 count = 0;
1873 xor_dest = sh->dev[pd_idx].page;
1874 xor_srcs[count++] = xor_dest;
91c00924 1875 for (i = disks; i--; ) {
ac6b53b6
DW
1876 if (i == pd_idx || i == qd_idx)
1877 continue;
1878 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1879 }
1880
d6f38f31 1881 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 1882 to_addr_conv(sh, percpu, 0));
099f53cb 1883 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1884 &sh->ops.zero_sum_result, &submit);
91c00924 1885
91c00924 1886 atomic_inc(&sh->count);
a08abd8c
DW
1887 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888 tx = async_trigger_callback(&submit);
91c00924
DW
1889}
1890
ac6b53b6
DW
1891static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892{
46d5b785 1893 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
1894 struct async_submit_ctl submit;
1895 int count;
1896
1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898 (unsigned long long)sh->sector, checkp);
1899
59fc630b 1900 BUG_ON(sh->batch_head);
584acdd4 1901 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1902 if (!checkp)
1903 srcs[count] = NULL;
91c00924 1904
91c00924 1905 atomic_inc(&sh->count);
ac6b53b6 1906 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 1907 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1908 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1910}
1911
51acbcec 1912static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1913{
1914 int overlap_clear = 0, i, disks = sh->disks;
1915 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1916 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1917 int level = conf->level;
d6f38f31
DW
1918 struct raid5_percpu *percpu;
1919 unsigned long cpu;
91c00924 1920
d6f38f31
DW
1921 cpu = get_cpu();
1922 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1923 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1924 ops_run_biofill(sh);
1925 overlap_clear++;
1926 }
1927
7b3a871e 1928 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1929 if (level < 6)
1930 tx = ops_run_compute5(sh, percpu);
1931 else {
1932 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933 tx = ops_run_compute6_1(sh, percpu);
1934 else
1935 tx = ops_run_compute6_2(sh, percpu);
1936 }
1937 /* terminate the chain if reconstruct is not set to be run */
1938 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1939 async_tx_ack(tx);
1940 }
91c00924 1941
584acdd4
MS
1942 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943 if (level < 6)
1944 tx = ops_run_prexor5(sh, percpu, tx);
1945 else
1946 tx = ops_run_prexor6(sh, percpu, tx);
1947 }
91c00924 1948
600aa109 1949 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1950 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1951 overlap_clear++;
1952 }
1953
ac6b53b6
DW
1954 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955 if (level < 6)
1956 ops_run_reconstruct5(sh, percpu, tx);
1957 else
1958 ops_run_reconstruct6(sh, percpu, tx);
1959 }
91c00924 1960
ac6b53b6
DW
1961 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962 if (sh->check_state == check_state_run)
1963 ops_run_check_p(sh, percpu);
1964 else if (sh->check_state == check_state_run_q)
1965 ops_run_check_pq(sh, percpu, 0);
1966 else if (sh->check_state == check_state_run_pq)
1967 ops_run_check_pq(sh, percpu, 1);
1968 else
1969 BUG();
1970 }
91c00924 1971
59fc630b 1972 if (overlap_clear && !sh->batch_head)
91c00924
DW
1973 for (i = disks; i--; ) {
1974 struct r5dev *dev = &sh->dev[i];
1975 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976 wake_up(&sh->raid_conf->wait_for_overlap);
1977 }
d6f38f31 1978 put_cpu();
91c00924
DW
1979}
1980
f18c1a35
N
1981static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982{
1983 struct stripe_head *sh;
1984
1985 sh = kmem_cache_zalloc(sc, gfp);
1986 if (sh) {
1987 spin_lock_init(&sh->stripe_lock);
1988 spin_lock_init(&sh->batch_lock);
1989 INIT_LIST_HEAD(&sh->batch_list);
1990 INIT_LIST_HEAD(&sh->lru);
1991 atomic_set(&sh->count, 1);
1992 }
1993 return sh;
1994}
486f0644 1995static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
1996{
1997 struct stripe_head *sh;
f18c1a35
N
1998
1999 sh = alloc_stripe(conf->slab_cache, gfp);
3f294f4f
N
2000 if (!sh)
2001 return 0;
6ce32846 2002
3f294f4f 2003 sh->raid_conf = conf;
3f294f4f 2004
a9683a79 2005 if (grow_buffers(sh, gfp)) {
e4e11e38 2006 shrink_buffers(sh);
3f294f4f
N
2007 kmem_cache_free(conf->slab_cache, sh);
2008 return 0;
2009 }
486f0644
N
2010 sh->hash_lock_index =
2011 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2012 /* we just created an active stripe so... */
3f294f4f 2013 atomic_inc(&conf->active_stripes);
59fc630b 2014
6d036f7d 2015 raid5_release_stripe(sh);
486f0644 2016 conf->max_nr_stripes++;
3f294f4f
N
2017 return 1;
2018}
2019
d1688a6d 2020static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2021{
e18b890b 2022 struct kmem_cache *sc;
5e5e3e78 2023 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2024
f4be6b43
N
2025 if (conf->mddev->gendisk)
2026 sprintf(conf->cache_name[0],
2027 "raid%d-%s", conf->level, mdname(conf->mddev));
2028 else
2029 sprintf(conf->cache_name[0],
2030 "raid%d-%p", conf->level, conf->mddev);
2031 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032
ad01c9e3
N
2033 conf->active_name = 0;
2034 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2035 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2036 0, 0, NULL);
1da177e4
LT
2037 if (!sc)
2038 return 1;
2039 conf->slab_cache = sc;
ad01c9e3 2040 conf->pool_size = devs;
486f0644
N
2041 while (num--)
2042 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2043 return 1;
486f0644 2044
1da177e4
LT
2045 return 0;
2046}
29269553 2047
d6f38f31
DW
2048/**
2049 * scribble_len - return the required size of the scribble region
2050 * @num - total number of disks in the array
2051 *
2052 * The size must be enough to contain:
2053 * 1/ a struct page pointer for each device in the array +2
2054 * 2/ room to convert each entry in (1) to its corresponding dma
2055 * (dma_map_page()) or page (page_address()) address.
2056 *
2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058 * calculate over all devices (not just the data blocks), using zeros in place
2059 * of the P and Q blocks.
2060 */
46d5b785 2061static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2062{
46d5b785 2063 struct flex_array *ret;
d6f38f31
DW
2064 size_t len;
2065
2066 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2067 ret = flex_array_alloc(len, cnt, flags);
2068 if (!ret)
2069 return NULL;
2070 /* always prealloc all elements, so no locking is required */
2071 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072 flex_array_free(ret);
2073 return NULL;
2074 }
2075 return ret;
d6f38f31
DW
2076}
2077
738a2738
N
2078static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079{
2080 unsigned long cpu;
2081 int err = 0;
2082
27a353c0
SL
2083 /*
2084 * Never shrink. And mddev_suspend() could deadlock if this is called
2085 * from raid5d. In that case, scribble_disks and scribble_sectors
2086 * should equal to new_disks and new_sectors
2087 */
2088 if (conf->scribble_disks >= new_disks &&
2089 conf->scribble_sectors >= new_sectors)
2090 return 0;
738a2738
N
2091 mddev_suspend(conf->mddev);
2092 get_online_cpus();
2093 for_each_present_cpu(cpu) {
2094 struct raid5_percpu *percpu;
2095 struct flex_array *scribble;
2096
2097 percpu = per_cpu_ptr(conf->percpu, cpu);
2098 scribble = scribble_alloc(new_disks,
2099 new_sectors / STRIPE_SECTORS,
2100 GFP_NOIO);
2101
2102 if (scribble) {
2103 flex_array_free(percpu->scribble);
2104 percpu->scribble = scribble;
2105 } else {
2106 err = -ENOMEM;
2107 break;
2108 }
2109 }
2110 put_online_cpus();
2111 mddev_resume(conf->mddev);
27a353c0
SL
2112 if (!err) {
2113 conf->scribble_disks = new_disks;
2114 conf->scribble_sectors = new_sectors;
2115 }
738a2738
N
2116 return err;
2117}
2118
d1688a6d 2119static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2120{
2121 /* Make all the stripes able to hold 'newsize' devices.
2122 * New slots in each stripe get 'page' set to a new page.
2123 *
2124 * This happens in stages:
2125 * 1/ create a new kmem_cache and allocate the required number of
2126 * stripe_heads.
83f0d77a 2127 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2128 * to the new stripe_heads. This will have the side effect of
2129 * freezing the array as once all stripe_heads have been collected,
2130 * no IO will be possible. Old stripe heads are freed once their
2131 * pages have been transferred over, and the old kmem_cache is
2132 * freed when all stripes are done.
2133 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2134 * we simple return a failre status - no need to clean anything up.
2135 * 4/ allocate new pages for the new slots in the new stripe_heads.
2136 * If this fails, we don't bother trying the shrink the
2137 * stripe_heads down again, we just leave them as they are.
2138 * As each stripe_head is processed the new one is released into
2139 * active service.
2140 *
2141 * Once step2 is started, we cannot afford to wait for a write,
2142 * so we use GFP_NOIO allocations.
2143 */
2144 struct stripe_head *osh, *nsh;
2145 LIST_HEAD(newstripes);
2146 struct disk_info *ndisks;
b5470dc5 2147 int err;
e18b890b 2148 struct kmem_cache *sc;
ad01c9e3 2149 int i;
566c09c5 2150 int hash, cnt;
ad01c9e3
N
2151
2152 if (newsize <= conf->pool_size)
2153 return 0; /* never bother to shrink */
2154
b5470dc5
DW
2155 err = md_allow_write(conf->mddev);
2156 if (err)
2157 return err;
2a2275d6 2158
ad01c9e3
N
2159 /* Step 1 */
2160 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2161 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2162 0, 0, NULL);
ad01c9e3
N
2163 if (!sc)
2164 return -ENOMEM;
2165
2d5b569b
N
2166 /* Need to ensure auto-resizing doesn't interfere */
2167 mutex_lock(&conf->cache_size_mutex);
2168
ad01c9e3 2169 for (i = conf->max_nr_stripes; i; i--) {
f18c1a35 2170 nsh = alloc_stripe(sc, GFP_KERNEL);
ad01c9e3
N
2171 if (!nsh)
2172 break;
2173
ad01c9e3 2174 nsh->raid_conf = conf;
ad01c9e3
N
2175 list_add(&nsh->lru, &newstripes);
2176 }
2177 if (i) {
2178 /* didn't get enough, give up */
2179 while (!list_empty(&newstripes)) {
2180 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2181 list_del(&nsh->lru);
2182 kmem_cache_free(sc, nsh);
2183 }
2184 kmem_cache_destroy(sc);
2d5b569b 2185 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2186 return -ENOMEM;
2187 }
2188 /* Step 2 - Must use GFP_NOIO now.
2189 * OK, we have enough stripes, start collecting inactive
2190 * stripes and copying them over
2191 */
566c09c5
SL
2192 hash = 0;
2193 cnt = 0;
ad01c9e3 2194 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2195 lock_device_hash_lock(conf, hash);
6ab2a4b8 2196 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2197 !list_empty(conf->inactive_list + hash),
2198 unlock_device_hash_lock(conf, hash),
2199 lock_device_hash_lock(conf, hash));
2200 osh = get_free_stripe(conf, hash);
2201 unlock_device_hash_lock(conf, hash);
f18c1a35 2202
d592a996 2203 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2204 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2205 nsh->dev[i].orig_page = osh->dev[i].page;
2206 }
566c09c5 2207 nsh->hash_lock_index = hash;
ad01c9e3 2208 kmem_cache_free(conf->slab_cache, osh);
566c09c5
SL
2209 cnt++;
2210 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2211 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2212 hash++;
2213 cnt = 0;
2214 }
ad01c9e3
N
2215 }
2216 kmem_cache_destroy(conf->slab_cache);
2217
2218 /* Step 3.
2219 * At this point, we are holding all the stripes so the array
2220 * is completely stalled, so now is a good time to resize
d6f38f31 2221 * conf->disks and the scribble region
ad01c9e3
N
2222 */
2223 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2224 if (ndisks) {
2225 for (i=0; i<conf->raid_disks; i++)
2226 ndisks[i] = conf->disks[i];
2227 kfree(conf->disks);
2228 conf->disks = ndisks;
2229 } else
2230 err = -ENOMEM;
2231
2d5b569b 2232 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2233 /* Step 4, return new stripes to service */
2234 while(!list_empty(&newstripes)) {
2235 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2236 list_del_init(&nsh->lru);
d6f38f31 2237
ad01c9e3
N
2238 for (i=conf->raid_disks; i < newsize; i++)
2239 if (nsh->dev[i].page == NULL) {
2240 struct page *p = alloc_page(GFP_NOIO);
2241 nsh->dev[i].page = p;
d592a996 2242 nsh->dev[i].orig_page = p;
ad01c9e3
N
2243 if (!p)
2244 err = -ENOMEM;
2245 }
6d036f7d 2246 raid5_release_stripe(nsh);
ad01c9e3
N
2247 }
2248 /* critical section pass, GFP_NOIO no longer needed */
2249
2250 conf->slab_cache = sc;
2251 conf->active_name = 1-conf->active_name;
6e9eac2d
N
2252 if (!err)
2253 conf->pool_size = newsize;
ad01c9e3
N
2254 return err;
2255}
1da177e4 2256
486f0644 2257static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2258{
2259 struct stripe_head *sh;
49895bcc 2260 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2261
566c09c5
SL
2262 spin_lock_irq(conf->hash_locks + hash);
2263 sh = get_free_stripe(conf, hash);
2264 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2265 if (!sh)
2266 return 0;
78bafebd 2267 BUG_ON(atomic_read(&sh->count));
e4e11e38 2268 shrink_buffers(sh);
3f294f4f
N
2269 kmem_cache_free(conf->slab_cache, sh);
2270 atomic_dec(&conf->active_stripes);
486f0644 2271 conf->max_nr_stripes--;
3f294f4f
N
2272 return 1;
2273}
2274
d1688a6d 2275static void shrink_stripes(struct r5conf *conf)
3f294f4f 2276{
486f0644
N
2277 while (conf->max_nr_stripes &&
2278 drop_one_stripe(conf))
2279 ;
3f294f4f 2280
644df1a8 2281 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2282 conf->slab_cache = NULL;
2283}
2284
4246a0b6 2285static void raid5_end_read_request(struct bio * bi)
1da177e4 2286{
99c0fb5f 2287 struct stripe_head *sh = bi->bi_private;
d1688a6d 2288 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2289 int disks = sh->disks, i;
d6950432 2290 char b[BDEVNAME_SIZE];
dd054fce 2291 struct md_rdev *rdev = NULL;
05616be5 2292 sector_t s;
1da177e4
LT
2293
2294 for (i=0 ; i<disks; i++)
2295 if (bi == &sh->dev[i].req)
2296 break;
2297
4246a0b6 2298 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2299 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2300 bi->bi_error);
1da177e4
LT
2301 if (i == disks) {
2302 BUG();
6712ecf8 2303 return;
1da177e4 2304 }
14a75d3e 2305 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2306 /* If replacement finished while this request was outstanding,
2307 * 'replacement' might be NULL already.
2308 * In that case it moved down to 'rdev'.
2309 * rdev is not removed until all requests are finished.
2310 */
14a75d3e 2311 rdev = conf->disks[i].replacement;
dd054fce 2312 if (!rdev)
14a75d3e 2313 rdev = conf->disks[i].rdev;
1da177e4 2314
05616be5
N
2315 if (use_new_offset(conf, sh))
2316 s = sh->sector + rdev->new_data_offset;
2317 else
2318 s = sh->sector + rdev->data_offset;
4246a0b6 2319 if (!bi->bi_error) {
1da177e4 2320 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2321 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2322 /* Note that this cannot happen on a
2323 * replacement device. We just fail those on
2324 * any error
2325 */
8bda470e
CD
2326 printk_ratelimited(
2327 KERN_INFO
2328 "md/raid:%s: read error corrected"
2329 " (%lu sectors at %llu on %s)\n",
2330 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2331 (unsigned long long)s,
8bda470e 2332 bdevname(rdev->bdev, b));
ddd5115f 2333 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2334 clear_bit(R5_ReadError, &sh->dev[i].flags);
2335 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2336 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2337 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2338
14a75d3e
N
2339 if (atomic_read(&rdev->read_errors))
2340 atomic_set(&rdev->read_errors, 0);
1da177e4 2341 } else {
14a75d3e 2342 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2343 int retry = 0;
2e8ac303 2344 int set_bad = 0;
d6950432 2345
1da177e4 2346 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2347 atomic_inc(&rdev->read_errors);
14a75d3e
N
2348 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2349 printk_ratelimited(
2350 KERN_WARNING
2351 "md/raid:%s: read error on replacement device "
2352 "(sector %llu on %s).\n",
2353 mdname(conf->mddev),
05616be5 2354 (unsigned long long)s,
14a75d3e 2355 bdn);
2e8ac303 2356 else if (conf->mddev->degraded >= conf->max_degraded) {
2357 set_bad = 1;
8bda470e
CD
2358 printk_ratelimited(
2359 KERN_WARNING
2360 "md/raid:%s: read error not correctable "
2361 "(sector %llu on %s).\n",
2362 mdname(conf->mddev),
05616be5 2363 (unsigned long long)s,
8bda470e 2364 bdn);
2e8ac303 2365 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2366 /* Oh, no!!! */
2e8ac303 2367 set_bad = 1;
8bda470e
CD
2368 printk_ratelimited(
2369 KERN_WARNING
2370 "md/raid:%s: read error NOT corrected!! "
2371 "(sector %llu on %s).\n",
2372 mdname(conf->mddev),
05616be5 2373 (unsigned long long)s,
8bda470e 2374 bdn);
2e8ac303 2375 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2376 > conf->max_nr_stripes)
14f8d26b 2377 printk(KERN_WARNING
0c55e022 2378 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2379 mdname(conf->mddev), bdn);
ba22dcbf
N
2380 else
2381 retry = 1;
edfa1f65
BY
2382 if (set_bad && test_bit(In_sync, &rdev->flags)
2383 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2384 retry = 1;
ba22dcbf 2385 if (retry)
3f9e7c14 2386 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2387 set_bit(R5_ReadError, &sh->dev[i].flags);
2388 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2389 } else
2390 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2391 else {
4e5314b5
N
2392 clear_bit(R5_ReadError, &sh->dev[i].flags);
2393 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2394 if (!(set_bad
2395 && test_bit(In_sync, &rdev->flags)
2396 && rdev_set_badblocks(
2397 rdev, sh->sector, STRIPE_SECTORS, 0)))
2398 md_error(conf->mddev, rdev);
ba22dcbf 2399 }
1da177e4 2400 }
14a75d3e 2401 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
2402 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2403 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2404 raid5_release_stripe(sh);
1da177e4
LT
2405}
2406
4246a0b6 2407static void raid5_end_write_request(struct bio *bi)
1da177e4 2408{
99c0fb5f 2409 struct stripe_head *sh = bi->bi_private;
d1688a6d 2410 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2411 int disks = sh->disks, i;
977df362 2412 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2413 sector_t first_bad;
2414 int bad_sectors;
977df362 2415 int replacement = 0;
1da177e4 2416
977df362
N
2417 for (i = 0 ; i < disks; i++) {
2418 if (bi == &sh->dev[i].req) {
2419 rdev = conf->disks[i].rdev;
1da177e4 2420 break;
977df362
N
2421 }
2422 if (bi == &sh->dev[i].rreq) {
2423 rdev = conf->disks[i].replacement;
dd054fce
N
2424 if (rdev)
2425 replacement = 1;
2426 else
2427 /* rdev was removed and 'replacement'
2428 * replaced it. rdev is not removed
2429 * until all requests are finished.
2430 */
2431 rdev = conf->disks[i].rdev;
977df362
N
2432 break;
2433 }
2434 }
4246a0b6 2435 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2436 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4246a0b6 2437 bi->bi_error);
1da177e4
LT
2438 if (i == disks) {
2439 BUG();
6712ecf8 2440 return;
1da177e4
LT
2441 }
2442
977df362 2443 if (replacement) {
4246a0b6 2444 if (bi->bi_error)
977df362
N
2445 md_error(conf->mddev, rdev);
2446 else if (is_badblock(rdev, sh->sector,
2447 STRIPE_SECTORS,
2448 &first_bad, &bad_sectors))
2449 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2450 } else {
4246a0b6 2451 if (bi->bi_error) {
9f97e4b1 2452 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2453 set_bit(WriteErrorSeen, &rdev->flags);
2454 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2455 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2456 set_bit(MD_RECOVERY_NEEDED,
2457 &rdev->mddev->recovery);
977df362
N
2458 } else if (is_badblock(rdev, sh->sector,
2459 STRIPE_SECTORS,
c0b32972 2460 &first_bad, &bad_sectors)) {
977df362 2461 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2462 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2463 /* That was a successful write so make
2464 * sure it looks like we already did
2465 * a re-write.
2466 */
2467 set_bit(R5_ReWrite, &sh->dev[i].flags);
2468 }
977df362
N
2469 }
2470 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2471
4246a0b6 2472 if (sh->batch_head && bi->bi_error && !replacement)
72ac7330 2473 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2474
977df362
N
2475 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2476 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2477 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2478 raid5_release_stripe(sh);
59fc630b 2479
2480 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2481 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2482}
2483
784052ec 2484static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
2485{
2486 struct r5dev *dev = &sh->dev[i];
2487
2488 bio_init(&dev->req);
2489 dev->req.bi_io_vec = &dev->vec;
d592a996 2490 dev->req.bi_max_vecs = 1;
1da177e4
LT
2491 dev->req.bi_private = sh;
2492
977df362
N
2493 bio_init(&dev->rreq);
2494 dev->rreq.bi_io_vec = &dev->rvec;
d592a996 2495 dev->rreq.bi_max_vecs = 1;
977df362 2496 dev->rreq.bi_private = sh;
977df362 2497
1da177e4 2498 dev->flags = 0;
6d036f7d 2499 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4
LT
2500}
2501
849674e4 2502static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2503{
2504 char b[BDEVNAME_SIZE];
d1688a6d 2505 struct r5conf *conf = mddev->private;
908f4fbd 2506 unsigned long flags;
0c55e022 2507 pr_debug("raid456: error called\n");
1da177e4 2508
908f4fbd
N
2509 spin_lock_irqsave(&conf->device_lock, flags);
2510 clear_bit(In_sync, &rdev->flags);
2511 mddev->degraded = calc_degraded(conf);
2512 spin_unlock_irqrestore(&conf->device_lock, flags);
2513 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2514
de393cde 2515 set_bit(Blocked, &rdev->flags);
6f8d0c77 2516 set_bit(Faulty, &rdev->flags);
85ad1d13
GJ
2517 set_mask_bits(&mddev->flags, 0,
2518 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
6f8d0c77
N
2519 printk(KERN_ALERT
2520 "md/raid:%s: Disk failure on %s, disabling device.\n"
2521 "md/raid:%s: Operation continuing on %d devices.\n",
2522 mdname(mddev),
2523 bdevname(rdev->bdev, b),
2524 mdname(mddev),
2525 conf->raid_disks - mddev->degraded);
16a53ecc 2526}
1da177e4
LT
2527
2528/*
2529 * Input: a 'big' sector number,
2530 * Output: index of the data and parity disk, and the sector # in them.
2531 */
6d036f7d
SL
2532sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2533 int previous, int *dd_idx,
2534 struct stripe_head *sh)
1da177e4 2535{
6e3b96ed 2536 sector_t stripe, stripe2;
35f2a591 2537 sector_t chunk_number;
1da177e4 2538 unsigned int chunk_offset;
911d4ee8 2539 int pd_idx, qd_idx;
67cc2b81 2540 int ddf_layout = 0;
1da177e4 2541 sector_t new_sector;
e183eaed
N
2542 int algorithm = previous ? conf->prev_algo
2543 : conf->algorithm;
09c9e5fa
AN
2544 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2545 : conf->chunk_sectors;
112bf897
N
2546 int raid_disks = previous ? conf->previous_raid_disks
2547 : conf->raid_disks;
2548 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2549
2550 /* First compute the information on this sector */
2551
2552 /*
2553 * Compute the chunk number and the sector offset inside the chunk
2554 */
2555 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2556 chunk_number = r_sector;
1da177e4
LT
2557
2558 /*
2559 * Compute the stripe number
2560 */
35f2a591
N
2561 stripe = chunk_number;
2562 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2563 stripe2 = stripe;
1da177e4
LT
2564 /*
2565 * Select the parity disk based on the user selected algorithm.
2566 */
84789554 2567 pd_idx = qd_idx = -1;
16a53ecc
N
2568 switch(conf->level) {
2569 case 4:
911d4ee8 2570 pd_idx = data_disks;
16a53ecc
N
2571 break;
2572 case 5:
e183eaed 2573 switch (algorithm) {
1da177e4 2574 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2575 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2576 if (*dd_idx >= pd_idx)
1da177e4
LT
2577 (*dd_idx)++;
2578 break;
2579 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2580 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2581 if (*dd_idx >= pd_idx)
1da177e4
LT
2582 (*dd_idx)++;
2583 break;
2584 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2585 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2586 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2587 break;
2588 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2589 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2590 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2591 break;
99c0fb5f
N
2592 case ALGORITHM_PARITY_0:
2593 pd_idx = 0;
2594 (*dd_idx)++;
2595 break;
2596 case ALGORITHM_PARITY_N:
2597 pd_idx = data_disks;
2598 break;
1da177e4 2599 default:
99c0fb5f 2600 BUG();
16a53ecc
N
2601 }
2602 break;
2603 case 6:
2604
e183eaed 2605 switch (algorithm) {
16a53ecc 2606 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2607 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2608 qd_idx = pd_idx + 1;
2609 if (pd_idx == raid_disks-1) {
99c0fb5f 2610 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2611 qd_idx = 0;
2612 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2613 (*dd_idx) += 2; /* D D P Q D */
2614 break;
2615 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2616 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2617 qd_idx = pd_idx + 1;
2618 if (pd_idx == raid_disks-1) {
99c0fb5f 2619 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2620 qd_idx = 0;
2621 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2622 (*dd_idx) += 2; /* D D P Q D */
2623 break;
2624 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2625 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2626 qd_idx = (pd_idx + 1) % raid_disks;
2627 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2628 break;
2629 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2630 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2631 qd_idx = (pd_idx + 1) % raid_disks;
2632 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2633 break;
99c0fb5f
N
2634
2635 case ALGORITHM_PARITY_0:
2636 pd_idx = 0;
2637 qd_idx = 1;
2638 (*dd_idx) += 2;
2639 break;
2640 case ALGORITHM_PARITY_N:
2641 pd_idx = data_disks;
2642 qd_idx = data_disks + 1;
2643 break;
2644
2645 case ALGORITHM_ROTATING_ZERO_RESTART:
2646 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2647 * of blocks for computing Q is different.
