md/raid1: skip data copy for behind io for discard request
[linux-block.git] / drivers / md / raid5-cache.c
CommitLineData
f6bed0ef
SL
1/*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
b4c625c6 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
f6bed0ef
SL
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15#include <linux/kernel.h>
16#include <linux/wait.h>
17#include <linux/blkdev.h>
18#include <linux/slab.h>
19#include <linux/raid/md_p.h>
5cb2fbd6 20#include <linux/crc32c.h>
f6bed0ef 21#include <linux/random.h>
ce1ccd07 22#include <linux/kthread.h>
03b047f4 23#include <linux/types.h>
f6bed0ef
SL
24#include "md.h"
25#include "raid5.h"
1e6d690b 26#include "bitmap.h"
f6bed0ef
SL
27
28/*
29 * metadata/data stored in disk with 4k size unit (a block) regardless
30 * underneath hardware sector size. only works with PAGE_SIZE == 4096
31 */
32#define BLOCK_SECTORS (8)
effe6ee7 33#define BLOCK_SECTOR_SHIFT (3)
f6bed0ef 34
0576b1c6 35/*
a39f7afd
SL
36 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
37 *
38 * In write through mode, the reclaim runs every log->max_free_space.
39 * This can prevent the recovery scans for too long
0576b1c6
SL
40 */
41#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
42#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
43
a39f7afd
SL
44/* wake up reclaim thread periodically */
45#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
46/* start flush with these full stripes */
84890c03 47#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
a39f7afd
SL
48/* reclaim stripes in groups */
49#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
50
c38d29b3
CH
51/*
52 * We only need 2 bios per I/O unit to make progress, but ensure we
53 * have a few more available to not get too tight.
54 */
55#define R5L_POOL_SIZE 4
56
2ded3703
SL
57/*
58 * r5c journal modes of the array: write-back or write-through.
59 * write-through mode has identical behavior as existing log only
60 * implementation.
61 */
62enum r5c_journal_mode {
63 R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
64 R5C_JOURNAL_MODE_WRITE_BACK = 1,
65};
66
2c7da14b
SL
67static char *r5c_journal_mode_str[] = {"write-through",
68 "write-back"};
2ded3703
SL
69/*
70 * raid5 cache state machine
71 *
9b69173e 72 * With the RAID cache, each stripe works in two phases:
2ded3703
SL
73 * - caching phase
74 * - writing-out phase
75 *
76 * These two phases are controlled by bit STRIPE_R5C_CACHING:
77 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
78 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
79 *
80 * When there is no journal, or the journal is in write-through mode,
81 * the stripe is always in writing-out phase.
82 *
83 * For write-back journal, the stripe is sent to caching phase on write
84 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
85 * the write-out phase by clearing STRIPE_R5C_CACHING.
86 *
87 * Stripes in caching phase do not write the raid disks. Instead, all
88 * writes are committed from the log device. Therefore, a stripe in
89 * caching phase handles writes as:
90 * - write to log device
91 * - return IO
92 *
93 * Stripes in writing-out phase handle writes as:
94 * - calculate parity
95 * - write pending data and parity to journal
96 * - write data and parity to raid disks
97 * - return IO for pending writes
98 */
99
f6bed0ef
SL
100struct r5l_log {
101 struct md_rdev *rdev;
102
103 u32 uuid_checksum;
104
105 sector_t device_size; /* log device size, round to
106 * BLOCK_SECTORS */
0576b1c6
SL
107 sector_t max_free_space; /* reclaim run if free space is at
108 * this size */
f6bed0ef
SL
109
110 sector_t last_checkpoint; /* log tail. where recovery scan
111 * starts from */
112 u64 last_cp_seq; /* log tail sequence */
113
114 sector_t log_start; /* log head. where new data appends */
115 u64 seq; /* log head sequence */
116
17036461 117 sector_t next_checkpoint;
17036461 118
f6bed0ef
SL
119 struct mutex io_mutex;
120 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
121
122 spinlock_t io_list_lock;
123 struct list_head running_ios; /* io_units which are still running,
124 * and have not yet been completely
125 * written to the log */
126 struct list_head io_end_ios; /* io_units which have been completely
127 * written to the log but not yet written
128 * to the RAID */
a8c34f91
SL
129 struct list_head flushing_ios; /* io_units which are waiting for log
130 * cache flush */
04732f74 131 struct list_head finished_ios; /* io_units which settle down in log disk */
a8c34f91 132 struct bio flush_bio;
f6bed0ef 133
5036c390
CH
134 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
135
f6bed0ef 136 struct kmem_cache *io_kc;
5036c390 137 mempool_t *io_pool;
c38d29b3 138 struct bio_set *bs;
e8deb638 139 mempool_t *meta_pool;
f6bed0ef 140
0576b1c6
SL
141 struct md_thread *reclaim_thread;
142 unsigned long reclaim_target; /* number of space that need to be
143 * reclaimed. if it's 0, reclaim spaces
144 * used by io_units which are in
145 * IO_UNIT_STRIPE_END state (eg, reclaim
146 * dones't wait for specific io_unit
147 * switching to IO_UNIT_STRIPE_END
148 * state) */
0fd22b45 149 wait_queue_head_t iounit_wait;
0576b1c6 150
f6bed0ef
SL
151 struct list_head no_space_stripes; /* pending stripes, log has no space */
152 spinlock_t no_space_stripes_lock;
56fef7c6
CH
153
154 bool need_cache_flush;
2ded3703
SL
155
156 /* for r5c_cache */
157 enum r5c_journal_mode r5c_journal_mode;
a39f7afd
SL
158
159 /* all stripes in r5cache, in the order of seq at sh->log_start */
160 struct list_head stripe_in_journal_list;
161
162 spinlock_t stripe_in_journal_lock;
163 atomic_t stripe_in_journal_count;
3bddb7f8
SL
164
165 /* to submit async io_units, to fulfill ordering of flush */
166 struct work_struct deferred_io_work;
2e38a37f
SL
167 /* to disable write back during in degraded mode */
168 struct work_struct disable_writeback_work;
03b047f4
SL
169
170 /* to for chunk_aligned_read in writeback mode, details below */
171 spinlock_t tree_lock;
172 struct radix_tree_root big_stripe_tree;
f6bed0ef
SL
173};
174
03b047f4
SL
175/*
176 * Enable chunk_aligned_read() with write back cache.
177 *
178 * Each chunk may contain more than one stripe (for example, a 256kB
179 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
180 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
181 * For each big_stripe, we count how many stripes of this big_stripe
182 * are in the write back cache. These data are tracked in a radix tree
183 * (big_stripe_tree). We use radix_tree item pointer as the counter.
184 * r5c_tree_index() is used to calculate keys for the radix tree.
185 *
186 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
187 * big_stripe of each chunk in the tree. If this big_stripe is in the
188 * tree, chunk_aligned_read() aborts. This look up is protected by
189 * rcu_read_lock().
190 *
191 * It is necessary to remember whether a stripe is counted in
192 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
193 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
194 * two flags are set, the stripe is counted in big_stripe_tree. This
195 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
196 * r5c_try_caching_write(); and moving clear_bit of
197 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
198 * r5c_finish_stripe_write_out().
199 */
200
201/*
202 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
203 * So it is necessary to left shift the counter by 2 bits before using it
204 * as data pointer of the tree.
205 */
206#define R5C_RADIX_COUNT_SHIFT 2
207
208/*
209 * calculate key for big_stripe_tree
210 *
211 * sect: align_bi->bi_iter.bi_sector or sh->sector
212 */
213static inline sector_t r5c_tree_index(struct r5conf *conf,
214 sector_t sect)
215{
216 sector_t offset;
217
218 offset = sector_div(sect, conf->chunk_sectors);
219 return sect;
220}
221
f6bed0ef
SL
222/*
223 * an IO range starts from a meta data block and end at the next meta data
224 * block. The io unit's the meta data block tracks data/parity followed it. io
225 * unit is written to log disk with normal write, as we always flush log disk
226 * first and then start move data to raid disks, there is no requirement to
227 * write io unit with FLUSH/FUA
228 */
229struct r5l_io_unit {
230 struct r5l_log *log;
231
232 struct page *meta_page; /* store meta block */
233 int meta_offset; /* current offset in meta_page */
234
f6bed0ef
SL
235 struct bio *current_bio;/* current_bio accepting new data */
236
237 atomic_t pending_stripe;/* how many stripes not flushed to raid */
238 u64 seq; /* seq number of the metablock */
239 sector_t log_start; /* where the io_unit starts */
240 sector_t log_end; /* where the io_unit ends */
241 struct list_head log_sibling; /* log->running_ios */
242 struct list_head stripe_list; /* stripes added to the io_unit */
243
244 int state;
6143e2ce 245 bool need_split_bio;
3bddb7f8
SL
246 struct bio *split_bio;
247
248 unsigned int has_flush:1; /* include flush request */
249 unsigned int has_fua:1; /* include fua request */
250 unsigned int has_null_flush:1; /* include empty flush request */
251 /*
252 * io isn't sent yet, flush/fua request can only be submitted till it's
253 * the first IO in running_ios list
254 */
255 unsigned int io_deferred:1;
256
257 struct bio_list flush_barriers; /* size == 0 flush bios */
f6bed0ef
SL
258};
259
260/* r5l_io_unit state */
261enum r5l_io_unit_state {
262 IO_UNIT_RUNNING = 0, /* accepting new IO */
263 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
264 * don't accepting new bio */
265 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
a8c34f91 266 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
f6bed0ef
SL
267};
268
2ded3703
SL
269bool r5c_is_writeback(struct r5l_log *log)
270{
271 return (log != NULL &&
272 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
273}
274
f6bed0ef
SL
275static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
276{
277 start += inc;
278 if (start >= log->device_size)
279 start = start - log->device_size;
280 return start;
281}
282
283static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
284 sector_t end)
285{
286 if (end >= start)
287 return end - start;
288 else
289 return end + log->device_size - start;
290}
291
292static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
293{
294 sector_t used_size;
295
296 used_size = r5l_ring_distance(log, log->last_checkpoint,
297 log->log_start);
298
299 return log->device_size > used_size + size;
300}
301
f6bed0ef
SL
302static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
303 enum r5l_io_unit_state state)
304{
f6bed0ef
SL
305 if (WARN_ON(io->state >= state))
306 return;
307 io->state = state;
f6bed0ef
SL
308}
309
1e6d690b 310static void
bd83d0a2 311r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
1e6d690b
SL
312{
313 struct bio *wbi, *wbi2;
314
315 wbi = dev->written;
316 dev->written = NULL;
317 while (wbi && wbi->bi_iter.bi_sector <
318 dev->sector + STRIPE_SECTORS) {
319 wbi2 = r5_next_bio(wbi, dev->sector);
49728050 320 md_write_end(conf->mddev);
016c76ac 321 bio_endio(wbi);
1e6d690b
SL
322 wbi = wbi2;
323 }
324}
325
326void r5c_handle_cached_data_endio(struct r5conf *conf,
bd83d0a2 327 struct stripe_head *sh, int disks)
1e6d690b
SL
328{
329 int i;
330
331 for (i = sh->disks; i--; ) {
332 if (sh->dev[i].written) {
333 set_bit(R5_UPTODATE, &sh->dev[i].flags);
bd83d0a2 334 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
1e6d690b
SL
335 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
336 STRIPE_SECTORS,
337 !test_bit(STRIPE_DEGRADED, &sh->state),
338 0);
339 }
340 }
341}
342
ff875738
AP
343void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
344
a39f7afd
SL
345/* Check whether we should flush some stripes to free up stripe cache */
346void r5c_check_stripe_cache_usage(struct r5conf *conf)
347{
348 int total_cached;
349
350 if (!r5c_is_writeback(conf->log))
351 return;
352
353 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
354 atomic_read(&conf->r5c_cached_full_stripes);
355
356 /*
357 * The following condition is true for either of the following:
358 * - stripe cache pressure high:
359 * total_cached > 3/4 min_nr_stripes ||
360 * empty_inactive_list_nr > 0
361 * - stripe cache pressure moderate:
362 * total_cached > 1/2 min_nr_stripes
363 */
364 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
365 atomic_read(&conf->empty_inactive_list_nr) > 0)
366 r5l_wake_reclaim(conf->log, 0);
367}
368
369/*
370 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
371 * stripes in the cache
372 */
373void r5c_check_cached_full_stripe(struct r5conf *conf)
374{
375 if (!r5c_is_writeback(conf->log))
376 return;
377
378 /*
379 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
380 * or a full stripe (chunk size / 4k stripes).
381 */
382 if (atomic_read(&conf->r5c_cached_full_stripes) >=
84890c03 383 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
a39f7afd
SL
384 conf->chunk_sectors >> STRIPE_SHIFT))
385 r5l_wake_reclaim(conf->log, 0);
386}
387
388/*
389 * Total log space (in sectors) needed to flush all data in cache
390 *
39b99586
SL
391 * To avoid deadlock due to log space, it is necessary to reserve log
392 * space to flush critical stripes (stripes that occupying log space near
393 * last_checkpoint). This function helps check how much log space is
394 * required to flush all cached stripes.
a39f7afd 395 *
39b99586
SL
396 * To reduce log space requirements, two mechanisms are used to give cache
397 * flush higher priorities:
398 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
399 * stripes ALREADY in journal can be flushed w/o pending writes;
400 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
401 * can be delayed (r5l_add_no_space_stripe).
a39f7afd 402 *
39b99586
SL
403 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
404 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
405 * pages of journal space. For stripes that has not passed 1, flushing it
406 * requires (conf->raid_disks + 1) pages of journal space. There are at
407 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
408 * required to flush all cached stripes (in pages) is:
409 *
410 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
411 * (group_cnt + 1) * (raid_disks + 1)
412 * or
413 * (stripe_in_journal_count) * (max_degraded + 1) +
414 * (group_cnt + 1) * (raid_disks - max_degraded)
a39f7afd
SL
415 */
416static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
417{
418 struct r5l_log *log = conf->log;
419
420 if (!r5c_is_writeback(log))
421 return 0;
422
39b99586
SL
423 return BLOCK_SECTORS *
424 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
425 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
a39f7afd
SL
426}
427
428/*
429 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
430 *
431 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
432 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
433 * device is less than 2x of reclaim_required_space.
