md/raid5: avoid reading from known bad blocks.
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
07a3b417 50#include <linux/async.h>
bff61975 51#include <linux/seq_file.h>
36d1c647 52#include <linux/cpu.h>
5a0e3ad6 53#include <linux/slab.h>
8bda470e 54#include <linux/ratelimit.h>
43b2e5d8 55#include "md.h"
bff61975 56#include "raid5.h"
54071b38 57#include "raid0.h"
ef740c37 58#include "bitmap.h"
72626685 59
1da177e4
LT
60/*
61 * Stripe cache
62 */
63
64#define NR_STRIPES 256
65#define STRIPE_SIZE PAGE_SIZE
66#define STRIPE_SHIFT (PAGE_SHIFT - 9)
67#define STRIPE_SECTORS (STRIPE_SIZE>>9)
68#define IO_THRESHOLD 1
8b3e6cdc 69#define BYPASS_THRESHOLD 1
fccddba0 70#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
71#define HASH_MASK (NR_HASH - 1)
72
fccddba0 73#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
74
75/* bio's attached to a stripe+device for I/O are linked together in bi_sector
76 * order without overlap. There may be several bio's per stripe+device, and
77 * a bio could span several devices.
78 * When walking this list for a particular stripe+device, we must never proceed
79 * beyond a bio that extends past this device, as the next bio might no longer
80 * be valid.
81 * This macro is used to determine the 'next' bio in the list, given the sector
82 * of the current stripe+device
83 */
84#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85/*
86 * The following can be used to debug the driver
87 */
1da177e4
LT
88#define RAID5_PARANOIA 1
89#if RAID5_PARANOIA && defined(CONFIG_SMP)
90# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91#else
92# define CHECK_DEVLOCK()
93#endif
94
45b4233c 95#ifdef DEBUG
1da177e4
LT
96#define inline
97#define __inline__
98#endif
99
960e739d 100/*
5b99c2ff
JA
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
103 */
104static inline int raid5_bi_phys_segments(struct bio *bio)
105{
5b99c2ff 106 return bio->bi_phys_segments & 0xffff;
960e739d
JA
107}
108
109static inline int raid5_bi_hw_segments(struct bio *bio)
110{
5b99c2ff 111 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
112}
113
114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115{
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
118}
119
120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121{
122 unsigned short val = raid5_bi_hw_segments(bio);
123
124 --val;
5b99c2ff 125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
126 return val;
127}
128
129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130{
9b2dc8b6 131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
960e739d
JA
132}
133
d0dabf7e
N
134/* Find first data disk in a raid6 stripe */
135static inline int raid6_d0(struct stripe_head *sh)
136{
67cc2b81
N
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
d0dabf7e
N
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
145}
16a53ecc
N
146static inline int raid6_next_disk(int disk, int raid_disks)
147{
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
150}
a4456856 151
d0dabf7e
N
152/* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
156 */
67cc2b81
N
157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
d0dabf7e 159{
6629542e 160 int slot = *count;
67cc2b81 161
e4424fee 162 if (sh->ddf_layout)
6629542e 163 (*count)++;
d0dabf7e 164 if (idx == sh->pd_idx)
67cc2b81 165 return syndrome_disks;
d0dabf7e 166 if (idx == sh->qd_idx)
67cc2b81 167 return syndrome_disks + 1;
e4424fee 168 if (!sh->ddf_layout)
6629542e 169 (*count)++;
d0dabf7e
N
170 return slot;
171}
172
a4456856
DW
173static void return_io(struct bio *return_bi)
174{
175 struct bio *bi = return_bi;
176 while (bi) {
a4456856
DW
177
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
0e13fe23 181 bio_endio(bi, 0);
a4456856
DW
182 bi = return_bi;
183 }
184}
185
1da177e4
LT
186static void print_raid5_conf (raid5_conf_t *conf);
187
600aa109
DW
188static int stripe_operations_active(struct stripe_head *sh)
189{
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193}
194
858119e1 195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
196{
197 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
482c0834 201 if (test_bit(STRIPE_DELAYED, &sh->state))
1da177e4 202 list_add_tail(&sh->lru, &conf->delayed_list);
482c0834
N
203 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0)
72626685 205 list_add_tail(&sh->lru, &conf->bitmap_list);
482c0834 206 else {
72626685 207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 208 list_add_tail(&sh->lru, &conf->handle_list);
72626685 209 }
1da177e4
LT
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
600aa109 212 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214 atomic_dec(&conf->preread_active_stripes);
215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 }
1da177e4 218 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
219 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 221 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
222 if (conf->retry_read_aligned)
223 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 224 }
1da177e4
LT
225 }
226 }
227}
d0dabf7e 228
1da177e4
LT
229static void release_stripe(struct stripe_head *sh)
230{
231 raid5_conf_t *conf = sh->raid_conf;
232 unsigned long flags;
16a53ecc 233
1da177e4
LT
234 spin_lock_irqsave(&conf->device_lock, flags);
235 __release_stripe(conf, sh);
236 spin_unlock_irqrestore(&conf->device_lock, flags);
237}
238
fccddba0 239static inline void remove_hash(struct stripe_head *sh)
1da177e4 240{
45b4233c
DW
241 pr_debug("remove_hash(), stripe %llu\n",
242 (unsigned long long)sh->sector);
1da177e4 243
fccddba0 244 hlist_del_init(&sh->hash);
1da177e4
LT
245}
246
16a53ecc 247static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 248{
fccddba0 249 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 250
45b4233c
DW
251 pr_debug("insert_hash(), stripe %llu\n",
252 (unsigned long long)sh->sector);
1da177e4
LT
253
254 CHECK_DEVLOCK();
fccddba0 255 hlist_add_head(&sh->hash, hp);
1da177e4
LT
256}
257
258
259/* find an idle stripe, make sure it is unhashed, and return it. */
260static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261{
262 struct stripe_head *sh = NULL;
263 struct list_head *first;
264
265 CHECK_DEVLOCK();
266 if (list_empty(&conf->inactive_list))
267 goto out;
268 first = conf->inactive_list.next;
269 sh = list_entry(first, struct stripe_head, lru);
270 list_del_init(first);
271 remove_hash(sh);
272 atomic_inc(&conf->active_stripes);
273out:
274 return sh;
275}
276
e4e11e38 277static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
278{
279 struct page *p;
280 int i;
e4e11e38 281 int num = sh->raid_conf->pool_size;
1da177e4 282
e4e11e38 283 for (i = 0; i < num ; i++) {
1da177e4
LT
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
2d1f3b5d 288 put_page(p);
1da177e4
LT
289 }
290}
291
e4e11e38 292static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
293{
294 int i;
e4e11e38 295 int num = sh->raid_conf->pool_size;
1da177e4 296
e4e11e38 297 for (i = 0; i < num; i++) {
1da177e4
LT
298 struct page *page;
299
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
302 }
303 sh->dev[i].page = page;
304 }
305 return 0;
306}
307
784052ec 308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
1da177e4 311
b5663ba4 312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
313{
314 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 315 int i;
1da177e4 316
78bafebd
ES
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 319 BUG_ON(stripe_operations_active(sh));
d84e0f10 320
1da177e4 321 CHECK_DEVLOCK();
45b4233c 322 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
323 (unsigned long long)sh->sector);
324
325 remove_hash(sh);
16a53ecc 326
86b42c71 327 sh->generation = conf->generation - previous;
b5663ba4 328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 329 sh->sector = sector;
911d4ee8 330 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
331 sh->state = 0;
332
7ecaa1e6
N
333
334 for (i = sh->disks; i--; ) {
1da177e4
LT
335 struct r5dev *dev = &sh->dev[i];
336
d84e0f10 337 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 338 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 340 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 341 dev->read, dev->towrite, dev->written,
1da177e4 342 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 343 WARN_ON(1);
1da177e4
LT
344 }
345 dev->flags = 0;
784052ec 346 raid5_build_block(sh, i, previous);
1da177e4
LT
347 }
348 insert_hash(conf, sh);
349}
350
86b42c71
N
351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
1da177e4
LT
353{
354 struct stripe_head *sh;
fccddba0 355 struct hlist_node *hn;
1da177e4
LT
356
357 CHECK_DEVLOCK();
45b4233c 358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 360 if (sh->sector == sector && sh->generation == generation)
1da177e4 361 return sh;
45b4233c 362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
363 return NULL;
364}
365
674806d6
N
366/*
367 * Need to check if array has failed when deciding whether to:
368 * - start an array
369 * - remove non-faulty devices
370 * - add a spare
371 * - allow a reshape
372 * This determination is simple when no reshape is happening.
373 * However if there is a reshape, we need to carefully check
374 * both the before and after sections.
375 * This is because some failed devices may only affect one
376 * of the two sections, and some non-in_sync devices may
377 * be insync in the section most affected by failed devices.
378 */
379static int has_failed(raid5_conf_t *conf)
380{
381 int degraded;
382 int i;
383 if (conf->mddev->reshape_position == MaxSector)
384 return conf->mddev->degraded > conf->max_degraded;
385
386 rcu_read_lock();
387 degraded = 0;
388 for (i = 0; i < conf->previous_raid_disks; i++) {
389 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390 if (!rdev || test_bit(Faulty, &rdev->flags))
391 degraded++;
392 else if (test_bit(In_sync, &rdev->flags))
393 ;
394 else
395 /* not in-sync or faulty.
396 * If the reshape increases the number of devices,
397 * this is being recovered by the reshape, so
398 * this 'previous' section is not in_sync.
399 * If the number of devices is being reduced however,
400 * the device can only be part of the array if
401 * we are reverting a reshape, so this section will
402 * be in-sync.
403 */
404 if (conf->raid_disks >= conf->previous_raid_disks)
405 degraded++;
406 }
407 rcu_read_unlock();
408 if (degraded > conf->max_degraded)
409 return 1;
410 rcu_read_lock();
411 degraded = 0;
412 for (i = 0; i < conf->raid_disks; i++) {
413 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414 if (!rdev || test_bit(Faulty, &rdev->flags))
415 degraded++;
416 else if (test_bit(In_sync, &rdev->flags))
417 ;
418 else
419 /* not in-sync or faulty.
420 * If reshape increases the number of devices, this
421 * section has already been recovered, else it
422 * almost certainly hasn't.
423 */
424 if (conf->raid_disks <= conf->previous_raid_disks)
425 degraded++;
426 }
427 rcu_read_unlock();
428 if (degraded > conf->max_degraded)
429 return 1;
430 return 0;
431}
432
b5663ba4
N
433static struct stripe_head *
434get_active_stripe(raid5_conf_t *conf, sector_t sector,
a8c906ca 435 int previous, int noblock, int noquiesce)
1da177e4
LT
436{
437 struct stripe_head *sh;
438
45b4233c 439 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
440
441 spin_lock_irq(&conf->device_lock);
442
443 do {
72626685 444 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 445 conf->quiesce == 0 || noquiesce,
72626685 446 conf->device_lock, /* nothing */);
86b42c71 447 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
448 if (!sh) {
449 if (!conf->inactive_blocked)
450 sh = get_free_stripe(conf);
451 if (noblock && sh == NULL)
452 break;
453 if (!sh) {
454 conf->inactive_blocked = 1;
455 wait_event_lock_irq(conf->wait_for_stripe,
456 !list_empty(&conf->inactive_list) &&
5036805b
N
457 (atomic_read(&conf->active_stripes)
458 < (conf->max_nr_stripes *3/4)
1da177e4
LT
459 || !conf->inactive_blocked),
460 conf->device_lock,
7c13edc8 461 );
1da177e4
LT
462 conf->inactive_blocked = 0;
463 } else
b5663ba4 464 init_stripe(sh, sector, previous);
1da177e4
LT
465 } else {
466 if (atomic_read(&sh->count)) {
ab69ae12
N
467 BUG_ON(!list_empty(&sh->lru)
468 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
469 } else {
470 if (!test_bit(STRIPE_HANDLE, &sh->state))
471 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
472 if (list_empty(&sh->lru) &&
473 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
474 BUG();
475 list_del_init(&sh->lru);
1da177e4
LT
476 }
477 }
478 } while (sh == NULL);
479
480 if (sh)
481 atomic_inc(&sh->count);
482
483 spin_unlock_irq(&conf->device_lock);
484 return sh;
485}
486
6712ecf8
N
487static void
488raid5_end_read_request(struct bio *bi, int error);
489static void
490raid5_end_write_request(struct bio *bi, int error);
91c00924 491
c4e5ac0a 492static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
493{
494 raid5_conf_t *conf = sh->raid_conf;
495 int i, disks = sh->disks;
496
497 might_sleep();
498
499 for (i = disks; i--; ) {
500 int rw;
501 struct bio *bi;
502 mdk_rdev_t *rdev;
e9c7469b
TH
503 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505 rw = WRITE_FUA;
506 else
507 rw = WRITE;
508 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924
DW
509 rw = READ;
510 else
511 continue;
512
513 bi = &sh->dev[i].req;
514
515 bi->bi_rw = rw;
b062962e 516 if (rw & WRITE)
91c00924
DW
517 bi->bi_end_io = raid5_end_write_request;
518 else
519 bi->bi_end_io = raid5_end_read_request;
520
521 rcu_read_lock();
522 rdev = rcu_dereference(conf->disks[i].rdev);
523 if (rdev && test_bit(Faulty, &rdev->flags))
524 rdev = NULL;
525 if (rdev)
526 atomic_inc(&rdev->nr_pending);
527 rcu_read_unlock();
528
529 if (rdev) {
c4e5ac0a 530 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
531 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
532
2b7497f0
DW
533 set_bit(STRIPE_IO_STARTED, &sh->state);
534
91c00924
DW
535 bi->bi_bdev = rdev->bdev;
536 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 537 __func__, (unsigned long long)sh->sector,
91c00924
DW
538 bi->bi_rw, i);
539 atomic_inc(&sh->count);
540 bi->bi_sector = sh->sector + rdev->data_offset;
541 bi->bi_flags = 1 << BIO_UPTODATE;
542 bi->bi_vcnt = 1;
543 bi->bi_max_vecs = 1;
544 bi->bi_idx = 0;
545 bi->bi_io_vec = &sh->dev[i].vec;
546 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
547 bi->bi_io_vec[0].bv_offset = 0;
548 bi->bi_size = STRIPE_SIZE;
549 bi->bi_next = NULL;
91c00924
DW
550 generic_make_request(bi);
551 } else {
b062962e 552 if (rw & WRITE)
91c00924
DW
553 set_bit(STRIPE_DEGRADED, &sh->state);
554 pr_debug("skip op %ld on disc %d for sector %llu\n",
555 bi->bi_rw, i, (unsigned long long)sh->sector);
556 clear_bit(R5_LOCKED, &sh->dev[i].flags);
557 set_bit(STRIPE_HANDLE, &sh->state);
558 }
559 }
560}
561
562static struct dma_async_tx_descriptor *
563async_copy_data(int frombio, struct bio *bio, struct page *page,
564 sector_t sector, struct dma_async_tx_descriptor *tx)
565{
566 struct bio_vec *bvl;
567 struct page *bio_page;
568 int i;
569 int page_offset;
a08abd8c 570 struct async_submit_ctl submit;
0403e382 571 enum async_tx_flags flags = 0;
91c00924
DW
572
573 if (bio->bi_sector >= sector)
574 page_offset = (signed)(bio->bi_sector - sector) * 512;
575 else
576 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 577
0403e382
DW
578 if (frombio)
579 flags |= ASYNC_TX_FENCE;
580 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
581
91c00924 582 bio_for_each_segment(bvl, bio, i) {
fcde9075 583 int len = bvl->bv_len;
91c00924
DW
584 int clen;
585 int b_offset = 0;
586
587 if (page_offset < 0) {
588 b_offset = -page_offset;
589 page_offset += b_offset;
590 len -= b_offset;
591 }
592
593 if (len > 0 && page_offset + len > STRIPE_SIZE)
594 clen = STRIPE_SIZE - page_offset;
595 else
596 clen = len;
597
598 if (clen > 0) {
fcde9075
NK
599 b_offset += bvl->bv_offset;
600 bio_page = bvl->bv_page;
91c00924
DW
601 if (frombio)
602 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 603 b_offset, clen, &submit);
91c00924
DW
604 else
605 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 606 page_offset, clen, &submit);
91c00924 607 }
a08abd8c
DW
608 /* chain the operations */
609 submit.depend_tx = tx;
610
91c00924
DW
611 if (clen < len) /* hit end of page */
612 break;
613 page_offset += len;
614 }
615
616 return tx;
617}
618
619static void ops_complete_biofill(void *stripe_head_ref)
620{
621 struct stripe_head *sh = stripe_head_ref;
622 struct bio *return_bi = NULL;
623 raid5_conf_t *conf = sh->raid_conf;
e4d84909 624 int i;
91c00924 625
e46b272b 626 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
627 (unsigned long long)sh->sector);
628
629 /* clear completed biofills */
83de75cc 630 spin_lock_irq(&conf->device_lock);
91c00924
DW
631 for (i = sh->disks; i--; ) {
632 struct r5dev *dev = &sh->dev[i];
91c00924
DW
633
634 /* acknowledge completion of a biofill operation */
e4d84909
DW
635 /* and check if we need to reply to a read request,
636 * new R5_Wantfill requests are held off until
83de75cc 637 * !STRIPE_BIOFILL_RUN
e4d84909
DW
638 */
639 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 640 struct bio *rbi, *rbi2;
91c00924 641
91c00924
DW
642 BUG_ON(!dev->read);
643 rbi = dev->read;
644 dev->read = NULL;
645 while (rbi && rbi->bi_sector <
646 dev->sector + STRIPE_SECTORS) {
647 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 648 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
649 rbi->bi_next = return_bi;
650 return_bi = rbi;
651 }
91c00924
DW
652 rbi = rbi2;
653 }
654 }
655 }
83de75cc
DW
656 spin_unlock_irq(&conf->device_lock);
657 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
658
659 return_io(return_bi);
660
e4d84909 661 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
662 release_stripe(sh);
663}
664
665static void ops_run_biofill(struct stripe_head *sh)
666{
667 struct dma_async_tx_descriptor *tx = NULL;
668 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 669 struct async_submit_ctl submit;
91c00924
DW
670 int i;
671
e46b272b 672 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
673 (unsigned long long)sh->sector);
674
675 for (i = sh->disks; i--; ) {
676 struct r5dev *dev = &sh->dev[i];
677 if (test_bit(R5_Wantfill, &dev->flags)) {
678 struct bio *rbi;
679 spin_lock_irq(&conf->device_lock);
680 dev->read = rbi = dev->toread;
681 dev->toread = NULL;
682 spin_unlock_irq(&conf->device_lock);
683 while (rbi && rbi->bi_sector <
684 dev->sector + STRIPE_SECTORS) {
685 tx = async_copy_data(0, rbi, dev->page,
686 dev->sector, tx);
687 rbi = r5_next_bio(rbi, dev->sector);
688 }
689 }
690 }
691
692 atomic_inc(&sh->count);
a08abd8c
DW
693 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
694 async_trigger_callback(&submit);
91c00924
DW
695}
696
4e7d2c0a 697static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 698{
4e7d2c0a 699 struct r5dev *tgt;
91c00924 700
4e7d2c0a
DW
701 if (target < 0)
702 return;
91c00924 703
4e7d2c0a 704 tgt = &sh->dev[target];
91c00924
DW
705 set_bit(R5_UPTODATE, &tgt->flags);
706 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
707 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
708}
709
ac6b53b6 710static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
711{
712 struct stripe_head *sh = stripe_head_ref;
91c00924 713
e46b272b 714 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
715 (unsigned long long)sh->sector);
716
ac6b53b6 717 /* mark the computed target(s) as uptodate */
4e7d2c0a 718 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 719 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 720
ecc65c9b
DW
721 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
722 if (sh->check_state == check_state_compute_run)
723 sh->check_state = check_state_compute_result;
91c00924
DW
724 set_bit(STRIPE_HANDLE, &sh->state);
725 release_stripe(sh);
726}
727
d6f38f31
DW
728/* return a pointer to the address conversion region of the scribble buffer */
729static addr_conv_t *to_addr_conv(struct stripe_head *sh,
730 struct raid5_percpu *percpu)
731{
732 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
733}
734
735static struct dma_async_tx_descriptor *
736ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 737{
91c00924 738 int disks = sh->disks;
d6f38f31 739 struct page **xor_srcs = percpu->scribble;
91c00924
DW
740 int target = sh->ops.target;
741 struct r5dev *tgt = &sh->dev[target];
742 struct page *xor_dest = tgt->page;
743 int count = 0;
744 struct dma_async_tx_descriptor *tx;
a08abd8c 745 struct async_submit_ctl submit;
91c00924
DW
746 int i;
747
748 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 749 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
750 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
751
752 for (i = disks; i--; )
753 if (i != target)
754 xor_srcs[count++] = sh->dev[i].page;
755
756 atomic_inc(&sh->count);
757
0403e382 758 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 759 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 760 if (unlikely(count == 1))
a08abd8c 761 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 762 else
a08abd8c 763 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 764
91c00924
DW
765 return tx;
766}
767
ac6b53b6
DW
768/* set_syndrome_sources - populate source buffers for gen_syndrome
769 * @srcs - (struct page *) array of size sh->disks
770 * @sh - stripe_head to parse
771 *
772 * Populates srcs in proper layout order for the stripe and returns the
773 * 'count' of sources to be used in a call to async_gen_syndrome. The P
774 * destination buffer is recorded in srcs[count] and the Q destination
775 * is recorded in srcs[count+1]].
