raid5: Set R5_Expanded on parity devices as well as data.
[linux-2.6-block.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
851c30c9 56#include <linux/nodemask.h>
46d5b785 57#include <linux/flex_array.h>
3f07c014
IM
58#include <linux/sched/signal.h>
59
a9add5d9 60#include <trace/events/block.h>
aaf9f12e 61#include <linux/list_sort.h>
a9add5d9 62
43b2e5d8 63#include "md.h"
bff61975 64#include "raid5.h"
54071b38 65#include "raid0.h"
935fe098 66#include "md-bitmap.h"
ff875738 67#include "raid5-log.h"
72626685 68
394ed8e4
SL
69#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70
851c30c9
SL
71#define cpu_to_group(cpu) cpu_to_node(cpu)
72#define ANY_GROUP NUMA_NO_NODE
73
8e0e99ba
N
74static bool devices_handle_discard_safely = false;
75module_param(devices_handle_discard_safely, bool, 0644);
76MODULE_PARM_DESC(devices_handle_discard_safely,
77 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 78static struct workqueue_struct *raid5_wq;
1da177e4 79
d1688a6d 80static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
81{
82 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 return &conf->stripe_hashtbl[hash];
84}
1da177e4 85
566c09c5
SL
86static inline int stripe_hash_locks_hash(sector_t sect)
87{
88 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89}
90
91static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92{
93 spin_lock_irq(conf->hash_locks + hash);
94 spin_lock(&conf->device_lock);
95}
96
97static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98{
99 spin_unlock(&conf->device_lock);
100 spin_unlock_irq(conf->hash_locks + hash);
101}
102
103static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104{
105 int i;
3d05f3ae 106 spin_lock_irq(conf->hash_locks);
566c09c5
SL
107 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
108 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
109 spin_lock(&conf->device_lock);
110}
111
112static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
113{
114 int i;
115 spin_unlock(&conf->device_lock);
3d05f3ae
JC
116 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
117 spin_unlock(conf->hash_locks + i);
118 spin_unlock_irq(conf->hash_locks);
566c09c5
SL
119}
120
d0dabf7e
N
121/* Find first data disk in a raid6 stripe */
122static inline int raid6_d0(struct stripe_head *sh)
123{
67cc2b81
N
124 if (sh->ddf_layout)
125 /* ddf always start from first device */
126 return 0;
127 /* md starts just after Q block */
d0dabf7e
N
128 if (sh->qd_idx == sh->disks - 1)
129 return 0;
130 else
131 return sh->qd_idx + 1;
132}
16a53ecc
N
133static inline int raid6_next_disk(int disk, int raid_disks)
134{
135 disk++;
136 return (disk < raid_disks) ? disk : 0;
137}
a4456856 138
d0dabf7e
N
139/* When walking through the disks in a raid5, starting at raid6_d0,
140 * We need to map each disk to a 'slot', where the data disks are slot
141 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
142 * is raid_disks-1. This help does that mapping.
143 */
67cc2b81
N
144static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
145 int *count, int syndrome_disks)
d0dabf7e 146{
6629542e 147 int slot = *count;
67cc2b81 148
e4424fee 149 if (sh->ddf_layout)
6629542e 150 (*count)++;
d0dabf7e 151 if (idx == sh->pd_idx)
67cc2b81 152 return syndrome_disks;
d0dabf7e 153 if (idx == sh->qd_idx)
67cc2b81 154 return syndrome_disks + 1;
e4424fee 155 if (!sh->ddf_layout)
6629542e 156 (*count)++;
d0dabf7e
N
157 return slot;
158}
159
d1688a6d 160static void print_raid5_conf (struct r5conf *conf);
1da177e4 161
600aa109
DW
162static int stripe_operations_active(struct stripe_head *sh)
163{
164 return sh->check_state || sh->reconstruct_state ||
165 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
166 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
167}
168
535ae4eb
SL
169static bool stripe_is_lowprio(struct stripe_head *sh)
170{
171 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
172 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
173 !test_bit(STRIPE_R5C_CACHING, &sh->state);
174}
175
851c30c9
SL
176static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177{
178 struct r5conf *conf = sh->raid_conf;
179 struct r5worker_group *group;
bfc90cb0 180 int thread_cnt;
851c30c9
SL
181 int i, cpu = sh->cpu;
182
183 if (!cpu_online(cpu)) {
184 cpu = cpumask_any(cpu_online_mask);
185 sh->cpu = cpu;
186 }
187
188 if (list_empty(&sh->lru)) {
189 struct r5worker_group *group;
190 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
191 if (stripe_is_lowprio(sh))
192 list_add_tail(&sh->lru, &group->loprio_list);
193 else
194 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
195 group->stripes_cnt++;
196 sh->group = group;
851c30c9
SL
197 }
198
199 if (conf->worker_cnt_per_group == 0) {
200 md_wakeup_thread(conf->mddev->thread);
201 return;
202 }
203
204 group = conf->worker_groups + cpu_to_group(sh->cpu);
205
bfc90cb0
SL
206 group->workers[0].working = true;
207 /* at least one worker should run to avoid race */
208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 /* wakeup more workers */
212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 if (group->workers[i].working == false) {
214 group->workers[i].working = true;
215 queue_work_on(sh->cpu, raid5_wq,
216 &group->workers[i].work);
217 thread_cnt--;
218 }
219 }
851c30c9
SL
220}
221
566c09c5
SL
222static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 struct list_head *temp_inactive_list)
1da177e4 224{
1e6d690b
SL
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
4eb788df
SL
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
a39f7afd 235 /*
5ddf0440
SL
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
a39f7afd 241 */
5ddf0440
SL
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
a39f7afd
SL
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
1e6d690b 249
4eb788df
SL
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 253 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 260 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
851c30c9
SL
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
4eb788df
SL
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
1e6d690b
SL
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 294 r5c_check_cached_full_stripe(conf);
03b047f4
SL
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
1e6d690b 301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
302 }
303 }
1da177e4
LT
304 }
305}
d0dabf7e 306
566c09c5
SL
307static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
4eb788df
SL
309{
310 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
311 do_release_stripe(conf, sh, temp_inactive_list);
312}
313
314/*
315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 *
317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318 * given time. Adding stripes only takes device lock, while deleting stripes
319 * only takes hash lock.
320 */
321static void release_inactive_stripe_list(struct r5conf *conf,
322 struct list_head *temp_inactive_list,
323 int hash)
324{
325 int size;
6ab2a4b8 326 bool do_wakeup = false;
566c09c5
SL
327 unsigned long flags;
328
329 if (hash == NR_STRIPE_HASH_LOCKS) {
330 size = NR_STRIPE_HASH_LOCKS;
331 hash = NR_STRIPE_HASH_LOCKS - 1;
332 } else
333 size = 1;
334 while (size) {
335 struct list_head *list = &temp_inactive_list[size - 1];
336
337 /*
6d036f7d 338 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
339 * remove stripes from the list
340 */
341 if (!list_empty_careful(list)) {
342 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
343 if (list_empty(conf->inactive_list + hash) &&
344 !list_empty(list))
345 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 346 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 347 do_wakeup = true;
566c09c5
SL
348 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349 }
350 size--;
351 hash--;
352 }
353
354 if (do_wakeup) {
6ab2a4b8 355 wake_up(&conf->wait_for_stripe);
b1b46486
YL
356 if (atomic_read(&conf->active_stripes) == 0)
357 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
358 if (conf->retry_read_aligned)
359 md_wakeup_thread(conf->mddev->thread);
360 }
4eb788df
SL
361}
362
773ca82f 363/* should hold conf->device_lock already */
566c09c5
SL
364static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
773ca82f 366{
eae8263f 367 struct stripe_head *sh, *t;
773ca82f
SL
368 int count = 0;
369 struct llist_node *head;
370
371 head = llist_del_all(&conf->released_stripes);
d265d9dc 372 head = llist_reverse_order(head);
eae8263f 373 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
374 int hash;
375
773ca82f
SL
376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 smp_mb();
378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379 /*
380 * Don't worry the bit is set here, because if the bit is set
381 * again, the count is always > 1. This is true for
382 * STRIPE_ON_UNPLUG_LIST bit too.
383 */
566c09c5
SL
384 hash = sh->hash_lock_index;
385 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
386 count++;
387 }
388
389 return count;
390}
391
6d036f7d 392void raid5_release_stripe(struct stripe_head *sh)
1da177e4 393{
d1688a6d 394 struct r5conf *conf = sh->raid_conf;
1da177e4 395 unsigned long flags;
566c09c5
SL
396 struct list_head list;
397 int hash;
773ca82f 398 bool wakeup;
16a53ecc 399
cf170f3f
ES
400 /* Avoid release_list until the last reference.
401 */
402 if (atomic_add_unless(&sh->count, -1, 1))
403 return;
404
ad4068de 405 if (unlikely(!conf->mddev->thread) ||
406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
407 goto slow_path;
408 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409 if (wakeup)
410 md_wakeup_thread(conf->mddev->thread);
411 return;
412slow_path:
4eb788df 413 local_irq_save(flags);
773ca82f 414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
4eb788df 415 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
566c09c5
SL
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
4eb788df 419 spin_unlock(&conf->device_lock);
566c09c5 420 release_inactive_stripe_list(conf, &list, hash);
4eb788df
SL
421 }
422 local_irq_restore(flags);
1da177e4
LT
423}
424
fccddba0 425static inline void remove_hash(struct stripe_head *sh)
1da177e4 426{
45b4233c
DW
427 pr_debug("remove_hash(), stripe %llu\n",
428 (unsigned long long)sh->sector);
1da177e4 429
fccddba0 430 hlist_del_init(&sh->hash);
1da177e4
LT
431}
432
d1688a6d 433static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 434{
fccddba0 435 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 436
45b4233c
DW
437 pr_debug("insert_hash(), stripe %llu\n",
438 (unsigned long long)sh->sector);
1da177e4 439
fccddba0 440 hlist_add_head(&sh->hash, hp);
1da177e4
LT
441}
442
1da177e4 443/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 444static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
445{
446 struct stripe_head *sh = NULL;
447 struct list_head *first;
448
566c09c5 449 if (list_empty(conf->inactive_list + hash))
1da177e4 450 goto out;
566c09c5 451 first = (conf->inactive_list + hash)->next;
1da177e4
LT
452 sh = list_entry(first, struct stripe_head, lru);
453 list_del_init(first);
454 remove_hash(sh);
455 atomic_inc(&conf->active_stripes);
566c09c5 456 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
457 if (list_empty(conf->inactive_list + hash))
458 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
459out:
460 return sh;
461}
462
e4e11e38 463static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
464{
465 struct page *p;
466 int i;
e4e11e38 467 int num = sh->raid_conf->pool_size;
1da177e4 468
e4e11e38 469 for (i = 0; i < num ; i++) {
d592a996 470 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
471 p = sh->dev[i].page;
472 if (!p)
473 continue;
474 sh->dev[i].page = NULL;
2d1f3b5d 475 put_page(p);
1da177e4
LT
476 }
477}
478
a9683a79 479static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
480{
481 int i;
e4e11e38 482 int num = sh->raid_conf->pool_size;
1da177e4 483
e4e11e38 484 for (i = 0; i < num; i++) {
1da177e4
LT
485 struct page *page;
486
a9683a79 487 if (!(page = alloc_page(gfp))) {
1da177e4
LT
488 return 1;
489 }
490 sh->dev[i].page = page;
d592a996 491 sh->dev[i].orig_page = page;
1da177e4 492 }
3418d036 493
1da177e4
LT
494 return 0;
495}
496
d1688a6d 497static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 498 struct stripe_head *sh);
1da177e4 499
b5663ba4 500static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 501{
d1688a6d 502 struct r5conf *conf = sh->raid_conf;
566c09c5 503 int i, seq;
1da177e4 504
78bafebd
ES
505 BUG_ON(atomic_read(&sh->count) != 0);
506 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 507 BUG_ON(stripe_operations_active(sh));
59fc630b 508 BUG_ON(sh->batch_head);
d84e0f10 509
45b4233c 510 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 511 (unsigned long long)sector);
566c09c5
SL
512retry:
513 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 514 sh->generation = conf->generation - previous;
b5663ba4 515 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 516 sh->sector = sector;
911d4ee8 517 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
518 sh->state = 0;
519
7ecaa1e6 520 for (i = sh->disks; i--; ) {
1da177e4
LT
521 struct r5dev *dev = &sh->dev[i];
522
d84e0f10 523 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 524 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 525 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 526 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 527 dev->read, dev->towrite, dev->written,
1da177e4 528 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 529 WARN_ON(1);
1da177e4
LT
530 }
531 dev->flags = 0;
27a4ff8f 532 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4 533 }
566c09c5
SL
534 if (read_seqcount_retry(&conf->gen_lock, seq))
535 goto retry;
7a87f434 536 sh->overwrite_disks = 0;
1da177e4 537 insert_hash(conf, sh);
851c30c9 538 sh->cpu = smp_processor_id();
da41ba65 539 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
540}
541
d1688a6d 542static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 543 short generation)
1da177e4
LT
544{
545 struct stripe_head *sh;
546
45b4233c 547 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 548 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 549 if (sh->sector == sector && sh->generation == generation)
1da177e4 550 return sh;
45b4233c 551 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
552 return NULL;
553}
554
674806d6
N
555/*
556 * Need to check if array has failed when deciding whether to:
557 * - start an array
558 * - remove non-faulty devices
559 * - add a spare
560 * - allow a reshape
561 * This determination is simple when no reshape is happening.
562 * However if there is a reshape, we need to carefully check
563 * both the before and after sections.
564 * This is because some failed devices may only affect one
565 * of the two sections, and some non-in_sync devices may
566 * be insync in the section most affected by failed devices.
567 */
2e38a37f 568int raid5_calc_degraded(struct r5conf *conf)
674806d6 569{
908f4fbd 570 int degraded, degraded2;
674806d6 571 int i;
674806d6
N
572
573 rcu_read_lock();
574 degraded = 0;
575 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 576 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
577 if (rdev && test_bit(Faulty, &rdev->flags))
578 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
579 if (!rdev || test_bit(Faulty, &rdev->flags))
580 degraded++;
581 else if (test_bit(In_sync, &rdev->flags))
582 ;
583 else
584 /* not in-sync or faulty.
585 * If the reshape increases the number of devices,
586 * this is being recovered by the reshape, so
587 * this 'previous' section is not in_sync.
588 * If the number of devices is being reduced however,
589 * the device can only be part of the array if
590 * we are reverting a reshape, so this section will
591 * be in-sync.
592 */
593 if (conf->raid_disks >= conf->previous_raid_disks)
594 degraded++;
595 }
596 rcu_read_unlock();
908f4fbd
N
597 if (conf->raid_disks == conf->previous_raid_disks)
598 return degraded;
674806d6 599 rcu_read_lock();
908f4fbd 600 degraded2 = 0;
674806d6 601 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 602 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
603 if (rdev && test_bit(Faulty, &rdev->flags))
604 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 605 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 606 degraded2++;
674806d6
N
607 else if (test_bit(In_sync, &rdev->flags))
608 ;
609 else
610 /* not in-sync or faulty.
611 * If reshape increases the number of devices, this
612 * section has already been recovered, else it
613 * almost certainly hasn't.
614 */
615 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 616 degraded2++;
674806d6
N
617 }
618 rcu_read_unlock();
908f4fbd
N
619 if (degraded2 > degraded)
620 return degraded2;
621 return degraded;
622}
623
624static int has_failed(struct r5conf *conf)
625{
626 int degraded;
627
628 if (conf->mddev->reshape_position == MaxSector)
629 return conf->mddev->degraded > conf->max_degraded;
630
2e38a37f 631 degraded = raid5_calc_degraded(conf);
674806d6
N
632 if (degraded > conf->max_degraded)
633 return 1;
634 return 0;
635}
636
6d036f7d
SL
637struct stripe_head *
638raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
639 int previous, int noblock, int noquiesce)
1da177e4
LT
640{
641 struct stripe_head *sh;
566c09c5 642 int hash = stripe_hash_locks_hash(sector);
ff00d3b4 643 int inc_empty_inactive_list_flag;
1da177e4 644
45b4233c 645 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 646
566c09c5 647 spin_lock_irq(conf->hash_locks + hash);
1da177e4
LT
648
649 do {
b1b46486 650 wait_event_lock_irq(conf->wait_for_quiescent,
a8c906ca 651 conf->quiesce == 0 || noquiesce,
566c09c5 652 *(conf->hash_locks + hash));
86b42c71 653 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4 654 if (!sh) {
edbe83ab 655 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
566c09c5 656 sh = get_free_stripe(conf, hash);
713bc5c2
SL
657 if (!sh && !test_bit(R5_DID_ALLOC,
658 &conf->cache_state))
edbe83ab
N
659 set_bit(R5_ALLOC_MORE,
660 &conf->cache_state);
661 }
1da177e4
LT
662 if (noblock && sh == NULL)
663 break;
a39f7afd
SL
664
665 r5c_check_stripe_cache_usage(conf);
1da177e4 666 if (!sh) {
5423399a
N
667 set_bit(R5_INACTIVE_BLOCKED,
668 &conf->cache_state);
a39f7afd 669 r5l_wake_reclaim(conf->log, 0);
6ab2a4b8
SL
670 wait_event_lock_irq(
671 conf->wait_for_stripe,
566c09c5
SL
672 !list_empty(conf->inactive_list + hash) &&
673 (atomic_read(&conf->active_stripes)
674 < (conf->max_nr_stripes * 3 / 4)
5423399a
N
675 || !test_bit(R5_INACTIVE_BLOCKED,
676 &conf->cache_state)),
6ab2a4b8 677 *(conf->hash_locks + hash));
5423399a
N
678 clear_bit(R5_INACTIVE_BLOCKED,
679 &conf->cache_state);
7da9d450 680 } else {
b5663ba4 681 init_stripe(sh, sector, previous);
7da9d450
N
682 atomic_inc(&sh->count);
683 }
e240c183 684 } else if (!atomic_inc_not_zero(&sh->count)) {
6d183de4 685 spin_lock(&conf->device_lock);
e240c183 686 if (!atomic_read(&sh->count)) {
1da177e4
LT
687 if (!test_bit(STRIPE_HANDLE, &sh->state))
688 atomic_inc(&conf->active_stripes);
5af9bef7
N
689 BUG_ON(list_empty(&sh->lru) &&
690 !test_bit(STRIPE_EXPANDING, &sh->state));
ff00d3b4
ZL
691 inc_empty_inactive_list_flag = 0;
692 if (!list_empty(conf->inactive_list + hash))
693 inc_empty_inactive_list_flag = 1;
16a53ecc 694 list_del_init(&sh->lru);
ff00d3b4
ZL
695 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
696 atomic_inc(&conf->empty_inactive_list_nr);
bfc90cb0
SL
697 if (sh->group) {
698 sh->group->stripes_cnt--;
699 sh->group = NULL;
700 }
1da177e4 701 }
7da9d450 702 atomic_inc(&sh->count);
6d183de4 703 spin_unlock(&conf->device_lock);
1da177e4
LT
704 }
705 } while (sh == NULL);
706
566c09c5 707 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
708 return sh;
709}
710
7a87f434 711static bool is_full_stripe_write(struct stripe_head *sh)
712{
713 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
714 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
715}
716
59fc630b 717static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
718{
59fc630b 719 if (sh1 > sh2) {
3d05f3ae 720 spin_lock_irq(&sh2->stripe_lock);
59fc630b 721 spin_lock_nested(&sh1->stripe_lock, 1);
722 } else {
3d05f3ae 723 spin_lock_irq(&sh1->stripe_lock);
59fc630b 724 spin_lock_nested(&sh2->stripe_lock, 1);
725 }
726}
727
728static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
729{
730 spin_unlock(&sh1->stripe_lock);
3d05f3ae 731 spin_unlock_irq(&sh2->stripe_lock);
59fc630b 732}
733
734/* Only freshly new full stripe normal write stripe can be added to a batch list */
735static bool stripe_can_batch(struct stripe_head *sh)
736{
9c3e333d
SL
737 struct r5conf *conf = sh->raid_conf;
738
3418d036 739 if (conf->log || raid5_has_ppl(conf))
9c3e333d 740 return false;
59fc630b 741 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 742 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 743 is_full_stripe_write(sh);
744}
745
746/* we only do back search */
747static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
748{
749 struct stripe_head *head;
750 sector_t head_sector, tmp_sec;
751 int hash;
752 int dd_idx;
ff00d3b4 753 int inc_empty_inactive_list_flag;
59fc630b 754
59fc630b 755 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
756 tmp_sec = sh->sector;
757 if (!sector_div(tmp_sec, conf->chunk_sectors))
758 return;
759 head_sector = sh->sector - STRIPE_SECTORS;
760
761 hash = stripe_hash_locks_hash(head_sector);
762 spin_lock_irq(conf->hash_locks + hash);
763 head = __find_stripe(conf, head_sector, conf->generation);
764 if (head && !atomic_inc_not_zero(&head->count)) {
765 spin_lock(&conf->device_lock);
766 if (!atomic_read(&head->count)) {
767 if (!test_bit(STRIPE_HANDLE, &head->state))
768 atomic_inc(&conf->active_stripes);
769 BUG_ON(list_empty(&head->lru) &&
770 !test_bit(STRIPE_EXPANDING, &head->state));
ff00d3b4
ZL
771 inc_empty_inactive_list_flag = 0;
772 if (!list_empty(conf->inactive_list + hash))
773 inc_empty_inactive_list_flag = 1;
59fc630b 774 list_del_init(&head->lru);
ff00d3b4
ZL
775 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
776 atomic_inc(&conf->empty_inactive_list_nr);
59fc630b 777 if (head->group) {
778 head->group->stripes_cnt--;
779 head->group = NULL;
780 }
781 }
782 atomic_inc(&head->count);
783 spin_unlock(&conf->device_lock);
784 }
785 spin_unlock_irq(conf->hash_locks + hash);
786
787 if (!head)
788 return;
789 if (!stripe_can_batch(head))
790 goto out;
791
792 lock_two_stripes(head, sh);
793 /* clear_batch_ready clear the flag */
794 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
795 goto unlock_out;
796
797 if (sh->batch_head)
798 goto unlock_out;
799
800 dd_idx = 0;
801 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
802 dd_idx++;
1eff9d32 803 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 804 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 805 goto unlock_out;
806
807 if (head->batch_head) {
808 spin_lock(&head->batch_head->batch_lock);
809 /* This batch list is already running */
810 if (!stripe_can_batch(head)) {
811 spin_unlock(&head->batch_head->batch_lock);
812 goto unlock_out;
813 }
3664847d
SL
814 /*
815 * We must assign batch_head of this stripe within the
816 * batch_lock, otherwise clear_batch_ready of batch head
817 * stripe could clear BATCH_READY bit of this stripe and
818 * this stripe->batch_head doesn't get assigned, which
819 * could confuse clear_batch_ready for this stripe
820 */
821 sh->batch_head = head->batch_head;
59fc630b 822
823 /*
824 * at this point, head's BATCH_READY could be cleared, but we
825 * can still add the stripe to batch list
826 */
827 list_add(&sh->batch_list, &head->batch_list);
828 spin_unlock(&head->batch_head->batch_lock);
59fc630b 829 } else {
830 head->batch_head = head;
831 sh->batch_head = head->batch_head;
832 spin_lock(&head->batch_lock);
833 list_add_tail(&sh->batch_list, &head->batch_list);
834 spin_unlock(&head->batch_lock);
835 }
836
837 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
838 if (atomic_dec_return(&conf->preread_active_stripes)
839 < IO_THRESHOLD)
840 md_wakeup_thread(conf->mddev->thread);
841
2b6b2457
N
842 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
843 int seq = sh->bm_seq;
844 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
845 sh->batch_head->bm_seq > seq)
846 seq = sh->batch_head->bm_seq;
847 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
848 sh->batch_head->bm_seq = seq;
849 }
850
59fc630b 851 atomic_inc(&sh->count);
852unlock_out:
853 unlock_two_stripes(head, sh);
854out:
6d036f7d 855 raid5_release_stripe(head);
59fc630b 856}
857
05616be5
N
858/* Determine if 'data_offset' or 'new_data_offset' should be used
859 * in this stripe_head.
860 */
861static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
862{
863 sector_t progress = conf->reshape_progress;
864 /* Need a memory barrier to make sure we see the value
865 * of conf->generation, or ->data_offset that was set before
866 * reshape_progress was updated.
867 */
868 smp_rmb();
869 if (progress == MaxSector)
870 return 0;
871 if (sh->generation == conf->generation - 1)
872 return 0;
873 /* We are in a reshape, and this is a new-generation stripe,
874 * so use new_data_offset.
875 */
876 return 1;
877}
878
aaf9f12e 879static void dispatch_bio_list(struct bio_list *tmp)
765d704d 880{
765d704d
SL
881 struct bio *bio;
882
aaf9f12e
SL
883 while ((bio = bio_list_pop(tmp)))
884 generic_make_request(bio);
885}
886
887static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
888{
889 const struct r5pending_data *da = list_entry(a,
890 struct r5pending_data, sibling);
891 const struct r5pending_data *db = list_entry(b,
892 struct r5pending_data, sibling);
893 if (da->sector > db->sector)
894 return 1;
895 if (da->sector < db->sector)
896 return -1;
897 return 0;
898}
899
900static void dispatch_defer_bios(struct r5conf *conf, int target,
901 struct bio_list *list)
902{
903 struct r5pending_data *data;
904 struct list_head *first, *next = NULL;
905 int cnt = 0;
906
907 if (conf->pending_data_cnt == 0)
908 return;
909
910 list_sort(NULL, &conf->pending_list, cmp_stripe);
911
912 first = conf->pending_list.next;
913
914 /* temporarily move the head */
915 if (conf->next_pending_data)
916 list_move_tail(&conf->pending_list,
917 &conf->next_pending_data->sibling);
918
919 while (!list_empty(&conf->pending_list)) {
920 data = list_first_entry(&conf->pending_list,
921 struct r5pending_data, sibling);
922 if (&data->sibling == first)
923 first = data->sibling.next;
924 next = data->sibling.next;
925
926 bio_list_merge(list, &data->bios);
927 list_move(&data->sibling, &conf->free_list);
928 cnt++;
929 if (cnt >= target)
930 break;
931 }
932 conf->pending_data_cnt -= cnt;
933 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
934
935 if (next != &conf->pending_list)
936 conf->next_pending_data = list_entry(next,
937 struct r5pending_data, sibling);
938 else
939 conf->next_pending_data = NULL;
940 /* list isn't empty */
941 if (first != &conf->pending_list)
942 list_move_tail(&conf->pending_list, first);
943}
944
945static void flush_deferred_bios(struct r5conf *conf)
946{
947 struct bio_list tmp = BIO_EMPTY_LIST;
948
949 if (conf->pending_data_cnt == 0)
765d704d
SL
950 return;
951
765d704d 952 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
953 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
954 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
955 spin_unlock(&conf->pending_bios_lock);
956
aaf9f12e 957 dispatch_bio_list(&tmp);
765d704d
SL
958}
959
aaf9f12e
SL
960static void defer_issue_bios(struct r5conf *conf, sector_t sector,
961 struct bio_list *bios)
765d704d 962{
aaf9f12e
SL
963 struct bio_list tmp = BIO_EMPTY_LIST;
964 struct r5pending_data *ent;
965
765d704d 966 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
967 ent = list_first_entry(&conf->free_list, struct r5pending_data,
968 sibling);
969 list_move_tail(&ent->sibling, &conf->pending_list);
970 ent->sector = sector;
971 bio_list_init(&ent->bios);
972 bio_list_merge(&ent->bios, bios);
973 conf->pending_data_cnt++;
974 if (conf->pending_data_cnt >= PENDING_IO_MAX)
975 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
976
765d704d 977 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
978
979 dispatch_bio_list(&tmp);
765d704d
SL
980}
981
6712ecf8 982static void
4246a0b6 983raid5_end_read_request(struct bio *bi);
6712ecf8 984static void
4246a0b6 985raid5_end_write_request(struct bio *bi);
91c00924 986
c4e5ac0a 987static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 988{
d1688a6d 989 struct r5conf *conf = sh->raid_conf;
91c00924 990 int i, disks = sh->disks;
59fc630b 991 struct stripe_head *head_sh = sh;
aaf9f12e
SL
992 struct bio_list pending_bios = BIO_EMPTY_LIST;
993 bool should_defer;
91c00924
DW
994
995 might_sleep();
996
ff875738
AP
997 if (log_stripe(sh, s) == 0)
998 return;
1e6d690b 999
aaf9f12e 1000 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1e6d690b 1001
91c00924 1002 for (i = disks; i--; ) {
796a5cf0 1003 int op, op_flags = 0;
9a3e1101 1004 int replace_only = 0;
977df362
N
1005 struct bio *bi, *rbi;
1006 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 1007
1008 sh = head_sh;
e9c7469b 1009 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1010 op = REQ_OP_WRITE;
e9c7469b 1011 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1012 op_flags = REQ_FUA;
9e444768 1013 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1014 op = REQ_OP_DISCARD;
e9c7469b 1015 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1016 op = REQ_OP_READ;
9a3e1101
N
1017 else if (test_and_clear_bit(R5_WantReplace,
1018 &sh->dev[i].flags)) {
796a5cf0 1019 op = REQ_OP_WRITE;
9a3e1101
N
1020 replace_only = 1;
1021 } else
91c00924 1022 continue;
bc0934f0 1023 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1024 op_flags |= REQ_SYNC;
91c00924 1025
59fc630b 1026again:
91c00924 1027 bi = &sh->dev[i].req;
977df362 1028 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924 1029
91c00924 1030 rcu_read_lock();
9a3e1101 1031 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1032 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1033 rdev = rcu_dereference(conf->disks[i].rdev);
1034 if (!rdev) {
1035 rdev = rrdev;
1036 rrdev = NULL;
1037 }
796a5cf0 1038 if (op_is_write(op)) {
9a3e1101
N
1039 if (replace_only)
1040 rdev = NULL;
dd054fce
N
1041 if (rdev == rrdev)
1042 /* We raced and saw duplicates */
1043 rrdev = NULL;
9a3e1101 1044 } else {
59fc630b 1045 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1046 rdev = rrdev;
1047 rrdev = NULL;
1048 }
977df362 1049
91c00924
DW
1050 if (rdev && test_bit(Faulty, &rdev->flags))
1051 rdev = NULL;
1052 if (rdev)
1053 atomic_inc(&rdev->nr_pending);
977df362
N
1054 if (rrdev && test_bit(Faulty, &rrdev->flags))
1055 rrdev = NULL;
1056 if (rrdev)
1057 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1058 rcu_read_unlock();
1059
73e92e51 1060 /* We have already checked bad blocks for reads. Now
977df362
N
1061 * need to check for writes. We never accept write errors
1062 * on the replacement, so we don't to check rrdev.
73e92e51 1063 */
796a5cf0 1064 while (op_is_write(op) && rdev &&
73e92e51
N
1065 test_bit(WriteErrorSeen, &rdev->flags)) {
1066 sector_t first_bad;
1067 int bad_sectors;
1068 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1069 &first_bad, &bad_sectors);
1070 if (!bad)
1071 break;
1072
1073 if (bad < 0) {
1074 set_bit(BlockedBadBlocks, &rdev->flags);
1075 if (!conf->mddev->external &&
2953079c 1076 conf->mddev->sb_flags) {
73e92e51
N
1077 /* It is very unlikely, but we might
1078 * still need to write out the
1079 * bad block log - better give it
1080 * a chance*/
1081 md_check_recovery(conf->mddev);
1082 }
1850753d 1083 /*
1084 * Because md_wait_for_blocked_rdev
1085 * will dec nr_pending, we must
1086 * increment it first.
