md/raid10: fix memory leak when reshaping a RAID10.
[linux-2.6-block.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
475901af 41 * use_far_sets (stored in bit 17 of layout )
1da177e4 42 *
475901af
JB
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
1da177e4
LT
71 */
72
73/*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76#define NR_RAID10_BIOS 256
77
473e87ce
JB
78/* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83#define IO_BLOCKED ((struct bio *)1)
84/* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88#define IO_MADE_GOOD ((struct bio *)2)
89
90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92/* When there are this many requests queued to be written by
34db0cd6
N
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96static int max_queued_requests = 1024;
97
e879a879
N
98static void allow_barrier(struct r10conf *conf);
99static void lower_barrier(struct r10conf *conf);
635f6416 100static int _enough(struct r10conf *conf, int previous, int ignore);
3ea7daa5
N
101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104static void end_reshape_write(struct bio *bio, int error);
105static void end_reshape(struct r10conf *conf);
0a27ec96 106
dd0fc66f 107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 108{
e879a879 109 struct r10conf *conf = data;
9f2c9d12 110 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 111
69335ef3
N
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
7eaceacc 114 return kzalloc(size, gfp_flags);
1da177e4
LT
115}
116
117static void r10bio_pool_free(void *r10_bio, void *data)
118{
119 kfree(r10_bio);
120}
121
0310fa21 122/* Maximum size of each resync request */
1da177e4 123#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
125/* amount of memory to reserve for resync requests */
126#define RESYNC_WINDOW (1024*1024)
127/* maximum number of concurrent requests, memory permitting */
128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
129
130/*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
dd0fc66f 137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 138{
e879a879 139 struct r10conf *conf = data;
1da177e4 140 struct page *page;
9f2c9d12 141 struct r10bio *r10_bio;
1da177e4
LT
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 147 if (!r10_bio)
1da177e4 148 return NULL;
1da177e4 149
3ea7daa5
N
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
6746557f 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
69335ef3
N
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
69335ef3 176 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
c65060ad
NK
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
1da177e4
LT
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
194 }
195 }
196
197 return r10_bio;
198
199out_free_pages:
200 for ( ; i > 0 ; i--)
1345b1d8 201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 205 j = 0;
1da177e4 206out_free_bio:
5fdd2cf8 207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
69335ef3
N
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
1da177e4
LT
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215}
216
217static void r10buf_pool_free(void *__r10_bio, void *data)
218{
219 int i;
e879a879 220 struct r10conf *conf = data;
9f2c9d12 221 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 228 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
69335ef3
N
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
1da177e4
LT
236 }
237 r10bio_pool_free(r10bio, conf);
238}
239
e879a879 240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
241{
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 246 if (!BIO_SPECIAL(*bio))
1da177e4
LT
247 bio_put(*bio);
248 *bio = NULL;
69335ef3
N
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
1da177e4
LT
253 }
254}
255
9f2c9d12 256static void free_r10bio(struct r10bio *r10_bio)
1da177e4 257{
e879a879 258 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 259
1da177e4
LT
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262}
263
9f2c9d12 264static void put_buf(struct r10bio *r10_bio)
1da177e4 265{
e879a879 266 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
0a27ec96 270 lower_barrier(conf);
1da177e4
LT
271}
272
9f2c9d12 273static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
274{
275 unsigned long flags;
fd01b88c 276 struct mddev *mddev = r10_bio->mddev;
e879a879 277 struct r10conf *conf = mddev->private;
1da177e4
LT
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 281 conf->nr_queued ++;
1da177e4
LT
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
388667be
AJ
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
1da177e4
LT
287 md_wakeup_thread(mddev->thread);
288}
289
290/*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
9f2c9d12 295static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
296{
297 struct bio *bio = r10_bio->master_bio;
856e08e2 298 int done;
e879a879 299 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 300
856e08e2
N
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
1da177e4
LT
319 free_r10bio(r10_bio);
320}
321
322/*
323 * Update disk head position estimator based on IRQ completion info.
324 */
9f2c9d12 325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 326{
e879a879 327 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331}
332
778ca018
NK
333/*
334 * Find the disk number which triggered given bio
335 */
e879a879 336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 337 struct bio *bio, int *slotp, int *replp)
778ca018
NK
338{
339 int slot;
69335ef3 340 int repl = 0;
778ca018 341
69335ef3 342 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
343 if (r10_bio->devs[slot].bio == bio)
344 break;
69335ef3
N
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
778ca018
NK
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
749c55e9
N
354 if (slotp)
355 *slotp = slot;
69335ef3
N
356 if (replp)
357 *replp = repl;
778ca018
NK
358 return r10_bio->devs[slot].devnum;
359}
360
6712ecf8 361static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
362{
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 364 struct r10bio *r10_bio = bio->bi_private;
1da177e4 365 int slot, dev;
abbf098e 366 struct md_rdev *rdev;
e879a879 367 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 368
1da177e4
LT
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
abbf098e 372 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
4443ae10
N
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
1da177e4
LT
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
635f6416
N
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
fae8cc5e 397 uptodate = 1;
fae8cc5e
N
398 }
399 if (uptodate) {
1da177e4 400 raid_end_bio_io(r10_bio);
abbf098e 401 rdev_dec_pending(rdev, conf->mddev);
4443ae10 402 } else {
1da177e4 403 /*
7c4e06ff 404 * oops, read error - keep the refcount on the rdev
1da177e4
LT
405 */
406 char b[BDEVNAME_SIZE];
8bda470e
CD
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
abbf098e 410 bdevname(rdev->bdev, b),
8bda470e 411 (unsigned long long)r10_bio->sector);
856e08e2 412 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
413 reschedule_retry(r10_bio);
414 }
1da177e4
LT
415}
416
9f2c9d12 417static void close_write(struct r10bio *r10_bio)
bd870a16
N
418{
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425}
426
9f2c9d12 427static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
428{
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440}
441
6712ecf8 442static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
443{
444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 445 struct r10bio *r10_bio = bio->bi_private;
778ca018 446 int dev;
749c55e9 447 int dec_rdev = 1;
e879a879 448 struct r10conf *conf = r10_bio->mddev->private;
475b0321 449 int slot, repl;
4ca40c2c 450 struct md_rdev *rdev = NULL;
1da177e4 451
475b0321 452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 453
475b0321
N
454 if (repl)
455 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
456 if (!rdev) {
457 smp_rmb();
458 repl = 0;
475b0321 459 rdev = conf->mirrors[dev].rdev;
4ca40c2c 460 }
1da177e4
LT
461 /*
462 * this branch is our 'one mirror IO has finished' event handler:
463 */
6cce3b23 464 if (!uptodate) {
475b0321
N
465 if (repl)
466 /* Never record new bad blocks to replacement,
467 * just fail it.
468 */
469 md_error(rdev->mddev, rdev);
470 else {
471 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
472 if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 set_bit(MD_RECOVERY_NEEDED,
474 &rdev->mddev->recovery);
475b0321
N
475 set_bit(R10BIO_WriteError, &r10_bio->state);
476 dec_rdev = 0;
477 }
749c55e9 478 } else {
1da177e4
LT
479 /*
480 * Set R10BIO_Uptodate in our master bio, so that
481 * we will return a good error code for to the higher
482 * levels even if IO on some other mirrored buffer fails.
483 *
484 * The 'master' represents the composite IO operation to
485 * user-side. So if something waits for IO, then it will
486 * wait for the 'master' bio.
487 */
749c55e9
N
488 sector_t first_bad;
489 int bad_sectors;
490
3056e3ae
AL
491 /*
492 * Do not set R10BIO_Uptodate if the current device is
493 * rebuilding or Faulty. This is because we cannot use
494 * such device for properly reading the data back (we could
495 * potentially use it, if the current write would have felt
496 * before rdev->recovery_offset, but for simplicity we don't
497 * check this here.
498 */
499 if (test_bit(In_sync, &rdev->flags) &&
500 !test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 502
749c55e9 503 /* Maybe we can clear some bad blocks. */
475b0321 504 if (is_badblock(rdev,
749c55e9
N
505 r10_bio->devs[slot].addr,
506 r10_bio->sectors,
507 &first_bad, &bad_sectors)) {
508 bio_put(bio);
475b0321
N
509 if (repl)
510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 else
512 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
513 dec_rdev = 0;
514 set_bit(R10BIO_MadeGood, &r10_bio->state);
515 }
516 }
517
1da177e4
LT
518 /*
519 *
520 * Let's see if all mirrored write operations have finished
521 * already.
522 */
19d5f834 523 one_write_done(r10_bio);
749c55e9 524 if (dec_rdev)
884162df 525 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
526}
527
1da177e4
LT
528/*
529 * RAID10 layout manager
25985edc 530 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
531 * parameters: near_copies and far_copies.
532 * near_copies * far_copies must be <= raid_disks.
533 * Normally one of these will be 1.
534 * If both are 1, we get raid0.
535 * If near_copies == raid_disks, we get raid1.
536 *
25985edc 537 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
538 * first chunk, followed by near_copies copies of the next chunk and
539 * so on.
540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
541 * as described above, we start again with a device offset of near_copies.
542 * So we effectively have another copy of the whole array further down all
543 * the drives, but with blocks on different drives.
544 * With this layout, and block is never stored twice on the one device.
545 *
546 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 547 * on each device that it is on.
1da177e4
LT
548 *
549 * raid10_find_virt does the reverse mapping, from a device and a
550 * sector offset to a virtual address
551 */
552
f8c9e74f 553static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
554{
555 int n,f;
556 sector_t sector;
557 sector_t chunk;
558 sector_t stripe;
559 int dev;
1da177e4 560 int slot = 0;
9a3152ab
JB
561 int last_far_set_start, last_far_set_size;
562
563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 last_far_set_start *= geo->far_set_size;
565
566 last_far_set_size = geo->far_set_size;
567 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
568
569 /* now calculate first sector/dev */
5cf00fcd
N
570 chunk = r10bio->sector >> geo->chunk_shift;
571 sector = r10bio->sector & geo->chunk_mask;
1da177e4 572
5cf00fcd 573 chunk *= geo->near_copies;
1da177e4 574 stripe = chunk;
5cf00fcd
N
575 dev = sector_div(stripe, geo->raid_disks);
576 if (geo->far_offset)
577 stripe *= geo->far_copies;
1da177e4 578
5cf00fcd 579 sector += stripe << geo->chunk_shift;
1da177e4
LT
580
581 /* and calculate all the others */
5cf00fcd 582 for (n = 0; n < geo->near_copies; n++) {
1da177e4 583 int d = dev;
475901af 584 int set;
1da177e4 585 sector_t s = sector;
1da177e4 586 r10bio->devs[slot].devnum = d;
4c0ca26b 587 r10bio->devs[slot].addr = s;
1da177e4
LT
588 slot++;
589
5cf00fcd 590 for (f = 1; f < geo->far_copies; f++) {
475901af 591 set = d / geo->far_set_size;
5cf00fcd 592 d += geo->near_copies;
475901af 593
9a3152ab
JB
594 if ((geo->raid_disks % geo->far_set_size) &&
595 (d > last_far_set_start)) {
596 d -= last_far_set_start;
597 d %= last_far_set_size;
598 d += last_far_set_start;
599 } else {
600 d %= geo->far_set_size;
601 d += geo->far_set_size * set;
602 }
5cf00fcd 603 s += geo->stride;
1da177e4
LT
604 r10bio->devs[slot].devnum = d;
605 r10bio->devs[slot].addr = s;
606 slot++;
607 }
608 dev++;
5cf00fcd 609 if (dev >= geo->raid_disks) {
1da177e4 610 dev = 0;
5cf00fcd 611 sector += (geo->chunk_mask + 1);
1da177e4
LT
612 }
613 }
f8c9e74f
N
614}
615
616static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617{
618 struct geom *geo = &conf->geo;
619
620 if (conf->reshape_progress != MaxSector &&
621 ((r10bio->sector >= conf->reshape_progress) !=
622 conf->mddev->reshape_backwards)) {
623 set_bit(R10BIO_Previous, &r10bio->state);
624 geo = &conf->prev;
625 } else
626 clear_bit(R10BIO_Previous, &r10bio->state);
627
628 __raid10_find_phys(geo, r10bio);
1da177e4
LT
629}
630
e879a879 631static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
632{
633 sector_t offset, chunk, vchunk;
f8c9e74f
N
634 /* Never use conf->prev as this is only called during resync
635 * or recovery, so reshape isn't happening
636 */
5cf00fcd 637 struct geom *geo = &conf->geo;
475901af
JB
638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 int far_set_size = geo->far_set_size;
9a3152ab
JB
640 int last_far_set_start;
641
642 if (geo->raid_disks % geo->far_set_size) {
643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 last_far_set_start *= geo->far_set_size;
645
646 if (dev >= last_far_set_start) {
647 far_set_size = geo->far_set_size;
648 far_set_size += (geo->raid_disks % geo->far_set_size);
649 far_set_start = last_far_set_start;
650 }
651 }
1da177e4 652
5cf00fcd
N
653 offset = sector & geo->chunk_mask;
654 if (geo->far_offset) {
c93983bf 655 int fc;
5cf00fcd
N
656 chunk = sector >> geo->chunk_shift;
657 fc = sector_div(chunk, geo->far_copies);
658 dev -= fc * geo->near_copies;
475901af
JB
659 if (dev < far_set_start)
660 dev += far_set_size;
c93983bf 661 } else {
5cf00fcd
N
662 while (sector >= geo->stride) {
663 sector -= geo->stride;
475901af
JB
664 if (dev < (geo->near_copies + far_set_start))
665 dev += far_set_size - geo->near_copies;
c93983bf 666 else
5cf00fcd 667 dev -= geo->near_copies;
c93983bf 668 }
5cf00fcd 669 chunk = sector >> geo->chunk_shift;
c93983bf 670 }
5cf00fcd
N
671 vchunk = chunk * geo->raid_disks + dev;
672 sector_div(vchunk, geo->near_copies);
673 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
674}
675
676/**
677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678 * @q: request queue
cc371e66 679 * @bvm: properties of new bio
1da177e4
LT
680 * @biovec: the request that could be merged to it.
681 *
682 * Return amount of bytes we can accept at this offset
050b6615
N
683 * This requires checking for end-of-chunk if near_copies != raid_disks,
684 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 685 */
cc371e66
AK
686static int raid10_mergeable_bvec(struct request_queue *q,
687 struct bvec_merge_data *bvm,
688 struct bio_vec *biovec)
1da177e4 689{
fd01b88c 690 struct mddev *mddev = q->queuedata;
050b6615 691 struct r10conf *conf = mddev->private;
cc371e66 692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 693 int max;
3ea7daa5 694 unsigned int chunk_sectors;
cc371e66 695 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 696 struct geom *geo = &conf->geo;
1da177e4 697
3ea7daa5 698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
699 if (conf->reshape_progress != MaxSector &&
700 ((sector >= conf->reshape_progress) !=
701 conf->mddev->reshape_backwards))
702 geo = &conf->prev;
703
5cf00fcd 704 if (geo->near_copies < geo->raid_disks) {
050b6615
N
705 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 + bio_sectors)) << 9;
707 if (max < 0)
708 /* bio_add cannot handle a negative return */
709 max = 0;
710 if (max <= biovec->bv_len && bio_sectors == 0)
711 return biovec->bv_len;
712 } else
713 max = biovec->bv_len;
714
715 if (mddev->merge_check_needed) {
e0ee7785
N
716 struct {
717 struct r10bio r10_bio;
718 struct r10dev devs[conf->copies];
719 } on_stack;
720 struct r10bio *r10_bio = &on_stack.r10_bio;
050b6615 721 int s;
f8c9e74f
N
722 if (conf->reshape_progress != MaxSector) {
723 /* Cannot give any guidance during reshape */
724 if (max <= biovec->bv_len && bio_sectors == 0)
725 return biovec->bv_len;
726 return 0;
727 }
e0ee7785
N
728 r10_bio->sector = sector;
729 raid10_find_phys(conf, r10_bio);
050b6615
N
730 rcu_read_lock();
731 for (s = 0; s < conf->copies; s++) {
e0ee7785 732 int disk = r10_bio->devs[s].devnum;
050b6615
N
733 struct md_rdev *rdev = rcu_dereference(
734 conf->mirrors[disk].rdev);
735 if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 struct request_queue *q =
737 bdev_get_queue(rdev->bdev);
738 if (q->merge_bvec_fn) {
e0ee7785 739 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
740 + rdev->data_offset;
741 bvm->bi_bdev = rdev->bdev;
742 max = min(max, q->merge_bvec_fn(
743 q, bvm, biovec));
744 }
745 }
746 rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q =
749 bdev_get_queue(rdev->bdev);
750 if (q->merge_bvec_fn) {
e0ee7785 751 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
752 + rdev->data_offset;
753 bvm->bi_bdev = rdev->bdev;
754 max = min(max, q->merge_bvec_fn(
755 q, bvm, biovec));
756 }
757 }
758 }
759 rcu_read_unlock();
760 }
761 return max;
1da177e4
LT
762}
763
764/*
765 * This routine returns the disk from which the requested read should
766 * be done. There is a per-array 'next expected sequential IO' sector
767 * number - if this matches on the next IO then we use the last disk.
768 * There is also a per-disk 'last know head position' sector that is
769 * maintained from IRQ contexts, both the normal and the resync IO
770 * completion handlers update this position correctly. If there is no
771 * perfect sequential match then we pick the disk whose head is closest.
772 *
773 * If there are 2 mirrors in the same 2 devices, performance degrades
774 * because position is mirror, not device based.
775 *
776 * The rdev for the device selected will have nr_pending incremented.
777 */
778
779/*
780 * FIXME: possibly should rethink readbalancing and do it differently
781 * depending on near_copies / far_copies geometry.
782 */
96c3fd1f
N
783static struct md_rdev *read_balance(struct r10conf *conf,
784 struct r10bio *r10_bio,
785 int *max_sectors)
1da177e4 786{
af3a2cd6 787 const sector_t this_sector = r10_bio->sector;
56d99121 788 int disk, slot;
856e08e2
N
789 int sectors = r10_bio->sectors;
790 int best_good_sectors;
56d99121 791 sector_t new_distance, best_dist;
3bbae04b 792 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
793 int do_balance;
794 int best_slot;
5cf00fcd 795 struct geom *geo = &conf->geo;
1da177e4
LT
796
797 raid10_find_phys(conf, r10_bio);
798 rcu_read_lock();
56d99121 799retry:
856e08e2 800 sectors = r10_bio->sectors;
56d99121 801 best_slot = -1;
abbf098e 802 best_rdev = NULL;
56d99121 803 best_dist = MaxSector;
856e08e2 804 best_good_sectors = 0;
56d99121 805 do_balance = 1;
1da177e4
LT
806 /*
807 * Check if we can balance. We can balance on the whole
6cce3b23
N
808 * device if no resync is going on (recovery is ok), or below
809 * the resync window. We take the first readable disk when
810 * above the resync window.
1da177e4
LT
811 */
812 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
813 && (this_sector + sectors >= conf->next_resync))
814 do_balance = 0;
1da177e4 815
56d99121 816 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
817 sector_t first_bad;
818 int bad_sectors;
819 sector_t dev_sector;
820
56d99121
N
821 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 continue;
1da177e4 823 disk = r10_bio->devs[slot].devnum;
abbf098e
N
824 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 826 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
829 if (rdev == NULL ||
830 test_bit(Faulty, &rdev->flags) ||
831 test_bit(Unmerged, &rdev->flags))
abbf098e
N
832 continue;
833 if (!test_bit(In_sync, &rdev->flags) &&
834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
835 continue;
836
856e08e2
N
837 dev_sector = r10_bio->devs[slot].addr;
838 if (is_badblock(rdev, dev_sector, sectors,
839 &first_bad, &bad_sectors)) {
840 if (best_dist < MaxSector)
841 /* Already have a better slot */
842 continue;
843 if (first_bad <= dev_sector) {
844 /* Cannot read here. If this is the
845 * 'primary' device, then we must not read
846 * beyond 'bad_sectors' from another device.