2648 */
6e3b96ed 2649 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2650 qd_idx = pd_idx + 1;
2651 if (pd_idx == raid_disks-1) {
2652 (*dd_idx)++; /* Q D D D P */
2653 qd_idx = 0;
2654 } else if (*dd_idx >= pd_idx)
2655 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2656 ddf_layout = 1;
99c0fb5f
N
2657 break;
2658
2659 case ALGORITHM_ROTATING_N_RESTART:
2660 /* Same a left_asymmetric, by first stripe is
2661 * D D D P Q rather than
2662 * Q D D D P
2663 */
6e3b96ed
N
2664 stripe2 += 1;
2665 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2666 qd_idx = pd_idx + 1;
2667 if (pd_idx == raid_disks-1) {
2668 (*dd_idx)++; /* Q D D D P */
2669 qd_idx = 0;
2670 } else if (*dd_idx >= pd_idx)
2671 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2672 ddf_layout = 1;
99c0fb5f
N
2673 break;
2674
2675 case ALGORITHM_ROTATING_N_CONTINUE:
2676 /* Same as left_symmetric but Q is before P */
6e3b96ed 2677 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2678 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2679 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2680 ddf_layout = 1;
99c0fb5f
N
2681 break;
2682
2683 case ALGORITHM_LEFT_ASYMMETRIC_6:
2684 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2685 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2686 if (*dd_idx >= pd_idx)
2687 (*dd_idx)++;
2688 qd_idx = raid_disks - 1;
2689 break;
2690
2691 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2692 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2693 if (*dd_idx >= pd_idx)
2694 (*dd_idx)++;
2695 qd_idx = raid_disks - 1;
2696 break;
2697
2698 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2699 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2700 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2701 qd_idx = raid_disks - 1;
2702 break;
2703
2704 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2705 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2706 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2707 qd_idx = raid_disks - 1;
2708 break;
2709
2710 case ALGORITHM_PARITY_0_6:
2711 pd_idx = 0;
2712 (*dd_idx)++;
2713 qd_idx = raid_disks - 1;
2714 break;
2715
16a53ecc 2716 default:
99c0fb5f 2717 BUG();
16a53ecc
N
2718 }
2719 break;
1da177e4
LT
2720 }
2721
911d4ee8
N
2722 if (sh) {
2723 sh->pd_idx = pd_idx;
2724 sh->qd_idx = qd_idx;
67cc2b81 2725 sh->ddf_layout = ddf_layout;
911d4ee8 2726 }
1da177e4
LT
2727 /*
2728 * Finally, compute the new sector number
2729 */
2730 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2731 return new_sector;
2732}
2733
6d036f7d 2734sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2735{
d1688a6d 2736 struct r5conf *conf = sh->raid_conf;
b875e531
N
2737 int raid_disks = sh->disks;
2738 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2739 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2740 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2741 : conf->chunk_sectors;
e183eaed
N
2742 int algorithm = previous ? conf->prev_algo
2743 : conf->algorithm;
1da177e4
LT
2744 sector_t stripe;
2745 int chunk_offset;
35f2a591
N
2746 sector_t chunk_number;
2747 int dummy1, dd_idx = i;
1da177e4 2748 sector_t r_sector;
911d4ee8 2749 struct stripe_head sh2;
1da177e4
LT
2750
2751 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2752 stripe = new_sector;
1da177e4 2753
16a53ecc
N
2754 if (i == sh->pd_idx)
2755 return 0;
2756 switch(conf->level) {
2757 case 4: break;
2758 case 5:
e183eaed 2759 switch (algorithm) {
1da177e4
LT
2760 case ALGORITHM_LEFT_ASYMMETRIC:
2761 case ALGORITHM_RIGHT_ASYMMETRIC:
2762 if (i > sh->pd_idx)
2763 i--;
2764 break;
2765 case ALGORITHM_LEFT_SYMMETRIC:
2766 case ALGORITHM_RIGHT_SYMMETRIC:
2767 if (i < sh->pd_idx)
2768 i += raid_disks;
2769 i -= (sh->pd_idx + 1);
2770 break;
99c0fb5f
N
2771 case ALGORITHM_PARITY_0:
2772 i -= 1;
2773 break;
2774 case ALGORITHM_PARITY_N:
2775 break;
1da177e4 2776 default:
99c0fb5f 2777 BUG();
16a53ecc
N
2778 }
2779 break;
2780 case 6:
d0dabf7e 2781 if (i == sh->qd_idx)
16a53ecc 2782 return 0; /* It is the Q disk */
e183eaed 2783 switch (algorithm) {
16a53ecc
N
2784 case ALGORITHM_LEFT_ASYMMETRIC:
2785 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2786 case ALGORITHM_ROTATING_ZERO_RESTART:
2787 case ALGORITHM_ROTATING_N_RESTART:
2788 if (sh->pd_idx == raid_disks-1)
2789 i--; /* Q D D D P */
16a53ecc
N
2790 else if (i > sh->pd_idx)
2791 i -= 2; /* D D P Q D */
2792 break;
2793 case ALGORITHM_LEFT_SYMMETRIC:
2794 case ALGORITHM_RIGHT_SYMMETRIC:
2795 if (sh->pd_idx == raid_disks-1)
2796 i--; /* Q D D D P */
2797 else {
2798 /* D D P Q D */
2799 if (i < sh->pd_idx)
2800 i += raid_disks;
2801 i -= (sh->pd_idx + 2);
2802 }
2803 break;
99c0fb5f
N
2804 case ALGORITHM_PARITY_0:
2805 i -= 2;
2806 break;
2807 case ALGORITHM_PARITY_N:
2808 break;
2809 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2810 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2811 if (sh->pd_idx == 0)
2812 i--; /* P D D D Q */
e4424fee
N
2813 else {
2814 /* D D Q P D */
2815 if (i < sh->pd_idx)
2816 i += raid_disks;
2817 i -= (sh->pd_idx + 1);
2818 }
99c0fb5f
N
2819 break;
2820 case ALGORITHM_LEFT_ASYMMETRIC_6:
2821 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2822 if (i > sh->pd_idx)
2823 i--;
2824 break;
2825 case ALGORITHM_LEFT_SYMMETRIC_6:
2826 case ALGORITHM_RIGHT_SYMMETRIC_6:
2827 if (i < sh->pd_idx)
2828 i += data_disks + 1;
2829 i -= (sh->pd_idx + 1);
2830 break;
2831 case ALGORITHM_PARITY_0_6:
2832 i -= 1;
2833 break;
16a53ecc 2834 default:
99c0fb5f 2835 BUG();
16a53ecc
N
2836 }
2837 break;
1da177e4
LT
2838 }
2839
2840 chunk_number = stripe * data_disks + i;
35f2a591 2841 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2842
112bf897 2843 check = raid5_compute_sector(conf, r_sector,
784052ec 2844 previous, &dummy1, &sh2);
911d4ee8
N
2845 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2846 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2847 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2848 mdname(conf->mddev));
1da177e4
LT
2849 return 0;
2850 }
2851 return r_sector;
2852}
2853
600aa109 2854static void
c0f7bddb 2855schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2856 int rcw, int expand)
e33129d8 2857{
584acdd4 2858 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 2859 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2860 int level = conf->level;
e33129d8
DW
2861
2862 if (rcw) {
e33129d8
DW
2863
2864 for (i = disks; i--; ) {
2865 struct r5dev *dev = &sh->dev[i];
2866
2867 if (dev->towrite) {
2868 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2869 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2870 if (!expand)
2871 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2872 s->locked++;
e33129d8
DW
2873 }
2874 }
ce7d363a
N
2875 /* if we are not expanding this is a proper write request, and
2876 * there will be bios with new data to be drained into the
2877 * stripe cache
2878 */
2879 if (!expand) {
2880 if (!s->locked)
2881 /* False alarm, nothing to do */
2882 return;
2883 sh->reconstruct_state = reconstruct_state_drain_run;
2884 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2885 } else
2886 sh->reconstruct_state = reconstruct_state_run;
2887
2888 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2889
c0f7bddb 2890 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2891 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2892 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
2893 } else {
2894 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2895 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
2896 BUG_ON(level == 6 &&
2897 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2898 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 2899
e33129d8
DW
2900 for (i = disks; i--; ) {
2901 struct r5dev *dev = &sh->dev[i];
584acdd4 2902 if (i == pd_idx || i == qd_idx)
e33129d8
DW
2903 continue;
2904
e33129d8
DW
2905 if (dev->towrite &&
2906 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2907 test_bit(R5_Wantcompute, &dev->flags))) {
2908 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2909 set_bit(R5_LOCKED, &dev->flags);
2910 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2911 s->locked++;
e33129d8
DW
2912 }
2913 }
ce7d363a
N
2914 if (!s->locked)
2915 /* False alarm - nothing to do */
2916 return;
2917 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2918 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2919 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2920 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2921 }
2922
c0f7bddb 2923 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2924 * are in flight
2925 */
2926 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2927 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2928 s->locked++;
e33129d8 2929
c0f7bddb
YT
2930 if (level == 6) {
2931 int qd_idx = sh->qd_idx;
2932 struct r5dev *dev = &sh->dev[qd_idx];
2933
2934 set_bit(R5_LOCKED, &dev->flags);
2935 clear_bit(R5_UPTODATE, &dev->flags);
2936 s->locked++;
2937 }
2938
600aa109 2939 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2940 __func__, (unsigned long long)sh->sector,
600aa109 2941 s->locked, s->ops_request);
e33129d8 2942}
16a53ecc 2943
1da177e4
LT
2944/*
2945 * Each stripe/dev can have one or more bion attached.
16a53ecc 2946 * toread/towrite point to the first in a chain.
1da177e4
LT
2947 * The bi_next chain must be in order.
2948 */
da41ba65 2949static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2950 int forwrite, int previous)
1da177e4
LT
2951{
2952 struct bio **bip;
d1688a6d 2953 struct r5conf *conf = sh->raid_conf;
72626685 2954 int firstwrite=0;
1da177e4 2955
cbe47ec5 2956 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 2957 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
2958 (unsigned long long)sh->sector);
2959
b17459c0
SL
2960 /*
2961 * If several bio share a stripe. The bio bi_phys_segments acts as a
2962 * reference count to avoid race. The reference count should already be
2963 * increased before this function is called (for example, in
849674e4 2964 * raid5_make_request()), so other bio sharing this stripe will not free the
b17459c0
SL
2965 * stripe. If a stripe is owned by one stripe, the stripe lock will
2966 * protect it.
2967 */
2968 spin_lock_irq(&sh->stripe_lock);
59fc630b 2969 /* Don't allow new IO added to stripes in batch list */
2970 if (sh->batch_head)
2971 goto overlap;
72626685 2972 if (forwrite) {
1da177e4 2973 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2974 if (*bip == NULL)
72626685
N
2975 firstwrite = 1;
2976 } else
1da177e4 2977 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
2978 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2979 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
2980 goto overlap;
2981 bip = & (*bip)->bi_next;
2982 }
4f024f37 2983 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
2984 goto overlap;
2985
da41ba65 2986 if (!forwrite || previous)
2987 clear_bit(STRIPE_BATCH_READY, &sh->state);
2988
78bafebd 2989 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2990 if (*bip)
2991 bi->bi_next = *bip;
2992 *bip = bi;
e7836bd6 2993 raid5_inc_bi_active_stripes(bi);
72626685 2994
1da177e4
LT
2995 if (forwrite) {
2996 /* check if page is covered */
2997 sector_t sector = sh->dev[dd_idx].sector;
2998 for (bi=sh->dev[dd_idx].towrite;
2999 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3000 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3001 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3002 if (bio_end_sector(bi) >= sector)
3003 sector = bio_end_sector(bi);
1da177e4
LT
3004 }
3005 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3006 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3007 sh->overwrite_disks++;
1da177e4 3008 }
cbe47ec5
N
3009
3010 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3011 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3012 (unsigned long long)sh->sector, dd_idx);
3013
3014 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3015 /* Cannot hold spinlock over bitmap_startwrite,
3016 * but must ensure this isn't added to a batch until
3017 * we have added to the bitmap and set bm_seq.
3018 * So set STRIPE_BITMAP_PENDING to prevent
3019 * batching.
3020 * If multiple add_stripe_bio() calls race here they
3021 * much all set STRIPE_BITMAP_PENDING. So only the first one
3022 * to complete "bitmap_startwrite" gets to set
3023 * STRIPE_BIT_DELAY. This is important as once a stripe
3024 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3025 * any more.
3026 */
3027 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3029 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3030 STRIPE_SECTORS, 0);
d0852df5
N
3031 spin_lock_irq(&sh->stripe_lock);
3032 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3033 if (!sh->batch_head) {
3034 sh->bm_seq = conf->seq_flush+1;
3035 set_bit(STRIPE_BIT_DELAY, &sh->state);
3036 }
cbe47ec5 3037 }
d0852df5 3038 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3039
3040 if (stripe_can_batch(sh))
3041 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3042 return 1;
3043
3044 overlap:
3045 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3046 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3047 return 0;
3048}
3049
d1688a6d 3050static void end_reshape(struct r5conf *conf);
29269553 3051
d1688a6d 3052static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3053 struct stripe_head *sh)
ccfcc3c1 3054{
784052ec 3055 int sectors_per_chunk =
09c9e5fa 3056 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3057 int dd_idx;
2d2063ce 3058 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3059 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3060
112bf897
N
3061 raid5_compute_sector(conf,
3062 stripe * (disks - conf->max_degraded)
b875e531 3063 *sectors_per_chunk + chunk_offset,
112bf897 3064 previous,
911d4ee8 3065 &dd_idx, sh);
ccfcc3c1
N
3066}
3067
a4456856 3068static void
d1688a6d 3069handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856 3070 struct stripe_head_state *s, int disks,
34a6f80e 3071 struct bio_list *return_bi)
a4456856
DW
3072{
3073 int i;
59fc630b 3074 BUG_ON(sh->batch_head);
a4456856
DW
3075 for (i = disks; i--; ) {
3076 struct bio *bi;
3077 int bitmap_end = 0;
3078
3079 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3080 struct md_rdev *rdev;
a4456856
DW
3081 rcu_read_lock();
3082 rdev = rcu_dereference(conf->disks[i].rdev);
3083 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
3084 atomic_inc(&rdev->nr_pending);
3085 else
3086 rdev = NULL;
a4456856 3087 rcu_read_unlock();
7f0da59b
N
3088 if (rdev) {
3089 if (!rdev_set_badblocks(
3090 rdev,
3091 sh->sector,
3092 STRIPE_SECTORS, 0))
3093 md_error(conf->mddev, rdev);
3094 rdev_dec_pending(rdev, conf->mddev);
3095 }
a4456856 3096 }
b17459c0 3097 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3098 /* fail all writes first */
3099 bi = sh->dev[i].towrite;
3100 sh->dev[i].towrite = NULL;
7a87f434 3101 sh->overwrite_disks = 0;
b17459c0 3102 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3103 if (bi)
a4456856 3104 bitmap_end = 1;
a4456856 3105
0576b1c6
SL
3106 r5l_stripe_write_finished(sh);
3107
a4456856
DW
3108 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3109 wake_up(&conf->wait_for_overlap);
3110
4f024f37 3111 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3112 sh->dev[i].sector + STRIPE_SECTORS) {
3113 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3114
3115 bi->bi_error = -EIO;
e7836bd6 3116 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3117 md_write_end(conf->mddev);
34a6f80e 3118 bio_list_add(return_bi, bi);
a4456856
DW
3119 }
3120 bi = nextbi;
3121 }
7eaf7e8e
SL
3122 if (bitmap_end)
3123 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3124 STRIPE_SECTORS, 0, 0);
3125 bitmap_end = 0;
a4456856
DW
3126 /* and fail all 'written' */
3127 bi = sh->dev[i].written;
3128 sh->dev[i].written = NULL;
d592a996
SL
3129 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3130 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3131 sh->dev[i].page = sh->dev[i].orig_page;
3132 }
3133
a4456856 3134 if (bi) bitmap_end = 1;
4f024f37 3135 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3136 sh->dev[i].sector + STRIPE_SECTORS) {
3137 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3138
3139 bi->bi_error = -EIO;
e7836bd6 3140 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856 3141 md_write_end(conf->mddev);
34a6f80e 3142 bio_list_add(return_bi, bi);
a4456856
DW
3143 }
3144 bi = bi2;
3145 }
3146
b5e98d65
DW
3147 /* fail any reads if this device is non-operational and
3148 * the data has not reached the cache yet.
3149 */
3150 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3151 s->failed > conf->max_degraded &&
b5e98d65
DW
3152 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3153 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3154 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3155 bi = sh->dev[i].toread;
3156 sh->dev[i].toread = NULL;
143c4d05 3157 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3158 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3159 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3160 if (bi)
3161 s->to_read--;
4f024f37 3162 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3163 sh->dev[i].sector + STRIPE_SECTORS) {
3164 struct bio *nextbi =
3165 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6
CH
3166
3167 bi->bi_error = -EIO;
34a6f80e
N
3168 if (!raid5_dec_bi_active_stripes(bi))
3169 bio_list_add(return_bi, bi);
a4456856
DW
3170 bi = nextbi;
3171 }
3172 }
a4456856
DW
3173 if (bitmap_end)
3174 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3175 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3176 /* If we were in the middle of a write the parity block might
3177 * still be locked - so just clear all R5_LOCKED flags
3178 */
3179 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3180 }
ebda780b
SL
3181 s->to_write = 0;
3182 s->written = 0;
a4456856 3183
8b3e6cdc
DW
3184 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3185 if (atomic_dec_and_test(&conf->pending_full_writes))
3186 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3187}
3188
7f0da59b 3189static void
d1688a6d 3190handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3191 struct stripe_head_state *s)
3192{
3193 int abort = 0;
3194 int i;
3195
59fc630b 3196 BUG_ON(sh->batch_head);
7f0da59b 3197 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3198 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3199 wake_up(&conf->wait_for_overlap);
7f0da59b 3200 s->syncing = 0;
9a3e1101 3201 s->replacing = 0;
7f0da59b 3202 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3203 * Don't even need to abort as that is handled elsewhere
3204 * if needed, and not always wanted e.g. if there is a known
3205 * bad block here.
9a3e1101 3206 * For recover/replace we need to record a bad block on all
7f0da59b
N
3207 * non-sync devices, or abort the recovery
3208 */
18b9837e
N
3209 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3210 /* During recovery devices cannot be removed, so
3211 * locking and refcounting of rdevs is not needed
3212 */
e50d3992 3213 rcu_read_lock();
18b9837e 3214 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3215 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3216 if (rdev
3217 && !test_bit(Faulty, &rdev->flags)
3218 && !test_bit(In_sync, &rdev->flags)
3219 && !rdev_set_badblocks(rdev, sh->sector,
3220 STRIPE_SECTORS, 0))
3221 abort = 1;
e50d3992 3222 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3223 if (rdev
3224 && !test_bit(Faulty, &rdev->flags)
3225 && !test_bit(In_sync, &rdev->flags)
3226 && !rdev_set_badblocks(rdev, sh->sector,
3227 STRIPE_SECTORS, 0))
3228 abort = 1;
3229 }
e50d3992 3230 rcu_read_unlock();
18b9837e
N
3231 if (abort)
3232 conf->recovery_disabled =
3233 conf->mddev->recovery_disabled;
7f0da59b 3234 }
18b9837e 3235 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3236}
3237
9a3e1101
N
3238static int want_replace(struct stripe_head *sh, int disk_idx)
3239{
3240 struct md_rdev *rdev;
3241 int rv = 0;
3f232d6a
N
3242
3243 rcu_read_lock();
3244 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3245 if (rdev
3246 && !test_bit(Faulty, &rdev->flags)
3247 && !test_bit(In_sync, &rdev->flags)
3248 && (rdev->recovery_offset <= sh->sector
3249 || rdev->mddev->recovery_cp <= sh->sector))
3250 rv = 1;
3f232d6a 3251 rcu_read_unlock();
9a3e1101
N
3252 return rv;
3253}
3254
93b3dbce 3255/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
3256 * to be read or computed to satisfy a request.
3257 *
3258 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 3259 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 3260 */
2c58f06e
N
3261
3262static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3263 int disk_idx, int disks)
a4456856 3264{
5599becc 3265 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3266 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3267 &sh->dev[s->failed_num[1]] };
ea664c82 3268 int i;
5599becc 3269
a79cfe12
N
3270
3271 if (test_bit(R5_LOCKED, &dev->flags) ||
3272 test_bit(R5_UPTODATE, &dev->flags))
3273 /* No point reading this as we already have it or have
3274 * decided to get it.
3275 */
3276 return 0;
3277
3278 if (dev->toread ||
3279 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3280 /* We need this block to directly satisfy a request */
3281 return 1;
3282
3283 if (s->syncing || s->expanding ||
3284 (s->replacing && want_replace(sh, disk_idx)))
3285 /* When syncing, or expanding we read everything.
3286 * When replacing, we need the replaced block.
3287 */
3288 return 1;
3289
3290 if ((s->failed >= 1 && fdev[0]->toread) ||
3291 (s->failed >= 2 && fdev[1]->toread))
3292 /* If we want to read from a failed device, then
3293 * we need to actually read every other device.
3294 */
3295 return 1;
3296
a9d56950
N
3297 /* Sometimes neither read-modify-write nor reconstruct-write
3298 * cycles can work. In those cases we read every block we
3299 * can. Then the parity-update is certain to have enough to
3300 * work with.
3301 * This can only be a problem when we need to write something,
3302 * and some device has failed. If either of those tests
3303 * fail we need look no further.
3304 */
3305 if (!s->failed || !s->to_write)
3306 return 0;
3307
3308 if (test_bit(R5_Insync, &dev->flags) &&
3309 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3310 /* Pre-reads at not permitted until after short delay
3311 * to gather multiple requests. However if this
3312 * device is no Insync, the block could only be be computed
3313 * and there is no need to delay that.
3314 */
3315 return 0;
ea664c82 3316
36707bb2 3317 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3318 if (fdev[i]->towrite &&
3319 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3320 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3321 /* If we have a partial write to a failed
3322 * device, then we will need to reconstruct
3323 * the content of that device, so all other
3324 * devices must be read.
3325 */
3326 return 1;
3327 }
3328
3329 /* If we are forced to do a reconstruct-write, either because
3330 * the current RAID6 implementation only supports that, or
3331 * or because parity cannot be trusted and we are currently
3332 * recovering it, there is extra need to be careful.
3333 * If one of the devices that we would need to read, because
3334 * it is not being overwritten (and maybe not written at all)
3335 * is missing/faulty, then we need to read everything we can.
3336 */
3337 if (sh->raid_conf->level != 6 &&
3338 sh->sector < sh->raid_conf->mddev->recovery_cp)
3339 /* reconstruct-write isn't being forced */
3340 return 0;
36707bb2 3341 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3342 if (s->failed_num[i] != sh->pd_idx &&
3343 s->failed_num[i] != sh->qd_idx &&
3344 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3345 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3346 return 1;
3347 }
3348
2c58f06e
N
3349 return 0;
3350}
3351
3352static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3353 int disk_idx, int disks)
3354{
3355 struct r5dev *dev = &sh->dev[disk_idx];
3356
3357 /* is the data in this block needed, and can we get it? */
3358 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3359 /* we would like to get this block, possibly by computing it,
3360 * otherwise read it if the backing disk is insync
3361 */
3362 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3363 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3364 BUG_ON(sh->batch_head);
5599becc 3365 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
3366 (s->failed && (disk_idx == s->failed_num[0] ||
3367 disk_idx == s->failed_num[1]))) {
5599becc
YT
3368 /* have disk failed, and we're requested to fetch it;
3369 * do compute it
a4456856 3370 */
5599becc
YT
3371 pr_debug("Computing stripe %llu block %d\n",
3372 (unsigned long long)sh->sector, disk_idx);
3373 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3374 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3375 set_bit(R5_Wantcompute, &dev->flags);
3376 sh->ops.target = disk_idx;
3377 sh->ops.target2 = -1; /* no 2nd target */
3378 s->req_compute = 1;
93b3dbce
N
3379 /* Careful: from this point on 'uptodate' is in the eye
3380 * of raid_run_ops which services 'compute' operations
3381 * before writes. R5_Wantcompute flags a block that will
3382 * be R5_UPTODATE by the time it is needed for a
3383 * subsequent operation.
3384 */
5599becc
YT
3385 s->uptodate++;
3386 return 1;
3387 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3388 /* Computing 2-failure is *very* expensive; only
3389 * do it if failed >= 2
3390 */
3391 int other;
3392 for (other = disks; other--; ) {
3393 if (other == disk_idx)
3394 continue;
3395 if (!test_bit(R5_UPTODATE,
3396 &sh->dev[other].flags))
3397 break;
a4456856 3398 }
5599becc
YT
3399 BUG_ON(other < 0);
3400 pr_debug("Computing stripe %llu blocks %d,%d\n",
3401 (unsigned long long)sh->sector,
3402 disk_idx, other);
3403 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3404 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3405 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3406 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3407 sh->ops.target = disk_idx;
3408 sh->ops.target2 = other;
3409 s->uptodate += 2;
3410 s->req_compute = 1;
3411 return 1;
3412 } else if (test_bit(R5_Insync, &dev->flags)) {
3413 set_bit(R5_LOCKED, &dev->flags);
3414 set_bit(R5_Wantread, &dev->flags);
3415 s->locked++;
3416 pr_debug("Reading block %d (sync=%d)\n",
3417 disk_idx, s->syncing);
a4456856
DW
3418 }
3419 }
5599becc
YT
3420
3421 return 0;
3422}
3423
3424/**
93b3dbce 3425 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3426 */
93b3dbce
N
3427static void handle_stripe_fill(struct stripe_head *sh,
3428 struct stripe_head_state *s,
3429 int disks)
5599becc
YT
3430{
3431 int i;
3432
3433 /* look for blocks to read/compute, skip this if a compute
3434 * is already in flight, or if the stripe contents are in the
3435 * midst of changing due to a write
3436 */
3437 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3438 !sh->reconstruct_state)
3439 for (i = disks; i--; )
93b3dbce 3440 if (fetch_block(sh, s, i, disks))
5599becc 3441 break;
a4456856
DW
3442 set_bit(STRIPE_HANDLE, &sh->state);
3443}
3444
787b76fa
N
3445static void break_stripe_batch_list(struct stripe_head *head_sh,
3446 unsigned long handle_flags);
1fe797e6 3447/* handle_stripe_clean_event
a4456856
DW
3448 * any written block on an uptodate or failed drive can be returned.
3449 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3450 * never LOCKED, so we don't need to test 'failed' directly.