434 */
435static inline void r5c_update_log_state(struct r5l_log *log)
436{
437 struct r5conf *conf = log->rdev->mddev->private;
438 sector_t free_space;
439 sector_t reclaim_space;
f687a33e 440 bool wake_reclaim = false;
a39f7afd
SL
441
442 if (!r5c_is_writeback(log))
443 return;
444
445 free_space = r5l_ring_distance(log, log->log_start,
446 log->last_checkpoint);
447 reclaim_space = r5c_log_required_to_flush_cache(conf);
448 if (free_space < 2 * reclaim_space)
449 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
f687a33e
SL
450 else {
451 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
452 wake_reclaim = true;
a39f7afd 453 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
f687a33e 454 }
a39f7afd
SL
455 if (free_space < 3 * reclaim_space)
456 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
457 else
458 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
f687a33e
SL
459
460 if (wake_reclaim)
461 r5l_wake_reclaim(log, 0);
a39f7afd
SL
462}
463
2ded3703
SL
464/*
465 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
466 * This function should only be called in write-back mode.
467 */
a39f7afd 468void r5c_make_stripe_write_out(struct stripe_head *sh)
2ded3703
SL
469{
470 struct r5conf *conf = sh->raid_conf;
471 struct r5l_log *log = conf->log;
472
473 BUG_ON(!r5c_is_writeback(log));
474
475 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
476 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1e6d690b
SL
477
478 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
479 atomic_inc(&conf->preread_active_stripes);
1e6d690b
SL
480}
481
482static void r5c_handle_data_cached(struct stripe_head *sh)
483{
484 int i;
485
486 for (i = sh->disks; i--; )
487 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
488 set_bit(R5_InJournal, &sh->dev[i].flags);
489 clear_bit(R5_LOCKED, &sh->dev[i].flags);
490 }
491 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
492}
493
494/*
495 * this journal write must contain full parity,
496 * it may also contain some data pages
497 */
498static void r5c_handle_parity_cached(struct stripe_head *sh)
499{
500 int i;
501
502 for (i = sh->disks; i--; )
503 if (test_bit(R5_InJournal, &sh->dev[i].flags))
504 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2ded3703
SL
505}
506
507/*
508 * Setting proper flags after writing (or flushing) data and/or parity to the
509 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
510 */
511static void r5c_finish_cache_stripe(struct stripe_head *sh)
512{
513 struct r5l_log *log = sh->raid_conf->log;
514
515 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
516 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
517 /*
518 * Set R5_InJournal for parity dev[pd_idx]. This means
519 * all data AND parity in the journal. For RAID 6, it is
520 * NOT necessary to set the flag for dev[qd_idx], as the
521 * two parities are written out together.
522 */
523 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
1e6d690b
SL
524 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
525 r5c_handle_data_cached(sh);
526 } else {
527 r5c_handle_parity_cached(sh);
528 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
529 }
2ded3703
SL
530}
531
d8858f43
CH
532static void r5l_io_run_stripes(struct r5l_io_unit *io)
533{
534 struct stripe_head *sh, *next;
535
536 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
537 list_del_init(&sh->log_list);
2ded3703
SL
538
539 r5c_finish_cache_stripe(sh);
540
d8858f43
CH
541 set_bit(STRIPE_HANDLE, &sh->state);
542 raid5_release_stripe(sh);
543 }
544}
545
56fef7c6
CH
546static void r5l_log_run_stripes(struct r5l_log *log)
547{
548 struct r5l_io_unit *io, *next;
549
550 assert_spin_locked(&log->io_list_lock);
551
552 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
553 /* don't change list order */
554 if (io->state < IO_UNIT_IO_END)
555 break;
556
557 list_move_tail(&io->log_sibling, &log->finished_ios);
558 r5l_io_run_stripes(io);
559 }
560}
561
3848c0bc
CH
562static void r5l_move_to_end_ios(struct r5l_log *log)
563{
564 struct r5l_io_unit *io, *next;
565
566 assert_spin_locked(&log->io_list_lock);
567
568 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
569 /* don't change list order */
570 if (io->state < IO_UNIT_IO_END)
571 break;
572 list_move_tail(&io->log_sibling, &log->io_end_ios);
573 }
574}
575
3bddb7f8 576static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
f6bed0ef
SL
577static void r5l_log_endio(struct bio *bio)
578{
579 struct r5l_io_unit *io = bio->bi_private;
3bddb7f8 580 struct r5l_io_unit *io_deferred;
f6bed0ef 581 struct r5l_log *log = io->log;
509ffec7 582 unsigned long flags;
f6bed0ef 583
6e74a9cf
SL
584 if (bio->bi_error)
585 md_error(log->rdev->mddev, log->rdev);
586
f6bed0ef 587 bio_put(bio);
e8deb638 588 mempool_free(io->meta_page, log->meta_pool);
f6bed0ef 589
509ffec7
CH
590 spin_lock_irqsave(&log->io_list_lock, flags);
591 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
ea17481f 592 if (log->need_cache_flush && !list_empty(&io->stripe_list))
3848c0bc 593 r5l_move_to_end_ios(log);
56fef7c6
CH
594 else
595 r5l_log_run_stripes(log);
3bddb7f8
SL
596 if (!list_empty(&log->running_ios)) {
597 /*
598 * FLUSH/FUA io_unit is deferred because of ordering, now we
599 * can dispatch it
600 */
601 io_deferred = list_first_entry(&log->running_ios,
602 struct r5l_io_unit, log_sibling);
603 if (io_deferred->io_deferred)
604 schedule_work(&log->deferred_io_work);
605 }
606
509ffec7
CH
607 spin_unlock_irqrestore(&log->io_list_lock, flags);
608
56fef7c6
CH
609 if (log->need_cache_flush)
610 md_wakeup_thread(log->rdev->mddev->thread);
3bddb7f8
SL
611
612 if (io->has_null_flush) {
613 struct bio *bi;
614
615 WARN_ON(bio_list_empty(&io->flush_barriers));
616 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
617 bio_endio(bi);
618 atomic_dec(&io->pending_stripe);
619 }
3bddb7f8 620 }
ea17481f
SL
621
622 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
623 if (atomic_read(&io->pending_stripe) == 0)
624 __r5l_stripe_write_finished(io);
3bddb7f8
SL
625}
626
627static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
628{
629 unsigned long flags;
630
631 spin_lock_irqsave(&log->io_list_lock, flags);
632 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
633 spin_unlock_irqrestore(&log->io_list_lock, flags);
634
635 if (io->has_flush)
20737738 636 io->current_bio->bi_opf |= REQ_PREFLUSH;
3bddb7f8 637 if (io->has_fua)
20737738 638 io->current_bio->bi_opf |= REQ_FUA;
3bddb7f8
SL
639 submit_bio(io->current_bio);
640
641 if (!io->split_bio)
642 return;
643
644 if (io->has_flush)
20737738 645 io->split_bio->bi_opf |= REQ_PREFLUSH;
3bddb7f8 646 if (io->has_fua)
20737738 647 io->split_bio->bi_opf |= REQ_FUA;
3bddb7f8
SL
648 submit_bio(io->split_bio);
649}
650
651/* deferred io_unit will be dispatched here */
652static void r5l_submit_io_async(struct work_struct *work)
653{
654 struct r5l_log *log = container_of(work, struct r5l_log,
655 deferred_io_work);
656 struct r5l_io_unit *io = NULL;
657 unsigned long flags;
658
659 spin_lock_irqsave(&log->io_list_lock, flags);
660 if (!list_empty(&log->running_ios)) {
661 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
662 log_sibling);
663 if (!io->io_deferred)
664 io = NULL;
665 else
666 io->io_deferred = 0;
667 }
668 spin_unlock_irqrestore(&log->io_list_lock, flags);
669 if (io)
670 r5l_do_submit_io(log, io);
f6bed0ef
SL
671}
672
2e38a37f
SL
673static void r5c_disable_writeback_async(struct work_struct *work)
674{
675 struct r5l_log *log = container_of(work, struct r5l_log,
676 disable_writeback_work);
677 struct mddev *mddev = log->rdev->mddev;
678
679 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
680 return;
681 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
682 mdname(mddev));
683 mddev_suspend(mddev);
684 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
685 mddev_resume(mddev);
686}
687
f6bed0ef
SL
688static void r5l_submit_current_io(struct r5l_log *log)
689{
690 struct r5l_io_unit *io = log->current_io;
3bddb7f8 691 struct bio *bio;
f6bed0ef 692 struct r5l_meta_block *block;
509ffec7 693 unsigned long flags;
f6bed0ef 694 u32 crc;
3bddb7f8 695 bool do_submit = true;
f6bed0ef
SL
696
697 if (!io)
698 return;
699
700 block = page_address(io->meta_page);
701 block->meta_size = cpu_to_le32(io->meta_offset);
5cb2fbd6 702 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
f6bed0ef 703 block->checksum = cpu_to_le32(crc);
3bddb7f8 704 bio = io->current_bio;
f6bed0ef
SL
705
706 log->current_io = NULL;
509ffec7 707 spin_lock_irqsave(&log->io_list_lock, flags);
3bddb7f8
SL
708 if (io->has_flush || io->has_fua) {
709 if (io != list_first_entry(&log->running_ios,
710 struct r5l_io_unit, log_sibling)) {
711 io->io_deferred = 1;
712 do_submit = false;
713 }
714 }
509ffec7 715 spin_unlock_irqrestore(&log->io_list_lock, flags);
3bddb7f8
SL
716 if (do_submit)
717 r5l_do_submit_io(log, io);
f6bed0ef
SL
718}
719
6143e2ce 720static struct bio *r5l_bio_alloc(struct r5l_log *log)
b349feb3 721{
c38d29b3 722 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
b349feb3 723
796a5cf0 724 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
b349feb3 725 bio->bi_bdev = log->rdev->bdev;
1e932a37 726 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
b349feb3 727
b349feb3
CH
728 return bio;
729}
730
c1b99198
CH
731static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
732{
733 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
734
a39f7afd 735 r5c_update_log_state(log);
c1b99198
CH
736 /*
737 * If we filled up the log device start from the beginning again,
738 * which will require a new bio.
739 *
740 * Note: for this to work properly the log size needs to me a multiple
741 * of BLOCK_SECTORS.
742 */
743 if (log->log_start == 0)
6143e2ce 744 io->need_split_bio = true;
c1b99198
CH
745
746 io->log_end = log->log_start;
747}
748
f6bed0ef
SL
749static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
750{
751 struct r5l_io_unit *io;
752 struct r5l_meta_block *block;
f6bed0ef 753
5036c390
CH
754 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
755 if (!io)
756 return NULL;
757 memset(io, 0, sizeof(*io));
758
51039cd0 759 io->log = log;
51039cd0
CH
760 INIT_LIST_HEAD(&io->log_sibling);
761 INIT_LIST_HEAD(&io->stripe_list);
3bddb7f8 762 bio_list_init(&io->flush_barriers);
51039cd0 763 io->state = IO_UNIT_RUNNING;
f6bed0ef 764
e8deb638 765 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
f6bed0ef 766 block = page_address(io->meta_page);
e8deb638 767 clear_page(block);
f6bed0ef
SL
768 block->magic = cpu_to_le32(R5LOG_MAGIC);
769 block->version = R5LOG_VERSION;
770 block->seq = cpu_to_le64(log->seq);
771 block->position = cpu_to_le64(log->log_start);
772
773 io->log_start = log->log_start;
774 io->meta_offset = sizeof(struct r5l_meta_block);
2b8ef16e 775 io->seq = log->seq++;
f6bed0ef 776
6143e2ce
CH
777 io->current_bio = r5l_bio_alloc(log);
778 io->current_bio->bi_end_io = r5l_log_endio;
779 io->current_bio->bi_private = io;
b349feb3 780 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
f6bed0ef 781
c1b99198 782 r5_reserve_log_entry(log, io);
f6bed0ef
SL
783
784 spin_lock_irq(&log->io_list_lock);
785 list_add_tail(&io->log_sibling, &log->running_ios);
786 spin_unlock_irq(&log->io_list_lock);
787
788 return io;
789}
790
791static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
792{
22581f58
CH
793 if (log->current_io &&
794 log->current_io->meta_offset + payload_size > PAGE_SIZE)
f6bed0ef 795 r5l_submit_current_io(log);
f6bed0ef 796
5036c390 797 if (!log->current_io) {
22581f58 798 log->current_io = r5l_new_meta(log);
5036c390
CH
799 if (!log->current_io)
800 return -ENOMEM;
801 }
802
f6bed0ef
SL
803 return 0;
804}
805
806static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
807 sector_t location,
808 u32 checksum1, u32 checksum2,
809 bool checksum2_valid)
810{
811 struct r5l_io_unit *io = log->current_io;
812 struct r5l_payload_data_parity *payload;
813
814 payload = page_address(io->meta_page) + io->meta_offset;
815 payload->header.type = cpu_to_le16(type);
816 payload->header.flags = cpu_to_le16(0);
817 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
818 (PAGE_SHIFT - 9));
819 payload->location = cpu_to_le64(location);
820 payload->checksum[0] = cpu_to_le32(checksum1);
821 if (checksum2_valid)
822 payload->checksum[1] = cpu_to_le32(checksum2);
823
824 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
825 sizeof(__le32) * (1 + !!checksum2_valid);
826}
827
828static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
829{
830 struct r5l_io_unit *io = log->current_io;
831
6143e2ce 832 if (io->need_split_bio) {
3bddb7f8
SL
833 BUG_ON(io->split_bio);
834 io->split_bio = io->current_bio;
6143e2ce 835 io->current_bio = r5l_bio_alloc(log);
3bddb7f8
SL
836 bio_chain(io->current_bio, io->split_bio);
837 io->need_split_bio = false;
f6bed0ef 838 }
f6bed0ef 839
6143e2ce
CH
840 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
841 BUG();
842
c1b99198 843 r5_reserve_log_entry(log, io);
f6bed0ef
SL
844}
845
ea17481f
SL
846static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
847{
848 struct mddev *mddev = log->rdev->mddev;
849 struct r5conf *conf = mddev->private;
850 struct r5l_io_unit *io;
851 struct r5l_payload_flush *payload;
852 int meta_size;
853
854 /*
855 * payload_flush requires extra writes to the journal.
