md: remove special meaning of ->quiesce(.., 2)
[linux-2.6-block.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
109e3765 28#include <trace/events/block.h>
43b2e5d8 29#include "md.h"
ef740c37 30#include "raid10.h"
dab8b292 31#include "raid0.h"
935fe098 32#include "md-bitmap.h"
1da177e4
LT
33
34/*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
c93983bf 41 * far_offset (stored in bit 16 of layout )
475901af 42 * use_far_sets (stored in bit 17 of layout )
8bce6d35 43 * use_far_sets_bugfixed (stored in bit 18 of layout )
1da177e4 44 *
475901af
JB
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
c93983bf
N
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
1da177e4
LT
73 */
74
75/*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78#define NR_RAID10_BIOS 256
79
473e87ce
JB
80/* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85#define IO_BLOCKED ((struct bio *)1)
86/* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90#define IO_MADE_GOOD ((struct bio *)2)
91
92#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94/* When there are this many requests queued to be written by
34db0cd6
N
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98static int max_queued_requests = 1024;
99
e879a879
N
100static void allow_barrier(struct r10conf *conf);
101static void lower_barrier(struct r10conf *conf);
635f6416 102static int _enough(struct r10conf *conf, int previous, int ignore);
1919cbb2 103static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
104static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
4246a0b6 107static void end_reshape_write(struct bio *bio);
3ea7daa5 108static void end_reshape(struct r10conf *conf);
0a27ec96 109
578b54ad
N
110#define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
fb0eb5df
ML
113#include "raid1-10.c"
114
f0250618
ML
115/*
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
118 */
119static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120{
121 return get_resync_pages(bio)->raid_bio;
122}
123
dd0fc66f 124static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 125{
e879a879 126 struct r10conf *conf = data;
9f2c9d12 127 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 128
69335ef3
N
129 /* allocate a r10bio with room for raid_disks entries in the
130 * bios array */
7eaceacc 131 return kzalloc(size, gfp_flags);
1da177e4
LT
132}
133
134static void r10bio_pool_free(void *r10_bio, void *data)
135{
136 kfree(r10_bio);
137}
138
0310fa21
N
139/* amount of memory to reserve for resync requests */
140#define RESYNC_WINDOW (1024*1024)
141/* maximum number of concurrent requests, memory permitting */
142#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
143
144/*
145 * When performing a resync, we need to read and compare, so
146 * we need as many pages are there are copies.
147 * When performing a recovery, we need 2 bios, one for read,
148 * one for write (we recover only one drive per r10buf)
149 *
150 */
dd0fc66f 151static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 152{
e879a879 153 struct r10conf *conf = data;
9f2c9d12 154 struct r10bio *r10_bio;
1da177e4 155 struct bio *bio;
f0250618
ML
156 int j;
157 int nalloc, nalloc_rp;
158 struct resync_pages *rps;
1da177e4
LT
159
160 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 161 if (!r10_bio)
1da177e4 162 return NULL;
1da177e4 163
3ea7daa5
N
164 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
165 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
166 nalloc = conf->copies; /* resync */
167 else
168 nalloc = 2; /* recovery */
169
f0250618
ML
170 /* allocate once for all bios */
171 if (!conf->have_replacement)
172 nalloc_rp = nalloc;
173 else
174 nalloc_rp = nalloc * 2;
175 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
176 if (!rps)
177 goto out_free_r10bio;
178
1da177e4
LT
179 /*
180 * Allocate bios.
181 */
182 for (j = nalloc ; j-- ; ) {
6746557f 183 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
184 if (!bio)
185 goto out_free_bio;
186 r10_bio->devs[j].bio = bio;
69335ef3
N
187 if (!conf->have_replacement)
188 continue;
189 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
190 if (!bio)
191 goto out_free_bio;
192 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
193 }
194 /*
195 * Allocate RESYNC_PAGES data pages and attach them
196 * where needed.
197 */
f0250618 198 for (j = 0; j < nalloc; j++) {
69335ef3 199 struct bio *rbio = r10_bio->devs[j].repl_bio;
f0250618
ML
200 struct resync_pages *rp, *rp_repl;
201
202 rp = &rps[j];
203 if (rbio)
204 rp_repl = &rps[nalloc + j];
205
1da177e4 206 bio = r10_bio->devs[j].bio;
f0250618
ML
207
208 if (!j || test_bit(MD_RECOVERY_SYNC,
209 &conf->mddev->recovery)) {
210 if (resync_alloc_pages(rp, gfp_flags))
1da177e4 211 goto out_free_pages;
f0250618
ML
212 } else {
213 memcpy(rp, &rps[0], sizeof(*rp));
214 resync_get_all_pages(rp);
215 }
1da177e4 216
f0250618
ML
217 rp->raid_bio = r10_bio;
218 bio->bi_private = rp;
219 if (rbio) {
220 memcpy(rp_repl, rp, sizeof(*rp));
221 rbio->bi_private = rp_repl;
1da177e4
LT
222 }
223 }
224
225 return r10_bio;
226
227out_free_pages:
f0250618
ML
228 while (--j >= 0)
229 resync_free_pages(&rps[j * 2]);
230
5fdd2cf8 231 j = 0;
1da177e4 232out_free_bio:
5fdd2cf8 233 for ( ; j < nalloc; j++) {
234 if (r10_bio->devs[j].bio)
235 bio_put(r10_bio->devs[j].bio);
69335ef3
N
236 if (r10_bio->devs[j].repl_bio)
237 bio_put(r10_bio->devs[j].repl_bio);
238 }
f0250618
ML
239 kfree(rps);
240out_free_r10bio:
1da177e4
LT
241 r10bio_pool_free(r10_bio, conf);
242 return NULL;
243}
244
245static void r10buf_pool_free(void *__r10_bio, void *data)
246{
e879a879 247 struct r10conf *conf = data;
9f2c9d12 248 struct r10bio *r10bio = __r10_bio;
1da177e4 249 int j;
f0250618 250 struct resync_pages *rp = NULL;
1da177e4 251
f0250618 252 for (j = conf->copies; j--; ) {
1da177e4 253 struct bio *bio = r10bio->devs[j].bio;
f0250618
ML
254
255 rp = get_resync_pages(bio);
256 resync_free_pages(rp);
257 bio_put(bio);
258
69335ef3
N
259 bio = r10bio->devs[j].repl_bio;
260 if (bio)
261 bio_put(bio);
1da177e4 262 }
f0250618
ML
263
264 /* resync pages array stored in the 1st bio's .bi_private */
265 kfree(rp);
266
1da177e4
LT
267 r10bio_pool_free(r10bio, conf);
268}
269
e879a879 270static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
271{
272 int i;
273
274 for (i = 0; i < conf->copies; i++) {
275 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 276 if (!BIO_SPECIAL(*bio))
1da177e4
LT
277 bio_put(*bio);
278 *bio = NULL;
69335ef3
N
279 bio = &r10_bio->devs[i].repl_bio;
280 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
281 bio_put(*bio);
282 *bio = NULL;
1da177e4
LT
283 }
284}
285
9f2c9d12 286static void free_r10bio(struct r10bio *r10_bio)
1da177e4 287{
e879a879 288 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 289
1da177e4
LT
290 put_all_bios(conf, r10_bio);
291 mempool_free(r10_bio, conf->r10bio_pool);
292}
293
9f2c9d12 294static void put_buf(struct r10bio *r10_bio)
1da177e4 295{
e879a879 296 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
297
298 mempool_free(r10_bio, conf->r10buf_pool);
299
0a27ec96 300 lower_barrier(conf);
1da177e4
LT
301}
302
9f2c9d12 303static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
304{
305 unsigned long flags;
fd01b88c 306 struct mddev *mddev = r10_bio->mddev;
e879a879 307 struct r10conf *conf = mddev->private;
1da177e4
LT
308
309 spin_lock_irqsave(&conf->device_lock, flags);
310 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 311 conf->nr_queued ++;
1da177e4
LT
312 spin_unlock_irqrestore(&conf->device_lock, flags);
313
388667be
AJ
314 /* wake up frozen array... */
315 wake_up(&conf->wait_barrier);
316
1da177e4
LT
317 md_wakeup_thread(mddev->thread);
318}
319
320/*
321 * raid_end_bio_io() is called when we have finished servicing a mirrored
322 * operation and are ready to return a success/failure code to the buffer
323 * cache layer.
324 */
9f2c9d12 325static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
326{
327 struct bio *bio = r10_bio->master_bio;
e879a879 328 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 329
856e08e2 330 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4e4cbee9 331 bio->bi_status = BLK_STS_IOERR;
fd16f2e8
N
332
333 bio_endio(bio);
334 /*
335 * Wake up any possible resync thread that waits for the device
336 * to go idle.
337 */
338 allow_barrier(conf);
339
1da177e4
LT
340 free_r10bio(r10_bio);
341}
342
343/*
344 * Update disk head position estimator based on IRQ completion info.
345 */
9f2c9d12 346static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 347{
e879a879 348 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
349
350 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
351 r10_bio->devs[slot].addr + (r10_bio->sectors);
352}
353
778ca018
NK
354/*
355 * Find the disk number which triggered given bio
356 */
e879a879 357static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 358 struct bio *bio, int *slotp, int *replp)
778ca018
NK
359{
360 int slot;
69335ef3 361 int repl = 0;
778ca018 362
69335ef3 363 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
364 if (r10_bio->devs[slot].bio == bio)
365 break;
69335ef3
N
366 if (r10_bio->devs[slot].repl_bio == bio) {
367 repl = 1;
368 break;
369 }
370 }
778ca018
NK
371
372 BUG_ON(slot == conf->copies);
373 update_head_pos(slot, r10_bio);
374
749c55e9
N
375 if (slotp)
376 *slotp = slot;
69335ef3
N
377 if (replp)
378 *replp = repl;
778ca018
NK
379 return r10_bio->devs[slot].devnum;
380}
381
4246a0b6 382static void raid10_end_read_request(struct bio *bio)
1da177e4 383{
4e4cbee9 384 int uptodate = !bio->bi_status;
9f2c9d12 385 struct r10bio *r10_bio = bio->bi_private;
a0e764c5 386 int slot;
abbf098e 387 struct md_rdev *rdev;
e879a879 388 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 389
1da177e4 390 slot = r10_bio->read_slot;
abbf098e 391 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
392 /*
393 * this branch is our 'one mirror IO has finished' event handler:
394 */
4443ae10
N
395 update_head_pos(slot, r10_bio);
396
397 if (uptodate) {
1da177e4
LT
398 /*
399 * Set R10BIO_Uptodate in our master bio, so that
400 * we will return a good error code to the higher
401 * levels even if IO on some other mirrored buffer fails.
402 *
403 * The 'master' represents the composite IO operation to
404 * user-side. So if something waits for IO, then it will
405 * wait for the 'master' bio.
406 */
407 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
408 } else {
409 /* If all other devices that store this block have
410 * failed, we want to return the error upwards rather
411 * than fail the last device. Here we redefine
412 * "uptodate" to mean "Don't want to retry"
413 */
635f6416
N
414 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
415 rdev->raid_disk))
fae8cc5e 416 uptodate = 1;
fae8cc5e
N
417 }
418 if (uptodate) {
1da177e4 419 raid_end_bio_io(r10_bio);
abbf098e 420 rdev_dec_pending(rdev, conf->mddev);
4443ae10 421 } else {
1da177e4 422 /*
7c4e06ff 423 * oops, read error - keep the refcount on the rdev
1da177e4
LT
424 */
425 char b[BDEVNAME_SIZE];
08464e09 426 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
8bda470e 427 mdname(conf->mddev),
abbf098e 428 bdevname(rdev->bdev, b),
8bda470e 429 (unsigned long long)r10_bio->sector);
856e08e2 430 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
431 reschedule_retry(r10_bio);
432 }
1da177e4
LT
433}
434
9f2c9d12 435static void close_write(struct r10bio *r10_bio)
bd870a16
N
436{
437 /* clear the bitmap if all writes complete successfully */
438 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
439 r10_bio->sectors,
440 !test_bit(R10BIO_Degraded, &r10_bio->state),
441 0);
442 md_write_end(r10_bio->mddev);
443}
444
9f2c9d12 445static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
446{
447 if (atomic_dec_and_test(&r10_bio->remaining)) {
448 if (test_bit(R10BIO_WriteError, &r10_bio->state))
449 reschedule_retry(r10_bio);
450 else {
451 close_write(r10_bio);
452 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
453 reschedule_retry(r10_bio);
454 else
455 raid_end_bio_io(r10_bio);
456 }
457 }
458}
459
4246a0b6 460static void raid10_end_write_request(struct bio *bio)
1da177e4 461{
9f2c9d12 462 struct r10bio *r10_bio = bio->bi_private;
778ca018 463 int dev;
749c55e9 464 int dec_rdev = 1;
e879a879 465 struct r10conf *conf = r10_bio->mddev->private;
475b0321 466 int slot, repl;
4ca40c2c 467 struct md_rdev *rdev = NULL;
1919cbb2 468 struct bio *to_put = NULL;
579ed34f
SL
469 bool discard_error;
470
4e4cbee9 471 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 472
475b0321 473 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 474
475b0321
N
475 if (repl)
476 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
477 if (!rdev) {
478 smp_rmb();
479 repl = 0;
475b0321 480 rdev = conf->mirrors[dev].rdev;
4ca40c2c 481 }
1da177e4
LT
482 /*
483 * this branch is our 'one mirror IO has finished' event handler:
484 */
4e4cbee9 485 if (bio->bi_status && !discard_error) {
475b0321
N
486 if (repl)
487 /* Never record new bad blocks to replacement,
488 * just fail it.
489 */
490 md_error(rdev->mddev, rdev);
491 else {
492 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
493 if (!test_and_set_bit(WantReplacement, &rdev->flags))
494 set_bit(MD_RECOVERY_NEEDED,
495 &rdev->mddev->recovery);
1919cbb2 496
475b0321 497 dec_rdev = 0;
1919cbb2
N
498 if (test_bit(FailFast, &rdev->flags) &&
499 (bio->bi_opf & MD_FAILFAST)) {
500 md_error(rdev->mddev, rdev);
501 if (!test_bit(Faulty, &rdev->flags))
502 /* This is the only remaining device,
503 * We need to retry the write without
504 * FailFast
505 */
506 set_bit(R10BIO_WriteError, &r10_bio->state);
507 else {
508 r10_bio->devs[slot].bio = NULL;
509 to_put = bio;
510 dec_rdev = 1;
511 }
512 } else
513 set_bit(R10BIO_WriteError, &r10_bio->state);
475b0321 514 }
749c55e9 515 } else {
1da177e4
LT
516 /*
517 * Set R10BIO_Uptodate in our master bio, so that
518 * we will return a good error code for to the higher
519 * levels even if IO on some other mirrored buffer fails.
520 *
521 * The 'master' represents the composite IO operation to
522 * user-side. So if something waits for IO, then it will
523 * wait for the 'master' bio.
524 */
749c55e9
N
525 sector_t first_bad;
526 int bad_sectors;
527
3056e3ae
AL
528 /*
529 * Do not set R10BIO_Uptodate if the current device is
530 * rebuilding or Faulty. This is because we cannot use
531 * such device for properly reading the data back (we could
532 * potentially use it, if the current write would have felt
533 * before rdev->recovery_offset, but for simplicity we don't
534 * check this here.
535 */
536 if (test_bit(In_sync, &rdev->flags) &&
537 !test_bit(Faulty, &rdev->flags))
538 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 539
749c55e9 540 /* Maybe we can clear some bad blocks. */
475b0321 541 if (is_badblock(rdev,
749c55e9
N
542 r10_bio->devs[slot].addr,
543 r10_bio->sectors,
579ed34f 544 &first_bad, &bad_sectors) && !discard_error) {
749c55e9 545 bio_put(bio);
475b0321
N
546 if (repl)
547 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
548 else
549 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
550 dec_rdev = 0;
551 set_bit(R10BIO_MadeGood, &r10_bio->state);
552 }
553 }
554
1da177e4
LT
555 /*
556 *
557 * Let's see if all mirrored write operations have finished
558 * already.
559 */
19d5f834 560 one_write_done(r10_bio);
749c55e9 561 if (dec_rdev)
884162df 562 rdev_dec_pending(rdev, conf->mddev);
1919cbb2
N
563 if (to_put)
564 bio_put(to_put);
1da177e4
LT
565}
566
1da177e4
LT
567/*
568 * RAID10 layout manager
25985edc 569 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
570 * parameters: near_copies and far_copies.
