md/raid5: call roundup_pow_of_two in raid5_run
[linux-2.6-block.git] / drivers / md / raid10.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
25985edc 9 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
10 */
11
5a0e3ad6 12#include <linux/slab.h>
25570727 13#include <linux/delay.h>
bff61975 14#include <linux/blkdev.h>
056075c7 15#include <linux/module.h>
bff61975 16#include <linux/seq_file.h>
8bda470e 17#include <linux/ratelimit.h>
3ea7daa5 18#include <linux/kthread.h>
afd75628 19#include <linux/raid/md_p.h>
109e3765 20#include <trace/events/block.h>
43b2e5d8 21#include "md.h"
ef740c37 22#include "raid10.h"
dab8b292 23#include "raid0.h"
935fe098 24#include "md-bitmap.h"
1da177e4
LT
25
26/*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
c93983bf 33 * far_offset (stored in bit 16 of layout )
475901af 34 * use_far_sets (stored in bit 17 of layout )
8bce6d35 35 * use_far_sets_bugfixed (stored in bit 18 of layout )
1da177e4 36 *
475901af
JB
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
c93983bf
N
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 * A B C D A B C D E
59 * ... ...
60 * D A B C E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
1da177e4
LT
65 */
66
e879a879
N
67static void allow_barrier(struct r10conf *conf);
68static void lower_barrier(struct r10conf *conf);
635f6416 69static int _enough(struct r10conf *conf, int previous, int ignore);
1919cbb2 70static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 int *skipped);
73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
4246a0b6 74static void end_reshape_write(struct bio *bio);
3ea7daa5 75static void end_reshape(struct r10conf *conf);
0a27ec96 76
578b54ad
N
77#define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
fb0eb5df
ML
80#include "raid1-10.c"
81
f0250618
ML
82/*
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
85 */
86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87{
88 return get_resync_pages(bio)->raid_bio;
89}
90
dd0fc66f 91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 92{
e879a879 93 struct r10conf *conf = data;
c2968285 94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
1da177e4 95
69335ef3
N
96 /* allocate a r10bio with room for raid_disks entries in the
97 * bios array */
7eaceacc 98 return kzalloc(size, gfp_flags);
1da177e4
LT
99}
100
8db87912 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
0310fa21
N
102/* amount of memory to reserve for resync requests */
103#define RESYNC_WINDOW (1024*1024)
104/* maximum number of concurrent requests, memory permitting */
105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
4b242e97 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
8db87912 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4
LT
108
109/*
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
114 *
115 */
dd0fc66f 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 117{
e879a879 118 struct r10conf *conf = data;
9f2c9d12 119 struct r10bio *r10_bio;
1da177e4 120 struct bio *bio;
f0250618
ML
121 int j;
122 int nalloc, nalloc_rp;
123 struct resync_pages *rps;
1da177e4
LT
124
125 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 126 if (!r10_bio)
1da177e4 127 return NULL;
1da177e4 128
3ea7daa5
N
129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
131 nalloc = conf->copies; /* resync */
132 else
133 nalloc = 2; /* recovery */
134
f0250618
ML
135 /* allocate once for all bios */
136 if (!conf->have_replacement)
137 nalloc_rp = nalloc;
138 else
139 nalloc_rp = nalloc * 2;
6da2ec56 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
f0250618
ML
141 if (!rps)
142 goto out_free_r10bio;
143
1da177e4
LT
144 /*
145 * Allocate bios.
146 */
147 for (j = nalloc ; j-- ; ) {
6746557f 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
149 if (!bio)
150 goto out_free_bio;
151 r10_bio->devs[j].bio = bio;
69335ef3
N
152 if (!conf->have_replacement)
153 continue;
154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 if (!bio)
156 goto out_free_bio;
157 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
158 }
159 /*
160 * Allocate RESYNC_PAGES data pages and attach them
161 * where needed.
162 */
f0250618 163 for (j = 0; j < nalloc; j++) {
69335ef3 164 struct bio *rbio = r10_bio->devs[j].repl_bio;
f0250618
ML
165 struct resync_pages *rp, *rp_repl;
166
167 rp = &rps[j];
168 if (rbio)
169 rp_repl = &rps[nalloc + j];
170
1da177e4 171 bio = r10_bio->devs[j].bio;
f0250618
ML
172
173 if (!j || test_bit(MD_RECOVERY_SYNC,
174 &conf->mddev->recovery)) {
175 if (resync_alloc_pages(rp, gfp_flags))
1da177e4 176 goto out_free_pages;
f0250618
ML
177 } else {
178 memcpy(rp, &rps[0], sizeof(*rp));
179 resync_get_all_pages(rp);
180 }
1da177e4 181
f0250618
ML
182 rp->raid_bio = r10_bio;
183 bio->bi_private = rp;
184 if (rbio) {
185 memcpy(rp_repl, rp, sizeof(*rp));
186 rbio->bi_private = rp_repl;
1da177e4
LT
187 }
188 }
189
190 return r10_bio;
191
192out_free_pages:
f0250618 193 while (--j >= 0)
45422b70 194 resync_free_pages(&rps[j]);
f0250618 195
5fdd2cf8 196 j = 0;
1da177e4 197out_free_bio:
5fdd2cf8 198 for ( ; j < nalloc; j++) {
199 if (r10_bio->devs[j].bio)
200 bio_put(r10_bio->devs[j].bio);
69335ef3
N
201 if (r10_bio->devs[j].repl_bio)
202 bio_put(r10_bio->devs[j].repl_bio);
203 }
f0250618
ML
204 kfree(rps);
205out_free_r10bio:
c7afa803 206 rbio_pool_free(r10_bio, conf);
1da177e4
LT
207 return NULL;
208}
209
210static void r10buf_pool_free(void *__r10_bio, void *data)
211{
e879a879 212 struct r10conf *conf = data;
9f2c9d12 213 struct r10bio *r10bio = __r10_bio;
1da177e4 214 int j;
f0250618 215 struct resync_pages *rp = NULL;
1da177e4 216
f0250618 217 for (j = conf->copies; j--; ) {
1da177e4 218 struct bio *bio = r10bio->devs[j].bio;
f0250618 219
eb81b328
GJ
220 if (bio) {
221 rp = get_resync_pages(bio);
222 resync_free_pages(rp);
223 bio_put(bio);
224 }
f0250618 225
69335ef3
N
226 bio = r10bio->devs[j].repl_bio;
227 if (bio)
228 bio_put(bio);
1da177e4 229 }
f0250618
ML
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
c7afa803 234 rbio_pool_free(r10bio, conf);
1da177e4
LT
235}
236
e879a879 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
238{
239 int i;
240
c2968285 241 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 242 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 243 if (!BIO_SPECIAL(*bio))
1da177e4
LT
244 bio_put(*bio);
245 *bio = NULL;
69335ef3
N
246 bio = &r10_bio->devs[i].repl_bio;
247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
1da177e4
LT
250 }
251}
252
9f2c9d12 253static void free_r10bio(struct r10bio *r10_bio)
1da177e4 254{
e879a879 255 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 256
1da177e4 257 put_all_bios(conf, r10_bio);
afeee514 258 mempool_free(r10_bio, &conf->r10bio_pool);
1da177e4
LT
259}
260
9f2c9d12 261static void put_buf(struct r10bio *r10_bio)
1da177e4 262{
e879a879 263 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 264
afeee514 265 mempool_free(r10_bio, &conf->r10buf_pool);
1da177e4 266
0a27ec96 267 lower_barrier(conf);
1da177e4
LT
268}
269
9f2c9d12 270static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
271{
272 unsigned long flags;
fd01b88c 273 struct mddev *mddev = r10_bio->mddev;
e879a879 274 struct r10conf *conf = mddev->private;
1da177e4
LT
275
276 spin_lock_irqsave(&conf->device_lock, flags);
277 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 278 conf->nr_queued ++;
1da177e4
LT
279 spin_unlock_irqrestore(&conf->device_lock, flags);
280
388667be
AJ
281 /* wake up frozen array... */
282 wake_up(&conf->wait_barrier);
283
1da177e4
LT
284 md_wakeup_thread(mddev->thread);
285}
286
287/*
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
290 * cache layer.
291 */
9f2c9d12 292static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
293{
294 struct bio *bio = r10_bio->master_bio;
e879a879 295 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 296
856e08e2 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4e4cbee9 298 bio->bi_status = BLK_STS_IOERR;
fd16f2e8 299
528bc2cf
GJ
300 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301 bio_end_io_acct(bio, r10_bio->start_time);
fd16f2e8
N
302 bio_endio(bio);
303 /*
304 * Wake up any possible resync thread that waits for the device
305 * to go idle.
306 */
307 allow_barrier(conf);
308
1da177e4
LT
309 free_r10bio(r10_bio);
310}
311
312/*
313 * Update disk head position estimator based on IRQ completion info.
314 */
9f2c9d12 315static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 316{
e879a879 317 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
318
319 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320 r10_bio->devs[slot].addr + (r10_bio->sectors);
321}
322
778ca018
NK
323/*
324 * Find the disk number which triggered given bio
325 */
e879a879 326static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 327 struct bio *bio, int *slotp, int *replp)
778ca018
NK
328{
329 int slot;
69335ef3 330 int repl = 0;
778ca018 331
c2968285 332 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
778ca018
NK
333 if (r10_bio->devs[slot].bio == bio)
334 break;
69335ef3
N
335 if (r10_bio->devs[slot].repl_bio == bio) {
336 repl = 1;
337 break;
338 }
339 }
778ca018 340
778ca018
NK
341 update_head_pos(slot, r10_bio);
342
749c55e9
N
343 if (slotp)
344 *slotp = slot;
69335ef3
N
345 if (replp)
346 *replp = repl;
778ca018
NK
347 return r10_bio->devs[slot].devnum;
348}
349
4246a0b6 350static void raid10_end_read_request(struct bio *bio)
1da177e4 351{
4e4cbee9 352 int uptodate = !bio->bi_status;
9f2c9d12 353 struct r10bio *r10_bio = bio->bi_private;
a0e764c5 354 int slot;
abbf098e 355 struct md_rdev *rdev;
e879a879 356 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 357
1da177e4 358 slot = r10_bio->read_slot;
abbf098e 359 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
360 /*
361 * this branch is our 'one mirror IO has finished' event handler:
362 */
4443ae10
N
363 update_head_pos(slot, r10_bio);
364
365 if (uptodate) {
1da177e4
LT
366 /*
367 * Set R10BIO_Uptodate in our master bio, so that
368 * we will return a good error code to the higher
369 * levels even if IO on some other mirrored buffer fails.
370 *
371 * The 'master' represents the composite IO operation to
372 * user-side. So if something waits for IO, then it will
373 * wait for the 'master' bio.
374 */
375 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
376 } else {
377 /* If all other devices that store this block have
378 * failed, we want to return the error upwards rather
379 * than fail the last device. Here we redefine
380 * "uptodate" to mean "Don't want to retry"
381 */
635f6416
N
382 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
383 rdev->raid_disk))
fae8cc5e 384 uptodate = 1;
fae8cc5e
N
385 }
386 if (uptodate) {
1da177e4 387 raid_end_bio_io(r10_bio);
abbf098e 388 rdev_dec_pending(rdev, conf->mddev);
4443ae10 389 } else {
1da177e4 390 /*
7c4e06ff 391 * oops, read error - keep the refcount on the rdev
1da177e4
LT
392 */
393 char b[BDEVNAME_SIZE];
08464e09 394 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
8bda470e 395 mdname(conf->mddev),
abbf098e 396 bdevname(rdev->bdev, b),
8bda470e 397 (unsigned long long)r10_bio->sector);
856e08e2 398 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
399 reschedule_retry(r10_bio);
400 }
1da177e4
LT
401}
402
9f2c9d12 403static void close_write(struct r10bio *r10_bio)
bd870a16
N
404{
405 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
406 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
407 r10_bio->sectors,
408 !test_bit(R10BIO_Degraded, &r10_bio->state),
409 0);
bd870a16
N
410 md_write_end(r10_bio->mddev);
411}
412
9f2c9d12 413static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
414{
415 if (atomic_dec_and_test(&r10_bio->remaining)) {
416 if (test_bit(R10BIO_WriteError, &r10_bio->state))
417 reschedule_retry(r10_bio);
418 else {
419 close_write(r10_bio);
420 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421 reschedule_retry(r10_bio);
422 else
423 raid_end_bio_io(r10_bio);
424 }
425 }
426}
427
4246a0b6 428static void raid10_end_write_request(struct bio *bio)
1da177e4 429{
9f2c9d12 430 struct r10bio *r10_bio = bio->bi_private;
778ca018 431 int dev;
749c55e9 432 int dec_rdev = 1;
e879a879 433 struct r10conf *conf = r10_bio->mddev->private;
475b0321 434 int slot, repl;
4ca40c2c 435 struct md_rdev *rdev = NULL;
1919cbb2 436 struct bio *to_put = NULL;
579ed34f
SL
437 bool discard_error;
438
4e4cbee9 439 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 440
475b0321 441 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 442
475b0321
N
443 if (repl)
444 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
445 if (!rdev) {
446 smp_rmb();
447 repl = 0;
475b0321 448 rdev = conf->mirrors[dev].rdev;
4ca40c2c 449 }
1da177e4
LT
450 /*
451 * this branch is our 'one mirror IO has finished' event handler:
452 */
4e4cbee9 453 if (bio->bi_status && !discard_error) {
475b0321
N
454 if (repl)
455 /* Never record new bad blocks to replacement,
456 * just fail it.
457 */
458 md_error(rdev->mddev, rdev);
459 else {
460 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
461 if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 set_bit(MD_RECOVERY_NEEDED,
463 &rdev->mddev->recovery);
1919cbb2 464
475b0321 465 dec_rdev = 0;
1919cbb2
N
466 if (test_bit(FailFast, &rdev->flags) &&
467 (bio->bi_opf & MD_FAILFAST)) {
468 md_error(rdev->mddev, rdev);
7cee6d4e
YY
469 }
470
471 /*
472 * When the device is faulty, it is not necessary to
473 * handle write error.
7cee6d4e
YY
474 */
475 if (!test_bit(Faulty, &rdev->flags))
1919cbb2 476 set_bit(R10BIO_WriteError, &r10_bio->state);
7cee6d4e 477 else {
5ba03936
WS
478 /* Fail the request */
479 set_bit(R10BIO_Degraded, &r10_bio->state);
7cee6d4e
YY
480 r10_bio->devs[slot].bio = NULL;
481 to_put = bio;
482 dec_rdev = 1;
483 }
475b0321 484 }
749c55e9 485 } else {
1da177e4
LT
486 /*
487 * Set R10BIO_Uptodate in our master bio, so that
488 * we will return a good error code for to the higher
489 * levels even if IO on some other mirrored buffer fails.
490 *
491 * The 'master' represents the composite IO operation to
492 * user-side. So if something waits for IO, then it will
493 * wait for the 'master' bio.
494 */
749c55e9
N
495 sector_t first_bad;
496 int bad_sectors;
497
3056e3ae
AL
498 /*
499 * Do not set R10BIO_Uptodate if the current device is
500 * rebuilding or Faulty. This is because we cannot use
501 * such device for properly reading the data back (we could
502 * potentially use it, if the current write would have felt
503 * before rdev->recovery_offset, but for simplicity we don't
504 * check this here.
505 */
506 if (test_bit(In_sync, &rdev->flags) &&
507 !test_bit(Faulty, &rdev->flags))
508 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 509
749c55e9 510 /* Maybe we can clear some bad blocks. */
475b0321 511 if (is_badblock(rdev,
749c55e9
N
512 r10_bio->devs[slot].addr,
513 r10_bio->sectors,
579ed34f 514 &first_bad, &bad_sectors) && !discard_error) {
749c55e9 515 bio_put(bio);
475b0321
N
516 if (repl)
517 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
518 else
519 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
520 dec_rdev = 0;
521 set_bit(R10BIO_MadeGood, &r10_bio->state);
522 }
523 }
524
1da177e4
LT
525 /*
526 *
527 * Let's see if all mirrored write operations have finished
528 * already.
529 */
19d5f834 530 one_write_done(r10_bio);
749c55e9 531 if (dec_rdev)
884162df 532 rdev_dec_pending(rdev, conf->mddev);
1919cbb2
N
533 if (to_put)
534 bio_put(to_put);
1da177e4
LT
535}
536
1da177e4
LT
537/*
538 * RAID10 layout manager
25985edc 539 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
540 * parameters: near_copies and far_copies.
541 * near_copies * far_copies must be <= raid_disks.
542 * Normally one of these will be 1.
543 * If both are 1, we get raid0.
544 * If near_copies == raid_disks, we get raid1.
545 *
25985edc 546 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
547 * first chunk, followed by near_copies copies of the next chunk and
548 * so on.
549 * If far_copies > 1, then after 1/far_copies of the array has been assigned
550 * as described above, we start again with a device offset of near_copies.
551 * So we effectively have another copy of the whole array further down all
552 * the drives, but with blocks on different drives.
553 * With this layout, and block is never stored twice on the one device.
554 *
555 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 556 * on each device that it is on.
1da177e4
LT
557 *
558 * raid10_find_virt does the reverse mapping, from a device and a
559 * sector offset to a virtual address
560 */
561
f8c9e74f 562static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
563{
564 int n,f;
565 sector_t sector;
566 sector_t chunk;
567 sector_t stripe;
568 int dev;
1da177e4 569 int slot = 0;
9a3152ab
JB
570 int last_far_set_start, last_far_set_size;
571
572 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573 last_far_set_start *= geo->far_set_size;
574
575 last_far_set_size = geo->far_set_size;
576 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
577
578 /* now calculate first sector/dev */
5cf00fcd
N
579 chunk = r10bio->sector >> geo->chunk_shift;
580 sector = r10bio->sector & geo->chunk_mask;
1da177e4 581
5cf00fcd 582 chunk *= geo->near_copies;
1da177e4 583 stripe = chunk;
5cf00fcd
N
584 dev = sector_div(stripe, geo->raid_disks);
585 if (geo->far_offset)
586 stripe *= geo->far_copies;
1da177e4 587
5cf00fcd 588 sector += stripe << geo->chunk_shift;
1da177e4
LT
589
590 /* and calculate all the others */
5cf00fcd 591 for (n = 0; n < geo->near_copies; n++) {
1da177e4 592 int d = dev;
475901af 593 int set;
1da177e4 594 sector_t s = sector;
1da177e4 595 r10bio->devs[slot].devnum = d;
4c0ca26b 596 r10bio->devs[slot].addr = s;
1da177e4
LT
597 slot++;
598
5cf00fcd 599 for (f = 1; f < geo->far_copies; f++) {
475901af 600 set = d / geo->far_set_size;
5cf00fcd 601 d += geo->near_copies;
475901af 602
9a3152ab
JB
603 if ((geo->raid_disks % geo->far_set_size) &&
604 (d > last_far_set_start)) {
605 d -= last_far_set_start;
606 d %= last_far_set_size;
607 d += last_far_set_start;
608 } else {
609 d %= geo->far_set_size;
610 d += geo->far_set_size * set;
611 }
5cf00fcd 612 s += geo->stride;
1da177e4
LT
613 r10bio->devs[slot].devnum = d;
614 r10bio->devs[slot].addr = s;
615 slot++;
616 }
617 dev++;
5cf00fcd 618 if (dev >= geo->raid_disks) {
1da177e4 619 dev = 0;
5cf00fcd 620 sector += (geo->chunk_mask + 1);
1da177e4
LT
621 }
622 }
f8c9e74f
N
623}
624
625static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
626{
627 struct geom *geo = &conf->geo;
628
629 if (conf->reshape_progress != MaxSector &&
630 ((r10bio->sector >= conf->reshape_progress) !=
631 conf->mddev->reshape_backwards)) {
632 set_bit(R10BIO_Previous, &r10bio->state);
633 geo = &conf->prev;
634 } else
635 clear_bit(R10BIO_Previous, &r10bio->state);
636
637 __raid10_find_phys(geo, r10bio);
1da177e4
LT
638}
639
e879a879 640static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
641{
642 sector_t offset, chunk, vchunk;
f8c9e74f
N
643 /* Never use conf->prev as this is only called during resync
644 * or recovery, so reshape isn't happening
645 */
5cf00fcd 646 struct geom *geo = &conf->geo;
475901af
JB
647 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648 int far_set_size = geo->far_set_size;
9a3152ab
JB
649 int last_far_set_start;
650
651 if (geo->raid_disks % geo->far_set_size) {
652 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653 last_far_set_start *= geo->far_set_size;
654
655 if (dev >= last_far_set_start) {
656 far_set_size = geo->far_set_size;
657 far_set_size += (geo->raid_disks % geo->far_set_size);
658 far_set_start = last_far_set_start;
659 }
660 }
1da177e4 661
5cf00fcd
N
662 offset = sector & geo->chunk_mask;
663 if (geo->far_offset) {
c93983bf 664 int fc;
5cf00fcd
N
665 chunk = sector >> geo->chunk_shift;
666 fc = sector_div(chunk, geo->far_copies);
667 dev -= fc * geo->near_copies;
475901af
JB
668 if (dev < far_set_start)
669 dev += far_set_size;
c93983bf 670 } else {
5cf00fcd
N
671 while (sector >= geo->stride) {
672 sector -= geo->stride;
475901af
JB
673 if (dev < (geo->near_copies + far_set_start))
674 dev += far_set_size - geo->near_copies;
c93983bf 675 else
5cf00fcd 676 dev -= geo->near_copies;
c93983bf 677 }
5cf00fcd 678 chunk = sector >> geo->chunk_shift;
c93983bf 679 }
5cf00fcd
N
680 vchunk = chunk * geo->raid_disks + dev;
681 sector_div(vchunk, geo->near_copies);
682 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
683}
684
1da177e4
LT
685/*
686 * This routine returns the disk from which the requested read should
687 * be done. There is a per-array 'next expected sequential IO' sector
688 * number - if this matches on the next IO then we use the last disk.
689 * There is also a per-disk 'last know head position' sector that is
690 * maintained from IRQ contexts, both the normal and the resync IO
691 * completion handlers update this position correctly. If there is no
692 * perfect sequential match then we pick the disk whose head is closest.
693 *
694 * If there are 2 mirrors in the same 2 devices, performance degrades
695 * because position is mirror, not device based.
696 *
697 * The rdev for the device selected will have nr_pending incremented.
698 */
699
700/*
701 * FIXME: possibly should rethink readbalancing and do it differently
702 * depending on near_copies / far_copies geometry.
703 */
96c3fd1f
N
704static struct md_rdev *read_balance(struct r10conf *conf,
705 struct r10bio *r10_bio,
706 int *max_sectors)
1da177e4 707{
af3a2cd6 708 const sector_t this_sector = r10_bio->sector;
56d99121 709 int disk, slot;
856e08e2
N
710 int sectors = r10_bio->sectors;
711 int best_good_sectors;
56d99121 712 sector_t new_distance, best_dist;
e9eeba28 713 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
56d99121 714 int do_balance;
e9eeba28
GJ
715 int best_dist_slot, best_pending_slot;
716 bool has_nonrot_disk = false;
717 unsigned int min_pending;
5cf00fcd 718 struct geom *geo = &conf->geo;
1da177e4
LT
719
720 raid10_find_phys(conf, r10_bio);
721 rcu_read_lock();
e9eeba28
GJ
722 best_dist_slot = -1;
723 min_pending = UINT_MAX;
724 best_dist_rdev = NULL;
725 best_pending_rdev = NULL;
56d99121 726 best_dist = MaxSector;
856e08e2 727 best_good_sectors = 0;
56d99121 728 do_balance = 1;
8d3ca83d 729 clear_bit(R10BIO_FailFast, &r10_bio->state);
1da177e4
LT
730 /*
731 * Check if we can balance. We can balance on the whole
6cce3b23
N
732 * device if no resync is going on (recovery is ok), or below
733 * the resync window. We take the first readable disk when
734 * above the resync window.