1087 */
1088 atomic_inc(&rdev->nr_pending);
73e92e51
N
1089 md_wait_for_blocked_rdev(rdev, conf->mddev);
1090 } else {
1091 /* Acknowledged bad block - skip the write */
1092 rdev_dec_pending(rdev, conf->mddev);
1093 rdev = NULL;
1094 }
1095 }
1096
91c00924 1097 if (rdev) {
9a3e1101
N
1098 if (s->syncing || s->expanding || s->expanded
1099 || s->replacing)
91c00924
DW
1100 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1101
2b7497f0
DW
1102 set_bit(STRIPE_IO_STARTED, &sh->state);
1103
74d46992 1104 bio_set_dev(bi, rdev->bdev);
796a5cf0
MC
1105 bio_set_op_attrs(bi, op, op_flags);
1106 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1107 ? raid5_end_write_request
1108 : raid5_end_read_request;
1109 bi->bi_private = sh;
1110
6296b960 1111 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1112 __func__, (unsigned long long)sh->sector,
1eff9d32 1113 bi->bi_opf, i);
91c00924 1114 atomic_inc(&sh->count);
59fc630b 1115 if (sh != head_sh)
1116 atomic_inc(&head_sh->count);
05616be5 1117 if (use_new_offset(conf, sh))
4f024f37 1118 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1119 + rdev->new_data_offset);
1120 else
4f024f37 1121 bi->bi_iter.bi_sector = (sh->sector
05616be5 1122 + rdev->data_offset);
59fc630b 1123 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1124 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1125
d592a996
SL
1126 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1127 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1128
1129 if (!op_is_write(op) &&
1130 test_bit(R5_InJournal, &sh->dev[i].flags))
1131 /*
1132 * issuing read for a page in journal, this
1133 * must be preparing for prexor in rmw; read
1134 * the data into orig_page
1135 */
1136 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1137 else
1138 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1139 bi->bi_vcnt = 1;
91c00924
DW
1140 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1141 bi->bi_io_vec[0].bv_offset = 0;
4f024f37 1142 bi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1143 /*
1144 * If this is discard request, set bi_vcnt 0. We don't
1145 * want to confuse SCSI because SCSI will replace payload
1146 */
796a5cf0 1147 if (op == REQ_OP_DISCARD)
37c61ff3 1148 bi->bi_vcnt = 0;
977df362
N
1149 if (rrdev)
1150 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1151
1152 if (conf->mddev->gendisk)
74d46992 1153 trace_block_bio_remap(bi->bi_disk->queue,
e3620a3a
JB
1154 bi, disk_devt(conf->mddev->gendisk),
1155 sh->dev[i].sector);
aaf9f12e
SL
1156 if (should_defer && op_is_write(op))
1157 bio_list_add(&pending_bios, bi);
1158 else
1159 generic_make_request(bi);
977df362
N
1160 }
1161 if (rrdev) {
9a3e1101
N
1162 if (s->syncing || s->expanding || s->expanded
1163 || s->replacing)
977df362
N
1164 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1165
1166 set_bit(STRIPE_IO_STARTED, &sh->state);
1167
74d46992 1168 bio_set_dev(rbi, rrdev->bdev);
796a5cf0
MC
1169 bio_set_op_attrs(rbi, op, op_flags);
1170 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1171 rbi->bi_end_io = raid5_end_write_request;
1172 rbi->bi_private = sh;
1173
6296b960 1174 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1175 "replacement disc %d\n",
1176 __func__, (unsigned long long)sh->sector,
1eff9d32 1177 rbi->bi_opf, i);
977df362 1178 atomic_inc(&sh->count);
59fc630b 1179 if (sh != head_sh)
1180 atomic_inc(&head_sh->count);
05616be5 1181 if (use_new_offset(conf, sh))
4f024f37 1182 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1183 + rrdev->new_data_offset);
1184 else
4f024f37 1185 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1186 + rrdev->data_offset);
d592a996
SL
1187 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1188 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1189 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1190 rbi->bi_vcnt = 1;
977df362
N
1191 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1192 rbi->bi_io_vec[0].bv_offset = 0;
4f024f37 1193 rbi->bi_iter.bi_size = STRIPE_SIZE;
37c61ff3
SL
1194 /*
1195 * If this is discard request, set bi_vcnt 0. We don't
1196 * want to confuse SCSI because SCSI will replace payload
1197 */
796a5cf0 1198 if (op == REQ_OP_DISCARD)
37c61ff3 1199 rbi->bi_vcnt = 0;
e3620a3a 1200 if (conf->mddev->gendisk)
74d46992 1201 trace_block_bio_remap(rbi->bi_disk->queue,
e3620a3a
JB
1202 rbi, disk_devt(conf->mddev->gendisk),
1203 sh->dev[i].sector);
aaf9f12e
SL
1204 if (should_defer && op_is_write(op))
1205 bio_list_add(&pending_bios, rbi);
1206 else
1207 generic_make_request(rbi);
977df362
N
1208 }
1209 if (!rdev && !rrdev) {
796a5cf0 1210 if (op_is_write(op))
91c00924 1211 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1212 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1213 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1214 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1215 set_bit(STRIPE_HANDLE, &sh->state);
1216 }
59fc630b 1217
1218 if (!head_sh->batch_head)
1219 continue;
1220 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1221 batch_list);
1222 if (sh != head_sh)
1223 goto again;
91c00924 1224 }
aaf9f12e
SL
1225
1226 if (should_defer && !bio_list_empty(&pending_bios))
1227 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1228}
1229
1230static struct dma_async_tx_descriptor *
d592a996
SL
1231async_copy_data(int frombio, struct bio *bio, struct page **page,
1232 sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1233 struct stripe_head *sh, int no_skipcopy)
91c00924 1234{
7988613b
KO
1235 struct bio_vec bvl;
1236 struct bvec_iter iter;
91c00924 1237 struct page *bio_page;
91c00924 1238 int page_offset;
a08abd8c 1239 struct async_submit_ctl submit;
0403e382 1240 enum async_tx_flags flags = 0;
91c00924 1241
4f024f37
KO
1242 if (bio->bi_iter.bi_sector >= sector)
1243 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1244 else
4f024f37 1245 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1246
0403e382
DW
1247 if (frombio)
1248 flags |= ASYNC_TX_FENCE;
1249 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1250
7988613b
KO
1251 bio_for_each_segment(bvl, bio, iter) {
1252 int len = bvl.bv_len;
91c00924
DW
1253 int clen;
1254 int b_offset = 0;
1255
1256 if (page_offset < 0) {
1257 b_offset = -page_offset;
1258 page_offset += b_offset;
1259 len -= b_offset;
1260 }
1261
1262 if (len > 0 && page_offset + len > STRIPE_SIZE)
1263 clen = STRIPE_SIZE - page_offset;
1264 else
1265 clen = len;
1266
1267 if (clen > 0) {
7988613b
KO
1268 b_offset += bvl.bv_offset;
1269 bio_page = bvl.bv_page;
d592a996
SL
1270 if (frombio) {
1271 if (sh->raid_conf->skip_copy &&
1272 b_offset == 0 && page_offset == 0 &&
1e6d690b
SL
1273 clen == STRIPE_SIZE &&
1274 !no_skipcopy)
d592a996
SL
1275 *page = bio_page;
1276 else
1277 tx = async_memcpy(*page, bio_page, page_offset,
a08abd8c 1278 b_offset, clen, &submit);
d592a996
SL
1279 } else
1280 tx = async_memcpy(bio_page, *page, b_offset,
a08abd8c 1281 page_offset, clen, &submit);
91c00924 1282 }
a08abd8c
DW
1283 /* chain the operations */
1284 submit.depend_tx = tx;
1285
91c00924
DW
1286 if (clen < len) /* hit end of page */
1287 break;
1288 page_offset += len;
1289 }
1290
1291 return tx;
1292}
1293
1294static void ops_complete_biofill(void *stripe_head_ref)
1295{
1296 struct stripe_head *sh = stripe_head_ref;
e4d84909 1297 int i;
91c00924 1298
e46b272b 1299 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1300 (unsigned long long)sh->sector);
1301
1302 /* clear completed biofills */
1303 for (i = sh->disks; i--; ) {
1304 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1305
1306 /* acknowledge completion of a biofill operation */
e4d84909
DW
1307 /* and check if we need to reply to a read request,
1308 * new R5_Wantfill requests are held off until
83de75cc 1309 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1310 */
1311 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1312 struct bio *rbi, *rbi2;
91c00924 1313
91c00924
DW
1314 BUG_ON(!dev->read);
1315 rbi = dev->read;
1316 dev->read = NULL;
4f024f37 1317 while (rbi && rbi->bi_iter.bi_sector <
91c00924
DW
1318 dev->sector + STRIPE_SECTORS) {
1319 rbi2 = r5_next_bio(rbi, dev->sector);
016c76ac 1320 bio_endio(rbi);
91c00924
DW
1321 rbi = rbi2;
1322 }
1323 }
1324 }
83de75cc 1325 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1326
e4d84909 1327 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1328 raid5_release_stripe(sh);
91c00924
DW
1329}
1330
1331static void ops_run_biofill(struct stripe_head *sh)
1332{
1333 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1334 struct async_submit_ctl submit;
91c00924
DW
1335 int i;
1336
59fc630b 1337 BUG_ON(sh->batch_head);
e46b272b 1338 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1339 (unsigned long long)sh->sector);
1340
1341 for (i = sh->disks; i--; ) {
1342 struct r5dev *dev = &sh->dev[i];
1343 if (test_bit(R5_Wantfill, &dev->flags)) {
1344 struct bio *rbi;
b17459c0 1345 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1346 dev->read = rbi = dev->toread;
1347 dev->toread = NULL;
b17459c0 1348 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1349 while (rbi && rbi->bi_iter.bi_sector <
91c00924 1350 dev->sector + STRIPE_SECTORS) {
d592a996 1351 tx = async_copy_data(0, rbi, &dev->page,
1e6d690b 1352 dev->sector, tx, sh, 0);
91c00924
DW
1353 rbi = r5_next_bio(rbi, dev->sector);
1354 }
1355 }
1356 }
1357
1358 atomic_inc(&sh->count);
a08abd8c
DW
1359 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1360 async_trigger_callback(&submit);
91c00924
DW
1361}
1362
4e7d2c0a 1363static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1364{
4e7d2c0a 1365 struct r5dev *tgt;
91c00924 1366
4e7d2c0a
DW
1367 if (target < 0)
1368 return;
91c00924 1369
4e7d2c0a 1370 tgt = &sh->dev[target];
91c00924
DW
1371 set_bit(R5_UPTODATE, &tgt->flags);
1372 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1373 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1374}
1375
ac6b53b6 1376static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1377{
1378 struct stripe_head *sh = stripe_head_ref;
91c00924 1379
e46b272b 1380 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1381 (unsigned long long)sh->sector);
1382
ac6b53b6 1383 /* mark the computed target(s) as uptodate */
4e7d2c0a 1384 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1385 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1386
ecc65c9b
DW
1387 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1388 if (sh->check_state == check_state_compute_run)
1389 sh->check_state = check_state_compute_result;
91c00924 1390 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1391 raid5_release_stripe(sh);
91c00924
DW
1392}
1393
d6f38f31
DW
1394/* return a pointer to the address conversion region of the scribble buffer */
1395static addr_conv_t *to_addr_conv(struct stripe_head *sh,
46d5b785 1396 struct raid5_percpu *percpu, int i)
d6f38f31 1397{
46d5b785 1398 void *addr;
1399
1400 addr = flex_array_get(percpu->scribble, i);
1401 return addr + sizeof(struct page *) * (sh->disks + 2);
1402}
1403
1404/* return a pointer to the address conversion region of the scribble buffer */
1405static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1406{
1407 void *addr;
1408
1409 addr = flex_array_get(percpu->scribble, i);
1410 return addr;
d6f38f31
DW
1411}
1412
1413static struct dma_async_tx_descriptor *
1414ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1415{
91c00924 1416 int disks = sh->disks;
46d5b785 1417 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924
DW
1418 int target = sh->ops.target;
1419 struct r5dev *tgt = &sh->dev[target];
1420 struct page *xor_dest = tgt->page;
1421 int count = 0;
1422 struct dma_async_tx_descriptor *tx;
a08abd8c 1423 struct async_submit_ctl submit;
91c00924
DW
1424 int i;
1425
59fc630b 1426 BUG_ON(sh->batch_head);
1427
91c00924 1428 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1429 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1430 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1431
1432 for (i = disks; i--; )
1433 if (i != target)
1434 xor_srcs[count++] = sh->dev[i].page;
1435
1436 atomic_inc(&sh->count);
1437
0403e382 1438 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1439 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1440 if (unlikely(count == 1))
a08abd8c 1441 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 1442 else
a08abd8c 1443 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 1444
91c00924
DW
1445 return tx;
1446}
1447
ac6b53b6
DW
1448/* set_syndrome_sources - populate source buffers for gen_syndrome
1449 * @srcs - (struct page *) array of size sh->disks
1450 * @sh - stripe_head to parse
1451 *
1452 * Populates srcs in proper layout order for the stripe and returns the
1453 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1454 * destination buffer is recorded in srcs[count] and the Q destination
1455 * is recorded in srcs[count+1]].
1456 */
584acdd4
MS
1457static int set_syndrome_sources(struct page **srcs,
1458 struct stripe_head *sh,
1459 int srctype)
ac6b53b6
DW
1460{
1461 int disks = sh->disks;
1462 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1463 int d0_idx = raid6_d0(sh);
1464 int count;
1465 int i;
1466
1467 for (i = 0; i < disks; i++)
5dd33c9a 1468 srcs[i] = NULL;
ac6b53b6
DW
1469
1470 count = 0;
1471 i = d0_idx;
1472 do {
1473 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1474 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1475
584acdd4
MS
1476 if (i == sh->qd_idx || i == sh->pd_idx ||
1477 (srctype == SYNDROME_SRC_ALL) ||
1478 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1479 (test_bit(R5_Wantdrain, &dev->flags) ||
1480 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1481 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1482 (dev->written ||
1483 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1484 if (test_bit(R5_InJournal, &dev->flags))
1485 srcs[slot] = sh->dev[i].orig_page;
1486 else
1487 srcs[slot] = sh->dev[i].page;
1488 }
ac6b53b6
DW
1489 i = raid6_next_disk(i, disks);
1490 } while (i != d0_idx);
ac6b53b6 1491
e4424fee 1492 return syndrome_disks;
ac6b53b6
DW
1493}
1494
1495static struct dma_async_tx_descriptor *
1496ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1497{
1498 int disks = sh->disks;
46d5b785 1499 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1500 int target;
1501 int qd_idx = sh->qd_idx;
1502 struct dma_async_tx_descriptor *tx;
1503 struct async_submit_ctl submit;
1504 struct r5dev *tgt;
1505 struct page *dest;
1506 int i;
1507 int count;
1508
59fc630b 1509 BUG_ON(sh->batch_head);
ac6b53b6
DW
1510 if (sh->ops.target < 0)
1511 target = sh->ops.target2;
1512 else if (sh->ops.target2 < 0)
1513 target = sh->ops.target;
91c00924 1514 else
ac6b53b6
DW
1515 /* we should only have one valid target */
1516 BUG();
1517 BUG_ON(target < 0);
1518 pr_debug("%s: stripe %llu block: %d\n",
1519 __func__, (unsigned long long)sh->sector, target);
1520
1521 tgt = &sh->dev[target];
1522 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1523 dest = tgt->page;
1524
1525 atomic_inc(&sh->count);
1526
1527 if (target == qd_idx) {
584acdd4 1528 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1529 blocks[count] = NULL; /* regenerating p is not necessary */
1530 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1531 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1532 ops_complete_compute, sh,
46d5b785 1533 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1534 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1535 } else {
1536 /* Compute any data- or p-drive using XOR */
1537 count = 0;
1538 for (i = disks; i-- ; ) {
1539 if (i == target || i == qd_idx)
1540 continue;
1541 blocks[count++] = sh->dev[i].page;
1542 }
1543
0403e382
DW
1544 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1545 NULL, ops_complete_compute, sh,
46d5b785 1546 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1547 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1548 }
91c00924 1549
91c00924
DW
1550 return tx;
1551}
1552
ac6b53b6
DW
1553static struct dma_async_tx_descriptor *
1554ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1555{
1556 int i, count, disks = sh->disks;
1557 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1558 int d0_idx = raid6_d0(sh);
1559 int faila = -1, failb = -1;
1560 int target = sh->ops.target;
1561 int target2 = sh->ops.target2;
1562 struct r5dev *tgt = &sh->dev[target];
1563 struct r5dev *tgt2 = &sh->dev[target2];
1564 struct dma_async_tx_descriptor *tx;
46d5b785 1565 struct page **blocks = to_addr_page(percpu, 0);
ac6b53b6
DW
1566 struct async_submit_ctl submit;
1567
59fc630b 1568 BUG_ON(sh->batch_head);
ac6b53b6
DW
1569 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1570 __func__, (unsigned long long)sh->sector, target, target2);
1571 BUG_ON(target < 0 || target2 < 0);
1572 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1573 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1574
6c910a78 1575 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1576 * slot number conversion for 'faila' and 'failb'
1577 */
1578 for (i = 0; i < disks ; i++)
5dd33c9a 1579 blocks[i] = NULL;
ac6b53b6
DW
1580 count = 0;
1581 i = d0_idx;
1582 do {
1583 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1584
1585 blocks[slot] = sh->dev[i].page;
1586
1587 if (i == target)
1588 faila = slot;
1589 if (i == target2)
1590 failb = slot;
1591 i = raid6_next_disk(i, disks);
1592 } while (i != d0_idx);
ac6b53b6
DW
1593
1594 BUG_ON(faila == failb);
1595 if (failb < faila)
1596 swap(faila, failb);
1597 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1598 __func__, (unsigned long long)sh->sector, faila, failb);
1599
1600 atomic_inc(&sh->count);
1601
1602 if (failb == syndrome_disks+1) {
1603 /* Q disk is one of the missing disks */
1604 if (faila == syndrome_disks) {
1605 /* Missing P+Q, just recompute */
0403e382
DW
1606 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1607 ops_complete_compute, sh,
46d5b785 1608 to_addr_conv(sh, percpu, 0));
e4424fee 1609 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1610 STRIPE_SIZE, &submit);
1611 } else {
1612 struct page *dest;
1613 int data_target;
1614 int qd_idx = sh->qd_idx;
1615
1616 /* Missing D+Q: recompute D from P, then recompute Q */
1617 if (target == qd_idx)
1618 data_target = target2;
1619 else
1620 data_target = target;
1621
1622 count = 0;
1623 for (i = disks; i-- ; ) {
1624 if (i == data_target || i == qd_idx)
1625 continue;
1626 blocks[count++] = sh->dev[i].page;
1627 }
1628 dest = sh->dev[data_target].page;
0403e382
DW
1629 init_async_submit(&submit,
1630 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1631 NULL, NULL, NULL,
46d5b785 1632 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1633 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1634 &submit);
1635
584acdd4 1636 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
0403e382
DW
1637 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1638 ops_complete_compute, sh,
46d5b785 1639 to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
1640 return async_gen_syndrome(blocks, 0, count+2,
1641 STRIPE_SIZE, &submit);
1642 }
ac6b53b6 1643 } else {
6c910a78
DW
1644 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1645 ops_complete_compute, sh,
46d5b785 1646 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1647 if (failb == syndrome_disks) {
1648 /* We're missing D+P. */
1649 return async_raid6_datap_recov(syndrome_disks+2,
1650 STRIPE_SIZE, faila,
1651 blocks, &submit);
1652 } else {
1653 /* We're missing D+D. */
1654 return async_raid6_2data_recov(syndrome_disks+2,
1655 STRIPE_SIZE, faila, failb,
1656 blocks, &submit);
1657 }
ac6b53b6
DW
1658 }
1659}
1660
91c00924
DW
1661static void ops_complete_prexor(void *stripe_head_ref)
1662{
1663 struct stripe_head *sh = stripe_head_ref;
1664
e46b272b 1665 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1666 (unsigned long long)sh->sector);
1e6d690b
SL
1667
1668 if (r5c_is_writeback(sh->raid_conf->log))
1669 /*
1670 * raid5-cache write back uses orig_page during prexor.
1671 * After prexor, it is time to free orig_page
1672 */
1673 r5c_release_extra_page(sh);
91c00924
DW
1674}
1675
1676static struct dma_async_tx_descriptor *
584acdd4
MS
1677ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1678 struct dma_async_tx_descriptor *tx)
91c00924 1679{
91c00924 1680 int disks = sh->disks;
46d5b785 1681 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 1682 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1683 struct async_submit_ctl submit;
91c00924
DW
1684
1685 /* existing parity data subtracted */
1686 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1687
59fc630b 1688 BUG_ON(sh->batch_head);
e46b272b 1689 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1690 (unsigned long long)sh->sector);
1691
1692 for (i = disks; i--; ) {
1693 struct r5dev *dev = &sh->dev[i];
1694 /* Only process blocks that are known to be uptodate */
1e6d690b
SL
1695 if (test_bit(R5_InJournal, &dev->flags))
1696 xor_srcs[count++] = dev->orig_page;
1697 else if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1698 xor_srcs[count++] = dev->page;
1699 }
1700
0403e382 1701 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1702 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a08abd8c 1703 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1704
1705 return tx;
1706}
1707
584acdd4
MS
1708static struct dma_async_tx_descriptor *
1709ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1710 struct dma_async_tx_descriptor *tx)
1711{
1712 struct page **blocks = to_addr_page(percpu, 0);
1713 int count;
1714 struct async_submit_ctl submit;
1715
1716 pr_debug("%s: stripe %llu\n", __func__,
1717 (unsigned long long)sh->sector);
1718
1719 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1720
1721 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1722 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1723 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1724
1725 return tx;
1726}
1727
91c00924 1728static struct dma_async_tx_descriptor *
d8ee0728 1729ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1730{
1e6d690b 1731 struct r5conf *conf = sh->raid_conf;
91c00924 1732 int disks = sh->disks;
d8ee0728 1733 int i;
59fc630b 1734 struct stripe_head *head_sh = sh;
91c00924 1735
e46b272b 1736 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1737 (unsigned long long)sh->sector);
1738
1739 for (i = disks; i--; ) {
59fc630b 1740 struct r5dev *dev;
91c00924 1741 struct bio *chosen;
91c00924 1742
59fc630b 1743 sh = head_sh;
1744 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1745 struct bio *wbi;
1746
59fc630b 1747again:
1748 dev = &sh->dev[i];
1e6d690b
SL
1749 /*
1750 * clear R5_InJournal, so when rewriting a page in
1751 * journal, it is not skipped by r5l_log_stripe()
1752 */
1753 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1754 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1755 chosen = dev->towrite;
1756 dev->towrite = NULL;
7a87f434 1757 sh->overwrite_disks = 0;
91c00924
DW
1758 BUG_ON(dev->written);
1759 wbi = dev->written = chosen;
b17459c0 1760 spin_unlock_irq(&sh->stripe_lock);
d592a996 1761 WARN_ON(dev->page != dev->orig_page);
91c00924 1762
4f024f37 1763 while (wbi && wbi->bi_iter.bi_sector <
91c00924 1764 dev->sector + STRIPE_SECTORS) {
1eff9d32 1765 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1766 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1767 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1768 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1769 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1770 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1771 else {
1772 tx = async_copy_data(1, wbi, &dev->page,
1e6d690b
SL
1773 dev->sector, tx, sh,
1774 r5c_is_writeback(conf->log));
1775 if (dev->page != dev->orig_page &&
1776 !r5c_is_writeback(conf->log)) {
d592a996
SL
1777 set_bit(R5_SkipCopy, &dev->flags);
1778 clear_bit(R5_UPTODATE, &dev->flags);
1779 clear_bit(R5_OVERWRITE, &dev->flags);
1780 }
1781 }
91c00924
DW
1782 wbi = r5_next_bio(wbi, dev->sector);
1783 }
59fc630b 1784
1785 if (head_sh->batch_head) {
1786 sh = list_first_entry(&sh->batch_list,
1787 struct stripe_head,
1788 batch_list);
1789 if (sh == head_sh)
1790 continue;
1791 goto again;
1792 }
91c00924
DW
1793 }
1794 }
1795
1796 return tx;
1797}
1798
ac6b53b6 1799static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1800{
1801 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1802 int disks = sh->disks;
1803 int pd_idx = sh->pd_idx;
1804 int qd_idx = sh->qd_idx;
1805 int i;
9e444768 1806 bool fua = false, sync = false, discard = false;
91c00924 1807
e46b272b 1808 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1809 (unsigned long long)sh->sector);
1810
bc0934f0 1811 for (i = disks; i--; ) {
e9c7469b 1812 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1813 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1814 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1815 }
e9c7469b 1816
91c00924
DW
1817 for (i = disks; i--; ) {
1818 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1819
e9c7469b 1820 if (dev->written || i == pd_idx || i == qd_idx) {
235b6003 1821 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
9e444768 1822 set_bit(R5_UPTODATE, &dev->flags);
235b6003
N
1823 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1824 set_bit(R5_Expanded, &dev->flags);
1825 }
e9c7469b
TH
1826 if (fua)
1827 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1828 if (sync)
1829 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1830 }
91c00924
DW
1831 }
1832
d8ee0728
DW
1833 if (sh->reconstruct_state == reconstruct_state_drain_run)
1834 sh->reconstruct_state = reconstruct_state_drain_result;
1835 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1836 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1837 else {
1838 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1839 sh->reconstruct_state = reconstruct_state_result;
1840 }
91c00924
DW
1841
1842 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1843 raid5_release_stripe(sh);
91c00924
DW
1844}
1845
1846static void
ac6b53b6
DW
1847ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1848 struct dma_async_tx_descriptor *tx)
91c00924 1849{
91c00924 1850 int disks = sh->disks;
59fc630b 1851 struct page **xor_srcs;
a08abd8c 1852 struct async_submit_ctl submit;
59fc630b 1853 int count, pd_idx = sh->pd_idx, i;
91c00924 1854 struct page *xor_dest;
d8ee0728 1855 int prexor = 0;
91c00924 1856 unsigned long flags;
59fc630b 1857 int j = 0;
1858 struct stripe_head *head_sh = sh;
1859 int last_stripe;
91c00924 1860
e46b272b 1861 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1862 (unsigned long long)sh->sector);
1863
620125f2
SL
1864 for (i = 0; i < sh->disks; i++) {
1865 if (pd_idx == i)
1866 continue;
1867 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1868 break;
1869 }
1870 if (i >= sh->disks) {
1871 atomic_inc(&sh->count);
620125f2
SL
1872 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1873 ops_complete_reconstruct(sh);
1874 return;
1875 }
59fc630b 1876again:
1877 count = 0;
1878 xor_srcs = to_addr_page(percpu, j);
91c00924
DW
1879 /* check if prexor is active which means only process blocks
1880 * that are part of a read-modify-write (written)
1881 */
59fc630b 1882 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 1883 prexor = 1;
91c00924
DW
1884 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1885 for (i = disks; i--; ) {
1886 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
1887 if (head_sh->dev[i].written ||
1888 test_bit(R5_InJournal, &head_sh->dev[i].flags))
91c00924
DW
1889 xor_srcs[count++] = dev->page;
1890 }
1891 } else {
1892 xor_dest = sh->dev[pd_idx].page;
1893 for (i = disks; i--; ) {
1894 struct r5dev *dev = &sh->dev[i];
1895 if (i != pd_idx)
1896 xor_srcs[count++] = dev->page;
1897 }
1898 }
1899
91c00924
DW
1900 /* 1/ if we prexor'd then the dest is reused as a source
1901 * 2/ if we did not prexor then we are redoing the parity
1902 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1903 * for the synchronous xor case
1904 */
59fc630b 1905 last_stripe = !head_sh->batch_head ||
1906 list_first_entry(&sh->batch_list,
1907 struct stripe_head, batch_list) == head_sh;
1908 if (last_stripe) {
1909 flags = ASYNC_TX_ACK |
1910 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1911
1912 atomic_inc(&head_sh->count);
1913 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1914 to_addr_conv(sh, percpu, j));
1915 } else {
1916 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1917 init_async_submit(&submit, flags, tx, NULL, NULL,
1918 to_addr_conv(sh, percpu, j));
1919 }
91c00924 1920
a08abd8c
DW
1921 if (unlikely(count == 1))
1922 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1923 else
1924 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
59fc630b 1925 if (!last_stripe) {
1926 j++;
1927 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1928 batch_list);
1929 goto again;
1930 }
91c00924
DW
1931}
1932
ac6b53b6
DW
1933static void
1934ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1935 struct dma_async_tx_descriptor *tx)
1936{
1937 struct async_submit_ctl submit;
59fc630b 1938 struct page **blocks;
1939 int count, i, j = 0;
1940 struct stripe_head *head_sh = sh;
1941 int last_stripe;
584acdd4
MS
1942 int synflags;
1943 unsigned long txflags;
ac6b53b6
DW
1944
1945 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1946
620125f2
SL
1947 for (i = 0; i < sh->disks; i++) {
1948 if (sh->pd_idx == i || sh->qd_idx == i)
1949 continue;
1950 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1951 break;
1952 }
1953 if (i >= sh->disks) {
1954 atomic_inc(&sh->count);
620125f2
SL
1955 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1956 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1957 ops_complete_reconstruct(sh);
1958 return;
1959 }
1960
59fc630b 1961again:
1962 blocks = to_addr_page(percpu, j);
584acdd4
MS
1963
1964 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1965 synflags = SYNDROME_SRC_WRITTEN;
1966 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1967 } else {
1968 synflags = SYNDROME_SRC_ALL;
1969 txflags = ASYNC_TX_ACK;
1970 }
1971
1972 count = set_syndrome_sources(blocks, sh, synflags);
59fc630b 1973 last_stripe = !head_sh->batch_head ||
1974 list_first_entry(&sh->batch_list,
1975 struct stripe_head, batch_list) == head_sh;
1976
1977 if (last_stripe) {
1978 atomic_inc(&head_sh->count);
584acdd4 1979 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 1980 head_sh, to_addr_conv(sh, percpu, j));
1981 } else
1982 init_async_submit(&submit, 0, tx, NULL, NULL,
1983 to_addr_conv(sh, percpu, j));
48769695 1984 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
59fc630b 1985 if (!last_stripe) {
1986 j++;
1987 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1988 batch_list);
1989 goto again;
1990 }
91c00924
DW
1991}
1992
1993static void ops_complete_check(void *stripe_head_ref)
1994{
1995 struct stripe_head *sh = stripe_head_ref;
91c00924 1996
e46b272b 1997 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1998 (unsigned long long)sh->sector);
1999
ecc65c9b 2000 sh->check_state = check_state_check_result;
91c00924 2001 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2002 raid5_release_stripe(sh);
91c00924
DW
2003}
2004
ac6b53b6 2005static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 2006{
91c00924 2007 int disks = sh->disks;
ac6b53b6
DW
2008 int pd_idx = sh->pd_idx;
2009 int qd_idx = sh->qd_idx;
2010 struct page *xor_dest;
46d5b785 2011 struct page **xor_srcs = to_addr_page(percpu, 0);
91c00924 2012 struct dma_async_tx_descriptor *tx;
a08abd8c 2013 struct async_submit_ctl submit;
ac6b53b6
DW
2014 int count;
2015 int i;
91c00924 2016
e46b272b 2017 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2018 (unsigned long long)sh->sector);
2019
59fc630b 2020 BUG_ON(sh->batch_head);
ac6b53b6
DW
2021 count = 0;
2022 xor_dest = sh->dev[pd_idx].page;
2023 xor_srcs[count++] = xor_dest;
91c00924 2024 for (i = disks; i--; ) {
ac6b53b6
DW
2025 if (i == pd_idx || i == qd_idx)
2026 continue;
2027 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2028 }
2029
d6f38f31 2030 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2031 to_addr_conv(sh, percpu, 0));
099f53cb 2032 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 2033 &sh->ops.zero_sum_result, &submit);
91c00924 2034
91c00924 2035 atomic_inc(&sh->count);
a08abd8c
DW
2036 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2037 tx = async_trigger_callback(&submit);
91c00924
DW
2038}
2039
ac6b53b6
DW
2040static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2041{
46d5b785 2042 struct page **srcs = to_addr_page(percpu, 0);
ac6b53b6
DW
2043 struct async_submit_ctl submit;
2044 int count;
2045
2046 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2047 (unsigned long long)sh->sector, checkp);
2048
59fc630b 2049 BUG_ON(sh->batch_head);
584acdd4 2050 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2051 if (!checkp)
2052 srcs[count] = NULL;
91c00924 2053
91c00924 2054 atomic_inc(&sh->count);
ac6b53b6 2055 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2056 sh, to_addr_conv(sh, percpu, 0));
ac6b53b6
DW
2057 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2058 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
2059}
2060
51acbcec 2061static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2062{
2063 int overlap_clear = 0, i, disks = sh->disks;
2064 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2065 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2066 int level = conf->level;
d6f38f31
DW
2067 struct raid5_percpu *percpu;
2068 unsigned long cpu;
91c00924 2069
d6f38f31
DW
2070 cpu = get_cpu();
2071 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 2072 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2073 ops_run_biofill(sh);
2074 overlap_clear++;
2075 }
2076
7b3a871e 2077 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2078 if (level < 6)
2079 tx = ops_run_compute5(sh, percpu);
2080 else {
2081 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2082 tx = ops_run_compute6_1(sh, percpu);
2083 else
2084 tx = ops_run_compute6_2(sh, percpu);
2085 }
2086 /* terminate the chain if reconstruct is not set to be run */
2087 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2088 async_tx_ack(tx);
2089 }
91c00924 2090
584acdd4
MS
2091 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2092 if (level < 6)
2093 tx = ops_run_prexor5(sh, percpu, tx);
2094 else
2095 tx = ops_run_prexor6(sh, percpu, tx);
2096 }
91c00924 2097
ae1713e2
AP
2098 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2099 tx = ops_run_partial_parity(sh, percpu, tx);
2100
600aa109 2101 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2102 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2103 overlap_clear++;
2104 }
2105
ac6b53b6
DW
2106 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2107 if (level < 6)
2108 ops_run_reconstruct5(sh, percpu, tx);
2109 else
2110 ops_run_reconstruct6(sh, percpu, tx);
2111 }
91c00924 2112
ac6b53b6
DW
2113 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2114 if (sh->check_state == check_state_run)
2115 ops_run_check_p(sh, percpu);
2116 else if (sh->check_state == check_state_run_q)
2117 ops_run_check_pq(sh, percpu, 0);
2118 else if (sh->check_state == check_state_run_pq)
2119 ops_run_check_pq(sh, percpu, 1);
2120 else
2121 BUG();
2122 }
91c00924 2123
59fc630b 2124 if (overlap_clear && !sh->batch_head)
91c00924
DW
2125 for (i = disks; i--; ) {
2126 struct r5dev *dev = &sh->dev[i];
2127 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2128 wake_up(&sh->raid_conf->wait_for_overlap);
2129 }
d6f38f31 2130 put_cpu();
91c00924
DW
2131}
2132
845b9e22
AP
2133static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2134{
2135 if (sh->ppl_page)
2136 __free_page(sh->ppl_page);
2137 kmem_cache_free(sc, sh);
2138}
2139
5f9d1fde 2140static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
845b9e22 2141 int disks, struct r5conf *conf)
f18c1a35
N
2142{
2143 struct stripe_head *sh;
5f9d1fde 2144 int i;
f18c1a35
N
2145
2146 sh = kmem_cache_zalloc(sc, gfp);
2147 if (sh) {
2148 spin_lock_init(&sh->stripe_lock);
2149 spin_lock_init(&sh->batch_lock);
2150 INIT_LIST_HEAD(&sh->batch_list);
2151 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2152 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2153 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2154 atomic_set(&sh->count, 1);
845b9e22 2155 sh->raid_conf = conf;
a39f7afd 2156 sh->log_start = MaxSector;
5f9d1fde
SL
2157 for (i = 0; i < disks; i++) {
2158 struct r5dev *dev = &sh->dev[i];
2159
3a83f467
ML
2160 bio_init(&dev->req, &dev->vec, 1);
2161 bio_init(&dev->rreq, &dev->rvec, 1);
5f9d1fde 2162 }
845b9e22
AP
2163
2164 if (raid5_has_ppl(conf)) {
2165 sh->ppl_page = alloc_page(gfp);
2166 if (!sh->ppl_page) {
2167 free_stripe(sc, sh);
2168 sh = NULL;
2169 }
2170 }
f18c1a35
N
2171 }
2172 return sh;
2173}
486f0644 2174static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2175{
2176 struct stripe_head *sh;
f18c1a35 2177
845b9e22 2178 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
3f294f4f
N
2179 if (!sh)
2180 return 0;
6ce32846 2181
a9683a79 2182 if (grow_buffers(sh, gfp)) {
e4e11e38 2183 shrink_buffers(sh);
845b9e22 2184 free_stripe(conf->slab_cache, sh);
3f294f4f
N
2185 return 0;
2186 }
486f0644
N
2187 sh->hash_lock_index =
2188 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2189 /* we just created an active stripe so... */
3f294f4f 2190 atomic_inc(&conf->active_stripes);
59fc630b 2191
6d036f7d 2192 raid5_release_stripe(sh);
486f0644 2193 conf->max_nr_stripes++;
3f294f4f
N
2194 return 1;
2195}
2196
d1688a6d 2197static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2198{
e18b890b 2199 struct kmem_cache *sc;
5e5e3e78 2200 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2201
f4be6b43
N
2202 if (conf->mddev->gendisk)
2203 sprintf(conf->cache_name[0],
2204 "raid%d-%s", conf->level, mdname(conf->mddev));
2205 else
2206 sprintf(conf->cache_name[0],
2207 "raid%d-%p", conf->level, conf->mddev);
2208 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2209
ad01c9e3
N
2210 conf->active_name = 0;
2211 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2212 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2213 0, 0, NULL);
1da177e4
LT
2214 if (!sc)
2215 return 1;
2216 conf->slab_cache = sc;
ad01c9e3 2217 conf->pool_size = devs;
486f0644
N
2218 while (num--)
2219 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2220 return 1;
486f0644 2221
1da177e4
LT
2222 return 0;
2223}
29269553 2224
d6f38f31
DW
2225/**
2226 * scribble_len - return the required size of the scribble region
2227 * @num - total number of disks in the array
2228 *
2229 * The size must be enough to contain:
2230 * 1/ a struct page pointer for each device in the array +2
2231 * 2/ room to convert each entry in (1) to its corresponding dma
2232 * (dma_map_page()) or page (page_address()) address.
2233 *
2234 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2235 * calculate over all devices (not just the data blocks), using zeros in place
2236 * of the P and Q blocks.
2237 */
46d5b785 2238static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
d6f38f31 2239{
46d5b785 2240 struct flex_array *ret;
d6f38f31
DW
2241 size_t len;
2242
2243 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
46d5b785 2244 ret = flex_array_alloc(len, cnt, flags);
2245 if (!ret)
2246 return NULL;
2247 /* always prealloc all elements, so no locking is required */
2248 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2249 flex_array_free(ret);
2250 return NULL;
2251 }
2252 return ret;
d6f38f31
DW
2253}
2254
738a2738
N
2255static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2256{
2257 unsigned long cpu;
2258 int err = 0;
2259
27a353c0
SL
2260 /*
2261 * Never shrink. And mddev_suspend() could deadlock if this is called
2262 * from raid5d. In that case, scribble_disks and scribble_sectors
2263 * should equal to new_disks and new_sectors
2264 */
2265 if (conf->scribble_disks >= new_disks &&
2266 conf->scribble_sectors >= new_sectors)
2267 return 0;
738a2738
N
2268 mddev_suspend(conf->mddev);
2269 get_online_cpus();
2270 for_each_present_cpu(cpu) {
2271 struct raid5_percpu *percpu;
2272 struct flex_array *scribble;
2273
2274 percpu = per_cpu_ptr(conf->percpu, cpu);
2275 scribble = scribble_alloc(new_disks,
2276 new_sectors / STRIPE_SECTORS,
2277 GFP_NOIO);
2278
2279 if (scribble) {
2280 flex_array_free(percpu->scribble);
2281 percpu->scribble = scribble;
2282 } else {
2283 err = -ENOMEM;
2284 break;
2285 }
2286 }
2287 put_online_cpus();
2288 mddev_resume(conf->mddev);
27a353c0
SL
2289 if (!err) {
2290 conf->scribble_disks = new_disks;
2291 conf->scribble_sectors = new_sectors;
2292 }
738a2738
N
2293 return err;
2294}
2295
d1688a6d 2296static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2297{
2298 /* Make all the stripes able to hold 'newsize' devices.
2299 * New slots in each stripe get 'page' set to a new page.
2300 *
2301 * This happens in stages:
2302 * 1/ create a new kmem_cache and allocate the required number of
2303 * stripe_heads.
83f0d77a 2304 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2305 * to the new stripe_heads. This will have the side effect of
2306 * freezing the array as once all stripe_heads have been collected,
2307 * no IO will be possible. Old stripe heads are freed once their
2308 * pages have been transferred over, and the old kmem_cache is
2309 * freed when all stripes are done.
2310 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2311 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2312 * 4/ allocate new pages for the new slots in the new stripe_heads.
2313 * If this fails, we don't bother trying the shrink the
2314 * stripe_heads down again, we just leave them as they are.
2315 * As each stripe_head is processed the new one is released into
2316 * active service.
2317 *
2318 * Once step2 is started, we cannot afford to wait for a write,
2319 * so we use GFP_NOIO allocations.
