Merge tag 'pstore-v6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux-block.git] / drivers / md / raid5.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 6 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 7 *
16a53ecc
N
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
1da177e4
LT
11 */
12
ae3c20cc
N
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 27 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
1da177e4 37
bff61975 38#include <linux/blkdev.h>
5e2cf333 39#include <linux/delay.h>
f6705578 40#include <linux/kthread.h>
f701d589 41#include <linux/raid/pq.h>
91c00924 42#include <linux/async_tx.h>
056075c7 43#include <linux/module.h>
07a3b417 44#include <linux/async.h>
bff61975 45#include <linux/seq_file.h>
36d1c647 46#include <linux/cpu.h>
5a0e3ad6 47#include <linux/slab.h>
8bda470e 48#include <linux/ratelimit.h>
851c30c9 49#include <linux/nodemask.h>
3f07c014 50
a9add5d9 51#include <trace/events/block.h>
aaf9f12e 52#include <linux/list_sort.h>
a9add5d9 53
43b2e5d8 54#include "md.h"
bff61975 55#include "raid5.h"
54071b38 56#include "raid0.h"
935fe098 57#include "md-bitmap.h"
ff875738 58#include "raid5-log.h"
72626685 59
394ed8e4
SL
60#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
61
851c30c9
SL
62#define cpu_to_group(cpu) cpu_to_node(cpu)
63#define ANY_GROUP NUMA_NO_NODE
64
7e55c60a
LG
65#define RAID5_MAX_REQ_STRIPES 256
66
8e0e99ba
N
67static bool devices_handle_discard_safely = false;
68module_param(devices_handle_discard_safely, bool, 0644);
69MODULE_PARM_DESC(devices_handle_discard_safely,
70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
851c30c9 71static struct workqueue_struct *raid5_wq;
1da177e4 72
d1688a6d 73static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19 74{
c911c46c 75 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
db298e19
N
76 return &conf->stripe_hashtbl[hash];
77}
1da177e4 78
c911c46c 79static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
566c09c5 80{
c911c46c 81 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
566c09c5
SL
82}
83
84static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
4631f39f 85 __acquires(&conf->device_lock)
566c09c5
SL
86{
87 spin_lock_irq(conf->hash_locks + hash);
88 spin_lock(&conf->device_lock);
89}
90
91static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
4631f39f 92 __releases(&conf->device_lock)
566c09c5
SL
93{
94 spin_unlock(&conf->device_lock);
95 spin_unlock_irq(conf->hash_locks + hash);
96}
97
98static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
4631f39f 99 __acquires(&conf->device_lock)
566c09c5
SL
100{
101 int i;
3d05f3ae 102 spin_lock_irq(conf->hash_locks);
566c09c5
SL
103 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
104 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
105 spin_lock(&conf->device_lock);
106}
107
108static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
4631f39f 109 __releases(&conf->device_lock)
566c09c5
SL
110{
111 int i;
112 spin_unlock(&conf->device_lock);
3d05f3ae
JC
113 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
114 spin_unlock(conf->hash_locks + i);
115 spin_unlock_irq(conf->hash_locks);
566c09c5
SL
116}
117
d0dabf7e
N
118/* Find first data disk in a raid6 stripe */
119static inline int raid6_d0(struct stripe_head *sh)
120{
67cc2b81
N
121 if (sh->ddf_layout)
122 /* ddf always start from first device */
123 return 0;
124 /* md starts just after Q block */
d0dabf7e
N
125 if (sh->qd_idx == sh->disks - 1)
126 return 0;
127 else
128 return sh->qd_idx + 1;
129}
16a53ecc
N
130static inline int raid6_next_disk(int disk, int raid_disks)
131{
132 disk++;
133 return (disk < raid_disks) ? disk : 0;
134}
a4456856 135
d0dabf7e
N
136/* When walking through the disks in a raid5, starting at raid6_d0,
137 * We need to map each disk to a 'slot', where the data disks are slot
138 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
139 * is raid_disks-1. This help does that mapping.
140 */
67cc2b81
N
141static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
142 int *count, int syndrome_disks)
d0dabf7e 143{
6629542e 144 int slot = *count;
67cc2b81 145
e4424fee 146 if (sh->ddf_layout)
6629542e 147 (*count)++;
d0dabf7e 148 if (idx == sh->pd_idx)
67cc2b81 149 return syndrome_disks;
d0dabf7e 150 if (idx == sh->qd_idx)
67cc2b81 151 return syndrome_disks + 1;
e4424fee 152 if (!sh->ddf_layout)
6629542e 153 (*count)++;
d0dabf7e
N
154 return slot;
155}
156
d1688a6d 157static void print_raid5_conf (struct r5conf *conf);
1da177e4 158
600aa109
DW
159static int stripe_operations_active(struct stripe_head *sh)
160{
161 return sh->check_state || sh->reconstruct_state ||
162 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
163 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
164}
165
535ae4eb
SL
166static bool stripe_is_lowprio(struct stripe_head *sh)
167{
168 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
169 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
170 !test_bit(STRIPE_R5C_CACHING, &sh->state);
171}
172
851c30c9 173static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
4631f39f 174 __must_hold(&sh->raid_conf->device_lock)
851c30c9
SL
175{
176 struct r5conf *conf = sh->raid_conf;
177 struct r5worker_group *group;
bfc90cb0 178 int thread_cnt;
851c30c9
SL
179 int i, cpu = sh->cpu;
180
181 if (!cpu_online(cpu)) {
182 cpu = cpumask_any(cpu_online_mask);
183 sh->cpu = cpu;
184 }
185
186 if (list_empty(&sh->lru)) {
187 struct r5worker_group *group;
188 group = conf->worker_groups + cpu_to_group(cpu);
535ae4eb
SL
189 if (stripe_is_lowprio(sh))
190 list_add_tail(&sh->lru, &group->loprio_list);
191 else
192 list_add_tail(&sh->lru, &group->handle_list);
bfc90cb0
SL
193 group->stripes_cnt++;
194 sh->group = group;
851c30c9
SL
195 }
196
197 if (conf->worker_cnt_per_group == 0) {
198 md_wakeup_thread(conf->mddev->thread);
199 return;
200 }
201
202 group = conf->worker_groups + cpu_to_group(sh->cpu);
203
bfc90cb0
SL
204 group->workers[0].working = true;
205 /* at least one worker should run to avoid race */
206 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
207
208 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
209 /* wakeup more workers */
210 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
211 if (group->workers[i].working == false) {
212 group->workers[i].working = true;
213 queue_work_on(sh->cpu, raid5_wq,
214 &group->workers[i].work);
215 thread_cnt--;
216 }
217 }
851c30c9
SL
218}
219
566c09c5
SL
220static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
221 struct list_head *temp_inactive_list)
4631f39f 222 __must_hold(&conf->device_lock)
1da177e4 223{
1e6d690b
SL
224 int i;
225 int injournal = 0; /* number of date pages with R5_InJournal */
226
4eb788df
SL
227 BUG_ON(!list_empty(&sh->lru));
228 BUG_ON(atomic_read(&conf->active_stripes)==0);
1e6d690b
SL
229
230 if (r5c_is_writeback(conf->log))
231 for (i = sh->disks; i--; )
232 if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 injournal++;
a39f7afd 234 /*
5ddf0440
SL
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
237 * STRIPE_HANDLE:
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
a39f7afd 240 */
5ddf0440
SL
241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 (conf->quiesce && r5c_is_writeback(conf->log) &&
243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
a39f7afd
SL
244 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 r5c_make_stripe_write_out(sh);
246 set_bit(STRIPE_HANDLE, &sh->state);
247 }
1e6d690b 248
4eb788df
SL
249 if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 if (test_bit(STRIPE_DELAYED, &sh->state) &&
ad3ab8b6 251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4eb788df 252 list_add_tail(&sh->lru, &conf->delayed_list);
ad3ab8b6 253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
4eb788df
SL
254 sh->bm_seq - conf->seq_write > 0)
255 list_add_tail(&sh->lru, &conf->bitmap_list);
256 else {
257 clear_bit(STRIPE_DELAYED, &sh->state);
258 clear_bit(STRIPE_BIT_DELAY, &sh->state);
851c30c9 259 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
260 if (stripe_is_lowprio(sh))
261 list_add_tail(&sh->lru,
262 &conf->loprio_list);
263 else
264 list_add_tail(&sh->lru,
265 &conf->handle_list);
851c30c9
SL
266 } else {
267 raid5_wakeup_stripe_thread(sh);
268 return;
269 }
4eb788df
SL
270 }
271 md_wakeup_thread(conf->mddev->thread);
272 } else {
273 BUG_ON(stripe_operations_active(sh));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 if (atomic_dec_return(&conf->preread_active_stripes)
276 < IO_THRESHOLD)
277 md_wakeup_thread(conf->mddev->thread);
278 atomic_dec(&conf->active_stripes);
1e6d690b
SL
279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 if (!r5c_is_writeback(conf->log))
281 list_add_tail(&sh->lru, temp_inactive_list);
282 else {
283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 if (injournal == 0)
285 list_add_tail(&sh->lru, temp_inactive_list);
286 else if (injournal == conf->raid_disks - conf->max_degraded) {
287 /* full stripe */
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 atomic_inc(&conf->r5c_cached_full_stripes);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 atomic_dec(&conf->r5c_cached_partial_stripes);
292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
a39f7afd 293 r5c_check_cached_full_stripe(conf);
03b047f4
SL
294 } else
295 /*
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
298 * set it again.
299 */
1e6d690b 300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
1e6d690b
SL
301 }
302 }
1da177e4
LT
303 }
304}
d0dabf7e 305
566c09c5
SL
306static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 struct list_head *temp_inactive_list)
4631f39f 308 __must_hold(&conf->device_lock)
4eb788df
SL
309{
310 if (atomic_dec_and_test(&sh->count))
566c09c5
SL
311 do_release_stripe(conf, sh, temp_inactive_list);
312}
313
314/*
315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 *
317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318 * given time. Adding stripes only takes device lock, while deleting stripes
319 * only takes hash lock.
320 */
321static void release_inactive_stripe_list(struct r5conf *conf,
322 struct list_head *temp_inactive_list,
323 int hash)
324{
325 int size;
6ab2a4b8 326 bool do_wakeup = false;
566c09c5
SL
327 unsigned long flags;
328
329 if (hash == NR_STRIPE_HASH_LOCKS) {
330 size = NR_STRIPE_HASH_LOCKS;
331 hash = NR_STRIPE_HASH_LOCKS - 1;
332 } else
333 size = 1;
334 while (size) {
335 struct list_head *list = &temp_inactive_list[size - 1];
336
337 /*
6d036f7d 338 * We don't hold any lock here yet, raid5_get_active_stripe() might
566c09c5
SL
339 * remove stripes from the list
340 */
341 if (!list_empty_careful(list)) {
342 spin_lock_irqsave(conf->hash_locks + hash, flags);
4bda556a
SL
343 if (list_empty(conf->inactive_list + hash) &&
344 !list_empty(list))
345 atomic_dec(&conf->empty_inactive_list_nr);
566c09c5 346 list_splice_tail_init(list, conf->inactive_list + hash);
6ab2a4b8 347 do_wakeup = true;
566c09c5
SL
348 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349 }
350 size--;
351 hash--;
352 }
353
354 if (do_wakeup) {
6ab2a4b8 355 wake_up(&conf->wait_for_stripe);
b1b46486
YL
356 if (atomic_read(&conf->active_stripes) == 0)
357 wake_up(&conf->wait_for_quiescent);
566c09c5
SL
358 if (conf->retry_read_aligned)
359 md_wakeup_thread(conf->mddev->thread);
360 }
4eb788df
SL
361}
362
566c09c5
SL
363static int release_stripe_list(struct r5conf *conf,
364 struct list_head *temp_inactive_list)
4631f39f 365 __must_hold(&conf->device_lock)
773ca82f 366{
eae8263f 367 struct stripe_head *sh, *t;
773ca82f
SL
368 int count = 0;
369 struct llist_node *head;
370
371 head = llist_del_all(&conf->released_stripes);
d265d9dc 372 head = llist_reverse_order(head);
eae8263f 373 llist_for_each_entry_safe(sh, t, head, release_list) {
566c09c5
SL
374 int hash;
375
773ca82f
SL
376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 smp_mb();
378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379 /*
380 * Don't worry the bit is set here, because if the bit is set
381 * again, the count is always > 1. This is true for
382 * STRIPE_ON_UNPLUG_LIST bit too.
383 */
566c09c5
SL
384 hash = sh->hash_lock_index;
385 __release_stripe(conf, sh, &temp_inactive_list[hash]);
773ca82f
SL
386 count++;
387 }
388
389 return count;
390}
391
6d036f7d 392void raid5_release_stripe(struct stripe_head *sh)
1da177e4 393{
d1688a6d 394 struct r5conf *conf = sh->raid_conf;
1da177e4 395 unsigned long flags;
566c09c5
SL
396 struct list_head list;
397 int hash;
773ca82f 398 bool wakeup;
16a53ecc 399
cf170f3f
ES
400 /* Avoid release_list until the last reference.
401 */
402 if (atomic_add_unless(&sh->count, -1, 1))
403 return;
404
ad4068de 405 if (unlikely(!conf->mddev->thread) ||
406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
773ca82f
SL
407 goto slow_path;
408 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409 if (wakeup)
410 md_wakeup_thread(conf->mddev->thread);
411 return;
412slow_path:
773ca82f 413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
685dbcaa 414 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
566c09c5
SL
415 INIT_LIST_HEAD(&list);
416 hash = sh->hash_lock_index;
417 do_release_stripe(conf, sh, &list);
08edaaa6 418 spin_unlock_irqrestore(&conf->device_lock, flags);
566c09c5 419 release_inactive_stripe_list(conf, &list, hash);
4eb788df 420 }
1da177e4
LT
421}
422
fccddba0 423static inline void remove_hash(struct stripe_head *sh)
1da177e4 424{
45b4233c
DW
425 pr_debug("remove_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
1da177e4 427
fccddba0 428 hlist_del_init(&sh->hash);
1da177e4
LT
429}
430
d1688a6d 431static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 432{
fccddba0 433 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 434
45b4233c
DW
435 pr_debug("insert_hash(), stripe %llu\n",
436 (unsigned long long)sh->sector);
1da177e4 437
fccddba0 438 hlist_add_head(&sh->hash, hp);
1da177e4
LT
439}
440
1da177e4 441/* find an idle stripe, make sure it is unhashed, and return it. */
566c09c5 442static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
1da177e4
LT
443{
444 struct stripe_head *sh = NULL;
445 struct list_head *first;
446
566c09c5 447 if (list_empty(conf->inactive_list + hash))
1da177e4 448 goto out;
566c09c5 449 first = (conf->inactive_list + hash)->next;
1da177e4
LT
450 sh = list_entry(first, struct stripe_head, lru);
451 list_del_init(first);
452 remove_hash(sh);
453 atomic_inc(&conf->active_stripes);
566c09c5 454 BUG_ON(hash != sh->hash_lock_index);
4bda556a
SL
455 if (list_empty(conf->inactive_list + hash))
456 atomic_inc(&conf->empty_inactive_list_nr);
1da177e4
LT
457out:
458 return sh;
459}
460
046169f0
YY
461#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
462static void free_stripe_pages(struct stripe_head *sh)
1da177e4 463{
046169f0 464 int i;
1da177e4 465 struct page *p;
046169f0
YY
466
467 /* Have not allocate page pool */
468 if (!sh->pages)
469 return;
470
471 for (i = 0; i < sh->nr_pages; i++) {
472 p = sh->pages[i];
473 if (p)
474 put_page(p);
475 sh->pages[i] = NULL;
476 }
477}
478
479static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
480{
481 int i;
482 struct page *p;
483
484 for (i = 0; i < sh->nr_pages; i++) {
485 /* The page have allocated. */
486 if (sh->pages[i])
487 continue;
488
489 p = alloc_page(gfp);
490 if (!p) {
491 free_stripe_pages(sh);
492 return -ENOMEM;
493 }
494 sh->pages[i] = p;
495 }
496 return 0;
497}
498
499static int
500init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
501{
502 int nr_pages, cnt;
503
504 if (sh->pages)
505 return 0;
506
507 /* Each of the sh->dev[i] need one conf->stripe_size */
508 cnt = PAGE_SIZE / conf->stripe_size;
509 nr_pages = (disks + cnt - 1) / cnt;
510
511 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
512 if (!sh->pages)
513 return -ENOMEM;
514 sh->nr_pages = nr_pages;
515 sh->stripes_per_page = cnt;
516 return 0;
517}
518#endif
519
520static void shrink_buffers(struct stripe_head *sh)
521{
1da177e4 522 int i;
e4e11e38 523 int num = sh->raid_conf->pool_size;
1da177e4 524
046169f0 525#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
e4e11e38 526 for (i = 0; i < num ; i++) {
046169f0
YY
527 struct page *p;
528
d592a996 529 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
1da177e4
LT
530 p = sh->dev[i].page;
531 if (!p)
532 continue;
533 sh->dev[i].page = NULL;
2d1f3b5d 534 put_page(p);
1da177e4 535 }
046169f0
YY
536#else
537 for (i = 0; i < num; i++)
538 sh->dev[i].page = NULL;
539 free_stripe_pages(sh); /* Free pages */
540#endif
1da177e4
LT
541}
542
a9683a79 543static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
1da177e4
LT
544{
545 int i;
e4e11e38 546 int num = sh->raid_conf->pool_size;
1da177e4 547
046169f0 548#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
e4e11e38 549 for (i = 0; i < num; i++) {
1da177e4
LT
550 struct page *page;
551
a9683a79 552 if (!(page = alloc_page(gfp))) {
1da177e4
LT
553 return 1;
554 }
555 sh->dev[i].page = page;
d592a996 556 sh->dev[i].orig_page = page;
7aba13b7 557 sh->dev[i].offset = 0;
1da177e4 558 }
046169f0
YY
559#else
560 if (alloc_stripe_pages(sh, gfp))
561 return -ENOMEM;
3418d036 562
046169f0
YY
563 for (i = 0; i < num; i++) {
564 sh->dev[i].page = raid5_get_dev_page(sh, i);
565 sh->dev[i].orig_page = sh->dev[i].page;
566 sh->dev[i].offset = raid5_get_page_offset(sh, i);
567 }
568#endif
1da177e4
LT
569 return 0;
570}
571
d1688a6d 572static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 573 struct stripe_head *sh);
1da177e4 574
b5663ba4 575static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 576{
d1688a6d 577 struct r5conf *conf = sh->raid_conf;
566c09c5 578 int i, seq;
1da177e4 579
78bafebd
ES
580 BUG_ON(atomic_read(&sh->count) != 0);
581 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 582 BUG_ON(stripe_operations_active(sh));
59fc630b 583 BUG_ON(sh->batch_head);
d84e0f10 584
45b4233c 585 pr_debug("init_stripe called, stripe %llu\n",
b8e6a15a 586 (unsigned long long)sector);
566c09c5
SL
587retry:
588 seq = read_seqcount_begin(&conf->gen_lock);
86b42c71 589 sh->generation = conf->generation - previous;
b5663ba4 590 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 591 sh->sector = sector;
911d4ee8 592 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
593 sh->state = 0;
594
7ecaa1e6 595 for (i = sh->disks; i--; ) {
1da177e4
LT
596 struct r5dev *dev = &sh->dev[i];
597
d84e0f10 598 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 599 test_bit(R5_LOCKED, &dev->flags)) {
cc6167b4 600 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 601 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 602 dev->read, dev->towrite, dev->written,
1da177e4 603 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 604 WARN_ON(1);
1da177e4
LT
605 }
606 dev->flags = 0;
27a4ff8f 607 dev->sector = raid5_compute_blocknr(sh, i, previous);
1da177e4 608 }
566c09c5
SL
609 if (read_seqcount_retry(&conf->gen_lock, seq))
610 goto retry;
7a87f434 611 sh->overwrite_disks = 0;
1da177e4 612 insert_hash(conf, sh);
851c30c9 613 sh->cpu = smp_processor_id();
da41ba65 614 set_bit(STRIPE_BATCH_READY, &sh->state);
1da177e4
LT
615}
616
d1688a6d 617static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 618 short generation)
1da177e4
LT
619{
620 struct stripe_head *sh;
621
45b4233c 622 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 623 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 624 if (sh->sector == sector && sh->generation == generation)
1da177e4 625 return sh;
45b4233c 626 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
627 return NULL;
628}
629
1baa1126
LG
630static struct stripe_head *find_get_stripe(struct r5conf *conf,
631 sector_t sector, short generation, int hash)
632{
633 int inc_empty_inactive_list_flag;
634 struct stripe_head *sh;
635
636 sh = __find_stripe(conf, sector, generation);
637 if (!sh)
638 return NULL;
639
640 if (atomic_inc_not_zero(&sh->count))
641 return sh;
642
643 /*
644 * Slow path. The reference count is zero which means the stripe must
645 * be on a list (sh->lru). Must remove the stripe from the list that
646 * references it with the device_lock held.
647 */
648
649 spin_lock(&conf->device_lock);
650 if (!atomic_read(&sh->count)) {
651 if (!test_bit(STRIPE_HANDLE, &sh->state))
652 atomic_inc(&conf->active_stripes);
653 BUG_ON(list_empty(&sh->lru) &&
654 !test_bit(STRIPE_EXPANDING, &sh->state));
655 inc_empty_inactive_list_flag = 0;
656 if (!list_empty(conf->inactive_list + hash))
657 inc_empty_inactive_list_flag = 1;
658 list_del_init(&sh->lru);
659 if (list_empty(conf->inactive_list + hash) &&
660 inc_empty_inactive_list_flag)
661 atomic_inc(&conf->empty_inactive_list_nr);
662 if (sh->group) {
663 sh->group->stripes_cnt--;
664 sh->group = NULL;
665 }
666 }
667 atomic_inc(&sh->count);
668 spin_unlock(&conf->device_lock);
669
670 return sh;
671}
672
674806d6
N
673/*
674 * Need to check if array has failed when deciding whether to:
675 * - start an array
676 * - remove non-faulty devices
677 * - add a spare
678 * - allow a reshape
679 * This determination is simple when no reshape is happening.
680 * However if there is a reshape, we need to carefully check
681 * both the before and after sections.
682 * This is because some failed devices may only affect one
683 * of the two sections, and some non-in_sync devices may
684 * be insync in the section most affected by failed devices.
4631f39f
LG
685 *
686 * Most calls to this function hold &conf->device_lock. Calls
687 * in raid5_run() do not require the lock as no other threads
688 * have been started yet.
674806d6 689 */
2e38a37f 690int raid5_calc_degraded(struct r5conf *conf)
674806d6 691{
908f4fbd 692 int degraded, degraded2;
674806d6 693 int i;
674806d6
N
694
695 rcu_read_lock();
696 degraded = 0;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 698 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
699 if (rdev && test_bit(Faulty, &rdev->flags))
700 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
701 if (!rdev || test_bit(Faulty, &rdev->flags))
702 degraded++;
703 else if (test_bit(In_sync, &rdev->flags))
704 ;
705 else
706 /* not in-sync or faulty.
707 * If the reshape increases the number of devices,
708 * this is being recovered by the reshape, so
709 * this 'previous' section is not in_sync.
710 * If the number of devices is being reduced however,
711 * the device can only be part of the array if
712 * we are reverting a reshape, so this section will
713 * be in-sync.
714 */
715 if (conf->raid_disks >= conf->previous_raid_disks)
716 degraded++;
717 }
718 rcu_read_unlock();
908f4fbd
N
719 if (conf->raid_disks == conf->previous_raid_disks)
720 return degraded;
674806d6 721 rcu_read_lock();
908f4fbd 722 degraded2 = 0;
674806d6 723 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 724 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
725 if (rdev && test_bit(Faulty, &rdev->flags))
726 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 727 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 728 degraded2++;
674806d6
N
729 else if (test_bit(In_sync, &rdev->flags))
730 ;
731 else
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
736 */
737 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 738 degraded2++;
674806d6
N
739 }
740 rcu_read_unlock();
908f4fbd
N
741 if (degraded2 > degraded)
742 return degraded2;
743 return degraded;
744}
745
57668f0a 746static bool has_failed(struct r5conf *conf)
908f4fbd 747{
57668f0a 748 int degraded = conf->mddev->degraded;
908f4fbd 749
57668f0a
MT
750 if (test_bit(MD_BROKEN, &conf->mddev->flags))
751 return true;
908f4fbd 752
57668f0a
MT
753 if (conf->mddev->reshape_position != MaxSector)
754 degraded = raid5_calc_degraded(conf);
755
756 return degraded > conf->max_degraded;
674806d6
N
757}
758
df6b0e20
LG
759enum stripe_result {
760 STRIPE_SUCCESS = 0,
761 STRIPE_RETRY,
762 STRIPE_SCHEDULE_AND_RETRY,
763 STRIPE_FAIL,
764};
765
766struct stripe_request_ctx {
767 /* a reference to the last stripe_head for batching */
768 struct stripe_head *batch_last;
769
770 /* first sector in the request */
771 sector_t first_sector;
772
773 /* last sector in the request */
774 sector_t last_sector;
775
776 /*
777 * bitmap to track stripe sectors that have been added to stripes
778 * add one to account for unaligned requests
779 */
780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781
782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783 bool do_flush;
784};
785
3514da58
LG
786/*
787 * Block until another thread clears R5_INACTIVE_BLOCKED or
788 * there are fewer than 3/4 the maximum number of active stripes
789 * and there is an inactive stripe available.
790 */
791static bool is_inactive_blocked(struct r5conf *conf, int hash)
792{
3514da58
LG
793 if (list_empty(conf->inactive_list + hash))
794 return false;
795
796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797 return true;
798
f9287c3e
LG
799 return (atomic_read(&conf->active_stripes) <
800 (conf->max_nr_stripes * 3 / 4));
3514da58
LG
801}
802
2f2d51ef 803struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
20313b1b 804 struct stripe_request_ctx *ctx, sector_t sector,
2f2d51ef 805 unsigned int flags)
1da177e4
LT
806{
807 struct stripe_head *sh;
c911c46c 808 int hash = stripe_hash_locks_hash(conf, sector);
2f2d51ef 809 int previous = !!(flags & R5_GAS_PREVIOUS);
1da177e4 810
45b4233c 811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4 812
566c09c5 813 spin_lock_irq(conf->hash_locks + hash);
1da177e4 814
b6d56144 815 for (;;) {
2f2d51ef 816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
b6d56144
LG
817 /*
818 * Must release the reference to batch_last before
819 * waiting, on quiesce, otherwise the batch_last will
820 * hold a reference to a stripe and raid5_quiesce()
821 * will deadlock waiting for active_stripes to go to
822 * zero.
823 */
824 if (ctx && ctx->batch_last) {
825 raid5_release_stripe(ctx->batch_last);
826 ctx->batch_last = NULL;
827 }
828
829 wait_event_lock_irq(conf->wait_for_quiescent,
830 !conf->quiesce,
831 *(conf->hash_locks + hash));
20313b1b
LG
832 }
833
b6d56144
LG
834 sh = find_get_stripe(conf, sector, conf->generation - previous,
835 hash);
836 if (sh)
837 break;
838
839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 sh = get_free_stripe(conf, hash);
841 if (sh) {
842 r5c_check_stripe_cache_usage(conf);
843 init_stripe(sh, sector, previous);
844 atomic_inc(&sh->count);
845 break;
846 }
20313b1b 847
b6d56144
LG
848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 set_bit(R5_ALLOC_MORE, &conf->cache_state);
850 }
1baa1126 851
2f2d51ef 852 if (flags & R5_GAS_NOBLOCK)
b6d56144 853 break;
5165ed40 854
b6d56144
LG
855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 r5l_wake_reclaim(conf->log, 0);
857 wait_event_lock_irq(conf->wait_for_stripe,
858 is_inactive_blocked(conf, hash),
859 *(conf->hash_locks + hash));
860 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
5165ed40
LG
861 }
862
566c09c5 863 spin_unlock_irq(conf->hash_locks + hash);
1da177e4
LT
864 return sh;
865}
866
7a87f434 867static bool is_full_stripe_write(struct stripe_head *sh)
868{
869 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
870 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
871}
872
59fc630b 873static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
368ecade
CH
874 __acquires(&sh1->stripe_lock)
875 __acquires(&sh2->stripe_lock)
59fc630b 876{
59fc630b 877 if (sh1 > sh2) {
3d05f3ae 878 spin_lock_irq(&sh2->stripe_lock);
59fc630b 879 spin_lock_nested(&sh1->stripe_lock, 1);
880 } else {
3d05f3ae 881 spin_lock_irq(&sh1->stripe_lock);
59fc630b 882 spin_lock_nested(&sh2->stripe_lock, 1);
883 }
884}
885
886static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
368ecade
CH
887 __releases(&sh1->stripe_lock)
888 __releases(&sh2->stripe_lock)
59fc630b 889{
890 spin_unlock(&sh1->stripe_lock);
3d05f3ae 891 spin_unlock_irq(&sh2->stripe_lock);
59fc630b 892}
893
894/* Only freshly new full stripe normal write stripe can be added to a batch list */
895static bool stripe_can_batch(struct stripe_head *sh)
896{
9c3e333d
SL
897 struct r5conf *conf = sh->raid_conf;
898
e254de6b 899 if (raid5_has_log(conf) || raid5_has_ppl(conf))
9c3e333d 900 return false;
59fc630b 901 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
d0852df5 902 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
59fc630b 903 is_full_stripe_write(sh);
904}
905
906/* we only do back search */
3312e6c8
LG
907static void stripe_add_to_batch_list(struct r5conf *conf,
908 struct stripe_head *sh, struct stripe_head *last_sh)
59fc630b 909{
910 struct stripe_head *head;
911 sector_t head_sector, tmp_sec;
912 int hash;
913 int dd_idx;
914
59fc630b 915 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
916 tmp_sec = sh->sector;
917 if (!sector_div(tmp_sec, conf->chunk_sectors))
918 return;
c911c46c 919 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
59fc630b 920
3312e6c8
LG
921 if (last_sh && head_sector == last_sh->sector) {
922 head = last_sh;
923 atomic_inc(&head->count);
924 } else {
925 hash = stripe_hash_locks_hash(conf, head_sector);
926 spin_lock_irq(conf->hash_locks + hash);
927 head = find_get_stripe(conf, head_sector, conf->generation,
928 hash);
929 spin_unlock_irq(conf->hash_locks + hash);
930 if (!head)
931 return;
932 if (!stripe_can_batch(head))
933 goto out;
934 }
59fc630b 935
936 lock_two_stripes(head, sh);
937 /* clear_batch_ready clear the flag */
938 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
939 goto unlock_out;
940
941 if (sh->batch_head)
942 goto unlock_out;
943
944 dd_idx = 0;
945 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
946 dd_idx++;
1eff9d32 947 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796a5cf0 948 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
59fc630b 949 goto unlock_out;
950
951 if (head->batch_head) {
952 spin_lock(&head->batch_head->batch_lock);
953 /* This batch list is already running */
954 if (!stripe_can_batch(head)) {
955 spin_unlock(&head->batch_head->batch_lock);
956 goto unlock_out;
957 }
3664847d
SL
958 /*
959 * We must assign batch_head of this stripe within the
960 * batch_lock, otherwise clear_batch_ready of batch head
961 * stripe could clear BATCH_READY bit of this stripe and
962 * this stripe->batch_head doesn't get assigned, which
963 * could confuse clear_batch_ready for this stripe
964 */
965 sh->batch_head = head->batch_head;
59fc630b 966
967 /*
968 * at this point, head's BATCH_READY could be cleared, but we
969 * can still add the stripe to batch list
970 */
971 list_add(&sh->batch_list, &head->batch_list);
972 spin_unlock(&head->batch_head->batch_lock);
59fc630b 973 } else {
974 head->batch_head = head;
975 sh->batch_head = head->batch_head;
976 spin_lock(&head->batch_lock);
977 list_add_tail(&sh->batch_list, &head->batch_list);
978 spin_unlock(&head->batch_lock);
979 }
980
981 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
982 if (atomic_dec_return(&conf->preread_active_stripes)
983 < IO_THRESHOLD)
984 md_wakeup_thread(conf->mddev->thread);
985
2b6b2457
N
986 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
987 int seq = sh->bm_seq;
988 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
989 sh->batch_head->bm_seq > seq)
990 seq = sh->batch_head->bm_seq;
991 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
992 sh->batch_head->bm_seq = seq;
993 }
994
59fc630b 995 atomic_inc(&sh->count);
996unlock_out:
997 unlock_two_stripes(head, sh);
998out:
6d036f7d 999 raid5_release_stripe(head);
59fc630b 1000}
1001
05616be5
N
1002/* Determine if 'data_offset' or 'new_data_offset' should be used
1003 * in this stripe_head.
1004 */
1005static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1006{
1007 sector_t progress = conf->reshape_progress;
1008 /* Need a memory barrier to make sure we see the value
1009 * of conf->generation, or ->data_offset that was set before
1010 * reshape_progress was updated.
1011 */
1012 smp_rmb();
1013 if (progress == MaxSector)
1014 return 0;
1015 if (sh->generation == conf->generation - 1)
1016 return 0;
1017 /* We are in a reshape, and this is a new-generation stripe,
1018 * so use new_data_offset.
1019 */
1020 return 1;
1021}
1022
aaf9f12e 1023static void dispatch_bio_list(struct bio_list *tmp)
765d704d 1024{
765d704d
SL
1025 struct bio *bio;
1026
aaf9f12e 1027 while ((bio = bio_list_pop(tmp)))
ed00aabd 1028 submit_bio_noacct(bio);
aaf9f12e
SL
1029}
1030
4f0f586b
ST
1031static int cmp_stripe(void *priv, const struct list_head *a,
1032 const struct list_head *b)
aaf9f12e
SL
1033{
1034 const struct r5pending_data *da = list_entry(a,
1035 struct r5pending_data, sibling);
1036 const struct r5pending_data *db = list_entry(b,
1037 struct r5pending_data, sibling);
1038 if (da->sector > db->sector)
1039 return 1;
1040 if (da->sector < db->sector)
1041 return -1;
1042 return 0;
1043}
1044
1045static void dispatch_defer_bios(struct r5conf *conf, int target,
1046 struct bio_list *list)
1047{
1048 struct r5pending_data *data;
1049 struct list_head *first, *next = NULL;
1050 int cnt = 0;
1051
1052 if (conf->pending_data_cnt == 0)
1053 return;
1054
1055 list_sort(NULL, &conf->pending_list, cmp_stripe);
1056
1057 first = conf->pending_list.next;
1058
1059 /* temporarily move the head */
1060 if (conf->next_pending_data)
1061 list_move_tail(&conf->pending_list,
1062 &conf->next_pending_data->sibling);
1063
1064 while (!list_empty(&conf->pending_list)) {
1065 data = list_first_entry(&conf->pending_list,
1066 struct r5pending_data, sibling);
1067 if (&data->sibling == first)
1068 first = data->sibling.next;
1069 next = data->sibling.next;
1070
1071 bio_list_merge(list, &data->bios);
1072 list_move(&data->sibling, &conf->free_list);
1073 cnt++;
1074 if (cnt >= target)
1075 break;
1076 }
1077 conf->pending_data_cnt -= cnt;
1078 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1079
1080 if (next != &conf->pending_list)
1081 conf->next_pending_data = list_entry(next,
1082 struct r5pending_data, sibling);
1083 else
1084 conf->next_pending_data = NULL;
1085 /* list isn't empty */
1086 if (first != &conf->pending_list)
1087 list_move_tail(&conf->pending_list, first);
1088}
1089
1090static void flush_deferred_bios(struct r5conf *conf)
1091{
1092 struct bio_list tmp = BIO_EMPTY_LIST;
1093
1094 if (conf->pending_data_cnt == 0)
765d704d
SL
1095 return;
1096
765d704d 1097 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
1098 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1099 BUG_ON(conf->pending_data_cnt != 0);
765d704d
SL
1100 spin_unlock(&conf->pending_bios_lock);
1101
aaf9f12e 1102 dispatch_bio_list(&tmp);
765d704d
SL
1103}
1104
aaf9f12e
SL
1105static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1106 struct bio_list *bios)
765d704d 1107{
aaf9f12e
SL
1108 struct bio_list tmp = BIO_EMPTY_LIST;
1109 struct r5pending_data *ent;
1110
765d704d 1111 spin_lock(&conf->pending_bios_lock);
aaf9f12e
SL
1112 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1113 sibling);
1114 list_move_tail(&ent->sibling, &conf->pending_list);
1115 ent->sector = sector;
1116 bio_list_init(&ent->bios);
1117 bio_list_merge(&ent->bios, bios);
1118 conf->pending_data_cnt++;
1119 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1120 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1121
765d704d 1122 spin_unlock(&conf->pending_bios_lock);
aaf9f12e
SL
1123
1124 dispatch_bio_list(&tmp);
765d704d
SL
1125}
1126
6712ecf8 1127static void
4246a0b6 1128raid5_end_read_request(struct bio *bi);
6712ecf8 1129static void
4246a0b6 1130raid5_end_write_request(struct bio *bi);
91c00924 1131
c4e5ac0a 1132static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 1133{
d1688a6d 1134 struct r5conf *conf = sh->raid_conf;
91c00924 1135 int i, disks = sh->disks;
59fc630b 1136 struct stripe_head *head_sh = sh;
aaf9f12e 1137 struct bio_list pending_bios = BIO_EMPTY_LIST;
03a6b195 1138 struct r5dev *dev;
aaf9f12e 1139 bool should_defer;
91c00924
DW
1140
1141 might_sleep();
1142
ff875738
AP
1143 if (log_stripe(sh, s) == 0)
1144 return;
1e6d690b 1145
aaf9f12e 1146 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1e6d690b 1147
91c00924 1148 for (i = disks; i--; ) {
a9010741
BVA
1149 enum req_op op;
1150 blk_opf_t op_flags = 0;
9a3e1101 1151 int replace_only = 0;
977df362
N
1152 struct bio *bi, *rbi;
1153 struct md_rdev *rdev, *rrdev = NULL;
59fc630b 1154
1155 sh = head_sh;
e9c7469b 1156 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
796a5cf0 1157 op = REQ_OP_WRITE;
e9c7469b 1158 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
70fd7614 1159 op_flags = REQ_FUA;
9e444768 1160 if (test_bit(R5_Discard, &sh->dev[i].flags))
796a5cf0 1161 op = REQ_OP_DISCARD;
e9c7469b 1162 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
796a5cf0 1163 op = REQ_OP_READ;
9a3e1101
N
1164 else if (test_and_clear_bit(R5_WantReplace,
1165 &sh->dev[i].flags)) {
796a5cf0 1166 op = REQ_OP_WRITE;
9a3e1101
N
1167 replace_only = 1;
1168 } else
91c00924 1169 continue;
bc0934f0 1170 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
796a5cf0 1171 op_flags |= REQ_SYNC;
91c00924 1172
59fc630b 1173again:
03a6b195
CH
1174 dev = &sh->dev[i];
1175 bi = &dev->req;
1176 rbi = &dev->rreq; /* For writing to replacement */
91c00924 1177
91c00924 1178 rcu_read_lock();
9a3e1101 1179 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
1180 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1181 rdev = rcu_dereference(conf->disks[i].rdev);
1182 if (!rdev) {
1183 rdev = rrdev;
1184 rrdev = NULL;
1185 }
796a5cf0 1186 if (op_is_write(op)) {
9a3e1101
N
1187 if (replace_only)
1188 rdev = NULL;
dd054fce
N
1189 if (rdev == rrdev)
1190 /* We raced and saw duplicates */
1191 rrdev = NULL;
9a3e1101 1192 } else {
59fc630b 1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
9a3e1101
N
1194 rdev = rrdev;
1195 rrdev = NULL;
1196 }
977df362 1197
91c00924
DW
1198 if (rdev && test_bit(Faulty, &rdev->flags))
1199 rdev = NULL;
1200 if (rdev)
1201 atomic_inc(&rdev->nr_pending);
977df362
N
1202 if (rrdev && test_bit(Faulty, &rrdev->flags))
1203 rrdev = NULL;
1204 if (rrdev)
1205 atomic_inc(&rrdev->nr_pending);
91c00924
DW
1206 rcu_read_unlock();
1207
73e92e51 1208 /* We have already checked bad blocks for reads. Now
977df362
N
1209 * need to check for writes. We never accept write errors
1210 * on the replacement, so we don't to check rrdev.
73e92e51 1211 */
796a5cf0 1212 while (op_is_write(op) && rdev &&
73e92e51
N
1213 test_bit(WriteErrorSeen, &rdev->flags)) {
1214 sector_t first_bad;
1215 int bad_sectors;
c911c46c 1216 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
73e92e51
N
1217 &first_bad, &bad_sectors);
1218 if (!bad)
1219 break;
1220
1221 if (bad < 0) {
1222 set_bit(BlockedBadBlocks, &rdev->flags);
1223 if (!conf->mddev->external &&
2953079c 1224 conf->mddev->sb_flags) {
73e92e51
N
1225 /* It is very unlikely, but we might
1226 * still need to write out the
1227 * bad block log - better give it
1228 * a chance*/
1229 md_check_recovery(conf->mddev);
1230 }
1850753d 1231 /*
1232 * Because md_wait_for_blocked_rdev
1233 * will dec nr_pending, we must
1234 * increment it first.