1da177e4 735 */
d4098c72
GJ
736 if ((conf->mddev->recovery_cp < MaxSector
737 && (this_sector + sectors >= conf->next_resync)) ||
738 (mddev_is_clustered(conf->mddev) &&
739 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740 this_sector + sectors)))
56d99121 741 do_balance = 0;
1da177e4 742
56d99121 743 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
744 sector_t first_bad;
745 int bad_sectors;
746 sector_t dev_sector;
e9eeba28
GJ
747 unsigned int pending;
748 bool nonrot;
856e08e2 749
56d99121
N
750 if (r10_bio->devs[slot].bio == IO_BLOCKED)
751 continue;
1da177e4 752 disk = r10_bio->devs[slot].devnum;
abbf098e
N
753 rdev = rcu_dereference(conf->mirrors[disk].replacement);
754 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615 757 if (rdev == NULL ||
8ae12666 758 test_bit(Faulty, &rdev->flags))
abbf098e
N
759 continue;
760 if (!test_bit(In_sync, &rdev->flags) &&
761 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
762 continue;
763
856e08e2
N
764 dev_sector = r10_bio->devs[slot].addr;
765 if (is_badblock(rdev, dev_sector, sectors,
766 &first_bad, &bad_sectors)) {
767 if (best_dist < MaxSector)
768 /* Already have a better slot */
769 continue;
770 if (first_bad <= dev_sector) {
771 /* Cannot read here. If this is the
772 * 'primary' device, then we must not read
773 * beyond 'bad_sectors' from another device.
774 */
775 bad_sectors -= (dev_sector - first_bad);
776 if (!do_balance && sectors > bad_sectors)
777 sectors = bad_sectors;
778 if (best_good_sectors > sectors)
779 best_good_sectors = sectors;
780 } else {
781 sector_t good_sectors =
782 first_bad - dev_sector;
783 if (good_sectors > best_good_sectors) {
784 best_good_sectors = good_sectors;
e9eeba28
GJ
785 best_dist_slot = slot;
786 best_dist_rdev = rdev;
856e08e2
N
787 }
788 if (!do_balance)
789 /* Must read from here */
790 break;
791 }
792 continue;
793 } else
794 best_good_sectors = sectors;
795
56d99121
N
796 if (!do_balance)
797 break;
1da177e4 798
e9eeba28
GJ
799 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800 has_nonrot_disk |= nonrot;
801 pending = atomic_read(&rdev->nr_pending);
802 if (min_pending > pending && nonrot) {
803 min_pending = pending;
804 best_pending_slot = slot;
805 best_pending_rdev = rdev;
806 }
807
808 if (best_dist_slot >= 0)
8d3ca83d
N
809 /* At least 2 disks to choose from so failfast is OK */
810 set_bit(R10BIO_FailFast, &r10_bio->state);
22dfdf52
N
811 /* This optimisation is debatable, and completely destroys
812 * sequential read speed for 'far copies' arrays. So only
813 * keep it for 'near' arrays, and review those later.
814 */
e9eeba28 815 if (geo->near_copies > 1 && !pending)
8d3ca83d 816 new_distance = 0;
8ed3a195
KS
817
818 /* for far > 1 always use the lowest address */
8d3ca83d 819 else if (geo->far_copies > 1)
56d99121 820 new_distance = r10_bio->devs[slot].addr;
8ed3a195 821 else
56d99121
N
822 new_distance = abs(r10_bio->devs[slot].addr -
823 conf->mirrors[disk].head_position);
e9eeba28 824
56d99121
N
825 if (new_distance < best_dist) {
826 best_dist = new_distance;
e9eeba28
GJ
827 best_dist_slot = slot;
828 best_dist_rdev = rdev;
1da177e4
LT
829 }
830 }
abbf098e 831 if (slot >= conf->copies) {
e9eeba28
GJ
832 if (has_nonrot_disk) {
833 slot = best_pending_slot;
834 rdev = best_pending_rdev;
835 } else {
836 slot = best_dist_slot;
837 rdev = best_dist_rdev;
838 }
abbf098e 839 }
1da177e4 840
56d99121 841 if (slot >= 0) {
56d99121 842 atomic_inc(&rdev->nr_pending);
56d99121
N
843 r10_bio->read_slot = slot;
844 } else
96c3fd1f 845 rdev = NULL;
1da177e4 846 rcu_read_unlock();
856e08e2 847 *max_sectors = best_good_sectors;
1da177e4 848
96c3fd1f 849 return rdev;
1da177e4
LT
850}
851
e879a879 852static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
853{
854 /* Any writes that have been queued but are awaiting
855 * bitmap updates get flushed here.
a35e63ef 856 */
a35e63ef
N
857 spin_lock_irq(&conf->device_lock);
858
859 if (conf->pending_bio_list.head) {
18022a1b 860 struct blk_plug plug;
a35e63ef 861 struct bio *bio;
18022a1b 862
a35e63ef 863 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 864 conf->pending_count = 0;
a35e63ef 865 spin_unlock_irq(&conf->device_lock);
474beb57
N
866
867 /*
868 * As this is called in a wait_event() loop (see freeze_array),
869 * current->state might be TASK_UNINTERRUPTIBLE which will
870 * cause a warning when we prepare to wait again. As it is
871 * rare that this path is taken, it is perfectly safe to force
872 * us to go around the wait_event() loop again, so the warning
873 * is a false-positive. Silence the warning by resetting
874 * thread state
875 */
876 __set_current_state(TASK_RUNNING);
877
18022a1b 878 blk_start_plug(&plug);
a35e63ef
N
879 /* flush any pending bitmap writes to disk
880 * before proceeding w/ I/O */
e64e4018 881 md_bitmap_unplug(conf->mddev->bitmap);
34db0cd6 882 wake_up(&conf->wait_barrier);
a35e63ef
N
883
884 while (bio) { /* submit pending writes */
885 struct bio *next = bio->bi_next;
309dca30 886 struct md_rdev *rdev = (void*)bio->bi_bdev;
a35e63ef 887 bio->bi_next = NULL;
74d46992 888 bio_set_dev(bio, rdev->bdev);
a9ae93c8 889 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 890 bio_io_error(bio);
a9ae93c8 891 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
309dca30 892 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
532a2a3f 893 /* Just ignore it */
4246a0b6 894 bio_endio(bio);
532a2a3f 895 else
ed00aabd 896 submit_bio_noacct(bio);
a35e63ef
N
897 bio = next;
898 }
18022a1b 899 blk_finish_plug(&plug);
a35e63ef
N
900 } else
901 spin_unlock_irq(&conf->device_lock);
a35e63ef 902}
7eaceacc 903
0a27ec96
N
904/* Barriers....
905 * Sometimes we need to suspend IO while we do something else,
906 * either some resync/recovery, or reconfigure the array.
907 * To do this we raise a 'barrier'.
908 * The 'barrier' is a counter that can be raised multiple times
909 * to count how many activities are happening which preclude
910 * normal IO.
911 * We can only raise the barrier if there is no pending IO.
912 * i.e. if nr_pending == 0.
913 * We choose only to raise the barrier if no-one is waiting for the
914 * barrier to go down. This means that as soon as an IO request
915 * is ready, no other operations which require a barrier will start
916 * until the IO request has had a chance.
917 *
918 * So: regular IO calls 'wait_barrier'. When that returns there
919 * is no backgroup IO happening, It must arrange to call
920 * allow_barrier when it has finished its IO.
921 * backgroup IO calls must call raise_barrier. Once that returns
922 * there is no normal IO happeing. It must arrange to call
923 * lower_barrier when the particular background IO completes.
1da177e4 924 */
1da177e4 925
e879a879 926static void raise_barrier(struct r10conf *conf, int force)
1da177e4 927{
6cce3b23 928 BUG_ON(force && !conf->barrier);
1da177e4 929 spin_lock_irq(&conf->resync_lock);
0a27ec96 930
6cce3b23
N
931 /* Wait until no block IO is waiting (unless 'force') */
932 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 933 conf->resync_lock);
0a27ec96
N
934
935 /* block any new IO from starting */
936 conf->barrier++;
937
c3b328ac 938 /* Now wait for all pending IO to complete */
0a27ec96 939 wait_event_lock_irq(conf->wait_barrier,
0e5313e2 940 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
eed8c02e 941 conf->resync_lock);
0a27ec96
N
942
943 spin_unlock_irq(&conf->resync_lock);
944}
945
e879a879 946static void lower_barrier(struct r10conf *conf)
0a27ec96
N
947{
948 unsigned long flags;
949 spin_lock_irqsave(&conf->resync_lock, flags);
950 conf->barrier--;
951 spin_unlock_irqrestore(&conf->resync_lock, flags);
952 wake_up(&conf->wait_barrier);
953}
954
e879a879 955static void wait_barrier(struct r10conf *conf)
0a27ec96
N
956{
957 spin_lock_irq(&conf->resync_lock);
958 if (conf->barrier) {
fe630de0 959 struct bio_list *bio_list = current->bio_list;
0a27ec96 960 conf->nr_waiting++;
d6b42dcb
N
961 /* Wait for the barrier to drop.
962 * However if there are already pending
963 * requests (preventing the barrier from
964 * rising completely), and the
965 * pre-process bio queue isn't empty,
966 * then don't wait, as we need to empty
967 * that queue to get the nr_pending
968 * count down.
969 */
578b54ad 970 raid10_log(conf->mddev, "wait barrier");
d6b42dcb
N
971 wait_event_lock_irq(conf->wait_barrier,
972 !conf->barrier ||
0e5313e2 973 (atomic_read(&conf->nr_pending) &&
fe630de0
VM
974 bio_list &&
975 (!bio_list_empty(&bio_list[0]) ||
976 !bio_list_empty(&bio_list[1]))) ||
977 /* move on if recovery thread is
978 * blocked by us
979 */
980 (conf->mddev->thread->tsk == current &&
981 test_bit(MD_RECOVERY_RUNNING,
982 &conf->mddev->recovery) &&
983 conf->nr_queued > 0),
eed8c02e 984 conf->resync_lock);
0a27ec96 985 conf->nr_waiting--;
0e5313e2
TM
986 if (!conf->nr_waiting)
987 wake_up(&conf->wait_barrier);
1da177e4 988 }
0e5313e2 989 atomic_inc(&conf->nr_pending);
1da177e4
LT
990 spin_unlock_irq(&conf->resync_lock);
991}
992
e879a879 993static void allow_barrier(struct r10conf *conf)
0a27ec96 994{
0e5313e2
TM
995 if ((atomic_dec_and_test(&conf->nr_pending)) ||
996 (conf->array_freeze_pending))
997 wake_up(&conf->wait_barrier);
0a27ec96
N
998}
999
e2d59925 1000static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1001{
1002 /* stop syncio and normal IO and wait for everything to
f188593e 1003 * go quiet.
4443ae10 1004 * We increment barrier and nr_waiting, and then
e2d59925 1005 * wait until nr_pending match nr_queued+extra
1c830532
N
1006 * This is called in the context of one normal IO request
1007 * that has failed. Thus any sync request that might be pending
1008 * will be blocked by nr_pending, and we need to wait for
1009 * pending IO requests to complete or be queued for re-try.
e2d59925 1010 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1011 * must match the number of pending IOs (nr_pending) before
1012 * we continue.
4443ae10
N
1013 */
1014 spin_lock_irq(&conf->resync_lock);
0e5313e2 1015 conf->array_freeze_pending++;
4443ae10
N
1016 conf->barrier++;
1017 conf->nr_waiting++;
eed8c02e 1018 wait_event_lock_irq_cmd(conf->wait_barrier,
0e5313e2 1019 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
eed8c02e
LC
1020 conf->resync_lock,
1021 flush_pending_writes(conf));
c3b328ac 1022
0e5313e2 1023 conf->array_freeze_pending--;
4443ae10
N
1024 spin_unlock_irq(&conf->resync_lock);
1025}
1026
e879a879 1027static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1028{
1029 /* reverse the effect of the freeze */
1030 spin_lock_irq(&conf->resync_lock);
1031 conf->barrier--;
1032 conf->nr_waiting--;
1033 wake_up(&conf->wait_barrier);
1034 spin_unlock_irq(&conf->resync_lock);
1035}
1036
f8c9e74f
N
1037static sector_t choose_data_offset(struct r10bio *r10_bio,
1038 struct md_rdev *rdev)
1039{
1040 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1041 test_bit(R10BIO_Previous, &r10_bio->state))
1042 return rdev->data_offset;
1043 else
1044 return rdev->new_data_offset;
1045}
1046
57c67df4
N
1047struct raid10_plug_cb {
1048 struct blk_plug_cb cb;
1049 struct bio_list pending;
1050 int pending_cnt;
1051};
1052
1053static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1054{
1055 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1056 cb);
1057 struct mddev *mddev = plug->cb.data;
1058 struct r10conf *conf = mddev->private;
1059 struct bio *bio;
1060
874807a8 1061 if (from_schedule || current->bio_list) {
57c67df4
N
1062 spin_lock_irq(&conf->device_lock);
1063 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1064 conf->pending_count += plug->pending_cnt;
1065 spin_unlock_irq(&conf->device_lock);
ee0b0244 1066 wake_up(&conf->wait_barrier);
57c67df4
N
1067 md_wakeup_thread(mddev->thread);
1068 kfree(plug);
1069 return;
1070 }
1071
1072 /* we aren't scheduling, so we can do the write-out directly. */
1073 bio = bio_list_get(&plug->pending);
e64e4018 1074 md_bitmap_unplug(mddev->bitmap);
57c67df4
N
1075 wake_up(&conf->wait_barrier);
1076
1077 while (bio) { /* submit pending writes */
1078 struct bio *next = bio->bi_next;
309dca30 1079 struct md_rdev *rdev = (void*)bio->bi_bdev;
57c67df4 1080 bio->bi_next = NULL;
74d46992 1081 bio_set_dev(bio, rdev->bdev);
a9ae93c8 1082 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 1083 bio_io_error(bio);
a9ae93c8 1084 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
309dca30 1085 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
32f9f570 1086 /* Just ignore it */
4246a0b6 1087 bio_endio(bio);
32f9f570 1088 else
ed00aabd 1089 submit_bio_noacct(bio);
57c67df4
N
1090 bio = next;
1091 }
1092 kfree(plug);
1093}
1094
caea3c47
GJ
1095/*
1096 * 1. Register the new request and wait if the reconstruction thread has put
1097 * up a bar for new requests. Continue immediately if no resync is active
1098 * currently.
1099 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1100 */
1101static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1102 struct bio *bio, sector_t sectors)
1103{
1104 wait_barrier(conf);
1105 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1106 bio->bi_iter.bi_sector < conf->reshape_progress &&
1107 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1108 raid10_log(conf->mddev, "wait reshape");
1109 allow_barrier(conf);
1110 wait_event(conf->wait_barrier,
1111 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1112 conf->reshape_progress >= bio->bi_iter.bi_sector +
1113 sectors);
1114 wait_barrier(conf);
1115 }
1116}
1117
bb5f1ed7
RL
1118static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1119 struct r10bio *r10_bio)
1da177e4 1120{
e879a879 1121 struct r10conf *conf = mddev->private;
1da177e4 1122 struct bio *read_bio;
bb5f1ed7
RL
1123 const int op = bio_op(bio);
1124 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
bb5f1ed7 1125 int max_sectors;
bb5f1ed7 1126 struct md_rdev *rdev;
545250f2
N
1127 char b[BDEVNAME_SIZE];
1128 int slot = r10_bio->read_slot;
1129 struct md_rdev *err_rdev = NULL;
1130 gfp_t gfp = GFP_NOIO;
bb5f1ed7 1131
93decc56 1132 if (slot >= 0 && r10_bio->devs[slot].rdev) {
545250f2
N
1133 /*
1134 * This is an error retry, but we cannot
1135 * safely dereference the rdev in the r10_bio,
1136 * we must use the one in conf.
1137 * If it has already been disconnected (unlikely)
1138 * we lose the device name in error messages.
1139 */
1140 int disk;
1141 /*
1142 * As we are blocking raid10, it is a little safer to
1143 * use __GFP_HIGH.
1144 */
1145 gfp = GFP_NOIO | __GFP_HIGH;
1146
1147 rcu_read_lock();
1148 disk = r10_bio->devs[slot].devnum;
1149 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1150 if (err_rdev)
1151 bdevname(err_rdev->bdev, b);
1152 else {
1153 strcpy(b, "???");
1154 /* This never gets dereferenced */
1155 err_rdev = r10_bio->devs[slot].rdev;
1156 }
1157 rcu_read_unlock();
1158 }
bb5f1ed7 1159
caea3c47 1160 regular_request_wait(mddev, conf, bio, r10_bio->sectors);
bb5f1ed7
RL
1161 rdev = read_balance(conf, r10_bio, &max_sectors);
1162 if (!rdev) {
545250f2
N
1163 if (err_rdev) {
1164 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1165 mdname(mddev), b,
1166 (unsigned long long)r10_bio->sector);
1167 }
bb5f1ed7
RL
1168 raid_end_bio_io(r10_bio);
1169 return;
1170 }
545250f2
N
1171 if (err_rdev)
1172 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1173 mdname(mddev),
1174 bdevname(rdev->bdev, b),
1175 (unsigned long long)r10_bio->sector);
fc9977dd
N
1176 if (max_sectors < bio_sectors(bio)) {
1177 struct bio *split = bio_split(bio, max_sectors,
afeee514 1178 gfp, &conf->bio_split);
fc9977dd 1179 bio_chain(split, bio);
e820d55c 1180 allow_barrier(conf);
ed00aabd 1181 submit_bio_noacct(bio);
e820d55c 1182 wait_barrier(conf);
fc9977dd
N
1183 bio = split;
1184 r10_bio->master_bio = bio;
1185 r10_bio->sectors = max_sectors;
1186 }
bb5f1ed7
RL
1187 slot = r10_bio->read_slot;
1188
528bc2cf
GJ
1189 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1190 r10_bio->start_time = bio_start_io_acct(bio);
afeee514 1191 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
bb5f1ed7
RL
1192
1193 r10_bio->devs[slot].bio = read_bio;
1194 r10_bio->devs[slot].rdev = rdev;
1195
1196 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1197 choose_data_offset(r10_bio, rdev);
74d46992 1198 bio_set_dev(read_bio, rdev->bdev);
bb5f1ed7
RL
1199 read_bio->bi_end_io = raid10_end_read_request;
1200 bio_set_op_attrs(read_bio, op, do_sync);
1201 if (test_bit(FailFast, &rdev->flags) &&
1202 test_bit(R10BIO_FailFast, &r10_bio->state))
1203 read_bio->bi_opf |= MD_FAILFAST;
1204 read_bio->bi_private = r10_bio;
1205
1206 if (mddev->gendisk)
1c02fca6 1207 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
bb5f1ed7 1208 r10_bio->sector);
ed00aabd 1209 submit_bio_noacct(read_bio);
bb5f1ed7
RL
1210 return;
1211}
1212
27f26a0f
GJ
1213static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1214 struct bio *bio, bool replacement,
fc9977dd 1215 int n_copy)
bb5f1ed7 1216{
796a5cf0 1217 const int op = bio_op(bio);
1eff9d32
JA
1218 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1219 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
6cce3b23 1220 unsigned long flags;
57c67df4
N
1221 struct blk_plug_cb *cb;
1222 struct raid10_plug_cb *plug = NULL;
27f26a0f
GJ
1223 struct r10conf *conf = mddev->private;
1224 struct md_rdev *rdev;
1225 int devnum = r10_bio->devs[n_copy].devnum;
1226 struct bio *mbio;
1227
1228 if (replacement) {
1229 rdev = conf->mirrors[devnum].replacement;
1230 if (rdev == NULL) {
1231 /* Replacement just got moved to main 'rdev' */
1232 smp_mb();
1233 rdev = conf->mirrors[devnum].rdev;
1234 }
1235 } else
1236 rdev = conf->mirrors[devnum].rdev;
1237
afeee514 1238 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
27f26a0f
GJ
1239 if (replacement)
1240 r10_bio->devs[n_copy].repl_bio = mbio;
1241 else
1242 r10_bio->devs[n_copy].bio = mbio;
1243
1244 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1245 choose_data_offset(r10_bio, rdev));
74d46992 1246 bio_set_dev(mbio, rdev->bdev);
27f26a0f
GJ
1247 mbio->bi_end_io = raid10_end_write_request;
1248 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1249 if (!replacement && test_bit(FailFast,
1250 &conf->mirrors[devnum].rdev->flags)
1251 && enough(conf, devnum))
1252 mbio->bi_opf |= MD_FAILFAST;
1253 mbio->bi_private = r10_bio;
1254
1255 if (conf->mddev->gendisk)
1c02fca6 1256 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
27f26a0f
GJ
1257 r10_bio->sector);
1258 /* flush_pending_writes() needs access to the rdev so...*/
309dca30 1259 mbio->bi_bdev = (void *)rdev;
27f26a0f
GJ
1260
1261 atomic_inc(&r10_bio->remaining);
1262
1263 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1264 if (cb)
1265 plug = container_of(cb, struct raid10_plug_cb, cb);
1266 else
1267 plug = NULL;
27f26a0f
GJ
1268 if (plug) {
1269 bio_list_add(&plug->pending, mbio);
1270 plug->pending_cnt++;
1271 } else {
23b245c0 1272 spin_lock_irqsave(&conf->device_lock, flags);
27f26a0f
GJ
1273 bio_list_add(&conf->pending_bio_list, mbio);
1274 conf->pending_count++;
23b245c0 1275 spin_unlock_irqrestore(&conf->device_lock, flags);
27f26a0f 1276 md_wakeup_thread(mddev->thread);
23b245c0 1277 }
27f26a0f
GJ
1278}
1279
f2e7e269
XN
1280static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1281{
1282 int i;
1283 struct r10conf *conf = mddev->private;
1284 struct md_rdev *blocked_rdev;
1285
1286retry_wait:
1287 blocked_rdev = NULL;
1288 rcu_read_lock();
1289 for (i = 0; i < conf->copies; i++) {
1290 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1291 struct md_rdev *rrdev = rcu_dereference(
1292 conf->mirrors[i].replacement);
1293 if (rdev == rrdev)
1294 rrdev = NULL;
1295 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1296 atomic_inc(&rdev->nr_pending);
1297 blocked_rdev = rdev;
1298 break;
1299 }
1300 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1301 atomic_inc(&rrdev->nr_pending);
1302 blocked_rdev = rrdev;
1303 break;
1304 }
1305
1306 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307 sector_t first_bad;
1308 sector_t dev_sector = r10_bio->devs[i].addr;
1309 int bad_sectors;
1310 int is_bad;
1311
1312 /*
1313 * Discard request doesn't care the write result
1314 * so it doesn't need to wait blocked disk here.
1315 */
1316 if (!r10_bio->sectors)
1317 continue;
1318
1319 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1320 &first_bad, &bad_sectors);
1321 if (is_bad < 0) {
1322 /*
1323 * Mustn't write here until the bad block
1324 * is acknowledged
1325 */
1326 atomic_inc(&rdev->nr_pending);
1327 set_bit(BlockedBadBlocks, &rdev->flags);
1328 blocked_rdev = rdev;
1329 break;
1330 }
1331 }
1332 }
1333 rcu_read_unlock();
1334
1335 if (unlikely(blocked_rdev)) {
1336 /* Have to wait for this device to get unblocked, then retry */
1337 allow_barrier(conf);
1338 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1339 __func__, blocked_rdev->raid_disk);
1340 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341 wait_barrier(conf);
1342 goto retry_wait;
1343 }
1344}
1345
27f26a0f
GJ
1346static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347 struct r10bio *r10_bio)
1348{
1349 struct r10conf *conf = mddev->private;
1350 int i;
bb5f1ed7 1351 sector_t sectors;
d4432c23 1352 int max_sectors;
1da177e4 1353
cb8a7a7e
GJ
1354 if ((mddev_is_clustered(mddev) &&
1355 md_cluster_ops->area_resyncing(mddev, WRITE,
1356 bio->bi_iter.bi_sector,
1357 bio_end_sector(bio)))) {
1358 DEFINE_WAIT(w);
1359 for (;;) {
1360 prepare_to_wait(&conf->wait_barrier,
1361 &w, TASK_IDLE);
1362 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1364 break;
1365 schedule();
1366 }
1367 finish_wait(&conf->wait_barrier, &w);
1368 }
1369
fc9977dd 1370 sectors = r10_bio->sectors;
caea3c47 1371 regular_request_wait(mddev, conf, bio, sectors);
3ea7daa5 1372 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3ea7daa5 1373 (mddev->reshape_backwards
4f024f37
KO
1374 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1375 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1376 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1377 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1378 /* Need to update reshape_position in metadata */
1379 mddev->reshape_position = conf->reshape_progress;
2953079c
SL
1380 set_mask_bits(&mddev->sb_flags, 0,
1381 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
3ea7daa5 1382 md_wakeup_thread(mddev->thread);
578b54ad 1383 raid10_log(conf->mddev, "wait reshape metadata");
3ea7daa5 1384 wait_event(mddev->sb_wait,
2953079c 1385 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
3ea7daa5
N
1386
1387 conf->reshape_safe = mddev->reshape_position;
1388 }
1389
34db0cd6
N
1390 if (conf->pending_count >= max_queued_requests) {
1391 md_wakeup_thread(mddev->thread);
578b54ad 1392 raid10_log(mddev, "wait queued");
34db0cd6
N
1393 wait_event(conf->wait_barrier,
1394 conf->pending_count < max_queued_requests);
1395 }
6bfe0b49 1396 /* first select target devices under rcu_lock and
1da177e4
LT
1397 * inc refcount on their rdev. Record them by setting
1398 * bios[x] to bio
d4432c23
N
1399 * If there are known/acknowledged bad blocks on any device
1400 * on which we have seen a write error, we want to avoid
1401 * writing to those blocks. This potentially requires several
1402 * writes to write around the bad blocks. Each set of writes
fd16f2e8 1403 * gets its own r10_bio with a set of bios attached.