2320 */
2321 struct stripe_head *osh, *nsh;
2322 LIST_HEAD(newstripes);
2323 struct disk_info *ndisks;
2214c260 2324 int err = 0;
e18b890b 2325 struct kmem_cache *sc;
ad01c9e3 2326 int i;
566c09c5 2327 int hash, cnt;
ad01c9e3 2328
2214c260 2329 md_allow_write(conf->mddev);
2a2275d6 2330
ad01c9e3
N
2331 /* Step 1 */
2332 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2333 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2334 0, 0, NULL);
ad01c9e3
N
2335 if (!sc)
2336 return -ENOMEM;
2337
2d5b569b
N
2338 /* Need to ensure auto-resizing doesn't interfere */
2339 mutex_lock(&conf->cache_size_mutex);
2340
ad01c9e3 2341 for (i = conf->max_nr_stripes; i; i--) {
845b9e22 2342 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
ad01c9e3
N
2343 if (!nsh)
2344 break;
2345
ad01c9e3
N
2346 list_add(&nsh->lru, &newstripes);
2347 }
2348 if (i) {
2349 /* didn't get enough, give up */
2350 while (!list_empty(&newstripes)) {
2351 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2352 list_del(&nsh->lru);
845b9e22 2353 free_stripe(sc, nsh);
ad01c9e3
N
2354 }
2355 kmem_cache_destroy(sc);
2d5b569b 2356 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2357 return -ENOMEM;
2358 }
2359 /* Step 2 - Must use GFP_NOIO now.
2360 * OK, we have enough stripes, start collecting inactive
2361 * stripes and copying them over
2362 */
566c09c5
SL
2363 hash = 0;
2364 cnt = 0;
ad01c9e3 2365 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2366 lock_device_hash_lock(conf, hash);
6ab2a4b8 2367 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2368 !list_empty(conf->inactive_list + hash),
2369 unlock_device_hash_lock(conf, hash),
2370 lock_device_hash_lock(conf, hash));
2371 osh = get_free_stripe(conf, hash);
2372 unlock_device_hash_lock(conf, hash);
f18c1a35 2373
d592a996 2374 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2375 nsh->dev[i].page = osh->dev[i].page;
d592a996
SL
2376 nsh->dev[i].orig_page = osh->dev[i].page;
2377 }
566c09c5 2378 nsh->hash_lock_index = hash;
845b9e22 2379 free_stripe(conf->slab_cache, osh);
566c09c5
SL
2380 cnt++;
2381 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2382 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2383 hash++;
2384 cnt = 0;
2385 }
ad01c9e3
N
2386 }
2387 kmem_cache_destroy(conf->slab_cache);
2388
2389 /* Step 3.
2390 * At this point, we are holding all the stripes so the array
2391 * is completely stalled, so now is a good time to resize
d6f38f31 2392 * conf->disks and the scribble region
ad01c9e3
N
2393 */
2394 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2395 if (ndisks) {
d7bd398e 2396 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2397 ndisks[i] = conf->disks[i];
d7bd398e
SL
2398
2399 for (i = conf->pool_size; i < newsize; i++) {
2400 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2401 if (!ndisks[i].extra_page)
2402 err = -ENOMEM;
2403 }
2404
2405 if (err) {
2406 for (i = conf->pool_size; i < newsize; i++)
2407 if (ndisks[i].extra_page)
2408 put_page(ndisks[i].extra_page);
2409 kfree(ndisks);
2410 } else {
2411 kfree(conf->disks);
2412 conf->disks = ndisks;
2413 }
ad01c9e3
N
2414 } else
2415 err = -ENOMEM;
2416
2d5b569b 2417 mutex_unlock(&conf->cache_size_mutex);
583da48e
DY
2418
2419 conf->slab_cache = sc;
2420 conf->active_name = 1-conf->active_name;
2421
ad01c9e3
N
2422 /* Step 4, return new stripes to service */
2423 while(!list_empty(&newstripes)) {
2424 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2425 list_del_init(&nsh->lru);
d6f38f31 2426
ad01c9e3
N
2427 for (i=conf->raid_disks; i < newsize; i++)
2428 if (nsh->dev[i].page == NULL) {
2429 struct page *p = alloc_page(GFP_NOIO);
2430 nsh->dev[i].page = p;
d592a996 2431 nsh->dev[i].orig_page = p;
ad01c9e3
N
2432 if (!p)
2433 err = -ENOMEM;
2434 }
6d036f7d 2435 raid5_release_stripe(nsh);
ad01c9e3
N
2436 }
2437 /* critical section pass, GFP_NOIO no longer needed */
2438
6e9eac2d
N
2439 if (!err)
2440 conf->pool_size = newsize;
ad01c9e3
N
2441 return err;
2442}
1da177e4 2443
486f0644 2444static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2445{
2446 struct stripe_head *sh;
49895bcc 2447 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2448
566c09c5
SL
2449 spin_lock_irq(conf->hash_locks + hash);
2450 sh = get_free_stripe(conf, hash);
2451 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2452 if (!sh)
2453 return 0;
78bafebd 2454 BUG_ON(atomic_read(&sh->count));
e4e11e38 2455 shrink_buffers(sh);
845b9e22 2456 free_stripe(conf->slab_cache, sh);
3f294f4f 2457 atomic_dec(&conf->active_stripes);
486f0644 2458 conf->max_nr_stripes--;
3f294f4f
N
2459 return 1;
2460}
2461
d1688a6d 2462static void shrink_stripes(struct r5conf *conf)
3f294f4f 2463{
486f0644
N
2464 while (conf->max_nr_stripes &&
2465 drop_one_stripe(conf))
2466 ;
3f294f4f 2467
644df1a8 2468 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2469 conf->slab_cache = NULL;
2470}
2471
4246a0b6 2472static void raid5_end_read_request(struct bio * bi)
1da177e4 2473{
99c0fb5f 2474 struct stripe_head *sh = bi->bi_private;
d1688a6d 2475 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2476 int disks = sh->disks, i;
d6950432 2477 char b[BDEVNAME_SIZE];
dd054fce 2478 struct md_rdev *rdev = NULL;
05616be5 2479 sector_t s;
1da177e4
LT
2480
2481 for (i=0 ; i<disks; i++)
2482 if (bi == &sh->dev[i].req)
2483 break;
2484
4246a0b6 2485 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2486 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2487 bi->bi_status);
1da177e4 2488 if (i == disks) {
5f9d1fde 2489 bio_reset(bi);
1da177e4 2490 BUG();
6712ecf8 2491 return;
1da177e4 2492 }
14a75d3e 2493 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2494 /* If replacement finished while this request was outstanding,
2495 * 'replacement' might be NULL already.
2496 * In that case it moved down to 'rdev'.
2497 * rdev is not removed until all requests are finished.
2498 */
14a75d3e 2499 rdev = conf->disks[i].replacement;
dd054fce 2500 if (!rdev)
14a75d3e 2501 rdev = conf->disks[i].rdev;
1da177e4 2502
05616be5
N
2503 if (use_new_offset(conf, sh))
2504 s = sh->sector + rdev->new_data_offset;
2505 else
2506 s = sh->sector + rdev->data_offset;
4e4cbee9 2507 if (!bi->bi_status) {
1da177e4 2508 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2509 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2510 /* Note that this cannot happen on a
2511 * replacement device. We just fail those on
2512 * any error
2513 */
cc6167b4
N
2514 pr_info_ratelimited(
2515 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
8bda470e 2516 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 2517 (unsigned long long)s,
8bda470e 2518 bdevname(rdev->bdev, b));
ddd5115f 2519 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
2520 clear_bit(R5_ReadError, &sh->dev[i].flags);
2521 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2522 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2523 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2524
86aa1397
SL
2525 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2526 /*
2527 * end read for a page in journal, this
2528 * must be preparing for prexor in rmw
2529 */
2530 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2531
14a75d3e
N
2532 if (atomic_read(&rdev->read_errors))
2533 atomic_set(&rdev->read_errors, 0);
1da177e4 2534 } else {
14a75d3e 2535 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 2536 int retry = 0;
2e8ac303 2537 int set_bad = 0;
d6950432 2538
1da177e4 2539 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 2540 atomic_inc(&rdev->read_errors);
14a75d3e 2541 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4
N
2542 pr_warn_ratelimited(
2543 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
14a75d3e 2544 mdname(conf->mddev),
05616be5 2545 (unsigned long long)s,
14a75d3e 2546 bdn);
2e8ac303 2547 else if (conf->mddev->degraded >= conf->max_degraded) {
2548 set_bad = 1;
cc6167b4
N
2549 pr_warn_ratelimited(
2550 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
8bda470e 2551 mdname(conf->mddev),
05616be5 2552 (unsigned long long)s,
8bda470e 2553 bdn);
2e8ac303 2554 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2555 /* Oh, no!!! */
2e8ac303 2556 set_bad = 1;
cc6167b4
N
2557 pr_warn_ratelimited(
2558 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
8bda470e 2559 mdname(conf->mddev),
05616be5 2560 (unsigned long long)s,
8bda470e 2561 bdn);
2e8ac303 2562 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 2563 > conf->max_nr_stripes)
cc6167b4 2564 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 2565 mdname(conf->mddev), bdn);
ba22dcbf
N
2566 else
2567 retry = 1;
edfa1f65
BY
2568 if (set_bad && test_bit(In_sync, &rdev->flags)
2569 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2570 retry = 1;
ba22dcbf 2571 if (retry)
3f9e7c14 2572 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2573 set_bit(R5_ReadError, &sh->dev[i].flags);
2574 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2575 } else
2576 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2577 else {
4e5314b5
N
2578 clear_bit(R5_ReadError, &sh->dev[i].flags);
2579 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2580 if (!(set_bad
2581 && test_bit(In_sync, &rdev->flags)
2582 && rdev_set_badblocks(
2583 rdev, sh->sector, STRIPE_SECTORS, 0)))
2584 md_error(conf->mddev, rdev);
ba22dcbf 2585 }
1da177e4 2586 }
14a75d3e 2587 rdev_dec_pending(rdev, conf->mddev);
c9445555 2588 bio_reset(bi);
1da177e4
LT
2589 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2590 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2591 raid5_release_stripe(sh);
1da177e4
LT
2592}
2593
4246a0b6 2594static void raid5_end_write_request(struct bio *bi)
1da177e4 2595{
99c0fb5f 2596 struct stripe_head *sh = bi->bi_private;
d1688a6d 2597 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2598 int disks = sh->disks, i;
977df362 2599 struct md_rdev *uninitialized_var(rdev);
b84db560
N
2600 sector_t first_bad;
2601 int bad_sectors;
977df362 2602 int replacement = 0;
1da177e4 2603
977df362
N
2604 for (i = 0 ; i < disks; i++) {
2605 if (bi == &sh->dev[i].req) {
2606 rdev = conf->disks[i].rdev;
1da177e4 2607 break;
977df362
N
2608 }
2609 if (bi == &sh->dev[i].rreq) {
2610 rdev = conf->disks[i].replacement;
dd054fce
N
2611 if (rdev)
2612 replacement = 1;
2613 else
2614 /* rdev was removed and 'replacement'
2615 * replaced it. rdev is not removed
2616 * until all requests are finished.
2617 */
2618 rdev = conf->disks[i].rdev;
977df362
N
2619 break;
2620 }
2621 }
4246a0b6 2622 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2623 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2624 bi->bi_status);
1da177e4 2625 if (i == disks) {
5f9d1fde 2626 bio_reset(bi);
1da177e4 2627 BUG();
6712ecf8 2628 return;
1da177e4
LT
2629 }
2630
977df362 2631 if (replacement) {
4e4cbee9 2632 if (bi->bi_status)
977df362
N
2633 md_error(conf->mddev, rdev);
2634 else if (is_badblock(rdev, sh->sector,
2635 STRIPE_SECTORS,
2636 &first_bad, &bad_sectors))
2637 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2638 } else {
4e4cbee9 2639 if (bi->bi_status) {
9f97e4b1 2640 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2641 set_bit(WriteErrorSeen, &rdev->flags);
2642 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2643 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2644 set_bit(MD_RECOVERY_NEEDED,
2645 &rdev->mddev->recovery);
977df362
N
2646 } else if (is_badblock(rdev, sh->sector,
2647 STRIPE_SECTORS,
c0b32972 2648 &first_bad, &bad_sectors)) {
977df362 2649 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2650 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2651 /* That was a successful write so make
2652 * sure it looks like we already did
2653 * a re-write.
2654 */
2655 set_bit(R5_ReWrite, &sh->dev[i].flags);
2656 }
977df362
N
2657 }
2658 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2659
4e4cbee9 2660 if (sh->batch_head && bi->bi_status && !replacement)
72ac7330 2661 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2662
c9445555 2663 bio_reset(bi);
977df362
N
2664 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2665 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2666 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2667 raid5_release_stripe(sh);
59fc630b 2668
2669 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2670 raid5_release_stripe(sh->batch_head);
1da177e4
LT
2671}
2672
849674e4 2673static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
2674{
2675 char b[BDEVNAME_SIZE];
d1688a6d 2676 struct r5conf *conf = mddev->private;
908f4fbd 2677 unsigned long flags;
0c55e022 2678 pr_debug("raid456: error called\n");
1da177e4 2679
908f4fbd
N
2680 spin_lock_irqsave(&conf->device_lock, flags);
2681 clear_bit(In_sync, &rdev->flags);
2e38a37f 2682 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd
N
2683 spin_unlock_irqrestore(&conf->device_lock, flags);
2684 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2685
de393cde 2686 set_bit(Blocked, &rdev->flags);
6f8d0c77 2687 set_bit(Faulty, &rdev->flags);
2953079c
SL
2688 set_mask_bits(&mddev->sb_flags, 0,
2689 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
cc6167b4
N
2690 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691 "md/raid:%s: Operation continuing on %d devices.\n",
2692 mdname(mddev),
2693 bdevname(rdev->bdev, b),
2694 mdname(mddev),
2695 conf->raid_disks - mddev->degraded);
70d466f7 2696 r5c_update_on_rdev_error(mddev, rdev);
16a53ecc 2697}
1da177e4
LT
2698
2699/*
2700 * Input: a 'big' sector number,
2701 * Output: index of the data and parity disk, and the sector # in them.
2702 */
6d036f7d
SL
2703sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704 int previous, int *dd_idx,
2705 struct stripe_head *sh)
1da177e4 2706{
6e3b96ed 2707 sector_t stripe, stripe2;
35f2a591 2708 sector_t chunk_number;
1da177e4 2709 unsigned int chunk_offset;
911d4ee8 2710 int pd_idx, qd_idx;
67cc2b81 2711 int ddf_layout = 0;
1da177e4 2712 sector_t new_sector;
e183eaed
N
2713 int algorithm = previous ? conf->prev_algo
2714 : conf->algorithm;
09c9e5fa
AN
2715 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716 : conf->chunk_sectors;
112bf897
N
2717 int raid_disks = previous ? conf->previous_raid_disks
2718 : conf->raid_disks;
2719 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2720
2721 /* First compute the information on this sector */
2722
2723 /*
2724 * Compute the chunk number and the sector offset inside the chunk
2725 */
2726 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727 chunk_number = r_sector;
1da177e4
LT
2728
2729 /*
2730 * Compute the stripe number
2731 */
35f2a591
N
2732 stripe = chunk_number;
2733 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2734 stripe2 = stripe;
1da177e4
LT
2735 /*
2736 * Select the parity disk based on the user selected algorithm.
2737 */
84789554 2738 pd_idx = qd_idx = -1;
16a53ecc
N
2739 switch(conf->level) {
2740 case 4:
911d4ee8 2741 pd_idx = data_disks;
16a53ecc
N
2742 break;
2743 case 5:
e183eaed 2744 switch (algorithm) {
1da177e4 2745 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2746 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2747 if (*dd_idx >= pd_idx)
1da177e4
LT
2748 (*dd_idx)++;
2749 break;
2750 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2751 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2752 if (*dd_idx >= pd_idx)
1da177e4
LT
2753 (*dd_idx)++;
2754 break;
2755 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2756 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2757 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2758 break;
2759 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2760 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2761 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2762 break;
99c0fb5f
N
2763 case ALGORITHM_PARITY_0:
2764 pd_idx = 0;
2765 (*dd_idx)++;
2766 break;
2767 case ALGORITHM_PARITY_N:
2768 pd_idx = data_disks;
2769 break;
1da177e4 2770 default:
99c0fb5f 2771 BUG();
16a53ecc
N
2772 }
2773 break;
2774 case 6:
2775
e183eaed 2776 switch (algorithm) {
16a53ecc 2777 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2778 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2779 qd_idx = pd_idx + 1;
2780 if (pd_idx == raid_disks-1) {
99c0fb5f 2781 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2782 qd_idx = 0;
2783 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2784 (*dd_idx) += 2; /* D D P Q D */
2785 break;
2786 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2787 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2788 qd_idx = pd_idx + 1;
2789 if (pd_idx == raid_disks-1) {
99c0fb5f 2790 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2791 qd_idx = 0;
2792 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2793 (*dd_idx) += 2; /* D D P Q D */
2794 break;
2795 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2796 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2797 qd_idx = (pd_idx + 1) % raid_disks;
2798 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2799 break;
2800 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2801 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2802 qd_idx = (pd_idx + 1) % raid_disks;
2803 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2804 break;
99c0fb5f
N
2805
2806 case ALGORITHM_PARITY_0:
2807 pd_idx = 0;
2808 qd_idx = 1;
2809 (*dd_idx) += 2;
2810 break;
2811 case ALGORITHM_PARITY_N:
2812 pd_idx = data_disks;
2813 qd_idx = data_disks + 1;
2814 break;
2815
2816 case ALGORITHM_ROTATING_ZERO_RESTART:
2817 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2818 * of blocks for computing Q is different.
2819 */
6e3b96ed 2820 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2821 qd_idx = pd_idx + 1;
2822 if (pd_idx == raid_disks-1) {
2823 (*dd_idx)++; /* Q D D D P */
2824 qd_idx = 0;
2825 } else if (*dd_idx >= pd_idx)
2826 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2827 ddf_layout = 1;
99c0fb5f
N
2828 break;
2829
2830 case ALGORITHM_ROTATING_N_RESTART:
2831 /* Same a left_asymmetric, by first stripe is
2832 * D D D P Q rather than
2833 * Q D D D P
2834 */
6e3b96ed
N
2835 stripe2 += 1;
2836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2837 qd_idx = pd_idx + 1;
2838 if (pd_idx == raid_disks-1) {
2839 (*dd_idx)++; /* Q D D D P */
2840 qd_idx = 0;
2841 } else if (*dd_idx >= pd_idx)
2842 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2843 ddf_layout = 1;
99c0fb5f
N
2844 break;
2845
2846 case ALGORITHM_ROTATING_N_CONTINUE:
2847 /* Same as left_symmetric but Q is before P */
6e3b96ed 2848 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2849 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2851 ddf_layout = 1;
99c0fb5f
N
2852 break;
2853
2854 case ALGORITHM_LEFT_ASYMMETRIC_6:
2855 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2856 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2857 if (*dd_idx >= pd_idx)
2858 (*dd_idx)++;
2859 qd_idx = raid_disks - 1;
2860 break;
2861
2862 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2863 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2864 if (*dd_idx >= pd_idx)
2865 (*dd_idx)++;
2866 qd_idx = raid_disks - 1;
2867 break;
2868
2869 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2870 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2871 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872 qd_idx = raid_disks - 1;
2873 break;
2874
2875 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2876 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2877 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878 qd_idx = raid_disks - 1;
2879 break;
2880
2881 case ALGORITHM_PARITY_0_6:
2882 pd_idx = 0;
2883 (*dd_idx)++;
2884 qd_idx = raid_disks - 1;
2885 break;
2886
16a53ecc 2887 default:
99c0fb5f 2888 BUG();
16a53ecc
N
2889 }
2890 break;
1da177e4
LT
2891 }
2892
911d4ee8
N
2893 if (sh) {
2894 sh->pd_idx = pd_idx;
2895 sh->qd_idx = qd_idx;
67cc2b81 2896 sh->ddf_layout = ddf_layout;
911d4ee8 2897 }
1da177e4
LT
2898 /*
2899 * Finally, compute the new sector number
2900 */
2901 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902 return new_sector;
2903}
2904
6d036f7d 2905sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2906{
d1688a6d 2907 struct r5conf *conf = sh->raid_conf;
b875e531
N
2908 int raid_disks = sh->disks;
2909 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2910 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2911 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912 : conf->chunk_sectors;
e183eaed
N
2913 int algorithm = previous ? conf->prev_algo
2914 : conf->algorithm;
1da177e4
LT
2915 sector_t stripe;
2916 int chunk_offset;
35f2a591
N
2917 sector_t chunk_number;
2918 int dummy1, dd_idx = i;
1da177e4 2919 sector_t r_sector;
911d4ee8 2920 struct stripe_head sh2;
1da177e4
LT
2921
2922 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923 stripe = new_sector;
1da177e4 2924
16a53ecc
N
2925 if (i == sh->pd_idx)
2926 return 0;
2927 switch(conf->level) {
2928 case 4: break;
2929 case 5:
e183eaed 2930 switch (algorithm) {
1da177e4
LT
2931 case ALGORITHM_LEFT_ASYMMETRIC:
2932 case ALGORITHM_RIGHT_ASYMMETRIC:
2933 if (i > sh->pd_idx)
2934 i--;
2935 break;
2936 case ALGORITHM_LEFT_SYMMETRIC:
2937 case ALGORITHM_RIGHT_SYMMETRIC:
2938 if (i < sh->pd_idx)
2939 i += raid_disks;
2940 i -= (sh->pd_idx + 1);
2941 break;
99c0fb5f
N
2942 case ALGORITHM_PARITY_0:
2943 i -= 1;
2944 break;
2945 case ALGORITHM_PARITY_N:
2946 break;
1da177e4 2947 default:
99c0fb5f 2948 BUG();
16a53ecc
N
2949 }
2950 break;
2951 case 6:
d0dabf7e 2952 if (i == sh->qd_idx)
16a53ecc 2953 return 0; /* It is the Q disk */
e183eaed 2954 switch (algorithm) {
16a53ecc
N
2955 case ALGORITHM_LEFT_ASYMMETRIC:
2956 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2957 case ALGORITHM_ROTATING_ZERO_RESTART:
2958 case ALGORITHM_ROTATING_N_RESTART:
2959 if (sh->pd_idx == raid_disks-1)
2960 i--; /* Q D D D P */
16a53ecc
N
2961 else if (i > sh->pd_idx)
2962 i -= 2; /* D D P Q D */
2963 break;
2964 case ALGORITHM_LEFT_SYMMETRIC:
2965 case ALGORITHM_RIGHT_SYMMETRIC:
2966 if (sh->pd_idx == raid_disks-1)
2967 i--; /* Q D D D P */
2968 else {
2969 /* D D P Q D */
2970 if (i < sh->pd_idx)
2971 i += raid_disks;
2972 i -= (sh->pd_idx + 2);
2973 }
2974 break;
99c0fb5f
N
2975 case ALGORITHM_PARITY_0:
2976 i -= 2;
2977 break;
2978 case ALGORITHM_PARITY_N:
2979 break;
2980 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2981 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2982 if (sh->pd_idx == 0)
2983 i--; /* P D D D Q */
e4424fee
N
2984 else {
2985 /* D D Q P D */
2986 if (i < sh->pd_idx)
2987 i += raid_disks;
2988 i -= (sh->pd_idx + 1);
2989 }
99c0fb5f
N
2990 break;
2991 case ALGORITHM_LEFT_ASYMMETRIC_6:
2992 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993 if (i > sh->pd_idx)
2994 i--;
2995 break;
2996 case ALGORITHM_LEFT_SYMMETRIC_6:
2997 case ALGORITHM_RIGHT_SYMMETRIC_6:
2998 if (i < sh->pd_idx)
2999 i += data_disks + 1;
3000 i -= (sh->pd_idx + 1);
3001 break;
3002 case ALGORITHM_PARITY_0_6:
3003 i -= 1;
3004 break;
16a53ecc 3005 default:
99c0fb5f 3006 BUG();
16a53ecc
N
3007 }
3008 break;
1da177e4
LT
3009 }
3010
3011 chunk_number = stripe * data_disks + i;
35f2a591 3012 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3013
112bf897 3014 check = raid5_compute_sector(conf, r_sector,
784052ec 3015 previous, &dummy1, &sh2);
911d4ee8
N
3016 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3018 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019 mdname(conf->mddev));
1da177e4
LT
3020 return 0;
3021 }
3022 return r_sector;
3023}
3024
07e83364
SL
3025/*
3026 * There are cases where we want handle_stripe_dirtying() and
3027 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028 *
3029 * This function checks whether we want to delay the towrite. Specifically,
3030 * we delay the towrite when:
3031 *
3032 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3033 * stripe has data in journal (for other devices).
3034 *
3035 * In this case, when reading data for the non-overwrite dev, it is
3036 * necessary to handle complex rmw of write back cache (prexor with
3037 * orig_page, and xor with page). To keep read path simple, we would
3038 * like to flush data in journal to RAID disks first, so complex rmw
3039 * is handled in the write patch (handle_stripe_dirtying).
3040 *
39b99586
SL
3041 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042 *
3043 * It is important to be able to flush all stripes in raid5-cache.
3044 * Therefore, we need reserve some space on the journal device for
3045 * these flushes. If flush operation includes pending writes to the
3046 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047 * for the flush out. If we exclude these pending writes from flush
3048 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3049 * Therefore, excluding pending writes in these cases enables more
3050 * efficient use of the journal device.
3051 *
3052 * Note: To make sure the stripe makes progress, we only delay
3053 * towrite for stripes with data already in journal (injournal > 0).
3054 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055 * no_space_stripes list.
3056 *
70d466f7
SL
3057 * 3. during journal failure
3058 * In journal failure, we try to flush all cached data to raid disks
3059 * based on data in stripe cache. The array is read-only to upper
3060 * layers, so we would skip all pending writes.
3061 *
07e83364 3062 */
39b99586
SL
3063static inline bool delay_towrite(struct r5conf *conf,
3064 struct r5dev *dev,
3065 struct stripe_head_state *s)
07e83364 3066{
39b99586
SL
3067 /* case 1 above */
3068 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070 return true;
3071 /* case 2 above */
3072 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073 s->injournal > 0)
3074 return true;
70d466f7
SL
3075 /* case 3 above */
3076 if (s->log_failed && s->injournal)
3077 return true;
39b99586 3078 return false;
07e83364
SL
3079}
3080
600aa109 3081static void
c0f7bddb 3082schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3083 int rcw, int expand)
e33129d8 3084{
584acdd4 3085 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3086 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3087 int level = conf->level;
e33129d8
DW
3088
3089 if (rcw) {
1e6d690b
SL
3090 /*
3091 * In some cases, handle_stripe_dirtying initially decided to
3092 * run rmw and allocates extra page for prexor. However, rcw is
3093 * cheaper later on. We need to free the extra page now,
3094 * because we won't be able to do that in ops_complete_prexor().
3095 */
3096 r5c_release_extra_page(sh);
e33129d8
DW
3097
3098 for (i = disks; i--; ) {
3099 struct r5dev *dev = &sh->dev[i];
3100
39b99586 3101 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3102 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3103 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3104 if (!expand)
3105 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3106 s->locked++;
1e6d690b
SL
3107 } else if (test_bit(R5_InJournal, &dev->flags)) {
3108 set_bit(R5_LOCKED, &dev->flags);
3109 s->locked++;
e33129d8
DW
3110 }
3111 }
ce7d363a
N
3112 /* if we are not expanding this is a proper write request, and
3113 * there will be bios with new data to be drained into the
3114 * stripe cache
3115 */
3116 if (!expand) {
3117 if (!s->locked)
3118 /* False alarm, nothing to do */
3119 return;
3120 sh->reconstruct_state = reconstruct_state_drain_run;
3121 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122 } else
3123 sh->reconstruct_state = reconstruct_state_run;
3124
3125 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126
c0f7bddb 3127 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3128 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3129 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3130 } else {
3131 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3133 BUG_ON(level == 6 &&
3134 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3136
e33129d8
DW
3137 for (i = disks; i--; ) {
3138 struct r5dev *dev = &sh->dev[i];
584acdd4 3139 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3140 continue;
3141
e33129d8
DW
3142 if (dev->towrite &&
3143 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3144 test_bit(R5_Wantcompute, &dev->flags))) {
3145 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3146 set_bit(R5_LOCKED, &dev->flags);
3147 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3148 s->locked++;
1e6d690b
SL
3149 } else if (test_bit(R5_InJournal, &dev->flags)) {
3150 set_bit(R5_LOCKED, &dev->flags);
3151 s->locked++;
e33129d8
DW
3152 }
3153 }
ce7d363a
N
3154 if (!s->locked)
3155 /* False alarm - nothing to do */
3156 return;
3157 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3161 }
3162
c0f7bddb 3163 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3164 * are in flight
3165 */
3166 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3168 s->locked++;
e33129d8 3169
c0f7bddb
YT
3170 if (level == 6) {
3171 int qd_idx = sh->qd_idx;
3172 struct r5dev *dev = &sh->dev[qd_idx];
3173
3174 set_bit(R5_LOCKED, &dev->flags);
3175 clear_bit(R5_UPTODATE, &dev->flags);
3176 s->locked++;
3177 }
3178
845b9e22 3179 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3418d036
AP
3180 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184
600aa109 3185 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3186 __func__, (unsigned long long)sh->sector,
600aa109 3187 s->locked, s->ops_request);
e33129d8 3188}
16a53ecc 3189
1da177e4
LT
3190/*
3191 * Each stripe/dev can have one or more bion attached.
16a53ecc 3192 * toread/towrite point to the first in a chain.
1da177e4
LT
3193 * The bi_next chain must be in order.
3194 */
da41ba65 3195static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196 int forwrite, int previous)
1da177e4
LT
3197{
3198 struct bio **bip;
d1688a6d 3199 struct r5conf *conf = sh->raid_conf;
72626685 3200 int firstwrite=0;
1da177e4 3201
cbe47ec5 3202 pr_debug("adding bi b#%llu to stripe s#%llu\n",
4f024f37 3203 (unsigned long long)bi->bi_iter.bi_sector,
1da177e4
LT
3204 (unsigned long long)sh->sector);
3205
b17459c0 3206 spin_lock_irq(&sh->stripe_lock);
59fc630b 3207 /* Don't allow new IO added to stripes in batch list */
3208 if (sh->batch_head)
3209 goto overlap;
72626685 3210 if (forwrite) {
1da177e4 3211 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 3212 if (*bip == NULL)
72626685
N
3213 firstwrite = 1;
3214 } else
1da177e4 3215 bip = &sh->dev[dd_idx].toread;
4f024f37
KO
3216 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
1da177e4
LT
3218 goto overlap;
3219 bip = & (*bip)->bi_next;
3220 }
4f024f37 3221 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
1da177e4
LT
3222 goto overlap;
3223
3418d036
AP
3224 if (forwrite && raid5_has_ppl(conf)) {
3225 /*
3226 * With PPL only writes to consecutive data chunks within a
3227 * stripe are allowed because for a single stripe_head we can
3228 * only have one PPL entry at a time, which describes one data
3229 * range. Not really an overlap, but wait_for_overlap can be
3230 * used to handle this.
3231 */
3232 sector_t sector;
3233 sector_t first = 0;
3234 sector_t last = 0;
3235 int count = 0;
3236 int i;
3237
3238 for (i = 0; i < sh->disks; i++) {
3239 if (i != sh->pd_idx &&
3240 (i == dd_idx || sh->dev[i].towrite)) {
3241 sector = sh->dev[i].sector;
3242 if (count == 0 || sector < first)
3243 first = sector;
3244 if (sector > last)
3245 last = sector;
3246 count++;
3247 }
3248 }
3249
3250 if (first + conf->chunk_sectors * (count - 1) != last)
3251 goto overlap;
3252 }
3253
da41ba65 3254 if (!forwrite || previous)
3255 clear_bit(STRIPE_BATCH_READY, &sh->state);
3256
78bafebd 3257 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3258 if (*bip)
3259 bi->bi_next = *bip;
3260 *bip = bi;
016c76ac 3261 bio_inc_remaining(bi);
49728050 3262 md_write_inc(conf->mddev, bi);
72626685 3263
1da177e4
LT
3264 if (forwrite) {
3265 /* check if page is covered */
3266 sector_t sector = sh->dev[dd_idx].sector;
3267 for (bi=sh->dev[dd_idx].towrite;
3268 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
4f024f37 3269 bi && bi->bi_iter.bi_sector <= sector;
1da177e4 3270 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3271 if (bio_end_sector(bi) >= sector)
3272 sector = bio_end_sector(bi);
1da177e4
LT
3273 }
3274 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
7a87f434 3275 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276 sh->overwrite_disks++;
1da177e4 3277 }
cbe47ec5
N
3278
3279 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
4f024f37 3280 (unsigned long long)(*bip)->bi_iter.bi_sector,
cbe47ec5
N
3281 (unsigned long long)sh->sector, dd_idx);
3282
3283 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3284 /* Cannot hold spinlock over bitmap_startwrite,
3285 * but must ensure this isn't added to a batch until
3286 * we have added to the bitmap and set bm_seq.
3287 * So set STRIPE_BITMAP_PENDING to prevent
3288 * batching.
3289 * If multiple add_stripe_bio() calls race here they
3290 * much all set STRIPE_BITMAP_PENDING. So only the first one
3291 * to complete "bitmap_startwrite" gets to set
3292 * STRIPE_BIT_DELAY. This is important as once a stripe
3293 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294 * any more.
3295 */
3296 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
3298 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299 STRIPE_SECTORS, 0);
d0852df5
N
3300 spin_lock_irq(&sh->stripe_lock);
3301 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302 if (!sh->batch_head) {
3303 sh->bm_seq = conf->seq_flush+1;
3304 set_bit(STRIPE_BIT_DELAY, &sh->state);
3305 }
cbe47ec5 3306 }
d0852df5 3307 spin_unlock_irq(&sh->stripe_lock);
59fc630b 3308
3309 if (stripe_can_batch(sh))
3310 stripe_add_to_batch_list(conf, sh);
1da177e4
LT
3311 return 1;
3312
3313 overlap:
3314 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 3315 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
3316 return 0;
3317}
3318
d1688a6d 3319static void end_reshape(struct r5conf *conf);
29269553 3320
d1688a6d 3321static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3322 struct stripe_head *sh)
ccfcc3c1 3323{
784052ec 3324 int sectors_per_chunk =
09c9e5fa 3325 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3326 int dd_idx;
2d2063ce 3327 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3328 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3329
112bf897
N
3330 raid5_compute_sector(conf,
3331 stripe * (disks - conf->max_degraded)
b875e531 3332 *sectors_per_chunk + chunk_offset,
112bf897 3333 previous,
911d4ee8 3334 &dd_idx, sh);
ccfcc3c1
N
3335}
3336
a4456856 3337static void
d1688a6d 3338handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3339 struct stripe_head_state *s, int disks)
a4456856
DW
3340{
3341 int i;
59fc630b 3342 BUG_ON(sh->batch_head);
a4456856
DW
3343 for (i = disks; i--; ) {
3344 struct bio *bi;
3345 int bitmap_end = 0;
3346
3347 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3348 struct md_rdev *rdev;
a4456856
DW
3349 rcu_read_lock();
3350 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3351 if (rdev && test_bit(In_sync, &rdev->flags) &&
3352 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3353 atomic_inc(&rdev->nr_pending);
3354 else
3355 rdev = NULL;
a4456856 3356 rcu_read_unlock();
7f0da59b
N
3357 if (rdev) {
3358 if (!rdev_set_badblocks(
3359 rdev,
3360 sh->sector,
3361 STRIPE_SECTORS, 0))
3362 md_error(conf->mddev, rdev);
3363 rdev_dec_pending(rdev, conf->mddev);
3364 }
a4456856 3365 }
b17459c0 3366 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3367 /* fail all writes first */
3368 bi = sh->dev[i].towrite;
3369 sh->dev[i].towrite = NULL;
7a87f434 3370 sh->overwrite_disks = 0;
b17459c0 3371 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3372 if (bi)
a4456856 3373 bitmap_end = 1;
a4456856 3374
ff875738 3375 log_stripe_write_finished(sh);
0576b1c6 3376
a4456856
DW
3377 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378 wake_up(&conf->wait_for_overlap);
3379
4f024f37 3380 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3381 sh->dev[i].sector + STRIPE_SECTORS) {
3382 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3383
49728050 3384 md_write_end(conf->mddev);
6308d8e3 3385 bio_io_error(bi);
a4456856
DW
3386 bi = nextbi;
3387 }
7eaf7e8e
SL
3388 if (bitmap_end)
3389 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3390 STRIPE_SECTORS, 0, 0);
3391 bitmap_end = 0;
a4456856
DW
3392 /* and fail all 'written' */
3393 bi = sh->dev[i].written;
3394 sh->dev[i].written = NULL;
d592a996
SL
3395 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3396 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3397 sh->dev[i].page = sh->dev[i].orig_page;
3398 }
3399
a4456856 3400 if (bi) bitmap_end = 1;
4f024f37 3401 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3402 sh->dev[i].sector + STRIPE_SECTORS) {
3403 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3404
49728050 3405 md_write_end(conf->mddev);
6308d8e3 3406 bio_io_error(bi);
a4456856
DW
3407 bi = bi2;
3408 }
3409
b5e98d65
DW
3410 /* fail any reads if this device is non-operational and
3411 * the data has not reached the cache yet.