571 * near_copies * far_copies must be <= raid_disks.
572 * Normally one of these will be 1.
573 * If both are 1, we get raid0.
574 * If near_copies == raid_disks, we get raid1.
575 *
25985edc 576 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
577 * first chunk, followed by near_copies copies of the next chunk and
578 * so on.
579 * If far_copies > 1, then after 1/far_copies of the array has been assigned
580 * as described above, we start again with a device offset of near_copies.
581 * So we effectively have another copy of the whole array further down all
582 * the drives, but with blocks on different drives.
583 * With this layout, and block is never stored twice on the one device.
584 *
585 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 586 * on each device that it is on.
1da177e4
LT
587 *
588 * raid10_find_virt does the reverse mapping, from a device and a
589 * sector offset to a virtual address
590 */
591
f8c9e74f 592static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
593{
594 int n,f;
595 sector_t sector;
596 sector_t chunk;
597 sector_t stripe;
598 int dev;
1da177e4 599 int slot = 0;
9a3152ab
JB
600 int last_far_set_start, last_far_set_size;
601
602 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
603 last_far_set_start *= geo->far_set_size;
604
605 last_far_set_size = geo->far_set_size;
606 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
607
608 /* now calculate first sector/dev */
5cf00fcd
N
609 chunk = r10bio->sector >> geo->chunk_shift;
610 sector = r10bio->sector & geo->chunk_mask;
1da177e4 611
5cf00fcd 612 chunk *= geo->near_copies;
1da177e4 613 stripe = chunk;
5cf00fcd
N
614 dev = sector_div(stripe, geo->raid_disks);
615 if (geo->far_offset)
616 stripe *= geo->far_copies;
1da177e4 617
5cf00fcd 618 sector += stripe << geo->chunk_shift;
1da177e4
LT
619
620 /* and calculate all the others */
5cf00fcd 621 for (n = 0; n < geo->near_copies; n++) {
1da177e4 622 int d = dev;
475901af 623 int set;
1da177e4 624 sector_t s = sector;
1da177e4 625 r10bio->devs[slot].devnum = d;
4c0ca26b 626 r10bio->devs[slot].addr = s;
1da177e4
LT
627 slot++;
628
5cf00fcd 629 for (f = 1; f < geo->far_copies; f++) {
475901af 630 set = d / geo->far_set_size;
5cf00fcd 631 d += geo->near_copies;
475901af 632
9a3152ab
JB
633 if ((geo->raid_disks % geo->far_set_size) &&
634 (d > last_far_set_start)) {
635 d -= last_far_set_start;
636 d %= last_far_set_size;
637 d += last_far_set_start;
638 } else {
639 d %= geo->far_set_size;
640 d += geo->far_set_size * set;
641 }
5cf00fcd 642 s += geo->stride;
1da177e4
LT
643 r10bio->devs[slot].devnum = d;
644 r10bio->devs[slot].addr = s;
645 slot++;
646 }
647 dev++;
5cf00fcd 648 if (dev >= geo->raid_disks) {
1da177e4 649 dev = 0;
5cf00fcd 650 sector += (geo->chunk_mask + 1);
1da177e4
LT
651 }
652 }
f8c9e74f
N
653}
654
655static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
656{
657 struct geom *geo = &conf->geo;
658
659 if (conf->reshape_progress != MaxSector &&
660 ((r10bio->sector >= conf->reshape_progress) !=
661 conf->mddev->reshape_backwards)) {
662 set_bit(R10BIO_Previous, &r10bio->state);
663 geo = &conf->prev;
664 } else
665 clear_bit(R10BIO_Previous, &r10bio->state);
666
667 __raid10_find_phys(geo, r10bio);
1da177e4
LT
668}
669
e879a879 670static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
671{
672 sector_t offset, chunk, vchunk;
f8c9e74f
N
673 /* Never use conf->prev as this is only called during resync
674 * or recovery, so reshape isn't happening
675 */
5cf00fcd 676 struct geom *geo = &conf->geo;
475901af
JB
677 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
678 int far_set_size = geo->far_set_size;
9a3152ab
JB
679 int last_far_set_start;
680
681 if (geo->raid_disks % geo->far_set_size) {
682 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
683 last_far_set_start *= geo->far_set_size;
684
685 if (dev >= last_far_set_start) {
686 far_set_size = geo->far_set_size;
687 far_set_size += (geo->raid_disks % geo->far_set_size);
688 far_set_start = last_far_set_start;
689 }
690 }
1da177e4 691
5cf00fcd
N
692 offset = sector & geo->chunk_mask;
693 if (geo->far_offset) {
c93983bf 694 int fc;
5cf00fcd
N
695 chunk = sector >> geo->chunk_shift;
696 fc = sector_div(chunk, geo->far_copies);
697 dev -= fc * geo->near_copies;
475901af
JB
698 if (dev < far_set_start)
699 dev += far_set_size;
c93983bf 700 } else {
5cf00fcd
N
701 while (sector >= geo->stride) {
702 sector -= geo->stride;
475901af
JB
703 if (dev < (geo->near_copies + far_set_start))
704 dev += far_set_size - geo->near_copies;
c93983bf 705 else
5cf00fcd 706 dev -= geo->near_copies;
c93983bf 707 }
5cf00fcd 708 chunk = sector >> geo->chunk_shift;
c93983bf 709 }
5cf00fcd
N
710 vchunk = chunk * geo->raid_disks + dev;
711 sector_div(vchunk, geo->near_copies);
712 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
713}
714
1da177e4
LT
715/*
716 * This routine returns the disk from which the requested read should
717 * be done. There is a per-array 'next expected sequential IO' sector
718 * number - if this matches on the next IO then we use the last disk.
719 * There is also a per-disk 'last know head position' sector that is
720 * maintained from IRQ contexts, both the normal and the resync IO
721 * completion handlers update this position correctly. If there is no
722 * perfect sequential match then we pick the disk whose head is closest.
723 *
724 * If there are 2 mirrors in the same 2 devices, performance degrades
725 * because position is mirror, not device based.
726 *
727 * The rdev for the device selected will have nr_pending incremented.
728 */
729
730/*
731 * FIXME: possibly should rethink readbalancing and do it differently
732 * depending on near_copies / far_copies geometry.
733 */
96c3fd1f
N
734static struct md_rdev *read_balance(struct r10conf *conf,
735 struct r10bio *r10_bio,
736 int *max_sectors)
1da177e4 737{
af3a2cd6 738 const sector_t this_sector = r10_bio->sector;
56d99121 739 int disk, slot;
856e08e2
N
740 int sectors = r10_bio->sectors;
741 int best_good_sectors;
56d99121 742 sector_t new_distance, best_dist;
3bbae04b 743 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
744 int do_balance;
745 int best_slot;
5cf00fcd 746 struct geom *geo = &conf->geo;
1da177e4
LT
747
748 raid10_find_phys(conf, r10_bio);
749 rcu_read_lock();
56d99121 750 best_slot = -1;
abbf098e 751 best_rdev = NULL;
56d99121 752 best_dist = MaxSector;
856e08e2 753 best_good_sectors = 0;
56d99121 754 do_balance = 1;
8d3ca83d 755 clear_bit(R10BIO_FailFast, &r10_bio->state);
1da177e4
LT
756 /*
757 * Check if we can balance. We can balance on the whole
6cce3b23
N
758 * device if no resync is going on (recovery is ok), or below
759 * the resync window. We take the first readable disk when
760 * above the resync window.
1da177e4
LT
761 */
762 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
763 && (this_sector + sectors >= conf->next_resync))
764 do_balance = 0;
1da177e4 765
56d99121 766 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
767 sector_t first_bad;
768 int bad_sectors;
769 sector_t dev_sector;
770
56d99121
N
771 if (r10_bio->devs[slot].bio == IO_BLOCKED)
772 continue;
1da177e4 773 disk = r10_bio->devs[slot].devnum;
abbf098e
N
774 rdev = rcu_dereference(conf->mirrors[disk].replacement);
775 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
776 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
777 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615 778 if (rdev == NULL ||
8ae12666 779 test_bit(Faulty, &rdev->flags))
abbf098e
N
780 continue;
781 if (!test_bit(In_sync, &rdev->flags) &&
782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
783 continue;
784
856e08e2
N
785 dev_sector = r10_bio->devs[slot].addr;
786 if (is_badblock(rdev, dev_sector, sectors,
787 &first_bad, &bad_sectors)) {
788 if (best_dist < MaxSector)
789 /* Already have a better slot */
790 continue;
791 if (first_bad <= dev_sector) {
792 /* Cannot read here. If this is the
793 * 'primary' device, then we must not read
794 * beyond 'bad_sectors' from another device.
795 */
796 bad_sectors -= (dev_sector - first_bad);
797 if (!do_balance && sectors > bad_sectors)
798 sectors = bad_sectors;
799 if (best_good_sectors > sectors)
800 best_good_sectors = sectors;
801 } else {
802 sector_t good_sectors =
803 first_bad - dev_sector;
804 if (good_sectors > best_good_sectors) {
805 best_good_sectors = good_sectors;
806 best_slot = slot;
abbf098e 807 best_rdev = rdev;
856e08e2
N
808 }
809 if (!do_balance)
810 /* Must read from here */
811 break;
812 }
813 continue;
814 } else
815 best_good_sectors = sectors;
816
56d99121
N
817 if (!do_balance)
818 break;
1da177e4 819
8d3ca83d
N
820 if (best_slot >= 0)
821 /* At least 2 disks to choose from so failfast is OK */
822 set_bit(R10BIO_FailFast, &r10_bio->state);
22dfdf52
N
823 /* This optimisation is debatable, and completely destroys
824 * sequential read speed for 'far copies' arrays. So only
825 * keep it for 'near' arrays, and review those later.
826 */
5cf00fcd 827 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
8d3ca83d 828 new_distance = 0;
8ed3a195
KS
829
830 /* for far > 1 always use the lowest address */
8d3ca83d 831 else if (geo->far_copies > 1)
56d99121 832 new_distance = r10_bio->devs[slot].addr;
8ed3a195 833 else
56d99121
N
834 new_distance = abs(r10_bio->devs[slot].addr -
835 conf->mirrors[disk].head_position);
836 if (new_distance < best_dist) {
837 best_dist = new_distance;
838 best_slot = slot;
abbf098e 839 best_rdev = rdev;
1da177e4
LT
840 }
841 }
abbf098e 842 if (slot >= conf->copies) {
56d99121 843 slot = best_slot;
abbf098e
N
844 rdev = best_rdev;
845 }
1da177e4 846
56d99121 847 if (slot >= 0) {
56d99121 848 atomic_inc(&rdev->nr_pending);
56d99121
N
849 r10_bio->read_slot = slot;
850 } else
96c3fd1f 851 rdev = NULL;
1da177e4 852 rcu_read_unlock();
856e08e2 853 *max_sectors = best_good_sectors;
1da177e4 854
96c3fd1f 855 return rdev;
1da177e4
LT
856}
857
5c675f83 858static int raid10_congested(struct mddev *mddev, int bits)
0d129228 859{
e879a879 860 struct r10conf *conf = mddev->private;
0d129228
N
861 int i, ret = 0;
862
4452226e 863 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
864 conf->pending_count >= max_queued_requests)
865 return 1;
866
0d129228 867 rcu_read_lock();
f8c9e74f
N
868 for (i = 0;
869 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
870 && ret == 0;
871 i++) {
3cb03002 872 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 873 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 874 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 875
dc3b17cc 876 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228
N
877 }
878 }
879 rcu_read_unlock();
880 return ret;
881}
882
e879a879 883static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
884{
885 /* Any writes that have been queued but are awaiting
886 * bitmap updates get flushed here.
a35e63ef 887 */
a35e63ef
N
888 spin_lock_irq(&conf->device_lock);
889
890 if (conf->pending_bio_list.head) {
891 struct bio *bio;
892 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 893 conf->pending_count = 0;
a35e63ef
N
894 spin_unlock_irq(&conf->device_lock);
895 /* flush any pending bitmap writes to disk
896 * before proceeding w/ I/O */
897 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 898 wake_up(&conf->wait_barrier);
a35e63ef
N
899
900 while (bio) { /* submit pending writes */
901 struct bio *next = bio->bi_next;
74d46992 902 struct md_rdev *rdev = (void*)bio->bi_disk;
a35e63ef 903 bio->bi_next = NULL;
74d46992 904 bio_set_dev(bio, rdev->bdev);
a9ae93c8 905 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 906 bio_io_error(bio);
a9ae93c8 907 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 908 !blk_queue_discard(bio->bi_disk->queue)))
532a2a3f 909 /* Just ignore it */
4246a0b6 910 bio_endio(bio);
532a2a3f
SL
911 else
912 generic_make_request(bio);
a35e63ef
N
913 bio = next;
914 }
a35e63ef
N
915 } else
916 spin_unlock_irq(&conf->device_lock);
a35e63ef 917}
7eaceacc 918
0a27ec96
N
919/* Barriers....
920 * Sometimes we need to suspend IO while we do something else,
921 * either some resync/recovery, or reconfigure the array.
922 * To do this we raise a 'barrier'.
923 * The 'barrier' is a counter that can be raised multiple times
924 * to count how many activities are happening which preclude
925 * normal IO.
926 * We can only raise the barrier if there is no pending IO.
927 * i.e. if nr_pending == 0.
928 * We choose only to raise the barrier if no-one is waiting for the
929 * barrier to go down. This means that as soon as an IO request
930 * is ready, no other operations which require a barrier will start
931 * until the IO request has had a chance.
932 *
933 * So: regular IO calls 'wait_barrier'. When that returns there
934 * is no backgroup IO happening, It must arrange to call
935 * allow_barrier when it has finished its IO.
936 * backgroup IO calls must call raise_barrier. Once that returns
937 * there is no normal IO happeing. It must arrange to call
938 * lower_barrier when the particular background IO completes.
1da177e4 939 */
1da177e4 940
e879a879 941static void raise_barrier(struct r10conf *conf, int force)
1da177e4 942{
6cce3b23 943 BUG_ON(force && !conf->barrier);
1da177e4 944 spin_lock_irq(&conf->resync_lock);
0a27ec96 945
6cce3b23
N
946 /* Wait until no block IO is waiting (unless 'force') */
947 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 948 conf->resync_lock);
0a27ec96
N
949
950 /* block any new IO from starting */
951 conf->barrier++;
952
c3b328ac 953 /* Now wait for all pending IO to complete */
0a27ec96 954 wait_event_lock_irq(conf->wait_barrier,
0e5313e2 955 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
eed8c02e 956 conf->resync_lock);
0a27ec96
N
957
958 spin_unlock_irq(&conf->resync_lock);
959}
960
e879a879 961static void lower_barrier(struct r10conf *conf)
0a27ec96
N
962{
963 unsigned long flags;
964 spin_lock_irqsave(&conf->resync_lock, flags);
965 conf->barrier--;
966 spin_unlock_irqrestore(&conf->resync_lock, flags);
967 wake_up(&conf->wait_barrier);
968}
969
e879a879 970static void wait_barrier(struct r10conf *conf)
0a27ec96
N
971{
972 spin_lock_irq(&conf->resync_lock);
973 if (conf->barrier) {
974 conf->nr_waiting++;
d6b42dcb
N
975 /* Wait for the barrier to drop.
976 * However if there are already pending
977 * requests (preventing the barrier from
978 * rising completely), and the
979 * pre-process bio queue isn't empty,
980 * then don't wait, as we need to empty
981 * that queue to get the nr_pending
982 * count down.
983 */
578b54ad 984 raid10_log(conf->mddev, "wait barrier");
d6b42dcb
N
985 wait_event_lock_irq(conf->wait_barrier,
986 !conf->barrier ||
0e5313e2 987 (atomic_read(&conf->nr_pending) &&
d6b42dcb 988 current->bio_list &&
f5fe1b51
N
989 (!bio_list_empty(&current->bio_list[0]) ||
990 !bio_list_empty(&current->bio_list[1]))),
eed8c02e 991 conf->resync_lock);
0a27ec96 992 conf->nr_waiting--;
0e5313e2
TM
993 if (!conf->nr_waiting)
994 wake_up(&conf->wait_barrier);
1da177e4 995 }
0e5313e2 996 atomic_inc(&conf->nr_pending);
1da177e4
LT
997 spin_unlock_irq(&conf->resync_lock);
998}
999
e879a879 1000static void allow_barrier(struct r10conf *conf)
0a27ec96 1001{
0e5313e2
TM
1002 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1003 (conf->array_freeze_pending))
1004 wake_up(&conf->wait_barrier);
0a27ec96
N
1005}
1006
e2d59925 1007static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1008{
1009 /* stop syncio and normal IO and wait for everything to
f188593e 1010 * go quiet.