847 */
848 bad_sectors -= (dev_sector - first_bad);
849 if (!do_balance && sectors > bad_sectors)
850 sectors = bad_sectors;
851 if (best_good_sectors > sectors)
852 best_good_sectors = sectors;
853 } else {
854 sector_t good_sectors =
855 first_bad - dev_sector;
856 if (good_sectors > best_good_sectors) {
857 best_good_sectors = good_sectors;
858 best_slot = slot;
abbf098e 859 best_rdev = rdev;
856e08e2
N
860 }
861 if (!do_balance)
862 /* Must read from here */
863 break;
864 }
865 continue;
866 } else
867 best_good_sectors = sectors;
868
56d99121
N
869 if (!do_balance)
870 break;
1da177e4 871
22dfdf52
N
872 /* This optimisation is debatable, and completely destroys
873 * sequential read speed for 'far copies' arrays. So only
874 * keep it for 'near' arrays, and review those later.
875 */
5cf00fcd 876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 877 break;
8ed3a195
KS
878
879 /* for far > 1 always use the lowest address */
5cf00fcd 880 if (geo->far_copies > 1)
56d99121 881 new_distance = r10_bio->devs[slot].addr;
8ed3a195 882 else
56d99121
N
883 new_distance = abs(r10_bio->devs[slot].addr -
884 conf->mirrors[disk].head_position);
885 if (new_distance < best_dist) {
886 best_dist = new_distance;
887 best_slot = slot;
abbf098e 888 best_rdev = rdev;
1da177e4
LT
889 }
890 }
abbf098e 891 if (slot >= conf->copies) {
56d99121 892 slot = best_slot;
abbf098e
N
893 rdev = best_rdev;
894 }
1da177e4 895
56d99121 896 if (slot >= 0) {
56d99121
N
897 atomic_inc(&rdev->nr_pending);
898 if (test_bit(Faulty, &rdev->flags)) {
899 /* Cannot risk returning a device that failed
900 * before we inc'ed nr_pending
901 */
902 rdev_dec_pending(rdev, conf->mddev);
903 goto retry;
904 }
905 r10_bio->read_slot = slot;
906 } else
96c3fd1f 907 rdev = NULL;
1da177e4 908 rcu_read_unlock();
856e08e2 909 *max_sectors = best_good_sectors;
1da177e4 910
96c3fd1f 911 return rdev;
1da177e4
LT
912}
913
cc4d1efd 914int md_raid10_congested(struct mddev *mddev, int bits)
0d129228 915{
e879a879 916 struct r10conf *conf = mddev->private;
0d129228
N
917 int i, ret = 0;
918
34db0cd6
N
919 if ((bits & (1 << BDI_async_congested)) &&
920 conf->pending_count >= max_queued_requests)
921 return 1;
922
0d129228 923 rcu_read_lock();
f8c9e74f
N
924 for (i = 0;
925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 && ret == 0;
927 i++) {
3cb03002 928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 929 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 930 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
931
932 ret |= bdi_congested(&q->backing_dev_info, bits);
933 }
934 }
935 rcu_read_unlock();
936 return ret;
937}
cc4d1efd
JB
938EXPORT_SYMBOL_GPL(md_raid10_congested);
939
940static int raid10_congested(void *data, int bits)
941{
942 struct mddev *mddev = data;
943
944 return mddev_congested(mddev, bits) ||
945 md_raid10_congested(mddev, bits);
946}
0d129228 947
e879a879 948static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
949{
950 /* Any writes that have been queued but are awaiting
951 * bitmap updates get flushed here.
a35e63ef 952 */
a35e63ef
N
953 spin_lock_irq(&conf->device_lock);
954
955 if (conf->pending_bio_list.head) {
956 struct bio *bio;
957 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 958 conf->pending_count = 0;
a35e63ef
N
959 spin_unlock_irq(&conf->device_lock);
960 /* flush any pending bitmap writes to disk
961 * before proceeding w/ I/O */
962 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 963 wake_up(&conf->wait_barrier);
a35e63ef
N
964
965 while (bio) { /* submit pending writes */
966 struct bio *next = bio->bi_next;
967 bio->bi_next = NULL;
532a2a3f
SL
968 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 /* Just ignore it */
971 bio_endio(bio, 0);
972 else
973 generic_make_request(bio);
a35e63ef
N
974 bio = next;
975 }
a35e63ef
N
976 } else
977 spin_unlock_irq(&conf->device_lock);
a35e63ef 978}
7eaceacc 979
0a27ec96
N
980/* Barriers....
981 * Sometimes we need to suspend IO while we do something else,
982 * either some resync/recovery, or reconfigure the array.
983 * To do this we raise a 'barrier'.
984 * The 'barrier' is a counter that can be raised multiple times
985 * to count how many activities are happening which preclude
986 * normal IO.
987 * We can only raise the barrier if there is no pending IO.
988 * i.e. if nr_pending == 0.
989 * We choose only to raise the barrier if no-one is waiting for the
990 * barrier to go down. This means that as soon as an IO request
991 * is ready, no other operations which require a barrier will start
992 * until the IO request has had a chance.
993 *
994 * So: regular IO calls 'wait_barrier'. When that returns there
995 * is no backgroup IO happening, It must arrange to call
996 * allow_barrier when it has finished its IO.
997 * backgroup IO calls must call raise_barrier. Once that returns
998 * there is no normal IO happeing. It must arrange to call
999 * lower_barrier when the particular background IO completes.
1da177e4 1000 */
1da177e4 1001
e879a879 1002static void raise_barrier(struct r10conf *conf, int force)
1da177e4 1003{
6cce3b23 1004 BUG_ON(force && !conf->barrier);
1da177e4 1005 spin_lock_irq(&conf->resync_lock);
0a27ec96 1006
6cce3b23
N
1007 /* Wait until no block IO is waiting (unless 'force') */
1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 1009 conf->resync_lock);
0a27ec96
N
1010
1011 /* block any new IO from starting */
1012 conf->barrier++;
1013
c3b328ac 1014 /* Now wait for all pending IO to complete */
0a27ec96
N
1015 wait_event_lock_irq(conf->wait_barrier,
1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 1017 conf->resync_lock);
0a27ec96
N
1018
1019 spin_unlock_irq(&conf->resync_lock);
1020}
1021
e879a879 1022static void lower_barrier(struct r10conf *conf)
0a27ec96
N
1023{
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->resync_lock, flags);
1026 conf->barrier--;
1027 spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 wake_up(&conf->wait_barrier);
1029}
1030
e879a879 1031static void wait_barrier(struct r10conf *conf)
0a27ec96
N
1032{
1033 spin_lock_irq(&conf->resync_lock);
1034 if (conf->barrier) {
1035 conf->nr_waiting++;
d6b42dcb
N
1036 /* Wait for the barrier to drop.
1037 * However if there are already pending
1038 * requests (preventing the barrier from
1039 * rising completely), and the
1040 * pre-process bio queue isn't empty,
1041 * then don't wait, as we need to empty
1042 * that queue to get the nr_pending
1043 * count down.
1044 */
1045 wait_event_lock_irq(conf->wait_barrier,
1046 !conf->barrier ||
1047 (conf->nr_pending &&
1048 current->bio_list &&
1049 !bio_list_empty(current->bio_list)),
eed8c02e 1050 conf->resync_lock);
0a27ec96 1051 conf->nr_waiting--;
1da177e4 1052 }
0a27ec96 1053 conf->nr_pending++;
1da177e4
LT
1054 spin_unlock_irq(&conf->resync_lock);
1055}
1056
e879a879 1057static void allow_barrier(struct r10conf *conf)
0a27ec96
N
1058{
1059 unsigned long flags;
1060 spin_lock_irqsave(&conf->resync_lock, flags);
1061 conf->nr_pending--;
1062 spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 wake_up(&conf->wait_barrier);
1064}
1065
e2d59925 1066static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1067{
1068 /* stop syncio and normal IO and wait for everything to
f188593e 1069 * go quiet.
4443ae10 1070 * We increment barrier and nr_waiting, and then
e2d59925 1071 * wait until nr_pending match nr_queued+extra
1c830532
N
1072 * This is called in the context of one normal IO request
1073 * that has failed. Thus any sync request that might be pending
1074 * will be blocked by nr_pending, and we need to wait for
1075 * pending IO requests to complete or be queued for re-try.
e2d59925 1076 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1077 * must match the number of pending IOs (nr_pending) before
1078 * we continue.
4443ae10
N
1079 */
1080 spin_lock_irq(&conf->resync_lock);
1081 conf->barrier++;
1082 conf->nr_waiting++;
eed8c02e 1083 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 1084 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
1085 conf->resync_lock,
1086 flush_pending_writes(conf));
c3b328ac 1087
4443ae10
N
1088 spin_unlock_irq(&conf->resync_lock);
1089}
1090
e879a879 1091static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1092{
1093 /* reverse the effect of the freeze */
1094 spin_lock_irq(&conf->resync_lock);
1095 conf->barrier--;
1096 conf->nr_waiting--;
1097 wake_up(&conf->wait_barrier);
1098 spin_unlock_irq(&conf->resync_lock);
1099}
1100
f8c9e74f
N
1101static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 struct md_rdev *rdev)
1103{
1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 test_bit(R10BIO_Previous, &r10_bio->state))
1106 return rdev->data_offset;
1107 else
1108 return rdev->new_data_offset;
1109}
1110
57c67df4
N
1111struct raid10_plug_cb {
1112 struct blk_plug_cb cb;
1113 struct bio_list pending;
1114 int pending_cnt;
1115};
1116
1117static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118{
1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 cb);
1121 struct mddev *mddev = plug->cb.data;
1122 struct r10conf *conf = mddev->private;
1123 struct bio *bio;
1124
874807a8 1125 if (from_schedule || current->bio_list) {
57c67df4
N
1126 spin_lock_irq(&conf->device_lock);
1127 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 conf->pending_count += plug->pending_cnt;
1129 spin_unlock_irq(&conf->device_lock);
ee0b0244 1130 wake_up(&conf->wait_barrier);
57c67df4
N
1131 md_wakeup_thread(mddev->thread);
1132 kfree(plug);
1133 return;
1134 }
1135
1136 /* we aren't scheduling, so we can do the write-out directly. */
1137 bio = bio_list_get(&plug->pending);
1138 bitmap_unplug(mddev->bitmap);
1139 wake_up(&conf->wait_barrier);
1140
1141 while (bio) { /* submit pending writes */
1142 struct bio *next = bio->bi_next;
1143 bio->bi_next = NULL;
32f9f570
SL
1144 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 /* Just ignore it */
1147 bio_endio(bio, 0);
1148 else
1149 generic_make_request(bio);
57c67df4
N
1150 bio = next;
1151 }
1152 kfree(plug);
1153}
1154
20d0189b 1155static void __make_request(struct mddev *mddev, struct bio *bio)
1da177e4 1156{
e879a879 1157 struct r10conf *conf = mddev->private;
9f2c9d12 1158 struct r10bio *r10_bio;
1da177e4
LT
1159 struct bio *read_bio;
1160 int i;
a362357b 1161 const int rw = bio_data_dir(bio);
2c7d46ec 1162 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1163 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
532a2a3f
SL
1164 const unsigned long do_discard = (bio->bi_rw
1165 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1166 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
6cce3b23 1167 unsigned long flags;
3cb03002 1168 struct md_rdev *blocked_rdev;
57c67df4
N
1169 struct blk_plug_cb *cb;
1170 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1171 int sectors_handled;
1172 int max_sectors;
3ea7daa5 1173 int sectors;
1da177e4 1174
cc13b1d1
N
1175 /*
1176 * Register the new request and wait if the reconstruction
1177 * thread has put up a bar for new requests.
1178 * Continue immediately if no resync is active currently.
1179 */
1180 wait_barrier(conf);
1181
aa8b57aa 1182 sectors = bio_sectors(bio);
3ea7daa5 1183 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
4f024f37
KO
1184 bio->bi_iter.bi_sector < conf->reshape_progress &&
1185 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
3ea7daa5
N
1186 /* IO spans the reshape position. Need to wait for
1187 * reshape to pass
1188 */
1189 allow_barrier(conf);
1190 wait_event(conf->wait_barrier,
4f024f37
KO
1191 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1192 conf->reshape_progress >= bio->bi_iter.bi_sector +
1193 sectors);
3ea7daa5
N
1194 wait_barrier(conf);
1195 }
1196 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1197 bio_data_dir(bio) == WRITE &&
1198 (mddev->reshape_backwards
4f024f37
KO
1199 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1200 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1201 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1202 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1203 /* Need to update reshape_position in metadata */
1204 mddev->reshape_position = conf->reshape_progress;
1205 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1206 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1207 md_wakeup_thread(mddev->thread);
1208 wait_event(mddev->sb_wait,
1209 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1210
1211 conf->reshape_safe = mddev->reshape_position;
1212 }
1213
1da177e4
LT
1214 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1215
1216 r10_bio->master_bio = bio;
3ea7daa5 1217 r10_bio->sectors = sectors;
1da177e4
LT
1218
1219 r10_bio->mddev = mddev;
4f024f37 1220 r10_bio->sector = bio->bi_iter.bi_sector;
6cce3b23 1221 r10_bio->state = 0;
1da177e4 1222
856e08e2
N
1223 /* We might need to issue multiple reads to different
1224 * devices if there are bad blocks around, so we keep
1225 * track of the number of reads in bio->bi_phys_segments.
1226 * If this is 0, there is only one r10_bio and no locking
1227 * will be needed when the request completes. If it is
1228 * non-zero, then it is the number of not-completed requests.
1229 */
1230 bio->bi_phys_segments = 0;
1231 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1232
a362357b 1233 if (rw == READ) {
1da177e4
LT
1234 /*
1235 * read balancing logic:
1236 */
96c3fd1f 1237 struct md_rdev *rdev;
856e08e2
N
1238 int slot;
1239
1240read_again:
96c3fd1f
N
1241 rdev = read_balance(conf, r10_bio, &max_sectors);
1242 if (!rdev) {
1da177e4 1243 raid_end_bio_io(r10_bio);
5a7bbad2 1244 return;
1da177e4 1245 }
96c3fd1f 1246 slot = r10_bio->read_slot;
1da177e4 1247
a167f663 1248 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1249 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1250 max_sectors);
1da177e4
LT
1251
1252 r10_bio->devs[slot].bio = read_bio;
abbf098e 1253 r10_bio->devs[slot].rdev = rdev;
1da177e4 1254
4f024f37 1255 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1256 choose_data_offset(r10_bio, rdev);
96c3fd1f 1257 read_bio->bi_bdev = rdev->bdev;
1da177e4 1258 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1259 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1260 read_bio->bi_private = r10_bio;
1261
856e08e2
N
1262 if (max_sectors < r10_bio->sectors) {
1263 /* Could not read all from this device, so we will
1264 * need another r10_bio.
1265 */
b50c259e 1266 sectors_handled = (r10_bio->sector + max_sectors
4f024f37 1267 - bio->bi_iter.bi_sector);
856e08e2
N
1268 r10_bio->sectors = max_sectors;
1269 spin_lock_irq(&conf->device_lock);
1270 if (bio->bi_phys_segments == 0)
1271 bio->bi_phys_segments = 2;
1272 else
1273 bio->bi_phys_segments++;
b50c259e 1274 spin_unlock_irq(&conf->device_lock);
856e08e2
N
1275 /* Cannot call generic_make_request directly
1276 * as that will be queued in __generic_make_request
1277 * and subsequent mempool_alloc might block
1278 * waiting for it. so hand bio over to raid10d.
1279 */
1280 reschedule_retry(r10_bio);
1281
1282 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1283
1284 r10_bio->master_bio = bio;
aa8b57aa 1285 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
856e08e2
N
1286 r10_bio->state = 0;
1287 r10_bio->mddev = mddev;
4f024f37
KO
1288 r10_bio->sector = bio->bi_iter.bi_sector +
1289 sectors_handled;
856e08e2
N
1290 goto read_again;
1291 } else
1292 generic_make_request(read_bio);
5a7bbad2 1293 return;
1da177e4
LT
1294 }
1295
1296 /*
1297 * WRITE:
1298 */
34db0cd6
N
1299 if (conf->pending_count >= max_queued_requests) {
1300 md_wakeup_thread(mddev->thread);
1301 wait_event(conf->wait_barrier,
1302 conf->pending_count < max_queued_requests);
1303 }
6bfe0b49 1304 /* first select target devices under rcu_lock and
1da177e4
LT
1305 * inc refcount on their rdev. Record them by setting
1306 * bios[x] to bio
d4432c23
N
1307 * If there are known/acknowledged bad blocks on any device
1308 * on which we have seen a write error, we want to avoid
1309 * writing to those blocks. This potentially requires several
1310 * writes to write around the bad blocks. Each set of writes
1311 * gets its own r10_bio with a set of bios attached. The number
1312 * of r10_bios is recored in bio->bi_phys_segments just as with
1313 * the read case.
1da177e4 1314 */
c3b328ac 1315
69335ef3 1316 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1317 raid10_find_phys(conf, r10_bio);
d4432c23 1318retry_write:
cb6969e8 1319 blocked_rdev = NULL;
1da177e4 1320 rcu_read_lock();
d4432c23
N
1321 max_sectors = r10_bio->sectors;
1322
1da177e4
LT
1323 for (i = 0; i < conf->copies; i++) {
1324 int d = r10_bio->devs[i].devnum;
3cb03002 1325 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1326 struct md_rdev *rrdev = rcu_dereference(
1327 conf->mirrors[d].replacement);
4ca40c2c
N
1328 if (rdev == rrdev)
1329 rrdev = NULL;
6bfe0b49
DW
1330 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1331 atomic_inc(&rdev->nr_pending);
1332 blocked_rdev = rdev;
1333 break;
1334 }
475b0321
N
1335 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1336 atomic_inc(&rrdev->nr_pending);
1337 blocked_rdev = rrdev;
1338 break;
1339 }
e7c0c3fa
N
1340 if (rdev && (test_bit(Faulty, &rdev->flags)
1341 || test_bit(Unmerged, &rdev->flags)))
1342 rdev = NULL;
050b6615
N
1343 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1344 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1345 rrdev = NULL;
1346
d4432c23 1347 r10_bio->devs[i].bio = NULL;
475b0321 1348 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1349
1350 if (!rdev && !rrdev) {
6cce3b23 1351 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1352 continue;
1353 }
e7c0c3fa 1354 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1355 sector_t first_bad;
1356 sector_t dev_sector = r10_bio->devs[i].addr;
1357 int bad_sectors;
1358 int is_bad;
1359
1360 is_bad = is_badblock(rdev, dev_sector,
1361 max_sectors,
1362 &first_bad, &bad_sectors);
1363 if (is_bad < 0) {
1364 /* Mustn't write here until the bad block
1365 * is acknowledged
1366 */
1367 atomic_inc(&rdev->nr_pending);
1368 set_bit(BlockedBadBlocks, &rdev->flags);
1369 blocked_rdev = rdev;
1370 break;
1371 }
1372 if (is_bad && first_bad <= dev_sector) {
1373 /* Cannot write here at all */
1374 bad_sectors -= (dev_sector - first_bad);
1375 if (bad_sectors < max_sectors)
1376 /* Mustn't write more than bad_sectors
1377 * to other devices yet
1378 */
1379 max_sectors = bad_sectors;
1380 /* We don't set R10BIO_Degraded as that
1381 * only applies if the disk is missing,
1382 * so it might be re-added, and we want to
1383 * know to recover this chunk.
1384 * In this case the device is here, and the
1385 * fact that this chunk is not in-sync is
1386 * recorded in the bad block log.