1da177e4 1404 */
c3b328ac 1405
69335ef3 1406 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1407 raid10_find_phys(conf, r10_bio);
f2e7e269
XN
1408
1409 wait_blocked_dev(mddev, r10_bio);
1410
1da177e4 1411 rcu_read_lock();
d4432c23
N
1412 max_sectors = r10_bio->sectors;
1413
1da177e4
LT
1414 for (i = 0; i < conf->copies; i++) {
1415 int d = r10_bio->devs[i].devnum;
3cb03002 1416 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1417 struct md_rdev *rrdev = rcu_dereference(
1418 conf->mirrors[d].replacement);
4ca40c2c
N
1419 if (rdev == rrdev)
1420 rrdev = NULL;
8ae12666 1421 if (rdev && (test_bit(Faulty, &rdev->flags)))
e7c0c3fa 1422 rdev = NULL;
8ae12666 1423 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
475b0321
N
1424 rrdev = NULL;
1425
d4432c23 1426 r10_bio->devs[i].bio = NULL;
475b0321 1427 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1428
1429 if (!rdev && !rrdev) {
6cce3b23 1430 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1431 continue;
1432 }
e7c0c3fa 1433 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1434 sector_t first_bad;
1435 sector_t dev_sector = r10_bio->devs[i].addr;
1436 int bad_sectors;
1437 int is_bad;
1438
bb5f1ed7 1439 is_bad = is_badblock(rdev, dev_sector, max_sectors,
d4432c23 1440 &first_bad, &bad_sectors);
d4432c23
N
1441 if (is_bad && first_bad <= dev_sector) {
1442 /* Cannot write here at all */
1443 bad_sectors -= (dev_sector - first_bad);
1444 if (bad_sectors < max_sectors)
1445 /* Mustn't write more than bad_sectors
1446 * to other devices yet
1447 */
1448 max_sectors = bad_sectors;
1449 /* We don't set R10BIO_Degraded as that
1450 * only applies if the disk is missing,
1451 * so it might be re-added, and we want to
1452 * know to recover this chunk.
1453 * In this case the device is here, and the
1454 * fact that this chunk is not in-sync is
1455 * recorded in the bad block log.
1456 */
1457 continue;
1458 }
1459 if (is_bad) {
1460 int good_sectors = first_bad - dev_sector;
1461 if (good_sectors < max_sectors)
1462 max_sectors = good_sectors;
1463 }
6cce3b23 1464 }
e7c0c3fa
N
1465 if (rdev) {
1466 r10_bio->devs[i].bio = bio;
1467 atomic_inc(&rdev->nr_pending);
1468 }
475b0321
N
1469 if (rrdev) {
1470 r10_bio->devs[i].repl_bio = bio;
1471 atomic_inc(&rrdev->nr_pending);
1472 }
1da177e4
LT
1473 }
1474 rcu_read_unlock();
1475
6b6c8110 1476 if (max_sectors < r10_bio->sectors)
d4432c23 1477 r10_bio->sectors = max_sectors;
fc9977dd
N
1478
1479 if (r10_bio->sectors < bio_sectors(bio)) {
1480 struct bio *split = bio_split(bio, r10_bio->sectors,
afeee514 1481 GFP_NOIO, &conf->bio_split);
fc9977dd 1482 bio_chain(split, bio);
e820d55c 1483 allow_barrier(conf);
ed00aabd 1484 submit_bio_noacct(bio);
e820d55c 1485 wait_barrier(conf);
fc9977dd
N
1486 bio = split;
1487 r10_bio->master_bio = bio;
d4432c23 1488 }
d4432c23 1489
528bc2cf
GJ
1490 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1491 r10_bio->start_time = bio_start_io_acct(bio);
4e78064f 1492 atomic_set(&r10_bio->remaining, 1);
e64e4018 1493 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1494
1da177e4 1495 for (i = 0; i < conf->copies; i++) {
27f26a0f 1496 if (r10_bio->devs[i].bio)
fc9977dd 1497 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
27f26a0f 1498 if (r10_bio->devs[i].repl_bio)
fc9977dd 1499 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
d4432c23 1500 }
079fa166 1501 one_write_done(r10_bio);
20d0189b
KO
1502}
1503
fc9977dd 1504static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
bb5f1ed7
RL
1505{
1506 struct r10conf *conf = mddev->private;
1507 struct r10bio *r10_bio;
1508
afeee514 1509 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
bb5f1ed7
RL
1510
1511 r10_bio->master_bio = bio;
fc9977dd 1512 r10_bio->sectors = sectors;
bb5f1ed7
RL
1513
1514 r10_bio->mddev = mddev;
1515 r10_bio->sector = bio->bi_iter.bi_sector;
1516 r10_bio->state = 0;
93decc56 1517 r10_bio->read_slot = -1;
c2968285
XN
1518 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1519 conf->geo.raid_disks);
bb5f1ed7
RL
1520
1521 if (bio_data_dir(bio) == READ)
1522 raid10_read_request(mddev, bio, r10_bio);
1523 else
1524 raid10_write_request(mddev, bio, r10_bio);
1525}
1526
254c271d
XN
1527static void raid_end_discard_bio(struct r10bio *r10bio)
1528{
1529 struct r10conf *conf = r10bio->mddev->private;
1530 struct r10bio *first_r10bio;
1531
1532 while (atomic_dec_and_test(&r10bio->remaining)) {
1533
1534 allow_barrier(conf);
1535
1536 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1537 first_r10bio = (struct r10bio *)r10bio->master_bio;
1538 free_r10bio(r10bio);
1539 r10bio = first_r10bio;
1540 } else {
1541 md_write_end(r10bio->mddev);
1542 bio_endio(r10bio->master_bio);
1543 free_r10bio(r10bio);
1544 break;
1545 }
1546 }
1547}
1548
d30588b2
XN
1549static void raid10_end_discard_request(struct bio *bio)
1550{
1551 struct r10bio *r10_bio = bio->bi_private;
1552 struct r10conf *conf = r10_bio->mddev->private;
1553 struct md_rdev *rdev = NULL;
1554 int dev;
1555 int slot, repl;
1556
1557 /*
1558 * We don't care the return value of discard bio
1559 */
1560 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1561 set_bit(R10BIO_Uptodate, &r10_bio->state);
1562
1563 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1564 if (repl)
1565 rdev = conf->mirrors[dev].replacement;
1566 if (!rdev) {
1567 /*
1568 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1569 * replacement before setting replacement to NULL. It can read
1570 * rdev first without barrier protect even replacment is NULL
1571 */
1572 smp_rmb();
1573 rdev = conf->mirrors[dev].rdev;
1574 }
1575
254c271d 1576 raid_end_discard_bio(r10_bio);
d30588b2
XN
1577 rdev_dec_pending(rdev, conf->mddev);
1578}
1579
1580/*
1581 * There are some limitations to handle discard bio
1582 * 1st, the discard size is bigger than stripe_size*2.
1583 * 2st, if the discard bio spans reshape progress, we use the old way to
1584 * handle discard bio
1585 */
1586static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1587{
1588 struct r10conf *conf = mddev->private;
1589 struct geom *geo = &conf->geo;
254c271d
XN
1590 int far_copies = geo->far_copies;
1591 bool first_copy = true;
1592 struct r10bio *r10_bio, *first_r10bio;
d30588b2
XN
1593 struct bio *split;
1594 int disk;
1595 sector_t chunk;
1596 unsigned int stripe_size;
1597 unsigned int stripe_data_disks;
1598 sector_t split_size;
1599 sector_t bio_start, bio_end;
1600 sector_t first_stripe_index, last_stripe_index;
1601 sector_t start_disk_offset;
1602 unsigned int start_disk_index;
1603 sector_t end_disk_offset;
1604 unsigned int end_disk_index;
1605 unsigned int remainder;
1606
1607 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1608 return -EAGAIN;
1609
1610 wait_barrier(conf);
1611
1612 /*
1613 * Check reshape again to avoid reshape happens after checking
1614 * MD_RECOVERY_RESHAPE and before wait_barrier
1615 */
1616 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1617 goto out;
1618
1619 if (geo->near_copies)
1620 stripe_data_disks = geo->raid_disks / geo->near_copies +
1621 geo->raid_disks % geo->near_copies;
1622 else
1623 stripe_data_disks = geo->raid_disks;
1624
1625 stripe_size = stripe_data_disks << geo->chunk_shift;
1626
1627 bio_start = bio->bi_iter.bi_sector;
1628 bio_end = bio_end_sector(bio);
1629
1630 /*
1631 * Maybe one discard bio is smaller than strip size or across one
1632 * stripe and discard region is larger than one stripe size. For far
1633 * offset layout, if the discard region is not aligned with stripe
1634 * size, there is hole when we submit discard bio to member disk.
1635 * For simplicity, we only handle discard bio which discard region
1636 * is bigger than stripe_size * 2
1637 */
1638 if (bio_sectors(bio) < stripe_size*2)
1639 goto out;
1640
1641 /*
1642 * Keep bio aligned with strip size.
1643 */
1644 div_u64_rem(bio_start, stripe_size, &remainder);
1645 if (remainder) {
1646 split_size = stripe_size - remainder;
1647 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1648 bio_chain(split, bio);
1649 allow_barrier(conf);
1650 /* Resend the fist split part */
1651 submit_bio_noacct(split);
1652 wait_barrier(conf);
1653 }
1654 div_u64_rem(bio_end, stripe_size, &remainder);
1655 if (remainder) {
1656 split_size = bio_sectors(bio) - remainder;
1657 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1658 bio_chain(split, bio);
1659 allow_barrier(conf);
1660 /* Resend the second split part */
1661 submit_bio_noacct(bio);
1662 bio = split;
1663 wait_barrier(conf);
1664 }
1665
d30588b2
XN
1666 bio_start = bio->bi_iter.bi_sector;
1667 bio_end = bio_end_sector(bio);
1668
1669 /*
1670 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1671 * One stripe contains the chunks from all member disk (one chunk from
1672 * one disk at the same HBA address). For layout detail, see 'man md 4'
1673 */
1674 chunk = bio_start >> geo->chunk_shift;
1675 chunk *= geo->near_copies;
1676 first_stripe_index = chunk;
1677 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1678 if (geo->far_offset)
1679 first_stripe_index *= geo->far_copies;
1680 start_disk_offset = (bio_start & geo->chunk_mask) +
1681 (first_stripe_index << geo->chunk_shift);
1682
1683 chunk = bio_end >> geo->chunk_shift;
1684 chunk *= geo->near_copies;
1685 last_stripe_index = chunk;
1686 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1687 if (geo->far_offset)
1688 last_stripe_index *= geo->far_copies;
1689 end_disk_offset = (bio_end & geo->chunk_mask) +
1690 (last_stripe_index << geo->chunk_shift);
1691
254c271d
XN
1692retry_discard:
1693 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1694 r10_bio->mddev = mddev;
1695 r10_bio->state = 0;
1696 r10_bio->sectors = 0;
1697 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1698 wait_blocked_dev(mddev, r10_bio);
1699
1700 /*
1701 * For far layout it needs more than one r10bio to cover all regions.
1702 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1703 * to record the discard bio. Other r10bio->master_bio record the first
1704 * r10bio. The first r10bio only release after all other r10bios finish.
1705 * The discard bio returns only first r10bio finishes
1706 */
1707 if (first_copy) {
1708 r10_bio->master_bio = bio;
1709 set_bit(R10BIO_Discard, &r10_bio->state);
1710 first_copy = false;
1711 first_r10bio = r10_bio;
1712 } else
1713 r10_bio->master_bio = (struct bio *)first_r10bio;
1714
46d4703b
XN
1715 /*
1716 * first select target devices under rcu_lock and
1717 * inc refcount on their rdev. Record them by setting
1718 * bios[x] to bio
1719 */
d30588b2
XN
1720 rcu_read_lock();
1721 for (disk = 0; disk < geo->raid_disks; disk++) {
1722 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1723 struct md_rdev *rrdev = rcu_dereference(
1724 conf->mirrors[disk].replacement);
1725
1726 r10_bio->devs[disk].bio = NULL;
1727 r10_bio->devs[disk].repl_bio = NULL;
1728
1729 if (rdev && (test_bit(Faulty, &rdev->flags)))
1730 rdev = NULL;
1731 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1732 rrdev = NULL;
1733 if (!rdev && !rrdev)
1734 continue;
1735
1736 if (rdev) {
1737 r10_bio->devs[disk].bio = bio;
1738 atomic_inc(&rdev->nr_pending);
1739 }
1740 if (rrdev) {
1741 r10_bio->devs[disk].repl_bio = bio;
1742 atomic_inc(&rrdev->nr_pending);
1743 }
1744 }
1745 rcu_read_unlock();
1746
1747 atomic_set(&r10_bio->remaining, 1);
1748 for (disk = 0; disk < geo->raid_disks; disk++) {
1749 sector_t dev_start, dev_end;
1750 struct bio *mbio, *rbio = NULL;
d30588b2
XN
1751
1752 /*
1753 * Now start to calculate the start and end address for each disk.
1754 * The space between dev_start and dev_end is the discard region.
1755 *
1756 * For dev_start, it needs to consider three conditions:
1757 * 1st, the disk is before start_disk, you can imagine the disk in
1758 * the next stripe. So the dev_start is the start address of next
1759 * stripe.
1760 * 2st, the disk is after start_disk, it means the disk is at the
1761 * same stripe of first disk
1762 * 3st, the first disk itself, we can use start_disk_offset directly
1763 */
1764 if (disk < start_disk_index)
1765 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1766 else if (disk > start_disk_index)
1767 dev_start = first_stripe_index * mddev->chunk_sectors;
1768 else
1769 dev_start = start_disk_offset;
1770
1771 if (disk < end_disk_index)
1772 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1773 else if (disk > end_disk_index)
1774 dev_end = last_stripe_index * mddev->chunk_sectors;
1775 else
1776 dev_end = end_disk_offset;
1777
1778 /*
1779 * It only handles discard bio which size is >= stripe size, so
46d4703b
XN
1780 * dev_end > dev_start all the time.
1781 * It doesn't need to use rcu lock to get rdev here. We already
1782 * add rdev->nr_pending in the first loop.
d30588b2
XN
1783 */
1784 if (r10_bio->devs[disk].bio) {
46d4703b 1785 struct md_rdev *rdev = conf->mirrors[disk].rdev;
d30588b2
XN
1786 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1787 mbio->bi_end_io = raid10_end_discard_request;
1788 mbio->bi_private = r10_bio;
1789 r10_bio->devs[disk].bio = mbio;
1790 r10_bio->devs[disk].devnum = disk;
1791 atomic_inc(&r10_bio->remaining);
1792 md_submit_discard_bio(mddev, rdev, mbio,
1793 dev_start + choose_data_offset(r10_bio, rdev),
1794 dev_end - dev_start);
1795 bio_endio(mbio);
1796 }
1797 if (r10_bio->devs[disk].repl_bio) {
46d4703b 1798 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
d30588b2
XN
1799 rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1800 rbio->bi_end_io = raid10_end_discard_request;
1801 rbio->bi_private = r10_bio;
1802 r10_bio->devs[disk].repl_bio = rbio;
1803 r10_bio->devs[disk].devnum = disk;
1804 atomic_inc(&r10_bio->remaining);
1805 md_submit_discard_bio(mddev, rrdev, rbio,
1806 dev_start + choose_data_offset(r10_bio, rrdev),
1807 dev_end - dev_start);
1808 bio_endio(rbio);
1809 }
1810 }
1811
254c271d
XN
1812 if (!geo->far_offset && --far_copies) {
1813 first_stripe_index += geo->stride >> geo->chunk_shift;
1814 start_disk_offset += geo->stride;
1815 last_stripe_index += geo->stride >> geo->chunk_shift;
1816 end_disk_offset += geo->stride;
1817 atomic_inc(&first_r10bio->remaining);
1818 raid_end_discard_bio(r10_bio);
1819 wait_barrier(conf);
1820 goto retry_discard;
d30588b2
XN
1821 }
1822
254c271d
XN
1823 raid_end_discard_bio(r10_bio);
1824
d30588b2
XN
1825 return 0;
1826out:
1827 allow_barrier(conf);
1828 return -EAGAIN;
1829}
1830
cc27b0c7 1831static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
20d0189b
KO
1832{
1833 struct r10conf *conf = mddev->private;
1834 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1835 int chunk_sects = chunk_mask + 1;
fc9977dd 1836 int sectors = bio_sectors(bio);
20d0189b 1837
775d7831
DJ
1838 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1839 && md_flush_request(mddev, bio))
cc27b0c7 1840 return true;
20d0189b 1841
cc27b0c7
N
1842 if (!md_write_start(mddev, bio))
1843 return false;
1844
d30588b2
XN
1845 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1846 if (!raid10_handle_discard(mddev, bio))
1847 return true;
1848
fc9977dd
N
1849 /*
1850 * If this request crosses a chunk boundary, we need to split
1851 * it.
1852 */
1853 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1854 sectors > chunk_sects
1855 && (conf->geo.near_copies < conf->geo.raid_disks
1856 || conf->prev.near_copies <
1857 conf->prev.raid_disks)))
1858 sectors = chunk_sects -
1859 (bio->bi_iter.bi_sector &
1860 (chunk_sects - 1));
1861 __make_request(mddev, bio, sectors);
079fa166
N
1862
1863 /* In case raid10d snuck in to freeze_array */
1864 wake_up(&conf->wait_barrier);
cc27b0c7 1865 return true;
1da177e4
LT
1866}
1867
849674e4 1868static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1869{
e879a879 1870 struct r10conf *conf = mddev->private;
1da177e4
LT
1871 int i;
1872
5cf00fcd 1873 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1874 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1875 if (conf->geo.near_copies > 1)
1876 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1877 if (conf->geo.far_copies > 1) {
1878 if (conf->geo.far_offset)
1879 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1880 else
5cf00fcd 1881 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
8bce6d35
N
1882 if (conf->geo.far_set_size != conf->geo.raid_disks)
1883 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
c93983bf 1884 }
5cf00fcd
N
1885 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1886 conf->geo.raid_disks - mddev->degraded);
d44b0a92
N
1887 rcu_read_lock();
1888 for (i = 0; i < conf->geo.raid_disks; i++) {
1889 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1890 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1891 }
1892 rcu_read_unlock();
1da177e4
LT
1893 seq_printf(seq, "]");
1894}
1895
700c7213
N
1896/* check if there are enough drives for
1897 * every block to appear on atleast one.
1898 * Don't consider the device numbered 'ignore'
1899 * as we might be about to remove it.
1900 */
635f6416 1901static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1902{
1903 int first = 0;
725d6e57 1904 int has_enough = 0;
635f6416
N
1905 int disks, ncopies;
1906 if (previous) {
1907 disks = conf->prev.raid_disks;
1908 ncopies = conf->prev.near_copies;
1909 } else {
1910 disks = conf->geo.raid_disks;
1911 ncopies = conf->geo.near_copies;
1912 }
700c7213 1913
725d6e57 1914 rcu_read_lock();
700c7213
N
1915 do {
1916 int n = conf->copies;
1917 int cnt = 0;
80b48124 1918 int this = first;
700c7213 1919 while (n--) {
725d6e57
N
1920 struct md_rdev *rdev;
1921 if (this != ignore &&
1922 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1923 test_bit(In_sync, &rdev->flags))
700c7213 1924 cnt++;
635f6416 1925 this = (this+1) % disks;
700c7213
N
1926 }
1927 if (cnt == 0)
725d6e57 1928 goto out;
635f6416 1929 first = (first + ncopies) % disks;
700c7213 1930 } while (first != 0);
725d6e57
N
1931 has_enough = 1;
1932out:
1933 rcu_read_unlock();
1934 return has_enough;
700c7213
N
1935}
1936
f8c9e74f
N
1937static int enough(struct r10conf *conf, int ignore)
1938{
635f6416
N
1939 /* when calling 'enough', both 'prev' and 'geo' must
1940 * be stable.
1941 * This is ensured if ->reconfig_mutex or ->device_lock
1942 * is held.
1943 */
1944 return _enough(conf, 0, ignore) &&
1945 _enough(conf, 1, ignore);
f8c9e74f
N
1946}
1947
849674e4 1948static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1949{
1950 char b[BDEVNAME_SIZE];
e879a879 1951 struct r10conf *conf = mddev->private;
635f6416 1952 unsigned long flags;
1da177e4
LT
1953
1954 /*
1955 * If it is not operational, then we have already marked it as dead
9a567843
GJ
1956 * else if it is the last working disks with "fail_last_dev == false",
1957 * ignore the error, let the next level up know.
1da177e4
LT
1958 * else mark the drive as failed
1959 */
635f6416 1960 spin_lock_irqsave(&conf->device_lock, flags);
9a567843 1961 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
635f6416 1962 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1963 /*
1964 * Don't fail the drive, just return an IO error.
1da177e4 1965 */
635f6416 1966 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1967 return;
635f6416 1968 }
2446dba0 1969 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1970 mddev->degraded++;
2446dba0
N
1971 /*
1972 * If recovery is running, make sure it aborts.
1973 */
1974 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 1975 set_bit(Blocked, &rdev->flags);
b2d444d7 1976 set_bit(Faulty, &rdev->flags);
2953079c
SL
1977 set_mask_bits(&mddev->sb_flags, 0,
1978 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
635f6416 1979 spin_unlock_irqrestore(&conf->device_lock, flags);
08464e09
N
1980 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1981 "md/raid10:%s: Operation continuing on %d devices.\n",
1982 mdname(mddev), bdevname(rdev->bdev, b),
1983 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1984}
1985
e879a879 1986static void print_conf(struct r10conf *conf)
1da177e4
LT
1987{
1988 int i;
4056ca51 1989 struct md_rdev *rdev;
1da177e4 1990
08464e09 1991 pr_debug("RAID10 conf printout:\n");
1da177e4 1992 if (!conf) {
08464e09 1993 pr_debug("(!conf)\n");
1da177e4
LT
1994 return;
1995 }
08464e09
N
1996 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1997 conf->geo.raid_disks);
1da177e4 1998
4056ca51
N
1999 /* This is only called with ->reconfix_mutex held, so
2000 * rcu protection of rdev is not needed */
5cf00fcd 2001 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 2002 char b[BDEVNAME_SIZE];
4056ca51
N
2003 rdev = conf->mirrors[i].rdev;
2004 if (rdev)
08464e09
N
2005 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2006 i, !test_bit(In_sync, &rdev->flags),
2007 !test_bit(Faulty, &rdev->flags),
2008 bdevname(rdev->bdev,b));
1da177e4
LT
2009 }
2010}
2011
e879a879 2012static void close_sync(struct r10conf *conf)
1da177e4 2013{
0a27ec96
N
2014 wait_barrier(conf);
2015 allow_barrier(conf);
1da177e4 2016
afeee514 2017 mempool_exit(&conf->r10buf_pool);
1da177e4
LT
2018}
2019
fd01b88c 2020static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
2021{
2022 int i;
e879a879 2023 struct r10conf *conf = mddev->private;
dc280d98 2024 struct raid10_info *tmp;
6b965620
N
2025 int count = 0;
2026 unsigned long flags;
1da177e4
LT
2027
2028 /*
2029 * Find all non-in_sync disks within the RAID10 configuration
2030 * and mark them in_sync
2031 */
5cf00fcd 2032 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 2033 tmp = conf->mirrors + i;
4ca40c2c
N
2034 if (tmp->replacement
2035 && tmp->replacement->recovery_offset == MaxSector
2036 && !test_bit(Faulty, &tmp->replacement->flags)
2037 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2038 /* Replacement has just become active */
2039 if (!tmp->rdev
2040 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2041 count++;
2042 if (tmp->rdev) {
2043 /* Replaced device not technically faulty,
2044 * but we need to be sure it gets removed
2045 * and never re-added.