776 */
777static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
778{
779 int disks = sh->disks;
780 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
781 int d0_idx = raid6_d0(sh);
782 int count;
783 int i;
784
785 for (i = 0; i < disks; i++)
5dd33c9a 786 srcs[i] = NULL;
ac6b53b6
DW
787
788 count = 0;
789 i = d0_idx;
790 do {
791 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
792
793 srcs[slot] = sh->dev[i].page;
794 i = raid6_next_disk(i, disks);
795 } while (i != d0_idx);
ac6b53b6 796
e4424fee 797 return syndrome_disks;
ac6b53b6
DW
798}
799
800static struct dma_async_tx_descriptor *
801ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
802{
803 int disks = sh->disks;
804 struct page **blocks = percpu->scribble;
805 int target;
806 int qd_idx = sh->qd_idx;
807 struct dma_async_tx_descriptor *tx;
808 struct async_submit_ctl submit;
809 struct r5dev *tgt;
810 struct page *dest;
811 int i;
812 int count;
813
814 if (sh->ops.target < 0)
815 target = sh->ops.target2;
816 else if (sh->ops.target2 < 0)
817 target = sh->ops.target;
91c00924 818 else
ac6b53b6
DW
819 /* we should only have one valid target */
820 BUG();
821 BUG_ON(target < 0);
822 pr_debug("%s: stripe %llu block: %d\n",
823 __func__, (unsigned long long)sh->sector, target);
824
825 tgt = &sh->dev[target];
826 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
827 dest = tgt->page;
828
829 atomic_inc(&sh->count);
830
831 if (target == qd_idx) {
832 count = set_syndrome_sources(blocks, sh);
833 blocks[count] = NULL; /* regenerating p is not necessary */
834 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
835 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
836 ops_complete_compute, sh,
ac6b53b6
DW
837 to_addr_conv(sh, percpu));
838 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
839 } else {
840 /* Compute any data- or p-drive using XOR */
841 count = 0;
842 for (i = disks; i-- ; ) {
843 if (i == target || i == qd_idx)
844 continue;
845 blocks[count++] = sh->dev[i].page;
846 }
847
0403e382
DW
848 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
849 NULL, ops_complete_compute, sh,
ac6b53b6
DW
850 to_addr_conv(sh, percpu));
851 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
852 }
91c00924 853
91c00924
DW
854 return tx;
855}
856
ac6b53b6
DW
857static struct dma_async_tx_descriptor *
858ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
859{
860 int i, count, disks = sh->disks;
861 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
862 int d0_idx = raid6_d0(sh);
863 int faila = -1, failb = -1;
864 int target = sh->ops.target;
865 int target2 = sh->ops.target2;
866 struct r5dev *tgt = &sh->dev[target];
867 struct r5dev *tgt2 = &sh->dev[target2];
868 struct dma_async_tx_descriptor *tx;
869 struct page **blocks = percpu->scribble;
870 struct async_submit_ctl submit;
871
872 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
873 __func__, (unsigned long long)sh->sector, target, target2);
874 BUG_ON(target < 0 || target2 < 0);
875 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
876 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
877
6c910a78 878 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
879 * slot number conversion for 'faila' and 'failb'
880 */
881 for (i = 0; i < disks ; i++)
5dd33c9a 882 blocks[i] = NULL;
ac6b53b6
DW
883 count = 0;
884 i = d0_idx;
885 do {
886 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
887
888 blocks[slot] = sh->dev[i].page;
889
890 if (i == target)
891 faila = slot;
892 if (i == target2)
893 failb = slot;
894 i = raid6_next_disk(i, disks);
895 } while (i != d0_idx);
ac6b53b6
DW
896
897 BUG_ON(faila == failb);
898 if (failb < faila)
899 swap(faila, failb);
900 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
901 __func__, (unsigned long long)sh->sector, faila, failb);
902
903 atomic_inc(&sh->count);
904
905 if (failb == syndrome_disks+1) {
906 /* Q disk is one of the missing disks */
907 if (faila == syndrome_disks) {
908 /* Missing P+Q, just recompute */
0403e382
DW
909 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
910 ops_complete_compute, sh,
911 to_addr_conv(sh, percpu));
e4424fee 912 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
913 STRIPE_SIZE, &submit);
914 } else {
915 struct page *dest;
916 int data_target;
917 int qd_idx = sh->qd_idx;
918
919 /* Missing D+Q: recompute D from P, then recompute Q */
920 if (target == qd_idx)
921 data_target = target2;
922 else
923 data_target = target;
924
925 count = 0;
926 for (i = disks; i-- ; ) {
927 if (i == data_target || i == qd_idx)
928 continue;
929 blocks[count++] = sh->dev[i].page;
930 }
931 dest = sh->dev[data_target].page;
0403e382
DW
932 init_async_submit(&submit,
933 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
934 NULL, NULL, NULL,
935 to_addr_conv(sh, percpu));
ac6b53b6
DW
936 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
937 &submit);
938
939 count = set_syndrome_sources(blocks, sh);
0403e382
DW
940 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
941 ops_complete_compute, sh,
942 to_addr_conv(sh, percpu));
ac6b53b6
DW
943 return async_gen_syndrome(blocks, 0, count+2,
944 STRIPE_SIZE, &submit);
945 }
ac6b53b6 946 } else {
6c910a78
DW
947 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
948 ops_complete_compute, sh,
949 to_addr_conv(sh, percpu));
950 if (failb == syndrome_disks) {
951 /* We're missing D+P. */
952 return async_raid6_datap_recov(syndrome_disks+2,
953 STRIPE_SIZE, faila,
954 blocks, &submit);
955 } else {
956 /* We're missing D+D. */
957 return async_raid6_2data_recov(syndrome_disks+2,
958 STRIPE_SIZE, faila, failb,
959 blocks, &submit);
960 }
ac6b53b6
DW
961 }
962}
963
964
91c00924
DW
965static void ops_complete_prexor(void *stripe_head_ref)
966{
967 struct stripe_head *sh = stripe_head_ref;
968
e46b272b 969 pr_debug("%s: stripe %llu\n", __func__,
91c00924 970 (unsigned long long)sh->sector);
91c00924
DW
971}
972
973static struct dma_async_tx_descriptor *
d6f38f31
DW
974ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
975 struct dma_async_tx_descriptor *tx)
91c00924 976{
91c00924 977 int disks = sh->disks;
d6f38f31 978 struct page **xor_srcs = percpu->scribble;
91c00924 979 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 980 struct async_submit_ctl submit;
91c00924
DW
981
982 /* existing parity data subtracted */
983 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
984
e46b272b 985 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
986 (unsigned long long)sh->sector);
987
988 for (i = disks; i--; ) {
989 struct r5dev *dev = &sh->dev[i];
990 /* Only process blocks that are known to be uptodate */
d8ee0728 991 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
992 xor_srcs[count++] = dev->page;
993 }
994
0403e382 995 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 996 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 997 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
998
999 return tx;
1000}
1001
1002static struct dma_async_tx_descriptor *
d8ee0728 1003ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1004{
1005 int disks = sh->disks;
d8ee0728 1006 int i;
91c00924 1007
e46b272b 1008 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1009 (unsigned long long)sh->sector);
1010
1011 for (i = disks; i--; ) {
1012 struct r5dev *dev = &sh->dev[i];
1013 struct bio *chosen;
91c00924 1014
d8ee0728 1015 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1016 struct bio *wbi;
1017
cbe47ec5 1018 spin_lock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1019 chosen = dev->towrite;
1020 dev->towrite = NULL;
1021 BUG_ON(dev->written);
1022 wbi = dev->written = chosen;
cbe47ec5 1023 spin_unlock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1024
1025 while (wbi && wbi->bi_sector <
1026 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1027 if (wbi->bi_rw & REQ_FUA)
1028 set_bit(R5_WantFUA, &dev->flags);
91c00924
DW
1029 tx = async_copy_data(1, wbi, dev->page,
1030 dev->sector, tx);
1031 wbi = r5_next_bio(wbi, dev->sector);
1032 }
1033 }
1034 }
1035
1036 return tx;
1037}
1038
ac6b53b6 1039static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1040{
1041 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1042 int disks = sh->disks;
1043 int pd_idx = sh->pd_idx;
1044 int qd_idx = sh->qd_idx;
1045 int i;
e9c7469b 1046 bool fua = false;
91c00924 1047
e46b272b 1048 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1049 (unsigned long long)sh->sector);
1050
e9c7469b
TH
1051 for (i = disks; i--; )
1052 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1053
91c00924
DW
1054 for (i = disks; i--; ) {
1055 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1056
e9c7469b 1057 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1058 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1059 if (fua)
1060 set_bit(R5_WantFUA, &dev->flags);
1061 }
91c00924
DW
1062 }
1063
d8ee0728
DW
1064 if (sh->reconstruct_state == reconstruct_state_drain_run)
1065 sh->reconstruct_state = reconstruct_state_drain_result;
1066 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1067 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1068 else {
1069 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1070 sh->reconstruct_state = reconstruct_state_result;
1071 }
91c00924
DW
1072
1073 set_bit(STRIPE_HANDLE, &sh->state);
1074 release_stripe(sh);
1075}
1076
1077static void
ac6b53b6
DW
1078ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1079 struct dma_async_tx_descriptor *tx)
91c00924 1080{
91c00924 1081 int disks = sh->disks;
d6f38f31 1082 struct page **xor_srcs = percpu->scribble;
a08abd8c 1083 struct async_submit_ctl submit;
91c00924
DW
1084 int count = 0, pd_idx = sh->pd_idx, i;
1085 struct page *xor_dest;
d8ee0728 1086 int prexor = 0;
91c00924 1087 unsigned long flags;
91c00924 1088
e46b272b 1089 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1090 (unsigned long long)sh->sector);
1091
1092 /* check if prexor is active which means only process blocks
1093 * that are part of a read-modify-write (written)
1094 */
d8ee0728
DW
1095 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1096 prexor = 1;
91c00924
DW
1097 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1098 for (i = disks; i--; ) {
1099 struct r5dev *dev = &sh->dev[i];
1100 if (dev->written)
1101 xor_srcs[count++] = dev->page;
1102 }
1103 } else {
1104 xor_dest = sh->dev[pd_idx].page;
1105 for (i = disks; i--; ) {
1106 struct r5dev *dev = &sh->dev[i];
1107 if (i != pd_idx)
1108 xor_srcs[count++] = dev->page;
1109 }
1110 }
1111
91c00924
DW
1112 /* 1/ if we prexor'd then the dest is reused as a source
1113 * 2/ if we did not prexor then we are redoing the parity
1114 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1115 * for the synchronous xor case
1116 */
88ba2aa5 1117 flags = ASYNC_TX_ACK |
91c00924
DW
1118 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1119
1120 atomic_inc(&sh->count);
1121
ac6b53b6 1122 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1123 to_addr_conv(sh, percpu));
a08abd8c
DW
1124 if (unlikely(count == 1))
1125 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1126 else
1127 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1128}
1129
ac6b53b6
DW
1130static void
1131ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1132 struct dma_async_tx_descriptor *tx)
1133{
1134 struct async_submit_ctl submit;
1135 struct page **blocks = percpu->scribble;
1136 int count;
1137
1138 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1139
1140 count = set_syndrome_sources(blocks, sh);
1141
1142 atomic_inc(&sh->count);
1143
1144 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1145 sh, to_addr_conv(sh, percpu));
1146 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1147}
1148
1149static void ops_complete_check(void *stripe_head_ref)
1150{
1151 struct stripe_head *sh = stripe_head_ref;
91c00924 1152
e46b272b 1153 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1154 (unsigned long long)sh->sector);
1155
ecc65c9b 1156 sh->check_state = check_state_check_result;
91c00924
DW
1157 set_bit(STRIPE_HANDLE, &sh->state);
1158 release_stripe(sh);
1159}
1160
ac6b53b6 1161static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1162{
91c00924 1163 int disks = sh->disks;
ac6b53b6
DW
1164 int pd_idx = sh->pd_idx;
1165 int qd_idx = sh->qd_idx;
1166 struct page *xor_dest;
d6f38f31 1167 struct page **xor_srcs = percpu->scribble;
91c00924 1168 struct dma_async_tx_descriptor *tx;
a08abd8c 1169 struct async_submit_ctl submit;
ac6b53b6
DW
1170 int count;
1171 int i;
91c00924 1172
e46b272b 1173 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1174 (unsigned long long)sh->sector);
1175
ac6b53b6
DW
1176 count = 0;
1177 xor_dest = sh->dev[pd_idx].page;
1178 xor_srcs[count++] = xor_dest;
91c00924 1179 for (i = disks; i--; ) {
ac6b53b6
DW
1180 if (i == pd_idx || i == qd_idx)
1181 continue;
1182 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1183 }
1184
d6f38f31
DW
1185 init_async_submit(&submit, 0, NULL, NULL, NULL,
1186 to_addr_conv(sh, percpu));
099f53cb 1187 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1188 &sh->ops.zero_sum_result, &submit);
91c00924 1189
91c00924 1190 atomic_inc(&sh->count);
a08abd8c
DW
1191 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1192 tx = async_trigger_callback(&submit);
91c00924
DW
1193}
1194
ac6b53b6
DW
1195static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1196{
1197 struct page **srcs = percpu->scribble;
1198 struct async_submit_ctl submit;
1199 int count;
1200
1201 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1202 (unsigned long long)sh->sector, checkp);
1203
1204 count = set_syndrome_sources(srcs, sh);
1205 if (!checkp)
1206 srcs[count] = NULL;
91c00924 1207
91c00924 1208 atomic_inc(&sh->count);
ac6b53b6
DW
1209 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1210 sh, to_addr_conv(sh, percpu));
1211 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1212 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1213}
1214
417b8d4a 1215static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1216{
1217 int overlap_clear = 0, i, disks = sh->disks;
1218 struct dma_async_tx_descriptor *tx = NULL;
d6f38f31 1219 raid5_conf_t *conf = sh->raid_conf;
ac6b53b6 1220 int level = conf->level;
d6f38f31
DW
1221 struct raid5_percpu *percpu;
1222 unsigned long cpu;
91c00924 1223
d6f38f31
DW
1224 cpu = get_cpu();
1225 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1226 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1227 ops_run_biofill(sh);
1228 overlap_clear++;
1229 }
1230
7b3a871e 1231 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1232 if (level < 6)
1233 tx = ops_run_compute5(sh, percpu);
1234 else {
1235 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1236 tx = ops_run_compute6_1(sh, percpu);
1237 else
1238 tx = ops_run_compute6_2(sh, percpu);
1239 }
1240 /* terminate the chain if reconstruct is not set to be run */
1241 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1242 async_tx_ack(tx);
1243 }
91c00924 1244
600aa109 1245 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1246 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1247
600aa109 1248 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1249 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1250 overlap_clear++;
1251 }
1252
ac6b53b6
DW
1253 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1254 if (level < 6)
1255 ops_run_reconstruct5(sh, percpu, tx);
1256 else
1257 ops_run_reconstruct6(sh, percpu, tx);
1258 }
91c00924 1259
ac6b53b6
DW
1260 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1261 if (sh->check_state == check_state_run)
1262 ops_run_check_p(sh, percpu);
1263 else if (sh->check_state == check_state_run_q)
1264 ops_run_check_pq(sh, percpu, 0);
1265 else if (sh->check_state == check_state_run_pq)
1266 ops_run_check_pq(sh, percpu, 1);
1267 else
1268 BUG();
1269 }
91c00924 1270
91c00924
DW
1271 if (overlap_clear)
1272 for (i = disks; i--; ) {
1273 struct r5dev *dev = &sh->dev[i];
1274 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1275 wake_up(&sh->raid_conf->wait_for_overlap);
1276 }
d6f38f31 1277 put_cpu();
91c00924
DW
1278}
1279
417b8d4a
DW
1280#ifdef CONFIG_MULTICORE_RAID456
1281static void async_run_ops(void *param, async_cookie_t cookie)
1282{
1283 struct stripe_head *sh = param;
1284 unsigned long ops_request = sh->ops.request;
1285
1286 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1287 wake_up(&sh->ops.wait_for_ops);
1288
1289 __raid_run_ops(sh, ops_request);
1290 release_stripe(sh);
1291}
1292
1293static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1294{
1295 /* since handle_stripe can be called outside of raid5d context
1296 * we need to ensure sh->ops.request is de-staged before another
1297 * request arrives
1298 */
1299 wait_event(sh->ops.wait_for_ops,
1300 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1301 sh->ops.request = ops_request;
1302
1303 atomic_inc(&sh->count);
1304 async_schedule(async_run_ops, sh);
1305}
1306#else
1307#define raid_run_ops __raid_run_ops
1308#endif
1309
3f294f4f 1310static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1311{
1312 struct stripe_head *sh;
6ce32846 1313 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1314 if (!sh)
1315 return 0;
6ce32846 1316
3f294f4f 1317 sh->raid_conf = conf;
417b8d4a
DW
1318 #ifdef CONFIG_MULTICORE_RAID456
1319 init_waitqueue_head(&sh->ops.wait_for_ops);
1320 #endif
3f294f4f 1321
e4e11e38
N
1322 if (grow_buffers(sh)) {
1323 shrink_buffers(sh);
3f294f4f
N
1324 kmem_cache_free(conf->slab_cache, sh);
1325 return 0;
1326 }
1327 /* we just created an active stripe so... */
1328 atomic_set(&sh->count, 1);
1329 atomic_inc(&conf->active_stripes);
1330 INIT_LIST_HEAD(&sh->lru);
1331 release_stripe(sh);
1332 return 1;
1333}
1334
1335static int grow_stripes(raid5_conf_t *conf, int num)
1336{
e18b890b 1337 struct kmem_cache *sc;
5e5e3e78 1338 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1339
f4be6b43
N
1340 if (conf->mddev->gendisk)
1341 sprintf(conf->cache_name[0],
1342 "raid%d-%s", conf->level, mdname(conf->mddev));
1343 else
1344 sprintf(conf->cache_name[0],
1345 "raid%d-%p", conf->level, conf->mddev);
1346 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1347
ad01c9e3
N
1348 conf->active_name = 0;
1349 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1350 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1351 0, 0, NULL);
1da177e4
LT
1352 if (!sc)
1353 return 1;
1354 conf->slab_cache = sc;
ad01c9e3 1355 conf->pool_size = devs;
16a53ecc 1356 while (num--)
3f294f4f 1357 if (!grow_one_stripe(conf))
1da177e4 1358 return 1;
1da177e4
LT
1359 return 0;
1360}
29269553 1361
d6f38f31
DW
1362/**
1363 * scribble_len - return the required size of the scribble region
1364 * @num - total number of disks in the array
1365 *
1366 * The size must be enough to contain:
1367 * 1/ a struct page pointer for each device in the array +2
1368 * 2/ room to convert each entry in (1) to its corresponding dma
1369 * (dma_map_page()) or page (page_address()) address.
1370 *
1371 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1372 * calculate over all devices (not just the data blocks), using zeros in place
1373 * of the P and Q blocks.
1374 */
1375static size_t scribble_len(int num)
1376{
1377 size_t len;
1378
1379 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1380
1381 return len;
1382}
1383
ad01c9e3
N
1384static int resize_stripes(raid5_conf_t *conf, int newsize)
1385{
1386 /* Make all the stripes able to hold 'newsize' devices.
1387 * New slots in each stripe get 'page' set to a new page.
1388 *
1389 * This happens in stages:
1390 * 1/ create a new kmem_cache and allocate the required number of
1391 * stripe_heads.
1392 * 2/ gather all the old stripe_heads and tranfer the pages across
1393 * to the new stripe_heads. This will have the side effect of
1394 * freezing the array as once all stripe_heads have been collected,
1395 * no IO will be possible. Old stripe heads are freed once their
1396 * pages have been transferred over, and the old kmem_cache is
1397 * freed when all stripes are done.
1398 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1399 * we simple return a failre status - no need to clean anything up.
1400 * 4/ allocate new pages for the new slots in the new stripe_heads.
1401 * If this fails, we don't bother trying the shrink the
1402 * stripe_heads down again, we just leave them as they are.
1403 * As each stripe_head is processed the new one is released into
1404 * active service.
1405 *
1406 * Once step2 is started, we cannot afford to wait for a write,
1407 * so we use GFP_NOIO allocations.
1408 */
1409 struct stripe_head *osh, *nsh;
1410 LIST_HEAD(newstripes);
1411 struct disk_info *ndisks;
d6f38f31 1412 unsigned long cpu;
b5470dc5 1413 int err;
e18b890b 1414 struct kmem_cache *sc;
ad01c9e3
N
1415 int i;
1416
1417 if (newsize <= conf->pool_size)
1418 return 0; /* never bother to shrink */
1419
b5470dc5
DW
1420 err = md_allow_write(conf->mddev);
1421 if (err)
1422 return err;
2a2275d6 1423
ad01c9e3
N
1424 /* Step 1 */
1425 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1426 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1427 0, 0, NULL);
ad01c9e3
N
1428 if (!sc)
1429 return -ENOMEM;
1430
1431 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1432 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1433 if (!nsh)
1434 break;
1435
ad01c9e3 1436 nsh->raid_conf = conf;
417b8d4a
DW
1437 #ifdef CONFIG_MULTICORE_RAID456
1438 init_waitqueue_head(&nsh->ops.wait_for_ops);
1439 #endif
ad01c9e3
N
1440
1441 list_add(&nsh->lru, &newstripes);
1442 }
1443 if (i) {
1444 /* didn't get enough, give up */
1445 while (!list_empty(&newstripes)) {
1446 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1447 list_del(&nsh->lru);
1448 kmem_cache_free(sc, nsh);
1449 }
1450 kmem_cache_destroy(sc);
1451 return -ENOMEM;
1452 }
1453 /* Step 2 - Must use GFP_NOIO now.
1454 * OK, we have enough stripes, start collecting inactive
1455 * stripes and copying them over
1456 */
1457 list_for_each_entry(nsh, &newstripes, lru) {
1458 spin_lock_irq(&conf->device_lock);
1459 wait_event_lock_irq(conf->wait_for_stripe,
1460 !list_empty(&conf->inactive_list),
1461 conf->device_lock,
482c0834 1462 );
ad01c9e3
N
1463 osh = get_free_stripe(conf);
1464 spin_unlock_irq(&conf->device_lock);
1465 atomic_set(&nsh->count, 1);
1466 for(i=0; i<conf->pool_size; i++)
1467 nsh->dev[i].page = osh->dev[i].page;
1468 for( ; i<newsize; i++)
1469 nsh->dev[i].page = NULL;
1470 kmem_cache_free(conf->slab_cache, osh);
1471 }
1472 kmem_cache_destroy(conf->slab_cache);
1473
1474 /* Step 3.