1235 */
1236 atomic_inc(&rdev->nr_pending);
73e92e51
N
1237 md_wait_for_blocked_rdev(rdev, conf->mddev);
1238 } else {
1239 /* Acknowledged bad block - skip the write */
1240 rdev_dec_pending(rdev, conf->mddev);
1241 rdev = NULL;
1242 }
1243 }
1244
91c00924 1245 if (rdev) {
9a3e1101
N
1246 if (s->syncing || s->expanding || s->expanded
1247 || s->replacing)
c911c46c 1248 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
91c00924 1249
2b7497f0
DW
1250 set_bit(STRIPE_IO_STARTED, &sh->state);
1251
03a6b195 1252 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
796a5cf0 1253 bi->bi_end_io = op_is_write(op)
2f6db2a7
KO
1254 ? raid5_end_write_request
1255 : raid5_end_read_request;
1256 bi->bi_private = sh;
1257
6296b960 1258 pr_debug("%s: for %llu schedule op %d on disc %d\n",
e46b272b 1259 __func__, (unsigned long long)sh->sector,
1eff9d32 1260 bi->bi_opf, i);
91c00924 1261 atomic_inc(&sh->count);
59fc630b 1262 if (sh != head_sh)
1263 atomic_inc(&head_sh->count);
05616be5 1264 if (use_new_offset(conf, sh))
4f024f37 1265 bi->bi_iter.bi_sector = (sh->sector
05616be5
N
1266 + rdev->new_data_offset);
1267 else
4f024f37 1268 bi->bi_iter.bi_sector = (sh->sector
05616be5 1269 + rdev->data_offset);
59fc630b 1270 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1eff9d32 1271 bi->bi_opf |= REQ_NOMERGE;
3f9e7c14 1272
d592a996
SL
1273 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1274 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
86aa1397
SL
1275
1276 if (!op_is_write(op) &&
1277 test_bit(R5_InJournal, &sh->dev[i].flags))
1278 /*
1279 * issuing read for a page in journal, this
1280 * must be preparing for prexor in rmw; read
1281 * the data into orig_page
1282 */
1283 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1284 else
1285 sh->dev[i].vec.bv_page = sh->dev[i].page;
4997b72e 1286 bi->bi_vcnt = 1;
c911c46c 1287 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
7aba13b7 1288 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
c911c46c 1289 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
37c61ff3
SL
1290 /*
1291 * If this is discard request, set bi_vcnt 0. We don't
1292 * want to confuse SCSI because SCSI will replace payload
1293 */
796a5cf0 1294 if (op == REQ_OP_DISCARD)
37c61ff3 1295 bi->bi_vcnt = 0;
977df362
N
1296 if (rrdev)
1297 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
1298
1299 if (conf->mddev->gendisk)
1c02fca6
CH
1300 trace_block_bio_remap(bi,
1301 disk_devt(conf->mddev->gendisk),
1302 sh->dev[i].sector);
aaf9f12e
SL
1303 if (should_defer && op_is_write(op))
1304 bio_list_add(&pending_bios, bi);
1305 else
ed00aabd 1306 submit_bio_noacct(bi);
977df362
N
1307 }
1308 if (rrdev) {
9a3e1101
N
1309 if (s->syncing || s->expanding || s->expanded
1310 || s->replacing)
c911c46c 1311 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
977df362
N
1312
1313 set_bit(STRIPE_IO_STARTED, &sh->state);
1314
03a6b195 1315 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
796a5cf0 1316 BUG_ON(!op_is_write(op));
2f6db2a7
KO
1317 rbi->bi_end_io = raid5_end_write_request;
1318 rbi->bi_private = sh;
1319
6296b960 1320 pr_debug("%s: for %llu schedule op %d on "
977df362
N
1321 "replacement disc %d\n",
1322 __func__, (unsigned long long)sh->sector,
1eff9d32 1323 rbi->bi_opf, i);
977df362 1324 atomic_inc(&sh->count);
59fc630b 1325 if (sh != head_sh)
1326 atomic_inc(&head_sh->count);
05616be5 1327 if (use_new_offset(conf, sh))
4f024f37 1328 rbi->bi_iter.bi_sector = (sh->sector
05616be5
N
1329 + rrdev->new_data_offset);
1330 else
4f024f37 1331 rbi->bi_iter.bi_sector = (sh->sector
05616be5 1332 + rrdev->data_offset);
d592a996
SL
1333 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1334 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1335 sh->dev[i].rvec.bv_page = sh->dev[i].page;
4997b72e 1336 rbi->bi_vcnt = 1;
c911c46c 1337 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
7aba13b7 1338 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
c911c46c 1339 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
37c61ff3
SL
1340 /*
1341 * If this is discard request, set bi_vcnt 0. We don't
1342 * want to confuse SCSI because SCSI will replace payload
1343 */
796a5cf0 1344 if (op == REQ_OP_DISCARD)
37c61ff3 1345 rbi->bi_vcnt = 0;
e3620a3a 1346 if (conf->mddev->gendisk)
1c02fca6
CH
1347 trace_block_bio_remap(rbi,
1348 disk_devt(conf->mddev->gendisk),
1349 sh->dev[i].sector);
aaf9f12e
SL
1350 if (should_defer && op_is_write(op))
1351 bio_list_add(&pending_bios, rbi);
1352 else
ed00aabd 1353 submit_bio_noacct(rbi);
977df362
N
1354 }
1355 if (!rdev && !rrdev) {
796a5cf0 1356 if (op_is_write(op))
91c00924 1357 set_bit(STRIPE_DEGRADED, &sh->state);
6296b960 1358 pr_debug("skip op %d on disc %d for sector %llu\n",
1eff9d32 1359 bi->bi_opf, i, (unsigned long long)sh->sector);
91c00924
DW
1360 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1361 set_bit(STRIPE_HANDLE, &sh->state);
1362 }
59fc630b 1363
1364 if (!head_sh->batch_head)
1365 continue;
1366 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1367 batch_list);
1368 if (sh != head_sh)
1369 goto again;
91c00924 1370 }
aaf9f12e
SL
1371
1372 if (should_defer && !bio_list_empty(&pending_bios))
1373 defer_issue_bios(conf, head_sh->sector, &pending_bios);
91c00924
DW
1374}
1375
1376static struct dma_async_tx_descriptor *
d592a996 1377async_copy_data(int frombio, struct bio *bio, struct page **page,
248728dd 1378 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1e6d690b 1379 struct stripe_head *sh, int no_skipcopy)
91c00924 1380{
7988613b
KO
1381 struct bio_vec bvl;
1382 struct bvec_iter iter;
91c00924 1383 struct page *bio_page;
91c00924 1384 int page_offset;
a08abd8c 1385 struct async_submit_ctl submit;
0403e382 1386 enum async_tx_flags flags = 0;
c911c46c 1387 struct r5conf *conf = sh->raid_conf;
91c00924 1388
4f024f37
KO
1389 if (bio->bi_iter.bi_sector >= sector)
1390 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
91c00924 1391 else
4f024f37 1392 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
a08abd8c 1393
0403e382
DW
1394 if (frombio)
1395 flags |= ASYNC_TX_FENCE;
1396 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1397
7988613b
KO
1398 bio_for_each_segment(bvl, bio, iter) {
1399 int len = bvl.bv_len;
91c00924
DW
1400 int clen;
1401 int b_offset = 0;
1402
1403 if (page_offset < 0) {
1404 b_offset = -page_offset;
1405 page_offset += b_offset;
1406 len -= b_offset;
1407 }
1408
c911c46c
YY
1409 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1410 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
91c00924
DW
1411 else
1412 clen = len;
1413
1414 if (clen > 0) {
7988613b
KO
1415 b_offset += bvl.bv_offset;
1416 bio_page = bvl.bv_page;
d592a996 1417 if (frombio) {
c911c46c 1418 if (conf->skip_copy &&
d592a996 1419 b_offset == 0 && page_offset == 0 &&
c911c46c 1420 clen == RAID5_STRIPE_SIZE(conf) &&
1e6d690b 1421 !no_skipcopy)
d592a996
SL
1422 *page = bio_page;
1423 else
248728dd 1424 tx = async_memcpy(*page, bio_page, page_offset + poff,
a08abd8c 1425 b_offset, clen, &submit);
d592a996
SL
1426 } else
1427 tx = async_memcpy(bio_page, *page, b_offset,
248728dd 1428 page_offset + poff, clen, &submit);
91c00924 1429 }
a08abd8c
DW
1430 /* chain the operations */
1431 submit.depend_tx = tx;
1432
91c00924
DW
1433 if (clen < len) /* hit end of page */
1434 break;
1435 page_offset += len;
1436 }
1437
1438 return tx;
1439}
1440
1441static void ops_complete_biofill(void *stripe_head_ref)
1442{
1443 struct stripe_head *sh = stripe_head_ref;
e4d84909 1444 int i;
c911c46c 1445 struct r5conf *conf = sh->raid_conf;
91c00924 1446
e46b272b 1447 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1448 (unsigned long long)sh->sector);
1449
1450 /* clear completed biofills */
1451 for (i = sh->disks; i--; ) {
1452 struct r5dev *dev = &sh->dev[i];
91c00924
DW
1453
1454 /* acknowledge completion of a biofill operation */
e4d84909
DW
1455 /* and check if we need to reply to a read request,
1456 * new R5_Wantfill requests are held off until
83de75cc 1457 * !STRIPE_BIOFILL_RUN
e4d84909
DW
1458 */
1459 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 1460 struct bio *rbi, *rbi2;
91c00924 1461
91c00924
DW
1462 BUG_ON(!dev->read);
1463 rbi = dev->read;
1464 dev->read = NULL;
4f024f37 1465 while (rbi && rbi->bi_iter.bi_sector <
c911c46c
YY
1466 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1467 rbi2 = r5_next_bio(conf, rbi, dev->sector);
016c76ac 1468 bio_endio(rbi);
91c00924
DW
1469 rbi = rbi2;
1470 }
1471 }
1472 }
83de75cc 1473 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924 1474
e4d84909 1475 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1476 raid5_release_stripe(sh);
91c00924
DW
1477}
1478
1479static void ops_run_biofill(struct stripe_head *sh)
1480{
1481 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 1482 struct async_submit_ctl submit;
91c00924 1483 int i;
c911c46c 1484 struct r5conf *conf = sh->raid_conf;
91c00924 1485
59fc630b 1486 BUG_ON(sh->batch_head);
e46b272b 1487 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1488 (unsigned long long)sh->sector);
1489
1490 for (i = sh->disks; i--; ) {
1491 struct r5dev *dev = &sh->dev[i];
1492 if (test_bit(R5_Wantfill, &dev->flags)) {
1493 struct bio *rbi;
b17459c0 1494 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1495 dev->read = rbi = dev->toread;
1496 dev->toread = NULL;
b17459c0 1497 spin_unlock_irq(&sh->stripe_lock);
4f024f37 1498 while (rbi && rbi->bi_iter.bi_sector <
c911c46c 1499 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
d592a996 1500 tx = async_copy_data(0, rbi, &dev->page,
248728dd 1501 dev->offset,
1e6d690b 1502 dev->sector, tx, sh, 0);
c911c46c 1503 rbi = r5_next_bio(conf, rbi, dev->sector);
91c00924
DW
1504 }
1505 }
1506 }
1507
1508 atomic_inc(&sh->count);
a08abd8c
DW
1509 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1510 async_trigger_callback(&submit);
91c00924
DW
1511}
1512
4e7d2c0a 1513static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 1514{
4e7d2c0a 1515 struct r5dev *tgt;
91c00924 1516
4e7d2c0a
DW
1517 if (target < 0)
1518 return;
91c00924 1519
4e7d2c0a 1520 tgt = &sh->dev[target];
91c00924
DW
1521 set_bit(R5_UPTODATE, &tgt->flags);
1522 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1523 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
1524}
1525
ac6b53b6 1526static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
1527{
1528 struct stripe_head *sh = stripe_head_ref;
91c00924 1529
e46b272b 1530 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1531 (unsigned long long)sh->sector);
1532
ac6b53b6 1533 /* mark the computed target(s) as uptodate */
4e7d2c0a 1534 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 1535 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 1536
ecc65c9b
DW
1537 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1538 if (sh->check_state == check_state_compute_run)
1539 sh->check_state = check_state_compute_result;
91c00924 1540 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 1541 raid5_release_stripe(sh);
91c00924
DW
1542}
1543
d6f38f31 1544/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4 1545static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
d6f38f31 1546{
b330e6a4 1547 return percpu->scribble + i * percpu->scribble_obj_size;
46d5b785 1548}
1549
1550/* return a pointer to the address conversion region of the scribble buffer */
b330e6a4
KO
1551static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1552 struct raid5_percpu *percpu, int i)
46d5b785 1553{
b330e6a4 1554 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
d6f38f31
DW
1555}
1556
7aba13b7
YY
1557/*
1558 * Return a pointer to record offset address.
1559 */
1560static unsigned int *
1561to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1562{
1563 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1564}
1565
d6f38f31
DW
1566static struct dma_async_tx_descriptor *
1567ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1568{
91c00924 1569 int disks = sh->disks;
46d5b785 1570 struct page **xor_srcs = to_addr_page(percpu, 0);
7aba13b7 1571 unsigned int *off_srcs = to_addr_offs(sh, percpu);
91c00924
DW
1572 int target = sh->ops.target;
1573 struct r5dev *tgt = &sh->dev[target];
1574 struct page *xor_dest = tgt->page;
7aba13b7 1575 unsigned int off_dest = tgt->offset;
91c00924
DW
1576 int count = 0;
1577 struct dma_async_tx_descriptor *tx;
a08abd8c 1578 struct async_submit_ctl submit;
91c00924
DW
1579 int i;
1580
59fc630b 1581 BUG_ON(sh->batch_head);
1582
91c00924 1583 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 1584 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
1585 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1586
7aba13b7
YY
1587 for (i = disks; i--; ) {
1588 if (i != target) {
1589 off_srcs[count] = sh->dev[i].offset;
91c00924 1590 xor_srcs[count++] = sh->dev[i].page;
7aba13b7
YY
1591 }
1592 }
91c00924
DW
1593
1594 atomic_inc(&sh->count);
1595
0403e382 1596 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
46d5b785 1597 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
91c00924 1598 if (unlikely(count == 1))
7aba13b7 1599 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
c911c46c 1600 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924 1601 else
a7c224a8 1602 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 1603 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924 1604
91c00924
DW
1605 return tx;
1606}
1607
ac6b53b6
DW
1608/* set_syndrome_sources - populate source buffers for gen_syndrome
1609 * @srcs - (struct page *) array of size sh->disks
d69454bc 1610 * @offs - (unsigned int) array of offset for each page
ac6b53b6
DW
1611 * @sh - stripe_head to parse
1612 *
1613 * Populates srcs in proper layout order for the stripe and returns the
1614 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1615 * destination buffer is recorded in srcs[count] and the Q destination
1616 * is recorded in srcs[count+1]].
1617 */
584acdd4 1618static int set_syndrome_sources(struct page **srcs,
d69454bc 1619 unsigned int *offs,
584acdd4
MS
1620 struct stripe_head *sh,
1621 int srctype)
ac6b53b6
DW
1622{
1623 int disks = sh->disks;
1624 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1625 int d0_idx = raid6_d0(sh);
1626 int count;
1627 int i;
1628
1629 for (i = 0; i < disks; i++)
5dd33c9a 1630 srcs[i] = NULL;
ac6b53b6
DW
1631
1632 count = 0;
1633 i = d0_idx;
1634 do {
1635 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
584acdd4 1636 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1637
584acdd4
MS
1638 if (i == sh->qd_idx || i == sh->pd_idx ||
1639 (srctype == SYNDROME_SRC_ALL) ||
1640 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1e6d690b
SL
1641 (test_bit(R5_Wantdrain, &dev->flags) ||
1642 test_bit(R5_InJournal, &dev->flags))) ||
584acdd4 1643 (srctype == SYNDROME_SRC_WRITTEN &&
0977762f
SL
1644 (dev->written ||
1645 test_bit(R5_InJournal, &dev->flags)))) {
1e6d690b
SL
1646 if (test_bit(R5_InJournal, &dev->flags))
1647 srcs[slot] = sh->dev[i].orig_page;
1648 else
1649 srcs[slot] = sh->dev[i].page;
d69454bc
YY
1650 /*
1651 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1652 * not shared page. In that case, dev[i].offset
1653 * is 0.
1654 */
1655 offs[slot] = sh->dev[i].offset;
1e6d690b 1656 }
ac6b53b6
DW
1657 i = raid6_next_disk(i, disks);
1658 } while (i != d0_idx);
ac6b53b6 1659
e4424fee 1660 return syndrome_disks;
ac6b53b6
DW
1661}
1662
1663static struct dma_async_tx_descriptor *
1664ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1665{
1666 int disks = sh->disks;
46d5b785 1667 struct page **blocks = to_addr_page(percpu, 0);
a7c224a8 1668 unsigned int *offs = to_addr_offs(sh, percpu);
ac6b53b6
DW
1669 int target;
1670 int qd_idx = sh->qd_idx;
1671 struct dma_async_tx_descriptor *tx;
1672 struct async_submit_ctl submit;
1673 struct r5dev *tgt;
1674 struct page *dest;
a7c224a8 1675 unsigned int dest_off;
ac6b53b6
DW
1676 int i;
1677 int count;
1678
59fc630b 1679 BUG_ON(sh->batch_head);
ac6b53b6
DW
1680 if (sh->ops.target < 0)
1681 target = sh->ops.target2;
1682 else if (sh->ops.target2 < 0)
1683 target = sh->ops.target;
91c00924 1684 else
ac6b53b6
DW
1685 /* we should only have one valid target */
1686 BUG();
1687 BUG_ON(target < 0);
1688 pr_debug("%s: stripe %llu block: %d\n",
1689 __func__, (unsigned long long)sh->sector, target);
1690
1691 tgt = &sh->dev[target];
1692 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1693 dest = tgt->page;
a7c224a8 1694 dest_off = tgt->offset;
ac6b53b6
DW
1695
1696 atomic_inc(&sh->count);
1697
1698 if (target == qd_idx) {
d69454bc 1699 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
1700 blocks[count] = NULL; /* regenerating p is not necessary */
1701 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
1702 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1703 ops_complete_compute, sh,
46d5b785 1704 to_addr_conv(sh, percpu, 0));
d69454bc 1705 tx = async_gen_syndrome(blocks, offs, count+2,
c911c46c 1706 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
ac6b53b6
DW
1707 } else {
1708 /* Compute any data- or p-drive using XOR */
1709 count = 0;
1710 for (i = disks; i-- ; ) {
1711 if (i == target || i == qd_idx)
1712 continue;
a7c224a8 1713 offs[count] = sh->dev[i].offset;
ac6b53b6
DW
1714 blocks[count++] = sh->dev[i].page;
1715 }
1716
0403e382
DW
1717 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1718 NULL, ops_complete_compute, sh,
46d5b785 1719 to_addr_conv(sh, percpu, 0));
a7c224a8 1720 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
c911c46c 1721 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
ac6b53b6 1722 }
91c00924 1723
91c00924
DW
1724 return tx;
1725}
1726
ac6b53b6
DW
1727static struct dma_async_tx_descriptor *
1728ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1729{
1730 int i, count, disks = sh->disks;
1731 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1732 int d0_idx = raid6_d0(sh);
1733 int faila = -1, failb = -1;
1734 int target = sh->ops.target;
1735 int target2 = sh->ops.target2;
1736 struct r5dev *tgt = &sh->dev[target];
1737 struct r5dev *tgt2 = &sh->dev[target2];
1738 struct dma_async_tx_descriptor *tx;
46d5b785 1739 struct page **blocks = to_addr_page(percpu, 0);
a7c224a8 1740 unsigned int *offs = to_addr_offs(sh, percpu);
ac6b53b6
DW
1741 struct async_submit_ctl submit;
1742
59fc630b 1743 BUG_ON(sh->batch_head);
ac6b53b6
DW
1744 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1745 __func__, (unsigned long long)sh->sector, target, target2);
1746 BUG_ON(target < 0 || target2 < 0);
1747 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1748 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1749
6c910a78 1750 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1751 * slot number conversion for 'faila' and 'failb'
1752 */
a7c224a8
YY
1753 for (i = 0; i < disks ; i++) {
1754 offs[i] = 0;
5dd33c9a 1755 blocks[i] = NULL;
a7c224a8 1756 }
ac6b53b6
DW
1757 count = 0;
1758 i = d0_idx;
1759 do {
1760 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1761
a7c224a8 1762 offs[slot] = sh->dev[i].offset;
ac6b53b6
DW
1763 blocks[slot] = sh->dev[i].page;
1764
1765 if (i == target)
1766 faila = slot;
1767 if (i == target2)
1768 failb = slot;
1769 i = raid6_next_disk(i, disks);
1770 } while (i != d0_idx);
ac6b53b6
DW
1771
1772 BUG_ON(faila == failb);
1773 if (failb < faila)
1774 swap(faila, failb);
1775 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1776 __func__, (unsigned long long)sh->sector, faila, failb);
1777
1778 atomic_inc(&sh->count);
1779
1780 if (failb == syndrome_disks+1) {
1781 /* Q disk is one of the missing disks */
1782 if (faila == syndrome_disks) {
1783 /* Missing P+Q, just recompute */
0403e382
DW
1784 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1785 ops_complete_compute, sh,
46d5b785 1786 to_addr_conv(sh, percpu, 0));
d69454bc 1787 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
c911c46c
YY
1788 RAID5_STRIPE_SIZE(sh->raid_conf),
1789 &submit);
ac6b53b6
DW
1790 } else {
1791 struct page *dest;
a7c224a8 1792 unsigned int dest_off;
ac6b53b6
DW
1793 int data_target;
1794 int qd_idx = sh->qd_idx;
1795
1796 /* Missing D+Q: recompute D from P, then recompute Q */
1797 if (target == qd_idx)
1798 data_target = target2;
1799 else
1800 data_target = target;
1801
1802 count = 0;
1803 for (i = disks; i-- ; ) {
1804 if (i == data_target || i == qd_idx)
1805 continue;
a7c224a8 1806 offs[count] = sh->dev[i].offset;
ac6b53b6
DW
1807 blocks[count++] = sh->dev[i].page;
1808 }
1809 dest = sh->dev[data_target].page;
a7c224a8 1810 dest_off = sh->dev[data_target].offset;
0403e382
DW
1811 init_async_submit(&submit,
1812 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1813 NULL, NULL, NULL,
46d5b785 1814 to_addr_conv(sh, percpu, 0));
a7c224a8 1815 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
c911c46c 1816 RAID5_STRIPE_SIZE(sh->raid_conf),
ac6b53b6
DW
1817 &submit);
1818
d69454bc 1819 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
0403e382
DW
1820 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1821 ops_complete_compute, sh,
46d5b785 1822 to_addr_conv(sh, percpu, 0));
d69454bc 1823 return async_gen_syndrome(blocks, offs, count+2,
c911c46c
YY
1824 RAID5_STRIPE_SIZE(sh->raid_conf),
1825 &submit);
ac6b53b6 1826 }
ac6b53b6 1827 } else {
6c910a78
DW
1828 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1829 ops_complete_compute, sh,
46d5b785 1830 to_addr_conv(sh, percpu, 0));
6c910a78
DW
1831 if (failb == syndrome_disks) {
1832 /* We're missing D+P. */
1833 return async_raid6_datap_recov(syndrome_disks+2,
c911c46c
YY
1834 RAID5_STRIPE_SIZE(sh->raid_conf),
1835 faila,
4f86ff55 1836 blocks, offs, &submit);
6c910a78
DW
1837 } else {
1838 /* We're missing D+D. */
1839 return async_raid6_2data_recov(syndrome_disks+2,
c911c46c
YY
1840 RAID5_STRIPE_SIZE(sh->raid_conf),
1841 faila, failb,
4f86ff55 1842 blocks, offs, &submit);
6c910a78 1843 }
ac6b53b6
DW
1844 }
1845}
1846
91c00924
DW
1847static void ops_complete_prexor(void *stripe_head_ref)
1848{
1849 struct stripe_head *sh = stripe_head_ref;
1850
e46b272b 1851 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1852 (unsigned long long)sh->sector);
1e6d690b
SL
1853
1854 if (r5c_is_writeback(sh->raid_conf->log))
1855 /*
1856 * raid5-cache write back uses orig_page during prexor.
1857 * After prexor, it is time to free orig_page
1858 */
1859 r5c_release_extra_page(sh);
91c00924
DW
1860}
1861
1862static struct dma_async_tx_descriptor *
584acdd4
MS
1863ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1864 struct dma_async_tx_descriptor *tx)
91c00924 1865{
91c00924 1866 int disks = sh->disks;
46d5b785 1867 struct page **xor_srcs = to_addr_page(percpu, 0);
a7c224a8 1868 unsigned int *off_srcs = to_addr_offs(sh, percpu);
91c00924 1869 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1870 struct async_submit_ctl submit;
91c00924
DW
1871
1872 /* existing parity data subtracted */
a7c224a8 1873 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
91c00924
DW
1874 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1875
59fc630b 1876 BUG_ON(sh->batch_head);
e46b272b 1877 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1878 (unsigned long long)sh->sector);
1879
1880 for (i = disks; i--; ) {
1881 struct r5dev *dev = &sh->dev[i];
1882 /* Only process blocks that are known to be uptodate */
a7c224a8
YY
1883 if (test_bit(R5_InJournal, &dev->flags)) {
1884 /*
1885 * For this case, PAGE_SIZE must be equal to 4KB and
1886 * page offset is zero.
1887 */
1888 off_srcs[count] = dev->offset;
1e6d690b 1889 xor_srcs[count++] = dev->orig_page;
a7c224a8
YY
1890 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1891 off_srcs[count] = dev->offset;
91c00924 1892 xor_srcs[count++] = dev->page;
a7c224a8 1893 }
91c00924
DW
1894 }
1895
0403e382 1896 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
46d5b785 1897 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
a7c224a8 1898 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 1899 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
91c00924
DW
1900
1901 return tx;
1902}
1903
584acdd4
MS
1904static struct dma_async_tx_descriptor *
1905ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1906 struct dma_async_tx_descriptor *tx)
1907{
1908 struct page **blocks = to_addr_page(percpu, 0);
d69454bc 1909 unsigned int *offs = to_addr_offs(sh, percpu);
584acdd4
MS
1910 int count;
1911 struct async_submit_ctl submit;
1912
1913 pr_debug("%s: stripe %llu\n", __func__,
1914 (unsigned long long)sh->sector);
1915
d69454bc 1916 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
584acdd4
MS
1917
1918 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1919 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
d69454bc 1920 tx = async_gen_syndrome(blocks, offs, count+2,
c911c46c 1921 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
584acdd4
MS
1922
1923 return tx;
1924}
1925
91c00924 1926static struct dma_async_tx_descriptor *
d8ee0728 1927ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924 1928{
1e6d690b 1929 struct r5conf *conf = sh->raid_conf;
91c00924 1930 int disks = sh->disks;
d8ee0728 1931 int i;
59fc630b 1932 struct stripe_head *head_sh = sh;
91c00924 1933
e46b272b 1934 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1935 (unsigned long long)sh->sector);
1936
1937 for (i = disks; i--; ) {
59fc630b 1938 struct r5dev *dev;
91c00924 1939 struct bio *chosen;
91c00924 1940
59fc630b 1941 sh = head_sh;
1942 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
91c00924
DW
1943 struct bio *wbi;
1944
59fc630b 1945again:
1946 dev = &sh->dev[i];
1e6d690b
SL
1947 /*
1948 * clear R5_InJournal, so when rewriting a page in
1949 * journal, it is not skipped by r5l_log_stripe()
1950 */
1951 clear_bit(R5_InJournal, &dev->flags);
b17459c0 1952 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1953 chosen = dev->towrite;
1954 dev->towrite = NULL;
7a87f434 1955 sh->overwrite_disks = 0;
91c00924
DW
1956 BUG_ON(dev->written);
1957 wbi = dev->written = chosen;
b17459c0 1958 spin_unlock_irq(&sh->stripe_lock);
d592a996 1959 WARN_ON(dev->page != dev->orig_page);
91c00924 1960
4f024f37 1961 while (wbi && wbi->bi_iter.bi_sector <
c911c46c 1962 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1eff9d32 1963 if (wbi->bi_opf & REQ_FUA)
e9c7469b 1964 set_bit(R5_WantFUA, &dev->flags);
1eff9d32 1965 if (wbi->bi_opf & REQ_SYNC)
bc0934f0 1966 set_bit(R5_SyncIO, &dev->flags);
796a5cf0 1967 if (bio_op(wbi) == REQ_OP_DISCARD)
620125f2 1968 set_bit(R5_Discard, &dev->flags);
d592a996
SL
1969 else {
1970 tx = async_copy_data(1, wbi, &dev->page,
248728dd 1971 dev->offset,
1e6d690b
SL
1972 dev->sector, tx, sh,
1973 r5c_is_writeback(conf->log));
1974 if (dev->page != dev->orig_page &&
1975 !r5c_is_writeback(conf->log)) {
d592a996
SL
1976 set_bit(R5_SkipCopy, &dev->flags);
1977 clear_bit(R5_UPTODATE, &dev->flags);
1978 clear_bit(R5_OVERWRITE, &dev->flags);
1979 }
1980 }
c911c46c 1981 wbi = r5_next_bio(conf, wbi, dev->sector);
91c00924 1982 }
59fc630b 1983
1984 if (head_sh->batch_head) {
1985 sh = list_first_entry(&sh->batch_list,
1986 struct stripe_head,
1987 batch_list);
1988 if (sh == head_sh)
1989 continue;
1990 goto again;
1991 }
91c00924
DW
1992 }
1993 }
1994
1995 return tx;
1996}
1997
ac6b53b6 1998static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1999{
2000 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
2001 int disks = sh->disks;
2002 int pd_idx = sh->pd_idx;
2003 int qd_idx = sh->qd_idx;
2004 int i;
9e444768 2005 bool fua = false, sync = false, discard = false;
91c00924 2006
e46b272b 2007 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2008 (unsigned long long)sh->sector);
2009
bc0934f0 2010 for (i = disks; i--; ) {
e9c7469b 2011 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 2012 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 2013 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 2014 }
e9c7469b 2015
91c00924
DW
2016 for (i = disks; i--; ) {
2017 struct r5dev *dev = &sh->dev[i];
ac6b53b6 2018
e9c7469b 2019 if (dev->written || i == pd_idx || i == qd_idx) {
235b6003 2020 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
9e444768 2021 set_bit(R5_UPTODATE, &dev->flags);
235b6003
N
2022 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2023 set_bit(R5_Expanded, &dev->flags);
2024 }
e9c7469b
TH
2025 if (fua)
2026 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
2027 if (sync)
2028 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 2029 }
91c00924
DW
2030 }
2031
d8ee0728
DW
2032 if (sh->reconstruct_state == reconstruct_state_drain_run)
2033 sh->reconstruct_state = reconstruct_state_drain_result;
2034 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2035 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2036 else {
2037 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2038 sh->reconstruct_state = reconstruct_state_result;
2039 }
91c00924
DW
2040
2041 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2042 raid5_release_stripe(sh);
91c00924
DW
2043}
2044
2045static void
ac6b53b6
DW
2046ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2047 struct dma_async_tx_descriptor *tx)
91c00924 2048{
91c00924 2049 int disks = sh->disks;
59fc630b 2050 struct page **xor_srcs;
7aba13b7 2051 unsigned int *off_srcs;
a08abd8c 2052 struct async_submit_ctl submit;
59fc630b 2053 int count, pd_idx = sh->pd_idx, i;
91c00924 2054 struct page *xor_dest;
7aba13b7 2055 unsigned int off_dest;
d8ee0728 2056 int prexor = 0;
91c00924 2057 unsigned long flags;
59fc630b 2058 int j = 0;
2059 struct stripe_head *head_sh = sh;
2060 int last_stripe;
91c00924 2061
e46b272b 2062 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2063 (unsigned long long)sh->sector);
2064
620125f2
SL
2065 for (i = 0; i < sh->disks; i++) {
2066 if (pd_idx == i)
2067 continue;
2068 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2069 break;
2070 }
2071 if (i >= sh->disks) {
2072 atomic_inc(&sh->count);
620125f2
SL
2073 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2074 ops_complete_reconstruct(sh);
2075 return;
2076 }
59fc630b 2077again:
2078 count = 0;
2079 xor_srcs = to_addr_page(percpu, j);
7aba13b7 2080 off_srcs = to_addr_offs(sh, percpu);
91c00924
DW
2081 /* check if prexor is active which means only process blocks
2082 * that are part of a read-modify-write (written)
2083 */
59fc630b 2084 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
d8ee0728 2085 prexor = 1;
7aba13b7 2086 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
91c00924
DW
2087 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2088 for (i = disks; i--; ) {
2089 struct r5dev *dev = &sh->dev[i];
1e6d690b 2090 if (head_sh->dev[i].written ||
7aba13b7
YY
2091 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2092 off_srcs[count] = dev->offset;
91c00924 2093 xor_srcs[count++] = dev->page;
7aba13b7 2094 }
91c00924
DW
2095 }
2096 } else {
2097 xor_dest = sh->dev[pd_idx].page;
7aba13b7 2098 off_dest = sh->dev[pd_idx].offset;
91c00924
DW
2099 for (i = disks; i--; ) {
2100 struct r5dev *dev = &sh->dev[i];
7aba13b7
YY
2101 if (i != pd_idx) {
2102 off_srcs[count] = dev->offset;
91c00924 2103 xor_srcs[count++] = dev->page;
7aba13b7 2104 }
91c00924
DW
2105 }
2106 }
2107
91c00924
DW
2108 /* 1/ if we prexor'd then the dest is reused as a source
2109 * 2/ if we did not prexor then we are redoing the parity
2110 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2111 * for the synchronous xor case
2112 */
59fc630b 2113 last_stripe = !head_sh->batch_head ||
2114 list_first_entry(&sh->batch_list,
2115 struct stripe_head, batch_list) == head_sh;
2116 if (last_stripe) {
2117 flags = ASYNC_TX_ACK |
2118 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2119
2120 atomic_inc(&head_sh->count);
2121 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2122 to_addr_conv(sh, percpu, j));
2123 } else {
2124 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2125 init_async_submit(&submit, flags, tx, NULL, NULL,
2126 to_addr_conv(sh, percpu, j));
2127 }
91c00924 2128
a08abd8c 2129 if (unlikely(count == 1))
7aba13b7 2130 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
c911c46c 2131 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
a08abd8c 2132 else
a7c224a8 2133 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 2134 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
59fc630b 2135 if (!last_stripe) {
2136 j++;
2137 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2138 batch_list);
2139 goto again;
2140 }
91c00924
DW
2141}
2142
ac6b53b6
DW
2143static void
2144ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2145 struct dma_async_tx_descriptor *tx)
2146{
2147 struct async_submit_ctl submit;
59fc630b 2148 struct page **blocks;
d69454bc 2149 unsigned int *offs;
59fc630b 2150 int count, i, j = 0;
2151 struct stripe_head *head_sh = sh;
2152 int last_stripe;
584acdd4
MS
2153 int synflags;
2154 unsigned long txflags;
ac6b53b6
DW
2155
2156 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2157
620125f2
SL
2158 for (i = 0; i < sh->disks; i++) {
2159 if (sh->pd_idx == i || sh->qd_idx == i)
2160 continue;
2161 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2162 break;
2163 }
2164 if (i >= sh->disks) {
2165 atomic_inc(&sh->count);
620125f2
SL
2166 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2167 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2168 ops_complete_reconstruct(sh);
2169 return;
2170 }
2171
59fc630b 2172again:
2173 blocks = to_addr_page(percpu, j);
d69454bc 2174 offs = to_addr_offs(sh, percpu);
584acdd4
MS
2175
2176 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2177 synflags = SYNDROME_SRC_WRITTEN;
2178 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2179 } else {
2180 synflags = SYNDROME_SRC_ALL;
2181 txflags = ASYNC_TX_ACK;
2182 }
2183
d69454bc 2184 count = set_syndrome_sources(blocks, offs, sh, synflags);
59fc630b 2185 last_stripe = !head_sh->batch_head ||
2186 list_first_entry(&sh->batch_list,
2187 struct stripe_head, batch_list) == head_sh;
2188
2189 if (last_stripe) {
2190 atomic_inc(&head_sh->count);
584acdd4 2191 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
59fc630b 2192 head_sh, to_addr_conv(sh, percpu, j));
2193 } else
2194 init_async_submit(&submit, 0, tx, NULL, NULL,
2195 to_addr_conv(sh, percpu, j));
d69454bc 2196 tx = async_gen_syndrome(blocks, offs, count+2,
c911c46c 2197 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
59fc630b 2198 if (!last_stripe) {
2199 j++;
2200 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2201 batch_list);
2202 goto again;
2203 }
91c00924
DW
2204}
2205
2206static void ops_complete_check(void *stripe_head_ref)
2207{
2208 struct stripe_head *sh = stripe_head_ref;
91c00924 2209
e46b272b 2210 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2211 (unsigned long long)sh->sector);
2212
ecc65c9b 2213 sh->check_state = check_state_check_result;
91c00924 2214 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2215 raid5_release_stripe(sh);
91c00924
DW
2216}
2217
ac6b53b6 2218static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 2219{
91c00924 2220 int disks = sh->disks;
ac6b53b6
DW
2221 int pd_idx = sh->pd_idx;
2222 int qd_idx = sh->qd_idx;
2223 struct page *xor_dest;
a7c224a8 2224 unsigned int off_dest;
46d5b785 2225 struct page **xor_srcs = to_addr_page(percpu, 0);
a7c224a8 2226 unsigned int *off_srcs = to_addr_offs(sh, percpu);
91c00924 2227 struct dma_async_tx_descriptor *tx;
a08abd8c 2228 struct async_submit_ctl submit;
ac6b53b6
DW
2229 int count;
2230 int i;
91c00924 2231
e46b272b 2232 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
2233 (unsigned long long)sh->sector);
2234
59fc630b 2235 BUG_ON(sh->batch_head);
ac6b53b6
DW
2236 count = 0;
2237 xor_dest = sh->dev[pd_idx].page;
a7c224a8
YY
2238 off_dest = sh->dev[pd_idx].offset;
2239 off_srcs[count] = off_dest;
ac6b53b6 2240 xor_srcs[count++] = xor_dest;
91c00924 2241 for (i = disks; i--; ) {
ac6b53b6
DW
2242 if (i == pd_idx || i == qd_idx)
2243 continue;
a7c224a8 2244 off_srcs[count] = sh->dev[i].offset;
ac6b53b6 2245 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
2246 }
2247
d6f38f31 2248 init_async_submit(&submit, 0, NULL, NULL, NULL,
46d5b785 2249 to_addr_conv(sh, percpu, 0));
a7c224a8 2250 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
c911c46c 2251 RAID5_STRIPE_SIZE(sh->raid_conf),
a08abd8c 2252 &sh->ops.zero_sum_result, &submit);
91c00924 2253
91c00924 2254 atomic_inc(&sh->count);
a08abd8c
DW
2255 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2256 tx = async_trigger_callback(&submit);
91c00924
DW
2257}
2258
ac6b53b6
DW
2259static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2260{
46d5b785 2261 struct page **srcs = to_addr_page(percpu, 0);
d69454bc 2262 unsigned int *offs = to_addr_offs(sh, percpu);
ac6b53b6
DW
2263 struct async_submit_ctl submit;
2264 int count;
2265
2266 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2267 (unsigned long long)sh->sector, checkp);
2268
59fc630b 2269 BUG_ON(sh->batch_head);
d69454bc 2270 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
ac6b53b6
DW
2271 if (!checkp)
2272 srcs[count] = NULL;
91c00924 2273
91c00924 2274 atomic_inc(&sh->count);
ac6b53b6 2275 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
46d5b785 2276 sh, to_addr_conv(sh, percpu, 0));
d69454bc 2277 async_syndrome_val(srcs, offs, count+2,
c911c46c 2278 RAID5_STRIPE_SIZE(sh->raid_conf),
d69454bc 2279 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
91c00924
DW
2280}
2281
51acbcec 2282static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
2283{
2284 int overlap_clear = 0, i, disks = sh->disks;
2285 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 2286 struct r5conf *conf = sh->raid_conf;
ac6b53b6 2287 int level = conf->level;
d6f38f31 2288 struct raid5_percpu *percpu;
91c00924 2289
770b1d21
DB
2290 local_lock(&conf->percpu->lock);
2291 percpu = this_cpu_ptr(conf->percpu);
83de75cc 2292 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
2293 ops_run_biofill(sh);
2294 overlap_clear++;
2295 }
2296
7b3a871e 2297 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
2298 if (level < 6)
2299 tx = ops_run_compute5(sh, percpu);
2300 else {
2301 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2302 tx = ops_run_compute6_1(sh, percpu);
2303 else
2304 tx = ops_run_compute6_2(sh, percpu);
2305 }
2306 /* terminate the chain if reconstruct is not set to be run */
2307 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
2308 async_tx_ack(tx);
2309 }
91c00924 2310
584acdd4
MS
2311 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2312 if (level < 6)
2313 tx = ops_run_prexor5(sh, percpu, tx);
2314 else
2315 tx = ops_run_prexor6(sh, percpu, tx);
2316 }
91c00924 2317
ae1713e2
AP
2318 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2319 tx = ops_run_partial_parity(sh, percpu, tx);
2320
600aa109 2321 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 2322 tx = ops_run_biodrain(sh, tx);
91c00924
DW
2323 overlap_clear++;
2324 }
2325
ac6b53b6
DW
2326 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2327 if (level < 6)
2328 ops_run_reconstruct5(sh, percpu, tx);
2329 else
2330 ops_run_reconstruct6(sh, percpu, tx);
2331 }
91c00924 2332
ac6b53b6
DW
2333 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2334 if (sh->check_state == check_state_run)
2335 ops_run_check_p(sh, percpu);
2336 else if (sh->check_state == check_state_run_q)
2337 ops_run_check_pq(sh, percpu, 0);
2338 else if (sh->check_state == check_state_run_pq)
2339 ops_run_check_pq(sh, percpu, 1);
2340 else
2341 BUG();
2342 }
91c00924 2343
770b1d21 2344 if (overlap_clear && !sh->batch_head) {
91c00924
DW
2345 for (i = disks; i--; ) {
2346 struct r5dev *dev = &sh->dev[i];
2347 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2348 wake_up(&sh->raid_conf->wait_for_overlap);
2349 }
770b1d21
DB
2350 }
2351 local_unlock(&conf->percpu->lock);
91c00924
DW
2352}
2353
845b9e22
AP
2354static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2355{
046169f0
YY
2356#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2357 kfree(sh->pages);
2358#endif
845b9e22
AP
2359 if (sh->ppl_page)
2360 __free_page(sh->ppl_page);
2361 kmem_cache_free(sc, sh);
2362}
2363
5f9d1fde 2364static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
845b9e22 2365 int disks, struct r5conf *conf)
f18c1a35
N
2366{
2367 struct stripe_head *sh;
2368
2369 sh = kmem_cache_zalloc(sc, gfp);
2370 if (sh) {
2371 spin_lock_init(&sh->stripe_lock);
2372 spin_lock_init(&sh->batch_lock);
2373 INIT_LIST_HEAD(&sh->batch_list);
2374 INIT_LIST_HEAD(&sh->lru);
a39f7afd 2375 INIT_LIST_HEAD(&sh->r5c);
d7bd398e 2376 INIT_LIST_HEAD(&sh->log_list);
f18c1a35 2377 atomic_set(&sh->count, 1);
845b9e22 2378 sh->raid_conf = conf;
a39f7afd 2379 sh->log_start = MaxSector;
845b9e22
AP
2380
2381 if (raid5_has_ppl(conf)) {
2382 sh->ppl_page = alloc_page(gfp);
2383 if (!sh->ppl_page) {
2384 free_stripe(sc, sh);
046169f0 2385 return NULL;
845b9e22
AP
2386 }
2387 }
046169f0
YY
2388#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2389 if (init_stripe_shared_pages(sh, conf, disks)) {
2390 free_stripe(sc, sh);
2391 return NULL;
2392 }
2393#endif
f18c1a35
N
2394 }
2395 return sh;
2396}
486f0644 2397static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1da177e4
LT
2398{
2399 struct stripe_head *sh;
f18c1a35 2400
845b9e22 2401 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
3f294f4f
N
2402 if (!sh)
2403 return 0;
6ce32846 2404
a9683a79 2405 if (grow_buffers(sh, gfp)) {
e4e11e38 2406 shrink_buffers(sh);
845b9e22 2407 free_stripe(conf->slab_cache, sh);
3f294f4f
N
2408 return 0;
2409 }
486f0644
N
2410 sh->hash_lock_index =
2411 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
3f294f4f 2412 /* we just created an active stripe so... */
3f294f4f 2413 atomic_inc(&conf->active_stripes);
59fc630b 2414
6d036f7d 2415 raid5_release_stripe(sh);
486f0644 2416 conf->max_nr_stripes++;
3f294f4f
N
2417 return 1;
2418}
2419
d1688a6d 2420static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 2421{
e18b890b 2422 struct kmem_cache *sc;
53b8d89d 2423 size_t namelen = sizeof(conf->cache_name[0]);
5e5e3e78 2424 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 2425
f4be6b43 2426 if (conf->mddev->gendisk)
53b8d89d 2427 snprintf(conf->cache_name[0], namelen,
f4be6b43
N
2428 "raid%d-%s", conf->level, mdname(conf->mddev));
2429 else
53b8d89d 2430 snprintf(conf->cache_name[0], namelen,
f4be6b43 2431 "raid%d-%p", conf->level, conf->mddev);
53b8d89d 2432 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
f4be6b43 2433
ad01c9e3
N
2434 conf->active_name = 0;
2435 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 2436 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 2437 0, 0, NULL);
1da177e4
LT
2438 if (!sc)
2439 return 1;
2440 conf->slab_cache = sc;
ad01c9e3 2441 conf->pool_size = devs;
486f0644
N
2442 while (num--)
2443 if (!grow_one_stripe(conf, GFP_KERNEL))
1da177e4 2444 return 1;
486f0644 2445
1da177e4
LT
2446 return 0;
2447}
29269553 2448
d6f38f31 2449/**
7f8a30e5
CL
2450 * scribble_alloc - allocate percpu scribble buffer for required size
2451 * of the scribble region
2aada5b1
DLM
2452 * @percpu: from for_each_present_cpu() of the caller
2453 * @num: total number of disks in the array
2454 * @cnt: scribble objs count for required size of the scribble region
d6f38f31 2455 *
7f8a30e5 2456 * The scribble buffer size must be enough to contain:
d6f38f31
DW
2457 * 1/ a struct page pointer for each device in the array +2
2458 * 2/ room to convert each entry in (1) to its corresponding dma
2459 * (dma_map_page()) or page (page_address()) address.