856 * To avoid handling the extra IO in quiesce, just skip
857 * flush_payload
858 */
859 if (conf->quiesce)
860 return;
861
862 mutex_lock(&log->io_mutex);
863 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
864
865 if (r5l_get_meta(log, meta_size)) {
866 mutex_unlock(&log->io_mutex);
867 return;
868 }
869
870 /* current implementation is one stripe per flush payload */
871 io = log->current_io;
872 payload = page_address(io->meta_page) + io->meta_offset;
873 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
874 payload->header.flags = cpu_to_le16(0);
875 payload->size = cpu_to_le32(sizeof(__le64));
876 payload->flush_stripes[0] = cpu_to_le64(sect);
877 io->meta_offset += meta_size;
878 mutex_unlock(&log->io_mutex);
879}
880
5036c390 881static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
f6bed0ef
SL
882 int data_pages, int parity_pages)
883{
884 int i;
885 int meta_size;
5036c390 886 int ret;
f6bed0ef
SL
887 struct r5l_io_unit *io;
888
889 meta_size =
890 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
891 * data_pages) +
892 sizeof(struct r5l_payload_data_parity) +
893 sizeof(__le32) * parity_pages;
894
5036c390
CH
895 ret = r5l_get_meta(log, meta_size);
896 if (ret)
897 return ret;
898
f6bed0ef
SL
899 io = log->current_io;
900
3bddb7f8
SL
901 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
902 io->has_flush = 1;
903
f6bed0ef 904 for (i = 0; i < sh->disks; i++) {
1e6d690b
SL
905 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
906 test_bit(R5_InJournal, &sh->dev[i].flags))
f6bed0ef
SL
907 continue;
908 if (i == sh->pd_idx || i == sh->qd_idx)
909 continue;
3bddb7f8
SL
910 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
911 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
912 io->has_fua = 1;
913 /*
914 * we need to flush journal to make sure recovery can
915 * reach the data with fua flag
916 */
917 io->has_flush = 1;
918 }
f6bed0ef
SL
919 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
920 raid5_compute_blocknr(sh, i, 0),
921 sh->dev[i].log_checksum, 0, false);
922 r5l_append_payload_page(log, sh->dev[i].page);
923 }
924
2ded3703 925 if (parity_pages == 2) {
f6bed0ef
SL
926 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
927 sh->sector, sh->dev[sh->pd_idx].log_checksum,
928 sh->dev[sh->qd_idx].log_checksum, true);
929 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
930 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
2ded3703 931 } else if (parity_pages == 1) {
f6bed0ef
SL
932 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
933 sh->sector, sh->dev[sh->pd_idx].log_checksum,
934 0, false);
935 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
2ded3703
SL
936 } else /* Just writing data, not parity, in caching phase */
937 BUG_ON(parity_pages != 0);
f6bed0ef
SL
938
939 list_add_tail(&sh->log_list, &io->stripe_list);
940 atomic_inc(&io->pending_stripe);
941 sh->log_io = io;
5036c390 942
a39f7afd
SL
943 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
944 return 0;
945
946 if (sh->log_start == MaxSector) {
947 BUG_ON(!list_empty(&sh->r5c));
948 sh->log_start = io->log_start;
949 spin_lock_irq(&log->stripe_in_journal_lock);
950 list_add_tail(&sh->r5c,
951 &log->stripe_in_journal_list);
952 spin_unlock_irq(&log->stripe_in_journal_lock);
953 atomic_inc(&log->stripe_in_journal_count);
954 }
5036c390 955 return 0;
f6bed0ef
SL
956}
957
a39f7afd
SL
958/* add stripe to no_space_stripes, and then wake up reclaim */
959static inline void r5l_add_no_space_stripe(struct r5l_log *log,
960 struct stripe_head *sh)
961{
962 spin_lock(&log->no_space_stripes_lock);
963 list_add_tail(&sh->log_list, &log->no_space_stripes);
964 spin_unlock(&log->no_space_stripes_lock);
965}
966
f6bed0ef
SL
967/*
968 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
969 * data from log to raid disks), so we shouldn't wait for reclaim here
970 */
971int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
972{
a39f7afd 973 struct r5conf *conf = sh->raid_conf;
f6bed0ef
SL
974 int write_disks = 0;
975 int data_pages, parity_pages;
f6bed0ef
SL
976 int reserve;
977 int i;
5036c390 978 int ret = 0;
a39f7afd 979 bool wake_reclaim = false;
f6bed0ef
SL
980
981 if (!log)
982 return -EAGAIN;
983 /* Don't support stripe batch */
984 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
985 test_bit(STRIPE_SYNCING, &sh->state)) {
986 /* the stripe is written to log, we start writing it to raid */
987 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
988 return -EAGAIN;
989 }
990
2ded3703
SL
991 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
992
f6bed0ef
SL
993 for (i = 0; i < sh->disks; i++) {
994 void *addr;
995
1e6d690b
SL
996 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
997 test_bit(R5_InJournal, &sh->dev[i].flags))
f6bed0ef 998 continue;
1e6d690b 999
f6bed0ef
SL
1000 write_disks++;
1001 /* checksum is already calculated in last run */
1002 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1003 continue;
1004 addr = kmap_atomic(sh->dev[i].page);
5cb2fbd6
SL
1005 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1006 addr, PAGE_SIZE);
f6bed0ef
SL
1007 kunmap_atomic(addr);
1008 }
1009 parity_pages = 1 + !!(sh->qd_idx >= 0);
1010 data_pages = write_disks - parity_pages;
1011
f6bed0ef 1012 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
253f9fd4
SL
1013 /*
1014 * The stripe must enter state machine again to finish the write, so
1015 * don't delay.
1016 */
1017 clear_bit(STRIPE_DELAYED, &sh->state);
f6bed0ef
SL
1018 atomic_inc(&sh->count);
1019
1020 mutex_lock(&log->io_mutex);
1021 /* meta + data */
1022 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
f6bed0ef 1023
a39f7afd
SL
1024 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1025 if (!r5l_has_free_space(log, reserve)) {
1026 r5l_add_no_space_stripe(log, sh);
1027 wake_reclaim = true;
1028 } else {
1029 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1030 if (ret) {
1031 spin_lock_irq(&log->io_list_lock);
1032 list_add_tail(&sh->log_list,
1033 &log->no_mem_stripes);
1034 spin_unlock_irq(&log->io_list_lock);
1035 }
1036 }
1037 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1038 /*
1039 * log space critical, do not process stripes that are
1040 * not in cache yet (sh->log_start == MaxSector).
1041 */
1042 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1043 sh->log_start == MaxSector) {
1044 r5l_add_no_space_stripe(log, sh);
1045 wake_reclaim = true;
1046 reserve = 0;
1047 } else if (!r5l_has_free_space(log, reserve)) {
1048 if (sh->log_start == log->last_checkpoint)
1049 BUG();
1050 else
1051 r5l_add_no_space_stripe(log, sh);
1052 } else {
1053 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1054 if (ret) {
1055 spin_lock_irq(&log->io_list_lock);
1056 list_add_tail(&sh->log_list,
1057 &log->no_mem_stripes);
1058 spin_unlock_irq(&log->io_list_lock);
1059 }
5036c390 1060 }
f6bed0ef 1061 }
f6bed0ef 1062
5036c390 1063 mutex_unlock(&log->io_mutex);
a39f7afd
SL
1064 if (wake_reclaim)
1065 r5l_wake_reclaim(log, reserve);
f6bed0ef
SL
1066 return 0;
1067}
1068
1069void r5l_write_stripe_run(struct r5l_log *log)
1070{
1071 if (!log)
1072 return;
1073 mutex_lock(&log->io_mutex);
1074 r5l_submit_current_io(log);
1075 mutex_unlock(&log->io_mutex);
1076}
1077
828cbe98
SL
1078int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1079{
1080 if (!log)
1081 return -ENODEV;
3bddb7f8
SL
1082
1083 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1084 /*
1085 * in write through (journal only)
1086 * we flush log disk cache first, then write stripe data to
1087 * raid disks. So if bio is finished, the log disk cache is
1088 * flushed already. The recovery guarantees we can recovery
1089 * the bio from log disk, so we don't need to flush again
1090 */
1091 if (bio->bi_iter.bi_size == 0) {
1092 bio_endio(bio);
1093 return 0;
1094 }
1095 bio->bi_opf &= ~REQ_PREFLUSH;
1096 } else {
1097 /* write back (with cache) */
1098 if (bio->bi_iter.bi_size == 0) {
1099 mutex_lock(&log->io_mutex);
1100 r5l_get_meta(log, 0);
1101 bio_list_add(&log->current_io->flush_barriers, bio);
1102 log->current_io->has_flush = 1;
1103 log->current_io->has_null_flush = 1;
1104 atomic_inc(&log->current_io->pending_stripe);
1105 r5l_submit_current_io(log);
1106 mutex_unlock(&log->io_mutex);
1107 return 0;
1108 }
828cbe98 1109 }
828cbe98
SL
1110 return -EAGAIN;
1111}
1112
f6bed0ef
SL
1113/* This will run after log space is reclaimed */
1114static void r5l_run_no_space_stripes(struct r5l_log *log)
1115{
1116 struct stripe_head *sh;
1117
1118 spin_lock(&log->no_space_stripes_lock);
1119 while (!list_empty(&log->no_space_stripes)) {
1120 sh = list_first_entry(&log->no_space_stripes,
1121 struct stripe_head, log_list);
1122 list_del_init(&sh->log_list);
1123 set_bit(STRIPE_HANDLE, &sh->state);
1124 raid5_release_stripe(sh);
1125 }
1126 spin_unlock(&log->no_space_stripes_lock);
1127}
1128
a39f7afd
SL
1129/*
1130 * calculate new last_checkpoint
1131 * for write through mode, returns log->next_checkpoint
1132 * for write back, returns log_start of first sh in stripe_in_journal_list
1133 */
1134static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1135{
1136 struct stripe_head *sh;
1137 struct r5l_log *log = conf->log;
1138 sector_t new_cp;
1139 unsigned long flags;
1140
1141 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1142 return log->next_checkpoint;
1143
1144 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1145 if (list_empty(&conf->log->stripe_in_journal_list)) {
1146 /* all stripes flushed */
d3014e21 1147 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
a39f7afd
SL
1148 return log->next_checkpoint;
1149 }
1150 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1151 struct stripe_head, r5c);
1152 new_cp = sh->log_start;
1153 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1154 return new_cp;
1155}
1156
17036461
CH
1157static sector_t r5l_reclaimable_space(struct r5l_log *log)
1158{
a39f7afd
SL
1159 struct r5conf *conf = log->rdev->mddev->private;
1160
17036461 1161 return r5l_ring_distance(log, log->last_checkpoint,
a39f7afd 1162 r5c_calculate_new_cp(conf));
17036461
CH
1163}
1164
5036c390
CH
1165static void r5l_run_no_mem_stripe(struct r5l_log *log)
1166{
1167 struct stripe_head *sh;
1168
1169 assert_spin_locked(&log->io_list_lock);
1170
1171 if (!list_empty(&log->no_mem_stripes)) {
1172 sh = list_first_entry(&log->no_mem_stripes,
1173 struct stripe_head, log_list);
1174 list_del_init(&sh->log_list);
1175 set_bit(STRIPE_HANDLE, &sh->state);
1176 raid5_release_stripe(sh);
1177 }
1178}
1179
04732f74 1180static bool r5l_complete_finished_ios(struct r5l_log *log)
17036461
CH
1181{
1182 struct r5l_io_unit *io, *next;
1183 bool found = false;
1184
1185 assert_spin_locked(&log->io_list_lock);
1186
04732f74 1187 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
17036461
CH
1188 /* don't change list order */
1189 if (io->state < IO_UNIT_STRIPE_END)
1190 break;
1191
1192 log->next_checkpoint = io->log_start;
17036461
CH
1193
1194 list_del(&io->log_sibling);
5036c390
CH
1195 mempool_free(io, log->io_pool);
1196 r5l_run_no_mem_stripe(log);
17036461
CH
1197
1198 found = true;
1199 }
1200
1201 return found;
1202}
1203
509ffec7
CH
1204static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1205{
1206 struct r5l_log *log = io->log;
a39f7afd 1207 struct r5conf *conf = log->rdev->mddev->private;
509ffec7
CH
1208 unsigned long flags;
1209
1210 spin_lock_irqsave(&log->io_list_lock, flags);
1211 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
17036461 1212
04732f74 1213 if (!r5l_complete_finished_ios(log)) {
85f2f9a4
SL
1214 spin_unlock_irqrestore(&log->io_list_lock, flags);
1215 return;
1216 }
509ffec7 1217
a39f7afd
SL
1218 if (r5l_reclaimable_space(log) > log->max_free_space ||
1219 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
509ffec7
CH
1220 r5l_wake_reclaim(log, 0);
1221
509ffec7
CH
1222 spin_unlock_irqrestore(&log->io_list_lock, flags);
1223 wake_up(&log->iounit_wait);
1224}
1225
0576b1c6
SL
1226void r5l_stripe_write_finished(struct stripe_head *sh)
1227{
1228 struct r5l_io_unit *io;
1229
0576b1c6 1230 io = sh->log_io;
0576b1c6
SL
1231 sh->log_io = NULL;
1232
509ffec7
CH
1233 if (io && atomic_dec_and_test(&io->pending_stripe))
1234 __r5l_stripe_write_finished(io);
0576b1c6
SL
1235}
1236
a8c34f91
SL
1237static void r5l_log_flush_endio(struct bio *bio)
1238{
1239 struct r5l_log *log = container_of(bio, struct r5l_log,
1240 flush_bio);
1241 unsigned long flags;
1242 struct r5l_io_unit *io;
a8c34f91 1243
6e74a9cf
SL
1244 if (bio->bi_error)
1245 md_error(log->rdev->mddev, log->rdev);
1246
a8c34f91 1247 spin_lock_irqsave(&log->io_list_lock, flags);
d8858f43
CH
1248 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1249 r5l_io_run_stripes(io);
04732f74 1250 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
a8c34f91
SL
1251 spin_unlock_irqrestore(&log->io_list_lock, flags);
1252}
1253
0576b1c6
SL
1254/*
1255 * Starting dispatch IO to raid.