3451 */
d1688a6d 3452static void handle_stripe_clean_event(struct r5conf *conf,
34a6f80e 3453 struct stripe_head *sh, int disks, struct bio_list *return_bi)
a4456856
DW
3454{
3455 int i;
3456 struct r5dev *dev;
f8dfcffd 3457 int discard_pending = 0;
59fc630b 3458 struct stripe_head *head_sh = sh;
3459 bool do_endio = false;
a4456856
DW
3460
3461 for (i = disks; i--; )
3462 if (sh->dev[i].written) {
3463 dev = &sh->dev[i];
3464 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3465 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3466 test_bit(R5_Discard, &dev->flags) ||
3467 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3468 /* We can return any write requests */
3469 struct bio *wbi, *wbi2;
45b4233c 3470 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3471 if (test_and_clear_bit(R5_Discard, &dev->flags))
3472 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3473 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3474 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3475 }
59fc630b 3476 do_endio = true;
3477
3478returnbi:
3479 dev->page = dev->orig_page;
a4456856
DW
3480 wbi = dev->written;
3481 dev->written = NULL;
4f024f37 3482 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3483 dev->sector + STRIPE_SECTORS) {
3484 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 3485 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856 3486 md_write_end(conf->mddev);
34a6f80e 3487 bio_list_add(return_bi, wbi);
a4456856
DW
3488 }
3489 wbi = wbi2;
3490 }
7eaf7e8e
SL
3491 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3492 STRIPE_SECTORS,
a4456856 3493 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3494 0);
59fc630b 3495 if (head_sh->batch_head) {
3496 sh = list_first_entry(&sh->batch_list,
3497 struct stripe_head,
3498 batch_list);
3499 if (sh != head_sh) {
3500 dev = &sh->dev[i];
3501 goto returnbi;
3502 }
3503 }
3504 sh = head_sh;
3505 dev = &sh->dev[i];
f8dfcffd
N
3506 } else if (test_bit(R5_Discard, &dev->flags))
3507 discard_pending = 1;
3508 }
f6bed0ef 3509
0576b1c6
SL
3510 r5l_stripe_write_finished(sh);
3511
f8dfcffd
N
3512 if (!discard_pending &&
3513 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3514 int hash;
f8dfcffd
N
3515 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3516 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3517 if (sh->qd_idx >= 0) {
3518 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3519 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3520 }
3521 /* now that discard is done we can proceed with any sync */
3522 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3523 /*
3524 * SCSI discard will change some bio fields and the stripe has
3525 * no updated data, so remove it from hash list and the stripe
3526 * will be reinitialized
3527 */
59fc630b 3528unhash:
b8a9d66d
RG
3529 hash = sh->hash_lock_index;
3530 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3531 remove_hash(sh);
b8a9d66d 3532 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3533 if (head_sh->batch_head) {
3534 sh = list_first_entry(&sh->batch_list,
3535 struct stripe_head, batch_list);
3536 if (sh != head_sh)
3537 goto unhash;
3538 }
59fc630b 3539 sh = head_sh;
3540
f8dfcffd
N
3541 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3542 set_bit(STRIPE_HANDLE, &sh->state);
3543
3544 }
8b3e6cdc
DW
3545
3546 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3547 if (atomic_dec_and_test(&conf->pending_full_writes))
3548 md_wakeup_thread(conf->mddev->thread);
59fc630b 3549
787b76fa
N
3550 if (head_sh->batch_head && do_endio)
3551 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3552}
3553
d1688a6d 3554static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
3555 struct stripe_head *sh,
3556 struct stripe_head_state *s,
3557 int disks)
a4456856
DW
3558{
3559 int rmw = 0, rcw = 0, i;
a7854487
AL
3560 sector_t recovery_cp = conf->mddev->recovery_cp;
3561
584acdd4 3562 /* Check whether resync is now happening or should start.
a7854487
AL
3563 * If yes, then the array is dirty (after unclean shutdown or
3564 * initial creation), so parity in some stripes might be inconsistent.
3565 * In this case, we need to always do reconstruct-write, to ensure
3566 * that in case of drive failure or read-error correction, we
3567 * generate correct data from the parity.
3568 */
584acdd4 3569 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3570 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3571 s->failed == 0)) {
a7854487 3572 /* Calculate the real rcw later - for now make it
c8ac1803
N
3573 * look like rcw is cheaper
3574 */
3575 rcw = 1; rmw = 2;
584acdd4
MS
3576 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3577 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3578 (unsigned long long)sh->sector);
c8ac1803 3579 } else for (i = disks; i--; ) {
a4456856
DW
3580 /* would I have to read this buffer for read_modify_write */
3581 struct r5dev *dev = &sh->dev[i];
584acdd4 3582 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3583 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3584 !(test_bit(R5_UPTODATE, &dev->flags) ||
3585 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3586 if (test_bit(R5_Insync, &dev->flags))
3587 rmw++;
3588 else
3589 rmw += 2*disks; /* cannot read it */
3590 }
3591 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3592 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3593 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3594 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3595 !(test_bit(R5_UPTODATE, &dev->flags) ||
3596 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3597 if (test_bit(R5_Insync, &dev->flags))
3598 rcw++;
a4456856
DW
3599 else
3600 rcw += 2*disks;
3601 }
3602 }
45b4233c 3603 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
3604 (unsigned long long)sh->sector, rmw, rcw);
3605 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3606 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3607 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3608 if (conf->mddev->queue)
3609 blk_add_trace_msg(conf->mddev->queue,
3610 "raid5 rmw %llu %d",
3611 (unsigned long long)sh->sector, rmw);
a4456856
DW
3612 for (i = disks; i--; ) {
3613 struct r5dev *dev = &sh->dev[i];
584acdd4 3614 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
a4456856 3615 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
3616 !(test_bit(R5_UPTODATE, &dev->flags) ||
3617 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3618 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3619 if (test_bit(STRIPE_PREREAD_ACTIVE,
3620 &sh->state)) {
3621 pr_debug("Read_old block %d for r-m-w\n",
3622 i);
a4456856
DW
3623 set_bit(R5_LOCKED, &dev->flags);
3624 set_bit(R5_Wantread, &dev->flags);
3625 s->locked++;
3626 } else {
3627 set_bit(STRIPE_DELAYED, &sh->state);
3628 set_bit(STRIPE_HANDLE, &sh->state);
3629 }
3630 }
3631 }
a9add5d9 3632 }
41257580 3633 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3634 /* want reconstruct write, but need to get some data */
a9add5d9 3635 int qread =0;
c8ac1803 3636 rcw = 0;
a4456856
DW
3637 for (i = disks; i--; ) {
3638 struct r5dev *dev = &sh->dev[i];
3639 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3640 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3641 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3642 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3643 test_bit(R5_Wantcompute, &dev->flags))) {
3644 rcw++;
67f45548
N
3645 if (test_bit(R5_Insync, &dev->flags) &&
3646 test_bit(STRIPE_PREREAD_ACTIVE,
3647 &sh->state)) {
45b4233c 3648 pr_debug("Read_old block "
a4456856
DW
3649 "%d for Reconstruct\n", i);
3650 set_bit(R5_LOCKED, &dev->flags);
3651 set_bit(R5_Wantread, &dev->flags);
3652 s->locked++;
a9add5d9 3653 qread++;
a4456856
DW
3654 } else {
3655 set_bit(STRIPE_DELAYED, &sh->state);
3656 set_bit(STRIPE_HANDLE, &sh->state);
3657 }
3658 }
3659 }
e3620a3a 3660 if (rcw && conf->mddev->queue)
a9add5d9
N
3661 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3662 (unsigned long long)sh->sector,
3663 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3664 }
b1b02fe9
N
3665
3666 if (rcw > disks && rmw > disks &&
3667 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3668 set_bit(STRIPE_DELAYED, &sh->state);
3669
a4456856
DW
3670 /* now if nothing is locked, and if we have enough data,
3671 * we can start a write request
3672 */
f38e1219
DW
3673 /* since handle_stripe can be called at any time we need to handle the
3674 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
3675 * subsequent call wants to start a write request. raid_run_ops only
3676 * handles the case where compute block and reconstruct are requested
f38e1219
DW
3677 * simultaneously. If this is not the case then new writes need to be
3678 * held off until the compute completes.
3679 */
976ea8d4
DW
3680 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3681 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3682 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 3683 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
3684}
3685
d1688a6d 3686static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
3687 struct stripe_head_state *s, int disks)
3688{
ecc65c9b 3689 struct r5dev *dev = NULL;
bd2ab670 3690
59fc630b 3691 BUG_ON(sh->batch_head);
a4456856 3692 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 3693
ecc65c9b
DW
3694 switch (sh->check_state) {
3695 case check_state_idle:
3696 /* start a new check operation if there are no failures */
bd2ab670 3697 if (s->failed == 0) {
bd2ab670 3698 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
3699 sh->check_state = check_state_run;
3700 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 3701 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 3702 s->uptodate--;
ecc65c9b 3703 break;
bd2ab670 3704 }
f2b3b44d 3705 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
3706 /* fall through */
3707 case check_state_compute_result:
3708 sh->check_state = check_state_idle;
3709 if (!dev)
3710 dev = &sh->dev[sh->pd_idx];
3711
3712 /* check that a write has not made the stripe insync */
3713 if (test_bit(STRIPE_INSYNC, &sh->state))
3714 break;
c8894419 3715
a4456856 3716 /* either failed parity check, or recovery is happening */
a4456856
DW
3717 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3718 BUG_ON(s->uptodate != disks);
3719
3720 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 3721 s->locked++;
a4456856 3722 set_bit(R5_Wantwrite, &dev->flags);
830ea016 3723
a4456856 3724 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 3725 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
3726 break;
3727 case check_state_run:
3728 break; /* we will be called again upon completion */
3729 case check_state_check_result:
3730 sh->check_state = check_state_idle;
3731
3732 /* if a failure occurred during the check operation, leave
3733 * STRIPE_INSYNC not set and let the stripe be handled again
3734 */
3735 if (s->failed)
3736 break;
3737
3738 /* handle a successful check operation, if parity is correct
3739 * we are done. Otherwise update the mismatch count and repair
3740 * parity if !MD_RECOVERY_CHECK
3741 */
ad283ea4 3742 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
3743 /* parity is correct (on disc,
3744 * not in buffer any more)
3745 */
3746 set_bit(STRIPE_INSYNC, &sh->state);
3747 else {
7f7583d4 3748 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
3749 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3750 /* don't try to repair!! */
3751 set_bit(STRIPE_INSYNC, &sh->state);
3752 else {
3753 sh->check_state = check_state_compute_run;
976ea8d4 3754 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3755 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3756 set_bit(R5_Wantcompute,
3757 &sh->dev[sh->pd_idx].flags);
3758 sh->ops.target = sh->pd_idx;
ac6b53b6 3759 sh->ops.target2 = -1;
ecc65c9b
DW
3760 s->uptodate++;
3761 }
3762 }
3763 break;
3764 case check_state_compute_run:
3765 break;
3766 default:
3767 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3768 __func__, sh->check_state,
3769 (unsigned long long) sh->sector);
3770 BUG();
a4456856
DW
3771 }
3772}
3773
d1688a6d 3774static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3775 struct stripe_head_state *s,
f2b3b44d 3776 int disks)
a4456856 3777{
a4456856 3778 int pd_idx = sh->pd_idx;
34e04e87 3779 int qd_idx = sh->qd_idx;
d82dfee0 3780 struct r5dev *dev;
a4456856 3781
59fc630b 3782 BUG_ON(sh->batch_head);
a4456856
DW
3783 set_bit(STRIPE_HANDLE, &sh->state);
3784
3785 BUG_ON(s->failed > 2);
d82dfee0 3786
a4456856
DW
3787 /* Want to check and possibly repair P and Q.
3788 * However there could be one 'failed' device, in which
3789 * case we can only check one of them, possibly using the
3790 * other to generate missing data
3791 */
3792
d82dfee0
DW
3793 switch (sh->check_state) {
3794 case check_state_idle:
3795 /* start a new check operation if there are < 2 failures */
f2b3b44d 3796 if (s->failed == s->q_failed) {
d82dfee0 3797 /* The only possible failed device holds Q, so it
a4456856
DW
3798 * makes sense to check P (If anything else were failed,
3799 * we would have used P to recreate it).
3800 */
d82dfee0 3801 sh->check_state = check_state_run;
a4456856 3802 }
f2b3b44d 3803 if (!s->q_failed && s->failed < 2) {
d82dfee0 3804 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3805 * anything, so it makes sense to check it
3806 */
d82dfee0
DW
3807 if (sh->check_state == check_state_run)
3808 sh->check_state = check_state_run_pq;
3809 else
3810 sh->check_state = check_state_run_q;
a4456856 3811 }
a4456856 3812
d82dfee0
DW
3813 /* discard potentially stale zero_sum_result */
3814 sh->ops.zero_sum_result = 0;
a4456856 3815
d82dfee0
DW
3816 if (sh->check_state == check_state_run) {
3817 /* async_xor_zero_sum destroys the contents of P */
3818 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3819 s->uptodate--;
a4456856 3820 }
d82dfee0
DW
3821 if (sh->check_state >= check_state_run &&
3822 sh->check_state <= check_state_run_pq) {
3823 /* async_syndrome_zero_sum preserves P and Q, so
3824 * no need to mark them !uptodate here
3825 */
3826 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3827 break;
a4456856
DW
3828 }
3829
d82dfee0
DW
3830 /* we have 2-disk failure */
3831 BUG_ON(s->failed != 2);
3832 /* fall through */
3833 case check_state_compute_result:
3834 sh->check_state = check_state_idle;
a4456856 3835
d82dfee0
DW
3836 /* check that a write has not made the stripe insync */
3837 if (test_bit(STRIPE_INSYNC, &sh->state))
3838 break;
a4456856
DW
3839
3840 /* now write out any block on a failed drive,
d82dfee0 3841 * or P or Q if they were recomputed
a4456856 3842 */
d82dfee0 3843 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3844 if (s->failed == 2) {
f2b3b44d 3845 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3846 s->locked++;
3847 set_bit(R5_LOCKED, &dev->flags);
3848 set_bit(R5_Wantwrite, &dev->flags);
3849 }
3850 if (s->failed >= 1) {
f2b3b44d 3851 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3852 s->locked++;
3853 set_bit(R5_LOCKED, &dev->flags);
3854 set_bit(R5_Wantwrite, &dev->flags);
3855 }
d82dfee0 3856 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3857 dev = &sh->dev[pd_idx];
3858 s->locked++;
3859 set_bit(R5_LOCKED, &dev->flags);
3860 set_bit(R5_Wantwrite, &dev->flags);
3861 }
d82dfee0 3862 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3863 dev = &sh->dev[qd_idx];
3864 s->locked++;
3865 set_bit(R5_LOCKED, &dev->flags);
3866 set_bit(R5_Wantwrite, &dev->flags);
3867 }
3868 clear_bit(STRIPE_DEGRADED, &sh->state);
3869
3870 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3871 break;
3872 case check_state_run:
3873 case check_state_run_q:
3874 case check_state_run_pq:
3875 break; /* we will be called again upon completion */
3876 case check_state_check_result:
3877 sh->check_state = check_state_idle;
3878
3879 /* handle a successful check operation, if parity is correct
3880 * we are done. Otherwise update the mismatch count and repair
3881 * parity if !MD_RECOVERY_CHECK
3882 */
3883 if (sh->ops.zero_sum_result == 0) {
3884 /* both parities are correct */
3885 if (!s->failed)
3886 set_bit(STRIPE_INSYNC, &sh->state);
3887 else {
3888 /* in contrast to the raid5 case we can validate
3889 * parity, but still have a failure to write
3890 * back
3891 */
3892 sh->check_state = check_state_compute_result;
3893 /* Returning at this point means that we may go
3894 * off and bring p and/or q uptodate again so
3895 * we make sure to check zero_sum_result again
3896 * to verify if p or q need writeback
3897 */
3898 }
3899 } else {
7f7583d4 3900 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3901 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3902 /* don't try to repair!! */
3903 set_bit(STRIPE_INSYNC, &sh->state);
3904 else {
3905 int *target = &sh->ops.target;
3906
3907 sh->ops.target = -1;
3908 sh->ops.target2 = -1;
3909 sh->check_state = check_state_compute_run;
3910 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3911 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3912 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3913 set_bit(R5_Wantcompute,
3914 &sh->dev[pd_idx].flags);
3915 *target = pd_idx;
3916 target = &sh->ops.target2;
3917 s->uptodate++;
3918 }
3919 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3920 set_bit(R5_Wantcompute,
3921 &sh->dev[qd_idx].flags);
3922 *target = qd_idx;
3923 s->uptodate++;
3924 }
3925 }
3926 }
3927 break;
3928 case check_state_compute_run:
3929 break;
3930 default:
3931 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3932 __func__, sh->check_state,
3933 (unsigned long long) sh->sector);
3934 BUG();
a4456856
DW
3935 }
3936}
3937
d1688a6d 3938static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3939{
3940 int i;
3941
3942 /* We have read all the blocks in this stripe and now we need to
3943 * copy some of them into a target stripe for expand.
3944 */
f0a50d37 3945 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 3946 BUG_ON(sh->batch_head);
a4456856
DW
3947 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3948 for (i = 0; i < sh->disks; i++)
34e04e87 3949 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3950 int dd_idx, j;
a4456856 3951 struct stripe_head *sh2;
a08abd8c 3952 struct async_submit_ctl submit;
a4456856 3953
6d036f7d 3954 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
3955 sector_t s = raid5_compute_sector(conf, bn, 0,
3956 &dd_idx, NULL);
6d036f7d 3957 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3958 if (sh2 == NULL)
3959 /* so far only the early blocks of this stripe
3960 * have been requested. When later blocks
3961 * get requested, we will try again
3962 */
3963 continue;
3964 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3965 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3966 /* must have already done this block */
6d036f7d 3967 raid5_release_stripe(sh2);
a4456856
DW
3968 continue;
3969 }
f0a50d37
DW
3970
3971 /* place all the copies on one channel */
a08abd8c 3972 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3973 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3974 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3975 &submit);
f0a50d37 3976
a4456856
DW
3977 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3978 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3979 for (j = 0; j < conf->raid_disks; j++)
3980 if (j != sh2->pd_idx &&
86c374ba 3981 j != sh2->qd_idx &&
a4456856
DW
3982 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3983 break;
3984 if (j == conf->raid_disks) {
3985 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3986 set_bit(STRIPE_HANDLE, &sh2->state);
3987 }
6d036f7d 3988 raid5_release_stripe(sh2);
f0a50d37 3989
a4456856 3990 }
a2e08551 3991 /* done submitting copies, wait for them to complete */
749586b7 3992 async_tx_quiesce(&tx);
a4456856 3993}
1da177e4
LT
3994
3995/*
3996 * handle_stripe - do things to a stripe.
3997 *
9a3e1101
N
3998 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3999 * state of various bits to see what needs to be done.
1da177e4 4000 * Possible results:
9a3e1101
N
4001 * return some read requests which now have data
4002 * return some write requests which are safely on storage
1da177e4
LT
4003 * schedule a read on some buffers
4004 * schedule a write of some buffers
4005 * return confirmation of parity correctness
4006 *
1da177e4 4007 */
a4456856 4008
acfe726b 4009static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4010{
d1688a6d 4011 struct r5conf *conf = sh->raid_conf;
f416885e 4012 int disks = sh->disks;
474af965
N
4013 struct r5dev *dev;
4014 int i;
9a3e1101 4015 int do_recovery = 0;
1da177e4 4016
acfe726b
N
4017 memset(s, 0, sizeof(*s));
4018
dabc4ec6 4019 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4020 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4021 s->failed_num[0] = -1;
4022 s->failed_num[1] = -1;
6e74a9cf 4023 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4024
acfe726b 4025 /* Now to look around and see what can be done */
1da177e4 4026 rcu_read_lock();
16a53ecc 4027 for (i=disks; i--; ) {
3cb03002 4028 struct md_rdev *rdev;
31c176ec
N
4029 sector_t first_bad;
4030 int bad_sectors;
4031 int is_bad = 0;
acfe726b 4032
16a53ecc 4033 dev = &sh->dev[i];
1da177e4 4034
45b4233c 4035 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4036 i, dev->flags,
4037 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4038 /* maybe we can reply to a read
4039 *
4040 * new wantfill requests are only permitted while
4041 * ops_complete_biofill is guaranteed to be inactive
4042 */
4043 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4044 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4045 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4046
16a53ecc 4047 /* now count some things */
cc94015a
N
4048 if (test_bit(R5_LOCKED, &dev->flags))
4049 s->locked++;
4050 if (test_bit(R5_UPTODATE, &dev->flags))
4051 s->uptodate++;
2d6e4ecc 4052 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4053 s->compute++;
4054 BUG_ON(s->compute > 2);
2d6e4ecc 4055 }
1da177e4 4056
acfe726b 4057 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4058 s->to_fill++;
acfe726b 4059 else if (dev->toread)
cc94015a 4060 s->to_read++;
16a53ecc 4061 if (dev->towrite) {
cc94015a 4062 s->to_write++;
16a53ecc 4063 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4064 s->non_overwrite++;
16a53ecc 4065 }
a4456856 4066 if (dev->written)
cc94015a 4067 s->written++;
14a75d3e
N
4068 /* Prefer to use the replacement for reads, but only
4069 * if it is recovered enough and has no bad blocks.
4070 */
4071 rdev = rcu_dereference(conf->disks[i].replacement);
4072 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4073 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4074 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4075 &first_bad, &bad_sectors))
4076 set_bit(R5_ReadRepl, &dev->flags);
4077 else {
e6030cb0 4078 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4079 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4080 else
4081 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4082 rdev = rcu_dereference(conf->disks[i].rdev);
4083 clear_bit(R5_ReadRepl, &dev->flags);
4084 }
9283d8c5
N
4085 if (rdev && test_bit(Faulty, &rdev->flags))
4086 rdev = NULL;
31c176ec
N
4087 if (rdev) {
4088 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4089 &first_bad, &bad_sectors);
4090 if (s->blocked_rdev == NULL
4091 && (test_bit(Blocked, &rdev->flags)
4092 || is_bad < 0)) {
4093 if (is_bad < 0)
4094 set_bit(BlockedBadBlocks,
4095 &rdev->flags);
4096 s->blocked_rdev = rdev;
4097 atomic_inc(&rdev->nr_pending);
4098 }
6bfe0b49 4099 }
415e72d0
N
4100 clear_bit(R5_Insync, &dev->flags);
4101 if (!rdev)
4102 /* Not in-sync */;
31c176ec
N
4103 else if (is_bad) {
4104 /* also not in-sync */
18b9837e
N
4105 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4106 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4107 /* treat as in-sync, but with a read error
4108 * which we can now try to correct
4109 */
4110 set_bit(R5_Insync, &dev->flags);
4111 set_bit(R5_ReadError, &dev->flags);
4112 }
4113 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4114 set_bit(R5_Insync, &dev->flags);
30d7a483 4115 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4116 /* in sync if before recovery_offset */
30d7a483
N
4117 set_bit(R5_Insync, &dev->flags);
4118 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4119 test_bit(R5_Expanded, &dev->flags))
4120 /* If we've reshaped into here, we assume it is Insync.
4121 * We will shortly update recovery_offset to make
4122 * it official.
4123 */
4124 set_bit(R5_Insync, &dev->flags);
4125
1cc03eb9 4126 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4127 /* This flag does not apply to '.replacement'
4128 * only to .rdev, so make sure to check that*/
4129 struct md_rdev *rdev2 = rcu_dereference(
4130 conf->disks[i].rdev);
4131 if (rdev2 == rdev)
4132 clear_bit(R5_Insync, &dev->flags);
4133 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4134 s->handle_bad_blocks = 1;
14a75d3e 4135 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4136 } else
4137 clear_bit(R5_WriteError, &dev->flags);
4138 }
1cc03eb9 4139 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4140 /* This flag does not apply to '.replacement'
4141 * only to .rdev, so make sure to check that*/
4142 struct md_rdev *rdev2 = rcu_dereference(
4143 conf->disks[i].rdev);
4144 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4145 s->handle_bad_blocks = 1;
14a75d3e 4146 atomic_inc(&rdev2->nr_pending);
b84db560
N
4147 } else
4148 clear_bit(R5_MadeGood, &dev->flags);
4149 }
977df362
N
4150 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4151 struct md_rdev *rdev2 = rcu_dereference(
4152 conf->disks[i].replacement);
4153 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4154 s->handle_bad_blocks = 1;
4155 atomic_inc(&rdev2->nr_pending);
4156 } else
4157 clear_bit(R5_MadeGoodRepl, &dev->flags);
4158 }
415e72d0 4159 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4160 /* The ReadError flag will just be confusing now */
4161 clear_bit(R5_ReadError, &dev->flags);
4162 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4163 }
415e72d0
N
4164 if (test_bit(R5_ReadError, &dev->flags))
4165 clear_bit(R5_Insync, &dev->flags);
4166 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4167 if (s->failed < 2)
4168 s->failed_num[s->failed] = i;
4169 s->failed++;
9a3e1101
N
4170 if (rdev && !test_bit(Faulty, &rdev->flags))
4171 do_recovery = 1;
415e72d0 4172 }
1da177e4 4173 }
9a3e1101
N
4174 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4175 /* If there is a failed device being replaced,
4176 * we must be recovering.
4177 * else if we are after recovery_cp, we must be syncing
c6d2e084 4178 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4179 * else we can only be replacing
4180 * sync and recovery both need to read all devices, and so
4181 * use the same flag.
4182 */
4183 if (do_recovery ||
c6d2e084 4184 sh->sector >= conf->mddev->recovery_cp ||
4185 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4186 s->syncing = 1;
4187 else
4188 s->replacing = 1;
4189 }
1da177e4 4190 rcu_read_unlock();
cc94015a
N
4191}
4192
59fc630b 4193static int clear_batch_ready(struct stripe_head *sh)
4194{
b15a9dbd
N
4195 /* Return '1' if this is a member of batch, or
4196 * '0' if it is a lone stripe or a head which can now be
4197 * handled.
4198 */
59fc630b 4199 struct stripe_head *tmp;
4200 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4201 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4202 spin_lock(&sh->stripe_lock);
4203 if (!sh->batch_head) {
4204 spin_unlock(&sh->stripe_lock);
4205 return 0;
4206 }
4207
4208 /*
4209 * this stripe could be added to a batch list before we check
4210 * BATCH_READY, skips it
4211 */
4212 if (sh->batch_head != sh) {
4213 spin_unlock(&sh->stripe_lock);
4214 return 1;
4215 }
4216 spin_lock(&sh->batch_lock);
4217 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4218 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4219 spin_unlock(&sh->batch_lock);
4220 spin_unlock(&sh->stripe_lock);
4221
4222 /*
4223 * BATCH_READY is cleared, no new stripes can be added.