2460 *
2461 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2462 * calculate over all devices (not just the data blocks), using zeros in place
2463 * of the P and Q blocks.
2464 */
b330e6a4 2465static int scribble_alloc(struct raid5_percpu *percpu,
ba54d4d4 2466 int num, int cnt)
d6f38f31 2467{
b330e6a4 2468 size_t obj_size =
7aba13b7
YY
2469 sizeof(struct page *) * (num + 2) +
2470 sizeof(addr_conv_t) * (num + 2) +
2471 sizeof(unsigned int) * (num + 2);
b330e6a4 2472 void *scribble;
d6f38f31 2473
ba54d4d4
CL
2474 /*
2475 * If here is in raid array suspend context, it is in memalloc noio
2476 * context as well, there is no potential recursive memory reclaim
2477 * I/Os with the GFP_KERNEL flag.
2478 */
2479 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
b330e6a4
KO
2480 if (!scribble)
2481 return -ENOMEM;
2482
2483 kvfree(percpu->scribble);
2484
2485 percpu->scribble = scribble;
2486 percpu->scribble_obj_size = obj_size;
2487 return 0;
d6f38f31
DW
2488}
2489
738a2738
N
2490static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2491{
2492 unsigned long cpu;
2493 int err = 0;
2494
27a353c0
SL
2495 /*
2496 * Never shrink. And mddev_suspend() could deadlock if this is called
2497 * from raid5d. In that case, scribble_disks and scribble_sectors
2498 * should equal to new_disks and new_sectors
2499 */
2500 if (conf->scribble_disks >= new_disks &&
2501 conf->scribble_sectors >= new_sectors)
2502 return 0;
738a2738 2503 mddev_suspend(conf->mddev);
252034e0 2504 cpus_read_lock();
b330e6a4 2505
738a2738
N
2506 for_each_present_cpu(cpu) {
2507 struct raid5_percpu *percpu;
738a2738
N
2508
2509 percpu = per_cpu_ptr(conf->percpu, cpu);
b330e6a4 2510 err = scribble_alloc(percpu, new_disks,
c911c46c 2511 new_sectors / RAID5_STRIPE_SECTORS(conf));
b330e6a4 2512 if (err)
738a2738 2513 break;
738a2738 2514 }
b330e6a4 2515
252034e0 2516 cpus_read_unlock();
738a2738 2517 mddev_resume(conf->mddev);
27a353c0
SL
2518 if (!err) {
2519 conf->scribble_disks = new_disks;
2520 conf->scribble_sectors = new_sectors;
2521 }
738a2738
N
2522 return err;
2523}
2524
d1688a6d 2525static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
2526{
2527 /* Make all the stripes able to hold 'newsize' devices.
2528 * New slots in each stripe get 'page' set to a new page.
2529 *
2530 * This happens in stages:
2531 * 1/ create a new kmem_cache and allocate the required number of
2532 * stripe_heads.
83f0d77a 2533 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
2534 * to the new stripe_heads. This will have the side effect of
2535 * freezing the array as once all stripe_heads have been collected,
2536 * no IO will be possible. Old stripe heads are freed once their
2537 * pages have been transferred over, and the old kmem_cache is
2538 * freed when all stripes are done.
2539 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
3560741e 2540 * we simple return a failure status - no need to clean anything up.
ad01c9e3
N
2541 * 4/ allocate new pages for the new slots in the new stripe_heads.
2542 * If this fails, we don't bother trying the shrink the
2543 * stripe_heads down again, we just leave them as they are.
2544 * As each stripe_head is processed the new one is released into
2545 * active service.
2546 *
2547 * Once step2 is started, we cannot afford to wait for a write,
2548 * so we use GFP_NOIO allocations.
2549 */
2550 struct stripe_head *osh, *nsh;
2551 LIST_HEAD(newstripes);
2552 struct disk_info *ndisks;
2214c260 2553 int err = 0;
e18b890b 2554 struct kmem_cache *sc;
ad01c9e3 2555 int i;
566c09c5 2556 int hash, cnt;
ad01c9e3 2557
2214c260 2558 md_allow_write(conf->mddev);
2a2275d6 2559
ad01c9e3
N
2560 /* Step 1 */
2561 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2562 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 2563 0, 0, NULL);
ad01c9e3
N
2564 if (!sc)
2565 return -ENOMEM;
2566
2d5b569b
N
2567 /* Need to ensure auto-resizing doesn't interfere */
2568 mutex_lock(&conf->cache_size_mutex);
2569
ad01c9e3 2570 for (i = conf->max_nr_stripes; i; i--) {
845b9e22 2571 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
ad01c9e3
N
2572 if (!nsh)
2573 break;
2574
ad01c9e3
N
2575 list_add(&nsh->lru, &newstripes);
2576 }
2577 if (i) {
2578 /* didn't get enough, give up */
2579 while (!list_empty(&newstripes)) {
2580 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2581 list_del(&nsh->lru);
845b9e22 2582 free_stripe(sc, nsh);
ad01c9e3
N
2583 }
2584 kmem_cache_destroy(sc);
2d5b569b 2585 mutex_unlock(&conf->cache_size_mutex);
ad01c9e3
N
2586 return -ENOMEM;
2587 }
2588 /* Step 2 - Must use GFP_NOIO now.
2589 * OK, we have enough stripes, start collecting inactive
2590 * stripes and copying them over
2591 */
566c09c5
SL
2592 hash = 0;
2593 cnt = 0;
ad01c9e3 2594 list_for_each_entry(nsh, &newstripes, lru) {
566c09c5 2595 lock_device_hash_lock(conf, hash);
6ab2a4b8 2596 wait_event_cmd(conf->wait_for_stripe,
566c09c5
SL
2597 !list_empty(conf->inactive_list + hash),
2598 unlock_device_hash_lock(conf, hash),
2599 lock_device_hash_lock(conf, hash));
2600 osh = get_free_stripe(conf, hash);
2601 unlock_device_hash_lock(conf, hash);
f18c1a35 2602
f16acaf3
YY
2603#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2604 for (i = 0; i < osh->nr_pages; i++) {
2605 nsh->pages[i] = osh->pages[i];
2606 osh->pages[i] = NULL;
2607 }
2608#endif
d592a996 2609 for(i=0; i<conf->pool_size; i++) {
ad01c9e3 2610 nsh->dev[i].page = osh->dev[i].page;
d592a996 2611 nsh->dev[i].orig_page = osh->dev[i].page;
7aba13b7 2612 nsh->dev[i].offset = osh->dev[i].offset;
d592a996 2613 }
566c09c5 2614 nsh->hash_lock_index = hash;
845b9e22 2615 free_stripe(conf->slab_cache, osh);
566c09c5
SL
2616 cnt++;
2617 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2618 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2619 hash++;
2620 cnt = 0;
2621 }
ad01c9e3
N
2622 }
2623 kmem_cache_destroy(conf->slab_cache);
2624
2625 /* Step 3.
2626 * At this point, we are holding all the stripes so the array
2627 * is completely stalled, so now is a good time to resize
d6f38f31 2628 * conf->disks and the scribble region
ad01c9e3 2629 */
6396bb22 2630 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
ad01c9e3 2631 if (ndisks) {
d7bd398e 2632 for (i = 0; i < conf->pool_size; i++)
ad01c9e3 2633 ndisks[i] = conf->disks[i];
d7bd398e
SL
2634
2635 for (i = conf->pool_size; i < newsize; i++) {
2636 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2637 if (!ndisks[i].extra_page)
2638 err = -ENOMEM;
2639 }
2640
2641 if (err) {
2642 for (i = conf->pool_size; i < newsize; i++)
2643 if (ndisks[i].extra_page)
2644 put_page(ndisks[i].extra_page);
2645 kfree(ndisks);
2646 } else {
2647 kfree(conf->disks);
2648 conf->disks = ndisks;
2649 }
ad01c9e3
N
2650 } else
2651 err = -ENOMEM;
2652
583da48e
DY
2653 conf->slab_cache = sc;
2654 conf->active_name = 1-conf->active_name;
2655
ad01c9e3
N
2656 /* Step 4, return new stripes to service */
2657 while(!list_empty(&newstripes)) {
2658 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2659 list_del_init(&nsh->lru);
d6f38f31 2660
f16acaf3
YY
2661#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2662 for (i = 0; i < nsh->nr_pages; i++) {
2663 if (nsh->pages[i])
2664 continue;
2665 nsh->pages[i] = alloc_page(GFP_NOIO);
2666 if (!nsh->pages[i])
2667 err = -ENOMEM;
2668 }
2669
2670 for (i = conf->raid_disks; i < newsize; i++) {
2671 if (nsh->dev[i].page)
2672 continue;
2673 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2674 nsh->dev[i].orig_page = nsh->dev[i].page;
2675 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2676 }
2677#else
ad01c9e3
N
2678 for (i=conf->raid_disks; i < newsize; i++)
2679 if (nsh->dev[i].page == NULL) {
2680 struct page *p = alloc_page(GFP_NOIO);
2681 nsh->dev[i].page = p;
d592a996 2682 nsh->dev[i].orig_page = p;
7aba13b7 2683 nsh->dev[i].offset = 0;
ad01c9e3
N
2684 if (!p)
2685 err = -ENOMEM;
2686 }
f16acaf3 2687#endif
6d036f7d 2688 raid5_release_stripe(nsh);
ad01c9e3
N
2689 }
2690 /* critical section pass, GFP_NOIO no longer needed */
2691
6e9eac2d
N
2692 if (!err)
2693 conf->pool_size = newsize;
b44c018c
SL
2694 mutex_unlock(&conf->cache_size_mutex);
2695
ad01c9e3
N
2696 return err;
2697}
1da177e4 2698
486f0644 2699static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
2700{
2701 struct stripe_head *sh;
49895bcc 2702 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
1da177e4 2703
566c09c5
SL
2704 spin_lock_irq(conf->hash_locks + hash);
2705 sh = get_free_stripe(conf, hash);
2706 spin_unlock_irq(conf->hash_locks + hash);
3f294f4f
N
2707 if (!sh)
2708 return 0;
78bafebd 2709 BUG_ON(atomic_read(&sh->count));
e4e11e38 2710 shrink_buffers(sh);
845b9e22 2711 free_stripe(conf->slab_cache, sh);
3f294f4f 2712 atomic_dec(&conf->active_stripes);
486f0644 2713 conf->max_nr_stripes--;
3f294f4f
N
2714 return 1;
2715}
2716
d1688a6d 2717static void shrink_stripes(struct r5conf *conf)
3f294f4f 2718{
486f0644
N
2719 while (conf->max_nr_stripes &&
2720 drop_one_stripe(conf))
2721 ;
3f294f4f 2722
644df1a8 2723 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
2724 conf->slab_cache = NULL;
2725}
2726
e38b0432
LG
2727/*
2728 * This helper wraps rcu_dereference_protected() and can be used when
2729 * it is known that the nr_pending of the rdev is elevated.
2730 */
2731static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev)
2732{
2733 return rcu_dereference_protected(rdev,
2734 atomic_read(&rcu_access_pointer(rdev)->nr_pending));
2735}
2736
9aeb7f99
LG
2737/*
2738 * This helper wraps rcu_dereference_protected() and should be used
2739 * when it is known that the mddev_lock() is held. This is safe
2740 * seeing raid5_remove_disk() has the same lock held.
2741 */
2742static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev,
2743 struct md_rdev __rcu *rdev)
2744{
2745 return rcu_dereference_protected(rdev,
2746 lockdep_is_held(&mddev->reconfig_mutex));
2747}
2748
4246a0b6 2749static void raid5_end_read_request(struct bio * bi)
1da177e4 2750{
99c0fb5f 2751 struct stripe_head *sh = bi->bi_private;
d1688a6d 2752 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2753 int disks = sh->disks, i;
dd054fce 2754 struct md_rdev *rdev = NULL;
05616be5 2755 sector_t s;
1da177e4
LT
2756
2757 for (i=0 ; i<disks; i++)
2758 if (bi == &sh->dev[i].req)
2759 break;
2760
4246a0b6 2761 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
45b4233c 2762 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2763 bi->bi_status);
1da177e4
LT
2764 if (i == disks) {
2765 BUG();
6712ecf8 2766 return;
1da177e4 2767 }
14a75d3e 2768 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
2769 /* If replacement finished while this request was outstanding,
2770 * 'replacement' might be NULL already.
2771 * In that case it moved down to 'rdev'.
2772 * rdev is not removed until all requests are finished.
2773 */
e38b0432 2774 rdev = rdev_pend_deref(conf->disks[i].replacement);
dd054fce 2775 if (!rdev)
e38b0432 2776 rdev = rdev_pend_deref(conf->disks[i].rdev);
1da177e4 2777
05616be5
N
2778 if (use_new_offset(conf, sh))
2779 s = sh->sector + rdev->new_data_offset;
2780 else
2781 s = sh->sector + rdev->data_offset;
4e4cbee9 2782 if (!bi->bi_status) {
1da177e4 2783 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 2784 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
2785 /* Note that this cannot happen on a
2786 * replacement device. We just fail those on
2787 * any error
2788 */
cc6167b4 2789 pr_info_ratelimited(
913cce5a 2790 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
c911c46c 2791 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
05616be5 2792 (unsigned long long)s,
913cce5a 2793 rdev->bdev);
c911c46c 2794 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
4e5314b5
N
2795 clear_bit(R5_ReadError, &sh->dev[i].flags);
2796 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 2797 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2798 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2799
86aa1397
SL
2800 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2801 /*
2802 * end read for a page in journal, this
2803 * must be preparing for prexor in rmw
2804 */
2805 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2806
14a75d3e
N
2807 if (atomic_read(&rdev->read_errors))
2808 atomic_set(&rdev->read_errors, 0);
1da177e4 2809 } else {
ba22dcbf 2810 int retry = 0;
2e8ac303 2811 int set_bad = 0;
d6950432 2812
1da177e4 2813 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
b76b4715
NC
2814 if (!(bi->bi_status == BLK_STS_PROTECTION))
2815 atomic_inc(&rdev->read_errors);
14a75d3e 2816 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
cc6167b4 2817 pr_warn_ratelimited(
913cce5a 2818 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
14a75d3e 2819 mdname(conf->mddev),
05616be5 2820 (unsigned long long)s,
913cce5a 2821 rdev->bdev);
2e8ac303 2822 else if (conf->mddev->degraded >= conf->max_degraded) {
2823 set_bad = 1;
cc6167b4 2824 pr_warn_ratelimited(
913cce5a 2825 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
8bda470e 2826 mdname(conf->mddev),
05616be5 2827 (unsigned long long)s,
913cce5a 2828 rdev->bdev);
2e8ac303 2829 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 2830 /* Oh, no!!! */
2e8ac303 2831 set_bad = 1;
cc6167b4 2832 pr_warn_ratelimited(
913cce5a 2833 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
8bda470e 2834 mdname(conf->mddev),
05616be5 2835 (unsigned long long)s,
913cce5a 2836 rdev->bdev);
2e8ac303 2837 } else if (atomic_read(&rdev->read_errors)
0009fad0
NC
2838 > conf->max_nr_stripes) {
2839 if (!test_bit(Faulty, &rdev->flags)) {
2840 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2841 mdname(conf->mddev),
2842 atomic_read(&rdev->read_errors),
2843 conf->max_nr_stripes);
913cce5a
CH
2844 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2845 mdname(conf->mddev), rdev->bdev);
0009fad0
NC
2846 }
2847 } else
ba22dcbf 2848 retry = 1;
edfa1f65
BY
2849 if (set_bad && test_bit(In_sync, &rdev->flags)
2850 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2851 retry = 1;
ba22dcbf 2852 if (retry)
143f6e73
XN
2853 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2854 set_bit(R5_ReadError, &sh->dev[i].flags);
2855 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
3f9e7c14 2856 set_bit(R5_ReadError, &sh->dev[i].flags);
2857 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2858 } else
2859 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 2860 else {
4e5314b5
N
2861 clear_bit(R5_ReadError, &sh->dev[i].flags);
2862 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 2863 if (!(set_bad
2864 && test_bit(In_sync, &rdev->flags)
2865 && rdev_set_badblocks(
c911c46c 2866 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2e8ac303 2867 md_error(conf->mddev, rdev);
ba22dcbf 2868 }
1da177e4 2869 }
14a75d3e 2870 rdev_dec_pending(rdev, conf->mddev);
03a6b195 2871 bio_uninit(bi);
1da177e4
LT
2872 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2873 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 2874 raid5_release_stripe(sh);
1da177e4
LT
2875}
2876
4246a0b6 2877static void raid5_end_write_request(struct bio *bi)
1da177e4 2878{
99c0fb5f 2879 struct stripe_head *sh = bi->bi_private;
d1688a6d 2880 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 2881 int disks = sh->disks, i;
3f649ab7 2882 struct md_rdev *rdev;
b84db560
N
2883 sector_t first_bad;
2884 int bad_sectors;
977df362 2885 int replacement = 0;
1da177e4 2886
977df362
N
2887 for (i = 0 ; i < disks; i++) {
2888 if (bi == &sh->dev[i].req) {
e38b0432 2889 rdev = rdev_pend_deref(conf->disks[i].rdev);
1da177e4 2890 break;
977df362
N
2891 }
2892 if (bi == &sh->dev[i].rreq) {
e38b0432 2893 rdev = rdev_pend_deref(conf->disks[i].replacement);
dd054fce
N
2894 if (rdev)
2895 replacement = 1;
2896 else
2897 /* rdev was removed and 'replacement'
2898 * replaced it. rdev is not removed
2899 * until all requests are finished.
2900 */
e38b0432 2901 rdev = rdev_pend_deref(conf->disks[i].rdev);
977df362
N
2902 break;
2903 }
2904 }
4246a0b6 2905 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
1da177e4 2906 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
4e4cbee9 2907 bi->bi_status);
1da177e4
LT
2908 if (i == disks) {
2909 BUG();
6712ecf8 2910 return;
1da177e4
LT
2911 }
2912
977df362 2913 if (replacement) {
4e4cbee9 2914 if (bi->bi_status)
977df362
N
2915 md_error(conf->mddev, rdev);
2916 else if (is_badblock(rdev, sh->sector,
c911c46c 2917 RAID5_STRIPE_SECTORS(conf),
977df362
N
2918 &first_bad, &bad_sectors))
2919 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2920 } else {
4e4cbee9 2921 if (bi->bi_status) {
9f97e4b1 2922 set_bit(STRIPE_DEGRADED, &sh->state);
977df362
N
2923 set_bit(WriteErrorSeen, &rdev->flags);
2924 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
2925 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2926 set_bit(MD_RECOVERY_NEEDED,
2927 &rdev->mddev->recovery);
977df362 2928 } else if (is_badblock(rdev, sh->sector,
c911c46c 2929 RAID5_STRIPE_SECTORS(conf),
c0b32972 2930 &first_bad, &bad_sectors)) {
977df362 2931 set_bit(R5_MadeGood, &sh->dev[i].flags);
c0b32972
N
2932 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2933 /* That was a successful write so make
2934 * sure it looks like we already did
2935 * a re-write.
2936 */
2937 set_bit(R5_ReWrite, &sh->dev[i].flags);
2938 }
977df362
N
2939 }
2940 rdev_dec_pending(rdev, conf->mddev);
1da177e4 2941
4e4cbee9 2942 if (sh->batch_head && bi->bi_status && !replacement)
72ac7330 2943 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2944
03a6b195 2945 bio_uninit(bi);
977df362
N
2946 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2947 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 2948 set_bit(STRIPE_HANDLE, &sh->state);
59fc630b 2949
2950 if (sh->batch_head && sh != sh->batch_head)
6d036f7d 2951 raid5_release_stripe(sh->batch_head);
10421247 2952 raid5_release_stripe(sh);
1da177e4
LT
2953}
2954
849674e4 2955static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2956{
d1688a6d 2957 struct r5conf *conf = mddev->private;
908f4fbd 2958 unsigned long flags;
0c55e022 2959 pr_debug("raid456: error called\n");
1da177e4 2960
913cce5a
CH
2961 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2962 mdname(mddev), rdev->bdev);
57668f0a 2963
908f4fbd 2964 spin_lock_irqsave(&conf->device_lock, flags);
57668f0a
MT
2965 set_bit(Faulty, &rdev->flags);
2966 clear_bit(In_sync, &rdev->flags);
2967 mddev->degraded = raid5_calc_degraded(conf);
fb73b357 2968
57668f0a
MT
2969 if (has_failed(conf)) {
2970 set_bit(MD_BROKEN, &conf->mddev->flags);
fb73b357 2971 conf->recovery_disabled = mddev->recovery_disabled;
57668f0a
MT
2972
2973 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2974 mdname(mddev), mddev->degraded, conf->raid_disks);
2975 } else {
2976 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2977 mdname(mddev), conf->raid_disks - mddev->degraded);
fb73b357
MT
2978 }
2979
908f4fbd
N
2980 spin_unlock_irqrestore(&conf->device_lock, flags);
2981 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2982
de393cde 2983 set_bit(Blocked, &rdev->flags);
2953079c
SL
2984 set_mask_bits(&mddev->sb_flags, 0,
2985 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
70d466f7 2986 r5c_update_on_rdev_error(mddev, rdev);
16a53ecc 2987}
1da177e4
LT
2988
2989/*
2990 * Input: a 'big' sector number,
2991 * Output: index of the data and parity disk, and the sector # in them.
2992 */
6d036f7d
SL
2993sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2994 int previous, int *dd_idx,
2995 struct stripe_head *sh)
1da177e4 2996{
6e3b96ed 2997 sector_t stripe, stripe2;
35f2a591 2998 sector_t chunk_number;
1da177e4 2999 unsigned int chunk_offset;
911d4ee8 3000 int pd_idx, qd_idx;
67cc2b81 3001 int ddf_layout = 0;
1da177e4 3002 sector_t new_sector;
e183eaed
N
3003 int algorithm = previous ? conf->prev_algo
3004 : conf->algorithm;
09c9e5fa
AN
3005 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3006 : conf->chunk_sectors;
112bf897
N
3007 int raid_disks = previous ? conf->previous_raid_disks
3008 : conf->raid_disks;
3009 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
3010
3011 /* First compute the information on this sector */
3012
3013 /*
3014 * Compute the chunk number and the sector offset inside the chunk
3015 */
3016 chunk_offset = sector_div(r_sector, sectors_per_chunk);
3017 chunk_number = r_sector;
1da177e4
LT
3018
3019 /*
3020 * Compute the stripe number
3021 */
35f2a591
N
3022 stripe = chunk_number;
3023 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 3024 stripe2 = stripe;
1da177e4
LT
3025 /*
3026 * Select the parity disk based on the user selected algorithm.
3027 */
84789554 3028 pd_idx = qd_idx = -1;
16a53ecc
N
3029 switch(conf->level) {
3030 case 4:
911d4ee8 3031 pd_idx = data_disks;
16a53ecc
N
3032 break;
3033 case 5:
e183eaed 3034 switch (algorithm) {
1da177e4 3035 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 3036 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 3037 if (*dd_idx >= pd_idx)
1da177e4
LT
3038 (*dd_idx)++;
3039 break;
3040 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 3041 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 3042 if (*dd_idx >= pd_idx)
1da177e4
LT
3043 (*dd_idx)++;
3044 break;
3045 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 3046 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 3047 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
3048 break;
3049 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 3050 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 3051 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 3052 break;
99c0fb5f
N
3053 case ALGORITHM_PARITY_0:
3054 pd_idx = 0;
3055 (*dd_idx)++;
3056 break;
3057 case ALGORITHM_PARITY_N:
3058 pd_idx = data_disks;
3059 break;
1da177e4 3060 default:
99c0fb5f 3061 BUG();
16a53ecc
N
3062 }
3063 break;
3064 case 6:
3065
e183eaed 3066 switch (algorithm) {
16a53ecc 3067 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 3068 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
3069 qd_idx = pd_idx + 1;
3070 if (pd_idx == raid_disks-1) {
99c0fb5f 3071 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
3072 qd_idx = 0;
3073 } else if (*dd_idx >= pd_idx)
16a53ecc
N
3074 (*dd_idx) += 2; /* D D P Q D */
3075 break;
3076 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 3077 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
3078 qd_idx = pd_idx + 1;
3079 if (pd_idx == raid_disks-1) {
99c0fb5f 3080 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
3081 qd_idx = 0;
3082 } else if (*dd_idx >= pd_idx)
16a53ecc
N
3083 (*dd_idx) += 2; /* D D P Q D */
3084 break;
3085 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 3086 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
3087 qd_idx = (pd_idx + 1) % raid_disks;
3088 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
3089 break;
3090 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 3091 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
3092 qd_idx = (pd_idx + 1) % raid_disks;
3093 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 3094 break;
99c0fb5f
N
3095
3096 case ALGORITHM_PARITY_0:
3097 pd_idx = 0;
3098 qd_idx = 1;
3099 (*dd_idx) += 2;
3100 break;
3101 case ALGORITHM_PARITY_N:
3102 pd_idx = data_disks;
3103 qd_idx = data_disks + 1;
3104 break;
3105
3106 case ALGORITHM_ROTATING_ZERO_RESTART:
3107 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3108 * of blocks for computing Q is different.
3109 */
6e3b96ed 3110 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
3111 qd_idx = pd_idx + 1;
3112 if (pd_idx == raid_disks-1) {
3113 (*dd_idx)++; /* Q D D D P */
3114 qd_idx = 0;
3115 } else if (*dd_idx >= pd_idx)
3116 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 3117 ddf_layout = 1;
99c0fb5f
N
3118 break;
3119
3120 case ALGORITHM_ROTATING_N_RESTART:
3121 /* Same a left_asymmetric, by first stripe is
3122 * D D D P Q rather than
3123 * Q D D D P
3124 */
6e3b96ed
N
3125 stripe2 += 1;
3126 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
3127 qd_idx = pd_idx + 1;
3128 if (pd_idx == raid_disks-1) {
3129 (*dd_idx)++; /* Q D D D P */
3130 qd_idx = 0;
3131 } else if (*dd_idx >= pd_idx)
3132 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 3133 ddf_layout = 1;
99c0fb5f
N
3134 break;
3135
3136 case ALGORITHM_ROTATING_N_CONTINUE:
3137 /* Same as left_symmetric but Q is before P */
6e3b96ed 3138 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
3139 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3140 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 3141 ddf_layout = 1;
99c0fb5f
N
3142 break;
3143
3144 case ALGORITHM_LEFT_ASYMMETRIC_6:
3145 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 3146 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3147 if (*dd_idx >= pd_idx)
3148 (*dd_idx)++;
3149 qd_idx = raid_disks - 1;
3150 break;
3151
3152 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 3153 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3154 if (*dd_idx >= pd_idx)
3155 (*dd_idx)++;
3156 qd_idx = raid_disks - 1;
3157 break;
3158
3159 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 3160 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3161 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3162 qd_idx = raid_disks - 1;
3163 break;
3164
3165 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 3166 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
3167 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3168 qd_idx = raid_disks - 1;
3169 break;
3170
3171 case ALGORITHM_PARITY_0_6:
3172 pd_idx = 0;
3173 (*dd_idx)++;
3174 qd_idx = raid_disks - 1;
3175 break;
3176
16a53ecc 3177 default:
99c0fb5f 3178 BUG();
16a53ecc
N
3179 }
3180 break;
1da177e4
LT
3181 }
3182
911d4ee8
N
3183 if (sh) {
3184 sh->pd_idx = pd_idx;
3185 sh->qd_idx = qd_idx;
67cc2b81 3186 sh->ddf_layout = ddf_layout;
911d4ee8 3187 }
1da177e4
LT
3188 /*
3189 * Finally, compute the new sector number
3190 */
3191 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3192 return new_sector;
3193}
3194
6d036f7d 3195sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 3196{
d1688a6d 3197 struct r5conf *conf = sh->raid_conf;
b875e531
N
3198 int raid_disks = sh->disks;
3199 int data_disks = raid_disks - conf->max_degraded;
1da177e4 3200 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
3201 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3202 : conf->chunk_sectors;
e183eaed
N
3203 int algorithm = previous ? conf->prev_algo
3204 : conf->algorithm;
1da177e4
LT
3205 sector_t stripe;
3206 int chunk_offset;
35f2a591
N
3207 sector_t chunk_number;
3208 int dummy1, dd_idx = i;
1da177e4 3209 sector_t r_sector;
911d4ee8 3210 struct stripe_head sh2;
1da177e4
LT
3211
3212 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3213 stripe = new_sector;
1da177e4 3214
16a53ecc
N
3215 if (i == sh->pd_idx)
3216 return 0;
3217 switch(conf->level) {
3218 case 4: break;
3219 case 5:
e183eaed 3220 switch (algorithm) {
1da177e4
LT
3221 case ALGORITHM_LEFT_ASYMMETRIC:
3222 case ALGORITHM_RIGHT_ASYMMETRIC:
3223 if (i > sh->pd_idx)
3224 i--;
3225 break;
3226 case ALGORITHM_LEFT_SYMMETRIC:
3227 case ALGORITHM_RIGHT_SYMMETRIC:
3228 if (i < sh->pd_idx)
3229 i += raid_disks;
3230 i -= (sh->pd_idx + 1);
3231 break;
99c0fb5f
N
3232 case ALGORITHM_PARITY_0:
3233 i -= 1;
3234 break;
3235 case ALGORITHM_PARITY_N:
3236 break;
1da177e4 3237 default:
99c0fb5f 3238 BUG();
16a53ecc
N
3239 }
3240 break;
3241 case 6:
d0dabf7e 3242 if (i == sh->qd_idx)
16a53ecc 3243 return 0; /* It is the Q disk */
e183eaed 3244 switch (algorithm) {
16a53ecc
N
3245 case ALGORITHM_LEFT_ASYMMETRIC:
3246 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
3247 case ALGORITHM_ROTATING_ZERO_RESTART:
3248 case ALGORITHM_ROTATING_N_RESTART:
3249 if (sh->pd_idx == raid_disks-1)
3250 i--; /* Q D D D P */
16a53ecc
N
3251 else if (i > sh->pd_idx)
3252 i -= 2; /* D D P Q D */
3253 break;
3254 case ALGORITHM_LEFT_SYMMETRIC:
3255 case ALGORITHM_RIGHT_SYMMETRIC:
3256 if (sh->pd_idx == raid_disks-1)
3257 i--; /* Q D D D P */
3258 else {
3259 /* D D P Q D */
3260 if (i < sh->pd_idx)
3261 i += raid_disks;
3262 i -= (sh->pd_idx + 2);
3263 }
3264 break;
99c0fb5f
N
3265 case ALGORITHM_PARITY_0:
3266 i -= 2;
3267 break;
3268 case ALGORITHM_PARITY_N:
3269 break;
3270 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 3271 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
3272 if (sh->pd_idx == 0)
3273 i--; /* P D D D Q */
e4424fee
N
3274 else {
3275 /* D D Q P D */
3276 if (i < sh->pd_idx)
3277 i += raid_disks;
3278 i -= (sh->pd_idx + 1);
3279 }
99c0fb5f
N
3280 break;
3281 case ALGORITHM_LEFT_ASYMMETRIC_6:
3282 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3283 if (i > sh->pd_idx)
3284 i--;
3285 break;
3286 case ALGORITHM_LEFT_SYMMETRIC_6:
3287 case ALGORITHM_RIGHT_SYMMETRIC_6:
3288 if (i < sh->pd_idx)
3289 i += data_disks + 1;
3290 i -= (sh->pd_idx + 1);
3291 break;
3292 case ALGORITHM_PARITY_0_6:
3293 i -= 1;
3294 break;
16a53ecc 3295 default:
99c0fb5f 3296 BUG();
16a53ecc
N
3297 }
3298 break;
1da177e4
LT
3299 }
3300
3301 chunk_number = stripe * data_disks + i;
35f2a591 3302 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 3303
112bf897 3304 check = raid5_compute_sector(conf, r_sector,
784052ec 3305 previous, &dummy1, &sh2);
911d4ee8
N
3306 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3307 || sh2.qd_idx != sh->qd_idx) {
cc6167b4
N
3308 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3309 mdname(conf->mddev));
1da177e4
LT
3310 return 0;
3311 }
3312 return r_sector;
3313}
3314
07e83364
SL
3315/*
3316 * There are cases where we want handle_stripe_dirtying() and
3317 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3318 *
3319 * This function checks whether we want to delay the towrite. Specifically,
3320 * we delay the towrite when:
3321 *
3322 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3323 * stripe has data in journal (for other devices).
3324 *
3325 * In this case, when reading data for the non-overwrite dev, it is
3326 * necessary to handle complex rmw of write back cache (prexor with
3327 * orig_page, and xor with page). To keep read path simple, we would
3328 * like to flush data in journal to RAID disks first, so complex rmw
3329 * is handled in the write patch (handle_stripe_dirtying).
3330 *
39b99586
SL
3331 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3332 *
3333 * It is important to be able to flush all stripes in raid5-cache.
3334 * Therefore, we need reserve some space on the journal device for
3335 * these flushes. If flush operation includes pending writes to the
3336 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3337 * for the flush out. If we exclude these pending writes from flush
3338 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3339 * Therefore, excluding pending writes in these cases enables more
3340 * efficient use of the journal device.
3341 *
3342 * Note: To make sure the stripe makes progress, we only delay
3343 * towrite for stripes with data already in journal (injournal > 0).
3344 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3345 * no_space_stripes list.
3346 *
70d466f7
SL
3347 * 3. during journal failure
3348 * In journal failure, we try to flush all cached data to raid disks
3349 * based on data in stripe cache. The array is read-only to upper
3350 * layers, so we would skip all pending writes.
3351 *
07e83364 3352 */
39b99586
SL
3353static inline bool delay_towrite(struct r5conf *conf,
3354 struct r5dev *dev,
3355 struct stripe_head_state *s)
07e83364 3356{
39b99586
SL
3357 /* case 1 above */
3358 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3359 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3360 return true;
3361 /* case 2 above */
3362 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3363 s->injournal > 0)
3364 return true;
70d466f7
SL
3365 /* case 3 above */
3366 if (s->log_failed && s->injournal)
3367 return true;
39b99586 3368 return false;
07e83364
SL
3369}
3370
600aa109 3371static void
c0f7bddb 3372schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 3373 int rcw, int expand)
e33129d8 3374{
584acdd4 3375 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
d1688a6d 3376 struct r5conf *conf = sh->raid_conf;
c0f7bddb 3377 int level = conf->level;
e33129d8
DW
3378
3379 if (rcw) {
1e6d690b
SL
3380 /*
3381 * In some cases, handle_stripe_dirtying initially decided to
3382 * run rmw and allocates extra page for prexor. However, rcw is
3383 * cheaper later on. We need to free the extra page now,
3384 * because we won't be able to do that in ops_complete_prexor().
3385 */
3386 r5c_release_extra_page(sh);
e33129d8
DW
3387
3388 for (i = disks; i--; ) {
3389 struct r5dev *dev = &sh->dev[i];
3390
39b99586 3391 if (dev->towrite && !delay_towrite(conf, dev, s)) {
e33129d8 3392 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 3393 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3394 if (!expand)
3395 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3396 s->locked++;
1e6d690b
SL
3397 } else if (test_bit(R5_InJournal, &dev->flags)) {
3398 set_bit(R5_LOCKED, &dev->flags);
3399 s->locked++;
e33129d8
DW
3400 }
3401 }
ce7d363a
N
3402 /* if we are not expanding this is a proper write request, and
3403 * there will be bios with new data to be drained into the
3404 * stripe cache
3405 */
3406 if (!expand) {
3407 if (!s->locked)
3408 /* False alarm, nothing to do */
3409 return;
3410 sh->reconstruct_state = reconstruct_state_drain_run;
3411 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3412 } else
3413 sh->reconstruct_state = reconstruct_state_run;
3414
3415 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3416
c0f7bddb 3417 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 3418 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 3419 atomic_inc(&conf->pending_full_writes);
e33129d8
DW
3420 } else {
3421 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3422 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
584acdd4
MS
3423 BUG_ON(level == 6 &&
3424 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3425 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
e33129d8 3426
e33129d8
DW
3427 for (i = disks; i--; ) {
3428 struct r5dev *dev = &sh->dev[i];
584acdd4 3429 if (i == pd_idx || i == qd_idx)
e33129d8
DW
3430 continue;
3431
e33129d8
DW
3432 if (dev->towrite &&
3433 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
3434 test_bit(R5_Wantcompute, &dev->flags))) {
3435 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
3436 set_bit(R5_LOCKED, &dev->flags);
3437 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 3438 s->locked++;
1e6d690b
SL
3439 } else if (test_bit(R5_InJournal, &dev->flags)) {
3440 set_bit(R5_LOCKED, &dev->flags);
3441 s->locked++;
e33129d8
DW
3442 }
3443 }
ce7d363a
N
3444 if (!s->locked)
3445 /* False alarm - nothing to do */
3446 return;
3447 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3448 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3449 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3450 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
3451 }
3452
c0f7bddb 3453 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
3454 * are in flight
3455 */
3456 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3457 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 3458 s->locked++;
e33129d8 3459
c0f7bddb
YT
3460 if (level == 6) {
3461 int qd_idx = sh->qd_idx;
3462 struct r5dev *dev = &sh->dev[qd_idx];
3463
3464 set_bit(R5_LOCKED, &dev->flags);
3465 clear_bit(R5_UPTODATE, &dev->flags);
3466 s->locked++;
3467 }
3468
845b9e22 3469 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3418d036
AP
3470 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3471 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3472 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3473 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3474
600aa109 3475 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 3476 __func__, (unsigned long long)sh->sector,
600aa109 3477 s->locked, s->ops_request);
e33129d8 3478}
16a53ecc 3479
4ad1d984
LG
3480static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3481 int dd_idx, int forwrite)
1da177e4 3482{
d1688a6d 3483 struct r5conf *conf = sh->raid_conf;
4ad1d984 3484 struct bio **bip;
1da177e4 3485
4ad1d984
LG
3486 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3487 bi->bi_iter.bi_sector, sh->sector);
1da177e4 3488
59fc630b 3489 /* Don't allow new IO added to stripes in batch list */
3490 if (sh->batch_head)
4ad1d984
LG
3491 return true;
3492
3493 if (forwrite)
1da177e4 3494 bip = &sh->dev[dd_idx].towrite;
4ad1d984 3495 else
1da177e4 3496 bip = &sh->dev[dd_idx].toread;
4ad1d984 3497
4f024f37
KO
3498 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3499 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
4ad1d984
LG
3500 return true;
3501 bip = &(*bip)->bi_next;
1da177e4 3502 }
4ad1d984 3503
4f024f37 3504 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
4ad1d984 3505 return true;
1da177e4 3506
3418d036
AP
3507 if (forwrite && raid5_has_ppl(conf)) {
3508 /*
3509 * With PPL only writes to consecutive data chunks within a
3510 * stripe are allowed because for a single stripe_head we can
3511 * only have one PPL entry at a time, which describes one data
3512 * range. Not really an overlap, but wait_for_overlap can be
3513 * used to handle this.
3514 */
3515 sector_t sector;
3516 sector_t first = 0;
3517 sector_t last = 0;
3518 int count = 0;
3519 int i;
3520
3521 for (i = 0; i < sh->disks; i++) {
3522 if (i != sh->pd_idx &&
3523 (i == dd_idx || sh->dev[i].towrite)) {
3524 sector = sh->dev[i].sector;
3525 if (count == 0 || sector < first)
3526 first = sector;
3527 if (sector > last)
3528 last = sector;
3529 count++;
3530 }
3531 }
3532
3533 if (first + conf->chunk_sectors * (count - 1) != last)
4ad1d984
LG
3534 return true;
3535 }
3536
3537 return false;
3538}
3539
3540static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3541 int dd_idx, int forwrite, int previous)
3542{
3543 struct r5conf *conf = sh->raid_conf;
3544 struct bio **bip;
3545 int firstwrite = 0;
3546
3547 if (forwrite) {
3548 bip = &sh->dev[dd_idx].towrite;
3549 if (!*bip)
3550 firstwrite = 1;
3551 } else {
3552 bip = &sh->dev[dd_idx].toread;
3418d036
AP
3553 }
3554
4ad1d984
LG
3555 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3556 bip = &(*bip)->bi_next;
3557
da41ba65 3558 if (!forwrite || previous)
3559 clear_bit(STRIPE_BATCH_READY, &sh->state);
3560
78bafebd 3561 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
3562 if (*bip)
3563 bi->bi_next = *bip;
3564 *bip = bi;
016c76ac 3565 bio_inc_remaining(bi);
49728050 3566 md_write_inc(conf->mddev, bi);
72626685 3567
1da177e4
LT
3568 if (forwrite) {
3569 /* check if page is covered */
3570 sector_t sector = sh->dev[dd_idx].sector;
3571 for (bi=sh->dev[dd_idx].towrite;
c911c46c 3572 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
4f024f37 3573 bi && bi->bi_iter.bi_sector <= sector;
c911c46c 3574 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
f73a1c7d
KO
3575 if (bio_end_sector(bi) >= sector)
3576 sector = bio_end_sector(bi);
1da177e4 3577 }
c911c46c 3578 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
7a87f434 3579 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3580 sh->overwrite_disks++;
1da177e4 3581 }
cbe47ec5 3582
df1b620a
LG
3583 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3584 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3585 sh->dev[dd_idx].sector);
cbe47ec5
N
3586
3587 if (conf->mddev->bitmap && firstwrite) {
d0852df5
N
3588 /* Cannot hold spinlock over bitmap_startwrite,
3589 * but must ensure this isn't added to a batch until
3590 * we have added to the bitmap and set bm_seq.
3591 * So set STRIPE_BITMAP_PENDING to prevent
3592 * batching.