1256 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1257 * broken meta in the middle of a log causes recovery can't find meta at the
1258 * head of log. If operations require meta at the head persistent in log, we
1259 * must make sure meta before it persistent in log too. A case is:
1260 *
1261 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1262 * data/parity must be persistent in log before we do the write to raid disks.
1263 *
1264 * The solution is we restrictly maintain io_unit list order. In this case, we
1265 * only write stripes of an io_unit to raid disks till the io_unit is the first
1266 * one whose data/parity is in log.
1267 */
1268void r5l_flush_stripe_to_raid(struct r5l_log *log)
1269{
a8c34f91 1270 bool do_flush;
56fef7c6
CH
1271
1272 if (!log || !log->need_cache_flush)
0576b1c6 1273 return;
0576b1c6
SL
1274
1275 spin_lock_irq(&log->io_list_lock);
a8c34f91
SL
1276 /* flush bio is running */
1277 if (!list_empty(&log->flushing_ios)) {
1278 spin_unlock_irq(&log->io_list_lock);
1279 return;
0576b1c6 1280 }
a8c34f91
SL
1281 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1282 do_flush = !list_empty(&log->flushing_ios);
0576b1c6 1283 spin_unlock_irq(&log->io_list_lock);
a8c34f91
SL
1284
1285 if (!do_flush)
1286 return;
1287 bio_reset(&log->flush_bio);
1288 log->flush_bio.bi_bdev = log->rdev->bdev;
1289 log->flush_bio.bi_end_io = r5l_log_flush_endio;
70fd7614 1290 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
4e49ea4a 1291 submit_bio(&log->flush_bio);
0576b1c6
SL
1292}
1293
0576b1c6 1294static void r5l_write_super(struct r5l_log *log, sector_t cp);
4b482044
SL
1295static void r5l_write_super_and_discard_space(struct r5l_log *log,
1296 sector_t end)
1297{
1298 struct block_device *bdev = log->rdev->bdev;
1299 struct mddev *mddev;
1300
1301 r5l_write_super(log, end);
1302
1303 if (!blk_queue_discard(bdev_get_queue(bdev)))
1304 return;
1305
1306 mddev = log->rdev->mddev;
1307 /*
8e018c21
SL
1308 * Discard could zero data, so before discard we must make sure
1309 * superblock is updated to new log tail. Updating superblock (either
1310 * directly call md_update_sb() or depend on md thread) must hold
1311 * reconfig mutex. On the other hand, raid5_quiesce is called with
1312 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1313 * for all IO finish, hence waitting for reclaim thread, while reclaim
1314 * thread is calling this function and waitting for reconfig mutex. So
1315 * there is a deadlock. We workaround this issue with a trylock.
1316 * FIXME: we could miss discard if we can't take reconfig mutex
4b482044 1317 */
2953079c
SL
1318 set_mask_bits(&mddev->sb_flags, 0,
1319 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
8e018c21
SL
1320 if (!mddev_trylock(mddev))
1321 return;
1322 md_update_sb(mddev, 1);
1323 mddev_unlock(mddev);
4b482044 1324
6e74a9cf 1325 /* discard IO error really doesn't matter, ignore it */
4b482044
SL
1326 if (log->last_checkpoint < end) {
1327 blkdev_issue_discard(bdev,
1328 log->last_checkpoint + log->rdev->data_offset,
1329 end - log->last_checkpoint, GFP_NOIO, 0);
1330 } else {
1331 blkdev_issue_discard(bdev,
1332 log->last_checkpoint + log->rdev->data_offset,
1333 log->device_size - log->last_checkpoint,
1334 GFP_NOIO, 0);
1335 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1336 GFP_NOIO, 0);
1337 }
1338}
1339
a39f7afd
SL
1340/*
1341 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1342 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1343 *
1344 * must hold conf->device_lock
1345 */
1346static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
0576b1c6 1347{
a39f7afd
SL
1348 BUG_ON(list_empty(&sh->lru));
1349 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1350 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
0576b1c6 1351
0576b1c6 1352 /*
a39f7afd
SL
1353 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1354 * raid5_release_stripe() while holding conf->device_lock
0576b1c6 1355 */
a39f7afd
SL
1356 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1357 assert_spin_locked(&conf->device_lock);
0576b1c6 1358
a39f7afd
SL
1359 list_del_init(&sh->lru);
1360 atomic_inc(&sh->count);
17036461 1361
a39f7afd
SL
1362 set_bit(STRIPE_HANDLE, &sh->state);
1363 atomic_inc(&conf->active_stripes);
1364 r5c_make_stripe_write_out(sh);
0576b1c6 1365
e33fbb9c
SL
1366 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1367 atomic_inc(&conf->r5c_flushing_partial_stripes);
1368 else
1369 atomic_inc(&conf->r5c_flushing_full_stripes);
a39f7afd
SL
1370 raid5_release_stripe(sh);
1371}
1372
1373/*
1374 * if num == 0, flush all full stripes
1375 * if num > 0, flush all full stripes. If less than num full stripes are
1376 * flushed, flush some partial stripes until totally num stripes are
1377 * flushed or there is no more cached stripes.
1378 */
1379void r5c_flush_cache(struct r5conf *conf, int num)
1380{
1381 int count;
1382 struct stripe_head *sh, *next;
1383
1384 assert_spin_locked(&conf->device_lock);
1385 if (!conf->log)
0576b1c6
SL
1386 return;
1387
a39f7afd
SL
1388 count = 0;
1389 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1390 r5c_flush_stripe(conf, sh);
1391 count++;
1392 }
1393
1394 if (count >= num)
1395 return;
1396 list_for_each_entry_safe(sh, next,
1397 &conf->r5c_partial_stripe_list, lru) {
1398 r5c_flush_stripe(conf, sh);
1399 if (++count >= num)
1400 break;
1401 }
1402}
1403
1404static void r5c_do_reclaim(struct r5conf *conf)
1405{
1406 struct r5l_log *log = conf->log;
1407 struct stripe_head *sh;
1408 int count = 0;
1409 unsigned long flags;
1410 int total_cached;
1411 int stripes_to_flush;
e33fbb9c 1412 int flushing_partial, flushing_full;
a39f7afd
SL
1413
1414 if (!r5c_is_writeback(log))
1415 return;
1416
e33fbb9c
SL
1417 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1418 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
a39f7afd 1419 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
e33fbb9c
SL
1420 atomic_read(&conf->r5c_cached_full_stripes) -
1421 flushing_full - flushing_partial;
a39f7afd
SL
1422
1423 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1424 atomic_read(&conf->empty_inactive_list_nr) > 0)
1425 /*
1426 * if stripe cache pressure high, flush all full stripes and
1427 * some partial stripes
1428 */
1429 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1430 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
e33fbb9c 1431 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
84890c03 1432 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
a39f7afd
SL
1433 /*
1434 * if stripe cache pressure moderate, or if there is many full
1435 * stripes,flush all full stripes
1436 */
1437 stripes_to_flush = 0;
1438 else
1439 /* no need to flush */
1440 stripes_to_flush = -1;
1441
1442 if (stripes_to_flush >= 0) {
1443 spin_lock_irqsave(&conf->device_lock, flags);
1444 r5c_flush_cache(conf, stripes_to_flush);
1445 spin_unlock_irqrestore(&conf->device_lock, flags);
1446 }
1447
1448 /* if log space is tight, flush stripes on stripe_in_journal_list */
1449 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1450 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1451 spin_lock(&conf->device_lock);
1452 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1453 /*
1454 * stripes on stripe_in_journal_list could be in any
1455 * state of the stripe_cache state machine. In this
1456 * case, we only want to flush stripe on
1457 * r5c_cached_full/partial_stripes. The following
1458 * condition makes sure the stripe is on one of the
1459 * two lists.
1460 */
1461 if (!list_empty(&sh->lru) &&
1462 !test_bit(STRIPE_HANDLE, &sh->state) &&
1463 atomic_read(&sh->count) == 0) {
1464 r5c_flush_stripe(conf, sh);
e8fd52ee
SL
1465 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1466 break;
a39f7afd 1467 }
a39f7afd
SL
1468 }
1469 spin_unlock(&conf->device_lock);
1470 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1471 }
f687a33e
SL
1472
1473 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1474 r5l_run_no_space_stripes(log);
1475
a39f7afd
SL
1476 md_wakeup_thread(conf->mddev->thread);
1477}
1478
0576b1c6
SL
1479static void r5l_do_reclaim(struct r5l_log *log)
1480{
a39f7afd 1481 struct r5conf *conf = log->rdev->mddev->private;
0576b1c6 1482 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
17036461
CH
1483 sector_t reclaimable;
1484 sector_t next_checkpoint;
a39f7afd 1485 bool write_super;
0576b1c6
SL
1486
1487 spin_lock_irq(&log->io_list_lock);
a39f7afd
SL
1488 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1489 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
0576b1c6
SL
1490 /*
1491 * move proper io_unit to reclaim list. We should not change the order.