3412 */
3413 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3414 s->failed > conf->max_degraded &&
b5e98d65
DW
3415 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3416 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3417 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3418 bi = sh->dev[i].toread;
3419 sh->dev[i].toread = NULL;
143c4d05 3420 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3421 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3422 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3423 if (bi)
3424 s->to_read--;
4f024f37 3425 while (bi && bi->bi_iter.bi_sector <
a4456856
DW
3426 sh->dev[i].sector + STRIPE_SECTORS) {
3427 struct bio *nextbi =
3428 r5_next_bio(bi, sh->dev[i].sector);
4246a0b6 3429
6308d8e3 3430 bio_io_error(bi);
a4456856
DW
3431 bi = nextbi;
3432 }
3433 }
a4456856
DW
3434 if (bitmap_end)
3435 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3436 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
3437 /* If we were in the middle of a write the parity block might
3438 * still be locked - so just clear all R5_LOCKED flags
3439 */
3440 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3441 }
ebda780b
SL
3442 s->to_write = 0;
3443 s->written = 0;
a4456856 3444
8b3e6cdc
DW
3445 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3446 if (atomic_dec_and_test(&conf->pending_full_writes))
3447 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3448}
3449
7f0da59b 3450static void
d1688a6d 3451handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3452 struct stripe_head_state *s)
3453{
3454 int abort = 0;
3455 int i;
3456
59fc630b 3457 BUG_ON(sh->batch_head);
7f0da59b 3458 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3459 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3460 wake_up(&conf->wait_for_overlap);
7f0da59b 3461 s->syncing = 0;
9a3e1101 3462 s->replacing = 0;
7f0da59b 3463 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3464 * Don't even need to abort as that is handled elsewhere
3465 * if needed, and not always wanted e.g. if there is a known
3466 * bad block here.
9a3e1101 3467 * For recover/replace we need to record a bad block on all
7f0da59b
N
3468 * non-sync devices, or abort the recovery
3469 */
18b9837e
N
3470 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3471 /* During recovery devices cannot be removed, so
3472 * locking and refcounting of rdevs is not needed
3473 */
e50d3992 3474 rcu_read_lock();
18b9837e 3475 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3476 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3477 if (rdev
3478 && !test_bit(Faulty, &rdev->flags)
3479 && !test_bit(In_sync, &rdev->flags)
3480 && !rdev_set_badblocks(rdev, sh->sector,
3481 STRIPE_SECTORS, 0))
3482 abort = 1;
e50d3992 3483 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3484 if (rdev
3485 && !test_bit(Faulty, &rdev->flags)
3486 && !test_bit(In_sync, &rdev->flags)
3487 && !rdev_set_badblocks(rdev, sh->sector,
3488 STRIPE_SECTORS, 0))
3489 abort = 1;
3490 }
e50d3992 3491 rcu_read_unlock();
18b9837e
N
3492 if (abort)
3493 conf->recovery_disabled =
3494 conf->mddev->recovery_disabled;
7f0da59b 3495 }
18b9837e 3496 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
3497}
3498
9a3e1101
N
3499static int want_replace(struct stripe_head *sh, int disk_idx)
3500{
3501 struct md_rdev *rdev;
3502 int rv = 0;
3f232d6a
N
3503
3504 rcu_read_lock();
3505 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3506 if (rdev
3507 && !test_bit(Faulty, &rdev->flags)
3508 && !test_bit(In_sync, &rdev->flags)
3509 && (rdev->recovery_offset <= sh->sector
3510 || rdev->mddev->recovery_cp <= sh->sector))
3511 rv = 1;
3f232d6a 3512 rcu_read_unlock();
9a3e1101
N
3513 return rv;
3514}
3515
2c58f06e
N
3516static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3517 int disk_idx, int disks)
a4456856 3518{
5599becc 3519 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3520 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3521 &sh->dev[s->failed_num[1]] };
ea664c82 3522 int i;
5599becc 3523
a79cfe12
N
3524
3525 if (test_bit(R5_LOCKED, &dev->flags) ||
3526 test_bit(R5_UPTODATE, &dev->flags))
3527 /* No point reading this as we already have it or have
3528 * decided to get it.
3529 */
3530 return 0;
3531
3532 if (dev->toread ||
3533 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3534 /* We need this block to directly satisfy a request */
3535 return 1;
3536
3537 if (s->syncing || s->expanding ||
3538 (s->replacing && want_replace(sh, disk_idx)))
3539 /* When syncing, or expanding we read everything.
3540 * When replacing, we need the replaced block.
3541 */
3542 return 1;
3543
3544 if ((s->failed >= 1 && fdev[0]->toread) ||
3545 (s->failed >= 2 && fdev[1]->toread))
3546 /* If we want to read from a failed device, then
3547 * we need to actually read every other device.
3548 */
3549 return 1;
3550
a9d56950
N
3551 /* Sometimes neither read-modify-write nor reconstruct-write
3552 * cycles can work. In those cases we read every block we
3553 * can. Then the parity-update is certain to have enough to
3554 * work with.
3555 * This can only be a problem when we need to write something,
3556 * and some device has failed. If either of those tests
3557 * fail we need look no further.
3558 */
3559 if (!s->failed || !s->to_write)
3560 return 0;
3561
3562 if (test_bit(R5_Insync, &dev->flags) &&
3563 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3564 /* Pre-reads at not permitted until after short delay
3565 * to gather multiple requests. However if this
3560741e 3566 * device is no Insync, the block could only be computed
a9d56950
N
3567 * and there is no need to delay that.
3568 */
3569 return 0;
ea664c82 3570
36707bb2 3571 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3572 if (fdev[i]->towrite &&
3573 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3574 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3575 /* If we have a partial write to a failed
3576 * device, then we will need to reconstruct
3577 * the content of that device, so all other
3578 * devices must be read.
3579 */
3580 return 1;
3581 }
3582
3583 /* If we are forced to do a reconstruct-write, either because
3584 * the current RAID6 implementation only supports that, or
3560741e 3585 * because parity cannot be trusted and we are currently
ea664c82
N
3586 * recovering it, there is extra need to be careful.
3587 * If one of the devices that we would need to read, because
3588 * it is not being overwritten (and maybe not written at all)
3589 * is missing/faulty, then we need to read everything we can.
3590 */
3591 if (sh->raid_conf->level != 6 &&
3592 sh->sector < sh->raid_conf->mddev->recovery_cp)
3593 /* reconstruct-write isn't being forced */
3594 return 0;
36707bb2 3595 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3596 if (s->failed_num[i] != sh->pd_idx &&
3597 s->failed_num[i] != sh->qd_idx &&
3598 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3599 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3600 return 1;
3601 }
3602
2c58f06e
N
3603 return 0;
3604}
3605
ba02684d
SL
3606/* fetch_block - checks the given member device to see if its data needs
3607 * to be read or computed to satisfy a request.
3608 *
3609 * Returns 1 when no more member devices need to be checked, otherwise returns
3610 * 0 to tell the loop in handle_stripe_fill to continue
3611 */
2c58f06e
N
3612static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3613 int disk_idx, int disks)
3614{
3615 struct r5dev *dev = &sh->dev[disk_idx];
3616
3617 /* is the data in this block needed, and can we get it? */
3618 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3619 /* we would like to get this block, possibly by computing it,
3620 * otherwise read it if the backing disk is insync
3621 */
3622 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3623 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3624 BUG_ON(sh->batch_head);
7471fb77
N
3625
3626 /*
3627 * In the raid6 case if the only non-uptodate disk is P
3628 * then we already trusted P to compute the other failed
3629 * drives. It is safe to compute rather than re-read P.
3630 * In other cases we only compute blocks from failed
3631 * devices, otherwise check/repair might fail to detect
3632 * a real inconsistency.
3633 */
3634
5599becc 3635 if ((s->uptodate == disks - 1) &&
7471fb77 3636 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3637 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3638 disk_idx == s->failed_num[1])))) {
5599becc
YT
3639 /* have disk failed, and we're requested to fetch it;
3640 * do compute it
a4456856 3641 */
5599becc
YT
3642 pr_debug("Computing stripe %llu block %d\n",
3643 (unsigned long long)sh->sector, disk_idx);
3644 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3645 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3646 set_bit(R5_Wantcompute, &dev->flags);
3647 sh->ops.target = disk_idx;
3648 sh->ops.target2 = -1; /* no 2nd target */
3649 s->req_compute = 1;
93b3dbce
N
3650 /* Careful: from this point on 'uptodate' is in the eye
3651 * of raid_run_ops which services 'compute' operations
3652 * before writes. R5_Wantcompute flags a block that will
3653 * be R5_UPTODATE by the time it is needed for a
3654 * subsequent operation.
3655 */
5599becc
YT
3656 s->uptodate++;
3657 return 1;
3658 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3659 /* Computing 2-failure is *very* expensive; only
3660 * do it if failed >= 2
3661 */
3662 int other;
3663 for (other = disks; other--; ) {
3664 if (other == disk_idx)
3665 continue;
3666 if (!test_bit(R5_UPTODATE,
3667 &sh->dev[other].flags))
3668 break;
a4456856 3669 }
5599becc
YT
3670 BUG_ON(other < 0);
3671 pr_debug("Computing stripe %llu blocks %d,%d\n",
3672 (unsigned long long)sh->sector,
3673 disk_idx, other);
3674 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3675 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3676 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3677 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3678 sh->ops.target = disk_idx;
3679 sh->ops.target2 = other;
3680 s->uptodate += 2;
3681 s->req_compute = 1;
3682 return 1;
3683 } else if (test_bit(R5_Insync, &dev->flags)) {
3684 set_bit(R5_LOCKED, &dev->flags);
3685 set_bit(R5_Wantread, &dev->flags);
3686 s->locked++;
3687 pr_debug("Reading block %d (sync=%d)\n",
3688 disk_idx, s->syncing);
a4456856
DW
3689 }
3690 }
5599becc
YT
3691
3692 return 0;
3693}
3694
3695/**
93b3dbce 3696 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 3697 */
93b3dbce
N
3698static void handle_stripe_fill(struct stripe_head *sh,
3699 struct stripe_head_state *s,
3700 int disks)
5599becc
YT
3701{
3702 int i;
3703
3704 /* look for blocks to read/compute, skip this if a compute
3705 * is already in flight, or if the stripe contents are in the
3706 * midst of changing due to a write
3707 */
3708 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
3709 !sh->reconstruct_state) {
3710
3711 /*
3712 * For degraded stripe with data in journal, do not handle
3713 * read requests yet, instead, flush the stripe to raid
3714 * disks first, this avoids handling complex rmw of write
3715 * back cache (prexor with orig_page, and then xor with
3716 * page) in the read path
3717 */
3718 if (s->injournal && s->failed) {
3719 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3720 r5c_make_stripe_write_out(sh);
3721 goto out;
3722 }
3723
5599becc 3724 for (i = disks; i--; )
93b3dbce 3725 if (fetch_block(sh, s, i, disks))
5599becc 3726 break;
07e83364
SL
3727 }
3728out:
a4456856
DW
3729 set_bit(STRIPE_HANDLE, &sh->state);
3730}
3731
787b76fa
N
3732static void break_stripe_batch_list(struct stripe_head *head_sh,
3733 unsigned long handle_flags);
1fe797e6 3734/* handle_stripe_clean_event
a4456856
DW
3735 * any written block on an uptodate or failed drive can be returned.
3736 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3737 * never LOCKED, so we don't need to test 'failed' directly.
3738 */
d1688a6d 3739static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 3740 struct stripe_head *sh, int disks)
a4456856
DW
3741{
3742 int i;
3743 struct r5dev *dev;
f8dfcffd 3744 int discard_pending = 0;
59fc630b 3745 struct stripe_head *head_sh = sh;
3746 bool do_endio = false;
a4456856
DW
3747
3748 for (i = disks; i--; )
3749 if (sh->dev[i].written) {
3750 dev = &sh->dev[i];
3751 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 3752 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
3753 test_bit(R5_Discard, &dev->flags) ||
3754 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
3755 /* We can return any write requests */
3756 struct bio *wbi, *wbi2;
45b4233c 3757 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
3758 if (test_and_clear_bit(R5_Discard, &dev->flags))
3759 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
3760 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3761 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 3762 }
59fc630b 3763 do_endio = true;
3764
3765returnbi:
3766 dev->page = dev->orig_page;
a4456856
DW
3767 wbi = dev->written;
3768 dev->written = NULL;
4f024f37 3769 while (wbi && wbi->bi_iter.bi_sector <
a4456856
DW
3770 dev->sector + STRIPE_SECTORS) {
3771 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 3772 md_write_end(conf->mddev);
016c76ac 3773 bio_endio(wbi);
a4456856
DW
3774 wbi = wbi2;
3775 }
7eaf7e8e
SL
3776 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3777 STRIPE_SECTORS,
a4456856 3778 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 3779 0);
59fc630b 3780 if (head_sh->batch_head) {
3781 sh = list_first_entry(&sh->batch_list,
3782 struct stripe_head,
3783 batch_list);
3784 if (sh != head_sh) {
3785 dev = &sh->dev[i];
3786 goto returnbi;
3787 }
3788 }
3789 sh = head_sh;
3790 dev = &sh->dev[i];
f8dfcffd
N
3791 } else if (test_bit(R5_Discard, &dev->flags))
3792 discard_pending = 1;
3793 }
f6bed0ef 3794
ff875738 3795 log_stripe_write_finished(sh);
0576b1c6 3796
f8dfcffd
N
3797 if (!discard_pending &&
3798 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 3799 int hash;
f8dfcffd
N
3800 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3801 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3802 if (sh->qd_idx >= 0) {
3803 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3804 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3805 }
3806 /* now that discard is done we can proceed with any sync */
3807 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
3808 /*
3809 * SCSI discard will change some bio fields and the stripe has
3810 * no updated data, so remove it from hash list and the stripe
3811 * will be reinitialized
3812 */
59fc630b 3813unhash:
b8a9d66d
RG
3814 hash = sh->hash_lock_index;
3815 spin_lock_irq(conf->hash_locks + hash);
d47648fc 3816 remove_hash(sh);
b8a9d66d 3817 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 3818 if (head_sh->batch_head) {
3819 sh = list_first_entry(&sh->batch_list,
3820 struct stripe_head, batch_list);
3821 if (sh != head_sh)
3822 goto unhash;
3823 }
59fc630b 3824 sh = head_sh;
3825
f8dfcffd
N
3826 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3827 set_bit(STRIPE_HANDLE, &sh->state);
3828
3829 }
8b3e6cdc
DW
3830
3831 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3832 if (atomic_dec_and_test(&conf->pending_full_writes))
3833 md_wakeup_thread(conf->mddev->thread);
59fc630b 3834
787b76fa
N
3835 if (head_sh->batch_head && do_endio)
3836 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
3837}
3838
86aa1397
SL
3839/*
3840 * For RMW in write back cache, we need extra page in prexor to store the
3841 * old data. This page is stored in dev->orig_page.
3842 *
3843 * This function checks whether we have data for prexor. The exact logic
3844 * is:
3845 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3846 */
3847static inline bool uptodate_for_rmw(struct r5dev *dev)
3848{
3849 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3850 (!test_bit(R5_InJournal, &dev->flags) ||
3851 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3852}
3853
d7bd398e
SL
3854static int handle_stripe_dirtying(struct r5conf *conf,
3855 struct stripe_head *sh,
3856 struct stripe_head_state *s,
3857 int disks)
a4456856
DW
3858{
3859 int rmw = 0, rcw = 0, i;
a7854487
AL
3860 sector_t recovery_cp = conf->mddev->recovery_cp;
3861
584acdd4 3862 /* Check whether resync is now happening or should start.
a7854487
AL
3863 * If yes, then the array is dirty (after unclean shutdown or
3864 * initial creation), so parity in some stripes might be inconsistent.
3865 * In this case, we need to always do reconstruct-write, to ensure
3866 * that in case of drive failure or read-error correction, we
3867 * generate correct data from the parity.
3868 */
584acdd4 3869 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
3870 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3871 s->failed == 0)) {
a7854487 3872 /* Calculate the real rcw later - for now make it
c8ac1803
N
3873 * look like rcw is cheaper
3874 */
3875 rcw = 1; rmw = 2;
584acdd4
MS
3876 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3877 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 3878 (unsigned long long)sh->sector);
c8ac1803 3879 } else for (i = disks; i--; ) {
a4456856
DW
3880 /* would I have to read this buffer for read_modify_write */
3881 struct r5dev *dev = &sh->dev[i];
39b99586 3882 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 3883 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 3884 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3885 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3886 !(uptodate_for_rmw(dev) ||
f38e1219 3887 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
3888 if (test_bit(R5_Insync, &dev->flags))
3889 rmw++;
3890 else
3891 rmw += 2*disks; /* cannot read it */
3892 }
3893 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
3894 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3895 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3896 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3897 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 3898 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
3899 if (test_bit(R5_Insync, &dev->flags))
3900 rcw++;
a4456856
DW
3901 else
3902 rcw += 2*disks;
3903 }
3904 }
1e6d690b 3905
39b99586
SL
3906 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3907 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 3908 set_bit(STRIPE_HANDLE, &sh->state);
41257580 3909 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 3910 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
3911 if (conf->mddev->queue)
3912 blk_add_trace_msg(conf->mddev->queue,
3913 "raid5 rmw %llu %d",
3914 (unsigned long long)sh->sector, rmw);
a4456856
DW
3915 for (i = disks; i--; ) {
3916 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
3917 if (test_bit(R5_InJournal, &dev->flags) &&
3918 dev->page == dev->orig_page &&
3919 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3920 /* alloc page for prexor */
d7bd398e
SL
3921 struct page *p = alloc_page(GFP_NOIO);
3922
3923 if (p) {
3924 dev->orig_page = p;
3925 continue;
3926 }
3927
3928 /*
3929 * alloc_page() failed, try use
3930 * disk_info->extra_page
3931 */
3932 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3933 &conf->cache_state)) {
3934 r5c_use_extra_page(sh);
3935 break;
3936 }
1e6d690b 3937
d7bd398e
SL
3938 /* extra_page in use, add to delayed_list */
3939 set_bit(STRIPE_DELAYED, &sh->state);
3940 s->waiting_extra_page = 1;
3941 return -EAGAIN;
1e6d690b 3942 }
d7bd398e 3943 }
1e6d690b 3944
d7bd398e
SL
3945 for (i = disks; i--; ) {
3946 struct r5dev *dev = &sh->dev[i];
39b99586 3947 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
3948 i == sh->pd_idx || i == sh->qd_idx ||
3949 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 3950 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 3951 !(uptodate_for_rmw(dev) ||
1e6d690b 3952 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 3953 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
3954 if (test_bit(STRIPE_PREREAD_ACTIVE,
3955 &sh->state)) {
3956 pr_debug("Read_old block %d for r-m-w\n",
3957 i);
a4456856
DW
3958 set_bit(R5_LOCKED, &dev->flags);
3959 set_bit(R5_Wantread, &dev->flags);
3960 s->locked++;
3961 } else {
3962 set_bit(STRIPE_DELAYED, &sh->state);
3963 set_bit(STRIPE_HANDLE, &sh->state);
3964 }
3965 }
3966 }
a9add5d9 3967 }
41257580 3968 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 3969 /* want reconstruct write, but need to get some data */
a9add5d9 3970 int qread =0;
c8ac1803 3971 rcw = 0;
a4456856
DW
3972 for (i = disks; i--; ) {
3973 struct r5dev *dev = &sh->dev[i];
3974 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 3975 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 3976 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 3977 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
3978 test_bit(R5_Wantcompute, &dev->flags))) {
3979 rcw++;
67f45548
N
3980 if (test_bit(R5_Insync, &dev->flags) &&
3981 test_bit(STRIPE_PREREAD_ACTIVE,
3982 &sh->state)) {
45b4233c 3983 pr_debug("Read_old block "
a4456856
DW
3984 "%d for Reconstruct\n", i);
3985 set_bit(R5_LOCKED, &dev->flags);
3986 set_bit(R5_Wantread, &dev->flags);
3987 s->locked++;
a9add5d9 3988 qread++;
a4456856
DW
3989 } else {
3990 set_bit(STRIPE_DELAYED, &sh->state);
3991 set_bit(STRIPE_HANDLE, &sh->state);
3992 }
3993 }
3994 }
e3620a3a 3995 if (rcw && conf->mddev->queue)
a9add5d9
N
3996 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3997 (unsigned long long)sh->sector,
3998 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 3999 }
b1b02fe9
N
4000
4001 if (rcw > disks && rmw > disks &&
4002 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4003 set_bit(STRIPE_DELAYED, &sh->state);
4004
a4456856
DW
4005 /* now if nothing is locked, and if we have enough data,
4006 * we can start a write request
4007 */
f38e1219
DW
4008 /* since handle_stripe can be called at any time we need to handle the
4009 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4010 * subsequent call wants to start a write request. raid_run_ops only
4011 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4012 * simultaneously. If this is not the case then new writes need to be
4013 * held off until the compute completes.
4014 */
976ea8d4
DW
4015 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4016 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4017 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4018 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4019 return 0;
a4456856
DW
4020}
4021
d1688a6d 4022static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4023 struct stripe_head_state *s, int disks)
4024{
ecc65c9b 4025 struct r5dev *dev = NULL;
bd2ab670 4026
59fc630b 4027 BUG_ON(sh->batch_head);
a4456856 4028 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4029
ecc65c9b
DW
4030 switch (sh->check_state) {
4031 case check_state_idle:
4032 /* start a new check operation if there are no failures */
bd2ab670 4033 if (s->failed == 0) {
bd2ab670 4034 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4035 sh->check_state = check_state_run;
4036 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4037 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4038 s->uptodate--;
ecc65c9b 4039 break;
bd2ab670 4040 }
f2b3b44d 4041 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
4042 /* fall through */
4043 case check_state_compute_result:
4044 sh->check_state = check_state_idle;
4045 if (!dev)
4046 dev = &sh->dev[sh->pd_idx];
4047
4048 /* check that a write has not made the stripe insync */
4049 if (test_bit(STRIPE_INSYNC, &sh->state))
4050 break;
c8894419 4051
a4456856 4052 /* either failed parity check, or recovery is happening */
a4456856
DW
4053 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4054 BUG_ON(s->uptodate != disks);
4055
4056 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4057 s->locked++;
a4456856 4058 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4059
a4456856 4060 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4061 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4062 break;
4063 case check_state_run:
4064 break; /* we will be called again upon completion */
4065 case check_state_check_result:
4066 sh->check_state = check_state_idle;
4067
4068 /* if a failure occurred during the check operation, leave
4069 * STRIPE_INSYNC not set and let the stripe be handled again
4070 */
4071 if (s->failed)
4072 break;
4073
4074 /* handle a successful check operation, if parity is correct
4075 * we are done. Otherwise update the mismatch count and repair
4076 * parity if !MD_RECOVERY_CHECK
4077 */
ad283ea4 4078 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4079 /* parity is correct (on disc,
4080 * not in buffer any more)
4081 */
4082 set_bit(STRIPE_INSYNC, &sh->state);
4083 else {
7f7583d4 4084 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
e1539036 4085 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
ecc65c9b
DW
4086 /* don't try to repair!! */
4087 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4088 pr_warn_ratelimited("%s: mismatch sector in range "
4089 "%llu-%llu\n", mdname(conf->mddev),
4090 (unsigned long long) sh->sector,
4091 (unsigned long long) sh->sector +
4092 STRIPE_SECTORS);
4093 } else {
ecc65c9b 4094 sh->check_state = check_state_compute_run;
976ea8d4 4095 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4096 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4097 set_bit(R5_Wantcompute,
4098 &sh->dev[sh->pd_idx].flags);
4099 sh->ops.target = sh->pd_idx;
ac6b53b6 4100 sh->ops.target2 = -1;
ecc65c9b
DW
4101 s->uptodate++;
4102 }
4103 }
4104 break;
4105 case check_state_compute_run:
4106 break;
4107 default:
cc6167b4 4108 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4109 __func__, sh->check_state,
4110 (unsigned long long) sh->sector);
4111 BUG();
a4456856
DW
4112 }
4113}
4114
d1688a6d 4115static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4116 struct stripe_head_state *s,
f2b3b44d 4117 int disks)
a4456856 4118{
a4456856 4119 int pd_idx = sh->pd_idx;
34e04e87 4120 int qd_idx = sh->qd_idx;
d82dfee0 4121 struct r5dev *dev;
a4456856 4122
59fc630b 4123 BUG_ON(sh->batch_head);
a4456856
DW
4124 set_bit(STRIPE_HANDLE, &sh->state);
4125
4126 BUG_ON(s->failed > 2);
d82dfee0 4127
a4456856
DW
4128 /* Want to check and possibly repair P and Q.
4129 * However there could be one 'failed' device, in which
4130 * case we can only check one of them, possibly using the
4131 * other to generate missing data
4132 */
4133
d82dfee0
DW
4134 switch (sh->check_state) {
4135 case check_state_idle:
4136 /* start a new check operation if there are < 2 failures */
f2b3b44d 4137 if (s->failed == s->q_failed) {
d82dfee0 4138 /* The only possible failed device holds Q, so it
a4456856
DW
4139 * makes sense to check P (If anything else were failed,
4140 * we would have used P to recreate it).
4141 */
d82dfee0 4142 sh->check_state = check_state_run;
a4456856 4143 }
f2b3b44d 4144 if (!s->q_failed && s->failed < 2) {
d82dfee0 4145 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4146 * anything, so it makes sense to check it
4147 */
d82dfee0
DW
4148 if (sh->check_state == check_state_run)
4149 sh->check_state = check_state_run_pq;
4150 else
4151 sh->check_state = check_state_run_q;
a4456856 4152 }
a4456856 4153
d82dfee0
DW
4154 /* discard potentially stale zero_sum_result */
4155 sh->ops.zero_sum_result = 0;
a4456856 4156
d82dfee0
DW
4157 if (sh->check_state == check_state_run) {
4158 /* async_xor_zero_sum destroys the contents of P */
4159 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4160 s->uptodate--;
a4456856 4161 }
d82dfee0
DW
4162 if (sh->check_state >= check_state_run &&
4163 sh->check_state <= check_state_run_pq) {
4164 /* async_syndrome_zero_sum preserves P and Q, so
4165 * no need to mark them !uptodate here
4166 */
4167 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4168 break;
a4456856
DW
4169 }
4170
d82dfee0
DW
4171 /* we have 2-disk failure */
4172 BUG_ON(s->failed != 2);
4173 /* fall through */
4174 case check_state_compute_result:
4175 sh->check_state = check_state_idle;
a4456856 4176
d82dfee0
DW
4177 /* check that a write has not made the stripe insync */
4178 if (test_bit(STRIPE_INSYNC, &sh->state))
4179 break;
a4456856
DW
4180
4181 /* now write out any block on a failed drive,
d82dfee0 4182 * or P or Q if they were recomputed
a4456856 4183 */
d82dfee0 4184 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 4185 if (s->failed == 2) {
f2b3b44d 4186 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4187 s->locked++;
4188 set_bit(R5_LOCKED, &dev->flags);
4189 set_bit(R5_Wantwrite, &dev->flags);
4190 }
4191 if (s->failed >= 1) {
f2b3b44d 4192 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4193 s->locked++;
4194 set_bit(R5_LOCKED, &dev->flags);
4195 set_bit(R5_Wantwrite, &dev->flags);
4196 }
d82dfee0 4197 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4198 dev = &sh->dev[pd_idx];
4199 s->locked++;
4200 set_bit(R5_LOCKED, &dev->flags);
4201 set_bit(R5_Wantwrite, &dev->flags);
4202 }
d82dfee0 4203 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4204 dev = &sh->dev[qd_idx];
4205 s->locked++;
4206 set_bit(R5_LOCKED, &dev->flags);
4207 set_bit(R5_Wantwrite, &dev->flags);
4208 }
4209 clear_bit(STRIPE_DEGRADED, &sh->state);
4210
4211 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4212 break;
4213 case check_state_run:
4214 case check_state_run_q:
4215 case check_state_run_pq:
4216 break; /* we will be called again upon completion */
4217 case check_state_check_result:
4218 sh->check_state = check_state_idle;
4219
4220 /* handle a successful check operation, if parity is correct
4221 * we are done. Otherwise update the mismatch count and repair
4222 * parity if !MD_RECOVERY_CHECK
4223 */
4224 if (sh->ops.zero_sum_result == 0) {
4225 /* both parities are correct */
4226 if (!s->failed)
4227 set_bit(STRIPE_INSYNC, &sh->state);
4228 else {
4229 /* in contrast to the raid5 case we can validate
4230 * parity, but still have a failure to write
4231 * back
4232 */
4233 sh->check_state = check_state_compute_result;
4234 /* Returning at this point means that we may go
4235 * off and bring p and/or q uptodate again so
4236 * we make sure to check zero_sum_result again
4237 * to verify if p or q need writeback
4238 */
4239 }
4240 } else {
7f7583d4 4241 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
e1539036 4242 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
d82dfee0
DW
4243 /* don't try to repair!! */
4244 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4245 pr_warn_ratelimited("%s: mismatch sector in range "
4246 "%llu-%llu\n", mdname(conf->mddev),
4247 (unsigned long long) sh->sector,
4248 (unsigned long long) sh->sector +
4249 STRIPE_SECTORS);
4250 } else {
d82dfee0
DW
4251 int *target = &sh->ops.target;
4252
4253 sh->ops.target = -1;
4254 sh->ops.target2 = -1;
4255 sh->check_state = check_state_compute_run;
4256 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4257 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4258 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4259 set_bit(R5_Wantcompute,
4260 &sh->dev[pd_idx].flags);
4261 *target = pd_idx;
4262 target = &sh->ops.target2;
4263 s->uptodate++;
4264 }
4265 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4266 set_bit(R5_Wantcompute,
4267 &sh->dev[qd_idx].flags);
4268 *target = qd_idx;
4269 s->uptodate++;
4270 }
4271 }
4272 }
4273 break;
4274 case check_state_compute_run:
4275 break;
4276 default:
cc6167b4
N
4277 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4278 __func__, sh->check_state,
4279 (unsigned long long) sh->sector);
d82dfee0 4280 BUG();
a4456856
DW
4281 }
4282}
4283
d1688a6d 4284static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4285{
4286 int i;
4287
4288 /* We have read all the blocks in this stripe and now we need to
4289 * copy some of them into a target stripe for expand.
4290 */
f0a50d37 4291 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4292 BUG_ON(sh->batch_head);
a4456856
DW
4293 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4294 for (i = 0; i < sh->disks; i++)
34e04e87 4295 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4296 int dd_idx, j;
a4456856 4297 struct stripe_head *sh2;
a08abd8c 4298 struct async_submit_ctl submit;
a4456856 4299
6d036f7d 4300 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4301 sector_t s = raid5_compute_sector(conf, bn, 0,
4302 &dd_idx, NULL);
6d036f7d 4303 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
4304 if (sh2 == NULL)
4305 /* so far only the early blocks of this stripe
4306 * have been requested. When later blocks
4307 * get requested, we will try again
4308 */
4309 continue;
4310 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4311 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4312 /* must have already done this block */
6d036f7d 4313 raid5_release_stripe(sh2);
a4456856
DW
4314 continue;
4315 }
f0a50d37
DW
4316
4317 /* place all the copies on one channel */
a08abd8c 4318 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4319 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 4320 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 4321 &submit);
f0a50d37 4322
a4456856
DW
4323 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4324 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4325 for (j = 0; j < conf->raid_disks; j++)
4326 if (j != sh2->pd_idx &&
86c374ba 4327 j != sh2->qd_idx &&
a4456856
DW
4328 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4329 break;
4330 if (j == conf->raid_disks) {
4331 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4332 set_bit(STRIPE_HANDLE, &sh2->state);
4333 }
6d036f7d 4334 raid5_release_stripe(sh2);
f0a50d37 4335
a4456856 4336 }
a2e08551 4337 /* done submitting copies, wait for them to complete */
749586b7 4338 async_tx_quiesce(&tx);
a4456856 4339}
1da177e4
LT
4340
4341/*
4342 * handle_stripe - do things to a stripe.
4343 *
9a3e1101
N
4344 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4345 * state of various bits to see what needs to be done.
1da177e4 4346 * Possible results:
9a3e1101
N
4347 * return some read requests which now have data
4348 * return some write requests which are safely on storage
1da177e4
LT
4349 * schedule a read on some buffers
4350 * schedule a write of some buffers
4351 * return confirmation of parity correctness
4352 *
1da177e4 4353 */
a4456856 4354
acfe726b 4355static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4356{
d1688a6d 4357 struct r5conf *conf = sh->raid_conf;
f416885e 4358 int disks = sh->disks;
474af965
N
4359 struct r5dev *dev;
4360 int i;
9a3e1101 4361 int do_recovery = 0;
1da177e4 4362
acfe726b
N
4363 memset(s, 0, sizeof(*s));
4364
dabc4ec6 4365 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4366 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4367 s->failed_num[0] = -1;
4368 s->failed_num[1] = -1;
6e74a9cf 4369 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4370
acfe726b 4371 /* Now to look around and see what can be done */
1da177e4 4372 rcu_read_lock();
16a53ecc 4373 for (i=disks; i--; ) {
3cb03002 4374 struct md_rdev *rdev;
31c176ec
N
4375 sector_t first_bad;
4376 int bad_sectors;
4377 int is_bad = 0;
acfe726b 4378
16a53ecc 4379 dev = &sh->dev[i];
1da177e4 4380
45b4233c 4381 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4382 i, dev->flags,
4383 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4384 /* maybe we can reply to a read
4385 *
4386 * new wantfill requests are only permitted while
4387 * ops_complete_biofill is guaranteed to be inactive
4388 */
4389 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4390 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4391 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4392
16a53ecc 4393 /* now count some things */
cc94015a
N
4394 if (test_bit(R5_LOCKED, &dev->flags))
4395 s->locked++;
4396 if (test_bit(R5_UPTODATE, &dev->flags))
4397 s->uptodate++;
2d6e4ecc 4398 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4399 s->compute++;
4400 BUG_ON(s->compute > 2);
2d6e4ecc 4401 }
1da177e4 4402
acfe726b 4403 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4404 s->to_fill++;
acfe726b 4405 else if (dev->toread)
cc94015a 4406 s->to_read++;
16a53ecc 4407 if (dev->towrite) {
cc94015a 4408 s->to_write++;
16a53ecc 4409 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4410 s->non_overwrite++;
16a53ecc 4411 }
a4456856 4412 if (dev->written)
cc94015a 4413 s->written++;
14a75d3e
N
4414 /* Prefer to use the replacement for reads, but only
4415 * if it is recovered enough and has no bad blocks.
4416 */
4417 rdev = rcu_dereference(conf->disks[i].replacement);
4418 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4419 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4420 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4421 &first_bad, &bad_sectors))
4422 set_bit(R5_ReadRepl, &dev->flags);
4423 else {
e6030cb0 4424 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4425 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4426 else
4427 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4428 rdev = rcu_dereference(conf->disks[i].rdev);
4429 clear_bit(R5_ReadRepl, &dev->flags);
4430 }
9283d8c5
N
4431 if (rdev && test_bit(Faulty, &rdev->flags))
4432 rdev = NULL;
31c176ec
N
4433 if (rdev) {
4434 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4435 &first_bad, &bad_sectors);
4436 if (s->blocked_rdev == NULL
4437 && (test_bit(Blocked, &rdev->flags)
4438 || is_bad < 0)) {
4439 if (is_bad < 0)
4440 set_bit(BlockedBadBlocks,
4441 &rdev->flags);
4442 s->blocked_rdev = rdev;
4443 atomic_inc(&rdev->nr_pending);
4444 }
6bfe0b49 4445 }
415e72d0
N
4446 clear_bit(R5_Insync, &dev->flags);
4447 if (!rdev)
4448 /* Not in-sync */;
31c176ec
N
4449 else if (is_bad) {
4450 /* also not in-sync */
18b9837e
N
4451 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4452 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4453 /* treat as in-sync, but with a read error
4454 * which we can now try to correct
4455 */
4456 set_bit(R5_Insync, &dev->flags);
4457 set_bit(R5_ReadError, &dev->flags);
4458 }
4459 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4460 set_bit(R5_Insync, &dev->flags);
30d7a483 4461 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 4462 /* in sync if before recovery_offset */
30d7a483
N
4463 set_bit(R5_Insync, &dev->flags);
4464 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4465 test_bit(R5_Expanded, &dev->flags))
4466 /* If we've reshaped into here, we assume it is Insync.