4ad1d984 3593 * If multiple __add_stripe_bio() calls race here they
d0852df5
N
3594 * much all set STRIPE_BITMAP_PENDING. So only the first one
3595 * to complete "bitmap_startwrite" gets to set
3596 * STRIPE_BIT_DELAY. This is important as once a stripe
3597 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3598 * any more.
3599 */
3600 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3601 spin_unlock_irq(&sh->stripe_lock);
e64e4018 3602 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
c911c46c 3603 RAID5_STRIPE_SECTORS(conf), 0);
d0852df5
N
3604 spin_lock_irq(&sh->stripe_lock);
3605 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3606 if (!sh->batch_head) {
3607 sh->bm_seq = conf->seq_flush+1;
3608 set_bit(STRIPE_BIT_DELAY, &sh->state);
3609 }
cbe47ec5 3610 }
4ad1d984 3611}
59fc630b 3612
4ad1d984
LG
3613/*
3614 * Each stripe/dev can have one or more bios attached.
3615 * toread/towrite point to the first in a chain.
3616 * The bi_next chain must be in order.
3617 */
3618static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3619 int dd_idx, int forwrite, int previous)
3620{
3621 spin_lock_irq(&sh->stripe_lock);
1da177e4 3622
4ad1d984
LG
3623 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3624 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3625 spin_unlock_irq(&sh->stripe_lock);
3626 return false;
3627 }
3628
3629 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
b17459c0 3630 spin_unlock_irq(&sh->stripe_lock);
4ad1d984 3631 return true;
1da177e4
LT
3632}
3633
d1688a6d 3634static void end_reshape(struct r5conf *conf);
29269553 3635
d1688a6d 3636static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 3637 struct stripe_head *sh)
ccfcc3c1 3638{
784052ec 3639 int sectors_per_chunk =
09c9e5fa 3640 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 3641 int dd_idx;
2d2063ce 3642 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 3643 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 3644
112bf897
N
3645 raid5_compute_sector(conf,
3646 stripe * (disks - conf->max_degraded)
b875e531 3647 *sectors_per_chunk + chunk_offset,
112bf897 3648 previous,
911d4ee8 3649 &dd_idx, sh);
ccfcc3c1
N
3650}
3651
a4456856 3652static void
d1688a6d 3653handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
bd83d0a2 3654 struct stripe_head_state *s, int disks)
a4456856
DW
3655{
3656 int i;
59fc630b 3657 BUG_ON(sh->batch_head);
a4456856
DW
3658 for (i = disks; i--; ) {
3659 struct bio *bi;
3660 int bitmap_end = 0;
3661
3662 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 3663 struct md_rdev *rdev;
a4456856
DW
3664 rcu_read_lock();
3665 rdev = rcu_dereference(conf->disks[i].rdev);
f5b67ae8
N
3666 if (rdev && test_bit(In_sync, &rdev->flags) &&
3667 !test_bit(Faulty, &rdev->flags))
7f0da59b
N
3668 atomic_inc(&rdev->nr_pending);
3669 else
3670 rdev = NULL;
a4456856 3671 rcu_read_unlock();
7f0da59b
N
3672 if (rdev) {
3673 if (!rdev_set_badblocks(
3674 rdev,
3675 sh->sector,
c911c46c 3676 RAID5_STRIPE_SECTORS(conf), 0))
7f0da59b
N
3677 md_error(conf->mddev, rdev);
3678 rdev_dec_pending(rdev, conf->mddev);
3679 }
a4456856 3680 }
b17459c0 3681 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3682 /* fail all writes first */
3683 bi = sh->dev[i].towrite;
3684 sh->dev[i].towrite = NULL;
7a87f434 3685 sh->overwrite_disks = 0;
b17459c0 3686 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 3687 if (bi)
a4456856 3688 bitmap_end = 1;
a4456856 3689
ff875738 3690 log_stripe_write_finished(sh);
0576b1c6 3691
a4456856
DW
3692 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3693 wake_up(&conf->wait_for_overlap);
3694
4f024f37 3695 while (bi && bi->bi_iter.bi_sector <
c911c46c
YY
3696 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3697 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3698
49728050 3699 md_write_end(conf->mddev);
6308d8e3 3700 bio_io_error(bi);
a4456856
DW
3701 bi = nextbi;
3702 }
7eaf7e8e 3703 if (bitmap_end)
e64e4018 3704 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
c911c46c 3705 RAID5_STRIPE_SECTORS(conf), 0, 0);
7eaf7e8e 3706 bitmap_end = 0;
a4456856
DW
3707 /* and fail all 'written' */
3708 bi = sh->dev[i].written;
3709 sh->dev[i].written = NULL;
d592a996
SL
3710 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3711 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3712 sh->dev[i].page = sh->dev[i].orig_page;
3713 }
3714
a4456856 3715 if (bi) bitmap_end = 1;
4f024f37 3716 while (bi && bi->bi_iter.bi_sector <
c911c46c
YY
3717 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3718 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3719
49728050 3720 md_write_end(conf->mddev);
6308d8e3 3721 bio_io_error(bi);
a4456856
DW
3722 bi = bi2;
3723 }
3724
b5e98d65
DW
3725 /* fail any reads if this device is non-operational and
3726 * the data has not reached the cache yet.
3727 */
3728 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
6e74a9cf 3729 s->failed > conf->max_degraded &&
b5e98d65
DW
3730 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3731 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 3732 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
3733 bi = sh->dev[i].toread;
3734 sh->dev[i].toread = NULL;
143c4d05 3735 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
3736 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3737 wake_up(&conf->wait_for_overlap);
ebda780b
SL
3738 if (bi)
3739 s->to_read--;
4f024f37 3740 while (bi && bi->bi_iter.bi_sector <
c911c46c 3741 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
a4456856 3742 struct bio *nextbi =
c911c46c 3743 r5_next_bio(conf, bi, sh->dev[i].sector);
4246a0b6 3744
6308d8e3 3745 bio_io_error(bi);
a4456856
DW
3746 bi = nextbi;
3747 }
3748 }
a4456856 3749 if (bitmap_end)
e64e4018 3750 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
c911c46c 3751 RAID5_STRIPE_SECTORS(conf), 0, 0);
8cfa7b0f
N
3752 /* If we were in the middle of a write the parity block might
3753 * still be locked - so just clear all R5_LOCKED flags
3754 */
3755 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3756 }
ebda780b
SL
3757 s->to_write = 0;
3758 s->written = 0;
a4456856 3759
8b3e6cdc
DW
3760 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3761 if (atomic_dec_and_test(&conf->pending_full_writes))
3762 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
3763}
3764
7f0da59b 3765static void
d1688a6d 3766handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
3767 struct stripe_head_state *s)
3768{
3769 int abort = 0;
3770 int i;
3771
59fc630b 3772 BUG_ON(sh->batch_head);
7f0da59b 3773 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
3774 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3775 wake_up(&conf->wait_for_overlap);
7f0da59b 3776 s->syncing = 0;
9a3e1101 3777 s->replacing = 0;
7f0da59b 3778 /* There is nothing more to do for sync/check/repair.
18b9837e
N
3779 * Don't even need to abort as that is handled elsewhere
3780 * if needed, and not always wanted e.g. if there is a known
3781 * bad block here.
9a3e1101 3782 * For recover/replace we need to record a bad block on all
7f0da59b
N
3783 * non-sync devices, or abort the recovery
3784 */
18b9837e
N
3785 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3786 /* During recovery devices cannot be removed, so
3787 * locking and refcounting of rdevs is not needed
3788 */
e50d3992 3789 rcu_read_lock();
18b9837e 3790 for (i = 0; i < conf->raid_disks; i++) {
e50d3992 3791 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
18b9837e
N
3792 if (rdev
3793 && !test_bit(Faulty, &rdev->flags)
3794 && !test_bit(In_sync, &rdev->flags)
3795 && !rdev_set_badblocks(rdev, sh->sector,
c911c46c 3796 RAID5_STRIPE_SECTORS(conf), 0))
18b9837e 3797 abort = 1;
e50d3992 3798 rdev = rcu_dereference(conf->disks[i].replacement);
18b9837e
N
3799 if (rdev
3800 && !test_bit(Faulty, &rdev->flags)
3801 && !test_bit(In_sync, &rdev->flags)
3802 && !rdev_set_badblocks(rdev, sh->sector,
c911c46c 3803 RAID5_STRIPE_SECTORS(conf), 0))
18b9837e
N
3804 abort = 1;
3805 }
e50d3992 3806 rcu_read_unlock();
18b9837e
N
3807 if (abort)
3808 conf->recovery_disabled =
3809 conf->mddev->recovery_disabled;
7f0da59b 3810 }
c911c46c 3811 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
7f0da59b
N
3812}
3813
9a3e1101
N
3814static int want_replace(struct stripe_head *sh, int disk_idx)
3815{
3816 struct md_rdev *rdev;
3817 int rv = 0;
3f232d6a
N
3818
3819 rcu_read_lock();
3820 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
9a3e1101
N
3821 if (rdev
3822 && !test_bit(Faulty, &rdev->flags)
3823 && !test_bit(In_sync, &rdev->flags)
3824 && (rdev->recovery_offset <= sh->sector
3825 || rdev->mddev->recovery_cp <= sh->sector))
3826 rv = 1;
3f232d6a 3827 rcu_read_unlock();
9a3e1101
N
3828 return rv;
3829}
3830
2c58f06e
N
3831static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3832 int disk_idx, int disks)
a4456856 3833{
5599becc 3834 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
3835 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3836 &sh->dev[s->failed_num[1]] };
ea664c82 3837 int i;
45a4d8fd 3838 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
5599becc 3839
a79cfe12
N
3840
3841 if (test_bit(R5_LOCKED, &dev->flags) ||
3842 test_bit(R5_UPTODATE, &dev->flags))
3843 /* No point reading this as we already have it or have
3844 * decided to get it.
3845 */
3846 return 0;
3847
3848 if (dev->toread ||
3849 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3850 /* We need this block to directly satisfy a request */
3851 return 1;
3852
3853 if (s->syncing || s->expanding ||
3854 (s->replacing && want_replace(sh, disk_idx)))
3855 /* When syncing, or expanding we read everything.
3856 * When replacing, we need the replaced block.
3857 */
3858 return 1;
3859
3860 if ((s->failed >= 1 && fdev[0]->toread) ||
3861 (s->failed >= 2 && fdev[1]->toread))
3862 /* If we want to read from a failed device, then
3863 * we need to actually read every other device.
3864 */
3865 return 1;
3866
a9d56950
N
3867 /* Sometimes neither read-modify-write nor reconstruct-write
3868 * cycles can work. In those cases we read every block we
3869 * can. Then the parity-update is certain to have enough to
3870 * work with.
3871 * This can only be a problem when we need to write something,
3872 * and some device has failed. If either of those tests
3873 * fail we need look no further.
3874 */
3875 if (!s->failed || !s->to_write)
3876 return 0;
3877
3878 if (test_bit(R5_Insync, &dev->flags) &&
3879 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3880 /* Pre-reads at not permitted until after short delay
3881 * to gather multiple requests. However if this
3560741e 3882 * device is no Insync, the block could only be computed
a9d56950
N
3883 * and there is no need to delay that.
3884 */
3885 return 0;
ea664c82 3886
36707bb2 3887 for (i = 0; i < s->failed && i < 2; i++) {
ea664c82
N
3888 if (fdev[i]->towrite &&
3889 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3890 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3891 /* If we have a partial write to a failed
3892 * device, then we will need to reconstruct
3893 * the content of that device, so all other
3894 * devices must be read.
3895 */
3896 return 1;
45a4d8fd
CP
3897
3898 if (s->failed >= 2 &&
3899 (fdev[i]->towrite ||
3900 s->failed_num[i] == sh->pd_idx ||
3901 s->failed_num[i] == sh->qd_idx) &&
3902 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3903 /* In max degraded raid6, If the failed disk is P, Q,
3904 * or we want to read the failed disk, we need to do
3905 * reconstruct-write.
3906 */
3907 force_rcw = true;
ea664c82
N
3908 }
3909
45a4d8fd
CP
3910 /* If we are forced to do a reconstruct-write, because parity
3911 * cannot be trusted and we are currently recovering it, there
3912 * is extra need to be careful.
ea664c82
N
3913 * If one of the devices that we would need to read, because
3914 * it is not being overwritten (and maybe not written at all)
3915 * is missing/faulty, then we need to read everything we can.
3916 */
45a4d8fd 3917 if (!force_rcw &&
ea664c82
N
3918 sh->sector < sh->raid_conf->mddev->recovery_cp)
3919 /* reconstruct-write isn't being forced */
3920 return 0;
36707bb2 3921 for (i = 0; i < s->failed && i < 2; i++) {
10d82c5f
N
3922 if (s->failed_num[i] != sh->pd_idx &&
3923 s->failed_num[i] != sh->qd_idx &&
3924 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
ea664c82
N
3925 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3926 return 1;
3927 }
3928
2c58f06e
N
3929 return 0;
3930}
3931
ba02684d
SL
3932/* fetch_block - checks the given member device to see if its data needs
3933 * to be read or computed to satisfy a request.
3934 *
3935 * Returns 1 when no more member devices need to be checked, otherwise returns
3936 * 0 to tell the loop in handle_stripe_fill to continue
3937 */
2c58f06e
N
3938static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3939 int disk_idx, int disks)
3940{
3941 struct r5dev *dev = &sh->dev[disk_idx];
3942
3943 /* is the data in this block needed, and can we get it? */
3944 if (need_this_block(sh, s, disk_idx, disks)) {
5599becc
YT
3945 /* we would like to get this block, possibly by computing it,
3946 * otherwise read it if the backing disk is insync
3947 */
3948 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3949 BUG_ON(test_bit(R5_Wantread, &dev->flags));
b0c783b3 3950 BUG_ON(sh->batch_head);
7471fb77
N
3951
3952 /*
3953 * In the raid6 case if the only non-uptodate disk is P
3954 * then we already trusted P to compute the other failed
3955 * drives. It is safe to compute rather than re-read P.
3956 * In other cases we only compute blocks from failed
3957 * devices, otherwise check/repair might fail to detect
3958 * a real inconsistency.
3959 */
3960
5599becc 3961 if ((s->uptodate == disks - 1) &&
7471fb77 3962 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
f2b3b44d 3963 (s->failed && (disk_idx == s->failed_num[0] ||
7471fb77 3964 disk_idx == s->failed_num[1])))) {
5599becc
YT
3965 /* have disk failed, and we're requested to fetch it;
3966 * do compute it
a4456856 3967 */
5599becc
YT
3968 pr_debug("Computing stripe %llu block %d\n",
3969 (unsigned long long)sh->sector, disk_idx);
3970 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3971 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3972 set_bit(R5_Wantcompute, &dev->flags);
3973 sh->ops.target = disk_idx;
3974 sh->ops.target2 = -1; /* no 2nd target */
3975 s->req_compute = 1;
93b3dbce
N
3976 /* Careful: from this point on 'uptodate' is in the eye
3977 * of raid_run_ops which services 'compute' operations
3978 * before writes. R5_Wantcompute flags a block that will
3979 * be R5_UPTODATE by the time it is needed for a
3980 * subsequent operation.
3981 */
5599becc
YT
3982 s->uptodate++;
3983 return 1;
3984 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3985 /* Computing 2-failure is *very* expensive; only
3986 * do it if failed >= 2
3987 */
3988 int other;
3989 for (other = disks; other--; ) {
3990 if (other == disk_idx)
3991 continue;
3992 if (!test_bit(R5_UPTODATE,
3993 &sh->dev[other].flags))
3994 break;
a4456856 3995 }
5599becc
YT
3996 BUG_ON(other < 0);
3997 pr_debug("Computing stripe %llu blocks %d,%d\n",
3998 (unsigned long long)sh->sector,
3999 disk_idx, other);
4000 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4001 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4002 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
4003 set_bit(R5_Wantcompute, &sh->dev[other].flags);
4004 sh->ops.target = disk_idx;
4005 sh->ops.target2 = other;
4006 s->uptodate += 2;
4007 s->req_compute = 1;
4008 return 1;
4009 } else if (test_bit(R5_Insync, &dev->flags)) {
4010 set_bit(R5_LOCKED, &dev->flags);
4011 set_bit(R5_Wantread, &dev->flags);
4012 s->locked++;
4013 pr_debug("Reading block %d (sync=%d)\n",
4014 disk_idx, s->syncing);
a4456856
DW
4015 }
4016 }
5599becc
YT
4017
4018 return 0;
4019}
4020
2aada5b1 4021/*
93b3dbce 4022 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 4023 */
93b3dbce
N
4024static void handle_stripe_fill(struct stripe_head *sh,
4025 struct stripe_head_state *s,
4026 int disks)
5599becc
YT
4027{
4028 int i;
4029
4030 /* look for blocks to read/compute, skip this if a compute
4031 * is already in flight, or if the stripe contents are in the
4032 * midst of changing due to a write
4033 */
4034 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
07e83364
SL
4035 !sh->reconstruct_state) {
4036
4037 /*
4038 * For degraded stripe with data in journal, do not handle
4039 * read requests yet, instead, flush the stripe to raid
4040 * disks first, this avoids handling complex rmw of write
4041 * back cache (prexor with orig_page, and then xor with
4042 * page) in the read path
4043 */
e2eed85b 4044 if (s->to_read && s->injournal && s->failed) {
07e83364
SL
4045 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4046 r5c_make_stripe_write_out(sh);
4047 goto out;
4048 }
4049
5599becc 4050 for (i = disks; i--; )
93b3dbce 4051 if (fetch_block(sh, s, i, disks))
5599becc 4052 break;
07e83364
SL
4053 }
4054out:
a4456856
DW
4055 set_bit(STRIPE_HANDLE, &sh->state);
4056}
4057
787b76fa
N
4058static void break_stripe_batch_list(struct stripe_head *head_sh,
4059 unsigned long handle_flags);
1fe797e6 4060/* handle_stripe_clean_event
a4456856
DW
4061 * any written block on an uptodate or failed drive can be returned.
4062 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4063 * never LOCKED, so we don't need to test 'failed' directly.
4064 */
d1688a6d 4065static void handle_stripe_clean_event(struct r5conf *conf,
bd83d0a2 4066 struct stripe_head *sh, int disks)
a4456856
DW
4067{
4068 int i;
4069 struct r5dev *dev;
f8dfcffd 4070 int discard_pending = 0;
59fc630b 4071 struct stripe_head *head_sh = sh;
4072 bool do_endio = false;
a4456856
DW
4073
4074 for (i = disks; i--; )
4075 if (sh->dev[i].written) {
4076 dev = &sh->dev[i];
4077 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 4078 (test_bit(R5_UPTODATE, &dev->flags) ||
d592a996
SL
4079 test_bit(R5_Discard, &dev->flags) ||
4080 test_bit(R5_SkipCopy, &dev->flags))) {
a4456856
DW
4081 /* We can return any write requests */
4082 struct bio *wbi, *wbi2;
45b4233c 4083 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
4084 if (test_and_clear_bit(R5_Discard, &dev->flags))
4085 clear_bit(R5_UPTODATE, &dev->flags);
d592a996
SL
4086 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4087 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
d592a996 4088 }
59fc630b 4089 do_endio = true;
4090
4091returnbi:
4092 dev->page = dev->orig_page;
a4456856
DW
4093 wbi = dev->written;
4094 dev->written = NULL;
4f024f37 4095 while (wbi && wbi->bi_iter.bi_sector <
c911c46c
YY
4096 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4097 wbi2 = r5_next_bio(conf, wbi, dev->sector);
49728050 4098 md_write_end(conf->mddev);
016c76ac 4099 bio_endio(wbi);
a4456856
DW
4100 wbi = wbi2;
4101 }
e64e4018 4102 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
c911c46c 4103 RAID5_STRIPE_SECTORS(conf),
e64e4018
AS
4104 !test_bit(STRIPE_DEGRADED, &sh->state),
4105 0);
59fc630b 4106 if (head_sh->batch_head) {
4107 sh = list_first_entry(&sh->batch_list,
4108 struct stripe_head,
4109 batch_list);
4110 if (sh != head_sh) {
4111 dev = &sh->dev[i];
4112 goto returnbi;
4113 }
4114 }
4115 sh = head_sh;
4116 dev = &sh->dev[i];
f8dfcffd
N
4117 } else if (test_bit(R5_Discard, &dev->flags))
4118 discard_pending = 1;
4119 }
f6bed0ef 4120
ff875738 4121 log_stripe_write_finished(sh);
0576b1c6 4122
f8dfcffd
N
4123 if (!discard_pending &&
4124 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
b8a9d66d 4125 int hash;
f8dfcffd
N
4126 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4127 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4128 if (sh->qd_idx >= 0) {
4129 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4130 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4131 }
4132 /* now that discard is done we can proceed with any sync */
4133 clear_bit(STRIPE_DISCARD, &sh->state);
d47648fc
SL
4134 /*
4135 * SCSI discard will change some bio fields and the stripe has
4136 * no updated data, so remove it from hash list and the stripe
4137 * will be reinitialized
4138 */
59fc630b 4139unhash:
b8a9d66d
RG
4140 hash = sh->hash_lock_index;
4141 spin_lock_irq(conf->hash_locks + hash);
d47648fc 4142 remove_hash(sh);
b8a9d66d 4143 spin_unlock_irq(conf->hash_locks + hash);
59fc630b 4144 if (head_sh->batch_head) {
4145 sh = list_first_entry(&sh->batch_list,
4146 struct stripe_head, batch_list);
4147 if (sh != head_sh)
4148 goto unhash;
4149 }
59fc630b 4150 sh = head_sh;
4151
f8dfcffd
N
4152 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4153 set_bit(STRIPE_HANDLE, &sh->state);
4154
4155 }
8b3e6cdc
DW
4156
4157 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4158 if (atomic_dec_and_test(&conf->pending_full_writes))
4159 md_wakeup_thread(conf->mddev->thread);
59fc630b 4160
787b76fa
N
4161 if (head_sh->batch_head && do_endio)
4162 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
a4456856
DW
4163}
4164
86aa1397
SL
4165/*
4166 * For RMW in write back cache, we need extra page in prexor to store the
4167 * old data. This page is stored in dev->orig_page.
4168 *
4169 * This function checks whether we have data for prexor. The exact logic
4170 * is:
4171 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4172 */
4173static inline bool uptodate_for_rmw(struct r5dev *dev)
4174{
4175 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4176 (!test_bit(R5_InJournal, &dev->flags) ||
4177 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4178}
4179
d7bd398e
SL
4180static int handle_stripe_dirtying(struct r5conf *conf,
4181 struct stripe_head *sh,
4182 struct stripe_head_state *s,
4183 int disks)
a4456856
DW
4184{
4185 int rmw = 0, rcw = 0, i;
a7854487
AL
4186 sector_t recovery_cp = conf->mddev->recovery_cp;
4187
584acdd4 4188 /* Check whether resync is now happening or should start.
a7854487
AL
4189 * If yes, then the array is dirty (after unclean shutdown or
4190 * initial creation), so parity in some stripes might be inconsistent.
4191 * In this case, we need to always do reconstruct-write, to ensure
4192 * that in case of drive failure or read-error correction, we
4193 * generate correct data from the parity.
4194 */
584acdd4 4195 if (conf->rmw_level == PARITY_DISABLE_RMW ||
26ac1073
N
4196 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4197 s->failed == 0)) {
a7854487 4198 /* Calculate the real rcw later - for now make it
c8ac1803
N
4199 * look like rcw is cheaper
4200 */
4201 rcw = 1; rmw = 2;
584acdd4
MS
4202 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4203 conf->rmw_level, (unsigned long long)recovery_cp,
a7854487 4204 (unsigned long long)sh->sector);
c8ac1803 4205 } else for (i = disks; i--; ) {
a4456856
DW
4206 /* would I have to read this buffer for read_modify_write */
4207 struct r5dev *dev = &sh->dev[i];
39b99586 4208 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
07e83364 4209 i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b 4210 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 4211 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 4212 !(uptodate_for_rmw(dev) ||
f38e1219 4213 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
4214 if (test_bit(R5_Insync, &dev->flags))
4215 rmw++;
4216 else
4217 rmw += 2*disks; /* cannot read it */
4218 }
4219 /* Would I have to read this buffer for reconstruct_write */
584acdd4
MS
4220 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4221 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 4222 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 4223 !(test_bit(R5_UPTODATE, &dev->flags) ||
1e6d690b 4224 test_bit(R5_Wantcompute, &dev->flags))) {
67f45548
N
4225 if (test_bit(R5_Insync, &dev->flags))
4226 rcw++;
a4456856
DW
4227 else
4228 rcw += 2*disks;
4229 }
4230 }
1e6d690b 4231
39b99586
SL
4232 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4233 (unsigned long long)sh->sector, sh->state, rmw, rcw);
a4456856 4234 set_bit(STRIPE_HANDLE, &sh->state);
41257580 4235 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
a4456856 4236 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
4237 if (conf->mddev->queue)
4238 blk_add_trace_msg(conf->mddev->queue,
4239 "raid5 rmw %llu %d",
4240 (unsigned long long)sh->sector, rmw);
a4456856
DW
4241 for (i = disks; i--; ) {
4242 struct r5dev *dev = &sh->dev[i];
1e6d690b
SL
4243 if (test_bit(R5_InJournal, &dev->flags) &&
4244 dev->page == dev->orig_page &&
4245 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4246 /* alloc page for prexor */
d7bd398e
SL
4247 struct page *p = alloc_page(GFP_NOIO);
4248
4249 if (p) {
4250 dev->orig_page = p;
4251 continue;
4252 }
4253
4254 /*
4255 * alloc_page() failed, try use
4256 * disk_info->extra_page
4257 */
4258 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4259 &conf->cache_state)) {
4260 r5c_use_extra_page(sh);
4261 break;
4262 }
1e6d690b 4263
d7bd398e
SL
4264 /* extra_page in use, add to delayed_list */
4265 set_bit(STRIPE_DELAYED, &sh->state);
4266 s->waiting_extra_page = 1;
4267 return -EAGAIN;
1e6d690b 4268 }
d7bd398e 4269 }
1e6d690b 4270
d7bd398e
SL
4271 for (i = disks; i--; ) {
4272 struct r5dev *dev = &sh->dev[i];
39b99586 4273 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
1e6d690b
SL
4274 i == sh->pd_idx || i == sh->qd_idx ||
4275 test_bit(R5_InJournal, &dev->flags)) &&
a4456856 4276 !test_bit(R5_LOCKED, &dev->flags) &&
86aa1397 4277 !(uptodate_for_rmw(dev) ||
1e6d690b 4278 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856 4279 test_bit(R5_Insync, &dev->flags)) {
67f45548
N
4280 if (test_bit(STRIPE_PREREAD_ACTIVE,
4281 &sh->state)) {
4282 pr_debug("Read_old block %d for r-m-w\n",
4283 i);
a4456856
DW
4284 set_bit(R5_LOCKED, &dev->flags);
4285 set_bit(R5_Wantread, &dev->flags);
4286 s->locked++;
e3914d59 4287 } else
a4456856 4288 set_bit(STRIPE_DELAYED, &sh->state);
a4456856
DW
4289 }
4290 }
a9add5d9 4291 }
41257580 4292 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
a4456856 4293 /* want reconstruct write, but need to get some data */
a9add5d9 4294 int qread =0;
c8ac1803 4295 rcw = 0;
a4456856
DW
4296 for (i = disks; i--; ) {
4297 struct r5dev *dev = &sh->dev[i];
4298 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 4299 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 4300 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 4301 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
4302 test_bit(R5_Wantcompute, &dev->flags))) {
4303 rcw++;
67f45548
N
4304 if (test_bit(R5_Insync, &dev->flags) &&
4305 test_bit(STRIPE_PREREAD_ACTIVE,
4306 &sh->state)) {
45b4233c 4307 pr_debug("Read_old block "
a4456856
DW
4308 "%d for Reconstruct\n", i);
4309 set_bit(R5_LOCKED, &dev->flags);
4310 set_bit(R5_Wantread, &dev->flags);
4311 s->locked++;
a9add5d9 4312 qread++;
e3914d59 4313 } else
a4456856 4314 set_bit(STRIPE_DELAYED, &sh->state);
a4456856
DW
4315 }
4316 }
e3620a3a 4317 if (rcw && conf->mddev->queue)
a9add5d9
N
4318 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4319 (unsigned long long)sh->sector,
4320 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 4321 }
b1b02fe9
N
4322
4323 if (rcw > disks && rmw > disks &&
4324 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4325 set_bit(STRIPE_DELAYED, &sh->state);
4326
a4456856
DW
4327 /* now if nothing is locked, and if we have enough data,
4328 * we can start a write request
4329 */
f38e1219
DW
4330 /* since handle_stripe can be called at any time we need to handle the
4331 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
4332 * subsequent call wants to start a write request. raid_run_ops only
4333 * handles the case where compute block and reconstruct are requested
f38e1219
DW
4334 * simultaneously. If this is not the case then new writes need to be
4335 * held off until the compute completes.
4336 */
976ea8d4
DW
4337 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4338 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
1e6d690b 4339 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 4340 schedule_reconstruction(sh, s, rcw == 0, 0);
d7bd398e 4341 return 0;
a4456856
DW
4342}
4343
d1688a6d 4344static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
4345 struct stripe_head_state *s, int disks)
4346{
ecc65c9b 4347 struct r5dev *dev = NULL;
bd2ab670 4348
59fc630b 4349 BUG_ON(sh->batch_head);
a4456856 4350 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 4351
ecc65c9b
DW
4352 switch (sh->check_state) {
4353 case check_state_idle:
4354 /* start a new check operation if there are no failures */
bd2ab670 4355 if (s->failed == 0) {
bd2ab670 4356 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
4357 sh->check_state = check_state_run;
4358 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 4359 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 4360 s->uptodate--;
ecc65c9b 4361 break;
bd2ab670 4362 }
f2b3b44d 4363 dev = &sh->dev[s->failed_num[0]];
df561f66 4364 fallthrough;
ecc65c9b
DW
4365 case check_state_compute_result:
4366 sh->check_state = check_state_idle;
4367 if (!dev)
4368 dev = &sh->dev[sh->pd_idx];
4369
4370 /* check that a write has not made the stripe insync */
4371 if (test_bit(STRIPE_INSYNC, &sh->state))
4372 break;
c8894419 4373
a4456856 4374 /* either failed parity check, or recovery is happening */
a4456856
DW
4375 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4376 BUG_ON(s->uptodate != disks);
4377
4378 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 4379 s->locked++;
a4456856 4380 set_bit(R5_Wantwrite, &dev->flags);
830ea016 4381
a4456856 4382 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 4383 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
4384 break;
4385 case check_state_run:
4386 break; /* we will be called again upon completion */
4387 case check_state_check_result:
4388 sh->check_state = check_state_idle;
4389
4390 /* if a failure occurred during the check operation, leave
4391 * STRIPE_INSYNC not set and let the stripe be handled again
4392 */
4393 if (s->failed)
4394 break;
4395
4396 /* handle a successful check operation, if parity is correct
4397 * we are done. Otherwise update the mismatch count and repair
4398 * parity if !MD_RECOVERY_CHECK
4399 */
ad283ea4 4400 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
4401 /* parity is correct (on disc,
4402 * not in buffer any more)
4403 */
4404 set_bit(STRIPE_INSYNC, &sh->state);
4405 else {
c911c46c 4406 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
e1539036 4407 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
ecc65c9b
DW
4408 /* don't try to repair!! */
4409 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4410 pr_warn_ratelimited("%s: mismatch sector in range "
4411 "%llu-%llu\n", mdname(conf->mddev),
4412 (unsigned long long) sh->sector,
4413 (unsigned long long) sh->sector +
c911c46c 4414 RAID5_STRIPE_SECTORS(conf));
e1539036 4415 } else {
ecc65c9b 4416 sh->check_state = check_state_compute_run;
976ea8d4 4417 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
4418 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4419 set_bit(R5_Wantcompute,
4420 &sh->dev[sh->pd_idx].flags);
4421 sh->ops.target = sh->pd_idx;
ac6b53b6 4422 sh->ops.target2 = -1;
ecc65c9b
DW
4423 s->uptodate++;
4424 }
4425 }
4426 break;
4427 case check_state_compute_run:
4428 break;
4429 default:
cc6167b4 4430 pr_err("%s: unknown check_state: %d sector: %llu\n",
ecc65c9b
DW
4431 __func__, sh->check_state,
4432 (unsigned long long) sh->sector);
4433 BUG();
a4456856
DW
4434 }
4435}
4436
d1688a6d 4437static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 4438 struct stripe_head_state *s,
f2b3b44d 4439 int disks)
a4456856 4440{
a4456856 4441 int pd_idx = sh->pd_idx;
34e04e87 4442 int qd_idx = sh->qd_idx;
d82dfee0 4443 struct r5dev *dev;
a4456856 4444
59fc630b 4445 BUG_ON(sh->batch_head);
a4456856
DW
4446 set_bit(STRIPE_HANDLE, &sh->state);
4447
4448 BUG_ON(s->failed > 2);
d82dfee0 4449
a4456856
DW
4450 /* Want to check and possibly repair P and Q.
4451 * However there could be one 'failed' device, in which
4452 * case we can only check one of them, possibly using the
4453 * other to generate missing data
4454 */
4455
d82dfee0
DW
4456 switch (sh->check_state) {
4457 case check_state_idle:
4458 /* start a new check operation if there are < 2 failures */
f2b3b44d 4459 if (s->failed == s->q_failed) {
d82dfee0 4460 /* The only possible failed device holds Q, so it
a4456856
DW
4461 * makes sense to check P (If anything else were failed,
4462 * we would have used P to recreate it).
4463 */
d82dfee0 4464 sh->check_state = check_state_run;
a4456856 4465 }
f2b3b44d 4466 if (!s->q_failed && s->failed < 2) {
d82dfee0 4467 /* Q is not failed, and we didn't use it to generate
a4456856
DW
4468 * anything, so it makes sense to check it
4469 */
d82dfee0
DW
4470 if (sh->check_state == check_state_run)
4471 sh->check_state = check_state_run_pq;
4472 else
4473 sh->check_state = check_state_run_q;
a4456856 4474 }
a4456856 4475
d82dfee0
DW
4476 /* discard potentially stale zero_sum_result */
4477 sh->ops.zero_sum_result = 0;
a4456856 4478
d82dfee0
DW
4479 if (sh->check_state == check_state_run) {
4480 /* async_xor_zero_sum destroys the contents of P */
4481 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4482 s->uptodate--;
a4456856 4483 }
d82dfee0
DW
4484 if (sh->check_state >= check_state_run &&
4485 sh->check_state <= check_state_run_pq) {
4486 /* async_syndrome_zero_sum preserves P and Q, so
4487 * no need to mark them !uptodate here
4488 */
4489 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4490 break;
a4456856
DW
4491 }
4492
d82dfee0
DW
4493 /* we have 2-disk failure */
4494 BUG_ON(s->failed != 2);
df561f66 4495 fallthrough;
d82dfee0
DW
4496 case check_state_compute_result:
4497 sh->check_state = check_state_idle;
a4456856 4498
d82dfee0
DW
4499 /* check that a write has not made the stripe insync */
4500 if (test_bit(STRIPE_INSYNC, &sh->state))
4501 break;
a4456856
DW
4502
4503 /* now write out any block on a failed drive,
d82dfee0 4504 * or P or Q if they were recomputed
a4456856 4505 */
b2176a1d 4506 dev = NULL;
a4456856 4507 if (s->failed == 2) {
f2b3b44d 4508 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
4509 s->locked++;
4510 set_bit(R5_LOCKED, &dev->flags);
4511 set_bit(R5_Wantwrite, &dev->flags);
4512 }
4513 if (s->failed >= 1) {
f2b3b44d 4514 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
4515 s->locked++;
4516 set_bit(R5_LOCKED, &dev->flags);
4517 set_bit(R5_Wantwrite, &dev->flags);
4518 }
d82dfee0 4519 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
4520 dev = &sh->dev[pd_idx];
4521 s->locked++;
4522 set_bit(R5_LOCKED, &dev->flags);
4523 set_bit(R5_Wantwrite, &dev->flags);
4524 }
d82dfee0 4525 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
4526 dev = &sh->dev[qd_idx];
4527 s->locked++;
4528 set_bit(R5_LOCKED, &dev->flags);
4529 set_bit(R5_Wantwrite, &dev->flags);
4530 }
b2176a1d
NC
4531 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4532 "%s: disk%td not up to date\n",
4533 mdname(conf->mddev),
4534 dev - (struct r5dev *) &sh->dev)) {
4535 clear_bit(R5_LOCKED, &dev->flags);
4536 clear_bit(R5_Wantwrite, &dev->flags);
4537 s->locked--;
4538 }
a4456856
DW
4539 clear_bit(STRIPE_DEGRADED, &sh->state);
4540
4541 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
4542 break;
4543 case check_state_run:
4544 case check_state_run_q:
4545 case check_state_run_pq:
4546 break; /* we will be called again upon completion */
4547 case check_state_check_result:
4548 sh->check_state = check_state_idle;
4549
4550 /* handle a successful check operation, if parity is correct
4551 * we are done. Otherwise update the mismatch count and repair
4552 * parity if !MD_RECOVERY_CHECK
4553 */
4554 if (sh->ops.zero_sum_result == 0) {
a25d8c32
SL
4555 /* both parities are correct */
4556 if (!s->failed)
4557 set_bit(STRIPE_INSYNC, &sh->state);
4558 else {
4559 /* in contrast to the raid5 case we can validate
4560 * parity, but still have a failure to write
4561 * back
4562 */
4563 sh->check_state = check_state_compute_result;
4564 /* Returning at this point means that we may go
4565 * off and bring p and/or q uptodate again so
4566 * we make sure to check zero_sum_result again
4567 * to verify if p or q need writeback
4568 */
4569 }
d82dfee0 4570 } else {
c911c46c 4571 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
e1539036 4572 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
d82dfee0
DW
4573 /* don't try to repair!! */
4574 set_bit(STRIPE_INSYNC, &sh->state);
e1539036
N
4575 pr_warn_ratelimited("%s: mismatch sector in range "
4576 "%llu-%llu\n", mdname(conf->mddev),
4577 (unsigned long long) sh->sector,
4578 (unsigned long long) sh->sector +
c911c46c 4579 RAID5_STRIPE_SECTORS(conf));
e1539036 4580 } else {
d82dfee0
DW
4581 int *target = &sh->ops.target;
4582
4583 sh->ops.target = -1;
4584 sh->ops.target2 = -1;
4585 sh->check_state = check_state_compute_run;
4586 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4587 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4588 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4589 set_bit(R5_Wantcompute,
4590 &sh->dev[pd_idx].flags);
4591 *target = pd_idx;
4592 target = &sh->ops.target2;
4593 s->uptodate++;
4594 }
4595 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4596 set_bit(R5_Wantcompute,
4597 &sh->dev[qd_idx].flags);
4598 *target = qd_idx;
4599 s->uptodate++;
4600 }
4601 }
4602 }
4603 break;
4604 case check_state_compute_run:
4605 break;
4606 default:
cc6167b4
N
4607 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4608 __func__, sh->check_state,
4609 (unsigned long long) sh->sector);
d82dfee0 4610 BUG();
a4456856
DW
4611 }
4612}
4613
d1688a6d 4614static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
4615{
4616 int i;
4617
4618 /* We have read all the blocks in this stripe and now we need to
4619 * copy some of them into a target stripe for expand.
4620 */
f0a50d37 4621 struct dma_async_tx_descriptor *tx = NULL;
59fc630b 4622 BUG_ON(sh->batch_head);
a4456856
DW
4623 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4624 for (i = 0; i < sh->disks; i++)
34e04e87 4625 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 4626 int dd_idx, j;
a4456856 4627 struct stripe_head *sh2;
a08abd8c 4628 struct async_submit_ctl submit;
a4456856 4629
6d036f7d 4630 sector_t bn = raid5_compute_blocknr(sh, i, 1);
911d4ee8
N
4631 sector_t s = raid5_compute_sector(conf, bn, 0,
4632 &dd_idx, NULL);
2f2d51ef
LG
4633 sh2 = raid5_get_active_stripe(conf, NULL, s,
4634 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
a4456856
DW
4635 if (sh2 == NULL)
4636 /* so far only the early blocks of this stripe
4637 * have been requested. When later blocks
4638 * get requested, we will try again
4639 */
4640 continue;
4641 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4642 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4643 /* must have already done this block */
6d036f7d 4644 raid5_release_stripe(sh2);
a4456856
DW
4645 continue;
4646 }
f0a50d37
DW
4647
4648 /* place all the copies on one channel */
a08abd8c 4649 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 4650 tx = async_memcpy(sh2->dev[dd_idx].page,
7aba13b7
YY
4651 sh->dev[i].page, sh2->dev[dd_idx].offset,
4652 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
a08abd8c 4653 &submit);
f0a50d37 4654
a4456856
DW
4655 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4656 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4657 for (j = 0; j < conf->raid_disks; j++)
4658 if (j != sh2->pd_idx &&
86c374ba 4659 j != sh2->qd_idx &&
a4456856
DW
4660 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4661 break;
4662 if (j == conf->raid_disks) {
4663 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4664 set_bit(STRIPE_HANDLE, &sh2->state);
4665 }
6d036f7d 4666 raid5_release_stripe(sh2);
f0a50d37 4667
a4456856 4668 }
a2e08551 4669 /* done submitting copies, wait for them to complete */
749586b7 4670 async_tx_quiesce(&tx);
a4456856 4671}
1da177e4
LT
4672
4673/*
4674 * handle_stripe - do things to a stripe.
4675 *
9a3e1101
N
4676 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4677 * state of various bits to see what needs to be done.
1da177e4 4678 * Possible results:
9a3e1101
N
4679 * return some read requests which now have data
4680 * return some write requests which are safely on storage
1da177e4
LT
4681 * schedule a read on some buffers
4682 * schedule a write of some buffers
4683 * return confirmation of parity correctness
4684 *
1da177e4 4685 */
a4456856 4686
acfe726b 4687static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 4688{
d1688a6d 4689 struct r5conf *conf = sh->raid_conf;
f416885e 4690 int disks = sh->disks;
474af965
N
4691 struct r5dev *dev;
4692 int i;
9a3e1101 4693 int do_recovery = 0;
1da177e4 4694
acfe726b
N
4695 memset(s, 0, sizeof(*s));
4696
dabc4ec6 4697 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4698 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
acfe726b
N
4699 s->failed_num[0] = -1;
4700 s->failed_num[1] = -1;
6e74a9cf 4701 s->log_failed = r5l_log_disk_error(conf);
1da177e4 4702
acfe726b 4703 /* Now to look around and see what can be done */
1da177e4 4704 rcu_read_lock();
16a53ecc 4705 for (i=disks; i--; ) {
3cb03002 4706 struct md_rdev *rdev;
31c176ec
N
4707 sector_t first_bad;
4708 int bad_sectors;
4709 int is_bad = 0;
acfe726b 4710
16a53ecc 4711 dev = &sh->dev[i];
1da177e4 4712
45b4233c 4713 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
4714 i, dev->flags,
4715 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
4716 /* maybe we can reply to a read
4717 *
4718 * new wantfill requests are only permitted while
4719 * ops_complete_biofill is guaranteed to be inactive
4720 */
4721 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4722 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4723 set_bit(R5_Wantfill, &dev->flags);
1da177e4 4724
16a53ecc 4725 /* now count some things */
cc94015a
N
4726 if (test_bit(R5_LOCKED, &dev->flags))
4727 s->locked++;
4728 if (test_bit(R5_UPTODATE, &dev->flags))
4729 s->uptodate++;
2d6e4ecc 4730 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
4731 s->compute++;
4732 BUG_ON(s->compute > 2);
2d6e4ecc 4733 }
1da177e4 4734
acfe726b 4735 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 4736 s->to_fill++;
acfe726b 4737 else if (dev->toread)
cc94015a 4738 s->to_read++;
16a53ecc 4739 if (dev->towrite) {
cc94015a 4740 s->to_write++;
16a53ecc 4741 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 4742 s->non_overwrite++;
16a53ecc 4743 }
a4456856 4744 if (dev->written)
cc94015a 4745 s->written++;
14a75d3e
N
4746 /* Prefer to use the replacement for reads, but only
4747 * if it is recovered enough and has no bad blocks.