1492 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1493 * shouldn't reuse space of an unreclaimable io_unit
1494 */
1495 while (1) {
17036461
CH
1496 reclaimable = r5l_reclaimable_space(log);
1497 if (reclaimable >= reclaim_target ||
0576b1c6
SL
1498 (list_empty(&log->running_ios) &&
1499 list_empty(&log->io_end_ios) &&
a8c34f91 1500 list_empty(&log->flushing_ios) &&
04732f74 1501 list_empty(&log->finished_ios)))
0576b1c6
SL
1502 break;
1503
17036461
CH
1504 md_wakeup_thread(log->rdev->mddev->thread);
1505 wait_event_lock_irq(log->iounit_wait,
1506 r5l_reclaimable_space(log) > reclaimable,
1507 log->io_list_lock);
0576b1c6 1508 }
17036461 1509
a39f7afd 1510 next_checkpoint = r5c_calculate_new_cp(conf);
0576b1c6
SL
1511 spin_unlock_irq(&log->io_list_lock);
1512
a39f7afd 1513 if (reclaimable == 0 || !write_super)
0576b1c6
SL
1514 return;
1515
0576b1c6
SL
1516 /*
1517 * write_super will flush cache of each raid disk. We must write super
1518 * here, because the log area might be reused soon and we don't want to
1519 * confuse recovery
1520 */
4b482044 1521 r5l_write_super_and_discard_space(log, next_checkpoint);
0576b1c6
SL
1522
1523 mutex_lock(&log->io_mutex);
17036461 1524 log->last_checkpoint = next_checkpoint;
a39f7afd 1525 r5c_update_log_state(log);
0576b1c6 1526 mutex_unlock(&log->io_mutex);
0576b1c6 1527
17036461 1528 r5l_run_no_space_stripes(log);
0576b1c6
SL
1529}
1530
1531static void r5l_reclaim_thread(struct md_thread *thread)
1532{
1533 struct mddev *mddev = thread->mddev;
1534 struct r5conf *conf = mddev->private;
1535 struct r5l_log *log = conf->log;
1536
1537 if (!log)
1538 return;
a39f7afd 1539 r5c_do_reclaim(conf);
0576b1c6
SL
1540 r5l_do_reclaim(log);
1541}
1542
a39f7afd 1543void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
f6bed0ef 1544{
0576b1c6
SL
1545 unsigned long target;
1546 unsigned long new = (unsigned long)space; /* overflow in theory */
1547
a39f7afd
SL
1548 if (!log)
1549 return;
0576b1c6
SL
1550 do {
1551 target = log->reclaim_target;
1552 if (new < target)
1553 return;
1554 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1555 md_wakeup_thread(log->reclaim_thread);
f6bed0ef
SL
1556}
1557
e6c033f7
SL
1558void r5l_quiesce(struct r5l_log *log, int state)
1559{
4b482044 1560 struct mddev *mddev;
e6c033f7
SL
1561 if (!log || state == 2)
1562 return;
ce1ccd07
SL
1563 if (state == 0)
1564 kthread_unpark(log->reclaim_thread->tsk);
1565 else if (state == 1) {
4b482044
SL
1566 /* make sure r5l_write_super_and_discard_space exits */
1567 mddev = log->rdev->mddev;
1568 wake_up(&mddev->sb_wait);
ce1ccd07 1569 kthread_park(log->reclaim_thread->tsk);
a39f7afd 1570 r5l_wake_reclaim(log, MaxSector);
e6c033f7
SL
1571 r5l_do_reclaim(log);
1572 }
1573}
1574
6e74a9cf
SL
1575bool r5l_log_disk_error(struct r5conf *conf)
1576{
f6b6ec5c
SL
1577 struct r5l_log *log;
1578 bool ret;
7dde2ad3 1579 /* don't allow write if journal disk is missing */
f6b6ec5c
SL
1580 rcu_read_lock();
1581 log = rcu_dereference(conf->log);
1582
1583 if (!log)
1584 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1585 else
1586 ret = test_bit(Faulty, &log->rdev->flags);
1587 rcu_read_unlock();
1588 return ret;
6e74a9cf
SL
1589}
1590
effe6ee7
SL
1591#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1592
355810d1
SL
1593struct r5l_recovery_ctx {
1594 struct page *meta_page; /* current meta */
1595 sector_t meta_total_blocks; /* total size of current meta and data */
1596 sector_t pos; /* recovery position */
1597 u64 seq; /* recovery position seq */
b4c625c6
SL
1598 int data_parity_stripes; /* number of data_parity stripes */
1599 int data_only_stripes; /* number of data_only stripes */
1600 struct list_head cached_list;
effe6ee7
SL
1601
1602 /*
1603 * read ahead page pool (ra_pool)
1604 * in recovery, log is read sequentially. It is not efficient to
1605 * read every page with sync_page_io(). The read ahead page pool
1606 * reads multiple pages with one IO, so further log read can
1607 * just copy data from the pool.
1608 */
1609 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1610 sector_t pool_offset; /* offset of first page in the pool */
1611 int total_pages; /* total allocated pages */
1612 int valid_pages; /* pages with valid data */
1613 struct bio *ra_bio; /* bio to do the read ahead */
355810d1
SL
1614};
1615
effe6ee7
SL
1616static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1617 struct r5l_recovery_ctx *ctx)
1618{
1619 struct page *page;
1620
1621 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1622 if (!ctx->ra_bio)
1623 return -ENOMEM;
1624
1625 ctx->valid_pages = 0;
1626 ctx->total_pages = 0;
1627 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1628 page = alloc_page(GFP_KERNEL);
1629
1630 if (!page)
1631 break;
1632 ctx->ra_pool[ctx->total_pages] = page;
1633 ctx->total_pages += 1;
1634 }
1635
1636 if (ctx->total_pages == 0) {
1637 bio_put(ctx->ra_bio);
1638 return -ENOMEM;
1639 }
1640
1641 ctx->pool_offset = 0;
1642 return 0;
1643}
1644
1645static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1646 struct r5l_recovery_ctx *ctx)
1647{
1648 int i;
1649
1650 for (i = 0; i < ctx->total_pages; ++i)
1651 put_page(ctx->ra_pool[i]);
1652 bio_put(ctx->ra_bio);
1653}
1654
1655/*
1656 * fetch ctx->valid_pages pages from offset
1657 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1658 * However, if the offset is close to the end of the journal device,
1659 * ctx->valid_pages could be smaller than ctx->total_pages
1660 */
1661static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1662 struct r5l_recovery_ctx *ctx,
1663 sector_t offset)
1664{
1665 bio_reset(ctx->ra_bio);
1666 ctx->ra_bio->bi_bdev = log->rdev->bdev;
1667 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1668 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1669
1670 ctx->valid_pages = 0;
1671 ctx->pool_offset = offset;
1672
1673 while (ctx->valid_pages < ctx->total_pages) {
1674 bio_add_page(ctx->ra_bio,
1675 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1676 ctx->valid_pages += 1;
1677
1678 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1679
1680 if (offset == 0) /* reached end of the device */
1681 break;
1682 }
1683
1684 return submit_bio_wait(ctx->ra_bio);
1685}
1686
1687/*
1688 * try read a page from the read ahead page pool, if the page is not in the
1689 * pool, call r5l_recovery_fetch_ra_pool
1690 */
1691static int r5l_recovery_read_page(struct r5l_log *log,
1692 struct r5l_recovery_ctx *ctx,
1693 struct page *page,
1694 sector_t offset)
1695{
1696 int ret;
1697
1698 if (offset < ctx->pool_offset ||
1699 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1700 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1701 if (ret)
1702 return ret;
1703 }
1704
1705 BUG_ON(offset < ctx->pool_offset ||
1706 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1707
1708 memcpy(page_address(page),
1709 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1710 BLOCK_SECTOR_SHIFT]),
1711 PAGE_SIZE);
1712 return 0;
1713}
1714
9ed988f5
SL
1715static int r5l_recovery_read_meta_block(struct r5l_log *log,
1716 struct r5l_recovery_ctx *ctx)
355810d1
SL
1717{
1718 struct page *page = ctx->meta_page;
1719 struct r5l_meta_block *mb;
1720 u32 crc, stored_crc;
effe6ee7 1721 int ret;
355810d1 1722
effe6ee7
SL
1723 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1724 if (ret != 0)
1725 return ret;
355810d1
SL
1726
1727 mb = page_address(page);
1728 stored_crc = le32_to_cpu(mb->checksum);
1729 mb->checksum = 0;
1730
1731 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1732 le64_to_cpu(mb->seq) != ctx->seq ||
1733 mb->version != R5LOG_VERSION ||
1734 le64_to_cpu(mb->position) != ctx->pos)
1735 return -EINVAL;
1736
5cb2fbd6 1737 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
1738 if (stored_crc != crc)
1739 return -EINVAL;
1740
1741 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1742 return -EINVAL;
1743
1744 ctx->meta_total_blocks = BLOCK_SECTORS;
1745
1746 return 0;
1747}
1748
9ed988f5
SL
1749static void
1750r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1751 struct page *page,
1752 sector_t pos, u64 seq)
355810d1 1753{
355810d1 1754 struct r5l_meta_block *mb;
355810d1 1755
355810d1 1756 mb = page_address(page);
9ed988f5 1757 clear_page(mb);
355810d1
SL
1758 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1759 mb->version = R5LOG_VERSION;
1760 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1761 mb->seq = cpu_to_le64(seq);
1762 mb->position = cpu_to_le64(pos);
9ed988f5 1763}
355810d1 1764
9ed988f5
SL
1765static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1766 u64 seq)
1767{
1768 struct page *page;
5c88f403 1769 struct r5l_meta_block *mb;
355810d1 1770
9ed988f5
SL
1771 page = alloc_page(GFP_KERNEL);
1772 if (!page)
1773 return -ENOMEM;
1774 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
5c88f403
SL
1775 mb = page_address(page);
1776 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1777 mb, PAGE_SIZE));
796a5cf0 1778 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
20737738 1779 REQ_FUA, false)) {
355810d1
SL
1780 __free_page(page);
1781 return -EIO;
1782 }
1783 __free_page(page);
1784 return 0;
1785}
355810d1 1786
b4c625c6
SL
1787/*
1788 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1789 * to mark valid (potentially not flushed) data in the journal.
1790 *
1791 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1792 * so there should not be any mismatch here.
1793 */
1794static void r5l_recovery_load_data(struct r5l_log *log,
1795 struct stripe_head *sh,
1796 struct r5l_recovery_ctx *ctx,
1797 struct r5l_payload_data_parity *payload,
1798 sector_t log_offset)
1799{
1800 struct mddev *mddev = log->rdev->mddev;
1801 struct r5conf *conf = mddev->private;
1802 int dd_idx;
1803
1804 raid5_compute_sector(conf,
1805 le64_to_cpu(payload->location), 0,
1806 &dd_idx, sh);
effe6ee7 1807 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
b4c625c6
SL
1808 sh->dev[dd_idx].log_checksum =
1809 le32_to_cpu(payload->checksum[0]);
1810 ctx->meta_total_blocks += BLOCK_SECTORS;
1811
1812 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1813 set_bit(STRIPE_R5C_CACHING, &sh->state);
1814}
1815
1816static void r5l_recovery_load_parity(struct r5l_log *log,
1817 struct stripe_head *sh,
1818 struct r5l_recovery_ctx *ctx,
1819 struct r5l_payload_data_parity *payload,
1820 sector_t log_offset)
1821{
1822 struct mddev *mddev = log->rdev->mddev;
1823 struct r5conf *conf = mddev->private;
1824
1825 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
effe6ee7 1826 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
b4c625c6
SL
1827 sh->dev[sh->pd_idx].log_checksum =
1828 le32_to_cpu(payload->checksum[0]);
1829 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1830
1831 if (sh->qd_idx >= 0) {
effe6ee7
SL
1832 r5l_recovery_read_page(
1833 log, ctx, sh->dev[sh->qd_idx].page,
1834 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
b4c625c6
SL
1835 sh->dev[sh->qd_idx].log_checksum =
1836 le32_to_cpu(payload->checksum[1]);
1837 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
355810d1 1838 }
b4c625c6
SL
1839 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1840}
355810d1 1841
b4c625c6
SL
1842static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1843{
1844 int i;
1845
1846 sh->state = 0;
1847 sh->log_start = MaxSector;
1848 for (i = sh->disks; i--; )
1849 sh->dev[i].flags = 0;
1850}
1851
1852static void
1853r5l_recovery_replay_one_stripe(struct r5conf *conf,
1854 struct stripe_head *sh,
1855 struct r5l_recovery_ctx *ctx)
1856{
1857 struct md_rdev *rdev, *rrdev;
1858 int disk_index;
1859 int data_count = 0;
355810d1 1860
b4c625c6 1861 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
355810d1
SL
1862 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1863 continue;
b4c625c6
SL
1864 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1865 continue;
1866 data_count++;
355810d1
SL
1867 }
1868
b4c625c6
SL
1869 /*
1870 * stripes that only have parity must have been flushed
1871 * before the crash that we are now recovering from, so
1872 * there is nothing more to recovery.