2046 */
2047 set_bit(Faulty, &tmp->rdev->flags);
2048 sysfs_notify_dirent_safe(
2049 tmp->rdev->sysfs_state);
2050 }
2051 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2052 } else if (tmp->rdev
61e4947c 2053 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
2054 && !test_bit(Faulty, &tmp->rdev->flags)
2055 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 2056 count++;
2863b9eb 2057 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
2058 }
2059 }
6b965620
N
2060 spin_lock_irqsave(&conf->device_lock, flags);
2061 mddev->degraded -= count;
2062 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
2063
2064 print_conf(conf);
6b965620 2065 return count;
1da177e4
LT
2066}
2067
fd01b88c 2068static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2069{
e879a879 2070 struct r10conf *conf = mddev->private;
199050ea 2071 int err = -EEXIST;
1da177e4 2072 int mirror;
6c2fce2e 2073 int first = 0;
5cf00fcd 2074 int last = conf->geo.raid_disks - 1;
1da177e4
LT
2075
2076 if (mddev->recovery_cp < MaxSector)
2077 /* only hot-add to in-sync arrays, as recovery is
2078 * very different from resync
2079 */
199050ea 2080 return -EBUSY;
635f6416 2081 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 2082 return -EINVAL;
1da177e4 2083
1501efad
DW
2084 if (md_integrity_add_rdev(rdev, mddev))
2085 return -ENXIO;
2086
a53a6c85 2087 if (rdev->raid_disk >= 0)
6c2fce2e 2088 first = last = rdev->raid_disk;
1da177e4 2089
2c4193df 2090 if (rdev->saved_raid_disk >= first &&
9e753ba9 2091 rdev->saved_raid_disk < conf->geo.raid_disks &&
6cce3b23
N
2092 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2093 mirror = rdev->saved_raid_disk;
2094 else
6c2fce2e 2095 mirror = first;
2bb77736 2096 for ( ; mirror <= last ; mirror++) {
dc280d98 2097 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
2098 if (p->recovery_disabled == mddev->recovery_disabled)
2099 continue;
b7044d41
N
2100 if (p->rdev) {
2101 if (!test_bit(WantReplacement, &p->rdev->flags) ||
2102 p->replacement != NULL)
2103 continue;
2104 clear_bit(In_sync, &rdev->flags);
2105 set_bit(Replacement, &rdev->flags);
2106 rdev->raid_disk = mirror;
2107 err = 0;
9092c02d
JB
2108 if (mddev->gendisk)
2109 disk_stack_limits(mddev->gendisk, rdev->bdev,
2110 rdev->data_offset << 9);
b7044d41
N
2111 conf->fullsync = 1;
2112 rcu_assign_pointer(p->replacement, rdev);
2113 break;
2114 }
1da177e4 2115
9092c02d
JB
2116 if (mddev->gendisk)
2117 disk_stack_limits(mddev->gendisk, rdev->bdev,
2118 rdev->data_offset << 9);
1da177e4 2119
2bb77736 2120 p->head_position = 0;
d890fa2b 2121 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
2122 rdev->raid_disk = mirror;
2123 err = 0;
2124 if (rdev->saved_raid_disk != mirror)
2125 conf->fullsync = 1;
2126 rcu_assign_pointer(p->rdev, rdev);
2127 break;
2128 }
ed30be07 2129 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
8b904b5b 2130 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
532a2a3f 2131
1da177e4 2132 print_conf(conf);
199050ea 2133 return err;
1da177e4
LT
2134}
2135
b8321b68 2136static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2137{
e879a879 2138 struct r10conf *conf = mddev->private;
1da177e4 2139 int err = 0;
b8321b68 2140 int number = rdev->raid_disk;
c8ab903e 2141 struct md_rdev **rdevp;
dc280d98 2142 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
2143
2144 print_conf(conf);
c8ab903e
N
2145 if (rdev == p->rdev)
2146 rdevp = &p->rdev;
2147 else if (rdev == p->replacement)
2148 rdevp = &p->replacement;
2149 else
2150 return 0;
2151
2152 if (test_bit(In_sync, &rdev->flags) ||
2153 atomic_read(&rdev->nr_pending)) {
2154 err = -EBUSY;
2155 goto abort;
2156 }
d787be40 2157 /* Only remove non-faulty devices if recovery
c8ab903e
N
2158 * is not possible.
2159 */
2160 if (!test_bit(Faulty, &rdev->flags) &&
2161 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 2162 (!p->replacement || p->replacement == rdev) &&
63aced61 2163 number < conf->geo.raid_disks &&
c8ab903e
N
2164 enough(conf, -1)) {
2165 err = -EBUSY;
2166 goto abort;
1da177e4 2167 }
c8ab903e 2168 *rdevp = NULL;
d787be40
N
2169 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2170 synchronize_rcu();
2171 if (atomic_read(&rdev->nr_pending)) {
2172 /* lost the race, try later */
2173 err = -EBUSY;
2174 *rdevp = rdev;
2175 goto abort;
2176 }
2177 }
2178 if (p->replacement) {
4ca40c2c
N
2179 /* We must have just cleared 'rdev' */
2180 p->rdev = p->replacement;
2181 clear_bit(Replacement, &p->replacement->flags);
2182 smp_mb(); /* Make sure other CPUs may see both as identical
2183 * but will never see neither -- if they are careful.
2184 */
2185 p->replacement = NULL;
e5bc9c3c 2186 }
4ca40c2c 2187
e5bc9c3c 2188 clear_bit(WantReplacement, &rdev->flags);
c8ab903e
N
2189 err = md_integrity_register(mddev);
2190
1da177e4
LT
2191abort:
2192
2193 print_conf(conf);
2194 return err;
2195}
2196
81fa1520 2197static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1da177e4 2198{
e879a879 2199 struct r10conf *conf = r10_bio->mddev->private;
0eb3ff12 2200
4e4cbee9 2201 if (!bio->bi_status)
0eb3ff12 2202 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
2203 else
2204 /* The write handler will notice the lack of
2205 * R10BIO_Uptodate and record any errors etc
2206 */
4dbcdc75
N
2207 atomic_add(r10_bio->sectors,
2208 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
2209
2210 /* for reconstruct, we always reschedule after a read.
2211 * for resync, only after all reads
2212 */
73d5c38a 2213 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
2214 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2215 atomic_dec_and_test(&r10_bio->remaining)) {
2216 /* we have read all the blocks,
2217 * do the comparison in process context in raid10d
2218 */
2219 reschedule_retry(r10_bio);
2220 }
1da177e4
LT
2221}
2222
81fa1520
ML
2223static void end_sync_read(struct bio *bio)
2224{
f0250618 2225 struct r10bio *r10_bio = get_resync_r10bio(bio);
81fa1520
ML
2226 struct r10conf *conf = r10_bio->mddev->private;
2227 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2228
2229 __end_sync_read(r10_bio, bio, d);
2230}
2231
2232static void end_reshape_read(struct bio *bio)
2233{
f0250618 2234 /* reshape read bio isn't allocated from r10buf_pool */
81fa1520
ML
2235 struct r10bio *r10_bio = bio->bi_private;
2236
2237 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2238}
2239
9f2c9d12 2240static void end_sync_request(struct r10bio *r10_bio)
1da177e4 2241{
fd01b88c 2242 struct mddev *mddev = r10_bio->mddev;
dfc70645 2243
1da177e4
LT
2244 while (atomic_dec_and_test(&r10_bio->remaining)) {
2245 if (r10_bio->master_bio == NULL) {
2246 /* the primary of several recovery bios */
73d5c38a 2247 sector_t s = r10_bio->sectors;
1a0b7cd8
N
2248 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2249 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2250 reschedule_retry(r10_bio);
2251 else
2252 put_buf(r10_bio);
73d5c38a 2253 md_done_sync(mddev, s, 1);
1da177e4
LT
2254 break;
2255 } else {
9f2c9d12 2256 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
2257 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2258 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2259 reschedule_retry(r10_bio);
2260 else
2261 put_buf(r10_bio);
1da177e4
LT
2262 r10_bio = r10_bio2;
2263 }
2264 }
1da177e4
LT
2265}
2266
4246a0b6 2267static void end_sync_write(struct bio *bio)
5e570289 2268{
f0250618 2269 struct r10bio *r10_bio = get_resync_r10bio(bio);
fd01b88c 2270 struct mddev *mddev = r10_bio->mddev;
e879a879 2271 struct r10conf *conf = mddev->private;
5e570289
N
2272 int d;
2273 sector_t first_bad;
2274 int bad_sectors;
2275 int slot;
9ad1aefc 2276 int repl;
4ca40c2c 2277 struct md_rdev *rdev = NULL;
5e570289 2278
9ad1aefc
N
2279 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2280 if (repl)
2281 rdev = conf->mirrors[d].replacement;
547414d1 2282 else
9ad1aefc 2283 rdev = conf->mirrors[d].rdev;
5e570289 2284
4e4cbee9 2285 if (bio->bi_status) {
9ad1aefc
N
2286 if (repl)
2287 md_error(mddev, rdev);
2288 else {
2289 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2290 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2291 set_bit(MD_RECOVERY_NEEDED,
2292 &rdev->mddev->recovery);
9ad1aefc
N
2293 set_bit(R10BIO_WriteError, &r10_bio->state);
2294 }
2295 } else if (is_badblock(rdev,
5e570289
N
2296 r10_bio->devs[slot].addr,
2297 r10_bio->sectors,
2298 &first_bad, &bad_sectors))
2299 set_bit(R10BIO_MadeGood, &r10_bio->state);
2300
9ad1aefc 2301 rdev_dec_pending(rdev, mddev);
5e570289
N
2302
2303 end_sync_request(r10_bio);
2304}
2305
1da177e4
LT
2306/*
2307 * Note: sync and recover and handled very differently for raid10
2308 * This code is for resync.
2309 * For resync, we read through virtual addresses and read all blocks.
2310 * If there is any error, we schedule a write. The lowest numbered
2311 * drive is authoritative.
2312 * However requests come for physical address, so we need to map.
2313 * For every physical address there are raid_disks/copies virtual addresses,
2314 * which is always are least one, but is not necessarly an integer.
2315 * This means that a physical address can span multiple chunks, so we may
2316 * have to submit multiple io requests for a single sync request.
2317 */
2318/*
2319 * We check if all blocks are in-sync and only write to blocks that
2320 * aren't in sync
2321 */
9f2c9d12 2322static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2323{
e879a879 2324 struct r10conf *conf = mddev->private;
1da177e4
LT
2325 int i, first;
2326 struct bio *tbio, *fbio;
f4380a91 2327 int vcnt;
cdb76be3 2328 struct page **tpages, **fpages;
1da177e4
LT
2329
2330 atomic_set(&r10_bio->remaining, 1);
2331
2332 /* find the first device with a block */
2333 for (i=0; i<conf->copies; i++)
4e4cbee9 2334 if (!r10_bio->devs[i].bio->bi_status)
1da177e4
LT
2335 break;
2336
2337 if (i == conf->copies)
2338 goto done;
2339
2340 first = i;
2341 fbio = r10_bio->devs[i].bio;
cc578588
AP
2342 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2343 fbio->bi_iter.bi_idx = 0;
cdb76be3 2344 fpages = get_resync_pages(fbio)->pages;
1da177e4 2345
f4380a91 2346 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2347 /* now find blocks with errors */
0eb3ff12
N
2348 for (i=0 ; i < conf->copies ; i++) {
2349 int j, d;
8d3ca83d 2350 struct md_rdev *rdev;
f0250618 2351 struct resync_pages *rp;
1da177e4 2352
1da177e4 2353 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2354
2355 if (tbio->bi_end_io != end_sync_read)
2356 continue;
2357 if (i == first)
1da177e4 2358 continue;
cdb76be3
ML
2359
2360 tpages = get_resync_pages(tbio)->pages;
8d3ca83d
N
2361 d = r10_bio->devs[i].devnum;
2362 rdev = conf->mirrors[d].rdev;
4e4cbee9 2363 if (!r10_bio->devs[i].bio->bi_status) {
0eb3ff12
N
2364 /* We know that the bi_io_vec layout is the same for
2365 * both 'first' and 'i', so we just compare them.
2366 * All vec entries are PAGE_SIZE;
2367 */
7bb23c49
N
2368 int sectors = r10_bio->sectors;
2369 for (j = 0; j < vcnt; j++) {
2370 int len = PAGE_SIZE;
2371 if (sectors < (len / 512))
2372 len = sectors * 512;
cdb76be3
ML
2373 if (memcmp(page_address(fpages[j]),
2374 page_address(tpages[j]),
7bb23c49 2375 len))
0eb3ff12 2376 break;
7bb23c49
N
2377 sectors -= len/512;
2378 }
0eb3ff12
N
2379 if (j == vcnt)
2380 continue;
7f7583d4 2381 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2382 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2383 /* Don't fix anything. */
2384 continue;
8d3ca83d
N
2385 } else if (test_bit(FailFast, &rdev->flags)) {
2386 /* Just give up on this device */
2387 md_error(rdev->mddev, rdev);
2388 continue;
0eb3ff12 2389 }
f84ee364
N
2390 /* Ok, we need to write this bio, either to correct an
2391 * inconsistency or to correct an unreadable block.
1da177e4
LT
2392 * First we need to fixup bv_offset, bv_len and
2393 * bi_vecs, as the read request might have corrupted these
2394 */
f0250618 2395 rp = get_resync_pages(tbio);
8be185f2
KO
2396 bio_reset(tbio);
2397
fb0eb5df
ML
2398 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2399
f0250618
ML
2400 rp->raid_bio = r10_bio;
2401 tbio->bi_private = rp;
4f024f37 2402 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4 2403 tbio->bi_end_io = end_sync_write;
796a5cf0 2404 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1da177e4 2405
c31df25f
KO
2406 bio_copy_data(tbio, fbio);
2407
1da177e4
LT
2408 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2409 atomic_inc(&r10_bio->remaining);
aa8b57aa 2410 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2411
1919cbb2
N
2412 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2413 tbio->bi_opf |= MD_FAILFAST;
4f024f37 2414 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
74d46992 2415 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
ed00aabd 2416 submit_bio_noacct(tbio);
1da177e4
LT
2417 }
2418
9ad1aefc
N
2419 /* Now write out to any replacement devices
2420 * that are active
2421 */
2422 for (i = 0; i < conf->copies; i++) {
c31df25f 2423 int d;
9ad1aefc
N
2424
2425 tbio = r10_bio->devs[i].repl_bio;
2426 if (!tbio || !tbio->bi_end_io)
2427 continue;
2428 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2429 && r10_bio->devs[i].bio != fbio)
c31df25f 2430 bio_copy_data(tbio, fbio);
9ad1aefc
N
2431 d = r10_bio->devs[i].devnum;
2432 atomic_inc(&r10_bio->remaining);
2433 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2434 bio_sectors(tbio));
ed00aabd 2435 submit_bio_noacct(tbio);
9ad1aefc
N
2436 }
2437
1da177e4
LT
2438done:
2439 if (atomic_dec_and_test(&r10_bio->remaining)) {
2440 md_done_sync(mddev, r10_bio->sectors, 1);
2441 put_buf(r10_bio);
2442 }
2443}
2444
2445/*
2446 * Now for the recovery code.
2447 * Recovery happens across physical sectors.
2448 * We recover all non-is_sync drives by finding the virtual address of
2449 * each, and then choose a working drive that also has that virt address.
2450 * There is a separate r10_bio for each non-in_sync drive.
2451 * Only the first two slots are in use. The first for reading,
2452 * The second for writing.
2453 *
2454 */
9f2c9d12 2455static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2456{
2457 /* We got a read error during recovery.
2458 * We repeat the read in smaller page-sized sections.
2459 * If a read succeeds, write it to the new device or record
2460 * a bad block if we cannot.
2461 * If a read fails, record a bad block on both old and
2462 * new devices.
2463 */
fd01b88c 2464 struct mddev *mddev = r10_bio->mddev;
e879a879 2465 struct r10conf *conf = mddev->private;
5e570289
N
2466 struct bio *bio = r10_bio->devs[0].bio;
2467 sector_t sect = 0;
2468 int sectors = r10_bio->sectors;
2469 int idx = 0;
2470 int dr = r10_bio->devs[0].devnum;
2471 int dw = r10_bio->devs[1].devnum;
cdb76be3 2472 struct page **pages = get_resync_pages(bio)->pages;
5e570289
N
2473
2474 while (sectors) {
2475 int s = sectors;
3cb03002 2476 struct md_rdev *rdev;
5e570289
N
2477 sector_t addr;
2478 int ok;
2479
2480 if (s > (PAGE_SIZE>>9))
2481 s = PAGE_SIZE >> 9;
2482
2483 rdev = conf->mirrors[dr].rdev;
2484 addr = r10_bio->devs[0].addr + sect,
2485 ok = sync_page_io(rdev,
2486 addr,
2487 s << 9,
cdb76be3 2488 pages[idx],
796a5cf0 2489 REQ_OP_READ, 0, false);
5e570289
N
2490 if (ok) {
2491 rdev = conf->mirrors[dw].rdev;
2492 addr = r10_bio->devs[1].addr + sect;
2493 ok = sync_page_io(rdev,
2494 addr,
2495 s << 9,
cdb76be3 2496 pages[idx],
796a5cf0 2497 REQ_OP_WRITE, 0, false);
b7044d41 2498 if (!ok) {
5e570289 2499 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2500 if (!test_and_set_bit(WantReplacement,
2501 &rdev->flags))
2502 set_bit(MD_RECOVERY_NEEDED,
2503 &rdev->mddev->recovery);
2504 }
5e570289
N
2505 }
2506 if (!ok) {
2507 /* We don't worry if we cannot set a bad block -
2508 * it really is bad so there is no loss in not
2509 * recording it yet
2510 */
2511 rdev_set_badblocks(rdev, addr, s, 0);
2512
2513 if (rdev != conf->mirrors[dw].rdev) {
2514 /* need bad block on destination too */
3cb03002 2515 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2516 addr = r10_bio->devs[1].addr + sect;
2517 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2518 if (!ok) {
2519 /* just abort the recovery */
08464e09
N
2520 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2521 mdname(mddev));
5e570289
N
2522
2523 conf->mirrors[dw].recovery_disabled
2524 = mddev->recovery_disabled;
2525 set_bit(MD_RECOVERY_INTR,
2526 &mddev->recovery);
2527 break;
2528 }
2529 }
2530 }
2531
2532 sectors -= s;
2533 sect += s;
2534 idx++;
2535 }
2536}
1da177e4 2537
9f2c9d12 2538static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2539{
e879a879 2540 struct r10conf *conf = mddev->private;
c65060ad 2541 int d;
24afd80d 2542 struct bio *wbio, *wbio2;
1da177e4 2543
5e570289
N
2544 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2545 fix_recovery_read_error(r10_bio);
2546 end_sync_request(r10_bio);
2547 return;
2548 }
2549
c65060ad
NK
2550 /*
2551 * share the pages with the first bio
1da177e4
LT
2552 * and submit the write request
2553 */
1da177e4 2554 d = r10_bio->devs[1].devnum;
24afd80d
N
2555 wbio = r10_bio->devs[1].bio;
2556 wbio2 = r10_bio->devs[1].repl_bio;
0eb25bb0 2557 /* Need to test wbio2->bi_end_io before we call
ed00aabd 2558 * submit_bio_noacct as if the former is NULL,
0eb25bb0
N
2559 * the latter is free to free wbio2.
2560 */
2561 if (wbio2 && !wbio2->bi_end_io)
2562 wbio2 = NULL;
24afd80d
N
2563 if (wbio->bi_end_io) {
2564 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2565 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
ed00aabd 2566 submit_bio_noacct(wbio);
24afd80d 2567 }
0eb25bb0 2568 if (wbio2) {
24afd80d
N
2569 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2570 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2571 bio_sectors(wbio2));
ed00aabd 2572 submit_bio_noacct(wbio2);
24afd80d 2573 }
1da177e4
LT
2574}
2575
1e50915f
RB
2576/*
2577 * Used by fix_read_error() to decay the per rdev read_errors.
2578 * We halve the read error count for every hour that has elapsed
2579 * since the last recorded read error.
2580 *
2581 */
fd01b88c 2582static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f 2583{
0e3ef49e 2584 long cur_time_mon;
1e50915f
RB
2585 unsigned long hours_since_last;
2586 unsigned int read_errors = atomic_read(&rdev->read_errors);
2587
0e3ef49e 2588 cur_time_mon = ktime_get_seconds();
1e50915f 2589
0e3ef49e 2590 if (rdev->last_read_error == 0) {
1e50915f
RB
2591 /* first time we've seen a read error */
2592 rdev->last_read_error = cur_time_mon;
2593 return;
2594 }
2595
0e3ef49e
AB
2596 hours_since_last = (long)(cur_time_mon -
2597 rdev->last_read_error) / 3600;
1e50915f
RB
2598
2599 rdev->last_read_error = cur_time_mon;
2600
2601 /*
2602 * if hours_since_last is > the number of bits in read_errors
2603 * just set read errors to 0. We do this to avoid
2604 * overflowing the shift of read_errors by hours_since_last.
2605 */
2606 if (hours_since_last >= 8 * sizeof(read_errors))
2607 atomic_set(&rdev->read_errors, 0);
2608 else
2609 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2610}
2611
3cb03002 2612static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2613 int sectors, struct page *page, int rw)
2614{
2615 sector_t first_bad;
2616 int bad_sectors;
2617
2618 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2619 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2620 return -1;
796a5cf0 2621 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
58c54fcc
N
2622 /* success */
2623 return 1;
b7044d41 2624 if (rw == WRITE) {
58c54fcc 2625 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2626 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2627 set_bit(MD_RECOVERY_NEEDED,
2628 &rdev->mddev->recovery);
2629 }
58c54fcc
N
2630 /* need to record an error - either for the block or the device */
2631 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2632 md_error(rdev->mddev, rdev);
2633 return 0;
2634}
2635
1da177e4
LT
2636/*
2637 * This is a kernel thread which:
2638 *
2639 * 1. Retries failed read operations on working mirrors.
2640 * 2. Updates the raid superblock when problems encounter.
6814d536 2641 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2642 */
2643
e879a879 2644static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2645{
2646 int sect = 0; /* Offset from r10_bio->sector */
2647 int sectors = r10_bio->sectors;
13db16d7 2648 struct md_rdev *rdev;
1e50915f 2649 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2650 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2651
7c4e06ff
N
2652 /* still own a reference to this rdev, so it cannot
2653 * have been cleared recently.
