block: rename bio bi_rw to bi_opf
[linux-2.6-block.git] / drivers / md / raid5-cache.c
CommitLineData
f6bed0ef
SL
1/*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 */
14#include <linux/kernel.h>
15#include <linux/wait.h>
16#include <linux/blkdev.h>
17#include <linux/slab.h>
18#include <linux/raid/md_p.h>
5cb2fbd6 19#include <linux/crc32c.h>
f6bed0ef
SL
20#include <linux/random.h>
21#include "md.h"
22#include "raid5.h"
23
24/*
25 * metadata/data stored in disk with 4k size unit (a block) regardless
26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
27 */
28#define BLOCK_SECTORS (8)
29
0576b1c6
SL
30/*
31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32 * recovery scans a very long log
33 */
34#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
c38d29b3
CH
37/*
38 * We only need 2 bios per I/O unit to make progress, but ensure we
39 * have a few more available to not get too tight.
40 */
41#define R5L_POOL_SIZE 4
42
f6bed0ef
SL
43struct r5l_log {
44 struct md_rdev *rdev;
45
46 u32 uuid_checksum;
47
48 sector_t device_size; /* log device size, round to
49 * BLOCK_SECTORS */
0576b1c6
SL
50 sector_t max_free_space; /* reclaim run if free space is at
51 * this size */
f6bed0ef
SL
52
53 sector_t last_checkpoint; /* log tail. where recovery scan
54 * starts from */
55 u64 last_cp_seq; /* log tail sequence */
56
57 sector_t log_start; /* log head. where new data appends */
58 u64 seq; /* log head sequence */
59
17036461
CH
60 sector_t next_checkpoint;
61 u64 next_cp_seq;
62
f6bed0ef
SL
63 struct mutex io_mutex;
64 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
65
66 spinlock_t io_list_lock;
67 struct list_head running_ios; /* io_units which are still running,
68 * and have not yet been completely
69 * written to the log */
70 struct list_head io_end_ios; /* io_units which have been completely
71 * written to the log but not yet written
72 * to the RAID */
a8c34f91
SL
73 struct list_head flushing_ios; /* io_units which are waiting for log
74 * cache flush */
04732f74 75 struct list_head finished_ios; /* io_units which settle down in log disk */
a8c34f91 76 struct bio flush_bio;
f6bed0ef 77
5036c390
CH
78 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
79
f6bed0ef 80 struct kmem_cache *io_kc;
5036c390 81 mempool_t *io_pool;
c38d29b3 82 struct bio_set *bs;
e8deb638 83 mempool_t *meta_pool;
f6bed0ef 84
0576b1c6
SL
85 struct md_thread *reclaim_thread;
86 unsigned long reclaim_target; /* number of space that need to be
87 * reclaimed. if it's 0, reclaim spaces
88 * used by io_units which are in
89 * IO_UNIT_STRIPE_END state (eg, reclaim
90 * dones't wait for specific io_unit
91 * switching to IO_UNIT_STRIPE_END
92 * state) */
0fd22b45 93 wait_queue_head_t iounit_wait;
0576b1c6 94
f6bed0ef
SL
95 struct list_head no_space_stripes; /* pending stripes, log has no space */
96 spinlock_t no_space_stripes_lock;
56fef7c6
CH
97
98 bool need_cache_flush;
4b482044 99 bool in_teardown;
f6bed0ef
SL
100};
101
102/*
103 * an IO range starts from a meta data block and end at the next meta data
104 * block. The io unit's the meta data block tracks data/parity followed it. io
105 * unit is written to log disk with normal write, as we always flush log disk
106 * first and then start move data to raid disks, there is no requirement to
107 * write io unit with FLUSH/FUA
108 */
109struct r5l_io_unit {
110 struct r5l_log *log;
111
112 struct page *meta_page; /* store meta block */
113 int meta_offset; /* current offset in meta_page */
114
f6bed0ef
SL
115 struct bio *current_bio;/* current_bio accepting new data */
116
117 atomic_t pending_stripe;/* how many stripes not flushed to raid */
118 u64 seq; /* seq number of the metablock */
119 sector_t log_start; /* where the io_unit starts */
120 sector_t log_end; /* where the io_unit ends */
121 struct list_head log_sibling; /* log->running_ios */
122 struct list_head stripe_list; /* stripes added to the io_unit */
123
124 int state;
6143e2ce 125 bool need_split_bio;
f6bed0ef
SL
126};
127
128/* r5l_io_unit state */
129enum r5l_io_unit_state {
130 IO_UNIT_RUNNING = 0, /* accepting new IO */
131 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
132 * don't accepting new bio */
133 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
a8c34f91 134 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
f6bed0ef
SL
135};
136
137static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
138{
139 start += inc;
140 if (start >= log->device_size)
141 start = start - log->device_size;
142 return start;
143}
144
145static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
146 sector_t end)
147{
148 if (end >= start)
149 return end - start;
150 else
151 return end + log->device_size - start;
152}
153
154static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
155{
156 sector_t used_size;
157
158 used_size = r5l_ring_distance(log, log->last_checkpoint,
159 log->log_start);
160
161 return log->device_size > used_size + size;
162}
163
f6bed0ef
SL
164static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