1387 */
1388 continue;
1389 }
1390 if (is_bad) {
1391 int good_sectors = first_bad - dev_sector;
1392 if (good_sectors < max_sectors)
1393 max_sectors = good_sectors;
1394 }
6cce3b23 1395 }
e7c0c3fa
N
1396 if (rdev) {
1397 r10_bio->devs[i].bio = bio;
1398 atomic_inc(&rdev->nr_pending);
1399 }
475b0321
N
1400 if (rrdev) {
1401 r10_bio->devs[i].repl_bio = bio;
1402 atomic_inc(&rrdev->nr_pending);
1403 }
1da177e4
LT
1404 }
1405 rcu_read_unlock();
1406
6bfe0b49
DW
1407 if (unlikely(blocked_rdev)) {
1408 /* Have to wait for this device to get unblocked, then retry */
1409 int j;
1410 int d;
1411
475b0321 1412 for (j = 0; j < i; j++) {
6bfe0b49
DW
1413 if (r10_bio->devs[j].bio) {
1414 d = r10_bio->devs[j].devnum;
1415 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1416 }
475b0321 1417 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1418 struct md_rdev *rdev;
475b0321 1419 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1420 rdev = conf->mirrors[d].replacement;
1421 if (!rdev) {
1422 /* Race with remove_disk */
1423 smp_mb();
1424 rdev = conf->mirrors[d].rdev;
1425 }
1426 rdev_dec_pending(rdev, mddev);
475b0321
N
1427 }
1428 }
6bfe0b49
DW
1429 allow_barrier(conf);
1430 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431 wait_barrier(conf);
1432 goto retry_write;
1433 }
1434
d4432c23
N
1435 if (max_sectors < r10_bio->sectors) {
1436 /* We are splitting this into multiple parts, so
1437 * we need to prepare for allocating another r10_bio.
1438 */
1439 r10_bio->sectors = max_sectors;
1440 spin_lock_irq(&conf->device_lock);
1441 if (bio->bi_phys_segments == 0)
1442 bio->bi_phys_segments = 2;
1443 else
1444 bio->bi_phys_segments++;
1445 spin_unlock_irq(&conf->device_lock);
1446 }
4f024f37
KO
1447 sectors_handled = r10_bio->sector + max_sectors -
1448 bio->bi_iter.bi_sector;
d4432c23 1449
4e78064f 1450 atomic_set(&r10_bio->remaining, 1);
d4432c23 1451 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1452
1da177e4
LT
1453 for (i = 0; i < conf->copies; i++) {
1454 struct bio *mbio;
1455 int d = r10_bio->devs[i].devnum;
e7c0c3fa
N
1456 if (r10_bio->devs[i].bio) {
1457 struct md_rdev *rdev = conf->mirrors[d].rdev;
1458 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1459 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1460 max_sectors);
e7c0c3fa
N
1461 r10_bio->devs[i].bio = mbio;
1462
4f024f37 1463 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
e7c0c3fa
N
1464 choose_data_offset(r10_bio,
1465 rdev));
1466 mbio->bi_bdev = rdev->bdev;
1467 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1468 mbio->bi_rw =
1469 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1470 mbio->bi_private = r10_bio;
1471
1472 atomic_inc(&r10_bio->remaining);
1473
1474 cb = blk_check_plugged(raid10_unplug, mddev,
1475 sizeof(*plug));
1476 if (cb)
1477 plug = container_of(cb, struct raid10_plug_cb,
1478 cb);
1479 else
1480 plug = NULL;
1481 spin_lock_irqsave(&conf->device_lock, flags);
1482 if (plug) {
1483 bio_list_add(&plug->pending, mbio);
1484 plug->pending_cnt++;
1485 } else {
1486 bio_list_add(&conf->pending_bio_list, mbio);
1487 conf->pending_count++;
1488 }
1489 spin_unlock_irqrestore(&conf->device_lock, flags);
1490 if (!plug)
1491 md_wakeup_thread(mddev->thread);
1492 }
57c67df4 1493
e7c0c3fa
N
1494 if (r10_bio->devs[i].repl_bio) {
1495 struct md_rdev *rdev = conf->mirrors[d].replacement;
1496 if (rdev == NULL) {
1497 /* Replacement just got moved to main 'rdev' */
1498 smp_mb();
1499 rdev = conf->mirrors[d].rdev;
1500 }
1501 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1502 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1503 max_sectors);
e7c0c3fa
N
1504 r10_bio->devs[i].repl_bio = mbio;
1505
4f024f37 1506 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
e7c0c3fa
N
1507 choose_data_offset(
1508 r10_bio, rdev));
1509 mbio->bi_bdev = rdev->bdev;
1510 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1511 mbio->bi_rw =
1512 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1513 mbio->bi_private = r10_bio;
1514
1515 atomic_inc(&r10_bio->remaining);
1516 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1517 bio_list_add(&conf->pending_bio_list, mbio);
1518 conf->pending_count++;
e7c0c3fa
N
1519 spin_unlock_irqrestore(&conf->device_lock, flags);
1520 if (!mddev_check_plugged(mddev))
1521 md_wakeup_thread(mddev->thread);
57c67df4 1522 }
1da177e4
LT
1523 }
1524
079fa166
N
1525 /* Don't remove the bias on 'remaining' (one_write_done) until
1526 * after checking if we need to go around again.
1527 */
a35e63ef 1528
aa8b57aa 1529 if (sectors_handled < bio_sectors(bio)) {
079fa166 1530 one_write_done(r10_bio);
5e570289 1531 /* We need another r10_bio. It has already been counted
d4432c23
N
1532 * in bio->bi_phys_segments.
1533 */
1534 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1535
1536 r10_bio->master_bio = bio;
aa8b57aa 1537 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
d4432c23
N
1538
1539 r10_bio->mddev = mddev;
4f024f37 1540 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
d4432c23
N
1541 r10_bio->state = 0;
1542 goto retry_write;
1543 }
079fa166 1544 one_write_done(r10_bio);
20d0189b
KO
1545}
1546
1547static void make_request(struct mddev *mddev, struct bio *bio)
1548{
1549 struct r10conf *conf = mddev->private;
1550 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1551 int chunk_sects = chunk_mask + 1;
1552
1553 struct bio *split;
1554
1555 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1556 md_flush_request(mddev, bio);
1557 return;
1558 }
1559
1560 md_write_start(mddev, bio);
1561
20d0189b
KO
1562
1563 do {
1564
1565 /*
1566 * If this request crosses a chunk boundary, we need to split
1567 * it.
1568 */
1569 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1570 bio_sectors(bio) > chunk_sects
1571 && (conf->geo.near_copies < conf->geo.raid_disks
1572 || conf->prev.near_copies <
1573 conf->prev.raid_disks))) {
1574 split = bio_split(bio, chunk_sects -
1575 (bio->bi_iter.bi_sector &
1576 (chunk_sects - 1)),
1577 GFP_NOIO, fs_bio_set);
1578 bio_chain(split, bio);
1579 } else {
1580 split = bio;
1581 }
1582
1583 __make_request(mddev, split);
1584 } while (split != bio);
079fa166
N
1585
1586 /* In case raid10d snuck in to freeze_array */
1587 wake_up(&conf->wait_barrier);
1da177e4
LT
1588}
1589
fd01b88c 1590static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1591{
e879a879 1592 struct r10conf *conf = mddev->private;
1da177e4
LT
1593 int i;
1594
5cf00fcd 1595 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1596 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1597 if (conf->geo.near_copies > 1)
1598 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1599 if (conf->geo.far_copies > 1) {
1600 if (conf->geo.far_offset)
1601 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1602 else
5cf00fcd 1603 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1604 }
5cf00fcd
N
1605 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606 conf->geo.raid_disks - mddev->degraded);
1607 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1608 seq_printf(seq, "%s",
1609 conf->mirrors[i].rdev &&
b2d444d7 1610 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1611 seq_printf(seq, "]");
1612}
1613
700c7213
N
1614/* check if there are enough drives for
1615 * every block to appear on atleast one.
1616 * Don't consider the device numbered 'ignore'
1617 * as we might be about to remove it.
1618 */
635f6416 1619static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1620{
1621 int first = 0;
725d6e57 1622 int has_enough = 0;
635f6416
N
1623 int disks, ncopies;
1624 if (previous) {
1625 disks = conf->prev.raid_disks;
1626 ncopies = conf->prev.near_copies;
1627 } else {
1628 disks = conf->geo.raid_disks;
1629 ncopies = conf->geo.near_copies;
1630 }
700c7213 1631
725d6e57 1632 rcu_read_lock();
700c7213
N
1633 do {
1634 int n = conf->copies;
1635 int cnt = 0;
80b48124 1636 int this = first;
700c7213 1637 while (n--) {
725d6e57
N
1638 struct md_rdev *rdev;
1639 if (this != ignore &&
1640 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641 test_bit(In_sync, &rdev->flags))
700c7213 1642 cnt++;
635f6416 1643 this = (this+1) % disks;
700c7213
N
1644 }
1645 if (cnt == 0)
725d6e57 1646 goto out;
635f6416 1647 first = (first + ncopies) % disks;
700c7213 1648 } while (first != 0);
725d6e57
N
1649 has_enough = 1;
1650out:
1651 rcu_read_unlock();
1652 return has_enough;
700c7213
N
1653}
1654
f8c9e74f
N
1655static int enough(struct r10conf *conf, int ignore)
1656{
635f6416
N
1657 /* when calling 'enough', both 'prev' and 'geo' must
1658 * be stable.
1659 * This is ensured if ->reconfig_mutex or ->device_lock
1660 * is held.
1661 */
1662 return _enough(conf, 0, ignore) &&
1663 _enough(conf, 1, ignore);
f8c9e74f
N
1664}
1665
fd01b88c 1666static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1667{
1668 char b[BDEVNAME_SIZE];
e879a879 1669 struct r10conf *conf = mddev->private;
635f6416 1670 unsigned long flags;
1da177e4
LT
1671
1672 /*
1673 * If it is not operational, then we have already marked it as dead
1674 * else if it is the last working disks, ignore the error, let the
1675 * next level up know.
1676 * else mark the drive as failed
1677 */
635f6416 1678 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1679 if (test_bit(In_sync, &rdev->flags)
635f6416 1680 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1681 /*
1682 * Don't fail the drive, just return an IO error.
1da177e4 1683 */
635f6416 1684 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1685 return;
635f6416 1686 }
2446dba0 1687 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1688 mddev->degraded++;
2446dba0
N
1689 /*
1690 * If recovery is running, make sure it aborts.
1691 */
1692 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 1693 set_bit(Blocked, &rdev->flags);
b2d444d7 1694 set_bit(Faulty, &rdev->flags);
850b2b42 1695 set_bit(MD_CHANGE_DEVS, &mddev->flags);
635f6416 1696 spin_unlock_irqrestore(&conf->device_lock, flags);
067032bc
JP
1697 printk(KERN_ALERT
1698 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1699 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1700 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1701 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1702}
1703
e879a879 1704static void print_conf(struct r10conf *conf)
1da177e4
LT
1705{
1706 int i;
dc280d98 1707 struct raid10_info *tmp;
1da177e4 1708
128595ed 1709 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1710 if (!conf) {
128595ed 1711 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1712 return;
1713 }
5cf00fcd
N
1714 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1715 conf->geo.raid_disks);
1da177e4 1716
5cf00fcd 1717 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1718 char b[BDEVNAME_SIZE];
1719 tmp = conf->mirrors + i;
1720 if (tmp->rdev)
128595ed 1721 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1722 i, !test_bit(In_sync, &tmp->rdev->flags),
1723 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1724 bdevname(tmp->rdev->bdev,b));
1725 }
1726}
1727
e879a879 1728static void close_sync(struct r10conf *conf)
1da177e4 1729{
0a27ec96
N
1730 wait_barrier(conf);
1731 allow_barrier(conf);
1da177e4
LT
1732
1733 mempool_destroy(conf->r10buf_pool);
1734 conf->r10buf_pool = NULL;
1735}
1736
fd01b88c 1737static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1738{
1739 int i;
e879a879 1740 struct r10conf *conf = mddev->private;
dc280d98 1741 struct raid10_info *tmp;
6b965620
N
1742 int count = 0;
1743 unsigned long flags;
1da177e4
LT
1744
1745 /*
1746 * Find all non-in_sync disks within the RAID10 configuration
1747 * and mark them in_sync
1748 */
5cf00fcd 1749 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1750 tmp = conf->mirrors + i;
4ca40c2c
N
1751 if (tmp->replacement
1752 && tmp->replacement->recovery_offset == MaxSector
1753 && !test_bit(Faulty, &tmp->replacement->flags)
1754 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1755 /* Replacement has just become active */
1756 if (!tmp->rdev
1757 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1758 count++;
1759 if (tmp->rdev) {
1760 /* Replaced device not technically faulty,
1761 * but we need to be sure it gets removed
1762 * and never re-added.
1763 */
1764 set_bit(Faulty, &tmp->rdev->flags);
1765 sysfs_notify_dirent_safe(
1766 tmp->rdev->sysfs_state);
1767 }
1768 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1769 } else if (tmp->rdev
61e4947c 1770 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
1771 && !test_bit(Faulty, &tmp->rdev->flags)
1772 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1773 count++;
2863b9eb 1774 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1775 }
1776 }
6b965620
N
1777 spin_lock_irqsave(&conf->device_lock, flags);
1778 mddev->degraded -= count;
1779 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1780
1781 print_conf(conf);
6b965620 1782 return count;
1da177e4
LT
1783}
1784
1785
fd01b88c 1786static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1787{
e879a879 1788 struct r10conf *conf = mddev->private;
199050ea 1789 int err = -EEXIST;
1da177e4 1790 int mirror;
6c2fce2e 1791 int first = 0;
5cf00fcd 1792 int last = conf->geo.raid_disks - 1;
050b6615 1793 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1794
1795 if (mddev->recovery_cp < MaxSector)
1796 /* only hot-add to in-sync arrays, as recovery is
1797 * very different from resync
1798 */
199050ea 1799 return -EBUSY;
635f6416 1800 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 1801 return -EINVAL;
1da177e4 1802
a53a6c85 1803 if (rdev->raid_disk >= 0)
6c2fce2e 1804 first = last = rdev->raid_disk;
1da177e4 1805
050b6615
N
1806 if (q->merge_bvec_fn) {
1807 set_bit(Unmerged, &rdev->flags);
1808 mddev->merge_check_needed = 1;
1809 }
1810
2c4193df 1811 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1812 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1813 mirror = rdev->saved_raid_disk;
1814 else
6c2fce2e 1815 mirror = first;
2bb77736 1816 for ( ; mirror <= last ; mirror++) {
dc280d98 1817 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1818 if (p->recovery_disabled == mddev->recovery_disabled)
1819 continue;
b7044d41
N
1820 if (p->rdev) {
1821 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1822 p->replacement != NULL)
1823 continue;
1824 clear_bit(In_sync, &rdev->flags);
1825 set_bit(Replacement, &rdev->flags);
1826 rdev->raid_disk = mirror;
1827 err = 0;
9092c02d
JB
1828 if (mddev->gendisk)
1829 disk_stack_limits(mddev->gendisk, rdev->bdev,
1830 rdev->data_offset << 9);
b7044d41
N
1831 conf->fullsync = 1;
1832 rcu_assign_pointer(p->replacement, rdev);
1833 break;
1834 }
1da177e4 1835
9092c02d
JB
1836 if (mddev->gendisk)
1837 disk_stack_limits(mddev->gendisk, rdev->bdev,
1838 rdev->data_offset << 9);
1da177e4 1839
2bb77736 1840 p->head_position = 0;
d890fa2b 1841 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1842 rdev->raid_disk = mirror;
1843 err = 0;
1844 if (rdev->saved_raid_disk != mirror)
1845 conf->fullsync = 1;
1846 rcu_assign_pointer(p->rdev, rdev);
1847 break;
1848 }
050b6615
N
1849 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1850 /* Some requests might not have seen this new
1851 * merge_bvec_fn. We must wait for them to complete
1852 * before merging the device fully.
1853 * First we make sure any code which has tested
1854 * our function has submitted the request, then
1855 * we wait for all outstanding requests to complete.
1856 */
1857 synchronize_sched();
e2d59925
N
1858 freeze_array(conf, 0);
1859 unfreeze_array(conf);
050b6615
N
1860 clear_bit(Unmerged, &rdev->flags);
1861 }
ac5e7113 1862 md_integrity_add_rdev(rdev, mddev);
ed30be07 1863 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1864 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1865
1da177e4 1866 print_conf(conf);
199050ea 1867 return err;
1da177e4
LT
1868}
1869
b8321b68 1870static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1871{
e879a879 1872 struct r10conf *conf = mddev->private;
1da177e4 1873 int err = 0;
b8321b68 1874 int number = rdev->raid_disk;
c8ab903e 1875 struct md_rdev **rdevp;
dc280d98 1876 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1877
1878 print_conf(conf);
c8ab903e
N
1879 if (rdev == p->rdev)
1880 rdevp = &p->rdev;
1881 else if (rdev == p->replacement)
1882 rdevp = &p->replacement;
1883 else
1884 return 0;
1885
1886 if (test_bit(In_sync, &rdev->flags) ||
1887 atomic_read(&rdev->nr_pending)) {
1888 err = -EBUSY;
1889 goto abort;
1890 }
1891 /* Only remove faulty devices if recovery
1892 * is not possible.
1893 */
1894 if (!test_bit(Faulty, &rdev->flags) &&
1895 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1896 (!p->replacement || p->replacement == rdev) &&
63aced61 1897 number < conf->geo.raid_disks &&
c8ab903e
N
1898 enough(conf, -1)) {
1899 err = -EBUSY;
1900 goto abort;
1da177e4 1901 }
c8ab903e
N
1902 *rdevp = NULL;
1903 synchronize_rcu();
1904 if (atomic_read(&rdev->nr_pending)) {
1905 /* lost the race, try later */
1906 err = -EBUSY;
1907 *rdevp = rdev;
1908 goto abort;
4ca40c2c
N
1909 } else if (p->replacement) {
1910 /* We must have just cleared 'rdev' */
1911 p->rdev = p->replacement;
1912 clear_bit(Replacement, &p->replacement->flags);
1913 smp_mb(); /* Make sure other CPUs may see both as identical
1914 * but will never see neither -- if they are careful.
1915 */
1916 p->replacement = NULL;
1917 clear_bit(WantReplacement, &rdev->flags);
1918 } else
1919 /* We might have just remove the Replacement as faulty
1920 * Clear the flag just in case
1921 */
1922 clear_bit(WantReplacement, &rdev->flags);
1923
c8ab903e
N
1924 err = md_integrity_register(mddev);
1925
1da177e4
LT
1926abort:
1927
1928 print_conf(conf);
1929 return err;
1930}
1931
1932
6712ecf8 1933static void end_sync_read(struct bio *bio, int error)
1da177e4 1934{
9f2c9d12 1935 struct r10bio *r10_bio = bio->bi_private;
e879a879 1936 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1937 int d;
1da177e4 1938
3ea7daa5
N
1939 if (bio == r10_bio->master_bio) {
1940 /* this is a reshape read */
1941 d = r10_bio->read_slot; /* really the read dev */
1942 } else
1943 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1944
1945 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1946 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1947 else
1948 /* The write handler will notice the lack of
1949 * R10BIO_Uptodate and record any errors etc
1950 */
4dbcdc75
N
1951 atomic_add(r10_bio->sectors,
1952 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1953
1954 /* for reconstruct, we always reschedule after a read.