1475 * At this point, we are holding all the stripes so the array
1476 * is completely stalled, so now is a good time to resize
d6f38f31 1477 * conf->disks and the scribble region
ad01c9e3
N
1478 */
1479 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1480 if (ndisks) {
1481 for (i=0; i<conf->raid_disks; i++)
1482 ndisks[i] = conf->disks[i];
1483 kfree(conf->disks);
1484 conf->disks = ndisks;
1485 } else
1486 err = -ENOMEM;
1487
d6f38f31
DW
1488 get_online_cpus();
1489 conf->scribble_len = scribble_len(newsize);
1490 for_each_present_cpu(cpu) {
1491 struct raid5_percpu *percpu;
1492 void *scribble;
1493
1494 percpu = per_cpu_ptr(conf->percpu, cpu);
1495 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1496
1497 if (scribble) {
1498 kfree(percpu->scribble);
1499 percpu->scribble = scribble;
1500 } else {
1501 err = -ENOMEM;
1502 break;
1503 }
1504 }
1505 put_online_cpus();
1506
ad01c9e3
N
1507 /* Step 4, return new stripes to service */
1508 while(!list_empty(&newstripes)) {
1509 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1510 list_del_init(&nsh->lru);
d6f38f31 1511
ad01c9e3
N
1512 for (i=conf->raid_disks; i < newsize; i++)
1513 if (nsh->dev[i].page == NULL) {
1514 struct page *p = alloc_page(GFP_NOIO);
1515 nsh->dev[i].page = p;
1516 if (!p)
1517 err = -ENOMEM;
1518 }
1519 release_stripe(nsh);
1520 }
1521 /* critical section pass, GFP_NOIO no longer needed */
1522
1523 conf->slab_cache = sc;
1524 conf->active_name = 1-conf->active_name;
1525 conf->pool_size = newsize;
1526 return err;
1527}
1da177e4 1528
3f294f4f 1529static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1530{
1531 struct stripe_head *sh;
1532
3f294f4f
N
1533 spin_lock_irq(&conf->device_lock);
1534 sh = get_free_stripe(conf);
1535 spin_unlock_irq(&conf->device_lock);
1536 if (!sh)
1537 return 0;
78bafebd 1538 BUG_ON(atomic_read(&sh->count));
e4e11e38 1539 shrink_buffers(sh);
3f294f4f
N
1540 kmem_cache_free(conf->slab_cache, sh);
1541 atomic_dec(&conf->active_stripes);
1542 return 1;
1543}
1544
1545static void shrink_stripes(raid5_conf_t *conf)
1546{
1547 while (drop_one_stripe(conf))
1548 ;
1549
29fc7e3e
N
1550 if (conf->slab_cache)
1551 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1552 conf->slab_cache = NULL;
1553}
1554
6712ecf8 1555static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1556{
99c0fb5f 1557 struct stripe_head *sh = bi->bi_private;
1da177e4 1558 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1559 int disks = sh->disks, i;
1da177e4 1560 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1561 char b[BDEVNAME_SIZE];
1562 mdk_rdev_t *rdev;
1da177e4 1563
1da177e4
LT
1564
1565 for (i=0 ; i<disks; i++)
1566 if (bi == &sh->dev[i].req)
1567 break;
1568
45b4233c
DW
1569 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1570 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1571 uptodate);
1572 if (i == disks) {
1573 BUG();
6712ecf8 1574 return;
1da177e4
LT
1575 }
1576
1577 if (uptodate) {
1da177e4 1578 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1579 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1580 rdev = conf->disks[i].rdev;
8bda470e
CD
1581 printk_ratelimited(
1582 KERN_INFO
1583 "md/raid:%s: read error corrected"
1584 " (%lu sectors at %llu on %s)\n",
1585 mdname(conf->mddev), STRIPE_SECTORS,
1586 (unsigned long long)(sh->sector
1587 + rdev->data_offset),
1588 bdevname(rdev->bdev, b));
ddd5115f 1589 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1590 clear_bit(R5_ReadError, &sh->dev[i].flags);
1591 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1592 }
ba22dcbf
N
1593 if (atomic_read(&conf->disks[i].rdev->read_errors))
1594 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1595 } else {
d6950432 1596 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1597 int retry = 0;
d6950432
N
1598 rdev = conf->disks[i].rdev;
1599
1da177e4 1600 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1601 atomic_inc(&rdev->read_errors);
7b0bb536 1602 if (conf->mddev->degraded >= conf->max_degraded)
8bda470e
CD
1603 printk_ratelimited(
1604 KERN_WARNING
1605 "md/raid:%s: read error not correctable "
1606 "(sector %llu on %s).\n",
1607 mdname(conf->mddev),
1608 (unsigned long long)(sh->sector
1609 + rdev->data_offset),
1610 bdn);
ba22dcbf 1611 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1612 /* Oh, no!!! */
8bda470e
CD
1613 printk_ratelimited(
1614 KERN_WARNING
1615 "md/raid:%s: read error NOT corrected!! "
1616 "(sector %llu on %s).\n",
1617 mdname(conf->mddev),
1618 (unsigned long long)(sh->sector
1619 + rdev->data_offset),
1620 bdn);
d6950432 1621 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1622 > conf->max_nr_stripes)
14f8d26b 1623 printk(KERN_WARNING
0c55e022 1624 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1625 mdname(conf->mddev), bdn);
ba22dcbf
N
1626 else
1627 retry = 1;
1628 if (retry)
1629 set_bit(R5_ReadError, &sh->dev[i].flags);
1630 else {
4e5314b5
N
1631 clear_bit(R5_ReadError, &sh->dev[i].flags);
1632 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1633 md_error(conf->mddev, rdev);
ba22dcbf 1634 }
1da177e4
LT
1635 }
1636 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1637 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638 set_bit(STRIPE_HANDLE, &sh->state);
1639 release_stripe(sh);
1da177e4
LT
1640}
1641
d710e138 1642static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1643{
99c0fb5f 1644 struct stripe_head *sh = bi->bi_private;
1da177e4 1645 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1646 int disks = sh->disks, i;
1da177e4
LT
1647 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1648
1da177e4
LT
1649 for (i=0 ; i<disks; i++)
1650 if (bi == &sh->dev[i].req)
1651 break;
1652
45b4233c 1653 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1654 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655 uptodate);
1656 if (i == disks) {
1657 BUG();
6712ecf8 1658 return;
1da177e4
LT
1659 }
1660
1da177e4
LT
1661 if (!uptodate)
1662 md_error(conf->mddev, conf->disks[i].rdev);
1663
1664 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1665
1666 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1668 release_stripe(sh);
1da177e4
LT
1669}
1670
1671
784052ec 1672static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1673
784052ec 1674static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1675{
1676 struct r5dev *dev = &sh->dev[i];
1677
1678 bio_init(&dev->req);
1679 dev->req.bi_io_vec = &dev->vec;
1680 dev->req.bi_vcnt++;
1681 dev->req.bi_max_vecs++;
1682 dev->vec.bv_page = dev->page;
1683 dev->vec.bv_len = STRIPE_SIZE;
1684 dev->vec.bv_offset = 0;
1685
1686 dev->req.bi_sector = sh->sector;
1687 dev->req.bi_private = sh;
1688
1689 dev->flags = 0;
784052ec 1690 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1691}
1692
1693static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1694{
1695 char b[BDEVNAME_SIZE];
7b92813c 1696 raid5_conf_t *conf = mddev->private;
0c55e022 1697 pr_debug("raid456: error called\n");
1da177e4 1698
6f8d0c77
N
1699 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700 unsigned long flags;
1701 spin_lock_irqsave(&conf->device_lock, flags);
1702 mddev->degraded++;
1703 spin_unlock_irqrestore(&conf->device_lock, flags);
1704 /*
1705 * if recovery was running, make sure it aborts.
1706 */
1707 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1708 }
de393cde 1709 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
1710 set_bit(Faulty, &rdev->flags);
1711 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1712 printk(KERN_ALERT
1713 "md/raid:%s: Disk failure on %s, disabling device.\n"
1714 "md/raid:%s: Operation continuing on %d devices.\n",
1715 mdname(mddev),
1716 bdevname(rdev->bdev, b),
1717 mdname(mddev),
1718 conf->raid_disks - mddev->degraded);
16a53ecc 1719}
1da177e4
LT
1720
1721/*
1722 * Input: a 'big' sector number,
1723 * Output: index of the data and parity disk, and the sector # in them.
1724 */
112bf897 1725static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1726 int previous, int *dd_idx,
1727 struct stripe_head *sh)
1da177e4 1728{
6e3b96ed 1729 sector_t stripe, stripe2;
35f2a591 1730 sector_t chunk_number;
1da177e4 1731 unsigned int chunk_offset;
911d4ee8 1732 int pd_idx, qd_idx;
67cc2b81 1733 int ddf_layout = 0;
1da177e4 1734 sector_t new_sector;
e183eaed
N
1735 int algorithm = previous ? conf->prev_algo
1736 : conf->algorithm;
09c9e5fa
AN
1737 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1738 : conf->chunk_sectors;
112bf897
N
1739 int raid_disks = previous ? conf->previous_raid_disks
1740 : conf->raid_disks;
1741 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1742
1743 /* First compute the information on this sector */
1744
1745 /*
1746 * Compute the chunk number and the sector offset inside the chunk
1747 */
1748 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1749 chunk_number = r_sector;
1da177e4
LT
1750
1751 /*
1752 * Compute the stripe number
1753 */
35f2a591
N
1754 stripe = chunk_number;
1755 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1756 stripe2 = stripe;
1da177e4
LT
1757 /*
1758 * Select the parity disk based on the user selected algorithm.
1759 */
84789554 1760 pd_idx = qd_idx = -1;
16a53ecc
N
1761 switch(conf->level) {
1762 case 4:
911d4ee8 1763 pd_idx = data_disks;
16a53ecc
N
1764 break;
1765 case 5:
e183eaed 1766 switch (algorithm) {
1da177e4 1767 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1768 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1769 if (*dd_idx >= pd_idx)
1da177e4
LT
1770 (*dd_idx)++;
1771 break;
1772 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1773 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1774 if (*dd_idx >= pd_idx)
1da177e4
LT
1775 (*dd_idx)++;
1776 break;
1777 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1778 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1779 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1780 break;
1781 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1782 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1783 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1784 break;
99c0fb5f
N
1785 case ALGORITHM_PARITY_0:
1786 pd_idx = 0;
1787 (*dd_idx)++;
1788 break;
1789 case ALGORITHM_PARITY_N:
1790 pd_idx = data_disks;
1791 break;
1da177e4 1792 default:
99c0fb5f 1793 BUG();
16a53ecc
N
1794 }
1795 break;
1796 case 6:
1797
e183eaed 1798 switch (algorithm) {
16a53ecc 1799 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1800 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1801 qd_idx = pd_idx + 1;
1802 if (pd_idx == raid_disks-1) {
99c0fb5f 1803 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1804 qd_idx = 0;
1805 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1806 (*dd_idx) += 2; /* D D P Q D */
1807 break;
1808 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1809 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1810 qd_idx = pd_idx + 1;
1811 if (pd_idx == raid_disks-1) {
99c0fb5f 1812 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1813 qd_idx = 0;
1814 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1815 (*dd_idx) += 2; /* D D P Q D */
1816 break;
1817 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1818 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1819 qd_idx = (pd_idx + 1) % raid_disks;
1820 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1821 break;
1822 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1823 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1824 qd_idx = (pd_idx + 1) % raid_disks;
1825 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1826 break;
99c0fb5f
N
1827
1828 case ALGORITHM_PARITY_0:
1829 pd_idx = 0;
1830 qd_idx = 1;
1831 (*dd_idx) += 2;
1832 break;
1833 case ALGORITHM_PARITY_N:
1834 pd_idx = data_disks;
1835 qd_idx = data_disks + 1;
1836 break;
1837
1838 case ALGORITHM_ROTATING_ZERO_RESTART:
1839 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1840 * of blocks for computing Q is different.
1841 */
6e3b96ed 1842 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
1843 qd_idx = pd_idx + 1;
1844 if (pd_idx == raid_disks-1) {
1845 (*dd_idx)++; /* Q D D D P */
1846 qd_idx = 0;
1847 } else if (*dd_idx >= pd_idx)
1848 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1849 ddf_layout = 1;
99c0fb5f
N
1850 break;
1851
1852 case ALGORITHM_ROTATING_N_RESTART:
1853 /* Same a left_asymmetric, by first stripe is
1854 * D D D P Q rather than
1855 * Q D D D P
1856 */
6e3b96ed
N
1857 stripe2 += 1;
1858 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1859 qd_idx = pd_idx + 1;
1860 if (pd_idx == raid_disks-1) {
1861 (*dd_idx)++; /* Q D D D P */
1862 qd_idx = 0;
1863 } else if (*dd_idx >= pd_idx)
1864 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1865 ddf_layout = 1;
99c0fb5f
N
1866 break;
1867
1868 case ALGORITHM_ROTATING_N_CONTINUE:
1869 /* Same as left_symmetric but Q is before P */
6e3b96ed 1870 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1871 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1872 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1873 ddf_layout = 1;
99c0fb5f
N
1874 break;
1875
1876 case ALGORITHM_LEFT_ASYMMETRIC_6:
1877 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 1878 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1879 if (*dd_idx >= pd_idx)
1880 (*dd_idx)++;
1881 qd_idx = raid_disks - 1;
1882 break;
1883
1884 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 1885 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1886 if (*dd_idx >= pd_idx)
1887 (*dd_idx)++;
1888 qd_idx = raid_disks - 1;
1889 break;
1890
1891 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 1892 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1893 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1894 qd_idx = raid_disks - 1;
1895 break;
1896
1897 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 1898 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1899 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1900 qd_idx = raid_disks - 1;
1901 break;
1902
1903 case ALGORITHM_PARITY_0_6:
1904 pd_idx = 0;
1905 (*dd_idx)++;
1906 qd_idx = raid_disks - 1;
1907 break;
1908
16a53ecc 1909 default:
99c0fb5f 1910 BUG();
16a53ecc
N
1911 }
1912 break;
1da177e4
LT
1913 }
1914
911d4ee8
N
1915 if (sh) {
1916 sh->pd_idx = pd_idx;
1917 sh->qd_idx = qd_idx;
67cc2b81 1918 sh->ddf_layout = ddf_layout;
911d4ee8 1919 }
1da177e4
LT
1920 /*
1921 * Finally, compute the new sector number
1922 */
1923 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1924 return new_sector;
1925}
1926
1927
784052ec 1928static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1929{
1930 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1931 int raid_disks = sh->disks;
1932 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1933 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
1934 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1935 : conf->chunk_sectors;
e183eaed
N
1936 int algorithm = previous ? conf->prev_algo
1937 : conf->algorithm;
1da177e4
LT
1938 sector_t stripe;
1939 int chunk_offset;
35f2a591
N
1940 sector_t chunk_number;
1941 int dummy1, dd_idx = i;
1da177e4 1942 sector_t r_sector;
911d4ee8 1943 struct stripe_head sh2;
1da177e4 1944
16a53ecc 1945
1da177e4
LT
1946 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1947 stripe = new_sector;
1da177e4 1948
16a53ecc
N
1949 if (i == sh->pd_idx)
1950 return 0;
1951 switch(conf->level) {
1952 case 4: break;
1953 case 5:
e183eaed 1954 switch (algorithm) {
1da177e4
LT
1955 case ALGORITHM_LEFT_ASYMMETRIC:
1956 case ALGORITHM_RIGHT_ASYMMETRIC:
1957 if (i > sh->pd_idx)
1958 i--;
1959 break;
1960 case ALGORITHM_LEFT_SYMMETRIC:
1961 case ALGORITHM_RIGHT_SYMMETRIC:
1962 if (i < sh->pd_idx)
1963 i += raid_disks;
1964 i -= (sh->pd_idx + 1);
1965 break;
99c0fb5f
N
1966 case ALGORITHM_PARITY_0:
1967 i -= 1;
1968 break;
1969 case ALGORITHM_PARITY_N:
1970 break;
1da177e4 1971 default:
99c0fb5f 1972 BUG();
16a53ecc
N
1973 }
1974 break;
1975 case 6:
d0dabf7e 1976 if (i == sh->qd_idx)
16a53ecc 1977 return 0; /* It is the Q disk */
e183eaed 1978 switch (algorithm) {
16a53ecc
N
1979 case ALGORITHM_LEFT_ASYMMETRIC:
1980 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1981 case ALGORITHM_ROTATING_ZERO_RESTART:
1982 case ALGORITHM_ROTATING_N_RESTART:
1983 if (sh->pd_idx == raid_disks-1)
1984 i--; /* Q D D D P */
16a53ecc
N
1985 else if (i > sh->pd_idx)
1986 i -= 2; /* D D P Q D */
1987 break;
1988 case ALGORITHM_LEFT_SYMMETRIC:
1989 case ALGORITHM_RIGHT_SYMMETRIC:
1990 if (sh->pd_idx == raid_disks-1)
1991 i--; /* Q D D D P */
1992 else {
1993 /* D D P Q D */
1994 if (i < sh->pd_idx)
1995 i += raid_disks;
1996 i -= (sh->pd_idx + 2);
1997 }
1998 break;
99c0fb5f
N
1999 case ALGORITHM_PARITY_0:
2000 i -= 2;
2001 break;
2002 case ALGORITHM_PARITY_N:
2003 break;
2004 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2005 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2006 if (sh->pd_idx == 0)
2007 i--; /* P D D D Q */
e4424fee
N
2008 else {
2009 /* D D Q P D */
2010 if (i < sh->pd_idx)
2011 i += raid_disks;
2012 i -= (sh->pd_idx + 1);
2013 }
99c0fb5f
N
2014 break;
2015 case ALGORITHM_LEFT_ASYMMETRIC_6:
2016 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2017 if (i > sh->pd_idx)
2018 i--;
2019 break;
2020 case ALGORITHM_LEFT_SYMMETRIC_6:
2021 case ALGORITHM_RIGHT_SYMMETRIC_6:
2022 if (i < sh->pd_idx)
2023 i += data_disks + 1;
2024 i -= (sh->pd_idx + 1);
2025 break;
2026 case ALGORITHM_PARITY_0_6:
2027 i -= 1;
2028 break;
16a53ecc 2029 default:
99c0fb5f 2030 BUG();
16a53ecc
N
2031 }
2032 break;
1da177e4
LT
2033 }
2034
2035 chunk_number = stripe * data_disks + i;
35f2a591 2036 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2037
112bf897 2038 check = raid5_compute_sector(conf, r_sector,
784052ec 2039 previous, &dummy1, &sh2);
911d4ee8
N
2040 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2041 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2042 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2043 mdname(conf->mddev));
1da177e4
LT
2044 return 0;
2045 }
2046 return r_sector;
2047}
2048
2049
600aa109 2050static void
c0f7bddb 2051schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2052 int rcw, int expand)
e33129d8
DW
2053{
2054 int i, pd_idx = sh->pd_idx, disks = sh->disks;
c0f7bddb
YT
2055 raid5_conf_t *conf = sh->raid_conf;
2056 int level = conf->level;
e33129d8
DW
2057
2058 if (rcw) {
2059 /* if we are not expanding this is a proper write request, and
2060 * there will be bios with new data to be drained into the
2061 * stripe cache
2062 */
2063 if (!expand) {
600aa109
DW
2064 sh->reconstruct_state = reconstruct_state_drain_run;
2065 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2066 } else
2067 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2068
ac6b53b6 2069 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2070
2071 for (i = disks; i--; ) {
2072 struct r5dev *dev = &sh->dev[i];
2073
2074 if (dev->towrite) {
2075 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2076 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2077 if (!expand)
2078 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2079 s->locked++;
e33129d8
DW
2080 }
2081 }
c0f7bddb 2082 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2083 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2084 atomic_inc(&conf->pending_full_writes);
e33129d8 2085 } else {
c0f7bddb 2086 BUG_ON(level == 6);
e33129d8
DW
2087 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2088 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2089
d8ee0728 2090 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2091 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2092 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2093 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2094
2095 for (i = disks; i--; ) {
2096 struct r5dev *dev = &sh->dev[i];
2097 if (i == pd_idx)
2098 continue;
2099
e33129d8
DW
2100 if (dev->towrite &&
2101 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2102 test_bit(R5_Wantcompute, &dev->flags))) {
2103 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2104 set_bit(R5_LOCKED, &dev->flags);
2105 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2106 s->locked++;
e33129d8
DW
2107 }
2108 }
2109 }
2110
c0f7bddb 2111 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2112 * are in flight
2113 */
2114 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2115 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2116 s->locked++;
e33129d8 2117
c0f7bddb
YT
2118 if (level == 6) {
2119 int qd_idx = sh->qd_idx;
2120 struct r5dev *dev = &sh->dev[qd_idx];
2121
2122 set_bit(R5_LOCKED, &dev->flags);
2123 clear_bit(R5_UPTODATE, &dev->flags);
2124 s->locked++;
2125 }
2126
600aa109 2127 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2128 __func__, (unsigned long long)sh->sector,
600aa109 2129 s->locked, s->ops_request);
e33129d8 2130}
16a53ecc 2131
1da177e4
LT
2132/*
2133 * Each stripe/dev can have one or more bion attached.
16a53ecc 2134 * toread/towrite point to the first in a chain.
1da177e4
LT
2135 * The bi_next chain must be in order.
2136 */
2137static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2138{
2139 struct bio **bip;
2140 raid5_conf_t *conf = sh->raid_conf;
72626685 2141 int firstwrite=0;
1da177e4 2142
cbe47ec5 2143 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2144 (unsigned long long)bi->bi_sector,
2145 (unsigned long long)sh->sector);
2146
2147
1da177e4 2148 spin_lock_irq(&conf->device_lock);
72626685 2149 if (forwrite) {
1da177e4 2150 bip = &sh->dev[dd_idx].towrite;
72626685
N
2151 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2152 firstwrite = 1;
2153 } else
1da177e4
LT
2154 bip = &sh->dev[dd_idx].toread;
2155 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2156 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2157 goto overlap;
2158 bip = & (*bip)->bi_next;
2159 }
2160 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2161 goto overlap;
2162
78bafebd 2163 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2164 if (*bip)
2165 bi->bi_next = *bip;
2166 *bip = bi;
960e739d 2167 bi->bi_phys_segments++;
72626685 2168
1da177e4
LT
2169 if (forwrite) {
2170 /* check if page is covered */
2171 sector_t sector = sh->dev[dd_idx].sector;
2172 for (bi=sh->dev[dd_idx].towrite;
2173 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2174 bi && bi->bi_sector <= sector;
2175 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2176 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2177 sector = bi->bi_sector + (bi->bi_size>>9);
2178 }
2179 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2180 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2181 }
cbe47ec5 2182 spin_unlock_irq(&conf->device_lock);
cbe47ec5
N
2183
2184 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2185 (unsigned long long)(*bip)->bi_sector,
2186 (unsigned long long)sh->sector, dd_idx);
2187
2188 if (conf->mddev->bitmap && firstwrite) {
2189 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2190 STRIPE_SECTORS, 0);
2191 sh->bm_seq = conf->seq_flush+1;
2192 set_bit(STRIPE_BIT_DELAY, &sh->state);
2193 }
1da177e4
LT
2194 return 1;
2195
2196 overlap:
2197 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2198 spin_unlock_irq(&conf->device_lock);
1da177e4
LT
2199 return 0;
2200}
2201
29269553
N
2202static void end_reshape(raid5_conf_t *conf);
2203
911d4ee8
N
2204static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2205 struct stripe_head *sh)
ccfcc3c1 2206{
784052ec 2207 int sectors_per_chunk =
09c9e5fa 2208 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2209 int dd_idx;
2d2063ce 2210 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2211 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2212
112bf897
N
2213 raid5_compute_sector(conf,
2214 stripe * (disks - conf->max_degraded)
b875e531 2215 *sectors_per_chunk + chunk_offset,
112bf897 2216 previous,
911d4ee8 2217 &dd_idx, sh);
ccfcc3c1
N
2218}
2219
a4456856 2220static void
1fe797e6 2221handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2222 struct stripe_head_state *s, int disks,
2223 struct bio **return_bi)
2224{
2225 int i;
2226 for (i = disks; i--; ) {
2227 struct bio *bi;
2228 int bitmap_end = 0;
2229
2230 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2231 mdk_rdev_t *rdev;
2232 rcu_read_lock();
2233 rdev = rcu_dereference(conf->disks[i].rdev);
2234 if (rdev && test_bit(In_sync, &rdev->flags))
2235 /* multiple read failures in one stripe */
2236 md_error(conf->mddev, rdev);
2237 rcu_read_unlock();
2238 }
2239 spin_lock_irq(&conf->device_lock);
2240 /* fail all writes first */
2241 bi = sh->dev[i].towrite;
2242 sh->dev[i].towrite = NULL;
2243 if (bi) {
2244 s->to_write--;
2245 bitmap_end = 1;
2246 }
2247
2248 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2249 wake_up(&conf->wait_for_overlap);
2250
2251 while (bi && bi->bi_sector <
2252 sh->dev[i].sector + STRIPE_SECTORS) {
2253 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2254 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2255 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2256 md_write_end(conf->mddev);
2257 bi->bi_next = *return_bi;
2258 *return_bi = bi;
2259 }
2260 bi = nextbi;
2261 }
2262 /* and fail all 'written' */
2263 bi = sh->dev[i].written;
2264 sh->dev[i].written = NULL;
2265 if (bi) bitmap_end = 1;
2266 while (bi && bi->bi_sector <
2267 sh->dev[i].sector + STRIPE_SECTORS) {
2268 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2269 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2270 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2271 md_write_end(conf->mddev);
2272 bi->bi_next = *return_bi;
2273 *return_bi = bi;
2274 }
2275 bi = bi2;
2276 }
2277
b5e98d65
DW
2278 /* fail any reads if this device is non-operational and
2279 * the data has not reached the cache yet.
2280 */
2281 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2282 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2283 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2284 bi = sh->dev[i].toread;
2285 sh->dev[i].toread = NULL;
2286 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2287 wake_up(&conf->wait_for_overlap);
2288 if (bi) s->to_read--;
2289 while (bi && bi->bi_sector <
2290 sh->dev[i].sector + STRIPE_SECTORS) {
2291 struct bio *nextbi =
2292 r5_next_bio(bi, sh->dev[i].sector);
2293 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2294 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2295 bi->bi_next = *return_bi;
2296 *return_bi = bi;
2297 }
2298 bi = nextbi;
2299 }
2300 }
2301 spin_unlock_irq(&conf->device_lock);
2302 if (bitmap_end)
2303 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2304 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2305 /* If we were in the middle of a write the parity block might
2306 * still be locked - so just clear all R5_LOCKED flags
2307 */
2308 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2309 }
2310
8b3e6cdc
DW
2311 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2312 if (atomic_dec_and_test(&conf->pending_full_writes))
2313 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2314}
2315
93b3dbce 2316/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2317 * to be read or computed to satisfy a request.