4224 * batch_list can be accessed without lock
4225 */
4226 return 0;
4227}
4228
3960ce79
N
4229static void break_stripe_batch_list(struct stripe_head *head_sh,
4230 unsigned long handle_flags)
72ac7330 4231{
4e3d62ff 4232 struct stripe_head *sh, *next;
72ac7330 4233 int i;
fb642b92 4234 int do_wakeup = 0;
72ac7330 4235
bb27051f
N
4236 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4237
72ac7330 4238 list_del_init(&sh->batch_list);
4239
fb3229d5 4240 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4241 (1 << STRIPE_SYNCING) |
4242 (1 << STRIPE_REPLACED) |
1b956f7a
N
4243 (1 << STRIPE_DELAYED) |
4244 (1 << STRIPE_BIT_DELAY) |
4245 (1 << STRIPE_FULL_WRITE) |
4246 (1 << STRIPE_BIOFILL_RUN) |
4247 (1 << STRIPE_COMPUTE_RUN) |
4248 (1 << STRIPE_OPS_REQ_PENDING) |
4249 (1 << STRIPE_DISCARD) |
4250 (1 << STRIPE_BATCH_READY) |
4251 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4252 (1 << STRIPE_BITMAP_PENDING)),
4253 "stripe state: %lx\n", sh->state);
4254 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4255 (1 << STRIPE_REPLACED)),
4256 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4257
4258 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4259 (1 << STRIPE_PREREAD_ACTIVE) |
1b956f7a
N
4260 (1 << STRIPE_DEGRADED)),
4261 head_sh->state & (1 << STRIPE_INSYNC));
4262
72ac7330 4263 sh->check_state = head_sh->check_state;
4264 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4265 for (i = 0; i < sh->disks; i++) {
4266 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4267 do_wakeup = 1;
72ac7330 4268 sh->dev[i].flags = head_sh->dev[i].flags &
4269 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4270 }
72ac7330 4271 spin_lock_irq(&sh->stripe_lock);
4272 sh->batch_head = NULL;
4273 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4274 if (handle_flags == 0 ||
4275 sh->state & handle_flags)
4276 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4277 raid5_release_stripe(sh);
72ac7330 4278 }
fb642b92
N
4279 spin_lock_irq(&head_sh->stripe_lock);
4280 head_sh->batch_head = NULL;
4281 spin_unlock_irq(&head_sh->stripe_lock);
4282 for (i = 0; i < head_sh->disks; i++)
4283 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4284 do_wakeup = 1;
3960ce79
N
4285 if (head_sh->state & handle_flags)
4286 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4287
4288 if (do_wakeup)
4289 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4290}
4291
cc94015a
N
4292static void handle_stripe(struct stripe_head *sh)
4293{
4294 struct stripe_head_state s;
d1688a6d 4295 struct r5conf *conf = sh->raid_conf;
3687c061 4296 int i;
84789554
N
4297 int prexor;
4298 int disks = sh->disks;
474af965 4299 struct r5dev *pdev, *qdev;
cc94015a
N
4300
4301 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4302 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4303 /* already being handled, ensure it gets handled
4304 * again when current action finishes */
4305 set_bit(STRIPE_HANDLE, &sh->state);
4306 return;
4307 }
4308
59fc630b 4309 if (clear_batch_ready(sh) ) {
4310 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4311 return;
4312 }
4313
4e3d62ff 4314 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4315 break_stripe_batch_list(sh, 0);
72ac7330 4316
dabc4ec6 4317 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd
N
4318 spin_lock(&sh->stripe_lock);
4319 /* Cannot process 'sync' concurrently with 'discard' */
4320 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4321 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4322 set_bit(STRIPE_SYNCING, &sh->state);
4323 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4324 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4325 }
4326 spin_unlock(&sh->stripe_lock);
cc94015a
N
4327 }
4328 clear_bit(STRIPE_DELAYED, &sh->state);
4329
4330 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4331 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4332 (unsigned long long)sh->sector, sh->state,
4333 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4334 sh->check_state, sh->reconstruct_state);
3687c061 4335
acfe726b 4336 analyse_stripe(sh, &s);
c5a31000 4337
b70abcb2
SL
4338 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4339 goto finish;
4340
bc2607f3
N
4341 if (s.handle_bad_blocks) {
4342 set_bit(STRIPE_HANDLE, &sh->state);
4343 goto finish;
4344 }
4345
474af965
N
4346 if (unlikely(s.blocked_rdev)) {
4347 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4348 s.replacing || s.to_write || s.written) {
474af965
N
4349 set_bit(STRIPE_HANDLE, &sh->state);
4350 goto finish;
4351 }
4352 /* There is nothing for the blocked_rdev to block */
4353 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4354 s.blocked_rdev = NULL;
4355 }
4356
4357 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4358 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4359 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4360 }
4361
4362 pr_debug("locked=%d uptodate=%d to_read=%d"
4363 " to_write=%d failed=%d failed_num=%d,%d\n",
4364 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4365 s.failed_num[0], s.failed_num[1]);
4366 /* check if the array has lost more than max_degraded devices and,
4367 * if so, some requests might need to be failed.
4368 */
6e74a9cf 4369 if (s.failed > conf->max_degraded || s.log_failed) {
9a3f530f
N
4370 sh->check_state = 0;
4371 sh->reconstruct_state = 0;
626f2092 4372 break_stripe_batch_list(sh, 0);
9a3f530f
N
4373 if (s.to_read+s.to_write+s.written)
4374 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 4375 if (s.syncing + s.replacing)
9a3f530f
N
4376 handle_failed_sync(conf, sh, &s);
4377 }
474af965 4378
84789554
N
4379 /* Now we check to see if any write operations have recently
4380 * completed
4381 */
4382 prexor = 0;
4383 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4384 prexor = 1;
4385 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4386 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4387 sh->reconstruct_state = reconstruct_state_idle;
4388
4389 /* All the 'written' buffers and the parity block are ready to
4390 * be written back to disk
4391 */
9e444768
SL
4392 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4393 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4394 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4395 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4396 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4397 for (i = disks; i--; ) {
4398 struct r5dev *dev = &sh->dev[i];
4399 if (test_bit(R5_LOCKED, &dev->flags) &&
4400 (i == sh->pd_idx || i == sh->qd_idx ||
4401 dev->written)) {
4402 pr_debug("Writing block %d\n", i);
4403 set_bit(R5_Wantwrite, &dev->flags);
4404 if (prexor)
4405 continue;
9c4bdf69
N
4406 if (s.failed > 1)
4407 continue;
84789554
N
4408 if (!test_bit(R5_Insync, &dev->flags) ||
4409 ((i == sh->pd_idx || i == sh->qd_idx) &&
4410 s.failed == 0))
4411 set_bit(STRIPE_INSYNC, &sh->state);
4412 }
4413 }
4414 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4415 s.dec_preread_active = 1;
4416 }
4417
ef5b7c69
N
4418 /*
4419 * might be able to return some write requests if the parity blocks
4420 * are safe, or on a failed drive
4421 */
4422 pdev = &sh->dev[sh->pd_idx];
4423 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4424 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4425 qdev = &sh->dev[sh->qd_idx];
4426 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4427 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4428 || conf->level < 6;
4429
4430 if (s.written &&
4431 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4432 && !test_bit(R5_LOCKED, &pdev->flags)
4433 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4434 test_bit(R5_Discard, &pdev->flags))))) &&
4435 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4436 && !test_bit(R5_LOCKED, &qdev->flags)
4437 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4438 test_bit(R5_Discard, &qdev->flags))))))
4439 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4440
4441 /* Now we might consider reading some blocks, either to check/generate
4442 * parity, or to satisfy requests
4443 * or to load a block that is being partially written.
4444 */
4445 if (s.to_read || s.non_overwrite
4446 || (conf->level == 6 && s.to_write && s.failed)
4447 || (s.syncing && (s.uptodate + s.compute < disks))
4448 || s.replacing
4449 || s.expanding)
4450 handle_stripe_fill(sh, &s, disks);
4451
84789554
N
4452 /* Now to consider new write requests and what else, if anything
4453 * should be read. We do not handle new writes when:
4454 * 1/ A 'write' operation (copy+xor) is already in flight.
4455 * 2/ A 'check' operation is in flight, as it may clobber the parity
4456 * block.
4457 */
4458 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4459 handle_stripe_dirtying(conf, sh, &s, disks);
4460
4461 /* maybe we need to check and possibly fix the parity for this stripe
4462 * Any reads will already have been scheduled, so we just see if enough
4463 * data is available. The parity check is held off while parity
4464 * dependent operations are in flight.
4465 */
4466 if (sh->check_state ||
4467 (s.syncing && s.locked == 0 &&
4468 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4469 !test_bit(STRIPE_INSYNC, &sh->state))) {
4470 if (conf->level == 6)
4471 handle_parity_checks6(conf, sh, &s, disks);
4472 else
4473 handle_parity_checks5(conf, sh, &s, disks);
4474 }
c5a31000 4475
f94c0b66
N
4476 if ((s.replacing || s.syncing) && s.locked == 0
4477 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4478 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4479 /* Write out to replacement devices where possible */
4480 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4481 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4482 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4483 set_bit(R5_WantReplace, &sh->dev[i].flags);
4484 set_bit(R5_LOCKED, &sh->dev[i].flags);
4485 s.locked++;
4486 }
f94c0b66
N
4487 if (s.replacing)
4488 set_bit(STRIPE_INSYNC, &sh->state);
4489 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4490 }
4491 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4492 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4493 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4494 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4495 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4496 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4497 wake_up(&conf->wait_for_overlap);
c5a31000
N
4498 }
4499
4500 /* If the failed drives are just a ReadError, then we might need
4501 * to progress the repair/check process
4502 */
4503 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4504 for (i = 0; i < s.failed; i++) {
4505 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4506 if (test_bit(R5_ReadError, &dev->flags)
4507 && !test_bit(R5_LOCKED, &dev->flags)
4508 && test_bit(R5_UPTODATE, &dev->flags)
4509 ) {
4510 if (!test_bit(R5_ReWrite, &dev->flags)) {
4511 set_bit(R5_Wantwrite, &dev->flags);
4512 set_bit(R5_ReWrite, &dev->flags);
4513 set_bit(R5_LOCKED, &dev->flags);
4514 s.locked++;
4515 } else {
4516 /* let's read it back */
4517 set_bit(R5_Wantread, &dev->flags);
4518 set_bit(R5_LOCKED, &dev->flags);
4519 s.locked++;
4520 }
4521 }
4522 }
4523
3687c061
N
4524 /* Finish reconstruct operations initiated by the expansion process */
4525 if (sh->reconstruct_state == reconstruct_state_result) {
4526 struct stripe_head *sh_src
6d036f7d 4527 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4528 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4529 /* sh cannot be written until sh_src has been read.
4530 * so arrange for sh to be delayed a little
4531 */
4532 set_bit(STRIPE_DELAYED, &sh->state);
4533 set_bit(STRIPE_HANDLE, &sh->state);
4534 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4535 &sh_src->state))
4536 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4537 raid5_release_stripe(sh_src);
3687c061
N
4538 goto finish;
4539 }
4540 if (sh_src)
6d036f7d 4541 raid5_release_stripe(sh_src);
3687c061
N
4542
4543 sh->reconstruct_state = reconstruct_state_idle;
4544 clear_bit(STRIPE_EXPANDING, &sh->state);
4545 for (i = conf->raid_disks; i--; ) {
4546 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4547 set_bit(R5_LOCKED, &sh->dev[i].flags);
4548 s.locked++;
4549 }
4550 }
f416885e 4551
3687c061
N
4552 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4553 !sh->reconstruct_state) {
4554 /* Need to write out all blocks after computing parity */
4555 sh->disks = conf->raid_disks;
4556 stripe_set_idx(sh->sector, conf, 0, sh);
4557 schedule_reconstruction(sh, &s, 1, 1);
4558 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4559 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4560 atomic_dec(&conf->reshape_stripes);
4561 wake_up(&conf->wait_for_overlap);
4562 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4563 }
4564
4565 if (s.expanding && s.locked == 0 &&
4566 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4567 handle_stripe_expansion(conf, sh);
16a53ecc 4568
3687c061 4569finish:
6bfe0b49 4570 /* wait for this device to become unblocked */
5f066c63
N
4571 if (unlikely(s.blocked_rdev)) {
4572 if (conf->mddev->external)
4573 md_wait_for_blocked_rdev(s.blocked_rdev,
4574 conf->mddev);
4575 else
4576 /* Internal metadata will immediately
4577 * be written by raid5d, so we don't
4578 * need to wait here.
4579 */
4580 rdev_dec_pending(s.blocked_rdev,
4581 conf->mddev);
4582 }
6bfe0b49 4583
bc2607f3
N
4584 if (s.handle_bad_blocks)
4585 for (i = disks; i--; ) {
3cb03002 4586 struct md_rdev *rdev;
bc2607f3
N
4587 struct r5dev *dev = &sh->dev[i];
4588 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4589 /* We own a safe reference to the rdev */
4590 rdev = conf->disks[i].rdev;
4591 if (!rdev_set_badblocks(rdev, sh->sector,
4592 STRIPE_SECTORS, 0))
4593 md_error(conf->mddev, rdev);
4594 rdev_dec_pending(rdev, conf->mddev);
4595 }
b84db560
N
4596 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4597 rdev = conf->disks[i].rdev;
4598 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4599 STRIPE_SECTORS, 0);
b84db560
N
4600 rdev_dec_pending(rdev, conf->mddev);
4601 }
977df362
N
4602 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4603 rdev = conf->disks[i].replacement;
dd054fce
N
4604 if (!rdev)
4605 /* rdev have been moved down */
4606 rdev = conf->disks[i].rdev;
977df362 4607 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 4608 STRIPE_SECTORS, 0);
977df362
N
4609 rdev_dec_pending(rdev, conf->mddev);
4610 }
bc2607f3
N
4611 }
4612
6c0069c0
YT
4613 if (s.ops_request)
4614 raid_run_ops(sh, s.ops_request);
4615
f0e43bcd 4616 ops_run_io(sh, &s);
16a53ecc 4617
c5709ef6 4618 if (s.dec_preread_active) {
729a1866 4619 /* We delay this until after ops_run_io so that if make_request
e9c7469b 4620 * is waiting on a flush, it won't continue until the writes
729a1866
N
4621 * have actually been submitted.
4622 */
4623 atomic_dec(&conf->preread_active_stripes);
4624 if (atomic_read(&conf->preread_active_stripes) <
4625 IO_THRESHOLD)
4626 md_wakeup_thread(conf->mddev->thread);
4627 }
4628
c3cce6cd
N
4629 if (!bio_list_empty(&s.return_bi)) {
4630 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4631 spin_lock_irq(&conf->device_lock);
4632 bio_list_merge(&conf->return_bi, &s.return_bi);
4633 spin_unlock_irq(&conf->device_lock);
4634 md_wakeup_thread(conf->mddev->thread);
4635 } else
4636 return_io(&s.return_bi);
4637 }
16a53ecc 4638
257a4b42 4639 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
4640}
4641
d1688a6d 4642static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
4643{
4644 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4645 while (!list_empty(&conf->delayed_list)) {
4646 struct list_head *l = conf->delayed_list.next;
4647 struct stripe_head *sh;
4648 sh = list_entry(l, struct stripe_head, lru);
4649 list_del_init(l);
4650 clear_bit(STRIPE_DELAYED, &sh->state);
4651 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4652 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 4653 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 4654 raid5_wakeup_stripe_thread(sh);
16a53ecc 4655 }
482c0834 4656 }
16a53ecc
N
4657}
4658
566c09c5
SL
4659static void activate_bit_delay(struct r5conf *conf,
4660 struct list_head *temp_inactive_list)
16a53ecc
N
4661{
4662 /* device_lock is held */
4663 struct list_head head;
4664 list_add(&head, &conf->bitmap_list);
4665 list_del_init(&conf->bitmap_list);
4666 while (!list_empty(&head)) {
4667 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 4668 int hash;
16a53ecc
N
4669 list_del_init(&sh->lru);
4670 atomic_inc(&sh->count);
566c09c5
SL
4671 hash = sh->hash_lock_index;
4672 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
4673 }
4674}
4675
5c675f83 4676static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 4677{
d1688a6d 4678 struct r5conf *conf = mddev->private;
f022b2fd
N
4679
4680 /* No difference between reads and writes. Just check
4681 * how busy the stripe_cache is
4682 */
3fa841d7 4683
5423399a 4684 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd
N
4685 return 1;
4686 if (conf->quiesce)
4687 return 1;
4bda556a 4688 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
4689 return 1;
4690
4691 return 0;
4692}
4693
fd01b88c 4694static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 4695{
3cb5edf4 4696 struct r5conf *conf = mddev->private;
4f024f37 4697 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
3cb5edf4 4698 unsigned int chunk_sectors;
aa8b57aa 4699 unsigned int bio_sectors = bio_sectors(bio);
f679623f 4700
3cb5edf4 4701 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
4702 return chunk_sectors >=
4703 ((sector & (chunk_sectors - 1)) + bio_sectors);
4704}
4705
46031f9a
RBJ
4706/*
4707 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4708 * later sampled by raid5d.
4709 */
d1688a6d 4710static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
4711{
4712 unsigned long flags;
4713
4714 spin_lock_irqsave(&conf->device_lock, flags);
4715
4716 bi->bi_next = conf->retry_read_aligned_list;
4717 conf->retry_read_aligned_list = bi;
4718
4719 spin_unlock_irqrestore(&conf->device_lock, flags);
4720 md_wakeup_thread(conf->mddev->thread);
4721}
4722
d1688a6d 4723static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
4724{
4725 struct bio *bi;
4726
4727 bi = conf->retry_read_aligned;
4728 if (bi) {
4729 conf->retry_read_aligned = NULL;
4730 return bi;
4731 }
4732 bi = conf->retry_read_aligned_list;
4733 if(bi) {
387bb173 4734 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 4735 bi->bi_next = NULL;
960e739d
JA
4736 /*
4737 * this sets the active strip count to 1 and the processed
4738 * strip count to zero (upper 8 bits)
4739 */
e7836bd6 4740 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
4741 }
4742
4743 return bi;
4744}
4745
f679623f
RBJ
4746/*
4747 * The "raid5_align_endio" should check if the read succeeded and if it
4748 * did, call bio_endio on the original bio (having bio_put the new bio
4749 * first).
4750 * If the read failed..
4751 */
4246a0b6 4752static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
4753{
4754 struct bio* raid_bi = bi->bi_private;
fd01b88c 4755 struct mddev *mddev;
d1688a6d 4756 struct r5conf *conf;
3cb03002 4757 struct md_rdev *rdev;
9b81c842 4758 int error = bi->bi_error;
46031f9a 4759
f679623f 4760 bio_put(bi);
46031f9a 4761
46031f9a
RBJ
4762 rdev = (void*)raid_bi->bi_next;
4763 raid_bi->bi_next = NULL;
2b7f2228
N
4764 mddev = rdev->mddev;
4765 conf = mddev->private;
46031f9a
RBJ
4766
4767 rdev_dec_pending(rdev, conf->mddev);
4768
9b81c842 4769 if (!error) {
0a82a8d1
LT
4770 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4771 raid_bi, 0);
4246a0b6 4772 bio_endio(raid_bi);
46031f9a 4773 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 4774 wake_up(&conf->wait_for_quiescent);
6712ecf8 4775 return;
46031f9a
RBJ
4776 }
4777
45b4233c 4778 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
4779
4780 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
4781}
4782
7ef6b12a 4783static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 4784{
d1688a6d 4785 struct r5conf *conf = mddev->private;
8553fe7e 4786 int dd_idx;
f679623f 4787 struct bio* align_bi;
3cb03002 4788 struct md_rdev *rdev;
671488cc 4789 sector_t end_sector;
f679623f
RBJ
4790
4791 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 4792 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
4793 return 0;
4794 }
4795 /*
a167f663 4796 * use bio_clone_mddev to make a copy of the bio
f679623f 4797 */
a167f663 4798 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
4799 if (!align_bi)
4800 return 0;
4801 /*
4802 * set bi_end_io to a new function, and set bi_private to the
4803 * original bio.
4804 */
4805 align_bi->bi_end_io = raid5_align_endio;
4806 align_bi->bi_private = raid_bio;
4807 /*
4808 * compute position
4809 */
4f024f37
KO
4810 align_bi->bi_iter.bi_sector =
4811 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4812 0, &dd_idx, NULL);
f679623f 4813
f73a1c7d 4814 end_sector = bio_end_sector(align_bi);
f679623f 4815 rcu_read_lock();
671488cc
N
4816 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4817 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4818 rdev->recovery_offset < end_sector) {
4819 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4820 if (rdev &&
4821 (test_bit(Faulty, &rdev->flags) ||
4822 !(test_bit(In_sync, &rdev->flags) ||
4823 rdev->recovery_offset >= end_sector)))
4824 rdev = NULL;
4825 }
4826 if (rdev) {
31c176ec
N
4827 sector_t first_bad;
4828 int bad_sectors;
4829
f679623f
RBJ
4830 atomic_inc(&rdev->nr_pending);
4831 rcu_read_unlock();
46031f9a
RBJ
4832 raid_bio->bi_next = (void*)rdev;
4833 align_bi->bi_bdev = rdev->bdev;
b7c44ed9 4834 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 4835
7140aafc 4836 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 4837 bio_sectors(align_bi),
31c176ec 4838 &first_bad, &bad_sectors)) {
387bb173
NB
4839 bio_put(align_bi);
4840 rdev_dec_pending(rdev, mddev);
4841 return 0;
4842 }
4843
6c0544e2 4844 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 4845 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 4846
46031f9a 4847 spin_lock_irq(&conf->device_lock);
b1b46486 4848 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 4849 conf->quiesce == 0,
eed8c02e 4850 conf->device_lock);
46031f9a
RBJ
4851 atomic_inc(&conf->active_aligned_reads);
4852 spin_unlock_irq(&conf->device_lock);
4853
e3620a3a
JB
4854 if (mddev->gendisk)
4855 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4856 align_bi, disk_devt(mddev->gendisk),
4f024f37 4857 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
4858 generic_make_request(align_bi);
4859 return 1;
4860 } else {
4861 rcu_read_unlock();
46031f9a 4862 bio_put(align_bi);
f679623f
RBJ
4863 return 0;
4864 }
4865}
4866
7ef6b12a
ML
4867static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4868{
4869 struct bio *split;
4870
4871 do {
4872 sector_t sector = raid_bio->bi_iter.bi_sector;
4873 unsigned chunk_sects = mddev->chunk_sectors;
4874 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4875
4876 if (sectors < bio_sectors(raid_bio)) {
4877 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4878 bio_chain(split, raid_bio);
4879 } else
4880 split = raid_bio;
4881
4882 if (!raid5_read_one_chunk(mddev, split)) {
4883 if (split != raid_bio)
4884 generic_make_request(raid_bio);
4885 return split;
4886 }
4887 } while (split != raid_bio);
4888
4889 return NULL;
4890}
4891
8b3e6cdc
DW
4892/* __get_priority_stripe - get the next stripe to process
4893 *
4894 * Full stripe writes are allowed to pass preread active stripes up until
4895 * the bypass_threshold is exceeded. In general the bypass_count
4896 * increments when the handle_list is handled before the hold_list; however, it
4897 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4898 * stripe with in flight i/o. The bypass_count will be reset when the
4899 * head of the hold_list has changed, i.e. the head was promoted to the
4900 * handle_list.