1873 */
1874 if (data_count == 0)
1875 goto out;
355810d1 1876
b4c625c6
SL
1877 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1878 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
355810d1
SL
1879 continue;
1880
1881 /* in case device is broken */
b4c625c6 1882 rcu_read_lock();
355810d1 1883 rdev = rcu_dereference(conf->disks[disk_index].rdev);
b4c625c6
SL
1884 if (rdev) {
1885 atomic_inc(&rdev->nr_pending);
1886 rcu_read_unlock();
1887 sync_page_io(rdev, sh->sector, PAGE_SIZE,
796a5cf0
MC
1888 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1889 false);
b4c625c6
SL
1890 rdev_dec_pending(rdev, rdev->mddev);
1891 rcu_read_lock();
1892 }
355810d1 1893 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
b4c625c6
SL
1894 if (rrdev) {
1895 atomic_inc(&rrdev->nr_pending);
1896 rcu_read_unlock();
1897 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
796a5cf0
MC
1898 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1899 false);
b4c625c6
SL
1900 rdev_dec_pending(rrdev, rrdev->mddev);
1901 rcu_read_lock();
1902 }
1903 rcu_read_unlock();
355810d1 1904 }
b4c625c6
SL
1905 ctx->data_parity_stripes++;
1906out:
1907 r5l_recovery_reset_stripe(sh);
1908}
1909
1910static struct stripe_head *
1911r5c_recovery_alloc_stripe(struct r5conf *conf,
3c66abba 1912 sector_t stripe_sect)
b4c625c6
SL
1913{
1914 struct stripe_head *sh;
1915
1916 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1917 if (!sh)
1918 return NULL; /* no more stripe available */
1919
1920 r5l_recovery_reset_stripe(sh);
b4c625c6
SL
1921
1922 return sh;
1923}
1924
1925static struct stripe_head *
1926r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1927{
1928 struct stripe_head *sh;
1929
1930 list_for_each_entry(sh, list, lru)
1931 if (sh->sector == sect)
1932 return sh;
1933 return NULL;
1934}
1935
1936static void
1937r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1938 struct r5l_recovery_ctx *ctx)
1939{
1940 struct stripe_head *sh, *next;
1941
1942 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1943 r5l_recovery_reset_stripe(sh);
1944 list_del_init(&sh->lru);
1945 raid5_release_stripe(sh);
1946 }
1947}
1948
1949static void
1950r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1951 struct r5l_recovery_ctx *ctx)
1952{
1953 struct stripe_head *sh, *next;
1954
1955 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1956 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1957 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1958 list_del_init(&sh->lru);
1959 raid5_release_stripe(sh);
1960 }
1961}
1962
1963/* if matches return 0; otherwise return -EINVAL */
1964static int
effe6ee7
SL
1965r5l_recovery_verify_data_checksum(struct r5l_log *log,
1966 struct r5l_recovery_ctx *ctx,
1967 struct page *page,
b4c625c6
SL
1968 sector_t log_offset, __le32 log_checksum)
1969{
1970 void *addr;
1971 u32 checksum;
1972
effe6ee7 1973 r5l_recovery_read_page(log, ctx, page, log_offset);
b4c625c6
SL
1974 addr = kmap_atomic(page);
1975 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1976 kunmap_atomic(addr);
1977 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1978}
1979
1980/*
1981 * before loading data to stripe cache, we need verify checksum for all data,
1982 * if there is mismatch for any data page, we drop all data in the mata block
1983 */
1984static int
1985r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1986 struct r5l_recovery_ctx *ctx)
1987{
1988 struct mddev *mddev = log->rdev->mddev;
1989 struct r5conf *conf = mddev->private;
1990 struct r5l_meta_block *mb = page_address(ctx->meta_page);
1991 sector_t mb_offset = sizeof(struct r5l_meta_block);
1992 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1993 struct page *page;
1994 struct r5l_payload_data_parity *payload;
2d4f4687 1995 struct r5l_payload_flush *payload_flush;
b4c625c6
SL
1996
1997 page = alloc_page(GFP_KERNEL);
1998 if (!page)
1999 return -ENOMEM;
2000
2001 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2002 payload = (void *)mb + mb_offset;
2d4f4687 2003 payload_flush = (void *)mb + mb_offset;
b4c625c6
SL
2004
2005 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
2006 if (r5l_recovery_verify_data_checksum(
effe6ee7 2007 log, ctx, page, log_offset,
b4c625c6
SL
2008 payload->checksum[0]) < 0)
2009 goto mismatch;
2010 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
2011 if (r5l_recovery_verify_data_checksum(
effe6ee7 2012 log, ctx, page, log_offset,
b4c625c6
SL
2013 payload->checksum[0]) < 0)
2014 goto mismatch;
2015 if (conf->max_degraded == 2 && /* q for RAID 6 */
2016 r5l_recovery_verify_data_checksum(
effe6ee7 2017 log, ctx, page,
b4c625c6
SL
2018 r5l_ring_add(log, log_offset,
2019 BLOCK_SECTORS),
2020 payload->checksum[1]) < 0)
2021 goto mismatch;
2d4f4687
SL
2022 } else if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2023 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2024 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
b4c625c6
SL
2025 goto mismatch;
2026
2d4f4687
SL
2027 if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2028 mb_offset += sizeof(struct r5l_payload_flush) +
2029 le32_to_cpu(payload_flush->size);
2030 } else {
2031 /* DATA or PARITY payload */
2032 log_offset = r5l_ring_add(log, log_offset,
2033 le32_to_cpu(payload->size));
2034 mb_offset += sizeof(struct r5l_payload_data_parity) +
2035 sizeof(__le32) *
2036 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2037 }
b4c625c6 2038
b4c625c6
SL
2039 }
2040
2041 put_page(page);
355810d1
SL
2042 return 0;
2043
b4c625c6
SL
2044mismatch:
2045 put_page(page);
355810d1
SL
2046 return -EINVAL;
2047}
2048
b4c625c6
SL
2049/*
2050 * Analyze all data/parity pages in one meta block
2051 * Returns:
2052 * 0 for success
2053 * -EINVAL for unknown playload type
2054 * -EAGAIN for checksum mismatch of data page
2055 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2056 */
2057static int
2058r5c_recovery_analyze_meta_block(struct r5l_log *log,
2059 struct r5l_recovery_ctx *ctx,
2060 struct list_head *cached_stripe_list)
355810d1 2061{
b4c625c6
SL
2062 struct mddev *mddev = log->rdev->mddev;
2063 struct r5conf *conf = mddev->private;
355810d1 2064 struct r5l_meta_block *mb;
b4c625c6 2065 struct r5l_payload_data_parity *payload;
2d4f4687 2066 struct r5l_payload_flush *payload_flush;
b4c625c6 2067 int mb_offset;
355810d1 2068 sector_t log_offset;
b4c625c6
SL
2069 sector_t stripe_sect;
2070 struct stripe_head *sh;
2071 int ret;
2072
2073 /*
2074 * for mismatch in data blocks, we will drop all data in this mb, but
2075 * we will still read next mb for other data with FLUSH flag, as
2076 * io_unit could finish out of order.
2077 */
2078 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2079 if (ret == -EINVAL)
2080 return -EAGAIN;
2081 else if (ret)
2082 return ret; /* -ENOMEM duo to alloc_page() failed */
355810d1
SL
2083
2084 mb = page_address(ctx->meta_page);
b4c625c6 2085 mb_offset = sizeof(struct r5l_meta_block);
355810d1
SL
2086 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2087
b4c625c6 2088 while (mb_offset < le32_to_cpu(mb->meta_size)) {
355810d1
SL
2089 int dd;
2090
b4c625c6 2091 payload = (void *)mb + mb_offset;
2d4f4687
SL
2092 payload_flush = (void *)mb + mb_offset;
2093
2094 if (payload->header.type == R5LOG_PAYLOAD_FLUSH) {
2095 int i, count;
2096
2097 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2098 for (i = 0; i < count; ++i) {
2099 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2100 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2101 stripe_sect);
2102 if (sh) {
2103 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2104 r5l_recovery_reset_stripe(sh);
2105 list_del_init(&sh->lru);
2106 raid5_release_stripe(sh);
2107 }
2108 }
2109
2110 mb_offset += sizeof(struct r5l_payload_flush) +
2111 le32_to_cpu(payload_flush->size);
2112 continue;
2113 }
2114
2115 /* DATA or PARITY payload */
b4c625c6
SL
2116 stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
2117 raid5_compute_sector(
2118 conf, le64_to_cpu(payload->location), 0, &dd,
2119 NULL)
2120 : le64_to_cpu(payload->location);
2121
2122 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2123 stripe_sect);
2124
2125 if (!sh) {
3c66abba 2126 sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
b4c625c6
SL
2127 /*
2128 * cannot get stripe from raid5_get_active_stripe
2129 * try replay some stripes
2130 */
2131 if (!sh) {
2132 r5c_recovery_replay_stripes(
2133 cached_stripe_list, ctx);
2134 sh = r5c_recovery_alloc_stripe(
3c66abba 2135 conf, stripe_sect);
b4c625c6
SL
2136 }
2137 if (!sh) {
2138 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2139 mdname(mddev),
2140 conf->min_nr_stripes * 2);
2141 raid5_set_cache_size(mddev,
2142 conf->min_nr_stripes * 2);
3c66abba
SL
2143 sh = r5c_recovery_alloc_stripe(conf,
2144 stripe_sect);
b4c625c6
SL
2145 }
2146 if (!sh) {
2147 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2148 mdname(mddev));
2149 return -ENOMEM;
2150 }
2151 list_add_tail(&sh->lru, cached_stripe_list);
2152 }
2153
2154 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
f7b7bee7
ZL
2155 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2156 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
b4c625c6 2157 r5l_recovery_replay_one_stripe(conf, sh, ctx);
b4c625c6
SL
2158 list_move_tail(&sh->lru, cached_stripe_list);
2159 }
2160 r5l_recovery_load_data(log, sh, ctx, payload,
2161 log_offset);
2162 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
2163 r5l_recovery_load_parity(log, sh, ctx, payload,
2164 log_offset);
2165 else
355810d1 2166 return -EINVAL;
b4c625c6
SL
2167
2168 log_offset = r5l_ring_add(log, log_offset,
2169 le32_to_cpu(payload->size));
2170
2171 mb_offset += sizeof(struct r5l_payload_data_parity) +
2172 sizeof(__le32) *
2173 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
355810d1 2174 }
b4c625c6 2175
355810d1
SL
2176 return 0;
2177}
2178
b4c625c6
SL
2179/*
2180 * Load the stripe into cache. The stripe will be written out later by
2181 * the stripe cache state machine.
2182 */
2183static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2184 struct stripe_head *sh)
355810d1 2185{
b4c625c6
SL
2186 struct r5dev *dev;
2187 int i;
2188
2189 for (i = sh->disks; i--; ) {
2190 dev = sh->dev + i;
2191 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2192 set_bit(R5_InJournal, &dev->flags);
2193 set_bit(R5_UPTODATE, &dev->flags);
2194 }
2195 }
b4c625c6
SL
2196}
2197
2198/*
2199 * Scan through the log for all to-be-flushed data
2200 *
2201 * For stripes with data and parity, namely Data-Parity stripe
2202 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2203 *
2204 * For stripes with only data, namely Data-Only stripe
2205 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2206 *
2207 * For a stripe, if we see data after parity, we should discard all previous
2208 * data and parity for this stripe, as these data are already flushed to
2209 * the array.
2210 *
2211 * At the end of the scan, we return the new journal_tail, which points to
2212 * first data-only stripe on the journal device, or next invalid meta block.
2213 */
2214static int r5c_recovery_flush_log(struct r5l_log *log,
2215 struct r5l_recovery_ctx *ctx)
2216{
bc8f167f 2217 struct stripe_head *sh;
b4c625c6
SL
2218 int ret = 0;
2219
2220 /* scan through the log */
355810d1 2221 while (1) {
b4c625c6
SL
2222 if (r5l_recovery_read_meta_block(log, ctx))
2223 break;
2224
2225 ret = r5c_recovery_analyze_meta_block(log, ctx,
2226 &ctx->cached_list);
2227 /*
2228 * -EAGAIN means mismatch in data block, in this case, we still
2229 * try scan the next metablock
2230 */
2231 if (ret && ret != -EAGAIN)
2232 break; /* ret == -EINVAL or -ENOMEM */
355810d1
SL
2233 ctx->seq++;
2234 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2235 }
b4c625c6
SL
2236
2237 if (ret == -ENOMEM) {
2238 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2239 return ret;
2240 }
2241
2242 /* replay data-parity stripes */
2243 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2244
2245 /* load data-only stripes to stripe cache */
bc8f167f 2246 list_for_each_entry(sh, &ctx->cached_list, lru) {
b4c625c6
SL
2247 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2248 r5c_recovery_load_one_stripe(log, sh);
b4c625c6
SL
2249 ctx->data_only_stripes++;
2250 }
2251
2252 return 0;
355810d1
SL
2253}
2254
b4c625c6
SL
2255/*
2256 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2257 * log will start here. but we can't let superblock point to last valid
2258 * meta block. The log might looks like:
2259 * | meta 1| meta 2| meta 3|
2260 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2261 * superblock points to meta 1, we write a new valid meta 2n. if crash
2262 * happens again, new recovery will start from meta 1. Since meta 2n is
2263 * valid now, recovery will think meta 3 is valid, which is wrong.
2264 * The solution is we create a new meta in meta2 with its seq == meta
3c6edc66
SL
2265 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2266 * will not think meta 3 is a valid meta, because its seq doesn't match
b4c625c6
SL
2267 */
2268
2269/*
2270 * Before recovery, the log looks like the following
2271 *
2272 * ---------------------------------------------
2273 * | valid log | invalid log |
2274 * ---------------------------------------------
2275 * ^
2276 * |- log->last_checkpoint
2277 * |- log->last_cp_seq
2278 *
2279 * Now we scan through the log until we see invalid entry
2280 *
2281 * ---------------------------------------------
2282 * | valid log | invalid log |
2283 * ---------------------------------------------
2284 * ^ ^
2285 * |- log->last_checkpoint |- ctx->pos
2286 * |- log->last_cp_seq |- ctx->seq
2287 *
2288 * From this point, we need to increase seq number by 10 to avoid
2289 * confusing next recovery.
2290 *
2291 * ---------------------------------------------
2292 * | valid log | invalid log |
2293 * ---------------------------------------------
2294 * ^ ^
2295 * |- log->last_checkpoint |- ctx->pos+1
3c6edc66 2296 * |- log->last_cp_seq |- ctx->seq+10001
b4c625c6
SL
2297 *
2298 * However, it is not safe to start the state machine yet, because data only
2299 * parities are not yet secured in RAID. To save these data only parities, we
2300 * rewrite them from seq+11.
2301 *
2302 * -----------------------------------------------------------------
2303 * | valid log | data only stripes | invalid log |
2304 * -----------------------------------------------------------------
2305 * ^ ^
2306 * |- log->last_checkpoint |- ctx->pos+n
3c6edc66 2307 * |- log->last_cp_seq |- ctx->seq+10000+n
b4c625c6
SL
2308 *
2309 * If failure happens again during this process, the recovery can safe start
2310 * again from log->last_checkpoint.
2311 *
2312 * Once data only stripes are rewritten to journal, we move log_tail
2313 *
2314 * -----------------------------------------------------------------
2315 * | old log | data only stripes | invalid log |
2316 * -----------------------------------------------------------------
2317 * ^ ^
2318 * |- log->last_checkpoint |- ctx->pos+n
3c6edc66 2319 * |- log->last_cp_seq |- ctx->seq+10000+n
b4c625c6
SL
2320 *
2321 * Then we can safely start the state machine. If failure happens from this
2322 * point on, the recovery will start from new log->last_checkpoint.