4443ae10 1011 * We increment barrier and nr_waiting, and then
e2d59925 1012 * wait until nr_pending match nr_queued+extra
1c830532
N
1013 * This is called in the context of one normal IO request
1014 * that has failed. Thus any sync request that might be pending
1015 * will be blocked by nr_pending, and we need to wait for
1016 * pending IO requests to complete or be queued for re-try.
e2d59925 1017 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1018 * must match the number of pending IOs (nr_pending) before
1019 * we continue.
4443ae10
N
1020 */
1021 spin_lock_irq(&conf->resync_lock);
0e5313e2 1022 conf->array_freeze_pending++;
4443ae10
N
1023 conf->barrier++;
1024 conf->nr_waiting++;
eed8c02e 1025 wait_event_lock_irq_cmd(conf->wait_barrier,
0e5313e2 1026 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
eed8c02e
LC
1027 conf->resync_lock,
1028 flush_pending_writes(conf));
c3b328ac 1029
0e5313e2 1030 conf->array_freeze_pending--;
4443ae10
N
1031 spin_unlock_irq(&conf->resync_lock);
1032}
1033
e879a879 1034static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1035{
1036 /* reverse the effect of the freeze */
1037 spin_lock_irq(&conf->resync_lock);
1038 conf->barrier--;
1039 conf->nr_waiting--;
1040 wake_up(&conf->wait_barrier);
1041 spin_unlock_irq(&conf->resync_lock);
1042}
1043
f8c9e74f
N
1044static sector_t choose_data_offset(struct r10bio *r10_bio,
1045 struct md_rdev *rdev)
1046{
1047 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1048 test_bit(R10BIO_Previous, &r10_bio->state))
1049 return rdev->data_offset;
1050 else
1051 return rdev->new_data_offset;
1052}
1053
57c67df4
N
1054struct raid10_plug_cb {
1055 struct blk_plug_cb cb;
1056 struct bio_list pending;
1057 int pending_cnt;
1058};
1059
1060static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1061{
1062 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1063 cb);
1064 struct mddev *mddev = plug->cb.data;
1065 struct r10conf *conf = mddev->private;
1066 struct bio *bio;
1067
874807a8 1068 if (from_schedule || current->bio_list) {
57c67df4
N
1069 spin_lock_irq(&conf->device_lock);
1070 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1071 conf->pending_count += plug->pending_cnt;
1072 spin_unlock_irq(&conf->device_lock);
ee0b0244 1073 wake_up(&conf->wait_barrier);
57c67df4
N
1074 md_wakeup_thread(mddev->thread);
1075 kfree(plug);
1076 return;
1077 }
1078
1079 /* we aren't scheduling, so we can do the write-out directly. */
1080 bio = bio_list_get(&plug->pending);
1081 bitmap_unplug(mddev->bitmap);
1082 wake_up(&conf->wait_barrier);
1083
1084 while (bio) { /* submit pending writes */
1085 struct bio *next = bio->bi_next;
74d46992 1086 struct md_rdev *rdev = (void*)bio->bi_disk;
57c67df4 1087 bio->bi_next = NULL;
74d46992 1088 bio_set_dev(bio, rdev->bdev);
a9ae93c8 1089 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 1090 bio_io_error(bio);
a9ae93c8 1091 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 1092 !blk_queue_discard(bio->bi_disk->queue)))
32f9f570 1093 /* Just ignore it */
4246a0b6 1094 bio_endio(bio);
32f9f570
SL
1095 else
1096 generic_make_request(bio);
57c67df4
N
1097 bio = next;
1098 }
1099 kfree(plug);
1100}
1101
bb5f1ed7
RL
1102static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1103 struct r10bio *r10_bio)
1da177e4 1104{
e879a879 1105 struct r10conf *conf = mddev->private;
1da177e4 1106 struct bio *read_bio;
bb5f1ed7
RL
1107 const int op = bio_op(bio);
1108 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
bb5f1ed7
RL
1109 int max_sectors;
1110 sector_t sectors;
1111 struct md_rdev *rdev;
545250f2
N
1112 char b[BDEVNAME_SIZE];
1113 int slot = r10_bio->read_slot;
1114 struct md_rdev *err_rdev = NULL;
1115 gfp_t gfp = GFP_NOIO;
bb5f1ed7 1116
545250f2
N
1117 if (r10_bio->devs[slot].rdev) {
1118 /*
1119 * This is an error retry, but we cannot
1120 * safely dereference the rdev in the r10_bio,
1121 * we must use the one in conf.
1122 * If it has already been disconnected (unlikely)
1123 * we lose the device name in error messages.
1124 */
1125 int disk;
1126 /*
1127 * As we are blocking raid10, it is a little safer to
1128 * use __GFP_HIGH.
1129 */
1130 gfp = GFP_NOIO | __GFP_HIGH;
1131
1132 rcu_read_lock();
1133 disk = r10_bio->devs[slot].devnum;
1134 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1135 if (err_rdev)
1136 bdevname(err_rdev->bdev, b);
1137 else {
1138 strcpy(b, "???");
1139 /* This never gets dereferenced */
1140 err_rdev = r10_bio->devs[slot].rdev;
1141 }
1142 rcu_read_unlock();
1143 }
bb5f1ed7
RL
1144 /*
1145 * Register the new request and wait if the reconstruction
1146 * thread has put up a bar for new requests.
1147 * Continue immediately if no resync is active currently.
1148 */
1149 wait_barrier(conf);
1150
fc9977dd 1151 sectors = r10_bio->sectors;
bb5f1ed7
RL
1152 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1153 bio->bi_iter.bi_sector < conf->reshape_progress &&
1154 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1155 /*
1156 * IO spans the reshape position. Need to wait for reshape to
1157 * pass
1158 */
1159 raid10_log(conf->mddev, "wait reshape");
1160 allow_barrier(conf);
1161 wait_event(conf->wait_barrier,
1162 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1163 conf->reshape_progress >= bio->bi_iter.bi_sector +
1164 sectors);
1165 wait_barrier(conf);
1166 }
1167
bb5f1ed7
RL
1168 rdev = read_balance(conf, r10_bio, &max_sectors);
1169 if (!rdev) {
545250f2
N
1170 if (err_rdev) {
1171 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1172 mdname(mddev), b,
1173 (unsigned long long)r10_bio->sector);
1174 }
bb5f1ed7
RL
1175 raid_end_bio_io(r10_bio);
1176 return;
1177 }
545250f2
N
1178 if (err_rdev)
1179 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1180 mdname(mddev),
1181 bdevname(rdev->bdev, b),
1182 (unsigned long long)r10_bio->sector);
fc9977dd
N
1183 if (max_sectors < bio_sectors(bio)) {
1184 struct bio *split = bio_split(bio, max_sectors,
545250f2 1185 gfp, conf->bio_split);
fc9977dd
N
1186 bio_chain(split, bio);
1187 generic_make_request(bio);
1188 bio = split;
1189 r10_bio->master_bio = bio;
1190 r10_bio->sectors = max_sectors;
1191 }
bb5f1ed7
RL
1192 slot = r10_bio->read_slot;
1193
545250f2 1194 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
bb5f1ed7
RL
1195
1196 r10_bio->devs[slot].bio = read_bio;
1197 r10_bio->devs[slot].rdev = rdev;
1198
1199 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1200 choose_data_offset(r10_bio, rdev);
74d46992 1201 bio_set_dev(read_bio, rdev->bdev);
bb5f1ed7
RL
1202 read_bio->bi_end_io = raid10_end_read_request;
1203 bio_set_op_attrs(read_bio, op, do_sync);
1204 if (test_bit(FailFast, &rdev->flags) &&
1205 test_bit(R10BIO_FailFast, &r10_bio->state))
1206 read_bio->bi_opf |= MD_FAILFAST;
1207 read_bio->bi_private = r10_bio;
1208
1209 if (mddev->gendisk)
74d46992 1210 trace_block_bio_remap(read_bio->bi_disk->queue,
bb5f1ed7
RL
1211 read_bio, disk_devt(mddev->gendisk),
1212 r10_bio->sector);
fc9977dd 1213 generic_make_request(read_bio);
bb5f1ed7
RL
1214 return;
1215}
1216
27f26a0f
GJ
1217static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1218 struct bio *bio, bool replacement,
fc9977dd 1219 int n_copy)
bb5f1ed7 1220{
796a5cf0 1221 const int op = bio_op(bio);
1eff9d32
JA
1222 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1223 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
6cce3b23 1224 unsigned long flags;
57c67df4
N
1225 struct blk_plug_cb *cb;
1226 struct raid10_plug_cb *plug = NULL;
27f26a0f
GJ
1227 struct r10conf *conf = mddev->private;
1228 struct md_rdev *rdev;
1229 int devnum = r10_bio->devs[n_copy].devnum;
1230 struct bio *mbio;
1231
1232 if (replacement) {
1233 rdev = conf->mirrors[devnum].replacement;
1234 if (rdev == NULL) {
1235 /* Replacement just got moved to main 'rdev' */
1236 smp_mb();
1237 rdev = conf->mirrors[devnum].rdev;
1238 }
1239 } else
1240 rdev = conf->mirrors[devnum].rdev;
1241
1242 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
27f26a0f
GJ
1243 if (replacement)
1244 r10_bio->devs[n_copy].repl_bio = mbio;
1245 else
1246 r10_bio->devs[n_copy].bio = mbio;
1247
1248 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1249 choose_data_offset(r10_bio, rdev));
74d46992 1250 bio_set_dev(mbio, rdev->bdev);
27f26a0f
GJ
1251 mbio->bi_end_io = raid10_end_write_request;
1252 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1253 if (!replacement && test_bit(FailFast,
1254 &conf->mirrors[devnum].rdev->flags)
1255 && enough(conf, devnum))
1256 mbio->bi_opf |= MD_FAILFAST;
1257 mbio->bi_private = r10_bio;
1258
1259 if (conf->mddev->gendisk)
74d46992 1260 trace_block_bio_remap(mbio->bi_disk->queue,
27f26a0f
GJ
1261 mbio, disk_devt(conf->mddev->gendisk),
1262 r10_bio->sector);
1263 /* flush_pending_writes() needs access to the rdev so...*/
74d46992 1264 mbio->bi_disk = (void *)rdev;
27f26a0f
GJ
1265
1266 atomic_inc(&r10_bio->remaining);
1267
1268 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1269 if (cb)
1270 plug = container_of(cb, struct raid10_plug_cb, cb);
1271 else
1272 plug = NULL;
27f26a0f
GJ
1273 if (plug) {
1274 bio_list_add(&plug->pending, mbio);
1275 plug->pending_cnt++;
1276 } else {
23b245c0 1277 spin_lock_irqsave(&conf->device_lock, flags);
27f26a0f
GJ
1278 bio_list_add(&conf->pending_bio_list, mbio);
1279 conf->pending_count++;
23b245c0 1280 spin_unlock_irqrestore(&conf->device_lock, flags);
27f26a0f 1281 md_wakeup_thread(mddev->thread);
23b245c0 1282 }
27f26a0f
GJ
1283}
1284
1285static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1286 struct r10bio *r10_bio)
1287{
1288 struct r10conf *conf = mddev->private;
1289 int i;
1290 struct md_rdev *blocked_rdev;
bb5f1ed7 1291 sector_t sectors;
d4432c23 1292 int max_sectors;
1da177e4 1293
cc13b1d1
N
1294 /*
1295 * Register the new request and wait if the reconstruction
1296 * thread has put up a bar for new requests.
1297 * Continue immediately if no resync is active currently.
1298 */
1299 wait_barrier(conf);
1300
fc9977dd 1301 sectors = r10_bio->sectors;
3ea7daa5 1302 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
4f024f37
KO
1303 bio->bi_iter.bi_sector < conf->reshape_progress &&
1304 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
bb5f1ed7
RL
1305 /*
1306 * IO spans the reshape position. Need to wait for reshape to
1307 * pass
3ea7daa5 1308 */
578b54ad 1309 raid10_log(conf->mddev, "wait reshape");
3ea7daa5
N
1310 allow_barrier(conf);
1311 wait_event(conf->wait_barrier,
4f024f37
KO
1312 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1313 conf->reshape_progress >= bio->bi_iter.bi_sector +
1314 sectors);
3ea7daa5
N
1315 wait_barrier(conf);
1316 }
bb5f1ed7 1317
3ea7daa5 1318 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3ea7daa5 1319 (mddev->reshape_backwards
4f024f37
KO
1320 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1321 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1322 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1323 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1324 /* Need to update reshape_position in metadata */
1325 mddev->reshape_position = conf->reshape_progress;
2953079c
SL
1326 set_mask_bits(&mddev->sb_flags, 0,
1327 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
3ea7daa5 1328 md_wakeup_thread(mddev->thread);
578b54ad 1329 raid10_log(conf->mddev, "wait reshape metadata");
3ea7daa5 1330 wait_event(mddev->sb_wait,
2953079c 1331 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
3ea7daa5
N
1332
1333 conf->reshape_safe = mddev->reshape_position;
1334 }
1335
34db0cd6
N
1336 if (conf->pending_count >= max_queued_requests) {
1337 md_wakeup_thread(mddev->thread);
578b54ad 1338 raid10_log(mddev, "wait queued");
34db0cd6
N
1339 wait_event(conf->wait_barrier,
1340 conf->pending_count < max_queued_requests);
1341 }
6bfe0b49 1342 /* first select target devices under rcu_lock and
1da177e4
LT
1343 * inc refcount on their rdev. Record them by setting
1344 * bios[x] to bio
d4432c23
N
1345 * If there are known/acknowledged bad blocks on any device
1346 * on which we have seen a write error, we want to avoid
1347 * writing to those blocks. This potentially requires several
1348 * writes to write around the bad blocks. Each set of writes
fd16f2e8 1349 * gets its own r10_bio with a set of bios attached.
1da177e4 1350 */
c3b328ac 1351
69335ef3 1352 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1353 raid10_find_phys(conf, r10_bio);
d4432c23 1354retry_write:
cb6969e8 1355 blocked_rdev = NULL;
1da177e4 1356 rcu_read_lock();
d4432c23
N
1357 max_sectors = r10_bio->sectors;
1358
1da177e4
LT
1359 for (i = 0; i < conf->copies; i++) {
1360 int d = r10_bio->devs[i].devnum;
3cb03002 1361 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1362 struct md_rdev *rrdev = rcu_dereference(
1363 conf->mirrors[d].replacement);
4ca40c2c
N
1364 if (rdev == rrdev)
1365 rrdev = NULL;
6bfe0b49
DW
1366 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1367 atomic_inc(&rdev->nr_pending);
1368 blocked_rdev = rdev;
1369 break;
1370 }
475b0321
N
1371 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1372 atomic_inc(&rrdev->nr_pending);
1373 blocked_rdev = rrdev;
1374 break;
1375 }
8ae12666 1376 if (rdev && (test_bit(Faulty, &rdev->flags)))
e7c0c3fa 1377 rdev = NULL;
8ae12666 1378 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
475b0321
N
1379 rrdev = NULL;
1380
d4432c23 1381 r10_bio->devs[i].bio = NULL;
475b0321 1382 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1383
1384 if (!rdev && !rrdev) {
6cce3b23 1385 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1386 continue;
1387 }
e7c0c3fa 1388 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1389 sector_t first_bad;
1390 sector_t dev_sector = r10_bio->devs[i].addr;
1391 int bad_sectors;
1392 int is_bad;
1393
bb5f1ed7 1394 is_bad = is_badblock(rdev, dev_sector, max_sectors,
d4432c23
N
1395 &first_bad, &bad_sectors);
1396 if (is_bad < 0) {
1397 /* Mustn't write here until the bad block
1398 * is acknowledged
1399 */
1400 atomic_inc(&rdev->nr_pending);
1401 set_bit(BlockedBadBlocks, &rdev->flags);
1402 blocked_rdev = rdev;
1403 break;
1404 }
1405 if (is_bad && first_bad <= dev_sector) {
1406 /* Cannot write here at all */
1407 bad_sectors -= (dev_sector - first_bad);
1408 if (bad_sectors < max_sectors)
1409 /* Mustn't write more than bad_sectors
1410 * to other devices yet
1411 */
1412 max_sectors = bad_sectors;
1413 /* We don't set R10BIO_Degraded as that
1414 * only applies if the disk is missing,
1415 * so it might be re-added, and we want to
1416 * know to recover this chunk.