4467 * We will shortly update recovery_offset to make
4468 * it official.
4469 */
4470 set_bit(R5_Insync, &dev->flags);
4471
1cc03eb9 4472 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4473 /* This flag does not apply to '.replacement'
4474 * only to .rdev, so make sure to check that*/
4475 struct md_rdev *rdev2 = rcu_dereference(
4476 conf->disks[i].rdev);
4477 if (rdev2 == rdev)
4478 clear_bit(R5_Insync, &dev->flags);
4479 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4480 s->handle_bad_blocks = 1;
14a75d3e 4481 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4482 } else
4483 clear_bit(R5_WriteError, &dev->flags);
4484 }
1cc03eb9 4485 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4486 /* This flag does not apply to '.replacement'
4487 * only to .rdev, so make sure to check that*/
4488 struct md_rdev *rdev2 = rcu_dereference(
4489 conf->disks[i].rdev);
4490 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4491 s->handle_bad_blocks = 1;
14a75d3e 4492 atomic_inc(&rdev2->nr_pending);
b84db560
N
4493 } else
4494 clear_bit(R5_MadeGood, &dev->flags);
4495 }
977df362
N
4496 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4497 struct md_rdev *rdev2 = rcu_dereference(
4498 conf->disks[i].replacement);
4499 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4500 s->handle_bad_blocks = 1;
4501 atomic_inc(&rdev2->nr_pending);
4502 } else
4503 clear_bit(R5_MadeGoodRepl, &dev->flags);
4504 }
415e72d0 4505 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4506 /* The ReadError flag will just be confusing now */
4507 clear_bit(R5_ReadError, &dev->flags);
4508 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4509 }
415e72d0
N
4510 if (test_bit(R5_ReadError, &dev->flags))
4511 clear_bit(R5_Insync, &dev->flags);
4512 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4513 if (s->failed < 2)
4514 s->failed_num[s->failed] = i;
4515 s->failed++;
9a3e1101
N
4516 if (rdev && !test_bit(Faulty, &rdev->flags))
4517 do_recovery = 1;
415e72d0 4518 }
2ded3703
SL
4519
4520 if (test_bit(R5_InJournal, &dev->flags))
4521 s->injournal++;
1e6d690b
SL
4522 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4523 s->just_cached++;
1da177e4 4524 }
9a3e1101
N
4525 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4526 /* If there is a failed device being replaced,
4527 * we must be recovering.
4528 * else if we are after recovery_cp, we must be syncing
c6d2e084 4529 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4530 * else we can only be replacing
4531 * sync and recovery both need to read all devices, and so
4532 * use the same flag.
4533 */
4534 if (do_recovery ||
c6d2e084 4535 sh->sector >= conf->mddev->recovery_cp ||
4536 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4537 s->syncing = 1;
4538 else
4539 s->replacing = 1;
4540 }
1da177e4 4541 rcu_read_unlock();
cc94015a
N
4542}
4543
59fc630b 4544static int clear_batch_ready(struct stripe_head *sh)
4545{
b15a9dbd
N
4546 /* Return '1' if this is a member of batch, or
4547 * '0' if it is a lone stripe or a head which can now be
4548 * handled.
4549 */
59fc630b 4550 struct stripe_head *tmp;
4551 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4552 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4553 spin_lock(&sh->stripe_lock);
4554 if (!sh->batch_head) {
4555 spin_unlock(&sh->stripe_lock);
4556 return 0;
4557 }
4558
4559 /*
4560 * this stripe could be added to a batch list before we check
4561 * BATCH_READY, skips it
4562 */
4563 if (sh->batch_head != sh) {
4564 spin_unlock(&sh->stripe_lock);
4565 return 1;
4566 }
4567 spin_lock(&sh->batch_lock);
4568 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4569 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4570 spin_unlock(&sh->batch_lock);
4571 spin_unlock(&sh->stripe_lock);
4572
4573 /*
4574 * BATCH_READY is cleared, no new stripes can be added.
4575 * batch_list can be accessed without lock
4576 */
4577 return 0;
4578}
4579
3960ce79
N
4580static void break_stripe_batch_list(struct stripe_head *head_sh,
4581 unsigned long handle_flags)
72ac7330 4582{
4e3d62ff 4583 struct stripe_head *sh, *next;
72ac7330 4584 int i;
fb642b92 4585 int do_wakeup = 0;
72ac7330 4586
bb27051f
N
4587 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4588
72ac7330 4589 list_del_init(&sh->batch_list);
4590
fb3229d5 4591 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4592 (1 << STRIPE_SYNCING) |
4593 (1 << STRIPE_REPLACED) |
1b956f7a
N
4594 (1 << STRIPE_DELAYED) |
4595 (1 << STRIPE_BIT_DELAY) |
4596 (1 << STRIPE_FULL_WRITE) |
4597 (1 << STRIPE_BIOFILL_RUN) |
4598 (1 << STRIPE_COMPUTE_RUN) |
4599 (1 << STRIPE_OPS_REQ_PENDING) |
4600 (1 << STRIPE_DISCARD) |
4601 (1 << STRIPE_BATCH_READY) |
4602 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4603 (1 << STRIPE_BITMAP_PENDING)),
4604 "stripe state: %lx\n", sh->state);
4605 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4606 (1 << STRIPE_REPLACED)),
4607 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4608
4609 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4610 (1 << STRIPE_PREREAD_ACTIVE) |
184a09eb
DY
4611 (1 << STRIPE_DEGRADED) |
4612 (1 << STRIPE_ON_UNPLUG_LIST)),
1b956f7a
N
4613 head_sh->state & (1 << STRIPE_INSYNC));
4614
72ac7330 4615 sh->check_state = head_sh->check_state;
4616 sh->reconstruct_state = head_sh->reconstruct_state;
fb642b92
N
4617 for (i = 0; i < sh->disks; i++) {
4618 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4619 do_wakeup = 1;
72ac7330 4620 sh->dev[i].flags = head_sh->dev[i].flags &
4621 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4622 }
72ac7330 4623 spin_lock_irq(&sh->stripe_lock);
4624 sh->batch_head = NULL;
4625 spin_unlock_irq(&sh->stripe_lock);
3960ce79
N
4626 if (handle_flags == 0 ||
4627 sh->state & handle_flags)
4628 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4629 raid5_release_stripe(sh);
72ac7330 4630 }
fb642b92
N
4631 spin_lock_irq(&head_sh->stripe_lock);
4632 head_sh->batch_head = NULL;
4633 spin_unlock_irq(&head_sh->stripe_lock);
4634 for (i = 0; i < head_sh->disks; i++)
4635 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4636 do_wakeup = 1;
3960ce79
N
4637 if (head_sh->state & handle_flags)
4638 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4639
4640 if (do_wakeup)
4641 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4642}
4643
cc94015a
N
4644static void handle_stripe(struct stripe_head *sh)
4645{
4646 struct stripe_head_state s;
d1688a6d 4647 struct r5conf *conf = sh->raid_conf;
3687c061 4648 int i;
84789554
N
4649 int prexor;
4650 int disks = sh->disks;
474af965 4651 struct r5dev *pdev, *qdev;
cc94015a
N
4652
4653 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 4654 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
4655 /* already being handled, ensure it gets handled
4656 * again when current action finishes */
4657 set_bit(STRIPE_HANDLE, &sh->state);
4658 return;
4659 }
4660
59fc630b 4661 if (clear_batch_ready(sh) ) {
4662 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4663 return;
4664 }
4665
4e3d62ff 4666 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 4667 break_stripe_batch_list(sh, 0);
72ac7330 4668
dabc4ec6 4669 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd 4670 spin_lock(&sh->stripe_lock);
5ddf0440
SL
4671 /*
4672 * Cannot process 'sync' concurrently with 'discard'.
4673 * Flush data in r5cache before 'sync'.
4674 */
4675 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4676 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4677 !test_bit(STRIPE_DISCARD, &sh->state) &&
f8dfcffd
N
4678 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4679 set_bit(STRIPE_SYNCING, &sh->state);
4680 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 4681 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
4682 }
4683 spin_unlock(&sh->stripe_lock);
cc94015a
N
4684 }
4685 clear_bit(STRIPE_DELAYED, &sh->state);
4686
4687 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4688 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4689 (unsigned long long)sh->sector, sh->state,
4690 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4691 sh->check_state, sh->reconstruct_state);
3687c061 4692
acfe726b 4693 analyse_stripe(sh, &s);
c5a31000 4694
b70abcb2
SL
4695 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4696 goto finish;
4697
16d997b7
N
4698 if (s.handle_bad_blocks ||
4699 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
4700 set_bit(STRIPE_HANDLE, &sh->state);
4701 goto finish;
4702 }
4703
474af965
N
4704 if (unlikely(s.blocked_rdev)) {
4705 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 4706 s.replacing || s.to_write || s.written) {
474af965
N
4707 set_bit(STRIPE_HANDLE, &sh->state);
4708 goto finish;
4709 }
4710 /* There is nothing for the blocked_rdev to block */
4711 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4712 s.blocked_rdev = NULL;
4713 }
4714
4715 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4716 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4717 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4718 }
4719
4720 pr_debug("locked=%d uptodate=%d to_read=%d"
4721 " to_write=%d failed=%d failed_num=%d,%d\n",
4722 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4723 s.failed_num[0], s.failed_num[1]);
70d466f7
SL
4724 /*
4725 * check if the array has lost more than max_degraded devices and,
474af965 4726 * if so, some requests might need to be failed.
70d466f7
SL
4727 *
4728 * When journal device failed (log_failed), we will only process
4729 * the stripe if there is data need write to raid disks
474af965 4730 */
70d466f7
SL
4731 if (s.failed > conf->max_degraded ||
4732 (s.log_failed && s.injournal == 0)) {
9a3f530f
N
4733 sh->check_state = 0;
4734 sh->reconstruct_state = 0;
626f2092 4735 break_stripe_batch_list(sh, 0);
9a3f530f 4736 if (s.to_read+s.to_write+s.written)
bd83d0a2 4737 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 4738 if (s.syncing + s.replacing)
9a3f530f
N
4739 handle_failed_sync(conf, sh, &s);
4740 }
474af965 4741
84789554
N
4742 /* Now we check to see if any write operations have recently
4743 * completed
4744 */
4745 prexor = 0;
4746 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4747 prexor = 1;
4748 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4749 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4750 sh->reconstruct_state = reconstruct_state_idle;
4751
4752 /* All the 'written' buffers and the parity block are ready to
4753 * be written back to disk
4754 */
9e444768
SL
4755 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4756 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 4757 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
4758 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4759 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
4760 for (i = disks; i--; ) {
4761 struct r5dev *dev = &sh->dev[i];
4762 if (test_bit(R5_LOCKED, &dev->flags) &&
4763 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
4764 dev->written || test_bit(R5_InJournal,
4765 &dev->flags))) {
84789554
N
4766 pr_debug("Writing block %d\n", i);
4767 set_bit(R5_Wantwrite, &dev->flags);
4768 if (prexor)
4769 continue;
9c4bdf69
N
4770 if (s.failed > 1)
4771 continue;
84789554
N
4772 if (!test_bit(R5_Insync, &dev->flags) ||
4773 ((i == sh->pd_idx || i == sh->qd_idx) &&
4774 s.failed == 0))
4775 set_bit(STRIPE_INSYNC, &sh->state);
4776 }
4777 }
4778 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4779 s.dec_preread_active = 1;
4780 }
4781
ef5b7c69
N
4782 /*
4783 * might be able to return some write requests if the parity blocks
4784 * are safe, or on a failed drive
4785 */
4786 pdev = &sh->dev[sh->pd_idx];
4787 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4788 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4789 qdev = &sh->dev[sh->qd_idx];
4790 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4791 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4792 || conf->level < 6;
4793
4794 if (s.written &&
4795 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4796 && !test_bit(R5_LOCKED, &pdev->flags)
4797 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4798 test_bit(R5_Discard, &pdev->flags))))) &&
4799 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4800 && !test_bit(R5_LOCKED, &qdev->flags)
4801 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4802 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 4803 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 4804
1e6d690b 4805 if (s.just_cached)
bd83d0a2 4806 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 4807 log_stripe_write_finished(sh);
1e6d690b 4808
ef5b7c69
N
4809 /* Now we might consider reading some blocks, either to check/generate
4810 * parity, or to satisfy requests
4811 * or to load a block that is being partially written.
4812 */
4813 if (s.to_read || s.non_overwrite
4814 || (conf->level == 6 && s.to_write && s.failed)
4815 || (s.syncing && (s.uptodate + s.compute < disks))
4816 || s.replacing
4817 || s.expanding)
4818 handle_stripe_fill(sh, &s, disks);
4819
2ded3703
SL
4820 /*
4821 * When the stripe finishes full journal write cycle (write to journal
4822 * and raid disk), this is the clean up procedure so it is ready for
4823 * next operation.
4824 */
4825 r5c_finish_stripe_write_out(conf, sh, &s);
4826
4827 /*
4828 * Now to consider new write requests, cache write back and what else,
4829 * if anything should be read. We do not handle new writes when:
84789554
N
4830 * 1/ A 'write' operation (copy+xor) is already in flight.
4831 * 2/ A 'check' operation is in flight, as it may clobber the parity
4832 * block.
2ded3703 4833 * 3/ A r5c cache log write is in flight.
84789554 4834 */
2ded3703
SL
4835
4836 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4837 if (!r5c_is_writeback(conf->log)) {
4838 if (s.to_write)
4839 handle_stripe_dirtying(conf, sh, &s, disks);
4840 } else { /* write back cache */
4841 int ret = 0;
4842
4843 /* First, try handle writes in caching phase */
4844 if (s.to_write)
4845 ret = r5c_try_caching_write(conf, sh, &s,
4846 disks);
4847 /*
4848 * If caching phase failed: ret == -EAGAIN
4849 * OR
4850 * stripe under reclaim: !caching && injournal
4851 *
4852 * fall back to handle_stripe_dirtying()
4853 */
4854 if (ret == -EAGAIN ||
4855 /* stripe under reclaim: !caching && injournal */
4856 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
4857 s.injournal > 0)) {
4858 ret = handle_stripe_dirtying(conf, sh, &s,
4859 disks);
4860 if (ret == -EAGAIN)
4861 goto finish;
4862 }
2ded3703
SL
4863 }
4864 }
84789554
N
4865
4866 /* maybe we need to check and possibly fix the parity for this stripe
4867 * Any reads will already have been scheduled, so we just see if enough
4868 * data is available. The parity check is held off while parity
4869 * dependent operations are in flight.
4870 */
4871 if (sh->check_state ||
4872 (s.syncing && s.locked == 0 &&
4873 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4874 !test_bit(STRIPE_INSYNC, &sh->state))) {
4875 if (conf->level == 6)
4876 handle_parity_checks6(conf, sh, &s, disks);
4877 else
4878 handle_parity_checks5(conf, sh, &s, disks);
4879 }
c5a31000 4880
f94c0b66
N
4881 if ((s.replacing || s.syncing) && s.locked == 0
4882 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4883 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
4884 /* Write out to replacement devices where possible */
4885 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
4886 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4887 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
4888 set_bit(R5_WantReplace, &sh->dev[i].flags);
4889 set_bit(R5_LOCKED, &sh->dev[i].flags);
4890 s.locked++;
4891 }
f94c0b66
N
4892 if (s.replacing)
4893 set_bit(STRIPE_INSYNC, &sh->state);
4894 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
4895 }
4896 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 4897 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 4898 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
4899 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4900 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
4901 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4902 wake_up(&conf->wait_for_overlap);
c5a31000
N
4903 }
4904
4905 /* If the failed drives are just a ReadError, then we might need
4906 * to progress the repair/check process
4907 */
4908 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4909 for (i = 0; i < s.failed; i++) {
4910 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4911 if (test_bit(R5_ReadError, &dev->flags)
4912 && !test_bit(R5_LOCKED, &dev->flags)
4913 && test_bit(R5_UPTODATE, &dev->flags)
4914 ) {
4915 if (!test_bit(R5_ReWrite, &dev->flags)) {
4916 set_bit(R5_Wantwrite, &dev->flags);
4917 set_bit(R5_ReWrite, &dev->flags);
4918 set_bit(R5_LOCKED, &dev->flags);
4919 s.locked++;
4920 } else {
4921 /* let's read it back */
4922 set_bit(R5_Wantread, &dev->flags);
4923 set_bit(R5_LOCKED, &dev->flags);
4924 s.locked++;
4925 }
4926 }
4927 }
4928
3687c061
N
4929 /* Finish reconstruct operations initiated by the expansion process */
4930 if (sh->reconstruct_state == reconstruct_state_result) {
4931 struct stripe_head *sh_src
6d036f7d 4932 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
3687c061
N
4933 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4934 /* sh cannot be written until sh_src has been read.
4935 * so arrange for sh to be delayed a little
4936 */
4937 set_bit(STRIPE_DELAYED, &sh->state);
4938 set_bit(STRIPE_HANDLE, &sh->state);
4939 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4940 &sh_src->state))
4941 atomic_inc(&conf->preread_active_stripes);
6d036f7d 4942 raid5_release_stripe(sh_src);
3687c061
N
4943 goto finish;
4944 }
4945 if (sh_src)
6d036f7d 4946 raid5_release_stripe(sh_src);
3687c061
N
4947
4948 sh->reconstruct_state = reconstruct_state_idle;
4949 clear_bit(STRIPE_EXPANDING, &sh->state);
4950 for (i = conf->raid_disks; i--; ) {
4951 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4952 set_bit(R5_LOCKED, &sh->dev[i].flags);
4953 s.locked++;
4954 }
4955 }
f416885e 4956
3687c061
N
4957 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4958 !sh->reconstruct_state) {
4959 /* Need to write out all blocks after computing parity */
4960 sh->disks = conf->raid_disks;
4961 stripe_set_idx(sh->sector, conf, 0, sh);
4962 schedule_reconstruction(sh, &s, 1, 1);
4963 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4964 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4965 atomic_dec(&conf->reshape_stripes);
4966 wake_up(&conf->wait_for_overlap);
4967 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4968 }
4969
4970 if (s.expanding && s.locked == 0 &&
4971 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4972 handle_stripe_expansion(conf, sh);
16a53ecc 4973
3687c061 4974finish:
6bfe0b49 4975 /* wait for this device to become unblocked */
5f066c63
N
4976 if (unlikely(s.blocked_rdev)) {
4977 if (conf->mddev->external)
4978 md_wait_for_blocked_rdev(s.blocked_rdev,
4979 conf->mddev);
4980 else
4981 /* Internal metadata will immediately
4982 * be written by raid5d, so we don't
4983 * need to wait here.
4984 */
4985 rdev_dec_pending(s.blocked_rdev,
4986 conf->mddev);
4987 }
6bfe0b49 4988
bc2607f3
N
4989 if (s.handle_bad_blocks)
4990 for (i = disks; i--; ) {
3cb03002 4991 struct md_rdev *rdev;
bc2607f3
N
4992 struct r5dev *dev = &sh->dev[i];
4993 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4994 /* We own a safe reference to the rdev */
4995 rdev = conf->disks[i].rdev;
4996 if (!rdev_set_badblocks(rdev, sh->sector,
4997 STRIPE_SECTORS, 0))
4998 md_error(conf->mddev, rdev);
4999 rdev_dec_pending(rdev, conf->mddev);
5000 }
b84db560
N
5001 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5002 rdev = conf->disks[i].rdev;
5003 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 5004 STRIPE_SECTORS, 0);
b84db560
N
5005 rdev_dec_pending(rdev, conf->mddev);
5006 }
977df362
N
5007 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5008 rdev = conf->disks[i].replacement;
dd054fce
N
5009 if (!rdev)
5010 /* rdev have been moved down */
5011 rdev = conf->disks[i].rdev;
977df362 5012 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 5013 STRIPE_SECTORS, 0);
977df362
N
5014 rdev_dec_pending(rdev, conf->mddev);
5015 }
bc2607f3
N
5016 }
5017
6c0069c0
YT
5018 if (s.ops_request)
5019 raid_run_ops(sh, s.ops_request);
5020
f0e43bcd 5021 ops_run_io(sh, &s);
16a53ecc 5022
c5709ef6 5023 if (s.dec_preread_active) {
729a1866 5024 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5025 * is waiting on a flush, it won't continue until the writes
729a1866
N
5026 * have actually been submitted.
5027 */
5028 atomic_dec(&conf->preread_active_stripes);
5029 if (atomic_read(&conf->preread_active_stripes) <
5030 IO_THRESHOLD)
5031 md_wakeup_thread(conf->mddev->thread);
5032 }
5033
257a4b42 5034 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5035}
5036
d1688a6d 5037static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
5038{
5039 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5040 while (!list_empty(&conf->delayed_list)) {
5041 struct list_head *l = conf->delayed_list.next;
5042 struct stripe_head *sh;
5043 sh = list_entry(l, struct stripe_head, lru);
5044 list_del_init(l);
5045 clear_bit(STRIPE_DELAYED, &sh->state);
5046 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5047 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5048 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5049 raid5_wakeup_stripe_thread(sh);
16a53ecc 5050 }
482c0834 5051 }
16a53ecc
N
5052}
5053
566c09c5
SL
5054static void activate_bit_delay(struct r5conf *conf,
5055 struct list_head *temp_inactive_list)
16a53ecc
N
5056{
5057 /* device_lock is held */
5058 struct list_head head;
5059 list_add(&head, &conf->bitmap_list);
5060 list_del_init(&conf->bitmap_list);
5061 while (!list_empty(&head)) {
5062 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5063 int hash;
16a53ecc
N
5064 list_del_init(&sh->lru);
5065 atomic_inc(&sh->count);
566c09c5
SL
5066 hash = sh->hash_lock_index;
5067 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5068 }
5069}
5070
5c675f83 5071static int raid5_congested(struct mddev *mddev, int bits)
f022b2fd 5072{
d1688a6d 5073 struct r5conf *conf = mddev->private;
f022b2fd
N
5074
5075 /* No difference between reads and writes. Just check
5076 * how busy the stripe_cache is
5077 */
3fa841d7 5078
5423399a 5079 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
f022b2fd 5080 return 1;
a39f7afd
SL
5081
5082 /* Also checks whether there is pressure on r5cache log space */
5083 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5084 return 1;
f022b2fd
N
5085 if (conf->quiesce)
5086 return 1;
4bda556a 5087 if (atomic_read(&conf->empty_inactive_list_nr))
f022b2fd
N
5088 return 1;
5089
5090 return 0;
5091}
5092
fd01b88c 5093static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5094{
3cb5edf4 5095 struct r5conf *conf = mddev->private;
10433d04 5096 sector_t sector = bio->bi_iter.bi_sector;
3cb5edf4 5097 unsigned int chunk_sectors;
aa8b57aa 5098 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5099
10433d04
CH
5100 WARN_ON_ONCE(bio->bi_partno);
5101
3cb5edf4 5102 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5103 return chunk_sectors >=
5104 ((sector & (chunk_sectors - 1)) + bio_sectors);
5105}
5106
46031f9a
RBJ
5107/*
5108 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5109 * later sampled by raid5d.
5110 */
d1688a6d 5111static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5112{
5113 unsigned long flags;
5114
5115 spin_lock_irqsave(&conf->device_lock, flags);
5116
5117 bi->bi_next = conf->retry_read_aligned_list;
5118 conf->retry_read_aligned_list = bi;
5119
5120 spin_unlock_irqrestore(&conf->device_lock, flags);
5121 md_wakeup_thread(conf->mddev->thread);
5122}
5123
0472a42b
N
5124static struct bio *remove_bio_from_retry(struct r5conf *conf,
5125 unsigned int *offset)
46031f9a
RBJ
5126{
5127 struct bio *bi;
5128
5129 bi = conf->retry_read_aligned;
5130 if (bi) {
0472a42b 5131 *offset = conf->retry_read_offset;
46031f9a
RBJ
5132 conf->retry_read_aligned = NULL;
5133 return bi;
5134 }
5135 bi = conf->retry_read_aligned_list;
5136 if(bi) {
387bb173 5137 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5138 bi->bi_next = NULL;
0472a42b 5139 *offset = 0;
46031f9a
RBJ
5140 }
5141
5142 return bi;
5143}
5144
f679623f
RBJ
5145/*
5146 * The "raid5_align_endio" should check if the read succeeded and if it
5147 * did, call bio_endio on the original bio (having bio_put the new bio
5148 * first).
5149 * If the read failed..
5150 */
4246a0b6 5151static void raid5_align_endio(struct bio *bi)
f679623f
RBJ
5152{
5153 struct bio* raid_bi = bi->bi_private;
fd01b88c 5154 struct mddev *mddev;
d1688a6d 5155 struct r5conf *conf;
3cb03002 5156 struct md_rdev *rdev;
4e4cbee9 5157 blk_status_t error = bi->bi_status;
46031f9a 5158
f679623f 5159 bio_put(bi);
46031f9a 5160
46031f9a
RBJ
5161 rdev = (void*)raid_bi->bi_next;
5162 raid_bi->bi_next = NULL;
2b7f2228
N
5163 mddev = rdev->mddev;
5164 conf = mddev->private;
46031f9a
RBJ
5165
5166 rdev_dec_pending(rdev, conf->mddev);
5167
9b81c842 5168 if (!error) {
4246a0b6 5169 bio_endio(raid_bi);
46031f9a 5170 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5171 wake_up(&conf->wait_for_quiescent);
6712ecf8 5172 return;
46031f9a
RBJ
5173 }
5174
45b4233c 5175 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5176
5177 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5178}
5179
7ef6b12a 5180static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5181{
d1688a6d 5182 struct r5conf *conf = mddev->private;
8553fe7e 5183 int dd_idx;
f679623f 5184 struct bio* align_bi;
3cb03002 5185 struct md_rdev *rdev;
671488cc 5186 sector_t end_sector;
f679623f
RBJ
5187
5188 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5189 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5190 return 0;
5191 }
5192 /*
d7a10308 5193 * use bio_clone_fast to make a copy of the bio
f679623f 5194 */
d7a10308 5195 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
f679623f
RBJ
5196 if (!align_bi)
5197 return 0;
5198 /*
5199 * set bi_end_io to a new function, and set bi_private to the
5200 * original bio.
5201 */
5202 align_bi->bi_end_io = raid5_align_endio;
5203 align_bi->bi_private = raid_bio;
5204 /*
5205 * compute position
5206 */
4f024f37
KO
5207 align_bi->bi_iter.bi_sector =
5208 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5209 0, &dd_idx, NULL);
f679623f 5210
f73a1c7d 5211 end_sector = bio_end_sector(align_bi);
f679623f 5212 rcu_read_lock();
671488cc
N
5213 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5214 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5215 rdev->recovery_offset < end_sector) {
5216 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5217 if (rdev &&
5218 (test_bit(Faulty, &rdev->flags) ||
5219 !(test_bit(In_sync, &rdev->flags) ||
5220 rdev->recovery_offset >= end_sector)))
5221 rdev = NULL;
5222 }
03b047f4
SL
5223
5224 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5225 rcu_read_unlock();
5226 bio_put(align_bi);
5227 return 0;
5228 }
5229
671488cc 5230 if (rdev) {
31c176ec
N
5231 sector_t first_bad;
5232 int bad_sectors;
5233
f679623f
RBJ
5234 atomic_inc(&rdev->nr_pending);
5235 rcu_read_unlock();
46031f9a 5236 raid_bio->bi_next = (void*)rdev;
74d46992 5237 bio_set_dev(align_bi, rdev->bdev);
b7c44ed9 5238 bio_clear_flag(align_bi, BIO_SEG_VALID);
46031f9a 5239
7140aafc 5240 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4f024f37 5241 bio_sectors(align_bi),
31c176ec 5242 &first_bad, &bad_sectors)) {
387bb173
NB
5243 bio_put(align_bi);
5244 rdev_dec_pending(rdev, mddev);
5245 return 0;
5246 }
5247
6c0544e2 5248 /* No reshape active, so we can trust rdev->data_offset */
4f024f37 5249 align_bi->bi_iter.bi_sector += rdev->data_offset;
6c0544e2 5250
46031f9a 5251 spin_lock_irq(&conf->device_lock);
b1b46486 5252 wait_event_lock_irq(conf->wait_for_quiescent,
46031f9a 5253 conf->quiesce == 0,
eed8c02e 5254 conf->device_lock);
46031f9a
RBJ
5255 atomic_inc(&conf->active_aligned_reads);
5256 spin_unlock_irq(&conf->device_lock);
5257
e3620a3a 5258 if (mddev->gendisk)
74d46992 5259 trace_block_bio_remap(align_bi->bi_disk->queue,
e3620a3a 5260 align_bi, disk_devt(mddev->gendisk),
4f024f37 5261 raid_bio->bi_iter.bi_sector);
f679623f
RBJ
5262 generic_make_request(align_bi);
5263 return 1;
5264 } else {
5265 rcu_read_unlock();
46031f9a 5266 bio_put(align_bi);
f679623f
RBJ
5267 return 0;
5268 }
5269}
5270
7ef6b12a
ML
5271static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5272{
5273 struct bio *split;
dd7a8f5d
N
5274 sector_t sector = raid_bio->bi_iter.bi_sector;
5275 unsigned chunk_sects = mddev->chunk_sectors;
5276 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
7ef6b12a 5277
dd7a8f5d
N
5278 if (sectors < bio_sectors(raid_bio)) {
5279 struct r5conf *conf = mddev->private;
5280 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5281 bio_chain(split, raid_bio);
5282 generic_make_request(raid_bio);
5283 raid_bio = split;
5284 }
7ef6b12a 5285
dd7a8f5d
N
5286 if (!raid5_read_one_chunk(mddev, raid_bio))
5287 return raid_bio;
7ef6b12a
ML
5288
5289 return NULL;
5290}
5291
8b3e6cdc
DW
5292/* __get_priority_stripe - get the next stripe to process
5293 *
5294 * Full stripe writes are allowed to pass preread active stripes up until
5295 * the bypass_threshold is exceeded. In general the bypass_count
5296 * increments when the handle_list is handled before the hold_list; however, it
5297 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5298 * stripe with in flight i/o. The bypass_count will be reset when the
5299 * head of the hold_list has changed, i.e. the head was promoted to the
5300 * handle_list.
5301 */
851c30c9 5302static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
8b3e6cdc 5303{
535ae4eb 5304 struct stripe_head *sh, *tmp;
851c30c9 5305 struct list_head *handle_list = NULL;
535ae4eb 5306 struct r5worker_group *wg;
70d466f7
SL
5307 bool second_try = !r5c_is_writeback(conf->log) &&
5308 !r5l_log_disk_error(conf);
5309 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5310 r5l_log_disk_error(conf);
851c30c9 5311
535ae4eb
SL
5312again:
5313 wg = NULL;
5314 sh = NULL;
851c30c9 5315 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5316 handle_list = try_loprio ? &conf->loprio_list :
5317 &conf->handle_list;
851c30c9 5318 } else if (group != ANY_GROUP) {
535ae4eb
SL
5319 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5320 &conf->worker_groups[group].handle_list;
bfc90cb0 5321 wg = &conf->worker_groups[group];
851c30c9
SL
5322 } else {
5323 int i;
5324 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5325 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5326 &conf->worker_groups[i].handle_list;
bfc90cb0 5327 wg = &conf->worker_groups[i];
851c30c9
SL
5328 if (!list_empty(handle_list))
5329 break;
5330 }
5331 }
8b3e6cdc
DW
5332
5333 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5334 __func__,
851c30c9 5335 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5336 list_empty(&conf->hold_list) ? "empty" : "busy",
5337 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5338
851c30c9
SL
5339 if (!list_empty(handle_list)) {
5340 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5341
5342 if (list_empty(&conf->hold_list))
5343 conf->bypass_count = 0;
5344 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5345 if (conf->hold_list.next == conf->last_hold)
5346 conf->bypass_count++;
5347 else {
5348 conf->last_hold = conf->hold_list.next;
5349 conf->bypass_count -= conf->bypass_threshold;
5350 if (conf->bypass_count < 0)
5351 conf->bypass_count = 0;
5352 }
5353 }
5354 } else if (!list_empty(&conf->hold_list) &&
5355 ((conf->bypass_threshold &&
5356 conf->bypass_count > conf->bypass_threshold) ||
5357 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5358
5359 list_for_each_entry(tmp, &conf->hold_list, lru) {
5360 if (conf->worker_cnt_per_group == 0 ||
5361 group == ANY_GROUP ||
5362 !cpu_online(tmp->cpu) ||
5363 cpu_to_group(tmp->cpu) == group) {
5364 sh = tmp;
5365 break;
5366 }
5367 }
5368
5369 if (sh) {
5370 conf->bypass_count -= conf->bypass_threshold;
5371 if (conf->bypass_count < 0)
5372 conf->bypass_count = 0;
5373 }
bfc90cb0 5374 wg = NULL;
851c30c9
SL
5375 }
5376
535ae4eb
SL
5377 if (!sh) {
5378 if (second_try)
5379 return NULL;
5380 second_try = true;
5381 try_loprio = !try_loprio;
5382 goto again;
5383 }
8b3e6cdc 5384
bfc90cb0
SL
5385 if (wg) {
5386 wg->stripes_cnt--;
5387 sh->group = NULL;
5388 }
8b3e6cdc 5389 list_del_init(&sh->lru);
c7a6d35e 5390 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5391 return sh;
5392}
f679623f 5393
8811b596
SL
5394struct raid5_plug_cb {
5395 struct blk_plug_cb cb;
5396 struct list_head list;
566c09c5 5397 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5398};
5399
5400static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5401{
5402 struct raid5_plug_cb *cb = container_of(
5403 blk_cb, struct raid5_plug_cb, cb);
5404 struct stripe_head *sh;
5405 struct mddev *mddev = cb->cb.data;
5406 struct r5conf *conf = mddev->private;
a9add5d9 5407 int cnt = 0;
566c09c5 5408 int hash;
8811b596
SL
5409
5410 if (cb->list.next && !list_empty(&cb->list)) {
5411 spin_lock_irq(&conf->device_lock);
5412 while (!list_empty(&cb->list)) {
5413 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5414 list_del_init(&sh->lru);
5415 /*
5416 * avoid race release_stripe_plug() sees
5417 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5418 * is still in our list
5419 */
4e857c58 5420 smp_mb__before_atomic();
8811b596 5421 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5422 /*
5423 * STRIPE_ON_RELEASE_LIST could be set here. In that
5424 * case, the count is always > 1 here
5425 */
566c09c5
SL
5426 hash = sh->hash_lock_index;
5427 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5428 cnt++;
8811b596
SL
5429 }
5430 spin_unlock_irq(&conf->device_lock);
5431 }
566c09c5
SL
5432 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5433 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5434 if (mddev->queue)
5435 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5436 kfree(cb);
5437}
5438
5439static void release_stripe_plug(struct mddev *mddev,
5440 struct stripe_head *sh)
5441{
5442 struct blk_plug_cb *blk_cb = blk_check_plugged(
5443 raid5_unplug, mddev,
5444 sizeof(struct raid5_plug_cb));
5445 struct raid5_plug_cb *cb;
5446
5447 if (!blk_cb) {
6d036f7d 5448 raid5_release_stripe(sh);
8811b596
SL
5449 return;
5450 }
5451
5452 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5453
566c09c5
SL
5454 if (cb->list.next == NULL) {
5455 int i;
8811b596 5456 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5457 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5458 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5459 }
8811b596
SL
5460
5461 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5462 list_add_tail(&sh->lru, &cb->list);
5463 else
6d036f7d 5464 raid5_release_stripe(sh);
8811b596
SL
5465}
5466
620125f2
SL
5467static void make_discard_request(struct mddev *mddev, struct bio *bi)
5468{
5469 struct r5conf *conf = mddev->private;
5470 sector_t logical_sector, last_sector;
5471 struct stripe_head *sh;
620125f2
SL
5472 int stripe_sectors;
5473
5474 if (mddev->reshape_position != MaxSector)
5475 /* Skip discard while reshape is happening */
5476 return;
5477
4f024f37
KO
5478 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5479 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
620125f2
SL
5480
5481 bi->bi_next = NULL;
620125f2
SL
5482
5483 stripe_sectors = conf->chunk_sectors *
5484 (conf->raid_disks - conf->max_degraded);
5485 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5486 stripe_sectors);
5487 sector_div(last_sector, stripe_sectors);
5488
5489 logical_sector *= conf->chunk_sectors;
5490 last_sector *= conf->chunk_sectors;
5491
5492 for (; logical_sector < last_sector;
5493 logical_sector += STRIPE_SECTORS) {
5494 DEFINE_WAIT(w);
5495 int d;
5496 again:
6d036f7d 5497 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
620125f2
SL
5498 prepare_to_wait(&conf->wait_for_overlap, &w,
5499 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5500 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5501 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5502 raid5_release_stripe(sh);
f8dfcffd
N
5503 schedule();
5504 goto again;
5505 }
5506 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5507 spin_lock_irq(&sh->stripe_lock);
5508 for (d = 0; d < conf->raid_disks; d++) {
5509 if (d == sh->pd_idx || d == sh->qd_idx)
5510 continue;
5511 if (sh->dev[d].towrite || sh->dev[d].toread) {
5512 set_bit(R5_Overlap, &sh->dev[d].flags);
5513 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5514 raid5_release_stripe(sh);
620125f2
SL
5515 schedule();
5516 goto again;
5517 }
5518 }
f8dfcffd 5519 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5520 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5521 sh->overwrite_disks = 0;
620125f2
SL
5522 for (d = 0; d < conf->raid_disks; d++) {
5523 if (d == sh->pd_idx || d == sh->qd_idx)
5524 continue;
5525 sh->dev[d].towrite = bi;
5526 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5527 bio_inc_remaining(bi);
49728050 5528 md_write_inc(mddev, bi);
7a87f434 5529 sh->overwrite_disks++;
620125f2
SL
5530 }
5531 spin_unlock_irq(&sh->stripe_lock);
5532 if (conf->mddev->bitmap) {
5533 for (d = 0;
5534 d < conf->raid_disks - conf->max_degraded;
5535 d++)
5536 bitmap_startwrite(mddev->bitmap,
5537 sh->sector,
5538 STRIPE_SECTORS,
5539 0);
5540 sh->bm_seq = conf->seq_flush + 1;
5541 set_bit(STRIPE_BIT_DELAY, &sh->state);
5542 }
5543
5544 set_bit(STRIPE_HANDLE, &sh->state);
5545 clear_bit(STRIPE_DELAYED, &sh->state);
5546 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5547 atomic_inc(&conf->preread_active_stripes);
5548 release_stripe_plug(mddev, sh);
5549 }
5550
016c76ac 5551 bio_endio(bi);
620125f2
SL
5552}
5553
cc27b0c7 5554static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 5555{
d1688a6d 5556 struct r5conf *conf = mddev->private;
911d4ee8 5557 int dd_idx;
1da177e4
LT
5558 sector_t new_sector;
5559 sector_t logical_sector, last_sector;
5560 struct stripe_head *sh;
a362357b 5561 const int rw = bio_data_dir(bi);
27c0f68f
SL
5562 DEFINE_WAIT(w);
5563 bool do_prepare;
3bddb7f8 5564 bool do_flush = false;
1da177e4 5565
1eff9d32 5566 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
828cbe98
SL
5567 int ret = r5l_handle_flush_request(conf->log, bi);
5568
5569 if (ret == 0)
cc27b0c7 5570 return true;
828cbe98
SL
5571 if (ret == -ENODEV) {
5572 md_flush_request(mddev, bi);
cc27b0c7 5573 return true;
828cbe98
SL
5574 }
5575 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
5576 /*
5577 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5578 * we need to flush journal device
5579 */
5580 do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
5581 }
5582
cc27b0c7
N
5583 if (!md_write_start(mddev, bi))
5584 return false;
9ffc8f7c
EM
5585 /*
5586 * If array is degraded, better not do chunk aligned read because
5587 * later we might have to read it again in order to reconstruct
5588 * data on failed drives.
