md/raid5: allow for more than 2^31 chunks.
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
07a3b417 50#include <linux/async.h>
bff61975 51#include <linux/seq_file.h>
36d1c647 52#include <linux/cpu.h>
5a0e3ad6 53#include <linux/slab.h>
43b2e5d8 54#include "md.h"
bff61975 55#include "raid5.h"
ef740c37 56#include "bitmap.h"
72626685 57
1da177e4
LT
58/*
59 * Stripe cache
60 */
61
62#define NR_STRIPES 256
63#define STRIPE_SIZE PAGE_SIZE
64#define STRIPE_SHIFT (PAGE_SHIFT - 9)
65#define STRIPE_SECTORS (STRIPE_SIZE>>9)
66#define IO_THRESHOLD 1
8b3e6cdc 67#define BYPASS_THRESHOLD 1
fccddba0 68#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
69#define HASH_MASK (NR_HASH - 1)
70
fccddba0 71#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
72
73/* bio's attached to a stripe+device for I/O are linked together in bi_sector
74 * order without overlap. There may be several bio's per stripe+device, and
75 * a bio could span several devices.
76 * When walking this list for a particular stripe+device, we must never proceed
77 * beyond a bio that extends past this device, as the next bio might no longer
78 * be valid.
79 * This macro is used to determine the 'next' bio in the list, given the sector
80 * of the current stripe+device
81 */
82#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83/*
84 * The following can be used to debug the driver
85 */
1da177e4
LT
86#define RAID5_PARANOIA 1
87#if RAID5_PARANOIA && defined(CONFIG_SMP)
88# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
89#else
90# define CHECK_DEVLOCK()
91#endif
92
45b4233c 93#ifdef DEBUG
1da177e4
LT
94#define inline
95#define __inline__
96#endif
97
6be9d494
BS
98#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
99
960e739d 100/*
5b99c2ff
JA
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
103 */
104static inline int raid5_bi_phys_segments(struct bio *bio)
105{
5b99c2ff 106 return bio->bi_phys_segments & 0xffff;
960e739d
JA
107}
108
109static inline int raid5_bi_hw_segments(struct bio *bio)
110{
5b99c2ff 111 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
112}
113
114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115{
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
118}
119
120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121{
122 unsigned short val = raid5_bi_hw_segments(bio);
123
124 --val;
5b99c2ff 125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
126 return val;
127}
128
129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130{
5b99c2ff 131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
132}
133
d0dabf7e
N
134/* Find first data disk in a raid6 stripe */
135static inline int raid6_d0(struct stripe_head *sh)
136{
67cc2b81
N
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
d0dabf7e
N
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
145}
16a53ecc
N
146static inline int raid6_next_disk(int disk, int raid_disks)
147{
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
150}
a4456856 151
d0dabf7e
N
152/* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
156 */
67cc2b81
N
157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
d0dabf7e 159{
6629542e 160 int slot = *count;
67cc2b81 161
e4424fee 162 if (sh->ddf_layout)
6629542e 163 (*count)++;
d0dabf7e 164 if (idx == sh->pd_idx)
67cc2b81 165 return syndrome_disks;
d0dabf7e 166 if (idx == sh->qd_idx)
67cc2b81 167 return syndrome_disks + 1;
e4424fee 168 if (!sh->ddf_layout)
6629542e 169 (*count)++;
d0dabf7e
N
170 return slot;
171}
172
a4456856
DW
173static void return_io(struct bio *return_bi)
174{
175 struct bio *bi = return_bi;
176 while (bi) {
a4456856
DW
177
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
0e13fe23 181 bio_endio(bi, 0);
a4456856
DW
182 bi = return_bi;
183 }
184}
185
1da177e4
LT
186static void print_raid5_conf (raid5_conf_t *conf);
187
600aa109
DW
188static int stripe_operations_active(struct stripe_head *sh)
189{
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193}
194
858119e1 195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
196{
197 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 201 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 202 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
203 blk_plug_device(conf->mddev->queue);
204 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 205 sh->bm_seq - conf->seq_write > 0) {
72626685 206 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
207 blk_plug_device(conf->mddev->queue);
208 } else {
72626685 209 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 210 list_add_tail(&sh->lru, &conf->handle_list);
72626685 211 }
1da177e4
LT
212 md_wakeup_thread(conf->mddev->thread);
213 } else {
600aa109 214 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
215 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
216 atomic_dec(&conf->preread_active_stripes);
217 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
218 md_wakeup_thread(conf->mddev->thread);
219 }
1da177e4 220 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
221 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
222 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 223 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
224 if (conf->retry_read_aligned)
225 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 226 }
1da177e4
LT
227 }
228 }
229}
d0dabf7e 230
1da177e4
LT
231static void release_stripe(struct stripe_head *sh)
232{
233 raid5_conf_t *conf = sh->raid_conf;
234 unsigned long flags;
16a53ecc 235
1da177e4
LT
236 spin_lock_irqsave(&conf->device_lock, flags);
237 __release_stripe(conf, sh);
238 spin_unlock_irqrestore(&conf->device_lock, flags);
239}
240
fccddba0 241static inline void remove_hash(struct stripe_head *sh)
1da177e4 242{
45b4233c
DW
243 pr_debug("remove_hash(), stripe %llu\n",
244 (unsigned long long)sh->sector);
1da177e4 245
fccddba0 246 hlist_del_init(&sh->hash);
1da177e4
LT
247}
248
16a53ecc 249static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 250{
fccddba0 251 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 252
45b4233c
DW
253 pr_debug("insert_hash(), stripe %llu\n",
254 (unsigned long long)sh->sector);
1da177e4
LT
255
256 CHECK_DEVLOCK();
fccddba0 257 hlist_add_head(&sh->hash, hp);
1da177e4
LT
258}
259
260
261/* find an idle stripe, make sure it is unhashed, and return it. */
262static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263{
264 struct stripe_head *sh = NULL;
265 struct list_head *first;
266
267 CHECK_DEVLOCK();
268 if (list_empty(&conf->inactive_list))
269 goto out;
270 first = conf->inactive_list.next;
271 sh = list_entry(first, struct stripe_head, lru);
272 list_del_init(first);
273 remove_hash(sh);
274 atomic_inc(&conf->active_stripes);
275out:
276 return sh;
277}
278
279static void shrink_buffers(struct stripe_head *sh, int num)
280{
281 struct page *p;
282 int i;
283
284 for (i=0; i<num ; i++) {
285 p = sh->dev[i].page;
286 if (!p)
287 continue;
288 sh->dev[i].page = NULL;
2d1f3b5d 289 put_page(p);
1da177e4
LT
290 }
291}
292
293static int grow_buffers(struct stripe_head *sh, int num)
294{
295 int i;
296
297 for (i=0; i<num; i++) {
298 struct page *page;
299
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
302 }
303 sh->dev[i].page = page;
304 }
305 return 0;
306}
307
784052ec 308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
1da177e4 311
b5663ba4 312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
313{
314 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 315 int i;
1da177e4 316
78bafebd
ES
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 319 BUG_ON(stripe_operations_active(sh));
d84e0f10 320
1da177e4 321 CHECK_DEVLOCK();
45b4233c 322 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
323 (unsigned long long)sh->sector);
324
325 remove_hash(sh);
16a53ecc 326
86b42c71 327 sh->generation = conf->generation - previous;
b5663ba4 328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 329 sh->sector = sector;
911d4ee8 330 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
331 sh->state = 0;
332
7ecaa1e6
N
333
334 for (i = sh->disks; i--; ) {
1da177e4
LT
335 struct r5dev *dev = &sh->dev[i];
336
d84e0f10 337 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 338 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 340 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 341 dev->read, dev->towrite, dev->written,
1da177e4
LT
342 test_bit(R5_LOCKED, &dev->flags));
343 BUG();
344 }
345 dev->flags = 0;
784052ec 346 raid5_build_block(sh, i, previous);
1da177e4
LT
347 }
348 insert_hash(conf, sh);
349}
350
86b42c71
N
351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
1da177e4
LT
353{
354 struct stripe_head *sh;
fccddba0 355 struct hlist_node *hn;
1da177e4
LT
356
357 CHECK_DEVLOCK();
45b4233c 358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 360 if (sh->sector == sector && sh->generation == generation)
1da177e4 361 return sh;
45b4233c 362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
363 return NULL;
364}
365
366static void unplug_slaves(mddev_t *mddev);
165125e1 367static void raid5_unplug_device(struct request_queue *q);
1da177e4 368
b5663ba4
N
369static struct stripe_head *
370get_active_stripe(raid5_conf_t *conf, sector_t sector,
a8c906ca 371 int previous, int noblock, int noquiesce)
1da177e4
LT
372{
373 struct stripe_head *sh;
374
45b4233c 375 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
376
377 spin_lock_irq(&conf->device_lock);
378
379 do {
72626685 380 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 381 conf->quiesce == 0 || noquiesce,
72626685 382 conf->device_lock, /* nothing */);
86b42c71 383 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
384 if (!sh) {
385 if (!conf->inactive_blocked)
386 sh = get_free_stripe(conf);
387 if (noblock && sh == NULL)
388 break;
389 if (!sh) {
390 conf->inactive_blocked = 1;
391 wait_event_lock_irq(conf->wait_for_stripe,
392 !list_empty(&conf->inactive_list) &&
5036805b
N
393 (atomic_read(&conf->active_stripes)
394 < (conf->max_nr_stripes *3/4)
1da177e4
LT
395 || !conf->inactive_blocked),
396 conf->device_lock,
f4370781 397 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
398 );
399 conf->inactive_blocked = 0;
400 } else
b5663ba4 401 init_stripe(sh, sector, previous);
1da177e4
LT
402 } else {
403 if (atomic_read(&sh->count)) {
ab69ae12
N
404 BUG_ON(!list_empty(&sh->lru)
405 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
406 } else {
407 if (!test_bit(STRIPE_HANDLE, &sh->state))
408 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
409 if (list_empty(&sh->lru) &&
410 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
411 BUG();
412 list_del_init(&sh->lru);
1da177e4
LT
413 }
414 }
415 } while (sh == NULL);
416
417 if (sh)
418 atomic_inc(&sh->count);
419
420 spin_unlock_irq(&conf->device_lock);
421 return sh;
422}
423
6712ecf8
N
424static void
425raid5_end_read_request(struct bio *bi, int error);
426static void
427raid5_end_write_request(struct bio *bi, int error);
91c00924 428
c4e5ac0a 429static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
430{
431 raid5_conf_t *conf = sh->raid_conf;
432 int i, disks = sh->disks;
433
434 might_sleep();
435
436 for (i = disks; i--; ) {
437 int rw;
438 struct bio *bi;
439 mdk_rdev_t *rdev;
440 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
441 rw = WRITE;
442 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
443 rw = READ;
444 else
445 continue;
446
447 bi = &sh->dev[i].req;
448
449 bi->bi_rw = rw;
450 if (rw == WRITE)
451 bi->bi_end_io = raid5_end_write_request;
452 else
453 bi->bi_end_io = raid5_end_read_request;
454
455 rcu_read_lock();
456 rdev = rcu_dereference(conf->disks[i].rdev);
457 if (rdev && test_bit(Faulty, &rdev->flags))
458 rdev = NULL;
459 if (rdev)
460 atomic_inc(&rdev->nr_pending);
461 rcu_read_unlock();
462
463 if (rdev) {
c4e5ac0a 464 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
465 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
466
2b7497f0
DW
467 set_bit(STRIPE_IO_STARTED, &sh->state);
468
91c00924
DW
469 bi->bi_bdev = rdev->bdev;
470 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 471 __func__, (unsigned long long)sh->sector,
91c00924
DW
472 bi->bi_rw, i);
473 atomic_inc(&sh->count);
474 bi->bi_sector = sh->sector + rdev->data_offset;
475 bi->bi_flags = 1 << BIO_UPTODATE;
476 bi->bi_vcnt = 1;
477 bi->bi_max_vecs = 1;
478 bi->bi_idx = 0;
479 bi->bi_io_vec = &sh->dev[i].vec;
480 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
481 bi->bi_io_vec[0].bv_offset = 0;
482 bi->bi_size = STRIPE_SIZE;
483 bi->bi_next = NULL;
484 if (rw == WRITE &&
485 test_bit(R5_ReWrite, &sh->dev[i].flags))
486 atomic_add(STRIPE_SECTORS,
487 &rdev->corrected_errors);
488 generic_make_request(bi);
489 } else {
490 if (rw == WRITE)
491 set_bit(STRIPE_DEGRADED, &sh->state);
492 pr_debug("skip op %ld on disc %d for sector %llu\n",
493 bi->bi_rw, i, (unsigned long long)sh->sector);
494 clear_bit(R5_LOCKED, &sh->dev[i].flags);
495 set_bit(STRIPE_HANDLE, &sh->state);
496 }
497 }
498}
499
500static struct dma_async_tx_descriptor *
501async_copy_data(int frombio, struct bio *bio, struct page *page,
502 sector_t sector, struct dma_async_tx_descriptor *tx)
503{
504 struct bio_vec *bvl;
505 struct page *bio_page;
506 int i;
507 int page_offset;
a08abd8c 508 struct async_submit_ctl submit;
0403e382 509 enum async_tx_flags flags = 0;
91c00924
DW
510
511 if (bio->bi_sector >= sector)
512 page_offset = (signed)(bio->bi_sector - sector) * 512;
513 else
514 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 515
0403e382
DW
516 if (frombio)
517 flags |= ASYNC_TX_FENCE;
518 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
519
91c00924
DW
520 bio_for_each_segment(bvl, bio, i) {
521 int len = bio_iovec_idx(bio, i)->bv_len;
522 int clen;
523 int b_offset = 0;
524
525 if (page_offset < 0) {
526 b_offset = -page_offset;
527 page_offset += b_offset;
528 len -= b_offset;
529 }
530
531 if (len > 0 && page_offset + len > STRIPE_SIZE)
532 clen = STRIPE_SIZE - page_offset;
533 else
534 clen = len;
535
536 if (clen > 0) {
537 b_offset += bio_iovec_idx(bio, i)->bv_offset;
538 bio_page = bio_iovec_idx(bio, i)->bv_page;
539 if (frombio)
540 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 541 b_offset, clen, &submit);
91c00924
DW
542 else
543 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 544 page_offset, clen, &submit);
91c00924 545 }
a08abd8c
DW
546 /* chain the operations */
547 submit.depend_tx = tx;
548
91c00924
DW
549 if (clen < len) /* hit end of page */
550 break;
551 page_offset += len;
552 }
553
554 return tx;
555}
556
557static void ops_complete_biofill(void *stripe_head_ref)
558{
559 struct stripe_head *sh = stripe_head_ref;
560 struct bio *return_bi = NULL;
561 raid5_conf_t *conf = sh->raid_conf;
e4d84909 562 int i;
91c00924 563
e46b272b 564 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
565 (unsigned long long)sh->sector);
566
567 /* clear completed biofills */
83de75cc 568 spin_lock_irq(&conf->device_lock);
91c00924
DW
569 for (i = sh->disks; i--; ) {
570 struct r5dev *dev = &sh->dev[i];
91c00924
DW
571
572 /* acknowledge completion of a biofill operation */
e4d84909
DW
573 /* and check if we need to reply to a read request,
574 * new R5_Wantfill requests are held off until
83de75cc 575 * !STRIPE_BIOFILL_RUN
e4d84909
DW
576 */
577 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 578 struct bio *rbi, *rbi2;
91c00924 579
91c00924
DW
580 BUG_ON(!dev->read);
581 rbi = dev->read;
582 dev->read = NULL;
583 while (rbi && rbi->bi_sector <
584 dev->sector + STRIPE_SECTORS) {
585 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 586 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
587 rbi->bi_next = return_bi;
588 return_bi = rbi;
589 }
91c00924
DW
590 rbi = rbi2;
591 }
592 }
593 }
83de75cc
DW
594 spin_unlock_irq(&conf->device_lock);
595 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
596
597 return_io(return_bi);
598
e4d84909 599 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
600 release_stripe(sh);
601}
602
603static void ops_run_biofill(struct stripe_head *sh)
604{
605 struct dma_async_tx_descriptor *tx = NULL;
606 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 607 struct async_submit_ctl submit;
91c00924
DW
608 int i;
609
e46b272b 610 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
611 (unsigned long long)sh->sector);
612
613 for (i = sh->disks; i--; ) {
614 struct r5dev *dev = &sh->dev[i];
615 if (test_bit(R5_Wantfill, &dev->flags)) {
616 struct bio *rbi;
617 spin_lock_irq(&conf->device_lock);
618 dev->read = rbi = dev->toread;
619 dev->toread = NULL;
620 spin_unlock_irq(&conf->device_lock);
621 while (rbi && rbi->bi_sector <
622 dev->sector + STRIPE_SECTORS) {
623 tx = async_copy_data(0, rbi, dev->page,
624 dev->sector, tx);
625 rbi = r5_next_bio(rbi, dev->sector);
626 }
627 }
628 }
629
630 atomic_inc(&sh->count);
a08abd8c
DW
631 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
632 async_trigger_callback(&submit);
91c00924
DW
633}
634
4e7d2c0a 635static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 636{
4e7d2c0a 637 struct r5dev *tgt;
91c00924 638
4e7d2c0a
DW
639 if (target < 0)
640 return;
91c00924 641
4e7d2c0a 642 tgt = &sh->dev[target];
91c00924
DW
643 set_bit(R5_UPTODATE, &tgt->flags);
644 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
645 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
646}
647
ac6b53b6 648static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
649{
650 struct stripe_head *sh = stripe_head_ref;
91c00924 651
e46b272b 652 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
653 (unsigned long long)sh->sector);
654
ac6b53b6 655 /* mark the computed target(s) as uptodate */
4e7d2c0a 656 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 657 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 658
ecc65c9b
DW
659 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
660 if (sh->check_state == check_state_compute_run)
661 sh->check_state = check_state_compute_result;
91c00924
DW
662 set_bit(STRIPE_HANDLE, &sh->state);
663 release_stripe(sh);
664}
665
d6f38f31
DW
666/* return a pointer to the address conversion region of the scribble buffer */
667static addr_conv_t *to_addr_conv(struct stripe_head *sh,
668 struct raid5_percpu *percpu)
669{
670 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
671}
672
673static struct dma_async_tx_descriptor *
674ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 675{
91c00924 676 int disks = sh->disks;
d6f38f31 677 struct page **xor_srcs = percpu->scribble;
91c00924
DW
678 int target = sh->ops.target;
679 struct r5dev *tgt = &sh->dev[target];
680 struct page *xor_dest = tgt->page;
681 int count = 0;
682 struct dma_async_tx_descriptor *tx;
a08abd8c 683 struct async_submit_ctl submit;
91c00924
DW
684 int i;
685
686 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 687 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
688 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
689
690 for (i = disks; i--; )
691 if (i != target)
692 xor_srcs[count++] = sh->dev[i].page;
693
694 atomic_inc(&sh->count);
695
0403e382 696 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 697 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 698 if (unlikely(count == 1))
a08abd8c 699 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 700 else
a08abd8c 701 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 702
91c00924
DW
703 return tx;
704}
705
ac6b53b6
DW
706/* set_syndrome_sources - populate source buffers for gen_syndrome
707 * @srcs - (struct page *) array of size sh->disks
708 * @sh - stripe_head to parse
709 *
710 * Populates srcs in proper layout order for the stripe and returns the
711 * 'count' of sources to be used in a call to async_gen_syndrome. The P
712 * destination buffer is recorded in srcs[count] and the Q destination
713 * is recorded in srcs[count+1]].