1417 * In this case the device is here, and the
1418 * fact that this chunk is not in-sync is
1419 * recorded in the bad block log.
1420 */
1421 continue;
1422 }
1423 if (is_bad) {
1424 int good_sectors = first_bad - dev_sector;
1425 if (good_sectors < max_sectors)
1426 max_sectors = good_sectors;
1427 }
6cce3b23 1428 }
e7c0c3fa
N
1429 if (rdev) {
1430 r10_bio->devs[i].bio = bio;
1431 atomic_inc(&rdev->nr_pending);
1432 }
475b0321
N
1433 if (rrdev) {
1434 r10_bio->devs[i].repl_bio = bio;
1435 atomic_inc(&rrdev->nr_pending);
1436 }
1da177e4
LT
1437 }
1438 rcu_read_unlock();
1439
6bfe0b49
DW
1440 if (unlikely(blocked_rdev)) {
1441 /* Have to wait for this device to get unblocked, then retry */
1442 int j;
1443 int d;
1444
475b0321 1445 for (j = 0; j < i; j++) {
6bfe0b49
DW
1446 if (r10_bio->devs[j].bio) {
1447 d = r10_bio->devs[j].devnum;
1448 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1449 }
475b0321 1450 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1451 struct md_rdev *rdev;
475b0321 1452 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1453 rdev = conf->mirrors[d].replacement;
1454 if (!rdev) {
1455 /* Race with remove_disk */
1456 smp_mb();
1457 rdev = conf->mirrors[d].rdev;
1458 }
1459 rdev_dec_pending(rdev, mddev);
475b0321
N
1460 }
1461 }
6bfe0b49 1462 allow_barrier(conf);
578b54ad 1463 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49
DW
1464 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1465 wait_barrier(conf);
1466 goto retry_write;
1467 }
1468
6b6c8110 1469 if (max_sectors < r10_bio->sectors)
d4432c23 1470 r10_bio->sectors = max_sectors;
fc9977dd
N
1471
1472 if (r10_bio->sectors < bio_sectors(bio)) {
1473 struct bio *split = bio_split(bio, r10_bio->sectors,
1474 GFP_NOIO, conf->bio_split);
1475 bio_chain(split, bio);
1476 generic_make_request(bio);
1477 bio = split;
1478 r10_bio->master_bio = bio;
d4432c23 1479 }
d4432c23 1480
4e78064f 1481 atomic_set(&r10_bio->remaining, 1);
d4432c23 1482 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1483
1da177e4 1484 for (i = 0; i < conf->copies; i++) {
27f26a0f 1485 if (r10_bio->devs[i].bio)
fc9977dd 1486 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
27f26a0f 1487 if (r10_bio->devs[i].repl_bio)
fc9977dd 1488 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
d4432c23 1489 }
079fa166 1490 one_write_done(r10_bio);
20d0189b
KO
1491}
1492
fc9977dd 1493static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
bb5f1ed7
RL
1494{
1495 struct r10conf *conf = mddev->private;
1496 struct r10bio *r10_bio;
1497
1498 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1499
1500 r10_bio->master_bio = bio;
fc9977dd 1501 r10_bio->sectors = sectors;
bb5f1ed7
RL
1502
1503 r10_bio->mddev = mddev;
1504 r10_bio->sector = bio->bi_iter.bi_sector;
1505 r10_bio->state = 0;
545250f2 1506 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
bb5f1ed7
RL
1507
1508 if (bio_data_dir(bio) == READ)
1509 raid10_read_request(mddev, bio, r10_bio);
1510 else
1511 raid10_write_request(mddev, bio, r10_bio);
1512}
1513
cc27b0c7 1514static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
20d0189b
KO
1515{
1516 struct r10conf *conf = mddev->private;
1517 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1518 int chunk_sects = chunk_mask + 1;
fc9977dd 1519 int sectors = bio_sectors(bio);
20d0189b 1520
1eff9d32 1521 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
20d0189b 1522 md_flush_request(mddev, bio);
cc27b0c7 1523 return true;
20d0189b
KO
1524 }
1525
cc27b0c7
N
1526 if (!md_write_start(mddev, bio))
1527 return false;
1528
fc9977dd
N
1529 /*
1530 * If this request crosses a chunk boundary, we need to split
1531 * it.
1532 */
1533 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1534 sectors > chunk_sects
1535 && (conf->geo.near_copies < conf->geo.raid_disks
1536 || conf->prev.near_copies <
1537 conf->prev.raid_disks)))
1538 sectors = chunk_sects -
1539 (bio->bi_iter.bi_sector &
1540 (chunk_sects - 1));
1541 __make_request(mddev, bio, sectors);
079fa166
N
1542
1543 /* In case raid10d snuck in to freeze_array */
1544 wake_up(&conf->wait_barrier);
cc27b0c7 1545 return true;
1da177e4
LT
1546}
1547
849674e4 1548static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1549{
e879a879 1550 struct r10conf *conf = mddev->private;
1da177e4
LT
1551 int i;
1552
5cf00fcd 1553 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1554 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1555 if (conf->geo.near_copies > 1)
1556 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1557 if (conf->geo.far_copies > 1) {
1558 if (conf->geo.far_offset)
1559 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1560 else
5cf00fcd 1561 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
8bce6d35
N
1562 if (conf->geo.far_set_size != conf->geo.raid_disks)
1563 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
c93983bf 1564 }
5cf00fcd
N
1565 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1566 conf->geo.raid_disks - mddev->degraded);
d44b0a92
N
1567 rcu_read_lock();
1568 for (i = 0; i < conf->geo.raid_disks; i++) {
1569 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1570 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1571 }
1572 rcu_read_unlock();
1da177e4
LT
1573 seq_printf(seq, "]");
1574}
1575
700c7213
N
1576/* check if there are enough drives for
1577 * every block to appear on atleast one.
1578 * Don't consider the device numbered 'ignore'
1579 * as we might be about to remove it.
1580 */
635f6416 1581static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1582{
1583 int first = 0;
725d6e57 1584 int has_enough = 0;
635f6416
N
1585 int disks, ncopies;
1586 if (previous) {
1587 disks = conf->prev.raid_disks;
1588 ncopies = conf->prev.near_copies;
1589 } else {
1590 disks = conf->geo.raid_disks;
1591 ncopies = conf->geo.near_copies;
1592 }
700c7213 1593
725d6e57 1594 rcu_read_lock();
700c7213
N
1595 do {
1596 int n = conf->copies;
1597 int cnt = 0;
80b48124 1598 int this = first;
700c7213 1599 while (n--) {
725d6e57
N
1600 struct md_rdev *rdev;
1601 if (this != ignore &&
1602 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1603 test_bit(In_sync, &rdev->flags))
700c7213 1604 cnt++;
635f6416 1605 this = (this+1) % disks;
700c7213
N
1606 }
1607 if (cnt == 0)
725d6e57 1608 goto out;
635f6416 1609 first = (first + ncopies) % disks;
700c7213 1610 } while (first != 0);
725d6e57
N
1611 has_enough = 1;
1612out:
1613 rcu_read_unlock();
1614 return has_enough;
700c7213
N
1615}
1616
f8c9e74f
N
1617static int enough(struct r10conf *conf, int ignore)
1618{
635f6416
N
1619 /* when calling 'enough', both 'prev' and 'geo' must
1620 * be stable.
1621 * This is ensured if ->reconfig_mutex or ->device_lock
1622 * is held.
1623 */
1624 return _enough(conf, 0, ignore) &&
1625 _enough(conf, 1, ignore);
f8c9e74f
N
1626}
1627
849674e4 1628static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1629{
1630 char b[BDEVNAME_SIZE];
e879a879 1631 struct r10conf *conf = mddev->private;
635f6416 1632 unsigned long flags;
1da177e4
LT
1633
1634 /*
1635 * If it is not operational, then we have already marked it as dead
1636 * else if it is the last working disks, ignore the error, let the
1637 * next level up know.
1638 * else mark the drive as failed
1639 */
635f6416 1640 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1641 if (test_bit(In_sync, &rdev->flags)
635f6416 1642 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1643 /*
1644 * Don't fail the drive, just return an IO error.
1da177e4 1645 */
635f6416 1646 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1647 return;
635f6416 1648 }
2446dba0 1649 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1650 mddev->degraded++;
2446dba0
N
1651 /*
1652 * If recovery is running, make sure it aborts.
1653 */
1654 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 1655 set_bit(Blocked, &rdev->flags);
b2d444d7 1656 set_bit(Faulty, &rdev->flags);
2953079c
SL
1657 set_mask_bits(&mddev->sb_flags, 0,
1658 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
635f6416 1659 spin_unlock_irqrestore(&conf->device_lock, flags);
08464e09
N
1660 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1661 "md/raid10:%s: Operation continuing on %d devices.\n",
1662 mdname(mddev), bdevname(rdev->bdev, b),
1663 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1664}
1665
e879a879 1666static void print_conf(struct r10conf *conf)
1da177e4
LT
1667{
1668 int i;
4056ca51 1669 struct md_rdev *rdev;
1da177e4 1670
08464e09 1671 pr_debug("RAID10 conf printout:\n");
1da177e4 1672 if (!conf) {
08464e09 1673 pr_debug("(!conf)\n");
1da177e4
LT
1674 return;
1675 }
08464e09
N
1676 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1677 conf->geo.raid_disks);
1da177e4 1678
4056ca51
N
1679 /* This is only called with ->reconfix_mutex held, so
1680 * rcu protection of rdev is not needed */
5cf00fcd 1681 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1682 char b[BDEVNAME_SIZE];
4056ca51
N
1683 rdev = conf->mirrors[i].rdev;
1684 if (rdev)
08464e09
N
1685 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1686 i, !test_bit(In_sync, &rdev->flags),
1687 !test_bit(Faulty, &rdev->flags),
1688 bdevname(rdev->bdev,b));
1da177e4
LT
1689 }
1690}
1691
e879a879 1692static void close_sync(struct r10conf *conf)
1da177e4 1693{
0a27ec96
N
1694 wait_barrier(conf);
1695 allow_barrier(conf);
1da177e4
LT
1696
1697 mempool_destroy(conf->r10buf_pool);
1698 conf->r10buf_pool = NULL;
1699}
1700
fd01b88c 1701static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1702{
1703 int i;
e879a879 1704 struct r10conf *conf = mddev->private;
dc280d98 1705 struct raid10_info *tmp;
6b965620
N
1706 int count = 0;
1707 unsigned long flags;
1da177e4
LT
1708
1709 /*
1710 * Find all non-in_sync disks within the RAID10 configuration
1711 * and mark them in_sync
1712 */
5cf00fcd 1713 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1714 tmp = conf->mirrors + i;
4ca40c2c
N
1715 if (tmp->replacement
1716 && tmp->replacement->recovery_offset == MaxSector
1717 && !test_bit(Faulty, &tmp->replacement->flags)
1718 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1719 /* Replacement has just become active */
1720 if (!tmp->rdev
1721 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1722 count++;
1723 if (tmp->rdev) {
1724 /* Replaced device not technically faulty,
1725 * but we need to be sure it gets removed
1726 * and never re-added.
1727 */
1728 set_bit(Faulty, &tmp->rdev->flags);
1729 sysfs_notify_dirent_safe(
1730 tmp->rdev->sysfs_state);
1731 }
1732 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1733 } else if (tmp->rdev
61e4947c 1734 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
1735 && !test_bit(Faulty, &tmp->rdev->flags)
1736 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1737 count++;
2863b9eb 1738 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1739 }
1740 }
6b965620
N
1741 spin_lock_irqsave(&conf->device_lock, flags);
1742 mddev->degraded -= count;
1743 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1744
1745 print_conf(conf);
6b965620 1746 return count;
1da177e4
LT
1747}
1748
fd01b88c 1749static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1750{
e879a879 1751 struct r10conf *conf = mddev->private;
199050ea 1752 int err = -EEXIST;
1da177e4 1753 int mirror;
6c2fce2e 1754 int first = 0;
5cf00fcd 1755 int last = conf->geo.raid_disks - 1;
1da177e4
LT
1756
1757 if (mddev->recovery_cp < MaxSector)
1758 /* only hot-add to in-sync arrays, as recovery is
1759 * very different from resync
1760 */
199050ea 1761 return -EBUSY;
635f6416 1762 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 1763 return -EINVAL;
1da177e4 1764
1501efad
DW
1765 if (md_integrity_add_rdev(rdev, mddev))
1766 return -ENXIO;
1767
a53a6c85 1768 if (rdev->raid_disk >= 0)
6c2fce2e 1769 first = last = rdev->raid_disk;
1da177e4 1770
2c4193df 1771 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1772 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1773 mirror = rdev->saved_raid_disk;
1774 else
6c2fce2e 1775 mirror = first;
2bb77736 1776 for ( ; mirror <= last ; mirror++) {
dc280d98 1777 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1778 if (p->recovery_disabled == mddev->recovery_disabled)
1779 continue;
b7044d41
N
1780 if (p->rdev) {
1781 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1782 p->replacement != NULL)
1783 continue;
1784 clear_bit(In_sync, &rdev->flags);
1785 set_bit(Replacement, &rdev->flags);
1786 rdev->raid_disk = mirror;
1787 err = 0;
9092c02d
JB
1788 if (mddev->gendisk)
1789 disk_stack_limits(mddev->gendisk, rdev->bdev,
1790 rdev->data_offset << 9);
b7044d41
N
1791 conf->fullsync = 1;
1792 rcu_assign_pointer(p->replacement, rdev);
1793 break;
1794 }
1da177e4 1795
9092c02d
JB
1796 if (mddev->gendisk)
1797 disk_stack_limits(mddev->gendisk, rdev->bdev,
1798 rdev->data_offset << 9);
1da177e4 1799
2bb77736 1800 p->head_position = 0;
d890fa2b 1801 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1802 rdev->raid_disk = mirror;
1803 err = 0;
1804 if (rdev->saved_raid_disk != mirror)
1805 conf->fullsync = 1;
1806 rcu_assign_pointer(p->rdev, rdev);
1807 break;
1808 }
ed30be07 1809 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1810 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1811
1da177e4 1812 print_conf(conf);
199050ea 1813 return err;
1da177e4
LT
1814}
1815
b8321b68 1816static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1817{
e879a879 1818 struct r10conf *conf = mddev->private;
1da177e4 1819 int err = 0;
b8321b68 1820 int number = rdev->raid_disk;
c8ab903e 1821 struct md_rdev **rdevp;
dc280d98 1822 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1823
1824 print_conf(conf);
c8ab903e
N
1825 if (rdev == p->rdev)
1826 rdevp = &p->rdev;
1827 else if (rdev == p->replacement)
1828 rdevp = &p->replacement;
1829 else
1830 return 0;
1831
1832 if (test_bit(In_sync, &rdev->flags) ||
1833 atomic_read(&rdev->nr_pending)) {
1834 err = -EBUSY;
1835 goto abort;
1836 }
d787be40 1837 /* Only remove non-faulty devices if recovery
c8ab903e
N
1838 * is not possible.
1839 */
1840 if (!test_bit(Faulty, &rdev->flags) &&
1841 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1842 (!p->replacement || p->replacement == rdev) &&
63aced61 1843 number < conf->geo.raid_disks &&
c8ab903e
N
1844 enough(conf, -1)) {
1845 err = -EBUSY;
1846 goto abort;
1da177e4 1847 }
c8ab903e 1848 *rdevp = NULL;
d787be40
N
1849 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1850 synchronize_rcu();
1851 if (atomic_read(&rdev->nr_pending)) {
1852 /* lost the race, try later */
1853 err = -EBUSY;
1854 *rdevp = rdev;
1855 goto abort;
1856 }
1857 }
1858 if (p->replacement) {
4ca40c2c
N
1859 /* We must have just cleared 'rdev' */
1860 p->rdev = p->replacement;
1861 clear_bit(Replacement, &p->replacement->flags);
1862 smp_mb(); /* Make sure other CPUs may see both as identical
1863 * but will never see neither -- if they are careful.
1864 */
1865 p->replacement = NULL;
e5bc9c3c 1866 }
4ca40c2c 1867
e5bc9c3c 1868 clear_bit(WantReplacement, &rdev->flags);
c8ab903e
N
1869 err = md_integrity_register(mddev);
1870
1da177e4
LT
1871abort:
1872
1873 print_conf(conf);
1874 return err;
1875}
1876
81fa1520 1877static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1da177e4 1878{
e879a879 1879 struct r10conf *conf = r10_bio->mddev->private;
0eb3ff12 1880
4e4cbee9 1881 if (!bio->bi_status)
0eb3ff12 1882 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1883 else
1884 /* The write handler will notice the lack of
1885 * R10BIO_Uptodate and record any errors etc
1886 */
4dbcdc75
N
1887 atomic_add(r10_bio->sectors,
1888 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1889
1890 /* for reconstruct, we always reschedule after a read.