5589 */
5590 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
5591 mddev->reshape_position == MaxSector) {
5592 bi = chunk_aligned_read(mddev, bi);
5593 if (!bi)
cc27b0c7 5594 return true;
7ef6b12a 5595 }
52488615 5596
796a5cf0 5597 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2 5598 make_discard_request(mddev, bi);
cc27b0c7
N
5599 md_write_end(mddev);
5600 return true;
620125f2
SL
5601 }
5602
4f024f37 5603 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
f73a1c7d 5604 last_sector = bio_end_sector(bi);
1da177e4 5605 bi->bi_next = NULL;
06d91a5f 5606
27c0f68f 5607 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1da177e4 5608 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
b5663ba4 5609 int previous;
c46501b2 5610 int seq;
b578d55f 5611
27c0f68f 5612 do_prepare = false;
7ecaa1e6 5613 retry:
c46501b2 5614 seq = read_seqcount_begin(&conf->gen_lock);
b5663ba4 5615 previous = 0;
27c0f68f
SL
5616 if (do_prepare)
5617 prepare_to_wait(&conf->wait_for_overlap, &w,
5618 TASK_UNINTERRUPTIBLE);
b0f9ec04 5619 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 5620 /* spinlock is needed as reshape_progress may be
df8e7f76
N
5621 * 64bit on a 32bit platform, and so it might be
5622 * possible to see a half-updated value
aeb878b0 5623 * Of course reshape_progress could change after
df8e7f76
N
5624 * the lock is dropped, so once we get a reference
5625 * to the stripe that we think it is, we will have
5626 * to check again.
5627 */
7ecaa1e6 5628 spin_lock_irq(&conf->device_lock);
2c810cdd 5629 if (mddev->reshape_backwards
fef9c61f
N
5630 ? logical_sector < conf->reshape_progress
5631 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
5632 previous = 1;
5633 } else {
2c810cdd 5634 if (mddev->reshape_backwards
fef9c61f
N
5635 ? logical_sector < conf->reshape_safe
5636 : logical_sector >= conf->reshape_safe) {
b578d55f
N
5637 spin_unlock_irq(&conf->device_lock);
5638 schedule();
27c0f68f 5639 do_prepare = true;
b578d55f
N
5640 goto retry;
5641 }
5642 }
7ecaa1e6
N
5643 spin_unlock_irq(&conf->device_lock);
5644 }
16a53ecc 5645
112bf897
N
5646 new_sector = raid5_compute_sector(conf, logical_sector,
5647 previous,
911d4ee8 5648 &dd_idx, NULL);
849674e4 5649 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
c46501b2 5650 (unsigned long long)new_sector,
1da177e4
LT
5651 (unsigned long long)logical_sector);
5652
6d036f7d 5653 sh = raid5_get_active_stripe(conf, new_sector, previous,
1eff9d32 5654 (bi->bi_opf & REQ_RAHEAD), 0);
1da177e4 5655 if (sh) {
b0f9ec04 5656 if (unlikely(previous)) {
7ecaa1e6 5657 /* expansion might have moved on while waiting for a
df8e7f76
N
5658 * stripe, so we must do the range check again.
5659 * Expansion could still move past after this
5660 * test, but as we are holding a reference to
5661 * 'sh', we know that if that happens,
5662 * STRIPE_EXPANDING will get set and the expansion
5663 * won't proceed until we finish with the stripe.
7ecaa1e6
N
5664 */
5665 int must_retry = 0;
5666 spin_lock_irq(&conf->device_lock);
2c810cdd 5667 if (mddev->reshape_backwards
b0f9ec04
N
5668 ? logical_sector >= conf->reshape_progress
5669 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
5670 /* mismatch, need to try again */
5671 must_retry = 1;
5672 spin_unlock_irq(&conf->device_lock);
5673 if (must_retry) {
6d036f7d 5674 raid5_release_stripe(sh);
7a3ab908 5675 schedule();
27c0f68f 5676 do_prepare = true;
7ecaa1e6
N
5677 goto retry;
5678 }
5679 }
c46501b2
N
5680 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5681 /* Might have got the wrong stripe_head
5682 * by accident
5683 */
6d036f7d 5684 raid5_release_stripe(sh);
c46501b2
N
5685 goto retry;
5686 }
e62e58a5 5687
ffd96e35 5688 if (rw == WRITE &&
a5c308d4 5689 logical_sector >= mddev->suspend_lo &&
e464eafd 5690 logical_sector < mddev->suspend_hi) {
6d036f7d 5691 raid5_release_stripe(sh);
e62e58a5
N
5692 /* As the suspend_* range is controlled by
5693 * userspace, we want an interruptible
5694 * wait.
5695 */
e62e58a5
N
5696 prepare_to_wait(&conf->wait_for_overlap,
5697 &w, TASK_INTERRUPTIBLE);
5698 if (logical_sector >= mddev->suspend_lo &&
27c0f68f 5699 logical_sector < mddev->suspend_hi) {
f9c79bc0
MP
5700 sigset_t full, old;
5701 sigfillset(&full);
5702 sigprocmask(SIG_BLOCK, &full, &old);
e62e58a5 5703 schedule();
f9c79bc0 5704 sigprocmask(SIG_SETMASK, &old, NULL);
27c0f68f
SL
5705 do_prepare = true;
5706 }
e464eafd
N
5707 goto retry;
5708 }
7ecaa1e6
N
5709
5710 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
da41ba65 5711 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
7ecaa1e6
N
5712 /* Stripe is busy expanding or
5713 * add failed due to overlap. Flush everything
1da177e4
LT
5714 * and wait a while
5715 */
482c0834 5716 md_wakeup_thread(mddev->thread);
6d036f7d 5717 raid5_release_stripe(sh);
1da177e4 5718 schedule();
27c0f68f 5719 do_prepare = true;
1da177e4
LT
5720 goto retry;
5721 }
3bddb7f8
SL
5722 if (do_flush) {
5723 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5724 /* we only need flush for one stripe */
5725 do_flush = false;
5726 }
5727
6ed3003c
N
5728 set_bit(STRIPE_HANDLE, &sh->state);
5729 clear_bit(STRIPE_DELAYED, &sh->state);
59fc630b 5730 if ((!sh->batch_head || sh == sh->batch_head) &&
1eff9d32 5731 (bi->bi_opf & REQ_SYNC) &&
729a1866
N
5732 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5733 atomic_inc(&conf->preread_active_stripes);
8811b596 5734 release_stripe_plug(mddev, sh);
1da177e4
LT
5735 } else {
5736 /* cannot get stripe for read-ahead, just give-up */
4e4cbee9 5737 bi->bi_status = BLK_STS_IOERR;
1da177e4
LT
5738 break;
5739 }
1da177e4 5740 }
27c0f68f 5741 finish_wait(&conf->wait_for_overlap, &w);
7c13edc8 5742
49728050
N
5743 if (rw == WRITE)
5744 md_write_end(mddev);
016c76ac 5745 bio_endio(bi);
cc27b0c7 5746 return true;
1da177e4
LT
5747}
5748
fd01b88c 5749static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 5750
fd01b88c 5751static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 5752{
52c03291
N
5753 /* reshaping is quite different to recovery/resync so it is
5754 * handled quite separately ... here.
5755 *
5756 * On each call to sync_request, we gather one chunk worth of
5757 * destination stripes and flag them as expanding.
5758 * Then we find all the source stripes and request reads.
5759 * As the reads complete, handle_stripe will copy the data
5760 * into the destination stripe and release that stripe.
5761 */
d1688a6d 5762 struct r5conf *conf = mddev->private;
1da177e4 5763 struct stripe_head *sh;
ccfcc3c1 5764 sector_t first_sector, last_sector;
f416885e
N
5765 int raid_disks = conf->previous_raid_disks;
5766 int data_disks = raid_disks - conf->max_degraded;
5767 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
5768 int i;
5769 int dd_idx;
c8f517c4 5770 sector_t writepos, readpos, safepos;
ec32a2bd 5771 sector_t stripe_addr;
7a661381 5772 int reshape_sectors;
ab69ae12 5773 struct list_head stripes;
92140480 5774 sector_t retn;
52c03291 5775
fef9c61f
N
5776 if (sector_nr == 0) {
5777 /* If restarting in the middle, skip the initial sectors */
2c810cdd 5778 if (mddev->reshape_backwards &&
fef9c61f
N
5779 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5780 sector_nr = raid5_size(mddev, 0, 0)
5781 - conf->reshape_progress;
6cbd8148
N
5782 } else if (mddev->reshape_backwards &&
5783 conf->reshape_progress == MaxSector) {
5784 /* shouldn't happen, but just in case, finish up.*/
5785 sector_nr = MaxSector;
2c810cdd 5786 } else if (!mddev->reshape_backwards &&
fef9c61f
N
5787 conf->reshape_progress > 0)
5788 sector_nr = conf->reshape_progress;
f416885e 5789 sector_div(sector_nr, new_data_disks);
fef9c61f 5790 if (sector_nr) {
8dee7211
N
5791 mddev->curr_resync_completed = sector_nr;
5792 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f 5793 *skipped = 1;
92140480
N
5794 retn = sector_nr;
5795 goto finish;
fef9c61f 5796 }
52c03291
N
5797 }
5798
7a661381
N
5799 /* We need to process a full chunk at a time.
5800 * If old and new chunk sizes differ, we need to process the
5801 * largest of these
5802 */
3cb5edf4
N
5803
5804 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 5805
b5254dd5
N
5806 /* We update the metadata at least every 10 seconds, or when
5807 * the data about to be copied would over-write the source of
5808 * the data at the front of the range. i.e. one new_stripe
5809 * along from reshape_progress new_maps to after where
5810 * reshape_safe old_maps to
52c03291 5811 */
fef9c61f 5812 writepos = conf->reshape_progress;
f416885e 5813 sector_div(writepos, new_data_disks);
c8f517c4
N
5814 readpos = conf->reshape_progress;
5815 sector_div(readpos, data_disks);
fef9c61f 5816 safepos = conf->reshape_safe;
f416885e 5817 sector_div(safepos, data_disks);
2c810cdd 5818 if (mddev->reshape_backwards) {
c74c0d76
N
5819 BUG_ON(writepos < reshape_sectors);
5820 writepos -= reshape_sectors;
c8f517c4 5821 readpos += reshape_sectors;
7a661381 5822 safepos += reshape_sectors;
fef9c61f 5823 } else {
7a661381 5824 writepos += reshape_sectors;
c74c0d76
N
5825 /* readpos and safepos are worst-case calculations.
5826 * A negative number is overly pessimistic, and causes
5827 * obvious problems for unsigned storage. So clip to 0.
5828 */
ed37d83e
N
5829 readpos -= min_t(sector_t, reshape_sectors, readpos);
5830 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 5831 }
52c03291 5832
b5254dd5
N
5833 /* Having calculated the 'writepos' possibly use it
5834 * to set 'stripe_addr' which is where we will write to.
5835 */
5836 if (mddev->reshape_backwards) {
5837 BUG_ON(conf->reshape_progress == 0);
5838 stripe_addr = writepos;
5839 BUG_ON((mddev->dev_sectors &
5840 ~((sector_t)reshape_sectors - 1))
5841 - reshape_sectors - stripe_addr
5842 != sector_nr);
5843 } else {
5844 BUG_ON(writepos != sector_nr + reshape_sectors);
5845 stripe_addr = sector_nr;
5846 }
5847
c8f517c4
N
5848 /* 'writepos' is the most advanced device address we might write.
5849 * 'readpos' is the least advanced device address we might read.
5850 * 'safepos' is the least address recorded in the metadata as having
5851 * been reshaped.
b5254dd5
N
5852 * If there is a min_offset_diff, these are adjusted either by
5853 * increasing the safepos/readpos if diff is negative, or
5854 * increasing writepos if diff is positive.
5855 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
5856 * ensure safety in the face of a crash - that must be done by userspace
5857 * making a backup of the data. So in that case there is no particular
5858 * rush to update metadata.
5859 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5860 * update the metadata to advance 'safepos' to match 'readpos' so that
5861 * we can be safe in the event of a crash.
5862 * So we insist on updating metadata if safepos is behind writepos and
5863 * readpos is beyond writepos.
5864 * In any case, update the metadata every 10 seconds.
5865 * Maybe that number should be configurable, but I'm not sure it is
5866 * worth it.... maybe it could be a multiple of safemode_delay???
5867 */
b5254dd5
N
5868 if (conf->min_offset_diff < 0) {
5869 safepos += -conf->min_offset_diff;
5870 readpos += -conf->min_offset_diff;
5871 } else
5872 writepos += conf->min_offset_diff;
5873
2c810cdd 5874 if ((mddev->reshape_backwards
c8f517c4
N
5875 ? (safepos > writepos && readpos < writepos)
5876 : (safepos < writepos && readpos > writepos)) ||
5877 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
5878 /* Cannot proceed until we've updated the superblock... */
5879 wait_event(conf->wait_for_overlap,
c91abf5a
N
5880 atomic_read(&conf->reshape_stripes)==0
5881 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5882 if (atomic_read(&conf->reshape_stripes) != 0)
5883 return 0;
fef9c61f 5884 mddev->reshape_position = conf->reshape_progress;
75d3da43 5885 mddev->curr_resync_completed = sector_nr;
c8f517c4 5886 conf->reshape_checkpoint = jiffies;
2953079c 5887 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 5888 md_wakeup_thread(mddev->thread);
2953079c 5889 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
5890 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5891 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5892 return 0;
52c03291 5893 spin_lock_irq(&conf->device_lock);
fef9c61f 5894 conf->reshape_safe = mddev->reshape_position;
52c03291
N
5895 spin_unlock_irq(&conf->device_lock);
5896 wake_up(&conf->wait_for_overlap);
acb180b0 5897 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
5898 }
5899
ab69ae12 5900 INIT_LIST_HEAD(&stripes);
7a661381 5901 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 5902 int j;
a9f326eb 5903 int skipped_disk = 0;
6d036f7d 5904 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
5905 set_bit(STRIPE_EXPANDING, &sh->state);
5906 atomic_inc(&conf->reshape_stripes);
5907 /* If any of this stripe is beyond the end of the old
5908 * array, then we need to zero those blocks
5909 */
5910 for (j=sh->disks; j--;) {
5911 sector_t s;
5912 if (j == sh->pd_idx)
5913 continue;
f416885e 5914 if (conf->level == 6 &&
d0dabf7e 5915 j == sh->qd_idx)
f416885e 5916 continue;
6d036f7d 5917 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 5918 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 5919 skipped_disk = 1;
52c03291
N
5920 continue;
5921 }
5922 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5923 set_bit(R5_Expanded, &sh->dev[j].flags);
5924 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5925 }
a9f326eb 5926 if (!skipped_disk) {
52c03291
N
5927 set_bit(STRIPE_EXPAND_READY, &sh->state);
5928 set_bit(STRIPE_HANDLE, &sh->state);
5929 }
ab69ae12 5930 list_add(&sh->lru, &stripes);
52c03291
N
5931 }
5932 spin_lock_irq(&conf->device_lock);
2c810cdd 5933 if (mddev->reshape_backwards)
7a661381 5934 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 5935 else
7a661381 5936 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
5937 spin_unlock_irq(&conf->device_lock);
5938 /* Ok, those stripe are ready. We can start scheduling
5939 * reads on the source stripes.
5940 * The source stripes are determined by mapping the first and last
5941 * block on the destination stripes.
5942 */
52c03291 5943 first_sector =
ec32a2bd 5944 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 5945 1, &dd_idx, NULL);
52c03291 5946 last_sector =
0e6e0271 5947 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 5948 * new_data_disks - 1),
911d4ee8 5949 1, &dd_idx, NULL);
58c0fed4
AN
5950 if (last_sector >= mddev->dev_sectors)
5951 last_sector = mddev->dev_sectors - 1;
52c03291 5952 while (first_sector <= last_sector) {
6d036f7d 5953 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
5954 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5955 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 5956 raid5_release_stripe(sh);
52c03291
N
5957 first_sector += STRIPE_SECTORS;
5958 }
ab69ae12
N
5959 /* Now that the sources are clearly marked, we can release
5960 * the destination stripes
5961 */
5962 while (!list_empty(&stripes)) {
5963 sh = list_entry(stripes.next, struct stripe_head, lru);
5964 list_del_init(&sh->lru);
6d036f7d 5965 raid5_release_stripe(sh);
ab69ae12 5966 }
c6207277
N
5967 /* If this takes us to the resync_max point where we have to pause,
5968 * then we need to write out the superblock.
5969 */
7a661381 5970 sector_nr += reshape_sectors;
92140480
N
5971 retn = reshape_sectors;
5972finish:
c5e19d90
N
5973 if (mddev->curr_resync_completed > mddev->resync_max ||
5974 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 5975 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
5976 /* Cannot proceed until we've updated the superblock... */
5977 wait_event(conf->wait_for_overlap,
c91abf5a
N
5978 atomic_read(&conf->reshape_stripes) == 0
5979 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5980 if (atomic_read(&conf->reshape_stripes) != 0)
5981 goto ret;
fef9c61f 5982 mddev->reshape_position = conf->reshape_progress;
75d3da43 5983 mddev->curr_resync_completed = sector_nr;
c8f517c4 5984 conf->reshape_checkpoint = jiffies;
2953079c 5985 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
5986 md_wakeup_thread(mddev->thread);
5987 wait_event(mddev->sb_wait,
2953079c 5988 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
5989 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5990 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5991 goto ret;
c6207277 5992 spin_lock_irq(&conf->device_lock);
fef9c61f 5993 conf->reshape_safe = mddev->reshape_position;
c6207277
N
5994 spin_unlock_irq(&conf->device_lock);
5995 wake_up(&conf->wait_for_overlap);
acb180b0 5996 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 5997 }
c91abf5a 5998ret:
92140480 5999 return retn;
52c03291
N
6000}
6001
849674e4
SL
6002static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6003 int *skipped)
52c03291 6004{
d1688a6d 6005 struct r5conf *conf = mddev->private;
52c03291 6006 struct stripe_head *sh;
58c0fed4 6007 sector_t max_sector = mddev->dev_sectors;
57dab0bd 6008 sector_t sync_blocks;
16a53ecc
N
6009 int still_degraded = 0;
6010 int i;
1da177e4 6011
72626685 6012 if (sector_nr >= max_sector) {
1da177e4 6013 /* just being told to finish up .. nothing much to do */
cea9c228 6014
29269553
N
6015 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6016 end_reshape(conf);
6017 return 0;
6018 }
72626685
N
6019
6020 if (mddev->curr_resync < max_sector) /* aborted */
6021 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6022 &sync_blocks, 1);
16a53ecc 6023 else /* completed sync */
72626685
N
6024 conf->fullsync = 0;
6025 bitmap_close_sync(mddev->bitmap);
6026
1da177e4
LT
6027 return 0;
6028 }
ccfcc3c1 6029
64bd660b
N
6030 /* Allow raid5_quiesce to complete */
6031 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6032
52c03291
N
6033 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6034 return reshape_request(mddev, sector_nr, skipped);
f6705578 6035
c6207277
N
6036 /* No need to check resync_max as we never do more than one
6037 * stripe, and as resync_max will always be on a chunk boundary,
6038 * if the check in md_do_sync didn't fire, there is no chance
6039 * of overstepping resync_max here
6040 */
6041
16a53ecc 6042 /* if there is too many failed drives and we are trying
1da177e4
LT
6043 * to resync, then assert that we are finished, because there is
6044 * nothing we can do.
6045 */
3285edf1 6046 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6047 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6048 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6049 *skipped = 1;
1da177e4
LT
6050 return rv;
6051 }
6f608040 6052 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6053 !conf->fullsync &&
6054 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6055 sync_blocks >= STRIPE_SECTORS) {
72626685
N
6056 /* we can skip this block, and probably more */
6057 sync_blocks /= STRIPE_SECTORS;
6058 *skipped = 1;
6059 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6060 }
1da177e4 6061
c40f341f 6062 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6063
6d036f7d 6064 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 6065 if (sh == NULL) {
6d036f7d 6066 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 6067 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6068 * is trying to get access
1da177e4 6069 */
66c006a5 6070 schedule_timeout_uninterruptible(1);
1da177e4 6071 }
16a53ecc 6072 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6073 * Note in case of > 1 drive failures it's possible we're rebuilding
6074 * one drive while leaving another faulty drive in array.
16a53ecc 6075 */
16d9cfab
EM
6076 rcu_read_lock();
6077 for (i = 0; i < conf->raid_disks; i++) {
6078 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6079
6080 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6081 still_degraded = 1;
16d9cfab
EM
6082 }
6083 rcu_read_unlock();
16a53ecc
N
6084
6085 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6086
83206d66 6087 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6088 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6089
6d036f7d 6090 raid5_release_stripe(sh);
1da177e4
LT
6091
6092 return STRIPE_SECTORS;
6093}
6094
0472a42b
N
6095static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6096 unsigned int offset)
46031f9a
RBJ
6097{
6098 /* We may not be able to submit a whole bio at once as there
6099 * may not be enough stripe_heads available.
6100 * We cannot pre-allocate enough stripe_heads as we may need
6101 * more than exist in the cache (if we allow ever large chunks).
6102 * So we do one stripe head at a time and record in
6103 * ->bi_hw_segments how many have been done.
6104 *
6105 * We *know* that this entire raid_bio is in one chunk, so
6106 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6107 */
6108 struct stripe_head *sh;
911d4ee8 6109 int dd_idx;
46031f9a
RBJ
6110 sector_t sector, logical_sector, last_sector;
6111 int scnt = 0;
46031f9a
RBJ
6112 int handled = 0;
6113
4f024f37
KO
6114 logical_sector = raid_bio->bi_iter.bi_sector &
6115 ~((sector_t)STRIPE_SECTORS-1);
112bf897 6116 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6117 0, &dd_idx, NULL);
f73a1c7d 6118 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6119
6120 for (; logical_sector < last_sector;
387bb173
NB
6121 logical_sector += STRIPE_SECTORS,
6122 sector += STRIPE_SECTORS,
6123 scnt++) {
46031f9a 6124
0472a42b 6125 if (scnt < offset)
46031f9a
RBJ
6126 /* already done this stripe */
6127 continue;
6128
6d036f7d 6129 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
46031f9a
RBJ
6130
6131 if (!sh) {
6132 /* failed to get a stripe - must wait */
46031f9a 6133 conf->retry_read_aligned = raid_bio;
0472a42b 6134 conf->retry_read_offset = scnt;
46031f9a
RBJ
6135 return handled;
6136 }
6137
da41ba65 6138 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6139 raid5_release_stripe(sh);
387bb173 6140 conf->retry_read_aligned = raid_bio;
0472a42b 6141 conf->retry_read_offset = scnt;
387bb173
NB
6142 return handled;
6143 }
6144
3f9e7c14 6145 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6146 handle_stripe(sh);
6d036f7d 6147 raid5_release_stripe(sh);
46031f9a
RBJ
6148 handled++;
6149 }
016c76ac
N
6150
6151 bio_endio(raid_bio);
6152
46031f9a 6153 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6154 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6155 return handled;
6156}
6157
bfc90cb0 6158static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6159 struct r5worker *worker,
6160 struct list_head *temp_inactive_list)
46a06401
SL
6161{
6162 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6163 int i, batch_size = 0, hash;
6164 bool release_inactive = false;
46a06401
SL
6165
6166 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6167 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6168 batch[batch_size++] = sh;
6169
566c09c5
SL
6170 if (batch_size == 0) {
6171 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6172 if (!list_empty(temp_inactive_list + i))
6173 break;
a8c34f91
SL
6174 if (i == NR_STRIPE_HASH_LOCKS) {
6175 spin_unlock_irq(&conf->device_lock);
6176 r5l_flush_stripe_to_raid(conf->log);
6177 spin_lock_irq(&conf->device_lock);
566c09c5 6178 return batch_size;
a8c34f91 6179 }
566c09c5
SL
6180 release_inactive = true;
6181 }
46a06401
SL
6182 spin_unlock_irq(&conf->device_lock);
6183
566c09c5
SL
6184 release_inactive_stripe_list(conf, temp_inactive_list,
6185 NR_STRIPE_HASH_LOCKS);
6186
a8c34f91 6187 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6188 if (release_inactive) {
6189 spin_lock_irq(&conf->device_lock);
6190 return 0;
6191 }
6192
46a06401
SL
6193 for (i = 0; i < batch_size; i++)
6194 handle_stripe(batch[i]);
ff875738 6195 log_write_stripe_run(conf);
46a06401
SL
6196
6197 cond_resched();
6198
6199 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6200 for (i = 0; i < batch_size; i++) {
6201 hash = batch[i]->hash_lock_index;
6202 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6203 }
46a06401
SL
6204 return batch_size;
6205}
46031f9a 6206
851c30c9
SL
6207static void raid5_do_work(struct work_struct *work)
6208{
6209 struct r5worker *worker = container_of(work, struct r5worker, work);
6210 struct r5worker_group *group = worker->group;
6211 struct r5conf *conf = group->conf;
16d997b7 6212 struct mddev *mddev = conf->mddev;
851c30c9
SL
6213 int group_id = group - conf->worker_groups;
6214 int handled;
6215 struct blk_plug plug;
6216
6217 pr_debug("+++ raid5worker active\n");
6218
6219 blk_start_plug(&plug);
6220 handled = 0;
6221 spin_lock_irq(&conf->device_lock);
6222 while (1) {
6223 int batch_size, released;
6224
566c09c5 6225 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6226
566c09c5
SL
6227 batch_size = handle_active_stripes(conf, group_id, worker,
6228 worker->temp_inactive_list);
bfc90cb0 6229 worker->working = false;
851c30c9
SL
6230 if (!batch_size && !released)
6231 break;
6232 handled += batch_size;
16d997b7
N
6233 wait_event_lock_irq(mddev->sb_wait,
6234 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6235 conf->device_lock);
851c30c9
SL
6236 }
6237 pr_debug("%d stripes handled\n", handled);
6238
6239 spin_unlock_irq(&conf->device_lock);
7e96d559 6240
9c72a18e
SL
6241 flush_deferred_bios(conf);
6242
6243 r5l_flush_stripe_to_raid(conf->log);
6244
7e96d559 6245 async_tx_issue_pending_all();
851c30c9
SL
6246 blk_finish_plug(&plug);
6247
6248 pr_debug("--- raid5worker inactive\n");
6249}
6250
1da177e4
LT
6251/*
6252 * This is our raid5 kernel thread.
6253 *
6254 * We scan the hash table for stripes which can be handled now.
6255 * During the scan, completed stripes are saved for us by the interrupt
6256 * handler, so that they will not have to wait for our next wakeup.