714 */
715static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
716{
717 int disks = sh->disks;
718 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
719 int d0_idx = raid6_d0(sh);
720 int count;
721 int i;
722
723 for (i = 0; i < disks; i++)
5dd33c9a 724 srcs[i] = NULL;
ac6b53b6
DW
725
726 count = 0;
727 i = d0_idx;
728 do {
729 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
730
731 srcs[slot] = sh->dev[i].page;
732 i = raid6_next_disk(i, disks);
733 } while (i != d0_idx);
ac6b53b6 734
e4424fee 735 return syndrome_disks;
ac6b53b6
DW
736}
737
738static struct dma_async_tx_descriptor *
739ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
740{
741 int disks = sh->disks;
742 struct page **blocks = percpu->scribble;
743 int target;
744 int qd_idx = sh->qd_idx;
745 struct dma_async_tx_descriptor *tx;
746 struct async_submit_ctl submit;
747 struct r5dev *tgt;
748 struct page *dest;
749 int i;
750 int count;
751
752 if (sh->ops.target < 0)
753 target = sh->ops.target2;
754 else if (sh->ops.target2 < 0)
755 target = sh->ops.target;
91c00924 756 else
ac6b53b6
DW
757 /* we should only have one valid target */
758 BUG();
759 BUG_ON(target < 0);
760 pr_debug("%s: stripe %llu block: %d\n",
761 __func__, (unsigned long long)sh->sector, target);
762
763 tgt = &sh->dev[target];
764 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
765 dest = tgt->page;
766
767 atomic_inc(&sh->count);
768
769 if (target == qd_idx) {
770 count = set_syndrome_sources(blocks, sh);
771 blocks[count] = NULL; /* regenerating p is not necessary */
772 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
773 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
774 ops_complete_compute, sh,
ac6b53b6
DW
775 to_addr_conv(sh, percpu));
776 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
777 } else {
778 /* Compute any data- or p-drive using XOR */
779 count = 0;
780 for (i = disks; i-- ; ) {
781 if (i == target || i == qd_idx)
782 continue;
783 blocks[count++] = sh->dev[i].page;
784 }
785
0403e382
DW
786 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
787 NULL, ops_complete_compute, sh,
ac6b53b6
DW
788 to_addr_conv(sh, percpu));
789 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
790 }
91c00924 791
91c00924
DW
792 return tx;
793}
794
ac6b53b6
DW
795static struct dma_async_tx_descriptor *
796ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
797{
798 int i, count, disks = sh->disks;
799 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
800 int d0_idx = raid6_d0(sh);
801 int faila = -1, failb = -1;
802 int target = sh->ops.target;
803 int target2 = sh->ops.target2;
804 struct r5dev *tgt = &sh->dev[target];
805 struct r5dev *tgt2 = &sh->dev[target2];
806 struct dma_async_tx_descriptor *tx;
807 struct page **blocks = percpu->scribble;
808 struct async_submit_ctl submit;
809
810 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
811 __func__, (unsigned long long)sh->sector, target, target2);
812 BUG_ON(target < 0 || target2 < 0);
813 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
814 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
815
6c910a78 816 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
817 * slot number conversion for 'faila' and 'failb'
818 */
819 for (i = 0; i < disks ; i++)
5dd33c9a 820 blocks[i] = NULL;
ac6b53b6
DW
821 count = 0;
822 i = d0_idx;
823 do {
824 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
825
826 blocks[slot] = sh->dev[i].page;
827
828 if (i == target)
829 faila = slot;
830 if (i == target2)
831 failb = slot;
832 i = raid6_next_disk(i, disks);
833 } while (i != d0_idx);
ac6b53b6
DW
834
835 BUG_ON(faila == failb);
836 if (failb < faila)
837 swap(faila, failb);
838 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
839 __func__, (unsigned long long)sh->sector, faila, failb);
840
841 atomic_inc(&sh->count);
842
843 if (failb == syndrome_disks+1) {
844 /* Q disk is one of the missing disks */
845 if (faila == syndrome_disks) {
846 /* Missing P+Q, just recompute */
0403e382
DW
847 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
848 ops_complete_compute, sh,
849 to_addr_conv(sh, percpu));
e4424fee 850 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
851 STRIPE_SIZE, &submit);
852 } else {
853 struct page *dest;
854 int data_target;
855 int qd_idx = sh->qd_idx;
856
857 /* Missing D+Q: recompute D from P, then recompute Q */
858 if (target == qd_idx)
859 data_target = target2;
860 else
861 data_target = target;
862
863 count = 0;
864 for (i = disks; i-- ; ) {
865 if (i == data_target || i == qd_idx)
866 continue;
867 blocks[count++] = sh->dev[i].page;
868 }
869 dest = sh->dev[data_target].page;
0403e382
DW
870 init_async_submit(&submit,
871 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
872 NULL, NULL, NULL,
873 to_addr_conv(sh, percpu));
ac6b53b6
DW
874 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
875 &submit);
876
877 count = set_syndrome_sources(blocks, sh);
0403e382
DW
878 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
879 ops_complete_compute, sh,
880 to_addr_conv(sh, percpu));
ac6b53b6
DW
881 return async_gen_syndrome(blocks, 0, count+2,
882 STRIPE_SIZE, &submit);
883 }
ac6b53b6 884 } else {
6c910a78
DW
885 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
886 ops_complete_compute, sh,
887 to_addr_conv(sh, percpu));
888 if (failb == syndrome_disks) {
889 /* We're missing D+P. */
890 return async_raid6_datap_recov(syndrome_disks+2,
891 STRIPE_SIZE, faila,
892 blocks, &submit);
893 } else {
894 /* We're missing D+D. */
895 return async_raid6_2data_recov(syndrome_disks+2,
896 STRIPE_SIZE, faila, failb,
897 blocks, &submit);
898 }
ac6b53b6
DW
899 }
900}
901
902
91c00924
DW
903static void ops_complete_prexor(void *stripe_head_ref)
904{
905 struct stripe_head *sh = stripe_head_ref;
906
e46b272b 907 pr_debug("%s: stripe %llu\n", __func__,
91c00924 908 (unsigned long long)sh->sector);
91c00924
DW
909}
910
911static struct dma_async_tx_descriptor *
d6f38f31
DW
912ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
913 struct dma_async_tx_descriptor *tx)
91c00924 914{
91c00924 915 int disks = sh->disks;
d6f38f31 916 struct page **xor_srcs = percpu->scribble;
91c00924 917 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 918 struct async_submit_ctl submit;
91c00924
DW
919
920 /* existing parity data subtracted */
921 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
922
e46b272b 923 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
924 (unsigned long long)sh->sector);
925
926 for (i = disks; i--; ) {
927 struct r5dev *dev = &sh->dev[i];
928 /* Only process blocks that are known to be uptodate */
d8ee0728 929 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
930 xor_srcs[count++] = dev->page;
931 }
932
0403e382 933 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 934 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 935 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
936
937 return tx;
938}
939
940static struct dma_async_tx_descriptor *
d8ee0728 941ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
942{
943 int disks = sh->disks;
d8ee0728 944 int i;
91c00924 945
e46b272b 946 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
947 (unsigned long long)sh->sector);
948
949 for (i = disks; i--; ) {
950 struct r5dev *dev = &sh->dev[i];
951 struct bio *chosen;
91c00924 952
d8ee0728 953 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
954 struct bio *wbi;
955
956 spin_lock(&sh->lock);
957 chosen = dev->towrite;
958 dev->towrite = NULL;
959 BUG_ON(dev->written);
960 wbi = dev->written = chosen;
961 spin_unlock(&sh->lock);
962
963 while (wbi && wbi->bi_sector <
964 dev->sector + STRIPE_SECTORS) {
965 tx = async_copy_data(1, wbi, dev->page,
966 dev->sector, tx);
967 wbi = r5_next_bio(wbi, dev->sector);
968 }
969 }
970 }
971
972 return tx;
973}
974
ac6b53b6 975static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
976{
977 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
978 int disks = sh->disks;
979 int pd_idx = sh->pd_idx;
980 int qd_idx = sh->qd_idx;
981 int i;
91c00924 982
e46b272b 983 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
984 (unsigned long long)sh->sector);
985
986 for (i = disks; i--; ) {
987 struct r5dev *dev = &sh->dev[i];
ac6b53b6
DW
988
989 if (dev->written || i == pd_idx || i == qd_idx)
91c00924
DW
990 set_bit(R5_UPTODATE, &dev->flags);
991 }
992
d8ee0728
DW
993 if (sh->reconstruct_state == reconstruct_state_drain_run)
994 sh->reconstruct_state = reconstruct_state_drain_result;
995 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
996 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
997 else {
998 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
999 sh->reconstruct_state = reconstruct_state_result;
1000 }
91c00924
DW
1001
1002 set_bit(STRIPE_HANDLE, &sh->state);
1003 release_stripe(sh);
1004}
1005
1006static void
ac6b53b6
DW
1007ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1008 struct dma_async_tx_descriptor *tx)
91c00924 1009{
91c00924 1010 int disks = sh->disks;
d6f38f31 1011 struct page **xor_srcs = percpu->scribble;
a08abd8c 1012 struct async_submit_ctl submit;
91c00924
DW
1013 int count = 0, pd_idx = sh->pd_idx, i;
1014 struct page *xor_dest;
d8ee0728 1015 int prexor = 0;
91c00924 1016 unsigned long flags;
91c00924 1017
e46b272b 1018 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1019 (unsigned long long)sh->sector);
1020
1021 /* check if prexor is active which means only process blocks
1022 * that are part of a read-modify-write (written)
1023 */
d8ee0728
DW
1024 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1025 prexor = 1;
91c00924
DW
1026 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1027 for (i = disks; i--; ) {
1028 struct r5dev *dev = &sh->dev[i];
1029 if (dev->written)
1030 xor_srcs[count++] = dev->page;
1031 }
1032 } else {
1033 xor_dest = sh->dev[pd_idx].page;
1034 for (i = disks; i--; ) {
1035 struct r5dev *dev = &sh->dev[i];
1036 if (i != pd_idx)
1037 xor_srcs[count++] = dev->page;
1038 }
1039 }
1040
91c00924
DW
1041 /* 1/ if we prexor'd then the dest is reused as a source
1042 * 2/ if we did not prexor then we are redoing the parity
1043 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1044 * for the synchronous xor case
1045 */
88ba2aa5 1046 flags = ASYNC_TX_ACK |
91c00924
DW
1047 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1048
1049 atomic_inc(&sh->count);
1050
ac6b53b6 1051 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1052 to_addr_conv(sh, percpu));
a08abd8c
DW
1053 if (unlikely(count == 1))
1054 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1055 else
1056 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1057}
1058
ac6b53b6
DW
1059static void
1060ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1061 struct dma_async_tx_descriptor *tx)
1062{
1063 struct async_submit_ctl submit;
1064 struct page **blocks = percpu->scribble;
1065 int count;
1066
1067 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1068
1069 count = set_syndrome_sources(blocks, sh);
1070
1071 atomic_inc(&sh->count);
1072
1073 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1074 sh, to_addr_conv(sh, percpu));
1075 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1076}
1077
1078static void ops_complete_check(void *stripe_head_ref)
1079{
1080 struct stripe_head *sh = stripe_head_ref;
91c00924 1081
e46b272b 1082 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1083 (unsigned long long)sh->sector);
1084
ecc65c9b 1085 sh->check_state = check_state_check_result;
91c00924
DW
1086 set_bit(STRIPE_HANDLE, &sh->state);
1087 release_stripe(sh);
1088}
1089
ac6b53b6 1090static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1091{
91c00924 1092 int disks = sh->disks;
ac6b53b6
DW
1093 int pd_idx = sh->pd_idx;
1094 int qd_idx = sh->qd_idx;
1095 struct page *xor_dest;
d6f38f31 1096 struct page **xor_srcs = percpu->scribble;
91c00924 1097 struct dma_async_tx_descriptor *tx;
a08abd8c 1098 struct async_submit_ctl submit;
ac6b53b6
DW
1099 int count;
1100 int i;
91c00924 1101
e46b272b 1102 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1103 (unsigned long long)sh->sector);
1104
ac6b53b6
DW
1105 count = 0;
1106 xor_dest = sh->dev[pd_idx].page;
1107 xor_srcs[count++] = xor_dest;
91c00924 1108 for (i = disks; i--; ) {
ac6b53b6
DW
1109 if (i == pd_idx || i == qd_idx)
1110 continue;
1111 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1112 }
1113
d6f38f31
DW
1114 init_async_submit(&submit, 0, NULL, NULL, NULL,
1115 to_addr_conv(sh, percpu));
099f53cb 1116 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1117 &sh->ops.zero_sum_result, &submit);
91c00924 1118
91c00924 1119 atomic_inc(&sh->count);
a08abd8c
DW
1120 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1121 tx = async_trigger_callback(&submit);
91c00924
DW
1122}
1123
ac6b53b6
DW
1124static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1125{
1126 struct page **srcs = percpu->scribble;
1127 struct async_submit_ctl submit;
1128 int count;
1129
1130 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1131 (unsigned long long)sh->sector, checkp);
1132
1133 count = set_syndrome_sources(srcs, sh);
1134 if (!checkp)
1135 srcs[count] = NULL;
91c00924 1136
91c00924 1137 atomic_inc(&sh->count);
ac6b53b6
DW
1138 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1139 sh, to_addr_conv(sh, percpu));
1140 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1141 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1142}
1143
417b8d4a 1144static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1145{
1146 int overlap_clear = 0, i, disks = sh->disks;
1147 struct dma_async_tx_descriptor *tx = NULL;
d6f38f31 1148 raid5_conf_t *conf = sh->raid_conf;
ac6b53b6 1149 int level = conf->level;
d6f38f31
DW
1150 struct raid5_percpu *percpu;
1151 unsigned long cpu;
91c00924 1152
d6f38f31
DW
1153 cpu = get_cpu();
1154 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1155 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1156 ops_run_biofill(sh);
1157 overlap_clear++;
1158 }
1159
7b3a871e 1160 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1161 if (level < 6)
1162 tx = ops_run_compute5(sh, percpu);
1163 else {
1164 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1165 tx = ops_run_compute6_1(sh, percpu);
1166 else
1167 tx = ops_run_compute6_2(sh, percpu);
1168 }
1169 /* terminate the chain if reconstruct is not set to be run */
1170 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1171 async_tx_ack(tx);
1172 }
91c00924 1173
600aa109 1174 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1175 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1176
600aa109 1177 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1178 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1179 overlap_clear++;
1180 }
1181
ac6b53b6
DW
1182 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1183 if (level < 6)
1184 ops_run_reconstruct5(sh, percpu, tx);
1185 else
1186 ops_run_reconstruct6(sh, percpu, tx);
1187 }
91c00924 1188
ac6b53b6
DW
1189 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1190 if (sh->check_state == check_state_run)
1191 ops_run_check_p(sh, percpu);
1192 else if (sh->check_state == check_state_run_q)
1193 ops_run_check_pq(sh, percpu, 0);
1194 else if (sh->check_state == check_state_run_pq)
1195 ops_run_check_pq(sh, percpu, 1);
1196 else
1197 BUG();
1198 }
91c00924 1199
91c00924
DW
1200 if (overlap_clear)
1201 for (i = disks; i--; ) {
1202 struct r5dev *dev = &sh->dev[i];
1203 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1204 wake_up(&sh->raid_conf->wait_for_overlap);
1205 }
d6f38f31 1206 put_cpu();
91c00924
DW
1207}
1208
417b8d4a
DW
1209#ifdef CONFIG_MULTICORE_RAID456
1210static void async_run_ops(void *param, async_cookie_t cookie)
1211{
1212 struct stripe_head *sh = param;
1213 unsigned long ops_request = sh->ops.request;
1214
1215 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1216 wake_up(&sh->ops.wait_for_ops);
1217
1218 __raid_run_ops(sh, ops_request);
1219 release_stripe(sh);
1220}
1221
1222static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223{
1224 /* since handle_stripe can be called outside of raid5d context
1225 * we need to ensure sh->ops.request is de-staged before another
1226 * request arrives
1227 */
1228 wait_event(sh->ops.wait_for_ops,
1229 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1230 sh->ops.request = ops_request;
1231
1232 atomic_inc(&sh->count);
1233 async_schedule(async_run_ops, sh);
1234}
1235#else
1236#define raid_run_ops __raid_run_ops
1237#endif
1238
3f294f4f 1239static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1240{
1241 struct stripe_head *sh;
5e5e3e78 1242 int disks = max(conf->raid_disks, conf->previous_raid_disks);
3f294f4f
N
1243 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1244 if (!sh)
1245 return 0;
5e5e3e78 1246 memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
3f294f4f
N
1247 sh->raid_conf = conf;
1248 spin_lock_init(&sh->lock);
417b8d4a
DW
1249 #ifdef CONFIG_MULTICORE_RAID456
1250 init_waitqueue_head(&sh->ops.wait_for_ops);
1251 #endif
3f294f4f 1252
5e5e3e78
N
1253 if (grow_buffers(sh, disks)) {
1254 shrink_buffers(sh, disks);
3f294f4f
N
1255 kmem_cache_free(conf->slab_cache, sh);
1256 return 0;
1257 }
1258 /* we just created an active stripe so... */
1259 atomic_set(&sh->count, 1);
1260 atomic_inc(&conf->active_stripes);
1261 INIT_LIST_HEAD(&sh->lru);
1262 release_stripe(sh);
1263 return 1;
1264}
1265
1266static int grow_stripes(raid5_conf_t *conf, int num)
1267{
e18b890b 1268 struct kmem_cache *sc;
5e5e3e78 1269 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1270
245f46c2
N
1271 sprintf(conf->cache_name[0],
1272 "raid%d-%s", conf->level, mdname(conf->mddev));
1273 sprintf(conf->cache_name[1],
1274 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
ad01c9e3
N
1275 conf->active_name = 0;
1276 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1277 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1278 0, 0, NULL);
1da177e4
LT
1279 if (!sc)
1280 return 1;
1281 conf->slab_cache = sc;
ad01c9e3 1282 conf->pool_size = devs;
16a53ecc 1283 while (num--)
3f294f4f 1284 if (!grow_one_stripe(conf))
1da177e4 1285 return 1;
1da177e4
LT
1286 return 0;
1287}
29269553 1288
d6f38f31
DW
1289/**
1290 * scribble_len - return the required size of the scribble region
1291 * @num - total number of disks in the array
1292 *
1293 * The size must be enough to contain:
1294 * 1/ a struct page pointer for each device in the array +2
1295 * 2/ room to convert each entry in (1) to its corresponding dma
1296 * (dma_map_page()) or page (page_address()) address.
1297 *
1298 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1299 * calculate over all devices (not just the data blocks), using zeros in place
1300 * of the P and Q blocks.
1301 */
1302static size_t scribble_len(int num)
1303{
1304 size_t len;
1305
1306 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1307
1308 return len;
1309}
1310
ad01c9e3
N
1311static int resize_stripes(raid5_conf_t *conf, int newsize)
1312{
1313 /* Make all the stripes able to hold 'newsize' devices.
1314 * New slots in each stripe get 'page' set to a new page.
1315 *
1316 * This happens in stages:
1317 * 1/ create a new kmem_cache and allocate the required number of
1318 * stripe_heads.
1319 * 2/ gather all the old stripe_heads and tranfer the pages across
1320 * to the new stripe_heads. This will have the side effect of
1321 * freezing the array as once all stripe_heads have been collected,
1322 * no IO will be possible. Old stripe heads are freed once their
1323 * pages have been transferred over, and the old kmem_cache is
1324 * freed when all stripes are done.
1325 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1326 * we simple return a failre status - no need to clean anything up.
1327 * 4/ allocate new pages for the new slots in the new stripe_heads.
1328 * If this fails, we don't bother trying the shrink the
1329 * stripe_heads down again, we just leave them as they are.
1330 * As each stripe_head is processed the new one is released into
1331 * active service.
1332 *
1333 * Once step2 is started, we cannot afford to wait for a write,
1334 * so we use GFP_NOIO allocations.
1335 */
1336 struct stripe_head *osh, *nsh;
1337 LIST_HEAD(newstripes);
1338 struct disk_info *ndisks;
d6f38f31 1339 unsigned long cpu;
b5470dc5 1340 int err;
e18b890b 1341 struct kmem_cache *sc;
ad01c9e3
N
1342 int i;
1343
1344 if (newsize <= conf->pool_size)
1345 return 0; /* never bother to shrink */
1346
b5470dc5
DW
1347 err = md_allow_write(conf->mddev);
1348 if (err)
1349 return err;
2a2275d6 1350
ad01c9e3
N
1351 /* Step 1 */
1352 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1353 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1354 0, 0, NULL);
ad01c9e3
N
1355 if (!sc)
1356 return -ENOMEM;
1357
1358 for (i = conf->max_nr_stripes; i; i--) {
1359 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1360 if (!nsh)
1361 break;
1362
1363 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1364
1365 nsh->raid_conf = conf;
1366 spin_lock_init(&nsh->lock);
417b8d4a
DW
1367 #ifdef CONFIG_MULTICORE_RAID456
1368 init_waitqueue_head(&nsh->ops.wait_for_ops);
1369 #endif
ad01c9e3
N
1370
1371 list_add(&nsh->lru, &newstripes);
1372 }
1373 if (i) {
1374 /* didn't get enough, give up */
1375 while (!list_empty(&newstripes)) {
1376 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1377 list_del(&nsh->lru);
1378 kmem_cache_free(sc, nsh);
1379 }
1380 kmem_cache_destroy(sc);
1381 return -ENOMEM;
1382 }
1383 /* Step 2 - Must use GFP_NOIO now.
1384 * OK, we have enough stripes, start collecting inactive
1385 * stripes and copying them over
1386 */
1387 list_for_each_entry(nsh, &newstripes, lru) {
1388 spin_lock_irq(&conf->device_lock);
1389 wait_event_lock_irq(conf->wait_for_stripe,
1390 !list_empty(&conf->inactive_list),
1391 conf->device_lock,
b3b46be3 1392 unplug_slaves(conf->mddev)
ad01c9e3
N
1393 );
1394 osh = get_free_stripe(conf);
1395 spin_unlock_irq(&conf->device_lock);
1396 atomic_set(&nsh->count, 1);
1397 for(i=0; i<conf->pool_size; i++)
1398 nsh->dev[i].page = osh->dev[i].page;
1399 for( ; i<newsize; i++)
1400 nsh->dev[i].page = NULL;
1401 kmem_cache_free(conf->slab_cache, osh);
1402 }
1403 kmem_cache_destroy(conf->slab_cache);
1404
1405 /* Step 3.
1406 * At this point, we are holding all the stripes so the array
1407 * is completely stalled, so now is a good time to resize
d6f38f31 1408 * conf->disks and the scribble region
ad01c9e3
N
1409 */
1410 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1411 if (ndisks) {
1412 for (i=0; i<conf->raid_disks; i++)
1413 ndisks[i] = conf->disks[i];
1414 kfree(conf->disks);
1415 conf->disks = ndisks;
1416 } else
1417 err = -ENOMEM;
1418
d6f38f31
DW
1419 get_online_cpus();
1420 conf->scribble_len = scribble_len(newsize);
1421 for_each_present_cpu(cpu) {
1422 struct raid5_percpu *percpu;
1423 void *scribble;
1424
1425 percpu = per_cpu_ptr(conf->percpu, cpu);
1426 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1427
1428 if (scribble) {
1429 kfree(percpu->scribble);
1430 percpu->scribble = scribble;
1431 } else {
1432 err = -ENOMEM;
1433 break;
1434 }
1435 }
1436 put_online_cpus();
1437
ad01c9e3
N
1438 /* Step 4, return new stripes to service */
1439 while(!list_empty(&newstripes)) {
1440 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1441 list_del_init(&nsh->lru);
d6f38f31 1442
ad01c9e3
N
1443 for (i=conf->raid_disks; i < newsize; i++)
1444 if (nsh->dev[i].page == NULL) {
1445 struct page *p = alloc_page(GFP_NOIO);
1446 nsh->dev[i].page = p;
1447 if (!p)
1448 err = -ENOMEM;
1449 }
1450 release_stripe(nsh);
1451 }
1452 /* critical section pass, GFP_NOIO no longer needed */
1453
1454 conf->slab_cache = sc;
1455 conf->active_name = 1-conf->active_name;
1456 conf->pool_size = newsize;
1457 return err;
1458}
1da177e4 1459
3f294f4f 1460static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1461{
1462 struct stripe_head *sh;
1463
3f294f4f
N
1464 spin_lock_irq(&conf->device_lock);
1465 sh = get_free_stripe(conf);
1466 spin_unlock_irq(&conf->device_lock);
1467 if (!sh)
1468 return 0;
78bafebd 1469 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1470 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1471 kmem_cache_free(conf->slab_cache, sh);
1472 atomic_dec(&conf->active_stripes);
1473 return 1;
1474}
1475
1476static void shrink_stripes(raid5_conf_t *conf)
1477{
1478 while (drop_one_stripe(conf))
1479 ;
1480
29fc7e3e
N
1481 if (conf->slab_cache)
1482 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1483 conf->slab_cache = NULL;
1484}
1485
6712ecf8 1486static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1487{
99c0fb5f 1488 struct stripe_head *sh = bi->bi_private;
1da177e4 1489 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1490 int disks = sh->disks, i;
1da177e4 1491 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1492 char b[BDEVNAME_SIZE];
1493 mdk_rdev_t *rdev;
1da177e4 1494
1da177e4
LT
1495
1496 for (i=0 ; i<disks; i++)
1497 if (bi == &sh->dev[i].req)
1498 break;
1499
45b4233c
DW
1500 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1501 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1502 uptodate);
1503 if (i == disks) {
1504 BUG();
6712ecf8 1505 return;
1da177e4
LT
1506 }
1507
1508 if (uptodate) {
1da177e4 1509 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1510 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1511 rdev = conf->disks[i].rdev;
6be9d494
BS
1512 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1513 " (%lu sectors at %llu on %s)\n",
1514 mdname(conf->mddev), STRIPE_SECTORS,
1515 (unsigned long long)(sh->sector
1516 + rdev->data_offset),
1517 bdevname(rdev->bdev, b));
4e5314b5
N
1518 clear_bit(R5_ReadError, &sh->dev[i].flags);
1519 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1520 }
ba22dcbf
N
1521 if (atomic_read(&conf->disks[i].rdev->read_errors))
1522 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1523 } else {
d6950432 1524 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1525 int retry = 0;
d6950432
N
1526 rdev = conf->disks[i].rdev;
1527
1da177e4 1528 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1529 atomic_inc(&rdev->read_errors);
ba22dcbf 1530 if (conf->mddev->degraded)
6be9d494
BS
1531 printk_rl(KERN_WARNING
1532 "raid5:%s: read error not correctable "
1533 "(sector %llu on %s).\n",
1534 mdname(conf->mddev),
1535 (unsigned long long)(sh->sector
1536 + rdev->data_offset),
1537 bdn);
ba22dcbf 1538 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1539 /* Oh, no!!! */
6be9d494
BS
1540 printk_rl(KERN_WARNING
1541 "raid5:%s: read error NOT corrected!! "
1542 "(sector %llu on %s).\n",
1543 mdname(conf->mddev),
1544 (unsigned long long)(sh->sector
1545 + rdev->data_offset),
1546 bdn);
d6950432 1547 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1548 > conf->max_nr_stripes)
14f8d26b 1549 printk(KERN_WARNING
d6950432
N
1550 "raid5:%s: Too many read errors, failing device %s.\n",
1551 mdname(conf->mddev), bdn);
ba22dcbf
N
1552 else
1553 retry = 1;
1554 if (retry)
1555 set_bit(R5_ReadError, &sh->dev[i].flags);
1556 else {
4e5314b5
N
1557 clear_bit(R5_ReadError, &sh->dev[i].flags);
1558 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1559 md_error(conf->mddev, rdev);
ba22dcbf 1560 }
1da177e4
LT
1561 }
1562 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1563 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1564 set_bit(STRIPE_HANDLE, &sh->state);
1565 release_stripe(sh);
1da177e4
LT
1566}
1567
d710e138 1568static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1569{
99c0fb5f 1570 struct stripe_head *sh = bi->bi_private;
1da177e4 1571 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1572 int disks = sh->disks, i;
1da177e4
LT
1573 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1574
1da177e4
LT
1575 for (i=0 ; i<disks; i++)
1576 if (bi == &sh->dev[i].req)
1577 break;
1578
45b4233c 1579 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1580 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1581 uptodate);
1582 if (i == disks) {
1583 BUG();
6712ecf8 1584 return;
1da177e4
LT
1585 }
1586
1da177e4
LT
1587 if (!uptodate)
1588 md_error(conf->mddev, conf->disks[i].rdev);
1589
1590 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1591
1592 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1593 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1594 release_stripe(sh);
1da177e4
LT
1595}
1596
1597
784052ec 1598static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1599
784052ec 1600static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1601{
1602 struct r5dev *dev = &sh->dev[i];
1603
1604 bio_init(&dev->req);
1605 dev->req.bi_io_vec = &dev->vec;
1606 dev->req.bi_vcnt++;
1607 dev->req.bi_max_vecs++;
1608 dev->vec.bv_page = dev->page;
1609 dev->vec.bv_len = STRIPE_SIZE;
1610 dev->vec.bv_offset = 0;
1611
1612 dev->req.bi_sector = sh->sector;
1613 dev->req.bi_private = sh;
1614
1615 dev->flags = 0;
784052ec 1616 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1617}
1618
1619static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1620{
1621 char b[BDEVNAME_SIZE];
1622 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1623 pr_debug("raid5: error called\n");
1da177e4 1624
b2d444d7 1625 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1626 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1627 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1628 unsigned long flags;
1629 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1630 mddev->degraded++;
c04be0aa 1631 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1632 /*
1633 * if recovery was running, make sure it aborts.