2654 */
2655 rdev = conf->mirrors[d].rdev;
1e50915f 2656
7c4e06ff
N
2657 if (test_bit(Faulty, &rdev->flags))
2658 /* drive has already been failed, just ignore any
2659 more fix_read_error() attempts */
2660 return;
1e50915f 2661
7c4e06ff
N
2662 check_decay_read_errors(mddev, rdev);
2663 atomic_inc(&rdev->read_errors);
2664 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2665 char b[BDEVNAME_SIZE];
2666 bdevname(rdev->bdev, b);
1e50915f 2667
08464e09
N
2668 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2669 mdname(mddev), b,
2670 atomic_read(&rdev->read_errors), max_read_errors);
2671 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2672 mdname(mddev), b);
d683c8e0 2673 md_error(mddev, rdev);
fae8cc5e 2674 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2675 return;
1e50915f 2676 }
1e50915f 2677
6814d536
N
2678 while(sectors) {
2679 int s = sectors;
2680 int sl = r10_bio->read_slot;
2681 int success = 0;
2682 int start;
2683
2684 if (s > (PAGE_SIZE>>9))
2685 s = PAGE_SIZE >> 9;
2686
2687 rcu_read_lock();
2688 do {
8dbed5ce
N
2689 sector_t first_bad;
2690 int bad_sectors;
2691
0544a21d 2692 d = r10_bio->devs[sl].devnum;
6814d536
N
2693 rdev = rcu_dereference(conf->mirrors[d].rdev);
2694 if (rdev &&
8dbed5ce 2695 test_bit(In_sync, &rdev->flags) &&
f5b67ae8 2696 !test_bit(Faulty, &rdev->flags) &&
8dbed5ce
N
2697 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2698 &first_bad, &bad_sectors) == 0) {
6814d536
N
2699 atomic_inc(&rdev->nr_pending);
2700 rcu_read_unlock();
2b193363 2701 success = sync_page_io(rdev,
6814d536 2702 r10_bio->devs[sl].addr +
ccebd4c4 2703 sect,
6814d536 2704 s<<9,
796a5cf0
MC
2705 conf->tmppage,
2706 REQ_OP_READ, 0, false);
6814d536
N
2707 rdev_dec_pending(rdev, mddev);
2708 rcu_read_lock();
2709 if (success)
2710 break;
2711 }
2712 sl++;
2713 if (sl == conf->copies)
2714 sl = 0;
2715 } while (!success && sl != r10_bio->read_slot);
2716 rcu_read_unlock();
2717
2718 if (!success) {
58c54fcc
N
2719 /* Cannot read from anywhere, just mark the block
2720 * as bad on the first device to discourage future
2721 * reads.
2722 */
6814d536 2723 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2724 rdev = conf->mirrors[dn].rdev;
2725
2726 if (!rdev_set_badblocks(
2727 rdev,
2728 r10_bio->devs[r10_bio->read_slot].addr
2729 + sect,
fae8cc5e 2730 s, 0)) {
58c54fcc 2731 md_error(mddev, rdev);
fae8cc5e
N
2732 r10_bio->devs[r10_bio->read_slot].bio
2733 = IO_BLOCKED;
2734 }
6814d536
N
2735 break;
2736 }
2737
2738 start = sl;
2739 /* write it back and re-read */
2740 rcu_read_lock();
2741 while (sl != r10_bio->read_slot) {
67b8dc4b 2742 char b[BDEVNAME_SIZE];
0544a21d 2743
6814d536
N
2744 if (sl==0)
2745 sl = conf->copies;
2746 sl--;
2747 d = r10_bio->devs[sl].devnum;
2748 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2749 if (!rdev ||
f5b67ae8 2750 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2751 !test_bit(In_sync, &rdev->flags))
2752 continue;
2753
2754 atomic_inc(&rdev->nr_pending);
2755 rcu_read_unlock();
58c54fcc
N
2756 if (r10_sync_page_io(rdev,
2757 r10_bio->devs[sl].addr +
2758 sect,
055d3747 2759 s, conf->tmppage, WRITE)
1294b9c9
N
2760 == 0) {
2761 /* Well, this device is dead */
08464e09
N
2762 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2763 mdname(mddev), s,
2764 (unsigned long long)(
2765 sect +
2766 choose_data_offset(r10_bio,
2767 rdev)),
2768 bdevname(rdev->bdev, b));
2769 pr_notice("md/raid10:%s: %s: failing drive\n",
2770 mdname(mddev),
2771 bdevname(rdev->bdev, b));
6814d536 2772 }
1294b9c9
N
2773 rdev_dec_pending(rdev, mddev);
2774 rcu_read_lock();
6814d536
N
2775 }
2776 sl = start;
2777 while (sl != r10_bio->read_slot) {
1294b9c9 2778 char b[BDEVNAME_SIZE];
0544a21d 2779
6814d536
N
2780 if (sl==0)
2781 sl = conf->copies;
2782 sl--;
2783 d = r10_bio->devs[sl].devnum;
2784 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2785 if (!rdev ||
f5b67ae8 2786 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2787 !test_bit(In_sync, &rdev->flags))
2788 continue;
6814d536 2789
1294b9c9
N
2790 atomic_inc(&rdev->nr_pending);
2791 rcu_read_unlock();
58c54fcc
N
2792 switch (r10_sync_page_io(rdev,
2793 r10_bio->devs[sl].addr +
2794 sect,
055d3747 2795 s, conf->tmppage,
58c54fcc
N
2796 READ)) {
2797 case 0:
1294b9c9 2798 /* Well, this device is dead */
08464e09 2799 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
1294b9c9
N
2800 mdname(mddev), s,
2801 (unsigned long long)(
f8c9e74f
N
2802 sect +
2803 choose_data_offset(r10_bio, rdev)),
1294b9c9 2804 bdevname(rdev->bdev, b));
08464e09 2805 pr_notice("md/raid10:%s: %s: failing drive\n",
1294b9c9
N
2806 mdname(mddev),
2807 bdevname(rdev->bdev, b));
58c54fcc
N
2808 break;
2809 case 1:
08464e09 2810 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
1294b9c9
N
2811 mdname(mddev), s,
2812 (unsigned long long)(
f8c9e74f
N
2813 sect +
2814 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2815 bdevname(rdev->bdev, b));
2816 atomic_add(s, &rdev->corrected_errors);
6814d536 2817 }
1294b9c9
N
2818
2819 rdev_dec_pending(rdev, mddev);
2820 rcu_read_lock();
6814d536
N
2821 }
2822 rcu_read_unlock();
2823
2824 sectors -= s;
2825 sect += s;
2826 }
2827}
2828
9f2c9d12 2829static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2830{
2831 struct bio *bio = r10_bio->master_bio;
fd01b88c 2832 struct mddev *mddev = r10_bio->mddev;
e879a879 2833 struct r10conf *conf = mddev->private;
3cb03002 2834 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2835 /* bio has the data to be written to slot 'i' where
2836 * we just recently had a write error.
2837 * We repeatedly clone the bio and trim down to one block,
2838 * then try the write. Where the write fails we record
2839 * a bad block.
2840 * It is conceivable that the bio doesn't exactly align with
2841 * blocks. We must handle this.
2842 *
2843 * We currently own a reference to the rdev.
2844 */
2845
2846 int block_sectors;
2847 sector_t sector;
2848 int sectors;
2849 int sect_to_write = r10_bio->sectors;
2850 int ok = 1;
2851
2852 if (rdev->badblocks.shift < 0)
2853 return 0;
2854
f04ebb0b
N
2855 block_sectors = roundup(1 << rdev->badblocks.shift,
2856 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2857 sector = r10_bio->sector;
2858 sectors = ((r10_bio->sector + block_sectors)
2859 & ~(sector_t)(block_sectors - 1))
2860 - sector;
2861
2862 while (sect_to_write) {
2863 struct bio *wbio;
27028626 2864 sector_t wsector;
bd870a16
N
2865 if (sectors > sect_to_write)
2866 sectors = sect_to_write;
2867 /* Write at 'sector' for 'sectors' */
afeee514 2868 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
4f024f37 2869 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
27028626
TM
2870 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2871 wbio->bi_iter.bi_sector = wsector +
2872 choose_data_offset(r10_bio, rdev);
74d46992 2873 bio_set_dev(wbio, rdev->bdev);
796a5cf0 2874 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2875
2876 if (submit_bio_wait(wbio) < 0)
bd870a16 2877 /* Failure! */
27028626 2878 ok = rdev_set_badblocks(rdev, wsector,
bd870a16
N
2879 sectors, 0)
2880 && ok;
2881
2882 bio_put(wbio);
2883 sect_to_write -= sectors;
2884 sector += sectors;
2885 sectors = block_sectors;
2886 }
2887 return ok;
2888}
2889
9f2c9d12 2890static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2891{
2892 int slot = r10_bio->read_slot;
560f8e55 2893 struct bio *bio;
e879a879 2894 struct r10conf *conf = mddev->private;
abbf098e 2895 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2896
2897 /* we got a read error. Maybe the drive is bad. Maybe just
2898 * the block and we can fix it.
2899 * We freeze all other IO, and try reading the block from
2900 * other devices. When we find one, we re-write
2901 * and check it that fixes the read error.
2902 * This is all done synchronously while the array is
2903 * frozen.
2904 */
fae8cc5e 2905 bio = r10_bio->devs[slot].bio;
fae8cc5e
N
2906 bio_put(bio);
2907 r10_bio->devs[slot].bio = NULL;
2908
8d3ca83d
N
2909 if (mddev->ro)
2910 r10_bio->devs[slot].bio = IO_BLOCKED;
2911 else if (!test_bit(FailFast, &rdev->flags)) {
e2d59925 2912 freeze_array(conf, 1);
560f8e55
N
2913 fix_read_error(conf, mddev, r10_bio);
2914 unfreeze_array(conf);
fae8cc5e 2915 } else
8d3ca83d 2916 md_error(mddev, rdev);
fae8cc5e 2917
abbf098e 2918 rdev_dec_pending(rdev, mddev);
545250f2
N
2919 allow_barrier(conf);
2920 r10_bio->state = 0;
2921 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
560f8e55
N
2922}
2923
e879a879 2924static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2925{
2926 /* Some sort of write request has finished and it
2927 * succeeded in writing where we thought there was a
2928 * bad block. So forget the bad block.
1a0b7cd8
N
2929 * Or possibly if failed and we need to record
2930 * a bad block.
749c55e9
N
2931 */
2932 int m;
3cb03002 2933 struct md_rdev *rdev;
749c55e9
N
2934
2935 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2936 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2937 for (m = 0; m < conf->copies; m++) {
2938 int dev = r10_bio->devs[m].devnum;
2939 rdev = conf->mirrors[dev].rdev;
01a69cab
YY
2940 if (r10_bio->devs[m].bio == NULL ||
2941 r10_bio->devs[m].bio->bi_end_io == NULL)
1a0b7cd8 2942 continue;
4e4cbee9 2943 if (!r10_bio->devs[m].bio->bi_status) {
749c55e9
N
2944 rdev_clear_badblocks(
2945 rdev,
2946 r10_bio->devs[m].addr,
c6563a8c 2947 r10_bio->sectors, 0);
1a0b7cd8
N
2948 } else {
2949 if (!rdev_set_badblocks(
2950 rdev,
2951 r10_bio->devs[m].addr,
2952 r10_bio->sectors, 0))
2953 md_error(conf->mddev, rdev);
749c55e9 2954 }
9ad1aefc 2955 rdev = conf->mirrors[dev].replacement;
01a69cab
YY
2956 if (r10_bio->devs[m].repl_bio == NULL ||
2957 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
9ad1aefc 2958 continue;
4246a0b6 2959
4e4cbee9 2960 if (!r10_bio->devs[m].repl_bio->bi_status) {
9ad1aefc
N
2961 rdev_clear_badblocks(
2962 rdev,
2963 r10_bio->devs[m].addr,
c6563a8c 2964 r10_bio->sectors, 0);
9ad1aefc
N
2965 } else {
2966 if (!rdev_set_badblocks(
2967 rdev,
2968 r10_bio->devs[m].addr,
2969 r10_bio->sectors, 0))
2970 md_error(conf->mddev, rdev);
2971 }
1a0b7cd8 2972 }
749c55e9
N
2973 put_buf(r10_bio);
2974 } else {
95af587e 2975 bool fail = false;
bd870a16
N
2976 for (m = 0; m < conf->copies; m++) {
2977 int dev = r10_bio->devs[m].devnum;
2978 struct bio *bio = r10_bio->devs[m].bio;
2979 rdev = conf->mirrors[dev].rdev;
2980 if (bio == IO_MADE_GOOD) {
749c55e9
N
2981 rdev_clear_badblocks(
2982 rdev,
2983 r10_bio->devs[m].addr,
c6563a8c 2984 r10_bio->sectors, 0);
749c55e9 2985 rdev_dec_pending(rdev, conf->mddev);
4e4cbee9 2986 } else if (bio != NULL && bio->bi_status) {
95af587e 2987 fail = true;
bd870a16
N
2988 if (!narrow_write_error(r10_bio, m)) {
2989 md_error(conf->mddev, rdev);
2990 set_bit(R10BIO_Degraded,
2991 &r10_bio->state);
2992 }
2993 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2994 }
475b0321
N
2995 bio = r10_bio->devs[m].repl_bio;
2996 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2997 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2998 rdev_clear_badblocks(
2999 rdev,
3000 r10_bio->devs[m].addr,
c6563a8c 3001 r10_bio->sectors, 0);
475b0321
N
3002 rdev_dec_pending(rdev, conf->mddev);
3003 }
bd870a16 3004 }
95af587e
N
3005 if (fail) {
3006 spin_lock_irq(&conf->device_lock);
3007 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
23ddba80 3008 conf->nr_queued++;
95af587e 3009 spin_unlock_irq(&conf->device_lock);
cf25ae78
GJ
3010 /*
3011 * In case freeze_array() is waiting for condition
3012 * nr_pending == nr_queued + extra to be true.
3013 */
3014 wake_up(&conf->wait_barrier);
95af587e 3015 md_wakeup_thread(conf->mddev->thread);
c340702c
N
3016 } else {
3017 if (test_bit(R10BIO_WriteError,
3018 &r10_bio->state))
3019 close_write(r10_bio);
95af587e 3020 raid_end_bio_io(r10_bio);
c340702c 3021 }
749c55e9
N
3022 }
3023}
3024
4ed8731d 3025static void raid10d(struct md_thread *thread)
1da177e4 3026{
4ed8731d 3027 struct mddev *mddev = thread->mddev;
9f2c9d12 3028 struct r10bio *r10_bio;
1da177e4 3029 unsigned long flags;
e879a879 3030 struct r10conf *conf = mddev->private;
1da177e4 3031 struct list_head *head = &conf->retry_list;
e1dfa0a2 3032 struct blk_plug plug;
1da177e4
LT
3033
3034 md_check_recovery(mddev);
1da177e4 3035
95af587e 3036 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 3037 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
95af587e
N
3038 LIST_HEAD(tmp);
3039 spin_lock_irqsave(&conf->device_lock, flags);
2953079c 3040 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
23ddba80
SL
3041 while (!list_empty(&conf->bio_end_io_list)) {
3042 list_move(conf->bio_end_io_list.prev, &tmp);
3043 conf->nr_queued--;
3044 }
95af587e
N
3045 }
3046 spin_unlock_irqrestore(&conf->device_lock, flags);
3047 while (!list_empty(&tmp)) {
a452744b
MP
3048 r10_bio = list_first_entry(&tmp, struct r10bio,
3049 retry_list);
95af587e 3050 list_del(&r10_bio->retry_list);
c340702c
N
3051 if (mddev->degraded)
3052 set_bit(R10BIO_Degraded, &r10_bio->state);
3053
3054 if (test_bit(R10BIO_WriteError,
3055 &r10_bio->state))
3056 close_write(r10_bio);
95af587e
N
3057 raid_end_bio_io(r10_bio);
3058 }
3059 }
3060
e1dfa0a2 3061 blk_start_plug(&plug);
1da177e4 3062 for (;;) {
6cce3b23 3063
0021b7bc 3064 flush_pending_writes(conf);
6cce3b23 3065
a35e63ef
N
3066 spin_lock_irqsave(&conf->device_lock, flags);
3067 if (list_empty(head)) {
3068 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3069 break;
a35e63ef 3070 }
9f2c9d12 3071 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 3072 list_del(head->prev);
4443ae10 3073 conf->nr_queued--;
1da177e4
LT
3074 spin_unlock_irqrestore(&conf->device_lock, flags);
3075
3076 mddev = r10_bio->mddev;
070ec55d 3077 conf = mddev->private;
bd870a16
N
3078 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3079 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 3080 handle_write_completed(conf, r10_bio);
3ea7daa5
N
3081 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3082 reshape_request_write(mddev, r10_bio);
749c55e9 3083 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 3084 sync_request_write(mddev, r10_bio);
7eaceacc 3085 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 3086 recovery_request_write(mddev, r10_bio);
856e08e2 3087 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 3088 handle_read_error(mddev, r10_bio);
fc9977dd
N
3089 else
3090 WARN_ON_ONCE(1);
560f8e55 3091
1d9d5241 3092 cond_resched();
2953079c 3093 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 3094 md_check_recovery(mddev);
1da177e4 3095 }
e1dfa0a2 3096 blk_finish_plug(&plug);
1da177e4
LT
3097}
3098
e879a879 3099static int init_resync(struct r10conf *conf)
1da177e4 3100{
afeee514 3101 int ret, buffs, i;
1da177e4
LT
3102
3103 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514 3104 BUG_ON(mempool_initialized(&conf->r10buf_pool));
69335ef3 3105 conf->have_replacement = 0;
5cf00fcd 3106 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
3107 if (conf->mirrors[i].replacement)
3108 conf->have_replacement = 1;
afeee514
KO
3109 ret = mempool_init(&conf->r10buf_pool, buffs,
3110 r10buf_pool_alloc, r10buf_pool_free, conf);
3111 if (ret)
3112 return ret;
1da177e4
LT
3113 conf->next_resync = 0;
3114 return 0;
3115}
3116
208410b5
SL
3117static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3118{
afeee514 3119 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
208410b5
SL
3120 struct rsync_pages *rp;
3121 struct bio *bio;
3122 int nalloc;
3123 int i;
3124
3125 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3126 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3127 nalloc = conf->copies; /* resync */
3128 else
3129 nalloc = 2; /* recovery */
3130
3131 for (i = 0; i < nalloc; i++) {
3132 bio = r10bio->devs[i].bio;
3133 rp = bio->bi_private;
3134 bio_reset(bio);
3135 bio->bi_private = rp;
3136 bio = r10bio->devs[i].repl_bio;
3137 if (bio) {
3138 rp = bio->bi_private;
3139 bio_reset(bio);
3140 bio->bi_private = rp;
3141 }
3142 }
3143 return r10bio;
3144}
3145
8db87912
GJ
3146/*
3147 * Set cluster_sync_high since we need other nodes to add the
3148 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3149 */
3150static void raid10_set_cluster_sync_high(struct r10conf *conf)
3151{
3152 sector_t window_size;
3153 int extra_chunk, chunks;
3154
3155 /*
3156 * First, here we define "stripe" as a unit which across
3157 * all member devices one time, so we get chunks by use
3158 * raid_disks / near_copies. Otherwise, if near_copies is
3159 * close to raid_disks, then resync window could increases
3160 * linearly with the increase of raid_disks, which means
3161 * we will suspend a really large IO window while it is not
3162 * necessary. If raid_disks is not divisible by near_copies,
3163 * an extra chunk is needed to ensure the whole "stripe" is
3164 * covered.
3165 */
3166
3167 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3168 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3169 extra_chunk = 0;
3170 else
3171 extra_chunk = 1;
3172 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3173
3174 /*
3175 * At least use a 32M window to align with raid1's resync window
3176 */
3177 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3178 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3179
3180 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3181}
3182
1da177e4
LT
3183/*
3184 * perform a "sync" on one "block"
3185 *
3186 * We need to make sure that no normal I/O request - particularly write
3187 * requests - conflict with active sync requests.
3188 *
3189 * This is achieved by tracking pending requests and a 'barrier' concept
3190 * that can be installed to exclude normal IO requests.
3191 *
3192 * Resync and recovery are handled very differently.
3193 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3194 *
3195 * For resync, we iterate over virtual addresses, read all copies,
3196 * and update if there are differences. If only one copy is live,
3197 * skip it.
3198 * For recovery, we iterate over physical addresses, read a good
3199 * value for each non-in_sync drive, and over-write.
3200 *
3201 * So, for recovery we may have several outstanding complex requests for a
3202 * given address, one for each out-of-sync device. We model this by allocating
3203 * a number of r10_bio structures, one for each out-of-sync device.
3204 * As we setup these structures, we collect all bio's together into a list
3205 * which we then process collectively to add pages, and then process again
ed00aabd 3206 * to pass to submit_bio_noacct.
1da177e4
LT
3207 *
3208 * The r10_bio structures are linked using a borrowed master_bio pointer.
3209 * This link is counted in ->remaining. When the r10_bio that points to NULL
3210 * has its remaining count decremented to 0, the whole complex operation
3211 * is complete.
3212 *
3213 */
3214
849674e4 3215static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 3216 int *skipped)
1da177e4 3217{
e879a879 3218 struct r10conf *conf = mddev->private;
9f2c9d12 3219 struct r10bio *r10_bio;
1da177e4
LT
3220 struct bio *biolist = NULL, *bio;
3221 sector_t max_sector, nr_sectors;
1da177e4 3222 int i;
6cce3b23 3223 int max_sync;
57dab0bd 3224 sector_t sync_blocks;
1da177e4
LT
3225 sector_t sectors_skipped = 0;
3226 int chunks_skipped = 0;
5cf00fcd 3227 sector_t chunk_mask = conf->geo.chunk_mask;
022e510f 3228 int page_idx = 0;
1da177e4 3229
afeee514 3230 if (!mempool_initialized(&conf->r10buf_pool))
1da177e4 3231 if (init_resync(conf))
57afd89f 3232 return 0;
1da177e4 3233
7e83ccbe
MW
3234 /*
3235 * Allow skipping a full rebuild for incremental assembly
3236 * of a clean array, like RAID1 does.
3237 */
3238 if (mddev->bitmap == NULL &&
3239 mddev->recovery_cp == MaxSector &&
13765120
N
3240 mddev->reshape_position == MaxSector &&
3241 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 3242 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 3243 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
3244 conf->fullsync == 0) {
3245 *skipped = 1;
13765120 3246 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
3247 }
3248
1da177e4 3249 skipped:
58c0fed4 3250 max_sector = mddev->dev_sectors;
3ea7daa5
N
3251 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3252 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
3253 max_sector = mddev->resync_max_sectors;
3254 if (sector_nr >= max_sector) {
8db87912
GJ
3255 conf->cluster_sync_low = 0;
3256 conf->cluster_sync_high = 0;
3257
6cce3b23
N
3258 /* If we aborted, we need to abort the
3259 * sync on the 'current' bitmap chucks (there can
3260 * be several when recovering multiple devices).
3261 * as we may have started syncing it but not finished.
3262 * We can find the current address in
3263 * mddev->curr_resync, but for recovery,
3264 * we need to convert that to several
3265 * virtual addresses.
3266 */
3ea7daa5
N
3267 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3268 end_reshape(conf);
b3968552 3269 close_sync(conf);
3ea7daa5
N
3270 return 0;
3271 }
3272
6cce3b23
N
3273 if (mddev->curr_resync < max_sector) { /* aborted */
3274 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
e64e4018
AS
3275 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3276 &sync_blocks, 1);
5cf00fcd 3277 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
3278 sector_t sect =
3279 raid10_find_virt(conf, mddev->curr_resync, i);
e64e4018
AS
3280 md_bitmap_end_sync(mddev->bitmap, sect,
3281 &sync_blocks, 1);
6cce3b23 3282 }
9ad1aefc
N
3283 } else {
3284 /* completed sync */
3285 if ((!mddev->bitmap || conf->fullsync)
3286 && conf->have_replacement
3287 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3288 /* Completed a full sync so the replacements
3289 * are now fully recovered.
3290 */
f90145f3
N
3291 rcu_read_lock();
3292 for (i = 0; i < conf->geo.raid_disks; i++) {
3293 struct md_rdev *rdev =
3294 rcu_dereference(conf->mirrors[i].replacement);
3295 if (rdev)
3296 rdev->recovery_offset = MaxSector;
3297 }
3298 rcu_read_unlock();
9ad1aefc 3299 }
6cce3b23 3300 conf->fullsync = 0;
9ad1aefc 3301 }
e64e4018 3302 md_bitmap_close_sync(mddev->bitmap);
1da177e4 3303 close_sync(conf);
57afd89f 3304 *skipped = 1;
1da177e4
LT
3305 return sectors_skipped;
3306 }
3ea7daa5
N
3307
3308 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3309 return reshape_request(mddev, sector_nr, skipped);
3310
5cf00fcd 3311 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
3312 /* if there has been nothing to do on any drive,
3313 * then there is nothing to do at all..