4901 */
851c30c9 4902static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 4903{
851c30c9
SL
4904 struct stripe_head *sh = NULL, *tmp;
4905 struct list_head *handle_list = NULL;
bfc90cb0 4906 struct r5worker_group *wg = NULL;
851c30c9
SL
4907
4908 if (conf->worker_cnt_per_group == 0) {
4909 handle_list = &conf->handle_list;
4910 } else if (group != ANY_GROUP) {
4911 handle_list = &conf->worker_groups[group].handle_list;
bfc90cb0 4912 wg = &conf->worker_groups[group];
851c30c9
SL
4913 } else {
4914 int i;
4915 for (i = 0; i < conf->group_cnt; i++) {
4916 handle_list = &conf->worker_groups[i].handle_list;
bfc90cb0 4917 wg = &conf->worker_groups[i];
851c30c9
SL
4918 if (!list_empty(handle_list))
4919 break;
4920 }
4921 }
8b3e6cdc
DW
4922
4923 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4924 __func__,
851c30c9 4925 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
4926 list_empty(&conf->hold_list) ? "empty" : "busy",
4927 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4928
851c30c9
SL
4929 if (!list_empty(handle_list)) {
4930 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
4931
4932 if (list_empty(&conf->hold_list))
4933 conf->bypass_count = 0;
4934 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4935 if (conf->hold_list.next == conf->last_hold)
4936 conf->bypass_count++;
4937 else {
4938 conf->last_hold = conf->hold_list.next;
4939 conf->bypass_count -= conf->bypass_threshold;
4940 if (conf->bypass_count < 0)
4941 conf->bypass_count = 0;
4942 }
4943 }
4944 } else if (!list_empty(&conf->hold_list) &&
4945 ((conf->bypass_threshold &&
4946 conf->bypass_count > conf->bypass_threshold) ||
4947 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
4948
4949 list_for_each_entry(tmp, &conf->hold_list, lru) {
4950 if (conf->worker_cnt_per_group == 0 ||
4951 group == ANY_GROUP ||
4952 !cpu_online(tmp->cpu) ||
4953 cpu_to_group(tmp->cpu) == group) {
4954 sh = tmp;
4955 break;
4956 }
4957 }
4958
4959 if (sh) {
4960 conf->bypass_count -= conf->bypass_threshold;
4961 if (conf->bypass_count < 0)
4962 conf->bypass_count = 0;
4963 }
bfc90cb0 4964 wg = NULL;
851c30c9
SL
4965 }
4966
4967 if (!sh)
8b3e6cdc
DW
4968 return NULL;
4969
bfc90cb0
SL
4970 if (wg) {
4971 wg->stripes_cnt--;
4972 sh->group = NULL;
4973 }
8b3e6cdc 4974 list_del_init(&sh->lru);
c7a6d35e 4975 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
4976 return sh;
4977}
f679623f 4978
8811b596
SL
4979struct raid5_plug_cb {
4980 struct blk_plug_cb cb;
4981 struct list_head list;
566c09c5 4982 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
4983};
4984
4985static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4986{
4987 struct raid5_plug_cb *cb = container_of(
4988 blk_cb, struct raid5_plug_cb, cb);
4989 struct stripe_head *sh;
4990 struct mddev *mddev = cb->cb.data;
4991 struct r5conf *conf = mddev->private;
a9add5d9 4992 int cnt = 0;
566c09c5 4993 int hash;
8811b596
SL
4994
4995 if (cb->list.next && !list_empty(&cb->list)) {
4996 spin_lock_irq(&conf->device_lock);
4997 while (!list_empty(&cb->list)) {
4998 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4999 list_del_init(&sh->lru);
5000 /*
5001 * avoid race release_stripe_plug() sees
5002 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5003 * is still in our list
5004 */
4e857c58 5005 smp_mb__before_atomic();
8811b596 5006 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5007 /*
5008 * STRIPE_ON_RELEASE_LIST could be set here. In that
5009 * case, the count is always > 1 here
5010 */
566c09c5
SL
5011 hash = sh->hash_lock_index;
5012 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5013 cnt++;
8811b596
SL
5014 }
5015 spin_unlock_irq(&conf->device_lock);
5016 }
566c09c5
SL
5017 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5018 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5019 if (mddev->queue)
5020 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5021 kfree(cb);
5022}
5023
5024static void release_stripe_plug(struct mddev *mddev,
5025 struct stripe_head *sh)
5026{
5027 struct blk_plug_cb *blk_cb = blk_check_plugged(
5028 raid5_unplug, mddev,
5029 sizeof(struct raid5_plug_cb));
5030 struct raid5_plug_cb *cb;
5031
5032 if (!blk_cb) {
6d036f7d 5033 raid5_release_stripe(sh);
8811b596
SL
5034 return;
5035 }
5036
5037 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5038
566c09c5
SL
5039 if (cb->list.next == NULL) {
5040 int i;
8811b596 5041 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5042 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5043 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5044 }
8811b596
SL
5045
5046 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5047 list_add_tail(&sh->lru, &cb->list);
5048 else
6d036f7d 5049 raid5_release_stripe(sh);
8811b596
SL
5050}
5051
620125f2
SL
5052static void make_discard_request(struct mddev *mddev, struct bio *bi)
5053{
5054 struct r5conf *conf = mddev->private;
5055 sector_t logical_sector, last_sector;
5056 struct stripe_head *sh;
5057 int remaining;
5058 int stripe_sectors;
5059
5060 if (mddev->reshape_position != MaxSector)
5061 /* Skip discard while reshape is happening */
5062 return;
5063
4f024f37
KO
5064 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5065 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5066
5067 bi->bi_next = NULL;
5068 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5069
5070 stripe_sectors = conf->chunk_sectors *
5071 (conf->raid_disks - conf->max_degraded);
5072 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5073 stripe_sectors);
5074 sector_div(last_sector, stripe_sectors);
5075
5076 logical_sector *= conf->chunk_sectors;
5077 last_sector *= conf->chunk_sectors;
5078
5079 for (; logical_sector < last_sector;
5080 logical_sector += STRIPE_SECTORS) {
5081 DEFINE_WAIT(w);
5082 int d;
5083 again:
6d036f7d 5084 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5085 prepare_to_wait(&conf->wait_for_overlap, &w,
5086 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5087 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5088 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5089 raid5_release_stripe(sh);
f8dfcffd
N
5090 schedule();
5091 goto again;
5092 }
5093 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5094 spin_lock_irq(&sh->stripe_lock);
5095 for (d = 0; d < conf->raid_disks; d++) {
5096 if (d == sh->pd_idx || d == sh->qd_idx)
5097 continue;
5098 if (sh->dev[d].towrite || sh->dev[d].toread) {
5099 set_bit(R5_Overlap, &sh->dev[d].flags);
5100 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5101 raid5_release_stripe(sh);
620125f2
SL
5102 schedule();
5103 goto again;
5104 }
5105 }
f8dfcffd 5106 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5107 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5108 sh->overwrite_disks = 0;
620125f2
SL
5109 for (d = 0; d < conf->raid_disks; d++) {
5110 if (d == sh->pd_idx || d == sh->qd_idx)
5111 continue;
5112 sh->dev[d].towrite = bi;
5113 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5114 raid5_inc_bi_active_stripes(bi);
7a87f434 5115 sh->overwrite_disks++;
620125f2
SL
5116 }
5117 spin_unlock_irq(&sh->stripe_lock);
5118 if (conf->mddev->bitmap) {
5119 for (d = 0;
5120 d < conf->raid_disks - conf->max_degraded;
5121 d++)
5122 bitmap_startwrite(mddev->bitmap,
5123 sh->sector,
5124 STRIPE_SECTORS,
5125 0);
5126 sh->bm_seq = conf->seq_flush + 1;
5127 set_bit(STRIPE_BIT_DELAY, &sh->state);
5128 }
5129
5130 set_bit(STRIPE_HANDLE, &sh->state);
5131 clear_bit(STRIPE_DELAYED, &sh->state);
5132 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5133 atomic_inc(&conf->preread_active_stripes);
5134 release_stripe_plug(mddev, sh);
5135 }
5136
5137 remaining = raid5_dec_bi_active_stripes(bi);
5138 if (remaining == 0) {
5139 md_write_end(mddev);
4246a0b6 5140 bio_endio(bi);
620125f2
SL
5141 }
5142}
5143
849674e4 5144static void raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5145{
d1688a6d 5146 struct r5conf *conf = mddev->private;
911d4ee8 5147 int dd_idx;
1da177e4
LT
5148 sector_t new_sector;
5149 sector_t logical_sector, last_sector;
5150 struct stripe_head *sh;
a362357b 5151 const int rw = bio_data_dir(bi);
49077326 5152 int remaining;
27c0f68f
SL
5153 DEFINE_WAIT(w);
5154 bool do_prepare;
1da177e4 5155
e9c7469b 5156 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
828cbe98
SL
5157 int ret = r5l_handle_flush_request(conf->log, bi);
5158
5159 if (ret == 0)
5160 return;
5161 if (ret == -ENODEV) {
5162 md_flush_request(mddev, bi);
5163 return;
5164 }
5165 /* ret == -EAGAIN, fallback */
e5dcdd80
N
5166 }
5167
3d310eb7 5168 md_write_start(mddev, bi);
06d91a5f 5169
9ffc8f7c
EM
5170 /*
5171 * If array is degraded, better not do chunk aligned read because
5172 * later we might have to read it again in order to reconstruct
5173 * data on failed drives.
5174 */
5175 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5176 mddev->reshape_position == MaxSector) {
5177 bi = chunk_aligned_read(mddev, bi);
5178 if (!bi)
5179 return;
5180 }
52488615 5181
620125f2
SL
5182 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5183 make_discard_request(mddev, bi);
5184 return;
5185 }
5186
4f024f37 5187 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5188 last_sector = bio_end_sector(bi);
1da177e4
LT
5189 bi->bi_next = NULL;
5190 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 5191
27c0f68f 5192 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5193 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5194 int previous;
c46501b2 5195 int seq;
b578d55f 5196
27c0f68f 5197 do_prepare = false;
7ecaa1e6 5198 retry:
c46501b2 5199 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5200 previous = 0;
27c0f68f
SL
5201 if (do_prepare)
5202 prepare_to_wait(&conf->wait_for_overlap, &w,
5203 TASK_UNINTERRUPTIBLE);
b0f9ec04 5204 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5205 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5206 * 64bit on a 32bit platform, and so it might be
5207 * possible to see a half-updated value
aeb878b0 5208 * Of course reshape_progress could change after
df8e7f76
N
5209 * the lock is dropped, so once we get a reference
5210 * to the stripe that we think it is, we will have
5211 * to check again.
5212 */
7ecaa1e6 5213 spin_lock_irq(&conf->device_lock);
2c810cdd 5214 if (mddev->reshape_backwards
fef9c61f
N
5215 ? logical_sector < conf->reshape_progress
5216 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5217 previous = 1;
5218 } else {
2c810cdd 5219 if (mddev->reshape_backwards
fef9c61f
N
5220 ? logical_sector < conf->reshape_safe
5221 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5222 spin_unlock_irq(&conf->device_lock);
5223 schedule();
27c0f68f 5224 do_prepare = true;
b578d55f
N
5225 goto retry;
5226 }
5227 }
7ecaa1e6
N
5228 spin_unlock_irq(&conf->device_lock);
5229 }
16a53ecc 5230
112bf897
N
5231 new_sector = raid5_compute_sector(conf, logical_sector,
5232 previous,
911d4ee8 5233 &dd_idx, NULL);
849674e4 5234 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5235 (unsigned long long)new_sector,
1da177e4
LT
5236 (unsigned long long)logical_sector);
5237
6d036f7d 5238 sh = raid5_get_active_stripe(conf, new_sector, previous,
a8c906ca 5239 (bi->bi_rw&RWA_MASK), 0);
1da177e4 5240 if (sh) {
b0f9ec04 5241 if (unlikely(previous)) {
7ecaa1e6 5242 /* expansion might have moved on while waiting for a
df8e7f76
N
5243 * stripe, so we must do the range check again.
5244 * Expansion could still move past after this
5245 * test, but as we are holding a reference to
5246 * 'sh', we know that if that happens,
5247 * STRIPE_EXPANDING will get set and the expansion
5248 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5249 */
5250 int must_retry = 0;
5251 spin_lock_irq(&conf->device_lock);
2c810cdd 5252 if (mddev->reshape_backwards
b0f9ec04
N
5253 ? logical_sector >= conf->reshape_progress
5254 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5255 /* mismatch, need to try again */
5256 must_retry = 1;
5257 spin_unlock_irq(&conf->device_lock);
5258 if (must_retry) {
6d036f7d 5259 raid5_release_stripe(sh);
7a3ab908 5260 schedule();
27c0f68f 5261 do_prepare = true;
7ecaa1e6
N
5262 goto retry;
5263 }
5264 }
c46501b2
N
5265 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5266 /* Might have got the wrong stripe_head
5267 * by accident
5268 */
6d036f7d 5269 raid5_release_stripe(sh);
c46501b2
N
5270 goto retry;
5271 }
e62e58a5 5272
ffd96e35 5273 if (rw == WRITE &&
a5c308d4 5274 logical_sector >= mddev->suspend_lo &&
e464eafd 5275 logical_sector < mddev->suspend_hi) {
6d036f7d 5276 raid5_release_stripe(sh);
e62e58a5
N
5277 /* As the suspend_* range is controlled by
5278 * userspace, we want an interruptible
5279 * wait.
5280 */
5281 flush_signals(current);
5282 prepare_to_wait(&conf->wait_for_overlap,
5283 &w, TASK_INTERRUPTIBLE);
5284 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5285 logical_sector < mddev->suspend_hi) {
e62e58a5 5286 schedule();
27c0f68f
SL
5287 do_prepare = true;
5288 }
e464eafd
N
5289 goto retry;
5290 }
7ecaa1e6
N
5291
5292 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5293 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5294 /* Stripe is busy expanding or
5295 * add failed due to overlap. Flush everything
1da177e4
LT
5296 * and wait a while
5297 */
482c0834 5298 md_wakeup_thread(mddev->thread);
6d036f7d 5299 raid5_release_stripe(sh);
1da177e4 5300 schedule();
27c0f68f 5301 do_prepare = true;
1da177e4
LT
5302 goto retry;
5303 }
6ed3003c
N
5304 set_bit(STRIPE_HANDLE, &sh->state);
5305 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5306 if ((!sh->batch_head || sh == sh->batch_head) &&
5307 (bi->bi_rw & REQ_SYNC) &&
729a1866
N
5308 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5309 atomic_inc(&conf->preread_active_stripes);
8811b596 5310 release_stripe_plug(mddev, sh);
1da177e4
LT
5311 } else {
5312 /* cannot get stripe for read-ahead, just give-up */
4246a0b6 5313 bi->bi_error = -EIO;
1da177e4
LT
5314 break;
5315 }
1da177e4 5316 }
27c0f68f 5317 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5318
e7836bd6 5319 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 5320 if (remaining == 0) {
1da177e4 5321
16a53ecc 5322 if ( rw == WRITE )
1da177e4 5323 md_write_end(mddev);
6712ecf8 5324
0a82a8d1
LT
5325 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5326 bi, 0);
4246a0b6 5327 bio_endio(bi);
1da177e4 5328 }
1da177e4
LT
5329}
5330
fd01b88c 5331static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5332
fd01b88c 5333static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5334{
52c03291
N
5335 /* reshaping is quite different to recovery/resync so it is
5336 * handled quite separately ... here.
5337 *
5338 * On each call to sync_request, we gather one chunk worth of
5339 * destination stripes and flag them as expanding.
5340 * Then we find all the source stripes and request reads.
5341 * As the reads complete, handle_stripe will copy the data
5342 * into the destination stripe and release that stripe.
5343 */
d1688a6d 5344 struct r5conf *conf = mddev->private;
1da177e4 5345 struct stripe_head *sh;
ccfcc3c1 5346 sector_t first_sector, last_sector;
f416885e
N
5347 int raid_disks = conf->previous_raid_disks;
5348 int data_disks = raid_disks - conf->max_degraded;
5349 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5350 int i;
5351 int dd_idx;
c8f517c4 5352 sector_t writepos, readpos, safepos;
ec32a2bd 5353 sector_t stripe_addr;
7a661381 5354 int reshape_sectors;
ab69ae12 5355 struct list_head stripes;
92140480 5356 sector_t retn;
52c03291 5357
fef9c61f
N
5358 if (sector_nr == 0) {
5359 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5360 if (mddev->reshape_backwards &&
fef9c61f
N
5361 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5362 sector_nr = raid5_size(mddev, 0, 0)
5363 - conf->reshape_progress;
6cbd8148
N
5364 } else if (mddev->reshape_backwards &&
5365 conf->reshape_progress == MaxSector) {
5366 /* shouldn't happen, but just in case, finish up.*/
5367 sector_nr = MaxSector;
2c810cdd 5368 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5369 conf->reshape_progress > 0)
5370 sector_nr = conf->reshape_progress;
f416885e 5371 sector_div(sector_nr, new_data_disks);
fef9c61f 5372 if (sector_nr) {
8dee7211
N
5373 mddev->curr_resync_completed = sector_nr;
5374 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5375 *skipped = 1;
92140480
N
5376 retn = sector_nr;
5377 goto finish;
fef9c61f 5378 }
52c03291
N
5379 }
5380
7a661381
N
5381 /* We need to process a full chunk at a time.
5382 * If old and new chunk sizes differ, we need to process the
5383 * largest of these
5384 */
3cb5edf4
N
5385
5386 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5387
b5254dd5
N
5388 /* We update the metadata at least every 10 seconds, or when
5389 * the data about to be copied would over-write the source of
5390 * the data at the front of the range. i.e. one new_stripe
5391 * along from reshape_progress new_maps to after where
5392 * reshape_safe old_maps to
52c03291 5393 */
fef9c61f 5394 writepos = conf->reshape_progress;
f416885e 5395 sector_div(writepos, new_data_disks);
c8f517c4
N
5396 readpos = conf->reshape_progress;
5397 sector_div(readpos, data_disks);
fef9c61f 5398 safepos = conf->reshape_safe;
f416885e 5399 sector_div(safepos, data_disks);
2c810cdd 5400 if (mddev->reshape_backwards) {
c74c0d76
N
5401 BUG_ON(writepos < reshape_sectors);
5402 writepos -= reshape_sectors;
c8f517c4 5403 readpos += reshape_sectors;
7a661381 5404 safepos += reshape_sectors;
fef9c61f 5405 } else {
7a661381 5406 writepos += reshape_sectors;
c74c0d76
N
5407 /* readpos and safepos are worst-case calculations.
5408 * A negative number is overly pessimistic, and causes
5409 * obvious problems for unsigned storage. So clip to 0.
5410 */
ed37d83e
N
5411 readpos -= min_t(sector_t, reshape_sectors, readpos);
5412 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5413 }
52c03291 5414
b5254dd5
N
5415 /* Having calculated the 'writepos' possibly use it
5416 * to set 'stripe_addr' which is where we will write to.
5417 */
5418 if (mddev->reshape_backwards) {
5419 BUG_ON(conf->reshape_progress == 0);
5420 stripe_addr = writepos;
5421 BUG_ON((mddev->dev_sectors &
5422 ~((sector_t)reshape_sectors - 1))
5423 - reshape_sectors - stripe_addr
5424 != sector_nr);
5425 } else {
5426 BUG_ON(writepos != sector_nr + reshape_sectors);
5427 stripe_addr = sector_nr;
5428 }
5429
c8f517c4
N
5430 /* 'writepos' is the most advanced device address we might write.
5431 * 'readpos' is the least advanced device address we might read.
5432 * 'safepos' is the least address recorded in the metadata as having
5433 * been reshaped.
b5254dd5
N
5434 * If there is a min_offset_diff, these are adjusted either by
5435 * increasing the safepos/readpos if diff is negative, or
5436 * increasing writepos if diff is positive.
5437 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5438 * ensure safety in the face of a crash - that must be done by userspace
5439 * making a backup of the data. So in that case there is no particular
5440 * rush to update metadata.
5441 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5442 * update the metadata to advance 'safepos' to match 'readpos' so that
5443 * we can be safe in the event of a crash.
5444 * So we insist on updating metadata if safepos is behind writepos and
5445 * readpos is beyond writepos.
5446 * In any case, update the metadata every 10 seconds.
5447 * Maybe that number should be configurable, but I'm not sure it is
5448 * worth it.... maybe it could be a multiple of safemode_delay???
5449 */
b5254dd5
N
5450 if (conf->min_offset_diff < 0) {
5451 safepos += -conf->min_offset_diff;
5452 readpos += -conf->min_offset_diff;
5453 } else
5454 writepos += conf->min_offset_diff;
5455
2c810cdd 5456 if ((mddev->reshape_backwards
c8f517c4
N
5457 ? (safepos > writepos && readpos < writepos)
5458 : (safepos < writepos && readpos > writepos)) ||
5459 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5460 /* Cannot proceed until we've updated the superblock... */
5461 wait_event(conf->wait_for_overlap,
c91abf5a
N
5462 atomic_read(&conf->reshape_stripes)==0
5463 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5464 if (atomic_read(&conf->reshape_stripes) != 0)
5465 return 0;
fef9c61f 5466 mddev->reshape_position = conf->reshape_progress;
75d3da43 5467 mddev->curr_resync_completed = sector_nr;
c8f517c4 5468 conf->reshape_checkpoint = jiffies;
850b2b42 5469 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 5470 md_wakeup_thread(mddev->thread);
850b2b42 5471 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
5472 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5473 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5474 return 0;
52c03291 5475 spin_lock_irq(&conf->device_lock);
fef9c61f 5476 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5477 spin_unlock_irq(&conf->device_lock);
5478 wake_up(&conf->wait_for_overlap);
acb180b0 5479 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5480 }
5481
ab69ae12 5482 INIT_LIST_HEAD(&stripes);
7a661381 5483 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5484 int j;
a9f326eb 5485 int skipped_disk = 0;
6d036f7d 5486 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5487 set_bit(STRIPE_EXPANDING, &sh->state);
5488 atomic_inc(&conf->reshape_stripes);
5489 /* If any of this stripe is beyond the end of the old
5490 * array, then we need to zero those blocks
5491 */
5492 for (j=sh->disks; j--;) {
5493 sector_t s;
5494 if (j == sh->pd_idx)
5495 continue;
f416885e 5496 if (conf->level == 6 &&
d0dabf7e 5497 j == sh->qd_idx)
f416885e 5498 continue;
6d036f7d 5499 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5500 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5501 skipped_disk = 1;
52c03291
N
5502 continue;
5503 }
5504 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5505 set_bit(R5_Expanded, &sh->dev[j].flags);
5506 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5507 }
a9f326eb 5508 if (!skipped_disk) {
52c03291
N
5509 set_bit(STRIPE_EXPAND_READY, &sh->state);
5510 set_bit(STRIPE_HANDLE, &sh->state);
5511 }
ab69ae12 5512 list_add(&sh->lru, &stripes);
52c03291
N
5513 }
5514 spin_lock_irq(&conf->device_lock);
2c810cdd 5515 if (mddev->reshape_backwards)
7a661381 5516 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5517 else
7a661381 5518 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5519 spin_unlock_irq(&conf->device_lock);
5520 /* Ok, those stripe are ready. We can start scheduling
5521 * reads on the source stripes.
5522 * The source stripes are determined by mapping the first and last
5523 * block on the destination stripes.
5524 */
52c03291 5525 first_sector =
ec32a2bd 5526 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5527 1, &dd_idx, NULL);
52c03291 5528 last_sector =
0e6e0271 5529 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5530 * new_data_disks - 1),
911d4ee8 5531 1, &dd_idx, NULL);
58c0fed4
AN
5532 if (last_sector >= mddev->dev_sectors)
5533 last_sector = mddev->dev_sectors - 1;
52c03291 5534 while (first_sector <= last_sector) {
6d036f7d 5535 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5536 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5537 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5538 raid5_release_stripe(sh);
52c03291
N
5539 first_sector += STRIPE_SECTORS;
5540 }
ab69ae12
N
5541 /* Now that the sources are clearly marked, we can release
5542 * the destination stripes
5543 */
5544 while (!list_empty(&stripes)) {
5545 sh = list_entry(stripes.next, struct stripe_head, lru);
5546 list_del_init(&sh->lru);
6d036f7d 5547 raid5_release_stripe(sh);
ab69ae12 5548 }
c6207277
N
5549 /* If this takes us to the resync_max point where we have to pause,
5550 * then we need to write out the superblock.
5551 */
7a661381 5552 sector_nr += reshape_sectors;
92140480
N
5553 retn = reshape_sectors;
5554finish:
c5e19d90
N
5555 if (mddev->curr_resync_completed > mddev->resync_max ||
5556 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5557 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5558 /* Cannot proceed until we've updated the superblock... */
5559 wait_event(conf->wait_for_overlap,
c91abf5a
N
5560 atomic_read(&conf->reshape_stripes) == 0
5561 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5562 if (atomic_read(&conf->reshape_stripes) != 0)
5563 goto ret;
fef9c61f 5564 mddev->reshape_position = conf->reshape_progress;
75d3da43 5565 mddev->curr_resync_completed = sector_nr;
c8f517c4 5566 conf->reshape_checkpoint = jiffies;
c6207277
N
5567 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5568 md_wakeup_thread(mddev->thread);
5569 wait_event(mddev->sb_wait,
5570 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
c91abf5a
N
5571 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5572 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5573 goto ret;
c6207277 5574 spin_lock_irq(&conf->device_lock);
fef9c61f 5575 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5576 spin_unlock_irq(&conf->device_lock);
5577 wake_up(&conf->wait_for_overlap);
acb180b0 5578 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5579 }
c91abf5a 5580ret:
92140480 5581 return retn;
52c03291
N
5582}
5583
849674e4
SL
5584static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5585 int *skipped)
52c03291 5586{
d1688a6d 5587 struct r5conf *conf = mddev->private;
52c03291 5588 struct stripe_head *sh;
58c0fed4 5589 sector_t max_sector = mddev->dev_sectors;
57dab0bd 5590 sector_t sync_blocks;
16a53ecc
N
5591 int still_degraded = 0;
5592 int i;
1da177e4 5593
72626685 5594 if (sector_nr >= max_sector) {
1da177e4 5595 /* just being told to finish up .. nothing much to do */
cea9c228 5596
29269553
N
5597 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5598 end_reshape(conf);
5599 return 0;
5600 }
72626685
N
5601
5602 if (mddev->curr_resync < max_sector) /* aborted */
5603 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5604 &sync_blocks, 1);
16a53ecc 5605 else /* completed sync */
72626685
N
5606 conf->fullsync = 0;
5607 bitmap_close_sync(mddev->bitmap);
5608
1da177e4
LT
5609 return 0;
5610 }
ccfcc3c1 5611
64bd660b
N
5612 /* Allow raid5_quiesce to complete */
5613 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5614
52c03291
N
5615 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5616 return reshape_request(mddev, sector_nr, skipped);
f6705578 5617
c6207277
N
5618 /* No need to check resync_max as we never do more than one
5619 * stripe, and as resync_max will always be on a chunk boundary,
5620 * if the check in md_do_sync didn't fire, there is no chance
5621 * of overstepping resync_max here
5622 */
5623
16a53ecc 5624 /* if there is too many failed drives and we are trying
1da177e4
LT
5625 * to resync, then assert that we are finished, because there is
5626 * nothing we can do.
5627 */
3285edf1 5628 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 5629 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 5630 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 5631 *skipped = 1;
1da177e4
LT
5632 return rv;
5633 }
6f608040 5634 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5635 !conf->fullsync &&
5636 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5637 sync_blocks >= STRIPE_SECTORS) {
72626685
N
5638 /* we can skip this block, and probably more */
5639 sync_blocks /= STRIPE_SECTORS;
5640 *skipped = 1;
5641 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5642 }
1da177e4 5643
c40f341f 5644 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 5645
6d036f7d 5646 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 5647 if (sh == NULL) {
6d036f7d 5648 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 5649 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 5650 * is trying to get access
1da177e4 5651 */
66c006a5 5652 schedule_timeout_uninterruptible(1);
1da177e4 5653 }
16a53ecc 5654 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
5655 * Note in case of > 1 drive failures it's possible we're rebuilding
5656 * one drive while leaving another faulty drive in array.
16a53ecc 5657 */
16d9cfab
EM
5658 rcu_read_lock();
5659 for (i = 0; i < conf->raid_disks; i++) {
5660 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5661
5662 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 5663 still_degraded = 1;
16d9cfab
EM
5664 }
5665 rcu_read_unlock();
16a53ecc
N
5666
5667 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5668
83206d66 5669 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 5670 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 5671
6d036f7d 5672 raid5_release_stripe(sh);
1da177e4
LT
5673
5674 return STRIPE_SECTORS;
5675}
5676
d1688a6d 5677static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
5678{
5679 /* We may not be able to submit a whole bio at once as there
5680 * may not be enough stripe_heads available.
5681 * We cannot pre-allocate enough stripe_heads as we may need
5682 * more than exist in the cache (if we allow ever large chunks).
5683 * So we do one stripe head at a time and record in
5684 * ->bi_hw_segments how many have been done.