1634 */
dfc70645 1635 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1636 }
b2d444d7 1637 set_bit(Faulty, &rdev->flags);
d710e138
N
1638 printk(KERN_ALERT
1639 "raid5: Disk failure on %s, disabling device.\n"
1640 "raid5: Operation continuing on %d devices.\n",
1641 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1642 }
16a53ecc 1643}
1da177e4
LT
1644
1645/*
1646 * Input: a 'big' sector number,
1647 * Output: index of the data and parity disk, and the sector # in them.
1648 */
112bf897 1649static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1650 int previous, int *dd_idx,
1651 struct stripe_head *sh)
1da177e4 1652{
35f2a591
N
1653 sector_t stripe;
1654 sector_t chunk_number;
1da177e4 1655 unsigned int chunk_offset;
911d4ee8 1656 int pd_idx, qd_idx;
67cc2b81 1657 int ddf_layout = 0;
1da177e4 1658 sector_t new_sector;
e183eaed
N
1659 int algorithm = previous ? conf->prev_algo
1660 : conf->algorithm;
09c9e5fa
AN
1661 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1662 : conf->chunk_sectors;
112bf897
N
1663 int raid_disks = previous ? conf->previous_raid_disks
1664 : conf->raid_disks;
1665 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1666
1667 /* First compute the information on this sector */
1668
1669 /*
1670 * Compute the chunk number and the sector offset inside the chunk
1671 */
1672 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1673 chunk_number = r_sector;
1da177e4
LT
1674
1675 /*
1676 * Compute the stripe number
1677 */
35f2a591
N
1678 stripe = chunk_number;
1679 *dd_idx = sector_div(stripe, data_disks);
1da177e4
LT
1680
1681 /*
1682 * Select the parity disk based on the user selected algorithm.
1683 */
911d4ee8 1684 pd_idx = qd_idx = ~0;
16a53ecc
N
1685 switch(conf->level) {
1686 case 4:
911d4ee8 1687 pd_idx = data_disks;
16a53ecc
N
1688 break;
1689 case 5:
e183eaed 1690 switch (algorithm) {
1da177e4 1691 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1692 pd_idx = data_disks - stripe % raid_disks;
1693 if (*dd_idx >= pd_idx)
1da177e4
LT
1694 (*dd_idx)++;
1695 break;
1696 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1697 pd_idx = stripe % raid_disks;
1698 if (*dd_idx >= pd_idx)
1da177e4
LT
1699 (*dd_idx)++;
1700 break;
1701 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1702 pd_idx = data_disks - stripe % raid_disks;
1703 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1704 break;
1705 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1706 pd_idx = stripe % raid_disks;
1707 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1708 break;
99c0fb5f
N
1709 case ALGORITHM_PARITY_0:
1710 pd_idx = 0;
1711 (*dd_idx)++;
1712 break;
1713 case ALGORITHM_PARITY_N:
1714 pd_idx = data_disks;
1715 break;
1da177e4 1716 default:
14f8d26b 1717 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1718 algorithm);
99c0fb5f 1719 BUG();
16a53ecc
N
1720 }
1721 break;
1722 case 6:
1723
e183eaed 1724 switch (algorithm) {
16a53ecc 1725 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1726 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1727 qd_idx = pd_idx + 1;
1728 if (pd_idx == raid_disks-1) {
99c0fb5f 1729 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1730 qd_idx = 0;
1731 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1732 (*dd_idx) += 2; /* D D P Q D */
1733 break;
1734 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1735 pd_idx = stripe % raid_disks;
1736 qd_idx = pd_idx + 1;
1737 if (pd_idx == raid_disks-1) {
99c0fb5f 1738 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1739 qd_idx = 0;
1740 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1741 (*dd_idx) += 2; /* D D P Q D */
1742 break;
1743 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1744 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1745 qd_idx = (pd_idx + 1) % raid_disks;
1746 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1747 break;
1748 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1749 pd_idx = stripe % raid_disks;
1750 qd_idx = (pd_idx + 1) % raid_disks;
1751 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1752 break;
99c0fb5f
N
1753
1754 case ALGORITHM_PARITY_0:
1755 pd_idx = 0;
1756 qd_idx = 1;
1757 (*dd_idx) += 2;
1758 break;
1759 case ALGORITHM_PARITY_N:
1760 pd_idx = data_disks;
1761 qd_idx = data_disks + 1;
1762 break;
1763
1764 case ALGORITHM_ROTATING_ZERO_RESTART:
1765 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1766 * of blocks for computing Q is different.
1767 */
1768 pd_idx = stripe % raid_disks;
1769 qd_idx = pd_idx + 1;
1770 if (pd_idx == raid_disks-1) {
1771 (*dd_idx)++; /* Q D D D P */
1772 qd_idx = 0;
1773 } else if (*dd_idx >= pd_idx)
1774 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1775 ddf_layout = 1;
99c0fb5f
N
1776 break;
1777
1778 case ALGORITHM_ROTATING_N_RESTART:
1779 /* Same a left_asymmetric, by first stripe is
1780 * D D D P Q rather than
1781 * Q D D D P
1782 */
1783 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1784 qd_idx = pd_idx + 1;
1785 if (pd_idx == raid_disks-1) {
1786 (*dd_idx)++; /* Q D D D P */
1787 qd_idx = 0;
1788 } else if (*dd_idx >= pd_idx)
1789 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1790 ddf_layout = 1;
99c0fb5f
N
1791 break;
1792
1793 case ALGORITHM_ROTATING_N_CONTINUE:
1794 /* Same as left_symmetric but Q is before P */
1795 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1796 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1797 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1798 ddf_layout = 1;
99c0fb5f
N
1799 break;
1800
1801 case ALGORITHM_LEFT_ASYMMETRIC_6:
1802 /* RAID5 left_asymmetric, with Q on last device */
1803 pd_idx = data_disks - stripe % (raid_disks-1);
1804 if (*dd_idx >= pd_idx)
1805 (*dd_idx)++;
1806 qd_idx = raid_disks - 1;
1807 break;
1808
1809 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1810 pd_idx = stripe % (raid_disks-1);
1811 if (*dd_idx >= pd_idx)
1812 (*dd_idx)++;
1813 qd_idx = raid_disks - 1;
1814 break;
1815
1816 case ALGORITHM_LEFT_SYMMETRIC_6:
1817 pd_idx = data_disks - stripe % (raid_disks-1);
1818 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1819 qd_idx = raid_disks - 1;
1820 break;
1821
1822 case ALGORITHM_RIGHT_SYMMETRIC_6:
1823 pd_idx = stripe % (raid_disks-1);
1824 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1825 qd_idx = raid_disks - 1;
1826 break;
1827
1828 case ALGORITHM_PARITY_0_6:
1829 pd_idx = 0;
1830 (*dd_idx)++;
1831 qd_idx = raid_disks - 1;
1832 break;
1833
1834
16a53ecc 1835 default:
d710e138 1836 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1837 algorithm);
99c0fb5f 1838 BUG();
16a53ecc
N
1839 }
1840 break;
1da177e4
LT
1841 }
1842
911d4ee8
N
1843 if (sh) {
1844 sh->pd_idx = pd_idx;
1845 sh->qd_idx = qd_idx;
67cc2b81 1846 sh->ddf_layout = ddf_layout;
911d4ee8 1847 }
1da177e4
LT
1848 /*
1849 * Finally, compute the new sector number
1850 */
1851 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1852 return new_sector;
1853}
1854
1855
784052ec 1856static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1857{
1858 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1859 int raid_disks = sh->disks;
1860 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1861 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
1862 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1863 : conf->chunk_sectors;
e183eaed
N
1864 int algorithm = previous ? conf->prev_algo
1865 : conf->algorithm;
1da177e4
LT
1866 sector_t stripe;
1867 int chunk_offset;
35f2a591
N
1868 sector_t chunk_number;
1869 int dummy1, dd_idx = i;
1da177e4 1870 sector_t r_sector;
911d4ee8 1871 struct stripe_head sh2;
1da177e4 1872
16a53ecc 1873
1da177e4
LT
1874 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1875 stripe = new_sector;
1da177e4 1876
16a53ecc
N
1877 if (i == sh->pd_idx)
1878 return 0;
1879 switch(conf->level) {
1880 case 4: break;
1881 case 5:
e183eaed 1882 switch (algorithm) {
1da177e4
LT
1883 case ALGORITHM_LEFT_ASYMMETRIC:
1884 case ALGORITHM_RIGHT_ASYMMETRIC:
1885 if (i > sh->pd_idx)
1886 i--;
1887 break;
1888 case ALGORITHM_LEFT_SYMMETRIC:
1889 case ALGORITHM_RIGHT_SYMMETRIC:
1890 if (i < sh->pd_idx)
1891 i += raid_disks;
1892 i -= (sh->pd_idx + 1);
1893 break;
99c0fb5f
N
1894 case ALGORITHM_PARITY_0:
1895 i -= 1;
1896 break;
1897 case ALGORITHM_PARITY_N:
1898 break;
1da177e4 1899 default:
14f8d26b 1900 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1901 algorithm);
99c0fb5f 1902 BUG();
16a53ecc
N
1903 }
1904 break;
1905 case 6:
d0dabf7e 1906 if (i == sh->qd_idx)
16a53ecc 1907 return 0; /* It is the Q disk */
e183eaed 1908 switch (algorithm) {
16a53ecc
N
1909 case ALGORITHM_LEFT_ASYMMETRIC:
1910 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1911 case ALGORITHM_ROTATING_ZERO_RESTART:
1912 case ALGORITHM_ROTATING_N_RESTART:
1913 if (sh->pd_idx == raid_disks-1)
1914 i--; /* Q D D D P */
16a53ecc
N
1915 else if (i > sh->pd_idx)
1916 i -= 2; /* D D P Q D */
1917 break;
1918 case ALGORITHM_LEFT_SYMMETRIC:
1919 case ALGORITHM_RIGHT_SYMMETRIC:
1920 if (sh->pd_idx == raid_disks-1)
1921 i--; /* Q D D D P */
1922 else {
1923 /* D D P Q D */
1924 if (i < sh->pd_idx)
1925 i += raid_disks;
1926 i -= (sh->pd_idx + 2);
1927 }
1928 break;
99c0fb5f
N
1929 case ALGORITHM_PARITY_0:
1930 i -= 2;
1931 break;
1932 case ALGORITHM_PARITY_N:
1933 break;
1934 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 1935 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
1936 if (sh->pd_idx == 0)
1937 i--; /* P D D D Q */
e4424fee
N
1938 else {
1939 /* D D Q P D */
1940 if (i < sh->pd_idx)
1941 i += raid_disks;
1942 i -= (sh->pd_idx + 1);
1943 }
99c0fb5f
N
1944 break;
1945 case ALGORITHM_LEFT_ASYMMETRIC_6:
1946 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1947 if (i > sh->pd_idx)
1948 i--;
1949 break;
1950 case ALGORITHM_LEFT_SYMMETRIC_6:
1951 case ALGORITHM_RIGHT_SYMMETRIC_6:
1952 if (i < sh->pd_idx)
1953 i += data_disks + 1;
1954 i -= (sh->pd_idx + 1);
1955 break;
1956 case ALGORITHM_PARITY_0_6:
1957 i -= 1;
1958 break;
16a53ecc 1959 default:
d710e138 1960 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1961 algorithm);
99c0fb5f 1962 BUG();
16a53ecc
N
1963 }
1964 break;
1da177e4
LT
1965 }
1966
1967 chunk_number = stripe * data_disks + i;
35f2a591 1968 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 1969
112bf897 1970 check = raid5_compute_sector(conf, r_sector,
784052ec 1971 previous, &dummy1, &sh2);
911d4ee8
N
1972 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1973 || sh2.qd_idx != sh->qd_idx) {
14f8d26b 1974 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1975 return 0;
1976 }
1977 return r_sector;
1978}
1979
1980
600aa109 1981static void
c0f7bddb 1982schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 1983 int rcw, int expand)
e33129d8
DW
1984{
1985 int i, pd_idx = sh->pd_idx, disks = sh->disks;
c0f7bddb
YT
1986 raid5_conf_t *conf = sh->raid_conf;
1987 int level = conf->level;
e33129d8
DW
1988
1989 if (rcw) {
1990 /* if we are not expanding this is a proper write request, and
1991 * there will be bios with new data to be drained into the
1992 * stripe cache
1993 */
1994 if (!expand) {
600aa109
DW
1995 sh->reconstruct_state = reconstruct_state_drain_run;
1996 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1997 } else
1998 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 1999
ac6b53b6 2000 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2001
2002 for (i = disks; i--; ) {
2003 struct r5dev *dev = &sh->dev[i];
2004
2005 if (dev->towrite) {
2006 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2007 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2008 if (!expand)
2009 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2010 s->locked++;
e33129d8
DW
2011 }
2012 }
c0f7bddb 2013 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2014 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2015 atomic_inc(&conf->pending_full_writes);
e33129d8 2016 } else {
c0f7bddb 2017 BUG_ON(level == 6);
e33129d8
DW
2018 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2019 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2020
d8ee0728 2021 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2022 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2023 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2024 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2025
2026 for (i = disks; i--; ) {
2027 struct r5dev *dev = &sh->dev[i];
2028 if (i == pd_idx)
2029 continue;
2030
e33129d8
DW
2031 if (dev->towrite &&
2032 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2033 test_bit(R5_Wantcompute, &dev->flags))) {
2034 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2035 set_bit(R5_LOCKED, &dev->flags);
2036 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2037 s->locked++;
e33129d8
DW
2038 }
2039 }
2040 }
2041
c0f7bddb 2042 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2043 * are in flight
2044 */
2045 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2046 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2047 s->locked++;
e33129d8 2048
c0f7bddb
YT
2049 if (level == 6) {
2050 int qd_idx = sh->qd_idx;
2051 struct r5dev *dev = &sh->dev[qd_idx];
2052
2053 set_bit(R5_LOCKED, &dev->flags);
2054 clear_bit(R5_UPTODATE, &dev->flags);
2055 s->locked++;
2056 }
2057
600aa109 2058 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2059 __func__, (unsigned long long)sh->sector,
600aa109 2060 s->locked, s->ops_request);
e33129d8 2061}
16a53ecc 2062
1da177e4
LT
2063/*
2064 * Each stripe/dev can have one or more bion attached.
16a53ecc 2065 * toread/towrite point to the first in a chain.
1da177e4
LT
2066 * The bi_next chain must be in order.
2067 */
2068static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2069{
2070 struct bio **bip;
2071 raid5_conf_t *conf = sh->raid_conf;
72626685 2072 int firstwrite=0;
1da177e4 2073
45b4233c 2074 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
2075 (unsigned long long)bi->bi_sector,
2076 (unsigned long long)sh->sector);
2077
2078
2079 spin_lock(&sh->lock);
2080 spin_lock_irq(&conf->device_lock);
72626685 2081 if (forwrite) {
1da177e4 2082 bip = &sh->dev[dd_idx].towrite;
72626685
N
2083 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2084 firstwrite = 1;
2085 } else
1da177e4
LT
2086 bip = &sh->dev[dd_idx].toread;
2087 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2088 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2089 goto overlap;
2090 bip = & (*bip)->bi_next;
2091 }
2092 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2093 goto overlap;
2094
78bafebd 2095 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2096 if (*bip)
2097 bi->bi_next = *bip;
2098 *bip = bi;
960e739d 2099 bi->bi_phys_segments++;
1da177e4
LT
2100 spin_unlock_irq(&conf->device_lock);
2101 spin_unlock(&sh->lock);
2102
45b4233c 2103 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
2104 (unsigned long long)bi->bi_sector,
2105 (unsigned long long)sh->sector, dd_idx);
2106
72626685 2107 if (conf->mddev->bitmap && firstwrite) {
72626685
N
2108 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2109 STRIPE_SECTORS, 0);
ae3c20cc 2110 sh->bm_seq = conf->seq_flush+1;
72626685
N
2111 set_bit(STRIPE_BIT_DELAY, &sh->state);
2112 }
2113
1da177e4
LT
2114 if (forwrite) {
2115 /* check if page is covered */
2116 sector_t sector = sh->dev[dd_idx].sector;
2117 for (bi=sh->dev[dd_idx].towrite;
2118 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2119 bi && bi->bi_sector <= sector;
2120 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2121 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2122 sector = bi->bi_sector + (bi->bi_size>>9);
2123 }
2124 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2125 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2126 }
2127 return 1;
2128
2129 overlap:
2130 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2131 spin_unlock_irq(&conf->device_lock);
2132 spin_unlock(&sh->lock);
2133 return 0;
2134}
2135
29269553
N
2136static void end_reshape(raid5_conf_t *conf);
2137
911d4ee8
N
2138static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2139 struct stripe_head *sh)
ccfcc3c1 2140{
784052ec 2141 int sectors_per_chunk =
09c9e5fa 2142 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2143 int dd_idx;
2d2063ce 2144 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2145 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2146
112bf897
N
2147 raid5_compute_sector(conf,
2148 stripe * (disks - conf->max_degraded)
b875e531 2149 *sectors_per_chunk + chunk_offset,
112bf897 2150 previous,
911d4ee8 2151 &dd_idx, sh);
ccfcc3c1
N
2152}
2153
a4456856 2154static void
1fe797e6 2155handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2156 struct stripe_head_state *s, int disks,
2157 struct bio **return_bi)
2158{
2159 int i;
2160 for (i = disks; i--; ) {
2161 struct bio *bi;
2162 int bitmap_end = 0;
2163
2164 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2165 mdk_rdev_t *rdev;
2166 rcu_read_lock();
2167 rdev = rcu_dereference(conf->disks[i].rdev);
2168 if (rdev && test_bit(In_sync, &rdev->flags))
2169 /* multiple read failures in one stripe */
2170 md_error(conf->mddev, rdev);
2171 rcu_read_unlock();
2172 }
2173 spin_lock_irq(&conf->device_lock);
2174 /* fail all writes first */
2175 bi = sh->dev[i].towrite;
2176 sh->dev[i].towrite = NULL;
2177 if (bi) {
2178 s->to_write--;
2179 bitmap_end = 1;
2180 }
2181
2182 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2183 wake_up(&conf->wait_for_overlap);
2184
2185 while (bi && bi->bi_sector <
2186 sh->dev[i].sector + STRIPE_SECTORS) {
2187 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2188 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2189 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2190 md_write_end(conf->mddev);
2191 bi->bi_next = *return_bi;
2192 *return_bi = bi;
2193 }
2194 bi = nextbi;
2195 }
2196 /* and fail all 'written' */
2197 bi = sh->dev[i].written;
2198 sh->dev[i].written = NULL;
2199 if (bi) bitmap_end = 1;
2200 while (bi && bi->bi_sector <
2201 sh->dev[i].sector + STRIPE_SECTORS) {
2202 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2203 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2204 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2205 md_write_end(conf->mddev);
2206 bi->bi_next = *return_bi;
2207 *return_bi = bi;
2208 }
2209 bi = bi2;
2210 }
2211
b5e98d65
DW
2212 /* fail any reads if this device is non-operational and
2213 * the data has not reached the cache yet.
2214 */
2215 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2216 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2217 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2218 bi = sh->dev[i].toread;
2219 sh->dev[i].toread = NULL;
2220 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2221 wake_up(&conf->wait_for_overlap);
2222 if (bi) s->to_read--;
2223 while (bi && bi->bi_sector <
2224 sh->dev[i].sector + STRIPE_SECTORS) {
2225 struct bio *nextbi =
2226 r5_next_bio(bi, sh->dev[i].sector);
2227 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2228 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2229 bi->bi_next = *return_bi;
2230 *return_bi = bi;
2231 }
2232 bi = nextbi;
2233 }
2234 }
2235 spin_unlock_irq(&conf->device_lock);
2236 if (bitmap_end)
2237 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2238 STRIPE_SECTORS, 0, 0);
2239 }
2240
8b3e6cdc
DW
2241 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2242 if (atomic_dec_and_test(&conf->pending_full_writes))
2243 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2244}
2245
1fe797e6
DW
2246/* fetch_block5 - checks the given member device to see if its data needs
2247 * to be read or computed to satisfy a request.
2248 *
2249 * Returns 1 when no more member devices need to be checked, otherwise returns
2250 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2251 */
1fe797e6
DW
2252static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2253 int disk_idx, int disks)
f38e1219
DW
2254{
2255 struct r5dev *dev = &sh->dev[disk_idx];
2256 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2257
f38e1219
DW
2258 /* is the data in this block needed, and can we get it? */
2259 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2260 !test_bit(R5_UPTODATE, &dev->flags) &&
2261 (dev->toread ||
2262 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2263 s->syncing || s->expanding ||
2264 (s->failed &&
2265 (failed_dev->toread ||
2266 (failed_dev->towrite &&
2267 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2268 /* We would like to get this block, possibly by computing it,
2269 * otherwise read it if the backing disk is insync
f38e1219
DW
2270 */
2271 if ((s->uptodate == disks - 1) &&
ecc65c9b 2272 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2273 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2274 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2275 set_bit(R5_Wantcompute, &dev->flags);
2276 sh->ops.target = disk_idx;
ac6b53b6 2277 sh->ops.target2 = -1;
f38e1219 2278 s->req_compute = 1;
f38e1219 2279 /* Careful: from this point on 'uptodate' is in the eye
ac6b53b6 2280 * of raid_run_ops which services 'compute' operations
f38e1219
DW
2281 * before writes. R5_Wantcompute flags a block that will
2282 * be R5_UPTODATE by the time it is needed for a
2283 * subsequent operation.
2284 */
2285 s->uptodate++;
1fe797e6 2286 return 1; /* uptodate + compute == disks */
7a1fc53c 2287 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2288 set_bit(R5_LOCKED, &dev->flags);
2289 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2290 s->locked++;
2291 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2292 s->syncing);
2293 }
2294 }
2295
1fe797e6 2296 return 0;
f38e1219
DW
2297}
2298
1fe797e6
DW
2299/**
2300 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2301 */
2302static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2303 struct stripe_head_state *s, int disks)
2304{
2305 int i;
f38e1219 2306
f38e1219
DW
2307 /* look for blocks to read/compute, skip this if a compute
2308 * is already in flight, or if the stripe contents are in the
2309 * midst of changing due to a write
2310 */
976ea8d4 2311 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2312 !sh->reconstruct_state)
f38e1219 2313 for (i = disks; i--; )
1fe797e6 2314 if (fetch_block5(sh, s, i, disks))
f38e1219 2315 break;
a4456856
DW
2316 set_bit(STRIPE_HANDLE, &sh->state);
2317}
2318
5599becc
YT
2319/* fetch_block6 - checks the given member device to see if its data needs
2320 * to be read or computed to satisfy a request.
2321 *
2322 * Returns 1 when no more member devices need to be checked, otherwise returns
2323 * 0 to tell the loop in handle_stripe_fill6 to continue
2324 */
2325static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2326 struct r6_state *r6s, int disk_idx, int disks)
a4456856 2327{
5599becc
YT
2328 struct r5dev *dev = &sh->dev[disk_idx];
2329 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2330 &sh->dev[r6s->failed_num[1]] };
2331
2332 if (!test_bit(R5_LOCKED, &dev->flags) &&
2333 !test_bit(R5_UPTODATE, &dev->flags) &&
2334 (dev->toread ||
2335 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2336 s->syncing || s->expanding ||
2337 (s->failed >= 1 &&
2338 (fdev[0]->toread || s->to_write)) ||
2339 (s->failed >= 2 &&
2340 (fdev[1]->toread || s->to_write)))) {
2341 /* we would like to get this block, possibly by computing it,
2342 * otherwise read it if the backing disk is insync
2343 */
2344 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2345 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2346 if ((s->uptodate == disks - 1) &&
2347 (s->failed && (disk_idx == r6s->failed_num[0] ||
2348 disk_idx == r6s->failed_num[1]))) {
2349 /* have disk failed, and we're requested to fetch it;
2350 * do compute it
a4456856 2351 */
5599becc
YT
2352 pr_debug("Computing stripe %llu block %d\n",
2353 (unsigned long long)sh->sector, disk_idx);
2354 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2355 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2356 set_bit(R5_Wantcompute, &dev->flags);
2357 sh->ops.target = disk_idx;
2358 sh->ops.target2 = -1; /* no 2nd target */
2359 s->req_compute = 1;
2360 s->uptodate++;
2361 return 1;
2362 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2363 /* Computing 2-failure is *very* expensive; only
2364 * do it if failed >= 2
2365 */
2366 int other;
2367 for (other = disks; other--; ) {
2368 if (other == disk_idx)
2369 continue;
2370 if (!test_bit(R5_UPTODATE,
2371 &sh->dev[other].flags))
2372 break;
a4456856 2373 }
5599becc
YT
2374 BUG_ON(other < 0);
2375 pr_debug("Computing stripe %llu blocks %d,%d\n",
2376 (unsigned long long)sh->sector,
2377 disk_idx, other);
2378 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2379 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2380 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2381 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2382 sh->ops.target = disk_idx;
2383 sh->ops.target2 = other;
2384 s->uptodate += 2;
2385 s->req_compute = 1;
2386 return 1;
2387 } else if (test_bit(R5_Insync, &dev->flags)) {
2388 set_bit(R5_LOCKED, &dev->flags);
2389 set_bit(R5_Wantread, &dev->flags);
2390 s->locked++;
2391 pr_debug("Reading block %d (sync=%d)\n",
2392 disk_idx, s->syncing);
a4456856
DW
2393 }
2394 }
5599becc
YT
2395
2396 return 0;
2397}
2398
2399/**
2400 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2401 */
2402static void handle_stripe_fill6(struct stripe_head *sh,
2403 struct stripe_head_state *s, struct r6_state *r6s,
2404 int disks)
2405{
2406 int i;
2407
2408 /* look for blocks to read/compute, skip this if a compute
2409 * is already in flight, or if the stripe contents are in the
2410 * midst of changing due to a write
2411 */
2412 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2413 !sh->reconstruct_state)
2414 for (i = disks; i--; )
2415 if (fetch_block6(sh, s, r6s, i, disks))
2416 break;
a4456856
DW
2417 set_bit(STRIPE_HANDLE, &sh->state);
2418}
2419
2420
1fe797e6 2421/* handle_stripe_clean_event
a4456856
DW
2422 * any written block on an uptodate or failed drive can be returned.