1891 * for resync, only after all reads
1892 */
73d5c38a 1893 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1894 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1895 atomic_dec_and_test(&r10_bio->remaining)) {
1896 /* we have read all the blocks,
1897 * do the comparison in process context in raid10d
1898 */
1899 reschedule_retry(r10_bio);
1900 }
1da177e4
LT
1901}
1902
81fa1520
ML
1903static void end_sync_read(struct bio *bio)
1904{
f0250618 1905 struct r10bio *r10_bio = get_resync_r10bio(bio);
81fa1520
ML
1906 struct r10conf *conf = r10_bio->mddev->private;
1907 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1908
1909 __end_sync_read(r10_bio, bio, d);
1910}
1911
1912static void end_reshape_read(struct bio *bio)
1913{
f0250618 1914 /* reshape read bio isn't allocated from r10buf_pool */
81fa1520
ML
1915 struct r10bio *r10_bio = bio->bi_private;
1916
1917 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1918}
1919
9f2c9d12 1920static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1921{
fd01b88c 1922 struct mddev *mddev = r10_bio->mddev;
dfc70645 1923
1da177e4
LT
1924 while (atomic_dec_and_test(&r10_bio->remaining)) {
1925 if (r10_bio->master_bio == NULL) {
1926 /* the primary of several recovery bios */
73d5c38a 1927 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1928 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1929 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1930 reschedule_retry(r10_bio);
1931 else
1932 put_buf(r10_bio);
73d5c38a 1933 md_done_sync(mddev, s, 1);
1da177e4
LT
1934 break;
1935 } else {
9f2c9d12 1936 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1937 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1938 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1939 reschedule_retry(r10_bio);
1940 else
1941 put_buf(r10_bio);
1da177e4
LT
1942 r10_bio = r10_bio2;
1943 }
1944 }
1da177e4
LT
1945}
1946
4246a0b6 1947static void end_sync_write(struct bio *bio)
5e570289 1948{
f0250618 1949 struct r10bio *r10_bio = get_resync_r10bio(bio);
fd01b88c 1950 struct mddev *mddev = r10_bio->mddev;
e879a879 1951 struct r10conf *conf = mddev->private;
5e570289
N
1952 int d;
1953 sector_t first_bad;
1954 int bad_sectors;
1955 int slot;
9ad1aefc 1956 int repl;
4ca40c2c 1957 struct md_rdev *rdev = NULL;
5e570289 1958
9ad1aefc
N
1959 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1960 if (repl)
1961 rdev = conf->mirrors[d].replacement;
547414d1 1962 else
9ad1aefc 1963 rdev = conf->mirrors[d].rdev;
5e570289 1964
4e4cbee9 1965 if (bio->bi_status) {
9ad1aefc
N
1966 if (repl)
1967 md_error(mddev, rdev);
1968 else {
1969 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
1970 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1971 set_bit(MD_RECOVERY_NEEDED,
1972 &rdev->mddev->recovery);
9ad1aefc
N
1973 set_bit(R10BIO_WriteError, &r10_bio->state);
1974 }
1975 } else if (is_badblock(rdev,
5e570289
N
1976 r10_bio->devs[slot].addr,
1977 r10_bio->sectors,
1978 &first_bad, &bad_sectors))
1979 set_bit(R10BIO_MadeGood, &r10_bio->state);
1980
9ad1aefc 1981 rdev_dec_pending(rdev, mddev);
5e570289
N
1982
1983 end_sync_request(r10_bio);
1984}
1985
1da177e4
LT
1986/*
1987 * Note: sync and recover and handled very differently for raid10
1988 * This code is for resync.
1989 * For resync, we read through virtual addresses and read all blocks.
1990 * If there is any error, we schedule a write. The lowest numbered
1991 * drive is authoritative.
1992 * However requests come for physical address, so we need to map.
1993 * For every physical address there are raid_disks/copies virtual addresses,
1994 * which is always are least one, but is not necessarly an integer.
1995 * This means that a physical address can span multiple chunks, so we may
1996 * have to submit multiple io requests for a single sync request.
1997 */
1998/*
1999 * We check if all blocks are in-sync and only write to blocks that
2000 * aren't in sync
2001 */
9f2c9d12 2002static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2003{
e879a879 2004 struct r10conf *conf = mddev->private;
1da177e4
LT
2005 int i, first;
2006 struct bio *tbio, *fbio;
f4380a91 2007 int vcnt;
cdb76be3 2008 struct page **tpages, **fpages;
1da177e4
LT
2009
2010 atomic_set(&r10_bio->remaining, 1);
2011
2012 /* find the first device with a block */
2013 for (i=0; i<conf->copies; i++)
4e4cbee9 2014 if (!r10_bio->devs[i].bio->bi_status)
1da177e4
LT
2015 break;
2016
2017 if (i == conf->copies)
2018 goto done;
2019
2020 first = i;
2021 fbio = r10_bio->devs[i].bio;
cc578588
AP
2022 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2023 fbio->bi_iter.bi_idx = 0;
cdb76be3 2024 fpages = get_resync_pages(fbio)->pages;
1da177e4 2025
f4380a91 2026 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2027 /* now find blocks with errors */
0eb3ff12
N
2028 for (i=0 ; i < conf->copies ; i++) {
2029 int j, d;
8d3ca83d 2030 struct md_rdev *rdev;
f0250618 2031 struct resync_pages *rp;
1da177e4 2032
1da177e4 2033 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2034
2035 if (tbio->bi_end_io != end_sync_read)
2036 continue;
2037 if (i == first)
1da177e4 2038 continue;
cdb76be3
ML
2039
2040 tpages = get_resync_pages(tbio)->pages;
8d3ca83d
N
2041 d = r10_bio->devs[i].devnum;
2042 rdev = conf->mirrors[d].rdev;
4e4cbee9 2043 if (!r10_bio->devs[i].bio->bi_status) {
0eb3ff12
N
2044 /* We know that the bi_io_vec layout is the same for
2045 * both 'first' and 'i', so we just compare them.
2046 * All vec entries are PAGE_SIZE;
2047 */
7bb23c49
N
2048 int sectors = r10_bio->sectors;
2049 for (j = 0; j < vcnt; j++) {
2050 int len = PAGE_SIZE;
2051 if (sectors < (len / 512))
2052 len = sectors * 512;
cdb76be3
ML
2053 if (memcmp(page_address(fpages[j]),
2054 page_address(tpages[j]),
7bb23c49 2055 len))
0eb3ff12 2056 break;
7bb23c49
N
2057 sectors -= len/512;
2058 }
0eb3ff12
N
2059 if (j == vcnt)
2060 continue;
7f7583d4 2061 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2062 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2063 /* Don't fix anything. */
2064 continue;
8d3ca83d
N
2065 } else if (test_bit(FailFast, &rdev->flags)) {
2066 /* Just give up on this device */
2067 md_error(rdev->mddev, rdev);
2068 continue;
0eb3ff12 2069 }
f84ee364
N
2070 /* Ok, we need to write this bio, either to correct an
2071 * inconsistency or to correct an unreadable block.
1da177e4
LT
2072 * First we need to fixup bv_offset, bv_len and
2073 * bi_vecs, as the read request might have corrupted these
2074 */
f0250618 2075 rp = get_resync_pages(tbio);
8be185f2
KO
2076 bio_reset(tbio);
2077
fb0eb5df
ML
2078 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2079
f0250618
ML
2080 rp->raid_bio = r10_bio;
2081 tbio->bi_private = rp;
4f024f37 2082 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4 2083 tbio->bi_end_io = end_sync_write;
796a5cf0 2084 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1da177e4 2085
c31df25f
KO
2086 bio_copy_data(tbio, fbio);
2087
1da177e4
LT
2088 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2089 atomic_inc(&r10_bio->remaining);
aa8b57aa 2090 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2091
1919cbb2
N
2092 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2093 tbio->bi_opf |= MD_FAILFAST;
4f024f37 2094 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
74d46992 2095 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
1da177e4
LT
2096 generic_make_request(tbio);
2097 }
2098
9ad1aefc
N
2099 /* Now write out to any replacement devices
2100 * that are active
2101 */
2102 for (i = 0; i < conf->copies; i++) {
c31df25f 2103 int d;
9ad1aefc
N
2104
2105 tbio = r10_bio->devs[i].repl_bio;
2106 if (!tbio || !tbio->bi_end_io)
2107 continue;
2108 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2109 && r10_bio->devs[i].bio != fbio)
c31df25f 2110 bio_copy_data(tbio, fbio);
9ad1aefc
N
2111 d = r10_bio->devs[i].devnum;
2112 atomic_inc(&r10_bio->remaining);
2113 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2114 bio_sectors(tbio));
9ad1aefc
N
2115 generic_make_request(tbio);
2116 }
2117
1da177e4
LT
2118done:
2119 if (atomic_dec_and_test(&r10_bio->remaining)) {
2120 md_done_sync(mddev, r10_bio->sectors, 1);
2121 put_buf(r10_bio);
2122 }
2123}
2124
2125/*
2126 * Now for the recovery code.
2127 * Recovery happens across physical sectors.
2128 * We recover all non-is_sync drives by finding the virtual address of
2129 * each, and then choose a working drive that also has that virt address.
2130 * There is a separate r10_bio for each non-in_sync drive.
2131 * Only the first two slots are in use. The first for reading,
2132 * The second for writing.
2133 *
2134 */
9f2c9d12 2135static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2136{
2137 /* We got a read error during recovery.
2138 * We repeat the read in smaller page-sized sections.
2139 * If a read succeeds, write it to the new device or record
2140 * a bad block if we cannot.
2141 * If a read fails, record a bad block on both old and
2142 * new devices.
2143 */
fd01b88c 2144 struct mddev *mddev = r10_bio->mddev;
e879a879 2145 struct r10conf *conf = mddev->private;
5e570289
N
2146 struct bio *bio = r10_bio->devs[0].bio;
2147 sector_t sect = 0;
2148 int sectors = r10_bio->sectors;
2149 int idx = 0;
2150 int dr = r10_bio->devs[0].devnum;
2151 int dw = r10_bio->devs[1].devnum;
cdb76be3 2152 struct page **pages = get_resync_pages(bio)->pages;
5e570289
N
2153
2154 while (sectors) {
2155 int s = sectors;
3cb03002 2156 struct md_rdev *rdev;
5e570289
N
2157 sector_t addr;
2158 int ok;
2159
2160 if (s > (PAGE_SIZE>>9))
2161 s = PAGE_SIZE >> 9;
2162
2163 rdev = conf->mirrors[dr].rdev;
2164 addr = r10_bio->devs[0].addr + sect,
2165 ok = sync_page_io(rdev,
2166 addr,
2167 s << 9,
cdb76be3 2168 pages[idx],
796a5cf0 2169 REQ_OP_READ, 0, false);
5e570289
N
2170 if (ok) {
2171 rdev = conf->mirrors[dw].rdev;
2172 addr = r10_bio->devs[1].addr + sect;
2173 ok = sync_page_io(rdev,
2174 addr,
2175 s << 9,
cdb76be3 2176 pages[idx],
796a5cf0 2177 REQ_OP_WRITE, 0, false);
b7044d41 2178 if (!ok) {
5e570289 2179 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2180 if (!test_and_set_bit(WantReplacement,
2181 &rdev->flags))
2182 set_bit(MD_RECOVERY_NEEDED,
2183 &rdev->mddev->recovery);
2184 }
5e570289
N
2185 }
2186 if (!ok) {
2187 /* We don't worry if we cannot set a bad block -
2188 * it really is bad so there is no loss in not
2189 * recording it yet
2190 */
2191 rdev_set_badblocks(rdev, addr, s, 0);
2192
2193 if (rdev != conf->mirrors[dw].rdev) {
2194 /* need bad block on destination too */
3cb03002 2195 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2196 addr = r10_bio->devs[1].addr + sect;
2197 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2198 if (!ok) {
2199 /* just abort the recovery */
08464e09
N
2200 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2201 mdname(mddev));
5e570289
N
2202
2203 conf->mirrors[dw].recovery_disabled
2204 = mddev->recovery_disabled;
2205 set_bit(MD_RECOVERY_INTR,
2206 &mddev->recovery);
2207 break;
2208 }
2209 }
2210 }
2211
2212 sectors -= s;
2213 sect += s;
2214 idx++;
2215 }
2216}
1da177e4 2217
9f2c9d12 2218static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2219{
e879a879 2220 struct r10conf *conf = mddev->private;
c65060ad 2221 int d;
24afd80d 2222 struct bio *wbio, *wbio2;
1da177e4 2223
5e570289
N
2224 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2225 fix_recovery_read_error(r10_bio);
2226 end_sync_request(r10_bio);
2227 return;
2228 }
2229
c65060ad
NK
2230 /*
2231 * share the pages with the first bio
1da177e4
LT
2232 * and submit the write request
2233 */
1da177e4 2234 d = r10_bio->devs[1].devnum;
24afd80d
N
2235 wbio = r10_bio->devs[1].bio;
2236 wbio2 = r10_bio->devs[1].repl_bio;
0eb25bb0
N
2237 /* Need to test wbio2->bi_end_io before we call
2238 * generic_make_request as if the former is NULL,
2239 * the latter is free to free wbio2.
2240 */
2241 if (wbio2 && !wbio2->bi_end_io)
2242 wbio2 = NULL;
24afd80d
N
2243 if (wbio->bi_end_io) {
2244 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2245 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2246 generic_make_request(wbio);
2247 }
0eb25bb0 2248 if (wbio2) {
24afd80d
N
2249 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2250 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2251 bio_sectors(wbio2));
24afd80d
N
2252 generic_make_request(wbio2);
2253 }
1da177e4
LT
2254}
2255
1e50915f
RB
2256/*
2257 * Used by fix_read_error() to decay the per rdev read_errors.
2258 * We halve the read error count for every hour that has elapsed
2259 * since the last recorded read error.
2260 *
2261 */
fd01b88c 2262static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f 2263{
0e3ef49e 2264 long cur_time_mon;
1e50915f
RB
2265 unsigned long hours_since_last;
2266 unsigned int read_errors = atomic_read(&rdev->read_errors);
2267
0e3ef49e 2268 cur_time_mon = ktime_get_seconds();
1e50915f 2269
0e3ef49e 2270 if (rdev->last_read_error == 0) {
1e50915f
RB
2271 /* first time we've seen a read error */
2272 rdev->last_read_error = cur_time_mon;
2273 return;
2274 }
2275
0e3ef49e
AB
2276 hours_since_last = (long)(cur_time_mon -
2277 rdev->last_read_error) / 3600;
1e50915f
RB
2278
2279 rdev->last_read_error = cur_time_mon;
2280
2281 /*
2282 * if hours_since_last is > the number of bits in read_errors
2283 * just set read errors to 0. We do this to avoid
2284 * overflowing the shift of read_errors by hours_since_last.
2285 */
2286 if (hours_since_last >= 8 * sizeof(read_errors))
2287 atomic_set(&rdev->read_errors, 0);
2288 else
2289 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2290}
2291
3cb03002 2292static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2293 int sectors, struct page *page, int rw)
2294{
2295 sector_t first_bad;
2296 int bad_sectors;
2297
2298 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2299 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2300 return -1;
796a5cf0 2301 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
58c54fcc
N
2302 /* success */
2303 return 1;
b7044d41 2304 if (rw == WRITE) {
58c54fcc 2305 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2306 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2307 set_bit(MD_RECOVERY_NEEDED,
2308 &rdev->mddev->recovery);
2309 }
58c54fcc
N
2310 /* need to record an error - either for the block or the device */
2311 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2312 md_error(rdev->mddev, rdev);
2313 return 0;
2314}
2315
1da177e4
LT
2316/*
2317 * This is a kernel thread which:
2318 *
2319 * 1. Retries failed read operations on working mirrors.
2320 * 2. Updates the raid superblock when problems encounter.
6814d536 2321 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2322 */
2323
e879a879 2324static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2325{
2326 int sect = 0; /* Offset from r10_bio->sector */
2327 int sectors = r10_bio->sectors;
3cb03002 2328 struct md_rdev*rdev;
1e50915f 2329 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2330 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2331
7c4e06ff
N
2332 /* still own a reference to this rdev, so it cannot
2333 * have been cleared recently.