5685 *
5686 * We *know* that this entire raid_bio is in one chunk, so
5687 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5688 */
5689 struct stripe_head *sh;
911d4ee8 5690 int dd_idx;
46031f9a
RBJ
5691 sector_t sector, logical_sector, last_sector;
5692 int scnt = 0;
5693 int remaining;
5694 int handled = 0;
5695
4f024f37
KO
5696 logical_sector = raid_bio->bi_iter.bi_sector &
5697 ~((sector_t)STRIPE_SECTORS-1);
112bf897 5698 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 5699 0, &dd_idx, NULL);
f73a1c7d 5700 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
5701
5702 for (; logical_sector < last_sector;
387bb173
NB
5703 logical_sector += STRIPE_SECTORS,
5704 sector += STRIPE_SECTORS,
5705 scnt++) {
46031f9a 5706
e7836bd6 5707 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
5708 /* already done this stripe */
5709 continue;
5710
6d036f7d 5711 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
5712
5713 if (!sh) {
5714 /* failed to get a stripe - must wait */
e7836bd6 5715 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
5716 conf->retry_read_aligned = raid_bio;
5717 return handled;
5718 }
5719
da41ba65 5720 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 5721 raid5_release_stripe(sh);
e7836bd6 5722 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
5723 conf->retry_read_aligned = raid_bio;
5724 return handled;
5725 }
5726
3f9e7c14 5727 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 5728 handle_stripe(sh);
6d036f7d 5729 raid5_release_stripe(sh);
46031f9a
RBJ
5730 handled++;
5731 }
e7836bd6 5732 remaining = raid5_dec_bi_active_stripes(raid_bio);
0a82a8d1
LT
5733 if (remaining == 0) {
5734 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5735 raid_bio, 0);
4246a0b6 5736 bio_endio(raid_bio);
0a82a8d1 5737 }
46031f9a 5738 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5739 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
5740 return handled;
5741}
5742
bfc90cb0 5743static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
5744 struct r5worker *worker,
5745 struct list_head *temp_inactive_list)
46a06401
SL
5746{
5747 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
5748 int i, batch_size = 0, hash;
5749 bool release_inactive = false;
46a06401
SL
5750
5751 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 5752 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
5753 batch[batch_size++] = sh;
5754
566c09c5
SL
5755 if (batch_size == 0) {
5756 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5757 if (!list_empty(temp_inactive_list + i))
5758 break;
a8c34f91
SL
5759 if (i == NR_STRIPE_HASH_LOCKS) {
5760 spin_unlock_irq(&conf->device_lock);
5761 r5l_flush_stripe_to_raid(conf->log);
5762 spin_lock_irq(&conf->device_lock);
566c09c5 5763 return batch_size;
a8c34f91 5764 }
566c09c5
SL
5765 release_inactive = true;
5766 }
46a06401
SL
5767 spin_unlock_irq(&conf->device_lock);
5768
566c09c5
SL
5769 release_inactive_stripe_list(conf, temp_inactive_list,
5770 NR_STRIPE_HASH_LOCKS);
5771
a8c34f91 5772 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
5773 if (release_inactive) {
5774 spin_lock_irq(&conf->device_lock);
5775 return 0;
5776 }
5777
46a06401
SL
5778 for (i = 0; i < batch_size; i++)
5779 handle_stripe(batch[i]);
f6bed0ef 5780 r5l_write_stripe_run(conf->log);
46a06401
SL
5781
5782 cond_resched();
5783
5784 spin_lock_irq(&conf->device_lock);
566c09c5
SL
5785 for (i = 0; i < batch_size; i++) {
5786 hash = batch[i]->hash_lock_index;
5787 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5788 }
46a06401
SL
5789 return batch_size;
5790}
46031f9a 5791
851c30c9
SL
5792static void raid5_do_work(struct work_struct *work)
5793{
5794 struct r5worker *worker = container_of(work, struct r5worker, work);
5795 struct r5worker_group *group = worker->group;
5796 struct r5conf *conf = group->conf;
5797 int group_id = group - conf->worker_groups;
5798 int handled;
5799 struct blk_plug plug;
5800
5801 pr_debug("+++ raid5worker active\n");
5802
5803 blk_start_plug(&plug);
5804 handled = 0;
5805 spin_lock_irq(&conf->device_lock);
5806 while (1) {
5807 int batch_size, released;
5808
566c09c5 5809 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 5810
566c09c5
SL
5811 batch_size = handle_active_stripes(conf, group_id, worker,
5812 worker->temp_inactive_list);
bfc90cb0 5813 worker->working = false;
851c30c9
SL
5814 if (!batch_size && !released)
5815 break;
5816 handled += batch_size;
5817 }
5818 pr_debug("%d stripes handled\n", handled);
5819
5820 spin_unlock_irq(&conf->device_lock);
5821 blk_finish_plug(&plug);
5822
5823 pr_debug("--- raid5worker inactive\n");
5824}
5825
1da177e4
LT
5826/*
5827 * This is our raid5 kernel thread.
5828 *
5829 * We scan the hash table for stripes which can be handled now.
5830 * During the scan, completed stripes are saved for us by the interrupt
5831 * handler, so that they will not have to wait for our next wakeup.
5832 */
4ed8731d 5833static void raid5d(struct md_thread *thread)
1da177e4 5834{
4ed8731d 5835 struct mddev *mddev = thread->mddev;
d1688a6d 5836 struct r5conf *conf = mddev->private;
1da177e4 5837 int handled;
e1dfa0a2 5838 struct blk_plug plug;
1da177e4 5839
45b4233c 5840 pr_debug("+++ raid5d active\n");
1da177e4
LT
5841
5842 md_check_recovery(mddev);
1da177e4 5843
c3cce6cd
N
5844 if (!bio_list_empty(&conf->return_bi) &&
5845 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5846 struct bio_list tmp = BIO_EMPTY_LIST;
5847 spin_lock_irq(&conf->device_lock);
5848 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5849 bio_list_merge(&tmp, &conf->return_bi);
5850 bio_list_init(&conf->return_bi);
5851 }
5852 spin_unlock_irq(&conf->device_lock);
5853 return_io(&tmp);
5854 }
5855
e1dfa0a2 5856 blk_start_plug(&plug);
1da177e4
LT
5857 handled = 0;
5858 spin_lock_irq(&conf->device_lock);
5859 while (1) {
46031f9a 5860 struct bio *bio;
773ca82f
SL
5861 int batch_size, released;
5862
566c09c5 5863 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
5864 if (released)
5865 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 5866
0021b7bc 5867 if (
7c13edc8
N
5868 !list_empty(&conf->bitmap_list)) {
5869 /* Now is a good time to flush some bitmap updates */
5870 conf->seq_flush++;
700e432d 5871 spin_unlock_irq(&conf->device_lock);
72626685 5872 bitmap_unplug(mddev->bitmap);
700e432d 5873 spin_lock_irq(&conf->device_lock);
7c13edc8 5874 conf->seq_write = conf->seq_flush;
566c09c5 5875 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 5876 }
0021b7bc 5877 raid5_activate_delayed(conf);
72626685 5878
46031f9a
RBJ
5879 while ((bio = remove_bio_from_retry(conf))) {
5880 int ok;
5881 spin_unlock_irq(&conf->device_lock);
5882 ok = retry_aligned_read(conf, bio);
5883 spin_lock_irq(&conf->device_lock);
5884 if (!ok)
5885 break;
5886 handled++;
5887 }
5888
566c09c5
SL
5889 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5890 conf->temp_inactive_list);
773ca82f 5891 if (!batch_size && !released)
1da177e4 5892 break;
46a06401 5893 handled += batch_size;
1da177e4 5894
46a06401
SL
5895 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5896 spin_unlock_irq(&conf->device_lock);
de393cde 5897 md_check_recovery(mddev);
46a06401
SL
5898 spin_lock_irq(&conf->device_lock);
5899 }
1da177e4 5900 }
45b4233c 5901 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
5902
5903 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
5904 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5905 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
5906 grow_one_stripe(conf, __GFP_NOWARN);
5907 /* Set flag even if allocation failed. This helps
5908 * slow down allocation requests when mem is short
5909 */
5910 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 5911 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 5912 }
1da177e4 5913
0576b1c6
SL
5914 r5l_flush_stripe_to_raid(conf->log);
5915
c9f21aaf 5916 async_tx_issue_pending_all();
e1dfa0a2 5917 blk_finish_plug(&plug);
1da177e4 5918
45b4233c 5919 pr_debug("--- raid5d inactive\n");
1da177e4
LT
5920}
5921
3f294f4f 5922static ssize_t
fd01b88c 5923raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 5924{
7b1485ba
N
5925 struct r5conf *conf;
5926 int ret = 0;
5927 spin_lock(&mddev->lock);
5928 conf = mddev->private;
96de1e66 5929 if (conf)
edbe83ab 5930 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
5931 spin_unlock(&mddev->lock);
5932 return ret;
3f294f4f
N
5933}
5934
c41d4ac4 5935int
fd01b88c 5936raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 5937{
d1688a6d 5938 struct r5conf *conf = mddev->private;
b5470dc5
DW
5939 int err;
5940
c41d4ac4 5941 if (size <= 16 || size > 32768)
3f294f4f 5942 return -EINVAL;
486f0644 5943
edbe83ab 5944 conf->min_nr_stripes = size;
2d5b569b 5945 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5946 while (size < conf->max_nr_stripes &&
5947 drop_one_stripe(conf))
5948 ;
2d5b569b 5949 mutex_unlock(&conf->cache_size_mutex);
486f0644 5950
edbe83ab 5951
b5470dc5
DW
5952 err = md_allow_write(mddev);
5953 if (err)
5954 return err;
486f0644 5955
2d5b569b 5956 mutex_lock(&conf->cache_size_mutex);
486f0644
N
5957 while (size > conf->max_nr_stripes)
5958 if (!grow_one_stripe(conf, GFP_KERNEL))
5959 break;
2d5b569b 5960 mutex_unlock(&conf->cache_size_mutex);
486f0644 5961
c41d4ac4
N
5962 return 0;
5963}
5964EXPORT_SYMBOL(raid5_set_cache_size);
5965
5966static ssize_t
fd01b88c 5967raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 5968{
6791875e 5969 struct r5conf *conf;
c41d4ac4
N
5970 unsigned long new;
5971 int err;
5972
5973 if (len >= PAGE_SIZE)
5974 return -EINVAL;
b29bebd6 5975 if (kstrtoul(page, 10, &new))
c41d4ac4 5976 return -EINVAL;
6791875e 5977 err = mddev_lock(mddev);
c41d4ac4
N
5978 if (err)
5979 return err;
6791875e
N
5980 conf = mddev->private;
5981 if (!conf)
5982 err = -ENODEV;
5983 else
5984 err = raid5_set_cache_size(mddev, new);
5985 mddev_unlock(mddev);
5986
5987 return err ?: len;
3f294f4f 5988}
007583c9 5989
96de1e66
N
5990static struct md_sysfs_entry
5991raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5992 raid5_show_stripe_cache_size,
5993 raid5_store_stripe_cache_size);
3f294f4f 5994
d06f191f
MS
5995static ssize_t
5996raid5_show_rmw_level(struct mddev *mddev, char *page)
5997{
5998 struct r5conf *conf = mddev->private;
5999 if (conf)
6000 return sprintf(page, "%d\n", conf->rmw_level);
6001 else
6002 return 0;
6003}
6004
6005static ssize_t
6006raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6007{
6008 struct r5conf *conf = mddev->private;
6009 unsigned long new;
6010
6011 if (!conf)
6012 return -ENODEV;
6013
6014 if (len >= PAGE_SIZE)
6015 return -EINVAL;
6016
6017 if (kstrtoul(page, 10, &new))
6018 return -EINVAL;
6019
6020 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6021 return -EINVAL;
6022
6023 if (new != PARITY_DISABLE_RMW &&
6024 new != PARITY_ENABLE_RMW &&
6025 new != PARITY_PREFER_RMW)
6026 return -EINVAL;
6027
6028 conf->rmw_level = new;
6029 return len;
6030}
6031
6032static struct md_sysfs_entry
6033raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6034 raid5_show_rmw_level,
6035 raid5_store_rmw_level);
6036
6037
8b3e6cdc 6038static ssize_t
fd01b88c 6039raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6040{
7b1485ba
N
6041 struct r5conf *conf;
6042 int ret = 0;
6043 spin_lock(&mddev->lock);
6044 conf = mddev->private;
8b3e6cdc 6045 if (conf)
7b1485ba
N
6046 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6047 spin_unlock(&mddev->lock);
6048 return ret;
8b3e6cdc
DW
6049}
6050
6051static ssize_t
fd01b88c 6052raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6053{
6791875e 6054 struct r5conf *conf;
4ef197d8 6055 unsigned long new;
6791875e
N
6056 int err;
6057
8b3e6cdc
DW
6058 if (len >= PAGE_SIZE)
6059 return -EINVAL;
b29bebd6 6060 if (kstrtoul(page, 10, &new))
8b3e6cdc 6061 return -EINVAL;
6791875e
N
6062
6063 err = mddev_lock(mddev);
6064 if (err)
6065 return err;
6066 conf = mddev->private;
6067 if (!conf)
6068 err = -ENODEV;
edbe83ab 6069 else if (new > conf->min_nr_stripes)
6791875e
N
6070 err = -EINVAL;
6071 else
6072 conf->bypass_threshold = new;
6073 mddev_unlock(mddev);
6074 return err ?: len;
8b3e6cdc
DW
6075}
6076
6077static struct md_sysfs_entry
6078raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6079 S_IRUGO | S_IWUSR,
6080 raid5_show_preread_threshold,
6081 raid5_store_preread_threshold);
6082
d592a996
SL
6083static ssize_t
6084raid5_show_skip_copy(struct mddev *mddev, char *page)
6085{
7b1485ba
N
6086 struct r5conf *conf;
6087 int ret = 0;
6088 spin_lock(&mddev->lock);
6089 conf = mddev->private;
d592a996 6090 if (conf)
7b1485ba
N
6091 ret = sprintf(page, "%d\n", conf->skip_copy);
6092 spin_unlock(&mddev->lock);
6093 return ret;
d592a996
SL
6094}
6095
6096static ssize_t
6097raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6098{
6791875e 6099 struct r5conf *conf;
d592a996 6100 unsigned long new;
6791875e
N
6101 int err;
6102
d592a996
SL
6103 if (len >= PAGE_SIZE)
6104 return -EINVAL;
d592a996
SL
6105 if (kstrtoul(page, 10, &new))
6106 return -EINVAL;
6107 new = !!new;
6791875e
N
6108
6109 err = mddev_lock(mddev);
6110 if (err)
6111 return err;
6112 conf = mddev->private;
6113 if (!conf)
6114 err = -ENODEV;
6115 else if (new != conf->skip_copy) {
6116 mddev_suspend(mddev);
6117 conf->skip_copy = new;
6118 if (new)
6119 mddev->queue->backing_dev_info.capabilities |=
6120 BDI_CAP_STABLE_WRITES;
6121 else
6122 mddev->queue->backing_dev_info.capabilities &=
6123 ~BDI_CAP_STABLE_WRITES;
6124 mddev_resume(mddev);
6125 }
6126 mddev_unlock(mddev);
6127 return err ?: len;
d592a996
SL
6128}
6129
6130static struct md_sysfs_entry
6131raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6132 raid5_show_skip_copy,
6133 raid5_store_skip_copy);
6134
3f294f4f 6135static ssize_t
fd01b88c 6136stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6137{
d1688a6d 6138 struct r5conf *conf = mddev->private;
96de1e66
N
6139 if (conf)
6140 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6141 else
6142 return 0;
3f294f4f
N
6143}
6144
96de1e66
N
6145static struct md_sysfs_entry
6146raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6147
b721420e
SL
6148static ssize_t
6149raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6150{
7b1485ba
N
6151 struct r5conf *conf;
6152 int ret = 0;
6153 spin_lock(&mddev->lock);
6154 conf = mddev->private;
b721420e 6155 if (conf)
7b1485ba
N
6156 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6157 spin_unlock(&mddev->lock);
6158 return ret;
b721420e
SL
6159}
6160
60aaf933 6161static int alloc_thread_groups(struct r5conf *conf, int cnt,
6162 int *group_cnt,
6163 int *worker_cnt_per_group,
6164 struct r5worker_group **worker_groups);
b721420e
SL
6165static ssize_t
6166raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6167{
6791875e 6168 struct r5conf *conf;
b721420e
SL
6169 unsigned long new;
6170 int err;
60aaf933 6171 struct r5worker_group *new_groups, *old_groups;
6172 int group_cnt, worker_cnt_per_group;
b721420e
SL
6173
6174 if (len >= PAGE_SIZE)
6175 return -EINVAL;
b721420e
SL
6176 if (kstrtoul(page, 10, &new))
6177 return -EINVAL;
6178
6791875e
N
6179 err = mddev_lock(mddev);
6180 if (err)
6181 return err;
6182 conf = mddev->private;
6183 if (!conf)
6184 err = -ENODEV;
6185 else if (new != conf->worker_cnt_per_group) {
6186 mddev_suspend(mddev);
b721420e 6187
6791875e
N
6188 old_groups = conf->worker_groups;
6189 if (old_groups)
6190 flush_workqueue(raid5_wq);
d206dcfa 6191
6791875e
N
6192 err = alloc_thread_groups(conf, new,
6193 &group_cnt, &worker_cnt_per_group,
6194 &new_groups);
6195 if (!err) {
6196 spin_lock_irq(&conf->device_lock);
6197 conf->group_cnt = group_cnt;
6198 conf->worker_cnt_per_group = worker_cnt_per_group;
6199 conf->worker_groups = new_groups;
6200 spin_unlock_irq(&conf->device_lock);
b721420e 6201
6791875e
N
6202 if (old_groups)
6203 kfree(old_groups[0].workers);
6204 kfree(old_groups);
6205 }
6206 mddev_resume(mddev);
b721420e 6207 }
6791875e 6208 mddev_unlock(mddev);
b721420e 6209
6791875e 6210 return err ?: len;
b721420e
SL
6211}
6212
6213static struct md_sysfs_entry
6214raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6215 raid5_show_group_thread_cnt,
6216 raid5_store_group_thread_cnt);
6217
007583c9 6218static struct attribute *raid5_attrs[] = {
3f294f4f
N
6219 &raid5_stripecache_size.attr,
6220 &raid5_stripecache_active.attr,
8b3e6cdc 6221 &raid5_preread_bypass_threshold.attr,
b721420e 6222 &raid5_group_thread_cnt.attr,
d592a996 6223 &raid5_skip_copy.attr,
d06f191f 6224 &raid5_rmw_level.attr,
3f294f4f
N
6225 NULL,
6226};
007583c9
N
6227static struct attribute_group raid5_attrs_group = {
6228 .name = NULL,
6229 .attrs = raid5_attrs,
3f294f4f
N
6230};
6231
60aaf933 6232static int alloc_thread_groups(struct r5conf *conf, int cnt,
6233 int *group_cnt,
6234 int *worker_cnt_per_group,
6235 struct r5worker_group **worker_groups)
851c30c9 6236{
566c09c5 6237 int i, j, k;
851c30c9
SL
6238 ssize_t size;
6239 struct r5worker *workers;
6240
60aaf933 6241 *worker_cnt_per_group = cnt;
851c30c9 6242 if (cnt == 0) {
60aaf933 6243 *group_cnt = 0;
6244 *worker_groups = NULL;
851c30c9
SL
6245 return 0;
6246 }
60aaf933 6247 *group_cnt = num_possible_nodes();
851c30c9 6248 size = sizeof(struct r5worker) * cnt;
60aaf933 6249 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6250 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6251 *group_cnt, GFP_NOIO);
6252 if (!*worker_groups || !workers) {
851c30c9 6253 kfree(workers);
60aaf933 6254 kfree(*worker_groups);
851c30c9
SL
6255 return -ENOMEM;
6256 }
6257
60aaf933 6258 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6259 struct r5worker_group *group;
6260
0c775d52 6261 group = &(*worker_groups)[i];
851c30c9
SL
6262 INIT_LIST_HEAD(&group->handle_list);
6263 group->conf = conf;
6264 group->workers = workers + i * cnt;
6265
6266 for (j = 0; j < cnt; j++) {
566c09c5
SL
6267 struct r5worker *worker = group->workers + j;
6268 worker->group = group;
6269 INIT_WORK(&worker->work, raid5_do_work);
6270
6271 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6272 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6273 }
6274 }
6275
6276 return 0;
6277}
6278
6279static void free_thread_groups(struct r5conf *conf)
6280{
6281 if (conf->worker_groups)
6282 kfree(conf->worker_groups[0].workers);
6283 kfree(conf->worker_groups);
6284 conf->worker_groups = NULL;
6285}
6286
80c3a6ce 6287static sector_t
fd01b88c 6288raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6289{
d1688a6d 6290 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6291
6292 if (!sectors)
6293 sectors = mddev->dev_sectors;
5e5e3e78 6294 if (!raid_disks)
7ec05478 6295 /* size is defined by the smallest of previous and new size */
5e5e3e78 6296 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6297
3cb5edf4
N
6298 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6299 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6300 return sectors * (raid_disks - conf->max_degraded);
6301}
6302
789b5e03
ON
6303static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6304{
6305 safe_put_page(percpu->spare_page);
46d5b785 6306 if (percpu->scribble)
6307 flex_array_free(percpu->scribble);
789b5e03
ON
6308 percpu->spare_page = NULL;
6309 percpu->scribble = NULL;
6310}
6311
6312static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6313{
6314 if (conf->level == 6 && !percpu->spare_page)
6315 percpu->spare_page = alloc_page(GFP_KERNEL);
6316 if (!percpu->scribble)
46d5b785 6317 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6318 conf->previous_raid_disks),
6319 max(conf->chunk_sectors,
6320 conf->prev_chunk_sectors)
6321 / STRIPE_SECTORS,
6322 GFP_KERNEL);
789b5e03
ON
6323
6324 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6325 free_scratch_buffer(conf, percpu);
6326 return -ENOMEM;
6327 }
6328
6329 return 0;
6330}
6331
d1688a6d 6332static void raid5_free_percpu(struct r5conf *conf)
36d1c647 6333{
36d1c647
DW
6334 unsigned long cpu;
6335
6336 if (!conf->percpu)
6337 return;
6338
36d1c647
DW
6339#ifdef CONFIG_HOTPLUG_CPU
6340 unregister_cpu_notifier(&conf->cpu_notify);
6341#endif
789b5e03
ON
6342
6343 get_online_cpus();
6344 for_each_possible_cpu(cpu)
6345 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6346 put_online_cpus();
6347
6348 free_percpu(conf->percpu);
6349}
6350
d1688a6d 6351static void free_conf(struct r5conf *conf)
95fc17aa 6352{
5c7e81c3
SL
6353 if (conf->log)
6354 r5l_exit_log(conf->log);
edbe83ab
N
6355 if (conf->shrinker.seeks)
6356 unregister_shrinker(&conf->shrinker);
5c7e81c3 6357
851c30c9 6358 free_thread_groups(conf);
95fc17aa 6359 shrink_stripes(conf);
36d1c647 6360 raid5_free_percpu(conf);
95fc17aa
DW
6361 kfree(conf->disks);
6362 kfree(conf->stripe_hashtbl);
6363 kfree(conf);
6364}
6365
36d1c647
DW
6366#ifdef CONFIG_HOTPLUG_CPU
6367static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6368 void *hcpu)
6369{
d1688a6d 6370 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
6371 long cpu = (long)hcpu;
6372 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6373
6374 switch (action) {
6375 case CPU_UP_PREPARE:
6376 case CPU_UP_PREPARE_FROZEN:
789b5e03 6377 if (alloc_scratch_buffer(conf, percpu)) {
36d1c647
DW
6378 pr_err("%s: failed memory allocation for cpu%ld\n",
6379 __func__, cpu);
55af6bb5 6380 return notifier_from_errno(-ENOMEM);
36d1c647
DW
6381 }
6382 break;
6383 case CPU_DEAD:
6384 case CPU_DEAD_FROZEN:
1d034e68
AMG
6385 case CPU_UP_CANCELED:
6386 case CPU_UP_CANCELED_FROZEN:
789b5e03 6387 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
36d1c647
DW
6388 break;
6389 default:
6390 break;
6391 }
6392 return NOTIFY_OK;
6393}
6394#endif
6395
d1688a6d 6396static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
6397{
6398 unsigned long cpu;
789b5e03 6399 int err = 0;
36d1c647 6400
789b5e03
ON
6401 conf->percpu = alloc_percpu(struct raid5_percpu);
6402 if (!conf->percpu)
36d1c647 6403 return -ENOMEM;
789b5e03
ON
6404
6405#ifdef CONFIG_HOTPLUG_CPU
6406 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6407 conf->cpu_notify.priority = 0;
6408 err = register_cpu_notifier(&conf->cpu_notify);
6409 if (err)
6410 return err;
6411#endif
36d1c647
DW
6412
6413 get_online_cpus();
36d1c647 6414 for_each_present_cpu(cpu) {
789b5e03
ON
6415 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6416 if (err) {
6417 pr_err("%s: failed memory allocation for cpu%ld\n",
6418 __func__, cpu);
36d1c647
DW
6419 break;
6420 }
36d1c647 6421 }
36d1c647
DW
6422 put_online_cpus();
6423
27a353c0
SL
6424 if (!err) {
6425 conf->scribble_disks = max(conf->raid_disks,
6426 conf->previous_raid_disks);
6427 conf->scribble_sectors = max(conf->chunk_sectors,
6428 conf->prev_chunk_sectors);
6429 }
36d1c647
DW
6430 return err;
6431}
6432
edbe83ab
N
6433static unsigned long raid5_cache_scan(struct shrinker *shrink,
6434 struct shrink_control *sc)
6435{
6436 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6437 unsigned long ret = SHRINK_STOP;
6438
6439 if (mutex_trylock(&conf->cache_size_mutex)) {
6440 ret= 0;
49895bcc
N
6441 while (ret < sc->nr_to_scan &&
6442 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6443 if (drop_one_stripe(conf) == 0) {
6444 ret = SHRINK_STOP;
6445 break;
6446 }
6447 ret++;
6448 }
6449 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6450 }
6451 return ret;
6452}
6453
6454static unsigned long raid5_cache_count(struct shrinker *shrink,
6455 struct shrink_control *sc)
6456{
6457 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6458
6459 if (conf->max_nr_stripes < conf->min_nr_stripes)
6460 /* unlikely, but not impossible */
6461 return 0;
6462 return conf->max_nr_stripes - conf->min_nr_stripes;
6463}
6464
d1688a6d 6465static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6466{
d1688a6d 6467 struct r5conf *conf;
5e5e3e78 6468 int raid_disk, memory, max_disks;
3cb03002 6469 struct md_rdev *rdev;
1da177e4 6470 struct disk_info *disk;
0232605d 6471 char pers_name[6];
566c09c5 6472 int i;
60aaf933 6473 int group_cnt, worker_cnt_per_group;
6474 struct r5worker_group *new_group;
1da177e4 6475
91adb564
N
6476 if (mddev->new_level != 5
6477 && mddev->new_level != 4
6478 && mddev->new_level != 6) {
0c55e022 6479 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
6480 mdname(mddev), mddev->new_level);
6481 return ERR_PTR(-EIO);
1da177e4 6482 }
91adb564
N
6483 if ((mddev->new_level == 5
6484 && !algorithm_valid_raid5(mddev->new_layout)) ||
6485 (mddev->new_level == 6
6486 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 6487 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
6488 mdname(mddev), mddev->new_layout);
6489 return ERR_PTR(-EIO);
99c0fb5f 6490 }
91adb564 6491 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 6492 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
6493 mdname(mddev), mddev->raid_disks);
6494 return ERR_PTR(-EINVAL);
4bbf3771
N
6495 }
6496
664e7c41
AN
6497 if (!mddev->new_chunk_sectors ||
6498 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6499 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
6500 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6501 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6502 return ERR_PTR(-EINVAL);
f6705578
N
6503 }
6504
d1688a6d 6505 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6506 if (conf == NULL)
1da177e4 6507 goto abort;
851c30c9 6508 /* Don't enable multi-threading by default*/
60aaf933 6509 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6510 &new_group)) {
6511 conf->group_cnt = group_cnt;
6512 conf->worker_cnt_per_group = worker_cnt_per_group;
6513 conf->worker_groups = new_group;
6514 } else
851c30c9 6515 goto abort;
f5efd45a 6516 spin_lock_init(&conf->device_lock);
c46501b2 6517 seqcount_init(&conf->gen_lock);
2d5b569b 6518 mutex_init(&conf->cache_size_mutex);
b1b46486 6519 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6520 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6521 init_waitqueue_head(&conf->wait_for_overlap);
6522 INIT_LIST_HEAD(&conf->handle_list);
6523 INIT_LIST_HEAD(&conf->hold_list);
6524 INIT_LIST_HEAD(&conf->delayed_list);
6525 INIT_LIST_HEAD(&conf->bitmap_list);
c3cce6cd 6526 bio_list_init(&conf->return_bi);
773ca82f 6527 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6528 atomic_set(&conf->active_stripes, 0);
6529 atomic_set(&conf->preread_active_stripes, 0);
6530 atomic_set(&conf->active_aligned_reads, 0);
6531 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6532 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6533
6534 conf->raid_disks = mddev->raid_disks;
6535 if (mddev->reshape_position == MaxSector)
6536 conf->previous_raid_disks = mddev->raid_disks;
6537 else
f6705578 6538 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6539 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6540
5e5e3e78 6541 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
6542 GFP_KERNEL);
6543 if (!conf->disks)
6544 goto abort;
9ffae0cf 6545
1da177e4
LT
6546 conf->mddev = mddev;
6547
fccddba0 6548 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6549 goto abort;
1da177e4 6550
566c09c5
SL
6551 /* We init hash_locks[0] separately to that it can be used
6552 * as the reference lock in the spin_lock_nest_lock() call
6553 * in lock_all_device_hash_locks_irq in order to convince
6554 * lockdep that we know what we are doing.