2318 *
2319 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2320 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2321 */
93b3dbce
N
2322static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2323 int disk_idx, int disks)
a4456856 2324{
5599becc 2325 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2326 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2327 &sh->dev[s->failed_num[1]] };
5599becc 2328
93b3dbce 2329 /* is the data in this block needed, and can we get it? */
5599becc
YT
2330 if (!test_bit(R5_LOCKED, &dev->flags) &&
2331 !test_bit(R5_UPTODATE, &dev->flags) &&
2332 (dev->toread ||
2333 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2334 s->syncing || s->expanding ||
5d35e09c
N
2335 (s->failed >= 1 && fdev[0]->toread) ||
2336 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2337 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2338 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2339 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2340 /* we would like to get this block, possibly by computing it,
2341 * otherwise read it if the backing disk is insync
2342 */
2343 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2344 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2345 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2346 (s->failed && (disk_idx == s->failed_num[0] ||
2347 disk_idx == s->failed_num[1]))) {
5599becc
YT
2348 /* have disk failed, and we're requested to fetch it;
2349 * do compute it
a4456856 2350 */
5599becc
YT
2351 pr_debug("Computing stripe %llu block %d\n",
2352 (unsigned long long)sh->sector, disk_idx);
2353 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2354 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2355 set_bit(R5_Wantcompute, &dev->flags);
2356 sh->ops.target = disk_idx;
2357 sh->ops.target2 = -1; /* no 2nd target */
2358 s->req_compute = 1;
93b3dbce
N
2359 /* Careful: from this point on 'uptodate' is in the eye
2360 * of raid_run_ops which services 'compute' operations
2361 * before writes. R5_Wantcompute flags a block that will
2362 * be R5_UPTODATE by the time it is needed for a
2363 * subsequent operation.
2364 */
5599becc
YT
2365 s->uptodate++;
2366 return 1;
2367 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2368 /* Computing 2-failure is *very* expensive; only
2369 * do it if failed >= 2
2370 */
2371 int other;
2372 for (other = disks; other--; ) {
2373 if (other == disk_idx)
2374 continue;
2375 if (!test_bit(R5_UPTODATE,
2376 &sh->dev[other].flags))
2377 break;
a4456856 2378 }
5599becc
YT
2379 BUG_ON(other < 0);
2380 pr_debug("Computing stripe %llu blocks %d,%d\n",
2381 (unsigned long long)sh->sector,
2382 disk_idx, other);
2383 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2384 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2385 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2386 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2387 sh->ops.target = disk_idx;
2388 sh->ops.target2 = other;
2389 s->uptodate += 2;
2390 s->req_compute = 1;
2391 return 1;
2392 } else if (test_bit(R5_Insync, &dev->flags)) {
2393 set_bit(R5_LOCKED, &dev->flags);
2394 set_bit(R5_Wantread, &dev->flags);
2395 s->locked++;
2396 pr_debug("Reading block %d (sync=%d)\n",
2397 disk_idx, s->syncing);
a4456856
DW
2398 }
2399 }
5599becc
YT
2400
2401 return 0;
2402}
2403
2404/**
93b3dbce 2405 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2406 */
93b3dbce
N
2407static void handle_stripe_fill(struct stripe_head *sh,
2408 struct stripe_head_state *s,
2409 int disks)
5599becc
YT
2410{
2411 int i;
2412
2413 /* look for blocks to read/compute, skip this if a compute
2414 * is already in flight, or if the stripe contents are in the
2415 * midst of changing due to a write
2416 */
2417 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2418 !sh->reconstruct_state)
2419 for (i = disks; i--; )
93b3dbce 2420 if (fetch_block(sh, s, i, disks))
5599becc 2421 break;
a4456856
DW
2422 set_bit(STRIPE_HANDLE, &sh->state);
2423}
2424
2425
1fe797e6 2426/* handle_stripe_clean_event
a4456856
DW
2427 * any written block on an uptodate or failed drive can be returned.
2428 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2429 * never LOCKED, so we don't need to test 'failed' directly.
2430 */
1fe797e6 2431static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2432 struct stripe_head *sh, int disks, struct bio **return_bi)
2433{
2434 int i;
2435 struct r5dev *dev;
2436
2437 for (i = disks; i--; )
2438 if (sh->dev[i].written) {
2439 dev = &sh->dev[i];
2440 if (!test_bit(R5_LOCKED, &dev->flags) &&
2441 test_bit(R5_UPTODATE, &dev->flags)) {
2442 /* We can return any write requests */
2443 struct bio *wbi, *wbi2;
2444 int bitmap_end = 0;
45b4233c 2445 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2446 spin_lock_irq(&conf->device_lock);
2447 wbi = dev->written;
2448 dev->written = NULL;
2449 while (wbi && wbi->bi_sector <
2450 dev->sector + STRIPE_SECTORS) {
2451 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2452 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2453 md_write_end(conf->mddev);
2454 wbi->bi_next = *return_bi;
2455 *return_bi = wbi;
2456 }
2457 wbi = wbi2;
2458 }
2459 if (dev->towrite == NULL)
2460 bitmap_end = 1;
2461 spin_unlock_irq(&conf->device_lock);
2462 if (bitmap_end)
2463 bitmap_endwrite(conf->mddev->bitmap,
2464 sh->sector,
2465 STRIPE_SECTORS,
2466 !test_bit(STRIPE_DEGRADED, &sh->state),
2467 0);
2468 }
2469 }
8b3e6cdc
DW
2470
2471 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2472 if (atomic_dec_and_test(&conf->pending_full_writes))
2473 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2474}
2475
c8ac1803
N
2476static void handle_stripe_dirtying(raid5_conf_t *conf,
2477 struct stripe_head *sh,
2478 struct stripe_head_state *s,
2479 int disks)
a4456856
DW
2480{
2481 int rmw = 0, rcw = 0, i;
c8ac1803
N
2482 if (conf->max_degraded == 2) {
2483 /* RAID6 requires 'rcw' in current implementation
2484 * Calculate the real rcw later - for now fake it
2485 * look like rcw is cheaper
2486 */
2487 rcw = 1; rmw = 2;
2488 } else for (i = disks; i--; ) {
a4456856
DW
2489 /* would I have to read this buffer for read_modify_write */
2490 struct r5dev *dev = &sh->dev[i];
2491 if ((dev->towrite || i == sh->pd_idx) &&
2492 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2493 !(test_bit(R5_UPTODATE, &dev->flags) ||
2494 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2495 if (test_bit(R5_Insync, &dev->flags))
2496 rmw++;
2497 else
2498 rmw += 2*disks; /* cannot read it */
2499 }
2500 /* Would I have to read this buffer for reconstruct_write */
2501 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2502 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2503 !(test_bit(R5_UPTODATE, &dev->flags) ||
2504 test_bit(R5_Wantcompute, &dev->flags))) {
2505 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2506 else
2507 rcw += 2*disks;
2508 }
2509 }
45b4233c 2510 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2511 (unsigned long long)sh->sector, rmw, rcw);
2512 set_bit(STRIPE_HANDLE, &sh->state);
2513 if (rmw < rcw && rmw > 0)
2514 /* prefer read-modify-write, but need to get some data */
2515 for (i = disks; i--; ) {
2516 struct r5dev *dev = &sh->dev[i];
2517 if ((dev->towrite || i == sh->pd_idx) &&
2518 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2519 !(test_bit(R5_UPTODATE, &dev->flags) ||
2520 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2521 test_bit(R5_Insync, &dev->flags)) {
2522 if (
2523 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2524 pr_debug("Read_old block "
a4456856
DW
2525 "%d for r-m-w\n", i);
2526 set_bit(R5_LOCKED, &dev->flags);
2527 set_bit(R5_Wantread, &dev->flags);
2528 s->locked++;
2529 } else {
2530 set_bit(STRIPE_DELAYED, &sh->state);
2531 set_bit(STRIPE_HANDLE, &sh->state);
2532 }
2533 }
2534 }
c8ac1803 2535 if (rcw <= rmw && rcw > 0) {
a4456856 2536 /* want reconstruct write, but need to get some data */
c8ac1803 2537 rcw = 0;
a4456856
DW
2538 for (i = disks; i--; ) {
2539 struct r5dev *dev = &sh->dev[i];
2540 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 2541 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 2542 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 2543 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
2544 test_bit(R5_Wantcompute, &dev->flags))) {
2545 rcw++;
2546 if (!test_bit(R5_Insync, &dev->flags))
2547 continue; /* it's a failed drive */
a4456856
DW
2548 if (
2549 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2550 pr_debug("Read_old block "
a4456856
DW
2551 "%d for Reconstruct\n", i);
2552 set_bit(R5_LOCKED, &dev->flags);
2553 set_bit(R5_Wantread, &dev->flags);
2554 s->locked++;
2555 } else {
2556 set_bit(STRIPE_DELAYED, &sh->state);
2557 set_bit(STRIPE_HANDLE, &sh->state);
2558 }
2559 }
2560 }
c8ac1803 2561 }
a4456856
DW
2562 /* now if nothing is locked, and if we have enough data,
2563 * we can start a write request
2564 */
f38e1219
DW
2565 /* since handle_stripe can be called at any time we need to handle the
2566 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2567 * subsequent call wants to start a write request. raid_run_ops only
2568 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2569 * simultaneously. If this is not the case then new writes need to be
2570 * held off until the compute completes.
2571 */
976ea8d4
DW
2572 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2573 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2574 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2575 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2576}
2577
a4456856
DW
2578static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2579 struct stripe_head_state *s, int disks)
2580{
ecc65c9b 2581 struct r5dev *dev = NULL;
bd2ab670 2582
a4456856 2583 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2584
ecc65c9b
DW
2585 switch (sh->check_state) {
2586 case check_state_idle:
2587 /* start a new check operation if there are no failures */
bd2ab670 2588 if (s->failed == 0) {
bd2ab670 2589 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2590 sh->check_state = check_state_run;
2591 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2592 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2593 s->uptodate--;
ecc65c9b 2594 break;
bd2ab670 2595 }
f2b3b44d 2596 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
2597 /* fall through */
2598 case check_state_compute_result:
2599 sh->check_state = check_state_idle;
2600 if (!dev)
2601 dev = &sh->dev[sh->pd_idx];
2602
2603 /* check that a write has not made the stripe insync */
2604 if (test_bit(STRIPE_INSYNC, &sh->state))
2605 break;
c8894419 2606
a4456856 2607 /* either failed parity check, or recovery is happening */
a4456856
DW
2608 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2609 BUG_ON(s->uptodate != disks);
2610
2611 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2612 s->locked++;
a4456856 2613 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2614
a4456856 2615 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2616 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2617 break;
2618 case check_state_run:
2619 break; /* we will be called again upon completion */
2620 case check_state_check_result:
2621 sh->check_state = check_state_idle;
2622
2623 /* if a failure occurred during the check operation, leave
2624 * STRIPE_INSYNC not set and let the stripe be handled again
2625 */
2626 if (s->failed)
2627 break;
2628
2629 /* handle a successful check operation, if parity is correct
2630 * we are done. Otherwise update the mismatch count and repair
2631 * parity if !MD_RECOVERY_CHECK
2632 */
ad283ea4 2633 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2634 /* parity is correct (on disc,
2635 * not in buffer any more)
2636 */
2637 set_bit(STRIPE_INSYNC, &sh->state);
2638 else {
2639 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2640 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2641 /* don't try to repair!! */
2642 set_bit(STRIPE_INSYNC, &sh->state);
2643 else {
2644 sh->check_state = check_state_compute_run;
976ea8d4 2645 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2646 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2647 set_bit(R5_Wantcompute,
2648 &sh->dev[sh->pd_idx].flags);
2649 sh->ops.target = sh->pd_idx;
ac6b53b6 2650 sh->ops.target2 = -1;
ecc65c9b
DW
2651 s->uptodate++;
2652 }
2653 }
2654 break;
2655 case check_state_compute_run:
2656 break;
2657 default:
2658 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2659 __func__, sh->check_state,
2660 (unsigned long long) sh->sector);
2661 BUG();
a4456856
DW
2662 }
2663}
2664
2665
2666static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
36d1c647 2667 struct stripe_head_state *s,
f2b3b44d 2668 int disks)
a4456856 2669{
a4456856 2670 int pd_idx = sh->pd_idx;
34e04e87 2671 int qd_idx = sh->qd_idx;
d82dfee0 2672 struct r5dev *dev;
a4456856
DW
2673
2674 set_bit(STRIPE_HANDLE, &sh->state);
2675
2676 BUG_ON(s->failed > 2);
d82dfee0 2677
a4456856
DW
2678 /* Want to check and possibly repair P and Q.
2679 * However there could be one 'failed' device, in which
2680 * case we can only check one of them, possibly using the
2681 * other to generate missing data
2682 */
2683
d82dfee0
DW
2684 switch (sh->check_state) {
2685 case check_state_idle:
2686 /* start a new check operation if there are < 2 failures */
f2b3b44d 2687 if (s->failed == s->q_failed) {
d82dfee0 2688 /* The only possible failed device holds Q, so it
a4456856
DW
2689 * makes sense to check P (If anything else were failed,
2690 * we would have used P to recreate it).
2691 */
d82dfee0 2692 sh->check_state = check_state_run;
a4456856 2693 }
f2b3b44d 2694 if (!s->q_failed && s->failed < 2) {
d82dfee0 2695 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2696 * anything, so it makes sense to check it
2697 */
d82dfee0
DW
2698 if (sh->check_state == check_state_run)
2699 sh->check_state = check_state_run_pq;
2700 else
2701 sh->check_state = check_state_run_q;
a4456856 2702 }
a4456856 2703
d82dfee0
DW
2704 /* discard potentially stale zero_sum_result */
2705 sh->ops.zero_sum_result = 0;
a4456856 2706
d82dfee0
DW
2707 if (sh->check_state == check_state_run) {
2708 /* async_xor_zero_sum destroys the contents of P */
2709 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2710 s->uptodate--;
a4456856 2711 }
d82dfee0
DW
2712 if (sh->check_state >= check_state_run &&
2713 sh->check_state <= check_state_run_pq) {
2714 /* async_syndrome_zero_sum preserves P and Q, so
2715 * no need to mark them !uptodate here
2716 */
2717 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2718 break;
a4456856
DW
2719 }
2720
d82dfee0
DW
2721 /* we have 2-disk failure */
2722 BUG_ON(s->failed != 2);
2723 /* fall through */
2724 case check_state_compute_result:
2725 sh->check_state = check_state_idle;
a4456856 2726
d82dfee0
DW
2727 /* check that a write has not made the stripe insync */
2728 if (test_bit(STRIPE_INSYNC, &sh->state))
2729 break;
a4456856
DW
2730
2731 /* now write out any block on a failed drive,
d82dfee0 2732 * or P or Q if they were recomputed
a4456856 2733 */
d82dfee0 2734 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 2735 if (s->failed == 2) {
f2b3b44d 2736 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
2737 s->locked++;
2738 set_bit(R5_LOCKED, &dev->flags);
2739 set_bit(R5_Wantwrite, &dev->flags);
2740 }
2741 if (s->failed >= 1) {
f2b3b44d 2742 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
2743 s->locked++;
2744 set_bit(R5_LOCKED, &dev->flags);
2745 set_bit(R5_Wantwrite, &dev->flags);
2746 }
d82dfee0 2747 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2748 dev = &sh->dev[pd_idx];
2749 s->locked++;
2750 set_bit(R5_LOCKED, &dev->flags);
2751 set_bit(R5_Wantwrite, &dev->flags);
2752 }
d82dfee0 2753 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2754 dev = &sh->dev[qd_idx];
2755 s->locked++;
2756 set_bit(R5_LOCKED, &dev->flags);
2757 set_bit(R5_Wantwrite, &dev->flags);
2758 }
2759 clear_bit(STRIPE_DEGRADED, &sh->state);
2760
2761 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2762 break;
2763 case check_state_run:
2764 case check_state_run_q:
2765 case check_state_run_pq:
2766 break; /* we will be called again upon completion */
2767 case check_state_check_result:
2768 sh->check_state = check_state_idle;
2769
2770 /* handle a successful check operation, if parity is correct
2771 * we are done. Otherwise update the mismatch count and repair
2772 * parity if !MD_RECOVERY_CHECK
2773 */
2774 if (sh->ops.zero_sum_result == 0) {
2775 /* both parities are correct */
2776 if (!s->failed)
2777 set_bit(STRIPE_INSYNC, &sh->state);
2778 else {
2779 /* in contrast to the raid5 case we can validate
2780 * parity, but still have a failure to write
2781 * back
2782 */
2783 sh->check_state = check_state_compute_result;
2784 /* Returning at this point means that we may go
2785 * off and bring p and/or q uptodate again so
2786 * we make sure to check zero_sum_result again
2787 * to verify if p or q need writeback
2788 */
2789 }
2790 } else {
2791 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2792 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2793 /* don't try to repair!! */
2794 set_bit(STRIPE_INSYNC, &sh->state);
2795 else {
2796 int *target = &sh->ops.target;
2797
2798 sh->ops.target = -1;
2799 sh->ops.target2 = -1;
2800 sh->check_state = check_state_compute_run;
2801 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2802 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2803 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2804 set_bit(R5_Wantcompute,
2805 &sh->dev[pd_idx].flags);
2806 *target = pd_idx;
2807 target = &sh->ops.target2;
2808 s->uptodate++;
2809 }
2810 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2811 set_bit(R5_Wantcompute,
2812 &sh->dev[qd_idx].flags);
2813 *target = qd_idx;
2814 s->uptodate++;
2815 }
2816 }
2817 }
2818 break;
2819 case check_state_compute_run:
2820 break;
2821 default:
2822 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2823 __func__, sh->check_state,
2824 (unsigned long long) sh->sector);
2825 BUG();
a4456856
DW
2826 }
2827}
2828
86c374ba 2829static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
a4456856
DW
2830{
2831 int i;
2832
2833 /* We have read all the blocks in this stripe and now we need to
2834 * copy some of them into a target stripe for expand.
2835 */
f0a50d37 2836 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2837 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2838 for (i = 0; i < sh->disks; i++)
34e04e87 2839 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2840 int dd_idx, j;
a4456856 2841 struct stripe_head *sh2;
a08abd8c 2842 struct async_submit_ctl submit;
a4456856 2843
784052ec 2844 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2845 sector_t s = raid5_compute_sector(conf, bn, 0,
2846 &dd_idx, NULL);
a8c906ca 2847 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
2848 if (sh2 == NULL)
2849 /* so far only the early blocks of this stripe
2850 * have been requested. When later blocks
2851 * get requested, we will try again
2852 */
2853 continue;
2854 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2855 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2856 /* must have already done this block */
2857 release_stripe(sh2);
2858 continue;
2859 }
f0a50d37
DW
2860
2861 /* place all the copies on one channel */
a08abd8c 2862 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2863 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2864 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2865 &submit);
f0a50d37 2866
a4456856
DW
2867 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2868 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2869 for (j = 0; j < conf->raid_disks; j++)
2870 if (j != sh2->pd_idx &&
86c374ba 2871 j != sh2->qd_idx &&
a4456856
DW
2872 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2873 break;
2874 if (j == conf->raid_disks) {
2875 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2876 set_bit(STRIPE_HANDLE, &sh2->state);
2877 }
2878 release_stripe(sh2);
f0a50d37 2879
a4456856 2880 }
a2e08551
N
2881 /* done submitting copies, wait for them to complete */
2882 if (tx) {
2883 async_tx_ack(tx);
2884 dma_wait_for_async_tx(tx);
2885 }
a4456856 2886}
1da177e4 2887
6bfe0b49 2888
1da177e4
LT
2889/*
2890 * handle_stripe - do things to a stripe.
2891 *
2892 * We lock the stripe and then examine the state of various bits
2893 * to see what needs to be done.
2894 * Possible results:
2895 * return some read request which now have data
2896 * return some write requests which are safely on disc
2897 * schedule a read on some buffers
2898 * schedule a write of some buffers
2899 * return confirmation of parity correctness
2900 *
1da177e4
LT
2901 * buffers are taken off read_list or write_list, and bh_cache buffers
2902 * get BH_Lock set before the stripe lock is released.
2903 *
2904 */
a4456856 2905
acfe726b 2906static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 2907{
bff61975 2908 raid5_conf_t *conf = sh->raid_conf;
f416885e 2909 int disks = sh->disks;
474af965
N
2910 struct r5dev *dev;
2911 int i;
1da177e4 2912
acfe726b
N
2913 memset(s, 0, sizeof(*s));
2914
2915 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2916 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2917 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2918 s->failed_num[0] = -1;
2919 s->failed_num[1] = -1;
1da177e4 2920
acfe726b 2921 /* Now to look around and see what can be done */
1da177e4 2922 rcu_read_lock();
c4c1663b 2923 spin_lock_irq(&conf->device_lock);
16a53ecc
N
2924 for (i=disks; i--; ) {
2925 mdk_rdev_t *rdev;
31c176ec
N
2926 sector_t first_bad;
2927 int bad_sectors;
2928 int is_bad = 0;
acfe726b 2929
16a53ecc 2930 dev = &sh->dev[i];
1da177e4 2931
45b4233c 2932 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc 2933 i, dev->flags, dev->toread, dev->towrite, dev->written);
6c0069c0
YT
2934 /* maybe we can reply to a read
2935 *
2936 * new wantfill requests are only permitted while
2937 * ops_complete_biofill is guaranteed to be inactive
2938 */
2939 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2940 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2941 set_bit(R5_Wantfill, &dev->flags);
1da177e4 2942
16a53ecc 2943 /* now count some things */
cc94015a
N
2944 if (test_bit(R5_LOCKED, &dev->flags))
2945 s->locked++;
2946 if (test_bit(R5_UPTODATE, &dev->flags))
2947 s->uptodate++;
2d6e4ecc 2948 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
2949 s->compute++;
2950 BUG_ON(s->compute > 2);
2d6e4ecc 2951 }
1da177e4 2952
acfe726b 2953 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 2954 s->to_fill++;
acfe726b 2955 else if (dev->toread)
cc94015a 2956 s->to_read++;
16a53ecc 2957 if (dev->towrite) {
cc94015a 2958 s->to_write++;
16a53ecc 2959 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 2960 s->non_overwrite++;
16a53ecc 2961 }
a4456856 2962 if (dev->written)
cc94015a 2963 s->written++;
16a53ecc 2964 rdev = rcu_dereference(conf->disks[i].rdev);
31c176ec
N
2965 if (rdev) {
2966 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
2967 &first_bad, &bad_sectors);
2968 if (s->blocked_rdev == NULL
2969 && (test_bit(Blocked, &rdev->flags)
2970 || is_bad < 0)) {
2971 if (is_bad < 0)
2972 set_bit(BlockedBadBlocks,
2973 &rdev->flags);
2974 s->blocked_rdev = rdev;
2975 atomic_inc(&rdev->nr_pending);
2976 }
6bfe0b49 2977 }
415e72d0
N
2978 clear_bit(R5_Insync, &dev->flags);
2979 if (!rdev)
2980 /* Not in-sync */;
31c176ec
N
2981 else if (is_bad) {
2982 /* also not in-sync */
2983 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
2984 /* treat as in-sync, but with a read error
2985 * which we can now try to correct
2986 */
2987 set_bit(R5_Insync, &dev->flags);
2988 set_bit(R5_ReadError, &dev->flags);
2989 }
2990 } else if (test_bit(In_sync, &rdev->flags))
415e72d0
N
2991 set_bit(R5_Insync, &dev->flags);
2992 else {
2993 /* in sync if before recovery_offset */
2994 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
2995 set_bit(R5_Insync, &dev->flags);
2996 }
2997 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
2998 /* The ReadError flag will just be confusing now */
2999 clear_bit(R5_ReadError, &dev->flags);
3000 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3001 }
415e72d0
N
3002 if (test_bit(R5_ReadError, &dev->flags))
3003 clear_bit(R5_Insync, &dev->flags);
3004 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3005 if (s->failed < 2)
3006 s->failed_num[s->failed] = i;
3007 s->failed++;
415e72d0 3008 }
1da177e4 3009 }
c4c1663b 3010 spin_unlock_irq(&conf->device_lock);
1da177e4 3011 rcu_read_unlock();
cc94015a
N
3012}
3013
3014static void handle_stripe(struct stripe_head *sh)
3015{
3016 struct stripe_head_state s;
474af965 3017 raid5_conf_t *conf = sh->raid_conf;
3687c061 3018 int i;
84789554
N
3019 int prexor;
3020 int disks = sh->disks;
474af965 3021 struct r5dev *pdev, *qdev;
cc94015a
N
3022
3023 clear_bit(STRIPE_HANDLE, &sh->state);
3024 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3025 /* already being handled, ensure it gets handled
3026 * again when current action finishes */
3027 set_bit(STRIPE_HANDLE, &sh->state);
3028 return;
3029 }
3030
3031 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3032 set_bit(STRIPE_SYNCING, &sh->state);
3033 clear_bit(STRIPE_INSYNC, &sh->state);
3034 }
3035 clear_bit(STRIPE_DELAYED, &sh->state);
3036
3037 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3038 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3039 (unsigned long long)sh->sector, sh->state,
3040 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3041 sh->check_state, sh->reconstruct_state);
3687c061 3042
acfe726b 3043 analyse_stripe(sh, &s);
c5a31000 3044
474af965
N
3045 if (unlikely(s.blocked_rdev)) {
3046 if (s.syncing || s.expanding || s.expanded ||
3047 s.to_write || s.written) {
3048 set_bit(STRIPE_HANDLE, &sh->state);
3049 goto finish;
3050 }
3051 /* There is nothing for the blocked_rdev to block */
3052 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3053 s.blocked_rdev = NULL;
3054 }
3055
3056 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3057 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3058 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3059 }
3060
3061 pr_debug("locked=%d uptodate=%d to_read=%d"
3062 " to_write=%d failed=%d failed_num=%d,%d\n",
3063 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3064 s.failed_num[0], s.failed_num[1]);
3065 /* check if the array has lost more than max_degraded devices and,
3066 * if so, some requests might need to be failed.