165 enum r5l_io_unit_state state)
166{
f6bed0ef
SL
167 if (WARN_ON(io->state >= state))
168 return;
169 io->state = state;
f6bed0ef
SL
170}
171
d8858f43
CH
172static void r5l_io_run_stripes(struct r5l_io_unit *io)
173{
174 struct stripe_head *sh, *next;
175
176 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
177 list_del_init(&sh->log_list);
178 set_bit(STRIPE_HANDLE, &sh->state);
179 raid5_release_stripe(sh);
180 }
181}
182
56fef7c6
CH
183static void r5l_log_run_stripes(struct r5l_log *log)
184{
185 struct r5l_io_unit *io, *next;
186
187 assert_spin_locked(&log->io_list_lock);
188
189 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
190 /* don't change list order */
191 if (io->state < IO_UNIT_IO_END)
192 break;
193
194 list_move_tail(&io->log_sibling, &log->finished_ios);
195 r5l_io_run_stripes(io);
196 }
197}
198
3848c0bc
CH
199static void r5l_move_to_end_ios(struct r5l_log *log)
200{
201 struct r5l_io_unit *io, *next;
202
203 assert_spin_locked(&log->io_list_lock);
204
205 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
206 /* don't change list order */
207 if (io->state < IO_UNIT_IO_END)
208 break;
209 list_move_tail(&io->log_sibling, &log->io_end_ios);
210 }
211}
212
f6bed0ef
SL
213static void r5l_log_endio(struct bio *bio)
214{
215 struct r5l_io_unit *io = bio->bi_private;
216 struct r5l_log *log = io->log;
509ffec7 217 unsigned long flags;
f6bed0ef 218
6e74a9cf
SL
219 if (bio->bi_error)
220 md_error(log->rdev->mddev, log->rdev);
221
f6bed0ef 222 bio_put(bio);
e8deb638 223 mempool_free(io->meta_page, log->meta_pool);
f6bed0ef 224
509ffec7
CH
225 spin_lock_irqsave(&log->io_list_lock, flags);
226 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
56fef7c6 227 if (log->need_cache_flush)
3848c0bc 228 r5l_move_to_end_ios(log);
56fef7c6
CH
229 else
230 r5l_log_run_stripes(log);
509ffec7
CH
231 spin_unlock_irqrestore(&log->io_list_lock, flags);
232
56fef7c6
CH
233 if (log->need_cache_flush)
234 md_wakeup_thread(log->rdev->mddev->thread);
f6bed0ef
SL
235}
236
237static void r5l_submit_current_io(struct r5l_log *log)
238{
239 struct r5l_io_unit *io = log->current_io;
240 struct r5l_meta_block *block;
509ffec7 241 unsigned long flags;
f6bed0ef
SL
242 u32 crc;
243
244 if (!io)
245 return;
246
247 block = page_address(io->meta_page);
248 block->meta_size = cpu_to_le32(io->meta_offset);
5cb2fbd6 249 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
f6bed0ef
SL
250 block->checksum = cpu_to_le32(crc);
251
252 log->current_io = NULL;
509ffec7
CH
253 spin_lock_irqsave(&log->io_list_lock, flags);
254 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
255 spin_unlock_irqrestore(&log->io_list_lock, flags);
f6bed0ef 256
4e49ea4a 257 submit_bio(io->current_bio);
f6bed0ef
SL
258}
259
6143e2ce 260static struct bio *r5l_bio_alloc(struct r5l_log *log)
b349feb3 261{
c38d29b3 262 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
b349feb3 263
796a5cf0 264 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
b349feb3 265 bio->bi_bdev = log->rdev->bdev;
1e932a37 266 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
b349feb3 267
b349feb3
CH
268 return bio;
269}
270
c1b99198
CH
271static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
272{
273 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
274
275 /*
276 * If we filled up the log device start from the beginning again,
277 * which will require a new bio.
278 *
279 * Note: for this to work properly the log size needs to me a multiple
280 * of BLOCK_SECTORS.
281 */
282 if (log->log_start == 0)
6143e2ce 283 io->need_split_bio = true;
c1b99198
CH
284
285 io->log_end = log->log_start;
286}
287
f6bed0ef
SL
288static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
289{
290 struct r5l_io_unit *io;
291 struct r5l_meta_block *block;
f6bed0ef 292
5036c390
CH
293 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
294 if (!io)
295 return NULL;
296 memset(io, 0, sizeof(*io));
297
51039cd0 298 io->log = log;
51039cd0
CH
299 INIT_LIST_HEAD(&io->log_sibling);
300 INIT_LIST_HEAD(&io->stripe_list);
301 io->state = IO_UNIT_RUNNING;
f6bed0ef 302
e8deb638 303 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
f6bed0ef 304 block = page_address(io->meta_page);
e8deb638 305 clear_page(block);
f6bed0ef
SL
306 block->magic = cpu_to_le32(R5LOG_MAGIC);
307 block->version = R5LOG_VERSION;
308 block->seq = cpu_to_le64(log->seq);
309 block->position = cpu_to_le64(log->log_start);
310
311 io->log_start = log->log_start;
312 io->meta_offset = sizeof(struct r5l_meta_block);
2b8ef16e 313 io->seq = log->seq++;
f6bed0ef 314
6143e2ce
CH
315 io->current_bio = r5l_bio_alloc(log);
316 io->current_bio->bi_end_io = r5l_log_endio;
317 io->current_bio->bi_private = io;
b349feb3 318 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
f6bed0ef 319
c1b99198 320 r5_reserve_log_entry(log, io);
f6bed0ef
SL
321
322 spin_lock_irq(&log->io_list_lock);
323 list_add_tail(&io->log_sibling, &log->running_ios);
324 spin_unlock_irq(&log->io_list_lock);
325
326 return io;
327}
328