2334 */
2335 rdev = conf->mirrors[d].rdev;
1e50915f 2336
7c4e06ff
N
2337 if (test_bit(Faulty, &rdev->flags))
2338 /* drive has already been failed, just ignore any
2339 more fix_read_error() attempts */
2340 return;
1e50915f 2341
7c4e06ff
N
2342 check_decay_read_errors(mddev, rdev);
2343 atomic_inc(&rdev->read_errors);
2344 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2345 char b[BDEVNAME_SIZE];
2346 bdevname(rdev->bdev, b);
1e50915f 2347
08464e09
N
2348 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2349 mdname(mddev), b,
2350 atomic_read(&rdev->read_errors), max_read_errors);
2351 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2352 mdname(mddev), b);
d683c8e0 2353 md_error(mddev, rdev);
fae8cc5e 2354 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2355 return;
1e50915f 2356 }
1e50915f 2357
6814d536
N
2358 while(sectors) {
2359 int s = sectors;
2360 int sl = r10_bio->read_slot;
2361 int success = 0;
2362 int start;
2363
2364 if (s > (PAGE_SIZE>>9))
2365 s = PAGE_SIZE >> 9;
2366
2367 rcu_read_lock();
2368 do {
8dbed5ce
N
2369 sector_t first_bad;
2370 int bad_sectors;
2371
0544a21d 2372 d = r10_bio->devs[sl].devnum;
6814d536
N
2373 rdev = rcu_dereference(conf->mirrors[d].rdev);
2374 if (rdev &&
8dbed5ce 2375 test_bit(In_sync, &rdev->flags) &&
f5b67ae8 2376 !test_bit(Faulty, &rdev->flags) &&
8dbed5ce
N
2377 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2378 &first_bad, &bad_sectors) == 0) {
6814d536
N
2379 atomic_inc(&rdev->nr_pending);
2380 rcu_read_unlock();
2b193363 2381 success = sync_page_io(rdev,
6814d536 2382 r10_bio->devs[sl].addr +
ccebd4c4 2383 sect,
6814d536 2384 s<<9,
796a5cf0
MC
2385 conf->tmppage,
2386 REQ_OP_READ, 0, false);
6814d536
N
2387 rdev_dec_pending(rdev, mddev);
2388 rcu_read_lock();
2389 if (success)
2390 break;
2391 }
2392 sl++;
2393 if (sl == conf->copies)
2394 sl = 0;
2395 } while (!success && sl != r10_bio->read_slot);
2396 rcu_read_unlock();
2397
2398 if (!success) {
58c54fcc
N
2399 /* Cannot read from anywhere, just mark the block
2400 * as bad on the first device to discourage future
2401 * reads.
2402 */
6814d536 2403 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2404 rdev = conf->mirrors[dn].rdev;
2405
2406 if (!rdev_set_badblocks(
2407 rdev,
2408 r10_bio->devs[r10_bio->read_slot].addr
2409 + sect,
fae8cc5e 2410 s, 0)) {
58c54fcc 2411 md_error(mddev, rdev);
fae8cc5e
N
2412 r10_bio->devs[r10_bio->read_slot].bio
2413 = IO_BLOCKED;
2414 }
6814d536
N
2415 break;
2416 }
2417
2418 start = sl;
2419 /* write it back and re-read */
2420 rcu_read_lock();
2421 while (sl != r10_bio->read_slot) {
67b8dc4b 2422 char b[BDEVNAME_SIZE];
0544a21d 2423
6814d536
N
2424 if (sl==0)
2425 sl = conf->copies;
2426 sl--;
2427 d = r10_bio->devs[sl].devnum;
2428 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2429 if (!rdev ||
f5b67ae8 2430 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2431 !test_bit(In_sync, &rdev->flags))
2432 continue;
2433
2434 atomic_inc(&rdev->nr_pending);
2435 rcu_read_unlock();
58c54fcc
N
2436 if (r10_sync_page_io(rdev,
2437 r10_bio->devs[sl].addr +
2438 sect,
055d3747 2439 s, conf->tmppage, WRITE)
1294b9c9
N
2440 == 0) {
2441 /* Well, this device is dead */
08464e09
N
2442 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2443 mdname(mddev), s,
2444 (unsigned long long)(
2445 sect +
2446 choose_data_offset(r10_bio,
2447 rdev)),
2448 bdevname(rdev->bdev, b));
2449 pr_notice("md/raid10:%s: %s: failing drive\n",
2450 mdname(mddev),
2451 bdevname(rdev->bdev, b));
6814d536 2452 }
1294b9c9
N
2453 rdev_dec_pending(rdev, mddev);
2454 rcu_read_lock();
6814d536
N
2455 }
2456 sl = start;
2457 while (sl != r10_bio->read_slot) {
1294b9c9 2458 char b[BDEVNAME_SIZE];
0544a21d 2459
6814d536
N
2460 if (sl==0)
2461 sl = conf->copies;
2462 sl--;
2463 d = r10_bio->devs[sl].devnum;
2464 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2465 if (!rdev ||
f5b67ae8 2466 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2467 !test_bit(In_sync, &rdev->flags))
2468 continue;
6814d536 2469
1294b9c9
N
2470 atomic_inc(&rdev->nr_pending);
2471 rcu_read_unlock();
58c54fcc
N
2472 switch (r10_sync_page_io(rdev,
2473 r10_bio->devs[sl].addr +
2474 sect,
055d3747 2475 s, conf->tmppage,
58c54fcc
N
2476 READ)) {
2477 case 0:
1294b9c9 2478 /* Well, this device is dead */
08464e09 2479 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
1294b9c9
N
2480 mdname(mddev), s,
2481 (unsigned long long)(
f8c9e74f
N
2482 sect +
2483 choose_data_offset(r10_bio, rdev)),
1294b9c9 2484 bdevname(rdev->bdev, b));
08464e09 2485 pr_notice("md/raid10:%s: %s: failing drive\n",
1294b9c9
N
2486 mdname(mddev),
2487 bdevname(rdev->bdev, b));
58c54fcc
N
2488 break;
2489 case 1:
08464e09 2490 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
1294b9c9
N
2491 mdname(mddev), s,
2492 (unsigned long long)(
f8c9e74f
N
2493 sect +
2494 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2495 bdevname(rdev->bdev, b));
2496 atomic_add(s, &rdev->corrected_errors);
6814d536 2497 }
1294b9c9
N
2498
2499 rdev_dec_pending(rdev, mddev);
2500 rcu_read_lock();
6814d536
N
2501 }
2502 rcu_read_unlock();
2503
2504 sectors -= s;
2505 sect += s;
2506 }
2507}
2508
9f2c9d12 2509static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2510{
2511 struct bio *bio = r10_bio->master_bio;
fd01b88c 2512 struct mddev *mddev = r10_bio->mddev;
e879a879 2513 struct r10conf *conf = mddev->private;
3cb03002 2514 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2515 /* bio has the data to be written to slot 'i' where
2516 * we just recently had a write error.
2517 * We repeatedly clone the bio and trim down to one block,
2518 * then try the write. Where the write fails we record
2519 * a bad block.
2520 * It is conceivable that the bio doesn't exactly align with
2521 * blocks. We must handle this.
2522 *
2523 * We currently own a reference to the rdev.
2524 */
2525
2526 int block_sectors;
2527 sector_t sector;
2528 int sectors;
2529 int sect_to_write = r10_bio->sectors;
2530 int ok = 1;
2531
2532 if (rdev->badblocks.shift < 0)
2533 return 0;
2534
f04ebb0b
N
2535 block_sectors = roundup(1 << rdev->badblocks.shift,
2536 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2537 sector = r10_bio->sector;
2538 sectors = ((r10_bio->sector + block_sectors)
2539 & ~(sector_t)(block_sectors - 1))
2540 - sector;
2541
2542 while (sect_to_write) {
2543 struct bio *wbio;
27028626 2544 sector_t wsector;
bd870a16
N
2545 if (sectors > sect_to_write)
2546 sectors = sect_to_write;
2547 /* Write at 'sector' for 'sectors' */
d7a10308 2548 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
4f024f37 2549 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
27028626
TM
2550 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2551 wbio->bi_iter.bi_sector = wsector +
2552 choose_data_offset(r10_bio, rdev);
74d46992 2553 bio_set_dev(wbio, rdev->bdev);
796a5cf0 2554 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2555
2556 if (submit_bio_wait(wbio) < 0)
bd870a16 2557 /* Failure! */
27028626 2558 ok = rdev_set_badblocks(rdev, wsector,
bd870a16
N
2559 sectors, 0)
2560 && ok;
2561
2562 bio_put(wbio);
2563 sect_to_write -= sectors;
2564 sector += sectors;
2565 sectors = block_sectors;
2566 }
2567 return ok;
2568}
2569
9f2c9d12 2570static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2571{
2572 int slot = r10_bio->read_slot;
560f8e55 2573 struct bio *bio;
e879a879 2574 struct r10conf *conf = mddev->private;
abbf098e 2575 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2576
2577 /* we got a read error. Maybe the drive is bad. Maybe just
2578 * the block and we can fix it.
2579 * We freeze all other IO, and try reading the block from
2580 * other devices. When we find one, we re-write
2581 * and check it that fixes the read error.
2582 * This is all done synchronously while the array is
2583 * frozen.
2584 */
fae8cc5e 2585 bio = r10_bio->devs[slot].bio;
fae8cc5e
N
2586 bio_put(bio);
2587 r10_bio->devs[slot].bio = NULL;
2588
8d3ca83d
N
2589 if (mddev->ro)
2590 r10_bio->devs[slot].bio = IO_BLOCKED;
2591 else if (!test_bit(FailFast, &rdev->flags)) {
e2d59925 2592 freeze_array(conf, 1);
560f8e55
N
2593 fix_read_error(conf, mddev, r10_bio);
2594 unfreeze_array(conf);
fae8cc5e 2595 } else
8d3ca83d 2596 md_error(mddev, rdev);
fae8cc5e 2597
abbf098e 2598 rdev_dec_pending(rdev, mddev);
545250f2
N
2599 allow_barrier(conf);
2600 r10_bio->state = 0;
2601 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
560f8e55
N
2602}
2603
e879a879 2604static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2605{
2606 /* Some sort of write request has finished and it
2607 * succeeded in writing where we thought there was a
2608 * bad block. So forget the bad block.
1a0b7cd8
N
2609 * Or possibly if failed and we need to record
2610 * a bad block.
749c55e9
N
2611 */
2612 int m;
3cb03002 2613 struct md_rdev *rdev;
749c55e9
N
2614
2615 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2616 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2617 for (m = 0; m < conf->copies; m++) {
2618 int dev = r10_bio->devs[m].devnum;
2619 rdev = conf->mirrors[dev].rdev;
2620 if (r10_bio->devs[m].bio == NULL)
2621 continue;
4e4cbee9 2622 if (!r10_bio->devs[m].bio->bi_status) {
749c55e9
N
2623 rdev_clear_badblocks(
2624 rdev,
2625 r10_bio->devs[m].addr,
c6563a8c 2626 r10_bio->sectors, 0);
1a0b7cd8
N
2627 } else {
2628 if (!rdev_set_badblocks(
2629 rdev,
2630 r10_bio->devs[m].addr,
2631 r10_bio->sectors, 0))
2632 md_error(conf->mddev, rdev);
749c55e9 2633 }
9ad1aefc
N
2634 rdev = conf->mirrors[dev].replacement;
2635 if (r10_bio->devs[m].repl_bio == NULL)
2636 continue;
4246a0b6 2637
4e4cbee9 2638 if (!r10_bio->devs[m].repl_bio->bi_status) {
9ad1aefc
N
2639 rdev_clear_badblocks(
2640 rdev,
2641 r10_bio->devs[m].addr,
c6563a8c 2642 r10_bio->sectors, 0);
9ad1aefc
N
2643 } else {
2644 if (!rdev_set_badblocks(
2645 rdev,
2646 r10_bio->devs[m].addr,
2647 r10_bio->sectors, 0))
2648 md_error(conf->mddev, rdev);
2649 }
1a0b7cd8 2650 }
749c55e9
N
2651 put_buf(r10_bio);
2652 } else {
95af587e 2653 bool fail = false;
bd870a16
N
2654 for (m = 0; m < conf->copies; m++) {
2655 int dev = r10_bio->devs[m].devnum;
2656 struct bio *bio = r10_bio->devs[m].bio;
2657 rdev = conf->mirrors[dev].rdev;
2658 if (bio == IO_MADE_GOOD) {
749c55e9
N
2659 rdev_clear_badblocks(
2660 rdev,
2661 r10_bio->devs[m].addr,
c6563a8c 2662 r10_bio->sectors, 0);
749c55e9 2663 rdev_dec_pending(rdev, conf->mddev);
4e4cbee9 2664 } else if (bio != NULL && bio->bi_status) {
95af587e 2665 fail = true;
bd870a16
N
2666 if (!narrow_write_error(r10_bio, m)) {
2667 md_error(conf->mddev, rdev);
2668 set_bit(R10BIO_Degraded,
2669 &r10_bio->state);
2670 }
2671 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2672 }
475b0321
N
2673 bio = r10_bio->devs[m].repl_bio;
2674 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2675 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2676 rdev_clear_badblocks(
2677 rdev,
2678 r10_bio->devs[m].addr,
c6563a8c 2679 r10_bio->sectors, 0);
475b0321
N
2680 rdev_dec_pending(rdev, conf->mddev);
2681 }
bd870a16 2682 }
95af587e
N
2683 if (fail) {
2684 spin_lock_irq(&conf->device_lock);
2685 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
23ddba80 2686 conf->nr_queued++;
95af587e 2687 spin_unlock_irq(&conf->device_lock);
cf25ae78
GJ
2688 /*
2689 * In case freeze_array() is waiting for condition
2690 * nr_pending == nr_queued + extra to be true.
2691 */
2692 wake_up(&conf->wait_barrier);
95af587e 2693 md_wakeup_thread(conf->mddev->thread);
c340702c
N
2694 } else {
2695 if (test_bit(R10BIO_WriteError,
2696 &r10_bio->state))
2697 close_write(r10_bio);
95af587e 2698 raid_end_bio_io(r10_bio);
c340702c 2699 }
749c55e9
N
2700 }
2701}
2702
4ed8731d 2703static void raid10d(struct md_thread *thread)
1da177e4 2704{
4ed8731d 2705 struct mddev *mddev = thread->mddev;
9f2c9d12 2706 struct r10bio *r10_bio;
1da177e4 2707 unsigned long flags;
e879a879 2708 struct r10conf *conf = mddev->private;
1da177e4 2709 struct list_head *head = &conf->retry_list;
e1dfa0a2 2710 struct blk_plug plug;
1da177e4
LT
2711
2712 md_check_recovery(mddev);
1da177e4 2713
95af587e 2714 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2715 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
95af587e
N
2716 LIST_HEAD(tmp);
2717 spin_lock_irqsave(&conf->device_lock, flags);
2953079c 2718 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
23ddba80
SL
2719 while (!list_empty(&conf->bio_end_io_list)) {
2720 list_move(conf->bio_end_io_list.prev, &tmp);
2721 conf->nr_queued--;
2722 }
95af587e
N
2723 }
2724 spin_unlock_irqrestore(&conf->device_lock, flags);
2725 while (!list_empty(&tmp)) {
a452744b
MP
2726 r10_bio = list_first_entry(&tmp, struct r10bio,
2727 retry_list);
95af587e 2728 list_del(&r10_bio->retry_list);
c340702c
N
2729 if (mddev->degraded)
2730 set_bit(R10BIO_Degraded, &r10_bio->state);
2731
2732 if (test_bit(R10BIO_WriteError,
2733 &r10_bio->state))
2734 close_write(r10_bio);
95af587e
N
2735 raid_end_bio_io(r10_bio);
2736 }
2737 }
2738
e1dfa0a2 2739 blk_start_plug(&plug);
1da177e4 2740 for (;;) {
6cce3b23 2741
0021b7bc 2742 flush_pending_writes(conf);
6cce3b23 2743
a35e63ef
N
2744 spin_lock_irqsave(&conf->device_lock, flags);
2745 if (list_empty(head)) {
2746 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2747 break;
a35e63ef 2748 }
9f2c9d12 2749 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2750 list_del(head->prev);
4443ae10 2751 conf->nr_queued--;
1da177e4
LT
2752 spin_unlock_irqrestore(&conf->device_lock, flags);
2753
2754 mddev = r10_bio->mddev;
070ec55d 2755 conf = mddev->private;
bd870a16
N
2756 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2757 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2758 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2759 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2760 reshape_request_write(mddev, r10_bio);
749c55e9 2761 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2762 sync_request_write(mddev, r10_bio);
7eaceacc 2763 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2764 recovery_request_write(mddev, r10_bio);
856e08e2 2765 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2766 handle_read_error(mddev, r10_bio);
fc9977dd
N
2767 else
2768 WARN_ON_ONCE(1);
560f8e55 2769
1d9d5241 2770 cond_resched();
2953079c 2771 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2772 md_check_recovery(mddev);
1da177e4 2773 }
e1dfa0a2 2774 blk_finish_plug(&plug);
1da177e4
LT
2775}
2776
e879a879 2777static int init_resync(struct r10conf *conf)
1da177e4
LT
2778{
2779 int buffs;
69335ef3 2780 int i;
1da177e4
LT
2781
2782 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2783 BUG_ON(conf->r10buf_pool);
69335ef3 2784 conf->have_replacement = 0;
5cf00fcd 2785 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2786 if (conf->mirrors[i].replacement)
2787 conf->have_replacement = 1;
1da177e4
LT
2788 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2789 if (!conf->r10buf_pool)
2790 return -ENOMEM;
2791 conf->next_resync = 0;
2792 return 0;
2793}
2794
208410b5
SL
2795static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2796{
2797 struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2798 struct rsync_pages *rp;
2799 struct bio *bio;
2800 int nalloc;
2801 int i;
2802
2803 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2804 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2805 nalloc = conf->copies; /* resync */
2806 else
2807 nalloc = 2; /* recovery */
2808
2809 for (i = 0; i < nalloc; i++) {
2810 bio = r10bio->devs[i].bio;
2811 rp = bio->bi_private;
2812 bio_reset(bio);
2813 bio->bi_private = rp;
2814 bio = r10bio->devs[i].repl_bio;
2815 if (bio) {
2816 rp = bio->bi_private;
2817 bio_reset(bio);
2818 bio->bi_private = rp;
2819 }
2820 }
2821 return r10bio;
2822}
2823
1da177e4
LT
2824/*
2825 * perform a "sync" on one "block"
2826 *
2827 * We need to make sure that no normal I/O request - particularly write
2828 * requests - conflict with active sync requests.