3067 */
3068 if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3069 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3070 if (s.failed > conf->max_degraded && s.syncing) {
3071 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
3072 clear_bit(STRIPE_SYNCING, &sh->state);
3073 s.syncing = 0;
3074 }
3075
3076 /*
3077 * might be able to return some write requests if the parity blocks
3078 * are safe, or on a failed drive
3079 */
3080 pdev = &sh->dev[sh->pd_idx];
3081 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3082 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3083 qdev = &sh->dev[sh->qd_idx];
3084 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3085 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3086 || conf->level < 6;
3087
3088 if (s.written &&
3089 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3090 && !test_bit(R5_LOCKED, &pdev->flags)
3091 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3092 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3093 && !test_bit(R5_LOCKED, &qdev->flags)
3094 && test_bit(R5_UPTODATE, &qdev->flags)))))
3095 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3096
3097 /* Now we might consider reading some blocks, either to check/generate
3098 * parity, or to satisfy requests
3099 * or to load a block that is being partially written.
3100 */
3101 if (s.to_read || s.non_overwrite
3102 || (conf->level == 6 && s.to_write && s.failed)
3103 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3104 handle_stripe_fill(sh, &s, disks);
3105
84789554
N
3106 /* Now we check to see if any write operations have recently
3107 * completed
3108 */
3109 prexor = 0;
3110 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3111 prexor = 1;
3112 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3113 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3114 sh->reconstruct_state = reconstruct_state_idle;
3115
3116 /* All the 'written' buffers and the parity block are ready to
3117 * be written back to disk
3118 */
3119 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3120 BUG_ON(sh->qd_idx >= 0 &&
3121 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3122 for (i = disks; i--; ) {
3123 struct r5dev *dev = &sh->dev[i];
3124 if (test_bit(R5_LOCKED, &dev->flags) &&
3125 (i == sh->pd_idx || i == sh->qd_idx ||
3126 dev->written)) {
3127 pr_debug("Writing block %d\n", i);
3128 set_bit(R5_Wantwrite, &dev->flags);
3129 if (prexor)
3130 continue;
3131 if (!test_bit(R5_Insync, &dev->flags) ||
3132 ((i == sh->pd_idx || i == sh->qd_idx) &&
3133 s.failed == 0))
3134 set_bit(STRIPE_INSYNC, &sh->state);
3135 }
3136 }
3137 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3138 s.dec_preread_active = 1;
3139 }
3140
3141 /* Now to consider new write requests and what else, if anything
3142 * should be read. We do not handle new writes when:
3143 * 1/ A 'write' operation (copy+xor) is already in flight.
3144 * 2/ A 'check' operation is in flight, as it may clobber the parity
3145 * block.
3146 */
3147 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3148 handle_stripe_dirtying(conf, sh, &s, disks);
3149
3150 /* maybe we need to check and possibly fix the parity for this stripe
3151 * Any reads will already have been scheduled, so we just see if enough
3152 * data is available. The parity check is held off while parity
3153 * dependent operations are in flight.
3154 */
3155 if (sh->check_state ||
3156 (s.syncing && s.locked == 0 &&
3157 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3158 !test_bit(STRIPE_INSYNC, &sh->state))) {
3159 if (conf->level == 6)
3160 handle_parity_checks6(conf, sh, &s, disks);
3161 else
3162 handle_parity_checks5(conf, sh, &s, disks);
3163 }
c5a31000
N
3164
3165 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3166 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3167 clear_bit(STRIPE_SYNCING, &sh->state);
3168 }
3169
3170 /* If the failed drives are just a ReadError, then we might need
3171 * to progress the repair/check process
3172 */
3173 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3174 for (i = 0; i < s.failed; i++) {
3175 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3176 if (test_bit(R5_ReadError, &dev->flags)
3177 && !test_bit(R5_LOCKED, &dev->flags)
3178 && test_bit(R5_UPTODATE, &dev->flags)
3179 ) {
3180 if (!test_bit(R5_ReWrite, &dev->flags)) {
3181 set_bit(R5_Wantwrite, &dev->flags);
3182 set_bit(R5_ReWrite, &dev->flags);
3183 set_bit(R5_LOCKED, &dev->flags);
3184 s.locked++;
3185 } else {
3186 /* let's read it back */
3187 set_bit(R5_Wantread, &dev->flags);
3188 set_bit(R5_LOCKED, &dev->flags);
3189 s.locked++;
3190 }
3191 }
3192 }
3193
3194
3687c061
N
3195 /* Finish reconstruct operations initiated by the expansion process */
3196 if (sh->reconstruct_state == reconstruct_state_result) {
3197 struct stripe_head *sh_src
3198 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3199 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3200 /* sh cannot be written until sh_src has been read.
3201 * so arrange for sh to be delayed a little
3202 */
3203 set_bit(STRIPE_DELAYED, &sh->state);
3204 set_bit(STRIPE_HANDLE, &sh->state);
3205 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3206 &sh_src->state))
3207 atomic_inc(&conf->preread_active_stripes);
3208 release_stripe(sh_src);
3209 goto finish;
3210 }
3211 if (sh_src)
3212 release_stripe(sh_src);
3213
3214 sh->reconstruct_state = reconstruct_state_idle;
3215 clear_bit(STRIPE_EXPANDING, &sh->state);
3216 for (i = conf->raid_disks; i--; ) {
3217 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3218 set_bit(R5_LOCKED, &sh->dev[i].flags);
3219 s.locked++;
3220 }
3221 }
f416885e 3222
3687c061
N
3223 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3224 !sh->reconstruct_state) {
3225 /* Need to write out all blocks after computing parity */
3226 sh->disks = conf->raid_disks;
3227 stripe_set_idx(sh->sector, conf, 0, sh);
3228 schedule_reconstruction(sh, &s, 1, 1);
3229 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3230 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3231 atomic_dec(&conf->reshape_stripes);
3232 wake_up(&conf->wait_for_overlap);
3233 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3234 }
3235
3236 if (s.expanding && s.locked == 0 &&
3237 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3238 handle_stripe_expansion(conf, sh);
16a53ecc 3239
3687c061 3240finish:
6bfe0b49 3241 /* wait for this device to become unblocked */
c5709ef6
N
3242 if (unlikely(s.blocked_rdev))
3243 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
6bfe0b49 3244
6c0069c0
YT
3245 if (s.ops_request)
3246 raid_run_ops(sh, s.ops_request);
3247
f0e43bcd 3248 ops_run_io(sh, &s);
16a53ecc 3249
729a1866 3250
c5709ef6 3251 if (s.dec_preread_active) {
729a1866 3252 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3253 * is waiting on a flush, it won't continue until the writes
729a1866
N
3254 * have actually been submitted.
3255 */
3256 atomic_dec(&conf->preread_active_stripes);
3257 if (atomic_read(&conf->preread_active_stripes) <
3258 IO_THRESHOLD)
3259 md_wakeup_thread(conf->mddev->thread);
3260 }
3261
c5709ef6 3262 return_io(s.return_bi);
16a53ecc 3263
c4c1663b 3264 clear_bit(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3265}
3266
16a53ecc
N
3267static void raid5_activate_delayed(raid5_conf_t *conf)
3268{
3269 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3270 while (!list_empty(&conf->delayed_list)) {
3271 struct list_head *l = conf->delayed_list.next;
3272 struct stripe_head *sh;
3273 sh = list_entry(l, struct stripe_head, lru);
3274 list_del_init(l);
3275 clear_bit(STRIPE_DELAYED, &sh->state);
3276 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3277 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3278 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3279 }
482c0834 3280 }
16a53ecc
N
3281}
3282
3283static void activate_bit_delay(raid5_conf_t *conf)
3284{
3285 /* device_lock is held */
3286 struct list_head head;
3287 list_add(&head, &conf->bitmap_list);
3288 list_del_init(&conf->bitmap_list);
3289 while (!list_empty(&head)) {
3290 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3291 list_del_init(&sh->lru);
3292 atomic_inc(&sh->count);
3293 __release_stripe(conf, sh);
3294 }
3295}
3296
11d8a6e3 3297int md_raid5_congested(mddev_t *mddev, int bits)
f022b2fd 3298{
070ec55d 3299 raid5_conf_t *conf = mddev->private;
f022b2fd
N
3300
3301 /* No difference between reads and writes. Just check
3302 * how busy the stripe_cache is
3303 */
3fa841d7 3304
f022b2fd
N
3305 if (conf->inactive_blocked)
3306 return 1;
3307 if (conf->quiesce)
3308 return 1;
3309 if (list_empty_careful(&conf->inactive_list))
3310 return 1;
3311
3312 return 0;
3313}
11d8a6e3
N
3314EXPORT_SYMBOL_GPL(md_raid5_congested);
3315
3316static int raid5_congested(void *data, int bits)
3317{
3318 mddev_t *mddev = data;
3319
3320 return mddev_congested(mddev, bits) ||
3321 md_raid5_congested(mddev, bits);
3322}
f022b2fd 3323
23032a0e
RBJ
3324/* We want read requests to align with chunks where possible,
3325 * but write requests don't need to.
3326 */
cc371e66
AK
3327static int raid5_mergeable_bvec(struct request_queue *q,
3328 struct bvec_merge_data *bvm,
3329 struct bio_vec *biovec)
23032a0e
RBJ
3330{
3331 mddev_t *mddev = q->queuedata;
cc371e66 3332 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3333 int max;
9d8f0363 3334 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3335 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3336
cc371e66 3337 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3338 return biovec->bv_len; /* always allow writes to be mergeable */
3339
664e7c41
AN
3340 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3341 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3342 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3343 if (max < 0) max = 0;
3344 if (max <= biovec->bv_len && bio_sectors == 0)
3345 return biovec->bv_len;
3346 else
3347 return max;
3348}
3349
f679623f
RBJ
3350
3351static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3352{
3353 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3354 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3355 unsigned int bio_sectors = bio->bi_size >> 9;
3356
664e7c41
AN
3357 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3358 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3359 return chunk_sectors >=
3360 ((sector & (chunk_sectors - 1)) + bio_sectors);
3361}
3362
46031f9a
RBJ
3363/*
3364 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3365 * later sampled by raid5d.
3366 */
3367static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3368{
3369 unsigned long flags;
3370
3371 spin_lock_irqsave(&conf->device_lock, flags);
3372
3373 bi->bi_next = conf->retry_read_aligned_list;
3374 conf->retry_read_aligned_list = bi;
3375
3376 spin_unlock_irqrestore(&conf->device_lock, flags);
3377 md_wakeup_thread(conf->mddev->thread);
3378}
3379
3380
3381static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3382{
3383 struct bio *bi;
3384
3385 bi = conf->retry_read_aligned;
3386 if (bi) {
3387 conf->retry_read_aligned = NULL;
3388 return bi;
3389 }
3390 bi = conf->retry_read_aligned_list;
3391 if(bi) {
387bb173 3392 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3393 bi->bi_next = NULL;
960e739d
JA
3394 /*
3395 * this sets the active strip count to 1 and the processed
3396 * strip count to zero (upper 8 bits)
3397 */
46031f9a 3398 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3399 }
3400
3401 return bi;
3402}
3403
3404
f679623f
RBJ
3405/*
3406 * The "raid5_align_endio" should check if the read succeeded and if it
3407 * did, call bio_endio on the original bio (having bio_put the new bio
3408 * first).
3409 * If the read failed..
3410 */
6712ecf8 3411static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3412{
3413 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3414 mddev_t *mddev;
3415 raid5_conf_t *conf;
3416 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3417 mdk_rdev_t *rdev;
3418
f679623f 3419 bio_put(bi);
46031f9a 3420
46031f9a
RBJ
3421 rdev = (void*)raid_bi->bi_next;
3422 raid_bi->bi_next = NULL;
2b7f2228
N
3423 mddev = rdev->mddev;
3424 conf = mddev->private;
46031f9a
RBJ
3425
3426 rdev_dec_pending(rdev, conf->mddev);
3427
3428 if (!error && uptodate) {
6712ecf8 3429 bio_endio(raid_bi, 0);
46031f9a
RBJ
3430 if (atomic_dec_and_test(&conf->active_aligned_reads))
3431 wake_up(&conf->wait_for_stripe);
6712ecf8 3432 return;
46031f9a
RBJ
3433 }
3434
3435
45b4233c 3436 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3437
3438 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3439}
3440
387bb173
NB
3441static int bio_fits_rdev(struct bio *bi)
3442{
165125e1 3443 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3444
ae03bf63 3445 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3446 return 0;
3447 blk_recount_segments(q, bi);
8a78362c 3448 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3449 return 0;
3450
3451 if (q->merge_bvec_fn)
3452 /* it's too hard to apply the merge_bvec_fn at this stage,
3453 * just just give up
3454 */
3455 return 0;
3456
3457 return 1;
3458}
3459
3460
21a52c6d 3461static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
f679623f 3462{
070ec55d 3463 raid5_conf_t *conf = mddev->private;
8553fe7e 3464 int dd_idx;
f679623f
RBJ
3465 struct bio* align_bi;
3466 mdk_rdev_t *rdev;
3467
3468 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3469 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3470 return 0;
3471 }
3472 /*
a167f663 3473 * use bio_clone_mddev to make a copy of the bio
f679623f 3474 */
a167f663 3475 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3476 if (!align_bi)
3477 return 0;
3478 /*
3479 * set bi_end_io to a new function, and set bi_private to the
3480 * original bio.
3481 */
3482 align_bi->bi_end_io = raid5_align_endio;
3483 align_bi->bi_private = raid_bio;
3484 /*
3485 * compute position
3486 */
112bf897
N
3487 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3488 0,
911d4ee8 3489 &dd_idx, NULL);
f679623f
RBJ
3490
3491 rcu_read_lock();
3492 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3493 if (rdev && test_bit(In_sync, &rdev->flags)) {
31c176ec
N
3494 sector_t first_bad;
3495 int bad_sectors;
3496
f679623f
RBJ
3497 atomic_inc(&rdev->nr_pending);
3498 rcu_read_unlock();
46031f9a
RBJ
3499 raid_bio->bi_next = (void*)rdev;
3500 align_bi->bi_bdev = rdev->bdev;
3501 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3502 align_bi->bi_sector += rdev->data_offset;
3503
31c176ec
N
3504 if (!bio_fits_rdev(align_bi) ||
3505 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3506 &first_bad, &bad_sectors)) {
3507 /* too big in some way, or has a known bad block */
387bb173
NB
3508 bio_put(align_bi);
3509 rdev_dec_pending(rdev, mddev);
3510 return 0;
3511 }
3512
46031f9a
RBJ
3513 spin_lock_irq(&conf->device_lock);
3514 wait_event_lock_irq(conf->wait_for_stripe,
3515 conf->quiesce == 0,
3516 conf->device_lock, /* nothing */);
3517 atomic_inc(&conf->active_aligned_reads);
3518 spin_unlock_irq(&conf->device_lock);
3519
f679623f
RBJ
3520 generic_make_request(align_bi);
3521 return 1;
3522 } else {
3523 rcu_read_unlock();
46031f9a 3524 bio_put(align_bi);
f679623f
RBJ
3525 return 0;
3526 }
3527}
3528
8b3e6cdc
DW
3529/* __get_priority_stripe - get the next stripe to process
3530 *
3531 * Full stripe writes are allowed to pass preread active stripes up until
3532 * the bypass_threshold is exceeded. In general the bypass_count
3533 * increments when the handle_list is handled before the hold_list; however, it
3534 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3535 * stripe with in flight i/o. The bypass_count will be reset when the
3536 * head of the hold_list has changed, i.e. the head was promoted to the
3537 * handle_list.
3538 */
3539static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3540{
3541 struct stripe_head *sh;
3542
3543 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3544 __func__,
3545 list_empty(&conf->handle_list) ? "empty" : "busy",
3546 list_empty(&conf->hold_list) ? "empty" : "busy",
3547 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3548
3549 if (!list_empty(&conf->handle_list)) {
3550 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3551
3552 if (list_empty(&conf->hold_list))
3553 conf->bypass_count = 0;
3554 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3555 if (conf->hold_list.next == conf->last_hold)
3556 conf->bypass_count++;
3557 else {
3558 conf->last_hold = conf->hold_list.next;
3559 conf->bypass_count -= conf->bypass_threshold;
3560 if (conf->bypass_count < 0)
3561 conf->bypass_count = 0;
3562 }
3563 }
3564 } else if (!list_empty(&conf->hold_list) &&
3565 ((conf->bypass_threshold &&
3566 conf->bypass_count > conf->bypass_threshold) ||
3567 atomic_read(&conf->pending_full_writes) == 0)) {
3568 sh = list_entry(conf->hold_list.next,
3569 typeof(*sh), lru);
3570 conf->bypass_count -= conf->bypass_threshold;
3571 if (conf->bypass_count < 0)
3572 conf->bypass_count = 0;
3573 } else
3574 return NULL;
3575
3576 list_del_init(&sh->lru);
3577 atomic_inc(&sh->count);
3578 BUG_ON(atomic_read(&sh->count) != 1);
3579 return sh;
3580}
f679623f 3581
21a52c6d 3582static int make_request(mddev_t *mddev, struct bio * bi)
1da177e4 3583{
070ec55d 3584 raid5_conf_t *conf = mddev->private;
911d4ee8 3585 int dd_idx;
1da177e4
LT
3586 sector_t new_sector;
3587 sector_t logical_sector, last_sector;
3588 struct stripe_head *sh;
a362357b 3589 const int rw = bio_data_dir(bi);
49077326 3590 int remaining;
7c13edc8 3591 int plugged;
1da177e4 3592
e9c7469b
TH
3593 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3594 md_flush_request(mddev, bi);
e5dcdd80
N
3595 return 0;
3596 }
3597
3d310eb7 3598 md_write_start(mddev, bi);
06d91a5f 3599
802ba064 3600 if (rw == READ &&
52488615 3601 mddev->reshape_position == MaxSector &&
21a52c6d 3602 chunk_aligned_read(mddev,bi))
99c0fb5f 3603 return 0;
52488615 3604
1da177e4
LT
3605 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3606 last_sector = bi->bi_sector + (bi->bi_size>>9);
3607 bi->bi_next = NULL;
3608 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3609
7c13edc8 3610 plugged = mddev_check_plugged(mddev);
1da177e4
LT
3611 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3612 DEFINE_WAIT(w);
16a53ecc 3613 int disks, data_disks;
b5663ba4 3614 int previous;
b578d55f 3615
7ecaa1e6 3616 retry:
b5663ba4 3617 previous = 0;
b0f9ec04 3618 disks = conf->raid_disks;
b578d55f 3619 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3620 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3621 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3622 * 64bit on a 32bit platform, and so it might be
3623 * possible to see a half-updated value
aeb878b0 3624 * Of course reshape_progress could change after
df8e7f76
N
3625 * the lock is dropped, so once we get a reference
3626 * to the stripe that we think it is, we will have
3627 * to check again.
3628 */
7ecaa1e6 3629 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3630 if (mddev->delta_disks < 0
3631 ? logical_sector < conf->reshape_progress
3632 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3633 disks = conf->previous_raid_disks;
b5663ba4
N
3634 previous = 1;
3635 } else {
fef9c61f
N
3636 if (mddev->delta_disks < 0
3637 ? logical_sector < conf->reshape_safe
3638 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3639 spin_unlock_irq(&conf->device_lock);
3640 schedule();
3641 goto retry;
3642 }
3643 }
7ecaa1e6
N
3644 spin_unlock_irq(&conf->device_lock);
3645 }
16a53ecc
N
3646 data_disks = disks - conf->max_degraded;
3647
112bf897
N
3648 new_sector = raid5_compute_sector(conf, logical_sector,
3649 previous,
911d4ee8 3650 &dd_idx, NULL);
0c55e022 3651 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
3652 (unsigned long long)new_sector,
3653 (unsigned long long)logical_sector);
3654
b5663ba4 3655 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 3656 (bi->bi_rw&RWA_MASK), 0);
1da177e4 3657 if (sh) {
b0f9ec04 3658 if (unlikely(previous)) {
7ecaa1e6 3659 /* expansion might have moved on while waiting for a
df8e7f76
N
3660 * stripe, so we must do the range check again.
3661 * Expansion could still move past after this
3662 * test, but as we are holding a reference to
3663 * 'sh', we know that if that happens,
3664 * STRIPE_EXPANDING will get set and the expansion
3665 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3666 */
3667 int must_retry = 0;
3668 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
3669 if (mddev->delta_disks < 0
3670 ? logical_sector >= conf->reshape_progress
3671 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
3672 /* mismatch, need to try again */
3673 must_retry = 1;
3674 spin_unlock_irq(&conf->device_lock);
3675 if (must_retry) {
3676 release_stripe(sh);
7a3ab908 3677 schedule();
7ecaa1e6
N
3678 goto retry;
3679 }
3680 }
e62e58a5 3681
ffd96e35 3682 if (rw == WRITE &&
a5c308d4 3683 logical_sector >= mddev->suspend_lo &&
e464eafd
N
3684 logical_sector < mddev->suspend_hi) {
3685 release_stripe(sh);
e62e58a5
N
3686 /* As the suspend_* range is controlled by
3687 * userspace, we want an interruptible
3688 * wait.