329static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
330{
22581f58
CH
331 if (log->current_io &&
332 log->current_io->meta_offset + payload_size > PAGE_SIZE)
f6bed0ef 333 r5l_submit_current_io(log);
f6bed0ef 334
5036c390 335 if (!log->current_io) {
22581f58 336 log->current_io = r5l_new_meta(log);
5036c390
CH
337 if (!log->current_io)
338 return -ENOMEM;
339 }
340
f6bed0ef
SL
341 return 0;
342}
343
344static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
345 sector_t location,
346 u32 checksum1, u32 checksum2,
347 bool checksum2_valid)
348{
349 struct r5l_io_unit *io = log->current_io;
350 struct r5l_payload_data_parity *payload;
351
352 payload = page_address(io->meta_page) + io->meta_offset;
353 payload->header.type = cpu_to_le16(type);
354 payload->header.flags = cpu_to_le16(0);
355 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
356 (PAGE_SHIFT - 9));
357 payload->location = cpu_to_le64(location);
358 payload->checksum[0] = cpu_to_le32(checksum1);
359 if (checksum2_valid)
360 payload->checksum[1] = cpu_to_le32(checksum2);
361
362 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
363 sizeof(__le32) * (1 + !!checksum2_valid);
364}
365
366static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
367{
368 struct r5l_io_unit *io = log->current_io;
369
6143e2ce
CH
370 if (io->need_split_bio) {
371 struct bio *prev = io->current_bio;
b349feb3 372
6143e2ce
CH
373 io->current_bio = r5l_bio_alloc(log);
374 bio_chain(io->current_bio, prev);
375
4e49ea4a 376 submit_bio(prev);
f6bed0ef 377 }
f6bed0ef 378
6143e2ce
CH
379 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
380 BUG();
381
c1b99198 382 r5_reserve_log_entry(log, io);
f6bed0ef
SL
383}
384
5036c390 385static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
f6bed0ef
SL
386 int data_pages, int parity_pages)
387{
388 int i;
389 int meta_size;
5036c390 390 int ret;
f6bed0ef
SL
391 struct r5l_io_unit *io;
392
393 meta_size =
394 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
395 * data_pages) +
396 sizeof(struct r5l_payload_data_parity) +
397 sizeof(__le32) * parity_pages;
398
5036c390
CH
399 ret = r5l_get_meta(log, meta_size);
400 if (ret)
401 return ret;
402
f6bed0ef
SL
403 io = log->current_io;
404
405 for (i = 0; i < sh->disks; i++) {
406 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
407 continue;
408 if (i == sh->pd_idx || i == sh->qd_idx)
409 continue;
410 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
411 raid5_compute_blocknr(sh, i, 0),
412 sh->dev[i].log_checksum, 0, false);
413 r5l_append_payload_page(log, sh->dev[i].page);
414 }
415
416 if (sh->qd_idx >= 0) {
417 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
418 sh->sector, sh->dev[sh->pd_idx].log_checksum,
419 sh->dev[sh->qd_idx].log_checksum, true);
420 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
421 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
422 } else {
423 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
424 sh->sector, sh->dev[sh->pd_idx].log_checksum,
425 0, false);
426 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
427 }
428
429 list_add_tail(&sh->log_list, &io->stripe_list);
430 atomic_inc(&io->pending_stripe);
431 sh->log_io = io;
5036c390
CH
432
433 return 0;
f6bed0ef
SL
434}
435
509ffec7 436static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
f6bed0ef
SL
437/*
438 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
439 * data from log to raid disks), so we shouldn't wait for reclaim here
440 */
441int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
442{
443 int write_disks = 0;
444 int data_pages, parity_pages;
445 int meta_size;
446 int reserve;
447 int i;
5036c390 448 int ret = 0;
f6bed0ef
SL
449
450 if (!log)
451 return -EAGAIN;
452 /* Don't support stripe batch */
453 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
454 test_bit(STRIPE_SYNCING, &sh->state)) {
455 /* the stripe is written to log, we start writing it to raid */
456 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
457 return -EAGAIN;
458 }
459
460 for (i = 0; i < sh->disks; i++) {
461 void *addr;
462
463 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
464 continue;
465 write_disks++;
466 /* checksum is already calculated in last run */
467 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
468 continue;
469 addr = kmap_atomic(sh->dev[i].page);
5cb2fbd6
SL
470 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
471 addr, PAGE_SIZE);
f6bed0ef
SL
472 kunmap_atomic(addr);
473 }
474 parity_pages = 1 + !!(sh->qd_idx >= 0);
475 data_pages = write_disks - parity_pages;
476
477 meta_size =
478 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
479 * data_pages) +
480 sizeof(struct r5l_payload_data_parity) +
481 sizeof(__le32) * parity_pages;
482 /* Doesn't work with very big raid array */
483 if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
484 return -EINVAL;
485
486 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
253f9fd4
SL
487 /*
488 * The stripe must enter state machine again to finish the write, so
489 * don't delay.