6257 */
4ed8731d 6258static void raid5d(struct md_thread *thread)
1da177e4 6259{
4ed8731d 6260 struct mddev *mddev = thread->mddev;
d1688a6d 6261 struct r5conf *conf = mddev->private;
1da177e4 6262 int handled;
e1dfa0a2 6263 struct blk_plug plug;
1da177e4 6264
45b4233c 6265 pr_debug("+++ raid5d active\n");
1da177e4
LT
6266
6267 md_check_recovery(mddev);
1da177e4 6268
e1dfa0a2 6269 blk_start_plug(&plug);
1da177e4
LT
6270 handled = 0;
6271 spin_lock_irq(&conf->device_lock);
6272 while (1) {
46031f9a 6273 struct bio *bio;
773ca82f 6274 int batch_size, released;
0472a42b 6275 unsigned int offset;
773ca82f 6276
566c09c5 6277 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6278 if (released)
6279 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6280
0021b7bc 6281 if (
7c13edc8
N
6282 !list_empty(&conf->bitmap_list)) {
6283 /* Now is a good time to flush some bitmap updates */
6284 conf->seq_flush++;
700e432d 6285 spin_unlock_irq(&conf->device_lock);
72626685 6286 bitmap_unplug(mddev->bitmap);
700e432d 6287 spin_lock_irq(&conf->device_lock);
7c13edc8 6288 conf->seq_write = conf->seq_flush;
566c09c5 6289 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6290 }
0021b7bc 6291 raid5_activate_delayed(conf);
72626685 6292
0472a42b 6293 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6294 int ok;
6295 spin_unlock_irq(&conf->device_lock);
0472a42b 6296 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6297 spin_lock_irq(&conf->device_lock);
6298 if (!ok)
6299 break;
6300 handled++;
6301 }
6302
566c09c5
SL
6303 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6304 conf->temp_inactive_list);
773ca82f 6305 if (!batch_size && !released)
1da177e4 6306 break;
46a06401 6307 handled += batch_size;
1da177e4 6308
2953079c 6309 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6310 spin_unlock_irq(&conf->device_lock);
de393cde 6311 md_check_recovery(mddev);
46a06401
SL
6312 spin_lock_irq(&conf->device_lock);
6313 }
1da177e4 6314 }
45b4233c 6315 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6316
6317 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6318 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6319 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6320 grow_one_stripe(conf, __GFP_NOWARN);
6321 /* Set flag even if allocation failed. This helps
6322 * slow down allocation requests when mem is short
6323 */
6324 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6325 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6326 }
1da177e4 6327
765d704d
SL
6328 flush_deferred_bios(conf);
6329
0576b1c6
SL
6330 r5l_flush_stripe_to_raid(conf->log);
6331
c9f21aaf 6332 async_tx_issue_pending_all();
e1dfa0a2 6333 blk_finish_plug(&plug);
1da177e4 6334
45b4233c 6335 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6336}
6337
3f294f4f 6338static ssize_t
fd01b88c 6339raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6340{
7b1485ba
N
6341 struct r5conf *conf;
6342 int ret = 0;
6343 spin_lock(&mddev->lock);
6344 conf = mddev->private;
96de1e66 6345 if (conf)
edbe83ab 6346 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6347 spin_unlock(&mddev->lock);
6348 return ret;
3f294f4f
N
6349}
6350
c41d4ac4 6351int
fd01b88c 6352raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6353{
d1688a6d 6354 struct r5conf *conf = mddev->private;
b5470dc5 6355
c41d4ac4 6356 if (size <= 16 || size > 32768)
3f294f4f 6357 return -EINVAL;
486f0644 6358
edbe83ab 6359 conf->min_nr_stripes = size;
2d5b569b 6360 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6361 while (size < conf->max_nr_stripes &&
6362 drop_one_stripe(conf))
6363 ;
2d5b569b 6364 mutex_unlock(&conf->cache_size_mutex);
486f0644 6365
2214c260 6366 md_allow_write(mddev);
486f0644 6367
2d5b569b 6368 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6369 while (size > conf->max_nr_stripes)
6370 if (!grow_one_stripe(conf, GFP_KERNEL))
6371 break;
2d5b569b 6372 mutex_unlock(&conf->cache_size_mutex);
486f0644 6373
c41d4ac4
N
6374 return 0;
6375}
6376EXPORT_SYMBOL(raid5_set_cache_size);
6377
6378static ssize_t
fd01b88c 6379raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6380{
6791875e 6381 struct r5conf *conf;
c41d4ac4
N
6382 unsigned long new;
6383 int err;
6384
6385 if (len >= PAGE_SIZE)
6386 return -EINVAL;
b29bebd6 6387 if (kstrtoul(page, 10, &new))
c41d4ac4 6388 return -EINVAL;
6791875e 6389 err = mddev_lock(mddev);
c41d4ac4
N
6390 if (err)
6391 return err;
6791875e
N
6392 conf = mddev->private;
6393 if (!conf)
6394 err = -ENODEV;
6395 else
6396 err = raid5_set_cache_size(mddev, new);
6397 mddev_unlock(mddev);
6398
6399 return err ?: len;
3f294f4f 6400}
007583c9 6401
96de1e66
N
6402static struct md_sysfs_entry
6403raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6404 raid5_show_stripe_cache_size,
6405 raid5_store_stripe_cache_size);
3f294f4f 6406
d06f191f
MS
6407static ssize_t
6408raid5_show_rmw_level(struct mddev *mddev, char *page)
6409{
6410 struct r5conf *conf = mddev->private;
6411 if (conf)
6412 return sprintf(page, "%d\n", conf->rmw_level);
6413 else
6414 return 0;
6415}
6416
6417static ssize_t
6418raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6419{
6420 struct r5conf *conf = mddev->private;
6421 unsigned long new;
6422
6423 if (!conf)
6424 return -ENODEV;
6425
6426 if (len >= PAGE_SIZE)
6427 return -EINVAL;
6428
6429 if (kstrtoul(page, 10, &new))
6430 return -EINVAL;
6431
6432 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6433 return -EINVAL;
6434
6435 if (new != PARITY_DISABLE_RMW &&
6436 new != PARITY_ENABLE_RMW &&
6437 new != PARITY_PREFER_RMW)
6438 return -EINVAL;
6439
6440 conf->rmw_level = new;
6441 return len;
6442}
6443
6444static struct md_sysfs_entry
6445raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6446 raid5_show_rmw_level,
6447 raid5_store_rmw_level);
6448
6449
8b3e6cdc 6450static ssize_t
fd01b88c 6451raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 6452{
7b1485ba
N
6453 struct r5conf *conf;
6454 int ret = 0;
6455 spin_lock(&mddev->lock);
6456 conf = mddev->private;
8b3e6cdc 6457 if (conf)
7b1485ba
N
6458 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6459 spin_unlock(&mddev->lock);
6460 return ret;
8b3e6cdc
DW
6461}
6462
6463static ssize_t
fd01b88c 6464raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 6465{
6791875e 6466 struct r5conf *conf;
4ef197d8 6467 unsigned long new;
6791875e
N
6468 int err;
6469
8b3e6cdc
DW
6470 if (len >= PAGE_SIZE)
6471 return -EINVAL;
b29bebd6 6472 if (kstrtoul(page, 10, &new))
8b3e6cdc 6473 return -EINVAL;
6791875e
N
6474
6475 err = mddev_lock(mddev);
6476 if (err)
6477 return err;
6478 conf = mddev->private;
6479 if (!conf)
6480 err = -ENODEV;
edbe83ab 6481 else if (new > conf->min_nr_stripes)
6791875e
N
6482 err = -EINVAL;
6483 else
6484 conf->bypass_threshold = new;
6485 mddev_unlock(mddev);
6486 return err ?: len;
8b3e6cdc
DW
6487}
6488
6489static struct md_sysfs_entry
6490raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6491 S_IRUGO | S_IWUSR,
6492 raid5_show_preread_threshold,
6493 raid5_store_preread_threshold);
6494
d592a996
SL
6495static ssize_t
6496raid5_show_skip_copy(struct mddev *mddev, char *page)
6497{
7b1485ba
N
6498 struct r5conf *conf;
6499 int ret = 0;
6500 spin_lock(&mddev->lock);
6501 conf = mddev->private;
d592a996 6502 if (conf)
7b1485ba
N
6503 ret = sprintf(page, "%d\n", conf->skip_copy);
6504 spin_unlock(&mddev->lock);
6505 return ret;
d592a996
SL
6506}
6507
6508static ssize_t
6509raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6510{
6791875e 6511 struct r5conf *conf;
d592a996 6512 unsigned long new;
6791875e
N
6513 int err;
6514
d592a996
SL
6515 if (len >= PAGE_SIZE)
6516 return -EINVAL;
d592a996
SL
6517 if (kstrtoul(page, 10, &new))
6518 return -EINVAL;
6519 new = !!new;
6791875e
N
6520
6521 err = mddev_lock(mddev);
6522 if (err)
6523 return err;
6524 conf = mddev->private;
6525 if (!conf)
6526 err = -ENODEV;
6527 else if (new != conf->skip_copy) {
6528 mddev_suspend(mddev);
6529 conf->skip_copy = new;
6530 if (new)
dc3b17cc 6531 mddev->queue->backing_dev_info->capabilities |=
6791875e
N
6532 BDI_CAP_STABLE_WRITES;
6533 else
dc3b17cc 6534 mddev->queue->backing_dev_info->capabilities &=
6791875e
N
6535 ~BDI_CAP_STABLE_WRITES;
6536 mddev_resume(mddev);
6537 }
6538 mddev_unlock(mddev);
6539 return err ?: len;
d592a996
SL
6540}
6541
6542static struct md_sysfs_entry
6543raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6544 raid5_show_skip_copy,
6545 raid5_store_skip_copy);
6546
3f294f4f 6547static ssize_t
fd01b88c 6548stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 6549{
d1688a6d 6550 struct r5conf *conf = mddev->private;
96de1e66
N
6551 if (conf)
6552 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6553 else
6554 return 0;
3f294f4f
N
6555}
6556
96de1e66
N
6557static struct md_sysfs_entry
6558raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 6559
b721420e
SL
6560static ssize_t
6561raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6562{
7b1485ba
N
6563 struct r5conf *conf;
6564 int ret = 0;
6565 spin_lock(&mddev->lock);
6566 conf = mddev->private;
b721420e 6567 if (conf)
7b1485ba
N
6568 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6569 spin_unlock(&mddev->lock);
6570 return ret;
b721420e
SL
6571}
6572
60aaf933 6573static int alloc_thread_groups(struct r5conf *conf, int cnt,
6574 int *group_cnt,
6575 int *worker_cnt_per_group,
6576 struct r5worker_group **worker_groups);
b721420e
SL
6577static ssize_t
6578raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6579{
6791875e 6580 struct r5conf *conf;
7d5d7b50 6581 unsigned int new;
b721420e 6582 int err;
60aaf933 6583 struct r5worker_group *new_groups, *old_groups;
6584 int group_cnt, worker_cnt_per_group;
b721420e
SL
6585
6586 if (len >= PAGE_SIZE)
6587 return -EINVAL;
7d5d7b50
SL
6588 if (kstrtouint(page, 10, &new))
6589 return -EINVAL;
6590 /* 8192 should be big enough */
6591 if (new > 8192)
b721420e
SL
6592 return -EINVAL;
6593
6791875e
N
6594 err = mddev_lock(mddev);
6595 if (err)
6596 return err;
6597 conf = mddev->private;
6598 if (!conf)
6599 err = -ENODEV;
6600 else if (new != conf->worker_cnt_per_group) {
6601 mddev_suspend(mddev);
b721420e 6602
6791875e
N
6603 old_groups = conf->worker_groups;
6604 if (old_groups)
6605 flush_workqueue(raid5_wq);
d206dcfa 6606
6791875e
N
6607 err = alloc_thread_groups(conf, new,
6608 &group_cnt, &worker_cnt_per_group,
6609 &new_groups);
6610 if (!err) {
6611 spin_lock_irq(&conf->device_lock);
6612 conf->group_cnt = group_cnt;
6613 conf->worker_cnt_per_group = worker_cnt_per_group;
6614 conf->worker_groups = new_groups;
6615 spin_unlock_irq(&conf->device_lock);
b721420e 6616
6791875e
N
6617 if (old_groups)
6618 kfree(old_groups[0].workers);
6619 kfree(old_groups);
6620 }
6621 mddev_resume(mddev);
b721420e 6622 }
6791875e 6623 mddev_unlock(mddev);
b721420e 6624
6791875e 6625 return err ?: len;
b721420e
SL
6626}
6627
6628static struct md_sysfs_entry
6629raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6630 raid5_show_group_thread_cnt,
6631 raid5_store_group_thread_cnt);
6632
007583c9 6633static struct attribute *raid5_attrs[] = {
3f294f4f
N
6634 &raid5_stripecache_size.attr,
6635 &raid5_stripecache_active.attr,
8b3e6cdc 6636 &raid5_preread_bypass_threshold.attr,
b721420e 6637 &raid5_group_thread_cnt.attr,
d592a996 6638 &raid5_skip_copy.attr,
d06f191f 6639 &raid5_rmw_level.attr,
2c7da14b 6640 &r5c_journal_mode.attr,
3f294f4f
N
6641 NULL,
6642};
007583c9
N
6643static struct attribute_group raid5_attrs_group = {
6644 .name = NULL,
6645 .attrs = raid5_attrs,
3f294f4f
N
6646};
6647
60aaf933 6648static int alloc_thread_groups(struct r5conf *conf, int cnt,
6649 int *group_cnt,
6650 int *worker_cnt_per_group,
6651 struct r5worker_group **worker_groups)
851c30c9 6652{
566c09c5 6653 int i, j, k;
851c30c9
SL
6654 ssize_t size;
6655 struct r5worker *workers;
6656
60aaf933 6657 *worker_cnt_per_group = cnt;
851c30c9 6658 if (cnt == 0) {
60aaf933 6659 *group_cnt = 0;
6660 *worker_groups = NULL;
851c30c9
SL
6661 return 0;
6662 }
60aaf933 6663 *group_cnt = num_possible_nodes();
851c30c9 6664 size = sizeof(struct r5worker) * cnt;
60aaf933 6665 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6666 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6667 *group_cnt, GFP_NOIO);
6668 if (!*worker_groups || !workers) {
851c30c9 6669 kfree(workers);
60aaf933 6670 kfree(*worker_groups);
851c30c9
SL
6671 return -ENOMEM;
6672 }
6673
60aaf933 6674 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
6675 struct r5worker_group *group;
6676
0c775d52 6677 group = &(*worker_groups)[i];
851c30c9 6678 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 6679 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
6680 group->conf = conf;
6681 group->workers = workers + i * cnt;
6682
6683 for (j = 0; j < cnt; j++) {
566c09c5
SL
6684 struct r5worker *worker = group->workers + j;
6685 worker->group = group;
6686 INIT_WORK(&worker->work, raid5_do_work);
6687
6688 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6689 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
6690 }
6691 }
6692
6693 return 0;
6694}
6695
6696static void free_thread_groups(struct r5conf *conf)
6697{
6698 if (conf->worker_groups)
6699 kfree(conf->worker_groups[0].workers);
6700 kfree(conf->worker_groups);
6701 conf->worker_groups = NULL;
6702}
6703
80c3a6ce 6704static sector_t
fd01b88c 6705raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 6706{
d1688a6d 6707 struct r5conf *conf = mddev->private;
80c3a6ce
DW
6708
6709 if (!sectors)
6710 sectors = mddev->dev_sectors;
5e5e3e78 6711 if (!raid_disks)
7ec05478 6712 /* size is defined by the smallest of previous and new size */
5e5e3e78 6713 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 6714
3cb5edf4
N
6715 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6716 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
6717 return sectors * (raid_disks - conf->max_degraded);
6718}
6719
789b5e03
ON
6720static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6721{
6722 safe_put_page(percpu->spare_page);
46d5b785 6723 if (percpu->scribble)
6724 flex_array_free(percpu->scribble);
789b5e03
ON
6725 percpu->spare_page = NULL;
6726 percpu->scribble = NULL;
6727}
6728
6729static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6730{
6731 if (conf->level == 6 && !percpu->spare_page)
6732 percpu->spare_page = alloc_page(GFP_KERNEL);
6733 if (!percpu->scribble)
46d5b785 6734 percpu->scribble = scribble_alloc(max(conf->raid_disks,
738a2738
N
6735 conf->previous_raid_disks),
6736 max(conf->chunk_sectors,
6737 conf->prev_chunk_sectors)
6738 / STRIPE_SECTORS,
6739 GFP_KERNEL);
789b5e03
ON
6740
6741 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6742 free_scratch_buffer(conf, percpu);
6743 return -ENOMEM;
6744 }
6745
6746 return 0;
6747}
6748
29c6d1bb 6749static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 6750{
29c6d1bb
SAS
6751 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6752
6753 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6754 return 0;
6755}
36d1c647 6756
29c6d1bb
SAS
6757static void raid5_free_percpu(struct r5conf *conf)
6758{
36d1c647
DW
6759 if (!conf->percpu)
6760 return;
6761
29c6d1bb 6762 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
6763 free_percpu(conf->percpu);
6764}
6765
d1688a6d 6766static void free_conf(struct r5conf *conf)
95fc17aa 6767{
d7bd398e
SL
6768 int i;
6769
ff875738
AP
6770 log_exit(conf);
6771
30c89465 6772 if (conf->shrinker.nr_deferred)
edbe83ab 6773 unregister_shrinker(&conf->shrinker);
5c7e81c3 6774
851c30c9 6775 free_thread_groups(conf);
95fc17aa 6776 shrink_stripes(conf);
36d1c647 6777 raid5_free_percpu(conf);
d7bd398e
SL
6778 for (i = 0; i < conf->pool_size; i++)
6779 if (conf->disks[i].extra_page)
6780 put_page(conf->disks[i].extra_page);
95fc17aa 6781 kfree(conf->disks);
dd7a8f5d
N
6782 if (conf->bio_split)
6783 bioset_free(conf->bio_split);
95fc17aa 6784 kfree(conf->stripe_hashtbl);
aaf9f12e 6785 kfree(conf->pending_data);
95fc17aa
DW
6786 kfree(conf);
6787}
6788
29c6d1bb 6789static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 6790{
29c6d1bb 6791 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
6792 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6793
29c6d1bb 6794 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
6795 pr_warn("%s: failed memory allocation for cpu%u\n",
6796 __func__, cpu);
29c6d1bb 6797 return -ENOMEM;
36d1c647 6798 }
29c6d1bb 6799 return 0;
36d1c647 6800}
36d1c647 6801
d1688a6d 6802static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 6803{
789b5e03 6804 int err = 0;
36d1c647 6805
789b5e03
ON
6806 conf->percpu = alloc_percpu(struct raid5_percpu);
6807 if (!conf->percpu)
36d1c647 6808 return -ENOMEM;
789b5e03 6809
29c6d1bb 6810 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
6811 if (!err) {
6812 conf->scribble_disks = max(conf->raid_disks,
6813 conf->previous_raid_disks);
6814 conf->scribble_sectors = max(conf->chunk_sectors,
6815 conf->prev_chunk_sectors);
6816 }
36d1c647
DW
6817 return err;
6818}
6819
edbe83ab
N
6820static unsigned long raid5_cache_scan(struct shrinker *shrink,
6821 struct shrink_control *sc)
6822{
6823 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
6824 unsigned long ret = SHRINK_STOP;
6825
6826 if (mutex_trylock(&conf->cache_size_mutex)) {
6827 ret= 0;
49895bcc
N
6828 while (ret < sc->nr_to_scan &&
6829 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
6830 if (drop_one_stripe(conf) == 0) {
6831 ret = SHRINK_STOP;
6832 break;
6833 }
6834 ret++;
6835 }
6836 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
6837 }
6838 return ret;
6839}
6840
6841static unsigned long raid5_cache_count(struct shrinker *shrink,
6842 struct shrink_control *sc)
6843{
6844 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6845
6846 if (conf->max_nr_stripes < conf->min_nr_stripes)
6847 /* unlikely, but not impossible */
6848 return 0;
6849 return conf->max_nr_stripes - conf->min_nr_stripes;
6850}
6851
d1688a6d 6852static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 6853{
d1688a6d 6854 struct r5conf *conf;
5e5e3e78 6855 int raid_disk, memory, max_disks;
3cb03002 6856 struct md_rdev *rdev;
1da177e4 6857 struct disk_info *disk;
0232605d 6858 char pers_name[6];
566c09c5 6859 int i;
60aaf933 6860 int group_cnt, worker_cnt_per_group;
6861 struct r5worker_group *new_group;
1da177e4 6862
91adb564
N
6863 if (mddev->new_level != 5
6864 && mddev->new_level != 4
6865 && mddev->new_level != 6) {
cc6167b4
N
6866 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6867 mdname(mddev), mddev->new_level);
91adb564 6868 return ERR_PTR(-EIO);
1da177e4 6869 }
91adb564
N
6870 if ((mddev->new_level == 5
6871 && !algorithm_valid_raid5(mddev->new_layout)) ||
6872 (mddev->new_level == 6
6873 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
6874 pr_warn("md/raid:%s: layout %d not supported\n",
6875 mdname(mddev), mddev->new_layout);
91adb564 6876 return ERR_PTR(-EIO);
99c0fb5f 6877 }
91adb564 6878 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
6879 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6880 mdname(mddev), mddev->raid_disks);
91adb564 6881 return ERR_PTR(-EINVAL);
4bbf3771
N
6882 }
6883
664e7c41
AN
6884 if (!mddev->new_chunk_sectors ||
6885 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6886 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
6887 pr_warn("md/raid:%s: invalid chunk size %d\n",
6888 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 6889 return ERR_PTR(-EINVAL);
f6705578
N
6890 }
6891
d1688a6d 6892 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 6893 if (conf == NULL)
1da177e4 6894 goto abort;
aaf9f12e
SL
6895 INIT_LIST_HEAD(&conf->free_list);
6896 INIT_LIST_HEAD(&conf->pending_list);
6897 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6898 PENDING_IO_MAX, GFP_KERNEL);
6899 if (!conf->pending_data)
6900 goto abort;
6901 for (i = 0; i < PENDING_IO_MAX; i++)
6902 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 6903 /* Don't enable multi-threading by default*/
60aaf933 6904 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6905 &new_group)) {
6906 conf->group_cnt = group_cnt;
6907 conf->worker_cnt_per_group = worker_cnt_per_group;
6908 conf->worker_groups = new_group;
6909 } else
851c30c9 6910 goto abort;
f5efd45a 6911 spin_lock_init(&conf->device_lock);
c46501b2 6912 seqcount_init(&conf->gen_lock);
2d5b569b 6913 mutex_init(&conf->cache_size_mutex);
b1b46486 6914 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 6915 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
6916 init_waitqueue_head(&conf->wait_for_overlap);
6917 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 6918 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
6919 INIT_LIST_HEAD(&conf->hold_list);
6920 INIT_LIST_HEAD(&conf->delayed_list);
6921 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 6922 init_llist_head(&conf->released_stripes);
f5efd45a
DW
6923 atomic_set(&conf->active_stripes, 0);
6924 atomic_set(&conf->preread_active_stripes, 0);
6925 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
6926 spin_lock_init(&conf->pending_bios_lock);
6927 conf->batch_bio_dispatch = true;
6928 rdev_for_each(rdev, mddev) {
6929 if (test_bit(Journal, &rdev->flags))
6930 continue;
6931 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6932 conf->batch_bio_dispatch = false;
6933 break;
6934 }
6935 }
6936
f5efd45a 6937 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 6938 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
6939
6940 conf->raid_disks = mddev->raid_disks;
6941 if (mddev->reshape_position == MaxSector)
6942 conf->previous_raid_disks = mddev->raid_disks;
6943 else
f6705578 6944 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 6945 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 6946
5e5e3e78 6947 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc 6948 GFP_KERNEL);
d7bd398e 6949
b55e6bfc
N
6950 if (!conf->disks)
6951 goto abort;
9ffae0cf 6952
d7bd398e
SL
6953 for (i = 0; i < max_disks; i++) {
6954 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6955 if (!conf->disks[i].extra_page)
6956 goto abort;
6957 }
6958
011067b0 6959 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
dd7a8f5d
N
6960 if (!conf->bio_split)
6961 goto abort;
1da177e4
LT
6962 conf->mddev = mddev;
6963
fccddba0 6964 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 6965 goto abort;
1da177e4 6966
566c09c5
SL
6967 /* We init hash_locks[0] separately to that it can be used
6968 * as the reference lock in the spin_lock_nest_lock() call
6969 * in lock_all_device_hash_locks_irq in order to convince
6970 * lockdep that we know what we are doing.
6971 */
6972 spin_lock_init(conf->hash_locks);
6973 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6974 spin_lock_init(conf->hash_locks + i);
6975
6976 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6977 INIT_LIST_HEAD(conf->inactive_list + i);
6978
6979 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6980 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6981
1e6d690b
SL
6982 atomic_set(&conf->r5c_cached_full_stripes, 0);
6983 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6984 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6985 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
6986 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6987 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 6988
36d1c647 6989 conf->level = mddev->new_level;
46d5b785 6990 conf->chunk_sectors = mddev->new_chunk_sectors;
36d1c647
DW
6991 if (raid5_alloc_percpu(conf) != 0)
6992 goto abort;
6993
0c55e022 6994 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 6995
dafb20fa 6996 rdev_for_each(rdev, mddev) {
1da177e4 6997 raid_disk = rdev->raid_disk;
5e5e3e78 6998 if (raid_disk >= max_disks
f2076e7d 6999 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
7000 continue;
7001 disk = conf->disks + raid_disk;
7002
17045f52
N
7003 if (test_bit(Replacement, &rdev->flags)) {
7004 if (disk->replacement)
7005 goto abort;
7006 disk->replacement = rdev;
7007 } else {
7008 if (disk->rdev)
7009 goto abort;
7010 disk->rdev = rdev;
7011 }
1da177e4 7012
b2d444d7 7013 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 7014 char b[BDEVNAME_SIZE];
cc6167b4
N
7015 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7016 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 7017 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
7018 /* Cannot rely on bitmap to complete recovery */
7019 conf->fullsync = 1;
1da177e4
LT
7020 }
7021
91adb564 7022 conf->level = mddev->new_level;
584acdd4 7023 if (conf->level == 6) {
16a53ecc 7024 conf->max_degraded = 2;
584acdd4
MS
7025 if (raid6_call.xor_syndrome)
7026 conf->rmw_level = PARITY_ENABLE_RMW;
7027 else
7028 conf->rmw_level = PARITY_DISABLE_RMW;
7029 } else {
16a53ecc 7030 conf->max_degraded = 1;
584acdd4
MS
7031 conf->rmw_level = PARITY_ENABLE_RMW;
7032 }
91adb564 7033 conf->algorithm = mddev->new_layout;
fef9c61f 7034 conf->reshape_progress = mddev->reshape_position;
e183eaed 7035 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7036 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7037 conf->prev_algo = mddev->layout;
5cac6bcb
N
7038 } else {
7039 conf->prev_chunk_sectors = conf->chunk_sectors;
7040 conf->prev_algo = conf->algorithm;
e183eaed 7041 }
1da177e4 7042
edbe83ab 7043 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7044 if (mddev->reshape_position != MaxSector) {
7045 int stripes = max_t(int,
7046 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7047 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7048 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7049 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7050 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7051 mdname(mddev), conf->min_nr_stripes);
7052 }
edbe83ab 7053 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7054 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7055 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7056 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7057 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7058 mdname(mddev), memory);
91adb564
N
7059 goto abort;
7060 } else
cc6167b4 7061 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7062 /*
7063 * Losing a stripe head costs more than the time to refill it,
7064 * it reduces the queue depth and so can hurt throughput.
7065 * So set it rather large, scaled by number of devices.
7066 */
7067 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7068 conf->shrinker.scan_objects = raid5_cache_scan;
7069 conf->shrinker.count_objects = raid5_cache_count;
7070 conf->shrinker.batch = 128;
7071 conf->shrinker.flags = 0;
6a0f53ff 7072 if (register_shrinker(&conf->shrinker)) {
cc6167b4
N
7073 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7074 mdname(mddev));
6a0f53ff
CY
7075 goto abort;
7076 }
1da177e4 7077
0232605d
N
7078 sprintf(pers_name, "raid%d", mddev->new_level);
7079 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7080 if (!conf->thread) {
cc6167b4
N
7081 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7082 mdname(mddev));
16a53ecc
N
7083 goto abort;
7084 }
91adb564
N
7085
7086 return conf;
7087
7088 abort:
7089 if (conf) {
95fc17aa 7090 free_conf(conf);
91adb564
N
7091 return ERR_PTR(-EIO);
7092 } else
7093 return ERR_PTR(-ENOMEM);
7094}
7095
c148ffdc
N
7096static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7097{
7098 switch (algo) {
7099 case ALGORITHM_PARITY_0:
7100 if (raid_disk < max_degraded)
7101 return 1;
7102 break;
7103 case ALGORITHM_PARITY_N:
7104 if (raid_disk >= raid_disks - max_degraded)
7105 return 1;
7106 break;
7107 case ALGORITHM_PARITY_0_6:
f72ffdd6 7108 if (raid_disk == 0 ||
c148ffdc
N
7109 raid_disk == raid_disks - 1)
7110 return 1;
7111 break;
7112 case ALGORITHM_LEFT_ASYMMETRIC_6:
7113 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7114 case ALGORITHM_LEFT_SYMMETRIC_6:
7115 case ALGORITHM_RIGHT_SYMMETRIC_6:
7116 if (raid_disk == raid_disks - 1)
7117 return 1;
7118 }
7119 return 0;
7120}
7121
849674e4 7122static int raid5_run(struct mddev *mddev)
91adb564 7123{
d1688a6d 7124 struct r5conf *conf;
9f7c2220 7125 int working_disks = 0;
c148ffdc 7126 int dirty_parity_disks = 0;
3cb03002 7127 struct md_rdev *rdev;
713cf5a6 7128 struct md_rdev *journal_dev = NULL;
c148ffdc 7129 sector_t reshape_offset = 0;
17045f52 7130 int i;
b5254dd5
N
7131 long long min_offset_diff = 0;
7132 int first = 1;
91adb564 7133
a415c0f1
N
7134 if (mddev_init_writes_pending(mddev) < 0)
7135 return -ENOMEM;
7136
8c6ac868 7137 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7138 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7139 mdname(mddev));
b5254dd5
N
7140
7141 rdev_for_each(rdev, mddev) {
7142 long long diff;
713cf5a6 7143
f2076e7d 7144 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7145 journal_dev = rdev;
f2076e7d
SL
7146 continue;
7147 }
b5254dd5
N
7148 if (rdev->raid_disk < 0)
7149 continue;
7150 diff = (rdev->new_data_offset - rdev->data_offset);
7151 if (first) {
7152 min_offset_diff = diff;
7153 first = 0;
7154 } else if (mddev->reshape_backwards &&
7155 diff < min_offset_diff)
7156 min_offset_diff = diff;
7157 else if (!mddev->reshape_backwards &&
7158 diff > min_offset_diff)
7159 min_offset_diff = diff;
7160 }
7161
91adb564
N
7162 if (mddev->reshape_position != MaxSector) {
7163 /* Check that we can continue the reshape.
b5254dd5
N
7164 * Difficulties arise if the stripe we would write to
7165 * next is at or after the stripe we would read from next.
7166 * For a reshape that changes the number of devices, this
7167 * is only possible for a very short time, and mdadm makes
7168 * sure that time appears to have past before assembling
7169 * the array. So we fail if that time hasn't passed.
7170 * For a reshape that keeps the number of devices the same
7171 * mdadm must be monitoring the reshape can keeping the
7172 * critical areas read-only and backed up. It will start
7173 * the array in read-only mode, so we check for that.
91adb564
N
7174 */
7175 sector_t here_new, here_old;
7176 int old_disks;
18b00334 7177 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7178 int chunk_sectors;
7179 int new_data_disks;
91adb564 7180
713cf5a6 7181 if (journal_dev) {
cc6167b4
N
7182 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7183 mdname(mddev));
713cf5a6
SL
7184 return -EINVAL;
7185 }
7186
88ce4930 7187 if (mddev->new_level != mddev->level) {
cc6167b4
N
7188 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7189 mdname(mddev));
91adb564
N
7190 return -EINVAL;
7191 }
91adb564
N
7192 old_disks = mddev->raid_disks - mddev->delta_disks;
7193 /* reshape_position must be on a new-stripe boundary, and one
7194 * further up in new geometry must map after here in old
7195 * geometry.
05256d98
N
7196 * If the chunk sizes are different, then as we perform reshape
7197 * in units of the largest of the two, reshape_position needs
7198 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7199 */
7200 here_new = mddev->reshape_position;
05256d98
N
7201 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7202 new_data_disks = mddev->raid_disks - max_degraded;
7203 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7204 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7205 mdname(mddev));
91adb564
N
7206 return -EINVAL;
7207 }
05256d98 7208 reshape_offset = here_new * chunk_sectors;
91adb564
N
7209 /* here_new is the stripe we will write to */
7210 here_old = mddev->reshape_position;
05256d98 7211 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7212 /* here_old is the first stripe that we might need to read
7213 * from */
67ac6011
N
7214 if (mddev->delta_disks == 0) {
7215 /* We cannot be sure it is safe to start an in-place
b5254dd5 7216 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7217 * and taking constant backups.
7218 * mdadm always starts a situation like this in
7219 * readonly mode so it can take control before
7220 * allowing any writes. So just check for that.
7221 */
b5254dd5
N
7222 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7223 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7224 /* not really in-place - so OK */;
7225 else if (mddev->ro == 0) {
cc6167b4
N
7226 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7227 mdname(mddev));
67ac6011
N
7228 return -EINVAL;
7229 }
2c810cdd 7230 } else if (mddev->reshape_backwards
05256d98
N
7231 ? (here_new * chunk_sectors + min_offset_diff <=
7232 here_old * chunk_sectors)
7233 : (here_new * chunk_sectors >=
7234 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7235 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7236 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7237 mdname(mddev));
91adb564
N
7238 return -EINVAL;
7239 }
cc6167b4 7240 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7241 /* OK, we should be able to continue; */
7242 } else {
7243 BUG_ON(mddev->level != mddev->new_level);
7244 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7245 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7246 BUG_ON(mddev->delta_disks != 0);
1da177e4 7247 }
91adb564 7248
3418d036
AP
7249 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7250 test_bit(MD_HAS_PPL, &mddev->flags)) {
7251 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7252 mdname(mddev));
7253 clear_bit(MD_HAS_PPL, &mddev->flags);
ddc08823 7254 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
3418d036
AP
7255 }
7256
245f46c2
N
7257 if (mddev->private == NULL)
7258 conf = setup_conf(mddev);
7259 else
7260 conf = mddev->private;
7261
91adb564
N
7262 if (IS_ERR(conf))
7263 return PTR_ERR(conf);
7264
486b0f7b
SL
7265 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7266 if (!journal_dev) {
cc6167b4
N
7267 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7268 mdname(mddev));
486b0f7b
SL
7269 mddev->ro = 1;
7270 set_disk_ro(mddev->gendisk, 1);
7271 } else if (mddev->recovery_cp == MaxSector)
7272 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7273 }
7274
b5254dd5 7275 conf->min_offset_diff = min_offset_diff;
91adb564
N
7276 mddev->thread = conf->thread;
7277 conf->thread = NULL;
7278 mddev->private = conf;
7279
17045f52
N
7280 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7281 i++) {
7282 rdev = conf->disks[i].rdev;
7283 if (!rdev && conf->disks[i].replacement) {
7284 /* The replacement is all we have yet */
7285 rdev = conf->disks[i].replacement;
7286 conf->disks[i].replacement = NULL;
7287 clear_bit(Replacement, &rdev->flags);
7288 conf->disks[i].rdev = rdev;
7289 }
7290 if (!rdev)
c148ffdc 7291 continue;
17045f52
N
7292 if (conf->disks[i].replacement &&
7293 conf->reshape_progress != MaxSector) {
7294 /* replacements and reshape simply do not mix. */
cc6167b4 7295 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7296 goto abort;
7297 }
2f115882 7298 if (test_bit(In_sync, &rdev->flags)) {
91adb564 7299 working_disks++;
2f115882
N
7300 continue;
7301 }
c148ffdc
N
7302 /* This disc is not fully in-sync. However if it
7303 * just stored parity (beyond the recovery_offset),
7304 * when we don't need to be concerned about the
7305 * array being dirty.
7306 * When reshape goes 'backwards', we never have
7307 * partially completed devices, so we only need
7308 * to worry about reshape going forwards.
7309 */
7310 /* Hack because v0.91 doesn't store recovery_offset properly. */
7311 if (mddev->major_version == 0 &&
7312 mddev->minor_version > 90)
7313 rdev->recovery_offset = reshape_offset;
5026d7a9 7314
c148ffdc
N
7315 if (rdev->recovery_offset < reshape_offset) {
7316 /* We need to check old and new layout */
7317 if (!only_parity(rdev->raid_disk,
7318 conf->algorithm,
7319 conf->raid_disks,
7320 conf->max_degraded))
7321 continue;
7322 }
7323 if (!only_parity(rdev->raid_disk,
7324 conf->prev_algo,
7325 conf->previous_raid_disks,
7326 conf->max_degraded))
7327 continue;
7328 dirty_parity_disks++;
7329 }
91adb564 7330
17045f52
N
7331 /*
7332 * 0 for a fully functional array, 1 or 2 for a degraded array.
7333 */
2e38a37f 7334 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7335
674806d6 7336 if (has_failed(conf)) {
cc6167b4 7337 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7338 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7339 goto abort;
7340 }
7341
91adb564 7342 /* device size must be a multiple of chunk size */
9d8f0363 7343 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
7344 mddev->resync_max_sectors = mddev->dev_sectors;
7345
c148ffdc 7346 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7347 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7348 if (test_bit(MD_HAS_PPL, &mddev->flags))
7349 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7350 mdname(mddev));
7351 else if (mddev->ok_start_degraded)
cc6167b4
N
7352 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7353 mdname(mddev));
6ff8d8ec 7354 else {
cc6167b4
N
7355 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7356 mdname(mddev));
6ff8d8ec
N
7357 goto abort;
7358 }
1da177e4
LT
7359 }
7360
cc6167b4
N
7361 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7362 mdname(mddev), conf->level,
7363 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7364 mddev->new_layout);
1da177e4
LT
7365
7366 print_raid5_conf(conf);
7367
fef9c61f 7368 if (conf->reshape_progress != MaxSector) {
fef9c61f 7369 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7370 atomic_set(&conf->reshape_stripes, 0);
7371 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7372 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7373 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7374 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7375 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7376 "reshape");
f6705578
N
7377 }
7378
1da177e4 7379 /* Ok, everything is just fine now */
a64c876f
N
7380 if (mddev->to_remove == &raid5_attrs_group)
7381 mddev->to_remove = NULL;
00bcb4ac
N
7382 else if (mddev->kobj.sd &&
7383 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
7384 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7385 mdname(mddev));
4a5add49 7386 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 7387
4a5add49 7388 if (mddev->queue) {
9f7c2220 7389 int chunk_size;
4a5add49
N
7390 /* read-ahead size must cover two whole stripes, which
7391 * is 2 * (datadisks) * chunksize where 'n' is the
7392 * number of raid devices
7393 */
7394 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7395 int stripe = data_disks *
7396 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
dc3b17cc
JK
7397 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7398 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
91adb564 7399
9f7c2220
N
7400 chunk_size = mddev->chunk_sectors << 9;
7401 blk_queue_io_min(mddev->queue, chunk_size);
7402 blk_queue_io_opt(mddev->queue, chunk_size *
7403 (conf->raid_disks - conf->max_degraded));
c78afc62 7404 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
7405 /*
7406 * We can only discard a whole stripe. It doesn't make sense to
7407 * discard data disk but write parity disk
7408 */
7409 stripe = stripe * PAGE_SIZE;
4ac6875e
N
7410 /* Round up to power of 2, as discard handling
7411 * currently assumes that */
7412 while ((stripe-1) & stripe)
7413 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
7414 mddev->queue->limits.discard_alignment = stripe;
7415 mddev->queue->limits.discard_granularity = stripe;
e8d7c332 7416
5026d7a9 7417 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 7418 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 7419
05616be5 7420 rdev_for_each(rdev, mddev) {
9f7c2220
N
7421 disk_stack_limits(mddev->gendisk, rdev->bdev,
7422 rdev->data_offset << 9);
05616be5
N
7423 disk_stack_limits(mddev->gendisk, rdev->bdev,
7424 rdev->new_data_offset << 9);
7425 }
620125f2 7426
48920ff2
CH
7427 /*
7428 * zeroing is required, otherwise data
7429 * could be lost. Consider a scenario: discard a stripe
7430 * (the stripe could be inconsistent if
7431 * discard_zeroes_data is 0); write one disk of the
7432 * stripe (the stripe could be inconsistent again
7433 * depending on which disks are used to calculate
7434 * parity); the disk is broken; The stripe data of this
7435 * disk is lost.
7436 *
7437 * We only allow DISCARD if the sysadmin has confirmed that
7438 * only safe devices are in use by setting a module parameter.
7439 * A better idea might be to turn DISCARD into WRITE_ZEROES
7440 * requests, as that is required to be safe.
7441 */
7442 if (devices_handle_discard_safely &&
e7597e69
JS
7443 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7444 mddev->queue->limits.discard_granularity >= stripe)
620125f2
SL
7445 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7446 mddev->queue);
7447 else
7448 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7449 mddev->queue);
1dffdddd
SL
7450
7451 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
9f7c2220 7452 }
23032a0e 7453
845b9e22 7454 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
ff875738 7455 goto abort;
5c7e81c3 7456
1da177e4
LT
7457 return 0;
7458abort:
01f96c0a 7459 md_unregister_thread(&mddev->thread);
e4f869d9
N
7460 print_raid5_conf(conf);
7461 free_conf(conf);
1da177e4 7462 mddev->private = NULL;
cc6167b4 7463 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
7464 return -EIO;
7465}
7466
afa0f557 7467static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 7468{
afa0f557 7469 struct r5conf *conf = priv;
1da177e4 7470
95fc17aa 7471 free_conf(conf);
a64c876f 7472 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
7473}
7474
849674e4 7475static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 7476{
d1688a6d 7477 struct r5conf *conf = mddev->private;
1da177e4
LT
7478 int i;
7479
9d8f0363 7480 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 7481 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 7482 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
7483 rcu_read_lock();
7484 for (i = 0; i < conf->raid_disks; i++) {
7485 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7486 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7487 }
7488 rcu_read_unlock();
1da177e4 7489 seq_printf (seq, "]");
1da177e4
LT
7490}
7491
d1688a6d 7492static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
7493{
7494 int i;
7495 struct disk_info *tmp;
7496
cc6167b4 7497 pr_debug("RAID conf printout:\n");
1da177e4 7498 if (!conf) {
cc6167b4 7499 pr_debug("(conf==NULL)\n");
1da177e4
LT
7500 return;
7501 }
cc6167b4 7502 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
7503 conf->raid_disks,
7504 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
7505
7506 for (i = 0; i < conf->raid_disks; i++) {
7507 char b[BDEVNAME_SIZE];
7508 tmp = conf->disks + i;
7509 if (tmp->rdev)
cc6167b4 7510 pr_debug(" disk %d, o:%d, dev:%s\n",
0c55e022
N
7511 i, !test_bit(Faulty, &tmp->rdev->flags),
7512 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
7513 }
7514}
7515
fd01b88c 7516static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
7517{
7518 int i;
d1688a6d 7519 struct r5conf *conf = mddev->private;
1da177e4 7520 struct disk_info *tmp;
6b965620
N
7521 int count = 0;
7522 unsigned long flags;
1da177e4
LT
7523
7524 for (i = 0; i < conf->raid_disks; i++) {
7525 tmp = conf->disks + i;
dd054fce
N
7526 if (tmp->replacement
7527 && tmp->replacement->recovery_offset == MaxSector
7528 && !test_bit(Faulty, &tmp->replacement->flags)
7529 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7530 /* Replacement has just become active. */
7531 if (!tmp->rdev
7532 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7533 count++;
7534 if (tmp->rdev) {
7535 /* Replaced device not technically faulty,
7536 * but we need to be sure it gets removed
7537 * and never re-added.