3314 */
57afd89f
N
3315 *skipped = 1;
3316 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
3317 }
3318
c6207277
N
3319 if (max_sector > mddev->resync_max)
3320 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3321
1da177e4
LT
3322 /* make sure whole request will fit in a chunk - if chunks
3323 * are meaningful
3324 */
5cf00fcd
N
3325 if (conf->geo.near_copies < conf->geo.raid_disks &&
3326 max_sector > (sector_nr | chunk_mask))
3327 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4 3328
7ac50447
TM
3329 /*
3330 * If there is non-resync activity waiting for a turn, then let it
3331 * though before starting on this new sync request.
3332 */
3333 if (conf->nr_waiting)
3334 schedule_timeout_uninterruptible(1);
3335
1da177e4
LT
3336 /* Again, very different code for resync and recovery.
3337 * Both must result in an r10bio with a list of bios that
309dca30 3338 * have bi_end_io, bi_sector, bi_bdev set,
1da177e4
LT
3339 * and bi_private set to the r10bio.
3340 * For recovery, we may actually create several r10bios
3341 * with 2 bios in each, that correspond to the bios in the main one.
3342 * In this case, the subordinate r10bios link back through a
3343 * borrowed master_bio pointer, and the counter in the master
3344 * includes a ref from each subordinate.
3345 */
3346 /* First, we decide what to do and set ->bi_end_io
3347 * To end_sync_read if we want to read, and
3348 * end_sync_write if we will want to write.
3349 */
3350
6cce3b23 3351 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3352 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3353 /* recovery... the complicated one */
e875ecea 3354 int j;
1da177e4
LT
3355 r10_bio = NULL;
3356
5cf00fcd 3357 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3358 int still_degraded;
9f2c9d12 3359 struct r10bio *rb2;
ab9d47e9
N
3360 sector_t sect;
3361 int must_sync;
e875ecea 3362 int any_working;
ee37d731
AW
3363 int need_recover = 0;
3364 int need_replace = 0;
dc280d98 3365 struct raid10_info *mirror = &conf->mirrors[i];
f90145f3 3366 struct md_rdev *mrdev, *mreplace;
24afd80d 3367
f90145f3
N
3368 rcu_read_lock();
3369 mrdev = rcu_dereference(mirror->rdev);
3370 mreplace = rcu_dereference(mirror->replacement);
3371
ee37d731
AW
3372 if (mrdev != NULL &&
3373 !test_bit(Faulty, &mrdev->flags) &&
3374 !test_bit(In_sync, &mrdev->flags))
3375 need_recover = 1;
3376 if (mreplace != NULL &&
3377 !test_bit(Faulty, &mreplace->flags))
3378 need_replace = 1;
3379
3380 if (!need_recover && !need_replace) {
f90145f3 3381 rcu_read_unlock();
ab9d47e9 3382 continue;
f90145f3 3383 }
1da177e4 3384
ab9d47e9
N
3385 still_degraded = 0;
3386 /* want to reconstruct this device */
3387 rb2 = r10_bio;
3388 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3389 if (sect >= mddev->resync_max_sectors) {
3390 /* last stripe is not complete - don't
3391 * try to recover this sector.
3392 */
f90145f3 3393 rcu_read_unlock();
fc448a18
N
3394 continue;
3395 }
f5b67ae8
N
3396 if (mreplace && test_bit(Faulty, &mreplace->flags))
3397 mreplace = NULL;
24afd80d
N
3398 /* Unless we are doing a full sync, or a replacement
3399 * we only need to recover the block if it is set in
3400 * the bitmap
ab9d47e9 3401 */
e64e4018
AS
3402 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3403 &sync_blocks, 1);
ab9d47e9
N
3404 if (sync_blocks < max_sync)
3405 max_sync = sync_blocks;
3406 if (!must_sync &&
f90145f3 3407 mreplace == NULL &&
ab9d47e9
N
3408 !conf->fullsync) {
3409 /* yep, skip the sync_blocks here, but don't assume
3410 * that there will never be anything to do here
3411 */
3412 chunks_skipped = -1;
f90145f3 3413 rcu_read_unlock();
ab9d47e9
N
3414 continue;
3415 }
f90145f3
N
3416 atomic_inc(&mrdev->nr_pending);
3417 if (mreplace)
3418 atomic_inc(&mreplace->nr_pending);
3419 rcu_read_unlock();
6cce3b23 3420
208410b5 3421 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3422 r10_bio->state = 0;
ab9d47e9
N
3423 raise_barrier(conf, rb2 != NULL);
3424 atomic_set(&r10_bio->remaining, 0);
18055569 3425
ab9d47e9
N
3426 r10_bio->master_bio = (struct bio*)rb2;
3427 if (rb2)
3428 atomic_inc(&rb2->remaining);
3429 r10_bio->mddev = mddev;
3430 set_bit(R10BIO_IsRecover, &r10_bio->state);
3431 r10_bio->sector = sect;
1da177e4 3432
ab9d47e9
N
3433 raid10_find_phys(conf, r10_bio);
3434
3435 /* Need to check if the array will still be
3436 * degraded
3437 */
f90145f3
N
3438 rcu_read_lock();
3439 for (j = 0; j < conf->geo.raid_disks; j++) {
3440 struct md_rdev *rdev = rcu_dereference(
3441 conf->mirrors[j].rdev);
3442 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
ab9d47e9 3443 still_degraded = 1;
87fc767b 3444 break;
1da177e4 3445 }
f90145f3 3446 }
ab9d47e9 3447
e64e4018
AS
3448 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3449 &sync_blocks, still_degraded);
ab9d47e9 3450
e875ecea 3451 any_working = 0;
ab9d47e9 3452 for (j=0; j<conf->copies;j++) {
e875ecea 3453 int k;
ab9d47e9 3454 int d = r10_bio->devs[j].devnum;
5e570289 3455 sector_t from_addr, to_addr;
f90145f3
N
3456 struct md_rdev *rdev =
3457 rcu_dereference(conf->mirrors[d].rdev);
40c356ce
N
3458 sector_t sector, first_bad;
3459 int bad_sectors;
f90145f3
N
3460 if (!rdev ||
3461 !test_bit(In_sync, &rdev->flags))
ab9d47e9
N
3462 continue;
3463 /* This is where we read from */
e875ecea 3464 any_working = 1;
40c356ce
N
3465 sector = r10_bio->devs[j].addr;
3466
3467 if (is_badblock(rdev, sector, max_sync,
3468 &first_bad, &bad_sectors)) {
3469 if (first_bad > sector)
3470 max_sync = first_bad - sector;
3471 else {
3472 bad_sectors -= (sector
3473 - first_bad);
3474 if (max_sync > bad_sectors)
3475 max_sync = bad_sectors;
3476 continue;
3477 }
3478 }
ab9d47e9
N
3479 bio = r10_bio->devs[0].bio;
3480 bio->bi_next = biolist;
3481 biolist = bio;
ab9d47e9 3482 bio->bi_end_io = end_sync_read;
796a5cf0 3483 bio_set_op_attrs(bio, REQ_OP_READ, 0);
8d3ca83d
N
3484 if (test_bit(FailFast, &rdev->flags))
3485 bio->bi_opf |= MD_FAILFAST;
5e570289 3486 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3487 bio->bi_iter.bi_sector = from_addr +
3488 rdev->data_offset;
74d46992 3489 bio_set_dev(bio, rdev->bdev);
24afd80d
N
3490 atomic_inc(&rdev->nr_pending);
3491 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3492
3493 for (k=0; k<conf->copies; k++)
3494 if (r10_bio->devs[k].devnum == i)
3495 break;
3496 BUG_ON(k == conf->copies);
5e570289 3497 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3498 r10_bio->devs[0].devnum = d;
5e570289 3499 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3500 r10_bio->devs[1].devnum = i;
5e570289 3501 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3502
ee37d731 3503 if (need_recover) {
24afd80d
N
3504 bio = r10_bio->devs[1].bio;
3505 bio->bi_next = biolist;
3506 biolist = bio;
24afd80d 3507 bio->bi_end_io = end_sync_write;
796a5cf0 3508 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3509 bio->bi_iter.bi_sector = to_addr
f90145f3 3510 + mrdev->data_offset;
74d46992 3511 bio_set_dev(bio, mrdev->bdev);
24afd80d
N
3512 atomic_inc(&r10_bio->remaining);
3513 } else
3514 r10_bio->devs[1].bio->bi_end_io = NULL;
3515
3516 /* and maybe write to replacement */
3517 bio = r10_bio->devs[1].repl_bio;
3518 if (bio)
3519 bio->bi_end_io = NULL;
ee37d731 3520 /* Note: if need_replace, then bio
24afd80d
N
3521 * cannot be NULL as r10buf_pool_alloc will
3522 * have allocated it.
24afd80d 3523 */
ee37d731 3524 if (!need_replace)
24afd80d
N
3525 break;
3526 bio->bi_next = biolist;
3527 biolist = bio;
24afd80d 3528 bio->bi_end_io = end_sync_write;
796a5cf0 3529 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3530 bio->bi_iter.bi_sector = to_addr +
f90145f3 3531 mreplace->data_offset;
74d46992 3532 bio_set_dev(bio, mreplace->bdev);
24afd80d 3533 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3534 break;
3535 }
f90145f3 3536 rcu_read_unlock();
ab9d47e9 3537 if (j == conf->copies) {
e875ecea
N
3538 /* Cannot recover, so abort the recovery or
3539 * record a bad block */
e875ecea
N
3540 if (any_working) {
3541 /* problem is that there are bad blocks
3542 * on other device(s)
3543 */
3544 int k;
3545 for (k = 0; k < conf->copies; k++)
3546 if (r10_bio->devs[k].devnum == i)
3547 break;
24afd80d 3548 if (!test_bit(In_sync,
f90145f3 3549 &mrdev->flags)
24afd80d 3550 && !rdev_set_badblocks(
f90145f3 3551 mrdev,
24afd80d
N
3552 r10_bio->devs[k].addr,
3553 max_sync, 0))
3554 any_working = 0;
f90145f3 3555 if (mreplace &&
24afd80d 3556 !rdev_set_badblocks(
f90145f3 3557 mreplace,
e875ecea
N
3558 r10_bio->devs[k].addr,
3559 max_sync, 0))
3560 any_working = 0;
3561 }
3562 if (!any_working) {
3563 if (!test_and_set_bit(MD_RECOVERY_INTR,
3564 &mddev->recovery))
08464e09 3565 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
e875ecea 3566 mdname(mddev));
24afd80d 3567 mirror->recovery_disabled
e875ecea
N
3568 = mddev->recovery_disabled;
3569 }
e8b84915
N
3570 put_buf(r10_bio);
3571 if (rb2)
3572 atomic_dec(&rb2->remaining);
3573 r10_bio = rb2;
f90145f3
N
3574 rdev_dec_pending(mrdev, mddev);
3575 if (mreplace)
3576 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3577 break;
1da177e4 3578 }
f90145f3
N
3579 rdev_dec_pending(mrdev, mddev);
3580 if (mreplace)
3581 rdev_dec_pending(mreplace, mddev);
8d3ca83d
N
3582 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3583 /* Only want this if there is elsewhere to
3584 * read from. 'j' is currently the first
3585 * readable copy.
3586 */
3587 int targets = 1;
3588 for (; j < conf->copies; j++) {
3589 int d = r10_bio->devs[j].devnum;
3590 if (conf->mirrors[d].rdev &&
3591 test_bit(In_sync,
3592 &conf->mirrors[d].rdev->flags))
3593 targets++;
3594 }
3595 if (targets == 1)
3596 r10_bio->devs[0].bio->bi_opf
3597 &= ~MD_FAILFAST;
3598 }
ab9d47e9 3599 }
1da177e4
LT
3600 if (biolist == NULL) {
3601 while (r10_bio) {
9f2c9d12
N
3602 struct r10bio *rb2 = r10_bio;
3603 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3604 rb2->master_bio = NULL;
3605 put_buf(rb2);
3606 }
3607 goto giveup;
3608 }
3609 } else {
3610 /* resync. Schedule a read for every block at this virt offset */
3611 int count = 0;
6cce3b23 3612
8db87912
GJ
3613 /*
3614 * Since curr_resync_completed could probably not update in
3615 * time, and we will set cluster_sync_low based on it.
3616 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3617 * safety reason, which ensures curr_resync_completed is
3618 * updated in bitmap_cond_end_sync.
3619 */
e64e4018
AS
3620 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3621 mddev_is_clustered(mddev) &&
3622 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
78200d45 3623
e64e4018
AS
3624 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3625 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3626 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3627 &mddev->recovery)) {
6cce3b23
N
3628 /* We can skip this block */
3629 *skipped = 1;
3630 return sync_blocks + sectors_skipped;
3631 }
3632 if (sync_blocks < max_sync)
3633 max_sync = sync_blocks;
208410b5 3634 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3635 r10_bio->state = 0;
1da177e4 3636
1da177e4
LT
3637 r10_bio->mddev = mddev;
3638 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3639 raise_barrier(conf, 0);
3640 conf->next_resync = sector_nr;
1da177e4
LT
3641
3642 r10_bio->master_bio = NULL;
3643 r10_bio->sector = sector_nr;
3644 set_bit(R10BIO_IsSync, &r10_bio->state);
3645 raid10_find_phys(conf, r10_bio);
5cf00fcd 3646 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3647
5cf00fcd 3648 for (i = 0; i < conf->copies; i++) {
1da177e4 3649 int d = r10_bio->devs[i].devnum;
40c356ce
N
3650 sector_t first_bad, sector;
3651 int bad_sectors;
f90145f3 3652 struct md_rdev *rdev;
40c356ce 3653
9ad1aefc
N
3654 if (r10_bio->devs[i].repl_bio)
3655 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3656
1da177e4 3657 bio = r10_bio->devs[i].bio;
4e4cbee9 3658 bio->bi_status = BLK_STS_IOERR;
f90145f3
N
3659 rcu_read_lock();
3660 rdev = rcu_dereference(conf->mirrors[d].rdev);
3661 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3662 rcu_read_unlock();
1da177e4 3663 continue;
f90145f3 3664 }
40c356ce 3665 sector = r10_bio->devs[i].addr;
f90145f3 3666 if (is_badblock(rdev, sector, max_sync,
40c356ce
N
3667 &first_bad, &bad_sectors)) {
3668 if (first_bad > sector)
3669 max_sync = first_bad - sector;
3670 else {
3671 bad_sectors -= (sector - first_bad);
3672 if (max_sync > bad_sectors)
91502f09 3673 max_sync = bad_sectors;
f90145f3 3674 rcu_read_unlock();
40c356ce
N
3675 continue;
3676 }
3677 }
f90145f3 3678 atomic_inc(&rdev->nr_pending);
1da177e4
LT
3679 atomic_inc(&r10_bio->remaining);
3680 bio->bi_next = biolist;
3681 biolist = bio;
1da177e4 3682 bio->bi_end_io = end_sync_read;
796a5cf0 3683 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1cdd1257 3684 if (test_bit(FailFast, &rdev->flags))
8d3ca83d 3685 bio->bi_opf |= MD_FAILFAST;
f90145f3 3686 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3687 bio_set_dev(bio, rdev->bdev);
1da177e4 3688 count++;
9ad1aefc 3689
f90145f3
N
3690 rdev = rcu_dereference(conf->mirrors[d].replacement);
3691 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3692 rcu_read_unlock();
9ad1aefc 3693 continue;
f90145f3
N
3694 }
3695 atomic_inc(&rdev->nr_pending);
9ad1aefc
N
3696
3697 /* Need to set up for writing to the replacement */
3698 bio = r10_bio->devs[i].repl_bio;
4e4cbee9 3699 bio->bi_status = BLK_STS_IOERR;
9ad1aefc
N
3700
3701 sector = r10_bio->devs[i].addr;
9ad1aefc
N
3702 bio->bi_next = biolist;
3703 biolist = bio;
9ad1aefc 3704 bio->bi_end_io = end_sync_write;
796a5cf0 3705 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1cdd1257 3706 if (test_bit(FailFast, &rdev->flags))
1919cbb2 3707 bio->bi_opf |= MD_FAILFAST;
f90145f3 3708 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3709 bio_set_dev(bio, rdev->bdev);
9ad1aefc 3710 count++;
1cdd1257 3711 rcu_read_unlock();
1da177e4
LT
3712 }
3713
3714 if (count < 2) {
3715 for (i=0; i<conf->copies; i++) {
3716 int d = r10_bio->devs[i].devnum;
3717 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3718 rdev_dec_pending(conf->mirrors[d].rdev,
3719 mddev);
9ad1aefc
N
3720 if (r10_bio->devs[i].repl_bio &&
3721 r10_bio->devs[i].repl_bio->bi_end_io)
3722 rdev_dec_pending(
3723 conf->mirrors[d].replacement,
3724 mddev);
1da177e4
LT
3725 }
3726 put_buf(r10_bio);
3727 biolist = NULL;
3728 goto giveup;
3729 }
3730 }
3731
1da177e4 3732 nr_sectors = 0;
6cce3b23
N
3733 if (sector_nr + max_sync < max_sector)
3734 max_sector = sector_nr + max_sync;
1da177e4
LT
3735 do {
3736 struct page *page;
3737 int len = PAGE_SIZE;
1da177e4
LT
3738 if (sector_nr + (len>>9) > max_sector)
3739 len = (max_sector - sector_nr) << 9;
3740 if (len == 0)
3741 break;
3742 for (bio= biolist ; bio ; bio=bio->bi_next) {
f0250618 3743 struct resync_pages *rp = get_resync_pages(bio);
022e510f 3744 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
3745 /*
3746 * won't fail because the vec table is big enough
3747 * to hold all these pages
3748 */
3749 bio_add_page(bio, page, len, 0);
1da177e4
LT
3750 }
3751 nr_sectors += len>>9;
3752 sector_nr += len>>9;
022e510f 3753 } while (++page_idx < RESYNC_PAGES);
1da177e4
LT
3754 r10_bio->sectors = nr_sectors;
3755
8db87912
GJ
3756 if (mddev_is_clustered(mddev) &&
3757 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3758 /* It is resync not recovery */
3759 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3760 conf->cluster_sync_low = mddev->curr_resync_completed;
3761 raid10_set_cluster_sync_high(conf);
3762 /* Send resync message */
3763 md_cluster_ops->resync_info_update(mddev,
3764 conf->cluster_sync_low,
3765 conf->cluster_sync_high);
3766 }
3767 } else if (mddev_is_clustered(mddev)) {
3768 /* This is recovery not resync */
3769 sector_t sect_va1, sect_va2;
3770 bool broadcast_msg = false;
3771
3772 for (i = 0; i < conf->geo.raid_disks; i++) {
3773 /*
3774 * sector_nr is a device address for recovery, so we
3775 * need translate it to array address before compare
3776 * with cluster_sync_high.
3777 */
3778 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3779
3780 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3781 broadcast_msg = true;
3782 /*
3783 * curr_resync_completed is similar as
3784 * sector_nr, so make the translation too.
3785 */
3786 sect_va2 = raid10_find_virt(conf,
3787 mddev->curr_resync_completed, i);
3788
3789 if (conf->cluster_sync_low == 0 ||
3790 conf->cluster_sync_low > sect_va2)
3791 conf->cluster_sync_low = sect_va2;
3792 }
3793 }
3794 if (broadcast_msg) {
3795 raid10_set_cluster_sync_high(conf);
3796 md_cluster_ops->resync_info_update(mddev,
3797 conf->cluster_sync_low,
3798 conf->cluster_sync_high);
3799 }
3800 }
3801
1da177e4
LT
3802 while (biolist) {
3803 bio = biolist;
3804 biolist = biolist->bi_next;
3805
3806 bio->bi_next = NULL;
f0250618 3807 r10_bio = get_resync_r10bio(bio);
1da177e4
LT
3808 r10_bio->sectors = nr_sectors;
3809
3810 if (bio->bi_end_io == end_sync_read) {
74d46992 3811 md_sync_acct_bio(bio, nr_sectors);
4e4cbee9 3812 bio->bi_status = 0;
ed00aabd 3813 submit_bio_noacct(bio);
1da177e4
LT
3814 }
3815 }
3816
57afd89f
N
3817 if (sectors_skipped)
3818 /* pretend they weren't skipped, it makes
3819 * no important difference in this case
3820 */
3821 md_done_sync(mddev, sectors_skipped, 1);
3822
1da177e4
LT
3823 return sectors_skipped + nr_sectors;
3824 giveup:
3825 /* There is nowhere to write, so all non-sync
e875ecea
N
3826 * drives must be failed or in resync, all drives
3827 * have a bad block, so try the next chunk...
1da177e4 3828 */
09b4068a
N
3829 if (sector_nr + max_sync < max_sector)
3830 max_sector = sector_nr + max_sync;
3831
3832 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3833 chunks_skipped ++;
3834 sector_nr = max_sector;
1da177e4 3835 goto skipped;
1da177e4
LT
3836}
3837
80c3a6ce 3838static sector_t
fd01b88c 3839raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3840{
3841 sector_t size;
e879a879 3842 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3843
3844 if (!raid_disks)
3ea7daa5
N
3845 raid_disks = min(conf->geo.raid_disks,
3846 conf->prev.raid_disks);
80c3a6ce 3847 if (!sectors)
dab8b292 3848 sectors = conf->dev_sectors;
80c3a6ce 3849
5cf00fcd
N
3850 size = sectors >> conf->geo.chunk_shift;
3851 sector_div(size, conf->geo.far_copies);
80c3a6ce 3852 size = size * raid_disks;
5cf00fcd 3853 sector_div(size, conf->geo.near_copies);
80c3a6ce 3854
5cf00fcd 3855 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3856}
3857
6508fdbf
N
3858static void calc_sectors(struct r10conf *conf, sector_t size)
3859{
3860 /* Calculate the number of sectors-per-device that will
3861 * actually be used, and set conf->dev_sectors and
3862 * conf->stride
3863 */
3864
5cf00fcd
N
3865 size = size >> conf->geo.chunk_shift;
3866 sector_div(size, conf->geo.far_copies);
3867 size = size * conf->geo.raid_disks;
3868 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3869 /* 'size' is now the number of chunks in the array */
3870 /* calculate "used chunks per device" */
3871 size = size * conf->copies;
3872
3873 /* We need to round up when dividing by raid_disks to
3874 * get the stride size.