2829 *
2830 * This is achieved by tracking pending requests and a 'barrier' concept
2831 * that can be installed to exclude normal IO requests.
2832 *
2833 * Resync and recovery are handled very differently.
2834 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2835 *
2836 * For resync, we iterate over virtual addresses, read all copies,
2837 * and update if there are differences. If only one copy is live,
2838 * skip it.
2839 * For recovery, we iterate over physical addresses, read a good
2840 * value for each non-in_sync drive, and over-write.
2841 *
2842 * So, for recovery we may have several outstanding complex requests for a
2843 * given address, one for each out-of-sync device. We model this by allocating
2844 * a number of r10_bio structures, one for each out-of-sync device.
2845 * As we setup these structures, we collect all bio's together into a list
2846 * which we then process collectively to add pages, and then process again
2847 * to pass to generic_make_request.
2848 *
2849 * The r10_bio structures are linked using a borrowed master_bio pointer.
2850 * This link is counted in ->remaining. When the r10_bio that points to NULL
2851 * has its remaining count decremented to 0, the whole complex operation
2852 * is complete.
2853 *
2854 */
2855
849674e4 2856static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 2857 int *skipped)
1da177e4 2858{
e879a879 2859 struct r10conf *conf = mddev->private;
9f2c9d12 2860 struct r10bio *r10_bio;
1da177e4
LT
2861 struct bio *biolist = NULL, *bio;
2862 sector_t max_sector, nr_sectors;
1da177e4 2863 int i;
6cce3b23 2864 int max_sync;
57dab0bd 2865 sector_t sync_blocks;
1da177e4
LT
2866 sector_t sectors_skipped = 0;
2867 int chunks_skipped = 0;
5cf00fcd 2868 sector_t chunk_mask = conf->geo.chunk_mask;
022e510f 2869 int page_idx = 0;
1da177e4
LT
2870
2871 if (!conf->r10buf_pool)
2872 if (init_resync(conf))
57afd89f 2873 return 0;
1da177e4 2874
7e83ccbe
MW
2875 /*
2876 * Allow skipping a full rebuild for incremental assembly
2877 * of a clean array, like RAID1 does.
2878 */
2879 if (mddev->bitmap == NULL &&
2880 mddev->recovery_cp == MaxSector &&
13765120
N
2881 mddev->reshape_position == MaxSector &&
2882 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 2883 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 2884 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
2885 conf->fullsync == 0) {
2886 *skipped = 1;
13765120 2887 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
2888 }
2889
1da177e4 2890 skipped:
58c0fed4 2891 max_sector = mddev->dev_sectors;
3ea7daa5
N
2892 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2893 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2894 max_sector = mddev->resync_max_sectors;
2895 if (sector_nr >= max_sector) {
6cce3b23
N
2896 /* If we aborted, we need to abort the
2897 * sync on the 'current' bitmap chucks (there can
2898 * be several when recovering multiple devices).
2899 * as we may have started syncing it but not finished.
2900 * We can find the current address in
2901 * mddev->curr_resync, but for recovery,
2902 * we need to convert that to several
2903 * virtual addresses.
2904 */
3ea7daa5
N
2905 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2906 end_reshape(conf);
b3968552 2907 close_sync(conf);
3ea7daa5
N
2908 return 0;
2909 }
2910
6cce3b23
N
2911 if (mddev->curr_resync < max_sector) { /* aborted */
2912 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2913 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2914 &sync_blocks, 1);
5cf00fcd 2915 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2916 sector_t sect =
2917 raid10_find_virt(conf, mddev->curr_resync, i);
2918 bitmap_end_sync(mddev->bitmap, sect,
2919 &sync_blocks, 1);
2920 }
9ad1aefc
N
2921 } else {
2922 /* completed sync */
2923 if ((!mddev->bitmap || conf->fullsync)
2924 && conf->have_replacement
2925 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2926 /* Completed a full sync so the replacements
2927 * are now fully recovered.
2928 */
f90145f3
N
2929 rcu_read_lock();
2930 for (i = 0; i < conf->geo.raid_disks; i++) {
2931 struct md_rdev *rdev =
2932 rcu_dereference(conf->mirrors[i].replacement);
2933 if (rdev)
2934 rdev->recovery_offset = MaxSector;
2935 }
2936 rcu_read_unlock();
9ad1aefc 2937 }
6cce3b23 2938 conf->fullsync = 0;
9ad1aefc 2939 }
6cce3b23 2940 bitmap_close_sync(mddev->bitmap);
1da177e4 2941 close_sync(conf);
57afd89f 2942 *skipped = 1;
1da177e4
LT
2943 return sectors_skipped;
2944 }
3ea7daa5
N
2945
2946 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2947 return reshape_request(mddev, sector_nr, skipped);
2948
5cf00fcd 2949 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2950 /* if there has been nothing to do on any drive,
2951 * then there is nothing to do at all..
2952 */
57afd89f
N
2953 *skipped = 1;
2954 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2955 }
2956
c6207277
N
2957 if (max_sector > mddev->resync_max)
2958 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2959
1da177e4
LT
2960 /* make sure whole request will fit in a chunk - if chunks
2961 * are meaningful
2962 */
5cf00fcd
N
2963 if (conf->geo.near_copies < conf->geo.raid_disks &&
2964 max_sector > (sector_nr | chunk_mask))
2965 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4 2966
7ac50447
TM
2967 /*
2968 * If there is non-resync activity waiting for a turn, then let it
2969 * though before starting on this new sync request.
2970 */
2971 if (conf->nr_waiting)
2972 schedule_timeout_uninterruptible(1);
2973
1da177e4
LT
2974 /* Again, very different code for resync and recovery.
2975 * Both must result in an r10bio with a list of bios that
74d46992 2976 * have bi_end_io, bi_sector, bi_disk set,
1da177e4
LT
2977 * and bi_private set to the r10bio.
2978 * For recovery, we may actually create several r10bios
2979 * with 2 bios in each, that correspond to the bios in the main one.
2980 * In this case, the subordinate r10bios link back through a
2981 * borrowed master_bio pointer, and the counter in the master
2982 * includes a ref from each subordinate.
2983 */
2984 /* First, we decide what to do and set ->bi_end_io
2985 * To end_sync_read if we want to read, and
2986 * end_sync_write if we will want to write.
2987 */
2988
6cce3b23 2989 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2990 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2991 /* recovery... the complicated one */
e875ecea 2992 int j;
1da177e4
LT
2993 r10_bio = NULL;
2994
5cf00fcd 2995 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 2996 int still_degraded;
9f2c9d12 2997 struct r10bio *rb2;
ab9d47e9
N
2998 sector_t sect;
2999 int must_sync;
e875ecea 3000 int any_working;
dc280d98 3001 struct raid10_info *mirror = &conf->mirrors[i];
f90145f3 3002 struct md_rdev *mrdev, *mreplace;
24afd80d 3003
f90145f3
N
3004 rcu_read_lock();
3005 mrdev = rcu_dereference(mirror->rdev);
3006 mreplace = rcu_dereference(mirror->replacement);
3007
3008 if ((mrdev == NULL ||
f5b67ae8 3009 test_bit(Faulty, &mrdev->flags) ||
f90145f3
N
3010 test_bit(In_sync, &mrdev->flags)) &&
3011 (mreplace == NULL ||
3012 test_bit(Faulty, &mreplace->flags))) {
3013 rcu_read_unlock();
ab9d47e9 3014 continue;
f90145f3 3015 }
1da177e4 3016
ab9d47e9
N
3017 still_degraded = 0;
3018 /* want to reconstruct this device */
3019 rb2 = r10_bio;
3020 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3021 if (sect >= mddev->resync_max_sectors) {
3022 /* last stripe is not complete - don't
3023 * try to recover this sector.
3024 */
f90145f3 3025 rcu_read_unlock();
fc448a18
N
3026 continue;
3027 }
f5b67ae8
N
3028 if (mreplace && test_bit(Faulty, &mreplace->flags))
3029 mreplace = NULL;
24afd80d
N
3030 /* Unless we are doing a full sync, or a replacement
3031 * we only need to recover the block if it is set in
3032 * the bitmap
ab9d47e9
N
3033 */
3034 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3035 &sync_blocks, 1);
3036 if (sync_blocks < max_sync)
3037 max_sync = sync_blocks;
3038 if (!must_sync &&
f90145f3 3039 mreplace == NULL &&
ab9d47e9
N
3040 !conf->fullsync) {
3041 /* yep, skip the sync_blocks here, but don't assume
3042 * that there will never be anything to do here
3043 */
3044 chunks_skipped = -1;
f90145f3 3045 rcu_read_unlock();
ab9d47e9
N
3046 continue;
3047 }
f90145f3
N
3048 atomic_inc(&mrdev->nr_pending);
3049 if (mreplace)
3050 atomic_inc(&mreplace->nr_pending);
3051 rcu_read_unlock();
6cce3b23 3052
208410b5 3053 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3054 r10_bio->state = 0;
ab9d47e9
N
3055 raise_barrier(conf, rb2 != NULL);
3056 atomic_set(&r10_bio->remaining, 0);
18055569 3057
ab9d47e9
N
3058 r10_bio->master_bio = (struct bio*)rb2;
3059 if (rb2)
3060 atomic_inc(&rb2->remaining);
3061 r10_bio->mddev = mddev;
3062 set_bit(R10BIO_IsRecover, &r10_bio->state);
3063 r10_bio->sector = sect;
1da177e4 3064
ab9d47e9
N
3065 raid10_find_phys(conf, r10_bio);
3066
3067 /* Need to check if the array will still be
3068 * degraded
3069 */
f90145f3
N
3070 rcu_read_lock();
3071 for (j = 0; j < conf->geo.raid_disks; j++) {
3072 struct md_rdev *rdev = rcu_dereference(
3073 conf->mirrors[j].rdev);
3074 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
ab9d47e9 3075 still_degraded = 1;
87fc767b 3076 break;
1da177e4 3077 }
f90145f3 3078 }
ab9d47e9
N
3079
3080 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3081 &sync_blocks, still_degraded);
3082
e875ecea 3083 any_working = 0;
ab9d47e9 3084 for (j=0; j<conf->copies;j++) {
e875ecea 3085 int k;
ab9d47e9 3086 int d = r10_bio->devs[j].devnum;
5e570289 3087 sector_t from_addr, to_addr;
f90145f3
N
3088 struct md_rdev *rdev =
3089 rcu_dereference(conf->mirrors[d].rdev);
40c356ce
N
3090 sector_t sector, first_bad;
3091 int bad_sectors;
f90145f3
N
3092 if (!rdev ||
3093 !test_bit(In_sync, &rdev->flags))
ab9d47e9
N
3094 continue;
3095 /* This is where we read from */
e875ecea 3096 any_working = 1;
40c356ce
N
3097 sector = r10_bio->devs[j].addr;
3098
3099 if (is_badblock(rdev, sector, max_sync,
3100 &first_bad, &bad_sectors)) {
3101 if (first_bad > sector)
3102 max_sync = first_bad - sector;
3103 else {
3104 bad_sectors -= (sector
3105 - first_bad);
3106 if (max_sync > bad_sectors)
3107 max_sync = bad_sectors;
3108 continue;
3109 }
3110 }
ab9d47e9
N
3111 bio = r10_bio->devs[0].bio;
3112 bio->bi_next = biolist;
3113 biolist = bio;
ab9d47e9 3114 bio->bi_end_io = end_sync_read;
796a5cf0 3115 bio_set_op_attrs(bio, REQ_OP_READ, 0);
8d3ca83d
N
3116 if (test_bit(FailFast, &rdev->flags))
3117 bio->bi_opf |= MD_FAILFAST;
5e570289 3118 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3119 bio->bi_iter.bi_sector = from_addr +
3120 rdev->data_offset;
74d46992 3121 bio_set_dev(bio, rdev->bdev);
24afd80d
N
3122 atomic_inc(&rdev->nr_pending);
3123 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3124
3125 for (k=0; k<conf->copies; k++)
3126 if (r10_bio->devs[k].devnum == i)
3127 break;
3128 BUG_ON(k == conf->copies);
5e570289 3129 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3130 r10_bio->devs[0].devnum = d;
5e570289 3131 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3132 r10_bio->devs[1].devnum = i;
5e570289 3133 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3134
f90145f3 3135 if (!test_bit(In_sync, &mrdev->flags)) {
24afd80d
N
3136 bio = r10_bio->devs[1].bio;
3137 bio->bi_next = biolist;
3138 biolist = bio;
24afd80d 3139 bio->bi_end_io = end_sync_write;
796a5cf0 3140 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3141 bio->bi_iter.bi_sector = to_addr
f90145f3 3142 + mrdev->data_offset;
74d46992 3143 bio_set_dev(bio, mrdev->bdev);
24afd80d
N
3144 atomic_inc(&r10_bio->remaining);
3145 } else
3146 r10_bio->devs[1].bio->bi_end_io = NULL;
3147
3148 /* and maybe write to replacement */
3149 bio = r10_bio->devs[1].repl_bio;
3150 if (bio)
3151 bio->bi_end_io = NULL;
f90145f3 3152 /* Note: if mreplace != NULL, then bio
24afd80d
N
3153 * cannot be NULL as r10buf_pool_alloc will
3154 * have allocated it.
3155 * So the second test here is pointless.
3156 * But it keeps semantic-checkers happy, and
3157 * this comment keeps human reviewers
3158 * happy.