490 */
491 clear_bit(STRIPE_DELAYED, &sh->state);
f6bed0ef
SL
492 atomic_inc(&sh->count);
493
494 mutex_lock(&log->io_mutex);
495 /* meta + data */
496 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
5036c390 497 if (!r5l_has_free_space(log, reserve)) {
f6bed0ef
SL
498 spin_lock(&log->no_space_stripes_lock);
499 list_add_tail(&sh->log_list, &log->no_space_stripes);
500 spin_unlock(&log->no_space_stripes_lock);
501
502 r5l_wake_reclaim(log, reserve);
5036c390
CH
503 } else {
504 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
505 if (ret) {
506 spin_lock_irq(&log->io_list_lock);
507 list_add_tail(&sh->log_list, &log->no_mem_stripes);
508 spin_unlock_irq(&log->io_list_lock);
509 }
f6bed0ef 510 }
f6bed0ef 511
5036c390 512 mutex_unlock(&log->io_mutex);
f6bed0ef
SL
513 return 0;
514}
515
516void r5l_write_stripe_run(struct r5l_log *log)
517{
518 if (!log)
519 return;
520 mutex_lock(&log->io_mutex);
521 r5l_submit_current_io(log);
522 mutex_unlock(&log->io_mutex);
523}
524
828cbe98
SL
525int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
526{
527 if (!log)
528 return -ENODEV;
529 /*
530 * we flush log disk cache first, then write stripe data to raid disks.
531 * So if bio is finished, the log disk cache is flushed already. The
532 * recovery guarantees we can recovery the bio from log disk, so we
533 * don't need to flush again
534 */
535 if (bio->bi_iter.bi_size == 0) {
536 bio_endio(bio);
537 return 0;
538 }
1eff9d32 539 bio->bi_opf &= ~REQ_PREFLUSH;
828cbe98
SL
540 return -EAGAIN;
541}
542
f6bed0ef
SL
543/* This will run after log space is reclaimed */
544static void r5l_run_no_space_stripes(struct r5l_log *log)
545{
546 struct stripe_head *sh;
547
548 spin_lock(&log->no_space_stripes_lock);
549 while (!list_empty(&log->no_space_stripes)) {
550 sh = list_first_entry(&log->no_space_stripes,
551 struct stripe_head, log_list);
552 list_del_init(&sh->log_list);
553 set_bit(STRIPE_HANDLE, &sh->state);
554 raid5_release_stripe(sh);
555 }
556 spin_unlock(&log->no_space_stripes_lock);
557}
558
17036461
CH
559static sector_t r5l_reclaimable_space(struct r5l_log *log)
560{
561 return r5l_ring_distance(log, log->last_checkpoint,
562 log->next_checkpoint);
563}
564
5036c390
CH
565static void r5l_run_no_mem_stripe(struct r5l_log *log)
566{
567 struct stripe_head *sh;
568
569 assert_spin_locked(&log->io_list_lock);
570
571 if (!list_empty(&log->no_mem_stripes)) {
572 sh = list_first_entry(&log->no_mem_stripes,
573 struct stripe_head, log_list);
574 list_del_init(&sh->log_list);
575 set_bit(STRIPE_HANDLE, &sh->state);
576 raid5_release_stripe(sh);
577 }
578}
579
04732f74 580static bool r5l_complete_finished_ios(struct r5l_log *log)
17036461
CH
581{
582 struct r5l_io_unit *io, *next;
583 bool found = false;
584
585 assert_spin_locked(&log->io_list_lock);
586
04732f74 587 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
17036461
CH
588 /* don't change list order */
589 if (io->state < IO_UNIT_STRIPE_END)
590 break;
591
592 log->next_checkpoint = io->log_start;
593 log->next_cp_seq = io->seq;
594
595 list_del(&io->log_sibling);
5036c390
CH
596 mempool_free(io, log->io_pool);
597 r5l_run_no_mem_stripe(log);
17036461
CH
598
599 found = true;
600 }
601
602 return found;
603}
604
509ffec7
CH
605static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
606{
607 struct r5l_log *log = io->log;
509ffec7
CH
608 unsigned long flags;
609
610 spin_lock_irqsave(&log->io_list_lock, flags);
611 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
17036461 612
04732f74 613 if (!r5l_complete_finished_ios(log)) {
85f2f9a4
SL
614 spin_unlock_irqrestore(&log->io_list_lock, flags);
615 return;
616 }
509ffec7 617
17036461 618 if (r5l_reclaimable_space(log) > log->max_free_space)
509ffec7
CH
619 r5l_wake_reclaim(log, 0);
620
509ffec7
CH
621 spin_unlock_irqrestore(&log->io_list_lock, flags);
622 wake_up(&log->iounit_wait);
623}
624
0576b1c6
SL
625void r5l_stripe_write_finished(struct stripe_head *sh)
626{
627 struct r5l_io_unit *io;
628
0576b1c6 629 io = sh->log_io;
0576b1c6
SL
630 sh->log_io = NULL;
631
509ffec7
CH
632 if (io && atomic_dec_and_test(&io->pending_stripe))
633 __r5l_stripe_write_finished(io);
0576b1c6
SL
634}
635
a8c34f91
SL
636static void r5l_log_flush_endio(struct bio *bio)
637{
638 struct r5l_log *log = container_of(bio, struct r5l_log,
639 flush_bio);
640 unsigned long flags;
641 struct r5l_io_unit *io;
a8c34f91 642
6e74a9cf
SL
643 if (bio->bi_error)
644 md_error(log->rdev->mddev, log->rdev);
645
a8c34f91 646 spin_lock_irqsave(&log->io_list_lock, flags);
d8858f43
CH
647 list_for_each_entry(io, &log->flushing_ios, log_sibling)
648 r5l_io_run_stripes(io);
04732f74 649 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
a8c34f91
SL
650 spin_unlock_irqrestore(&log->io_list_lock, flags);
651}
652
0576b1c6
SL
653/*
654 * Starting dispatch IO to raid.