1955 * for resync, only after all reads
1956 */
73d5c38a 1957 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1958 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1959 atomic_dec_and_test(&r10_bio->remaining)) {
1960 /* we have read all the blocks,
1961 * do the comparison in process context in raid10d
1962 */
1963 reschedule_retry(r10_bio);
1964 }
1da177e4
LT
1965}
1966
9f2c9d12 1967static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1968{
fd01b88c 1969 struct mddev *mddev = r10_bio->mddev;
dfc70645 1970
1da177e4
LT
1971 while (atomic_dec_and_test(&r10_bio->remaining)) {
1972 if (r10_bio->master_bio == NULL) {
1973 /* the primary of several recovery bios */
73d5c38a 1974 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1975 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1977 reschedule_retry(r10_bio);
1978 else
1979 put_buf(r10_bio);
73d5c38a 1980 md_done_sync(mddev, s, 1);
1da177e4
LT
1981 break;
1982 } else {
9f2c9d12 1983 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1984 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1985 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1986 reschedule_retry(r10_bio);
1987 else
1988 put_buf(r10_bio);
1da177e4
LT
1989 r10_bio = r10_bio2;
1990 }
1991 }
1da177e4
LT
1992}
1993
5e570289
N
1994static void end_sync_write(struct bio *bio, int error)
1995{
1996 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1997 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1998 struct mddev *mddev = r10_bio->mddev;
e879a879 1999 struct r10conf *conf = mddev->private;
5e570289
N
2000 int d;
2001 sector_t first_bad;
2002 int bad_sectors;
2003 int slot;
9ad1aefc 2004 int repl;
4ca40c2c 2005 struct md_rdev *rdev = NULL;
5e570289 2006
9ad1aefc
N
2007 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2008 if (repl)
2009 rdev = conf->mirrors[d].replacement;
547414d1 2010 else
9ad1aefc 2011 rdev = conf->mirrors[d].rdev;
5e570289
N
2012
2013 if (!uptodate) {
9ad1aefc
N
2014 if (repl)
2015 md_error(mddev, rdev);
2016 else {
2017 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2018 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2019 set_bit(MD_RECOVERY_NEEDED,
2020 &rdev->mddev->recovery);
9ad1aefc
N
2021 set_bit(R10BIO_WriteError, &r10_bio->state);
2022 }
2023 } else if (is_badblock(rdev,
5e570289
N
2024 r10_bio->devs[slot].addr,
2025 r10_bio->sectors,
2026 &first_bad, &bad_sectors))
2027 set_bit(R10BIO_MadeGood, &r10_bio->state);
2028
9ad1aefc 2029 rdev_dec_pending(rdev, mddev);
5e570289
N
2030
2031 end_sync_request(r10_bio);
2032}
2033
1da177e4
LT
2034/*
2035 * Note: sync and recover and handled very differently for raid10
2036 * This code is for resync.
2037 * For resync, we read through virtual addresses and read all blocks.
2038 * If there is any error, we schedule a write. The lowest numbered
2039 * drive is authoritative.
2040 * However requests come for physical address, so we need to map.
2041 * For every physical address there are raid_disks/copies virtual addresses,
2042 * which is always are least one, but is not necessarly an integer.
2043 * This means that a physical address can span multiple chunks, so we may
2044 * have to submit multiple io requests for a single sync request.
2045 */
2046/*
2047 * We check if all blocks are in-sync and only write to blocks that
2048 * aren't in sync
2049 */
9f2c9d12 2050static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2051{
e879a879 2052 struct r10conf *conf = mddev->private;
1da177e4
LT
2053 int i, first;
2054 struct bio *tbio, *fbio;
f4380a91 2055 int vcnt;
1da177e4
LT
2056
2057 atomic_set(&r10_bio->remaining, 1);
2058
2059 /* find the first device with a block */
2060 for (i=0; i<conf->copies; i++)
2061 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2062 break;
2063
2064 if (i == conf->copies)
2065 goto done;
2066
2067 first = i;
2068 fbio = r10_bio->devs[i].bio;
2069
f4380a91 2070 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2071 /* now find blocks with errors */
0eb3ff12
N
2072 for (i=0 ; i < conf->copies ; i++) {
2073 int j, d;
1da177e4 2074
1da177e4 2075 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2076
2077 if (tbio->bi_end_io != end_sync_read)
2078 continue;
2079 if (i == first)
1da177e4 2080 continue;
0eb3ff12
N
2081 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2082 /* We know that the bi_io_vec layout is the same for
2083 * both 'first' and 'i', so we just compare them.
2084 * All vec entries are PAGE_SIZE;
2085 */
7bb23c49
N
2086 int sectors = r10_bio->sectors;
2087 for (j = 0; j < vcnt; j++) {
2088 int len = PAGE_SIZE;
2089 if (sectors < (len / 512))
2090 len = sectors * 512;
0eb3ff12
N
2091 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2092 page_address(tbio->bi_io_vec[j].bv_page),
7bb23c49 2093 len))
0eb3ff12 2094 break;
7bb23c49
N
2095 sectors -= len/512;
2096 }
0eb3ff12
N
2097 if (j == vcnt)
2098 continue;
7f7583d4 2099 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2100 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2101 /* Don't fix anything. */
2102 continue;
0eb3ff12 2103 }
f84ee364
N
2104 /* Ok, we need to write this bio, either to correct an
2105 * inconsistency or to correct an unreadable block.
1da177e4
LT
2106 * First we need to fixup bv_offset, bv_len and
2107 * bi_vecs, as the read request might have corrupted these
2108 */
8be185f2
KO
2109 bio_reset(tbio);
2110
1da177e4 2111 tbio->bi_vcnt = vcnt;
4f024f37 2112 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1da177e4
LT
2113 tbio->bi_rw = WRITE;
2114 tbio->bi_private = r10_bio;
4f024f37 2115 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4
LT
2116
2117 for (j=0; j < vcnt ; j++) {
2118 tbio->bi_io_vec[j].bv_offset = 0;
2119 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2120
2121 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2122 page_address(fbio->bi_io_vec[j].bv_page),
2123 PAGE_SIZE);
2124 }
2125 tbio->bi_end_io = end_sync_write;
2126
2127 d = r10_bio->devs[i].devnum;
2128 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2129 atomic_inc(&r10_bio->remaining);
aa8b57aa 2130 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2131
4f024f37 2132 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
1da177e4
LT
2133 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2134 generic_make_request(tbio);
2135 }
2136
9ad1aefc
N
2137 /* Now write out to any replacement devices
2138 * that are active
2139 */
2140 for (i = 0; i < conf->copies; i++) {
2141 int j, d;
9ad1aefc
N
2142
2143 tbio = r10_bio->devs[i].repl_bio;
2144 if (!tbio || !tbio->bi_end_io)
2145 continue;
2146 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2147 && r10_bio->devs[i].bio != fbio)
2148 for (j = 0; j < vcnt; j++)
2149 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2150 page_address(fbio->bi_io_vec[j].bv_page),
2151 PAGE_SIZE);
2152 d = r10_bio->devs[i].devnum;
2153 atomic_inc(&r10_bio->remaining);
2154 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2155 bio_sectors(tbio));
9ad1aefc
N
2156 generic_make_request(tbio);
2157 }
2158
1da177e4
LT
2159done:
2160 if (atomic_dec_and_test(&r10_bio->remaining)) {
2161 md_done_sync(mddev, r10_bio->sectors, 1);
2162 put_buf(r10_bio);
2163 }
2164}
2165
2166/*
2167 * Now for the recovery code.
2168 * Recovery happens across physical sectors.
2169 * We recover all non-is_sync drives by finding the virtual address of
2170 * each, and then choose a working drive that also has that virt address.
2171 * There is a separate r10_bio for each non-in_sync drive.
2172 * Only the first two slots are in use. The first for reading,
2173 * The second for writing.
2174 *
2175 */
9f2c9d12 2176static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2177{
2178 /* We got a read error during recovery.
2179 * We repeat the read in smaller page-sized sections.
2180 * If a read succeeds, write it to the new device or record
2181 * a bad block if we cannot.
2182 * If a read fails, record a bad block on both old and
2183 * new devices.
2184 */
fd01b88c 2185 struct mddev *mddev = r10_bio->mddev;
e879a879 2186 struct r10conf *conf = mddev->private;
5e570289
N
2187 struct bio *bio = r10_bio->devs[0].bio;
2188 sector_t sect = 0;
2189 int sectors = r10_bio->sectors;
2190 int idx = 0;
2191 int dr = r10_bio->devs[0].devnum;
2192 int dw = r10_bio->devs[1].devnum;
2193
2194 while (sectors) {
2195 int s = sectors;
3cb03002 2196 struct md_rdev *rdev;
5e570289
N
2197 sector_t addr;
2198 int ok;
2199
2200 if (s > (PAGE_SIZE>>9))
2201 s = PAGE_SIZE >> 9;
2202
2203 rdev = conf->mirrors[dr].rdev;
2204 addr = r10_bio->devs[0].addr + sect,
2205 ok = sync_page_io(rdev,
2206 addr,
2207 s << 9,
2208 bio->bi_io_vec[idx].bv_page,
2209 READ, false);
2210 if (ok) {
2211 rdev = conf->mirrors[dw].rdev;
2212 addr = r10_bio->devs[1].addr + sect;
2213 ok = sync_page_io(rdev,
2214 addr,
2215 s << 9,
2216 bio->bi_io_vec[idx].bv_page,
2217 WRITE, false);
b7044d41 2218 if (!ok) {
5e570289 2219 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2220 if (!test_and_set_bit(WantReplacement,
2221 &rdev->flags))
2222 set_bit(MD_RECOVERY_NEEDED,
2223 &rdev->mddev->recovery);
2224 }
5e570289
N
2225 }
2226 if (!ok) {
2227 /* We don't worry if we cannot set a bad block -
2228 * it really is bad so there is no loss in not
2229 * recording it yet
2230 */
2231 rdev_set_badblocks(rdev, addr, s, 0);
2232
2233 if (rdev != conf->mirrors[dw].rdev) {
2234 /* need bad block on destination too */
3cb03002 2235 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2236 addr = r10_bio->devs[1].addr + sect;
2237 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2238 if (!ok) {
2239 /* just abort the recovery */
2240 printk(KERN_NOTICE
2241 "md/raid10:%s: recovery aborted"
2242 " due to read error\n",
2243 mdname(mddev));
2244
2245 conf->mirrors[dw].recovery_disabled
2246 = mddev->recovery_disabled;
2247 set_bit(MD_RECOVERY_INTR,
2248 &mddev->recovery);
2249 break;
2250 }
2251 }
2252 }
2253
2254 sectors -= s;
2255 sect += s;
2256 idx++;
2257 }
2258}
1da177e4 2259
9f2c9d12 2260static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2261{
e879a879 2262 struct r10conf *conf = mddev->private;
c65060ad 2263 int d;
24afd80d 2264 struct bio *wbio, *wbio2;
1da177e4 2265
5e570289
N
2266 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2267 fix_recovery_read_error(r10_bio);
2268 end_sync_request(r10_bio);
2269 return;
2270 }
2271
c65060ad
NK
2272 /*
2273 * share the pages with the first bio
1da177e4
LT
2274 * and submit the write request
2275 */
1da177e4 2276 d = r10_bio->devs[1].devnum;
24afd80d
N
2277 wbio = r10_bio->devs[1].bio;
2278 wbio2 = r10_bio->devs[1].repl_bio;
0eb25bb0
N
2279 /* Need to test wbio2->bi_end_io before we call
2280 * generic_make_request as if the former is NULL,
2281 * the latter is free to free wbio2.
2282 */
2283 if (wbio2 && !wbio2->bi_end_io)
2284 wbio2 = NULL;
24afd80d
N
2285 if (wbio->bi_end_io) {
2286 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2287 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2288 generic_make_request(wbio);
2289 }
0eb25bb0 2290 if (wbio2) {
24afd80d
N
2291 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2292 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2293 bio_sectors(wbio2));
24afd80d
N
2294 generic_make_request(wbio2);
2295 }
1da177e4
LT
2296}
2297
2298
1e50915f
RB
2299/*
2300 * Used by fix_read_error() to decay the per rdev read_errors.
2301 * We halve the read error count for every hour that has elapsed
2302 * since the last recorded read error.
2303 *
2304 */
fd01b88c 2305static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2306{
2307 struct timespec cur_time_mon;
2308 unsigned long hours_since_last;
2309 unsigned int read_errors = atomic_read(&rdev->read_errors);
2310
2311 ktime_get_ts(&cur_time_mon);
2312
2313 if (rdev->last_read_error.tv_sec == 0 &&
2314 rdev->last_read_error.tv_nsec == 0) {
2315 /* first time we've seen a read error */
2316 rdev->last_read_error = cur_time_mon;
2317 return;
2318 }
2319
2320 hours_since_last = (cur_time_mon.tv_sec -
2321 rdev->last_read_error.tv_sec) / 3600;
2322
2323 rdev->last_read_error = cur_time_mon;
2324
2325 /*
2326 * if hours_since_last is > the number of bits in read_errors
2327 * just set read errors to 0. We do this to avoid
2328 * overflowing the shift of read_errors by hours_since_last.
2329 */
2330 if (hours_since_last >= 8 * sizeof(read_errors))
2331 atomic_set(&rdev->read_errors, 0);
2332 else
2333 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2334}
2335
3cb03002 2336static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2337 int sectors, struct page *page, int rw)
2338{
2339 sector_t first_bad;
2340 int bad_sectors;
2341
2342 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2343 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2344 return -1;
2345 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2346 /* success */
2347 return 1;
b7044d41 2348 if (rw == WRITE) {
58c54fcc 2349 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2350 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2351 set_bit(MD_RECOVERY_NEEDED,
2352 &rdev->mddev->recovery);
2353 }
58c54fcc
N
2354 /* need to record an error - either for the block or the device */
2355 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2356 md_error(rdev->mddev, rdev);
2357 return 0;
2358}
2359
1da177e4
LT
2360/*
2361 * This is a kernel thread which:
2362 *
2363 * 1. Retries failed read operations on working mirrors.
2364 * 2. Updates the raid superblock when problems encounter.
6814d536 2365 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2366 */
2367
e879a879 2368static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2369{
2370 int sect = 0; /* Offset from r10_bio->sector */
2371 int sectors = r10_bio->sectors;
3cb03002 2372 struct md_rdev*rdev;
1e50915f 2373 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2374 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2375
7c4e06ff
N
2376 /* still own a reference to this rdev, so it cannot
2377 * have been cleared recently.
2378 */
2379 rdev = conf->mirrors[d].rdev;
1e50915f 2380
7c4e06ff
N
2381 if (test_bit(Faulty, &rdev->flags))
2382 /* drive has already been failed, just ignore any
2383 more fix_read_error() attempts */
2384 return;
1e50915f 2385
7c4e06ff
N
2386 check_decay_read_errors(mddev, rdev);
2387 atomic_inc(&rdev->read_errors);
2388 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2389 char b[BDEVNAME_SIZE];
2390 bdevname(rdev->bdev, b);
1e50915f 2391
7c4e06ff
N
2392 printk(KERN_NOTICE
2393 "md/raid10:%s: %s: Raid device exceeded "
2394 "read_error threshold [cur %d:max %d]\n",
2395 mdname(mddev), b,
2396 atomic_read(&rdev->read_errors), max_read_errors);
2397 printk(KERN_NOTICE
2398 "md/raid10:%s: %s: Failing raid device\n",
2399 mdname(mddev), b);
2400 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2401 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2402 return;
1e50915f 2403 }
1e50915f 2404
6814d536
N
2405 while(sectors) {
2406 int s = sectors;
2407 int sl = r10_bio->read_slot;
2408 int success = 0;
2409 int start;
2410
2411 if (s > (PAGE_SIZE>>9))
2412 s = PAGE_SIZE >> 9;
2413
2414 rcu_read_lock();
2415 do {
8dbed5ce
N
2416 sector_t first_bad;
2417 int bad_sectors;
2418
0544a21d 2419 d = r10_bio->devs[sl].devnum;
6814d536
N
2420 rdev = rcu_dereference(conf->mirrors[d].rdev);
2421 if (rdev &&
050b6615 2422 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2423 test_bit(In_sync, &rdev->flags) &&
2424 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2425 &first_bad, &bad_sectors) == 0) {
6814d536
N
2426 atomic_inc(&rdev->nr_pending);
2427 rcu_read_unlock();
2b193363 2428 success = sync_page_io(rdev,
6814d536 2429 r10_bio->devs[sl].addr +
ccebd4c4 2430 sect,
6814d536 2431 s<<9,
ccebd4c4 2432 conf->tmppage, READ, false);
6814d536
N
2433 rdev_dec_pending(rdev, mddev);
2434 rcu_read_lock();
2435 if (success)
2436 break;
2437 }
2438 sl++;
2439 if (sl == conf->copies)
2440 sl = 0;
2441 } while (!success && sl != r10_bio->read_slot);
2442 rcu_read_unlock();
2443
2444 if (!success) {
58c54fcc
N
2445 /* Cannot read from anywhere, just mark the block
2446 * as bad on the first device to discourage future
2447 * reads.
2448 */
6814d536 2449 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2450 rdev = conf->mirrors[dn].rdev;
2451
2452 if (!rdev_set_badblocks(
2453 rdev,
2454 r10_bio->devs[r10_bio->read_slot].addr
2455 + sect,
fae8cc5e 2456 s, 0)) {
58c54fcc 2457 md_error(mddev, rdev);
fae8cc5e
N
2458 r10_bio->devs[r10_bio->read_slot].bio
2459 = IO_BLOCKED;
2460 }
6814d536
N
2461 break;
2462 }
2463
2464 start = sl;
2465 /* write it back and re-read */
2466 rcu_read_lock();
2467 while (sl != r10_bio->read_slot) {
67b8dc4b 2468 char b[BDEVNAME_SIZE];
0544a21d 2469
6814d536
N
2470 if (sl==0)
2471 sl = conf->copies;
2472 sl--;
2473 d = r10_bio->devs[sl].devnum;
2474 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2475 if (!rdev ||
050b6615 2476 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2477 !test_bit(In_sync, &rdev->flags))
2478 continue;
2479
2480 atomic_inc(&rdev->nr_pending);
2481 rcu_read_unlock();
58c54fcc
N
2482 if (r10_sync_page_io(rdev,
2483 r10_bio->devs[sl].addr +
2484 sect,
055d3747 2485 s, conf->tmppage, WRITE)
1294b9c9
N
2486 == 0) {
2487 /* Well, this device is dead */
2488 printk(KERN_NOTICE
2489 "md/raid10:%s: read correction "
2490 "write failed"
2491 " (%d sectors at %llu on %s)\n",
2492 mdname(mddev), s,
2493 (unsigned long long)(
f8c9e74f
N
2494 sect +
2495 choose_data_offset(r10_bio,
2496 rdev)),
1294b9c9
N
2497 bdevname(rdev->bdev, b));
2498 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2499 "drive\n",
2500 mdname(mddev),
2501 bdevname(rdev->bdev, b));
6814d536 2502 }
1294b9c9
N
2503 rdev_dec_pending(rdev, mddev);
2504 rcu_read_lock();
6814d536
N
2505 }
2506 sl = start;
2507 while (sl != r10_bio->read_slot) {
1294b9c9 2508 char b[BDEVNAME_SIZE];
0544a21d 2509
6814d536
N
2510 if (sl==0)
2511 sl = conf->copies;
2512 sl--;
2513 d = r10_bio->devs[sl].devnum;
2514 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2515 if (!rdev ||
2516 !test_bit(In_sync, &rdev->flags))
2517 continue;
6814d536 2518
1294b9c9
N
2519 atomic_inc(&rdev->nr_pending);
2520 rcu_read_unlock();
58c54fcc
N
2521 switch (r10_sync_page_io(rdev,
2522 r10_bio->devs[sl].addr +
2523 sect,
055d3747 2524 s, conf->tmppage,
58c54fcc
N
2525 READ)) {
2526 case 0:
1294b9c9
N
2527 /* Well, this device is dead */
2528 printk(KERN_NOTICE
2529 "md/raid10:%s: unable to read back "
2530 "corrected sectors"
2531 " (%d sectors at %llu on %s)\n",
2532 mdname(mddev), s,
2533 (unsigned long long)(
f8c9e74f
N
2534 sect +
2535 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2536 bdevname(rdev->bdev, b));
2537 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2538 "drive\n",
2539 mdname(mddev),
2540 bdevname(rdev->bdev, b));
58c54fcc
N
2541 break;
2542 case 1:
1294b9c9
N
2543 printk(KERN_INFO
2544 "md/raid10:%s: read error corrected"
2545 " (%d sectors at %llu on %s)\n",
2546 mdname(mddev), s,
2547 (unsigned long long)(
f8c9e74f
N
2548 sect +
2549 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2550 bdevname(rdev->bdev, b));
2551 atomic_add(s, &rdev->corrected_errors);
6814d536 2552 }
1294b9c9
N
2553
2554 rdev_dec_pending(rdev, mddev);
2555 rcu_read_lock();
6814d536
N
2556 }
2557 rcu_read_unlock();
2558
2559 sectors -= s;
2560 sect += s;
2561 }
2562}
2563
9f2c9d12 2564static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2565{
2566 struct bio *bio = r10_bio->master_bio;
fd01b88c 2567 struct mddev *mddev = r10_bio->mddev;
e879a879 2568 struct r10conf *conf = mddev->private;
3cb03002 2569 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2570 /* bio has the data to be written to slot 'i' where
2571 * we just recently had a write error.