2323 */
2324static int
2325r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2326 struct r5l_recovery_ctx *ctx)
355810d1 2327{
a85dd7b8 2328 struct stripe_head *sh;
b4c625c6 2329 struct mddev *mddev = log->rdev->mddev;
355810d1 2330 struct page *page;
3c66abba 2331 sector_t next_checkpoint = MaxSector;
355810d1 2332
b4c625c6
SL
2333 page = alloc_page(GFP_KERNEL);
2334 if (!page) {
2335 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2336 mdname(mddev));
355810d1 2337 return -ENOMEM;
b4c625c6 2338 }
355810d1 2339
3c66abba
SL
2340 WARN_ON(list_empty(&ctx->cached_list));
2341
a85dd7b8 2342 list_for_each_entry(sh, &ctx->cached_list, lru) {
b4c625c6
SL
2343 struct r5l_meta_block *mb;
2344 int i;
2345 int offset;
2346 sector_t write_pos;
2347
2348 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2349 r5l_recovery_create_empty_meta_block(log, page,
2350 ctx->pos, ctx->seq);
2351 mb = page_address(page);
2352 offset = le32_to_cpu(mb->meta_size);
fc833c2a 2353 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
b4c625c6
SL
2354
2355 for (i = sh->disks; i--; ) {
2356 struct r5dev *dev = &sh->dev[i];
2357 struct r5l_payload_data_parity *payload;
2358 void *addr;
2359
2360 if (test_bit(R5_InJournal, &dev->flags)) {
2361 payload = (void *)mb + offset;
2362 payload->header.type = cpu_to_le16(
2363 R5LOG_PAYLOAD_DATA);
2364 payload->size = BLOCK_SECTORS;
2365 payload->location = cpu_to_le64(
2366 raid5_compute_blocknr(sh, i, 0));
2367 addr = kmap_atomic(dev->page);
2368 payload->checksum[0] = cpu_to_le32(
2369 crc32c_le(log->uuid_checksum, addr,
2370 PAGE_SIZE));
2371 kunmap_atomic(addr);
2372 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2373 dev->page, REQ_OP_WRITE, 0, false);
2374 write_pos = r5l_ring_add(log, write_pos,
2375 BLOCK_SECTORS);
2376 offset += sizeof(__le32) +
2377 sizeof(struct r5l_payload_data_parity);
2378
2379 }
2380 }
2381 mb->meta_size = cpu_to_le32(offset);
5c88f403
SL
2382 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2383 mb, PAGE_SIZE));
b4c625c6 2384 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
20737738 2385 REQ_OP_WRITE, REQ_FUA, false);
b4c625c6 2386 sh->log_start = ctx->pos;
3c66abba
SL
2387 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2388 atomic_inc(&log->stripe_in_journal_count);
b4c625c6
SL
2389 ctx->pos = write_pos;
2390 ctx->seq += 1;
3c66abba 2391 next_checkpoint = sh->log_start;
355810d1 2392 }
3c66abba 2393 log->next_checkpoint = next_checkpoint;
355810d1
SL
2394 __free_page(page);
2395 return 0;
2396}
2397
a85dd7b8
SL
2398static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2399 struct r5l_recovery_ctx *ctx)
2400{
2401 struct mddev *mddev = log->rdev->mddev;
2402 struct r5conf *conf = mddev->private;
2403 struct stripe_head *sh, *next;
2404
2405 if (ctx->data_only_stripes == 0)
2406 return;
2407
2408 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2409
2410 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2411 r5c_make_stripe_write_out(sh);
2412 set_bit(STRIPE_HANDLE, &sh->state);
2413 list_del_init(&sh->lru);
2414 raid5_release_stripe(sh);
2415 }
2416
2417 md_wakeup_thread(conf->mddev->thread);
2418 /* reuse conf->wait_for_quiescent in recovery */
2419 wait_event(conf->wait_for_quiescent,
2420 atomic_read(&conf->active_stripes) == 0);
2421
2422 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2423}
2424
f6bed0ef
SL
2425static int r5l_recovery_log(struct r5l_log *log)
2426{
5aabf7c4 2427 struct mddev *mddev = log->rdev->mddev;
effe6ee7 2428 struct r5l_recovery_ctx *ctx;
5aabf7c4 2429 int ret;
43b96748 2430 sector_t pos;
355810d1 2431
effe6ee7
SL
2432 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2433 if (!ctx)
355810d1
SL
2434 return -ENOMEM;
2435
effe6ee7
SL
2436 ctx->pos = log->last_checkpoint;
2437 ctx->seq = log->last_cp_seq;
2438 INIT_LIST_HEAD(&ctx->cached_list);
2439 ctx->meta_page = alloc_page(GFP_KERNEL);
355810d1 2440
effe6ee7
SL
2441 if (!ctx->meta_page) {
2442 ret = -ENOMEM;
2443 goto meta_page;
2444 }
b4c625c6 2445
effe6ee7
SL
2446 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2447 ret = -ENOMEM;
2448 goto ra_pool;
2449 }
2450
2451 ret = r5c_recovery_flush_log(log, ctx);
2452
2453 if (ret)
2454 goto error;
43b96748 2455
effe6ee7
SL
2456 pos = ctx->pos;
2457 ctx->seq += 10000;
43b96748 2458
effe6ee7 2459 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
5aabf7c4
SL
2460 pr_debug("md/raid:%s: starting from clean shutdown\n",
2461 mdname(mddev));
a85dd7b8 2462 else
99f17890 2463 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
effe6ee7
SL
2464 mdname(mddev), ctx->data_only_stripes,
2465 ctx->data_parity_stripes);
2466
2467 if (ctx->data_only_stripes == 0) {
2468 log->next_checkpoint = ctx->pos;
2469 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2470 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2471 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
a85dd7b8
SL
2472 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2473 mdname(mddev));
effe6ee7
SL
2474 ret = -EIO;
2475 goto error;
b4c625c6
SL
2476 }
2477
effe6ee7
SL
2478 log->log_start = ctx->pos;
2479 log->seq = ctx->seq;
43b96748
J
2480 log->last_checkpoint = pos;
2481 r5l_write_super(log, pos);
a85dd7b8 2482
effe6ee7
SL
2483 r5c_recovery_flush_data_only_stripes(log, ctx);
2484 ret = 0;
2485error:
2486 r5l_recovery_free_ra_pool(log, ctx);
2487ra_pool:
2488 __free_page(ctx->meta_page);
2489meta_page:
2490 kfree(ctx);
2491 return ret;
f6bed0ef
SL
2492}
2493
2494static void r5l_write_super(struct r5l_log *log, sector_t cp)
2495{
2496 struct mddev *mddev = log->rdev->mddev;
2497
2498 log->rdev->journal_tail = cp;
2953079c 2499 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
f6bed0ef
SL
2500}
2501
2c7da14b
SL
2502static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2503{
2504 struct r5conf *conf = mddev->private;
2505 int ret;
2506
2507 if (!conf->log)
2508 return 0;
2509
2510 switch (conf->log->r5c_journal_mode) {
2511 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2512 ret = snprintf(
2513 page, PAGE_SIZE, "[%s] %s\n",
2514 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2515 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2516 break;
2517 case R5C_JOURNAL_MODE_WRITE_BACK:
2518 ret = snprintf(
2519 page, PAGE_SIZE, "%s [%s]\n",
2520 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2521 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2522 break;
2523 default:
2524 ret = 0;
2525 }
2526 return ret;
2527}
2528
2529static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2530 const char *page, size_t length)
2531{
2532 struct r5conf *conf = mddev->private;
2533 struct r5l_log *log = conf->log;
2534 int val = -1, i;
2535 int len = length;
2536
2537 if (!log)
2538 return -ENODEV;
2539
2540 if (len && page[len - 1] == '\n')
2541 len -= 1;
2542 for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2543 if (strlen(r5c_journal_mode_str[i]) == len &&
2544 strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2545 val = i;
2546 break;
2547 }
2548 if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2549 val > R5C_JOURNAL_MODE_WRITE_BACK)
2550 return -EINVAL;
2551
2e38a37f
SL
2552 if (raid5_calc_degraded(conf) > 0 &&
2553 val == R5C_JOURNAL_MODE_WRITE_BACK)
2554 return -EINVAL;
2555
2c7da14b
SL
2556 mddev_suspend(mddev);
2557 conf->log->r5c_journal_mode = val;
2558 mddev_resume(mddev);
2559
2560 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2561 mdname(mddev), val, r5c_journal_mode_str[val]);
2562 return length;
2563}
2564
2565struct md_sysfs_entry
2566r5c_journal_mode = __ATTR(journal_mode, 0644,
2567 r5c_journal_mode_show, r5c_journal_mode_store);
2568
2ded3703
SL
2569/*
2570 * Try handle write operation in caching phase. This function should only
2571 * be called in write-back mode.
2572 *
2573 * If all outstanding writes can be handled in caching phase, returns 0
2574 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2575 * and returns -EAGAIN
2576 */
2577int r5c_try_caching_write(struct r5conf *conf,
2578 struct stripe_head *sh,
2579 struct stripe_head_state *s,
2580 int disks)
2581{
2582 struct r5l_log *log = conf->log;
1e6d690b
SL
2583 int i;
2584 struct r5dev *dev;
2585 int to_cache = 0;
03b047f4
SL
2586 void **pslot;
2587 sector_t tree_index;
2588 int ret;
2589 uintptr_t refcount;
2ded3703
SL
2590
2591 BUG_ON(!r5c_is_writeback(log));
2592
1e6d690b
SL
2593 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2594 /*
2595 * There are two different scenarios here:
2596 * 1. The stripe has some data cached, and it is sent to
2597 * write-out phase for reclaim
2598 * 2. The stripe is clean, and this is the first write
2599 *
2600 * For 1, return -EAGAIN, so we continue with
2601 * handle_stripe_dirtying().
2602 *
2603 * For 2, set STRIPE_R5C_CACHING and continue with caching
2604 * write.
2605 */
2606
2607 /* case 1: anything injournal or anything in written */
2608 if (s->injournal > 0 || s->written > 0)
2609 return -EAGAIN;
2610 /* case 2 */
2611 set_bit(STRIPE_R5C_CACHING, &sh->state);
2612 }
2613
2e38a37f
SL
2614 /*
2615 * When run in degraded mode, array is set to write-through mode.
2616 * This check helps drain pending write safely in the transition to
2617 * write-through mode.
2618 */
2619 if (s->failed) {
2620 r5c_make_stripe_write_out(sh);
2621 return -EAGAIN;
2622 }
2623
1e6d690b
SL
2624 for (i = disks; i--; ) {
2625 dev = &sh->dev[i];
2626 /* if non-overwrite, use writing-out phase */
2627 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2628 !test_bit(R5_InJournal, &dev->flags)) {
2629 r5c_make_stripe_write_out(sh);
2630 return -EAGAIN;
2631 }
2632 }
2633
03b047f4
SL
2634 /* if the stripe is not counted in big_stripe_tree, add it now */
2635 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2636 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2637 tree_index = r5c_tree_index(conf, sh->sector);
2638 spin_lock(&log->tree_lock);
2639 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2640 tree_index);
2641 if (pslot) {
2642 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2643 pslot, &log->tree_lock) >>
2644 R5C_RADIX_COUNT_SHIFT;
2645 radix_tree_replace_slot(
2646 &log->big_stripe_tree, pslot,
2647 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2648 } else {
2649 /*
2650 * this radix_tree_insert can fail safely, so no
2651 * need to call radix_tree_preload()
2652 */
2653 ret = radix_tree_insert(
2654 &log->big_stripe_tree, tree_index,
2655 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2656 if (ret) {
2657 spin_unlock(&log->tree_lock);
2658 r5c_make_stripe_write_out(sh);
2659 return -EAGAIN;
2660 }
2661 }
2662 spin_unlock(&log->tree_lock);
2663
2664 /*
2665 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2666 * counted in the radix tree
2667 */
2668 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2669 atomic_inc(&conf->r5c_cached_partial_stripes);
2670 }
2671
1e6d690b
SL
2672 for (i = disks; i--; ) {
2673 dev = &sh->dev[i];
2674 if (dev->towrite) {
2675 set_bit(R5_Wantwrite, &dev->flags);
2676 set_bit(R5_Wantdrain, &dev->flags);
2677 set_bit(R5_LOCKED, &dev->flags);
2678 to_cache++;
2679 }
2680 }
2681
2682 if (to_cache) {
2683 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2684 /*
2685 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2686 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2687 * r5c_handle_data_cached()
2688 */
2689 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2690 }
2691
2692 return 0;
2693}
2694
2695/*
2696 * free extra pages (orig_page) we allocated for prexor
2697 */
2698void r5c_release_extra_page(struct stripe_head *sh)
2699{
d7bd398e 2700 struct r5conf *conf = sh->raid_conf;
1e6d690b 2701 int i;
d7bd398e
SL
2702 bool using_disk_info_extra_page;
2703
2704 using_disk_info_extra_page =
2705 sh->dev[0].orig_page == conf->disks[0].extra_page;
1e6d690b
SL
2706
2707 for (i = sh->disks; i--; )
2708 if (sh->dev[i].page != sh->dev[i].orig_page) {
2709 struct page *p = sh->dev[i].orig_page;
2710
2711 sh->dev[i].orig_page = sh->dev[i].page;
86aa1397
SL
2712 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2713
d7bd398e
SL
2714 if (!using_disk_info_extra_page)
2715 put_page(p);
1e6d690b 2716 }
d7bd398e
SL
2717
2718 if (using_disk_info_extra_page) {
2719 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2720 md_wakeup_thread(conf->mddev->thread);
2721 }
2722}
2723
2724void r5c_use_extra_page(struct stripe_head *sh)
2725{
2726 struct r5conf *conf = sh->raid_conf;
2727 int i;
2728 struct r5dev *dev;
2729
2730 for (i = sh->disks; i--; ) {
2731 dev = &sh->dev[i];
2732 if (dev->orig_page != dev->page)
2733 put_page(dev->orig_page);
2734 dev->orig_page = conf->disks[i].extra_page;
2735 }
2ded3703
SL
2736}
2737
2738/*
2739 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2740 * stripe is committed to RAID disks.