3689 */
3690 flush_signals(current);
3691 prepare_to_wait(&conf->wait_for_overlap,
3692 &w, TASK_INTERRUPTIBLE);
3693 if (logical_sector >= mddev->suspend_lo &&
3694 logical_sector < mddev->suspend_hi)
3695 schedule();
e464eafd
N
3696 goto retry;
3697 }
7ecaa1e6
N
3698
3699 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 3700 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
3701 /* Stripe is busy expanding or
3702 * add failed due to overlap. Flush everything
1da177e4
LT
3703 * and wait a while
3704 */
482c0834 3705 md_wakeup_thread(mddev->thread);
1da177e4
LT
3706 release_stripe(sh);
3707 schedule();
3708 goto retry;
3709 }
3710 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3711 set_bit(STRIPE_HANDLE, &sh->state);
3712 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 3713 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
3714 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3715 atomic_inc(&conf->preread_active_stripes);
1da177e4 3716 release_stripe(sh);
1da177e4
LT
3717 } else {
3718 /* cannot get stripe for read-ahead, just give-up */
3719 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3720 finish_wait(&conf->wait_for_overlap, &w);
3721 break;
3722 }
3723
3724 }
7c13edc8
N
3725 if (!plugged)
3726 md_wakeup_thread(mddev->thread);
3727
1da177e4 3728 spin_lock_irq(&conf->device_lock);
960e739d 3729 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3730 spin_unlock_irq(&conf->device_lock);
3731 if (remaining == 0) {
1da177e4 3732
16a53ecc 3733 if ( rw == WRITE )
1da177e4 3734 md_write_end(mddev);
6712ecf8 3735
0e13fe23 3736 bio_endio(bi, 0);
1da177e4 3737 }
729a1866 3738
1da177e4
LT
3739 return 0;
3740}
3741
b522adcd
DW
3742static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3743
52c03291 3744static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3745{
52c03291
N
3746 /* reshaping is quite different to recovery/resync so it is
3747 * handled quite separately ... here.
3748 *
3749 * On each call to sync_request, we gather one chunk worth of
3750 * destination stripes and flag them as expanding.
3751 * Then we find all the source stripes and request reads.
3752 * As the reads complete, handle_stripe will copy the data
3753 * into the destination stripe and release that stripe.
3754 */
7b92813c 3755 raid5_conf_t *conf = mddev->private;
1da177e4 3756 struct stripe_head *sh;
ccfcc3c1 3757 sector_t first_sector, last_sector;
f416885e
N
3758 int raid_disks = conf->previous_raid_disks;
3759 int data_disks = raid_disks - conf->max_degraded;
3760 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3761 int i;
3762 int dd_idx;
c8f517c4 3763 sector_t writepos, readpos, safepos;
ec32a2bd 3764 sector_t stripe_addr;
7a661381 3765 int reshape_sectors;
ab69ae12 3766 struct list_head stripes;
52c03291 3767
fef9c61f
N
3768 if (sector_nr == 0) {
3769 /* If restarting in the middle, skip the initial sectors */
3770 if (mddev->delta_disks < 0 &&
3771 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3772 sector_nr = raid5_size(mddev, 0, 0)
3773 - conf->reshape_progress;
a639755c 3774 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
3775 conf->reshape_progress > 0)
3776 sector_nr = conf->reshape_progress;
f416885e 3777 sector_div(sector_nr, new_data_disks);
fef9c61f 3778 if (sector_nr) {
8dee7211
N
3779 mddev->curr_resync_completed = sector_nr;
3780 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
3781 *skipped = 1;
3782 return sector_nr;
3783 }
52c03291
N
3784 }
3785
7a661381
N
3786 /* We need to process a full chunk at a time.
3787 * If old and new chunk sizes differ, we need to process the
3788 * largest of these
3789 */
664e7c41
AN
3790 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3791 reshape_sectors = mddev->new_chunk_sectors;
7a661381 3792 else
9d8f0363 3793 reshape_sectors = mddev->chunk_sectors;
7a661381 3794
52c03291
N
3795 /* we update the metadata when there is more than 3Meg
3796 * in the block range (that is rather arbitrary, should
3797 * probably be time based) or when the data about to be
3798 * copied would over-write the source of the data at
3799 * the front of the range.
fef9c61f
N
3800 * i.e. one new_stripe along from reshape_progress new_maps
3801 * to after where reshape_safe old_maps to
52c03291 3802 */
fef9c61f 3803 writepos = conf->reshape_progress;
f416885e 3804 sector_div(writepos, new_data_disks);
c8f517c4
N
3805 readpos = conf->reshape_progress;
3806 sector_div(readpos, data_disks);
fef9c61f 3807 safepos = conf->reshape_safe;
f416885e 3808 sector_div(safepos, data_disks);
fef9c61f 3809 if (mddev->delta_disks < 0) {
ed37d83e 3810 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 3811 readpos += reshape_sectors;
7a661381 3812 safepos += reshape_sectors;
fef9c61f 3813 } else {
7a661381 3814 writepos += reshape_sectors;
ed37d83e
N
3815 readpos -= min_t(sector_t, reshape_sectors, readpos);
3816 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 3817 }
52c03291 3818
c8f517c4
N
3819 /* 'writepos' is the most advanced device address we might write.
3820 * 'readpos' is the least advanced device address we might read.
3821 * 'safepos' is the least address recorded in the metadata as having
3822 * been reshaped.
3823 * If 'readpos' is behind 'writepos', then there is no way that we can
3824 * ensure safety in the face of a crash - that must be done by userspace
3825 * making a backup of the data. So in that case there is no particular
3826 * rush to update metadata.
3827 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3828 * update the metadata to advance 'safepos' to match 'readpos' so that
3829 * we can be safe in the event of a crash.
3830 * So we insist on updating metadata if safepos is behind writepos and
3831 * readpos is beyond writepos.
3832 * In any case, update the metadata every 10 seconds.
3833 * Maybe that number should be configurable, but I'm not sure it is
3834 * worth it.... maybe it could be a multiple of safemode_delay???
3835 */
fef9c61f 3836 if ((mddev->delta_disks < 0
c8f517c4
N
3837 ? (safepos > writepos && readpos < writepos)
3838 : (safepos < writepos && readpos > writepos)) ||
3839 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
3840 /* Cannot proceed until we've updated the superblock... */
3841 wait_event(conf->wait_for_overlap,
3842 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 3843 mddev->reshape_position = conf->reshape_progress;
75d3da43 3844 mddev->curr_resync_completed = sector_nr;
c8f517c4 3845 conf->reshape_checkpoint = jiffies;
850b2b42 3846 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3847 md_wakeup_thread(mddev->thread);
850b2b42 3848 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3849 kthread_should_stop());
3850 spin_lock_irq(&conf->device_lock);
fef9c61f 3851 conf->reshape_safe = mddev->reshape_position;
52c03291
N
3852 spin_unlock_irq(&conf->device_lock);
3853 wake_up(&conf->wait_for_overlap);
acb180b0 3854 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
3855 }
3856
ec32a2bd
N
3857 if (mddev->delta_disks < 0) {
3858 BUG_ON(conf->reshape_progress == 0);
3859 stripe_addr = writepos;
3860 BUG_ON((mddev->dev_sectors &
7a661381
N
3861 ~((sector_t)reshape_sectors - 1))
3862 - reshape_sectors - stripe_addr
ec32a2bd
N
3863 != sector_nr);
3864 } else {
7a661381 3865 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
3866 stripe_addr = sector_nr;
3867 }
ab69ae12 3868 INIT_LIST_HEAD(&stripes);
7a661381 3869 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 3870 int j;
a9f326eb 3871 int skipped_disk = 0;
a8c906ca 3872 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
3873 set_bit(STRIPE_EXPANDING, &sh->state);
3874 atomic_inc(&conf->reshape_stripes);
3875 /* If any of this stripe is beyond the end of the old
3876 * array, then we need to zero those blocks
3877 */
3878 for (j=sh->disks; j--;) {
3879 sector_t s;
3880 if (j == sh->pd_idx)
3881 continue;
f416885e 3882 if (conf->level == 6 &&
d0dabf7e 3883 j == sh->qd_idx)
f416885e 3884 continue;
784052ec 3885 s = compute_blocknr(sh, j, 0);
b522adcd 3886 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 3887 skipped_disk = 1;
52c03291
N
3888 continue;
3889 }
3890 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3891 set_bit(R5_Expanded, &sh->dev[j].flags);
3892 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3893 }
a9f326eb 3894 if (!skipped_disk) {
52c03291
N
3895 set_bit(STRIPE_EXPAND_READY, &sh->state);
3896 set_bit(STRIPE_HANDLE, &sh->state);
3897 }
ab69ae12 3898 list_add(&sh->lru, &stripes);
52c03291
N
3899 }
3900 spin_lock_irq(&conf->device_lock);
fef9c61f 3901 if (mddev->delta_disks < 0)
7a661381 3902 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 3903 else
7a661381 3904 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
3905 spin_unlock_irq(&conf->device_lock);
3906 /* Ok, those stripe are ready. We can start scheduling
3907 * reads on the source stripes.
3908 * The source stripes are determined by mapping the first and last
3909 * block on the destination stripes.
3910 */
52c03291 3911 first_sector =
ec32a2bd 3912 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 3913 1, &dd_idx, NULL);
52c03291 3914 last_sector =
0e6e0271 3915 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 3916 * new_data_disks - 1),
911d4ee8 3917 1, &dd_idx, NULL);
58c0fed4
AN
3918 if (last_sector >= mddev->dev_sectors)
3919 last_sector = mddev->dev_sectors - 1;
52c03291 3920 while (first_sector <= last_sector) {
a8c906ca 3921 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
3922 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3923 set_bit(STRIPE_HANDLE, &sh->state);
3924 release_stripe(sh);
3925 first_sector += STRIPE_SECTORS;
3926 }
ab69ae12
N
3927 /* Now that the sources are clearly marked, we can release
3928 * the destination stripes
3929 */
3930 while (!list_empty(&stripes)) {
3931 sh = list_entry(stripes.next, struct stripe_head, lru);
3932 list_del_init(&sh->lru);
3933 release_stripe(sh);
3934 }
c6207277
N
3935 /* If this takes us to the resync_max point where we have to pause,
3936 * then we need to write out the superblock.
3937 */
7a661381 3938 sector_nr += reshape_sectors;
c03f6a19
N
3939 if ((sector_nr - mddev->curr_resync_completed) * 2
3940 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
3941 /* Cannot proceed until we've updated the superblock... */
3942 wait_event(conf->wait_for_overlap,
3943 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 3944 mddev->reshape_position = conf->reshape_progress;
75d3da43 3945 mddev->curr_resync_completed = sector_nr;
c8f517c4 3946 conf->reshape_checkpoint = jiffies;
c6207277
N
3947 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3948 md_wakeup_thread(mddev->thread);
3949 wait_event(mddev->sb_wait,
3950 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3951 || kthread_should_stop());
3952 spin_lock_irq(&conf->device_lock);
fef9c61f 3953 conf->reshape_safe = mddev->reshape_position;
c6207277
N
3954 spin_unlock_irq(&conf->device_lock);
3955 wake_up(&conf->wait_for_overlap);
acb180b0 3956 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 3957 }
7a661381 3958 return reshape_sectors;
52c03291
N
3959}
3960
3961/* FIXME go_faster isn't used */
3962static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3963{
7b92813c 3964 raid5_conf_t *conf = mddev->private;
52c03291 3965 struct stripe_head *sh;
58c0fed4 3966 sector_t max_sector = mddev->dev_sectors;
57dab0bd 3967 sector_t sync_blocks;
16a53ecc
N
3968 int still_degraded = 0;
3969 int i;
1da177e4 3970
72626685 3971 if (sector_nr >= max_sector) {
1da177e4 3972 /* just being told to finish up .. nothing much to do */
cea9c228 3973
29269553
N
3974 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3975 end_reshape(conf);
3976 return 0;
3977 }
72626685
N
3978
3979 if (mddev->curr_resync < max_sector) /* aborted */
3980 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3981 &sync_blocks, 1);
16a53ecc 3982 else /* completed sync */
72626685
N
3983 conf->fullsync = 0;
3984 bitmap_close_sync(mddev->bitmap);
3985
1da177e4
LT
3986 return 0;
3987 }
ccfcc3c1 3988
64bd660b
N
3989 /* Allow raid5_quiesce to complete */
3990 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
3991
52c03291
N
3992 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3993 return reshape_request(mddev, sector_nr, skipped);
f6705578 3994
c6207277
N
3995 /* No need to check resync_max as we never do more than one
3996 * stripe, and as resync_max will always be on a chunk boundary,
3997 * if the check in md_do_sync didn't fire, there is no chance
3998 * of overstepping resync_max here
3999 */
4000
16a53ecc 4001 /* if there is too many failed drives and we are trying
1da177e4
LT
4002 * to resync, then assert that we are finished, because there is
4003 * nothing we can do.
4004 */
3285edf1 4005 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4006 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4007 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4008 *skipped = 1;
1da177e4
LT
4009 return rv;
4010 }
72626685 4011 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4012 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4013 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4014 /* we can skip this block, and probably more */
4015 sync_blocks /= STRIPE_SECTORS;
4016 *skipped = 1;
4017 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4018 }
1da177e4 4019
b47490c9
N
4020
4021 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4022
a8c906ca 4023 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4024 if (sh == NULL) {
a8c906ca 4025 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4026 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4027 * is trying to get access
1da177e4 4028 */
66c006a5 4029 schedule_timeout_uninterruptible(1);
1da177e4 4030 }
16a53ecc
N
4031 /* Need to check if array will still be degraded after recovery/resync
4032 * We don't need to check the 'failed' flag as when that gets set,
4033 * recovery aborts.
4034 */
f001a70c 4035 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4036 if (conf->disks[i].rdev == NULL)
4037 still_degraded = 1;
4038
4039 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4040
83206d66 4041 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4042
1442577b 4043 handle_stripe(sh);
1da177e4
LT
4044 release_stripe(sh);
4045
4046 return STRIPE_SECTORS;
4047}
4048
46031f9a
RBJ
4049static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4050{
4051 /* We may not be able to submit a whole bio at once as there
4052 * may not be enough stripe_heads available.
4053 * We cannot pre-allocate enough stripe_heads as we may need
4054 * more than exist in the cache (if we allow ever large chunks).
4055 * So we do one stripe head at a time and record in
4056 * ->bi_hw_segments how many have been done.
4057 *
4058 * We *know* that this entire raid_bio is in one chunk, so
4059 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4060 */
4061 struct stripe_head *sh;
911d4ee8 4062 int dd_idx;
46031f9a
RBJ
4063 sector_t sector, logical_sector, last_sector;
4064 int scnt = 0;
4065 int remaining;
4066 int handled = 0;
4067
4068 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4069 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4070 0, &dd_idx, NULL);
46031f9a
RBJ
4071 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4072
4073 for (; logical_sector < last_sector;
387bb173
NB
4074 logical_sector += STRIPE_SECTORS,
4075 sector += STRIPE_SECTORS,
4076 scnt++) {
46031f9a 4077
960e739d 4078 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4079 /* already done this stripe */
4080 continue;
4081
a8c906ca 4082 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4083
4084 if (!sh) {
4085 /* failed to get a stripe - must wait */
960e739d 4086 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4087 conf->retry_read_aligned = raid_bio;
4088 return handled;
4089 }
4090
4091 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4092 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4093 release_stripe(sh);
960e739d 4094 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4095 conf->retry_read_aligned = raid_bio;
4096 return handled;
4097 }
4098
36d1c647 4099 handle_stripe(sh);
46031f9a
RBJ
4100 release_stripe(sh);
4101 handled++;
4102 }
4103 spin_lock_irq(&conf->device_lock);
960e739d 4104 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4105 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4106 if (remaining == 0)
4107 bio_endio(raid_bio, 0);
46031f9a
RBJ
4108 if (atomic_dec_and_test(&conf->active_aligned_reads))
4109 wake_up(&conf->wait_for_stripe);
4110 return handled;
4111}
4112
46031f9a 4113
1da177e4
LT
4114/*
4115 * This is our raid5 kernel thread.
4116 *
4117 * We scan the hash table for stripes which can be handled now.
4118 * During the scan, completed stripes are saved for us by the interrupt
4119 * handler, so that they will not have to wait for our next wakeup.
4120 */
6ed3003c 4121static void raid5d(mddev_t *mddev)
1da177e4
LT
4122{
4123 struct stripe_head *sh;
070ec55d 4124 raid5_conf_t *conf = mddev->private;
1da177e4 4125 int handled;
e1dfa0a2 4126 struct blk_plug plug;
1da177e4 4127
45b4233c 4128 pr_debug("+++ raid5d active\n");
1da177e4
LT
4129
4130 md_check_recovery(mddev);
1da177e4 4131
e1dfa0a2 4132 blk_start_plug(&plug);
1da177e4
LT
4133 handled = 0;
4134 spin_lock_irq(&conf->device_lock);
4135 while (1) {
46031f9a 4136 struct bio *bio;
1da177e4 4137
7c13edc8
N
4138 if (atomic_read(&mddev->plug_cnt) == 0 &&
4139 !list_empty(&conf->bitmap_list)) {
4140 /* Now is a good time to flush some bitmap updates */
4141 conf->seq_flush++;
700e432d 4142 spin_unlock_irq(&conf->device_lock);
72626685 4143 bitmap_unplug(mddev->bitmap);
700e432d 4144 spin_lock_irq(&conf->device_lock);
7c13edc8 4145 conf->seq_write = conf->seq_flush;
72626685
N
4146 activate_bit_delay(conf);
4147 }
7c13edc8
N
4148 if (atomic_read(&mddev->plug_cnt) == 0)
4149 raid5_activate_delayed(conf);
72626685 4150
46031f9a
RBJ
4151 while ((bio = remove_bio_from_retry(conf))) {
4152 int ok;
4153 spin_unlock_irq(&conf->device_lock);
4154 ok = retry_aligned_read(conf, bio);
4155 spin_lock_irq(&conf->device_lock);
4156 if (!ok)
4157 break;
4158 handled++;
4159 }
4160
8b3e6cdc
DW
4161 sh = __get_priority_stripe(conf);
4162
c9f21aaf 4163 if (!sh)
1da177e4 4164 break;
1da177e4
LT
4165 spin_unlock_irq(&conf->device_lock);
4166
4167 handled++;
417b8d4a
DW
4168 handle_stripe(sh);
4169 release_stripe(sh);
4170 cond_resched();
1da177e4 4171
de393cde
N
4172 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4173 md_check_recovery(mddev);
4174
1da177e4
LT
4175 spin_lock_irq(&conf->device_lock);
4176 }
45b4233c 4177 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4178
4179 spin_unlock_irq(&conf->device_lock);
4180
c9f21aaf 4181 async_tx_issue_pending_all();
e1dfa0a2 4182 blk_finish_plug(&plug);
1da177e4 4183
45b4233c 4184 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4185}
4186
3f294f4f 4187static ssize_t
007583c9 4188raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4189{
070ec55d 4190 raid5_conf_t *conf = mddev->private;
96de1e66
N
4191 if (conf)
4192 return sprintf(page, "%d\n", conf->max_nr_stripes);
4193 else
4194 return 0;
3f294f4f
N
4195}
4196
c41d4ac4
N
4197int
4198raid5_set_cache_size(mddev_t *mddev, int size)
3f294f4f 4199{
070ec55d 4200 raid5_conf_t *conf = mddev->private;
b5470dc5
DW
4201 int err;
4202
c41d4ac4 4203 if (size <= 16 || size > 32768)
3f294f4f 4204 return -EINVAL;
c41d4ac4 4205 while (size < conf->max_nr_stripes) {
3f294f4f
N
4206 if (drop_one_stripe(conf))
4207 conf->max_nr_stripes--;
4208 else
4209 break;
4210 }
b5470dc5
DW
4211 err = md_allow_write(mddev);
4212 if (err)
4213 return err;
c41d4ac4 4214 while (size > conf->max_nr_stripes) {
3f294f4f
N
4215 if (grow_one_stripe(conf))
4216 conf->max_nr_stripes++;
4217 else break;
4218 }
c41d4ac4
N
4219 return 0;
4220}
4221EXPORT_SYMBOL(raid5_set_cache_size);
4222
4223static ssize_t
4224raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4225{
4226 raid5_conf_t *conf = mddev->private;
4227 unsigned long new;
4228 int err;
4229
4230 if (len >= PAGE_SIZE)
4231 return -EINVAL;
4232 if (!conf)
4233 return -ENODEV;
4234
4235 if (strict_strtoul(page, 10, &new))
4236 return -EINVAL;
4237 err = raid5_set_cache_size(mddev, new);
4238 if (err)
4239 return err;
3f294f4f
N
4240 return len;
4241}
007583c9 4242
96de1e66
N
4243static struct md_sysfs_entry
4244raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4245 raid5_show_stripe_cache_size,
4246 raid5_store_stripe_cache_size);
3f294f4f 4247
8b3e6cdc
DW
4248static ssize_t
4249raid5_show_preread_threshold(mddev_t *mddev, char *page)
4250{
070ec55d 4251 raid5_conf_t *conf = mddev->private;
8b3e6cdc
DW
4252 if (conf)
4253 return sprintf(page, "%d\n", conf->bypass_threshold);
4254 else
4255 return 0;
4256}
4257
4258static ssize_t
4259raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4260{
070ec55d 4261 raid5_conf_t *conf = mddev->private;
4ef197d8 4262 unsigned long new;
8b3e6cdc
DW
4263 if (len >= PAGE_SIZE)
4264 return -EINVAL;
4265 if (!conf)
4266 return -ENODEV;
4267
4ef197d8 4268 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4269 return -EINVAL;
4ef197d8 4270 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4271 return -EINVAL;
4272 conf->bypass_threshold = new;
4273 return len;
4274}
4275
4276static struct md_sysfs_entry
4277raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4278 S_IRUGO | S_IWUSR,
4279 raid5_show_preread_threshold,
4280 raid5_store_preread_threshold);
4281
3f294f4f 4282static ssize_t
96de1e66 4283stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4284{
070ec55d 4285 raid5_conf_t *conf = mddev->private;
96de1e66
N
4286 if (conf)
4287 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4288 else
4289 return 0;
3f294f4f
N
4290}
4291
96de1e66
N
4292static struct md_sysfs_entry
4293raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4294
007583c9 4295static struct attribute *raid5_attrs[] = {
3f294f4f
N
4296 &raid5_stripecache_size.attr,
4297 &raid5_stripecache_active.attr,
8b3e6cdc 4298 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4299 NULL,
4300};
007583c9
N
4301static struct attribute_group raid5_attrs_group = {
4302 .name = NULL,
4303 .attrs = raid5_attrs,
3f294f4f
N
4304};
4305
80c3a6ce
DW
4306static sector_t
4307raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4308{
070ec55d 4309 raid5_conf_t *conf = mddev->private;
80c3a6ce
DW
4310
4311 if (!sectors)
4312 sectors = mddev->dev_sectors;
5e5e3e78 4313 if (!raid_disks)
7ec05478 4314 /* size is defined by the smallest of previous and new size */
5e5e3e78 4315 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4316
9d8f0363 4317 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4318 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4319 return sectors * (raid_disks - conf->max_degraded);
4320}
4321
36d1c647
DW
4322static void raid5_free_percpu(raid5_conf_t *conf)
4323{
4324 struct raid5_percpu *percpu;
4325 unsigned long cpu;
4326
4327 if (!conf->percpu)
4328 return;
4329
4330 get_online_cpus();
4331 for_each_possible_cpu(cpu) {
4332 percpu = per_cpu_ptr(conf->percpu, cpu);
4333 safe_put_page(percpu->spare_page);
d6f38f31 4334 kfree(percpu->scribble);
36d1c647
DW
4335 }
4336#ifdef CONFIG_HOTPLUG_CPU
4337 unregister_cpu_notifier(&conf->cpu_notify);
4338#endif
4339 put_online_cpus();
4340
4341 free_percpu(conf->percpu);
4342}
4343
95fc17aa
DW
4344static void free_conf(raid5_conf_t *conf)