655 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
656 * broken meta in the middle of a log causes recovery can't find meta at the
657 * head of log. If operations require meta at the head persistent in log, we
658 * must make sure meta before it persistent in log too. A case is:
659 *
660 * stripe data/parity is in log, we start write stripe to raid disks. stripe
661 * data/parity must be persistent in log before we do the write to raid disks.
662 *
663 * The solution is we restrictly maintain io_unit list order. In this case, we
664 * only write stripes of an io_unit to raid disks till the io_unit is the first
665 * one whose data/parity is in log.
666 */
667void r5l_flush_stripe_to_raid(struct r5l_log *log)
668{
a8c34f91 669 bool do_flush;
56fef7c6
CH
670
671 if (!log || !log->need_cache_flush)
0576b1c6 672 return;
0576b1c6
SL
673
674 spin_lock_irq(&log->io_list_lock);
a8c34f91
SL
675 /* flush bio is running */
676 if (!list_empty(&log->flushing_ios)) {
677 spin_unlock_irq(&log->io_list_lock);
678 return;
0576b1c6 679 }
a8c34f91
SL
680 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
681 do_flush = !list_empty(&log->flushing_ios);
0576b1c6 682 spin_unlock_irq(&log->io_list_lock);
a8c34f91
SL
683
684 if (!do_flush)
685 return;
686 bio_reset(&log->flush_bio);
687 log->flush_bio.bi_bdev = log->rdev->bdev;
688 log->flush_bio.bi_end_io = r5l_log_flush_endio;
796a5cf0 689 bio_set_op_attrs(&log->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
4e49ea4a 690 submit_bio(&log->flush_bio);
0576b1c6
SL
691}
692
0576b1c6 693static void r5l_write_super(struct r5l_log *log, sector_t cp);
4b482044
SL
694static void r5l_write_super_and_discard_space(struct r5l_log *log,
695 sector_t end)
696{
697 struct block_device *bdev = log->rdev->bdev;
698 struct mddev *mddev;
699
700 r5l_write_super(log, end);
701
702 if (!blk_queue_discard(bdev_get_queue(bdev)))
703 return;
704
705 mddev = log->rdev->mddev;
706 /*
707 * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
708 * wait for this thread to finish. This thread waits for
709 * MD_CHANGE_PENDING clear, which is supposed to be done in
710 * md_check_recovery(). md_check_recovery() tries to get
711 * reconfig_mutex. Since r5l_quiesce already holds the mutex,
712 * md_check_recovery() fails, so the PENDING never get cleared. The
713 * in_teardown check workaround this issue.
714 */
715 if (!log->in_teardown) {
85ad1d13
GJ
716 set_mask_bits(&mddev->flags, 0,
717 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
4b482044
SL
718 md_wakeup_thread(mddev->thread);
719 wait_event(mddev->sb_wait,
720 !test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
721 log->in_teardown);
722 /*
723 * r5l_quiesce could run after in_teardown check and hold
724 * mutex first. Superblock might get updated twice.
725 */
726 if (log->in_teardown)
727 md_update_sb(mddev, 1);
728 } else {
729 WARN_ON(!mddev_is_locked(mddev));
730 md_update_sb(mddev, 1);
731 }
732
6e74a9cf 733 /* discard IO error really doesn't matter, ignore it */
4b482044
SL
734 if (log->last_checkpoint < end) {
735 blkdev_issue_discard(bdev,
736 log->last_checkpoint + log->rdev->data_offset,
737 end - log->last_checkpoint, GFP_NOIO, 0);
738 } else {
739 blkdev_issue_discard(bdev,
740 log->last_checkpoint + log->rdev->data_offset,
741 log->device_size - log->last_checkpoint,
742 GFP_NOIO, 0);
743 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
744 GFP_NOIO, 0);
745 }
746}
747
748
0576b1c6
SL
749static void r5l_do_reclaim(struct r5l_log *log)
750{
0576b1c6 751 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
17036461
CH
752 sector_t reclaimable;
753 sector_t next_checkpoint;
754 u64 next_cp_seq;
0576b1c6
SL
755
756 spin_lock_irq(&log->io_list_lock);
757 /*
758 * move proper io_unit to reclaim list. We should not change the order.