2572 * We repeatedly clone the bio and trim down to one block,
2573 * then try the write. Where the write fails we record
2574 * a bad block.
2575 * It is conceivable that the bio doesn't exactly align with
2576 * blocks. We must handle this.
2577 *
2578 * We currently own a reference to the rdev.
2579 */
2580
2581 int block_sectors;
2582 sector_t sector;
2583 int sectors;
2584 int sect_to_write = r10_bio->sectors;
2585 int ok = 1;
2586
2587 if (rdev->badblocks.shift < 0)
2588 return 0;
2589
2590 block_sectors = 1 << rdev->badblocks.shift;
2591 sector = r10_bio->sector;
2592 sectors = ((r10_bio->sector + block_sectors)
2593 & ~(sector_t)(block_sectors - 1))
2594 - sector;
2595
2596 while (sect_to_write) {
2597 struct bio *wbio;
2598 if (sectors > sect_to_write)
2599 sectors = sect_to_write;
2600 /* Write at 'sector' for 'sectors' */
2601 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37
KO
2602 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2603 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2604 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2605 (sector - r10_bio->sector));
2606 wbio->bi_bdev = rdev->bdev;
2607 if (submit_bio_wait(WRITE, wbio) == 0)
2608 /* Failure! */
2609 ok = rdev_set_badblocks(rdev, sector,
2610 sectors, 0)
2611 && ok;
2612
2613 bio_put(wbio);
2614 sect_to_write -= sectors;
2615 sector += sectors;
2616 sectors = block_sectors;
2617 }
2618 return ok;
2619}
2620
9f2c9d12 2621static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2622{
2623 int slot = r10_bio->read_slot;
560f8e55 2624 struct bio *bio;
e879a879 2625 struct r10conf *conf = mddev->private;
abbf098e 2626 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2627 char b[BDEVNAME_SIZE];
2628 unsigned long do_sync;
856e08e2 2629 int max_sectors;
560f8e55
N
2630
2631 /* we got a read error. Maybe the drive is bad. Maybe just
2632 * the block and we can fix it.
2633 * We freeze all other IO, and try reading the block from
2634 * other devices. When we find one, we re-write
2635 * and check it that fixes the read error.
2636 * This is all done synchronously while the array is
2637 * frozen.
2638 */
fae8cc5e
N
2639 bio = r10_bio->devs[slot].bio;
2640 bdevname(bio->bi_bdev, b);
2641 bio_put(bio);
2642 r10_bio->devs[slot].bio = NULL;
2643
560f8e55 2644 if (mddev->ro == 0) {
e2d59925 2645 freeze_array(conf, 1);
560f8e55
N
2646 fix_read_error(conf, mddev, r10_bio);
2647 unfreeze_array(conf);
fae8cc5e
N
2648 } else
2649 r10_bio->devs[slot].bio = IO_BLOCKED;
2650
abbf098e 2651 rdev_dec_pending(rdev, mddev);
560f8e55 2652
7399c31b 2653read_more:
96c3fd1f
N
2654 rdev = read_balance(conf, r10_bio, &max_sectors);
2655 if (rdev == NULL) {
560f8e55
N
2656 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2657 " read error for block %llu\n",
7399c31b 2658 mdname(mddev), b,
560f8e55
N
2659 (unsigned long long)r10_bio->sector);
2660 raid_end_bio_io(r10_bio);
560f8e55
N
2661 return;
2662 }
2663
2664 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2665 slot = r10_bio->read_slot;
560f8e55
N
2666 printk_ratelimited(
2667 KERN_ERR
055d3747 2668 "md/raid10:%s: %s: redirecting "
560f8e55
N
2669 "sector %llu to another mirror\n",
2670 mdname(mddev),
2671 bdevname(rdev->bdev, b),
2672 (unsigned long long)r10_bio->sector);
2673 bio = bio_clone_mddev(r10_bio->master_bio,
2674 GFP_NOIO, mddev);
4f024f37 2675 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
560f8e55 2676 r10_bio->devs[slot].bio = bio;
abbf098e 2677 r10_bio->devs[slot].rdev = rdev;
4f024f37 2678 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2679 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2680 bio->bi_bdev = rdev->bdev;
2681 bio->bi_rw = READ | do_sync;
2682 bio->bi_private = r10_bio;
2683 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2684 if (max_sectors < r10_bio->sectors) {
2685 /* Drat - have to split this up more */
2686 struct bio *mbio = r10_bio->master_bio;
2687 int sectors_handled =
2688 r10_bio->sector + max_sectors
4f024f37 2689 - mbio->bi_iter.bi_sector;
7399c31b
N
2690 r10_bio->sectors = max_sectors;
2691 spin_lock_irq(&conf->device_lock);
2692 if (mbio->bi_phys_segments == 0)
2693 mbio->bi_phys_segments = 2;
2694 else
2695 mbio->bi_phys_segments++;
2696 spin_unlock_irq(&conf->device_lock);
2697 generic_make_request(bio);
7399c31b
N
2698
2699 r10_bio = mempool_alloc(conf->r10bio_pool,
2700 GFP_NOIO);
2701 r10_bio->master_bio = mbio;
aa8b57aa 2702 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
7399c31b
N
2703 r10_bio->state = 0;
2704 set_bit(R10BIO_ReadError,
2705 &r10_bio->state);
2706 r10_bio->mddev = mddev;
4f024f37 2707 r10_bio->sector = mbio->bi_iter.bi_sector
7399c31b
N
2708 + sectors_handled;
2709
2710 goto read_more;
2711 } else
2712 generic_make_request(bio);
560f8e55
N
2713}
2714
e879a879 2715static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2716{
2717 /* Some sort of write request has finished and it
2718 * succeeded in writing where we thought there was a
2719 * bad block. So forget the bad block.
1a0b7cd8
N
2720 * Or possibly if failed and we need to record
2721 * a bad block.
749c55e9
N
2722 */
2723 int m;
3cb03002 2724 struct md_rdev *rdev;
749c55e9
N
2725
2726 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2727 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2728 for (m = 0; m < conf->copies; m++) {
2729 int dev = r10_bio->devs[m].devnum;
2730 rdev = conf->mirrors[dev].rdev;
2731 if (r10_bio->devs[m].bio == NULL)
2732 continue;
2733 if (test_bit(BIO_UPTODATE,
749c55e9 2734 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2735 rdev_clear_badblocks(
2736 rdev,
2737 r10_bio->devs[m].addr,
c6563a8c 2738 r10_bio->sectors, 0);
1a0b7cd8
N
2739 } else {
2740 if (!rdev_set_badblocks(
2741 rdev,
2742 r10_bio->devs[m].addr,
2743 r10_bio->sectors, 0))
2744 md_error(conf->mddev, rdev);
749c55e9 2745 }
9ad1aefc
N
2746 rdev = conf->mirrors[dev].replacement;
2747 if (r10_bio->devs[m].repl_bio == NULL)
2748 continue;
2749 if (test_bit(BIO_UPTODATE,
2750 &r10_bio->devs[m].repl_bio->bi_flags)) {
2751 rdev_clear_badblocks(
2752 rdev,
2753 r10_bio->devs[m].addr,
c6563a8c 2754 r10_bio->sectors, 0);
9ad1aefc
N
2755 } else {
2756 if (!rdev_set_badblocks(
2757 rdev,
2758 r10_bio->devs[m].addr,
2759 r10_bio->sectors, 0))
2760 md_error(conf->mddev, rdev);
2761 }
1a0b7cd8 2762 }
749c55e9
N
2763 put_buf(r10_bio);
2764 } else {
bd870a16
N
2765 for (m = 0; m < conf->copies; m++) {
2766 int dev = r10_bio->devs[m].devnum;
2767 struct bio *bio = r10_bio->devs[m].bio;
2768 rdev = conf->mirrors[dev].rdev;
2769 if (bio == IO_MADE_GOOD) {
749c55e9
N
2770 rdev_clear_badblocks(
2771 rdev,
2772 r10_bio->devs[m].addr,
c6563a8c 2773 r10_bio->sectors, 0);
749c55e9 2774 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2775 } else if (bio != NULL &&
2776 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2777 if (!narrow_write_error(r10_bio, m)) {
2778 md_error(conf->mddev, rdev);
2779 set_bit(R10BIO_Degraded,
2780 &r10_bio->state);
2781 }
2782 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2783 }
475b0321
N
2784 bio = r10_bio->devs[m].repl_bio;
2785 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2786 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2787 rdev_clear_badblocks(
2788 rdev,
2789 r10_bio->devs[m].addr,
c6563a8c 2790 r10_bio->sectors, 0);
475b0321
N
2791 rdev_dec_pending(rdev, conf->mddev);
2792 }
bd870a16
N
2793 }
2794 if (test_bit(R10BIO_WriteError,
2795 &r10_bio->state))
2796 close_write(r10_bio);
749c55e9
N
2797 raid_end_bio_io(r10_bio);
2798 }
2799}
2800
4ed8731d 2801static void raid10d(struct md_thread *thread)
1da177e4 2802{
4ed8731d 2803 struct mddev *mddev = thread->mddev;
9f2c9d12 2804 struct r10bio *r10_bio;
1da177e4 2805 unsigned long flags;
e879a879 2806 struct r10conf *conf = mddev->private;
1da177e4 2807 struct list_head *head = &conf->retry_list;
e1dfa0a2 2808 struct blk_plug plug;
1da177e4
LT
2809
2810 md_check_recovery(mddev);
1da177e4 2811
e1dfa0a2 2812 blk_start_plug(&plug);
1da177e4 2813 for (;;) {
6cce3b23 2814
0021b7bc 2815 flush_pending_writes(conf);
6cce3b23 2816
a35e63ef
N
2817 spin_lock_irqsave(&conf->device_lock, flags);
2818 if (list_empty(head)) {
2819 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2820 break;
a35e63ef 2821 }
9f2c9d12 2822 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2823 list_del(head->prev);
4443ae10 2824 conf->nr_queued--;
1da177e4
LT
2825 spin_unlock_irqrestore(&conf->device_lock, flags);
2826
2827 mddev = r10_bio->mddev;
070ec55d 2828 conf = mddev->private;
bd870a16
N
2829 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2830 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2831 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2832 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2833 reshape_request_write(mddev, r10_bio);
749c55e9 2834 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2835 sync_request_write(mddev, r10_bio);
7eaceacc 2836 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2837 recovery_request_write(mddev, r10_bio);
856e08e2 2838 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2839 handle_read_error(mddev, r10_bio);
856e08e2
N
2840 else {
2841 /* just a partial read to be scheduled from a
2842 * separate context
2843 */
2844 int slot = r10_bio->read_slot;
2845 generic_make_request(r10_bio->devs[slot].bio);
2846 }
560f8e55 2847
1d9d5241 2848 cond_resched();
de393cde
N
2849 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2850 md_check_recovery(mddev);
1da177e4 2851 }
e1dfa0a2 2852 blk_finish_plug(&plug);
1da177e4
LT
2853}
2854
2855
e879a879 2856static int init_resync(struct r10conf *conf)
1da177e4
LT
2857{
2858 int buffs;
69335ef3 2859 int i;
1da177e4
LT
2860
2861 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2862 BUG_ON(conf->r10buf_pool);
69335ef3 2863 conf->have_replacement = 0;
5cf00fcd 2864 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2865 if (conf->mirrors[i].replacement)
2866 conf->have_replacement = 1;
1da177e4
LT
2867 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2868 if (!conf->r10buf_pool)
2869 return -ENOMEM;
2870 conf->next_resync = 0;
2871 return 0;
2872}
2873
2874/*
2875 * perform a "sync" on one "block"
2876 *
2877 * We need to make sure that no normal I/O request - particularly write
2878 * requests - conflict with active sync requests.
2879 *
2880 * This is achieved by tracking pending requests and a 'barrier' concept
2881 * that can be installed to exclude normal IO requests.
2882 *
2883 * Resync and recovery are handled very differently.
2884 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2885 *
2886 * For resync, we iterate over virtual addresses, read all copies,
2887 * and update if there are differences. If only one copy is live,
2888 * skip it.
2889 * For recovery, we iterate over physical addresses, read a good
2890 * value for each non-in_sync drive, and over-write.
2891 *
2892 * So, for recovery we may have several outstanding complex requests for a
2893 * given address, one for each out-of-sync device. We model this by allocating
2894 * a number of r10_bio structures, one for each out-of-sync device.
2895 * As we setup these structures, we collect all bio's together into a list
2896 * which we then process collectively to add pages, and then process again
2897 * to pass to generic_make_request.
2898 *
2899 * The r10_bio structures are linked using a borrowed master_bio pointer.
2900 * This link is counted in ->remaining. When the r10_bio that points to NULL
2901 * has its remaining count decremented to 0, the whole complex operation
2902 * is complete.
2903 *
2904 */
2905
fd01b88c 2906static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2907 int *skipped, int go_faster)
1da177e4 2908{
e879a879 2909 struct r10conf *conf = mddev->private;
9f2c9d12 2910 struct r10bio *r10_bio;
1da177e4
LT
2911 struct bio *biolist = NULL, *bio;
2912 sector_t max_sector, nr_sectors;
1da177e4 2913 int i;
6cce3b23 2914 int max_sync;
57dab0bd 2915 sector_t sync_blocks;
1da177e4
LT
2916 sector_t sectors_skipped = 0;
2917 int chunks_skipped = 0;
5cf00fcd 2918 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2919
2920 if (!conf->r10buf_pool)
2921 if (init_resync(conf))
57afd89f 2922 return 0;
1da177e4 2923
7e83ccbe
MW
2924 /*
2925 * Allow skipping a full rebuild for incremental assembly
2926 * of a clean array, like RAID1 does.
2927 */
2928 if (mddev->bitmap == NULL &&
2929 mddev->recovery_cp == MaxSector &&
13765120
N
2930 mddev->reshape_position == MaxSector &&
2931 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 2932 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 2933 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
2934 conf->fullsync == 0) {
2935 *skipped = 1;
13765120 2936 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
2937 }
2938
1da177e4 2939 skipped:
58c0fed4 2940 max_sector = mddev->dev_sectors;
3ea7daa5
N
2941 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2942 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2943 max_sector = mddev->resync_max_sectors;
2944 if (sector_nr >= max_sector) {
6cce3b23
N
2945 /* If we aborted, we need to abort the
2946 * sync on the 'current' bitmap chucks (there can
2947 * be several when recovering multiple devices).
2948 * as we may have started syncing it but not finished.
2949 * We can find the current address in
2950 * mddev->curr_resync, but for recovery,
2951 * we need to convert that to several
2952 * virtual addresses.
2953 */
3ea7daa5
N
2954 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2955 end_reshape(conf);
2956 return 0;
2957 }
2958
6cce3b23
N
2959 if (mddev->curr_resync < max_sector) { /* aborted */
2960 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2961 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2962 &sync_blocks, 1);
5cf00fcd 2963 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2964 sector_t sect =
2965 raid10_find_virt(conf, mddev->curr_resync, i);
2966 bitmap_end_sync(mddev->bitmap, sect,
2967 &sync_blocks, 1);
2968 }
9ad1aefc
N
2969 } else {
2970 /* completed sync */
2971 if ((!mddev->bitmap || conf->fullsync)
2972 && conf->have_replacement
2973 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2974 /* Completed a full sync so the replacements
2975 * are now fully recovered.
2976 */
5cf00fcd 2977 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2978 if (conf->mirrors[i].replacement)
2979 conf->mirrors[i].replacement
2980 ->recovery_offset
2981 = MaxSector;
2982 }
6cce3b23 2983 conf->fullsync = 0;
9ad1aefc 2984 }
6cce3b23 2985 bitmap_close_sync(mddev->bitmap);
1da177e4 2986 close_sync(conf);
57afd89f 2987 *skipped = 1;
1da177e4
LT
2988 return sectors_skipped;
2989 }
3ea7daa5
N
2990
2991 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2992 return reshape_request(mddev, sector_nr, skipped);
2993
5cf00fcd 2994 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2995 /* if there has been nothing to do on any drive,
2996 * then there is nothing to do at all..
2997 */
57afd89f
N
2998 *skipped = 1;
2999 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
3000 }
3001
c6207277
N
3002 if (max_sector > mddev->resync_max)
3003 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3004
1da177e4
LT
3005 /* make sure whole request will fit in a chunk - if chunks
3006 * are meaningful
3007 */
5cf00fcd
N
3008 if (conf->geo.near_copies < conf->geo.raid_disks &&
3009 max_sector > (sector_nr | chunk_mask))
3010 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
3011 /*
3012 * If there is non-resync activity waiting for us then
3013 * put in a delay to throttle resync.
3014 */
0a27ec96 3015 if (!go_faster && conf->nr_waiting)
1da177e4 3016 msleep_interruptible(1000);
1da177e4
LT
3017
3018 /* Again, very different code for resync and recovery.
3019 * Both must result in an r10bio with a list of bios that
3020 * have bi_end_io, bi_sector, bi_bdev set,
3021 * and bi_private set to the r10bio.
3022 * For recovery, we may actually create several r10bios
3023 * with 2 bios in each, that correspond to the bios in the main one.
3024 * In this case, the subordinate r10bios link back through a
3025 * borrowed master_bio pointer, and the counter in the master
3026 * includes a ref from each subordinate.
3027 */
3028 /* First, we decide what to do and set ->bi_end_io
3029 * To end_sync_read if we want to read, and
3030 * end_sync_write if we will want to write.
3031 */
3032
6cce3b23 3033 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3034 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3035 /* recovery... the complicated one */
e875ecea 3036 int j;
1da177e4
LT
3037 r10_bio = NULL;
3038
5cf00fcd 3039 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3040 int still_degraded;
9f2c9d12 3041 struct r10bio *rb2;
ab9d47e9
N
3042 sector_t sect;
3043 int must_sync;
e875ecea 3044 int any_working;
dc280d98 3045 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
3046
3047 if ((mirror->rdev == NULL ||
3048 test_bit(In_sync, &mirror->rdev->flags))
3049 &&
3050 (mirror->replacement == NULL ||
3051 test_bit(Faulty,
3052 &mirror->replacement->flags)))
ab9d47e9 3053 continue;
1da177e4 3054
ab9d47e9
N
3055 still_degraded = 0;
3056 /* want to reconstruct this device */
3057 rb2 = r10_bio;
3058 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3059 if (sect >= mddev->resync_max_sectors) {
3060 /* last stripe is not complete - don't
3061 * try to recover this sector.