4748 */
4749 rdev = rcu_dereference(conf->disks[i].replacement);
4750 if (rdev && !test_bit(Faulty, &rdev->flags) &&
c911c46c
YY
4751 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4752 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
14a75d3e
N
4753 &first_bad, &bad_sectors))
4754 set_bit(R5_ReadRepl, &dev->flags);
4755 else {
e6030cb0 4756 if (rdev && !test_bit(Faulty, &rdev->flags))
9a3e1101 4757 set_bit(R5_NeedReplace, &dev->flags);
e6030cb0
N
4758 else
4759 clear_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
4760 rdev = rcu_dereference(conf->disks[i].rdev);
4761 clear_bit(R5_ReadRepl, &dev->flags);
4762 }
9283d8c5
N
4763 if (rdev && test_bit(Faulty, &rdev->flags))
4764 rdev = NULL;
31c176ec 4765 if (rdev) {
c911c46c 4766 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
31c176ec
N
4767 &first_bad, &bad_sectors);
4768 if (s->blocked_rdev == NULL
4769 && (test_bit(Blocked, &rdev->flags)
4770 || is_bad < 0)) {
4771 if (is_bad < 0)
4772 set_bit(BlockedBadBlocks,
4773 &rdev->flags);
4774 s->blocked_rdev = rdev;
4775 atomic_inc(&rdev->nr_pending);
4776 }
6bfe0b49 4777 }
415e72d0
N
4778 clear_bit(R5_Insync, &dev->flags);
4779 if (!rdev)
4780 /* Not in-sync */;
31c176ec
N
4781 else if (is_bad) {
4782 /* also not in-sync */
18b9837e
N
4783 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4784 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
4785 /* treat as in-sync, but with a read error
4786 * which we can now try to correct
4787 */
4788 set_bit(R5_Insync, &dev->flags);
4789 set_bit(R5_ReadError, &dev->flags);
4790 }
4791 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 4792 set_bit(R5_Insync, &dev->flags);
c911c46c 4793 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
415e72d0 4794 /* in sync if before recovery_offset */
30d7a483
N
4795 set_bit(R5_Insync, &dev->flags);
4796 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4797 test_bit(R5_Expanded, &dev->flags))
4798 /* If we've reshaped into here, we assume it is Insync.
4799 * We will shortly update recovery_offset to make
4800 * it official.
4801 */
4802 set_bit(R5_Insync, &dev->flags);
4803
1cc03eb9 4804 if (test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
4805 /* This flag does not apply to '.replacement'
4806 * only to .rdev, so make sure to check that*/
4807 struct md_rdev *rdev2 = rcu_dereference(
4808 conf->disks[i].rdev);
4809 if (rdev2 == rdev)
4810 clear_bit(R5_Insync, &dev->flags);
4811 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 4812 s->handle_bad_blocks = 1;
14a75d3e 4813 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
4814 } else
4815 clear_bit(R5_WriteError, &dev->flags);
4816 }
1cc03eb9 4817 if (test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
4818 /* This flag does not apply to '.replacement'
4819 * only to .rdev, so make sure to check that*/
4820 struct md_rdev *rdev2 = rcu_dereference(
4821 conf->disks[i].rdev);
4822 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 4823 s->handle_bad_blocks = 1;
14a75d3e 4824 atomic_inc(&rdev2->nr_pending);
b84db560
N
4825 } else
4826 clear_bit(R5_MadeGood, &dev->flags);
4827 }
977df362
N
4828 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4829 struct md_rdev *rdev2 = rcu_dereference(
4830 conf->disks[i].replacement);
4831 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4832 s->handle_bad_blocks = 1;
4833 atomic_inc(&rdev2->nr_pending);
4834 } else
4835 clear_bit(R5_MadeGoodRepl, &dev->flags);
4836 }
415e72d0 4837 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
4838 /* The ReadError flag will just be confusing now */
4839 clear_bit(R5_ReadError, &dev->flags);
4840 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 4841 }
415e72d0
N
4842 if (test_bit(R5_ReadError, &dev->flags))
4843 clear_bit(R5_Insync, &dev->flags);
4844 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
4845 if (s->failed < 2)
4846 s->failed_num[s->failed] = i;
4847 s->failed++;
9a3e1101
N
4848 if (rdev && !test_bit(Faulty, &rdev->flags))
4849 do_recovery = 1;
d63e2fc8
BC
4850 else if (!rdev) {
4851 rdev = rcu_dereference(
4852 conf->disks[i].replacement);
4853 if (rdev && !test_bit(Faulty, &rdev->flags))
4854 do_recovery = 1;
4855 }
415e72d0 4856 }
2ded3703
SL
4857
4858 if (test_bit(R5_InJournal, &dev->flags))
4859 s->injournal++;
1e6d690b
SL
4860 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4861 s->just_cached++;
1da177e4 4862 }
9a3e1101
N
4863 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4864 /* If there is a failed device being replaced,
4865 * we must be recovering.
4866 * else if we are after recovery_cp, we must be syncing
c6d2e084 4867 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
4868 * else we can only be replacing
4869 * sync and recovery both need to read all devices, and so
4870 * use the same flag.
4871 */
4872 if (do_recovery ||
c6d2e084 4873 sh->sector >= conf->mddev->recovery_cp ||
4874 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
4875 s->syncing = 1;
4876 else
4877 s->replacing = 1;
4878 }
1da177e4 4879 rcu_read_unlock();
cc94015a
N
4880}
4881
cb9902db
GJ
4882/*
4883 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4884 * a head which can now be handled.
4885 */
59fc630b 4886static int clear_batch_ready(struct stripe_head *sh)
4887{
4888 struct stripe_head *tmp;
4889 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
b15a9dbd 4890 return (sh->batch_head && sh->batch_head != sh);
59fc630b 4891 spin_lock(&sh->stripe_lock);
4892 if (!sh->batch_head) {
4893 spin_unlock(&sh->stripe_lock);
4894 return 0;
4895 }
4896
4897 /*
4898 * this stripe could be added to a batch list before we check
4899 * BATCH_READY, skips it
4900 */
4901 if (sh->batch_head != sh) {
4902 spin_unlock(&sh->stripe_lock);
4903 return 1;
4904 }
4905 spin_lock(&sh->batch_lock);
4906 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4907 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4908 spin_unlock(&sh->batch_lock);
4909 spin_unlock(&sh->stripe_lock);
4910
4911 /*
4912 * BATCH_READY is cleared, no new stripes can be added.
4913 * batch_list can be accessed without lock
4914 */
4915 return 0;
4916}
4917
3960ce79
N
4918static void break_stripe_batch_list(struct stripe_head *head_sh,
4919 unsigned long handle_flags)
72ac7330 4920{
4e3d62ff 4921 struct stripe_head *sh, *next;
72ac7330 4922 int i;
fb642b92 4923 int do_wakeup = 0;
72ac7330 4924
bb27051f
N
4925 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4926
72ac7330 4927 list_del_init(&sh->batch_list);
4928
fb3229d5 4929 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
1b956f7a
N
4930 (1 << STRIPE_SYNCING) |
4931 (1 << STRIPE_REPLACED) |
1b956f7a
N
4932 (1 << STRIPE_DELAYED) |
4933 (1 << STRIPE_BIT_DELAY) |
4934 (1 << STRIPE_FULL_WRITE) |
4935 (1 << STRIPE_BIOFILL_RUN) |
4936 (1 << STRIPE_COMPUTE_RUN) |
1b956f7a
N
4937 (1 << STRIPE_DISCARD) |
4938 (1 << STRIPE_BATCH_READY) |
4939 (1 << STRIPE_BATCH_ERR) |
fb3229d5
SL
4940 (1 << STRIPE_BITMAP_PENDING)),
4941 "stripe state: %lx\n", sh->state);
4942 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4943 (1 << STRIPE_REPLACED)),
4944 "head stripe state: %lx\n", head_sh->state);
1b956f7a
N
4945
4946 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
550da24f 4947 (1 << STRIPE_PREREAD_ACTIVE) |
184a09eb
DY
4948 (1 << STRIPE_DEGRADED) |
4949 (1 << STRIPE_ON_UNPLUG_LIST)),
1b956f7a
N
4950 head_sh->state & (1 << STRIPE_INSYNC));
4951
72ac7330 4952 sh->check_state = head_sh->check_state;
4953 sh->reconstruct_state = head_sh->reconstruct_state;
448ec638
AC
4954 spin_lock_irq(&sh->stripe_lock);
4955 sh->batch_head = NULL;
4956 spin_unlock_irq(&sh->stripe_lock);
fb642b92
N
4957 for (i = 0; i < sh->disks; i++) {
4958 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4959 do_wakeup = 1;
72ac7330 4960 sh->dev[i].flags = head_sh->dev[i].flags &
4961 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
fb642b92 4962 }
3960ce79
N
4963 if (handle_flags == 0 ||
4964 sh->state & handle_flags)
4965 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 4966 raid5_release_stripe(sh);
72ac7330 4967 }
fb642b92
N
4968 spin_lock_irq(&head_sh->stripe_lock);
4969 head_sh->batch_head = NULL;
4970 spin_unlock_irq(&head_sh->stripe_lock);
4971 for (i = 0; i < head_sh->disks; i++)
4972 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4973 do_wakeup = 1;
3960ce79
N
4974 if (head_sh->state & handle_flags)
4975 set_bit(STRIPE_HANDLE, &head_sh->state);
fb642b92
N
4976
4977 if (do_wakeup)
4978 wake_up(&head_sh->raid_conf->wait_for_overlap);
72ac7330 4979}
4980
cc94015a
N
4981static void handle_stripe(struct stripe_head *sh)
4982{
4983 struct stripe_head_state s;
d1688a6d 4984 struct r5conf *conf = sh->raid_conf;
3687c061 4985 int i;
84789554
N
4986 int prexor;
4987 int disks = sh->disks;
474af965 4988 struct r5dev *pdev, *qdev;
cc94015a
N
4989
4990 clear_bit(STRIPE_HANDLE, &sh->state);
a377a472
GJ
4991
4992 /*
4993 * handle_stripe should not continue handle the batched stripe, only
4994 * the head of batch list or lone stripe can continue. Otherwise we
4995 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4996 * is set for the batched stripe.
4997 */
4998 if (clear_batch_ready(sh))
4999 return;
5000
257a4b42 5001 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
5002 /* already being handled, ensure it gets handled
5003 * again when current action finishes */
5004 set_bit(STRIPE_HANDLE, &sh->state);
5005 return;
5006 }
5007
4e3d62ff 5008 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
3960ce79 5009 break_stripe_batch_list(sh, 0);
72ac7330 5010
dabc4ec6 5011 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
f8dfcffd 5012 spin_lock(&sh->stripe_lock);
5ddf0440
SL
5013 /*
5014 * Cannot process 'sync' concurrently with 'discard'.
5015 * Flush data in r5cache before 'sync'.
5016 */
5017 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
5018 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
5019 !test_bit(STRIPE_DISCARD, &sh->state) &&
f8dfcffd
N
5020 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
5021 set_bit(STRIPE_SYNCING, &sh->state);
5022 clear_bit(STRIPE_INSYNC, &sh->state);
f94c0b66 5023 clear_bit(STRIPE_REPLACED, &sh->state);
f8dfcffd
N
5024 }
5025 spin_unlock(&sh->stripe_lock);
cc94015a
N
5026 }
5027 clear_bit(STRIPE_DELAYED, &sh->state);
5028
5029 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
5030 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
5031 (unsigned long long)sh->sector, sh->state,
5032 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
5033 sh->check_state, sh->reconstruct_state);
3687c061 5034
acfe726b 5035 analyse_stripe(sh, &s);
c5a31000 5036
b70abcb2
SL
5037 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
5038 goto finish;
5039
16d997b7
N
5040 if (s.handle_bad_blocks ||
5041 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
bc2607f3
N
5042 set_bit(STRIPE_HANDLE, &sh->state);
5043 goto finish;
5044 }
5045
474af965
N
5046 if (unlikely(s.blocked_rdev)) {
5047 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 5048 s.replacing || s.to_write || s.written) {
474af965
N
5049 set_bit(STRIPE_HANDLE, &sh->state);
5050 goto finish;
5051 }
5052 /* There is nothing for the blocked_rdev to block */
5053 rdev_dec_pending(s.blocked_rdev, conf->mddev);
5054 s.blocked_rdev = NULL;
5055 }
5056
5057 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5058 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5059 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5060 }
5061
5062 pr_debug("locked=%d uptodate=%d to_read=%d"
5063 " to_write=%d failed=%d failed_num=%d,%d\n",
5064 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5065 s.failed_num[0], s.failed_num[1]);
70d466f7
SL
5066 /*
5067 * check if the array has lost more than max_degraded devices and,
474af965 5068 * if so, some requests might need to be failed.
70d466f7
SL
5069 *
5070 * When journal device failed (log_failed), we will only process
5071 * the stripe if there is data need write to raid disks
474af965 5072 */
70d466f7
SL
5073 if (s.failed > conf->max_degraded ||
5074 (s.log_failed && s.injournal == 0)) {
9a3f530f
N
5075 sh->check_state = 0;
5076 sh->reconstruct_state = 0;
626f2092 5077 break_stripe_batch_list(sh, 0);
9a3f530f 5078 if (s.to_read+s.to_write+s.written)
bd83d0a2 5079 handle_failed_stripe(conf, sh, &s, disks);
9a3e1101 5080 if (s.syncing + s.replacing)
9a3f530f
N
5081 handle_failed_sync(conf, sh, &s);
5082 }
474af965 5083
84789554
N
5084 /* Now we check to see if any write operations have recently
5085 * completed
5086 */
5087 prexor = 0;
5088 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5089 prexor = 1;
5090 if (sh->reconstruct_state == reconstruct_state_drain_result ||
5091 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5092 sh->reconstruct_state = reconstruct_state_idle;
5093
5094 /* All the 'written' buffers and the parity block are ready to
5095 * be written back to disk
5096 */
9e444768
SL
5097 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5098 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 5099 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
5100 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5101 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
5102 for (i = disks; i--; ) {
5103 struct r5dev *dev = &sh->dev[i];
5104 if (test_bit(R5_LOCKED, &dev->flags) &&
5105 (i == sh->pd_idx || i == sh->qd_idx ||
1e6d690b
SL
5106 dev->written || test_bit(R5_InJournal,
5107 &dev->flags))) {
84789554
N
5108 pr_debug("Writing block %d\n", i);
5109 set_bit(R5_Wantwrite, &dev->flags);
5110 if (prexor)
5111 continue;
9c4bdf69
N
5112 if (s.failed > 1)
5113 continue;
84789554
N
5114 if (!test_bit(R5_Insync, &dev->flags) ||
5115 ((i == sh->pd_idx || i == sh->qd_idx) &&
5116 s.failed == 0))
5117 set_bit(STRIPE_INSYNC, &sh->state);
5118 }
5119 }
5120 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5121 s.dec_preread_active = 1;
5122 }
5123
ef5b7c69
N
5124 /*
5125 * might be able to return some write requests if the parity blocks
5126 * are safe, or on a failed drive
5127 */
5128 pdev = &sh->dev[sh->pd_idx];
5129 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5130 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5131 qdev = &sh->dev[sh->qd_idx];
5132 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5133 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5134 || conf->level < 6;
5135
5136 if (s.written &&
5137 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5138 && !test_bit(R5_LOCKED, &pdev->flags)
5139 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5140 test_bit(R5_Discard, &pdev->flags))))) &&
5141 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5142 && !test_bit(R5_LOCKED, &qdev->flags)
5143 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5144 test_bit(R5_Discard, &qdev->flags))))))
bd83d0a2 5145 handle_stripe_clean_event(conf, sh, disks);
ef5b7c69 5146
1e6d690b 5147 if (s.just_cached)
bd83d0a2 5148 r5c_handle_cached_data_endio(conf, sh, disks);
ff875738 5149 log_stripe_write_finished(sh);
1e6d690b 5150
ef5b7c69
N
5151 /* Now we might consider reading some blocks, either to check/generate
5152 * parity, or to satisfy requests
5153 * or to load a block that is being partially written.
5154 */
5155 if (s.to_read || s.non_overwrite
a1c6ae3d 5156 || (s.to_write && s.failed)
ef5b7c69
N
5157 || (s.syncing && (s.uptodate + s.compute < disks))
5158 || s.replacing
5159 || s.expanding)
5160 handle_stripe_fill(sh, &s, disks);
5161
2ded3703
SL
5162 /*
5163 * When the stripe finishes full journal write cycle (write to journal
5164 * and raid disk), this is the clean up procedure so it is ready for
5165 * next operation.
5166 */
5167 r5c_finish_stripe_write_out(conf, sh, &s);
5168
5169 /*
5170 * Now to consider new write requests, cache write back and what else,
5171 * if anything should be read. We do not handle new writes when:
84789554
N
5172 * 1/ A 'write' operation (copy+xor) is already in flight.
5173 * 2/ A 'check' operation is in flight, as it may clobber the parity
5174 * block.
2ded3703 5175 * 3/ A r5c cache log write is in flight.
84789554 5176 */
2ded3703
SL
5177
5178 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5179 if (!r5c_is_writeback(conf->log)) {
5180 if (s.to_write)
5181 handle_stripe_dirtying(conf, sh, &s, disks);
5182 } else { /* write back cache */
5183 int ret = 0;
5184
5185 /* First, try handle writes in caching phase */
5186 if (s.to_write)
5187 ret = r5c_try_caching_write(conf, sh, &s,
5188 disks);
5189 /*
5190 * If caching phase failed: ret == -EAGAIN
5191 * OR
5192 * stripe under reclaim: !caching && injournal
5193 *
5194 * fall back to handle_stripe_dirtying()
5195 */
5196 if (ret == -EAGAIN ||
5197 /* stripe under reclaim: !caching && injournal */
5198 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
d7bd398e
SL
5199 s.injournal > 0)) {
5200 ret = handle_stripe_dirtying(conf, sh, &s,
5201 disks);
5202 if (ret == -EAGAIN)
5203 goto finish;
5204 }
2ded3703
SL
5205 }
5206 }
84789554
N
5207
5208 /* maybe we need to check and possibly fix the parity for this stripe
5209 * Any reads will already have been scheduled, so we just see if enough
5210 * data is available. The parity check is held off while parity
5211 * dependent operations are in flight.
5212 */
5213 if (sh->check_state ||
5214 (s.syncing && s.locked == 0 &&
5215 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5216 !test_bit(STRIPE_INSYNC, &sh->state))) {
5217 if (conf->level == 6)
5218 handle_parity_checks6(conf, sh, &s, disks);
5219 else
5220 handle_parity_checks5(conf, sh, &s, disks);
5221 }
c5a31000 5222
f94c0b66
N
5223 if ((s.replacing || s.syncing) && s.locked == 0
5224 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5225 && !test_bit(STRIPE_REPLACED, &sh->state)) {
9a3e1101
N
5226 /* Write out to replacement devices where possible */
5227 for (i = 0; i < conf->raid_disks; i++)
f94c0b66
N
5228 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5229 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
9a3e1101
N
5230 set_bit(R5_WantReplace, &sh->dev[i].flags);
5231 set_bit(R5_LOCKED, &sh->dev[i].flags);
5232 s.locked++;
5233 }
f94c0b66
N
5234 if (s.replacing)
5235 set_bit(STRIPE_INSYNC, &sh->state);
5236 set_bit(STRIPE_REPLACED, &sh->state);
9a3e1101
N
5237 }
5238 if ((s.syncing || s.replacing) && s.locked == 0 &&
f94c0b66 5239 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
9a3e1101 5240 test_bit(STRIPE_INSYNC, &sh->state)) {
c911c46c 5241 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
c5a31000 5242 clear_bit(STRIPE_SYNCING, &sh->state);
f8dfcffd
N
5243 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5244 wake_up(&conf->wait_for_overlap);
c5a31000
N
5245 }
5246
5247 /* If the failed drives are just a ReadError, then we might need
5248 * to progress the repair/check process
5249 */
5250 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5251 for (i = 0; i < s.failed; i++) {
5252 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5253 if (test_bit(R5_ReadError, &dev->flags)
5254 && !test_bit(R5_LOCKED, &dev->flags)
5255 && test_bit(R5_UPTODATE, &dev->flags)
5256 ) {
5257 if (!test_bit(R5_ReWrite, &dev->flags)) {
5258 set_bit(R5_Wantwrite, &dev->flags);
5259 set_bit(R5_ReWrite, &dev->flags);
3a31cf3d 5260 } else
c5a31000
N
5261 /* let's read it back */
5262 set_bit(R5_Wantread, &dev->flags);
3a31cf3d
GJ
5263 set_bit(R5_LOCKED, &dev->flags);
5264 s.locked++;
c5a31000
N
5265 }
5266 }
5267
3687c061
N
5268 /* Finish reconstruct operations initiated by the expansion process */
5269 if (sh->reconstruct_state == reconstruct_state_result) {
5270 struct stripe_head *sh_src
2f2d51ef
LG
5271 = raid5_get_active_stripe(conf, NULL, sh->sector,
5272 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5273 R5_GAS_NOQUIESCE);
3687c061
N
5274 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5275 /* sh cannot be written until sh_src has been read.
5276 * so arrange for sh to be delayed a little
5277 */
5278 set_bit(STRIPE_DELAYED, &sh->state);
5279 set_bit(STRIPE_HANDLE, &sh->state);
5280 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5281 &sh_src->state))
5282 atomic_inc(&conf->preread_active_stripes);
6d036f7d 5283 raid5_release_stripe(sh_src);
3687c061
N
5284 goto finish;
5285 }
5286 if (sh_src)
6d036f7d 5287 raid5_release_stripe(sh_src);
3687c061
N
5288
5289 sh->reconstruct_state = reconstruct_state_idle;
5290 clear_bit(STRIPE_EXPANDING, &sh->state);
5291 for (i = conf->raid_disks; i--; ) {
5292 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5293 set_bit(R5_LOCKED, &sh->dev[i].flags);
5294 s.locked++;
5295 }
5296 }
f416885e 5297
3687c061
N
5298 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5299 !sh->reconstruct_state) {
5300 /* Need to write out all blocks after computing parity */
5301 sh->disks = conf->raid_disks;
5302 stripe_set_idx(sh->sector, conf, 0, sh);
5303 schedule_reconstruction(sh, &s, 1, 1);
5304 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5305 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5306 atomic_dec(&conf->reshape_stripes);
5307 wake_up(&conf->wait_for_overlap);
c911c46c 5308 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
3687c061
N
5309 }
5310
5311 if (s.expanding && s.locked == 0 &&
5312 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5313 handle_stripe_expansion(conf, sh);
16a53ecc 5314
3687c061 5315finish:
6bfe0b49 5316 /* wait for this device to become unblocked */
5f066c63
N
5317 if (unlikely(s.blocked_rdev)) {
5318 if (conf->mddev->external)
5319 md_wait_for_blocked_rdev(s.blocked_rdev,
5320 conf->mddev);
5321 else
5322 /* Internal metadata will immediately
5323 * be written by raid5d, so we don't
5324 * need to wait here.
5325 */
5326 rdev_dec_pending(s.blocked_rdev,
5327 conf->mddev);
5328 }
6bfe0b49 5329
bc2607f3
N
5330 if (s.handle_bad_blocks)
5331 for (i = disks; i--; ) {
3cb03002 5332 struct md_rdev *rdev;
bc2607f3
N
5333 struct r5dev *dev = &sh->dev[i];
5334 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5335 /* We own a safe reference to the rdev */
e38b0432 5336 rdev = rdev_pend_deref(conf->disks[i].rdev);
bc2607f3 5337 if (!rdev_set_badblocks(rdev, sh->sector,
c911c46c 5338 RAID5_STRIPE_SECTORS(conf), 0))
bc2607f3
N
5339 md_error(conf->mddev, rdev);
5340 rdev_dec_pending(rdev, conf->mddev);
5341 }
b84db560 5342 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
e38b0432 5343 rdev = rdev_pend_deref(conf->disks[i].rdev);
b84db560 5344 rdev_clear_badblocks(rdev, sh->sector,
c911c46c 5345 RAID5_STRIPE_SECTORS(conf), 0);
b84db560
N
5346 rdev_dec_pending(rdev, conf->mddev);
5347 }
977df362 5348 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
e38b0432 5349 rdev = rdev_pend_deref(conf->disks[i].replacement);
dd054fce
N
5350 if (!rdev)
5351 /* rdev have been moved down */
e38b0432 5352 rdev = rdev_pend_deref(conf->disks[i].rdev);
977df362 5353 rdev_clear_badblocks(rdev, sh->sector,
c911c46c 5354 RAID5_STRIPE_SECTORS(conf), 0);
977df362
N
5355 rdev_dec_pending(rdev, conf->mddev);
5356 }
bc2607f3
N
5357 }
5358
6c0069c0
YT
5359 if (s.ops_request)
5360 raid_run_ops(sh, s.ops_request);
5361
f0e43bcd 5362 ops_run_io(sh, &s);
16a53ecc 5363
c5709ef6 5364 if (s.dec_preread_active) {
729a1866 5365 /* We delay this until after ops_run_io so that if make_request
e9c7469b 5366 * is waiting on a flush, it won't continue until the writes
729a1866
N
5367 * have actually been submitted.
5368 */
5369 atomic_dec(&conf->preread_active_stripes);
5370 if (atomic_read(&conf->preread_active_stripes) <
5371 IO_THRESHOLD)
5372 md_wakeup_thread(conf->mddev->thread);
5373 }
5374
257a4b42 5375 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
5376}
5377
d1688a6d 5378static void raid5_activate_delayed(struct r5conf *conf)
4631f39f 5379 __must_hold(&conf->device_lock)
16a53ecc
N
5380{
5381 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5382 while (!list_empty(&conf->delayed_list)) {
5383 struct list_head *l = conf->delayed_list.next;
5384 struct stripe_head *sh;
5385 sh = list_entry(l, struct stripe_head, lru);
5386 list_del_init(l);
5387 clear_bit(STRIPE_DELAYED, &sh->state);
5388 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5389 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 5390 list_add_tail(&sh->lru, &conf->hold_list);
851c30c9 5391 raid5_wakeup_stripe_thread(sh);
16a53ecc 5392 }
482c0834 5393 }
16a53ecc
N
5394}
5395
566c09c5 5396static void activate_bit_delay(struct r5conf *conf,
4631f39f
LG
5397 struct list_head *temp_inactive_list)
5398 __must_hold(&conf->device_lock)
16a53ecc 5399{
16a53ecc
N
5400 struct list_head head;
5401 list_add(&head, &conf->bitmap_list);
5402 list_del_init(&conf->bitmap_list);
5403 while (!list_empty(&head)) {
5404 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
566c09c5 5405 int hash;
16a53ecc
N
5406 list_del_init(&sh->lru);
5407 atomic_inc(&sh->count);
566c09c5
SL
5408 hash = sh->hash_lock_index;
5409 __release_stripe(conf, sh, &temp_inactive_list[hash]);
16a53ecc
N
5410 }
5411}
5412
fd01b88c 5413static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f 5414{
3cb5edf4 5415 struct r5conf *conf = mddev->private;
10433d04 5416 sector_t sector = bio->bi_iter.bi_sector;
3cb5edf4 5417 unsigned int chunk_sectors;
aa8b57aa 5418 unsigned int bio_sectors = bio_sectors(bio);
f679623f 5419
3cb5edf4 5420 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
f679623f
RBJ
5421 return chunk_sectors >=
5422 ((sector & (chunk_sectors - 1)) + bio_sectors);
5423}
5424
46031f9a
RBJ
5425/*
5426 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5427 * later sampled by raid5d.
5428 */
d1688a6d 5429static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
5430{
5431 unsigned long flags;
5432
5433 spin_lock_irqsave(&conf->device_lock, flags);
5434
5435 bi->bi_next = conf->retry_read_aligned_list;
5436 conf->retry_read_aligned_list = bi;
5437
5438 spin_unlock_irqrestore(&conf->device_lock, flags);
5439 md_wakeup_thread(conf->mddev->thread);
5440}
5441
0472a42b
N
5442static struct bio *remove_bio_from_retry(struct r5conf *conf,
5443 unsigned int *offset)
46031f9a
RBJ
5444{
5445 struct bio *bi;
5446
5447 bi = conf->retry_read_aligned;
5448 if (bi) {
0472a42b 5449 *offset = conf->retry_read_offset;
46031f9a
RBJ
5450 conf->retry_read_aligned = NULL;
5451 return bi;
5452 }
5453 bi = conf->retry_read_aligned_list;
5454 if(bi) {
387bb173 5455 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 5456 bi->bi_next = NULL;
0472a42b 5457 *offset = 0;
46031f9a
RBJ
5458 }
5459
5460 return bi;
5461}
5462
f679623f
RBJ
5463/*
5464 * The "raid5_align_endio" should check if the read succeeded and if it
5465 * did, call bio_endio on the original bio (having bio_put the new bio
5466 * first).
5467 * If the read failed..
5468 */
4246a0b6 5469static void raid5_align_endio(struct bio *bi)
f679623f 5470{
1147f58e
GJ
5471 struct md_io_acct *md_io_acct = bi->bi_private;
5472 struct bio *raid_bi = md_io_acct->orig_bio;
fd01b88c 5473 struct mddev *mddev;
d1688a6d 5474 struct r5conf *conf;
3cb03002 5475 struct md_rdev *rdev;
4e4cbee9 5476 blk_status_t error = bi->bi_status;
1147f58e 5477 unsigned long start_time = md_io_acct->start_time;
46031f9a 5478
f679623f 5479 bio_put(bi);
46031f9a 5480
46031f9a
RBJ
5481 rdev = (void*)raid_bi->bi_next;
5482 raid_bi->bi_next = NULL;
2b7f2228
N
5483 mddev = rdev->mddev;
5484 conf = mddev->private;
46031f9a
RBJ
5485
5486 rdev_dec_pending(rdev, conf->mddev);
5487
9b81c842 5488 if (!error) {
1147f58e
GJ
5489 if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5490 bio_end_io_acct(raid_bi, start_time);
4246a0b6 5491 bio_endio(raid_bi);
46031f9a 5492 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 5493 wake_up(&conf->wait_for_quiescent);
6712ecf8 5494 return;
46031f9a
RBJ
5495 }
5496
45b4233c 5497 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
5498
5499 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
5500}
5501
7ef6b12a 5502static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
f679623f 5503{
d1688a6d 5504 struct r5conf *conf = mddev->private;
e82ed3a4 5505 struct bio *align_bio;
3cb03002 5506 struct md_rdev *rdev;
e82ed3a4
CH
5507 sector_t sector, end_sector, first_bad;
5508 int bad_sectors, dd_idx;
1147f58e 5509 struct md_io_acct *md_io_acct;
97ae2725 5510 bool did_inc;
f679623f
RBJ
5511
5512 if (!in_chunk_boundary(mddev, raid_bio)) {
7ef6b12a 5513 pr_debug("%s: non aligned\n", __func__);
f679623f
RBJ
5514 return 0;
5515 }
f679623f 5516
e82ed3a4
CH
5517 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5518 &dd_idx, NULL);
5519 end_sector = bio_end_sector(raid_bio);
5520
f679623f 5521 rcu_read_lock();
e82ed3a4
CH
5522 if (r5c_big_stripe_cached(conf, sector))
5523 goto out_rcu_unlock;
5524
671488cc
N
5525 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5526 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5527 rdev->recovery_offset < end_sector) {
5528 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
e82ed3a4
CH
5529 if (!rdev)
5530 goto out_rcu_unlock;
5531 if (test_bit(Faulty, &rdev->flags) ||
671488cc 5532 !(test_bit(In_sync, &rdev->flags) ||
e82ed3a4
CH
5533 rdev->recovery_offset >= end_sector))
5534 goto out_rcu_unlock;
671488cc 5535 }
03b047f4 5536
e82ed3a4
CH
5537 atomic_inc(&rdev->nr_pending);
5538 rcu_read_unlock();
5539
c82aa1b7 5540 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
e82ed3a4 5541 &bad_sectors)) {
e82ed3a4 5542 rdev_dec_pending(rdev, mddev);
03b047f4
SL
5543 return 0;
5544 }
5545
abfc426d
CH
5546 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5547 &mddev->io_acct_set);
1147f58e
GJ
5548 md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5549 raid_bio->bi_next = (void *)rdev;
5550 if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5551 md_io_acct->start_time = bio_start_io_acct(raid_bio);
5552 md_io_acct->orig_bio = raid_bio;
5553
e82ed3a4 5554 align_bio->bi_end_io = raid5_align_endio;
1147f58e 5555 align_bio->bi_private = md_io_acct;
e82ed3a4
CH
5556 align_bio->bi_iter.bi_sector = sector;
5557
e82ed3a4
CH
5558 /* No reshape active, so we can trust rdev->data_offset */
5559 align_bio->bi_iter.bi_sector += rdev->data_offset;
31c176ec 5560
97ae2725
GO
5561 did_inc = false;
5562 if (conf->quiesce == 0) {
5563 atomic_inc(&conf->active_aligned_reads);
5564 did_inc = true;
5565 }
5566 /* need a memory barrier to detect the race with raid5_quiesce() */
5567 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5568 /* quiesce is in progress, so we need to undo io activation and wait
5569 * for it to finish
5570 */
5571 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5572 wake_up(&conf->wait_for_quiescent);
5573 spin_lock_irq(&conf->device_lock);
5574 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5575 conf->device_lock);
5576 atomic_inc(&conf->active_aligned_reads);
5577 spin_unlock_irq(&conf->device_lock);
5578 }
387bb173 5579
e82ed3a4
CH
5580 if (mddev->gendisk)
5581 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5582 raid_bio->bi_iter.bi_sector);
5583 submit_bio_noacct(align_bio);
5584 return 1;
6c0544e2 5585
e82ed3a4
CH
5586out_rcu_unlock:
5587 rcu_read_unlock();
5588 return 0;
f679623f
RBJ
5589}
5590
7ef6b12a
ML
5591static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5592{
5593 struct bio *split;
dd7a8f5d
N
5594 sector_t sector = raid_bio->bi_iter.bi_sector;
5595 unsigned chunk_sects = mddev->chunk_sectors;
5596 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
7ef6b12a 5597
dd7a8f5d
N
5598 if (sectors < bio_sectors(raid_bio)) {
5599 struct r5conf *conf = mddev->private;
afeee514 5600 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
dd7a8f5d 5601 bio_chain(split, raid_bio);
ed00aabd 5602 submit_bio_noacct(raid_bio);
dd7a8f5d
N
5603 raid_bio = split;
5604 }
7ef6b12a 5605
dd7a8f5d
N
5606 if (!raid5_read_one_chunk(mddev, raid_bio))
5607 return raid_bio;
7ef6b12a
ML
5608
5609 return NULL;
5610}
5611
8b3e6cdc
DW
5612/* __get_priority_stripe - get the next stripe to process
5613 *
5614 * Full stripe writes are allowed to pass preread active stripes up until
5615 * the bypass_threshold is exceeded. In general the bypass_count
5616 * increments when the handle_list is handled before the hold_list; however, it
5617 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5618 * stripe with in flight i/o. The bypass_count will be reset when the
5619 * head of the hold_list has changed, i.e. the head was promoted to the
5620 * handle_list.
5621 */
851c30c9 5622static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4631f39f 5623 __must_hold(&conf->device_lock)
8b3e6cdc 5624{
535ae4eb 5625 struct stripe_head *sh, *tmp;
851c30c9 5626 struct list_head *handle_list = NULL;
535ae4eb 5627 struct r5worker_group *wg;
70d466f7
SL
5628 bool second_try = !r5c_is_writeback(conf->log) &&
5629 !r5l_log_disk_error(conf);
5630 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5631 r5l_log_disk_error(conf);
851c30c9 5632
535ae4eb
SL
5633again:
5634 wg = NULL;
5635 sh = NULL;
851c30c9 5636 if (conf->worker_cnt_per_group == 0) {
535ae4eb
SL
5637 handle_list = try_loprio ? &conf->loprio_list :
5638 &conf->handle_list;
851c30c9 5639 } else if (group != ANY_GROUP) {
535ae4eb
SL
5640 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5641 &conf->worker_groups[group].handle_list;
bfc90cb0 5642 wg = &conf->worker_groups[group];
851c30c9
SL
5643 } else {
5644 int i;
5645 for (i = 0; i < conf->group_cnt; i++) {
535ae4eb
SL
5646 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5647 &conf->worker_groups[i].handle_list;
bfc90cb0 5648 wg = &conf->worker_groups[i];
851c30c9
SL
5649 if (!list_empty(handle_list))
5650 break;
5651 }
5652 }
8b3e6cdc
DW
5653
5654 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5655 __func__,
851c30c9 5656 list_empty(handle_list) ? "empty" : "busy",
8b3e6cdc
DW
5657 list_empty(&conf->hold_list) ? "empty" : "busy",
5658 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5659
851c30c9
SL
5660 if (!list_empty(handle_list)) {
5661 sh = list_entry(handle_list->next, typeof(*sh), lru);
8b3e6cdc
DW
5662
5663 if (list_empty(&conf->hold_list))
5664 conf->bypass_count = 0;
5665 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5666 if (conf->hold_list.next == conf->last_hold)
5667 conf->bypass_count++;
5668 else {
5669 conf->last_hold = conf->hold_list.next;
5670 conf->bypass_count -= conf->bypass_threshold;
5671 if (conf->bypass_count < 0)
5672 conf->bypass_count = 0;
5673 }
5674 }
5675 } else if (!list_empty(&conf->hold_list) &&
5676 ((conf->bypass_threshold &&
5677 conf->bypass_count > conf->bypass_threshold) ||
5678 atomic_read(&conf->pending_full_writes) == 0)) {
851c30c9
SL
5679
5680 list_for_each_entry(tmp, &conf->hold_list, lru) {
5681 if (conf->worker_cnt_per_group == 0 ||
5682 group == ANY_GROUP ||
5683 !cpu_online(tmp->cpu) ||
5684 cpu_to_group(tmp->cpu) == group) {
5685 sh = tmp;
5686 break;
5687 }
5688 }
5689
5690 if (sh) {
5691 conf->bypass_count -= conf->bypass_threshold;
5692 if (conf->bypass_count < 0)
5693 conf->bypass_count = 0;
5694 }
bfc90cb0 5695 wg = NULL;
851c30c9
SL
5696 }
5697
535ae4eb
SL
5698 if (!sh) {
5699 if (second_try)
5700 return NULL;
5701 second_try = true;
5702 try_loprio = !try_loprio;
5703 goto again;
5704 }
8b3e6cdc 5705
bfc90cb0
SL
5706 if (wg) {
5707 wg->stripes_cnt--;
5708 sh->group = NULL;
5709 }
8b3e6cdc 5710 list_del_init(&sh->lru);
c7a6d35e 5711 BUG_ON(atomic_inc_return(&sh->count) != 1);
8b3e6cdc
DW
5712 return sh;
5713}
f679623f 5714
8811b596
SL
5715struct raid5_plug_cb {
5716 struct blk_plug_cb cb;
5717 struct list_head list;
566c09c5 5718 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
8811b596
SL
5719};
5720
5721static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5722{
5723 struct raid5_plug_cb *cb = container_of(
5724 blk_cb, struct raid5_plug_cb, cb);
5725 struct stripe_head *sh;
5726 struct mddev *mddev = cb->cb.data;
5727 struct r5conf *conf = mddev->private;
a9add5d9 5728 int cnt = 0;
566c09c5 5729 int hash;
8811b596
SL
5730
5731 if (cb->list.next && !list_empty(&cb->list)) {
5732 spin_lock_irq(&conf->device_lock);
5733 while (!list_empty(&cb->list)) {
5734 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5735 list_del_init(&sh->lru);
5736 /*
5737 * avoid race release_stripe_plug() sees
5738 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5739 * is still in our list
5740 */
4e857c58 5741 smp_mb__before_atomic();
8811b596 5742 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
773ca82f
SL
5743 /*
5744 * STRIPE_ON_RELEASE_LIST could be set here. In that
5745 * case, the count is always > 1 here
5746 */
566c09c5
SL
5747 hash = sh->hash_lock_index;
5748 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
a9add5d9 5749 cnt++;
8811b596
SL
5750 }
5751 spin_unlock_irq(&conf->device_lock);
5752 }
566c09c5
SL
5753 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5754 NR_STRIPE_HASH_LOCKS);
e3620a3a
JB
5755 if (mddev->queue)
5756 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
5757 kfree(cb);
5758}
5759
5760static void release_stripe_plug(struct mddev *mddev,
5761 struct stripe_head *sh)
5762{
5763 struct blk_plug_cb *blk_cb = blk_check_plugged(
5764 raid5_unplug, mddev,
5765 sizeof(struct raid5_plug_cb));
5766 struct raid5_plug_cb *cb;
5767
5768 if (!blk_cb) {
6d036f7d 5769 raid5_release_stripe(sh);
8811b596
SL
5770 return;
5771 }
5772
5773 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5774
566c09c5
SL
5775 if (cb->list.next == NULL) {
5776 int i;
8811b596 5777 INIT_LIST_HEAD(&cb->list);
566c09c5
SL
5778 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5779 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5780 }
8811b596
SL
5781
5782 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5783 list_add_tail(&sh->lru, &cb->list);
5784 else
6d036f7d 5785 raid5_release_stripe(sh);
8811b596
SL
5786}
5787
620125f2
SL
5788static void make_discard_request(struct mddev *mddev, struct bio *bi)
5789{
5790 struct r5conf *conf = mddev->private;
5791 sector_t logical_sector, last_sector;
5792 struct stripe_head *sh;
620125f2
SL
5793 int stripe_sectors;
5794
bf2c411b
VV
5795 /* We need to handle this when io_uring supports discard/trim */
5796 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5797 return;
5798
620125f2
SL
5799 if (mddev->reshape_position != MaxSector)
5800 /* Skip discard while reshape is happening */
5801 return;
5802
c911c46c 5803 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
b0f01ecf 5804 last_sector = bio_end_sector(bi);
620125f2
SL
5805
5806 bi->bi_next = NULL;
620125f2
SL
5807
5808 stripe_sectors = conf->chunk_sectors *
5809 (conf->raid_disks - conf->max_degraded);
5810 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5811 stripe_sectors);
5812 sector_div(last_sector, stripe_sectors);
5813
5814 logical_sector *= conf->chunk_sectors;
5815 last_sector *= conf->chunk_sectors;
5816
5817 for (; logical_sector < last_sector;
c911c46c 5818 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
620125f2
SL
5819 DEFINE_WAIT(w);
5820 int d;
5821 again:
2f2d51ef 5822 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
620125f2
SL
5823 prepare_to_wait(&conf->wait_for_overlap, &w,
5824 TASK_UNINTERRUPTIBLE);
f8dfcffd
N
5825 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5826 if (test_bit(STRIPE_SYNCING, &sh->state)) {
6d036f7d 5827 raid5_release_stripe(sh);
f8dfcffd
N
5828 schedule();
5829 goto again;
5830 }
5831 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
620125f2
SL
5832 spin_lock_irq(&sh->stripe_lock);
5833 for (d = 0; d < conf->raid_disks; d++) {
5834 if (d == sh->pd_idx || d == sh->qd_idx)
5835 continue;
5836 if (sh->dev[d].towrite || sh->dev[d].toread) {
5837 set_bit(R5_Overlap, &sh->dev[d].flags);
5838 spin_unlock_irq(&sh->stripe_lock);
6d036f7d 5839 raid5_release_stripe(sh);
620125f2
SL
5840 schedule();
5841 goto again;
5842 }
5843 }
f8dfcffd 5844 set_bit(STRIPE_DISCARD, &sh->state);
620125f2 5845 finish_wait(&conf->wait_for_overlap, &w);
7a87f434 5846 sh->overwrite_disks = 0;
620125f2
SL
5847 for (d = 0; d < conf->raid_disks; d++) {
5848 if (d == sh->pd_idx || d == sh->qd_idx)
5849 continue;
5850 sh->dev[d].towrite = bi;
5851 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
016c76ac 5852 bio_inc_remaining(bi);
49728050 5853 md_write_inc(mddev, bi);
7a87f434 5854 sh->overwrite_disks++;
620125f2
SL
5855 }
5856 spin_unlock_irq(&sh->stripe_lock);
5857 if (conf->mddev->bitmap) {
5858 for (d = 0;
5859 d < conf->raid_disks - conf->max_degraded;
5860 d++)
e64e4018
AS
5861 md_bitmap_startwrite(mddev->bitmap,
5862 sh->sector,
c911c46c 5863 RAID5_STRIPE_SECTORS(conf),
e64e4018 5864 0);
620125f2
SL
5865 sh->bm_seq = conf->seq_flush + 1;
5866 set_bit(STRIPE_BIT_DELAY, &sh->state);
5867 }
5868
5869 set_bit(STRIPE_HANDLE, &sh->state);
5870 clear_bit(STRIPE_DELAYED, &sh->state);
5871 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5872 atomic_inc(&conf->preread_active_stripes);
5873 release_stripe_plug(mddev, sh);
5874 }
5875
016c76ac 5876 bio_endio(bi);
620125f2
SL
5877}
5878
a8bb304c
LG
5879static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5880 sector_t reshape_sector)
5881{
5882 return mddev->reshape_backwards ? sector < reshape_sector :
5883 sector >= reshape_sector;
5884}
5885
486f6055
LG
5886static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5887 sector_t max, sector_t reshape_sector)
5888{
5889 return mddev->reshape_backwards ? max < reshape_sector :
5890 min >= reshape_sector;
5891}
5892
5893static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5894 struct stripe_head *sh)
5895{
5896 sector_t max_sector = 0, min_sector = MaxSector;
5897 bool ret = false;
5898 int dd_idx;
5899
5900 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5901 if (dd_idx == sh->pd_idx)
5902 continue;
5903
5904 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5905 max_sector = min(max_sector, sh->dev[dd_idx].sector);
5906 }
5907
5908 spin_lock_irq(&conf->device_lock);
5909
5910 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5911 conf->reshape_progress))
5912 /* mismatch, need to try again */
5913 ret = true;
5914
5915 spin_unlock_irq(&conf->device_lock);
5916
5917 return ret;
5918}
5919
7e55c60a
LG
5920static int add_all_stripe_bios(struct r5conf *conf,
5921 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5922 struct bio *bi, int forwrite, int previous)
5923{
5924 int dd_idx;
5925 int ret = 1;
5926
5927 spin_lock_irq(&sh->stripe_lock);
5928
5929 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5930 struct r5dev *dev = &sh->dev[dd_idx];
5931
5932 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5933 continue;
5934
5935 if (dev->sector < ctx->first_sector ||
5936 dev->sector >= ctx->last_sector)
5937 continue;
5938
5939 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5940 set_bit(R5_Overlap, &dev->flags);
5941 ret = 0;
5942 continue;
5943 }
5944 }
5945
5946 if (!ret)
5947 goto out;
5948
5949 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5950 struct r5dev *dev = &sh->dev[dd_idx];
5951
5952 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5953 continue;
5954
5955 if (dev->sector < ctx->first_sector ||
5956 dev->sector >= ctx->last_sector)
5957 continue;
5958
5959 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5960 clear_bit((dev->sector - ctx->first_sector) >>
5961 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5962 }
5963
5964out:
5965 spin_unlock_irq(&sh->stripe_lock);
5966 return ret;
5967}
5968
f4aec6a0
LG
5969static enum stripe_result make_stripe_request(struct mddev *mddev,
5970 struct r5conf *conf, struct stripe_request_ctx *ctx,
4f354560 5971 sector_t logical_sector, struct bio *bi)
f4aec6a0
LG
5972{
5973 const int rw = bio_data_dir(bi);
5974 enum stripe_result ret;
5975 struct stripe_head *sh;
5976 sector_t new_sector;
2f2d51ef 5977 int previous = 0, flags = 0;
4f354560
LG
5978 int seq, dd_idx;
5979
5980 seq = read_seqcount_begin(&conf->gen_lock);
f4aec6a0
LG
5981
5982 if (unlikely(conf->reshape_progress != MaxSector)) {
5983 /*
5984 * Spinlock is needed as reshape_progress may be
5985 * 64bit on a 32bit platform, and so it might be
5986 * possible to see a half-updated value
5987 * Of course reshape_progress could change after
5988 * the lock is dropped, so once we get a reference
5989 * to the stripe that we think it is, we will have
5990 * to check again.