759 * reclaimable/unreclaimable io_unit can be mixed in the list, we
760 * shouldn't reuse space of an unreclaimable io_unit
761 */
762 while (1) {
17036461
CH
763 reclaimable = r5l_reclaimable_space(log);
764 if (reclaimable >= reclaim_target ||
0576b1c6
SL
765 (list_empty(&log->running_ios) &&
766 list_empty(&log->io_end_ios) &&
a8c34f91 767 list_empty(&log->flushing_ios) &&
04732f74 768 list_empty(&log->finished_ios)))
0576b1c6
SL
769 break;
770
17036461
CH
771 md_wakeup_thread(log->rdev->mddev->thread);
772 wait_event_lock_irq(log->iounit_wait,
773 r5l_reclaimable_space(log) > reclaimable,
774 log->io_list_lock);
0576b1c6 775 }
17036461
CH
776
777 next_checkpoint = log->next_checkpoint;
778 next_cp_seq = log->next_cp_seq;
0576b1c6
SL
779 spin_unlock_irq(&log->io_list_lock);
780
17036461
CH
781 BUG_ON(reclaimable < 0);
782 if (reclaimable == 0)
0576b1c6
SL
783 return;
784
0576b1c6
SL
785 /*
786 * write_super will flush cache of each raid disk. We must write super
787 * here, because the log area might be reused soon and we don't want to
788 * confuse recovery
789 */
4b482044 790 r5l_write_super_and_discard_space(log, next_checkpoint);
0576b1c6
SL
791
792 mutex_lock(&log->io_mutex);
17036461
CH
793 log->last_checkpoint = next_checkpoint;
794 log->last_cp_seq = next_cp_seq;
0576b1c6 795 mutex_unlock(&log->io_mutex);
0576b1c6 796
17036461 797 r5l_run_no_space_stripes(log);
0576b1c6
SL
798}
799
800static void r5l_reclaim_thread(struct md_thread *thread)
801{
802 struct mddev *mddev = thread->mddev;
803 struct r5conf *conf = mddev->private;
804 struct r5l_log *log = conf->log;
805
806 if (!log)
807 return;
808 r5l_do_reclaim(log);
809}
810
f6bed0ef
SL
811static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
812{
0576b1c6
SL
813 unsigned long target;
814 unsigned long new = (unsigned long)space; /* overflow in theory */
815
816 do {
817 target = log->reclaim_target;
818 if (new < target)
819 return;
820 } while (cmpxchg(&log->reclaim_target, target, new) != target);
821 md_wakeup_thread(log->reclaim_thread);
f6bed0ef
SL
822}
823
e6c033f7
SL
824void r5l_quiesce(struct r5l_log *log, int state)
825{
4b482044 826 struct mddev *mddev;
e6c033f7
SL
827 if (!log || state == 2)
828 return;
829 if (state == 0) {
4b482044 830 log->in_teardown = 0;
16a43f6a
SL
831 /*
832 * This is a special case for hotadd. In suspend, the array has
833 * no journal. In resume, journal is initialized as well as the
834 * reclaim thread.
835 */
836 if (log->reclaim_thread)
837 return;
e6c033f7
SL
838 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
839 log->rdev->mddev, "reclaim");
840 } else if (state == 1) {
841 /*
842 * at this point all stripes are finished, so io_unit is at
843 * least in STRIPE_END state
844 */
4b482044
SL
845 log->in_teardown = 1;
846 /* make sure r5l_write_super_and_discard_space exits */
847 mddev = log->rdev->mddev;
848 wake_up(&mddev->sb_wait);
e6c033f7
SL
849 r5l_wake_reclaim(log, -1L);
850 md_unregister_thread(&log->reclaim_thread);
851 r5l_do_reclaim(log);
852 }
853}
854
6e74a9cf
SL
855bool r5l_log_disk_error(struct r5conf *conf)
856{
f6b6ec5c
SL
857 struct r5l_log *log;
858 bool ret;
7dde2ad3 859 /* don't allow write if journal disk is missing */
f6b6ec5c
SL
860 rcu_read_lock();
861 log = rcu_dereference(conf->log);
862
863 if (!log)
864 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
865 else
866 ret = test_bit(Faulty, &log->rdev->flags);
867 rcu_read_unlock();
868 return ret;
6e74a9cf
SL
869}
870
355810d1
SL
871struct r5l_recovery_ctx {
872 struct page *meta_page; /* current meta */
873 sector_t meta_total_blocks; /* total size of current meta and data */
874 sector_t pos; /* recovery position */
875 u64 seq; /* recovery position seq */
876};
877
878static int r5l_read_meta_block(struct r5l_log *log,
879 struct r5l_recovery_ctx *ctx)
880{
881 struct page *page = ctx->meta_page;
882 struct r5l_meta_block *mb;
883 u32 crc, stored_crc;
884
796a5cf0
MC
885 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
886 false))
355810d1
SL
887 return -EIO;
888
889 mb = page_address(page);
890 stored_crc = le32_to_cpu(mb->checksum);
891 mb->checksum = 0;
892
893 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
894 le64_to_cpu(mb->seq) != ctx->seq ||
895 mb->version != R5LOG_VERSION ||
896 le64_to_cpu(mb->position) != ctx->pos)
897 return -EINVAL;
898
5cb2fbd6 899 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
900 if (stored_crc != crc)
901 return -EINVAL;
902
903 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
904 return -EINVAL;
905
906 ctx->meta_total_blocks = BLOCK_SECTORS;
907
908 return 0;
909}
910
911static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
912 struct r5l_recovery_ctx *ctx,
913 sector_t stripe_sect,
914 int *offset, sector_t *log_offset)
915{
916 struct r5conf *conf = log->rdev->mddev->private;
917 struct stripe_head *sh;
918 struct r5l_payload_data_parity *payload;
919 int disk_index;
920
921 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
922 while (1) {
923 payload = page_address(ctx->meta_page) + *offset;
924
925 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
926 raid5_compute_sector(conf,
927 le64_to_cpu(payload->location), 0,
928 &disk_index, sh);
929
930 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
796a5cf0
MC
931 sh->dev[disk_index].page, REQ_OP_READ, 0,
932 false);
355810d1
SL
933 sh->dev[disk_index].log_checksum =