3062 */
3063 continue;
3064 }
24afd80d
N
3065 /* Unless we are doing a full sync, or a replacement
3066 * we only need to recover the block if it is set in
3067 * the bitmap
ab9d47e9
N
3068 */
3069 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3070 &sync_blocks, 1);
3071 if (sync_blocks < max_sync)
3072 max_sync = sync_blocks;
3073 if (!must_sync &&
24afd80d 3074 mirror->replacement == NULL &&
ab9d47e9
N
3075 !conf->fullsync) {
3076 /* yep, skip the sync_blocks here, but don't assume
3077 * that there will never be anything to do here
3078 */
3079 chunks_skipped = -1;
3080 continue;
3081 }
6cce3b23 3082
ab9d47e9
N
3083 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3084 raise_barrier(conf, rb2 != NULL);
3085 atomic_set(&r10_bio->remaining, 0);
18055569 3086
ab9d47e9
N
3087 r10_bio->master_bio = (struct bio*)rb2;
3088 if (rb2)
3089 atomic_inc(&rb2->remaining);
3090 r10_bio->mddev = mddev;
3091 set_bit(R10BIO_IsRecover, &r10_bio->state);
3092 r10_bio->sector = sect;
1da177e4 3093
ab9d47e9
N
3094 raid10_find_phys(conf, r10_bio);
3095
3096 /* Need to check if the array will still be
3097 * degraded
3098 */
5cf00fcd 3099 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
3100 if (conf->mirrors[j].rdev == NULL ||
3101 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3102 still_degraded = 1;
87fc767b 3103 break;
1da177e4 3104 }
ab9d47e9
N
3105
3106 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3107 &sync_blocks, still_degraded);
3108
e875ecea 3109 any_working = 0;
ab9d47e9 3110 for (j=0; j<conf->copies;j++) {
e875ecea 3111 int k;
ab9d47e9 3112 int d = r10_bio->devs[j].devnum;
5e570289 3113 sector_t from_addr, to_addr;
3cb03002 3114 struct md_rdev *rdev;
40c356ce
N
3115 sector_t sector, first_bad;
3116 int bad_sectors;
ab9d47e9
N
3117 if (!conf->mirrors[d].rdev ||
3118 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3119 continue;
3120 /* This is where we read from */
e875ecea 3121 any_working = 1;
40c356ce
N
3122 rdev = conf->mirrors[d].rdev;
3123 sector = r10_bio->devs[j].addr;
3124
3125 if (is_badblock(rdev, sector, max_sync,
3126 &first_bad, &bad_sectors)) {
3127 if (first_bad > sector)
3128 max_sync = first_bad - sector;
3129 else {
3130 bad_sectors -= (sector
3131 - first_bad);
3132 if (max_sync > bad_sectors)
3133 max_sync = bad_sectors;
3134 continue;
3135 }
3136 }
ab9d47e9 3137 bio = r10_bio->devs[0].bio;
8be185f2 3138 bio_reset(bio);
ab9d47e9
N
3139 bio->bi_next = biolist;
3140 biolist = bio;
3141 bio->bi_private = r10_bio;
3142 bio->bi_end_io = end_sync_read;
3143 bio->bi_rw = READ;
5e570289 3144 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3145 bio->bi_iter.bi_sector = from_addr +
3146 rdev->data_offset;
24afd80d
N
3147 bio->bi_bdev = rdev->bdev;
3148 atomic_inc(&rdev->nr_pending);
3149 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3150
3151 for (k=0; k<conf->copies; k++)
3152 if (r10_bio->devs[k].devnum == i)
3153 break;
3154 BUG_ON(k == conf->copies);
5e570289 3155 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3156 r10_bio->devs[0].devnum = d;
5e570289 3157 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3158 r10_bio->devs[1].devnum = i;
5e570289 3159 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3160
24afd80d
N
3161 rdev = mirror->rdev;
3162 if (!test_bit(In_sync, &rdev->flags)) {
3163 bio = r10_bio->devs[1].bio;
8be185f2 3164 bio_reset(bio);
24afd80d
N
3165 bio->bi_next = biolist;
3166 biolist = bio;
3167 bio->bi_private = r10_bio;
3168 bio->bi_end_io = end_sync_write;
3169 bio->bi_rw = WRITE;
4f024f37 3170 bio->bi_iter.bi_sector = to_addr
24afd80d
N
3171 + rdev->data_offset;
3172 bio->bi_bdev = rdev->bdev;
3173 atomic_inc(&r10_bio->remaining);
3174 } else
3175 r10_bio->devs[1].bio->bi_end_io = NULL;
3176
3177 /* and maybe write to replacement */
3178 bio = r10_bio->devs[1].repl_bio;
3179 if (bio)
3180 bio->bi_end_io = NULL;
3181 rdev = mirror->replacement;
3182 /* Note: if rdev != NULL, then bio
3183 * cannot be NULL as r10buf_pool_alloc will
3184 * have allocated it.
3185 * So the second test here is pointless.
3186 * But it keeps semantic-checkers happy, and
3187 * this comment keeps human reviewers
3188 * happy.
3189 */
3190 if (rdev == NULL || bio == NULL ||
3191 test_bit(Faulty, &rdev->flags))
3192 break;
8be185f2 3193 bio_reset(bio);
24afd80d
N
3194 bio->bi_next = biolist;
3195 biolist = bio;
3196 bio->bi_private = r10_bio;
3197 bio->bi_end_io = end_sync_write;
3198 bio->bi_rw = WRITE;
4f024f37
KO
3199 bio->bi_iter.bi_sector = to_addr +
3200 rdev->data_offset;
24afd80d
N
3201 bio->bi_bdev = rdev->bdev;
3202 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3203 break;
3204 }
3205 if (j == conf->copies) {
e875ecea
N
3206 /* Cannot recover, so abort the recovery or
3207 * record a bad block */
e875ecea
N
3208 if (any_working) {
3209 /* problem is that there are bad blocks
3210 * on other device(s)
3211 */
3212 int k;
3213 for (k = 0; k < conf->copies; k++)
3214 if (r10_bio->devs[k].devnum == i)
3215 break;
24afd80d
N
3216 if (!test_bit(In_sync,
3217 &mirror->rdev->flags)
3218 && !rdev_set_badblocks(
3219 mirror->rdev,
3220 r10_bio->devs[k].addr,
3221 max_sync, 0))
3222 any_working = 0;
3223 if (mirror->replacement &&
3224 !rdev_set_badblocks(
3225 mirror->replacement,
e875ecea
N
3226 r10_bio->devs[k].addr,
3227 max_sync, 0))
3228 any_working = 0;
3229 }
3230 if (!any_working) {
3231 if (!test_and_set_bit(MD_RECOVERY_INTR,
3232 &mddev->recovery))
3233 printk(KERN_INFO "md/raid10:%s: insufficient "
3234 "working devices for recovery.\n",
3235 mdname(mddev));
24afd80d 3236 mirror->recovery_disabled
e875ecea
N
3237 = mddev->recovery_disabled;
3238 }
e8b84915
N
3239 put_buf(r10_bio);
3240 if (rb2)
3241 atomic_dec(&rb2->remaining);
3242 r10_bio = rb2;
ab9d47e9 3243 break;
1da177e4 3244 }
ab9d47e9 3245 }
1da177e4
LT
3246 if (biolist == NULL) {
3247 while (r10_bio) {
9f2c9d12
N
3248 struct r10bio *rb2 = r10_bio;
3249 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3250 rb2->master_bio = NULL;
3251 put_buf(rb2);
3252 }
3253 goto giveup;
3254 }
3255 } else {
3256 /* resync. Schedule a read for every block at this virt offset */
3257 int count = 0;
6cce3b23 3258
78200d45
N
3259 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3260
6cce3b23
N
3261 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3262 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3263 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3264 &mddev->recovery)) {
6cce3b23
N
3265 /* We can skip this block */
3266 *skipped = 1;
3267 return sync_blocks + sectors_skipped;
3268 }
3269 if (sync_blocks < max_sync)
3270 max_sync = sync_blocks;
1da177e4
LT
3271 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3272
1da177e4
LT
3273 r10_bio->mddev = mddev;
3274 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3275 raise_barrier(conf, 0);
3276 conf->next_resync = sector_nr;
1da177e4
LT
3277
3278 r10_bio->master_bio = NULL;
3279 r10_bio->sector = sector_nr;
3280 set_bit(R10BIO_IsSync, &r10_bio->state);
3281 raid10_find_phys(conf, r10_bio);
5cf00fcd 3282 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3283
5cf00fcd 3284 for (i = 0; i < conf->copies; i++) {
1da177e4 3285 int d = r10_bio->devs[i].devnum;
40c356ce
N
3286 sector_t first_bad, sector;
3287 int bad_sectors;
3288
9ad1aefc
N
3289 if (r10_bio->devs[i].repl_bio)
3290 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3291
1da177e4 3292 bio = r10_bio->devs[i].bio;
8be185f2 3293 bio_reset(bio);
af03b8e4 3294 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3295 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3296 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3297 continue;
40c356ce
N
3298 sector = r10_bio->devs[i].addr;
3299 if (is_badblock(conf->mirrors[d].rdev,
3300 sector, max_sync,
3301 &first_bad, &bad_sectors)) {
3302 if (first_bad > sector)
3303 max_sync = first_bad - sector;
3304 else {
3305 bad_sectors -= (sector - first_bad);
3306 if (max_sync > bad_sectors)
91502f09 3307 max_sync = bad_sectors;
40c356ce
N
3308 continue;
3309 }
3310 }
1da177e4
LT
3311 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3312 atomic_inc(&r10_bio->remaining);
3313 bio->bi_next = biolist;
3314 biolist = bio;
3315 bio->bi_private = r10_bio;
3316 bio->bi_end_io = end_sync_read;
802ba064 3317 bio->bi_rw = READ;
4f024f37 3318 bio->bi_iter.bi_sector = sector +
1da177e4
LT
3319 conf->mirrors[d].rdev->data_offset;
3320 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3321 count++;
9ad1aefc
N
3322
3323 if (conf->mirrors[d].replacement == NULL ||
3324 test_bit(Faulty,
3325 &conf->mirrors[d].replacement->flags))
3326 continue;
3327
3328 /* Need to set up for writing to the replacement */
3329 bio = r10_bio->devs[i].repl_bio;
8be185f2 3330 bio_reset(bio);
9ad1aefc
N
3331 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3332
3333 sector = r10_bio->devs[i].addr;
3334 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3335 bio->bi_next = biolist;
3336 biolist = bio;
3337 bio->bi_private = r10_bio;
3338 bio->bi_end_io = end_sync_write;
3339 bio->bi_rw = WRITE;
4f024f37 3340 bio->bi_iter.bi_sector = sector +
9ad1aefc
N
3341 conf->mirrors[d].replacement->data_offset;
3342 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3343 count++;
1da177e4
LT
3344 }
3345
3346 if (count < 2) {
3347 for (i=0; i<conf->copies; i++) {
3348 int d = r10_bio->devs[i].devnum;
3349 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3350 rdev_dec_pending(conf->mirrors[d].rdev,
3351 mddev);
9ad1aefc
N
3352 if (r10_bio->devs[i].repl_bio &&
3353 r10_bio->devs[i].repl_bio->bi_end_io)
3354 rdev_dec_pending(
3355 conf->mirrors[d].replacement,
3356 mddev);
1da177e4
LT
3357 }
3358 put_buf(r10_bio);
3359 biolist = NULL;
3360 goto giveup;
3361 }
3362 }
3363
1da177e4 3364 nr_sectors = 0;
6cce3b23
N
3365 if (sector_nr + max_sync < max_sector)
3366 max_sector = sector_nr + max_sync;
1da177e4
LT
3367 do {
3368 struct page *page;
3369 int len = PAGE_SIZE;
1da177e4
LT
3370 if (sector_nr + (len>>9) > max_sector)
3371 len = (max_sector - sector_nr) << 9;
3372 if (len == 0)
3373 break;
3374 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3375 struct bio *bio2;
1da177e4 3376 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3377 if (bio_add_page(bio, page, len, 0))
3378 continue;
3379
3380 /* stop here */
3381 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3382 for (bio2 = biolist;
3383 bio2 && bio2 != bio;
3384 bio2 = bio2->bi_next) {
3385 /* remove last page from this bio */
3386 bio2->bi_vcnt--;
4f024f37 3387 bio2->bi_iter.bi_size -= len;
ab9d47e9 3388 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3389 }
ab9d47e9 3390 goto bio_full;
1da177e4
LT
3391 }
3392 nr_sectors += len>>9;
3393 sector_nr += len>>9;
3394 } while (biolist->bi_vcnt < RESYNC_PAGES);
3395 bio_full:
3396 r10_bio->sectors = nr_sectors;
3397
3398 while (biolist) {
3399 bio = biolist;
3400 biolist = biolist->bi_next;
3401
3402 bio->bi_next = NULL;
3403 r10_bio = bio->bi_private;
3404 r10_bio->sectors = nr_sectors;
3405
3406 if (bio->bi_end_io == end_sync_read) {
3407 md_sync_acct(bio->bi_bdev, nr_sectors);
7bb23c49 3408 set_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4
LT
3409 generic_make_request(bio);
3410 }
3411 }
3412
57afd89f
N
3413 if (sectors_skipped)
3414 /* pretend they weren't skipped, it makes
3415 * no important difference in this case
3416 */
3417 md_done_sync(mddev, sectors_skipped, 1);
3418
1da177e4
LT
3419 return sectors_skipped + nr_sectors;
3420 giveup:
3421 /* There is nowhere to write, so all non-sync
e875ecea
N
3422 * drives must be failed or in resync, all drives
3423 * have a bad block, so try the next chunk...
1da177e4 3424 */
09b4068a
N
3425 if (sector_nr + max_sync < max_sector)
3426 max_sector = sector_nr + max_sync;
3427
3428 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3429 chunks_skipped ++;
3430 sector_nr = max_sector;
1da177e4 3431 goto skipped;
1da177e4
LT
3432}
3433
80c3a6ce 3434static sector_t
fd01b88c 3435raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3436{
3437 sector_t size;
e879a879 3438 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3439
3440 if (!raid_disks)
3ea7daa5
N
3441 raid_disks = min(conf->geo.raid_disks,
3442 conf->prev.raid_disks);
80c3a6ce 3443 if (!sectors)
dab8b292 3444 sectors = conf->dev_sectors;
80c3a6ce 3445
5cf00fcd
N
3446 size = sectors >> conf->geo.chunk_shift;
3447 sector_div(size, conf->geo.far_copies);
80c3a6ce 3448 size = size * raid_disks;
5cf00fcd 3449 sector_div(size, conf->geo.near_copies);
80c3a6ce 3450
5cf00fcd 3451 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3452}
3453
6508fdbf
N
3454static void calc_sectors(struct r10conf *conf, sector_t size)
3455{
3456 /* Calculate the number of sectors-per-device that will
3457 * actually be used, and set conf->dev_sectors and
3458 * conf->stride
3459 */
3460
5cf00fcd
N
3461 size = size >> conf->geo.chunk_shift;
3462 sector_div(size, conf->geo.far_copies);
3463 size = size * conf->geo.raid_disks;
3464 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3465 /* 'size' is now the number of chunks in the array */
3466 /* calculate "used chunks per device" */
3467 size = size * conf->copies;
3468
3469 /* We need to round up when dividing by raid_disks to
3470 * get the stride size.