4345{
4346 shrink_stripes(conf);
36d1c647 4347 raid5_free_percpu(conf);
95fc17aa
DW
4348 kfree(conf->disks);
4349 kfree(conf->stripe_hashtbl);
4350 kfree(conf);
4351}
4352
36d1c647
DW
4353#ifdef CONFIG_HOTPLUG_CPU
4354static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4355 void *hcpu)
4356{
4357 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4358 long cpu = (long)hcpu;
4359 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4360
4361 switch (action) {
4362 case CPU_UP_PREPARE:
4363 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4364 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4365 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4366 if (!percpu->scribble)
4367 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4368
4369 if (!percpu->scribble ||
4370 (conf->level == 6 && !percpu->spare_page)) {
4371 safe_put_page(percpu->spare_page);
4372 kfree(percpu->scribble);
36d1c647
DW
4373 pr_err("%s: failed memory allocation for cpu%ld\n",
4374 __func__, cpu);
55af6bb5 4375 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4376 }
4377 break;
4378 case CPU_DEAD:
4379 case CPU_DEAD_FROZEN:
4380 safe_put_page(percpu->spare_page);
d6f38f31 4381 kfree(percpu->scribble);
36d1c647 4382 percpu->spare_page = NULL;
d6f38f31 4383 percpu->scribble = NULL;
36d1c647
DW
4384 break;
4385 default:
4386 break;
4387 }
4388 return NOTIFY_OK;
4389}
4390#endif
4391
4392static int raid5_alloc_percpu(raid5_conf_t *conf)
4393{
4394 unsigned long cpu;
4395 struct page *spare_page;
a29d8b8e 4396 struct raid5_percpu __percpu *allcpus;
d6f38f31 4397 void *scribble;
36d1c647
DW
4398 int err;
4399
36d1c647
DW
4400 allcpus = alloc_percpu(struct raid5_percpu);
4401 if (!allcpus)
4402 return -ENOMEM;
4403 conf->percpu = allcpus;
4404
4405 get_online_cpus();
4406 err = 0;
4407 for_each_present_cpu(cpu) {
d6f38f31
DW
4408 if (conf->level == 6) {
4409 spare_page = alloc_page(GFP_KERNEL);
4410 if (!spare_page) {
4411 err = -ENOMEM;
4412 break;
4413 }
4414 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4415 }
5e5e3e78 4416 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4417 if (!scribble) {
36d1c647
DW
4418 err = -ENOMEM;
4419 break;
4420 }
d6f38f31 4421 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4422 }
4423#ifdef CONFIG_HOTPLUG_CPU
4424 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4425 conf->cpu_notify.priority = 0;
4426 if (err == 0)
4427 err = register_cpu_notifier(&conf->cpu_notify);
4428#endif
4429 put_online_cpus();
4430
4431 return err;
4432}
4433
91adb564 4434static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4435{
4436 raid5_conf_t *conf;
5e5e3e78 4437 int raid_disk, memory, max_disks;
1da177e4
LT
4438 mdk_rdev_t *rdev;
4439 struct disk_info *disk;
1da177e4 4440
91adb564
N
4441 if (mddev->new_level != 5
4442 && mddev->new_level != 4
4443 && mddev->new_level != 6) {
0c55e022 4444 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4445 mdname(mddev), mddev->new_level);
4446 return ERR_PTR(-EIO);
1da177e4 4447 }
91adb564
N
4448 if ((mddev->new_level == 5
4449 && !algorithm_valid_raid5(mddev->new_layout)) ||
4450 (mddev->new_level == 6
4451 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4452 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4453 mdname(mddev), mddev->new_layout);
4454 return ERR_PTR(-EIO);
99c0fb5f 4455 }
91adb564 4456 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4457 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4458 mdname(mddev), mddev->raid_disks);
4459 return ERR_PTR(-EINVAL);
4bbf3771
N
4460 }
4461
664e7c41
AN
4462 if (!mddev->new_chunk_sectors ||
4463 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4464 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4465 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4466 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4467 return ERR_PTR(-EINVAL);
f6705578
N
4468 }
4469
91adb564
N
4470 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4471 if (conf == NULL)
1da177e4 4472 goto abort;
f5efd45a
DW
4473 spin_lock_init(&conf->device_lock);
4474 init_waitqueue_head(&conf->wait_for_stripe);
4475 init_waitqueue_head(&conf->wait_for_overlap);
4476 INIT_LIST_HEAD(&conf->handle_list);
4477 INIT_LIST_HEAD(&conf->hold_list);
4478 INIT_LIST_HEAD(&conf->delayed_list);
4479 INIT_LIST_HEAD(&conf->bitmap_list);
4480 INIT_LIST_HEAD(&conf->inactive_list);
4481 atomic_set(&conf->active_stripes, 0);
4482 atomic_set(&conf->preread_active_stripes, 0);
4483 atomic_set(&conf->active_aligned_reads, 0);
4484 conf->bypass_threshold = BYPASS_THRESHOLD;
91adb564
N
4485
4486 conf->raid_disks = mddev->raid_disks;
4487 if (mddev->reshape_position == MaxSector)
4488 conf->previous_raid_disks = mddev->raid_disks;
4489 else
f6705578 4490 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4491 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4492 conf->scribble_len = scribble_len(max_disks);
f6705578 4493
5e5e3e78 4494 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4495 GFP_KERNEL);
4496 if (!conf->disks)
4497 goto abort;
9ffae0cf 4498
1da177e4
LT
4499 conf->mddev = mddev;
4500
fccddba0 4501 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4502 goto abort;
1da177e4 4503
36d1c647
DW
4504 conf->level = mddev->new_level;
4505 if (raid5_alloc_percpu(conf) != 0)
4506 goto abort;
4507
0c55e022 4508 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4509
159ec1fc 4510 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4511 raid_disk = rdev->raid_disk;
5e5e3e78 4512 if (raid_disk >= max_disks
1da177e4
LT
4513 || raid_disk < 0)
4514 continue;
4515 disk = conf->disks + raid_disk;
4516
4517 disk->rdev = rdev;
4518
b2d444d7 4519 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4520 char b[BDEVNAME_SIZE];
0c55e022
N
4521 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4522 " disk %d\n",
4523 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 4524 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
4525 /* Cannot rely on bitmap to complete recovery */
4526 conf->fullsync = 1;
1da177e4
LT
4527 }
4528
09c9e5fa 4529 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4530 conf->level = mddev->new_level;
16a53ecc
N
4531 if (conf->level == 6)
4532 conf->max_degraded = 2;
4533 else
4534 conf->max_degraded = 1;
91adb564 4535 conf->algorithm = mddev->new_layout;
1da177e4 4536 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4537 conf->reshape_progress = mddev->reshape_position;
e183eaed 4538 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4539 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4540 conf->prev_algo = mddev->layout;
4541 }
1da177e4 4542
91adb564 4543 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4544 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4545 if (grow_stripes(conf, conf->max_nr_stripes)) {
4546 printk(KERN_ERR
0c55e022
N
4547 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4548 mdname(mddev), memory);
91adb564
N
4549 goto abort;
4550 } else
0c55e022
N
4551 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4552 mdname(mddev), memory);
1da177e4 4553
0da3c619 4554 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4555 if (!conf->thread) {
4556 printk(KERN_ERR
0c55e022 4557 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4558 mdname(mddev));
16a53ecc
N
4559 goto abort;
4560 }
91adb564
N
4561
4562 return conf;
4563
4564 abort:
4565 if (conf) {
95fc17aa 4566 free_conf(conf);
91adb564
N
4567 return ERR_PTR(-EIO);
4568 } else
4569 return ERR_PTR(-ENOMEM);
4570}
4571
c148ffdc
N
4572
4573static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4574{
4575 switch (algo) {
4576 case ALGORITHM_PARITY_0:
4577 if (raid_disk < max_degraded)
4578 return 1;
4579 break;
4580 case ALGORITHM_PARITY_N:
4581 if (raid_disk >= raid_disks - max_degraded)
4582 return 1;
4583 break;
4584 case ALGORITHM_PARITY_0_6:
4585 if (raid_disk == 0 ||
4586 raid_disk == raid_disks - 1)
4587 return 1;
4588 break;
4589 case ALGORITHM_LEFT_ASYMMETRIC_6:
4590 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4591 case ALGORITHM_LEFT_SYMMETRIC_6:
4592 case ALGORITHM_RIGHT_SYMMETRIC_6:
4593 if (raid_disk == raid_disks - 1)
4594 return 1;
4595 }
4596 return 0;
4597}
4598
91adb564
N
4599static int run(mddev_t *mddev)
4600{
4601 raid5_conf_t *conf;
9f7c2220 4602 int working_disks = 0;
c148ffdc 4603 int dirty_parity_disks = 0;
91adb564 4604 mdk_rdev_t *rdev;
c148ffdc 4605 sector_t reshape_offset = 0;
91adb564 4606
8c6ac868 4607 if (mddev->recovery_cp != MaxSector)
0c55e022 4608 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
4609 " -- starting background reconstruction\n",
4610 mdname(mddev));
91adb564
N
4611 if (mddev->reshape_position != MaxSector) {
4612 /* Check that we can continue the reshape.
4613 * Currently only disks can change, it must
4614 * increase, and we must be past the point where
4615 * a stripe over-writes itself
4616 */
4617 sector_t here_new, here_old;
4618 int old_disks;
18b00334 4619 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4620
88ce4930 4621 if (mddev->new_level != mddev->level) {
0c55e022 4622 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
4623 "required - aborting.\n",
4624 mdname(mddev));
4625 return -EINVAL;
4626 }
91adb564
N
4627 old_disks = mddev->raid_disks - mddev->delta_disks;
4628 /* reshape_position must be on a new-stripe boundary, and one
4629 * further up in new geometry must map after here in old
4630 * geometry.
4631 */
4632 here_new = mddev->reshape_position;
664e7c41 4633 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 4634 (mddev->raid_disks - max_degraded))) {
0c55e022
N
4635 printk(KERN_ERR "md/raid:%s: reshape_position not "
4636 "on a stripe boundary\n", mdname(mddev));
91adb564
N
4637 return -EINVAL;
4638 }
c148ffdc 4639 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
4640 /* here_new is the stripe we will write to */
4641 here_old = mddev->reshape_position;
9d8f0363 4642 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
4643 (old_disks-max_degraded));
4644 /* here_old is the first stripe that we might need to read
4645 * from */
67ac6011
N
4646 if (mddev->delta_disks == 0) {
4647 /* We cannot be sure it is safe to start an in-place
4648 * reshape. It is only safe if user-space if monitoring
4649 * and taking constant backups.
4650 * mdadm always starts a situation like this in
4651 * readonly mode so it can take control before
4652 * allowing any writes. So just check for that.
4653 */
4654 if ((here_new * mddev->new_chunk_sectors !=
4655 here_old * mddev->chunk_sectors) ||
4656 mddev->ro == 0) {
0c55e022
N
4657 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4658 " in read-only mode - aborting\n",
4659 mdname(mddev));
67ac6011
N
4660 return -EINVAL;
4661 }
4662 } else if (mddev->delta_disks < 0
4663 ? (here_new * mddev->new_chunk_sectors <=
4664 here_old * mddev->chunk_sectors)
4665 : (here_new * mddev->new_chunk_sectors >=
4666 here_old * mddev->chunk_sectors)) {
91adb564 4667 /* Reading from the same stripe as writing to - bad */
0c55e022
N
4668 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4669 "auto-recovery - aborting.\n",
4670 mdname(mddev));
91adb564
N
4671 return -EINVAL;
4672 }
0c55e022
N
4673 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4674 mdname(mddev));
91adb564
N
4675 /* OK, we should be able to continue; */
4676 } else {
4677 BUG_ON(mddev->level != mddev->new_level);
4678 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 4679 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 4680 BUG_ON(mddev->delta_disks != 0);
1da177e4 4681 }
91adb564 4682
245f46c2
N
4683 if (mddev->private == NULL)
4684 conf = setup_conf(mddev);
4685 else
4686 conf = mddev->private;
4687
91adb564
N
4688 if (IS_ERR(conf))
4689 return PTR_ERR(conf);
4690
4691 mddev->thread = conf->thread;
4692 conf->thread = NULL;
4693 mddev->private = conf;
4694
4695 /*
4696 * 0 for a fully functional array, 1 or 2 for a degraded array.
4697 */
c148ffdc
N
4698 list_for_each_entry(rdev, &mddev->disks, same_set) {
4699 if (rdev->raid_disk < 0)
4700 continue;
2f115882 4701 if (test_bit(In_sync, &rdev->flags)) {
91adb564 4702 working_disks++;
2f115882
N
4703 continue;
4704 }
c148ffdc
N
4705 /* This disc is not fully in-sync. However if it
4706 * just stored parity (beyond the recovery_offset),
4707 * when we don't need to be concerned about the
4708 * array being dirty.
4709 * When reshape goes 'backwards', we never have
4710 * partially completed devices, so we only need
4711 * to worry about reshape going forwards.
4712 */
4713 /* Hack because v0.91 doesn't store recovery_offset properly. */
4714 if (mddev->major_version == 0 &&
4715 mddev->minor_version > 90)
4716 rdev->recovery_offset = reshape_offset;
4717
c148ffdc
N
4718 if (rdev->recovery_offset < reshape_offset) {
4719 /* We need to check old and new layout */
4720 if (!only_parity(rdev->raid_disk,
4721 conf->algorithm,
4722 conf->raid_disks,
4723 conf->max_degraded))
4724 continue;
4725 }
4726 if (!only_parity(rdev->raid_disk,
4727 conf->prev_algo,
4728 conf->previous_raid_disks,
4729 conf->max_degraded))
4730 continue;
4731 dirty_parity_disks++;
4732 }
91adb564 4733
5e5e3e78
N
4734 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4735 - working_disks);
91adb564 4736
674806d6 4737 if (has_failed(conf)) {
0c55e022 4738 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 4739 " (%d/%d failed)\n",
02c2de8c 4740 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4741 goto abort;
4742 }
4743
91adb564 4744 /* device size must be a multiple of chunk size */
9d8f0363 4745 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
4746 mddev->resync_max_sectors = mddev->dev_sectors;
4747
c148ffdc 4748 if (mddev->degraded > dirty_parity_disks &&
1da177e4 4749 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4750 if (mddev->ok_start_degraded)
4751 printk(KERN_WARNING
0c55e022
N
4752 "md/raid:%s: starting dirty degraded array"
4753 " - data corruption possible.\n",
6ff8d8ec
N
4754 mdname(mddev));
4755 else {
4756 printk(KERN_ERR
0c55e022 4757 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
4758 mdname(mddev));
4759 goto abort;
4760 }
1da177e4
LT
4761 }
4762
1da177e4 4763 if (mddev->degraded == 0)
0c55e022
N
4764 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4765 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
4766 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4767 mddev->new_layout);
1da177e4 4768 else
0c55e022
N
4769 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4770 " out of %d devices, algorithm %d\n",
4771 mdname(mddev), conf->level,
4772 mddev->raid_disks - mddev->degraded,
4773 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
4774
4775 print_raid5_conf(conf);
4776
fef9c61f 4777 if (conf->reshape_progress != MaxSector) {
fef9c61f 4778 conf->reshape_safe = conf->reshape_progress;
f6705578
N
4779 atomic_set(&conf->reshape_stripes, 0);
4780 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4781 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4782 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4783 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4784 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 4785 "reshape");
f6705578
N
4786 }
4787
1da177e4
LT
4788
4789 /* Ok, everything is just fine now */
a64c876f
N
4790 if (mddev->to_remove == &raid5_attrs_group)
4791 mddev->to_remove = NULL;
00bcb4ac
N
4792 else if (mddev->kobj.sd &&
4793 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 4794 printk(KERN_WARNING
4a5add49 4795 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 4796 mdname(mddev));
4a5add49 4797 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 4798
4a5add49 4799 if (mddev->queue) {
9f7c2220 4800 int chunk_size;
4a5add49
N
4801 /* read-ahead size must cover two whole stripes, which
4802 * is 2 * (datadisks) * chunksize where 'n' is the
4803 * number of raid devices
4804 */
4805 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4806 int stripe = data_disks *
4807 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4808 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4809 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 4810
4a5add49 4811 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 4812
11d8a6e3
N
4813 mddev->queue->backing_dev_info.congested_data = mddev;
4814 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 4815
9f7c2220
N
4816 chunk_size = mddev->chunk_sectors << 9;
4817 blk_queue_io_min(mddev->queue, chunk_size);
4818 blk_queue_io_opt(mddev->queue, chunk_size *
4819 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 4820
9f7c2220
N
4821 list_for_each_entry(rdev, &mddev->disks, same_set)
4822 disk_stack_limits(mddev->gendisk, rdev->bdev,
4823 rdev->data_offset << 9);
4824 }
23032a0e 4825
1da177e4
LT
4826 return 0;
4827abort:
e0cf8f04 4828 md_unregister_thread(mddev->thread);
91adb564 4829 mddev->thread = NULL;
1da177e4
LT
4830 if (conf) {
4831 print_raid5_conf(conf);
95fc17aa 4832 free_conf(conf);
1da177e4
LT
4833 }
4834 mddev->private = NULL;
0c55e022 4835 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
4836 return -EIO;
4837}
4838
3f294f4f 4839static int stop(mddev_t *mddev)
1da177e4 4840{
7b92813c 4841 raid5_conf_t *conf = mddev->private;
1da177e4
LT
4842
4843 md_unregister_thread(mddev->thread);
4844 mddev->thread = NULL;
11d8a6e3
N
4845 if (mddev->queue)
4846 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 4847 free_conf(conf);
a64c876f
N
4848 mddev->private = NULL;
4849 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
4850 return 0;
4851}
4852
45b4233c 4853#ifdef DEBUG
d710e138 4854static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4855{
4856 int i;
4857
16a53ecc
N
4858 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4859 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4860 seq_printf(seq, "sh %llu, count %d.\n",
4861 (unsigned long long)sh->sector, atomic_read(&sh->count));
4862 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4863 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4864 seq_printf(seq, "(cache%d: %p %ld) ",
4865 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4866 }
16a53ecc 4867 seq_printf(seq, "\n");
1da177e4
LT
4868}
4869
d710e138 4870static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4871{
4872 struct stripe_head *sh;
fccddba0 4873 struct hlist_node *hn;
1da177e4
LT
4874 int i;
4875
4876 spin_lock_irq(&conf->device_lock);
4877 for (i = 0; i < NR_HASH; i++) {
fccddba0 4878 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4879 if (sh->raid_conf != conf)
4880 continue;
16a53ecc 4881 print_sh(seq, sh);
1da177e4
LT
4882 }
4883 }
4884 spin_unlock_irq(&conf->device_lock);
4885}
4886#endif
4887
d710e138 4888static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4 4889{
7b92813c 4890 raid5_conf_t *conf = mddev->private;
1da177e4
LT
4891 int i;
4892
9d8f0363
AN
4893 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4894 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 4895 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4896 for (i = 0; i < conf->raid_disks; i++)
4897 seq_printf (seq, "%s",
4898 conf->disks[i].rdev &&
b2d444d7 4899 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4900 seq_printf (seq, "]");
45b4233c 4901#ifdef DEBUG
16a53ecc
N
4902 seq_printf (seq, "\n");
4903 printall(seq, conf);
1da177e4
LT
4904#endif
4905}
4906
4907static void print_raid5_conf (raid5_conf_t *conf)
4908{
4909 int i;
4910 struct disk_info *tmp;
4911
0c55e022 4912 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
4913 if (!conf) {
4914 printk("(conf==NULL)\n");
4915 return;
4916 }
0c55e022
N
4917 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4918 conf->raid_disks,
4919 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4920
4921 for (i = 0; i < conf->raid_disks; i++) {
4922 char b[BDEVNAME_SIZE];
4923 tmp = conf->disks + i;
4924 if (tmp->rdev)
0c55e022
N
4925 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4926 i, !test_bit(Faulty, &tmp->rdev->flags),
4927 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
4928 }
4929}
4930
4931static int raid5_spare_active(mddev_t *mddev)
4932{
4933 int i;
4934 raid5_conf_t *conf = mddev->private;
4935 struct disk_info *tmp;
6b965620
N
4936 int count = 0;
4937 unsigned long flags;
1da177e4
LT
4938
4939 for (i = 0; i < conf->raid_disks; i++) {
4940 tmp = conf->disks + i;
4941 if (tmp->rdev
70fffd0b 4942 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 4943 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 4944 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 4945 count++;
43c73ca4 4946 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
4947 }
4948 }
6b965620
N
4949 spin_lock_irqsave(&conf->device_lock, flags);
4950 mddev->degraded -= count;
4951 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 4952 print_raid5_conf(conf);
6b965620 4953 return count;
1da177e4
LT
4954}
4955
4956static int raid5_remove_disk(mddev_t *mddev, int number)
4957{
4958 raid5_conf_t *conf = mddev->private;
4959 int err = 0;
4960 mdk_rdev_t *rdev;
4961 struct disk_info *p = conf->disks + number;
4962
4963 print_raid5_conf(conf);
4964 rdev = p->rdev;
4965 if (rdev) {
ec32a2bd
N
4966 if (number >= conf->raid_disks &&
4967 conf->reshape_progress == MaxSector)
4968 clear_bit(In_sync, &rdev->flags);
4969
b2d444d7 4970 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4971 atomic_read(&rdev->nr_pending)) {
4972 err = -EBUSY;
4973 goto abort;
4974 }
dfc70645
N
4975 /* Only remove non-faulty devices if recovery
4976 * isn't possible.
4977 */
4978 if (!test_bit(Faulty, &rdev->flags) &&
674806d6 4979 !has_failed(conf) &&
ec32a2bd 4980 number < conf->raid_disks) {
dfc70645
N
4981 err = -EBUSY;
4982 goto abort;
4983 }
1da177e4 4984 p->rdev = NULL;
fbd568a3 4985 synchronize_rcu();
1da177e4
LT
4986 if (atomic_read(&rdev->nr_pending)) {
4987 /* lost the race, try later */
4988 err = -EBUSY;
4989 p->rdev = rdev;
4990 }
4991 }
4992abort:
4993
4994 print_raid5_conf(conf);
4995 return err;
4996}
4997
4998static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4999{
5000 raid5_conf_t *conf = mddev->private;
199050ea 5001 int err = -EEXIST;
1da177e4
LT
5002 int disk;
5003 struct disk_info *p;
6c2fce2e
NB
5004 int first = 0;
5005 int last = conf->raid_disks - 1;
1da177e4 5006
674806d6 5007 if (has_failed(conf))
1da177e4 5008 /* no point adding a device */
199050ea 5009 return -EINVAL;
1da177e4 5010
6c2fce2e
NB
5011 if (rdev->raid_disk >= 0)
5012 first = last = rdev->raid_disk;
1da177e4
LT
5013
5014 /*
16a53ecc
N
5015 * find the disk ... but prefer rdev->saved_raid_disk
5016 * if possible.
1da177e4 5017 */
16a53ecc 5018 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5019 rdev->saved_raid_disk >= first &&
16a53ecc
N
5020 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5021 disk = rdev->saved_raid_disk;
5022 else
6c2fce2e
NB
5023 disk = first;
5024 for ( ; disk <= last ; disk++)
1da177e4 5025 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5026 clear_bit(In_sync, &rdev->flags);
1da177e4 5027 rdev->raid_disk = disk;
199050ea 5028 err = 0;
72626685
N
5029 if (rdev->saved_raid_disk != disk)
5030 conf->fullsync = 1;
d6065f7b 5031 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5032 break;
5033 }
5034 print_raid5_conf(conf);
199050ea 5035 return err;
1da177e4
LT
5036}
5037
5038static int raid5_resize(mddev_t *mddev, sector_t sectors)
5039{
5040 /* no resync is happening, and there is enough space
5041 * on all devices, so we can resize.