5991 */
5992 spin_lock_irq(&conf->device_lock);
5993 if (ahead_of_reshape(mddev, logical_sector,
5994 conf->reshape_progress)) {
5995 previous = 1;
5996 } else {
5997 if (ahead_of_reshape(mddev, logical_sector,
5998 conf->reshape_safe)) {
5999 spin_unlock_irq(&conf->device_lock);
6000 return STRIPE_SCHEDULE_AND_RETRY;
6001 }
6002 }
6003 spin_unlock_irq(&conf->device_lock);
6004 }
6005
6006 new_sector = raid5_compute_sector(conf, logical_sector, previous,
6007 &dd_idx, NULL);
6008 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
6009 new_sector, logical_sector);
6010
2f2d51ef
LG
6011 if (previous)
6012 flags |= R5_GAS_PREVIOUS;
6013 if (bi->bi_opf & REQ_RAHEAD)
6014 flags |= R5_GAS_NOBLOCK;
6015 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
f4aec6a0
LG
6016 if (unlikely(!sh)) {
6017 /* cannot get stripe, just give-up */
6018 bi->bi_status = BLK_STS_IOERR;
6019 return STRIPE_FAIL;
6020 }
6021
486f6055
LG
6022 if (unlikely(previous) &&
6023 stripe_ahead_of_reshape(mddev, conf, sh)) {
f4aec6a0 6024 /*
486f6055 6025 * Expansion moved on while waiting for a stripe.
f4aec6a0
LG
6026 * Expansion could still move past after this
6027 * test, but as we are holding a reference to
6028 * 'sh', we know that if that happens,
6029 * STRIPE_EXPANDING will get set and the expansion
6030 * won't proceed until we finish with the stripe.
6031 */
486f6055
LG
6032 ret = STRIPE_SCHEDULE_AND_RETRY;
6033 goto out_release;
f4aec6a0
LG
6034 }
6035
6036 if (read_seqcount_retry(&conf->gen_lock, seq)) {
6037 /* Might have got the wrong stripe_head by accident */
6038 ret = STRIPE_RETRY;
6039 goto out_release;
6040 }
6041
6042 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
7e55c60a 6043 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
f4aec6a0
LG
6044 /*
6045 * Stripe is busy expanding or add failed due to
6046 * overlap. Flush everything and wait a while.
6047 */
6048 md_wakeup_thread(mddev->thread);
6049 ret = STRIPE_SCHEDULE_AND_RETRY;
6050 goto out_release;
6051 }
6052
3312e6c8
LG
6053 if (stripe_can_batch(sh)) {
6054 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6055 if (ctx->batch_last)
6056 raid5_release_stripe(ctx->batch_last);
6057 atomic_inc(&sh->count);
6058 ctx->batch_last = sh;
6059 }
f4aec6a0
LG
6060
6061 if (ctx->do_flush) {
6062 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6063 /* we only need flush for one stripe */
6064 ctx->do_flush = false;
6065 }
6066
6067 set_bit(STRIPE_HANDLE, &sh->state);
6068 clear_bit(STRIPE_DELAYED, &sh->state);
6069 if ((!sh->batch_head || sh == sh->batch_head) &&
6070 (bi->bi_opf & REQ_SYNC) &&
6071 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6072 atomic_inc(&conf->preread_active_stripes);
6073
6074 release_stripe_plug(mddev, sh);
6075 return STRIPE_SUCCESS;
6076
6077out_release:
6078 raid5_release_stripe(sh);
6079 return ret;
6080}
6081
cc27b0c7 6082static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
1da177e4 6083{
ee1aa06b 6084 DEFINE_WAIT_FUNC(wait, woken_wake_function);
d1688a6d 6085 struct r5conf *conf = mddev->private;
7e55c60a 6086 sector_t logical_sector;
f4aec6a0 6087 struct stripe_request_ctx ctx = {};
a362357b 6088 const int rw = bio_data_dir(bi);
f4aec6a0 6089 enum stripe_result res;
b9f91d80 6090 int s, stripe_cnt;
1da177e4 6091
1eff9d32 6092 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
1532d9e8 6093 int ret = log_handle_flush_request(conf, bi);
828cbe98
SL
6094
6095 if (ret == 0)
cc27b0c7 6096 return true;
828cbe98 6097 if (ret == -ENODEV) {
775d7831
DJ
6098 if (md_flush_request(mddev, bi))
6099 return true;
828cbe98
SL
6100 }
6101 /* ret == -EAGAIN, fallback */
3bddb7f8
SL
6102 /*
6103 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6104 * we need to flush journal device
6105 */
f4aec6a0 6106 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
e5dcdd80
N
6107 }
6108
cc27b0c7
N
6109 if (!md_write_start(mddev, bi))
6110 return false;
9ffc8f7c
EM
6111 /*
6112 * If array is degraded, better not do chunk aligned read because
6113 * later we might have to read it again in order to reconstruct
6114 * data on failed drives.
6115 */
6116 if (rw == READ && mddev->degraded == 0 &&
7ef6b12a
ML
6117 mddev->reshape_position == MaxSector) {
6118 bi = chunk_aligned_read(mddev, bi);
6119 if (!bi)
cc27b0c7 6120 return true;
7ef6b12a 6121 }
52488615 6122
796a5cf0 6123 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
620125f2 6124 make_discard_request(mddev, bi);
cc27b0c7
N
6125 md_write_end(mddev);
6126 return true;
620125f2
SL
6127 }
6128
c911c46c 6129 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
7e55c60a
LG
6130 ctx.first_sector = logical_sector;
6131 ctx.last_sector = bio_end_sector(bi);
1da177e4 6132 bi->bi_next = NULL;
06d91a5f 6133
b9f91d80
LG
6134 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6135 RAID5_STRIPE_SECTORS(conf));
6136 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
7e55c60a 6137
df1b620a
LG
6138 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6139 bi->bi_iter.bi_sector, ctx.last_sector);
6140
bf2c411b
VV
6141 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6142 if ((bi->bi_opf & REQ_NOWAIT) &&
6143 (conf->reshape_progress != MaxSector) &&
a8bb304c
LG
6144 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
6145 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
bf2c411b
VV
6146 bio_wouldblock_error(bi);
6147 if (rw == WRITE)
6148 md_write_end(mddev);
6149 return true;
6150 }
1147f58e 6151 md_account_bio(mddev, &bi);
ee1aa06b
LG
6152
6153 add_wait_queue(&conf->wait_for_overlap, &wait);
7e55c60a 6154 while (1) {
f4aec6a0 6155 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
4f354560 6156 bi);
f4aec6a0 6157 if (res == STRIPE_FAIL)
27fb7010 6158 break;
3bddb7f8 6159
f4aec6a0 6160 if (res == STRIPE_RETRY)
0a2d1694 6161 continue;
27fb7010 6162
f4aec6a0 6163 if (res == STRIPE_SCHEDULE_AND_RETRY) {
3312e6c8
LG
6164 /*
6165 * Must release the reference to batch_last before
6166 * scheduling and waiting for work to be done,
6167 * otherwise the batch_last stripe head could prevent
6168 * raid5_activate_delayed() from making progress
6169 * and thus deadlocking.
6170 */
6171 if (ctx.batch_last) {
6172 raid5_release_stripe(ctx.batch_last);
6173 ctx.batch_last = NULL;
6174 }
6175
ee1aa06b
LG
6176 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6177 MAX_SCHEDULE_TIMEOUT);
0a2d1694 6178 continue;
1da177e4 6179 }
0a2d1694 6180
b9f91d80
LG
6181 s = find_first_bit(ctx.sectors_to_do, stripe_cnt);
6182 if (s == stripe_cnt)
7e55c60a
LG
6183 break;
6184
6185 logical_sector = ctx.first_sector +
6186 (s << RAID5_STRIPE_SHIFT(conf));
1da177e4 6187 }
ee1aa06b 6188 remove_wait_queue(&conf->wait_for_overlap, &wait);
7c13edc8 6189
3312e6c8
LG
6190 if (ctx.batch_last)
6191 raid5_release_stripe(ctx.batch_last);
6192
49728050
N
6193 if (rw == WRITE)
6194 md_write_end(mddev);
016c76ac 6195 bio_endio(bi);
cc27b0c7 6196 return true;
1da177e4
LT
6197}
6198
fd01b88c 6199static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 6200
fd01b88c 6201static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 6202{
52c03291
N
6203 /* reshaping is quite different to recovery/resync so it is
6204 * handled quite separately ... here.
6205 *
6206 * On each call to sync_request, we gather one chunk worth of
6207 * destination stripes and flag them as expanding.
6208 * Then we find all the source stripes and request reads.
6209 * As the reads complete, handle_stripe will copy the data
6210 * into the destination stripe and release that stripe.
6211 */
d1688a6d 6212 struct r5conf *conf = mddev->private;
1da177e4 6213 struct stripe_head *sh;
db0505d3 6214 struct md_rdev *rdev;
ccfcc3c1 6215 sector_t first_sector, last_sector;
f416885e
N
6216 int raid_disks = conf->previous_raid_disks;
6217 int data_disks = raid_disks - conf->max_degraded;
6218 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
6219 int i;
6220 int dd_idx;
c8f517c4 6221 sector_t writepos, readpos, safepos;
ec32a2bd 6222 sector_t stripe_addr;
7a661381 6223 int reshape_sectors;
ab69ae12 6224 struct list_head stripes;
92140480 6225 sector_t retn;
52c03291 6226
fef9c61f
N
6227 if (sector_nr == 0) {
6228 /* If restarting in the middle, skip the initial sectors */
2c810cdd 6229 if (mddev->reshape_backwards &&
fef9c61f
N
6230 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6231 sector_nr = raid5_size(mddev, 0, 0)
6232 - conf->reshape_progress;
6cbd8148
N
6233 } else if (mddev->reshape_backwards &&
6234 conf->reshape_progress == MaxSector) {
6235 /* shouldn't happen, but just in case, finish up.*/
6236 sector_nr = MaxSector;
2c810cdd 6237 } else if (!mddev->reshape_backwards &&
fef9c61f
N
6238 conf->reshape_progress > 0)
6239 sector_nr = conf->reshape_progress;
f416885e 6240 sector_div(sector_nr, new_data_disks);
fef9c61f 6241 if (sector_nr) {
8dee7211 6242 mddev->curr_resync_completed = sector_nr;
e1a86dbb 6243 sysfs_notify_dirent_safe(mddev->sysfs_completed);
fef9c61f 6244 *skipped = 1;
92140480
N
6245 retn = sector_nr;
6246 goto finish;
fef9c61f 6247 }
52c03291
N
6248 }
6249
7a661381
N
6250 /* We need to process a full chunk at a time.
6251 * If old and new chunk sizes differ, we need to process the
6252 * largest of these
6253 */
3cb5edf4
N
6254
6255 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
7a661381 6256
b5254dd5
N
6257 /* We update the metadata at least every 10 seconds, or when
6258 * the data about to be copied would over-write the source of
6259 * the data at the front of the range. i.e. one new_stripe
6260 * along from reshape_progress new_maps to after where
6261 * reshape_safe old_maps to
52c03291 6262 */
fef9c61f 6263 writepos = conf->reshape_progress;
f416885e 6264 sector_div(writepos, new_data_disks);
c8f517c4
N
6265 readpos = conf->reshape_progress;
6266 sector_div(readpos, data_disks);
fef9c61f 6267 safepos = conf->reshape_safe;
f416885e 6268 sector_div(safepos, data_disks);
2c810cdd 6269 if (mddev->reshape_backwards) {
c74c0d76
N
6270 BUG_ON(writepos < reshape_sectors);
6271 writepos -= reshape_sectors;
c8f517c4 6272 readpos += reshape_sectors;
7a661381 6273 safepos += reshape_sectors;
fef9c61f 6274 } else {
7a661381 6275 writepos += reshape_sectors;
c74c0d76
N
6276 /* readpos and safepos are worst-case calculations.
6277 * A negative number is overly pessimistic, and causes
6278 * obvious problems for unsigned storage. So clip to 0.
6279 */
ed37d83e
N
6280 readpos -= min_t(sector_t, reshape_sectors, readpos);
6281 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 6282 }
52c03291 6283
b5254dd5
N
6284 /* Having calculated the 'writepos' possibly use it
6285 * to set 'stripe_addr' which is where we will write to.
6286 */
6287 if (mddev->reshape_backwards) {
6288 BUG_ON(conf->reshape_progress == 0);
6289 stripe_addr = writepos;
6290 BUG_ON((mddev->dev_sectors &
6291 ~((sector_t)reshape_sectors - 1))
6292 - reshape_sectors - stripe_addr
6293 != sector_nr);
6294 } else {
6295 BUG_ON(writepos != sector_nr + reshape_sectors);
6296 stripe_addr = sector_nr;
6297 }
6298
c8f517c4
N
6299 /* 'writepos' is the most advanced device address we might write.
6300 * 'readpos' is the least advanced device address we might read.
6301 * 'safepos' is the least address recorded in the metadata as having
6302 * been reshaped.
b5254dd5
N
6303 * If there is a min_offset_diff, these are adjusted either by
6304 * increasing the safepos/readpos if diff is negative, or
6305 * increasing writepos if diff is positive.
6306 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
6307 * ensure safety in the face of a crash - that must be done by userspace
6308 * making a backup of the data. So in that case there is no particular
6309 * rush to update metadata.
6310 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6311 * update the metadata to advance 'safepos' to match 'readpos' so that
6312 * we can be safe in the event of a crash.
6313 * So we insist on updating metadata if safepos is behind writepos and
6314 * readpos is beyond writepos.
6315 * In any case, update the metadata every 10 seconds.
6316 * Maybe that number should be configurable, but I'm not sure it is
6317 * worth it.... maybe it could be a multiple of safemode_delay???
6318 */
b5254dd5
N
6319 if (conf->min_offset_diff < 0) {
6320 safepos += -conf->min_offset_diff;
6321 readpos += -conf->min_offset_diff;
6322 } else
6323 writepos += conf->min_offset_diff;
6324
2c810cdd 6325 if ((mddev->reshape_backwards
c8f517c4
N
6326 ? (safepos > writepos && readpos < writepos)
6327 : (safepos < writepos && readpos > writepos)) ||
6328 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
6329 /* Cannot proceed until we've updated the superblock... */
6330 wait_event(conf->wait_for_overlap,
c91abf5a
N
6331 atomic_read(&conf->reshape_stripes)==0
6332 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6333 if (atomic_read(&conf->reshape_stripes) != 0)
6334 return 0;
fef9c61f 6335 mddev->reshape_position = conf->reshape_progress;
75d3da43 6336 mddev->curr_resync_completed = sector_nr;
db0505d3
N
6337 if (!mddev->reshape_backwards)
6338 /* Can update recovery_offset */
6339 rdev_for_each(rdev, mddev)
6340 if (rdev->raid_disk >= 0 &&
6341 !test_bit(Journal, &rdev->flags) &&
6342 !test_bit(In_sync, &rdev->flags) &&
6343 rdev->recovery_offset < sector_nr)
6344 rdev->recovery_offset = sector_nr;
6345
c8f517c4 6346 conf->reshape_checkpoint = jiffies;
2953079c 6347 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
52c03291 6348 md_wakeup_thread(mddev->thread);
2953079c 6349 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
6350 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6351 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6352 return 0;
52c03291 6353 spin_lock_irq(&conf->device_lock);
fef9c61f 6354 conf->reshape_safe = mddev->reshape_position;
52c03291
N
6355 spin_unlock_irq(&conf->device_lock);
6356 wake_up(&conf->wait_for_overlap);
e1a86dbb 6357 sysfs_notify_dirent_safe(mddev->sysfs_completed);
52c03291
N
6358 }
6359
ab69ae12 6360 INIT_LIST_HEAD(&stripes);
c911c46c 6361 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
52c03291 6362 int j;
a9f326eb 6363 int skipped_disk = 0;
2f2d51ef
LG
6364 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6365 R5_GAS_NOQUIESCE);
52c03291
N
6366 set_bit(STRIPE_EXPANDING, &sh->state);
6367 atomic_inc(&conf->reshape_stripes);
6368 /* If any of this stripe is beyond the end of the old
6369 * array, then we need to zero those blocks
6370 */
6371 for (j=sh->disks; j--;) {
6372 sector_t s;
6373 if (j == sh->pd_idx)
6374 continue;
f416885e 6375 if (conf->level == 6 &&
d0dabf7e 6376 j == sh->qd_idx)
f416885e 6377 continue;
6d036f7d 6378 s = raid5_compute_blocknr(sh, j, 0);
b522adcd 6379 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 6380 skipped_disk = 1;
52c03291
N
6381 continue;
6382 }
c911c46c 6383 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
52c03291
N
6384 set_bit(R5_Expanded, &sh->dev[j].flags);
6385 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6386 }
a9f326eb 6387 if (!skipped_disk) {
52c03291
N
6388 set_bit(STRIPE_EXPAND_READY, &sh->state);
6389 set_bit(STRIPE_HANDLE, &sh->state);
6390 }
ab69ae12 6391 list_add(&sh->lru, &stripes);
52c03291
N
6392 }
6393 spin_lock_irq(&conf->device_lock);
2c810cdd 6394 if (mddev->reshape_backwards)
7a661381 6395 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 6396 else
7a661381 6397 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
6398 spin_unlock_irq(&conf->device_lock);
6399 /* Ok, those stripe are ready. We can start scheduling
6400 * reads on the source stripes.
6401 * The source stripes are determined by mapping the first and last
6402 * block on the destination stripes.
6403 */
52c03291 6404 first_sector =
ec32a2bd 6405 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 6406 1, &dd_idx, NULL);
52c03291 6407 last_sector =
0e6e0271 6408 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 6409 * new_data_disks - 1),
911d4ee8 6410 1, &dd_idx, NULL);
58c0fed4
AN
6411 if (last_sector >= mddev->dev_sectors)
6412 last_sector = mddev->dev_sectors - 1;
52c03291 6413 while (first_sector <= last_sector) {
2f2d51ef
LG
6414 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6415 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
52c03291
N
6416 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6417 set_bit(STRIPE_HANDLE, &sh->state);
6d036f7d 6418 raid5_release_stripe(sh);
c911c46c 6419 first_sector += RAID5_STRIPE_SECTORS(conf);
52c03291 6420 }
ab69ae12
N
6421 /* Now that the sources are clearly marked, we can release
6422 * the destination stripes
6423 */
6424 while (!list_empty(&stripes)) {
6425 sh = list_entry(stripes.next, struct stripe_head, lru);
6426 list_del_init(&sh->lru);
6d036f7d 6427 raid5_release_stripe(sh);
ab69ae12 6428 }
c6207277
N
6429 /* If this takes us to the resync_max point where we have to pause,
6430 * then we need to write out the superblock.
6431 */
7a661381 6432 sector_nr += reshape_sectors;
92140480
N
6433 retn = reshape_sectors;
6434finish:
c5e19d90
N
6435 if (mddev->curr_resync_completed > mddev->resync_max ||
6436 (sector_nr - mddev->curr_resync_completed) * 2
c03f6a19 6437 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
6438 /* Cannot proceed until we've updated the superblock... */
6439 wait_event(conf->wait_for_overlap,
c91abf5a
N
6440 atomic_read(&conf->reshape_stripes) == 0
6441 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6442 if (atomic_read(&conf->reshape_stripes) != 0)
6443 goto ret;
fef9c61f 6444 mddev->reshape_position = conf->reshape_progress;
75d3da43 6445 mddev->curr_resync_completed = sector_nr;
db0505d3
N
6446 if (!mddev->reshape_backwards)
6447 /* Can update recovery_offset */
6448 rdev_for_each(rdev, mddev)
6449 if (rdev->raid_disk >= 0 &&
6450 !test_bit(Journal, &rdev->flags) &&
6451 !test_bit(In_sync, &rdev->flags) &&
6452 rdev->recovery_offset < sector_nr)
6453 rdev->recovery_offset = sector_nr;
c8f517c4 6454 conf->reshape_checkpoint = jiffies;
2953079c 6455 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
c6207277
N
6456 md_wakeup_thread(mddev->thread);
6457 wait_event(mddev->sb_wait,
2953079c 6458 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
c91abf5a
N
6459 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6460 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6461 goto ret;
c6207277 6462 spin_lock_irq(&conf->device_lock);
fef9c61f 6463 conf->reshape_safe = mddev->reshape_position;
c6207277
N
6464 spin_unlock_irq(&conf->device_lock);
6465 wake_up(&conf->wait_for_overlap);
e1a86dbb 6466 sysfs_notify_dirent_safe(mddev->sysfs_completed);
c6207277 6467 }
c91abf5a 6468ret:
92140480 6469 return retn;
52c03291
N
6470}
6471
849674e4
SL
6472static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6473 int *skipped)
52c03291 6474{
d1688a6d 6475 struct r5conf *conf = mddev->private;
52c03291 6476 struct stripe_head *sh;
58c0fed4 6477 sector_t max_sector = mddev->dev_sectors;
57dab0bd 6478 sector_t sync_blocks;
16a53ecc
N
6479 int still_degraded = 0;
6480 int i;
1da177e4 6481
72626685 6482 if (sector_nr >= max_sector) {
1da177e4 6483 /* just being told to finish up .. nothing much to do */
cea9c228 6484
29269553
N
6485 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6486 end_reshape(conf);
6487 return 0;
6488 }
72626685
N
6489
6490 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
6491 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6492 &sync_blocks, 1);
16a53ecc 6493 else /* completed sync */
72626685 6494 conf->fullsync = 0;
e64e4018 6495 md_bitmap_close_sync(mddev->bitmap);
72626685 6496
1da177e4
LT
6497 return 0;
6498 }
ccfcc3c1 6499
64bd660b
N
6500 /* Allow raid5_quiesce to complete */
6501 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6502
52c03291
N
6503 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6504 return reshape_request(mddev, sector_nr, skipped);
f6705578 6505
c6207277
N
6506 /* No need to check resync_max as we never do more than one
6507 * stripe, and as resync_max will always be on a chunk boundary,
6508 * if the check in md_do_sync didn't fire, there is no chance
6509 * of overstepping resync_max here
6510 */
6511
16a53ecc 6512 /* if there is too many failed drives and we are trying
1da177e4
LT
6513 * to resync, then assert that we are finished, because there is
6514 * nothing we can do.
6515 */
3285edf1 6516 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 6517 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 6518 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 6519 *skipped = 1;
1da177e4
LT
6520 return rv;
6521 }
6f608040 6522 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6523 !conf->fullsync &&
e64e4018 6524 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
c911c46c 6525 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
72626685 6526 /* we can skip this block, and probably more */
83c3e5e1 6527 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
72626685 6528 *skipped = 1;
c911c46c
YY
6529 /* keep things rounded to whole stripes */
6530 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
72626685 6531 }
1da177e4 6532
e64e4018 6533 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
b47490c9 6534
2f2d51ef
LG
6535 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6536 R5_GAS_NOBLOCK);
1da177e4 6537 if (sh == NULL) {
2f2d51ef 6538 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
1da177e4 6539 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 6540 * is trying to get access
1da177e4 6541 */
66c006a5 6542 schedule_timeout_uninterruptible(1);
1da177e4 6543 }
16a53ecc 6544 /* Need to check if array will still be degraded after recovery/resync
16d9cfab
EM
6545 * Note in case of > 1 drive failures it's possible we're rebuilding
6546 * one drive while leaving another faulty drive in array.
16a53ecc 6547 */
16d9cfab
EM
6548 rcu_read_lock();
6549 for (i = 0; i < conf->raid_disks; i++) {
b0920ede 6550 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
16d9cfab
EM
6551
6552 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
16a53ecc 6553 still_degraded = 1;
16d9cfab
EM
6554 }
6555 rcu_read_unlock();
16a53ecc 6556
e64e4018 6557 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
16a53ecc 6558
83206d66 6559 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
053f5b65 6560 set_bit(STRIPE_HANDLE, &sh->state);
1da177e4 6561
6d036f7d 6562 raid5_release_stripe(sh);
1da177e4 6563
c911c46c 6564 return RAID5_STRIPE_SECTORS(conf);
1da177e4
LT
6565}
6566
0472a42b
N
6567static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6568 unsigned int offset)
46031f9a
RBJ
6569{
6570 /* We may not be able to submit a whole bio at once as there
6571 * may not be enough stripe_heads available.
6572 * We cannot pre-allocate enough stripe_heads as we may need
6573 * more than exist in the cache (if we allow ever large chunks).
6574 * So we do one stripe head at a time and record in
6575 * ->bi_hw_segments how many have been done.
6576 *
6577 * We *know* that this entire raid_bio is in one chunk, so
6578 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6579 */
6580 struct stripe_head *sh;
911d4ee8 6581 int dd_idx;
46031f9a
RBJ
6582 sector_t sector, logical_sector, last_sector;
6583 int scnt = 0;
46031f9a
RBJ
6584 int handled = 0;
6585
4f024f37 6586 logical_sector = raid_bio->bi_iter.bi_sector &
c911c46c 6587 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
112bf897 6588 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 6589 0, &dd_idx, NULL);
f73a1c7d 6590 last_sector = bio_end_sector(raid_bio);
46031f9a
RBJ
6591
6592 for (; logical_sector < last_sector;
c911c46c
YY
6593 logical_sector += RAID5_STRIPE_SECTORS(conf),
6594 sector += RAID5_STRIPE_SECTORS(conf),
387bb173 6595 scnt++) {
46031f9a 6596
0472a42b 6597 if (scnt < offset)
46031f9a
RBJ
6598 /* already done this stripe */
6599 continue;
6600
2f2d51ef
LG
6601 sh = raid5_get_active_stripe(conf, NULL, sector,
6602 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
46031f9a
RBJ
6603 if (!sh) {
6604 /* failed to get a stripe - must wait */
46031f9a 6605 conf->retry_read_aligned = raid_bio;
0472a42b 6606 conf->retry_read_offset = scnt;
46031f9a
RBJ
6607 return handled;
6608 }
6609
da41ba65 6610 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6d036f7d 6611 raid5_release_stripe(sh);
387bb173 6612 conf->retry_read_aligned = raid_bio;
0472a42b 6613 conf->retry_read_offset = scnt;
387bb173
NB
6614 return handled;
6615 }
6616
3f9e7c14 6617 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 6618 handle_stripe(sh);
6d036f7d 6619 raid5_release_stripe(sh);
46031f9a
RBJ
6620 handled++;
6621 }
016c76ac
N
6622
6623 bio_endio(raid_bio);
6624
46031f9a 6625 if (atomic_dec_and_test(&conf->active_aligned_reads))
b1b46486 6626 wake_up(&conf->wait_for_quiescent);
46031f9a
RBJ
6627 return handled;
6628}
6629
bfc90cb0 6630static int handle_active_stripes(struct r5conf *conf, int group,
566c09c5
SL
6631 struct r5worker *worker,
6632 struct list_head *temp_inactive_list)
4631f39f 6633 __must_hold(&conf->device_lock)
46a06401
SL
6634{
6635 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
566c09c5
SL
6636 int i, batch_size = 0, hash;
6637 bool release_inactive = false;
46a06401
SL
6638
6639 while (batch_size < MAX_STRIPE_BATCH &&
851c30c9 6640 (sh = __get_priority_stripe(conf, group)) != NULL)
46a06401
SL
6641 batch[batch_size++] = sh;
6642
566c09c5
SL
6643 if (batch_size == 0) {
6644 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6645 if (!list_empty(temp_inactive_list + i))
6646 break;
a8c34f91
SL
6647 if (i == NR_STRIPE_HASH_LOCKS) {
6648 spin_unlock_irq(&conf->device_lock);
1532d9e8 6649 log_flush_stripe_to_raid(conf);
a8c34f91 6650 spin_lock_irq(&conf->device_lock);
566c09c5 6651 return batch_size;
a8c34f91 6652 }
566c09c5
SL
6653 release_inactive = true;
6654 }
46a06401
SL
6655 spin_unlock_irq(&conf->device_lock);
6656
566c09c5
SL
6657 release_inactive_stripe_list(conf, temp_inactive_list,
6658 NR_STRIPE_HASH_LOCKS);
6659
a8c34f91 6660 r5l_flush_stripe_to_raid(conf->log);
566c09c5
SL
6661 if (release_inactive) {
6662 spin_lock_irq(&conf->device_lock);
6663 return 0;
6664 }
6665
46a06401
SL
6666 for (i = 0; i < batch_size; i++)
6667 handle_stripe(batch[i]);
ff875738 6668 log_write_stripe_run(conf);
46a06401
SL
6669
6670 cond_resched();
6671
6672 spin_lock_irq(&conf->device_lock);
566c09c5
SL
6673 for (i = 0; i < batch_size; i++) {
6674 hash = batch[i]->hash_lock_index;
6675 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6676 }
46a06401
SL
6677 return batch_size;
6678}
46031f9a 6679
851c30c9
SL
6680static void raid5_do_work(struct work_struct *work)
6681{
6682 struct r5worker *worker = container_of(work, struct r5worker, work);
6683 struct r5worker_group *group = worker->group;
6684 struct r5conf *conf = group->conf;
16d997b7 6685 struct mddev *mddev = conf->mddev;
851c30c9
SL
6686 int group_id = group - conf->worker_groups;
6687 int handled;
6688 struct blk_plug plug;
6689
6690 pr_debug("+++ raid5worker active\n");
6691
6692 blk_start_plug(&plug);
6693 handled = 0;
6694 spin_lock_irq(&conf->device_lock);
6695 while (1) {
6696 int batch_size, released;
6697
566c09c5 6698 released = release_stripe_list(conf, worker->temp_inactive_list);
851c30c9 6699
566c09c5
SL
6700 batch_size = handle_active_stripes(conf, group_id, worker,
6701 worker->temp_inactive_list);
bfc90cb0 6702 worker->working = false;
851c30c9
SL
6703 if (!batch_size && !released)
6704 break;
6705 handled += batch_size;
16d997b7
N
6706 wait_event_lock_irq(mddev->sb_wait,
6707 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6708 conf->device_lock);
851c30c9
SL
6709 }
6710 pr_debug("%d stripes handled\n", handled);
6711
6712 spin_unlock_irq(&conf->device_lock);
7e96d559 6713
9c72a18e
SL
6714 flush_deferred_bios(conf);
6715
6716 r5l_flush_stripe_to_raid(conf->log);
6717
7e96d559 6718 async_tx_issue_pending_all();
851c30c9
SL
6719 blk_finish_plug(&plug);
6720
6721 pr_debug("--- raid5worker inactive\n");
6722}
6723
1da177e4
LT
6724/*
6725 * This is our raid5 kernel thread.
6726 *
6727 * We scan the hash table for stripes which can be handled now.
6728 * During the scan, completed stripes are saved for us by the interrupt
6729 * handler, so that they will not have to wait for our next wakeup.
6730 */
4ed8731d 6731static void raid5d(struct md_thread *thread)
1da177e4 6732{
4ed8731d 6733 struct mddev *mddev = thread->mddev;
d1688a6d 6734 struct r5conf *conf = mddev->private;
1da177e4 6735 int handled;
e1dfa0a2 6736 struct blk_plug plug;
1da177e4 6737
45b4233c 6738 pr_debug("+++ raid5d active\n");
1da177e4
LT
6739
6740 md_check_recovery(mddev);
1da177e4 6741
e1dfa0a2 6742 blk_start_plug(&plug);
1da177e4
LT
6743 handled = 0;
6744 spin_lock_irq(&conf->device_lock);
6745 while (1) {
46031f9a 6746 struct bio *bio;
773ca82f 6747 int batch_size, released;
0472a42b 6748 unsigned int offset;
773ca82f 6749
566c09c5 6750 released = release_stripe_list(conf, conf->temp_inactive_list);
edbe83ab
N
6751 if (released)
6752 clear_bit(R5_DID_ALLOC, &conf->cache_state);
1da177e4 6753
0021b7bc 6754 if (
7c13edc8
N
6755 !list_empty(&conf->bitmap_list)) {
6756 /* Now is a good time to flush some bitmap updates */
6757 conf->seq_flush++;
700e432d 6758 spin_unlock_irq(&conf->device_lock);
e64e4018 6759 md_bitmap_unplug(mddev->bitmap);
700e432d 6760 spin_lock_irq(&conf->device_lock);
7c13edc8 6761 conf->seq_write = conf->seq_flush;
566c09c5 6762 activate_bit_delay(conf, conf->temp_inactive_list);
72626685 6763 }
0021b7bc 6764 raid5_activate_delayed(conf);
72626685 6765
0472a42b 6766 while ((bio = remove_bio_from_retry(conf, &offset))) {
46031f9a
RBJ
6767 int ok;
6768 spin_unlock_irq(&conf->device_lock);
0472a42b 6769 ok = retry_aligned_read(conf, bio, offset);
46031f9a
RBJ
6770 spin_lock_irq(&conf->device_lock);
6771 if (!ok)
6772 break;
6773 handled++;
6774 }
6775
566c09c5
SL
6776 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6777 conf->temp_inactive_list);
773ca82f 6778 if (!batch_size && !released)
1da177e4 6779 break;
46a06401 6780 handled += batch_size;
1da177e4 6781
2953079c 6782 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
46a06401 6783 spin_unlock_irq(&conf->device_lock);
de393cde 6784 md_check_recovery(mddev);
46a06401 6785 spin_lock_irq(&conf->device_lock);
5e2cf333
LG
6786
6787 /*
6788 * Waiting on MD_SB_CHANGE_PENDING below may deadlock
6789 * seeing md_check_recovery() is needed to clear
6790 * the flag when using mdmon.
6791 */
6792 continue;
46a06401 6793 }
5e2cf333
LG
6794
6795 wait_event_lock_irq(mddev->sb_wait,
6796 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6797 conf->device_lock);
1da177e4 6798 }
45b4233c 6799 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
6800
6801 spin_unlock_irq(&conf->device_lock);
2d5b569b
N
6802 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6803 mutex_trylock(&conf->cache_size_mutex)) {
edbe83ab
N
6804 grow_one_stripe(conf, __GFP_NOWARN);
6805 /* Set flag even if allocation failed. This helps
6806 * slow down allocation requests when mem is short
6807 */
6808 set_bit(R5_DID_ALLOC, &conf->cache_state);
2d5b569b 6809 mutex_unlock(&conf->cache_size_mutex);
edbe83ab 6810 }
1da177e4 6811
765d704d
SL
6812 flush_deferred_bios(conf);
6813
0576b1c6
SL
6814 r5l_flush_stripe_to_raid(conf->log);
6815
c9f21aaf 6816 async_tx_issue_pending_all();
e1dfa0a2 6817 blk_finish_plug(&plug);
1da177e4 6818
45b4233c 6819 pr_debug("--- raid5d inactive\n");
1da177e4
LT
6820}
6821
3f294f4f 6822static ssize_t
fd01b88c 6823raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 6824{
7b1485ba
N
6825 struct r5conf *conf;
6826 int ret = 0;
6827 spin_lock(&mddev->lock);
6828 conf = mddev->private;
96de1e66 6829 if (conf)
edbe83ab 6830 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
7b1485ba
N
6831 spin_unlock(&mddev->lock);
6832 return ret;
3f294f4f
N
6833}
6834
c41d4ac4 6835int
fd01b88c 6836raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 6837{
483cbbed 6838 int result = 0;
d1688a6d 6839 struct r5conf *conf = mddev->private;
b5470dc5 6840
c41d4ac4 6841 if (size <= 16 || size > 32768)
3f294f4f 6842 return -EINVAL;
486f0644 6843
edbe83ab 6844 conf->min_nr_stripes = size;
2d5b569b 6845 mutex_lock(&conf->cache_size_mutex);
486f0644
N
6846 while (size < conf->max_nr_stripes &&
6847 drop_one_stripe(conf))
6848 ;
2d5b569b 6849 mutex_unlock(&conf->cache_size_mutex);
486f0644 6850
2214c260 6851 md_allow_write(mddev);
486f0644 6852
2d5b569b 6853 mutex_lock(&conf->cache_size_mutex);
486f0644 6854 while (size > conf->max_nr_stripes)
483cbbed
AN
6855 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6856 conf->min_nr_stripes = conf->max_nr_stripes;
6857 result = -ENOMEM;
486f0644 6858 break;
483cbbed 6859 }
2d5b569b 6860 mutex_unlock(&conf->cache_size_mutex);
486f0644 6861
483cbbed 6862 return result;
c41d4ac4
N
6863}
6864EXPORT_SYMBOL(raid5_set_cache_size);
6865
6866static ssize_t
fd01b88c 6867raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 6868{
6791875e 6869 struct r5conf *conf;
c41d4ac4
N
6870 unsigned long new;
6871 int err;
6872
6873 if (len >= PAGE_SIZE)
6874 return -EINVAL;
b29bebd6 6875 if (kstrtoul(page, 10, &new))
c41d4ac4 6876 return -EINVAL;
6791875e 6877 err = mddev_lock(mddev);
c41d4ac4
N
6878 if (err)
6879 return err;
6791875e
N
6880 conf = mddev->private;
6881 if (!conf)
6882 err = -ENODEV;
6883 else
6884 err = raid5_set_cache_size(mddev, new);
6885 mddev_unlock(mddev);
6886
6887 return err ?: len;
3f294f4f 6888}
007583c9 6889
96de1e66
N
6890static struct md_sysfs_entry
6891raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6892 raid5_show_stripe_cache_size,
6893 raid5_store_stripe_cache_size);
3f294f4f 6894
d06f191f
MS
6895static ssize_t
6896raid5_show_rmw_level(struct mddev *mddev, char *page)
6897{
6898 struct r5conf *conf = mddev->private;
6899 if (conf)
6900 return sprintf(page, "%d\n", conf->rmw_level);
6901 else
6902 return 0;
6903}
6904
6905static ssize_t
6906raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6907{
6908 struct r5conf *conf = mddev->private;
6909 unsigned long new;
6910
6911 if (!conf)
6912 return -ENODEV;
6913
6914 if (len >= PAGE_SIZE)
6915 return -EINVAL;
6916
6917 if (kstrtoul(page, 10, &new))
6918 return -EINVAL;
6919
6920 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6921 return -EINVAL;
6922
6923 if (new != PARITY_DISABLE_RMW &&
6924 new != PARITY_ENABLE_RMW &&
6925 new != PARITY_PREFER_RMW)
6926 return -EINVAL;
6927
6928 conf->rmw_level = new;
6929 return len;
6930}
6931
6932static struct md_sysfs_entry
6933raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6934 raid5_show_rmw_level,
6935 raid5_store_rmw_level);
6936
3b5408b9
YY
6937static ssize_t
6938raid5_show_stripe_size(struct mddev *mddev, char *page)
6939{
6940 struct r5conf *conf;
6941 int ret = 0;
6942
6943 spin_lock(&mddev->lock);
6944 conf = mddev->private;
6945 if (conf)
6946 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6947 spin_unlock(&mddev->lock);
6948 return ret;
6949}
6950
6951#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6952static ssize_t
6953raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6954{
6955 struct r5conf *conf;
6956 unsigned long new;
6957 int err;
38912584 6958 int size;
3b5408b9
YY
6959
6960 if (len >= PAGE_SIZE)
6961 return -EINVAL;
6962 if (kstrtoul(page, 10, &new))
6963 return -EINVAL;
6964
6965 /*
6966 * The value should not be bigger than PAGE_SIZE. It requires to
6af10a33
YY
6967 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6968 * of two.