3471 */
5cf00fcd 3472 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3473
5cf00fcd 3474 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3475
5cf00fcd
N
3476 if (conf->geo.far_offset)
3477 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3478 else {
5cf00fcd
N
3479 sector_div(size, conf->geo.far_copies);
3480 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3481 }
3482}
dab8b292 3483
deb200d0
N
3484enum geo_type {geo_new, geo_old, geo_start};
3485static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3486{
3487 int nc, fc, fo;
3488 int layout, chunk, disks;
3489 switch (new) {
3490 case geo_old:
3491 layout = mddev->layout;
3492 chunk = mddev->chunk_sectors;
3493 disks = mddev->raid_disks - mddev->delta_disks;
3494 break;
3495 case geo_new:
3496 layout = mddev->new_layout;
3497 chunk = mddev->new_chunk_sectors;
3498 disks = mddev->raid_disks;
3499 break;
3500 default: /* avoid 'may be unused' warnings */
3501 case geo_start: /* new when starting reshape - raid_disks not
3502 * updated yet. */
3503 layout = mddev->new_layout;
3504 chunk = mddev->new_chunk_sectors;
3505 disks = mddev->raid_disks + mddev->delta_disks;
3506 break;
3507 }
475901af 3508 if (layout >> 18)
deb200d0
N
3509 return -1;
3510 if (chunk < (PAGE_SIZE >> 9) ||
3511 !is_power_of_2(chunk))
3512 return -2;
3513 nc = layout & 255;
3514 fc = (layout >> 8) & 255;
3515 fo = layout & (1<<16);
3516 geo->raid_disks = disks;
3517 geo->near_copies = nc;
3518 geo->far_copies = fc;
3519 geo->far_offset = fo;
475901af 3520 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
deb200d0
N
3521 geo->chunk_mask = chunk - 1;
3522 geo->chunk_shift = ffz(~chunk);
3523 return nc*fc;
3524}
3525
e879a879 3526static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3527{
e879a879 3528 struct r10conf *conf = NULL;
dab8b292 3529 int err = -EINVAL;
deb200d0
N
3530 struct geom geo;
3531 int copies;
3532
3533 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3534
deb200d0 3535 if (copies == -2) {
128595ed
N
3536 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3537 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3538 mdname(mddev), PAGE_SIZE);
dab8b292 3539 goto out;
1da177e4 3540 }
2604b703 3541
deb200d0 3542 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3543 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3544 mdname(mddev), mddev->new_layout);
1da177e4
LT
3545 goto out;
3546 }
dab8b292
TM
3547
3548 err = -ENOMEM;
e879a879 3549 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3550 if (!conf)
1da177e4 3551 goto out;
dab8b292 3552
3ea7daa5 3553 /* FIXME calc properly */
dc280d98 3554 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
78eaa0d4 3555 max(0,-mddev->delta_disks)),
dab8b292
TM
3556 GFP_KERNEL);
3557 if (!conf->mirrors)
3558 goto out;
4443ae10
N
3559
3560 conf->tmppage = alloc_page(GFP_KERNEL);
3561 if (!conf->tmppage)
dab8b292
TM
3562 goto out;
3563
deb200d0
N
3564 conf->geo = geo;
3565 conf->copies = copies;
dab8b292
TM
3566 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3567 r10bio_pool_free, conf);
3568 if (!conf->r10bio_pool)
3569 goto out;
3570
6508fdbf 3571 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3572 if (mddev->reshape_position == MaxSector) {
3573 conf->prev = conf->geo;
3574 conf->reshape_progress = MaxSector;
3575 } else {
3576 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3577 err = -EINVAL;
3578 goto out;
3579 }
3580 conf->reshape_progress = mddev->reshape_position;
3581 if (conf->prev.far_offset)
3582 conf->prev.stride = 1 << conf->prev.chunk_shift;
3583 else
3584 /* far_copies must be 1 */
3585 conf->prev.stride = conf->dev_sectors;
3586 }
e7e72bf6 3587 spin_lock_init(&conf->device_lock);
dab8b292
TM
3588 INIT_LIST_HEAD(&conf->retry_list);
3589
3590 spin_lock_init(&conf->resync_lock);
3591 init_waitqueue_head(&conf->wait_barrier);
3592
0232605d 3593 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3594 if (!conf->thread)
3595 goto out;
3596
dab8b292
TM
3597 conf->mddev = mddev;
3598 return conf;
3599
3600 out:
3ea7daa5
N
3601 if (err == -ENOMEM)
3602 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3603 mdname(mddev));
dab8b292
TM
3604 if (conf) {
3605 if (conf->r10bio_pool)
3606 mempool_destroy(conf->r10bio_pool);
3607 kfree(conf->mirrors);
3608 safe_put_page(conf->tmppage);
3609 kfree(conf);
3610 }
3611 return ERR_PTR(err);
3612}
3613
fd01b88c 3614static int run(struct mddev *mddev)
dab8b292 3615{
e879a879 3616 struct r10conf *conf;
dab8b292 3617 int i, disk_idx, chunk_size;
dc280d98 3618 struct raid10_info *disk;
3cb03002 3619 struct md_rdev *rdev;
dab8b292 3620 sector_t size;
3ea7daa5
N
3621 sector_t min_offset_diff = 0;
3622 int first = 1;
532a2a3f 3623 bool discard_supported = false;
dab8b292
TM
3624
3625 if (mddev->private == NULL) {
3626 conf = setup_conf(mddev);
3627 if (IS_ERR(conf))
3628 return PTR_ERR(conf);
3629 mddev->private = conf;
3630 }
3631 conf = mddev->private;
3632 if (!conf)
3633 goto out;
3634
dab8b292
TM
3635 mddev->thread = conf->thread;
3636 conf->thread = NULL;
3637
8f6c2e4b 3638 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3639 if (mddev->queue) {
532a2a3f
SL
3640 blk_queue_max_discard_sectors(mddev->queue,
3641 mddev->chunk_sectors);
5026d7a9 3642 blk_queue_max_write_same_sectors(mddev->queue, 0);
cc4d1efd
JB
3643 blk_queue_io_min(mddev->queue, chunk_size);
3644 if (conf->geo.raid_disks % conf->geo.near_copies)
3645 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3646 else
3647 blk_queue_io_opt(mddev->queue, chunk_size *
3648 (conf->geo.raid_disks / conf->geo.near_copies));
3649 }
8f6c2e4b 3650
dafb20fa 3651 rdev_for_each(rdev, mddev) {
3ea7daa5 3652 long long diff;
aba336bd 3653 struct request_queue *q;
34b343cf 3654
1da177e4 3655 disk_idx = rdev->raid_disk;
f8c9e74f
N
3656 if (disk_idx < 0)
3657 continue;
3658 if (disk_idx >= conf->geo.raid_disks &&
3659 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3660 continue;
3661 disk = conf->mirrors + disk_idx;
3662
56a2559b
N
3663 if (test_bit(Replacement, &rdev->flags)) {
3664 if (disk->replacement)
3665 goto out_free_conf;
3666 disk->replacement = rdev;
3667 } else {
3668 if (disk->rdev)
3669 goto out_free_conf;
3670 disk->rdev = rdev;
3671 }
aba336bd
N
3672 q = bdev_get_queue(rdev->bdev);
3673 if (q->merge_bvec_fn)
3674 mddev->merge_check_needed = 1;
3ea7daa5
N
3675 diff = (rdev->new_data_offset - rdev->data_offset);
3676 if (!mddev->reshape_backwards)
3677 diff = -diff;
3678 if (diff < 0)
3679 diff = 0;
3680 if (first || diff < min_offset_diff)
3681 min_offset_diff = diff;
56a2559b 3682
cc4d1efd
JB
3683 if (mddev->gendisk)
3684 disk_stack_limits(mddev->gendisk, rdev->bdev,
3685 rdev->data_offset << 9);
1da177e4
LT
3686
3687 disk->head_position = 0;
532a2a3f
SL
3688
3689 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3690 discard_supported = true;
1da177e4 3691 }
3ea7daa5 3692
ed30be07
JB
3693 if (mddev->queue) {
3694 if (discard_supported)
3695 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3696 mddev->queue);
3697 else
3698 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3699 mddev->queue);
3700 }
6d508242 3701 /* need to check that every block has at least one working mirror */
700c7213 3702 if (!enough(conf, -1)) {
128595ed 3703 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3704 mdname(mddev));
1da177e4
LT
3705 goto out_free_conf;
3706 }
3707
3ea7daa5
N
3708 if (conf->reshape_progress != MaxSector) {
3709 /* must ensure that shape change is supported */
3710 if (conf->geo.far_copies != 1 &&
3711 conf->geo.far_offset == 0)
3712 goto out_free_conf;
3713 if (conf->prev.far_copies != 1 &&
78eaa0d4 3714 conf->prev.far_offset == 0)
3ea7daa5
N
3715 goto out_free_conf;
3716 }
3717
1da177e4 3718 mddev->degraded = 0;
f8c9e74f
N
3719 for (i = 0;
3720 i < conf->geo.raid_disks
3721 || i < conf->prev.raid_disks;
3722 i++) {
1da177e4
LT
3723
3724 disk = conf->mirrors + i;
3725
56a2559b
N
3726 if (!disk->rdev && disk->replacement) {
3727 /* The replacement is all we have - use it */
3728 disk->rdev = disk->replacement;
3729 disk->replacement = NULL;
3730 clear_bit(Replacement, &disk->rdev->flags);
3731 }
3732
5fd6c1dc 3733 if (!disk->rdev ||
2e333e89 3734 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3735 disk->head_position = 0;
3736 mddev->degraded++;
0b59bb64
N
3737 if (disk->rdev &&
3738 disk->rdev->saved_raid_disk < 0)
8c2e870a 3739 conf->fullsync = 1;
1da177e4 3740 }
d890fa2b 3741 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3742 }
3743
8c6ac868 3744 if (mddev->recovery_cp != MaxSector)
128595ed 3745 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3746 " -- starting background reconstruction\n",
3747 mdname(mddev));
1da177e4 3748 printk(KERN_INFO
128595ed 3749 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3750 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3751 conf->geo.raid_disks);
1da177e4
LT
3752 /*
3753 * Ok, everything is just fine now
3754 */
dab8b292
TM
3755 mddev->dev_sectors = conf->dev_sectors;
3756 size = raid10_size(mddev, 0, 0);
3757 md_set_array_sectors(mddev, size);
3758 mddev->resync_max_sectors = size;
1da177e4 3759
cc4d1efd 3760 if (mddev->queue) {
5cf00fcd 3761 int stripe = conf->geo.raid_disks *
9d8f0363 3762 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3763 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3764 mddev->queue->backing_dev_info.congested_data = mddev;
3765
3766 /* Calculate max read-ahead size.
3767 * We need to readahead at least twice a whole stripe....
3768 * maybe...
3769 */
5cf00fcd 3770 stripe /= conf->geo.near_copies;
3ea7daa5
N
3771 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3772 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
cc4d1efd 3773 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1da177e4
LT
3774 }
3775
a91a2785
MP
3776
3777 if (md_integrity_register(mddev))
3778 goto out_free_conf;
3779
3ea7daa5
N
3780 if (conf->reshape_progress != MaxSector) {
3781 unsigned long before_length, after_length;
3782
3783 before_length = ((1 << conf->prev.chunk_shift) *
3784 conf->prev.far_copies);
3785 after_length = ((1 << conf->geo.chunk_shift) *
3786 conf->geo.far_copies);
3787
3788 if (max(before_length, after_length) > min_offset_diff) {
3789 /* This cannot work */
3790 printk("md/raid10: offset difference not enough to continue reshape\n");
3791 goto out_free_conf;
3792 }
3793 conf->offset_diff = min_offset_diff;
3794
3795 conf->reshape_safe = conf->reshape_progress;
3796 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3797 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3798 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3799 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3800 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3801 "reshape");
3802 }
3803
1da177e4
LT
3804 return 0;
3805
3806out_free_conf:
01f96c0a 3807 md_unregister_thread(&mddev->thread);
1da177e4
LT
3808 if (conf->r10bio_pool)
3809 mempool_destroy(conf->r10bio_pool);
1345b1d8 3810 safe_put_page(conf->tmppage);
990a8baf 3811 kfree(conf->mirrors);
1da177e4
LT
3812 kfree(conf);
3813 mddev->private = NULL;
3814out:
3815 return -EIO;
3816}
3817
fd01b88c 3818static int stop(struct mddev *mddev)
1da177e4 3819{
e879a879 3820 struct r10conf *conf = mddev->private;
1da177e4 3821
409c57f3
N
3822 raise_barrier(conf, 0);
3823 lower_barrier(conf);
3824
01f96c0a 3825 md_unregister_thread(&mddev->thread);
cc4d1efd
JB
3826 if (mddev->queue)
3827 /* the unplug fn references 'conf'*/
3828 blk_sync_queue(mddev->queue);
3829
1da177e4
LT
3830 if (conf->r10bio_pool)
3831 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3832 safe_put_page(conf->tmppage);
990a8baf 3833 kfree(conf->mirrors);
1da177e4
LT
3834 kfree(conf);
3835 mddev->private = NULL;
3836 return 0;
3837}
3838
fd01b88c 3839static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3840{
e879a879 3841 struct r10conf *conf = mddev->private;
6cce3b23
N
3842
3843 switch(state) {
3844 case 1:
3845 raise_barrier(conf, 0);
3846 break;
3847 case 0:
3848 lower_barrier(conf);
3849 break;
3850 }
6cce3b23 3851}
1da177e4 3852
006a09a0
N
3853static int raid10_resize(struct mddev *mddev, sector_t sectors)
3854{
3855 /* Resize of 'far' arrays is not supported.
3856 * For 'near' and 'offset' arrays we can set the
3857 * number of sectors used to be an appropriate multiple
3858 * of the chunk size.
3859 * For 'offset', this is far_copies*chunksize.
3860 * For 'near' the multiplier is the LCM of
3861 * near_copies and raid_disks.
3862 * So if far_copies > 1 && !far_offset, fail.
3863 * Else find LCM(raid_disks, near_copy)*far_copies and
3864 * multiply by chunk_size. Then round to this number.
3865 * This is mostly done by raid10_size()
3866 */
3867 struct r10conf *conf = mddev->private;
3868 sector_t oldsize, size;
3869
f8c9e74f
N
3870 if (mddev->reshape_position != MaxSector)
3871 return -EBUSY;
3872
5cf00fcd 3873 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3874 return -EINVAL;
3875
3876 oldsize = raid10_size(mddev, 0, 0);
3877 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3878 if (mddev->external_size &&
3879 mddev->array_sectors > size)
006a09a0 3880 return -EINVAL;
a4a6125a
N
3881 if (mddev->bitmap) {
3882 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3883 if (ret)
3884 return ret;
3885 }
3886 md_set_array_sectors(mddev, size);
006a09a0
N
3887 set_capacity(mddev->gendisk, mddev->array_sectors);
3888 revalidate_disk(mddev->gendisk);
3889 if (sectors > mddev->dev_sectors &&
3890 mddev->recovery_cp > oldsize) {
3891 mddev->recovery_cp = oldsize;
3892 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3893 }
6508fdbf
N
3894 calc_sectors(conf, sectors);
3895 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3896 mddev->resync_max_sectors = size;
3897 return 0;
3898}
3899
fd01b88c 3900static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3901{
3cb03002 3902 struct md_rdev *rdev;
e879a879 3903 struct r10conf *conf;
dab8b292
TM
3904
3905 if (mddev->degraded > 0) {
128595ed
N
3906 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3907 mdname(mddev));
dab8b292
TM
3908 return ERR_PTR(-EINVAL);
3909 }
3910
dab8b292
TM
3911 /* Set new parameters */
3912 mddev->new_level = 10;
3913 /* new layout: far_copies = 1, near_copies = 2 */
3914 mddev->new_layout = (1<<8) + 2;
3915 mddev->new_chunk_sectors = mddev->chunk_sectors;
3916 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3917 mddev->raid_disks *= 2;
3918 /* make sure it will be not marked as dirty */
3919 mddev->recovery_cp = MaxSector;
3920
3921 conf = setup_conf(mddev);
02214dc5 3922 if (!IS_ERR(conf)) {
dafb20fa 3923 rdev_for_each(rdev, mddev)
e93f68a1
N
3924 if (rdev->raid_disk >= 0)
3925 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3926 conf->barrier = 1;
3927 }
3928
dab8b292
TM
3929 return conf;
3930}
3931
fd01b88c 3932static void *raid10_takeover(struct mddev *mddev)
dab8b292 3933{
e373ab10 3934 struct r0conf *raid0_conf;
dab8b292
TM
3935
3936 /* raid10 can take over:
3937 * raid0 - providing it has only two drives
3938 */
3939 if (mddev->level == 0) {
3940 /* for raid0 takeover only one zone is supported */
e373ab10
N
3941 raid0_conf = mddev->private;
3942 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3943 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3944 " with more than one zone.\n",
3945 mdname(mddev));
dab8b292
TM
3946 return ERR_PTR(-EINVAL);
3947 }
3948 return raid10_takeover_raid0(mddev);
3949 }
3950 return ERR_PTR(-EINVAL);
3951}
3952
3ea7daa5
N
3953static int raid10_check_reshape(struct mddev *mddev)
3954{
3955 /* Called when there is a request to change
3956 * - layout (to ->new_layout)
3957 * - chunk size (to ->new_chunk_sectors)
3958 * - raid_disks (by delta_disks)
3959 * or when trying to restart a reshape that was ongoing.
3960 *
3961 * We need to validate the request and possibly allocate
3962 * space if that might be an issue later.
3963 *
3964 * Currently we reject any reshape of a 'far' mode array,
3965 * allow chunk size to change if new is generally acceptable,
3966 * allow raid_disks to increase, and allow
3967 * a switch between 'near' mode and 'offset' mode.
3968 */
3969 struct r10conf *conf = mddev->private;
3970 struct geom geo;
3971
3972 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3973 return -EINVAL;
3974
3975 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3976 /* mustn't change number of copies */
3977 return -EINVAL;
3978 if (geo.far_copies > 1 && !geo.far_offset)
3979 /* Cannot switch to 'far' mode */
3980 return -EINVAL;
3981
3982 if (mddev->array_sectors & geo.chunk_mask)
3983 /* not factor of array size */
3984 return -EINVAL;
3985
3ea7daa5
N
3986 if (!enough(conf, -1))
3987 return -EINVAL;
3988
3989 kfree(conf->mirrors_new);
3990 conf->mirrors_new = NULL;
3991 if (mddev->delta_disks > 0) {
3992 /* allocate new 'mirrors' list */
3993 conf->mirrors_new = kzalloc(
dc280d98 3994 sizeof(struct raid10_info)
3ea7daa5
N
3995 *(mddev->raid_disks +
3996 mddev->delta_disks),
3997 GFP_KERNEL);
3998 if (!conf->mirrors_new)
3999 return -ENOMEM;
4000 }
4001 return 0;
4002}
4003
4004/*
4005 * Need to check if array has failed when deciding whether to:
4006 * - start an array
4007 * - remove non-faulty devices
4008 * - add a spare
4009 * - allow a reshape
4010 * This determination is simple when no reshape is happening.
4011 * However if there is a reshape, we need to carefully check
4012 * both the before and after sections.
4013 * This is because some failed devices may only affect one
4014 * of the two sections, and some non-in_sync devices may
4015 * be insync in the section most affected by failed devices.
4016 */
4017static int calc_degraded(struct r10conf *conf)
4018{
4019 int degraded, degraded2;
4020 int i;
4021
4022 rcu_read_lock();
4023 degraded = 0;
4024 /* 'prev' section first */
4025 for (i = 0; i < conf->prev.raid_disks; i++) {
4026 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4027 if (!rdev || test_bit(Faulty, &rdev->flags))
4028 degraded++;
4029 else if (!test_bit(In_sync, &rdev->flags))
4030 /* When we can reduce the number of devices in
4031 * an array, this might not contribute to
4032 * 'degraded'. It does now.
4033 */
4034 degraded++;
4035 }
4036 rcu_read_unlock();
4037 if (conf->geo.raid_disks == conf->prev.raid_disks)
4038 return degraded;
4039 rcu_read_lock();
4040 degraded2 = 0;
4041 for (i = 0; i < conf->geo.raid_disks; i++) {
4042 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4043 if (!rdev || test_bit(Faulty, &rdev->flags))
4044 degraded2++;
4045 else if (!test_bit(In_sync, &rdev->flags)) {
4046 /* If reshape is increasing the number of devices,
4047 * this section has already been recovered, so
4048 * it doesn't contribute to degraded.
4049 * else it does.
4050 */
4051 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4052 degraded2++;
4053 }
4054 }
4055 rcu_read_unlock();
4056 if (degraded2 > degraded)
4057 return degraded2;
4058 return degraded;
4059}
4060
4061static int raid10_start_reshape(struct mddev *mddev)
4062{
4063 /* A 'reshape' has been requested. This commits
4064 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4065 * This also checks if there are enough spares and adds them
4066 * to the array.
4067 * We currently require enough spares to make the final
4068 * array non-degraded. We also require that the difference
4069 * between old and new data_offset - on each device - is
4070 * enough that we never risk over-writing.
4071 */
4072
4073 unsigned long before_length, after_length;
4074 sector_t min_offset_diff = 0;
4075 int first = 1;
4076 struct geom new;
4077 struct r10conf *conf = mddev->private;
4078 struct md_rdev *rdev;
4079 int spares = 0;
bb63a701 4080 int ret;
3ea7daa5
N
4081
4082 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4083 return -EBUSY;
4084
4085 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4086 return -EINVAL;
4087
4088 before_length = ((1 << conf->prev.chunk_shift) *
4089 conf->prev.far_copies);
4090 after_length = ((1 << conf->geo.chunk_shift) *
4091 conf->geo.far_copies);
4092
4093 rdev_for_each(rdev, mddev) {
4094 if (!test_bit(In_sync, &rdev->flags)
4095 && !test_bit(Faulty, &rdev->flags))
4096 spares++;
4097 if (rdev->raid_disk >= 0) {
4098 long long diff = (rdev->new_data_offset
4099 - rdev->data_offset);
4100 if (!mddev->reshape_backwards)
4101 diff = -diff;
4102 if (diff < 0)
4103 diff = 0;
4104 if (first || diff < min_offset_diff)
4105 min_offset_diff = diff;
4106 }
4107 }
4108
4109 if (max(before_length, after_length) > min_offset_diff)
4110 return -EINVAL;
4111
4112 if (spares < mddev->delta_disks)
4113 return -EINVAL;
4114
4115 conf->offset_diff = min_offset_diff;
4116 spin_lock_irq(&conf->device_lock);
4117 if (conf->mirrors_new) {
4118 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4119 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5
N
4120 smp_mb();
4121 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4122 conf->mirrors_old = conf->mirrors;
4123 conf->mirrors = conf->mirrors_new;
4124 conf->mirrors_new = NULL;
4125 }
4126 setup_geo(&conf->geo, mddev, geo_start);
4127 smp_mb();
4128 if (mddev->reshape_backwards) {
4129 sector_t size = raid10_size(mddev, 0, 0);
4130 if (size < mddev->array_sectors) {
4131 spin_unlock_irq(&conf->device_lock);
4132 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4133 mdname(mddev));
4134 return -EINVAL;
4135 }
4136 mddev->resync_max_sectors = size;
4137 conf->reshape_progress = size;
4138 } else
4139 conf->reshape_progress = 0;
4140 spin_unlock_irq(&conf->device_lock);
4141
bb63a701
N
4142 if (mddev->delta_disks && mddev->bitmap) {
4143 ret = bitmap_resize(mddev->bitmap,
4144 raid10_size(mddev, 0,
4145 conf->geo.raid_disks),
4146 0, 0);
4147 if (ret)
4148 goto abort;
4149 }
3ea7daa5
N
4150 if (mddev->delta_disks > 0) {
4151 rdev_for_each(rdev, mddev)
4152 if (rdev->raid_disk < 0 &&
4153 !test_bit(Faulty, &rdev->flags)) {
4154 if (raid10_add_disk(mddev, rdev) == 0) {
4155 if (rdev->raid_disk >=
4156 conf->prev.raid_disks)
4157 set_bit(In_sync, &rdev->flags);
4158 else
4159 rdev->recovery_offset = 0;
4160
4161 if (sysfs_link_rdev(mddev, rdev))
4162 /* Failure here is OK */;
4163 }
4164 } else if (rdev->raid_disk >= conf->prev.raid_disks
4165 && !test_bit(Faulty, &rdev->flags)) {
4166 /* This is a spare that was manually added */
4167 set_bit(In_sync, &rdev->flags);
4168 }
4169 }
4170 /* When a reshape changes the number of devices,
4171 * ->degraded is measured against the larger of the
4172 * pre and post numbers.