6555 */
6556 spin_lock_init(conf->hash_locks);
6557 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6558 spin_lock_init(conf->hash_locks + i);
6559
6560 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6561 INIT_LIST_HEAD(conf->inactive_list + i);
6562
6563 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6564 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6565
36d1c647 6566 conf->level = mddev->new_level;
46d5b785 6567 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6568 if (raid5_alloc_percpu(conf) != 0)
6569 goto abort;
6570
0c55e022 6571 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6572
dafb20fa 6573 rdev_for_each(rdev, mddev) {
1da177e4 6574 raid_disk = rdev->raid_disk;
5e5e3e78 6575 if (raid_disk >= max_disks
f2076e7d 6576 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
6577 continue;
6578 disk = conf->disks + raid_disk;
6579
17045f52
N
6580 if (test_bit(Replacement, &rdev->flags)) {
6581 if (disk->replacement)
6582 goto abort;
6583 disk->replacement = rdev;
6584 } else {
6585 if (disk->rdev)
6586 goto abort;
6587 disk->rdev = rdev;
6588 }
1da177e4 6589
b2d444d7 6590 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 6591 char b[BDEVNAME_SIZE];
0c55e022
N
6592 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6593 " disk %d\n",
6594 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 6595 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
6596 /* Cannot rely on bitmap to complete recovery */
6597 conf->fullsync = 1;
1da177e4
LT
6598 }
6599
91adb564 6600 conf->level = mddev->new_level;
584acdd4 6601 if (conf->level == 6) {
16a53ecc 6602 conf->max_degraded = 2;
584acdd4
MS
6603 if (raid6_call.xor_syndrome)
6604 conf->rmw_level = PARITY_ENABLE_RMW;
6605 else
6606 conf->rmw_level = PARITY_DISABLE_RMW;
6607 } else {
16a53ecc 6608 conf->max_degraded = 1;
584acdd4
MS
6609 conf->rmw_level = PARITY_ENABLE_RMW;
6610 }
91adb564 6611 conf->algorithm = mddev->new_layout;
fef9c61f 6612 conf->reshape_progress = mddev->reshape_position;
e183eaed 6613 if (conf->reshape_progress != MaxSector) {
09c9e5fa 6614 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 6615 conf->prev_algo = mddev->layout;
5cac6bcb
N
6616 } else {
6617 conf->prev_chunk_sectors = conf->chunk_sectors;
6618 conf->prev_algo = conf->algorithm;
e183eaed 6619 }
1da177e4 6620
edbe83ab
N
6621 conf->min_nr_stripes = NR_STRIPES;
6622 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 6623 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 6624 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 6625 if (grow_stripes(conf, conf->min_nr_stripes)) {
91adb564 6626 printk(KERN_ERR
0c55e022
N
6627 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6628 mdname(mddev), memory);
91adb564
N
6629 goto abort;
6630 } else
0c55e022
N
6631 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6632 mdname(mddev), memory);
edbe83ab
N
6633 /*
6634 * Losing a stripe head costs more than the time to refill it,
6635 * it reduces the queue depth and so can hurt throughput.
6636 * So set it rather large, scaled by number of devices.
6637 */
6638 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6639 conf->shrinker.scan_objects = raid5_cache_scan;
6640 conf->shrinker.count_objects = raid5_cache_count;
6641 conf->shrinker.batch = 128;
6642 conf->shrinker.flags = 0;
6643 register_shrinker(&conf->shrinker);
1da177e4 6644
0232605d
N
6645 sprintf(pers_name, "raid%d", mddev->new_level);
6646 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
6647 if (!conf->thread) {
6648 printk(KERN_ERR
0c55e022 6649 "md/raid:%s: couldn't allocate thread.\n",
91adb564 6650 mdname(mddev));
16a53ecc
N
6651 goto abort;
6652 }
91adb564
N
6653
6654 return conf;
6655
6656 abort:
6657 if (conf) {
95fc17aa 6658 free_conf(conf);
91adb564
N
6659 return ERR_PTR(-EIO);
6660 } else
6661 return ERR_PTR(-ENOMEM);
6662}
6663
c148ffdc
N
6664static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6665{
6666 switch (algo) {
6667 case ALGORITHM_PARITY_0:
6668 if (raid_disk < max_degraded)
6669 return 1;
6670 break;
6671 case ALGORITHM_PARITY_N:
6672 if (raid_disk >= raid_disks - max_degraded)
6673 return 1;
6674 break;
6675 case ALGORITHM_PARITY_0_6:
f72ffdd6 6676 if (raid_disk == 0 ||
c148ffdc
N
6677 raid_disk == raid_disks - 1)
6678 return 1;
6679 break;
6680 case ALGORITHM_LEFT_ASYMMETRIC_6:
6681 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6682 case ALGORITHM_LEFT_SYMMETRIC_6:
6683 case ALGORITHM_RIGHT_SYMMETRIC_6:
6684 if (raid_disk == raid_disks - 1)
6685 return 1;
6686 }
6687 return 0;
6688}
6689
849674e4 6690static int raid5_run(struct mddev *mddev)
91adb564 6691{
d1688a6d 6692 struct r5conf *conf;
9f7c2220 6693 int working_disks = 0;
c148ffdc 6694 int dirty_parity_disks = 0;
3cb03002 6695 struct md_rdev *rdev;
713cf5a6 6696 struct md_rdev *journal_dev = NULL;
c148ffdc 6697 sector_t reshape_offset = 0;
17045f52 6698 int i;
b5254dd5
N
6699 long long min_offset_diff = 0;
6700 int first = 1;
91adb564 6701
8c6ac868 6702 if (mddev->recovery_cp != MaxSector)
0c55e022 6703 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
6704 " -- starting background reconstruction\n",
6705 mdname(mddev));
b5254dd5
N
6706
6707 rdev_for_each(rdev, mddev) {
6708 long long diff;
713cf5a6 6709
f2076e7d 6710 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 6711 journal_dev = rdev;
f2076e7d
SL
6712 continue;
6713 }
b5254dd5
N
6714 if (rdev->raid_disk < 0)
6715 continue;
6716 diff = (rdev->new_data_offset - rdev->data_offset);
6717 if (first) {
6718 min_offset_diff = diff;
6719 first = 0;
6720 } else if (mddev->reshape_backwards &&
6721 diff < min_offset_diff)
6722 min_offset_diff = diff;
6723 else if (!mddev->reshape_backwards &&
6724 diff > min_offset_diff)
6725 min_offset_diff = diff;
6726 }
6727
91adb564
N
6728 if (mddev->reshape_position != MaxSector) {
6729 /* Check that we can continue the reshape.
b5254dd5
N
6730 * Difficulties arise if the stripe we would write to
6731 * next is at or after the stripe we would read from next.
6732 * For a reshape that changes the number of devices, this
6733 * is only possible for a very short time, and mdadm makes
6734 * sure that time appears to have past before assembling
6735 * the array. So we fail if that time hasn't passed.
6736 * For a reshape that keeps the number of devices the same
6737 * mdadm must be monitoring the reshape can keeping the
6738 * critical areas read-only and backed up. It will start
6739 * the array in read-only mode, so we check for that.
91adb564
N
6740 */
6741 sector_t here_new, here_old;
6742 int old_disks;
18b00334 6743 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
6744 int chunk_sectors;
6745 int new_data_disks;
91adb564 6746
713cf5a6
SL
6747 if (journal_dev) {
6748 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6749 mdname(mddev));
6750 return -EINVAL;
6751 }
6752
88ce4930 6753 if (mddev->new_level != mddev->level) {
0c55e022 6754 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
6755 "required - aborting.\n",
6756 mdname(mddev));
6757 return -EINVAL;
6758 }
91adb564
N
6759 old_disks = mddev->raid_disks - mddev->delta_disks;
6760 /* reshape_position must be on a new-stripe boundary, and one
6761 * further up in new geometry must map after here in old
6762 * geometry.
05256d98
N
6763 * If the chunk sizes are different, then as we perform reshape
6764 * in units of the largest of the two, reshape_position needs
6765 * be a multiple of the largest chunk size times new data disks.
91adb564
N
6766 */
6767 here_new = mddev->reshape_position;
05256d98
N
6768 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6769 new_data_disks = mddev->raid_disks - max_degraded;
6770 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
0c55e022
N
6771 printk(KERN_ERR "md/raid:%s: reshape_position not "
6772 "on a stripe boundary\n", mdname(mddev));
91adb564
N
6773 return -EINVAL;
6774 }
05256d98 6775 reshape_offset = here_new * chunk_sectors;
91adb564
N
6776 /* here_new is the stripe we will write to */
6777 here_old = mddev->reshape_position;
05256d98 6778 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
6779 /* here_old is the first stripe that we might need to read
6780 * from */
67ac6011
N
6781 if (mddev->delta_disks == 0) {
6782 /* We cannot be sure it is safe to start an in-place
b5254dd5 6783 * reshape. It is only safe if user-space is monitoring
67ac6011
N
6784 * and taking constant backups.
6785 * mdadm always starts a situation like this in
6786 * readonly mode so it can take control before
6787 * allowing any writes. So just check for that.
6788 */
b5254dd5
N
6789 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6790 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6791 /* not really in-place - so OK */;
6792 else if (mddev->ro == 0) {
6793 printk(KERN_ERR "md/raid:%s: in-place reshape "
6794 "must be started in read-only mode "
6795 "- aborting\n",
0c55e022 6796 mdname(mddev));
67ac6011
N
6797 return -EINVAL;
6798 }
2c810cdd 6799 } else if (mddev->reshape_backwards
05256d98
N
6800 ? (here_new * chunk_sectors + min_offset_diff <=
6801 here_old * chunk_sectors)
6802 : (here_new * chunk_sectors >=
6803 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 6804 /* Reading from the same stripe as writing to - bad */
0c55e022
N
6805 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6806 "auto-recovery - aborting.\n",
6807 mdname(mddev));
91adb564
N
6808 return -EINVAL;
6809 }
0c55e022
N
6810 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6811 mdname(mddev));
91adb564
N
6812 /* OK, we should be able to continue; */
6813 } else {
6814 BUG_ON(mddev->level != mddev->new_level);
6815 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 6816 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 6817 BUG_ON(mddev->delta_disks != 0);
1da177e4 6818 }
91adb564 6819
245f46c2
N
6820 if (mddev->private == NULL)
6821 conf = setup_conf(mddev);
6822 else
6823 conf = mddev->private;
6824
91adb564
N
6825 if (IS_ERR(conf))
6826 return PTR_ERR(conf);
6827
7dde2ad3
SL
6828 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6829 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6830 mdname(mddev));
6831 mddev->ro = 1;
6832 set_disk_ro(mddev->gendisk, 1);
6833 }
6834
b5254dd5 6835 conf->min_offset_diff = min_offset_diff;
91adb564
N
6836 mddev->thread = conf->thread;
6837 conf->thread = NULL;
6838 mddev->private = conf;
6839
17045f52
N
6840 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6841 i++) {
6842 rdev = conf->disks[i].rdev;
6843 if (!rdev && conf->disks[i].replacement) {
6844 /* The replacement is all we have yet */
6845 rdev = conf->disks[i].replacement;
6846 conf->disks[i].replacement = NULL;
6847 clear_bit(Replacement, &rdev->flags);
6848 conf->disks[i].rdev = rdev;
6849 }
6850 if (!rdev)
c148ffdc 6851 continue;
17045f52
N
6852 if (conf->disks[i].replacement &&
6853 conf->reshape_progress != MaxSector) {
6854 /* replacements and reshape simply do not mix. */
6855 printk(KERN_ERR "md: cannot handle concurrent "
6856 "replacement and reshape.\n");
6857 goto abort;
6858 }
2f115882 6859 if (test_bit(In_sync, &rdev->flags)) {
91adb564 6860 working_disks++;
2f115882
N
6861 continue;
6862 }
c148ffdc
N
6863 /* This disc is not fully in-sync. However if it
6864 * just stored parity (beyond the recovery_offset),
6865 * when we don't need to be concerned about the
6866 * array being dirty.
6867 * When reshape goes 'backwards', we never have
6868 * partially completed devices, so we only need
6869 * to worry about reshape going forwards.
6870 */
6871 /* Hack because v0.91 doesn't store recovery_offset properly. */
6872 if (mddev->major_version == 0 &&
6873 mddev->minor_version > 90)
6874 rdev->recovery_offset = reshape_offset;
5026d7a9 6875
c148ffdc
N
6876 if (rdev->recovery_offset < reshape_offset) {
6877 /* We need to check old and new layout */
6878 if (!only_parity(rdev->raid_disk,
6879 conf->algorithm,
6880 conf->raid_disks,
6881 conf->max_degraded))
6882 continue;
6883 }
6884 if (!only_parity(rdev->raid_disk,
6885 conf->prev_algo,
6886 conf->previous_raid_disks,
6887 conf->max_degraded))
6888 continue;
6889 dirty_parity_disks++;
6890 }
91adb564 6891
17045f52
N
6892 /*
6893 * 0 for a fully functional array, 1 or 2 for a degraded array.
6894 */
908f4fbd 6895 mddev->degraded = calc_degraded(conf);
91adb564 6896
674806d6 6897 if (has_failed(conf)) {
0c55e022 6898 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 6899 " (%d/%d failed)\n",
02c2de8c 6900 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
6901 goto abort;
6902 }
6903
91adb564 6904 /* device size must be a multiple of chunk size */
9d8f0363 6905 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
6906 mddev->resync_max_sectors = mddev->dev_sectors;
6907
c148ffdc 6908 if (mddev->degraded > dirty_parity_disks &&
1da177e4 6909 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
6910 if (mddev->ok_start_degraded)
6911 printk(KERN_WARNING
0c55e022
N
6912 "md/raid:%s: starting dirty degraded array"
6913 " - data corruption possible.\n",
6ff8d8ec
N
6914 mdname(mddev));
6915 else {
6916 printk(KERN_ERR
0c55e022 6917 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
6918 mdname(mddev));
6919 goto abort;
6920 }
1da177e4
LT
6921 }
6922
1da177e4 6923 if (mddev->degraded == 0)
0c55e022
N
6924 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6925 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
6926 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6927 mddev->new_layout);
1da177e4 6928 else
0c55e022
N
6929 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6930 " out of %d devices, algorithm %d\n",
6931 mdname(mddev), conf->level,
6932 mddev->raid_disks - mddev->degraded,
6933 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
6934
6935 print_raid5_conf(conf);
6936
fef9c61f 6937 if (conf->reshape_progress != MaxSector) {
fef9c61f 6938 conf->reshape_safe = conf->reshape_progress;
f6705578
N
6939 atomic_set(&conf->reshape_stripes, 0);
6940 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6941 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6942 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6943 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6944 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6945 "reshape");
f6705578
N
6946 }
6947
1da177e4 6948 /* Ok, everything is just fine now */
a64c876f
N
6949 if (mddev->to_remove == &raid5_attrs_group)
6950 mddev->to_remove = NULL;
00bcb4ac
N
6951 else if (mddev->kobj.sd &&
6952 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 6953 printk(KERN_WARNING
4a5add49 6954 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 6955 mdname(mddev));
4a5add49 6956 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 6957
4a5add49 6958 if (mddev->queue) {
9f7c2220 6959 int chunk_size;
620125f2 6960 bool discard_supported = true;
4a5add49
N
6961 /* read-ahead size must cover two whole stripes, which
6962 * is 2 * (datadisks) * chunksize where 'n' is the
6963 * number of raid devices
6964 */
6965 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6966 int stripe = data_disks *
6967 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6968 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6969 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 6970
9f7c2220
N
6971 chunk_size = mddev->chunk_sectors << 9;
6972 blk_queue_io_min(mddev->queue, chunk_size);
6973 blk_queue_io_opt(mddev->queue, chunk_size *
6974 (conf->raid_disks - conf->max_degraded));
c78afc62 6975 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
6976 /*
6977 * We can only discard a whole stripe. It doesn't make sense to
6978 * discard data disk but write parity disk
6979 */
6980 stripe = stripe * PAGE_SIZE;
4ac6875e
N
6981 /* Round up to power of 2, as discard handling
6982 * currently assumes that */
6983 while ((stripe-1) & stripe)
6984 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
6985 mddev->queue->limits.discard_alignment = stripe;
6986 mddev->queue->limits.discard_granularity = stripe;
6987 /*
6988 * unaligned part of discard request will be ignored, so can't
8e0e99ba 6989 * guarantee discard_zeroes_data
620125f2
SL
6990 */
6991 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 6992
5026d7a9
PA
6993 blk_queue_max_write_same_sectors(mddev->queue, 0);
6994
05616be5 6995 rdev_for_each(rdev, mddev) {
9f7c2220
N
6996 disk_stack_limits(mddev->gendisk, rdev->bdev,
6997 rdev->data_offset << 9);
05616be5
N
6998 disk_stack_limits(mddev->gendisk, rdev->bdev,
6999 rdev->new_data_offset << 9);
620125f2
SL
7000 /*
7001 * discard_zeroes_data is required, otherwise data
7002 * could be lost. Consider a scenario: discard a stripe
7003 * (the stripe could be inconsistent if
7004 * discard_zeroes_data is 0); write one disk of the
7005 * stripe (the stripe could be inconsistent again
7006 * depending on which disks are used to calculate
7007 * parity); the disk is broken; The stripe data of this
7008 * disk is lost.
7009 */
7010 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7011 !bdev_get_queue(rdev->bdev)->
7012 limits.discard_zeroes_data)
7013 discard_supported = false;
8e0e99ba
N
7014 /* Unfortunately, discard_zeroes_data is not currently
7015 * a guarantee - just a hint. So we only allow DISCARD
7016 * if the sysadmin has confirmed that only safe devices
7017 * are in use by setting a module parameter.
7018 */
7019 if (!devices_handle_discard_safely) {
7020 if (discard_supported) {
7021 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7022 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7023 }
7024 discard_supported = false;
7025 }
05616be5 7026 }
620125f2
SL
7027
7028 if (discard_supported &&
e7597e69
JS
7029 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7030 mddev->queue->limits.discard_granularity >= stripe)
620125f2
SL
7031 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7032 mddev->queue);
7033 else
7034 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7035 mddev->queue);
9f7c2220 7036 }
23032a0e 7037
5c7e81c3
SL
7038 if (journal_dev) {
7039 char b[BDEVNAME_SIZE];
7040
7041 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7042 mdname(mddev), bdevname(journal_dev->bdev, b));
7043 r5l_init_log(conf, journal_dev);
7044 }
7045
1da177e4
LT
7046 return 0;
7047abort:
01f96c0a 7048 md_unregister_thread(&mddev->thread);
e4f869d9
N
7049 print_raid5_conf(conf);
7050 free_conf(conf);
1da177e4 7051 mddev->private = NULL;
0c55e022 7052 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7053 return -EIO;
7054}
7055
afa0f557 7056static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7057{
afa0f557 7058 struct r5conf *conf = priv;
1da177e4 7059
95fc17aa 7060 free_conf(conf);
a64c876f 7061 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7062}
7063
849674e4 7064static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7065{
d1688a6d 7066 struct r5conf *conf = mddev->private;
1da177e4
LT
7067 int i;
7068
9d8f0363 7069 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7070 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7071 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
7072 for (i = 0; i < conf->raid_disks; i++)
7073 seq_printf (seq, "%s",
7074 conf->disks[i].rdev &&
b2d444d7 7075 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 7076 seq_printf (seq, "]");
1da177e4
LT
7077}
7078
d1688a6d 7079static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7080{
7081 int i;
7082 struct disk_info *tmp;
7083
0c55e022 7084 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
7085 if (!conf) {
7086 printk("(conf==NULL)\n");
7087 return;
7088 }
0c55e022
N
7089 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7090 conf->raid_disks,
7091 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7092
7093 for (i = 0; i < conf->raid_disks; i++) {
7094 char b[BDEVNAME_SIZE];
7095 tmp = conf->disks + i;
7096 if (tmp->rdev)
0c55e022
N
7097 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7098 i, !test_bit(Faulty, &tmp->rdev->flags),
7099 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7100 }
7101}
7102
fd01b88c 7103static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7104{
7105 int i;
d1688a6d 7106 struct r5conf *conf = mddev->private;
1da177e4 7107 struct disk_info *tmp;
6b965620
N
7108 int count = 0;
7109 unsigned long flags;
1da177e4
LT
7110
7111 for (i = 0; i < conf->raid_disks; i++) {
7112 tmp = conf->disks + i;
dd054fce
N
7113 if (tmp->replacement
7114 && tmp->replacement->recovery_offset == MaxSector
7115 && !test_bit(Faulty, &tmp->replacement->flags)
7116 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7117 /* Replacement has just become active. */
7118 if (!tmp->rdev
7119 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7120 count++;
7121 if (tmp->rdev) {
7122 /* Replaced device not technically faulty,
7123 * but we need to be sure it gets removed
7124 * and never re-added.
7125 */
7126 set_bit(Faulty, &tmp->rdev->flags);
7127 sysfs_notify_dirent_safe(
7128 tmp->rdev->sysfs_state);
7129 }
7130 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7131 } else if (tmp->rdev
70fffd0b 7132 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7133 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7134 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7135 count++;
43c73ca4 7136 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7137 }
7138 }
6b965620 7139 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7140 mddev->degraded = calc_degraded(conf);
6b965620 7141 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7142 print_raid5_conf(conf);
6b965620 7143 return count;
1da177e4
LT
7144}
7145
b8321b68 7146static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7147{
d1688a6d 7148 struct r5conf *conf = mddev->private;
1da177e4 7149 int err = 0;
b8321b68 7150 int number = rdev->raid_disk;
657e3e4d 7151 struct md_rdev **rdevp;
1da177e4
LT
7152 struct disk_info *p = conf->disks + number;
7153
7154 print_raid5_conf(conf);
f6b6ec5c
SL
7155 if (test_bit(Journal, &rdev->flags) && conf->log) {
7156 struct r5l_log *log;
c2bb6242 7157 /*
f6b6ec5c
SL
7158 * we can't wait pending write here, as this is called in
7159 * raid5d, wait will deadlock.
c2bb6242 7160 */
f6b6ec5c
SL
7161 if (atomic_read(&mddev->writes_pending))
7162 return -EBUSY;
7163 log = conf->log;
7164 conf->log = NULL;
7165 synchronize_rcu();
7166 r5l_exit_log(log);
7167 return 0;
c2bb6242 7168 }
657e3e4d
N
7169 if (rdev == p->rdev)
7170 rdevp = &p->rdev;
7171 else if (rdev == p->replacement)
7172 rdevp = &p->replacement;
7173 else
7174 return 0;
7175
7176 if (number >= conf->raid_disks &&
7177 conf->reshape_progress == MaxSector)
7178 clear_bit(In_sync, &rdev->flags);
7179
7180 if (test_bit(In_sync, &rdev->flags) ||
7181 atomic_read(&rdev->nr_pending)) {
7182 err = -EBUSY;
7183 goto abort;
7184 }
7185 /* Only remove non-faulty devices if recovery
7186 * isn't possible.
7187 */
7188 if (!test_bit(Faulty, &rdev->flags) &&
7189 mddev->recovery_disabled != conf->recovery_disabled &&
7190 !has_failed(conf) &&
dd054fce 7191 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7192 number < conf->raid_disks) {
7193 err = -EBUSY;
7194 goto abort;
7195 }
7196 *rdevp = NULL;
7197 synchronize_rcu();
7198 if (atomic_read(&rdev->nr_pending)) {
7199 /* lost the race, try later */
7200 err = -EBUSY;
7201 *rdevp = rdev;
dd054fce
N
7202 } else if (p->replacement) {
7203 /* We must have just cleared 'rdev' */
7204 p->rdev = p->replacement;
7205 clear_bit(Replacement, &p->replacement->flags);
7206 smp_mb(); /* Make sure other CPUs may see both as identical
7207 * but will never see neither - if they are careful
7208 */
7209 p->replacement = NULL;
7210 clear_bit(WantReplacement, &rdev->flags);
7211 } else
7212 /* We might have just removed the Replacement as faulty-
7213 * clear the bit just in case
7214 */
7215 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7216abort:
7217
7218 print_raid5_conf(conf);
7219 return err;
7220}
7221
fd01b88c 7222static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7223{
d1688a6d 7224 struct r5conf *conf = mddev->private;
199050ea 7225 int err = -EEXIST;
1da177e4
LT
7226 int disk;
7227 struct disk_info *p;
6c2fce2e
NB
7228 int first = 0;
7229 int last = conf->raid_disks - 1;
1da177e4 7230
f6b6ec5c
SL
7231 if (test_bit(Journal, &rdev->flags)) {
7232 char b[BDEVNAME_SIZE];
7233 if (conf->log)
7234 return -EBUSY;
7235
7236 rdev->raid_disk = 0;
7237 /*
7238 * The array is in readonly mode if journal is missing, so no
7239 * write requests running. We should be safe
7240 */
7241 r5l_init_log(conf, rdev);
7242 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7243 mdname(mddev), bdevname(rdev->bdev, b));
7244 return 0;
7245 }
7f0da59b
N
7246 if (mddev->recovery_disabled == conf->recovery_disabled)
7247 return -EBUSY;
7248
dc10c643 7249 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7250 /* no point adding a device */
199050ea 7251 return -EINVAL;
1da177e4 7252
6c2fce2e
NB
7253 if (rdev->raid_disk >= 0)
7254 first = last = rdev->raid_disk;
1da177e4
LT
7255
7256 /*
16a53ecc
N
7257 * find the disk ... but prefer rdev->saved_raid_disk
7258 * if possible.