2741 */
2742void r5c_finish_stripe_write_out(struct r5conf *conf,
2743 struct stripe_head *sh,
2744 struct stripe_head_state *s)
2745{
03b047f4 2746 struct r5l_log *log = conf->log;
1e6d690b
SL
2747 int i;
2748 int do_wakeup = 0;
03b047f4
SL
2749 sector_t tree_index;
2750 void **pslot;
2751 uintptr_t refcount;
1e6d690b 2752
03b047f4 2753 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2ded3703
SL
2754 return;
2755
2756 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2757 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2758
03b047f4 2759 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2ded3703 2760 return;
1e6d690b
SL
2761
2762 for (i = sh->disks; i--; ) {
2763 clear_bit(R5_InJournal, &sh->dev[i].flags);
2764 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2765 do_wakeup = 1;
2766 }
2767
2768 /*
2769 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2770 * We updated R5_InJournal, so we also update s->injournal.
2771 */
2772 s->injournal = 0;
2773
2774 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2775 if (atomic_dec_and_test(&conf->pending_full_writes))
2776 md_wakeup_thread(conf->mddev->thread);
2777
2778 if (do_wakeup)
2779 wake_up(&conf->wait_for_overlap);
a39f7afd 2780
03b047f4 2781 spin_lock_irq(&log->stripe_in_journal_lock);
a39f7afd 2782 list_del_init(&sh->r5c);
03b047f4 2783 spin_unlock_irq(&log->stripe_in_journal_lock);
a39f7afd 2784 sh->log_start = MaxSector;
03b047f4
SL
2785
2786 atomic_dec(&log->stripe_in_journal_count);
2787 r5c_update_log_state(log);
2788
2789 /* stop counting this stripe in big_stripe_tree */
2790 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2791 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2792 tree_index = r5c_tree_index(conf, sh->sector);
2793 spin_lock(&log->tree_lock);
2794 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2795 tree_index);
2796 BUG_ON(pslot == NULL);
2797 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2798 pslot, &log->tree_lock) >>
2799 R5C_RADIX_COUNT_SHIFT;
2800 if (refcount == 1)
2801 radix_tree_delete(&log->big_stripe_tree, tree_index);
2802 else
2803 radix_tree_replace_slot(
2804 &log->big_stripe_tree, pslot,
2805 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2806 spin_unlock(&log->tree_lock);
2807 }
2808
2809 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2810 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
e33fbb9c 2811 atomic_dec(&conf->r5c_flushing_partial_stripes);
03b047f4
SL
2812 atomic_dec(&conf->r5c_cached_partial_stripes);
2813 }
2814
2815 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2816 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
e33fbb9c 2817 atomic_dec(&conf->r5c_flushing_full_stripes);
03b047f4
SL
2818 atomic_dec(&conf->r5c_cached_full_stripes);
2819 }
ea17481f
SL
2820
2821 r5l_append_flush_payload(log, sh->sector);
1e6d690b
SL
2822}
2823
ff875738 2824int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
1e6d690b 2825{
a39f7afd 2826 struct r5conf *conf = sh->raid_conf;
1e6d690b
SL
2827 int pages = 0;
2828 int reserve;
2829 int i;
2830 int ret = 0;
2831
2832 BUG_ON(!log);
2833
2834 for (i = 0; i < sh->disks; i++) {
2835 void *addr;
2836
2837 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2838 continue;
2839 addr = kmap_atomic(sh->dev[i].page);
2840 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2841 addr, PAGE_SIZE);
2842 kunmap_atomic(addr);
2843 pages++;
2844 }
2845 WARN_ON(pages == 0);
2846
2847 /*
2848 * The stripe must enter state machine again to call endio, so
2849 * don't delay.
2850 */
2851 clear_bit(STRIPE_DELAYED, &sh->state);
2852 atomic_inc(&sh->count);
2853
2854 mutex_lock(&log->io_mutex);
2855 /* meta + data */
2856 reserve = (1 + pages) << (PAGE_SHIFT - 9);
1e6d690b 2857
a39f7afd
SL
2858 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2859 sh->log_start == MaxSector)
2860 r5l_add_no_space_stripe(log, sh);
2861 else if (!r5l_has_free_space(log, reserve)) {
2862 if (sh->log_start == log->last_checkpoint)
2863 BUG();
2864 else
2865 r5l_add_no_space_stripe(log, sh);
1e6d690b
SL
2866 } else {
2867 ret = r5l_log_stripe(log, sh, pages, 0);
2868 if (ret) {
2869 spin_lock_irq(&log->io_list_lock);
2870 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2871 spin_unlock_irq(&log->io_list_lock);
2872 }
2873 }
2874
2875 mutex_unlock(&log->io_mutex);
2876 return 0;
f6bed0ef
SL
2877}
2878
03b047f4
SL
2879/* check whether this big stripe is in write back cache. */
2880bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2881{
2882 struct r5l_log *log = conf->log;
2883 sector_t tree_index;
2884 void *slot;
2885
2886 if (!log)
2887 return false;
2888
2889 WARN_ON_ONCE(!rcu_read_lock_held());
2890 tree_index = r5c_tree_index(conf, sect);
2891 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2892 return slot != NULL;
2893}
2894
f6bed0ef
SL
2895static int r5l_load_log(struct r5l_log *log)
2896{
2897 struct md_rdev *rdev = log->rdev;
2898 struct page *page;
2899 struct r5l_meta_block *mb;
2900 sector_t cp = log->rdev->journal_tail;
2901 u32 stored_crc, expected_crc;
2902 bool create_super = false;
d30dfeb9 2903 int ret = 0;
f6bed0ef
SL
2904
2905 /* Make sure it's valid */
2906 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2907 cp = 0;
2908 page = alloc_page(GFP_KERNEL);
2909 if (!page)
2910 return -ENOMEM;
2911
796a5cf0 2912 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
f6bed0ef
SL
2913 ret = -EIO;
2914 goto ioerr;
2915 }
2916 mb = page_address(page);
2917
2918 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2919 mb->version != R5LOG_VERSION) {
2920 create_super = true;
2921 goto create;
2922 }
2923 stored_crc = le32_to_cpu(mb->checksum);
2924 mb->checksum = 0;
5cb2fbd6 2925 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
f6bed0ef
SL
2926 if (stored_crc != expected_crc) {
2927 create_super = true;
2928 goto create;
2929 }
2930 if (le64_to_cpu(mb->position) != cp) {
2931 create_super = true;
2932 goto create;
2933 }
2934create:
2935 if (create_super) {
2936 log->last_cp_seq = prandom_u32();
2937 cp = 0;
56056c2e 2938 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
f6bed0ef
SL
2939 /*
2940 * Make sure super points to correct address. Log might have
2941 * data very soon. If super hasn't correct log tail address,
2942 * recovery can't find the log
2943 */
2944 r5l_write_super(log, cp);
2945 } else
2946 log->last_cp_seq = le64_to_cpu(mb->seq);
2947
2948 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
0576b1c6
SL
2949 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2950 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2951 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
f6bed0ef
SL
2952 log->last_checkpoint = cp;
2953
2954 __free_page(page);
2955
d30dfeb9
J
2956 if (create_super) {
2957 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2958 log->seq = log->last_cp_seq + 1;
2959 log->next_checkpoint = cp;
2960 } else
2961 ret = r5l_recovery_log(log);
2962
3d7e7e1d
ZL
2963 r5c_update_log_state(log);
2964 return ret;
f6bed0ef
SL
2965ioerr:
2966 __free_page(page);
2967 return ret;
2968}
2969
2e38a37f
SL
2970void r5c_update_on_rdev_error(struct mddev *mddev)
2971{
2972 struct r5conf *conf = mddev->private;
2973 struct r5l_log *log = conf->log;
2974
2975 if (!log)
2976 return;
2977
2978 if (raid5_calc_degraded(conf) > 0 &&
2979 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
2980 schedule_work(&log->disable_writeback_work);
2981}
2982
f6bed0ef
SL
2983int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2984{
c888a8f9 2985 struct request_queue *q = bdev_get_queue(rdev->bdev);
f6bed0ef 2986 struct r5l_log *log;
ff875738
AP
2987 char b[BDEVNAME_SIZE];
2988
2989 pr_debug("md/raid:%s: using device %s as journal\n",
2990 mdname(conf->mddev), bdevname(rdev->bdev, b));
f6bed0ef
SL
2991
2992 if (PAGE_SIZE != 4096)
2993 return -EINVAL;
c757ec95
SL
2994
2995 /*
2996 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2997 * raid_disks r5l_payload_data_parity.
2998 *
2999 * Write journal and cache does not work for very big array
3000 * (raid_disks > 203)
3001 */
3002 if (sizeof(struct r5l_meta_block) +
3003 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3004 conf->raid_disks) > PAGE_SIZE) {
3005 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3006 mdname(conf->mddev), conf->raid_disks);
3007 return -EINVAL;
3008 }
3009
f6bed0ef
SL
3010 log = kzalloc(sizeof(*log), GFP_KERNEL);
3011 if (!log)
3012 return -ENOMEM;
3013 log->rdev = rdev;
3014
c888a8f9 3015 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
56fef7c6 3016
5cb2fbd6
SL
3017 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3018 sizeof(rdev->mddev->uuid));
f6bed0ef
SL
3019
3020 mutex_init(&log->io_mutex);
3021
3022 spin_lock_init(&log->io_list_lock);
3023 INIT_LIST_HEAD(&log->running_ios);
0576b1c6 3024 INIT_LIST_HEAD(&log->io_end_ios);
a8c34f91 3025 INIT_LIST_HEAD(&log->flushing_ios);
04732f74 3026 INIT_LIST_HEAD(&log->finished_ios);
3a83f467 3027 bio_init(&log->flush_bio, NULL, 0);
f6bed0ef
SL
3028
3029 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3030 if (!log->io_kc)
3031 goto io_kc;
3032
5036c390
CH
3033 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3034 if (!log->io_pool)
3035 goto io_pool;
3036
c38d29b3
CH
3037 log->bs = bioset_create(R5L_POOL_SIZE, 0);
3038 if (!log->bs)
3039 goto io_bs;
3040
e8deb638
CH
3041 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3042 if (!log->meta_pool)
3043 goto out_mempool;
3044
03b047f4
SL
3045 spin_lock_init(&log->tree_lock);
3046 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3047
0576b1c6
SL
3048 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3049 log->rdev->mddev, "reclaim");
3050 if (!log->reclaim_thread)
3051 goto reclaim_thread;
a39f7afd
SL
3052 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3053
0fd22b45 3054 init_waitqueue_head(&log->iounit_wait);
0576b1c6 3055
5036c390
CH
3056 INIT_LIST_HEAD(&log->no_mem_stripes);
3057
f6bed0ef
SL
3058 INIT_LIST_HEAD(&log->no_space_stripes);
3059 spin_lock_init(&log->no_space_stripes_lock);
3060
3bddb7f8 3061 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2e38a37f 3062 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3bddb7f8 3063
2ded3703 3064 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
a39f7afd
SL
3065 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3066 spin_lock_init(&log->stripe_in_journal_lock);
3067 atomic_set(&log->stripe_in_journal_count, 0);
2ded3703 3068
d2250f10
SL
3069 rcu_assign_pointer(conf->log, log);
3070
f6bed0ef
SL
3071 if (r5l_load_log(log))
3072 goto error;
3073
a62ab49e 3074 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
f6bed0ef 3075 return 0;
e8deb638 3076
f6bed0ef 3077error:
d2250f10 3078 rcu_assign_pointer(conf->log, NULL);
0576b1c6
SL
3079 md_unregister_thread(&log->reclaim_thread);
3080reclaim_thread:
e8deb638
CH
3081 mempool_destroy(log->meta_pool);
3082out_mempool:
c38d29b3
CH
3083 bioset_free(log->bs);
3084io_bs:
5036c390
CH
3085 mempool_destroy(log->io_pool);
3086io_pool:
f6bed0ef
SL
3087 kmem_cache_destroy(log->io_kc);
3088io_kc:
3089 kfree(log);
3090 return -EINVAL;
3091}
3092
ff875738 3093void r5l_exit_log(struct r5conf *conf)
f6bed0ef 3094{
ff875738
AP
3095 struct r5l_log *log = conf->log;
3096
3097 conf->log = NULL;
3098 synchronize_rcu();
3099
2e38a37f 3100 flush_work(&log->disable_writeback_work);
0576b1c6 3101 md_unregister_thread(&log->reclaim_thread);
e8deb638 3102 mempool_destroy(log->meta_pool);
c38d29b3 3103 bioset_free(log->bs);
5036c390 3104 mempool_destroy(log->io_pool);
f6bed0ef
SL
3105 kmem_cache_destroy(log->io_kc);
3106 kfree(log);
3107}