2423 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2424 * never LOCKED, so we don't need to test 'failed' directly.
2425 */
1fe797e6 2426static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2427 struct stripe_head *sh, int disks, struct bio **return_bi)
2428{
2429 int i;
2430 struct r5dev *dev;
2431
2432 for (i = disks; i--; )
2433 if (sh->dev[i].written) {
2434 dev = &sh->dev[i];
2435 if (!test_bit(R5_LOCKED, &dev->flags) &&
2436 test_bit(R5_UPTODATE, &dev->flags)) {
2437 /* We can return any write requests */
2438 struct bio *wbi, *wbi2;
2439 int bitmap_end = 0;
45b4233c 2440 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2441 spin_lock_irq(&conf->device_lock);
2442 wbi = dev->written;
2443 dev->written = NULL;
2444 while (wbi && wbi->bi_sector <
2445 dev->sector + STRIPE_SECTORS) {
2446 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2447 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2448 md_write_end(conf->mddev);
2449 wbi->bi_next = *return_bi;
2450 *return_bi = wbi;
2451 }
2452 wbi = wbi2;
2453 }
2454 if (dev->towrite == NULL)
2455 bitmap_end = 1;
2456 spin_unlock_irq(&conf->device_lock);
2457 if (bitmap_end)
2458 bitmap_endwrite(conf->mddev->bitmap,
2459 sh->sector,
2460 STRIPE_SECTORS,
2461 !test_bit(STRIPE_DEGRADED, &sh->state),
2462 0);
2463 }
2464 }
8b3e6cdc
DW
2465
2466 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467 if (atomic_dec_and_test(&conf->pending_full_writes))
2468 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2469}
2470
1fe797e6 2471static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2472 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2473{
2474 int rmw = 0, rcw = 0, i;
2475 for (i = disks; i--; ) {
2476 /* would I have to read this buffer for read_modify_write */
2477 struct r5dev *dev = &sh->dev[i];
2478 if ((dev->towrite || i == sh->pd_idx) &&
2479 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2480 !(test_bit(R5_UPTODATE, &dev->flags) ||
2481 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2482 if (test_bit(R5_Insync, &dev->flags))
2483 rmw++;
2484 else
2485 rmw += 2*disks; /* cannot read it */
2486 }
2487 /* Would I have to read this buffer for reconstruct_write */
2488 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2489 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2490 !(test_bit(R5_UPTODATE, &dev->flags) ||
2491 test_bit(R5_Wantcompute, &dev->flags))) {
2492 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2493 else
2494 rcw += 2*disks;
2495 }
2496 }
45b4233c 2497 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2498 (unsigned long long)sh->sector, rmw, rcw);
2499 set_bit(STRIPE_HANDLE, &sh->state);
2500 if (rmw < rcw && rmw > 0)
2501 /* prefer read-modify-write, but need to get some data */
2502 for (i = disks; i--; ) {
2503 struct r5dev *dev = &sh->dev[i];
2504 if ((dev->towrite || i == sh->pd_idx) &&
2505 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2506 !(test_bit(R5_UPTODATE, &dev->flags) ||
2507 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2508 test_bit(R5_Insync, &dev->flags)) {
2509 if (
2510 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2511 pr_debug("Read_old block "
a4456856
DW
2512 "%d for r-m-w\n", i);
2513 set_bit(R5_LOCKED, &dev->flags);
2514 set_bit(R5_Wantread, &dev->flags);
2515 s->locked++;
2516 } else {
2517 set_bit(STRIPE_DELAYED, &sh->state);
2518 set_bit(STRIPE_HANDLE, &sh->state);
2519 }
2520 }
2521 }
2522 if (rcw <= rmw && rcw > 0)
2523 /* want reconstruct write, but need to get some data */
2524 for (i = disks; i--; ) {
2525 struct r5dev *dev = &sh->dev[i];
2526 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2527 i != sh->pd_idx &&
2528 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2529 !(test_bit(R5_UPTODATE, &dev->flags) ||
2530 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2531 test_bit(R5_Insync, &dev->flags)) {
2532 if (
2533 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2534 pr_debug("Read_old block "
a4456856
DW
2535 "%d for Reconstruct\n", i);
2536 set_bit(R5_LOCKED, &dev->flags);
2537 set_bit(R5_Wantread, &dev->flags);
2538 s->locked++;
2539 } else {
2540 set_bit(STRIPE_DELAYED, &sh->state);
2541 set_bit(STRIPE_HANDLE, &sh->state);
2542 }
2543 }
2544 }
2545 /* now if nothing is locked, and if we have enough data,
2546 * we can start a write request
2547 */
f38e1219
DW
2548 /* since handle_stripe can be called at any time we need to handle the
2549 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2550 * subsequent call wants to start a write request. raid_run_ops only
2551 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2552 * simultaneously. If this is not the case then new writes need to be
2553 * held off until the compute completes.
2554 */
976ea8d4
DW
2555 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2556 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2557 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2558 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2559}
2560
1fe797e6 2561static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2562 struct stripe_head *sh, struct stripe_head_state *s,
2563 struct r6_state *r6s, int disks)
2564{
a9b39a74 2565 int rcw = 0, pd_idx = sh->pd_idx, i;
34e04e87 2566 int qd_idx = sh->qd_idx;
a9b39a74
YT
2567
2568 set_bit(STRIPE_HANDLE, &sh->state);
a4456856
DW
2569 for (i = disks; i--; ) {
2570 struct r5dev *dev = &sh->dev[i];
a9b39a74
YT
2571 /* check if we haven't enough data */
2572 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2573 i != pd_idx && i != qd_idx &&
2574 !test_bit(R5_LOCKED, &dev->flags) &&
2575 !(test_bit(R5_UPTODATE, &dev->flags) ||
2576 test_bit(R5_Wantcompute, &dev->flags))) {
2577 rcw++;
2578 if (!test_bit(R5_Insync, &dev->flags))
2579 continue; /* it's a failed drive */
2580
2581 if (
2582 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583 pr_debug("Read_old stripe %llu "
2584 "block %d for Reconstruct\n",
2585 (unsigned long long)sh->sector, i);
2586 set_bit(R5_LOCKED, &dev->flags);
2587 set_bit(R5_Wantread, &dev->flags);
2588 s->locked++;
2589 } else {
2590 pr_debug("Request delayed stripe %llu "
2591 "block %d for Reconstruct\n",
2592 (unsigned long long)sh->sector, i);
2593 set_bit(STRIPE_DELAYED, &sh->state);
2594 set_bit(STRIPE_HANDLE, &sh->state);
a4456856
DW
2595 }
2596 }
2597 }
a4456856
DW
2598 /* now if nothing is locked, and if we have enough data, we can start a
2599 * write request
2600 */
a9b39a74
YT
2601 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2602 s->locked == 0 && rcw == 0 &&
a4456856 2603 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
a9b39a74 2604 schedule_reconstruction(sh, s, 1, 0);
a4456856
DW
2605 }
2606}
2607
2608static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2609 struct stripe_head_state *s, int disks)
2610{
ecc65c9b 2611 struct r5dev *dev = NULL;
bd2ab670 2612
a4456856 2613 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2614
ecc65c9b
DW
2615 switch (sh->check_state) {
2616 case check_state_idle:
2617 /* start a new check operation if there are no failures */
bd2ab670 2618 if (s->failed == 0) {
bd2ab670 2619 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2620 sh->check_state = check_state_run;
2621 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2622 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2623 s->uptodate--;
ecc65c9b 2624 break;
bd2ab670 2625 }
ecc65c9b
DW
2626 dev = &sh->dev[s->failed_num];
2627 /* fall through */
2628 case check_state_compute_result:
2629 sh->check_state = check_state_idle;
2630 if (!dev)
2631 dev = &sh->dev[sh->pd_idx];
2632
2633 /* check that a write has not made the stripe insync */
2634 if (test_bit(STRIPE_INSYNC, &sh->state))
2635 break;
c8894419 2636
a4456856 2637 /* either failed parity check, or recovery is happening */
a4456856
DW
2638 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2639 BUG_ON(s->uptodate != disks);
2640
2641 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2642 s->locked++;
a4456856 2643 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2644
a4456856 2645 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2646 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2647 break;
2648 case check_state_run:
2649 break; /* we will be called again upon completion */
2650 case check_state_check_result:
2651 sh->check_state = check_state_idle;
2652
2653 /* if a failure occurred during the check operation, leave
2654 * STRIPE_INSYNC not set and let the stripe be handled again
2655 */
2656 if (s->failed)
2657 break;
2658
2659 /* handle a successful check operation, if parity is correct
2660 * we are done. Otherwise update the mismatch count and repair
2661 * parity if !MD_RECOVERY_CHECK
2662 */
ad283ea4 2663 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2664 /* parity is correct (on disc,
2665 * not in buffer any more)
2666 */
2667 set_bit(STRIPE_INSYNC, &sh->state);
2668 else {
2669 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2670 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2671 /* don't try to repair!! */
2672 set_bit(STRIPE_INSYNC, &sh->state);
2673 else {
2674 sh->check_state = check_state_compute_run;
976ea8d4 2675 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2676 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2677 set_bit(R5_Wantcompute,
2678 &sh->dev[sh->pd_idx].flags);
2679 sh->ops.target = sh->pd_idx;
ac6b53b6 2680 sh->ops.target2 = -1;
ecc65c9b
DW
2681 s->uptodate++;
2682 }
2683 }
2684 break;
2685 case check_state_compute_run:
2686 break;
2687 default:
2688 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2689 __func__, sh->check_state,
2690 (unsigned long long) sh->sector);
2691 BUG();
a4456856
DW
2692 }
2693}
2694
2695
2696static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
36d1c647
DW
2697 struct stripe_head_state *s,
2698 struct r6_state *r6s, int disks)
a4456856 2699{
a4456856 2700 int pd_idx = sh->pd_idx;
34e04e87 2701 int qd_idx = sh->qd_idx;
d82dfee0 2702 struct r5dev *dev;
a4456856
DW
2703
2704 set_bit(STRIPE_HANDLE, &sh->state);
2705
2706 BUG_ON(s->failed > 2);
d82dfee0 2707
a4456856
DW
2708 /* Want to check and possibly repair P and Q.
2709 * However there could be one 'failed' device, in which
2710 * case we can only check one of them, possibly using the
2711 * other to generate missing data
2712 */
2713
d82dfee0
DW
2714 switch (sh->check_state) {
2715 case check_state_idle:
2716 /* start a new check operation if there are < 2 failures */
a4456856 2717 if (s->failed == r6s->q_failed) {
d82dfee0 2718 /* The only possible failed device holds Q, so it
a4456856
DW
2719 * makes sense to check P (If anything else were failed,
2720 * we would have used P to recreate it).
2721 */
d82dfee0 2722 sh->check_state = check_state_run;
a4456856
DW
2723 }
2724 if (!r6s->q_failed && s->failed < 2) {
d82dfee0 2725 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2726 * anything, so it makes sense to check it
2727 */
d82dfee0
DW
2728 if (sh->check_state == check_state_run)
2729 sh->check_state = check_state_run_pq;
2730 else
2731 sh->check_state = check_state_run_q;
a4456856 2732 }
a4456856 2733
d82dfee0
DW
2734 /* discard potentially stale zero_sum_result */
2735 sh->ops.zero_sum_result = 0;
a4456856 2736
d82dfee0
DW
2737 if (sh->check_state == check_state_run) {
2738 /* async_xor_zero_sum destroys the contents of P */
2739 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2740 s->uptodate--;
a4456856 2741 }
d82dfee0
DW
2742 if (sh->check_state >= check_state_run &&
2743 sh->check_state <= check_state_run_pq) {
2744 /* async_syndrome_zero_sum preserves P and Q, so
2745 * no need to mark them !uptodate here
2746 */
2747 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2748 break;
a4456856
DW
2749 }
2750
d82dfee0
DW
2751 /* we have 2-disk failure */
2752 BUG_ON(s->failed != 2);
2753 /* fall through */
2754 case check_state_compute_result:
2755 sh->check_state = check_state_idle;
a4456856 2756
d82dfee0
DW
2757 /* check that a write has not made the stripe insync */
2758 if (test_bit(STRIPE_INSYNC, &sh->state))
2759 break;
a4456856
DW
2760
2761 /* now write out any block on a failed drive,
d82dfee0 2762 * or P or Q if they were recomputed
a4456856 2763 */
d82dfee0 2764 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856
DW
2765 if (s->failed == 2) {
2766 dev = &sh->dev[r6s->failed_num[1]];
2767 s->locked++;
2768 set_bit(R5_LOCKED, &dev->flags);
2769 set_bit(R5_Wantwrite, &dev->flags);
2770 }
2771 if (s->failed >= 1) {
2772 dev = &sh->dev[r6s->failed_num[0]];
2773 s->locked++;
2774 set_bit(R5_LOCKED, &dev->flags);
2775 set_bit(R5_Wantwrite, &dev->flags);
2776 }
d82dfee0 2777 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2778 dev = &sh->dev[pd_idx];
2779 s->locked++;
2780 set_bit(R5_LOCKED, &dev->flags);
2781 set_bit(R5_Wantwrite, &dev->flags);
2782 }
d82dfee0 2783 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2784 dev = &sh->dev[qd_idx];
2785 s->locked++;
2786 set_bit(R5_LOCKED, &dev->flags);
2787 set_bit(R5_Wantwrite, &dev->flags);
2788 }
2789 clear_bit(STRIPE_DEGRADED, &sh->state);
2790
2791 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2792 break;
2793 case check_state_run:
2794 case check_state_run_q:
2795 case check_state_run_pq:
2796 break; /* we will be called again upon completion */
2797 case check_state_check_result:
2798 sh->check_state = check_state_idle;
2799
2800 /* handle a successful check operation, if parity is correct
2801 * we are done. Otherwise update the mismatch count and repair
2802 * parity if !MD_RECOVERY_CHECK
2803 */
2804 if (sh->ops.zero_sum_result == 0) {
2805 /* both parities are correct */
2806 if (!s->failed)
2807 set_bit(STRIPE_INSYNC, &sh->state);
2808 else {
2809 /* in contrast to the raid5 case we can validate
2810 * parity, but still have a failure to write
2811 * back
2812 */
2813 sh->check_state = check_state_compute_result;
2814 /* Returning at this point means that we may go
2815 * off and bring p and/or q uptodate again so
2816 * we make sure to check zero_sum_result again
2817 * to verify if p or q need writeback
2818 */
2819 }
2820 } else {
2821 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2822 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2823 /* don't try to repair!! */
2824 set_bit(STRIPE_INSYNC, &sh->state);
2825 else {
2826 int *target = &sh->ops.target;
2827
2828 sh->ops.target = -1;
2829 sh->ops.target2 = -1;
2830 sh->check_state = check_state_compute_run;
2831 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2832 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2833 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2834 set_bit(R5_Wantcompute,
2835 &sh->dev[pd_idx].flags);
2836 *target = pd_idx;
2837 target = &sh->ops.target2;
2838 s->uptodate++;
2839 }
2840 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2841 set_bit(R5_Wantcompute,
2842 &sh->dev[qd_idx].flags);
2843 *target = qd_idx;
2844 s->uptodate++;
2845 }
2846 }
2847 }
2848 break;
2849 case check_state_compute_run:
2850 break;
2851 default:
2852 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2853 __func__, sh->check_state,
2854 (unsigned long long) sh->sector);
2855 BUG();
a4456856
DW
2856 }
2857}
2858
2859static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2860 struct r6_state *r6s)
2861{
2862 int i;
2863
2864 /* We have read all the blocks in this stripe and now we need to
2865 * copy some of them into a target stripe for expand.
2866 */
f0a50d37 2867 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2868 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2869 for (i = 0; i < sh->disks; i++)
34e04e87 2870 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2871 int dd_idx, j;
a4456856 2872 struct stripe_head *sh2;
a08abd8c 2873 struct async_submit_ctl submit;
a4456856 2874
784052ec 2875 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2876 sector_t s = raid5_compute_sector(conf, bn, 0,
2877 &dd_idx, NULL);
a8c906ca 2878 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
2879 if (sh2 == NULL)
2880 /* so far only the early blocks of this stripe
2881 * have been requested. When later blocks
2882 * get requested, we will try again
2883 */
2884 continue;
2885 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2886 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2887 /* must have already done this block */
2888 release_stripe(sh2);
2889 continue;
2890 }
f0a50d37
DW
2891
2892 /* place all the copies on one channel */
a08abd8c 2893 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2894 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2895 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2896 &submit);
f0a50d37 2897
a4456856
DW
2898 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2899 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2900 for (j = 0; j < conf->raid_disks; j++)
2901 if (j != sh2->pd_idx &&
d0dabf7e 2902 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2903 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2904 break;
2905 if (j == conf->raid_disks) {
2906 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2907 set_bit(STRIPE_HANDLE, &sh2->state);
2908 }
2909 release_stripe(sh2);
f0a50d37 2910
a4456856 2911 }
a2e08551
N
2912 /* done submitting copies, wait for them to complete */
2913 if (tx) {
2914 async_tx_ack(tx);
2915 dma_wait_for_async_tx(tx);
2916 }
a4456856 2917}
1da177e4 2918
6bfe0b49 2919
1da177e4
LT
2920/*
2921 * handle_stripe - do things to a stripe.
2922 *
2923 * We lock the stripe and then examine the state of various bits
2924 * to see what needs to be done.
2925 * Possible results:
2926 * return some read request which now have data
2927 * return some write requests which are safely on disc
2928 * schedule a read on some buffers
2929 * schedule a write of some buffers
2930 * return confirmation of parity correctness
2931 *
1da177e4
LT
2932 * buffers are taken off read_list or write_list, and bh_cache buffers
2933 * get BH_Lock set before the stripe lock is released.
2934 *
2935 */
a4456856 2936
1442577b 2937static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2938{
2939 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2940 int disks = sh->disks, i;
2941 struct bio *return_bi = NULL;
2942 struct stripe_head_state s;
1da177e4 2943 struct r5dev *dev;
6bfe0b49 2944 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2945 int prexor;
729a1866 2946 int dec_preread_active = 0;
1da177e4 2947
a4456856 2948 memset(&s, 0, sizeof(s));
600aa109
DW
2949 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2950 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2951 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2952 sh->reconstruct_state);
1da177e4
LT
2953
2954 spin_lock(&sh->lock);
2955 clear_bit(STRIPE_HANDLE, &sh->state);
2956 clear_bit(STRIPE_DELAYED, &sh->state);
2957
a4456856
DW
2958 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2959 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2960 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 2961
83de75cc 2962 /* Now to look around and see what can be done */
9910f16a 2963 rcu_read_lock();
1da177e4
LT
2964 for (i=disks; i--; ) {
2965 mdk_rdev_t *rdev;
a9f326eb
N
2966
2967 dev = &sh->dev[i];
1da177e4 2968 clear_bit(R5_Insync, &dev->flags);
1da177e4 2969
b5e98d65
DW
2970 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2971 "written %p\n", i, dev->flags, dev->toread, dev->read,
2972 dev->towrite, dev->written);
2973
2974 /* maybe we can request a biofill operation
2975 *
2976 * new wantfill requests are only permitted while
83de75cc 2977 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
2978 */
2979 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 2980 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 2981 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2982
2983 /* now count some things */
a4456856
DW
2984 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2985 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2986 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2987
b5e98d65
DW
2988 if (test_bit(R5_Wantfill, &dev->flags))
2989 s.to_fill++;
2990 else if (dev->toread)
a4456856 2991 s.to_read++;
1da177e4 2992 if (dev->towrite) {
a4456856 2993 s.to_write++;
1da177e4 2994 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2995 s.non_overwrite++;
1da177e4 2996 }
a4456856
DW
2997 if (dev->written)
2998 s.written++;
9910f16a 2999 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3000 if (blocked_rdev == NULL &&
3001 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3002 blocked_rdev = rdev;
3003 atomic_inc(&rdev->nr_pending);
6bfe0b49 3004 }
b2d444d7 3005 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 3006 /* The ReadError flag will just be confusing now */
4e5314b5
N
3007 clear_bit(R5_ReadError, &dev->flags);
3008 clear_bit(R5_ReWrite, &dev->flags);
3009 }
b2d444d7 3010 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 3011 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3012 s.failed++;
3013 s.failed_num = i;
1da177e4
LT
3014 } else
3015 set_bit(R5_Insync, &dev->flags);
3016 }
9910f16a 3017 rcu_read_unlock();
b5e98d65 3018
6bfe0b49 3019 if (unlikely(blocked_rdev)) {
ac4090d2
N
3020 if (s.syncing || s.expanding || s.expanded ||
3021 s.to_write || s.written) {
3022 set_bit(STRIPE_HANDLE, &sh->state);
3023 goto unlock;
3024 }
3025 /* There is nothing for the blocked_rdev to block */
3026 rdev_dec_pending(blocked_rdev, conf->mddev);
3027 blocked_rdev = NULL;
6bfe0b49
DW
3028 }
3029
83de75cc
DW
3030 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3031 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3032 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3033 }
b5e98d65 3034
45b4233c 3035 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 3036 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
3037 s.locked, s.uptodate, s.to_read, s.to_write,
3038 s.failed, s.failed_num);
1da177e4
LT
3039 /* check if the array has lost two devices and, if so, some requests might
3040 * need to be failed
3041 */
a4456856 3042 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 3043 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3044 if (s.failed > 1 && s.syncing) {
1da177e4
LT
3045 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3046 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3047 s.syncing = 0;
1da177e4
LT
3048 }
3049
3050 /* might be able to return some write requests if the parity block
3051 * is safe, or on a failed drive
3052 */
3053 dev = &sh->dev[sh->pd_idx];
a4456856
DW
3054 if ( s.written &&
3055 ((test_bit(R5_Insync, &dev->flags) &&
3056 !test_bit(R5_LOCKED, &dev->flags) &&
3057 test_bit(R5_UPTODATE, &dev->flags)) ||
3058 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 3059 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
3060
3061 /* Now we might consider reading some blocks, either to check/generate
3062 * parity, or to satisfy requests
3063 * or to load a block that is being partially written.
3064 */
a4456856 3065 if (s.to_read || s.non_overwrite ||
976ea8d4 3066 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3067 handle_stripe_fill5(sh, &s, disks);
1da177e4 3068
e33129d8
DW
3069 /* Now we check to see if any write operations have recently
3070 * completed
3071 */
e0a115e5 3072 prexor = 0;
d8ee0728 3073 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 3074 prexor = 1;
d8ee0728
DW
3075 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3076 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 3077 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
3078
3079 /* All the 'written' buffers and the parity block are ready to
3080 * be written back to disk
3081 */
3082 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3083 for (i = disks; i--; ) {
3084 dev = &sh->dev[i];
3085 if (test_bit(R5_LOCKED, &dev->flags) &&
3086 (i == sh->pd_idx || dev->written)) {
3087 pr_debug("Writing block %d\n", i);
3088 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
3089 if (prexor)
3090 continue;
e33129d8
DW
3091 if (!test_bit(R5_Insync, &dev->flags) ||
3092 (i == sh->pd_idx && s.failed == 0))
3093 set_bit(STRIPE_INSYNC, &sh->state);
3094 }
3095 }
729a1866
N
3096 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3097 dec_preread_active = 1;
e33129d8
DW
3098 }
3099
3100 /* Now to consider new write requests and what else, if anything
3101 * should be read. We do not handle new writes when:
3102 * 1/ A 'write' operation (copy+xor) is already in flight.