3b5408b9 6969 */
6af10a33
YY
6970 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6971 new > PAGE_SIZE || new == 0 ||
6972 new != roundup_pow_of_two(new))
3b5408b9
YY
6973 return -EINVAL;
6974
6975 err = mddev_lock(mddev);
6976 if (err)
6977 return err;
6978
6979 conf = mddev->private;
6980 if (!conf) {
6981 err = -ENODEV;
6982 goto out_unlock;
6983 }
6984
6985 if (new == conf->stripe_size)
6986 goto out_unlock;
6987
6988 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6989 conf->stripe_size, new);
6990
38912584
YY
6991 if (mddev->sync_thread ||
6992 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6993 mddev->reshape_position != MaxSector ||
6994 mddev->sysfs_active) {
6995 err = -EBUSY;
6996 goto out_unlock;
6997 }
6998
3b5408b9 6999 mddev_suspend(mddev);
38912584
YY
7000 mutex_lock(&conf->cache_size_mutex);
7001 size = conf->max_nr_stripes;
7002
7003 shrink_stripes(conf);
7004
3b5408b9
YY
7005 conf->stripe_size = new;
7006 conf->stripe_shift = ilog2(new) - 9;
7007 conf->stripe_sectors = new >> 9;
38912584
YY
7008 if (grow_stripes(conf, size)) {
7009 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7010 mdname(mddev));
7011 err = -ENOMEM;
7012 }
7013 mutex_unlock(&conf->cache_size_mutex);
3b5408b9
YY
7014 mddev_resume(mddev);
7015
7016out_unlock:
7017 mddev_unlock(mddev);
7018 return err ?: len;
7019}
7020
7021static struct md_sysfs_entry
7022raid5_stripe_size = __ATTR(stripe_size, 0644,
7023 raid5_show_stripe_size,
7024 raid5_store_stripe_size);
7025#else
7026static struct md_sysfs_entry
7027raid5_stripe_size = __ATTR(stripe_size, 0444,
7028 raid5_show_stripe_size,
7029 NULL);
7030#endif
d06f191f 7031
8b3e6cdc 7032static ssize_t
fd01b88c 7033raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 7034{
7b1485ba
N
7035 struct r5conf *conf;
7036 int ret = 0;
7037 spin_lock(&mddev->lock);
7038 conf = mddev->private;
8b3e6cdc 7039 if (conf)
7b1485ba
N
7040 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7041 spin_unlock(&mddev->lock);
7042 return ret;
8b3e6cdc
DW
7043}
7044
7045static ssize_t
fd01b88c 7046raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 7047{
6791875e 7048 struct r5conf *conf;
4ef197d8 7049 unsigned long new;
6791875e
N
7050 int err;
7051
8b3e6cdc
DW
7052 if (len >= PAGE_SIZE)
7053 return -EINVAL;
b29bebd6 7054 if (kstrtoul(page, 10, &new))
8b3e6cdc 7055 return -EINVAL;
6791875e
N
7056
7057 err = mddev_lock(mddev);
7058 if (err)
7059 return err;
7060 conf = mddev->private;
7061 if (!conf)
7062 err = -ENODEV;
edbe83ab 7063 else if (new > conf->min_nr_stripes)
6791875e
N
7064 err = -EINVAL;
7065 else
7066 conf->bypass_threshold = new;
7067 mddev_unlock(mddev);
7068 return err ?: len;
8b3e6cdc
DW
7069}
7070
7071static struct md_sysfs_entry
7072raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7073 S_IRUGO | S_IWUSR,
7074 raid5_show_preread_threshold,
7075 raid5_store_preread_threshold);
7076
d592a996
SL
7077static ssize_t
7078raid5_show_skip_copy(struct mddev *mddev, char *page)
7079{
7b1485ba
N
7080 struct r5conf *conf;
7081 int ret = 0;
7082 spin_lock(&mddev->lock);
7083 conf = mddev->private;
d592a996 7084 if (conf)
7b1485ba
N
7085 ret = sprintf(page, "%d\n", conf->skip_copy);
7086 spin_unlock(&mddev->lock);
7087 return ret;
d592a996
SL
7088}
7089
7090static ssize_t
7091raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7092{
6791875e 7093 struct r5conf *conf;
d592a996 7094 unsigned long new;
6791875e
N
7095 int err;
7096
d592a996
SL
7097 if (len >= PAGE_SIZE)
7098 return -EINVAL;
d592a996
SL
7099 if (kstrtoul(page, 10, &new))
7100 return -EINVAL;
7101 new = !!new;
6791875e
N
7102
7103 err = mddev_lock(mddev);
7104 if (err)
7105 return err;
7106 conf = mddev->private;
7107 if (!conf)
7108 err = -ENODEV;
7109 else if (new != conf->skip_copy) {
1cb039f3
CH
7110 struct request_queue *q = mddev->queue;
7111
6791875e
N
7112 mddev_suspend(mddev);
7113 conf->skip_copy = new;
7114 if (new)
1cb039f3 7115 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6791875e 7116 else
1cb039f3 7117 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6791875e
N
7118 mddev_resume(mddev);
7119 }
7120 mddev_unlock(mddev);
7121 return err ?: len;
d592a996
SL
7122}
7123
7124static struct md_sysfs_entry
7125raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7126 raid5_show_skip_copy,
7127 raid5_store_skip_copy);
7128
3f294f4f 7129static ssize_t
fd01b88c 7130stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 7131{
d1688a6d 7132 struct r5conf *conf = mddev->private;
96de1e66
N
7133 if (conf)
7134 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7135 else
7136 return 0;
3f294f4f
N
7137}
7138
96de1e66
N
7139static struct md_sysfs_entry
7140raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 7141
b721420e
SL
7142static ssize_t
7143raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7144{
7b1485ba
N
7145 struct r5conf *conf;
7146 int ret = 0;
7147 spin_lock(&mddev->lock);
7148 conf = mddev->private;
b721420e 7149 if (conf)
7b1485ba
N
7150 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7151 spin_unlock(&mddev->lock);
7152 return ret;
b721420e
SL
7153}
7154
60aaf933 7155static int alloc_thread_groups(struct r5conf *conf, int cnt,
7156 int *group_cnt,
60aaf933 7157 struct r5worker_group **worker_groups);
b721420e
SL
7158static ssize_t
7159raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7160{
6791875e 7161 struct r5conf *conf;
7d5d7b50 7162 unsigned int new;
b721420e 7163 int err;
60aaf933 7164 struct r5worker_group *new_groups, *old_groups;
d2c9ad41 7165 int group_cnt;
b721420e
SL
7166
7167 if (len >= PAGE_SIZE)
7168 return -EINVAL;
7d5d7b50
SL
7169 if (kstrtouint(page, 10, &new))
7170 return -EINVAL;
7171 /* 8192 should be big enough */
7172 if (new > 8192)
b721420e
SL
7173 return -EINVAL;
7174
6791875e
N
7175 err = mddev_lock(mddev);
7176 if (err)
7177 return err;
7178 conf = mddev->private;
7179 if (!conf)
7180 err = -ENODEV;
7181 else if (new != conf->worker_cnt_per_group) {
7182 mddev_suspend(mddev);
b721420e 7183
6791875e
N
7184 old_groups = conf->worker_groups;
7185 if (old_groups)
7186 flush_workqueue(raid5_wq);
d206dcfa 7187
d2c9ad41 7188 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6791875e
N
7189 if (!err) {
7190 spin_lock_irq(&conf->device_lock);
7191 conf->group_cnt = group_cnt;
d2c9ad41 7192 conf->worker_cnt_per_group = new;
6791875e
N
7193 conf->worker_groups = new_groups;
7194 spin_unlock_irq(&conf->device_lock);
b721420e 7195
6791875e
N
7196 if (old_groups)
7197 kfree(old_groups[0].workers);
7198 kfree(old_groups);
7199 }
7200 mddev_resume(mddev);
b721420e 7201 }
6791875e 7202 mddev_unlock(mddev);
b721420e 7203
6791875e 7204 return err ?: len;
b721420e
SL
7205}
7206
7207static struct md_sysfs_entry
7208raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7209 raid5_show_group_thread_cnt,
7210 raid5_store_group_thread_cnt);
7211
007583c9 7212static struct attribute *raid5_attrs[] = {
3f294f4f
N
7213 &raid5_stripecache_size.attr,
7214 &raid5_stripecache_active.attr,
8b3e6cdc 7215 &raid5_preread_bypass_threshold.attr,
b721420e 7216 &raid5_group_thread_cnt.attr,
d592a996 7217 &raid5_skip_copy.attr,
d06f191f 7218 &raid5_rmw_level.attr,
3b5408b9 7219 &raid5_stripe_size.attr,
2c7da14b 7220 &r5c_journal_mode.attr,
a596d086 7221 &ppl_write_hint.attr,
3f294f4f
N
7222 NULL,
7223};
c32dc040 7224static const struct attribute_group raid5_attrs_group = {
007583c9
N
7225 .name = NULL,
7226 .attrs = raid5_attrs,
3f294f4f
N
7227};
7228
d2c9ad41 7229static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
60aaf933 7230 struct r5worker_group **worker_groups)
851c30c9 7231{
566c09c5 7232 int i, j, k;
851c30c9
SL
7233 ssize_t size;
7234 struct r5worker *workers;
7235
851c30c9 7236 if (cnt == 0) {
60aaf933 7237 *group_cnt = 0;
7238 *worker_groups = NULL;
851c30c9
SL
7239 return 0;
7240 }
60aaf933 7241 *group_cnt = num_possible_nodes();
851c30c9 7242 size = sizeof(struct r5worker) * cnt;
6396bb22
KC
7243 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7244 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7245 GFP_NOIO);
60aaf933 7246 if (!*worker_groups || !workers) {
851c30c9 7247 kfree(workers);
60aaf933 7248 kfree(*worker_groups);
851c30c9
SL
7249 return -ENOMEM;
7250 }
7251
60aaf933 7252 for (i = 0; i < *group_cnt; i++) {
851c30c9
SL
7253 struct r5worker_group *group;
7254
0c775d52 7255 group = &(*worker_groups)[i];
851c30c9 7256 INIT_LIST_HEAD(&group->handle_list);
535ae4eb 7257 INIT_LIST_HEAD(&group->loprio_list);
851c30c9
SL
7258 group->conf = conf;
7259 group->workers = workers + i * cnt;
7260
7261 for (j = 0; j < cnt; j++) {
566c09c5
SL
7262 struct r5worker *worker = group->workers + j;
7263 worker->group = group;
7264 INIT_WORK(&worker->work, raid5_do_work);
7265
7266 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7267 INIT_LIST_HEAD(worker->temp_inactive_list + k);
851c30c9
SL
7268 }
7269 }
7270
7271 return 0;
7272}
7273
7274static void free_thread_groups(struct r5conf *conf)
7275{
7276 if (conf->worker_groups)
7277 kfree(conf->worker_groups[0].workers);
7278 kfree(conf->worker_groups);
7279 conf->worker_groups = NULL;
7280}
7281
80c3a6ce 7282static sector_t
fd01b88c 7283raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 7284{
d1688a6d 7285 struct r5conf *conf = mddev->private;
80c3a6ce
DW
7286
7287 if (!sectors)
7288 sectors = mddev->dev_sectors;
5e5e3e78 7289 if (!raid_disks)
7ec05478 7290 /* size is defined by the smallest of previous and new size */
5e5e3e78 7291 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 7292
3cb5edf4
N
7293 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7294 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
80c3a6ce
DW
7295 return sectors * (raid_disks - conf->max_degraded);
7296}
7297
789b5e03
ON
7298static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7299{
7300 safe_put_page(percpu->spare_page);
789b5e03 7301 percpu->spare_page = NULL;
b330e6a4 7302 kvfree(percpu->scribble);
789b5e03
ON
7303 percpu->scribble = NULL;
7304}
7305
7306static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7307{
b330e6a4 7308 if (conf->level == 6 && !percpu->spare_page) {
789b5e03 7309 percpu->spare_page = alloc_page(GFP_KERNEL);
b330e6a4
KO
7310 if (!percpu->spare_page)
7311 return -ENOMEM;
7312 }
7313
7314 if (scribble_alloc(percpu,
7315 max(conf->raid_disks,
7316 conf->previous_raid_disks),
7317 max(conf->chunk_sectors,
7318 conf->prev_chunk_sectors)
c911c46c 7319 / RAID5_STRIPE_SECTORS(conf))) {
789b5e03
ON
7320 free_scratch_buffer(conf, percpu);
7321 return -ENOMEM;
7322 }
7323
770b1d21 7324 local_lock_init(&percpu->lock);
789b5e03
ON
7325 return 0;
7326}
7327
29c6d1bb 7328static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
36d1c647 7329{
29c6d1bb
SAS
7330 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7331
7332 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7333 return 0;
7334}
36d1c647 7335
29c6d1bb
SAS
7336static void raid5_free_percpu(struct r5conf *conf)
7337{
36d1c647
DW
7338 if (!conf->percpu)
7339 return;
7340
29c6d1bb 7341 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
36d1c647
DW
7342 free_percpu(conf->percpu);
7343}
7344
d1688a6d 7345static void free_conf(struct r5conf *conf)
95fc17aa 7346{
d7bd398e
SL
7347 int i;
7348
ff875738
AP
7349 log_exit(conf);
7350
565e0450 7351 unregister_shrinker(&conf->shrinker);
851c30c9 7352 free_thread_groups(conf);
95fc17aa 7353 shrink_stripes(conf);
36d1c647 7354 raid5_free_percpu(conf);
d7bd398e
SL
7355 for (i = 0; i < conf->pool_size; i++)
7356 if (conf->disks[i].extra_page)
7357 put_page(conf->disks[i].extra_page);
95fc17aa 7358 kfree(conf->disks);
afeee514 7359 bioset_exit(&conf->bio_split);
95fc17aa 7360 kfree(conf->stripe_hashtbl);
aaf9f12e 7361 kfree(conf->pending_data);
95fc17aa
DW
7362 kfree(conf);
7363}
7364
29c6d1bb 7365static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
36d1c647 7366{
29c6d1bb 7367 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
36d1c647
DW
7368 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7369
29c6d1bb 7370 if (alloc_scratch_buffer(conf, percpu)) {
cc6167b4
N
7371 pr_warn("%s: failed memory allocation for cpu%u\n",
7372 __func__, cpu);
29c6d1bb 7373 return -ENOMEM;
36d1c647 7374 }
29c6d1bb 7375 return 0;
36d1c647 7376}
36d1c647 7377
d1688a6d 7378static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647 7379{
789b5e03 7380 int err = 0;
36d1c647 7381
789b5e03
ON
7382 conf->percpu = alloc_percpu(struct raid5_percpu);
7383 if (!conf->percpu)
36d1c647 7384 return -ENOMEM;
789b5e03 7385
29c6d1bb 7386 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
27a353c0
SL
7387 if (!err) {
7388 conf->scribble_disks = max(conf->raid_disks,
7389 conf->previous_raid_disks);
7390 conf->scribble_sectors = max(conf->chunk_sectors,
7391 conf->prev_chunk_sectors);
7392 }
36d1c647
DW
7393 return err;
7394}
7395
edbe83ab
N
7396static unsigned long raid5_cache_scan(struct shrinker *shrink,
7397 struct shrink_control *sc)
7398{
7399 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
2d5b569b
N
7400 unsigned long ret = SHRINK_STOP;
7401
7402 if (mutex_trylock(&conf->cache_size_mutex)) {
7403 ret= 0;
49895bcc
N
7404 while (ret < sc->nr_to_scan &&
7405 conf->max_nr_stripes > conf->min_nr_stripes) {
2d5b569b
N
7406 if (drop_one_stripe(conf) == 0) {
7407 ret = SHRINK_STOP;
7408 break;
7409 }
7410 ret++;
7411 }
7412 mutex_unlock(&conf->cache_size_mutex);
edbe83ab
N
7413 }
7414 return ret;
7415}
7416
7417static unsigned long raid5_cache_count(struct shrinker *shrink,
7418 struct shrink_control *sc)
7419{
7420 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7421
7422 if (conf->max_nr_stripes < conf->min_nr_stripes)
7423 /* unlikely, but not impossible */
7424 return 0;
7425 return conf->max_nr_stripes - conf->min_nr_stripes;
7426}
7427
d1688a6d 7428static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 7429{
d1688a6d 7430 struct r5conf *conf;
5e5e3e78 7431 int raid_disk, memory, max_disks;
3cb03002 7432 struct md_rdev *rdev;
1da177e4 7433 struct disk_info *disk;
0232605d 7434 char pers_name[6];
566c09c5 7435 int i;
d2c9ad41 7436 int group_cnt;
60aaf933 7437 struct r5worker_group *new_group;
8fbcba6b 7438 int ret = -ENOMEM;
1da177e4 7439
91adb564
N
7440 if (mddev->new_level != 5
7441 && mddev->new_level != 4
7442 && mddev->new_level != 6) {
cc6167b4
N
7443 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7444 mdname(mddev), mddev->new_level);
91adb564 7445 return ERR_PTR(-EIO);
1da177e4 7446 }
91adb564
N
7447 if ((mddev->new_level == 5
7448 && !algorithm_valid_raid5(mddev->new_layout)) ||
7449 (mddev->new_level == 6
7450 && !algorithm_valid_raid6(mddev->new_layout))) {
cc6167b4
N
7451 pr_warn("md/raid:%s: layout %d not supported\n",
7452 mdname(mddev), mddev->new_layout);
91adb564 7453 return ERR_PTR(-EIO);
99c0fb5f 7454 }
91adb564 7455 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
cc6167b4
N
7456 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7457 mdname(mddev), mddev->raid_disks);
91adb564 7458 return ERR_PTR(-EINVAL);
4bbf3771
N
7459 }
7460
664e7c41
AN
7461 if (!mddev->new_chunk_sectors ||
7462 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7463 !is_power_of_2(mddev->new_chunk_sectors)) {
cc6167b4
N
7464 pr_warn("md/raid:%s: invalid chunk size %d\n",
7465 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 7466 return ERR_PTR(-EINVAL);
f6705578
N
7467 }
7468
d1688a6d 7469 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 7470 if (conf == NULL)
1da177e4 7471 goto abort;
c911c46c 7472
e2368582
YY
7473#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7474 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7475 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7476 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7477#endif
aaf9f12e
SL
7478 INIT_LIST_HEAD(&conf->free_list);
7479 INIT_LIST_HEAD(&conf->pending_list);
6396bb22
KC
7480 conf->pending_data = kcalloc(PENDING_IO_MAX,
7481 sizeof(struct r5pending_data),
7482 GFP_KERNEL);
aaf9f12e
SL
7483 if (!conf->pending_data)
7484 goto abort;
7485 for (i = 0; i < PENDING_IO_MAX; i++)
7486 list_add(&conf->pending_data[i].sibling, &conf->free_list);
851c30c9 7487 /* Don't enable multi-threading by default*/
d2c9ad41 7488 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
60aaf933 7489 conf->group_cnt = group_cnt;
d2c9ad41 7490 conf->worker_cnt_per_group = 0;
60aaf933 7491 conf->worker_groups = new_group;
7492 } else
851c30c9 7493 goto abort;
f5efd45a 7494 spin_lock_init(&conf->device_lock);
0a87b25f 7495 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
2d5b569b 7496 mutex_init(&conf->cache_size_mutex);
8fbcba6b 7497
b1b46486 7498 init_waitqueue_head(&conf->wait_for_quiescent);
6ab2a4b8 7499 init_waitqueue_head(&conf->wait_for_stripe);
f5efd45a
DW
7500 init_waitqueue_head(&conf->wait_for_overlap);
7501 INIT_LIST_HEAD(&conf->handle_list);
535ae4eb 7502 INIT_LIST_HEAD(&conf->loprio_list);
f5efd45a
DW
7503 INIT_LIST_HEAD(&conf->hold_list);
7504 INIT_LIST_HEAD(&conf->delayed_list);
7505 INIT_LIST_HEAD(&conf->bitmap_list);
773ca82f 7506 init_llist_head(&conf->released_stripes);
f5efd45a
DW
7507 atomic_set(&conf->active_stripes, 0);
7508 atomic_set(&conf->preread_active_stripes, 0);
7509 atomic_set(&conf->active_aligned_reads, 0);
765d704d
SL
7510 spin_lock_init(&conf->pending_bios_lock);
7511 conf->batch_bio_dispatch = true;
7512 rdev_for_each(rdev, mddev) {
7513 if (test_bit(Journal, &rdev->flags))
7514 continue;
10f0d2a5 7515 if (bdev_nonrot(rdev->bdev)) {
765d704d
SL
7516 conf->batch_bio_dispatch = false;
7517 break;
7518 }
7519 }
7520
f5efd45a 7521 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 7522 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
7523
7524 conf->raid_disks = mddev->raid_disks;
7525 if (mddev->reshape_position == MaxSector)
7526 conf->previous_raid_disks = mddev->raid_disks;
7527 else
f6705578 7528 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78 7529 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
f6705578 7530
6396bb22 7531 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
b55e6bfc 7532 GFP_KERNEL);
d7bd398e 7533
b55e6bfc
N
7534 if (!conf->disks)
7535 goto abort;
9ffae0cf 7536
d7bd398e
SL
7537 for (i = 0; i < max_disks; i++) {
7538 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7539 if (!conf->disks[i].extra_page)
7540 goto abort;
7541 }
7542
afeee514
KO
7543 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7544 if (ret)
dd7a8f5d 7545 goto abort;
1da177e4
LT
7546 conf->mddev = mddev;
7547
5f7ef487
DC
7548 ret = -ENOMEM;
7549 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7550 if (!conf->stripe_hashtbl)
1da177e4 7551 goto abort;
1da177e4 7552
566c09c5
SL
7553 /* We init hash_locks[0] separately to that it can be used
7554 * as the reference lock in the spin_lock_nest_lock() call
7555 * in lock_all_device_hash_locks_irq in order to convince
7556 * lockdep that we know what we are doing.
7557 */
7558 spin_lock_init(conf->hash_locks);
7559 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7560 spin_lock_init(conf->hash_locks + i);
7561
7562 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7563 INIT_LIST_HEAD(conf->inactive_list + i);
7564
7565 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7566 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7567
1e6d690b
SL
7568 atomic_set(&conf->r5c_cached_full_stripes, 0);
7569 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7570 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7571 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
e33fbb9c
SL
7572 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7573 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
1e6d690b 7574
36d1c647 7575 conf->level = mddev->new_level;
46d5b785 7576 conf->chunk_sectors = mddev->new_chunk_sectors;
8fbcba6b
LG
7577 ret = raid5_alloc_percpu(conf);
7578 if (ret)
36d1c647
DW
7579 goto abort;
7580
0c55e022 7581 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 7582
8fbcba6b 7583 ret = -EIO;
dafb20fa 7584 rdev_for_each(rdev, mddev) {
1da177e4 7585 raid_disk = rdev->raid_disk;
5e5e3e78 7586 if (raid_disk >= max_disks
f2076e7d 7587 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
1da177e4
LT
7588 continue;
7589 disk = conf->disks + raid_disk;
7590
17045f52
N
7591 if (test_bit(Replacement, &rdev->flags)) {
7592 if (disk->replacement)
7593 goto abort;
b0920ede 7594 RCU_INIT_POINTER(disk->replacement, rdev);
17045f52
N
7595 } else {
7596 if (disk->rdev)
7597 goto abort;
b0920ede 7598 RCU_INIT_POINTER(disk->rdev, rdev);
17045f52 7599 }
1da177e4 7600
b2d444d7 7601 if (test_bit(In_sync, &rdev->flags)) {
913cce5a
CH
7602 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7603 mdname(mddev), rdev->bdev, raid_disk);
d6b212f4 7604 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
7605 /* Cannot rely on bitmap to complete recovery */
7606 conf->fullsync = 1;
1da177e4
LT
7607 }
7608
91adb564 7609 conf->level = mddev->new_level;
584acdd4 7610 if (conf->level == 6) {
16a53ecc 7611 conf->max_degraded = 2;
584acdd4
MS
7612 if (raid6_call.xor_syndrome)
7613 conf->rmw_level = PARITY_ENABLE_RMW;
7614 else
7615 conf->rmw_level = PARITY_DISABLE_RMW;
7616 } else {
16a53ecc 7617 conf->max_degraded = 1;
584acdd4
MS
7618 conf->rmw_level = PARITY_ENABLE_RMW;
7619 }
91adb564 7620 conf->algorithm = mddev->new_layout;
fef9c61f 7621 conf->reshape_progress = mddev->reshape_position;
e183eaed 7622 if (conf->reshape_progress != MaxSector) {
09c9e5fa 7623 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed 7624 conf->prev_algo = mddev->layout;
5cac6bcb
N
7625 } else {
7626 conf->prev_chunk_sectors = conf->chunk_sectors;
7627 conf->prev_algo = conf->algorithm;
e183eaed 7628 }
1da177e4 7629
edbe83ab 7630 conf->min_nr_stripes = NR_STRIPES;
ad5b0f76
SL
7631 if (mddev->reshape_position != MaxSector) {
7632 int stripes = max_t(int,
c911c46c
YY
7633 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7634 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
ad5b0f76
SL
7635 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7636 if (conf->min_nr_stripes != NR_STRIPES)
cc6167b4 7637 pr_info("md/raid:%s: force stripe size %d for reshape\n",
ad5b0f76
SL
7638 mdname(mddev), conf->min_nr_stripes);
7639 }
edbe83ab 7640 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 7641 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4bda556a 7642 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
edbe83ab 7643 if (grow_stripes(conf, conf->min_nr_stripes)) {
cc6167b4
N
7644 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7645 mdname(mddev), memory);
8fbcba6b 7646 ret = -ENOMEM;
91adb564
N
7647 goto abort;
7648 } else
cc6167b4 7649 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
edbe83ab
N
7650 /*
7651 * Losing a stripe head costs more than the time to refill it,
7652 * it reduces the queue depth and so can hurt throughput.
7653 * So set it rather large, scaled by number of devices.
7654 */
7655 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7656 conf->shrinker.scan_objects = raid5_cache_scan;
7657 conf->shrinker.count_objects = raid5_cache_count;
7658 conf->shrinker.batch = 128;
7659 conf->shrinker.flags = 0;
e33c267a 7660 ret = register_shrinker(&conf->shrinker, "md-raid5:%s", mdname(mddev));
8fbcba6b 7661 if (ret) {
cc6167b4
N
7662 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7663 mdname(mddev));
6a0f53ff
CY
7664 goto abort;
7665 }
1da177e4 7666
0232605d
N
7667 sprintf(pers_name, "raid%d", mddev->new_level);
7668 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564 7669 if (!conf->thread) {
cc6167b4
N
7670 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7671 mdname(mddev));
8fbcba6b 7672 ret = -ENOMEM;
16a53ecc
N
7673 goto abort;
7674 }
91adb564
N
7675
7676 return conf;
7677
7678 abort:
8fbcba6b 7679 if (conf)
95fc17aa 7680 free_conf(conf);
8fbcba6b 7681 return ERR_PTR(ret);
91adb564
N
7682}
7683
c148ffdc
N
7684static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7685{
7686 switch (algo) {
7687 case ALGORITHM_PARITY_0:
7688 if (raid_disk < max_degraded)
7689 return 1;
7690 break;
7691 case ALGORITHM_PARITY_N:
7692 if (raid_disk >= raid_disks - max_degraded)
7693 return 1;
7694 break;
7695 case ALGORITHM_PARITY_0_6:
f72ffdd6 7696 if (raid_disk == 0 ||
c148ffdc
N
7697 raid_disk == raid_disks - 1)
7698 return 1;
7699 break;
7700 case ALGORITHM_LEFT_ASYMMETRIC_6:
7701 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7702 case ALGORITHM_LEFT_SYMMETRIC_6:
7703 case ALGORITHM_RIGHT_SYMMETRIC_6:
7704 if (raid_disk == raid_disks - 1)
7705 return 1;
7706 }
7707 return 0;
7708}
7709
16ef5101
CH
7710static void raid5_set_io_opt(struct r5conf *conf)
7711{
7712 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7713 (conf->raid_disks - conf->max_degraded));
7714}
7715
849674e4 7716static int raid5_run(struct mddev *mddev)
91adb564 7717{
d1688a6d 7718 struct r5conf *conf;
c148ffdc 7719 int dirty_parity_disks = 0;
3cb03002 7720 struct md_rdev *rdev;
713cf5a6 7721 struct md_rdev *journal_dev = NULL;
c148ffdc 7722 sector_t reshape_offset = 0;
0c031fd3 7723 int i, ret = 0;
b5254dd5
N
7724 long long min_offset_diff = 0;
7725 int first = 1;
91adb564 7726
0c031fd3
XN
7727 if (acct_bioset_init(mddev)) {
7728 pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
a415c0f1 7729 return -ENOMEM;
0c031fd3
XN
7730 }
7731
7732 if (mddev_init_writes_pending(mddev) < 0) {
7733 ret = -ENOMEM;
7734 goto exit_acct_set;
7735 }
a415c0f1 7736
8c6ac868 7737 if (mddev->recovery_cp != MaxSector)
cc6167b4
N
7738 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7739 mdname(mddev));
b5254dd5
N
7740
7741 rdev_for_each(rdev, mddev) {
7742 long long diff;
713cf5a6 7743
f2076e7d 7744 if (test_bit(Journal, &rdev->flags)) {
713cf5a6 7745 journal_dev = rdev;
f2076e7d
SL
7746 continue;
7747 }
b5254dd5
N
7748 if (rdev->raid_disk < 0)
7749 continue;
7750 diff = (rdev->new_data_offset - rdev->data_offset);
7751 if (first) {
7752 min_offset_diff = diff;
7753 first = 0;
7754 } else if (mddev->reshape_backwards &&
7755 diff < min_offset_diff)
7756 min_offset_diff = diff;
7757 else if (!mddev->reshape_backwards &&
7758 diff > min_offset_diff)
7759 min_offset_diff = diff;
7760 }
7761
230b55fa
N
7762 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7763 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7764 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7765 mdname(mddev));
0c031fd3
XN
7766 ret = -EINVAL;
7767 goto exit_acct_set;
230b55fa
N
7768 }
7769
91adb564
N
7770 if (mddev->reshape_position != MaxSector) {
7771 /* Check that we can continue the reshape.
b5254dd5
N
7772 * Difficulties arise if the stripe we would write to
7773 * next is at or after the stripe we would read from next.
7774 * For a reshape that changes the number of devices, this
7775 * is only possible for a very short time, and mdadm makes
7776 * sure that time appears to have past before assembling
7777 * the array. So we fail if that time hasn't passed.
7778 * For a reshape that keeps the number of devices the same
7779 * mdadm must be monitoring the reshape can keeping the
7780 * critical areas read-only and backed up. It will start
7781 * the array in read-only mode, so we check for that.
91adb564
N
7782 */
7783 sector_t here_new, here_old;
7784 int old_disks;
18b00334 7785 int max_degraded = (mddev->level == 6 ? 2 : 1);
05256d98
N
7786 int chunk_sectors;
7787 int new_data_disks;
91adb564 7788
713cf5a6 7789 if (journal_dev) {
cc6167b4
N
7790 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7791 mdname(mddev));
0c031fd3
XN
7792 ret = -EINVAL;
7793 goto exit_acct_set;
713cf5a6
SL
7794 }
7795
88ce4930 7796 if (mddev->new_level != mddev->level) {
cc6167b4
N
7797 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7798 mdname(mddev));
0c031fd3
XN
7799 ret = -EINVAL;
7800 goto exit_acct_set;
91adb564 7801 }
91adb564
N
7802 old_disks = mddev->raid_disks - mddev->delta_disks;
7803 /* reshape_position must be on a new-stripe boundary, and one
7804 * further up in new geometry must map after here in old
7805 * geometry.
05256d98
N
7806 * If the chunk sizes are different, then as we perform reshape
7807 * in units of the largest of the two, reshape_position needs
7808 * be a multiple of the largest chunk size times new data disks.
91adb564
N
7809 */
7810 here_new = mddev->reshape_position;
05256d98
N
7811 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7812 new_data_disks = mddev->raid_disks - max_degraded;
7813 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
cc6167b4
N
7814 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7815 mdname(mddev));
0c031fd3
XN
7816 ret = -EINVAL;
7817 goto exit_acct_set;
91adb564 7818 }
05256d98 7819 reshape_offset = here_new * chunk_sectors;
91adb564
N
7820 /* here_new is the stripe we will write to */
7821 here_old = mddev->reshape_position;
05256d98 7822 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
91adb564
N
7823 /* here_old is the first stripe that we might need to read
7824 * from */
67ac6011
N
7825 if (mddev->delta_disks == 0) {
7826 /* We cannot be sure it is safe to start an in-place
b5254dd5 7827 * reshape. It is only safe if user-space is monitoring
67ac6011
N
7828 * and taking constant backups.
7829 * mdadm always starts a situation like this in
7830 * readonly mode so it can take control before
7831 * allowing any writes. So just check for that.
7832 */
b5254dd5
N
7833 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7834 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7835 /* not really in-place - so OK */;
7836 else if (mddev->ro == 0) {
cc6167b4
N
7837 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7838 mdname(mddev));
0c031fd3
XN
7839 ret = -EINVAL;
7840 goto exit_acct_set;
67ac6011 7841 }
2c810cdd 7842 } else if (mddev->reshape_backwards
05256d98
N
7843 ? (here_new * chunk_sectors + min_offset_diff <=
7844 here_old * chunk_sectors)
7845 : (here_new * chunk_sectors >=
7846 here_old * chunk_sectors + (-min_offset_diff))) {
91adb564 7847 /* Reading from the same stripe as writing to - bad */
cc6167b4
N
7848 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7849 mdname(mddev));
0c031fd3
XN
7850 ret = -EINVAL;
7851 goto exit_acct_set;
91adb564 7852 }
cc6167b4 7853 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
91adb564
N
7854 /* OK, we should be able to continue; */
7855 } else {
7856 BUG_ON(mddev->level != mddev->new_level);
7857 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 7858 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 7859 BUG_ON(mddev->delta_disks != 0);
1da177e4 7860 }
91adb564 7861
3418d036
AP
7862 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7863 test_bit(MD_HAS_PPL, &mddev->flags)) {
7864 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7865 mdname(mddev));
7866 clear_bit(MD_HAS_PPL, &mddev->flags);
ddc08823 7867 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
3418d036
AP
7868 }
7869
245f46c2
N
7870 if (mddev->private == NULL)
7871 conf = setup_conf(mddev);
7872 else
7873 conf = mddev->private;
7874
0c031fd3
XN
7875 if (IS_ERR(conf)) {
7876 ret = PTR_ERR(conf);
7877 goto exit_acct_set;
7878 }
91adb564 7879
486b0f7b
SL
7880 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7881 if (!journal_dev) {
cc6167b4
N
7882 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7883 mdname(mddev));
486b0f7b
SL
7884 mddev->ro = 1;
7885 set_disk_ro(mddev->gendisk, 1);
7886 } else if (mddev->recovery_cp == MaxSector)
7887 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7dde2ad3
SL
7888 }
7889
b5254dd5 7890 conf->min_offset_diff = min_offset_diff;
91adb564
N
7891 mddev->thread = conf->thread;
7892 conf->thread = NULL;
7893 mddev->private = conf;
7894
17045f52
N
7895 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7896 i++) {
9aeb7f99 7897 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
17045f52
N
7898 if (!rdev && conf->disks[i].replacement) {
7899 /* The replacement is all we have yet */
9aeb7f99
LG
7900 rdev = rdev_mdlock_deref(mddev,
7901 conf->disks[i].replacement);
17045f52
N
7902 conf->disks[i].replacement = NULL;
7903 clear_bit(Replacement, &rdev->flags);
b0920ede 7904 rcu_assign_pointer(conf->disks[i].rdev, rdev);
17045f52
N
7905 }
7906 if (!rdev)
c148ffdc 7907 continue;
b0920ede 7908 if (rcu_access_pointer(conf->disks[i].replacement) &&
17045f52
N
7909 conf->reshape_progress != MaxSector) {
7910 /* replacements and reshape simply do not mix. */
cc6167b4 7911 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
17045f52
N
7912 goto abort;
7913 }
7bc43612 7914 if (test_bit(In_sync, &rdev->flags))
2f115882 7915 continue;
c148ffdc
N
7916 /* This disc is not fully in-sync. However if it
7917 * just stored parity (beyond the recovery_offset),
7918 * when we don't need to be concerned about the
7919 * array being dirty.
7920 * When reshape goes 'backwards', we never have
7921 * partially completed devices, so we only need
7922 * to worry about reshape going forwards.
7923 */
7924 /* Hack because v0.91 doesn't store recovery_offset properly. */
7925 if (mddev->major_version == 0 &&
7926 mddev->minor_version > 90)
7927 rdev->recovery_offset = reshape_offset;
5026d7a9 7928
c148ffdc
N
7929 if (rdev->recovery_offset < reshape_offset) {
7930 /* We need to check old and new layout */
7931 if (!only_parity(rdev->raid_disk,
7932 conf->algorithm,
7933 conf->raid_disks,
7934 conf->max_degraded))
7935 continue;
7936 }
7937 if (!only_parity(rdev->raid_disk,
7938 conf->prev_algo,
7939 conf->previous_raid_disks,
7940 conf->max_degraded))
7941 continue;
7942 dirty_parity_disks++;
7943 }
91adb564 7944
17045f52
N
7945 /*
7946 * 0 for a fully functional array, 1 or 2 for a degraded array.
7947 */
2e38a37f 7948 mddev->degraded = raid5_calc_degraded(conf);
91adb564 7949
674806d6 7950 if (has_failed(conf)) {
cc6167b4 7951 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
02c2de8c 7952 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
7953 goto abort;
7954 }
7955
91adb564 7956 /* device size must be a multiple of chunk size */
c5eec74f 7957 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
91adb564
N
7958 mddev->resync_max_sectors = mddev->dev_sectors;
7959
c148ffdc 7960 if (mddev->degraded > dirty_parity_disks &&
1da177e4 7961 mddev->recovery_cp != MaxSector) {
4536bf9b
AP
7962 if (test_bit(MD_HAS_PPL, &mddev->flags))
7963 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7964 mdname(mddev));
7965 else if (mddev->ok_start_degraded)
cc6167b4
N
7966 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7967 mdname(mddev));
6ff8d8ec 7968 else {
cc6167b4
N
7969 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7970 mdname(mddev));
6ff8d8ec
N
7971 goto abort;
7972 }
1da177e4
LT
7973 }
7974
cc6167b4
N
7975 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7976 mdname(mddev), conf->level,
7977 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7978 mddev->new_layout);
1da177e4
LT
7979
7980 print_raid5_conf(conf);
7981
fef9c61f 7982 if (conf->reshape_progress != MaxSector) {
fef9c61f 7983 conf->reshape_safe = conf->reshape_progress;
f6705578
N
7984 atomic_set(&conf->reshape_stripes, 0);
7985 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7986 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7987 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7988 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7989 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 7990 "reshape");
e406f12d
AP
7991 if (!mddev->sync_thread)
7992 goto abort;
f6705578
N
7993 }
7994
1da177e4 7995 /* Ok, everything is just fine now */
a64c876f
N
7996 if (mddev->to_remove == &raid5_attrs_group)
7997 mddev->to_remove = NULL;
00bcb4ac
N
7998 else if (mddev->kobj.sd &&
7999 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
cc6167b4
N
8000 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8001 mdname(mddev));
4a5add49 8002 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 8003
4a5add49 8004 if (mddev->queue) {
9f7c2220 8005 int chunk_size;
4a5add49
N
8006 /* read-ahead size must cover two whole stripes, which
8007 * is 2 * (datadisks) * chunksize where 'n' is the
8008 * number of raid devices
8009 */
8010 int data_disks = conf->previous_raid_disks - conf->max_degraded;
8011 int stripe = data_disks *
8012 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
91adb564 8013
9f7c2220
N
8014 chunk_size = mddev->chunk_sectors << 9;
8015 blk_queue_io_min(mddev->queue, chunk_size);
16ef5101 8016 raid5_set_io_opt(conf);
c78afc62 8017 mddev->queue->limits.raid_partial_stripes_expensive = 1;
620125f2
SL
8018 /*
8019 * We can only discard a whole stripe. It doesn't make sense to
8020 * discard data disk but write parity disk
8021 */
8022 stripe = stripe * PAGE_SIZE;
c6efe434 8023 stripe = roundup_pow_of_two(stripe);
620125f2 8024 mddev->queue->limits.discard_granularity = stripe;
e8d7c332 8025
3deff1a7 8026 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 8027
05616be5 8028 rdev_for_each(rdev, mddev) {
9f7c2220
N
8029 disk_stack_limits(mddev->gendisk, rdev->bdev,
8030 rdev->data_offset << 9);
05616be5
N
8031 disk_stack_limits(mddev->gendisk, rdev->bdev,
8032 rdev->new_data_offset << 9);
8033 }
620125f2 8034
48920ff2
CH
8035 /*
8036 * zeroing is required, otherwise data
8037 * could be lost. Consider a scenario: discard a stripe
8038 * (the stripe could be inconsistent if
8039 * discard_zeroes_data is 0); write one disk of the
8040 * stripe (the stripe could be inconsistent again
8041 * depending on which disks are used to calculate
8042 * parity); the disk is broken; The stripe data of this
8043 * disk is lost.