3875 */
5cf00fcd 3876 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3877
5cf00fcd 3878 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3879
5cf00fcd
N
3880 if (conf->geo.far_offset)
3881 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3882 else {
5cf00fcd
N
3883 sector_div(size, conf->geo.far_copies);
3884 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3885 }
3886}
dab8b292 3887
deb200d0
N
3888enum geo_type {geo_new, geo_old, geo_start};
3889static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3890{
3891 int nc, fc, fo;
3892 int layout, chunk, disks;
3893 switch (new) {
3894 case geo_old:
3895 layout = mddev->layout;
3896 chunk = mddev->chunk_sectors;
3897 disks = mddev->raid_disks - mddev->delta_disks;
3898 break;
3899 case geo_new:
3900 layout = mddev->new_layout;
3901 chunk = mddev->new_chunk_sectors;
3902 disks = mddev->raid_disks;
3903 break;
3904 default: /* avoid 'may be unused' warnings */
3905 case geo_start: /* new when starting reshape - raid_disks not
3906 * updated yet. */
3907 layout = mddev->new_layout;
3908 chunk = mddev->new_chunk_sectors;
3909 disks = mddev->raid_disks + mddev->delta_disks;
3910 break;
3911 }
8bce6d35 3912 if (layout >> 19)
deb200d0
N
3913 return -1;
3914 if (chunk < (PAGE_SIZE >> 9) ||
3915 !is_power_of_2(chunk))
3916 return -2;
3917 nc = layout & 255;
3918 fc = (layout >> 8) & 255;
3919 fo = layout & (1<<16);
3920 geo->raid_disks = disks;
3921 geo->near_copies = nc;
3922 geo->far_copies = fc;
3923 geo->far_offset = fo;
8bce6d35
N
3924 switch (layout >> 17) {
3925 case 0: /* original layout. simple but not always optimal */
3926 geo->far_set_size = disks;
3927 break;
3928 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3929 * actually using this, but leave code here just in case.*/
3930 geo->far_set_size = disks/fc;
3931 WARN(geo->far_set_size < fc,
3932 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3933 break;
3934 case 2: /* "improved" layout fixed to match documentation */
3935 geo->far_set_size = fc * nc;
3936 break;
3937 default: /* Not a valid layout */
3938 return -1;
3939 }
deb200d0
N
3940 geo->chunk_mask = chunk - 1;
3941 geo->chunk_shift = ffz(~chunk);
3942 return nc*fc;
3943}
3944
e879a879 3945static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3946{
e879a879 3947 struct r10conf *conf = NULL;
dab8b292 3948 int err = -EINVAL;
deb200d0
N
3949 struct geom geo;
3950 int copies;
3951
3952 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3953
deb200d0 3954 if (copies == -2) {
08464e09
N
3955 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3956 mdname(mddev), PAGE_SIZE);
dab8b292 3957 goto out;
1da177e4 3958 }
2604b703 3959
deb200d0 3960 if (copies < 2 || copies > mddev->raid_disks) {
08464e09
N
3961 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3962 mdname(mddev), mddev->new_layout);
1da177e4
LT
3963 goto out;
3964 }
dab8b292
TM
3965
3966 err = -ENOMEM;
e879a879 3967 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3968 if (!conf)
1da177e4 3969 goto out;
dab8b292 3970
3ea7daa5 3971 /* FIXME calc properly */
6396bb22
KC
3972 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3973 sizeof(struct raid10_info),
dab8b292
TM
3974 GFP_KERNEL);
3975 if (!conf->mirrors)
3976 goto out;
4443ae10
N
3977
3978 conf->tmppage = alloc_page(GFP_KERNEL);
3979 if (!conf->tmppage)
dab8b292
TM
3980 goto out;
3981
deb200d0
N
3982 conf->geo = geo;
3983 conf->copies = copies;
3f677f9c 3984 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
c7afa803 3985 rbio_pool_free, conf);
afeee514 3986 if (err)
dab8b292
TM
3987 goto out;
3988
afeee514
KO
3989 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3990 if (err)
fc9977dd
N
3991 goto out;
3992
6508fdbf 3993 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3994 if (mddev->reshape_position == MaxSector) {
3995 conf->prev = conf->geo;
3996 conf->reshape_progress = MaxSector;
3997 } else {
3998 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3999 err = -EINVAL;
4000 goto out;
4001 }
4002 conf->reshape_progress = mddev->reshape_position;
4003 if (conf->prev.far_offset)
4004 conf->prev.stride = 1 << conf->prev.chunk_shift;
4005 else
4006 /* far_copies must be 1 */
4007 conf->prev.stride = conf->dev_sectors;
4008 }
299b0685 4009 conf->reshape_safe = conf->reshape_progress;
e7e72bf6 4010 spin_lock_init(&conf->device_lock);
dab8b292 4011 INIT_LIST_HEAD(&conf->retry_list);
95af587e 4012 INIT_LIST_HEAD(&conf->bio_end_io_list);
dab8b292
TM
4013
4014 spin_lock_init(&conf->resync_lock);
4015 init_waitqueue_head(&conf->wait_barrier);
0e5313e2 4016 atomic_set(&conf->nr_pending, 0);
dab8b292 4017
afeee514 4018 err = -ENOMEM;
0232605d 4019 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
4020 if (!conf->thread)
4021 goto out;
4022
dab8b292
TM
4023 conf->mddev = mddev;
4024 return conf;
4025
4026 out:
dab8b292 4027 if (conf) {
afeee514 4028 mempool_exit(&conf->r10bio_pool);
dab8b292
TM
4029 kfree(conf->mirrors);
4030 safe_put_page(conf->tmppage);
afeee514 4031 bioset_exit(&conf->bio_split);
dab8b292
TM
4032 kfree(conf);
4033 }
4034 return ERR_PTR(err);
4035}
4036
16ef5101
CH
4037static void raid10_set_io_opt(struct r10conf *conf)
4038{
4039 int raid_disks = conf->geo.raid_disks;
4040
4041 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4042 raid_disks /= conf->geo.near_copies;
4043 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4044 raid_disks);
4045}
4046
849674e4 4047static int raid10_run(struct mddev *mddev)
dab8b292 4048{
e879a879 4049 struct r10conf *conf;
16ef5101 4050 int i, disk_idx;
dc280d98 4051 struct raid10_info *disk;
3cb03002 4052 struct md_rdev *rdev;
dab8b292 4053 sector_t size;
3ea7daa5
N
4054 sector_t min_offset_diff = 0;
4055 int first = 1;
532a2a3f 4056 bool discard_supported = false;
dab8b292 4057
a415c0f1
N
4058 if (mddev_init_writes_pending(mddev) < 0)
4059 return -ENOMEM;
4060
dab8b292
TM
4061 if (mddev->private == NULL) {
4062 conf = setup_conf(mddev);
4063 if (IS_ERR(conf))
4064 return PTR_ERR(conf);
4065 mddev->private = conf;
4066 }
4067 conf = mddev->private;
4068 if (!conf)
4069 goto out;
4070
8db87912
GJ
4071 if (mddev_is_clustered(conf->mddev)) {
4072 int fc, fo;
4073
4074 fc = (mddev->layout >> 8) & 255;
4075 fo = mddev->layout & (1<<16);
4076 if (fc > 1 || fo > 0) {
4077 pr_err("only near layout is supported by clustered"
4078 " raid10\n");
43a52123 4079 goto out_free_conf;
8db87912
GJ
4080 }
4081 }
4082
dab8b292
TM
4083 mddev->thread = conf->thread;
4084 conf->thread = NULL;
4085
cc4d1efd 4086 if (mddev->queue) {
532a2a3f 4087 blk_queue_max_discard_sectors(mddev->queue,
d30588b2 4088 UINT_MAX);
5026d7a9 4089 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 4090 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
16ef5101
CH
4091 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4092 raid10_set_io_opt(conf);
cc4d1efd 4093 }
8f6c2e4b 4094
dafb20fa 4095 rdev_for_each(rdev, mddev) {
3ea7daa5 4096 long long diff;
34b343cf 4097
1da177e4 4098 disk_idx = rdev->raid_disk;
f8c9e74f
N
4099 if (disk_idx < 0)
4100 continue;
4101 if (disk_idx >= conf->geo.raid_disks &&
4102 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
4103 continue;
4104 disk = conf->mirrors + disk_idx;
4105
56a2559b
N
4106 if (test_bit(Replacement, &rdev->flags)) {
4107 if (disk->replacement)
4108 goto out_free_conf;
4109 disk->replacement = rdev;
4110 } else {
4111 if (disk->rdev)
4112 goto out_free_conf;
4113 disk->rdev = rdev;
4114 }
3ea7daa5
N
4115 diff = (rdev->new_data_offset - rdev->data_offset);
4116 if (!mddev->reshape_backwards)
4117 diff = -diff;
4118 if (diff < 0)
4119 diff = 0;
4120 if (first || diff < min_offset_diff)
4121 min_offset_diff = diff;
56a2559b 4122
cc4d1efd
JB
4123 if (mddev->gendisk)
4124 disk_stack_limits(mddev->gendisk, rdev->bdev,
4125 rdev->data_offset << 9);
1da177e4
LT
4126
4127 disk->head_position = 0;
532a2a3f
SL
4128
4129 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4130 discard_supported = true;
6f287ca6 4131 first = 0;
1da177e4 4132 }
3ea7daa5 4133
ed30be07
JB
4134 if (mddev->queue) {
4135 if (discard_supported)
8b904b5b 4136 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
ed30be07
JB
4137 mddev->queue);
4138 else
8b904b5b 4139 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
ed30be07
JB
4140 mddev->queue);
4141 }
6d508242 4142 /* need to check that every block has at least one working mirror */
700c7213 4143 if (!enough(conf, -1)) {
08464e09 4144 pr_err("md/raid10:%s: not enough operational mirrors.\n",
6d508242 4145 mdname(mddev));
1da177e4
LT
4146 goto out_free_conf;
4147 }
4148
3ea7daa5
N
4149 if (conf->reshape_progress != MaxSector) {
4150 /* must ensure that shape change is supported */
4151 if (conf->geo.far_copies != 1 &&
4152 conf->geo.far_offset == 0)
4153 goto out_free_conf;
4154 if (conf->prev.far_copies != 1 &&
78eaa0d4 4155 conf->prev.far_offset == 0)
3ea7daa5
N
4156 goto out_free_conf;
4157 }
4158
1da177e4 4159 mddev->degraded = 0;
f8c9e74f
N
4160 for (i = 0;
4161 i < conf->geo.raid_disks
4162 || i < conf->prev.raid_disks;
4163 i++) {
1da177e4
LT
4164
4165 disk = conf->mirrors + i;
4166
56a2559b
N
4167 if (!disk->rdev && disk->replacement) {
4168 /* The replacement is all we have - use it */
4169 disk->rdev = disk->replacement;
4170 disk->replacement = NULL;
4171 clear_bit(Replacement, &disk->rdev->flags);
4172 }
4173
5fd6c1dc 4174 if (!disk->rdev ||
2e333e89 4175 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
4176 disk->head_position = 0;
4177 mddev->degraded++;
0b59bb64
N
4178 if (disk->rdev &&
4179 disk->rdev->saved_raid_disk < 0)
8c2e870a 4180 conf->fullsync = 1;
1da177e4 4181 }
bda31539
BC
4182
4183 if (disk->replacement &&
4184 !test_bit(In_sync, &disk->replacement->flags) &&
4185 disk->replacement->saved_raid_disk < 0) {
4186 conf->fullsync = 1;
4187 }
4188
d890fa2b 4189 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
4190 }
4191
8c6ac868 4192 if (mddev->recovery_cp != MaxSector)
08464e09
N
4193 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4194 mdname(mddev));
4195 pr_info("md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
4196 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4197 conf->geo.raid_disks);
1da177e4
LT
4198 /*
4199 * Ok, everything is just fine now
4200 */
dab8b292
TM
4201 mddev->dev_sectors = conf->dev_sectors;
4202 size = raid10_size(mddev, 0, 0);
4203 md_set_array_sectors(mddev, size);
4204 mddev->resync_max_sectors = size;
46533ff7 4205 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
1da177e4 4206
a91a2785
MP
4207 if (md_integrity_register(mddev))
4208 goto out_free_conf;
4209
3ea7daa5
N
4210 if (conf->reshape_progress != MaxSector) {
4211 unsigned long before_length, after_length;
4212
4213 before_length = ((1 << conf->prev.chunk_shift) *
4214 conf->prev.far_copies);
4215 after_length = ((1 << conf->geo.chunk_shift) *
4216 conf->geo.far_copies);
4217
4218 if (max(before_length, after_length) > min_offset_diff) {
4219 /* This cannot work */
08464e09 4220 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3ea7daa5
N
4221 goto out_free_conf;
4222 }
4223 conf->offset_diff = min_offset_diff;
4224
3ea7daa5
N
4225 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4226 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4227 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4228 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4229 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4230 "reshape");
e406f12d
AP
4231 if (!mddev->sync_thread)
4232 goto out_free_conf;
3ea7daa5
N
4233 }
4234
1da177e4
LT
4235 return 0;
4236
4237out_free_conf:
01f96c0a 4238 md_unregister_thread(&mddev->thread);
afeee514 4239 mempool_exit(&conf->r10bio_pool);
1345b1d8 4240 safe_put_page(conf->tmppage);
990a8baf 4241 kfree(conf->mirrors);
1da177e4
LT
4242 kfree(conf);
4243 mddev->private = NULL;
4244out:
4245 return -EIO;
4246}
4247
afa0f557 4248static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 4249{
afa0f557 4250 struct r10conf *conf = priv;
1da177e4 4251
afeee514 4252 mempool_exit(&conf->r10bio_pool);
0fea7ed8 4253 safe_put_page(conf->tmppage);
990a8baf 4254 kfree(conf->mirrors);
c4796e21
N
4255 kfree(conf->mirrors_old);
4256 kfree(conf->mirrors_new);
afeee514 4257 bioset_exit(&conf->bio_split);
1da177e4 4258 kfree(conf);
1da177e4
LT
4259}
4260
b03e0ccb 4261static void raid10_quiesce(struct mddev *mddev, int quiesce)
6cce3b23 4262{
e879a879 4263 struct r10conf *conf = mddev->private;
6cce3b23 4264
b03e0ccb 4265 if (quiesce)
6cce3b23 4266 raise_barrier(conf, 0);
b03e0ccb 4267 else
6cce3b23 4268 lower_barrier(conf);
6cce3b23 4269}
1da177e4 4270
006a09a0
N
4271static int raid10_resize(struct mddev *mddev, sector_t sectors)
4272{
4273 /* Resize of 'far' arrays is not supported.
4274 * For 'near' and 'offset' arrays we can set the
4275 * number of sectors used to be an appropriate multiple
4276 * of the chunk size.
4277 * For 'offset', this is far_copies*chunksize.
4278 * For 'near' the multiplier is the LCM of
4279 * near_copies and raid_disks.
4280 * So if far_copies > 1 && !far_offset, fail.
4281 * Else find LCM(raid_disks, near_copy)*far_copies and
4282 * multiply by chunk_size. Then round to this number.
4283 * This is mostly done by raid10_size()
4284 */
4285 struct r10conf *conf = mddev->private;
4286 sector_t oldsize, size;
4287
f8c9e74f
N
4288 if (mddev->reshape_position != MaxSector)
4289 return -EBUSY;
4290
5cf00fcd 4291 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
4292 return -EINVAL;
4293
4294 oldsize = raid10_size(mddev, 0, 0);
4295 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
4296 if (mddev->external_size &&
4297 mddev->array_sectors > size)
006a09a0 4298 return -EINVAL;
a4a6125a 4299 if (mddev->bitmap) {
e64e4018 4300 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
a4a6125a
N
4301 if (ret)
4302 return ret;
4303 }
4304 md_set_array_sectors(mddev, size);
006a09a0
N
4305 if (sectors > mddev->dev_sectors &&
4306 mddev->recovery_cp > oldsize) {
4307 mddev->recovery_cp = oldsize;
4308 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4309 }
6508fdbf
N
4310 calc_sectors(conf, sectors);
4311 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
4312 mddev->resync_max_sectors = size;
4313 return 0;
4314}
4315
53a6ab4d 4316static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 4317{
3cb03002 4318 struct md_rdev *rdev;
e879a879 4319 struct r10conf *conf;
dab8b292
TM
4320
4321 if (mddev->degraded > 0) {
08464e09
N
4322 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4323 mdname(mddev));
dab8b292
TM
4324 return ERR_PTR(-EINVAL);
4325 }
53a6ab4d 4326 sector_div(size, devs);
dab8b292 4327
dab8b292
TM
4328 /* Set new parameters */
4329 mddev->new_level = 10;
4330 /* new layout: far_copies = 1, near_copies = 2 */
4331 mddev->new_layout = (1<<8) + 2;
4332 mddev->new_chunk_sectors = mddev->chunk_sectors;
4333 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
4334 mddev->raid_disks *= 2;
4335 /* make sure it will be not marked as dirty */
4336 mddev->recovery_cp = MaxSector;
53a6ab4d 4337 mddev->dev_sectors = size;
dab8b292
TM
4338
4339 conf = setup_conf(mddev);
02214dc5 4340 if (!IS_ERR(conf)) {
dafb20fa 4341 rdev_for_each(rdev, mddev)
53a6ab4d 4342 if (rdev->raid_disk >= 0) {
e93f68a1 4343 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
4344 rdev->sectors = size;
4345 }
02214dc5
KW
4346 conf->barrier = 1;
4347 }
4348
dab8b292
TM
4349 return conf;
4350}
4351
fd01b88c 4352static void *raid10_takeover(struct mddev *mddev)
dab8b292 4353{
e373ab10 4354 struct r0conf *raid0_conf;
dab8b292
TM
4355
4356 /* raid10 can take over:
4357 * raid0 - providing it has only two drives
4358 */
4359 if (mddev->level == 0) {
4360 /* for raid0 takeover only one zone is supported */
e373ab10
N
4361 raid0_conf = mddev->private;
4362 if (raid0_conf->nr_strip_zones > 1) {
08464e09
N
4363 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4364 mdname(mddev));
dab8b292
TM
4365 return ERR_PTR(-EINVAL);
4366 }
53a6ab4d
N
4367 return raid10_takeover_raid0(mddev,
4368 raid0_conf->strip_zone->zone_end,
4369 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
4370 }
4371 return ERR_PTR(-EINVAL);
4372}
4373
3ea7daa5
N
4374static int raid10_check_reshape(struct mddev *mddev)
4375{
4376 /* Called when there is a request to change
4377 * - layout (to ->new_layout)
4378 * - chunk size (to ->new_chunk_sectors)
4379 * - raid_disks (by delta_disks)
4380 * or when trying to restart a reshape that was ongoing.
4381 *
4382 * We need to validate the request and possibly allocate
4383 * space if that might be an issue later.
4384 *
4385 * Currently we reject any reshape of a 'far' mode array,
4386 * allow chunk size to change if new is generally acceptable,
4387 * allow raid_disks to increase, and allow
4388 * a switch between 'near' mode and 'offset' mode.
4389 */
4390 struct r10conf *conf = mddev->private;
4391 struct geom geo;
4392
4393 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4394 return -EINVAL;
4395
4396 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4397 /* mustn't change number of copies */
4398 return -EINVAL;
4399 if (geo.far_copies > 1 && !geo.far_offset)
4400 /* Cannot switch to 'far' mode */
4401 return -EINVAL;
4402
4403 if (mddev->array_sectors & geo.chunk_mask)
4404 /* not factor of array size */
4405 return -EINVAL;
4406
3ea7daa5
N
4407 if (!enough(conf, -1))
4408 return -EINVAL;
4409
4410 kfree(conf->mirrors_new);
4411 conf->mirrors_new = NULL;
4412 if (mddev->delta_disks > 0) {
4413 /* allocate new 'mirrors' list */
6396bb22
KC
4414 conf->mirrors_new =
4415 kcalloc(mddev->raid_disks + mddev->delta_disks,
4416 sizeof(struct raid10_info),
4417 GFP_KERNEL);
3ea7daa5
N
4418 if (!conf->mirrors_new)
4419 return -ENOMEM;
4420 }
4421 return 0;
4422}
4423
4424/*
4425 * Need to check if array has failed when deciding whether to:
4426 * - start an array
4427 * - remove non-faulty devices
4428 * - add a spare
4429 * - allow a reshape
4430 * This determination is simple when no reshape is happening.
4431 * However if there is a reshape, we need to carefully check
4432 * both the before and after sections.
4433 * This is because some failed devices may only affect one
4434 * of the two sections, and some non-in_sync devices may
4435 * be insync in the section most affected by failed devices.
4436 */
4437static int calc_degraded(struct r10conf *conf)
4438{
4439 int degraded, degraded2;
4440 int i;
4441
4442 rcu_read_lock();
4443 degraded = 0;
4444 /* 'prev' section first */
4445 for (i = 0; i < conf->prev.raid_disks; i++) {
4446 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4447 if (!rdev || test_bit(Faulty, &rdev->flags))
4448 degraded++;
4449 else if (!test_bit(In_sync, &rdev->flags))
4450 /* When we can reduce the number of devices in
4451 * an array, this might not contribute to
4452 * 'degraded'. It does now.
4453 */
4454 degraded++;
4455 }
4456 rcu_read_unlock();
4457 if (conf->geo.raid_disks == conf->prev.raid_disks)
4458 return degraded;
4459 rcu_read_lock();
4460 degraded2 = 0;
4461 for (i = 0; i < conf->geo.raid_disks; i++) {
4462 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4463 if (!rdev || test_bit(Faulty, &rdev->flags))
4464 degraded2++;
4465 else if (!test_bit(In_sync, &rdev->flags)) {
4466 /* If reshape is increasing the number of devices,
4467 * this section has already been recovered, so
4468 * it doesn't contribute to degraded.
4469 * else it does.
4470 */
4471 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4472 degraded2++;
4473 }
4474 }
4475 rcu_read_unlock();
4476 if (degraded2 > degraded)
4477 return degraded2;
4478 return degraded;
4479}
4480
4481static int raid10_start_reshape(struct mddev *mddev)
4482{
4483 /* A 'reshape' has been requested. This commits
4484 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4485 * This also checks if there are enough spares and adds them
4486 * to the array.
4487 * We currently require enough spares to make the final
4488 * array non-degraded. We also require that the difference
4489 * between old and new data_offset - on each device - is
4490 * enough that we never risk over-writing.
4491 */
4492
4493 unsigned long before_length, after_length;
4494 sector_t min_offset_diff = 0;
4495 int first = 1;
4496 struct geom new;
4497 struct r10conf *conf = mddev->private;
4498 struct md_rdev *rdev;
4499 int spares = 0;
bb63a701 4500 int ret;
3ea7daa5
N
4501
4502 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4503 return -EBUSY;
4504
4505 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4506 return -EINVAL;
4507
4508 before_length = ((1 << conf->prev.chunk_shift) *
4509 conf->prev.far_copies);
4510 after_length = ((1 << conf->geo.chunk_shift) *
4511 conf->geo.far_copies);
4512
4513 rdev_for_each(rdev, mddev) {
4514 if (!test_bit(In_sync, &rdev->flags)
4515 && !test_bit(Faulty, &rdev->flags))
4516 spares++;
4517 if (rdev->raid_disk >= 0) {
4518 long long diff = (rdev->new_data_offset
4519 - rdev->data_offset);
4520 if (!mddev->reshape_backwards)
4521 diff = -diff;
4522 if (diff < 0)
4523 diff = 0;
4524 if (first || diff < min_offset_diff)
4525 min_offset_diff = diff;
b506335e 4526 first = 0;
3ea7daa5
N
4527 }
4528 }
4529
4530 if (max(before_length, after_length) > min_offset_diff)
4531 return -EINVAL;
4532
4533 if (spares < mddev->delta_disks)
4534 return -EINVAL;
4535
4536 conf->offset_diff = min_offset_diff;
4537 spin_lock_irq(&conf->device_lock);
4538 if (conf->mirrors_new) {
4539 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4540 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4541 smp_mb();
c4796e21 4542 kfree(conf->mirrors_old);
3ea7daa5
N
4543 conf->mirrors_old = conf->mirrors;
4544 conf->mirrors = conf->mirrors_new;
4545 conf->mirrors_new = NULL;
4546 }
4547 setup_geo(&conf->geo, mddev, geo_start);
4548 smp_mb();
4549 if (mddev->reshape_backwards) {
4550 sector_t size = raid10_size(mddev, 0, 0);
4551 if (size < mddev->array_sectors) {
4552 spin_unlock_irq(&conf->device_lock);
08464e09
N
4553 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4554 mdname(mddev));
3ea7daa5
N
4555 return -EINVAL;
4556 }
4557 mddev->resync_max_sectors = size;
4558 conf->reshape_progress = size;
4559 } else
4560 conf->reshape_progress = 0;
299b0685 4561 conf->reshape_safe = conf->reshape_progress;
3ea7daa5
N
4562 spin_unlock_irq(&conf->device_lock);
4563
bb63a701 4564 if (mddev->delta_disks && mddev->bitmap) {
afd75628
GJ
4565 struct mdp_superblock_1 *sb = NULL;
4566 sector_t oldsize, newsize;
4567
4568 oldsize = raid10_size(mddev, 0, 0);
4569 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4570
4571 if (!mddev_is_clustered(mddev)) {
4572 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4573 if (ret)
4574 goto abort;
4575 else
4576 goto out;
4577 }
4578
4579 rdev_for_each(rdev, mddev) {
4580 if (rdev->raid_disk > -1 &&
4581 !test_bit(Faulty, &rdev->flags))
4582 sb = page_address(rdev->sb_page);
4583 }
4584
4585 /*
4586 * some node is already performing reshape, and no need to
4587 * call md_bitmap_resize again since it should be called when
4588 * receiving BITMAP_RESIZE msg
4589 */
4590 if ((sb && (le32_to_cpu(sb->feature_map) &
4591 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4592 goto out;
4593
4594 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
bb63a701
N
4595 if (ret)
4596 goto abort;
afd75628
GJ
4597
4598 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4599 if (ret) {
4600 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4601 goto abort;
4602 }
bb63a701 4603 }
afd75628 4604out:
3ea7daa5
N
4605 if (mddev->delta_disks > 0) {
4606 rdev_for_each(rdev, mddev)
4607 if (rdev->raid_disk < 0 &&
4608 !test_bit(Faulty, &rdev->flags)) {
4609 if (raid10_add_disk(mddev, rdev) == 0) {
4610 if (rdev->raid_disk >=
4611 conf->prev.raid_disks)
4612 set_bit(In_sync, &rdev->flags);
4613 else
4614 rdev->recovery_offset = 0;
4615
38ffc01f
DLM
4616 /* Failure here is OK */
4617 sysfs_link_rdev(mddev, rdev);
3ea7daa5
N
4618 }
4619 } else if (rdev->raid_disk >= conf->prev.raid_disks
4620 && !test_bit(Faulty, &rdev->flags)) {
4621 /* This is a spare that was manually added */
4622 set_bit(In_sync, &rdev->flags);
4623 }
4624 }
4625 /* When a reshape changes the number of devices,
4626 * ->degraded is measured against the larger of the
4627 * pre and post numbers.