934 le32_to_cpu(payload->checksum[0]);
935 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
936 ctx->meta_total_blocks += BLOCK_SECTORS;
937 } else {
938 disk_index = sh->pd_idx;
939 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
796a5cf0
MC
940 sh->dev[disk_index].page, REQ_OP_READ, 0,
941 false);
355810d1
SL
942 sh->dev[disk_index].log_checksum =
943 le32_to_cpu(payload->checksum[0]);
944 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
945
946 if (sh->qd_idx >= 0) {
947 disk_index = sh->qd_idx;
948 sync_page_io(log->rdev,
949 r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
950 PAGE_SIZE, sh->dev[disk_index].page,
796a5cf0 951 REQ_OP_READ, 0, false);
355810d1
SL
952 sh->dev[disk_index].log_checksum =
953 le32_to_cpu(payload->checksum[1]);
954 set_bit(R5_Wantwrite,
955 &sh->dev[disk_index].flags);
956 }
957 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
958 }
959
960 *log_offset = r5l_ring_add(log, *log_offset,
961 le32_to_cpu(payload->size));
962 *offset += sizeof(struct r5l_payload_data_parity) +
963 sizeof(__le32) *
964 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
965 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
966 break;
967 }
968
969 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
970 void *addr;
971 u32 checksum;
972
973 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
974 continue;
975 addr = kmap_atomic(sh->dev[disk_index].page);
5cb2fbd6 976 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
355810d1
SL
977 kunmap_atomic(addr);
978 if (checksum != sh->dev[disk_index].log_checksum)
979 goto error;
980 }
981
982 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
983 struct md_rdev *rdev, *rrdev;
984
985 if (!test_and_clear_bit(R5_Wantwrite,
986 &sh->dev[disk_index].flags))
987 continue;
988
989 /* in case device is broken */
990 rdev = rcu_dereference(conf->disks[disk_index].rdev);
991 if (rdev)
992 sync_page_io(rdev, stripe_sect, PAGE_SIZE,
796a5cf0
MC
993 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
994 false);
355810d1
SL
995 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
996 if (rrdev)
997 sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
796a5cf0
MC
998 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
999 false);
355810d1
SL
1000 }
1001 raid5_release_stripe(sh);
1002 return 0;
1003
1004error:
1005 for (disk_index = 0; disk_index < sh->disks; disk_index++)
1006 sh->dev[disk_index].flags = 0;
1007 raid5_release_stripe(sh);
1008 return -EINVAL;
1009}
1010
1011static int r5l_recovery_flush_one_meta(struct r5l_log *log,
1012 struct r5l_recovery_ctx *ctx)
1013{
1014 struct r5conf *conf = log->rdev->mddev->private;
1015 struct r5l_payload_data_parity *payload;
1016 struct r5l_meta_block *mb;
1017 int offset;
1018 sector_t log_offset;
1019 sector_t stripe_sector;
1020
1021 mb = page_address(ctx->meta_page);
1022 offset = sizeof(struct r5l_meta_block);
1023 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1024
1025 while (offset < le32_to_cpu(mb->meta_size)) {
1026 int dd;
1027
1028 payload = (void *)mb + offset;
1029 stripe_sector = raid5_compute_sector(conf,
1030 le64_to_cpu(payload->location), 0, &dd, NULL);
1031 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
1032 &offset, &log_offset))
1033 return -EINVAL;
1034 }
1035 return 0;
1036}
1037
1038/* copy data/parity from log to raid disks */
1039static void r5l_recovery_flush_log(struct r5l_log *log,
1040 struct r5l_recovery_ctx *ctx)
1041{
1042 while (1) {
1043 if (r5l_read_meta_block(log, ctx))
1044 return;
1045 if (r5l_recovery_flush_one_meta(log, ctx))
1046 return;
1047 ctx->seq++;
1048 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1049 }
1050}
1051
1052static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1053 u64 seq)
1054{
1055 struct page *page;
1056 struct r5l_meta_block *mb;
1057 u32 crc;
1058
1059 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1060 if (!page)
1061 return -ENOMEM;
1062 mb = page_address(page);
1063 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1064 mb->version = R5LOG_VERSION;
1065 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1066 mb->seq = cpu_to_le64(seq);
1067 mb->position = cpu_to_le64(pos);
5cb2fbd6 1068 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
1069 mb->checksum = cpu_to_le32(crc);
1070
796a5cf0
MC
1071 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1072 WRITE_FUA, false)) {
355810d1
SL
1073 __free_page(page);
1074 return -EIO;
1075 }
1076 __free_page(page);
1077 return 0;
1078}
1079
f6bed0ef
SL
1080static int r5l_recovery_log(struct r5l_log *log)
1081{
355810d1
SL
1082 struct r5l_recovery_ctx ctx;
1083
1084 ctx.pos = log->last_checkpoint;
1085 ctx.seq = log->last_cp_seq;
1086 ctx.meta_page = alloc_page(GFP_KERNEL);
1087 if (!ctx.meta_page)
1088 return -ENOMEM;
1089
1090 r5l_recovery_flush_log(log, &ctx);
1091 __free_page(ctx.meta_page);
1092
1093 /*
1094 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1095 * log will start here. but we can't let superblock point to last valid
1096 * meta block. The log might looks like:
1097 * | meta 1| meta 2| meta 3|
1098 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1099 * superblock points to meta 1, we write a new valid meta 2n. if crash
1100 * happens again, new recovery will start from meta 1. Since meta 2n is
1101 * valid now, recovery will think meta 3 is valid, which is wrong.