5042 * We need to make sure resync covers any new space.
5043 * If the array is shrinking we should possibly wait until
5044 * any io in the removed space completes, but it hardly seems
5045 * worth it.
5046 */
9d8f0363 5047 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5048 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5049 mddev->raid_disks));
b522adcd
DW
5050 if (mddev->array_sectors >
5051 raid5_size(mddev, sectors, mddev->raid_disks))
5052 return -EINVAL;
f233ea5c 5053 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5054 revalidate_disk(mddev->gendisk);
b098636c
N
5055 if (sectors > mddev->dev_sectors &&
5056 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5057 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5058 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5059 }
58c0fed4 5060 mddev->dev_sectors = sectors;
4b5c7ae8 5061 mddev->resync_max_sectors = sectors;
1da177e4
LT
5062 return 0;
5063}
5064
01ee22b4
N
5065static int check_stripe_cache(mddev_t *mddev)
5066{
5067 /* Can only proceed if there are plenty of stripe_heads.
5068 * We need a minimum of one full stripe,, and for sensible progress
5069 * it is best to have about 4 times that.
5070 * If we require 4 times, then the default 256 4K stripe_heads will
5071 * allow for chunk sizes up to 256K, which is probably OK.
5072 * If the chunk size is greater, user-space should request more
5073 * stripe_heads first.
5074 */
5075 raid5_conf_t *conf = mddev->private;
5076 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5077 > conf->max_nr_stripes ||
5078 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5079 > conf->max_nr_stripes) {
0c55e022
N
5080 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5081 mdname(mddev),
01ee22b4
N
5082 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5083 / STRIPE_SIZE)*4);
5084 return 0;
5085 }
5086 return 1;
5087}
5088
50ac168a 5089static int check_reshape(mddev_t *mddev)
29269553 5090{
070ec55d 5091 raid5_conf_t *conf = mddev->private;
29269553 5092
88ce4930
N
5093 if (mddev->delta_disks == 0 &&
5094 mddev->new_layout == mddev->layout &&
664e7c41 5095 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5096 return 0; /* nothing to do */
dba034ee
N
5097 if (mddev->bitmap)
5098 /* Cannot grow a bitmap yet */
5099 return -EBUSY;
674806d6 5100 if (has_failed(conf))
ec32a2bd
N
5101 return -EINVAL;
5102 if (mddev->delta_disks < 0) {
5103 /* We might be able to shrink, but the devices must
5104 * be made bigger first.
5105 * For raid6, 4 is the minimum size.
5106 * Otherwise 2 is the minimum
5107 */
5108 int min = 2;
5109 if (mddev->level == 6)
5110 min = 4;
5111 if (mddev->raid_disks + mddev->delta_disks < min)
5112 return -EINVAL;
5113 }
29269553 5114
01ee22b4 5115 if (!check_stripe_cache(mddev))
29269553 5116 return -ENOSPC;
29269553 5117
ec32a2bd 5118 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5119}
5120
5121static int raid5_start_reshape(mddev_t *mddev)
5122{
070ec55d 5123 raid5_conf_t *conf = mddev->private;
63c70c4f 5124 mdk_rdev_t *rdev;
63c70c4f 5125 int spares = 0;
c04be0aa 5126 unsigned long flags;
63c70c4f 5127
f416885e 5128 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5129 return -EBUSY;
5130
01ee22b4
N
5131 if (!check_stripe_cache(mddev))
5132 return -ENOSPC;
5133
159ec1fc 5134 list_for_each_entry(rdev, &mddev->disks, same_set)
469518a3
N
5135 if (!test_bit(In_sync, &rdev->flags)
5136 && !test_bit(Faulty, &rdev->flags))
29269553 5137 spares++;
63c70c4f 5138
f416885e 5139 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5140 /* Not enough devices even to make a degraded array
5141 * of that size
5142 */
5143 return -EINVAL;
5144
ec32a2bd
N
5145 /* Refuse to reduce size of the array. Any reductions in
5146 * array size must be through explicit setting of array_size
5147 * attribute.
5148 */
5149 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5150 < mddev->array_sectors) {
0c55e022 5151 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5152 "before number of disks\n", mdname(mddev));
5153 return -EINVAL;
5154 }
5155
f6705578 5156 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5157 spin_lock_irq(&conf->device_lock);
5158 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5159 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5160 conf->prev_chunk_sectors = conf->chunk_sectors;
5161 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5162 conf->prev_algo = conf->algorithm;
5163 conf->algorithm = mddev->new_layout;
fef9c61f
N
5164 if (mddev->delta_disks < 0)
5165 conf->reshape_progress = raid5_size(mddev, 0, 0);
5166 else
5167 conf->reshape_progress = 0;
5168 conf->reshape_safe = conf->reshape_progress;
86b42c71 5169 conf->generation++;
29269553
N
5170 spin_unlock_irq(&conf->device_lock);
5171
5172 /* Add some new drives, as many as will fit.
5173 * We know there are enough to make the newly sized array work.
3424bf6a
N
5174 * Don't add devices if we are reducing the number of
5175 * devices in the array. This is because it is not possible
5176 * to correctly record the "partially reconstructed" state of
5177 * such devices during the reshape and confusion could result.
29269553 5178 */
87a8dec9
N
5179 if (mddev->delta_disks >= 0) {
5180 int added_devices = 0;
5181 list_for_each_entry(rdev, &mddev->disks, same_set)
5182 if (rdev->raid_disk < 0 &&
5183 !test_bit(Faulty, &rdev->flags)) {
5184 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9
N
5185 if (rdev->raid_disk
5186 >= conf->previous_raid_disks) {
5187 set_bit(In_sync, &rdev->flags);
5188 added_devices++;
5189 } else
5190 rdev->recovery_offset = 0;
36fad858
NK
5191
5192 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 5193 /* Failure here is OK */;
50da0840 5194 }
87a8dec9
N
5195 } else if (rdev->raid_disk >= conf->previous_raid_disks
5196 && !test_bit(Faulty, &rdev->flags)) {
5197 /* This is a spare that was manually added */
5198 set_bit(In_sync, &rdev->flags);
5199 added_devices++;
5200 }
29269553 5201
87a8dec9
N
5202 /* When a reshape changes the number of devices,
5203 * ->degraded is measured against the larger of the
5204 * pre and post number of devices.
5205 */
ec32a2bd 5206 spin_lock_irqsave(&conf->device_lock, flags);
9eb07c25 5207 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
ec32a2bd
N
5208 - added_devices;
5209 spin_unlock_irqrestore(&conf->device_lock, flags);
5210 }
63c70c4f 5211 mddev->raid_disks = conf->raid_disks;
e516402c 5212 mddev->reshape_position = conf->reshape_progress;
850b2b42 5213 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5214
29269553
N
5215 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5216 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5217 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5218 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5219 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5220 "reshape");
29269553
N
5221 if (!mddev->sync_thread) {
5222 mddev->recovery = 0;
5223 spin_lock_irq(&conf->device_lock);
5224 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5225 conf->reshape_progress = MaxSector;
29269553
N
5226 spin_unlock_irq(&conf->device_lock);
5227 return -EAGAIN;
5228 }
c8f517c4 5229 conf->reshape_checkpoint = jiffies;
29269553
N
5230 md_wakeup_thread(mddev->sync_thread);
5231 md_new_event(mddev);
5232 return 0;
5233}
29269553 5234
ec32a2bd
N
5235/* This is called from the reshape thread and should make any
5236 * changes needed in 'conf'
5237 */
29269553
N
5238static void end_reshape(raid5_conf_t *conf)
5239{
29269553 5240
f6705578 5241 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5242
f6705578 5243 spin_lock_irq(&conf->device_lock);
cea9c228 5244 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5245 conf->reshape_progress = MaxSector;
f6705578 5246 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5247 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5248
5249 /* read-ahead size must cover two whole stripes, which is
5250 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5251 */
4a5add49 5252 if (conf->mddev->queue) {
cea9c228 5253 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5254 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5255 / PAGE_SIZE);
16a53ecc
N
5256 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5257 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5258 }
29269553 5259 }
29269553
N
5260}
5261
ec32a2bd
N
5262/* This is called from the raid5d thread with mddev_lock held.
5263 * It makes config changes to the device.
5264 */
cea9c228
N
5265static void raid5_finish_reshape(mddev_t *mddev)
5266{
070ec55d 5267 raid5_conf_t *conf = mddev->private;
cea9c228
N
5268
5269 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5270
ec32a2bd
N
5271 if (mddev->delta_disks > 0) {
5272 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5273 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5274 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5275 } else {
5276 int d;
ec32a2bd
N
5277 mddev->degraded = conf->raid_disks;
5278 for (d = 0; d < conf->raid_disks ; d++)
5279 if (conf->disks[d].rdev &&
5280 test_bit(In_sync,
5281 &conf->disks[d].rdev->flags))
5282 mddev->degraded--;
5283 for (d = conf->raid_disks ;
5284 d < conf->raid_disks - mddev->delta_disks;
1a67dde0
N
5285 d++) {
5286 mdk_rdev_t *rdev = conf->disks[d].rdev;
5287 if (rdev && raid5_remove_disk(mddev, d) == 0) {
36fad858 5288 sysfs_unlink_rdev(mddev, rdev);
1a67dde0
N
5289 rdev->raid_disk = -1;
5290 }
5291 }
cea9c228 5292 }
88ce4930 5293 mddev->layout = conf->algorithm;
09c9e5fa 5294 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5295 mddev->reshape_position = MaxSector;
5296 mddev->delta_disks = 0;
cea9c228
N
5297 }
5298}
5299
72626685
N
5300static void raid5_quiesce(mddev_t *mddev, int state)
5301{
070ec55d 5302 raid5_conf_t *conf = mddev->private;
72626685
N
5303
5304 switch(state) {
e464eafd
N
5305 case 2: /* resume for a suspend */
5306 wake_up(&conf->wait_for_overlap);
5307 break;
5308
72626685
N
5309 case 1: /* stop all writes */
5310 spin_lock_irq(&conf->device_lock);
64bd660b
N
5311 /* '2' tells resync/reshape to pause so that all
5312 * active stripes can drain
5313 */
5314 conf->quiesce = 2;
72626685 5315 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5316 atomic_read(&conf->active_stripes) == 0 &&
5317 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5318 conf->device_lock, /* nothing */);
64bd660b 5319 conf->quiesce = 1;
72626685 5320 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5321 /* allow reshape to continue */
5322 wake_up(&conf->wait_for_overlap);
72626685
N
5323 break;
5324
5325 case 0: /* re-enable writes */
5326 spin_lock_irq(&conf->device_lock);
5327 conf->quiesce = 0;
5328 wake_up(&conf->wait_for_stripe);
e464eafd 5329 wake_up(&conf->wait_for_overlap);
72626685
N
5330 spin_unlock_irq(&conf->device_lock);
5331 break;
5332 }
72626685 5333}
b15c2e57 5334
d562b0c4 5335
f1b29bca 5336static void *raid45_takeover_raid0(mddev_t *mddev, int level)
54071b38 5337{
f1b29bca 5338 struct raid0_private_data *raid0_priv = mddev->private;
d76c8420 5339 sector_t sectors;
54071b38 5340
f1b29bca
DW
5341 /* for raid0 takeover only one zone is supported */
5342 if (raid0_priv->nr_strip_zones > 1) {
0c55e022
N
5343 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5344 mdname(mddev));
f1b29bca
DW
5345 return ERR_PTR(-EINVAL);
5346 }
5347
3b71bd93
N
5348 sectors = raid0_priv->strip_zone[0].zone_end;
5349 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5350 mddev->dev_sectors = sectors;
f1b29bca 5351 mddev->new_level = level;
54071b38
TM
5352 mddev->new_layout = ALGORITHM_PARITY_N;
5353 mddev->new_chunk_sectors = mddev->chunk_sectors;
5354 mddev->raid_disks += 1;
5355 mddev->delta_disks = 1;
5356 /* make sure it will be not marked as dirty */
5357 mddev->recovery_cp = MaxSector;
5358
5359 return setup_conf(mddev);
5360}
5361
5362
d562b0c4
N
5363static void *raid5_takeover_raid1(mddev_t *mddev)
5364{
5365 int chunksect;
5366
5367 if (mddev->raid_disks != 2 ||
5368 mddev->degraded > 1)
5369 return ERR_PTR(-EINVAL);
5370
5371 /* Should check if there are write-behind devices? */
5372
5373 chunksect = 64*2; /* 64K by default */
5374
5375 /* The array must be an exact multiple of chunksize */
5376 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5377 chunksect >>= 1;
5378
5379 if ((chunksect<<9) < STRIPE_SIZE)
5380 /* array size does not allow a suitable chunk size */
5381 return ERR_PTR(-EINVAL);
5382
5383 mddev->new_level = 5;
5384 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5385 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5386
5387 return setup_conf(mddev);
5388}
5389
fc9739c6
N
5390static void *raid5_takeover_raid6(mddev_t *mddev)
5391{
5392 int new_layout;
5393
5394 switch (mddev->layout) {
5395 case ALGORITHM_LEFT_ASYMMETRIC_6:
5396 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5397 break;
5398 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5399 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5400 break;
5401 case ALGORITHM_LEFT_SYMMETRIC_6:
5402 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5403 break;
5404 case ALGORITHM_RIGHT_SYMMETRIC_6:
5405 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5406 break;
5407 case ALGORITHM_PARITY_0_6:
5408 new_layout = ALGORITHM_PARITY_0;
5409 break;
5410 case ALGORITHM_PARITY_N:
5411 new_layout = ALGORITHM_PARITY_N;
5412 break;
5413 default:
5414 return ERR_PTR(-EINVAL);
5415 }
5416 mddev->new_level = 5;
5417 mddev->new_layout = new_layout;
5418 mddev->delta_disks = -1;
5419 mddev->raid_disks -= 1;
5420 return setup_conf(mddev);
5421}
5422
d562b0c4 5423
50ac168a 5424static int raid5_check_reshape(mddev_t *mddev)
b3546035 5425{
88ce4930
N
5426 /* For a 2-drive array, the layout and chunk size can be changed
5427 * immediately as not restriping is needed.
5428 * For larger arrays we record the new value - after validation
5429 * to be used by a reshape pass.
b3546035 5430 */
070ec55d 5431 raid5_conf_t *conf = mddev->private;
597a711b 5432 int new_chunk = mddev->new_chunk_sectors;
b3546035 5433
597a711b 5434 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5435 return -EINVAL;
5436 if (new_chunk > 0) {
0ba459d2 5437 if (!is_power_of_2(new_chunk))
b3546035 5438 return -EINVAL;
597a711b 5439 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5440 return -EINVAL;
597a711b 5441 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5442 /* not factor of array size */
5443 return -EINVAL;
5444 }
5445
5446 /* They look valid */
5447
88ce4930 5448 if (mddev->raid_disks == 2) {
597a711b
N
5449 /* can make the change immediately */
5450 if (mddev->new_layout >= 0) {
5451 conf->algorithm = mddev->new_layout;
5452 mddev->layout = mddev->new_layout;
88ce4930
N
5453 }
5454 if (new_chunk > 0) {
597a711b
N
5455 conf->chunk_sectors = new_chunk ;
5456 mddev->chunk_sectors = new_chunk;
88ce4930
N
5457 }
5458 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5459 md_wakeup_thread(mddev->thread);
b3546035 5460 }
50ac168a 5461 return check_reshape(mddev);
88ce4930
N
5462}
5463
50ac168a 5464static int raid6_check_reshape(mddev_t *mddev)
88ce4930 5465{
597a711b 5466 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5467
597a711b 5468 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5469 return -EINVAL;
b3546035 5470 if (new_chunk > 0) {
0ba459d2 5471 if (!is_power_of_2(new_chunk))
88ce4930 5472 return -EINVAL;
597a711b 5473 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5474 return -EINVAL;
597a711b 5475 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5476 /* not factor of array size */
5477 return -EINVAL;
b3546035 5478 }
88ce4930
N
5479
5480 /* They look valid */
50ac168a 5481 return check_reshape(mddev);
b3546035
N
5482}
5483
d562b0c4
N
5484static void *raid5_takeover(mddev_t *mddev)
5485{
5486 /* raid5 can take over:
f1b29bca 5487 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5488 * raid1 - if there are two drives. We need to know the chunk size
5489 * raid4 - trivial - just use a raid4 layout.
5490 * raid6 - Providing it is a *_6 layout
d562b0c4 5491 */
f1b29bca
DW
5492 if (mddev->level == 0)
5493 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5494 if (mddev->level == 1)
5495 return raid5_takeover_raid1(mddev);
e9d4758f
N
5496 if (mddev->level == 4) {
5497 mddev->new_layout = ALGORITHM_PARITY_N;
5498 mddev->new_level = 5;
5499 return setup_conf(mddev);
5500 }
fc9739c6
N
5501 if (mddev->level == 6)
5502 return raid5_takeover_raid6(mddev);
d562b0c4
N
5503
5504 return ERR_PTR(-EINVAL);
5505}
5506
a78d38a1
N
5507static void *raid4_takeover(mddev_t *mddev)
5508{
f1b29bca
DW
5509 /* raid4 can take over:
5510 * raid0 - if there is only one strip zone
5511 * raid5 - if layout is right
a78d38a1 5512 */
f1b29bca
DW
5513 if (mddev->level == 0)
5514 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5515 if (mddev->level == 5 &&
5516 mddev->layout == ALGORITHM_PARITY_N) {
5517 mddev->new_layout = 0;
5518 mddev->new_level = 4;
5519 return setup_conf(mddev);
5520 }
5521 return ERR_PTR(-EINVAL);
5522}
d562b0c4 5523
245f46c2
N
5524static struct mdk_personality raid5_personality;
5525
5526static void *raid6_takeover(mddev_t *mddev)
5527{
5528 /* Currently can only take over a raid5. We map the
5529 * personality to an equivalent raid6 personality
5530 * with the Q block at the end.
5531 */
5532 int new_layout;
5533
5534 if (mddev->pers != &raid5_personality)
5535 return ERR_PTR(-EINVAL);
5536 if (mddev->degraded > 1)
5537 return ERR_PTR(-EINVAL);
5538 if (mddev->raid_disks > 253)
5539 return ERR_PTR(-EINVAL);
5540 if (mddev->raid_disks < 3)
5541 return ERR_PTR(-EINVAL);
5542
5543 switch (mddev->layout) {
5544 case ALGORITHM_LEFT_ASYMMETRIC:
5545 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5546 break;
5547 case ALGORITHM_RIGHT_ASYMMETRIC:
5548 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5549 break;
5550 case ALGORITHM_LEFT_SYMMETRIC:
5551 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5552 break;
5553 case ALGORITHM_RIGHT_SYMMETRIC:
5554 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5555 break;
5556 case ALGORITHM_PARITY_0:
5557 new_layout = ALGORITHM_PARITY_0_6;
5558 break;
5559 case ALGORITHM_PARITY_N:
5560 new_layout = ALGORITHM_PARITY_N;
5561 break;
5562 default:
5563 return ERR_PTR(-EINVAL);
5564 }
5565 mddev->new_level = 6;
5566 mddev->new_layout = new_layout;
5567 mddev->delta_disks = 1;
5568 mddev->raid_disks += 1;
5569 return setup_conf(mddev);
5570}
5571
5572
16a53ecc
N
5573static struct mdk_personality raid6_personality =
5574{
5575 .name = "raid6",
5576 .level = 6,
5577 .owner = THIS_MODULE,
5578 .make_request = make_request,
5579 .run = run,
5580 .stop = stop,
5581 .status = status,
5582 .error_handler = error,
5583 .hot_add_disk = raid5_add_disk,
5584 .hot_remove_disk= raid5_remove_disk,
5585 .spare_active = raid5_spare_active,
5586 .sync_request = sync_request,
5587 .resize = raid5_resize,
80c3a6ce 5588 .size = raid5_size,
50ac168a 5589 .check_reshape = raid6_check_reshape,
f416885e 5590 .start_reshape = raid5_start_reshape,
cea9c228 5591 .finish_reshape = raid5_finish_reshape,
16a53ecc 5592 .quiesce = raid5_quiesce,
245f46c2 5593 .takeover = raid6_takeover,
16a53ecc 5594};
2604b703 5595static struct mdk_personality raid5_personality =
1da177e4
LT
5596{
5597 .name = "raid5",
2604b703 5598 .level = 5,
1da177e4
LT
5599 .owner = THIS_MODULE,
5600 .make_request = make_request,
5601 .run = run,
5602 .stop = stop,
5603 .status = status,
5604 .error_handler = error,
5605 .hot_add_disk = raid5_add_disk,
5606 .hot_remove_disk= raid5_remove_disk,
5607 .spare_active = raid5_spare_active,
5608 .sync_request = sync_request,
5609 .resize = raid5_resize,
80c3a6ce 5610 .size = raid5_size,
63c70c4f
N
5611 .check_reshape = raid5_check_reshape,
5612 .start_reshape = raid5_start_reshape,
cea9c228 5613 .finish_reshape = raid5_finish_reshape,
72626685 5614 .quiesce = raid5_quiesce,
d562b0c4 5615 .takeover = raid5_takeover,
1da177e4
LT
5616};
5617
2604b703 5618static struct mdk_personality raid4_personality =
1da177e4 5619{
2604b703
N
5620 .name = "raid4",
5621 .level = 4,
5622 .owner = THIS_MODULE,
5623 .make_request = make_request,
5624 .run = run,
5625 .stop = stop,
5626 .status = status,
5627 .error_handler = error,
5628 .hot_add_disk = raid5_add_disk,
5629 .hot_remove_disk= raid5_remove_disk,
5630 .spare_active = raid5_spare_active,
5631 .sync_request = sync_request,
5632 .resize = raid5_resize,
80c3a6ce 5633 .size = raid5_size,
3d37890b
N
5634 .check_reshape = raid5_check_reshape,
5635 .start_reshape = raid5_start_reshape,
cea9c228 5636 .finish_reshape = raid5_finish_reshape,
2604b703 5637 .quiesce = raid5_quiesce,
a78d38a1 5638 .takeover = raid4_takeover,
2604b703
N
5639};
5640
5641static int __init raid5_init(void)
5642{
16a53ecc 5643 register_md_personality(&raid6_personality);
2604b703
N
5644 register_md_personality(&raid5_personality);
5645 register_md_personality(&raid4_personality);
5646 return 0;
1da177e4
LT
5647}
5648
2604b703 5649static void raid5_exit(void)
1da177e4 5650{
16a53ecc 5651 unregister_md_personality(&raid6_personality);
2604b703
N
5652 unregister_md_personality(&raid5_personality);
5653 unregister_md_personality(&raid4_personality);
1da177e4
LT
5654}
5655
5656module_init(raid5_init);
5657module_exit(raid5_exit);
5658MODULE_LICENSE("GPL");
0efb9e61 5659MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 5660MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5661MODULE_ALIAS("md-raid5");
5662MODULE_ALIAS("md-raid4");
2604b703
N
5663MODULE_ALIAS("md-level-5");
5664MODULE_ALIAS("md-level-4");
16a53ecc
N
5665MODULE_ALIAS("md-personality-8"); /* RAID6 */
5666MODULE_ALIAS("md-raid6");
5667MODULE_ALIAS("md-level-6");
5668
5669/* This used to be two separate modules, they were: */
5670MODULE_ALIAS("raid5");
5671MODULE_ALIAS("raid6");