8044 *
8045 * We only allow DISCARD if the sysadmin has confirmed that
8046 * only safe devices are in use by setting a module parameter.
8047 * A better idea might be to turn DISCARD into WRITE_ZEROES
8048 * requests, as that is required to be safe.
8049 */
70200574
CH
8050 if (!devices_handle_discard_safely ||
8051 mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
8052 mddev->queue->limits.discard_granularity < stripe)
8053 blk_queue_max_discard_sectors(mddev->queue, 0);
1dffdddd 8054
7e55c60a
LG
8055 /*
8056 * Requests require having a bitmap for each stripe.
8057 * Limit the max sectors based on this.
8058 */
8059 blk_queue_max_hw_sectors(mddev->queue,
8060 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf));
9ad1a74f
LG
8061
8062 /* No restrictions on the number of segments in the request */
8063 blk_queue_max_segments(mddev->queue, USHRT_MAX);
9f7c2220 8064 }
23032a0e 8065
845b9e22 8066 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
ff875738 8067 goto abort;
5c7e81c3 8068
1da177e4
LT
8069 return 0;
8070abort:
01f96c0a 8071 md_unregister_thread(&mddev->thread);
e4f869d9
N
8072 print_raid5_conf(conf);
8073 free_conf(conf);
1da177e4 8074 mddev->private = NULL;
cc6167b4 8075 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
0c031fd3
XN
8076 ret = -EIO;
8077exit_acct_set:
8078 acct_bioset_exit(mddev);
8079 return ret;
1da177e4
LT
8080}
8081
afa0f557 8082static void raid5_free(struct mddev *mddev, void *priv)
1da177e4 8083{
afa0f557 8084 struct r5conf *conf = priv;
1da177e4 8085
95fc17aa 8086 free_conf(conf);
0c031fd3 8087 acct_bioset_exit(mddev);
a64c876f 8088 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
8089}
8090
849674e4 8091static void raid5_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 8092{
d1688a6d 8093 struct r5conf *conf = mddev->private;
1da177e4
LT
8094 int i;
8095
9d8f0363 8096 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
3cb5edf4 8097 conf->chunk_sectors / 2, mddev->layout);
02c2de8c 8098 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5fd13351
N
8099 rcu_read_lock();
8100 for (i = 0; i < conf->raid_disks; i++) {
8101 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
8102 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8103 }
8104 rcu_read_unlock();
1da177e4 8105 seq_printf (seq, "]");
1da177e4
LT
8106}
8107
d1688a6d 8108static void print_raid5_conf (struct r5conf *conf)
1da177e4 8109{
b0920ede 8110 struct md_rdev *rdev;
1da177e4 8111 int i;
1da177e4 8112
cc6167b4 8113 pr_debug("RAID conf printout:\n");
1da177e4 8114 if (!conf) {
cc6167b4 8115 pr_debug("(conf==NULL)\n");
1da177e4
LT
8116 return;
8117 }
cc6167b4 8118 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
0c55e022
N
8119 conf->raid_disks,
8120 conf->raid_disks - conf->mddev->degraded);
1da177e4 8121
b0920ede 8122 rcu_read_lock();
1da177e4 8123 for (i = 0; i < conf->raid_disks; i++) {
b0920ede
LG
8124 rdev = rcu_dereference(conf->disks[i].rdev);
8125 if (rdev)
913cce5a 8126 pr_debug(" disk %d, o:%d, dev:%pg\n",
b0920ede 8127 i, !test_bit(Faulty, &rdev->flags),
913cce5a 8128 rdev->bdev);
1da177e4 8129 }
b0920ede 8130 rcu_read_unlock();
1da177e4
LT
8131}
8132
fd01b88c 8133static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
8134{
8135 int i;
d1688a6d 8136 struct r5conf *conf = mddev->private;
9aeb7f99 8137 struct md_rdev *rdev, *replacement;
6b965620
N
8138 int count = 0;
8139 unsigned long flags;
1da177e4
LT
8140
8141 for (i = 0; i < conf->raid_disks; i++) {
9aeb7f99
LG
8142 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
8143 replacement = rdev_mdlock_deref(mddev,
8144 conf->disks[i].replacement);
8145 if (replacement
8146 && replacement->recovery_offset == MaxSector
8147 && !test_bit(Faulty, &replacement->flags)
8148 && !test_and_set_bit(In_sync, &replacement->flags)) {
dd054fce 8149 /* Replacement has just become active. */
9aeb7f99
LG
8150 if (!rdev
8151 || !test_and_clear_bit(In_sync, &rdev->flags))
dd054fce 8152 count++;
9aeb7f99 8153 if (rdev) {
dd054fce
N
8154 /* Replaced device not technically faulty,
8155 * but we need to be sure it gets removed
8156 * and never re-added.
8157 */
9aeb7f99 8158 set_bit(Faulty, &rdev->flags);
dd054fce 8159 sysfs_notify_dirent_safe(
9aeb7f99 8160 rdev->sysfs_state);
dd054fce 8161 }
9aeb7f99
LG
8162 sysfs_notify_dirent_safe(replacement->sysfs_state);
8163 } else if (rdev
8164 && rdev->recovery_offset == MaxSector
8165 && !test_bit(Faulty, &rdev->flags)
8166 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 8167 count++;
9aeb7f99 8168 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
8169 }
8170 }
6b965620 8171 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 8172 mddev->degraded = raid5_calc_degraded(conf);
6b965620 8173 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 8174 print_raid5_conf(conf);
6b965620 8175 return count;
1da177e4
LT
8176}
8177
b8321b68 8178static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 8179{
d1688a6d 8180 struct r5conf *conf = mddev->private;
1da177e4 8181 int err = 0;
b8321b68 8182 int number = rdev->raid_disk;
b0920ede 8183 struct md_rdev __rcu **rdevp;
1ebc2cec 8184 struct disk_info *p;
b0920ede 8185 struct md_rdev *tmp;
1da177e4
LT
8186
8187 print_raid5_conf(conf);
f6b6ec5c 8188 if (test_bit(Journal, &rdev->flags) && conf->log) {
c2bb6242 8189 /*
f6b6ec5c
SL
8190 * we can't wait pending write here, as this is called in
8191 * raid5d, wait will deadlock.
84dd97a6
N
8192 * neilb: there is no locking about new writes here,
8193 * so this cannot be safe.
c2bb6242 8194 */
70d466f7
SL
8195 if (atomic_read(&conf->active_stripes) ||
8196 atomic_read(&conf->r5c_cached_full_stripes) ||
8197 atomic_read(&conf->r5c_cached_partial_stripes)) {
f6b6ec5c 8198 return -EBUSY;
84dd97a6 8199 }
ff875738 8200 log_exit(conf);
f6b6ec5c 8201 return 0;
c2bb6242 8202 }
1ebc2cec
MP
8203 if (unlikely(number >= conf->pool_size))
8204 return 0;
8205 p = conf->disks + number;
b0920ede 8206 if (rdev == rcu_access_pointer(p->rdev))
657e3e4d 8207 rdevp = &p->rdev;
b0920ede 8208 else if (rdev == rcu_access_pointer(p->replacement))
657e3e4d
N
8209 rdevp = &p->replacement;
8210 else
8211 return 0;
8212
8213 if (number >= conf->raid_disks &&
8214 conf->reshape_progress == MaxSector)
8215 clear_bit(In_sync, &rdev->flags);
8216
8217 if (test_bit(In_sync, &rdev->flags) ||
8218 atomic_read(&rdev->nr_pending)) {
8219 err = -EBUSY;
8220 goto abort;
8221 }
8222 /* Only remove non-faulty devices if recovery
8223 * isn't possible.
8224 */
8225 if (!test_bit(Faulty, &rdev->flags) &&
8226 mddev->recovery_disabled != conf->recovery_disabled &&
8227 !has_failed(conf) &&
b0920ede
LG
8228 (!rcu_access_pointer(p->replacement) ||
8229 rcu_access_pointer(p->replacement) == rdev) &&
657e3e4d
N
8230 number < conf->raid_disks) {
8231 err = -EBUSY;
8232 goto abort;
8233 }
8234 *rdevp = NULL;
d787be40 8235 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
9aeb7f99 8236 lockdep_assert_held(&mddev->reconfig_mutex);
d787be40
N
8237 synchronize_rcu();
8238 if (atomic_read(&rdev->nr_pending)) {
8239 /* lost the race, try later */
8240 err = -EBUSY;
b0920ede 8241 rcu_assign_pointer(*rdevp, rdev);
d787be40
N
8242 }
8243 }
6358c239
AP
8244 if (!err) {
8245 err = log_modify(conf, rdev, false);
8246 if (err)
8247 goto abort;
8248 }
b0920ede
LG
8249
8250 tmp = rcu_access_pointer(p->replacement);
8251 if (tmp) {
dd054fce 8252 /* We must have just cleared 'rdev' */
b0920ede
LG
8253 rcu_assign_pointer(p->rdev, tmp);
8254 clear_bit(Replacement, &tmp->flags);
dd054fce
N
8255 smp_mb(); /* Make sure other CPUs may see both as identical
8256 * but will never see neither - if they are careful
8257 */
b0920ede 8258 rcu_assign_pointer(p->replacement, NULL);
6358c239
AP
8259
8260 if (!err)
b0920ede 8261 err = log_modify(conf, tmp, true);
e5bc9c3c
GJ
8262 }
8263
8264 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
8265abort:
8266
8267 print_raid5_conf(conf);
8268 return err;
8269}
8270
fd01b88c 8271static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 8272{
d1688a6d 8273 struct r5conf *conf = mddev->private;
d9771f5e 8274 int ret, err = -EEXIST;
1da177e4
LT
8275 int disk;
8276 struct disk_info *p;
9aeb7f99 8277 struct md_rdev *tmp;
6c2fce2e
NB
8278 int first = 0;
8279 int last = conf->raid_disks - 1;
1da177e4 8280
f6b6ec5c 8281 if (test_bit(Journal, &rdev->flags)) {
f6b6ec5c
SL
8282 if (conf->log)
8283 return -EBUSY;
8284
8285 rdev->raid_disk = 0;
8286 /*
8287 * The array is in readonly mode if journal is missing, so no
8288 * write requests running. We should be safe
8289 */
d9771f5e
XN
8290 ret = log_init(conf, rdev, false);
8291 if (ret)
8292 return ret;
8293
8294 ret = r5l_start(conf->log);
8295 if (ret)
8296 return ret;
8297
f6b6ec5c
SL
8298 return 0;
8299 }
7f0da59b
N
8300 if (mddev->recovery_disabled == conf->recovery_disabled)
8301 return -EBUSY;
8302
dc10c643 8303 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 8304 /* no point adding a device */
199050ea 8305 return -EINVAL;
1da177e4 8306
6c2fce2e
NB
8307 if (rdev->raid_disk >= 0)
8308 first = last = rdev->raid_disk;
1da177e4
LT
8309
8310 /*
16a53ecc
N
8311 * find the disk ... but prefer rdev->saved_raid_disk
8312 * if possible.
1da177e4 8313 */
a20d636b 8314 if (rdev->saved_raid_disk >= first &&
617b3658 8315 rdev->saved_raid_disk <= last &&
16a53ecc 8316 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
8317 first = rdev->saved_raid_disk;
8318
8319 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
8320 p = conf->disks + disk;
8321 if (p->rdev == NULL) {
b2d444d7 8322 clear_bit(In_sync, &rdev->flags);
1da177e4 8323 rdev->raid_disk = disk;
72626685
N
8324 if (rdev->saved_raid_disk != disk)
8325 conf->fullsync = 1;
d6065f7b 8326 rcu_assign_pointer(p->rdev, rdev);
6358c239
AP
8327
8328 err = log_modify(conf, rdev, true);
8329
5cfb22a1 8330 goto out;
1da177e4 8331 }
5cfb22a1
N
8332 }
8333 for (disk = first; disk <= last; disk++) {
8334 p = conf->disks + disk;
9aeb7f99
LG
8335 tmp = rdev_mdlock_deref(mddev, p->rdev);
8336 if (test_bit(WantReplacement, &tmp->flags) &&
7bfec5f3
N
8337 p->replacement == NULL) {
8338 clear_bit(In_sync, &rdev->flags);
8339 set_bit(Replacement, &rdev->flags);
8340 rdev->raid_disk = disk;
8341 err = 0;
8342 conf->fullsync = 1;
8343 rcu_assign_pointer(p->replacement, rdev);
8344 break;
8345 }
8346 }
5cfb22a1 8347out:
1da177e4 8348 print_raid5_conf(conf);
199050ea 8349 return err;
1da177e4
LT
8350}
8351
fd01b88c 8352static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
8353{
8354 /* no resync is happening, and there is enough space
8355 * on all devices, so we can resize.
8356 * We need to make sure resync covers any new space.
8357 * If the array is shrinking we should possibly wait until
8358 * any io in the removed space completes, but it hardly seems
8359 * worth it.
8360 */
a4a6125a 8361 sector_t newsize;
3cb5edf4
N
8362 struct r5conf *conf = mddev->private;
8363
e254de6b 8364 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 8365 return -EINVAL;
3cb5edf4 8366 sectors &= ~((sector_t)conf->chunk_sectors - 1);
a4a6125a
N
8367 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8368 if (mddev->external_size &&
8369 mddev->array_sectors > newsize)
b522adcd 8370 return -EINVAL;
a4a6125a 8371 if (mddev->bitmap) {
e64e4018 8372 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
a4a6125a
N
8373 if (ret)
8374 return ret;
8375 }
8376 md_set_array_sectors(mddev, newsize);
b098636c
N
8377 if (sectors > mddev->dev_sectors &&
8378 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 8379 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
8380 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8381 }
58c0fed4 8382 mddev->dev_sectors = sectors;
4b5c7ae8 8383 mddev->resync_max_sectors = sectors;
1da177e4
LT
8384 return 0;
8385}
8386
fd01b88c 8387static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
8388{
8389 /* Can only proceed if there are plenty of stripe_heads.
8390 * We need a minimum of one full stripe,, and for sensible progress
8391 * it is best to have about 4 times that.
8392 * If we require 4 times, then the default 256 4K stripe_heads will
8393 * allow for chunk sizes up to 256K, which is probably OK.
8394 * If the chunk size is greater, user-space should request more
8395 * stripe_heads first.
8396 */
d1688a6d 8397 struct r5conf *conf = mddev->private;
c911c46c 8398 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
edbe83ab 8399 > conf->min_nr_stripes ||
c911c46c 8400 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
edbe83ab 8401 > conf->min_nr_stripes) {
cc6167b4
N
8402 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8403 mdname(mddev),
8404 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
c911c46c 8405 / RAID5_STRIPE_SIZE(conf))*4);
01ee22b4
N
8406 return 0;
8407 }
8408 return 1;
8409}
8410
fd01b88c 8411static int check_reshape(struct mddev *mddev)
29269553 8412{
d1688a6d 8413 struct r5conf *conf = mddev->private;
29269553 8414
e254de6b 8415 if (raid5_has_log(conf) || raid5_has_ppl(conf))
713cf5a6 8416 return -EINVAL;
88ce4930
N
8417 if (mddev->delta_disks == 0 &&
8418 mddev->new_layout == mddev->layout &&
664e7c41 8419 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 8420 return 0; /* nothing to do */
674806d6 8421 if (has_failed(conf))
ec32a2bd 8422 return -EINVAL;
fdcfbbb6 8423 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
ec32a2bd
N
8424 /* We might be able to shrink, but the devices must
8425 * be made bigger first.
8426 * For raid6, 4 is the minimum size.
8427 * Otherwise 2 is the minimum
8428 */
8429 int min = 2;
8430 if (mddev->level == 6)
8431 min = 4;
8432 if (mddev->raid_disks + mddev->delta_disks < min)
8433 return -EINVAL;
8434 }
29269553 8435
01ee22b4 8436 if (!check_stripe_cache(mddev))
29269553 8437 return -ENOSPC;
29269553 8438
738a2738
N
8439 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8440 mddev->delta_disks > 0)
8441 if (resize_chunks(conf,
8442 conf->previous_raid_disks
8443 + max(0, mddev->delta_disks),
8444 max(mddev->new_chunk_sectors,
8445 mddev->chunk_sectors)
8446 ) < 0)
8447 return -ENOMEM;
845b9e22
AP
8448
8449 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8450 return 0; /* never bother to shrink */
e56108d6
N
8451 return resize_stripes(conf, (conf->previous_raid_disks
8452 + mddev->delta_disks));
63c70c4f
N
8453}
8454
fd01b88c 8455static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 8456{
d1688a6d 8457 struct r5conf *conf = mddev->private;
3cb03002 8458 struct md_rdev *rdev;
63c70c4f 8459 int spares = 0;
c04be0aa 8460 unsigned long flags;
63c70c4f 8461
f416885e 8462 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
8463 return -EBUSY;
8464
01ee22b4
N
8465 if (!check_stripe_cache(mddev))
8466 return -ENOSPC;
8467
30b67645
N
8468 if (has_failed(conf))
8469 return -EINVAL;
8470
c6563a8c 8471 rdev_for_each(rdev, mddev) {
469518a3
N
8472 if (!test_bit(In_sync, &rdev->flags)
8473 && !test_bit(Faulty, &rdev->flags))
29269553 8474 spares++;
c6563a8c 8475 }
63c70c4f 8476
f416885e 8477 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
8478 /* Not enough devices even to make a degraded array
8479 * of that size
8480 */
8481 return -EINVAL;
8482
ec32a2bd
N
8483 /* Refuse to reduce size of the array. Any reductions in
8484 * array size must be through explicit setting of array_size
8485 * attribute.
8486 */
8487 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8488 < mddev->array_sectors) {
cc6167b4
N
8489 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8490 mdname(mddev));
ec32a2bd
N
8491 return -EINVAL;
8492 }
8493
f6705578 8494 atomic_set(&conf->reshape_stripes, 0);
29269553 8495 spin_lock_irq(&conf->device_lock);
c46501b2 8496 write_seqcount_begin(&conf->gen_lock);
29269553 8497 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 8498 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
8499 conf->prev_chunk_sectors = conf->chunk_sectors;
8500 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
8501 conf->prev_algo = conf->algorithm;
8502 conf->algorithm = mddev->new_layout;
05616be5
N
8503 conf->generation++;
8504 /* Code that selects data_offset needs to see the generation update
8505 * if reshape_progress has been set - so a memory barrier needed.
8506 */
8507 smp_mb();
2c810cdd 8508 if (mddev->reshape_backwards)
fef9c61f
N
8509 conf->reshape_progress = raid5_size(mddev, 0, 0);
8510 else
8511 conf->reshape_progress = 0;
8512 conf->reshape_safe = conf->reshape_progress;
c46501b2 8513 write_seqcount_end(&conf->gen_lock);
29269553
N
8514 spin_unlock_irq(&conf->device_lock);
8515
4d77e3ba
N
8516 /* Now make sure any requests that proceeded on the assumption
8517 * the reshape wasn't running - like Discard or Read - have
8518 * completed.
8519 */
8520 mddev_suspend(mddev);
8521 mddev_resume(mddev);
8522
29269553
N
8523 /* Add some new drives, as many as will fit.
8524 * We know there are enough to make the newly sized array work.
3424bf6a
N
8525 * Don't add devices if we are reducing the number of
8526 * devices in the array. This is because it is not possible
8527 * to correctly record the "partially reconstructed" state of
8528 * such devices during the reshape and confusion could result.
29269553 8529 */
87a8dec9 8530 if (mddev->delta_disks >= 0) {
dafb20fa 8531 rdev_for_each(rdev, mddev)
87a8dec9
N
8532 if (rdev->raid_disk < 0 &&
8533 !test_bit(Faulty, &rdev->flags)) {
8534 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 8535 if (rdev->raid_disk
9d4c7d87 8536 >= conf->previous_raid_disks)
87a8dec9 8537 set_bit(In_sync, &rdev->flags);
9d4c7d87 8538 else
87a8dec9 8539 rdev->recovery_offset = 0;
36fad858 8540
2aada5b1
DLM
8541 /* Failure here is OK */
8542 sysfs_link_rdev(mddev, rdev);
50da0840 8543 }
87a8dec9
N
8544 } else if (rdev->raid_disk >= conf->previous_raid_disks
8545 && !test_bit(Faulty, &rdev->flags)) {
8546 /* This is a spare that was manually added */
8547 set_bit(In_sync, &rdev->flags);
87a8dec9 8548 }
29269553 8549
87a8dec9
N
8550 /* When a reshape changes the number of devices,
8551 * ->degraded is measured against the larger of the
8552 * pre and post number of devices.
8553 */
ec32a2bd 8554 spin_lock_irqsave(&conf->device_lock, flags);
2e38a37f 8555 mddev->degraded = raid5_calc_degraded(conf);
ec32a2bd
N
8556 spin_unlock_irqrestore(&conf->device_lock, flags);
8557 }
63c70c4f 8558 mddev->raid_disks = conf->raid_disks;
e516402c 8559 mddev->reshape_position = conf->reshape_progress;
2953079c 8560 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6705578 8561
29269553
N
8562 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8563 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 8564 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
29269553
N
8565 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8566 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8567 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 8568 "reshape");
29269553
N
8569 if (!mddev->sync_thread) {
8570 mddev->recovery = 0;
8571 spin_lock_irq(&conf->device_lock);
ba8805b9 8572 write_seqcount_begin(&conf->gen_lock);
29269553 8573 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
ba8805b9
N
8574 mddev->new_chunk_sectors =
8575 conf->chunk_sectors = conf->prev_chunk_sectors;
8576 mddev->new_layout = conf->algorithm = conf->prev_algo;
05616be5
N
8577 rdev_for_each(rdev, mddev)
8578 rdev->new_data_offset = rdev->data_offset;
8579 smp_wmb();
ba8805b9 8580 conf->generation --;
fef9c61f 8581 conf->reshape_progress = MaxSector;
1e3fa9bd 8582 mddev->reshape_position = MaxSector;
ba8805b9 8583 write_seqcount_end(&conf->gen_lock);
29269553
N
8584 spin_unlock_irq(&conf->device_lock);
8585 return -EAGAIN;
8586 }
c8f517c4 8587 conf->reshape_checkpoint = jiffies;
29269553 8588 md_wakeup_thread(mddev->sync_thread);
54679486 8589 md_new_event();
29269553
N
8590 return 0;
8591}
29269553 8592
ec32a2bd
N
8593/* This is called from the reshape thread and should make any
8594 * changes needed in 'conf'
8595 */
d1688a6d 8596static void end_reshape(struct r5conf *conf)
29269553 8597{
29269553 8598
f6705578 8599 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
db0505d3 8600 struct md_rdev *rdev;
f6705578 8601
f6705578 8602 spin_lock_irq(&conf->device_lock);
cea9c228 8603 conf->previous_raid_disks = conf->raid_disks;
b5d27718 8604 md_finish_reshape(conf->mddev);
05616be5 8605 smp_wmb();
fef9c61f 8606 conf->reshape_progress = MaxSector;
6cbd8148 8607 conf->mddev->reshape_position = MaxSector;
db0505d3
N
8608 rdev_for_each(rdev, conf->mddev)
8609 if (rdev->raid_disk >= 0 &&
8610 !test_bit(Journal, &rdev->flags) &&
8611 !test_bit(In_sync, &rdev->flags))
8612 rdev->recovery_offset = MaxSector;
f6705578 8613 spin_unlock_irq(&conf->device_lock);
b0f9ec04 8614 wake_up(&conf->wait_for_overlap);
16a53ecc 8615
c2e4cd57 8616 if (conf->mddev->queue)
16ef5101 8617 raid5_set_io_opt(conf);
29269553 8618 }
29269553
N
8619}
8620
ec32a2bd
N
8621/* This is called from the raid5d thread with mddev_lock held.
8622 * It makes config changes to the device.
8623 */
fd01b88c 8624static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 8625{
d1688a6d 8626 struct r5conf *conf = mddev->private;
9aeb7f99 8627 struct md_rdev *rdev;
cea9c228
N
8628
8629 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8630
8876391e 8631 if (mddev->delta_disks <= 0) {
ec32a2bd 8632 int d;
908f4fbd 8633 spin_lock_irq(&conf->device_lock);
2e38a37f 8634 mddev->degraded = raid5_calc_degraded(conf);
908f4fbd 8635 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
8636 for (d = conf->raid_disks ;
8637 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 8638 d++) {
9aeb7f99
LG
8639 rdev = rdev_mdlock_deref(mddev,
8640 conf->disks[d].rdev);
da7613b8
N
8641 if (rdev)
8642 clear_bit(In_sync, &rdev->flags);
9aeb7f99
LG
8643 rdev = rdev_mdlock_deref(mddev,
8644 conf->disks[d].replacement);
da7613b8
N
8645 if (rdev)
8646 clear_bit(In_sync, &rdev->flags);
1a67dde0 8647 }
cea9c228 8648 }
88ce4930 8649 mddev->layout = conf->algorithm;
09c9e5fa 8650 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
8651 mddev->reshape_position = MaxSector;
8652 mddev->delta_disks = 0;
2c810cdd 8653 mddev->reshape_backwards = 0;
cea9c228
N
8654 }
8655}
8656
b03e0ccb 8657static void raid5_quiesce(struct mddev *mddev, int quiesce)
72626685 8658{
d1688a6d 8659 struct r5conf *conf = mddev->private;
72626685 8660
b03e0ccb
N
8661 if (quiesce) {
8662 /* stop all writes */
566c09c5 8663 lock_all_device_hash_locks_irq(conf);
64bd660b
N
8664 /* '2' tells resync/reshape to pause so that all
8665 * active stripes can drain
8666 */
a39f7afd 8667 r5c_flush_cache(conf, INT_MAX);
97ae2725
GO
8668 /* need a memory barrier to make sure read_one_chunk() sees
8669 * quiesce started and reverts to slow (locked) path.
8670 */
8671 smp_store_release(&conf->quiesce, 2);
b1b46486 8672 wait_event_cmd(conf->wait_for_quiescent,
46031f9a
RBJ
8673 atomic_read(&conf->active_stripes) == 0 &&
8674 atomic_read(&conf->active_aligned_reads) == 0,
566c09c5
SL
8675 unlock_all_device_hash_locks_irq(conf),
8676 lock_all_device_hash_locks_irq(conf));
64bd660b 8677 conf->quiesce = 1;
566c09c5 8678 unlock_all_device_hash_locks_irq(conf);
64bd660b
N
8679 /* allow reshape to continue */
8680 wake_up(&conf->wait_for_overlap);
b03e0ccb
N
8681 } else {
8682 /* re-enable writes */
566c09c5 8683 lock_all_device_hash_locks_irq(conf);
72626685 8684 conf->quiesce = 0;
b1b46486 8685 wake_up(&conf->wait_for_quiescent);
e464eafd 8686 wake_up(&conf->wait_for_overlap);
566c09c5 8687 unlock_all_device_hash_locks_irq(conf);
72626685 8688 }
1532d9e8 8689 log_quiesce(conf, quiesce);
72626685 8690}
b15c2e57 8691
fd01b88c 8692static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 8693{
e373ab10 8694 struct r0conf *raid0_conf = mddev->private;
d76c8420 8695 sector_t sectors;
54071b38 8696
f1b29bca 8697 /* for raid0 takeover only one zone is supported */
e373ab10 8698 if (raid0_conf->nr_strip_zones > 1) {
cc6167b4
N
8699 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8700 mdname(mddev));
f1b29bca
DW
8701 return ERR_PTR(-EINVAL);
8702 }
8703
e373ab10
N
8704 sectors = raid0_conf->strip_zone[0].zone_end;
8705 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 8706 mddev->dev_sectors = sectors;
f1b29bca 8707 mddev->new_level = level;
54071b38
TM
8708 mddev->new_layout = ALGORITHM_PARITY_N;
8709 mddev->new_chunk_sectors = mddev->chunk_sectors;
8710 mddev->raid_disks += 1;
8711 mddev->delta_disks = 1;
8712 /* make sure it will be not marked as dirty */
8713 mddev->recovery_cp = MaxSector;
8714
8715 return setup_conf(mddev);
8716}
8717
fd01b88c 8718static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
8719{
8720 int chunksect;
6995f0b2 8721 void *ret;
d562b0c4
N
8722
8723 if (mddev->raid_disks != 2 ||
8724 mddev->degraded > 1)
8725 return ERR_PTR(-EINVAL);
8726
8727 /* Should check if there are write-behind devices? */
8728
8729 chunksect = 64*2; /* 64K by default */
8730
8731 /* The array must be an exact multiple of chunksize */
8732 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8733 chunksect >>= 1;
8734
c911c46c 8735 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
d562b0c4
N
8736 /* array size does not allow a suitable chunk size */
8737 return ERR_PTR(-EINVAL);
8738
8739 mddev->new_level = 5;
8740 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 8741 mddev->new_chunk_sectors = chunksect;
d562b0c4 8742
6995f0b2 8743 ret = setup_conf(mddev);
32cd7cbb 8744 if (!IS_ERR(ret))
394ed8e4
SL
8745 mddev_clear_unsupported_flags(mddev,
8746 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 8747 return ret;
d562b0c4
N
8748}
8749
fd01b88c 8750static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
8751{
8752 int new_layout;
8753
8754 switch (mddev->layout) {
8755 case ALGORITHM_LEFT_ASYMMETRIC_6:
8756 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8757 break;
8758 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8759 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8760 break;
8761 case ALGORITHM_LEFT_SYMMETRIC_6:
8762 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8763 break;
8764 case ALGORITHM_RIGHT_SYMMETRIC_6:
8765 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8766 break;
8767 case ALGORITHM_PARITY_0_6:
8768 new_layout = ALGORITHM_PARITY_0;
8769 break;
8770 case ALGORITHM_PARITY_N:
8771 new_layout = ALGORITHM_PARITY_N;
8772 break;
8773 default:
8774 return ERR_PTR(-EINVAL);
8775 }
8776 mddev->new_level = 5;
8777 mddev->new_layout = new_layout;
8778 mddev->delta_disks = -1;
8779 mddev->raid_disks -= 1;
8780 return setup_conf(mddev);
8781}
8782
fd01b88c 8783static int raid5_check_reshape(struct mddev *mddev)
b3546035 8784{
88ce4930
N
8785 /* For a 2-drive array, the layout and chunk size can be changed
8786 * immediately as not restriping is needed.
8787 * For larger arrays we record the new value - after validation
8788 * to be used by a reshape pass.
b3546035 8789 */
d1688a6d 8790 struct r5conf *conf = mddev->private;
597a711b 8791 int new_chunk = mddev->new_chunk_sectors;
b3546035 8792
597a711b 8793 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
8794 return -EINVAL;
8795 if (new_chunk > 0) {
0ba459d2 8796 if (!is_power_of_2(new_chunk))
b3546035 8797 return -EINVAL;
597a711b 8798 if (new_chunk < (PAGE_SIZE>>9))
b3546035 8799 return -EINVAL;
597a711b 8800 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
8801 /* not factor of array size */
8802 return -EINVAL;
8803 }
8804
8805 /* They look valid */
8806
88ce4930 8807 if (mddev->raid_disks == 2) {
597a711b
N
8808 /* can make the change immediately */
8809 if (mddev->new_layout >= 0) {
8810 conf->algorithm = mddev->new_layout;
8811 mddev->layout = mddev->new_layout;
88ce4930
N
8812 }
8813 if (new_chunk > 0) {
597a711b
N
8814 conf->chunk_sectors = new_chunk ;
8815 mddev->chunk_sectors = new_chunk;
88ce4930 8816 }
2953079c 8817 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
88ce4930 8818 md_wakeup_thread(mddev->thread);
b3546035 8819 }
50ac168a 8820 return check_reshape(mddev);
88ce4930
N
8821}
8822
fd01b88c 8823static int raid6_check_reshape(struct mddev *mddev)
88ce4930 8824{
597a711b 8825 int new_chunk = mddev->new_chunk_sectors;
50ac168a 8826
597a711b 8827 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 8828 return -EINVAL;
b3546035 8829 if (new_chunk > 0) {
0ba459d2 8830 if (!is_power_of_2(new_chunk))
88ce4930 8831 return -EINVAL;
597a711b 8832 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 8833 return -EINVAL;
597a711b 8834 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
8835 /* not factor of array size */
8836 return -EINVAL;
b3546035 8837 }
88ce4930
N
8838
8839 /* They look valid */
50ac168a 8840 return check_reshape(mddev);
b3546035
N
8841}
8842
fd01b88c 8843static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
8844{
8845 /* raid5 can take over:
f1b29bca 8846 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
8847 * raid1 - if there are two drives. We need to know the chunk size
8848 * raid4 - trivial - just use a raid4 layout.
8849 * raid6 - Providing it is a *_6 layout
d562b0c4 8850 */
f1b29bca
DW
8851 if (mddev->level == 0)
8852 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
8853 if (mddev->level == 1)
8854 return raid5_takeover_raid1(mddev);
e9d4758f
N
8855 if (mddev->level == 4) {
8856 mddev->new_layout = ALGORITHM_PARITY_N;
8857 mddev->new_level = 5;
8858 return setup_conf(mddev);
8859 }
fc9739c6
N
8860 if (mddev->level == 6)
8861 return raid5_takeover_raid6(mddev);
d562b0c4
N
8862
8863 return ERR_PTR(-EINVAL);
8864}
8865
fd01b88c 8866static void *raid4_takeover(struct mddev *mddev)
a78d38a1 8867{
f1b29bca
DW
8868 /* raid4 can take over:
8869 * raid0 - if there is only one strip zone
8870 * raid5 - if layout is right
a78d38a1 8871 */
f1b29bca
DW
8872 if (mddev->level == 0)
8873 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
8874 if (mddev->level == 5 &&
8875 mddev->layout == ALGORITHM_PARITY_N) {
8876 mddev->new_layout = 0;
8877 mddev->new_level = 4;
8878 return setup_conf(mddev);
8879 }
8880 return ERR_PTR(-EINVAL);
8881}
d562b0c4 8882
84fc4b56 8883static struct md_personality raid5_personality;
245f46c2 8884
fd01b88c 8885static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
8886{
8887 /* Currently can only take over a raid5. We map the
8888 * personality to an equivalent raid6 personality
8889 * with the Q block at the end.
8890 */
8891 int new_layout;
8892
8893 if (mddev->pers != &raid5_personality)
8894 return ERR_PTR(-EINVAL);
8895 if (mddev->degraded > 1)
8896 return ERR_PTR(-EINVAL);
8897 if (mddev->raid_disks > 253)
8898 return ERR_PTR(-EINVAL);
8899 if (mddev->raid_disks < 3)
8900 return ERR_PTR(-EINVAL);
8901
8902 switch (mddev->layout) {
8903 case ALGORITHM_LEFT_ASYMMETRIC:
8904 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8905 break;
8906 case ALGORITHM_RIGHT_ASYMMETRIC:
8907 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8908 break;
8909 case ALGORITHM_LEFT_SYMMETRIC:
8910 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8911 break;
8912 case ALGORITHM_RIGHT_SYMMETRIC:
8913 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8914 break;
8915 case ALGORITHM_PARITY_0:
8916 new_layout = ALGORITHM_PARITY_0_6;
8917 break;
8918 case ALGORITHM_PARITY_N:
8919 new_layout = ALGORITHM_PARITY_N;
8920 break;
8921 default:
8922 return ERR_PTR(-EINVAL);
8923 }
8924 mddev->new_level = 6;
8925 mddev->new_layout = new_layout;
8926 mddev->delta_disks = 1;
8927 mddev->raid_disks += 1;
8928 return setup_conf(mddev);
8929}
8930
ba903a3e
AP
8931static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8932{
8933 struct r5conf *conf;
8934 int err;
8935
8936 err = mddev_lock(mddev);
8937 if (err)
8938 return err;
8939 conf = mddev->private;
8940 if (!conf) {
8941 mddev_unlock(mddev);
8942 return -ENODEV;
8943 }
8944
845b9e22 8945 if (strncmp(buf, "ppl", 3) == 0) {
0bb0c105 8946 /* ppl only works with RAID 5 */
845b9e22
AP
8947 if (!raid5_has_ppl(conf) && conf->level == 5) {
8948 err = log_init(conf, NULL, true);
8949 if (!err) {
8950 err = resize_stripes(conf, conf->pool_size);
c629f345
LG
8951 if (err) {
8952 mddev_suspend(mddev);
845b9e22 8953 log_exit(conf);
c629f345
LG
8954 mddev_resume(mddev);
8955 }
845b9e22 8956 }
0bb0c105
SL
8957 } else
8958 err = -EINVAL;
8959 } else if (strncmp(buf, "resync", 6) == 0) {
8960 if (raid5_has_ppl(conf)) {
8961 mddev_suspend(mddev);
8962 log_exit(conf);
0bb0c105 8963 mddev_resume(mddev);
845b9e22 8964 err = resize_stripes(conf, conf->pool_size);
0bb0c105
SL
8965 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8966 r5l_log_disk_error(conf)) {
8967 bool journal_dev_exists = false;
8968 struct md_rdev *rdev;
8969
8970 rdev_for_each(rdev, mddev)
8971 if (test_bit(Journal, &rdev->flags)) {
8972 journal_dev_exists = true;
8973 break;
8974 }
8975
8976 if (!journal_dev_exists) {
8977 mddev_suspend(mddev);
8978 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8979 mddev_resume(mddev);
8980 } else /* need remove journal device first */
8981 err = -EBUSY;
8982 } else
8983 err = -EINVAL;
ba903a3e
AP
8984 } else {
8985 err = -EINVAL;
8986 }
8987
8988 if (!err)
8989 md_update_sb(mddev, 1);
8990
8991 mddev_unlock(mddev);
8992
8993 return err;
8994}
8995
d5d885fd
SL
8996static int raid5_start(struct mddev *mddev)
8997{
8998 struct r5conf *conf = mddev->private;
8999
9000 return r5l_start(conf->log);
9001}
9002
84fc4b56 9003static struct md_personality raid6_personality =
16a53ecc
N
9004{
9005 .name = "raid6",
9006 .level = 6,
9007 .owner = THIS_MODULE,
849674e4
SL
9008 .make_request = raid5_make_request,
9009 .run = raid5_run,
d5d885fd 9010 .start = raid5_start,
afa0f557 9011 .free = raid5_free,
849674e4
SL
9012 .status = raid5_status,
9013 .error_handler = raid5_error,
16a53ecc
N
9014 .hot_add_disk = raid5_add_disk,
9015 .hot_remove_disk= raid5_remove_disk,
9016 .spare_active = raid5_spare_active,
849674e4 9017 .sync_request = raid5_sync_request,
16a53ecc 9018 .resize = raid5_resize,
80c3a6ce 9019 .size = raid5_size,
50ac168a 9020 .check_reshape = raid6_check_reshape,
f416885e 9021 .start_reshape = raid5_start_reshape,
cea9c228 9022 .finish_reshape = raid5_finish_reshape,
16a53ecc 9023 .quiesce = raid5_quiesce,
245f46c2 9024 .takeover = raid6_takeover,
0bb0c105 9025 .change_consistency_policy = raid5_change_consistency_policy,
16a53ecc 9026};
84fc4b56 9027static struct md_personality raid5_personality =
1da177e4
LT
9028{
9029 .name = "raid5",
2604b703 9030 .level = 5,
1da177e4 9031 .owner = THIS_MODULE,
849674e4
SL
9032 .make_request = raid5_make_request,
9033 .run = raid5_run,
d5d885fd 9034 .start = raid5_start,
afa0f557 9035 .free = raid5_free,
849674e4
SL
9036 .status = raid5_status,
9037 .error_handler = raid5_error,
1da177e4
LT
9038 .hot_add_disk = raid5_add_disk,
9039 .hot_remove_disk= raid5_remove_disk,
9040 .spare_active = raid5_spare_active,
849674e4 9041 .sync_request = raid5_sync_request,
1da177e4 9042 .resize = raid5_resize,
80c3a6ce 9043 .size = raid5_size,
63c70c4f
N
9044 .check_reshape = raid5_check_reshape,
9045 .start_reshape = raid5_start_reshape,
cea9c228 9046 .finish_reshape = raid5_finish_reshape,
72626685 9047 .quiesce = raid5_quiesce,
d562b0c4 9048 .takeover = raid5_takeover,
ba903a3e 9049 .change_consistency_policy = raid5_change_consistency_policy,
1da177e4
LT
9050};
9051
84fc4b56 9052static struct md_personality raid4_personality =
1da177e4 9053{
2604b703
N
9054 .name = "raid4",
9055 .level = 4,
9056 .owner = THIS_MODULE,
849674e4
SL
9057 .make_request = raid5_make_request,
9058 .run = raid5_run,
d5d885fd 9059 .start = raid5_start,
afa0f557 9060 .free = raid5_free,
849674e4
SL
9061 .status = raid5_status,
9062 .error_handler = raid5_error,
2604b703
N
9063 .hot_add_disk = raid5_add_disk,
9064 .hot_remove_disk= raid5_remove_disk,
9065 .spare_active = raid5_spare_active,
849674e4 9066 .sync_request = raid5_sync_request,
2604b703 9067 .resize = raid5_resize,
80c3a6ce 9068 .size = raid5_size,
3d37890b
N
9069 .check_reshape = raid5_check_reshape,
9070 .start_reshape = raid5_start_reshape,
cea9c228 9071 .finish_reshape = raid5_finish_reshape,
2604b703 9072 .quiesce = raid5_quiesce,
a78d38a1 9073 .takeover = raid4_takeover,
0bb0c105 9074 .change_consistency_policy = raid5_change_consistency_policy,
2604b703
N
9075};
9076
9077static int __init raid5_init(void)
9078{
29c6d1bb
SAS
9079 int ret;
9080
851c30c9
SL
9081 raid5_wq = alloc_workqueue("raid5wq",
9082 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9083 if (!raid5_wq)
9084 return -ENOMEM;
29c6d1bb
SAS
9085
9086 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9087 "md/raid5:prepare",
9088 raid456_cpu_up_prepare,
9089 raid456_cpu_dead);
9090 if (ret) {
9091 destroy_workqueue(raid5_wq);
9092 return ret;
9093 }
16a53ecc 9094 register_md_personality(&raid6_personality);
2604b703
N
9095 register_md_personality(&raid5_personality);
9096 register_md_personality(&raid4_personality);
9097 return 0;
1da177e4
LT
9098}
9099
2604b703 9100static void raid5_exit(void)
1da177e4 9101{
16a53ecc 9102 unregister_md_personality(&raid6_personality);
2604b703
N
9103 unregister_md_personality(&raid5_personality);
9104 unregister_md_personality(&raid4_personality);
29c6d1bb 9105 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
851c30c9 9106 destroy_workqueue(raid5_wq);
1da177e4
LT
9107}
9108
9109module_init(raid5_init);
9110module_exit(raid5_exit);
9111MODULE_LICENSE("GPL");
0efb9e61 9112MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 9113MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
9114MODULE_ALIAS("md-raid5");
9115MODULE_ALIAS("md-raid4");
2604b703
N
9116MODULE_ALIAS("md-level-5");
9117MODULE_ALIAS("md-level-4");
16a53ecc
N
9118MODULE_ALIAS("md-personality-8"); /* RAID6 */
9119MODULE_ALIAS("md-raid6");
9120MODULE_ALIAS("md-level-6");
9121
9122/* This used to be two separate modules, they were: */
9123MODULE_ALIAS("raid5");
9124MODULE_ALIAS("raid6");