3103 * 2/ A 'check' operation is in flight, as it may clobber the parity
3104 * block.
3105 */
600aa109 3106 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3107 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
3108
3109 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
3110 * Any reads will already have been scheduled, so we just see if enough
3111 * data is available. The parity check is held off while parity
3112 * dependent operations are in flight.
1da177e4 3113 */
ecc65c9b
DW
3114 if (sh->check_state ||
3115 (s.syncing && s.locked == 0 &&
976ea8d4 3116 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 3117 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 3118 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 3119
a4456856 3120 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
3121 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3122 clear_bit(STRIPE_SYNCING, &sh->state);
3123 }
4e5314b5
N
3124
3125 /* If the failed drive is just a ReadError, then we might need to progress
3126 * the repair/check process
3127 */
a4456856
DW
3128 if (s.failed == 1 && !conf->mddev->ro &&
3129 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3130 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3131 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 3132 ) {
a4456856 3133 dev = &sh->dev[s.failed_num];
4e5314b5
N
3134 if (!test_bit(R5_ReWrite, &dev->flags)) {
3135 set_bit(R5_Wantwrite, &dev->flags);
3136 set_bit(R5_ReWrite, &dev->flags);
3137 set_bit(R5_LOCKED, &dev->flags);
a4456856 3138 s.locked++;
4e5314b5
N
3139 } else {
3140 /* let's read it back */
3141 set_bit(R5_Wantread, &dev->flags);
3142 set_bit(R5_LOCKED, &dev->flags);
a4456856 3143 s.locked++;
4e5314b5
N
3144 }
3145 }
3146
600aa109
DW
3147 /* Finish reconstruct operations initiated by the expansion process */
3148 if (sh->reconstruct_state == reconstruct_state_result) {
ab69ae12 3149 struct stripe_head *sh2
a8c906ca 3150 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3151 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3152 /* sh cannot be written until sh2 has been read.
3153 * so arrange for sh to be delayed a little
3154 */
3155 set_bit(STRIPE_DELAYED, &sh->state);
3156 set_bit(STRIPE_HANDLE, &sh->state);
3157 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3158 &sh2->state))
3159 atomic_inc(&conf->preread_active_stripes);
3160 release_stripe(sh2);
3161 goto unlock;
3162 }
3163 if (sh2)
3164 release_stripe(sh2);
3165
600aa109 3166 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 3167 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 3168 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 3169 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 3170 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 3171 s.locked++;
23397883 3172 }
f0a50d37
DW
3173 }
3174
3175 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 3176 !sh->reconstruct_state) {
f0a50d37
DW
3177 /* Need to write out all blocks after computing parity */
3178 sh->disks = conf->raid_disks;
911d4ee8 3179 stripe_set_idx(sh->sector, conf, 0, sh);
c0f7bddb 3180 schedule_reconstruction(sh, &s, 1, 1);
600aa109 3181 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 3182 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 3183 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
3184 wake_up(&conf->wait_for_overlap);
3185 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3186 }
3187
0f94e87c 3188 if (s.expanding && s.locked == 0 &&
976ea8d4 3189 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3190 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 3191
6bfe0b49 3192 unlock:
1da177e4
LT
3193 spin_unlock(&sh->lock);
3194
6bfe0b49
DW
3195 /* wait for this device to become unblocked */
3196 if (unlikely(blocked_rdev))
3197 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3198
600aa109 3199 if (s.ops_request)
ac6b53b6 3200 raid_run_ops(sh, s.ops_request);
d84e0f10 3201
c4e5ac0a 3202 ops_run_io(sh, &s);
1da177e4 3203
729a1866
N
3204 if (dec_preread_active) {
3205 /* We delay this until after ops_run_io so that if make_request
3206 * is waiting on a barrier, it won't continue until the writes
3207 * have actually been submitted.
3208 */
3209 atomic_dec(&conf->preread_active_stripes);
3210 if (atomic_read(&conf->preread_active_stripes) <
3211 IO_THRESHOLD)
3212 md_wakeup_thread(conf->mddev->thread);
3213 }
a4456856 3214 return_io(return_bi);
1da177e4
LT
3215}
3216
1442577b 3217static void handle_stripe6(struct stripe_head *sh)
1da177e4 3218{
bff61975 3219 raid5_conf_t *conf = sh->raid_conf;
f416885e 3220 int disks = sh->disks;
a4456856 3221 struct bio *return_bi = NULL;
34e04e87 3222 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
3223 struct stripe_head_state s;
3224 struct r6_state r6s;
16a53ecc 3225 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 3226 mdk_rdev_t *blocked_rdev = NULL;
729a1866 3227 int dec_preread_active = 0;
1da177e4 3228
45b4233c 3229 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
6c0069c0 3230 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
a4456856 3231 (unsigned long long)sh->sector, sh->state,
6c0069c0
YT
3232 atomic_read(&sh->count), pd_idx, qd_idx,
3233 sh->check_state, sh->reconstruct_state);
a4456856 3234 memset(&s, 0, sizeof(s));
72626685 3235
16a53ecc
N
3236 spin_lock(&sh->lock);
3237 clear_bit(STRIPE_HANDLE, &sh->state);
3238 clear_bit(STRIPE_DELAYED, &sh->state);
3239
a4456856
DW
3240 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3241 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3242 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3243 /* Now to look around and see what can be done */
1da177e4
LT
3244
3245 rcu_read_lock();
16a53ecc
N
3246 for (i=disks; i--; ) {
3247 mdk_rdev_t *rdev;
3248 dev = &sh->dev[i];
3249 clear_bit(R5_Insync, &dev->flags);
1da177e4 3250
45b4233c 3251 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc 3252 i, dev->flags, dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3253 /* maybe we can reply to a read
3254 *
3255 * new wantfill requests are only permitted while
3256 * ops_complete_biofill is guaranteed to be inactive
3257 */
3258 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3259 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3260 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3261
16a53ecc 3262 /* now count some things */
a4456856
DW
3263 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3264 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2d6e4ecc
DW
3265 if (test_bit(R5_Wantcompute, &dev->flags)) {
3266 s.compute++;
3267 BUG_ON(s.compute > 2);
3268 }
1da177e4 3269
6c0069c0
YT
3270 if (test_bit(R5_Wantfill, &dev->flags)) {
3271 s.to_fill++;
3272 } else if (dev->toread)
a4456856 3273 s.to_read++;
16a53ecc 3274 if (dev->towrite) {
a4456856 3275 s.to_write++;
16a53ecc 3276 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3277 s.non_overwrite++;
16a53ecc 3278 }
a4456856
DW
3279 if (dev->written)
3280 s.written++;
16a53ecc 3281 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3282 if (blocked_rdev == NULL &&
3283 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3284 blocked_rdev = rdev;
3285 atomic_inc(&rdev->nr_pending);
6bfe0b49 3286 }
16a53ecc
N
3287 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3288 /* The ReadError flag will just be confusing now */
3289 clear_bit(R5_ReadError, &dev->flags);
3290 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3291 }
16a53ecc
N
3292 if (!rdev || !test_bit(In_sync, &rdev->flags)
3293 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3294 if (s.failed < 2)
3295 r6s.failed_num[s.failed] = i;
3296 s.failed++;
16a53ecc
N
3297 } else
3298 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
3299 }
3300 rcu_read_unlock();
6bfe0b49
DW
3301
3302 if (unlikely(blocked_rdev)) {
ac4090d2
N
3303 if (s.syncing || s.expanding || s.expanded ||
3304 s.to_write || s.written) {
3305 set_bit(STRIPE_HANDLE, &sh->state);
3306 goto unlock;
3307 }
3308 /* There is nothing for the blocked_rdev to block */
3309 rdev_dec_pending(blocked_rdev, conf->mddev);
3310 blocked_rdev = NULL;
6bfe0b49 3311 }
ac4090d2 3312
6c0069c0
YT
3313 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3314 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3315 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3316 }
3317
45b4233c 3318 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3319 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3320 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3321 r6s.failed_num[0], r6s.failed_num[1]);
3322 /* check if the array has lost >2 devices and, if so, some requests
3323 * might need to be failed
16a53ecc 3324 */
a4456856 3325 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3326 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3327 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3328 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3329 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3330 s.syncing = 0;
16a53ecc
N
3331 }
3332
3333 /*
3334 * might be able to return some write requests if the parity blocks
3335 * are safe, or on a failed drive
3336 */
3337 pdev = &sh->dev[pd_idx];
a4456856
DW
3338 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3339 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3340 qdev = &sh->dev[qd_idx];
3341 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3342 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3343
3344 if ( s.written &&
3345 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3346 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3347 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3348 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3349 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3350 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3351 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3352
3353 /* Now we might consider reading some blocks, either to check/generate
3354 * parity, or to satisfy requests
3355 * or to load a block that is being partially written.
3356 */
a4456856 3357 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
6c0069c0 3358 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3359 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc 3360
6c0069c0
YT
3361 /* Now we check to see if any write operations have recently
3362 * completed
3363 */
3364 if (sh->reconstruct_state == reconstruct_state_drain_result) {
6c0069c0
YT
3365
3366 sh->reconstruct_state = reconstruct_state_idle;
3367 /* All the 'written' buffers and the parity blocks are ready to
3368 * be written back to disk
3369 */
3370 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3371 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3372 for (i = disks; i--; ) {
3373 dev = &sh->dev[i];
3374 if (test_bit(R5_LOCKED, &dev->flags) &&
3375 (i == sh->pd_idx || i == qd_idx ||
3376 dev->written)) {
3377 pr_debug("Writing block %d\n", i);
3378 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3379 set_bit(R5_Wantwrite, &dev->flags);
3380 if (!test_bit(R5_Insync, &dev->flags) ||
3381 ((i == sh->pd_idx || i == qd_idx) &&
3382 s.failed == 0))
3383 set_bit(STRIPE_INSYNC, &sh->state);
3384 }
3385 }
729a1866
N
3386 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3387 dec_preread_active = 1;
6c0069c0
YT
3388 }
3389
a9b39a74
YT
3390 /* Now to consider new write requests and what else, if anything
3391 * should be read. We do not handle new writes when:
3392 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3393 * 2/ A 'check' operation is in flight, as it may clobber the parity
3394 * block.
3395 */
3396 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3397 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3398
3399 /* maybe we need to check and possibly fix the parity for this stripe
a4456856 3400 * Any reads will already have been scheduled, so we just see if enough
6c0069c0
YT
3401 * data is available. The parity check is held off while parity
3402 * dependent operations are in flight.
16a53ecc 3403 */
6c0069c0
YT
3404 if (sh->check_state ||
3405 (s.syncing && s.locked == 0 &&
3406 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3407 !test_bit(STRIPE_INSYNC, &sh->state)))
36d1c647 3408 handle_parity_checks6(conf, sh, &s, &r6s, disks);
16a53ecc 3409
a4456856 3410 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3411 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3412 clear_bit(STRIPE_SYNCING, &sh->state);
3413 }
3414
3415 /* If the failed drives are just a ReadError, then we might need
3416 * to progress the repair/check process
3417 */
a4456856
DW
3418 if (s.failed <= 2 && !conf->mddev->ro)
3419 for (i = 0; i < s.failed; i++) {
3420 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3421 if (test_bit(R5_ReadError, &dev->flags)
3422 && !test_bit(R5_LOCKED, &dev->flags)
3423 && test_bit(R5_UPTODATE, &dev->flags)
3424 ) {
3425 if (!test_bit(R5_ReWrite, &dev->flags)) {
3426 set_bit(R5_Wantwrite, &dev->flags);
3427 set_bit(R5_ReWrite, &dev->flags);
3428 set_bit(R5_LOCKED, &dev->flags);
6c0069c0 3429 s.locked++;
16a53ecc
N
3430 } else {
3431 /* let's read it back */
3432 set_bit(R5_Wantread, &dev->flags);
3433 set_bit(R5_LOCKED, &dev->flags);
6c0069c0 3434 s.locked++;
16a53ecc
N
3435 }
3436 }
3437 }
f416885e 3438
6c0069c0
YT
3439 /* Finish reconstruct operations initiated by the expansion process */
3440 if (sh->reconstruct_state == reconstruct_state_result) {
3441 sh->reconstruct_state = reconstruct_state_idle;
3442 clear_bit(STRIPE_EXPANDING, &sh->state);
3443 for (i = conf->raid_disks; i--; ) {
3444 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3445 set_bit(R5_LOCKED, &sh->dev[i].flags);
3446 s.locked++;
3447 }
3448 }
3449
3450 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3451 !sh->reconstruct_state) {
ab69ae12 3452 struct stripe_head *sh2
a8c906ca 3453 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3454 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3455 /* sh cannot be written until sh2 has been read.
3456 * so arrange for sh to be delayed a little
3457 */
3458 set_bit(STRIPE_DELAYED, &sh->state);
3459 set_bit(STRIPE_HANDLE, &sh->state);
3460 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3461 &sh2->state))
3462 atomic_inc(&conf->preread_active_stripes);
3463 release_stripe(sh2);
3464 goto unlock;
3465 }
3466 if (sh2)
3467 release_stripe(sh2);
3468
f416885e
N
3469 /* Need to write out all blocks after computing P&Q */
3470 sh->disks = conf->raid_disks;
911d4ee8 3471 stripe_set_idx(sh->sector, conf, 0, sh);
6c0069c0
YT
3472 schedule_reconstruction(sh, &s, 1, 1);
3473 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
f416885e
N
3474 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3475 atomic_dec(&conf->reshape_stripes);
3476 wake_up(&conf->wait_for_overlap);
3477 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3478 }
3479
0f94e87c 3480 if (s.expanding && s.locked == 0 &&
976ea8d4 3481 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3482 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3483
6bfe0b49 3484 unlock:
16a53ecc
N
3485 spin_unlock(&sh->lock);
3486
6bfe0b49
DW
3487 /* wait for this device to become unblocked */
3488 if (unlikely(blocked_rdev))
3489 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3490
6c0069c0
YT
3491 if (s.ops_request)
3492 raid_run_ops(sh, s.ops_request);
3493
f0e43bcd 3494 ops_run_io(sh, &s);
16a53ecc 3495
729a1866
N
3496
3497 if (dec_preread_active) {
3498 /* We delay this until after ops_run_io so that if make_request
3499 * is waiting on a barrier, it won't continue until the writes
3500 * have actually been submitted.
3501 */
3502 atomic_dec(&conf->preread_active_stripes);
3503 if (atomic_read(&conf->preread_active_stripes) <
3504 IO_THRESHOLD)
3505 md_wakeup_thread(conf->mddev->thread);
3506 }
3507
f0e43bcd 3508 return_io(return_bi);
16a53ecc
N
3509}
3510
1442577b 3511static void handle_stripe(struct stripe_head *sh)
16a53ecc
N
3512{
3513 if (sh->raid_conf->level == 6)
1442577b 3514 handle_stripe6(sh);
16a53ecc 3515 else
1442577b 3516 handle_stripe5(sh);
16a53ecc
N
3517}
3518
16a53ecc
N
3519static void raid5_activate_delayed(raid5_conf_t *conf)
3520{
3521 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3522 while (!list_empty(&conf->delayed_list)) {
3523 struct list_head *l = conf->delayed_list.next;
3524 struct stripe_head *sh;
3525 sh = list_entry(l, struct stripe_head, lru);
3526 list_del_init(l);
3527 clear_bit(STRIPE_DELAYED, &sh->state);
3528 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3529 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3530 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3531 }
6ed3003c
N
3532 } else
3533 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3534}
3535
3536static void activate_bit_delay(raid5_conf_t *conf)
3537{
3538 /* device_lock is held */
3539 struct list_head head;
3540 list_add(&head, &conf->bitmap_list);
3541 list_del_init(&conf->bitmap_list);
3542 while (!list_empty(&head)) {
3543 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3544 list_del_init(&sh->lru);
3545 atomic_inc(&sh->count);
3546 __release_stripe(conf, sh);
3547 }
3548}
3549
3550static void unplug_slaves(mddev_t *mddev)
3551{
070ec55d 3552 raid5_conf_t *conf = mddev->private;
16a53ecc 3553 int i;
5e5e3e78 3554 int devs = max(conf->raid_disks, conf->previous_raid_disks);
16a53ecc
N
3555
3556 rcu_read_lock();
5e5e3e78 3557 for (i = 0; i < devs; i++) {
16a53ecc
N
3558 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3559 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3560 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3561
3562 atomic_inc(&rdev->nr_pending);
3563 rcu_read_unlock();
3564
2ad8b1ef 3565 blk_unplug(r_queue);
16a53ecc
N
3566
3567 rdev_dec_pending(rdev, mddev);
3568 rcu_read_lock();
3569 }
3570 }
3571 rcu_read_unlock();
3572}
3573
165125e1 3574static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3575{
3576 mddev_t *mddev = q->queuedata;
070ec55d 3577 raid5_conf_t *conf = mddev->private;
16a53ecc
N
3578 unsigned long flags;
3579
3580 spin_lock_irqsave(&conf->device_lock, flags);
3581
3582 if (blk_remove_plug(q)) {
3583 conf->seq_flush++;
3584 raid5_activate_delayed(conf);
72626685 3585 }
1da177e4
LT
3586 md_wakeup_thread(mddev->thread);
3587
3588 spin_unlock_irqrestore(&conf->device_lock, flags);
3589
3590 unplug_slaves(mddev);
3591}
3592
f022b2fd
N
3593static int raid5_congested(void *data, int bits)
3594{
3595 mddev_t *mddev = data;
070ec55d 3596 raid5_conf_t *conf = mddev->private;
f022b2fd
N
3597
3598 /* No difference between reads and writes. Just check
3599 * how busy the stripe_cache is
3600 */
3fa841d7
N
3601
3602 if (mddev_congested(mddev, bits))
3603 return 1;
f022b2fd
N
3604 if (conf->inactive_blocked)
3605 return 1;
3606 if (conf->quiesce)
3607 return 1;
3608 if (list_empty_careful(&conf->inactive_list))
3609 return 1;
3610
3611 return 0;
3612}
3613
23032a0e
RBJ
3614/* We want read requests to align with chunks where possible,
3615 * but write requests don't need to.
3616 */
cc371e66
AK
3617static int raid5_mergeable_bvec(struct request_queue *q,
3618 struct bvec_merge_data *bvm,
3619 struct bio_vec *biovec)
23032a0e
RBJ
3620{
3621 mddev_t *mddev = q->queuedata;
cc371e66 3622 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3623 int max;
9d8f0363 3624 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3625 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3626
cc371e66 3627 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3628 return biovec->bv_len; /* always allow writes to be mergeable */
3629
664e7c41
AN
3630 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3631 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3632 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3633 if (max < 0) max = 0;
3634 if (max <= biovec->bv_len && bio_sectors == 0)
3635 return biovec->bv_len;
3636 else
3637 return max;
3638}
3639
f679623f
RBJ
3640
3641static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3642{
3643 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3644 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3645 unsigned int bio_sectors = bio->bi_size >> 9;
3646
664e7c41
AN
3647 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3648 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3649 return chunk_sectors >=
3650 ((sector & (chunk_sectors - 1)) + bio_sectors);
3651}
3652
46031f9a
RBJ
3653/*
3654 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3655 * later sampled by raid5d.
3656 */
3657static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3658{
3659 unsigned long flags;
3660
3661 spin_lock_irqsave(&conf->device_lock, flags);
3662
3663 bi->bi_next = conf->retry_read_aligned_list;
3664 conf->retry_read_aligned_list = bi;
3665
3666 spin_unlock_irqrestore(&conf->device_lock, flags);
3667 md_wakeup_thread(conf->mddev->thread);
3668}
3669
3670
3671static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3672{
3673 struct bio *bi;
3674
3675 bi = conf->retry_read_aligned;
3676 if (bi) {
3677 conf->retry_read_aligned = NULL;
3678 return bi;
3679 }
3680 bi = conf->retry_read_aligned_list;
3681 if(bi) {
387bb173 3682 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3683 bi->bi_next = NULL;
960e739d
JA
3684 /*
3685 * this sets the active strip count to 1 and the processed
3686 * strip count to zero (upper 8 bits)
3687 */
46031f9a 3688 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3689 }
3690
3691 return bi;
3692}
3693
3694
f679623f
RBJ
3695/*
3696 * The "raid5_align_endio" should check if the read succeeded and if it
3697 * did, call bio_endio on the original bio (having bio_put the new bio
3698 * first).
3699 * If the read failed..
3700 */
6712ecf8 3701static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3702{
3703 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3704 mddev_t *mddev;
3705 raid5_conf_t *conf;
3706 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3707 mdk_rdev_t *rdev;
3708
f679623f 3709 bio_put(bi);
46031f9a
RBJ
3710
3711 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
070ec55d 3712 conf = mddev->private;
46031f9a
RBJ
3713 rdev = (void*)raid_bi->bi_next;
3714 raid_bi->bi_next = NULL;
3715
3716 rdev_dec_pending(rdev, conf->mddev);
3717
3718 if (!error && uptodate) {
6712ecf8 3719 bio_endio(raid_bi, 0);
46031f9a
RBJ
3720 if (atomic_dec_and_test(&conf->active_aligned_reads))
3721 wake_up(&conf->wait_for_stripe);
6712ecf8 3722 return;
46031f9a
RBJ
3723 }
3724
3725
45b4233c 3726 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3727
3728 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3729}
3730
387bb173
NB
3731static int bio_fits_rdev(struct bio *bi)
3732{
165125e1 3733 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3734
ae03bf63 3735 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3736 return 0;
3737 blk_recount_segments(q, bi);
8a78362c 3738 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3739 return 0;
3740
3741 if (q->merge_bvec_fn)
3742 /* it's too hard to apply the merge_bvec_fn at this stage,
3743 * just just give up
3744 */
3745 return 0;
3746
3747 return 1;
3748}
3749
3750
165125e1 3751static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3752{
3753 mddev_t *mddev = q->queuedata;
070ec55d 3754 raid5_conf_t *conf = mddev->private;
8553fe7e 3755 int dd_idx;
f679623f
RBJ
3756 struct bio* align_bi;
3757 mdk_rdev_t *rdev;
3758
3759 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3760 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3761 return 0;
3762 }
3763 /*
99c0fb5f 3764 * use bio_clone to make a copy of the bio
f679623f
RBJ
3765 */
3766 align_bi = bio_clone(raid_bio, GFP_NOIO);
3767 if (!align_bi)
3768 return 0;
3769 /*
3770 * set bi_end_io to a new function, and set bi_private to the
3771 * original bio.
3772 */
3773 align_bi->bi_end_io = raid5_align_endio;
3774 align_bi->bi_private = raid_bio;
3775 /*
3776 * compute position
3777 */
112bf897
N
3778 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3779 0,
911d4ee8 3780 &dd_idx, NULL);
f679623f
RBJ
3781
3782 rcu_read_lock();
3783 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3784 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3785 atomic_inc(&rdev->nr_pending);
3786 rcu_read_unlock();
46031f9a
RBJ
3787 raid_bio->bi_next = (void*)rdev;
3788 align_bi->bi_bdev = rdev->bdev;
3789 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3790 align_bi->bi_sector += rdev->data_offset;
3791
387bb173
NB
3792 if (!bio_fits_rdev(align_bi)) {
3793 /* too big in some way */
3794 bio_put(align_bi);
3795 rdev_dec_pending(rdev, mddev);
3796 return 0;
3797 }
3798
46031f9a
RBJ
3799 spin_lock_irq(&conf->device_lock);
3800 wait_event_lock_irq(conf->wait_for_stripe,
3801 conf->quiesce == 0,
3802 conf->device_lock, /* nothing */);
3803 atomic_inc(&conf->active_aligned_reads);
3804 spin_unlock_irq(&conf->device_lock);
3805
f679623f
RBJ
3806 generic_make_request(align_bi);
3807 return 1;
3808 } else {
3809 rcu_read_unlock();
46031f9a 3810 bio_put(align_bi);
f679623f
RBJ
3811 return 0;
3812 }
3813}
3814
8b3e6cdc
DW
3815/* __get_priority_stripe - get the next stripe to process
3816 *
3817 * Full stripe writes are allowed to pass preread active stripes up until
3818 * the bypass_threshold is exceeded. In general the bypass_count
3819 * increments when the handle_list is handled before the hold_list; however, it
3820 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3821 * stripe with in flight i/o. The bypass_count will be reset when the
3822 * head of the hold_list has changed, i.e. the head was promoted to the
3823 * handle_list.