4628 */
4629 spin_lock_irq(&conf->device_lock);
4630 mddev->degraded = calc_degraded(conf);
4631 spin_unlock_irq(&conf->device_lock);
4632 mddev->raid_disks = conf->geo.raid_disks;
4633 mddev->reshape_position = conf->reshape_progress;
2953079c 4634 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5
N
4635
4636 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4637 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4638 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4639 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4640 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4641
4642 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4643 "reshape");
4644 if (!mddev->sync_thread) {
bb63a701
N
4645 ret = -EAGAIN;
4646 goto abort;
3ea7daa5
N
4647 }
4648 conf->reshape_checkpoint = jiffies;
4649 md_wakeup_thread(mddev->sync_thread);
4650 md_new_event(mddev);
4651 return 0;
bb63a701
N
4652
4653abort:
4654 mddev->recovery = 0;
4655 spin_lock_irq(&conf->device_lock);
4656 conf->geo = conf->prev;
4657 mddev->raid_disks = conf->geo.raid_disks;
4658 rdev_for_each(rdev, mddev)
4659 rdev->new_data_offset = rdev->data_offset;
4660 smp_wmb();
4661 conf->reshape_progress = MaxSector;
299b0685 4662 conf->reshape_safe = MaxSector;
bb63a701
N
4663 mddev->reshape_position = MaxSector;
4664 spin_unlock_irq(&conf->device_lock);
4665 return ret;
3ea7daa5
N
4666}
4667
4668/* Calculate the last device-address that could contain
4669 * any block from the chunk that includes the array-address 's'
4670 * and report the next address.
4671 * i.e. the address returned will be chunk-aligned and after
4672 * any data that is in the chunk containing 's'.
4673 */
4674static sector_t last_dev_address(sector_t s, struct geom *geo)
4675{
4676 s = (s | geo->chunk_mask) + 1;
4677 s >>= geo->chunk_shift;
4678 s *= geo->near_copies;
4679 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4680 s *= geo->far_copies;
4681 s <<= geo->chunk_shift;
4682 return s;
4683}
4684
4685/* Calculate the first device-address that could contain
4686 * any block from the chunk that includes the array-address 's'.
4687 * This too will be the start of a chunk
4688 */
4689static sector_t first_dev_address(sector_t s, struct geom *geo)
4690{
4691 s >>= geo->chunk_shift;
4692 s *= geo->near_copies;
4693 sector_div(s, geo->raid_disks);
4694 s *= geo->far_copies;
4695 s <<= geo->chunk_shift;
4696 return s;
4697}
4698
4699static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4700 int *skipped)
4701{
4702 /* We simply copy at most one chunk (smallest of old and new)
4703 * at a time, possibly less if that exceeds RESYNC_PAGES,
4704 * or we hit a bad block or something.
4705 * This might mean we pause for normal IO in the middle of
02ec5026 4706 * a chunk, but that is not a problem as mddev->reshape_position
3ea7daa5
N
4707 * can record any location.
4708 *
4709 * If we will want to write to a location that isn't
4710 * yet recorded as 'safe' (i.e. in metadata on disk) then
4711 * we need to flush all reshape requests and update the metadata.
4712 *
4713 * When reshaping forwards (e.g. to more devices), we interpret
4714 * 'safe' as the earliest block which might not have been copied
4715 * down yet. We divide this by previous stripe size and multiply
4716 * by previous stripe length to get lowest device offset that we
4717 * cannot write to yet.
4718 * We interpret 'sector_nr' as an address that we want to write to.
4719 * From this we use last_device_address() to find where we might
4720 * write to, and first_device_address on the 'safe' position.
4721 * If this 'next' write position is after the 'safe' position,
4722 * we must update the metadata to increase the 'safe' position.
4723 *
4724 * When reshaping backwards, we round in the opposite direction
4725 * and perform the reverse test: next write position must not be
4726 * less than current safe position.
4727 *
4728 * In all this the minimum difference in data offsets
4729 * (conf->offset_diff - always positive) allows a bit of slack,
02ec5026 4730 * so next can be after 'safe', but not by more than offset_diff
3ea7daa5
N
4731 *
4732 * We need to prepare all the bios here before we start any IO
4733 * to ensure the size we choose is acceptable to all devices.
4734 * The means one for each copy for write-out and an extra one for
4735 * read-in.
4736 * We store the read-in bio in ->master_bio and the others in
4737 * ->devs[x].bio and ->devs[x].repl_bio.
4738 */
4739 struct r10conf *conf = mddev->private;
4740 struct r10bio *r10_bio;
4741 sector_t next, safe, last;
4742 int max_sectors;
4743 int nr_sectors;
4744 int s;
4745 struct md_rdev *rdev;
4746 int need_flush = 0;
4747 struct bio *blist;
4748 struct bio *bio, *read_bio;
4749 int sectors_done = 0;
f0250618 4750 struct page **pages;
3ea7daa5
N
4751
4752 if (sector_nr == 0) {
4753 /* If restarting in the middle, skip the initial sectors */
4754 if (mddev->reshape_backwards &&
4755 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4756 sector_nr = (raid10_size(mddev, 0, 0)
4757 - conf->reshape_progress);
4758 } else if (!mddev->reshape_backwards &&
4759 conf->reshape_progress > 0)
4760 sector_nr = conf->reshape_progress;
4761 if (sector_nr) {
4762 mddev->curr_resync_completed = sector_nr;
e1a86dbb 4763 sysfs_notify_dirent_safe(mddev->sysfs_completed);
3ea7daa5
N
4764 *skipped = 1;
4765 return sector_nr;
4766 }
4767 }
4768
4769 /* We don't use sector_nr to track where we are up to
4770 * as that doesn't work well for ->reshape_backwards.
4771 * So just use ->reshape_progress.
4772 */
4773 if (mddev->reshape_backwards) {
4774 /* 'next' is the earliest device address that we might
4775 * write to for this chunk in the new layout
4776 */
4777 next = first_dev_address(conf->reshape_progress - 1,
4778 &conf->geo);
4779
4780 /* 'safe' is the last device address that we might read from
4781 * in the old layout after a restart
4782 */
4783 safe = last_dev_address(conf->reshape_safe - 1,
4784 &conf->prev);
4785
4786 if (next + conf->offset_diff < safe)
4787 need_flush = 1;
4788
4789 last = conf->reshape_progress - 1;
4790 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4791 & conf->prev.chunk_mask);
e287308b
ZL
4792 if (sector_nr + RESYNC_SECTORS < last)
4793 sector_nr = last + 1 - RESYNC_SECTORS;
3ea7daa5
N
4794 } else {
4795 /* 'next' is after the last device address that we
4796 * might write to for this chunk in the new layout
4797 */
4798 next = last_dev_address(conf->reshape_progress, &conf->geo);
4799
4800 /* 'safe' is the earliest device address that we might
4801 * read from in the old layout after a restart
4802 */
4803 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4804
4805 /* Need to update metadata if 'next' might be beyond 'safe'
4806 * as that would possibly corrupt data
4807 */
4808 if (next > safe + conf->offset_diff)
4809 need_flush = 1;
4810
4811 sector_nr = conf->reshape_progress;
4812 last = sector_nr | (conf->geo.chunk_mask
4813 & conf->prev.chunk_mask);
4814
e287308b
ZL
4815 if (sector_nr + RESYNC_SECTORS <= last)
4816 last = sector_nr + RESYNC_SECTORS - 1;
3ea7daa5
N
4817 }
4818
4819 if (need_flush ||
4820 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4821 /* Need to update reshape_position in metadata */
4822 wait_barrier(conf);
4823 mddev->reshape_position = conf->reshape_progress;
4824 if (mddev->reshape_backwards)
4825 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4826 - conf->reshape_progress;
4827 else
4828 mddev->curr_resync_completed = conf->reshape_progress;
4829 conf->reshape_checkpoint = jiffies;
2953079c 4830 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5 4831 md_wakeup_thread(mddev->thread);
2953079c 4832 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
4833 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4834 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4835 allow_barrier(conf);
4836 return sectors_done;
4837 }
3ea7daa5
N
4838 conf->reshape_safe = mddev->reshape_position;
4839 allow_barrier(conf);
4840 }
4841
1d0ffd26 4842 raise_barrier(conf, 0);
3ea7daa5
N
4843read_more:
4844 /* Now schedule reads for blocks from sector_nr to last */
208410b5 4845 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 4846 r10_bio->state = 0;
1d0ffd26 4847 raise_barrier(conf, 1);
3ea7daa5
N
4848 atomic_set(&r10_bio->remaining, 0);
4849 r10_bio->mddev = mddev;
4850 r10_bio->sector = sector_nr;
4851 set_bit(R10BIO_IsReshape, &r10_bio->state);
4852 r10_bio->sectors = last - sector_nr + 1;
4853 rdev = read_balance(conf, r10_bio, &max_sectors);
4854 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4855
4856 if (!rdev) {
4857 /* Cannot read from here, so need to record bad blocks
4858 * on all the target devices.
4859 */
4860 // FIXME
afeee514 4861 mempool_free(r10_bio, &conf->r10buf_pool);
3ea7daa5
N
4862 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4863 return sectors_done;
4864 }
4865
a78f18da 4866 read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
3ea7daa5 4867
74d46992 4868 bio_set_dev(read_bio, rdev->bdev);
4f024f37 4869 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4870 + rdev->data_offset);
4871 read_bio->bi_private = r10_bio;
81fa1520 4872 read_bio->bi_end_io = end_reshape_read;
796a5cf0 4873 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
3ea7daa5
N
4874 r10_bio->master_bio = read_bio;
4875 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4876
7564beda
GJ
4877 /*
4878 * Broadcast RESYNC message to other nodes, so all nodes would not
4879 * write to the region to avoid conflict.
4880 */
4881 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4882 struct mdp_superblock_1 *sb = NULL;
4883 int sb_reshape_pos = 0;
4884
4885 conf->cluster_sync_low = sector_nr;
4886 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4887 sb = page_address(rdev->sb_page);
4888 if (sb) {
4889 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4890 /*
4891 * Set cluster_sync_low again if next address for array
4892 * reshape is less than cluster_sync_low. Since we can't
4893 * update cluster_sync_low until it has finished reshape.
4894 */
4895 if (sb_reshape_pos < conf->cluster_sync_low)
4896 conf->cluster_sync_low = sb_reshape_pos;
4897 }
4898
4899 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4900 conf->cluster_sync_high);
4901 }
4902
3ea7daa5
N
4903 /* Now find the locations in the new layout */
4904 __raid10_find_phys(&conf->geo, r10_bio);
4905
4906 blist = read_bio;
4907 read_bio->bi_next = NULL;
4908
d094d686 4909 rcu_read_lock();
3ea7daa5
N
4910 for (s = 0; s < conf->copies*2; s++) {
4911 struct bio *b;
4912 int d = r10_bio->devs[s/2].devnum;
4913 struct md_rdev *rdev2;
4914 if (s&1) {
d094d686 4915 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4916 b = r10_bio->devs[s/2].repl_bio;
4917 } else {
d094d686 4918 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4919 b = r10_bio->devs[s/2].bio;
4920 }
4921 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4922 continue;
8be185f2 4923
74d46992 4924 bio_set_dev(b, rdev2->bdev);
4f024f37
KO
4925 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4926 rdev2->new_data_offset;
3ea7daa5 4927 b->bi_end_io = end_reshape_write;
796a5cf0 4928 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
3ea7daa5 4929 b->bi_next = blist;
3ea7daa5
N
4930 blist = b;
4931 }
4932
4933 /* Now add as many pages as possible to all of these bios. */
4934
4935 nr_sectors = 0;
f0250618 4936 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 4937 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
f0250618 4938 struct page *page = pages[s / (PAGE_SIZE >> 9)];
3ea7daa5
N
4939 int len = (max_sectors - s) << 9;
4940 if (len > PAGE_SIZE)
4941 len = PAGE_SIZE;
4942 for (bio = blist; bio ; bio = bio->bi_next) {
c85ba149
ML
4943 /*
4944 * won't fail because the vec table is big enough
4945 * to hold all these pages
4946 */
4947 bio_add_page(bio, page, len, 0);
3ea7daa5
N
4948 }
4949 sector_nr += len >> 9;
4950 nr_sectors += len >> 9;
4951 }
d094d686 4952 rcu_read_unlock();
3ea7daa5
N
4953 r10_bio->sectors = nr_sectors;
4954
4955 /* Now submit the read */
74d46992 4956 md_sync_acct_bio(read_bio, r10_bio->sectors);
3ea7daa5
N
4957 atomic_inc(&r10_bio->remaining);
4958 read_bio->bi_next = NULL;
ed00aabd 4959 submit_bio_noacct(read_bio);
3ea7daa5
N
4960 sectors_done += nr_sectors;
4961 if (sector_nr <= last)
4962 goto read_more;
4963
1d0ffd26
XN
4964 lower_barrier(conf);
4965
3ea7daa5
N
4966 /* Now that we have done the whole section we can
4967 * update reshape_progress
4968 */
4969 if (mddev->reshape_backwards)
4970 conf->reshape_progress -= sectors_done;
4971 else
4972 conf->reshape_progress += sectors_done;
4973
4974 return sectors_done;
4975}
4976
4977static void end_reshape_request(struct r10bio *r10_bio);
4978static int handle_reshape_read_error(struct mddev *mddev,
4979 struct r10bio *r10_bio);
4980static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4981{
4982 /* Reshape read completed. Hopefully we have a block
4983 * to write out.
4984 * If we got a read error then we do sync 1-page reads from
4985 * elsewhere until we find the data - or give up.
4986 */
4987 struct r10conf *conf = mddev->private;
4988 int s;
4989
4990 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4991 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4992 /* Reshape has been aborted */
4993 md_done_sync(mddev, r10_bio->sectors, 0);
4994 return;
4995 }
4996
4997 /* We definitely have the data in the pages, schedule the
4998 * writes.
4999 */
5000 atomic_set(&r10_bio->remaining, 1);
5001 for (s = 0; s < conf->copies*2; s++) {
5002 struct bio *b;
5003 int d = r10_bio->devs[s/2].devnum;
5004 struct md_rdev *rdev;
d094d686 5005 rcu_read_lock();
3ea7daa5 5006 if (s&1) {
d094d686 5007 rdev = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
5008 b = r10_bio->devs[s/2].repl_bio;
5009 } else {
d094d686 5010 rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
5011 b = r10_bio->devs[s/2].bio;
5012 }
d094d686
N
5013 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5014 rcu_read_unlock();
3ea7daa5 5015 continue;
d094d686 5016 }
3ea7daa5 5017 atomic_inc(&rdev->nr_pending);
d094d686 5018 rcu_read_unlock();
74d46992 5019 md_sync_acct_bio(b, r10_bio->sectors);
3ea7daa5
N
5020 atomic_inc(&r10_bio->remaining);
5021 b->bi_next = NULL;
ed00aabd 5022 submit_bio_noacct(b);
3ea7daa5
N
5023 }
5024 end_reshape_request(r10_bio);
5025}
5026
5027static void end_reshape(struct r10conf *conf)
5028{
5029 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5030 return;
5031
5032 spin_lock_irq(&conf->device_lock);
5033 conf->prev = conf->geo;
5034 md_finish_reshape(conf->mddev);
5035 smp_wmb();
5036 conf->reshape_progress = MaxSector;
299b0685 5037 conf->reshape_safe = MaxSector;
3ea7daa5
N
5038 spin_unlock_irq(&conf->device_lock);
5039
c2e4cd57 5040 if (conf->mddev->queue)
16ef5101 5041 raid10_set_io_opt(conf);
3ea7daa5
N
5042 conf->fullsync = 0;
5043}
5044
7564beda
GJ
5045static void raid10_update_reshape_pos(struct mddev *mddev)
5046{
5047 struct r10conf *conf = mddev->private;
5ebaf80b 5048 sector_t lo, hi;
7564beda 5049
5ebaf80b
GJ
5050 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5051 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5052 || mddev->reshape_position == MaxSector)
5053 conf->reshape_progress = mddev->reshape_position;
5054 else
5055 WARN_ON_ONCE(1);
7564beda
GJ
5056}
5057
3ea7daa5
N
5058static int handle_reshape_read_error(struct mddev *mddev,
5059 struct r10bio *r10_bio)
5060{
5061 /* Use sync reads to get the blocks from somewhere else */
5062 int sectors = r10_bio->sectors;
3ea7daa5 5063 struct r10conf *conf = mddev->private;
584ed9fa 5064 struct r10bio *r10b;
3ea7daa5
N
5065 int slot = 0;
5066 int idx = 0;
2d06e3b7
ML
5067 struct page **pages;
5068
8cf05a78 5069 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
584ed9fa
MK
5070 if (!r10b) {
5071 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5072 return -ENOMEM;
5073 }
5074
2d06e3b7
ML
5075 /* reshape IOs share pages from .devs[0].bio */
5076 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 5077
e0ee7785
N
5078 r10b->sector = r10_bio->sector;
5079 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
5080
5081 while (sectors) {
5082 int s = sectors;
5083 int success = 0;
5084 int first_slot = slot;
5085
5086 if (s > (PAGE_SIZE >> 9))
5087 s = PAGE_SIZE >> 9;
5088
d094d686 5089 rcu_read_lock();
3ea7daa5 5090 while (!success) {
e0ee7785 5091 int d = r10b->devs[slot].devnum;
d094d686 5092 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
5093 sector_t addr;
5094 if (rdev == NULL ||
5095 test_bit(Faulty, &rdev->flags) ||
5096 !test_bit(In_sync, &rdev->flags))
5097 goto failed;
5098
e0ee7785 5099 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
d094d686
N
5100 atomic_inc(&rdev->nr_pending);
5101 rcu_read_unlock();
3ea7daa5
N
5102 success = sync_page_io(rdev,
5103 addr,
5104 s << 9,
2d06e3b7 5105 pages[idx],
796a5cf0 5106 REQ_OP_READ, 0, false);
d094d686
N
5107 rdev_dec_pending(rdev, mddev);
5108 rcu_read_lock();
3ea7daa5
N
5109 if (success)
5110 break;
5111 failed:
5112 slot++;
5113 if (slot >= conf->copies)
5114 slot = 0;
5115 if (slot == first_slot)
5116 break;
5117 }
d094d686 5118 rcu_read_unlock();
3ea7daa5
N
5119 if (!success) {
5120 /* couldn't read this block, must give up */
5121 set_bit(MD_RECOVERY_INTR,
5122 &mddev->recovery);
584ed9fa 5123 kfree(r10b);
3ea7daa5
N
5124 return -EIO;
5125 }
5126 sectors -= s;
5127 idx++;
5128 }
584ed9fa 5129 kfree(r10b);
3ea7daa5
N
5130 return 0;
5131}
5132
4246a0b6 5133static void end_reshape_write(struct bio *bio)
3ea7daa5 5134{
f0250618 5135 struct r10bio *r10_bio = get_resync_r10bio(bio);
3ea7daa5
N
5136 struct mddev *mddev = r10_bio->mddev;
5137 struct r10conf *conf = mddev->private;
5138 int d;
5139 int slot;
5140 int repl;
5141 struct md_rdev *rdev = NULL;
5142
5143 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5144 if (repl)
5145 rdev = conf->mirrors[d].replacement;
5146 if (!rdev) {
5147 smp_mb();
5148 rdev = conf->mirrors[d].rdev;
5149 }
5150
4e4cbee9 5151 if (bio->bi_status) {
3ea7daa5
N
5152 /* FIXME should record badblock */
5153 md_error(mddev, rdev);
5154 }
5155
5156 rdev_dec_pending(rdev, mddev);
5157 end_reshape_request(r10_bio);
5158}
5159
5160static void end_reshape_request(struct r10bio *r10_bio)
5161{
5162 if (!atomic_dec_and_test(&r10_bio->remaining))
5163 return;
5164 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5165 bio_put(r10_bio->master_bio);
5166 put_buf(r10_bio);
5167}
5168
5169static void raid10_finish_reshape(struct mddev *mddev)
5170{
5171 struct r10conf *conf = mddev->private;
5172
5173 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5174 return;
5175
5176 if (mddev->delta_disks > 0) {
3ea7daa5
N
5177 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5178 mddev->recovery_cp = mddev->resync_max_sectors;
5179 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5180 }
8876391e 5181 mddev->resync_max_sectors = mddev->array_sectors;
63aced61
N
5182 } else {
5183 int d;
d094d686 5184 rcu_read_lock();
63aced61
N
5185 for (d = conf->geo.raid_disks ;
5186 d < conf->geo.raid_disks - mddev->delta_disks;
5187 d++) {
d094d686 5188 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
63aced61
N
5189 if (rdev)
5190 clear_bit(In_sync, &rdev->flags);
d094d686 5191 rdev = rcu_dereference(conf->mirrors[d].replacement);
63aced61
N
5192 if (rdev)
5193 clear_bit(In_sync, &rdev->flags);
5194 }
d094d686 5195 rcu_read_unlock();
3ea7daa5
N
5196 }
5197 mddev->layout = mddev->new_layout;
5198 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5199 mddev->reshape_position = MaxSector;
5200 mddev->delta_disks = 0;
5201 mddev->reshape_backwards = 0;
5202}
5203
84fc4b56 5204static struct md_personality raid10_personality =
1da177e4
LT
5205{
5206 .name = "raid10",
2604b703 5207 .level = 10,
1da177e4 5208 .owner = THIS_MODULE,
849674e4
SL
5209 .make_request = raid10_make_request,
5210 .run = raid10_run,
afa0f557 5211 .free = raid10_free,
849674e4
SL
5212 .status = raid10_status,
5213 .error_handler = raid10_error,
1da177e4
LT
5214 .hot_add_disk = raid10_add_disk,
5215 .hot_remove_disk= raid10_remove_disk,
5216 .spare_active = raid10_spare_active,
849674e4 5217 .sync_request = raid10_sync_request,
6cce3b23 5218 .quiesce = raid10_quiesce,
80c3a6ce 5219 .size = raid10_size,
006a09a0 5220 .resize = raid10_resize,
dab8b292 5221 .takeover = raid10_takeover,
3ea7daa5
N
5222 .check_reshape = raid10_check_reshape,
5223 .start_reshape = raid10_start_reshape,
5224 .finish_reshape = raid10_finish_reshape,
7564beda 5225 .update_reshape_pos = raid10_update_reshape_pos,
1da177e4
LT
5226};
5227
5228static int __init raid_init(void)
5229{
2604b703 5230 return register_md_personality(&raid10_personality);
1da177e4
LT
5231}
5232
5233static void raid_exit(void)
5234{
2604b703 5235 unregister_md_personality(&raid10_personality);
1da177e4
LT
5236}
5237
5238module_init(raid_init);
5239module_exit(raid_exit);
5240MODULE_LICENSE("GPL");
0efb9e61 5241MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 5242MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 5243MODULE_ALIAS("md-raid10");
2604b703 5244MODULE_ALIAS("md-level-10");
34db0cd6
N
5245
5246module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);