1da177e4 7259 */
16a53ecc 7260 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7261 rdev->saved_raid_disk >= first &&
16a53ecc 7262 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7263 first = rdev->saved_raid_disk;
7264
7265 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7266 p = conf->disks + disk;
7267 if (p->rdev == NULL) {
b2d444d7 7268 clear_bit(In_sync, &rdev->flags);
1da177e4 7269 rdev->raid_disk = disk;
199050ea 7270 err = 0;
72626685
N
7271 if (rdev->saved_raid_disk != disk)
7272 conf->fullsync = 1;
d6065f7b 7273 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 7274 goto out;
1da177e4 7275 }
5cfb22a1
N
7276 }
7277 for (disk = first; disk <= last; disk++) {
7278 p = conf->disks + disk;
7bfec5f3
N
7279 if (test_bit(WantReplacement, &p->rdev->flags) &&
7280 p->replacement == NULL) {
7281 clear_bit(In_sync, &rdev->flags);
7282 set_bit(Replacement, &rdev->flags);
7283 rdev->raid_disk = disk;
7284 err = 0;
7285 conf->fullsync = 1;
7286 rcu_assign_pointer(p->replacement, rdev);
7287 break;
7288 }
7289 }
5cfb22a1 7290out:
1da177e4 7291 print_raid5_conf(conf);
199050ea 7292 return err;
1da177e4
LT
7293}
7294
fd01b88c 7295static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7296{
7297 /* no resync is happening, and there is enough space
7298 * on all devices, so we can resize.
7299 * We need to make sure resync covers any new space.
7300 * If the array is shrinking we should possibly wait until
7301 * any io in the removed space completes, but it hardly seems
7302 * worth it.
7303 */
a4a6125a 7304 sector_t newsize;
3cb5edf4
N
7305 struct r5conf *conf = mddev->private;
7306
713cf5a6
SL
7307 if (conf->log)
7308 return -EINVAL;
3cb5edf4 7309 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7310 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7311 if (mddev->external_size &&
7312 mddev->array_sectors > newsize)
b522adcd 7313 return -EINVAL;
a4a6125a
N
7314 if (mddev->bitmap) {
7315 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7316 if (ret)
7317 return ret;
7318 }
7319 md_set_array_sectors(mddev, newsize);
f233ea5c 7320 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 7321 revalidate_disk(mddev->gendisk);
b098636c
N
7322 if (sectors > mddev->dev_sectors &&
7323 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7324 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7325 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7326 }
58c0fed4 7327 mddev->dev_sectors = sectors;
4b5c7ae8 7328 mddev->resync_max_sectors = sectors;
1da177e4
LT
7329 return 0;
7330}
7331
fd01b88c 7332static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7333{
7334 /* Can only proceed if there are plenty of stripe_heads.
7335 * We need a minimum of one full stripe,, and for sensible progress
7336 * it is best to have about 4 times that.
7337 * If we require 4 times, then the default 256 4K stripe_heads will
7338 * allow for chunk sizes up to 256K, which is probably OK.
7339 * If the chunk size is greater, user-space should request more
7340 * stripe_heads first.
7341 */
d1688a6d 7342 struct r5conf *conf = mddev->private;
01ee22b4 7343 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7344 > conf->min_nr_stripes ||
01ee22b4 7345 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7346 > conf->min_nr_stripes) {
0c55e022
N
7347 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7348 mdname(mddev),
01ee22b4
N
7349 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7350 / STRIPE_SIZE)*4);
7351 return 0;
7352 }
7353 return 1;
7354}
7355
fd01b88c 7356static int check_reshape(struct mddev *mddev)
29269553 7357{
d1688a6d 7358 struct r5conf *conf = mddev->private;
29269553 7359
713cf5a6
SL
7360 if (conf->log)
7361 return -EINVAL;
88ce4930
N
7362 if (mddev->delta_disks == 0 &&
7363 mddev->new_layout == mddev->layout &&
664e7c41 7364 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7365 return 0; /* nothing to do */
674806d6 7366 if (has_failed(conf))
ec32a2bd 7367 return -EINVAL;
fdcfbbb6 7368 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7369 /* We might be able to shrink, but the devices must
7370 * be made bigger first.
7371 * For raid6, 4 is the minimum size.
7372 * Otherwise 2 is the minimum
7373 */
7374 int min = 2;
7375 if (mddev->level == 6)
7376 min = 4;
7377 if (mddev->raid_disks + mddev->delta_disks < min)
7378 return -EINVAL;
7379 }
29269553 7380
01ee22b4 7381 if (!check_stripe_cache(mddev))
29269553 7382 return -ENOSPC;
29269553 7383
738a2738
N
7384 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7385 mddev->delta_disks > 0)
7386 if (resize_chunks(conf,
7387 conf->previous_raid_disks
7388 + max(0, mddev->delta_disks),
7389 max(mddev->new_chunk_sectors,
7390 mddev->chunk_sectors)
7391 ) < 0)
7392 return -ENOMEM;
e56108d6
N
7393 return resize_stripes(conf, (conf->previous_raid_disks
7394 + mddev->delta_disks));
63c70c4f
N
7395}
7396
fd01b88c 7397static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7398{
d1688a6d 7399 struct r5conf *conf = mddev->private;
3cb03002 7400 struct md_rdev *rdev;
63c70c4f 7401 int spares = 0;
c04be0aa 7402 unsigned long flags;
63c70c4f 7403
f416885e 7404 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7405 return -EBUSY;
7406
01ee22b4
N
7407 if (!check_stripe_cache(mddev))
7408 return -ENOSPC;
7409
30b67645
N
7410 if (has_failed(conf))
7411 return -EINVAL;
7412
c6563a8c 7413 rdev_for_each(rdev, mddev) {
469518a3
N
7414 if (!test_bit(In_sync, &rdev->flags)
7415 && !test_bit(Faulty, &rdev->flags))
29269553 7416 spares++;
c6563a8c 7417 }
63c70c4f 7418
f416885e 7419 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7420 /* Not enough devices even to make a degraded array
7421 * of that size
7422 */
7423 return -EINVAL;
7424
ec32a2bd
N
7425 /* Refuse to reduce size of the array. Any reductions in
7426 * array size must be through explicit setting of array_size
7427 * attribute.
7428 */
7429 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7430 < mddev->array_sectors) {
0c55e022 7431 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
7432 "before number of disks\n", mdname(mddev));
7433 return -EINVAL;
7434 }
7435
f6705578 7436 atomic_set(&conf->reshape_stripes, 0);
29269553 7437 spin_lock_irq(&conf->device_lock);
c46501b2 7438 write_seqcount_begin(&conf->gen_lock);
29269553 7439 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7440 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7441 conf->prev_chunk_sectors = conf->chunk_sectors;
7442 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7443 conf->prev_algo = conf->algorithm;
7444 conf->algorithm = mddev->new_layout;
05616be5
N
7445 conf->generation++;
7446 /* Code that selects data_offset needs to see the generation update
7447 * if reshape_progress has been set - so a memory barrier needed.
7448 */
7449 smp_mb();
2c810cdd 7450 if (mddev->reshape_backwards)
fef9c61f
N
7451 conf->reshape_progress = raid5_size(mddev, 0, 0);
7452 else
7453 conf->reshape_progress = 0;
7454 conf->reshape_safe = conf->reshape_progress;
c46501b2 7455 write_seqcount_end(&conf->gen_lock);
29269553
N
7456 spin_unlock_irq(&conf->device_lock);
7457
4d77e3ba
N
7458 /* Now make sure any requests that proceeded on the assumption
7459 * the reshape wasn't running - like Discard or Read - have
7460 * completed.
7461 */
7462 mddev_suspend(mddev);
7463 mddev_resume(mddev);
7464
29269553
N
7465 /* Add some new drives, as many as will fit.
7466 * We know there are enough to make the newly sized array work.
3424bf6a
N
7467 * Don't add devices if we are reducing the number of
7468 * devices in the array. This is because it is not possible
7469 * to correctly record the "partially reconstructed" state of
7470 * such devices during the reshape and confusion could result.
29269553 7471 */
87a8dec9 7472 if (mddev->delta_disks >= 0) {
dafb20fa 7473 rdev_for_each(rdev, mddev)
87a8dec9
N
7474 if (rdev->raid_disk < 0 &&
7475 !test_bit(Faulty, &rdev->flags)) {
7476 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7477 if (rdev->raid_disk
9d4c7d87 7478 >= conf->previous_raid_disks)
87a8dec9 7479 set_bit(In_sync, &rdev->flags);
9d4c7d87 7480 else
87a8dec9 7481 rdev->recovery_offset = 0;
36fad858
NK
7482
7483 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7484 /* Failure here is OK */;
50da0840 7485 }
87a8dec9
N
7486 } else if (rdev->raid_disk >= conf->previous_raid_disks
7487 && !test_bit(Faulty, &rdev->flags)) {
7488 /* This is a spare that was manually added */
7489 set_bit(In_sync, &rdev->flags);
87a8dec9 7490 }
29269553 7491
87a8dec9
N
7492 /* When a reshape changes the number of devices,
7493 * ->degraded is measured against the larger of the
7494 * pre and post number of devices.
7495 */
ec32a2bd 7496 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 7497 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
7498 spin_unlock_irqrestore(&conf->device_lock, flags);
7499 }
63c70c4f 7500 mddev->raid_disks = conf->raid_disks;
e516402c 7501 mddev->reshape_position = conf->reshape_progress;
850b2b42 7502 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 7503
29269553
N
7504 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7505 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7506 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7507 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7508 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7509 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7510 "reshape");
29269553
N
7511 if (!mddev->sync_thread) {
7512 mddev->recovery = 0;
7513 spin_lock_irq(&conf->device_lock);
ba8805b9 7514 write_seqcount_begin(&conf->gen_lock);
29269553 7515 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7516 mddev->new_chunk_sectors =
7517 conf->chunk_sectors = conf->prev_chunk_sectors;
7518 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7519 rdev_for_each(rdev, mddev)
7520 rdev->new_data_offset = rdev->data_offset;
7521 smp_wmb();
ba8805b9 7522 conf->generation --;
fef9c61f 7523 conf->reshape_progress = MaxSector;
1e3fa9bd 7524 mddev->reshape_position = MaxSector;
ba8805b9 7525 write_seqcount_end(&conf->gen_lock);
29269553
N
7526 spin_unlock_irq(&conf->device_lock);
7527 return -EAGAIN;
7528 }
c8f517c4 7529 conf->reshape_checkpoint = jiffies;
29269553
N
7530 md_wakeup_thread(mddev->sync_thread);
7531 md_new_event(mddev);
7532 return 0;
7533}
29269553 7534
ec32a2bd
N
7535/* This is called from the reshape thread and should make any
7536 * changes needed in 'conf'
7537 */
d1688a6d 7538static void end_reshape(struct r5conf *conf)
29269553 7539{
29269553 7540
f6705578 7541 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 7542 struct md_rdev *rdev;
f6705578 7543
f6705578 7544 spin_lock_irq(&conf->device_lock);
cea9c228 7545 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
7546 rdev_for_each(rdev, conf->mddev)
7547 rdev->data_offset = rdev->new_data_offset;
7548 smp_wmb();
fef9c61f 7549 conf->reshape_progress = MaxSector;
6cbd8148 7550 conf->mddev->reshape_position = MaxSector;
f6705578 7551 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7552 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7553
7554 /* read-ahead size must cover two whole stripes, which is
7555 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7556 */
4a5add49 7557 if (conf->mddev->queue) {
cea9c228 7558 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7559 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7560 / PAGE_SIZE);
16a53ecc
N
7561 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7562 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7563 }
29269553 7564 }
29269553
N
7565}
7566
ec32a2bd
N
7567/* This is called from the raid5d thread with mddev_lock held.
7568 * It makes config changes to the device.
7569 */
fd01b88c 7570static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7571{
d1688a6d 7572 struct r5conf *conf = mddev->private;
cea9c228
N
7573
7574 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7575
ec32a2bd
N
7576 if (mddev->delta_disks > 0) {
7577 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
fe67d19a
HM
7578 if (mddev->queue) {
7579 set_capacity(mddev->gendisk, mddev->array_sectors);
7580 revalidate_disk(mddev->gendisk);
7581 }
ec32a2bd
N
7582 } else {
7583 int d;
908f4fbd
N
7584 spin_lock_irq(&conf->device_lock);
7585 mddev->degraded = calc_degraded(conf);
7586 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
7587 for (d = conf->raid_disks ;
7588 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 7589 d++) {
3cb03002 7590 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
7591 if (rdev)
7592 clear_bit(In_sync, &rdev->flags);
7593 rdev = conf->disks[d].replacement;
7594 if (rdev)
7595 clear_bit(In_sync, &rdev->flags);
1a67dde0 7596 }
cea9c228 7597 }
88ce4930 7598 mddev->layout = conf->algorithm;
09c9e5fa 7599 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
7600 mddev->reshape_position = MaxSector;
7601 mddev->delta_disks = 0;
2c810cdd 7602 mddev->reshape_backwards = 0;
cea9c228
N
7603 }
7604}
7605
fd01b88c 7606static void raid5_quiesce(struct mddev *mddev, int state)
72626685 7607{
d1688a6d 7608 struct r5conf *conf = mddev->private;
72626685
N
7609
7610 switch(state) {
e464eafd
N
7611 case 2: /* resume for a suspend */
7612 wake_up(&conf->wait_for_overlap);
7613 break;
7614
72626685 7615 case 1: /* stop all writes */
566c09c5 7616 lock_all_device_hash_locks_irq(conf);
64bd660b
N
7617 /* '2' tells resync/reshape to pause so that all
7618 * active stripes can drain
7619 */
7620 conf->quiesce = 2;
b1b46486 7621 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
7622 atomic_read(&conf->active_stripes) == 0 &&
7623 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
7624 unlock_all_device_hash_locks_irq(conf),
7625 lock_all_device_hash_locks_irq(conf));
64bd660b 7626 conf->quiesce = 1;
566c09c5 7627 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
7628 /* allow reshape to continue */
7629 wake_up(&conf->wait_for_overlap);
72626685
N
7630 break;
7631
7632 case 0: /* re-enable writes */
566c09c5 7633 lock_all_device_hash_locks_irq(conf);
72626685 7634 conf->quiesce = 0;
b1b46486 7635 wake_up(&conf->wait_for_quiescent);
e464eafd 7636 wake_up(&conf->wait_for_overlap);
566c09c5 7637 unlock_all_device_hash_locks_irq(conf);
72626685
N
7638 break;
7639 }
e6c033f7 7640 r5l_quiesce(conf->log, state);
72626685 7641}
b15c2e57 7642
fd01b88c 7643static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 7644{
e373ab10 7645 struct r0conf *raid0_conf = mddev->private;
d76c8420 7646 sector_t sectors;
54071b38 7647
f1b29bca 7648 /* for raid0 takeover only one zone is supported */
e373ab10 7649 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
7650 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7651 mdname(mddev));
f1b29bca
DW
7652 return ERR_PTR(-EINVAL);
7653 }
7654
e373ab10
N
7655 sectors = raid0_conf->strip_zone[0].zone_end;
7656 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 7657 mddev->dev_sectors = sectors;
f1b29bca 7658 mddev->new_level = level;
54071b38
TM
7659 mddev->new_layout = ALGORITHM_PARITY_N;
7660 mddev->new_chunk_sectors = mddev->chunk_sectors;
7661 mddev->raid_disks += 1;
7662 mddev->delta_disks = 1;
7663 /* make sure it will be not marked as dirty */
7664 mddev->recovery_cp = MaxSector;
7665
7666 return setup_conf(mddev);
7667}
7668
fd01b88c 7669static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
7670{
7671 int chunksect;
7672
7673 if (mddev->raid_disks != 2 ||
7674 mddev->degraded > 1)
7675 return ERR_PTR(-EINVAL);
7676
7677 /* Should check if there are write-behind devices? */
7678
7679 chunksect = 64*2; /* 64K by default */
7680
7681 /* The array must be an exact multiple of chunksize */
7682 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7683 chunksect >>= 1;
7684
7685 if ((chunksect<<9) < STRIPE_SIZE)
7686 /* array size does not allow a suitable chunk size */
7687 return ERR_PTR(-EINVAL);
7688
7689 mddev->new_level = 5;
7690 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 7691 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
7692
7693 return setup_conf(mddev);
7694}
7695
fd01b88c 7696static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
7697{
7698 int new_layout;
7699
7700 switch (mddev->layout) {
7701 case ALGORITHM_LEFT_ASYMMETRIC_6:
7702 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7703 break;
7704 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7705 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7706 break;
7707 case ALGORITHM_LEFT_SYMMETRIC_6:
7708 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7709 break;
7710 case ALGORITHM_RIGHT_SYMMETRIC_6:
7711 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7712 break;
7713 case ALGORITHM_PARITY_0_6:
7714 new_layout = ALGORITHM_PARITY_0;
7715 break;
7716 case ALGORITHM_PARITY_N:
7717 new_layout = ALGORITHM_PARITY_N;
7718 break;
7719 default:
7720 return ERR_PTR(-EINVAL);
7721 }
7722 mddev->new_level = 5;
7723 mddev->new_layout = new_layout;
7724 mddev->delta_disks = -1;
7725 mddev->raid_disks -= 1;
7726 return setup_conf(mddev);
7727}
7728
fd01b88c 7729static int raid5_check_reshape(struct mddev *mddev)
b3546035 7730{
88ce4930
N
7731 /* For a 2-drive array, the layout and chunk size can be changed
7732 * immediately as not restriping is needed.
7733 * For larger arrays we record the new value - after validation
7734 * to be used by a reshape pass.
b3546035 7735 */
d1688a6d 7736 struct r5conf *conf = mddev->private;
597a711b 7737 int new_chunk = mddev->new_chunk_sectors;
b3546035 7738
597a711b 7739 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
7740 return -EINVAL;
7741 if (new_chunk > 0) {
0ba459d2 7742 if (!is_power_of_2(new_chunk))
b3546035 7743 return -EINVAL;
597a711b 7744 if (new_chunk < (PAGE_SIZE>>9))
b3546035 7745 return -EINVAL;
597a711b 7746 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
7747 /* not factor of array size */
7748 return -EINVAL;
7749 }
7750
7751 /* They look valid */
7752
88ce4930 7753 if (mddev->raid_disks == 2) {
597a711b
N
7754 /* can make the change immediately */
7755 if (mddev->new_layout >= 0) {
7756 conf->algorithm = mddev->new_layout;
7757 mddev->layout = mddev->new_layout;
88ce4930
N
7758 }
7759 if (new_chunk > 0) {
597a711b
N
7760 conf->chunk_sectors = new_chunk ;
7761 mddev->chunk_sectors = new_chunk;
88ce4930
N
7762 }
7763 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7764 md_wakeup_thread(mddev->thread);
b3546035 7765 }
50ac168a 7766 return check_reshape(mddev);
88ce4930
N
7767}
7768
fd01b88c 7769static int raid6_check_reshape(struct mddev *mddev)
88ce4930 7770{
597a711b 7771 int new_chunk = mddev->new_chunk_sectors;
50ac168a 7772
597a711b 7773 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 7774 return -EINVAL;
b3546035 7775 if (new_chunk > 0) {
0ba459d2 7776 if (!is_power_of_2(new_chunk))
88ce4930 7777 return -EINVAL;
597a711b 7778 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 7779 return -EINVAL;
597a711b 7780 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
7781 /* not factor of array size */
7782 return -EINVAL;
b3546035 7783 }
88ce4930
N
7784
7785 /* They look valid */
50ac168a 7786 return check_reshape(mddev);
b3546035
N
7787}
7788
fd01b88c 7789static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
7790{
7791 /* raid5 can take over:
f1b29bca 7792 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
7793 * raid1 - if there are two drives. We need to know the chunk size
7794 * raid4 - trivial - just use a raid4 layout.
7795 * raid6 - Providing it is a *_6 layout
d562b0c4 7796 */
f1b29bca
DW
7797 if (mddev->level == 0)
7798 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
7799 if (mddev->level == 1)
7800 return raid5_takeover_raid1(mddev);
e9d4758f
N
7801 if (mddev->level == 4) {
7802 mddev->new_layout = ALGORITHM_PARITY_N;
7803 mddev->new_level = 5;
7804 return setup_conf(mddev);
7805 }
fc9739c6
N
7806 if (mddev->level == 6)
7807 return raid5_takeover_raid6(mddev);
d562b0c4
N
7808
7809 return ERR_PTR(-EINVAL);
7810}
7811
fd01b88c 7812static void *raid4_takeover(struct mddev *mddev)
a78d38a1 7813{
f1b29bca
DW
7814 /* raid4 can take over:
7815 * raid0 - if there is only one strip zone
7816 * raid5 - if layout is right
a78d38a1 7817 */
f1b29bca
DW
7818 if (mddev->level == 0)
7819 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
7820 if (mddev->level == 5 &&
7821 mddev->layout == ALGORITHM_PARITY_N) {
7822 mddev->new_layout = 0;
7823 mddev->new_level = 4;
7824 return setup_conf(mddev);
7825 }
7826 return ERR_PTR(-EINVAL);
7827}
d562b0c4 7828
84fc4b56 7829static struct md_personality raid5_personality;
245f46c2 7830
fd01b88c 7831static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
7832{
7833 /* Currently can only take over a raid5. We map the
7834 * personality to an equivalent raid6 personality
7835 * with the Q block at the end.
7836 */
7837 int new_layout;
7838
7839 if (mddev->pers != &raid5_personality)
7840 return ERR_PTR(-EINVAL);
7841 if (mddev->degraded > 1)
7842 return ERR_PTR(-EINVAL);
7843 if (mddev->raid_disks > 253)
7844 return ERR_PTR(-EINVAL);
7845 if (mddev->raid_disks < 3)
7846 return ERR_PTR(-EINVAL);
7847
7848 switch (mddev->layout) {
7849 case ALGORITHM_LEFT_ASYMMETRIC:
7850 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7851 break;
7852 case ALGORITHM_RIGHT_ASYMMETRIC:
7853 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7854 break;
7855 case ALGORITHM_LEFT_SYMMETRIC:
7856 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7857 break;
7858 case ALGORITHM_RIGHT_SYMMETRIC:
7859 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7860 break;
7861 case ALGORITHM_PARITY_0:
7862 new_layout = ALGORITHM_PARITY_0_6;
7863 break;
7864 case ALGORITHM_PARITY_N:
7865 new_layout = ALGORITHM_PARITY_N;
7866 break;
7867 default:
7868 return ERR_PTR(-EINVAL);
7869 }
7870 mddev->new_level = 6;
7871 mddev->new_layout = new_layout;
7872 mddev->delta_disks = 1;
7873 mddev->raid_disks += 1;
7874 return setup_conf(mddev);
7875}
7876
84fc4b56 7877static struct md_personality raid6_personality =
16a53ecc
N
7878{
7879 .name = "raid6",
7880 .level = 6,
7881 .owner = THIS_MODULE,
849674e4
SL
7882 .make_request = raid5_make_request,
7883 .run = raid5_run,
afa0f557 7884 .free = raid5_free,
849674e4
SL
7885 .status = raid5_status,
7886 .error_handler = raid5_error,
16a53ecc
N
7887 .hot_add_disk = raid5_add_disk,
7888 .hot_remove_disk= raid5_remove_disk,
7889 .spare_active = raid5_spare_active,
849674e4 7890 .sync_request = raid5_sync_request,
16a53ecc 7891 .resize = raid5_resize,
80c3a6ce 7892 .size = raid5_size,
50ac168a 7893 .check_reshape = raid6_check_reshape,
f416885e 7894 .start_reshape = raid5_start_reshape,
cea9c228 7895 .finish_reshape = raid5_finish_reshape,
16a53ecc 7896 .quiesce = raid5_quiesce,
245f46c2 7897 .takeover = raid6_takeover,
5c675f83 7898 .congested = raid5_congested,
16a53ecc 7899};
84fc4b56 7900static struct md_personality raid5_personality =
1da177e4
LT
7901{
7902 .name = "raid5",
2604b703 7903 .level = 5,
1da177e4 7904 .owner = THIS_MODULE,
849674e4
SL
7905 .make_request = raid5_make_request,
7906 .run = raid5_run,
afa0f557 7907 .free = raid5_free,
849674e4
SL
7908 .status = raid5_status,
7909 .error_handler = raid5_error,
1da177e4
LT
7910 .hot_add_disk = raid5_add_disk,
7911 .hot_remove_disk= raid5_remove_disk,
7912 .spare_active = raid5_spare_active,
849674e4 7913 .sync_request = raid5_sync_request,
1da177e4 7914 .resize = raid5_resize,
80c3a6ce 7915 .size = raid5_size,
63c70c4f
N
7916 .check_reshape = raid5_check_reshape,
7917 .start_reshape = raid5_start_reshape,
cea9c228 7918 .finish_reshape = raid5_finish_reshape,
72626685 7919 .quiesce = raid5_quiesce,
d562b0c4 7920 .takeover = raid5_takeover,
5c675f83 7921 .congested = raid5_congested,
1da177e4
LT
7922};
7923
84fc4b56 7924static struct md_personality raid4_personality =
1da177e4 7925{
2604b703
N
7926 .name = "raid4",
7927 .level = 4,
7928 .owner = THIS_MODULE,
849674e4
SL
7929 .make_request = raid5_make_request,
7930 .run = raid5_run,
afa0f557 7931 .free = raid5_free,
849674e4
SL
7932 .status = raid5_status,
7933 .error_handler = raid5_error,
2604b703
N
7934 .hot_add_disk = raid5_add_disk,
7935 .hot_remove_disk= raid5_remove_disk,
7936 .spare_active = raid5_spare_active,
849674e4 7937 .sync_request = raid5_sync_request,
2604b703 7938 .resize = raid5_resize,
80c3a6ce 7939 .size = raid5_size,
3d37890b
N
7940 .check_reshape = raid5_check_reshape,
7941 .start_reshape = raid5_start_reshape,
cea9c228 7942 .finish_reshape = raid5_finish_reshape,
2604b703 7943 .quiesce = raid5_quiesce,
a78d38a1 7944 .takeover = raid4_takeover,
5c675f83 7945 .congested = raid5_congested,
2604b703
N
7946};
7947
7948static int __init raid5_init(void)
7949{
851c30c9
SL
7950 raid5_wq = alloc_workqueue("raid5wq",
7951 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7952 if (!raid5_wq)
7953 return -ENOMEM;
16a53ecc 7954 register_md_personality(&raid6_personality);
2604b703
N
7955 register_md_personality(&raid5_personality);
7956 register_md_personality(&raid4_personality);
7957 return 0;
1da177e4
LT
7958}
7959
2604b703 7960static void raid5_exit(void)
1da177e4 7961{
16a53ecc 7962 unregister_md_personality(&raid6_personality);
2604b703
N
7963 unregister_md_personality(&raid5_personality);
7964 unregister_md_personality(&raid4_personality);
851c30c9 7965 destroy_workqueue(raid5_wq);
1da177e4
LT
7966}
7967
7968module_init(raid5_init);
7969module_exit(raid5_exit);
7970MODULE_LICENSE("GPL");
0efb9e61 7971MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 7972MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
7973MODULE_ALIAS("md-raid5");
7974MODULE_ALIAS("md-raid4");
2604b703
N
7975MODULE_ALIAS("md-level-5");
7976MODULE_ALIAS("md-level-4");
16a53ecc
N
7977MODULE_ALIAS("md-personality-8"); /* RAID6 */
7978MODULE_ALIAS("md-raid6");
7979MODULE_ALIAS("md-level-6");
7980
7981/* This used to be two separate modules, they were: */
7982MODULE_ALIAS("raid5");
7983MODULE_ALIAS("raid6");