3824 */
3825static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3826{
3827 struct stripe_head *sh;
3828
3829 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3830 __func__,
3831 list_empty(&conf->handle_list) ? "empty" : "busy",
3832 list_empty(&conf->hold_list) ? "empty" : "busy",
3833 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3834
3835 if (!list_empty(&conf->handle_list)) {
3836 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3837
3838 if (list_empty(&conf->hold_list))
3839 conf->bypass_count = 0;
3840 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3841 if (conf->hold_list.next == conf->last_hold)
3842 conf->bypass_count++;
3843 else {
3844 conf->last_hold = conf->hold_list.next;
3845 conf->bypass_count -= conf->bypass_threshold;
3846 if (conf->bypass_count < 0)
3847 conf->bypass_count = 0;
3848 }
3849 }
3850 } else if (!list_empty(&conf->hold_list) &&
3851 ((conf->bypass_threshold &&
3852 conf->bypass_count > conf->bypass_threshold) ||
3853 atomic_read(&conf->pending_full_writes) == 0)) {
3854 sh = list_entry(conf->hold_list.next,
3855 typeof(*sh), lru);
3856 conf->bypass_count -= conf->bypass_threshold;
3857 if (conf->bypass_count < 0)
3858 conf->bypass_count = 0;
3859 } else
3860 return NULL;
3861
3862 list_del_init(&sh->lru);
3863 atomic_inc(&sh->count);
3864 BUG_ON(atomic_read(&sh->count) != 1);
3865 return sh;
3866}
f679623f 3867
165125e1 3868static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3869{
3870 mddev_t *mddev = q->queuedata;
070ec55d 3871 raid5_conf_t *conf = mddev->private;
911d4ee8 3872 int dd_idx;
1da177e4
LT
3873 sector_t new_sector;
3874 sector_t logical_sector, last_sector;
3875 struct stripe_head *sh;
a362357b 3876 const int rw = bio_data_dir(bi);
c9959059 3877 int cpu, remaining;
1da177e4 3878
1f98a13f 3879 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
a2826aa9
N
3880 /* Drain all pending writes. We only really need
3881 * to ensure they have been submitted, but this is
3882 * easier.
3883 */
3884 mddev->pers->quiesce(mddev, 1);
3885 mddev->pers->quiesce(mddev, 0);
3886 md_barrier_request(mddev, bi);
e5dcdd80
N
3887 return 0;
3888 }
3889
3d310eb7 3890 md_write_start(mddev, bi);
06d91a5f 3891
074a7aca
TH
3892 cpu = part_stat_lock();
3893 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3894 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3895 bio_sectors(bi));
3896 part_stat_unlock();
1da177e4 3897
802ba064 3898 if (rw == READ &&
52488615
RBJ
3899 mddev->reshape_position == MaxSector &&
3900 chunk_aligned_read(q,bi))
99c0fb5f 3901 return 0;
52488615 3902
1da177e4
LT
3903 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3904 last_sector = bi->bi_sector + (bi->bi_size>>9);
3905 bi->bi_next = NULL;
3906 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3907
1da177e4
LT
3908 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3909 DEFINE_WAIT(w);
16a53ecc 3910 int disks, data_disks;
b5663ba4 3911 int previous;
b578d55f 3912
7ecaa1e6 3913 retry:
b5663ba4 3914 previous = 0;
b0f9ec04 3915 disks = conf->raid_disks;
b578d55f 3916 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3917 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3918 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3919 * 64bit on a 32bit platform, and so it might be
3920 * possible to see a half-updated value
fef9c61f 3921 * Ofcourse reshape_progress could change after
df8e7f76
N
3922 * the lock is dropped, so once we get a reference
3923 * to the stripe that we think it is, we will have
3924 * to check again.
3925 */
7ecaa1e6 3926 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3927 if (mddev->delta_disks < 0
3928 ? logical_sector < conf->reshape_progress
3929 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3930 disks = conf->previous_raid_disks;
b5663ba4
N
3931 previous = 1;
3932 } else {
fef9c61f
N
3933 if (mddev->delta_disks < 0
3934 ? logical_sector < conf->reshape_safe
3935 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3936 spin_unlock_irq(&conf->device_lock);
3937 schedule();
3938 goto retry;
3939 }
3940 }
7ecaa1e6
N
3941 spin_unlock_irq(&conf->device_lock);
3942 }
16a53ecc
N
3943 data_disks = disks - conf->max_degraded;
3944
112bf897
N
3945 new_sector = raid5_compute_sector(conf, logical_sector,
3946 previous,
911d4ee8 3947 &dd_idx, NULL);
45b4233c 3948 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3949 (unsigned long long)new_sector,
3950 (unsigned long long)logical_sector);
3951
b5663ba4 3952 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 3953 (bi->bi_rw&RWA_MASK), 0);
1da177e4 3954 if (sh) {
b0f9ec04 3955 if (unlikely(previous)) {
7ecaa1e6 3956 /* expansion might have moved on while waiting for a
df8e7f76
N
3957 * stripe, so we must do the range check again.
3958 * Expansion could still move past after this
3959 * test, but as we are holding a reference to
3960 * 'sh', we know that if that happens,
3961 * STRIPE_EXPANDING will get set and the expansion
3962 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3963 */
3964 int must_retry = 0;
3965 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
3966 if (mddev->delta_disks < 0
3967 ? logical_sector >= conf->reshape_progress
3968 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
3969 /* mismatch, need to try again */
3970 must_retry = 1;
3971 spin_unlock_irq(&conf->device_lock);
3972 if (must_retry) {
3973 release_stripe(sh);
7a3ab908 3974 schedule();
7ecaa1e6
N
3975 goto retry;
3976 }
3977 }
e62e58a5 3978
a5c308d4
N
3979 if (bio_data_dir(bi) == WRITE &&
3980 logical_sector >= mddev->suspend_lo &&
e464eafd
N
3981 logical_sector < mddev->suspend_hi) {
3982 release_stripe(sh);
e62e58a5
N
3983 /* As the suspend_* range is controlled by
3984 * userspace, we want an interruptible
3985 * wait.
3986 */
3987 flush_signals(current);
3988 prepare_to_wait(&conf->wait_for_overlap,
3989 &w, TASK_INTERRUPTIBLE);
3990 if (logical_sector >= mddev->suspend_lo &&
3991 logical_sector < mddev->suspend_hi)
3992 schedule();
e464eafd
N
3993 goto retry;
3994 }
7ecaa1e6
N
3995
3996 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3997 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3998 /* Stripe is busy expanding or
3999 * add failed due to overlap. Flush everything
1da177e4
LT
4000 * and wait a while
4001 */
4002 raid5_unplug_device(mddev->queue);
4003 release_stripe(sh);
4004 schedule();
4005 goto retry;
4006 }
4007 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4008 set_bit(STRIPE_HANDLE, &sh->state);
4009 clear_bit(STRIPE_DELAYED, &sh->state);
729a1866
N
4010 if (mddev->barrier &&
4011 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4012 atomic_inc(&conf->preread_active_stripes);
1da177e4 4013 release_stripe(sh);
1da177e4
LT
4014 } else {
4015 /* cannot get stripe for read-ahead, just give-up */
4016 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4017 finish_wait(&conf->wait_for_overlap, &w);
4018 break;
4019 }
4020
4021 }
4022 spin_lock_irq(&conf->device_lock);
960e739d 4023 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
4024 spin_unlock_irq(&conf->device_lock);
4025 if (remaining == 0) {
1da177e4 4026
16a53ecc 4027 if ( rw == WRITE )
1da177e4 4028 md_write_end(mddev);
6712ecf8 4029
0e13fe23 4030 bio_endio(bi, 0);
1da177e4 4031 }
729a1866
N
4032
4033 if (mddev->barrier) {
4034 /* We need to wait for the stripes to all be handled.
4035 * So: wait for preread_active_stripes to drop to 0.
4036 */
4037 wait_event(mddev->thread->wqueue,
4038 atomic_read(&conf->preread_active_stripes) == 0);
4039 }
1da177e4
LT
4040 return 0;
4041}
4042
b522adcd
DW
4043static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4044
52c03291 4045static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 4046{
52c03291
N
4047 /* reshaping is quite different to recovery/resync so it is
4048 * handled quite separately ... here.
4049 *
4050 * On each call to sync_request, we gather one chunk worth of
4051 * destination stripes and flag them as expanding.
4052 * Then we find all the source stripes and request reads.
4053 * As the reads complete, handle_stripe will copy the data
4054 * into the destination stripe and release that stripe.
4055 */
1da177e4
LT
4056 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4057 struct stripe_head *sh;
ccfcc3c1 4058 sector_t first_sector, last_sector;
f416885e
N
4059 int raid_disks = conf->previous_raid_disks;
4060 int data_disks = raid_disks - conf->max_degraded;
4061 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4062 int i;
4063 int dd_idx;
c8f517c4 4064 sector_t writepos, readpos, safepos;
ec32a2bd 4065 sector_t stripe_addr;
7a661381 4066 int reshape_sectors;
ab69ae12 4067 struct list_head stripes;
52c03291 4068
fef9c61f
N
4069 if (sector_nr == 0) {
4070 /* If restarting in the middle, skip the initial sectors */
4071 if (mddev->delta_disks < 0 &&
4072 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4073 sector_nr = raid5_size(mddev, 0, 0)
4074 - conf->reshape_progress;
a639755c 4075 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
4076 conf->reshape_progress > 0)
4077 sector_nr = conf->reshape_progress;
f416885e 4078 sector_div(sector_nr, new_data_disks);
fef9c61f 4079 if (sector_nr) {
8dee7211
N
4080 mddev->curr_resync_completed = sector_nr;
4081 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4082 *skipped = 1;
4083 return sector_nr;
4084 }
52c03291
N
4085 }
4086
7a661381
N
4087 /* We need to process a full chunk at a time.
4088 * If old and new chunk sizes differ, we need to process the
4089 * largest of these
4090 */
664e7c41
AN
4091 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4092 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4093 else
9d8f0363 4094 reshape_sectors = mddev->chunk_sectors;
7a661381 4095
52c03291
N
4096 /* we update the metadata when there is more than 3Meg
4097 * in the block range (that is rather arbitrary, should
4098 * probably be time based) or when the data about to be
4099 * copied would over-write the source of the data at
4100 * the front of the range.
fef9c61f
N
4101 * i.e. one new_stripe along from reshape_progress new_maps
4102 * to after where reshape_safe old_maps to
52c03291 4103 */
fef9c61f 4104 writepos = conf->reshape_progress;
f416885e 4105 sector_div(writepos, new_data_disks);
c8f517c4
N
4106 readpos = conf->reshape_progress;
4107 sector_div(readpos, data_disks);
fef9c61f 4108 safepos = conf->reshape_safe;
f416885e 4109 sector_div(safepos, data_disks);
fef9c61f 4110 if (mddev->delta_disks < 0) {
ed37d83e 4111 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4112 readpos += reshape_sectors;
7a661381 4113 safepos += reshape_sectors;
fef9c61f 4114 } else {
7a661381 4115 writepos += reshape_sectors;
ed37d83e
N
4116 readpos -= min_t(sector_t, reshape_sectors, readpos);
4117 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4118 }
52c03291 4119
c8f517c4
N
4120 /* 'writepos' is the most advanced device address we might write.
4121 * 'readpos' is the least advanced device address we might read.
4122 * 'safepos' is the least address recorded in the metadata as having
4123 * been reshaped.
4124 * If 'readpos' is behind 'writepos', then there is no way that we can
4125 * ensure safety in the face of a crash - that must be done by userspace
4126 * making a backup of the data. So in that case there is no particular
4127 * rush to update metadata.
4128 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4129 * update the metadata to advance 'safepos' to match 'readpos' so that
4130 * we can be safe in the event of a crash.
4131 * So we insist on updating metadata if safepos is behind writepos and
4132 * readpos is beyond writepos.
4133 * In any case, update the metadata every 10 seconds.
4134 * Maybe that number should be configurable, but I'm not sure it is
4135 * worth it.... maybe it could be a multiple of safemode_delay???
4136 */
fef9c61f 4137 if ((mddev->delta_disks < 0
c8f517c4
N
4138 ? (safepos > writepos && readpos < writepos)
4139 : (safepos < writepos && readpos > writepos)) ||
4140 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4141 /* Cannot proceed until we've updated the superblock... */
4142 wait_event(conf->wait_for_overlap,
4143 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4144 mddev->reshape_position = conf->reshape_progress;
acb180b0 4145 mddev->curr_resync_completed = mddev->curr_resync;
c8f517c4 4146 conf->reshape_checkpoint = jiffies;
850b2b42 4147 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4148 md_wakeup_thread(mddev->thread);
850b2b42 4149 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4150 kthread_should_stop());
4151 spin_lock_irq(&conf->device_lock);
fef9c61f 4152 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4153 spin_unlock_irq(&conf->device_lock);
4154 wake_up(&conf->wait_for_overlap);
acb180b0 4155 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4156 }
4157
ec32a2bd
N
4158 if (mddev->delta_disks < 0) {
4159 BUG_ON(conf->reshape_progress == 0);
4160 stripe_addr = writepos;
4161 BUG_ON((mddev->dev_sectors &
7a661381
N
4162 ~((sector_t)reshape_sectors - 1))
4163 - reshape_sectors - stripe_addr
ec32a2bd
N
4164 != sector_nr);
4165 } else {
7a661381 4166 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
4167 stripe_addr = sector_nr;
4168 }
ab69ae12 4169 INIT_LIST_HEAD(&stripes);
7a661381 4170 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4171 int j;
a9f326eb 4172 int skipped_disk = 0;
a8c906ca 4173 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4174 set_bit(STRIPE_EXPANDING, &sh->state);
4175 atomic_inc(&conf->reshape_stripes);
4176 /* If any of this stripe is beyond the end of the old
4177 * array, then we need to zero those blocks
4178 */
4179 for (j=sh->disks; j--;) {
4180 sector_t s;
4181 if (j == sh->pd_idx)
4182 continue;
f416885e 4183 if (conf->level == 6 &&
d0dabf7e 4184 j == sh->qd_idx)
f416885e 4185 continue;
784052ec 4186 s = compute_blocknr(sh, j, 0);
b522adcd 4187 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4188 skipped_disk = 1;
52c03291
N
4189 continue;
4190 }
4191 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4192 set_bit(R5_Expanded, &sh->dev[j].flags);
4193 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4194 }
a9f326eb 4195 if (!skipped_disk) {
52c03291
N
4196 set_bit(STRIPE_EXPAND_READY, &sh->state);
4197 set_bit(STRIPE_HANDLE, &sh->state);
4198 }
ab69ae12 4199 list_add(&sh->lru, &stripes);
52c03291
N
4200 }
4201 spin_lock_irq(&conf->device_lock);
fef9c61f 4202 if (mddev->delta_disks < 0)
7a661381 4203 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4204 else
7a661381 4205 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4206 spin_unlock_irq(&conf->device_lock);
4207 /* Ok, those stripe are ready. We can start scheduling
4208 * reads on the source stripes.
4209 * The source stripes are determined by mapping the first and last
4210 * block on the destination stripes.
4211 */
52c03291 4212 first_sector =
ec32a2bd 4213 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4214 1, &dd_idx, NULL);
52c03291 4215 last_sector =
0e6e0271 4216 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4217 * new_data_disks - 1),
911d4ee8 4218 1, &dd_idx, NULL);
58c0fed4
AN
4219 if (last_sector >= mddev->dev_sectors)
4220 last_sector = mddev->dev_sectors - 1;
52c03291 4221 while (first_sector <= last_sector) {
a8c906ca 4222 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4223 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4224 set_bit(STRIPE_HANDLE, &sh->state);
4225 release_stripe(sh);
4226 first_sector += STRIPE_SECTORS;
4227 }
ab69ae12
N
4228 /* Now that the sources are clearly marked, we can release
4229 * the destination stripes
4230 */
4231 while (!list_empty(&stripes)) {
4232 sh = list_entry(stripes.next, struct stripe_head, lru);
4233 list_del_init(&sh->lru);
4234 release_stripe(sh);
4235 }
c6207277
N
4236 /* If this takes us to the resync_max point where we have to pause,
4237 * then we need to write out the superblock.
4238 */
7a661381 4239 sector_nr += reshape_sectors;
c03f6a19
N
4240 if ((sector_nr - mddev->curr_resync_completed) * 2
4241 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4242 /* Cannot proceed until we've updated the superblock... */
4243 wait_event(conf->wait_for_overlap,
4244 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4245 mddev->reshape_position = conf->reshape_progress;
48606a9f 4246 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
c8f517c4 4247 conf->reshape_checkpoint = jiffies;
c6207277
N
4248 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4249 md_wakeup_thread(mddev->thread);
4250 wait_event(mddev->sb_wait,
4251 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4252 || kthread_should_stop());
4253 spin_lock_irq(&conf->device_lock);
fef9c61f 4254 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4255 spin_unlock_irq(&conf->device_lock);
4256 wake_up(&conf->wait_for_overlap);
acb180b0 4257 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4258 }
7a661381 4259 return reshape_sectors;
52c03291
N
4260}
4261
4262/* FIXME go_faster isn't used */
4263static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4264{
4265 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4266 struct stripe_head *sh;
58c0fed4 4267 sector_t max_sector = mddev->dev_sectors;
72626685 4268 int sync_blocks;
16a53ecc
N
4269 int still_degraded = 0;
4270 int i;
1da177e4 4271
72626685 4272 if (sector_nr >= max_sector) {
1da177e4
LT
4273 /* just being told to finish up .. nothing much to do */
4274 unplug_slaves(mddev);
cea9c228 4275
29269553
N
4276 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4277 end_reshape(conf);
4278 return 0;
4279 }
72626685
N
4280
4281 if (mddev->curr_resync < max_sector) /* aborted */
4282 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4283 &sync_blocks, 1);
16a53ecc 4284 else /* completed sync */
72626685
N
4285 conf->fullsync = 0;
4286 bitmap_close_sync(mddev->bitmap);
4287
1da177e4
LT
4288 return 0;
4289 }
ccfcc3c1 4290
64bd660b
N
4291 /* Allow raid5_quiesce to complete */
4292 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4293
52c03291
N
4294 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4295 return reshape_request(mddev, sector_nr, skipped);
f6705578 4296
c6207277
N
4297 /* No need to check resync_max as we never do more than one
4298 * stripe, and as resync_max will always be on a chunk boundary,
4299 * if the check in md_do_sync didn't fire, there is no chance
4300 * of overstepping resync_max here
4301 */
4302
16a53ecc 4303 /* if there is too many failed drives and we are trying
1da177e4
LT
4304 * to resync, then assert that we are finished, because there is
4305 * nothing we can do.
4306 */
3285edf1 4307 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4308 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4309 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4310 *skipped = 1;
1da177e4
LT
4311 return rv;
4312 }
72626685 4313 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4314 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4315 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4316 /* we can skip this block, and probably more */
4317 sync_blocks /= STRIPE_SECTORS;
4318 *skipped = 1;
4319 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4320 }
1da177e4 4321
b47490c9
N
4322
4323 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4324
a8c906ca 4325 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4326 if (sh == NULL) {
a8c906ca 4327 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4328 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4329 * is trying to get access
1da177e4 4330 */
66c006a5 4331 schedule_timeout_uninterruptible(1);
1da177e4 4332 }
16a53ecc
N
4333 /* Need to check if array will still be degraded after recovery/resync
4334 * We don't need to check the 'failed' flag as when that gets set,
4335 * recovery aborts.
4336 */
f001a70c 4337 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4338 if (conf->disks[i].rdev == NULL)
4339 still_degraded = 1;
4340
4341 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4342
4343 spin_lock(&sh->lock);
1da177e4
LT
4344 set_bit(STRIPE_SYNCING, &sh->state);
4345 clear_bit(STRIPE_INSYNC, &sh->state);
4346 spin_unlock(&sh->lock);
4347
1442577b 4348 handle_stripe(sh);
1da177e4
LT
4349 release_stripe(sh);
4350
4351 return STRIPE_SECTORS;
4352}
4353
46031f9a
RBJ
4354static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4355{
4356 /* We may not be able to submit a whole bio at once as there
4357 * may not be enough stripe_heads available.
4358 * We cannot pre-allocate enough stripe_heads as we may need
4359 * more than exist in the cache (if we allow ever large chunks).
4360 * So we do one stripe head at a time and record in
4361 * ->bi_hw_segments how many have been done.
4362 *
4363 * We *know* that this entire raid_bio is in one chunk, so
4364 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4365 */
4366 struct stripe_head *sh;
911d4ee8 4367 int dd_idx;
46031f9a
RBJ
4368 sector_t sector, logical_sector, last_sector;
4369 int scnt = 0;
4370 int remaining;
4371 int handled = 0;
4372
4373 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4374 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4375 0, &dd_idx, NULL);
46031f9a
RBJ
4376 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4377
4378 for (; logical_sector < last_sector;
387bb173
NB
4379 logical_sector += STRIPE_SECTORS,
4380 sector += STRIPE_SECTORS,
4381 scnt++) {
46031f9a 4382
960e739d 4383 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4384 /* already done this stripe */
4385 continue;
4386
a8c906ca 4387 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4388
4389 if (!sh) {
4390 /* failed to get a stripe - must wait */
960e739d 4391 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4392 conf->retry_read_aligned = raid_bio;
4393 return handled;
4394 }
4395
4396 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4397 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4398 release_stripe(sh);
960e739d 4399 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4400 conf->retry_read_aligned = raid_bio;
4401 return handled;
4402 }
4403
36d1c647 4404 handle_stripe(sh);
46031f9a
RBJ
4405 release_stripe(sh);
4406 handled++;
4407 }
4408 spin_lock_irq(&conf->device_lock);
960e739d 4409 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4410 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4411 if (remaining == 0)
4412 bio_endio(raid_bio, 0);
46031f9a
RBJ
4413 if (atomic_dec_and_test(&conf->active_aligned_reads))
4414 wake_up(&conf->wait_for_stripe);
4415 return handled;
4416}
4417
46031f9a 4418
1da177e4
LT
4419/*
4420 * This is our raid5 kernel thread.
4421 *
4422 * We scan the hash table for stripes which can be handled now.
4423 * During the scan, completed stripes are saved for us by the interrupt
4424 * handler, so that they will not have to wait for our next wakeup.