7538 */
7539 set_bit(Faulty, &tmp->rdev->flags);
7540 sysfs_notify_dirent_safe(
7541 tmp->rdev->sysfs_state);
7542 }
7543 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7544 } else if (tmp->rdev
70fffd0b 7545 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 7546 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 7547 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 7548 count++;
43c73ca4 7549 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
7550 }
7551 }
6b965620 7552 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7553 mddev->degraded = raid5_calc_degraded(conf);
6b965620 7554 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 7555 print_raid5_conf(conf);
6b965620 7556 return count;
1da177e4
LT
7557}
7558
b8321b68 7559static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7560{
d1688a6d 7561 struct r5conf *conf = mddev->private;
1da177e4 7562 int err = 0;
b8321b68 7563 int number = rdev->raid_disk;
657e3e4d 7564 struct md_rdev **rdevp;
1da177e4
LT
7565 struct disk_info *p = conf->disks + number;
7566
7567 print_raid5_conf(conf);
f6b6ec5c 7568 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 7569 /*
f6b6ec5c
SL
7570 * we can't wait pending write here, as this is called in
7571 * raid5d, wait will deadlock.
84dd97a6
N
7572 * neilb: there is no locking about new writes here,
7573 * so this cannot be safe.
c2bb6242 7574 */
70d466f7
SL
7575 if (atomic_read(&conf->active_stripes) ||
7576 atomic_read(&conf->r5c_cached_full_stripes) ||
7577 atomic_read(&conf->r5c_cached_partial_stripes)) {
f6b6ec5c 7578 return -EBUSY;
84dd97a6 7579 }
ff875738 7580 log_exit(conf);
f6b6ec5c 7581 return 0;
c2bb6242 7582 }
657e3e4d
N
7583 if (rdev == p->rdev)
7584 rdevp = &p->rdev;
7585 else if (rdev == p->replacement)
7586 rdevp = &p->replacement;
7587 else
7588 return 0;
7589
7590 if (number >= conf->raid_disks &&
7591 conf->reshape_progress == MaxSector)
7592 clear_bit(In_sync, &rdev->flags);
7593
7594 if (test_bit(In_sync, &rdev->flags) ||
7595 atomic_read(&rdev->nr_pending)) {
7596 err = -EBUSY;
7597 goto abort;
7598 }
7599 /* Only remove non-faulty devices if recovery
7600 * isn't possible.
7601 */
7602 if (!test_bit(Faulty, &rdev->flags) &&
7603 mddev->recovery_disabled != conf->recovery_disabled &&
7604 !has_failed(conf) &&
dd054fce 7605 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
7606 number < conf->raid_disks) {
7607 err = -EBUSY;
7608 goto abort;
7609 }
7610 *rdevp = NULL;
d787be40
N
7611 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7612 synchronize_rcu();
7613 if (atomic_read(&rdev->nr_pending)) {
7614 /* lost the race, try later */
7615 err = -EBUSY;
7616 *rdevp = rdev;
7617 }
7618 }
6358c239
AP
7619 if (!err) {
7620 err = log_modify(conf, rdev, false);
7621 if (err)
7622 goto abort;
7623 }
d787be40 7624 if (p->replacement) {
dd054fce
N
7625 /* We must have just cleared 'rdev' */
7626 p->rdev = p->replacement;
7627 clear_bit(Replacement, &p->replacement->flags);
7628 smp_mb(); /* Make sure other CPUs may see both as identical
7629 * but will never see neither - if they are careful
7630 */
7631 p->replacement = NULL;
6358c239
AP
7632
7633 if (!err)
7634 err = log_modify(conf, p->rdev, true);
e5bc9c3c
GJ
7635 }
7636
7637 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
7638abort:
7639
7640 print_raid5_conf(conf);
7641 return err;
7642}
7643
fd01b88c 7644static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 7645{
d1688a6d 7646 struct r5conf *conf = mddev->private;
199050ea 7647 int err = -EEXIST;
1da177e4
LT
7648 int disk;
7649 struct disk_info *p;
6c2fce2e
NB
7650 int first = 0;
7651 int last = conf->raid_disks - 1;
1da177e4 7652
f6b6ec5c 7653 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
7654 if (conf->log)
7655 return -EBUSY;
7656
7657 rdev->raid_disk = 0;
7658 /*
7659 * The array is in readonly mode if journal is missing, so no
7660 * write requests running. We should be safe
7661 */
845b9e22 7662 log_init(conf, rdev, false);
f6b6ec5c
SL
7663 return 0;
7664 }
7f0da59b
N
7665 if (mddev->recovery_disabled == conf->recovery_disabled)
7666 return -EBUSY;
7667
dc10c643 7668 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 7669 /* no point adding a device */
199050ea 7670 return -EINVAL;
1da177e4 7671
6c2fce2e
NB
7672 if (rdev->raid_disk >= 0)
7673 first = last = rdev->raid_disk;
1da177e4
LT
7674
7675 /*
16a53ecc
N
7676 * find the disk ... but prefer rdev->saved_raid_disk
7677 * if possible.
1da177e4 7678 */
16a53ecc 7679 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 7680 rdev->saved_raid_disk >= first &&
16a53ecc 7681 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
7682 first = rdev->saved_raid_disk;
7683
7684 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
7685 p = conf->disks + disk;
7686 if (p->rdev == NULL) {
b2d444d7 7687 clear_bit(In_sync, &rdev->flags);
1da177e4 7688 rdev->raid_disk = disk;
72626685
N
7689 if (rdev->saved_raid_disk != disk)
7690 conf->fullsync = 1;
d6065f7b 7691 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
7692
7693 err = log_modify(conf, rdev, true);
7694
5cfb22a1 7695 goto out;
1da177e4 7696 }
5cfb22a1
N
7697 }
7698 for (disk = first; disk <= last; disk++) {
7699 p = conf->disks + disk;
7bfec5f3
N
7700 if (test_bit(WantReplacement, &p->rdev->flags) &&
7701 p->replacement == NULL) {
7702 clear_bit(In_sync, &rdev->flags);
7703 set_bit(Replacement, &rdev->flags);
7704 rdev->raid_disk = disk;
7705 err = 0;
7706 conf->fullsync = 1;
7707 rcu_assign_pointer(p->replacement, rdev);
7708 break;
7709 }
7710 }
5cfb22a1 7711out:
1da177e4 7712 print_raid5_conf(conf);
199050ea 7713 return err;
1da177e4
LT
7714}
7715
fd01b88c 7716static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
7717{
7718 /* no resync is happening, and there is enough space
7719 * on all devices, so we can resize.
7720 * We need to make sure resync covers any new space.
7721 * If the array is shrinking we should possibly wait until
7722 * any io in the removed space completes, but it hardly seems
7723 * worth it.
7724 */
a4a6125a 7725 sector_t newsize;
3cb5edf4
N
7726 struct r5conf *conf = mddev->private;
7727
3418d036 7728 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7729 return -EINVAL;
3cb5edf4 7730 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
7731 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7732 if (mddev->external_size &&
7733 mddev->array_sectors > newsize)
b522adcd 7734 return -EINVAL;
a4a6125a
N
7735 if (mddev->bitmap) {
7736 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7737 if (ret)
7738 return ret;
7739 }
7740 md_set_array_sectors(mddev, newsize);
b098636c
N
7741 if (sectors > mddev->dev_sectors &&
7742 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 7743 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
7744 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7745 }
58c0fed4 7746 mddev->dev_sectors = sectors;
4b5c7ae8 7747 mddev->resync_max_sectors = sectors;
1da177e4
LT
7748 return 0;
7749}
7750
fd01b88c 7751static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
7752{
7753 /* Can only proceed if there are plenty of stripe_heads.
7754 * We need a minimum of one full stripe,, and for sensible progress
7755 * it is best to have about 4 times that.
7756 * If we require 4 times, then the default 256 4K stripe_heads will
7757 * allow for chunk sizes up to 256K, which is probably OK.
7758 * If the chunk size is greater, user-space should request more
7759 * stripe_heads first.
7760 */
d1688a6d 7761 struct r5conf *conf = mddev->private;
01ee22b4 7762 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7763 > conf->min_nr_stripes ||
01ee22b4 7764 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
edbe83ab 7765 > conf->min_nr_stripes) {
cc6167b4
N
7766 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7767 mdname(mddev),
7768 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7769 / STRIPE_SIZE)*4);
01ee22b4
N
7770 return 0;
7771 }
7772 return 1;
7773}
7774
fd01b88c 7775static int check_reshape(struct mddev *mddev)
29269553 7776{
d1688a6d 7777 struct r5conf *conf = mddev->private;
29269553 7778
3418d036 7779 if (conf->log || raid5_has_ppl(conf))
713cf5a6 7780 return -EINVAL;
88ce4930
N
7781 if (mddev->delta_disks == 0 &&
7782 mddev->new_layout == mddev->layout &&
664e7c41 7783 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 7784 return 0; /* nothing to do */
674806d6 7785 if (has_failed(conf))
ec32a2bd 7786 return -EINVAL;
fdcfbbb6 7787 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
7788 /* We might be able to shrink, but the devices must
7789 * be made bigger first.
7790 * For raid6, 4 is the minimum size.
7791 * Otherwise 2 is the minimum
7792 */
7793 int min = 2;
7794 if (mddev->level == 6)
7795 min = 4;
7796 if (mddev->raid_disks + mddev->delta_disks < min)
7797 return -EINVAL;
7798 }
29269553 7799
01ee22b4 7800 if (!check_stripe_cache(mddev))
29269553 7801 return -ENOSPC;
29269553 7802
738a2738
N
7803 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7804 mddev->delta_disks > 0)
7805 if (resize_chunks(conf,
7806 conf->previous_raid_disks
7807 + max(0, mddev->delta_disks),
7808 max(mddev->new_chunk_sectors,
7809 mddev->chunk_sectors)
7810 ) < 0)
7811 return -ENOMEM;
845b9e22
AP
7812
7813 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7814 return 0; /* never bother to shrink */
e56108d6
N
7815 return resize_stripes(conf, (conf->previous_raid_disks
7816 + mddev->delta_disks));
63c70c4f
N
7817}
7818
fd01b88c 7819static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 7820{
d1688a6d 7821 struct r5conf *conf = mddev->private;
3cb03002 7822 struct md_rdev *rdev;
63c70c4f 7823 int spares = 0;
c04be0aa 7824 unsigned long flags;
63c70c4f 7825
f416885e 7826 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
7827 return -EBUSY;
7828
01ee22b4
N
7829 if (!check_stripe_cache(mddev))
7830 return -ENOSPC;
7831
30b67645
N
7832 if (has_failed(conf))
7833 return -EINVAL;
7834
c6563a8c 7835 rdev_for_each(rdev, mddev) {
469518a3
N
7836 if (!test_bit(In_sync, &rdev->flags)
7837 && !test_bit(Faulty, &rdev->flags))
29269553 7838 spares++;
c6563a8c 7839 }
63c70c4f 7840
f416885e 7841 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
7842 /* Not enough devices even to make a degraded array
7843 * of that size
7844 */
7845 return -EINVAL;
7846
ec32a2bd
N
7847 /* Refuse to reduce size of the array. Any reductions in
7848 * array size must be through explicit setting of array_size
7849 * attribute.
7850 */
7851 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7852 < mddev->array_sectors) {
cc6167b4
N
7853 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7854 mdname(mddev));
ec32a2bd
N
7855 return -EINVAL;
7856 }
7857
f6705578 7858 atomic_set(&conf->reshape_stripes, 0);
29269553 7859 spin_lock_irq(&conf->device_lock);
c46501b2 7860 write_seqcount_begin(&conf->gen_lock);
29269553 7861 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 7862 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
7863 conf->prev_chunk_sectors = conf->chunk_sectors;
7864 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
7865 conf->prev_algo = conf->algorithm;
7866 conf->algorithm = mddev->new_layout;
05616be5
N
7867 conf->generation++;
7868 /* Code that selects data_offset needs to see the generation update
7869 * if reshape_progress has been set - so a memory barrier needed.
7870 */
7871 smp_mb();
2c810cdd 7872 if (mddev->reshape_backwards)
fef9c61f
N
7873 conf->reshape_progress = raid5_size(mddev, 0, 0);
7874 else
7875 conf->reshape_progress = 0;
7876 conf->reshape_safe = conf->reshape_progress;
c46501b2 7877 write_seqcount_end(&conf->gen_lock);
29269553
N
7878 spin_unlock_irq(&conf->device_lock);
7879
4d77e3ba
N
7880 /* Now make sure any requests that proceeded on the assumption
7881 * the reshape wasn't running - like Discard or Read - have
7882 * completed.
7883 */
7884 mddev_suspend(mddev);
7885 mddev_resume(mddev);
7886
29269553
N
7887 /* Add some new drives, as many as will fit.
7888 * We know there are enough to make the newly sized array work.
3424bf6a
N
7889 * Don't add devices if we are reducing the number of
7890 * devices in the array. This is because it is not possible
7891 * to correctly record the "partially reconstructed" state of
7892 * such devices during the reshape and confusion could result.
29269553 7893 */
87a8dec9 7894 if (mddev->delta_disks >= 0) {
dafb20fa 7895 rdev_for_each(rdev, mddev)
87a8dec9
N
7896 if (rdev->raid_disk < 0 &&
7897 !test_bit(Faulty, &rdev->flags)) {
7898 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 7899 if (rdev->raid_disk
9d4c7d87 7900 >= conf->previous_raid_disks)
87a8dec9 7901 set_bit(In_sync, &rdev->flags);
9d4c7d87 7902 else
87a8dec9 7903 rdev->recovery_offset = 0;
36fad858
NK
7904
7905 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 7906 /* Failure here is OK */;
50da0840 7907 }
87a8dec9
N
7908 } else if (rdev->raid_disk >= conf->previous_raid_disks
7909 && !test_bit(Faulty, &rdev->flags)) {
7910 /* This is a spare that was manually added */
7911 set_bit(In_sync, &rdev->flags);
87a8dec9 7912 }
29269553 7913
87a8dec9
N
7914 /* When a reshape changes the number of devices,
7915 * ->degraded is measured against the larger of the
7916 * pre and post number of devices.
7917 */
ec32a2bd 7918 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 7919 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
7920 spin_unlock_irqrestore(&conf->device_lock, flags);
7921 }
63c70c4f 7922 mddev->raid_disks = conf->raid_disks;
e516402c 7923 mddev->reshape_position = conf->reshape_progress;
2953079c 7924 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 7925
29269553
N
7926 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7927 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 7928 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
7929 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7930 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7931 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7932 "reshape");
29269553
N
7933 if (!mddev->sync_thread) {
7934 mddev->recovery = 0;
7935 spin_lock_irq(&conf->device_lock);
ba8805b9 7936 write_seqcount_begin(&conf->gen_lock);
29269553 7937 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
7938 mddev->new_chunk_sectors =
7939 conf->chunk_sectors = conf->prev_chunk_sectors;
7940 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
7941 rdev_for_each(rdev, mddev)
7942 rdev->new_data_offset = rdev->data_offset;
7943 smp_wmb();
ba8805b9 7944 conf->generation --;
fef9c61f 7945 conf->reshape_progress = MaxSector;
1e3fa9bd 7946 mddev->reshape_position = MaxSector;
ba8805b9 7947 write_seqcount_end(&conf->gen_lock);
29269553
N
7948 spin_unlock_irq(&conf->device_lock);
7949 return -EAGAIN;
7950 }
c8f517c4 7951 conf->reshape_checkpoint = jiffies;
29269553
N
7952 md_wakeup_thread(mddev->sync_thread);
7953 md_new_event(mddev);
7954 return 0;
7955}
29269553 7956
ec32a2bd
N
7957/* This is called from the reshape thread and should make any
7958 * changes needed in 'conf'
7959 */
d1688a6d 7960static void end_reshape(struct r5conf *conf)
29269553 7961{
29269553 7962
f6705578 7963 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 7964
f6705578 7965 spin_lock_irq(&conf->device_lock);
cea9c228 7966 conf->previous_raid_disks = conf->raid_disks;
b5d27718 7967 md_finish_reshape(conf->mddev);
05616be5 7968 smp_wmb();
fef9c61f 7969 conf->reshape_progress = MaxSector;
6cbd8148 7970 conf->mddev->reshape_position = MaxSector;
f6705578 7971 spin_unlock_irq(&conf->device_lock);
b0f9ec04 7972 wake_up(&conf->wait_for_overlap);
16a53ecc
N
7973
7974 /* read-ahead size must cover two whole stripes, which is
7975 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7976 */
4a5add49 7977 if (conf->mddev->queue) {
cea9c228 7978 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 7979 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 7980 / PAGE_SIZE);
dc3b17cc
JK
7981 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7982 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
16a53ecc 7983 }
29269553 7984 }
29269553
N
7985}
7986
ec32a2bd
N
7987/* This is called from the raid5d thread with mddev_lock held.
7988 * It makes config changes to the device.
7989 */
fd01b88c 7990static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 7991{
d1688a6d 7992 struct r5conf *conf = mddev->private;
cea9c228
N
7993
7994 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7995
ec32a2bd
N
7996 if (mddev->delta_disks > 0) {
7997 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
fe67d19a
HM
7998 if (mddev->queue) {
7999 set_capacity(mddev->gendisk, mddev->array_sectors);
8000 revalidate_disk(mddev->gendisk);
8001 }
ec32a2bd
N
8002 } else {
8003 int d;
908f4fbd 8004 spin_lock_irq(&conf->device_lock);
2e38a37f 8005 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 8006 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
8007 for (d = conf->raid_disks ;
8008 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 8009 d++) {
3cb03002 8010 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
8011 if (rdev)
8012 clear_bit(In_sync, &rdev->flags);
8013 rdev = conf->disks[d].replacement;
8014 if (rdev)
8015 clear_bit(In_sync, &rdev->flags);
1a67dde0 8016 }
cea9c228 8017 }
88ce4930 8018 mddev->layout = conf->algorithm;
09c9e5fa 8019 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
8020 mddev->reshape_position = MaxSector;
8021 mddev->delta_disks = 0;
2c810cdd 8022 mddev->reshape_backwards = 0;
cea9c228
N
8023 }
8024}
8025
fd01b88c 8026static void raid5_quiesce(struct mddev *mddev, int state)
72626685 8027{
d1688a6d 8028 struct r5conf *conf = mddev->private;
72626685
N
8029
8030 switch(state) {
e464eafd
N
8031 case 2: /* resume for a suspend */
8032 wake_up(&conf->wait_for_overlap);
8033 break;
8034
72626685 8035 case 1: /* stop all writes */
566c09c5 8036 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8037 /* '2' tells resync/reshape to pause so that all
8038 * active stripes can drain
8039 */
a39f7afd 8040 r5c_flush_cache(conf, INT_MAX);
64bd660b 8041 conf->quiesce = 2;
b1b46486 8042 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8043 atomic_read(&conf->active_stripes) == 0 &&
8044 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8045 unlock_all_device_hash_locks_irq(conf),
8046 lock_all_device_hash_locks_irq(conf));
64bd660b 8047 conf->quiesce = 1;
566c09c5 8048 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
8049 /* allow reshape to continue */
8050 wake_up(&conf->wait_for_overlap);
72626685
N
8051 break;
8052
8053 case 0: /* re-enable writes */
566c09c5 8054 lock_all_device_hash_locks_irq(conf);
72626685 8055 conf->quiesce = 0;
b1b46486 8056 wake_up(&conf->wait_for_quiescent);
e464eafd 8057 wake_up(&conf->wait_for_overlap);
566c09c5 8058 unlock_all_device_hash_locks_irq(conf);
72626685
N
8059 break;
8060 }
e6c033f7 8061 r5l_quiesce(conf->log, state);
72626685 8062}
b15c2e57 8063
fd01b88c 8064static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8065{
e373ab10 8066 struct r0conf *raid0_conf = mddev->private;
d76c8420 8067 sector_t sectors;
54071b38 8068
f1b29bca 8069 /* for raid0 takeover only one zone is supported */
e373ab10 8070 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8071 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8072 mdname(mddev));
f1b29bca
DW
8073 return ERR_PTR(-EINVAL);
8074 }
8075
e373ab10
N
8076 sectors = raid0_conf->strip_zone[0].zone_end;
8077 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8078 mddev->dev_sectors = sectors;
f1b29bca 8079 mddev->new_level = level;
54071b38
TM
8080 mddev->new_layout = ALGORITHM_PARITY_N;
8081 mddev->new_chunk_sectors = mddev->chunk_sectors;
8082 mddev->raid_disks += 1;
8083 mddev->delta_disks = 1;
8084 /* make sure it will be not marked as dirty */
8085 mddev->recovery_cp = MaxSector;
8086
8087 return setup_conf(mddev);
8088}
8089
fd01b88c 8090static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8091{
8092 int chunksect;
6995f0b2 8093 void *ret;
d562b0c4
N
8094
8095 if (mddev->raid_disks != 2 ||
8096 mddev->degraded > 1)
8097 return ERR_PTR(-EINVAL);
8098
8099 /* Should check if there are write-behind devices? */
8100
8101 chunksect = 64*2; /* 64K by default */
8102
8103 /* The array must be an exact multiple of chunksize */
8104 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8105 chunksect >>= 1;
8106
8107 if ((chunksect<<9) < STRIPE_SIZE)
8108 /* array size does not allow a suitable chunk size */
8109 return ERR_PTR(-EINVAL);
8110
8111 mddev->new_level = 5;
8112 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8113 mddev->new_chunk_sectors = chunksect;
d562b0c4 8114
6995f0b2 8115 ret = setup_conf(mddev);
32cd7cbb 8116 if (!IS_ERR(ret))
394ed8e4
SL
8117 mddev_clear_unsupported_flags(mddev,
8118 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8119 return ret;
d562b0c4
N
8120}
8121
fd01b88c 8122static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8123{
8124 int new_layout;
8125
8126 switch (mddev->layout) {
8127 case ALGORITHM_LEFT_ASYMMETRIC_6:
8128 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8129 break;
8130 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8131 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8132 break;
8133 case ALGORITHM_LEFT_SYMMETRIC_6:
8134 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8135 break;
8136 case ALGORITHM_RIGHT_SYMMETRIC_6:
8137 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8138 break;
8139 case ALGORITHM_PARITY_0_6:
8140 new_layout = ALGORITHM_PARITY_0;
8141 break;
8142 case ALGORITHM_PARITY_N:
8143 new_layout = ALGORITHM_PARITY_N;
8144 break;
8145 default:
8146 return ERR_PTR(-EINVAL);
8147 }
8148 mddev->new_level = 5;
8149 mddev->new_layout = new_layout;
8150 mddev->delta_disks = -1;
8151 mddev->raid_disks -= 1;
8152 return setup_conf(mddev);
8153}
8154
fd01b88c 8155static int raid5_check_reshape(struct mddev *mddev)
b3546035 8156{
88ce4930
N
8157 /* For a 2-drive array, the layout and chunk size can be changed
8158 * immediately as not restriping is needed.
8159 * For larger arrays we record the new value - after validation
8160 * to be used by a reshape pass.
b3546035 8161 */
d1688a6d 8162 struct r5conf *conf = mddev->private;
597a711b 8163 int new_chunk = mddev->new_chunk_sectors;
b3546035 8164
597a711b 8165 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8166 return -EINVAL;
8167 if (new_chunk > 0) {
0ba459d2 8168 if (!is_power_of_2(new_chunk))
b3546035 8169 return -EINVAL;
597a711b 8170 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8171 return -EINVAL;
597a711b 8172 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8173 /* not factor of array size */
8174 return -EINVAL;
8175 }
8176
8177 /* They look valid */
8178
88ce4930 8179 if (mddev->raid_disks == 2) {
597a711b
N
8180 /* can make the change immediately */
8181 if (mddev->new_layout >= 0) {
8182 conf->algorithm = mddev->new_layout;
8183 mddev->layout = mddev->new_layout;
88ce4930
N
8184 }
8185 if (new_chunk > 0) {
597a711b
N
8186 conf->chunk_sectors = new_chunk ;
8187 mddev->chunk_sectors = new_chunk;
88ce4930 8188 }
2953079c 8189 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8190 md_wakeup_thread(mddev->thread);
b3546035 8191 }
50ac168a 8192 return check_reshape(mddev);
88ce4930
N
8193}
8194
fd01b88c 8195static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8196{
597a711b 8197 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8198
597a711b 8199 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8200 return -EINVAL;
b3546035 8201 if (new_chunk > 0) {
0ba459d2 8202 if (!is_power_of_2(new_chunk))
88ce4930 8203 return -EINVAL;
597a711b 8204 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8205 return -EINVAL;
597a711b 8206 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8207 /* not factor of array size */
8208 return -EINVAL;
b3546035 8209 }
88ce4930
N
8210
8211 /* They look valid */
50ac168a 8212 return check_reshape(mddev);
b3546035
N
8213}
8214
fd01b88c 8215static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8216{
8217 /* raid5 can take over:
f1b29bca 8218 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8219 * raid1 - if there are two drives. We need to know the chunk size
8220 * raid4 - trivial - just use a raid4 layout.
8221 * raid6 - Providing it is a *_6 layout
d562b0c4 8222 */
f1b29bca
DW
8223 if (mddev->level == 0)
8224 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8225 if (mddev->level == 1)
8226 return raid5_takeover_raid1(mddev);
e9d4758f
N
8227 if (mddev->level == 4) {
8228 mddev->new_layout = ALGORITHM_PARITY_N;
8229 mddev->new_level = 5;
8230 return setup_conf(mddev);
8231 }
fc9739c6
N
8232 if (mddev->level == 6)
8233 return raid5_takeover_raid6(mddev);
d562b0c4
N
8234
8235 return ERR_PTR(-EINVAL);
8236}
8237
fd01b88c 8238static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8239{
f1b29bca
DW
8240 /* raid4 can take over:
8241 * raid0 - if there is only one strip zone
8242 * raid5 - if layout is right
a78d38a1 8243 */
f1b29bca
DW
8244 if (mddev->level == 0)
8245 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8246 if (mddev->level == 5 &&
8247 mddev->layout == ALGORITHM_PARITY_N) {
8248 mddev->new_layout = 0;
8249 mddev->new_level = 4;
8250 return setup_conf(mddev);
8251 }
8252 return ERR_PTR(-EINVAL);
8253}
d562b0c4 8254
84fc4b56 8255static struct md_personality raid5_personality;
245f46c2 8256
fd01b88c 8257static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8258{
8259 /* Currently can only take over a raid5. We map the
8260 * personality to an equivalent raid6 personality
8261 * with the Q block at the end.
8262 */
8263 int new_layout;
8264
8265 if (mddev->pers != &raid5_personality)
8266 return ERR_PTR(-EINVAL);
8267 if (mddev->degraded > 1)
8268 return ERR_PTR(-EINVAL);
8269 if (mddev->raid_disks > 253)
8270 return ERR_PTR(-EINVAL);
8271 if (mddev->raid_disks < 3)
8272 return ERR_PTR(-EINVAL);
8273
8274 switch (mddev->layout) {
8275 case ALGORITHM_LEFT_ASYMMETRIC:
8276 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8277 break;
8278 case ALGORITHM_RIGHT_ASYMMETRIC:
8279 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8280 break;
8281 case ALGORITHM_LEFT_SYMMETRIC:
8282 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8283 break;
8284 case ALGORITHM_RIGHT_SYMMETRIC:
8285 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8286 break;
8287 case ALGORITHM_PARITY_0:
8288 new_layout = ALGORITHM_PARITY_0_6;
8289 break;
8290 case ALGORITHM_PARITY_N:
8291 new_layout = ALGORITHM_PARITY_N;
8292 break;
8293 default:
8294 return ERR_PTR(-EINVAL);
8295 }
8296 mddev->new_level = 6;
8297 mddev->new_layout = new_layout;
8298 mddev->delta_disks = 1;
8299 mddev->raid_disks += 1;
8300 return setup_conf(mddev);
8301}
8302
ba903a3e
AP
8303static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8304{
8305 struct r5conf *conf;
8306 int err;
8307
8308 err = mddev_lock(mddev);
8309 if (err)
8310 return err;
8311 conf = mddev->private;
8312 if (!conf) {
8313 mddev_unlock(mddev);
8314 return -ENODEV;
8315 }
8316
845b9e22 8317 if (strncmp(buf, "ppl", 3) == 0) {
0bb0c105 8318 /* ppl only works with RAID 5 */
845b9e22
AP
8319 if (!raid5_has_ppl(conf) && conf->level == 5) {
8320 err = log_init(conf, NULL, true);
8321 if (!err) {
8322 err = resize_stripes(conf, conf->pool_size);
8323 if (err)
8324 log_exit(conf);
8325 }
0bb0c105
SL
8326 } else
8327 err = -EINVAL;
8328 } else if (strncmp(buf, "resync", 6) == 0) {
8329 if (raid5_has_ppl(conf)) {
8330 mddev_suspend(mddev);
8331 log_exit(conf);
0bb0c105 8332 mddev_resume(mddev);
845b9e22 8333 err = resize_stripes(conf, conf->pool_size);
0bb0c105
SL
8334 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8335 r5l_log_disk_error(conf)) {
8336 bool journal_dev_exists = false;
8337 struct md_rdev *rdev;
8338
8339 rdev_for_each(rdev, mddev)
8340 if (test_bit(Journal, &rdev->flags)) {
8341 journal_dev_exists = true;
8342 break;
8343 }
8344
8345 if (!journal_dev_exists) {
8346 mddev_suspend(mddev);
8347 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8348 mddev_resume(mddev);
8349 } else /* need remove journal device first */
8350 err = -EBUSY;
8351 } else
8352 err = -EINVAL;
ba903a3e
AP
8353 } else {
8354 err = -EINVAL;
8355 }
8356
8357 if (!err)
8358 md_update_sb(mddev, 1);
8359
8360 mddev_unlock(mddev);
8361
8362 return err;
8363}
8364
84fc4b56 8365static struct md_personality raid6_personality =
16a53ecc
N
8366{
8367 .name = "raid6",
8368 .level = 6,
8369 .owner = THIS_MODULE,
849674e4
SL
8370 .make_request = raid5_make_request,
8371 .run = raid5_run,
afa0f557 8372 .free = raid5_free,
849674e4
SL
8373 .status = raid5_status,
8374 .error_handler = raid5_error,
16a53ecc
N
8375 .hot_add_disk = raid5_add_disk,
8376 .hot_remove_disk= raid5_remove_disk,
8377 .spare_active = raid5_spare_active,
849674e4 8378 .sync_request = raid5_sync_request,
16a53ecc 8379 .resize = raid5_resize,
80c3a6ce 8380 .size = raid5_size,
50ac168a 8381 .check_reshape = raid6_check_reshape,
f416885e 8382 .start_reshape = raid5_start_reshape,
cea9c228 8383 .finish_reshape = raid5_finish_reshape,
16a53ecc 8384 .quiesce = raid5_quiesce,
245f46c2 8385 .takeover = raid6_takeover,
5c675f83 8386 .congested = raid5_congested,
0bb0c105 8387 .change_consistency_policy = raid5_change_consistency_policy,
16a53ecc 8388};
84fc4b56 8389static struct md_personality raid5_personality =
1da177e4
LT
8390{
8391 .name = "raid5",
2604b703 8392 .level = 5,
1da177e4 8393 .owner = THIS_MODULE,
849674e4
SL
8394 .make_request = raid5_make_request,
8395 .run = raid5_run,
afa0f557 8396 .free = raid5_free,
849674e4
SL
8397 .status = raid5_status,
8398 .error_handler = raid5_error,
1da177e4
LT
8399 .hot_add_disk = raid5_add_disk,
8400 .hot_remove_disk= raid5_remove_disk,
8401 .spare_active = raid5_spare_active,
849674e4 8402 .sync_request = raid5_sync_request,
1da177e4 8403 .resize = raid5_resize,
80c3a6ce 8404 .size = raid5_size,
63c70c4f
N
8405 .check_reshape = raid5_check_reshape,
8406 .start_reshape = raid5_start_reshape,
cea9c228 8407 .finish_reshape = raid5_finish_reshape,
72626685 8408 .quiesce = raid5_quiesce,
d562b0c4 8409 .takeover = raid5_takeover,
5c675f83 8410 .congested = raid5_congested,
ba903a3e 8411 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
8412};
8413
84fc4b56 8414static struct md_personality raid4_personality =
1da177e4 8415{
2604b703
N
8416 .name = "raid4",
8417 .level = 4,
8418 .owner = THIS_MODULE,
849674e4
SL
8419 .make_request = raid5_make_request,
8420 .run = raid5_run,
afa0f557 8421 .free = raid5_free,
849674e4
SL
8422 .status = raid5_status,
8423 .error_handler = raid5_error,
2604b703
N
8424 .hot_add_disk = raid5_add_disk,
8425 .hot_remove_disk= raid5_remove_disk,
8426 .spare_active = raid5_spare_active,
849674e4 8427 .sync_request = raid5_sync_request,
2604b703 8428 .resize = raid5_resize,
80c3a6ce 8429 .size = raid5_size,
3d37890b
N
8430 .check_reshape = raid5_check_reshape,
8431 .start_reshape = raid5_start_reshape,
cea9c228 8432 .finish_reshape = raid5_finish_reshape,
2604b703 8433 .quiesce = raid5_quiesce,
a78d38a1 8434 .takeover = raid4_takeover,
5c675f83 8435 .congested = raid5_congested,
0bb0c105 8436 .change_consistency_policy = raid5_change_consistency_policy,
2604b703
N
8437};
8438
8439static int __init raid5_init(void)
8440{
29c6d1bb
SAS
8441 int ret;
8442
851c30c9
SL
8443 raid5_wq = alloc_workqueue("raid5wq",
8444 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8445 if (!raid5_wq)
8446 return -ENOMEM;
29c6d1bb
SAS
8447
8448 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8449 "md/raid5:prepare",
8450 raid456_cpu_up_prepare,
8451 raid456_cpu_dead);
8452 if (ret) {
8453 destroy_workqueue(raid5_wq);
8454 return ret;
8455 }
16a53ecc 8456 register_md_personality(&raid6_personality);
2604b703
N
8457 register_md_personality(&raid5_personality);
8458 register_md_personality(&raid4_personality);
8459 return 0;
1da177e4
LT
8460}
8461
2604b703 8462static void raid5_exit(void)
1da177e4 8463{
16a53ecc 8464 unregister_md_personality(&raid6_personality);
2604b703
N
8465 unregister_md_personality(&raid5_personality);
8466 unregister_md_personality(&raid4_personality);
29c6d1bb 8467 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 8468 destroy_workqueue(raid5_wq);
1da177e4
LT
8469}
8470
8471module_init(raid5_init);
8472module_exit(raid5_exit);
8473MODULE_LICENSE("GPL");
0efb9e61 8474MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 8475MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
8476MODULE_ALIAS("md-raid5");
8477MODULE_ALIAS("md-raid4");
2604b703
N
8478MODULE_ALIAS("md-level-5");
8479MODULE_ALIAS("md-level-4");
16a53ecc
N
8480MODULE_ALIAS("md-personality-8"); /* RAID6 */
8481MODULE_ALIAS("md-raid6");
8482MODULE_ALIAS("md-level-6");
8483
8484/* This used to be two separate modules, they were: */
8485MODULE_ALIAS("raid5");
8486MODULE_ALIAS("raid6");