1102 * The solution is we create a new meta in meta2 with its seq == meta
1103 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1104 * not think meta 3 is a valid meta, because its seq doesn't match
1105 */
1106 if (ctx.seq > log->last_cp_seq + 1) {
1107 int ret;
1108
1109 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1110 if (ret)
1111 return ret;
1112 log->seq = ctx.seq + 11;
1113 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1114 r5l_write_super(log, ctx.pos);
1115 } else {
1116 log->log_start = ctx.pos;
1117 log->seq = ctx.seq;
1118 }
f6bed0ef
SL
1119 return 0;
1120}
1121
1122static void r5l_write_super(struct r5l_log *log, sector_t cp)
1123{
1124 struct mddev *mddev = log->rdev->mddev;
1125
1126 log->rdev->journal_tail = cp;
1127 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1128}
1129
1130static int r5l_load_log(struct r5l_log *log)
1131{
1132 struct md_rdev *rdev = log->rdev;
1133 struct page *page;
1134 struct r5l_meta_block *mb;
1135 sector_t cp = log->rdev->journal_tail;
1136 u32 stored_crc, expected_crc;
1137 bool create_super = false;
1138 int ret;
1139
1140 /* Make sure it's valid */
1141 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1142 cp = 0;
1143 page = alloc_page(GFP_KERNEL);
1144 if (!page)
1145 return -ENOMEM;
1146
796a5cf0 1147 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
f6bed0ef
SL
1148 ret = -EIO;
1149 goto ioerr;
1150 }
1151 mb = page_address(page);
1152
1153 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1154 mb->version != R5LOG_VERSION) {
1155 create_super = true;
1156 goto create;
1157 }
1158 stored_crc = le32_to_cpu(mb->checksum);
1159 mb->checksum = 0;
5cb2fbd6 1160 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
f6bed0ef
SL
1161 if (stored_crc != expected_crc) {
1162 create_super = true;
1163 goto create;
1164 }
1165 if (le64_to_cpu(mb->position) != cp) {
1166 create_super = true;
1167 goto create;
1168 }
1169create:
1170 if (create_super) {
1171 log->last_cp_seq = prandom_u32();
1172 cp = 0;
1173 /*
1174 * Make sure super points to correct address. Log might have
1175 * data very soon. If super hasn't correct log tail address,
1176 * recovery can't find the log
1177 */
1178 r5l_write_super(log, cp);
1179 } else
1180 log->last_cp_seq = le64_to_cpu(mb->seq);
1181
1182 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
0576b1c6
SL
1183 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1184 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1185 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
f6bed0ef
SL
1186 log->last_checkpoint = cp;
1187
1188 __free_page(page);
1189
1190 return r5l_recovery_log(log);
1191ioerr:
1192 __free_page(page);
1193 return ret;
1194}
1195
1196int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1197{
c888a8f9 1198 struct request_queue *q = bdev_get_queue(rdev->bdev);
f6bed0ef
SL
1199 struct r5l_log *log;
1200
1201 if (PAGE_SIZE != 4096)
1202 return -EINVAL;
1203 log = kzalloc(sizeof(*log), GFP_KERNEL);
1204 if (!log)
1205 return -ENOMEM;
1206 log->rdev = rdev;
1207
c888a8f9 1208 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
56fef7c6 1209
5cb2fbd6
SL
1210 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1211 sizeof(rdev->mddev->uuid));
f6bed0ef
SL
1212
1213 mutex_init(&log->io_mutex);
1214
1215 spin_lock_init(&log->io_list_lock);
1216 INIT_LIST_HEAD(&log->running_ios);
0576b1c6 1217 INIT_LIST_HEAD(&log->io_end_ios);
a8c34f91 1218 INIT_LIST_HEAD(&log->flushing_ios);
04732f74 1219 INIT_LIST_HEAD(&log->finished_ios);
a8c34f91 1220 bio_init(&log->flush_bio);
f6bed0ef
SL
1221
1222 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1223 if (!log->io_kc)
1224 goto io_kc;
1225
5036c390
CH
1226 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
1227 if (!log->io_pool)
1228 goto io_pool;
1229
c38d29b3
CH
1230 log->bs = bioset_create(R5L_POOL_SIZE, 0);
1231 if (!log->bs)
1232 goto io_bs;
1233
e8deb638
CH
1234 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
1235 if (!log->meta_pool)
1236 goto out_mempool;
1237
0576b1c6
SL
1238 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1239 log->rdev->mddev, "reclaim");
1240 if (!log->reclaim_thread)
1241 goto reclaim_thread;
0fd22b45 1242 init_waitqueue_head(&log->iounit_wait);
0576b1c6 1243
5036c390
CH
1244 INIT_LIST_HEAD(&log->no_mem_stripes);
1245
f6bed0ef
SL
1246 INIT_LIST_HEAD(&log->no_space_stripes);
1247 spin_lock_init(&log->no_space_stripes_lock);
1248
1249 if (r5l_load_log(log))
1250 goto error;
1251
f6b6ec5c 1252 rcu_assign_pointer(conf->log, log);
a62ab49e 1253 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
f6bed0ef 1254 return 0;
e8deb638 1255
f6bed0ef 1256error:
0576b1c6
SL
1257 md_unregister_thread(&log->reclaim_thread);
1258reclaim_thread:
e8deb638
CH
1259 mempool_destroy(log->meta_pool);
1260out_mempool:
c38d29b3
CH
1261 bioset_free(log->bs);
1262io_bs:
5036c390
CH
1263 mempool_destroy(log->io_pool);
1264io_pool:
f6bed0ef
SL
1265 kmem_cache_destroy(log->io_kc);
1266io_kc:
1267 kfree(log);
1268 return -EINVAL;
1269}
1270
1271void r5l_exit_log(struct r5l_log *log)
1272{
0576b1c6 1273 md_unregister_thread(&log->reclaim_thread);
e8deb638 1274 mempool_destroy(log->meta_pool);
c38d29b3 1275 bioset_free(log->bs);
5036c390 1276 mempool_destroy(log->io_pool);
f6bed0ef
SL
1277 kmem_cache_destroy(log->io_kc);
1278 kfree(log);
1279}