4425 */
6ed3003c 4426static void raid5d(mddev_t *mddev)
1da177e4
LT
4427{
4428 struct stripe_head *sh;
070ec55d 4429 raid5_conf_t *conf = mddev->private;
1da177e4
LT
4430 int handled;
4431
45b4233c 4432 pr_debug("+++ raid5d active\n");
1da177e4
LT
4433
4434 md_check_recovery(mddev);
1da177e4
LT
4435
4436 handled = 0;
4437 spin_lock_irq(&conf->device_lock);
4438 while (1) {
46031f9a 4439 struct bio *bio;
1da177e4 4440
ae3c20cc 4441 if (conf->seq_flush != conf->seq_write) {
72626685 4442 int seq = conf->seq_flush;
700e432d 4443 spin_unlock_irq(&conf->device_lock);
72626685 4444 bitmap_unplug(mddev->bitmap);
700e432d 4445 spin_lock_irq(&conf->device_lock);
72626685
N
4446 conf->seq_write = seq;
4447 activate_bit_delay(conf);
4448 }
4449
46031f9a
RBJ
4450 while ((bio = remove_bio_from_retry(conf))) {
4451 int ok;
4452 spin_unlock_irq(&conf->device_lock);
4453 ok = retry_aligned_read(conf, bio);
4454 spin_lock_irq(&conf->device_lock);
4455 if (!ok)
4456 break;
4457 handled++;
4458 }
4459
8b3e6cdc
DW
4460 sh = __get_priority_stripe(conf);
4461
c9f21aaf 4462 if (!sh)
1da177e4 4463 break;
1da177e4
LT
4464 spin_unlock_irq(&conf->device_lock);
4465
4466 handled++;
417b8d4a
DW
4467 handle_stripe(sh);
4468 release_stripe(sh);
4469 cond_resched();
1da177e4
LT
4470
4471 spin_lock_irq(&conf->device_lock);
4472 }
45b4233c 4473 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4474
4475 spin_unlock_irq(&conf->device_lock);
4476
c9f21aaf 4477 async_tx_issue_pending_all();
1da177e4
LT
4478 unplug_slaves(mddev);
4479
45b4233c 4480 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4481}
4482
3f294f4f 4483static ssize_t
007583c9 4484raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4485{
070ec55d 4486 raid5_conf_t *conf = mddev->private;
96de1e66
N
4487 if (conf)
4488 return sprintf(page, "%d\n", conf->max_nr_stripes);
4489 else
4490 return 0;
3f294f4f
N
4491}
4492
4493static ssize_t
007583c9 4494raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4495{
070ec55d 4496 raid5_conf_t *conf = mddev->private;
4ef197d8 4497 unsigned long new;
b5470dc5
DW
4498 int err;
4499
3f294f4f
N
4500 if (len >= PAGE_SIZE)
4501 return -EINVAL;
96de1e66
N
4502 if (!conf)
4503 return -ENODEV;
3f294f4f 4504
4ef197d8 4505 if (strict_strtoul(page, 10, &new))
3f294f4f
N
4506 return -EINVAL;
4507 if (new <= 16 || new > 32768)
4508 return -EINVAL;
4509 while (new < conf->max_nr_stripes) {
4510 if (drop_one_stripe(conf))
4511 conf->max_nr_stripes--;
4512 else
4513 break;
4514 }
b5470dc5
DW
4515 err = md_allow_write(mddev);
4516 if (err)
4517 return err;
3f294f4f
N
4518 while (new > conf->max_nr_stripes) {
4519 if (grow_one_stripe(conf))
4520 conf->max_nr_stripes++;
4521 else break;
4522 }
4523 return len;
4524}
007583c9 4525
96de1e66
N
4526static struct md_sysfs_entry
4527raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4528 raid5_show_stripe_cache_size,
4529 raid5_store_stripe_cache_size);
3f294f4f 4530
8b3e6cdc
DW
4531static ssize_t
4532raid5_show_preread_threshold(mddev_t *mddev, char *page)
4533{
070ec55d 4534 raid5_conf_t *conf = mddev->private;
8b3e6cdc
DW
4535 if (conf)
4536 return sprintf(page, "%d\n", conf->bypass_threshold);
4537 else
4538 return 0;
4539}
4540
4541static ssize_t
4542raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4543{
070ec55d 4544 raid5_conf_t *conf = mddev->private;
4ef197d8 4545 unsigned long new;
8b3e6cdc
DW
4546 if (len >= PAGE_SIZE)
4547 return -EINVAL;
4548 if (!conf)
4549 return -ENODEV;
4550
4ef197d8 4551 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4552 return -EINVAL;
4ef197d8 4553 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4554 return -EINVAL;
4555 conf->bypass_threshold = new;
4556 return len;
4557}
4558
4559static struct md_sysfs_entry
4560raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4561 S_IRUGO | S_IWUSR,
4562 raid5_show_preread_threshold,
4563 raid5_store_preread_threshold);
4564
3f294f4f 4565static ssize_t
96de1e66 4566stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4567{
070ec55d 4568 raid5_conf_t *conf = mddev->private;
96de1e66
N
4569 if (conf)
4570 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4571 else
4572 return 0;
3f294f4f
N
4573}
4574
96de1e66
N
4575static struct md_sysfs_entry
4576raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4577
007583c9 4578static struct attribute *raid5_attrs[] = {
3f294f4f
N
4579 &raid5_stripecache_size.attr,
4580 &raid5_stripecache_active.attr,
8b3e6cdc 4581 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4582 NULL,
4583};
007583c9
N
4584static struct attribute_group raid5_attrs_group = {
4585 .name = NULL,
4586 .attrs = raid5_attrs,
3f294f4f
N
4587};
4588
80c3a6ce
DW
4589static sector_t
4590raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4591{
070ec55d 4592 raid5_conf_t *conf = mddev->private;
80c3a6ce
DW
4593
4594 if (!sectors)
4595 sectors = mddev->dev_sectors;
5e5e3e78 4596 if (!raid_disks)
7ec05478 4597 /* size is defined by the smallest of previous and new size */
5e5e3e78 4598 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4599
9d8f0363 4600 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4601 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4602 return sectors * (raid_disks - conf->max_degraded);
4603}
4604
36d1c647
DW
4605static void raid5_free_percpu(raid5_conf_t *conf)
4606{
4607 struct raid5_percpu *percpu;
4608 unsigned long cpu;
4609
4610 if (!conf->percpu)
4611 return;
4612
4613 get_online_cpus();
4614 for_each_possible_cpu(cpu) {
4615 percpu = per_cpu_ptr(conf->percpu, cpu);
4616 safe_put_page(percpu->spare_page);
d6f38f31 4617 kfree(percpu->scribble);
36d1c647
DW
4618 }
4619#ifdef CONFIG_HOTPLUG_CPU
4620 unregister_cpu_notifier(&conf->cpu_notify);
4621#endif
4622 put_online_cpus();
4623
4624 free_percpu(conf->percpu);
4625}
4626
95fc17aa
DW
4627static void free_conf(raid5_conf_t *conf)
4628{
4629 shrink_stripes(conf);
36d1c647 4630 raid5_free_percpu(conf);
95fc17aa
DW
4631 kfree(conf->disks);
4632 kfree(conf->stripe_hashtbl);
4633 kfree(conf);
4634}
4635
36d1c647
DW
4636#ifdef CONFIG_HOTPLUG_CPU
4637static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4638 void *hcpu)
4639{
4640 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4641 long cpu = (long)hcpu;
4642 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4643
4644 switch (action) {
4645 case CPU_UP_PREPARE:
4646 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4647 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4648 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4649 if (!percpu->scribble)
4650 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4651
4652 if (!percpu->scribble ||
4653 (conf->level == 6 && !percpu->spare_page)) {
4654 safe_put_page(percpu->spare_page);
4655 kfree(percpu->scribble);
36d1c647
DW
4656 pr_err("%s: failed memory allocation for cpu%ld\n",
4657 __func__, cpu);
4658 return NOTIFY_BAD;
4659 }
4660 break;
4661 case CPU_DEAD:
4662 case CPU_DEAD_FROZEN:
4663 safe_put_page(percpu->spare_page);
d6f38f31 4664 kfree(percpu->scribble);
36d1c647 4665 percpu->spare_page = NULL;
d6f38f31 4666 percpu->scribble = NULL;
36d1c647
DW
4667 break;
4668 default:
4669 break;
4670 }
4671 return NOTIFY_OK;
4672}
4673#endif
4674
4675static int raid5_alloc_percpu(raid5_conf_t *conf)
4676{
4677 unsigned long cpu;
4678 struct page *spare_page;
a29d8b8e 4679 struct raid5_percpu __percpu *allcpus;
d6f38f31 4680 void *scribble;
36d1c647
DW
4681 int err;
4682
36d1c647
DW
4683 allcpus = alloc_percpu(struct raid5_percpu);
4684 if (!allcpus)
4685 return -ENOMEM;
4686 conf->percpu = allcpus;
4687
4688 get_online_cpus();
4689 err = 0;
4690 for_each_present_cpu(cpu) {
d6f38f31
DW
4691 if (conf->level == 6) {
4692 spare_page = alloc_page(GFP_KERNEL);
4693 if (!spare_page) {
4694 err = -ENOMEM;
4695 break;
4696 }
4697 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4698 }
5e5e3e78 4699 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4700 if (!scribble) {
36d1c647
DW
4701 err = -ENOMEM;
4702 break;
4703 }
d6f38f31 4704 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4705 }
4706#ifdef CONFIG_HOTPLUG_CPU
4707 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4708 conf->cpu_notify.priority = 0;
4709 if (err == 0)
4710 err = register_cpu_notifier(&conf->cpu_notify);
4711#endif
4712 put_online_cpus();
4713
4714 return err;
4715}
4716
91adb564 4717static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4718{
4719 raid5_conf_t *conf;
5e5e3e78 4720 int raid_disk, memory, max_disks;
1da177e4
LT
4721 mdk_rdev_t *rdev;
4722 struct disk_info *disk;
1da177e4 4723
91adb564
N
4724 if (mddev->new_level != 5
4725 && mddev->new_level != 4
4726 && mddev->new_level != 6) {
16a53ecc 4727 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4728 mdname(mddev), mddev->new_level);
4729 return ERR_PTR(-EIO);
1da177e4 4730 }
91adb564
N
4731 if ((mddev->new_level == 5
4732 && !algorithm_valid_raid5(mddev->new_layout)) ||
4733 (mddev->new_level == 6
4734 && !algorithm_valid_raid6(mddev->new_layout))) {
99c0fb5f 4735 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
91adb564
N
4736 mdname(mddev), mddev->new_layout);
4737 return ERR_PTR(-EIO);
99c0fb5f 4738 }
91adb564
N
4739 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4740 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4741 mdname(mddev), mddev->raid_disks);
4742 return ERR_PTR(-EINVAL);
4bbf3771
N
4743 }
4744
664e7c41
AN
4745 if (!mddev->new_chunk_sectors ||
4746 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4747 !is_power_of_2(mddev->new_chunk_sectors)) {
91adb564 4748 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
664e7c41 4749 mddev->new_chunk_sectors << 9, mdname(mddev));
91adb564 4750 return ERR_PTR(-EINVAL);
f6705578
N
4751 }
4752
91adb564
N
4753 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4754 if (conf == NULL)
1da177e4 4755 goto abort;
f5efd45a
DW
4756 spin_lock_init(&conf->device_lock);
4757 init_waitqueue_head(&conf->wait_for_stripe);
4758 init_waitqueue_head(&conf->wait_for_overlap);
4759 INIT_LIST_HEAD(&conf->handle_list);
4760 INIT_LIST_HEAD(&conf->hold_list);
4761 INIT_LIST_HEAD(&conf->delayed_list);
4762 INIT_LIST_HEAD(&conf->bitmap_list);
4763 INIT_LIST_HEAD(&conf->inactive_list);
4764 atomic_set(&conf->active_stripes, 0);
4765 atomic_set(&conf->preread_active_stripes, 0);
4766 atomic_set(&conf->active_aligned_reads, 0);
4767 conf->bypass_threshold = BYPASS_THRESHOLD;
91adb564
N
4768
4769 conf->raid_disks = mddev->raid_disks;
4770 if (mddev->reshape_position == MaxSector)
4771 conf->previous_raid_disks = mddev->raid_disks;
4772 else
f6705578 4773 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4774 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4775 conf->scribble_len = scribble_len(max_disks);
f6705578 4776
5e5e3e78 4777 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4778 GFP_KERNEL);
4779 if (!conf->disks)
4780 goto abort;
9ffae0cf 4781
1da177e4
LT
4782 conf->mddev = mddev;
4783
fccddba0 4784 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4785 goto abort;
1da177e4 4786
36d1c647
DW
4787 conf->level = mddev->new_level;
4788 if (raid5_alloc_percpu(conf) != 0)
4789 goto abort;
4790
45b4233c 4791 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4792
159ec1fc 4793 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4794 raid_disk = rdev->raid_disk;
5e5e3e78 4795 if (raid_disk >= max_disks
1da177e4
LT
4796 || raid_disk < 0)
4797 continue;
4798 disk = conf->disks + raid_disk;
4799
4800 disk->rdev = rdev;
4801
b2d444d7 4802 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4803 char b[BDEVNAME_SIZE];
4804 printk(KERN_INFO "raid5: device %s operational as raid"
4805 " disk %d\n", bdevname(rdev->bdev,b),
4806 raid_disk);
8c2e870a
NB
4807 } else
4808 /* Cannot rely on bitmap to complete recovery */
4809 conf->fullsync = 1;
1da177e4
LT
4810 }
4811
09c9e5fa 4812 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4813 conf->level = mddev->new_level;
16a53ecc
N
4814 if (conf->level == 6)
4815 conf->max_degraded = 2;
4816 else
4817 conf->max_degraded = 1;
91adb564 4818 conf->algorithm = mddev->new_layout;
1da177e4 4819 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4820 conf->reshape_progress = mddev->reshape_position;
e183eaed 4821 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4822 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4823 conf->prev_algo = mddev->layout;
4824 }
1da177e4 4825
91adb564 4826 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4827 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4828 if (grow_stripes(conf, conf->max_nr_stripes)) {
4829 printk(KERN_ERR
4830 "raid5: couldn't allocate %dkB for buffers\n", memory);
4831 goto abort;
4832 } else
4833 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4834 memory, mdname(mddev));
1da177e4 4835
0da3c619 4836 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4837 if (!conf->thread) {
4838 printk(KERN_ERR
4839 "raid5: couldn't allocate thread for %s\n",
4840 mdname(mddev));
16a53ecc
N
4841 goto abort;
4842 }
91adb564
N
4843
4844 return conf;
4845
4846 abort:
4847 if (conf) {
95fc17aa 4848 free_conf(conf);
91adb564
N
4849 return ERR_PTR(-EIO);
4850 } else
4851 return ERR_PTR(-ENOMEM);
4852}
4853
c148ffdc
N
4854
4855static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4856{
4857 switch (algo) {
4858 case ALGORITHM_PARITY_0:
4859 if (raid_disk < max_degraded)
4860 return 1;
4861 break;
4862 case ALGORITHM_PARITY_N:
4863 if (raid_disk >= raid_disks - max_degraded)
4864 return 1;
4865 break;
4866 case ALGORITHM_PARITY_0_6:
4867 if (raid_disk == 0 ||
4868 raid_disk == raid_disks - 1)
4869 return 1;
4870 break;
4871 case ALGORITHM_LEFT_ASYMMETRIC_6:
4872 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4873 case ALGORITHM_LEFT_SYMMETRIC_6:
4874 case ALGORITHM_RIGHT_SYMMETRIC_6:
4875 if (raid_disk == raid_disks - 1)
4876 return 1;
4877 }
4878 return 0;
4879}
4880
91adb564
N
4881static int run(mddev_t *mddev)
4882{
4883 raid5_conf_t *conf;
8f6c2e4b 4884 int working_disks = 0, chunk_size;
c148ffdc 4885 int dirty_parity_disks = 0;
91adb564 4886 mdk_rdev_t *rdev;
c148ffdc 4887 sector_t reshape_offset = 0;
91adb564 4888
8c6ac868
AN
4889 if (mddev->recovery_cp != MaxSector)
4890 printk(KERN_NOTICE "raid5: %s is not clean"
4891 " -- starting background reconstruction\n",
4892 mdname(mddev));
91adb564
N
4893 if (mddev->reshape_position != MaxSector) {
4894 /* Check that we can continue the reshape.
4895 * Currently only disks can change, it must
4896 * increase, and we must be past the point where
4897 * a stripe over-writes itself
4898 */
4899 sector_t here_new, here_old;
4900 int old_disks;
18b00334 4901 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4902
88ce4930 4903 if (mddev->new_level != mddev->level) {
91adb564
N
4904 printk(KERN_ERR "raid5: %s: unsupported reshape "
4905 "required - aborting.\n",
4906 mdname(mddev));
4907 return -EINVAL;
4908 }
91adb564
N
4909 old_disks = mddev->raid_disks - mddev->delta_disks;
4910 /* reshape_position must be on a new-stripe boundary, and one
4911 * further up in new geometry must map after here in old
4912 * geometry.
4913 */
4914 here_new = mddev->reshape_position;
664e7c41 4915 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564
N
4916 (mddev->raid_disks - max_degraded))) {
4917 printk(KERN_ERR "raid5: reshape_position not "
4918 "on a stripe boundary\n");
4919 return -EINVAL;
4920 }
c148ffdc 4921 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
4922 /* here_new is the stripe we will write to */
4923 here_old = mddev->reshape_position;
9d8f0363 4924 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
4925 (old_disks-max_degraded));
4926 /* here_old is the first stripe that we might need to read
4927 * from */
67ac6011
N
4928 if (mddev->delta_disks == 0) {
4929 /* We cannot be sure it is safe to start an in-place
4930 * reshape. It is only safe if user-space if monitoring
4931 * and taking constant backups.
4932 * mdadm always starts a situation like this in
4933 * readonly mode so it can take control before
4934 * allowing any writes. So just check for that.
4935 */
4936 if ((here_new * mddev->new_chunk_sectors !=
4937 here_old * mddev->chunk_sectors) ||
4938 mddev->ro == 0) {
4939 printk(KERN_ERR "raid5: in-place reshape must be started"
4940 " in read-only mode - aborting\n");
4941 return -EINVAL;
4942 }
4943 } else if (mddev->delta_disks < 0
4944 ? (here_new * mddev->new_chunk_sectors <=
4945 here_old * mddev->chunk_sectors)
4946 : (here_new * mddev->new_chunk_sectors >=
4947 here_old * mddev->chunk_sectors)) {
91adb564
N
4948 /* Reading from the same stripe as writing to - bad */
4949 printk(KERN_ERR "raid5: reshape_position too early for "
4950 "auto-recovery - aborting.\n");
4951 return -EINVAL;
4952 }
4953 printk(KERN_INFO "raid5: reshape will continue\n");
4954 /* OK, we should be able to continue; */
4955 } else {
4956 BUG_ON(mddev->level != mddev->new_level);
4957 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 4958 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 4959 BUG_ON(mddev->delta_disks != 0);
1da177e4 4960 }
91adb564 4961
245f46c2
N
4962 if (mddev->private == NULL)
4963 conf = setup_conf(mddev);
4964 else
4965 conf = mddev->private;
4966
91adb564
N
4967 if (IS_ERR(conf))
4968 return PTR_ERR(conf);
4969
4970 mddev->thread = conf->thread;
4971 conf->thread = NULL;
4972 mddev->private = conf;
4973
4974 /*
4975 * 0 for a fully functional array, 1 or 2 for a degraded array.
4976 */
c148ffdc
N
4977 list_for_each_entry(rdev, &mddev->disks, same_set) {
4978 if (rdev->raid_disk < 0)
4979 continue;
4980 if (test_bit(In_sync, &rdev->flags))
91adb564 4981 working_disks++;
c148ffdc
N
4982 /* This disc is not fully in-sync. However if it
4983 * just stored parity (beyond the recovery_offset),
4984 * when we don't need to be concerned about the
4985 * array being dirty.
4986 * When reshape goes 'backwards', we never have
4987 * partially completed devices, so we only need
4988 * to worry about reshape going forwards.
4989 */
4990 /* Hack because v0.91 doesn't store recovery_offset properly. */
4991 if (mddev->major_version == 0 &&
4992 mddev->minor_version > 90)
4993 rdev->recovery_offset = reshape_offset;
4994
4995 printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4996 rdev->raid_disk, working_disks, conf->prev_algo,
4997 conf->previous_raid_disks, conf->max_degraded,
4998 conf->algorithm, conf->raid_disks,
4999 only_parity(rdev->raid_disk,
5000 conf->prev_algo,
5001 conf->previous_raid_disks,
5002 conf->max_degraded),
5003 only_parity(rdev->raid_disk,
5004 conf->algorithm,
5005 conf->raid_disks,
5006 conf->max_degraded));
5007 if (rdev->recovery_offset < reshape_offset) {
5008 /* We need to check old and new layout */
5009 if (!only_parity(rdev->raid_disk,
5010 conf->algorithm,
5011 conf->raid_disks,
5012 conf->max_degraded))
5013 continue;
5014 }
5015 if (!only_parity(rdev->raid_disk,
5016 conf->prev_algo,
5017 conf->previous_raid_disks,
5018 conf->max_degraded))
5019 continue;
5020 dirty_parity_disks++;
5021 }
91adb564 5022
5e5e3e78
N
5023 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5024 - working_disks);
91adb564 5025
16a53ecc 5026 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
5027 printk(KERN_ERR "raid5: not enough operational devices for %s"
5028 " (%d/%d failed)\n",
02c2de8c 5029 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5030 goto abort;
5031 }
5032
91adb564 5033 /* device size must be a multiple of chunk size */
9d8f0363 5034 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5035 mddev->resync_max_sectors = mddev->dev_sectors;
5036
c148ffdc 5037 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5038 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5039 if (mddev->ok_start_degraded)
5040 printk(KERN_WARNING
5041 "raid5: starting dirty degraded array: %s"
5042 "- data corruption possible.\n",
5043 mdname(mddev));
5044 else {
5045 printk(KERN_ERR
5046 "raid5: cannot start dirty degraded array for %s\n",
5047 mdname(mddev));
5048 goto abort;
5049 }
1da177e4
LT
5050 }
5051
1da177e4
LT
5052 if (mddev->degraded == 0)
5053 printk("raid5: raid level %d set %s active with %d out of %d"
e183eaed
N
5054 " devices, algorithm %d\n", conf->level, mdname(mddev),
5055 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5056 mddev->new_layout);
1da177e4
LT
5057 else
5058 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5059 " out of %d devices, algorithm %d\n", conf->level,
5060 mdname(mddev), mddev->raid_disks - mddev->degraded,
e183eaed 5061 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5062
5063 print_raid5_conf(conf);
5064
fef9c61f 5065 if (conf->reshape_progress != MaxSector) {
f6705578 5066 printk("...ok start reshape thread\n");
fef9c61f 5067 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5068 atomic_set(&conf->reshape_stripes, 0);
5069 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5070 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5071 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5072 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5073 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5074 "reshape");
f6705578
N
5075 }
5076
1da177e4 5077 /* read-ahead size must cover two whole stripes, which is
16a53ecc 5078 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
5079 */
5080 {
16a53ecc
N
5081 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5082 int stripe = data_disks *
9d8f0363 5083 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
5084 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5085 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5086 }
5087
5088 /* Ok, everything is just fine now */
5e55e2f5
N
5089 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5090 printk(KERN_WARNING
5091 "raid5: failed to create sysfs attributes for %s\n",
5092 mdname(mddev));
7a5febe9 5093
91adb564
N
5094 mddev->queue->queue_lock = &conf->device_lock;
5095
7a5febe9 5096 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 5097 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 5098 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 5099
1f403624 5100 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5101
23032a0e 5102 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
8f6c2e4b
MP
5103 chunk_size = mddev->chunk_sectors << 9;
5104 blk_queue_io_min(mddev->queue, chunk_size);
5105 blk_queue_io_opt(mddev->queue, chunk_size *
5106 (conf->raid_disks - conf->max_degraded));
5107
5108 list_for_each_entry(rdev, &mddev->disks, same_set)
5109 disk_stack_limits(mddev->gendisk, rdev->bdev,
5110 rdev->data_offset << 9);
23032a0e 5111
1da177e4
LT
5112 return 0;
5113abort:
e0cf8f04 5114 md_unregister_thread(mddev->thread);
91adb564 5115 mddev->thread = NULL;
1da177e4
LT
5116 if (conf) {
5117 print_raid5_conf(conf);
95fc17aa 5118 free_conf(conf);
1da177e4
LT
5119 }
5120 mddev->private = NULL;
5121 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5122 return -EIO;
5123}
5124
5125
5126
3f294f4f 5127static int stop(mddev_t *mddev)
1da177e4
LT
5128{
5129 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5130
5131 md_unregister_thread(mddev->thread);
5132 mddev->thread = NULL;
041ae52e 5133 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 5134 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
95fc17aa 5135 free_conf(conf);
ef286f6f 5136 mddev->private = &raid5_attrs_group;
1da177e4
LT
5137 return 0;
5138}
5139
45b4233c 5140#ifdef DEBUG
d710e138 5141static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
5142{
5143 int i;
5144
16a53ecc
N
5145 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5146 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5147 seq_printf(seq, "sh %llu, count %d.\n",
5148 (unsigned long long)sh->sector, atomic_read(&sh->count));
5149 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 5150 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
5151 seq_printf(seq, "(cache%d: %p %ld) ",
5152 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 5153 }
16a53ecc 5154 seq_printf(seq, "\n");
1da177e4
LT
5155}
5156
d710e138 5157static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
5158{
5159 struct stripe_head *sh;
fccddba0 5160 struct hlist_node *hn;
1da177e4
LT
5161 int i;
5162
5163 spin_lock_irq(&conf->device_lock);
5164 for (i = 0; i < NR_HASH; i++) {
fccddba0 5165 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
5166 if (sh->raid_conf != conf)
5167 continue;
16a53ecc 5168 print_sh(seq, sh);
1da177e4
LT
5169 }
5170 }
5171 spin_unlock_irq(&conf->device_lock);
5172}
5173#endif
5174
d710e138 5175static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4
LT
5176{
5177 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5178 int i;
5179
9d8f0363
AN
5180 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5181 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5182 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5183 for (i = 0; i < conf->raid_disks; i++)
5184 seq_printf (seq, "%s",
5185 conf->disks[i].rdev &&
b2d444d7 5186 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5187 seq_printf (seq, "]");
45b4233c 5188#ifdef DEBUG
16a53ecc
N
5189 seq_printf (seq, "\n");
5190 printall(seq, conf);
1da177e4
LT
5191#endif
5192}
5193
5194static void print_raid5_conf (raid5_conf_t *conf)
5195{
5196 int i;
5197 struct disk_info *tmp;
5198
5199 printk("RAID5 conf printout:\n");
5200 if (!conf) {
5201 printk("(conf==NULL)\n");
5202 return;
5203 }
02c2de8c
N
5204 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5205 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5206
5207 for (i = 0; i < conf->raid_disks; i++) {
5208 char b[BDEVNAME_SIZE];
5209 tmp = conf->disks + i;
5210 if (tmp->rdev)
5211 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 5212 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
5213 bdevname(tmp->rdev->bdev,b));
5214 }
5215}
5216
5217static int raid5_spare_active(mddev_t *mddev)
5218{
5219 int i;
5220 raid5_conf_t *conf = mddev->private;
5221 struct disk_info *tmp;
5222
5223 for (i = 0; i < conf->raid_disks; i++) {
5224 tmp = conf->disks + i;
5225 if (tmp->rdev
b2d444d7 5226 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
5227 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5228 unsigned long flags;
5229 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 5230 mddev->degraded--;
c04be0aa 5231 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
5232 }
5233 }
5234 print_raid5_conf(conf);
5235 return 0;
5236}
5237
5238static int raid5_remove_disk(mddev_t *mddev, int number)
5239{
5240 raid5_conf_t *conf = mddev->private;
5241 int err = 0;
5242 mdk_rdev_t *rdev;
5243 struct disk_info *p = conf->disks + number;
5244
5245 print_raid5_conf(conf);
5246 rdev = p->rdev;
5247 if (rdev) {
ec32a2bd
N
5248 if (number >= conf->raid_disks &&
5249 conf->reshape_progress == MaxSector)
5250 clear_bit(In_sync, &rdev->flags);
5251
b2d444d7 5252 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
5253 atomic_read(&rdev->nr_pending)) {
5254 err = -EBUSY;
5255 goto abort;
5256 }
dfc70645
N
5257 /* Only remove non-faulty devices if recovery
5258 * isn't possible.