4173 */
4174 spin_lock_irq(&conf->device_lock);
4175 mddev->degraded = calc_degraded(conf);
4176 spin_unlock_irq(&conf->device_lock);
4177 mddev->raid_disks = conf->geo.raid_disks;
4178 mddev->reshape_position = conf->reshape_progress;
4179 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4180
4181 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4182 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4183 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4184 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4185
4186 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4187 "reshape");
4188 if (!mddev->sync_thread) {
bb63a701
N
4189 ret = -EAGAIN;
4190 goto abort;
3ea7daa5
N
4191 }
4192 conf->reshape_checkpoint = jiffies;
4193 md_wakeup_thread(mddev->sync_thread);
4194 md_new_event(mddev);
4195 return 0;
bb63a701
N
4196
4197abort:
4198 mddev->recovery = 0;
4199 spin_lock_irq(&conf->device_lock);
4200 conf->geo = conf->prev;
4201 mddev->raid_disks = conf->geo.raid_disks;
4202 rdev_for_each(rdev, mddev)
4203 rdev->new_data_offset = rdev->data_offset;
4204 smp_wmb();
4205 conf->reshape_progress = MaxSector;
4206 mddev->reshape_position = MaxSector;
4207 spin_unlock_irq(&conf->device_lock);
4208 return ret;
3ea7daa5
N
4209}
4210
4211/* Calculate the last device-address that could contain
4212 * any block from the chunk that includes the array-address 's'
4213 * and report the next address.
4214 * i.e. the address returned will be chunk-aligned and after
4215 * any data that is in the chunk containing 's'.
4216 */
4217static sector_t last_dev_address(sector_t s, struct geom *geo)
4218{
4219 s = (s | geo->chunk_mask) + 1;
4220 s >>= geo->chunk_shift;
4221 s *= geo->near_copies;
4222 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4223 s *= geo->far_copies;
4224 s <<= geo->chunk_shift;
4225 return s;
4226}
4227
4228/* Calculate the first device-address that could contain
4229 * any block from the chunk that includes the array-address 's'.
4230 * This too will be the start of a chunk
4231 */
4232static sector_t first_dev_address(sector_t s, struct geom *geo)
4233{
4234 s >>= geo->chunk_shift;
4235 s *= geo->near_copies;
4236 sector_div(s, geo->raid_disks);
4237 s *= geo->far_copies;
4238 s <<= geo->chunk_shift;
4239 return s;
4240}
4241
4242static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4243 int *skipped)
4244{
4245 /* We simply copy at most one chunk (smallest of old and new)
4246 * at a time, possibly less if that exceeds RESYNC_PAGES,
4247 * or we hit a bad block or something.
4248 * This might mean we pause for normal IO in the middle of
4249 * a chunk, but that is not a problem was mddev->reshape_position
4250 * can record any location.
4251 *
4252 * If we will want to write to a location that isn't
4253 * yet recorded as 'safe' (i.e. in metadata on disk) then
4254 * we need to flush all reshape requests and update the metadata.
4255 *
4256 * When reshaping forwards (e.g. to more devices), we interpret
4257 * 'safe' as the earliest block which might not have been copied
4258 * down yet. We divide this by previous stripe size and multiply
4259 * by previous stripe length to get lowest device offset that we
4260 * cannot write to yet.
4261 * We interpret 'sector_nr' as an address that we want to write to.
4262 * From this we use last_device_address() to find where we might
4263 * write to, and first_device_address on the 'safe' position.
4264 * If this 'next' write position is after the 'safe' position,
4265 * we must update the metadata to increase the 'safe' position.
4266 *
4267 * When reshaping backwards, we round in the opposite direction
4268 * and perform the reverse test: next write position must not be
4269 * less than current safe position.
4270 *
4271 * In all this the minimum difference in data offsets
4272 * (conf->offset_diff - always positive) allows a bit of slack,
4273 * so next can be after 'safe', but not by more than offset_disk
4274 *
4275 * We need to prepare all the bios here before we start any IO
4276 * to ensure the size we choose is acceptable to all devices.
4277 * The means one for each copy for write-out and an extra one for
4278 * read-in.
4279 * We store the read-in bio in ->master_bio and the others in
4280 * ->devs[x].bio and ->devs[x].repl_bio.
4281 */
4282 struct r10conf *conf = mddev->private;
4283 struct r10bio *r10_bio;
4284 sector_t next, safe, last;
4285 int max_sectors;
4286 int nr_sectors;
4287 int s;
4288 struct md_rdev *rdev;
4289 int need_flush = 0;
4290 struct bio *blist;
4291 struct bio *bio, *read_bio;
4292 int sectors_done = 0;
4293
4294 if (sector_nr == 0) {
4295 /* If restarting in the middle, skip the initial sectors */
4296 if (mddev->reshape_backwards &&
4297 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4298 sector_nr = (raid10_size(mddev, 0, 0)
4299 - conf->reshape_progress);
4300 } else if (!mddev->reshape_backwards &&
4301 conf->reshape_progress > 0)
4302 sector_nr = conf->reshape_progress;
4303 if (sector_nr) {
4304 mddev->curr_resync_completed = sector_nr;
4305 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4306 *skipped = 1;
4307 return sector_nr;
4308 }
4309 }
4310
4311 /* We don't use sector_nr to track where we are up to
4312 * as that doesn't work well for ->reshape_backwards.
4313 * So just use ->reshape_progress.
4314 */
4315 if (mddev->reshape_backwards) {
4316 /* 'next' is the earliest device address that we might
4317 * write to for this chunk in the new layout
4318 */
4319 next = first_dev_address(conf->reshape_progress - 1,
4320 &conf->geo);
4321
4322 /* 'safe' is the last device address that we might read from
4323 * in the old layout after a restart
4324 */
4325 safe = last_dev_address(conf->reshape_safe - 1,
4326 &conf->prev);
4327
4328 if (next + conf->offset_diff < safe)
4329 need_flush = 1;
4330
4331 last = conf->reshape_progress - 1;
4332 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4333 & conf->prev.chunk_mask);
4334 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4335 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4336 } else {
4337 /* 'next' is after the last device address that we
4338 * might write to for this chunk in the new layout
4339 */
4340 next = last_dev_address(conf->reshape_progress, &conf->geo);
4341
4342 /* 'safe' is the earliest device address that we might
4343 * read from in the old layout after a restart
4344 */
4345 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4346
4347 /* Need to update metadata if 'next' might be beyond 'safe'
4348 * as that would possibly corrupt data
4349 */
4350 if (next > safe + conf->offset_diff)
4351 need_flush = 1;
4352
4353 sector_nr = conf->reshape_progress;
4354 last = sector_nr | (conf->geo.chunk_mask
4355 & conf->prev.chunk_mask);
4356
4357 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4358 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4359 }
4360
4361 if (need_flush ||
4362 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4363 /* Need to update reshape_position in metadata */
4364 wait_barrier(conf);
4365 mddev->reshape_position = conf->reshape_progress;
4366 if (mddev->reshape_backwards)
4367 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4368 - conf->reshape_progress;
4369 else
4370 mddev->curr_resync_completed = conf->reshape_progress;
4371 conf->reshape_checkpoint = jiffies;
4372 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4373 md_wakeup_thread(mddev->thread);
4374 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
4375 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4376 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4377 allow_barrier(conf);
4378 return sectors_done;
4379 }
3ea7daa5
N
4380 conf->reshape_safe = mddev->reshape_position;
4381 allow_barrier(conf);
4382 }
4383
4384read_more:
4385 /* Now schedule reads for blocks from sector_nr to last */
4386 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4387 raise_barrier(conf, sectors_done != 0);
4388 atomic_set(&r10_bio->remaining, 0);
4389 r10_bio->mddev = mddev;
4390 r10_bio->sector = sector_nr;
4391 set_bit(R10BIO_IsReshape, &r10_bio->state);
4392 r10_bio->sectors = last - sector_nr + 1;
4393 rdev = read_balance(conf, r10_bio, &max_sectors);
4394 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4395
4396 if (!rdev) {
4397 /* Cannot read from here, so need to record bad blocks
4398 * on all the target devices.
4399 */
4400 // FIXME
4401 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4402 return sectors_done;
4403 }
4404
4405 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4406
4407 read_bio->bi_bdev = rdev->bdev;
4f024f37 4408 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4409 + rdev->data_offset);
4410 read_bio->bi_private = r10_bio;
4411 read_bio->bi_end_io = end_sync_read;
4412 read_bio->bi_rw = READ;
ce0b0a46 4413 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
3ea7daa5
N
4414 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4415 read_bio->bi_vcnt = 0;
4f024f37 4416 read_bio->bi_iter.bi_size = 0;
3ea7daa5
N
4417 r10_bio->master_bio = read_bio;
4418 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4419
4420 /* Now find the locations in the new layout */
4421 __raid10_find_phys(&conf->geo, r10_bio);
4422
4423 blist = read_bio;
4424 read_bio->bi_next = NULL;
4425
4426 for (s = 0; s < conf->copies*2; s++) {
4427 struct bio *b;
4428 int d = r10_bio->devs[s/2].devnum;
4429 struct md_rdev *rdev2;
4430 if (s&1) {
4431 rdev2 = conf->mirrors[d].replacement;
4432 b = r10_bio->devs[s/2].repl_bio;
4433 } else {
4434 rdev2 = conf->mirrors[d].rdev;
4435 b = r10_bio->devs[s/2].bio;
4436 }
4437 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4438 continue;
8be185f2
KO
4439
4440 bio_reset(b);
3ea7daa5 4441 b->bi_bdev = rdev2->bdev;
4f024f37
KO
4442 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4443 rdev2->new_data_offset;
3ea7daa5
N
4444 b->bi_private = r10_bio;
4445 b->bi_end_io = end_reshape_write;
4446 b->bi_rw = WRITE;
3ea7daa5 4447 b->bi_next = blist;
3ea7daa5
N
4448 blist = b;
4449 }
4450
4451 /* Now add as many pages as possible to all of these bios. */
4452
4453 nr_sectors = 0;
4454 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4455 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4456 int len = (max_sectors - s) << 9;
4457 if (len > PAGE_SIZE)
4458 len = PAGE_SIZE;
4459 for (bio = blist; bio ; bio = bio->bi_next) {
4460 struct bio *bio2;
4461 if (bio_add_page(bio, page, len, 0))
4462 continue;
4463
4464 /* Didn't fit, must stop */
4465 for (bio2 = blist;
4466 bio2 && bio2 != bio;
4467 bio2 = bio2->bi_next) {
4468 /* Remove last page from this bio */
4469 bio2->bi_vcnt--;
4f024f37 4470 bio2->bi_iter.bi_size -= len;
3ea7daa5
N
4471 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4472 }
4473 goto bio_full;
4474 }
4475 sector_nr += len >> 9;
4476 nr_sectors += len >> 9;
4477 }
4478bio_full:
4479 r10_bio->sectors = nr_sectors;
4480
4481 /* Now submit the read */
4482 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4483 atomic_inc(&r10_bio->remaining);
4484 read_bio->bi_next = NULL;
4485 generic_make_request(read_bio);
4486 sector_nr += nr_sectors;
4487 sectors_done += nr_sectors;
4488 if (sector_nr <= last)
4489 goto read_more;
4490
4491 /* Now that we have done the whole section we can
4492 * update reshape_progress
4493 */
4494 if (mddev->reshape_backwards)
4495 conf->reshape_progress -= sectors_done;
4496 else
4497 conf->reshape_progress += sectors_done;
4498
4499 return sectors_done;
4500}
4501
4502static void end_reshape_request(struct r10bio *r10_bio);
4503static int handle_reshape_read_error(struct mddev *mddev,
4504 struct r10bio *r10_bio);
4505static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4506{
4507 /* Reshape read completed. Hopefully we have a block
4508 * to write out.
4509 * If we got a read error then we do sync 1-page reads from
4510 * elsewhere until we find the data - or give up.
4511 */
4512 struct r10conf *conf = mddev->private;
4513 int s;
4514
4515 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4516 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4517 /* Reshape has been aborted */
4518 md_done_sync(mddev, r10_bio->sectors, 0);
4519 return;
4520 }
4521
4522 /* We definitely have the data in the pages, schedule the
4523 * writes.
4524 */
4525 atomic_set(&r10_bio->remaining, 1);
4526 for (s = 0; s < conf->copies*2; s++) {
4527 struct bio *b;
4528 int d = r10_bio->devs[s/2].devnum;
4529 struct md_rdev *rdev;
4530 if (s&1) {
4531 rdev = conf->mirrors[d].replacement;
4532 b = r10_bio->devs[s/2].repl_bio;
4533 } else {
4534 rdev = conf->mirrors[d].rdev;
4535 b = r10_bio->devs[s/2].bio;
4536 }
4537 if (!rdev || test_bit(Faulty, &rdev->flags))
4538 continue;
4539 atomic_inc(&rdev->nr_pending);
4540 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4541 atomic_inc(&r10_bio->remaining);
4542 b->bi_next = NULL;
4543 generic_make_request(b);
4544 }
4545 end_reshape_request(r10_bio);
4546}
4547
4548static void end_reshape(struct r10conf *conf)
4549{
4550 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4551 return;
4552
4553 spin_lock_irq(&conf->device_lock);
4554 conf->prev = conf->geo;
4555 md_finish_reshape(conf->mddev);
4556 smp_wmb();
4557 conf->reshape_progress = MaxSector;
4558 spin_unlock_irq(&conf->device_lock);
4559
4560 /* read-ahead size must cover two whole stripes, which is
4561 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4562 */
4563 if (conf->mddev->queue) {
4564 int stripe = conf->geo.raid_disks *
4565 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4566 stripe /= conf->geo.near_copies;
4567 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4568 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4569 }
4570 conf->fullsync = 0;
4571}
4572
4573
4574static int handle_reshape_read_error(struct mddev *mddev,
4575 struct r10bio *r10_bio)
4576{
4577 /* Use sync reads to get the blocks from somewhere else */
4578 int sectors = r10_bio->sectors;
3ea7daa5 4579 struct r10conf *conf = mddev->private;
e0ee7785
N
4580 struct {
4581 struct r10bio r10_bio;
4582 struct r10dev devs[conf->copies];
4583 } on_stack;
4584 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4585 int slot = 0;
4586 int idx = 0;
4587 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4588
e0ee7785
N
4589 r10b->sector = r10_bio->sector;
4590 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4591
4592 while (sectors) {
4593 int s = sectors;
4594 int success = 0;
4595 int first_slot = slot;
4596
4597 if (s > (PAGE_SIZE >> 9))
4598 s = PAGE_SIZE >> 9;
4599
4600 while (!success) {
e0ee7785 4601 int d = r10b->devs[slot].devnum;
3ea7daa5
N
4602 struct md_rdev *rdev = conf->mirrors[d].rdev;
4603 sector_t addr;
4604 if (rdev == NULL ||
4605 test_bit(Faulty, &rdev->flags) ||
4606 !test_bit(In_sync, &rdev->flags))
4607 goto failed;
4608
e0ee7785 4609 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
3ea7daa5
N
4610 success = sync_page_io(rdev,
4611 addr,
4612 s << 9,
4613 bvec[idx].bv_page,
4614 READ, false);
4615 if (success)
4616 break;
4617 failed:
4618 slot++;
4619 if (slot >= conf->copies)
4620 slot = 0;
4621 if (slot == first_slot)
4622 break;
4623 }
4624 if (!success) {
4625 /* couldn't read this block, must give up */
4626 set_bit(MD_RECOVERY_INTR,
4627 &mddev->recovery);
4628 return -EIO;
4629 }
4630 sectors -= s;
4631 idx++;
4632 }
4633 return 0;
4634}
4635
4636static void end_reshape_write(struct bio *bio, int error)
4637{
4638 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4639 struct r10bio *r10_bio = bio->bi_private;
4640 struct mddev *mddev = r10_bio->mddev;
4641 struct r10conf *conf = mddev->private;
4642 int d;
4643 int slot;
4644 int repl;
4645 struct md_rdev *rdev = NULL;
4646
4647 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4648 if (repl)
4649 rdev = conf->mirrors[d].replacement;
4650 if (!rdev) {
4651 smp_mb();
4652 rdev = conf->mirrors[d].rdev;
4653 }
4654
4655 if (!uptodate) {
4656 /* FIXME should record badblock */
4657 md_error(mddev, rdev);
4658 }
4659
4660 rdev_dec_pending(rdev, mddev);
4661 end_reshape_request(r10_bio);
4662}
4663
4664static void end_reshape_request(struct r10bio *r10_bio)
4665{
4666 if (!atomic_dec_and_test(&r10_bio->remaining))
4667 return;
4668 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4669 bio_put(r10_bio->master_bio);
4670 put_buf(r10_bio);
4671}
4672
4673static void raid10_finish_reshape(struct mddev *mddev)
4674{
4675 struct r10conf *conf = mddev->private;
4676
4677 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4678 return;
4679
4680 if (mddev->delta_disks > 0) {
4681 sector_t size = raid10_size(mddev, 0, 0);
4682 md_set_array_sectors(mddev, size);
4683 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4684 mddev->recovery_cp = mddev->resync_max_sectors;
4685 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4686 }
4687 mddev->resync_max_sectors = size;
4688 set_capacity(mddev->gendisk, mddev->array_sectors);
4689 revalidate_disk(mddev->gendisk);
63aced61
N
4690 } else {
4691 int d;
4692 for (d = conf->geo.raid_disks ;
4693 d < conf->geo.raid_disks - mddev->delta_disks;
4694 d++) {
4695 struct md_rdev *rdev = conf->mirrors[d].rdev;
4696 if (rdev)
4697 clear_bit(In_sync, &rdev->flags);
4698 rdev = conf->mirrors[d].replacement;
4699 if (rdev)
4700 clear_bit(In_sync, &rdev->flags);
4701 }
3ea7daa5
N
4702 }
4703 mddev->layout = mddev->new_layout;
4704 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4705 mddev->reshape_position = MaxSector;
4706 mddev->delta_disks = 0;
4707 mddev->reshape_backwards = 0;
4708}
4709
84fc4b56 4710static struct md_personality raid10_personality =
1da177e4
LT
4711{
4712 .name = "raid10",
2604b703 4713 .level = 10,
1da177e4
LT
4714 .owner = THIS_MODULE,
4715 .make_request = make_request,
4716 .run = run,
4717 .stop = stop,
4718 .status = status,
4719 .error_handler = error,
4720 .hot_add_disk = raid10_add_disk,
4721 .hot_remove_disk= raid10_remove_disk,
4722 .spare_active = raid10_spare_active,
4723 .sync_request = sync_request,
6cce3b23 4724 .quiesce = raid10_quiesce,
80c3a6ce 4725 .size = raid10_size,
006a09a0 4726 .resize = raid10_resize,
dab8b292 4727 .takeover = raid10_takeover,
3ea7daa5
N
4728 .check_reshape = raid10_check_reshape,
4729 .start_reshape = raid10_start_reshape,
4730 .finish_reshape = raid10_finish_reshape,
1da177e4
LT
4731};
4732
4733static int __init raid_init(void)
4734{
2604b703 4735 return register_md_personality(&raid10_personality);
1da177e4
LT
4736}
4737
4738static void raid_exit(void)
4739{
2604b703 4740 unregister_md_personality(&raid10_personality);
1da177e4
LT
4741}
4742
4743module_init(raid_init);
4744module_exit(raid_exit);
4745MODULE_LICENSE("GPL");
0efb9e61 4746MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4747MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4748MODULE_ALIAS("md-raid10");
2604b703 4749MODULE_ALIAS("md-level-10");
34db0cd6
N
4750
4751module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);