5259 */
5260 if (!test_bit(Faulty, &rdev->flags) &&
ec32a2bd
N
5261 mddev->degraded <= conf->max_degraded &&
5262 number < conf->raid_disks) {
dfc70645
N
5263 err = -EBUSY;
5264 goto abort;
5265 }
1da177e4 5266 p->rdev = NULL;
fbd568a3 5267 synchronize_rcu();
1da177e4
LT
5268 if (atomic_read(&rdev->nr_pending)) {
5269 /* lost the race, try later */
5270 err = -EBUSY;
5271 p->rdev = rdev;
5272 }
5273 }
5274abort:
5275
5276 print_raid5_conf(conf);
5277 return err;
5278}
5279
5280static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5281{
5282 raid5_conf_t *conf = mddev->private;
199050ea 5283 int err = -EEXIST;
1da177e4
LT
5284 int disk;
5285 struct disk_info *p;
6c2fce2e
NB
5286 int first = 0;
5287 int last = conf->raid_disks - 1;
1da177e4 5288
16a53ecc 5289 if (mddev->degraded > conf->max_degraded)
1da177e4 5290 /* no point adding a device */
199050ea 5291 return -EINVAL;
1da177e4 5292
6c2fce2e
NB
5293 if (rdev->raid_disk >= 0)
5294 first = last = rdev->raid_disk;
1da177e4
LT
5295
5296 /*
16a53ecc
N
5297 * find the disk ... but prefer rdev->saved_raid_disk
5298 * if possible.
1da177e4 5299 */
16a53ecc 5300 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5301 rdev->saved_raid_disk >= first &&
16a53ecc
N
5302 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5303 disk = rdev->saved_raid_disk;
5304 else
6c2fce2e
NB
5305 disk = first;
5306 for ( ; disk <= last ; disk++)
1da177e4 5307 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5308 clear_bit(In_sync, &rdev->flags);
1da177e4 5309 rdev->raid_disk = disk;
199050ea 5310 err = 0;
72626685
N
5311 if (rdev->saved_raid_disk != disk)
5312 conf->fullsync = 1;
d6065f7b 5313 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5314 break;
5315 }
5316 print_raid5_conf(conf);
199050ea 5317 return err;
1da177e4
LT
5318}
5319
5320static int raid5_resize(mddev_t *mddev, sector_t sectors)
5321{
5322 /* no resync is happening, and there is enough space
5323 * on all devices, so we can resize.
5324 * We need to make sure resync covers any new space.
5325 * If the array is shrinking we should possibly wait until
5326 * any io in the removed space completes, but it hardly seems
5327 * worth it.
5328 */
9d8f0363 5329 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5330 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5331 mddev->raid_disks));
b522adcd
DW
5332 if (mddev->array_sectors >
5333 raid5_size(mddev, sectors, mddev->raid_disks))
5334 return -EINVAL;
f233ea5c 5335 set_capacity(mddev->gendisk, mddev->array_sectors);
44ce6294 5336 mddev->changed = 1;
449aad3e 5337 revalidate_disk(mddev->gendisk);
58c0fed4
AN
5338 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5339 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5340 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5341 }
58c0fed4 5342 mddev->dev_sectors = sectors;
4b5c7ae8 5343 mddev->resync_max_sectors = sectors;
1da177e4
LT
5344 return 0;
5345}
5346
01ee22b4
N
5347static int check_stripe_cache(mddev_t *mddev)
5348{
5349 /* Can only proceed if there are plenty of stripe_heads.
5350 * We need a minimum of one full stripe,, and for sensible progress
5351 * it is best to have about 4 times that.
5352 * If we require 4 times, then the default 256 4K stripe_heads will
5353 * allow for chunk sizes up to 256K, which is probably OK.
5354 * If the chunk size is greater, user-space should request more
5355 * stripe_heads first.
5356 */
5357 raid5_conf_t *conf = mddev->private;
5358 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5359 > conf->max_nr_stripes ||
5360 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5361 > conf->max_nr_stripes) {
5362 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
5363 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5364 / STRIPE_SIZE)*4);
5365 return 0;
5366 }
5367 return 1;
5368}
5369
50ac168a 5370static int check_reshape(mddev_t *mddev)
29269553 5371{
070ec55d 5372 raid5_conf_t *conf = mddev->private;
29269553 5373
88ce4930
N
5374 if (mddev->delta_disks == 0 &&
5375 mddev->new_layout == mddev->layout &&
664e7c41 5376 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5377 return 0; /* nothing to do */
dba034ee
N
5378 if (mddev->bitmap)
5379 /* Cannot grow a bitmap yet */
5380 return -EBUSY;
ec32a2bd
N
5381 if (mddev->degraded > conf->max_degraded)
5382 return -EINVAL;
5383 if (mddev->delta_disks < 0) {
5384 /* We might be able to shrink, but the devices must
5385 * be made bigger first.
5386 * For raid6, 4 is the minimum size.
5387 * Otherwise 2 is the minimum
5388 */
5389 int min = 2;
5390 if (mddev->level == 6)
5391 min = 4;
5392 if (mddev->raid_disks + mddev->delta_disks < min)
5393 return -EINVAL;
5394 }
29269553 5395
01ee22b4 5396 if (!check_stripe_cache(mddev))
29269553 5397 return -ENOSPC;
29269553 5398
ec32a2bd 5399 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5400}
5401
5402static int raid5_start_reshape(mddev_t *mddev)
5403{
070ec55d 5404 raid5_conf_t *conf = mddev->private;
63c70c4f 5405 mdk_rdev_t *rdev;
63c70c4f
N
5406 int spares = 0;
5407 int added_devices = 0;
c04be0aa 5408 unsigned long flags;
63c70c4f 5409
f416885e 5410 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5411 return -EBUSY;
5412
01ee22b4
N
5413 if (!check_stripe_cache(mddev))
5414 return -ENOSPC;
5415
159ec1fc 5416 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
5417 if (rdev->raid_disk < 0 &&
5418 !test_bit(Faulty, &rdev->flags))
5419 spares++;
63c70c4f 5420
f416885e 5421 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5422 /* Not enough devices even to make a degraded array
5423 * of that size
5424 */
5425 return -EINVAL;
5426
ec32a2bd
N
5427 /* Refuse to reduce size of the array. Any reductions in
5428 * array size must be through explicit setting of array_size
5429 * attribute.
5430 */
5431 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5432 < mddev->array_sectors) {
5433 printk(KERN_ERR "md: %s: array size must be reduced "
5434 "before number of disks\n", mdname(mddev));
5435 return -EINVAL;
5436 }
5437
f6705578 5438 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5439 spin_lock_irq(&conf->device_lock);
5440 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5441 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5442 conf->prev_chunk_sectors = conf->chunk_sectors;
5443 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5444 conf->prev_algo = conf->algorithm;
5445 conf->algorithm = mddev->new_layout;
fef9c61f
N
5446 if (mddev->delta_disks < 0)
5447 conf->reshape_progress = raid5_size(mddev, 0, 0);
5448 else
5449 conf->reshape_progress = 0;
5450 conf->reshape_safe = conf->reshape_progress;
86b42c71 5451 conf->generation++;
29269553
N
5452 spin_unlock_irq(&conf->device_lock);
5453
5454 /* Add some new drives, as many as will fit.
5455 * We know there are enough to make the newly sized array work.
5456 */
159ec1fc 5457 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
5458 if (rdev->raid_disk < 0 &&
5459 !test_bit(Faulty, &rdev->flags)) {
199050ea 5460 if (raid5_add_disk(mddev, rdev) == 0) {
29269553 5461 char nm[20];
9eb07c25 5462 if (rdev->raid_disk >= conf->previous_raid_disks) {
7ef90146 5463 set_bit(In_sync, &rdev->flags);
9eb07c25
N
5464 added_devices++;
5465 } else
7ef90146 5466 rdev->recovery_offset = 0;
29269553 5467 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
5468 if (sysfs_create_link(&mddev->kobj,
5469 &rdev->kobj, nm))
5470 printk(KERN_WARNING
5471 "raid5: failed to create "
5472 " link %s for %s\n",
5473 nm, mdname(mddev));
29269553
N
5474 } else
5475 break;
5476 }
5477
9eb07c25
N
5478 /* When a reshape changes the number of devices, ->degraded
5479 * is measured against the large of the pre and post number of
5480 * devices.*/
ec32a2bd
N
5481 if (mddev->delta_disks > 0) {
5482 spin_lock_irqsave(&conf->device_lock, flags);
9eb07c25 5483 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
ec32a2bd
N
5484 - added_devices;
5485 spin_unlock_irqrestore(&conf->device_lock, flags);
5486 }
63c70c4f 5487 mddev->raid_disks = conf->raid_disks;
e516402c 5488 mddev->reshape_position = conf->reshape_progress;
850b2b42 5489 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5490
29269553
N
5491 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5492 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5493 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5494 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5495 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5496 "reshape");
29269553
N
5497 if (!mddev->sync_thread) {
5498 mddev->recovery = 0;
5499 spin_lock_irq(&conf->device_lock);
5500 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5501 conf->reshape_progress = MaxSector;
29269553
N
5502 spin_unlock_irq(&conf->device_lock);
5503 return -EAGAIN;
5504 }
c8f517c4 5505 conf->reshape_checkpoint = jiffies;
29269553
N
5506 md_wakeup_thread(mddev->sync_thread);
5507 md_new_event(mddev);
5508 return 0;
5509}
29269553 5510
ec32a2bd
N
5511/* This is called from the reshape thread and should make any
5512 * changes needed in 'conf'
5513 */
29269553
N
5514static void end_reshape(raid5_conf_t *conf)
5515{
29269553 5516
f6705578 5517 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5518
f6705578 5519 spin_lock_irq(&conf->device_lock);
cea9c228 5520 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5521 conf->reshape_progress = MaxSector;
f6705578 5522 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5523 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5524
5525 /* read-ahead size must cover two whole stripes, which is
5526 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5527 */
5528 {
cea9c228 5529 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5530 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5531 / PAGE_SIZE);
16a53ecc
N
5532 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5533 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5534 }
29269553 5535 }
29269553
N
5536}
5537
ec32a2bd
N
5538/* This is called from the raid5d thread with mddev_lock held.
5539 * It makes config changes to the device.
5540 */
cea9c228
N
5541static void raid5_finish_reshape(mddev_t *mddev)
5542{
070ec55d 5543 raid5_conf_t *conf = mddev->private;
cea9c228
N
5544
5545 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5546
ec32a2bd
N
5547 if (mddev->delta_disks > 0) {
5548 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5549 set_capacity(mddev->gendisk, mddev->array_sectors);
5550 mddev->changed = 1;
449aad3e 5551 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5552 } else {
5553 int d;
ec32a2bd
N
5554 mddev->degraded = conf->raid_disks;
5555 for (d = 0; d < conf->raid_disks ; d++)
5556 if (conf->disks[d].rdev &&
5557 test_bit(In_sync,
5558 &conf->disks[d].rdev->flags))
5559 mddev->degraded--;
5560 for (d = conf->raid_disks ;
5561 d < conf->raid_disks - mddev->delta_disks;
1a67dde0
N
5562 d++) {
5563 mdk_rdev_t *rdev = conf->disks[d].rdev;
5564 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5565 char nm[20];
5566 sprintf(nm, "rd%d", rdev->raid_disk);
5567 sysfs_remove_link(&mddev->kobj, nm);
5568 rdev->raid_disk = -1;
5569 }
5570 }
cea9c228 5571 }
88ce4930 5572 mddev->layout = conf->algorithm;
09c9e5fa 5573 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5574 mddev->reshape_position = MaxSector;
5575 mddev->delta_disks = 0;
cea9c228
N
5576 }
5577}
5578
72626685
N
5579static void raid5_quiesce(mddev_t *mddev, int state)
5580{
070ec55d 5581 raid5_conf_t *conf = mddev->private;
72626685
N
5582
5583 switch(state) {
e464eafd
N
5584 case 2: /* resume for a suspend */
5585 wake_up(&conf->wait_for_overlap);
5586 break;
5587
72626685
N
5588 case 1: /* stop all writes */
5589 spin_lock_irq(&conf->device_lock);
64bd660b
N
5590 /* '2' tells resync/reshape to pause so that all
5591 * active stripes can drain
5592 */
5593 conf->quiesce = 2;
72626685 5594 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5595 atomic_read(&conf->active_stripes) == 0 &&
5596 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5597 conf->device_lock, /* nothing */);
64bd660b 5598 conf->quiesce = 1;
72626685 5599 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5600 /* allow reshape to continue */
5601 wake_up(&conf->wait_for_overlap);
72626685
N
5602 break;
5603
5604 case 0: /* re-enable writes */
5605 spin_lock_irq(&conf->device_lock);
5606 conf->quiesce = 0;
5607 wake_up(&conf->wait_for_stripe);
e464eafd 5608 wake_up(&conf->wait_for_overlap);
72626685
N
5609 spin_unlock_irq(&conf->device_lock);
5610 break;
5611 }
72626685 5612}
b15c2e57 5613
d562b0c4
N
5614
5615static void *raid5_takeover_raid1(mddev_t *mddev)
5616{
5617 int chunksect;
5618
5619 if (mddev->raid_disks != 2 ||
5620 mddev->degraded > 1)
5621 return ERR_PTR(-EINVAL);
5622
5623 /* Should check if there are write-behind devices? */
5624
5625 chunksect = 64*2; /* 64K by default */
5626
5627 /* The array must be an exact multiple of chunksize */
5628 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5629 chunksect >>= 1;
5630
5631 if ((chunksect<<9) < STRIPE_SIZE)
5632 /* array size does not allow a suitable chunk size */
5633 return ERR_PTR(-EINVAL);
5634
5635 mddev->new_level = 5;
5636 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5637 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5638
5639 return setup_conf(mddev);
5640}
5641
fc9739c6
N
5642static void *raid5_takeover_raid6(mddev_t *mddev)
5643{
5644 int new_layout;
5645
5646 switch (mddev->layout) {
5647 case ALGORITHM_LEFT_ASYMMETRIC_6:
5648 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5649 break;
5650 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5651 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5652 break;
5653 case ALGORITHM_LEFT_SYMMETRIC_6:
5654 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5655 break;
5656 case ALGORITHM_RIGHT_SYMMETRIC_6:
5657 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5658 break;
5659 case ALGORITHM_PARITY_0_6:
5660 new_layout = ALGORITHM_PARITY_0;
5661 break;
5662 case ALGORITHM_PARITY_N:
5663 new_layout = ALGORITHM_PARITY_N;
5664 break;
5665 default:
5666 return ERR_PTR(-EINVAL);
5667 }
5668 mddev->new_level = 5;
5669 mddev->new_layout = new_layout;
5670 mddev->delta_disks = -1;
5671 mddev->raid_disks -= 1;
5672 return setup_conf(mddev);
5673}
5674
d562b0c4 5675
50ac168a 5676static int raid5_check_reshape(mddev_t *mddev)
b3546035 5677{
88ce4930
N
5678 /* For a 2-drive array, the layout and chunk size can be changed
5679 * immediately as not restriping is needed.
5680 * For larger arrays we record the new value - after validation
5681 * to be used by a reshape pass.
b3546035 5682 */
070ec55d 5683 raid5_conf_t *conf = mddev->private;
597a711b 5684 int new_chunk = mddev->new_chunk_sectors;
b3546035 5685
597a711b 5686 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5687 return -EINVAL;
5688 if (new_chunk > 0) {
0ba459d2 5689 if (!is_power_of_2(new_chunk))
b3546035 5690 return -EINVAL;
597a711b 5691 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5692 return -EINVAL;
597a711b 5693 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5694 /* not factor of array size */
5695 return -EINVAL;
5696 }
5697
5698 /* They look valid */
5699
88ce4930 5700 if (mddev->raid_disks == 2) {
597a711b
N
5701 /* can make the change immediately */
5702 if (mddev->new_layout >= 0) {
5703 conf->algorithm = mddev->new_layout;
5704 mddev->layout = mddev->new_layout;
88ce4930
N
5705 }
5706 if (new_chunk > 0) {
597a711b
N
5707 conf->chunk_sectors = new_chunk ;
5708 mddev->chunk_sectors = new_chunk;
88ce4930
N
5709 }
5710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5711 md_wakeup_thread(mddev->thread);
b3546035 5712 }
50ac168a 5713 return check_reshape(mddev);
88ce4930
N
5714}
5715
50ac168a 5716static int raid6_check_reshape(mddev_t *mddev)
88ce4930 5717{
597a711b 5718 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5719
597a711b 5720 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5721 return -EINVAL;
b3546035 5722 if (new_chunk > 0) {
0ba459d2 5723 if (!is_power_of_2(new_chunk))
88ce4930 5724 return -EINVAL;
597a711b 5725 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5726 return -EINVAL;
597a711b 5727 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5728 /* not factor of array size */
5729 return -EINVAL;
b3546035 5730 }
88ce4930
N
5731
5732 /* They look valid */
50ac168a 5733 return check_reshape(mddev);
b3546035
N
5734}
5735
d562b0c4
N
5736static void *raid5_takeover(mddev_t *mddev)
5737{
5738 /* raid5 can take over:
5739 * raid0 - if all devices are the same - make it a raid4 layout
5740 * raid1 - if there are two drives. We need to know the chunk size
5741 * raid4 - trivial - just use a raid4 layout.
5742 * raid6 - Providing it is a *_6 layout
d562b0c4
N
5743 */
5744
5745 if (mddev->level == 1)
5746 return raid5_takeover_raid1(mddev);
e9d4758f
N
5747 if (mddev->level == 4) {
5748 mddev->new_layout = ALGORITHM_PARITY_N;
5749 mddev->new_level = 5;
5750 return setup_conf(mddev);
5751 }
fc9739c6
N
5752 if (mddev->level == 6)
5753 return raid5_takeover_raid6(mddev);
d562b0c4
N
5754
5755 return ERR_PTR(-EINVAL);
5756}
5757
5758
245f46c2
N
5759static struct mdk_personality raid5_personality;
5760
5761static void *raid6_takeover(mddev_t *mddev)
5762{
5763 /* Currently can only take over a raid5. We map the
5764 * personality to an equivalent raid6 personality
5765 * with the Q block at the end.
5766 */
5767 int new_layout;
5768
5769 if (mddev->pers != &raid5_personality)
5770 return ERR_PTR(-EINVAL);
5771 if (mddev->degraded > 1)
5772 return ERR_PTR(-EINVAL);
5773 if (mddev->raid_disks > 253)
5774 return ERR_PTR(-EINVAL);
5775 if (mddev->raid_disks < 3)
5776 return ERR_PTR(-EINVAL);
5777
5778 switch (mddev->layout) {
5779 case ALGORITHM_LEFT_ASYMMETRIC:
5780 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5781 break;
5782 case ALGORITHM_RIGHT_ASYMMETRIC:
5783 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5784 break;
5785 case ALGORITHM_LEFT_SYMMETRIC:
5786 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5787 break;
5788 case ALGORITHM_RIGHT_SYMMETRIC:
5789 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5790 break;
5791 case ALGORITHM_PARITY_0:
5792 new_layout = ALGORITHM_PARITY_0_6;
5793 break;
5794 case ALGORITHM_PARITY_N:
5795 new_layout = ALGORITHM_PARITY_N;
5796 break;
5797 default:
5798 return ERR_PTR(-EINVAL);
5799 }
5800 mddev->new_level = 6;
5801 mddev->new_layout = new_layout;
5802 mddev->delta_disks = 1;
5803 mddev->raid_disks += 1;
5804 return setup_conf(mddev);
5805}
5806
5807
16a53ecc
N
5808static struct mdk_personality raid6_personality =
5809{
5810 .name = "raid6",
5811 .level = 6,
5812 .owner = THIS_MODULE,
5813 .make_request = make_request,
5814 .run = run,
5815 .stop = stop,
5816 .status = status,
5817 .error_handler = error,
5818 .hot_add_disk = raid5_add_disk,
5819 .hot_remove_disk= raid5_remove_disk,
5820 .spare_active = raid5_spare_active,
5821 .sync_request = sync_request,
5822 .resize = raid5_resize,
80c3a6ce 5823 .size = raid5_size,
50ac168a 5824 .check_reshape = raid6_check_reshape,
f416885e 5825 .start_reshape = raid5_start_reshape,
cea9c228 5826 .finish_reshape = raid5_finish_reshape,
16a53ecc 5827 .quiesce = raid5_quiesce,
245f46c2 5828 .takeover = raid6_takeover,
16a53ecc 5829};
2604b703 5830static struct mdk_personality raid5_personality =
1da177e4
LT
5831{
5832 .name = "raid5",
2604b703 5833 .level = 5,
1da177e4
LT
5834 .owner = THIS_MODULE,
5835 .make_request = make_request,
5836 .run = run,
5837 .stop = stop,
5838 .status = status,
5839 .error_handler = error,
5840 .hot_add_disk = raid5_add_disk,
5841 .hot_remove_disk= raid5_remove_disk,
5842 .spare_active = raid5_spare_active,
5843 .sync_request = sync_request,
5844 .resize = raid5_resize,
80c3a6ce 5845 .size = raid5_size,
63c70c4f
N
5846 .check_reshape = raid5_check_reshape,
5847 .start_reshape = raid5_start_reshape,
cea9c228 5848 .finish_reshape = raid5_finish_reshape,
72626685 5849 .quiesce = raid5_quiesce,
d562b0c4 5850 .takeover = raid5_takeover,
1da177e4
LT
5851};
5852
2604b703 5853static struct mdk_personality raid4_personality =
1da177e4 5854{
2604b703
N
5855 .name = "raid4",
5856 .level = 4,
5857 .owner = THIS_MODULE,
5858 .make_request = make_request,
5859 .run = run,
5860 .stop = stop,
5861 .status = status,
5862 .error_handler = error,
5863 .hot_add_disk = raid5_add_disk,
5864 .hot_remove_disk= raid5_remove_disk,
5865 .spare_active = raid5_spare_active,
5866 .sync_request = sync_request,
5867 .resize = raid5_resize,
80c3a6ce 5868 .size = raid5_size,
3d37890b
N
5869 .check_reshape = raid5_check_reshape,
5870 .start_reshape = raid5_start_reshape,
cea9c228 5871 .finish_reshape = raid5_finish_reshape,
2604b703
N
5872 .quiesce = raid5_quiesce,
5873};
5874
5875static int __init raid5_init(void)
5876{
16a53ecc 5877 register_md_personality(&raid6_personality);
2604b703
N
5878 register_md_personality(&raid5_personality);
5879 register_md_personality(&raid4_personality);
5880 return 0;
1da177e4
LT
5881}
5882
2604b703 5883static void raid5_exit(void)
1da177e4 5884{
16a53ecc 5885 unregister_md_personality(&raid6_personality);
2604b703
N
5886 unregister_md_personality(&raid5_personality);
5887 unregister_md_personality(&raid4_personality);
1da177e4
LT
5888}
5889
5890module_init(raid5_init);
5891module_exit(raid5_exit);
5892MODULE_LICENSE("GPL");
0efb9e61 5893MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 5894MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5895MODULE_ALIAS("md-raid5");
5896MODULE_ALIAS("md-raid4");
2604b703
N
5897MODULE_ALIAS("md-level-5");
5898MODULE_ALIAS("md-level-4");
16a53ecc
N
5899MODULE_ALIAS("md-personality-8"); /* RAID6 */
5900MODULE_ALIAS("md-raid6");
5901MODULE_ALIAS("md-level-6");
5902
5903/* This used to be two separate modules, they were: */
5904MODULE_ALIAS("raid5");
5905MODULE_ALIAS("raid6");