3159 */
f90145f3
N
3160 if (mreplace == NULL || bio == NULL ||
3161 test_bit(Faulty, &mreplace->flags))
24afd80d
N
3162 break;
3163 bio->bi_next = biolist;
3164 biolist = bio;
24afd80d 3165 bio->bi_end_io = end_sync_write;
796a5cf0 3166 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4f024f37 3167 bio->bi_iter.bi_sector = to_addr +
f90145f3 3168 mreplace->data_offset;
74d46992 3169 bio_set_dev(bio, mreplace->bdev);
24afd80d 3170 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3171 break;
3172 }
f90145f3 3173 rcu_read_unlock();
ab9d47e9 3174 if (j == conf->copies) {
e875ecea
N
3175 /* Cannot recover, so abort the recovery or
3176 * record a bad block */
e875ecea
N
3177 if (any_working) {
3178 /* problem is that there are bad blocks
3179 * on other device(s)
3180 */
3181 int k;
3182 for (k = 0; k < conf->copies; k++)
3183 if (r10_bio->devs[k].devnum == i)
3184 break;
24afd80d 3185 if (!test_bit(In_sync,
f90145f3 3186 &mrdev->flags)
24afd80d 3187 && !rdev_set_badblocks(
f90145f3 3188 mrdev,
24afd80d
N
3189 r10_bio->devs[k].addr,
3190 max_sync, 0))
3191 any_working = 0;
f90145f3 3192 if (mreplace &&
24afd80d 3193 !rdev_set_badblocks(
f90145f3 3194 mreplace,
e875ecea
N
3195 r10_bio->devs[k].addr,
3196 max_sync, 0))
3197 any_working = 0;
3198 }
3199 if (!any_working) {
3200 if (!test_and_set_bit(MD_RECOVERY_INTR,
3201 &mddev->recovery))
08464e09 3202 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
e875ecea 3203 mdname(mddev));
24afd80d 3204 mirror->recovery_disabled
e875ecea
N
3205 = mddev->recovery_disabled;
3206 }
e8b84915
N
3207 put_buf(r10_bio);
3208 if (rb2)
3209 atomic_dec(&rb2->remaining);
3210 r10_bio = rb2;
f90145f3
N
3211 rdev_dec_pending(mrdev, mddev);
3212 if (mreplace)
3213 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3214 break;
1da177e4 3215 }
f90145f3
N
3216 rdev_dec_pending(mrdev, mddev);
3217 if (mreplace)
3218 rdev_dec_pending(mreplace, mddev);
8d3ca83d
N
3219 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3220 /* Only want this if there is elsewhere to
3221 * read from. 'j' is currently the first
3222 * readable copy.
3223 */
3224 int targets = 1;
3225 for (; j < conf->copies; j++) {
3226 int d = r10_bio->devs[j].devnum;
3227 if (conf->mirrors[d].rdev &&
3228 test_bit(In_sync,
3229 &conf->mirrors[d].rdev->flags))
3230 targets++;
3231 }
3232 if (targets == 1)
3233 r10_bio->devs[0].bio->bi_opf
3234 &= ~MD_FAILFAST;
3235 }
ab9d47e9 3236 }
1da177e4
LT
3237 if (biolist == NULL) {
3238 while (r10_bio) {
9f2c9d12
N
3239 struct r10bio *rb2 = r10_bio;
3240 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3241 rb2->master_bio = NULL;
3242 put_buf(rb2);
3243 }
3244 goto giveup;
3245 }
3246 } else {
3247 /* resync. Schedule a read for every block at this virt offset */
3248 int count = 0;
6cce3b23 3249
c40f341f 3250 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
78200d45 3251
6cce3b23
N
3252 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3253 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3254 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3255 &mddev->recovery)) {
6cce3b23
N
3256 /* We can skip this block */
3257 *skipped = 1;
3258 return sync_blocks + sectors_skipped;
3259 }
3260 if (sync_blocks < max_sync)
3261 max_sync = sync_blocks;
208410b5 3262 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3263 r10_bio->state = 0;
1da177e4 3264
1da177e4
LT
3265 r10_bio->mddev = mddev;
3266 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3267 raise_barrier(conf, 0);
3268 conf->next_resync = sector_nr;
1da177e4
LT
3269
3270 r10_bio->master_bio = NULL;
3271 r10_bio->sector = sector_nr;
3272 set_bit(R10BIO_IsSync, &r10_bio->state);
3273 raid10_find_phys(conf, r10_bio);
5cf00fcd 3274 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3275
5cf00fcd 3276 for (i = 0; i < conf->copies; i++) {
1da177e4 3277 int d = r10_bio->devs[i].devnum;
40c356ce
N
3278 sector_t first_bad, sector;
3279 int bad_sectors;
f90145f3 3280 struct md_rdev *rdev;
40c356ce 3281
9ad1aefc
N
3282 if (r10_bio->devs[i].repl_bio)
3283 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3284
1da177e4 3285 bio = r10_bio->devs[i].bio;
4e4cbee9 3286 bio->bi_status = BLK_STS_IOERR;
f90145f3
N
3287 rcu_read_lock();
3288 rdev = rcu_dereference(conf->mirrors[d].rdev);
3289 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3290 rcu_read_unlock();
1da177e4 3291 continue;
f90145f3 3292 }
40c356ce 3293 sector = r10_bio->devs[i].addr;
f90145f3 3294 if (is_badblock(rdev, sector, max_sync,
40c356ce
N
3295 &first_bad, &bad_sectors)) {
3296 if (first_bad > sector)
3297 max_sync = first_bad - sector;
3298 else {
3299 bad_sectors -= (sector - first_bad);
3300 if (max_sync > bad_sectors)
91502f09 3301 max_sync = bad_sectors;
f90145f3 3302 rcu_read_unlock();
40c356ce
N
3303 continue;
3304 }
3305 }
f90145f3 3306 atomic_inc(&rdev->nr_pending);
1da177e4
LT
3307 atomic_inc(&r10_bio->remaining);
3308 bio->bi_next = biolist;
3309 biolist = bio;
1da177e4 3310 bio->bi_end_io = end_sync_read;
796a5cf0 3311 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1cdd1257 3312 if (test_bit(FailFast, &rdev->flags))
8d3ca83d 3313 bio->bi_opf |= MD_FAILFAST;
f90145f3 3314 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3315 bio_set_dev(bio, rdev->bdev);
1da177e4 3316 count++;
9ad1aefc 3317
f90145f3
N
3318 rdev = rcu_dereference(conf->mirrors[d].replacement);
3319 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3320 rcu_read_unlock();
9ad1aefc 3321 continue;
f90145f3
N
3322 }
3323 atomic_inc(&rdev->nr_pending);
9ad1aefc
N
3324
3325 /* Need to set up for writing to the replacement */
3326 bio = r10_bio->devs[i].repl_bio;
4e4cbee9 3327 bio->bi_status = BLK_STS_IOERR;
9ad1aefc
N
3328
3329 sector = r10_bio->devs[i].addr;
9ad1aefc
N
3330 bio->bi_next = biolist;
3331 biolist = bio;
9ad1aefc 3332 bio->bi_end_io = end_sync_write;
796a5cf0 3333 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1cdd1257 3334 if (test_bit(FailFast, &rdev->flags))
1919cbb2 3335 bio->bi_opf |= MD_FAILFAST;
f90145f3 3336 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3337 bio_set_dev(bio, rdev->bdev);
9ad1aefc 3338 count++;
1cdd1257 3339 rcu_read_unlock();
1da177e4
LT
3340 }
3341
3342 if (count < 2) {
3343 for (i=0; i<conf->copies; i++) {
3344 int d = r10_bio->devs[i].devnum;
3345 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3346 rdev_dec_pending(conf->mirrors[d].rdev,
3347 mddev);
9ad1aefc
N
3348 if (r10_bio->devs[i].repl_bio &&
3349 r10_bio->devs[i].repl_bio->bi_end_io)
3350 rdev_dec_pending(
3351 conf->mirrors[d].replacement,
3352 mddev);
1da177e4
LT
3353 }
3354 put_buf(r10_bio);
3355 biolist = NULL;
3356 goto giveup;
3357 }
3358 }
3359
1da177e4 3360 nr_sectors = 0;
6cce3b23
N
3361 if (sector_nr + max_sync < max_sector)
3362 max_sector = sector_nr + max_sync;
1da177e4
LT
3363 do {
3364 struct page *page;
3365 int len = PAGE_SIZE;
1da177e4
LT
3366 if (sector_nr + (len>>9) > max_sector)
3367 len = (max_sector - sector_nr) << 9;
3368 if (len == 0)
3369 break;
3370 for (bio= biolist ; bio ; bio=bio->bi_next) {
f0250618 3371 struct resync_pages *rp = get_resync_pages(bio);
022e510f 3372 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
3373 /*
3374 * won't fail because the vec table is big enough
3375 * to hold all these pages
3376 */
3377 bio_add_page(bio, page, len, 0);
1da177e4
LT
3378 }
3379 nr_sectors += len>>9;
3380 sector_nr += len>>9;
022e510f 3381 } while (++page_idx < RESYNC_PAGES);
1da177e4
LT
3382 r10_bio->sectors = nr_sectors;
3383
3384 while (biolist) {
3385 bio = biolist;
3386 biolist = biolist->bi_next;
3387
3388 bio->bi_next = NULL;
f0250618 3389 r10_bio = get_resync_r10bio(bio);
1da177e4
LT
3390 r10_bio->sectors = nr_sectors;
3391
3392 if (bio->bi_end_io == end_sync_read) {
74d46992 3393 md_sync_acct_bio(bio, nr_sectors);
4e4cbee9 3394 bio->bi_status = 0;
1da177e4
LT
3395 generic_make_request(bio);
3396 }
3397 }
3398
57afd89f
N
3399 if (sectors_skipped)
3400 /* pretend they weren't skipped, it makes
3401 * no important difference in this case
3402 */
3403 md_done_sync(mddev, sectors_skipped, 1);
3404
1da177e4
LT
3405 return sectors_skipped + nr_sectors;
3406 giveup:
3407 /* There is nowhere to write, so all non-sync
e875ecea
N
3408 * drives must be failed or in resync, all drives
3409 * have a bad block, so try the next chunk...
1da177e4 3410 */
09b4068a
N
3411 if (sector_nr + max_sync < max_sector)
3412 max_sector = sector_nr + max_sync;
3413
3414 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3415 chunks_skipped ++;
3416 sector_nr = max_sector;
1da177e4 3417 goto skipped;
1da177e4
LT
3418}
3419
80c3a6ce 3420static sector_t
fd01b88c 3421raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3422{
3423 sector_t size;
e879a879 3424 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3425
3426 if (!raid_disks)
3ea7daa5
N
3427 raid_disks = min(conf->geo.raid_disks,
3428 conf->prev.raid_disks);
80c3a6ce 3429 if (!sectors)
dab8b292 3430 sectors = conf->dev_sectors;
80c3a6ce 3431
5cf00fcd
N
3432 size = sectors >> conf->geo.chunk_shift;
3433 sector_div(size, conf->geo.far_copies);
80c3a6ce 3434 size = size * raid_disks;
5cf00fcd 3435 sector_div(size, conf->geo.near_copies);
80c3a6ce 3436
5cf00fcd 3437 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3438}
3439
6508fdbf
N
3440static void calc_sectors(struct r10conf *conf, sector_t size)
3441{
3442 /* Calculate the number of sectors-per-device that will
3443 * actually be used, and set conf->dev_sectors and
3444 * conf->stride
3445 */
3446
5cf00fcd
N
3447 size = size >> conf->geo.chunk_shift;
3448 sector_div(size, conf->geo.far_copies);
3449 size = size * conf->geo.raid_disks;
3450 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3451 /* 'size' is now the number of chunks in the array */
3452 /* calculate "used chunks per device" */
3453 size = size * conf->copies;
3454
3455 /* We need to round up when dividing by raid_disks to
3456 * get the stride size.
3457 */
5cf00fcd 3458 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3459
5cf00fcd 3460 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3461
5cf00fcd
N
3462 if (conf->geo.far_offset)
3463 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3464 else {
5cf00fcd
N
3465 sector_div(size, conf->geo.far_copies);
3466 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3467 }
3468}
dab8b292 3469
deb200d0
N
3470enum geo_type {geo_new, geo_old, geo_start};
3471static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3472{
3473 int nc, fc, fo;
3474 int layout, chunk, disks;
3475 switch (new) {
3476 case geo_old:
3477 layout = mddev->layout;
3478 chunk = mddev->chunk_sectors;
3479 disks = mddev->raid_disks - mddev->delta_disks;
3480 break;
3481 case geo_new:
3482 layout = mddev->new_layout;
3483 chunk = mddev->new_chunk_sectors;
3484 disks = mddev->raid_disks;
3485 break;
3486 default: /* avoid 'may be unused' warnings */
3487 case geo_start: /* new when starting reshape - raid_disks not
3488 * updated yet. */
3489 layout = mddev->new_layout;
3490 chunk = mddev->new_chunk_sectors;
3491 disks = mddev->raid_disks + mddev->delta_disks;
3492 break;
3493 }
8bce6d35 3494 if (layout >> 19)
deb200d0
N
3495 return -1;
3496 if (chunk < (PAGE_SIZE >> 9) ||
3497 !is_power_of_2(chunk))
3498 return -2;
3499 nc = layout & 255;
3500 fc = (layout >> 8) & 255;
3501 fo = layout & (1<<16);
3502 geo->raid_disks = disks;
3503 geo->near_copies = nc;
3504 geo->far_copies = fc;
3505 geo->far_offset = fo;
8bce6d35
N
3506 switch (layout >> 17) {
3507 case 0: /* original layout. simple but not always optimal */
3508 geo->far_set_size = disks;
3509 break;
3510 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3511 * actually using this, but leave code here just in case.*/
3512 geo->far_set_size = disks/fc;
3513 WARN(geo->far_set_size < fc,
3514 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3515 break;
3516 case 2: /* "improved" layout fixed to match documentation */
3517 geo->far_set_size = fc * nc;
3518 break;
3519 default: /* Not a valid layout */
3520 return -1;
3521 }
deb200d0
N
3522 geo->chunk_mask = chunk - 1;
3523 geo->chunk_shift = ffz(~chunk);
3524 return nc*fc;
3525}
3526
e879a879 3527static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3528{
e879a879 3529 struct r10conf *conf = NULL;
dab8b292 3530 int err = -EINVAL;
deb200d0
N
3531 struct geom geo;
3532 int copies;
3533
3534 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3535
deb200d0 3536 if (copies == -2) {
08464e09
N
3537 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3538 mdname(mddev), PAGE_SIZE);
dab8b292 3539 goto out;
1da177e4 3540 }
2604b703 3541
deb200d0 3542 if (copies < 2 || copies > mddev->raid_disks) {
08464e09
N
3543 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3544 mdname(mddev), mddev->new_layout);
1da177e4
LT
3545 goto out;
3546 }
dab8b292
TM
3547
3548 err = -ENOMEM;
e879a879 3549 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3550 if (!conf)
1da177e4 3551 goto out;
dab8b292 3552
3ea7daa5 3553 /* FIXME calc properly */
dc280d98 3554 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
78eaa0d4 3555 max(0,-mddev->delta_disks)),
dab8b292
TM
3556 GFP_KERNEL);
3557 if (!conf->mirrors)
3558 goto out;
4443ae10
N
3559
3560 conf->tmppage = alloc_page(GFP_KERNEL);
3561 if (!conf->tmppage)
dab8b292
TM
3562 goto out;
3563
deb200d0
N
3564 conf->geo = geo;
3565 conf->copies = copies;
dab8b292
TM
3566 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3567 r10bio_pool_free, conf);
3568 if (!conf->r10bio_pool)
3569 goto out;
3570
011067b0 3571 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
fc9977dd
N
3572 if (!conf->bio_split)
3573 goto out;
3574
6508fdbf 3575 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3576 if (mddev->reshape_position == MaxSector) {
3577 conf->prev = conf->geo;
3578 conf->reshape_progress = MaxSector;
3579 } else {
3580 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3581 err = -EINVAL;
3582 goto out;
3583 }
3584 conf->reshape_progress = mddev->reshape_position;
3585 if (conf->prev.far_offset)
3586 conf->prev.stride = 1 << conf->prev.chunk_shift;
3587 else
3588 /* far_copies must be 1 */
3589 conf->prev.stride = conf->dev_sectors;
3590 }
299b0685 3591 conf->reshape_safe = conf->reshape_progress;
e7e72bf6 3592 spin_lock_init(&conf->device_lock);
dab8b292 3593 INIT_LIST_HEAD(&conf->retry_list);
95af587e 3594 INIT_LIST_HEAD(&conf->bio_end_io_list);
dab8b292
TM
3595
3596 spin_lock_init(&conf->resync_lock);
3597 init_waitqueue_head(&conf->wait_barrier);
0e5313e2 3598 atomic_set(&conf->nr_pending, 0);
dab8b292 3599
0232605d 3600 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3601 if (!conf->thread)
3602 goto out;
3603
dab8b292
TM
3604 conf->mddev = mddev;
3605 return conf;
3606
3607 out:
dab8b292 3608 if (conf) {
644df1a8 3609 mempool_destroy(conf->r10bio_pool);
dab8b292
TM
3610 kfree(conf->mirrors);
3611 safe_put_page(conf->tmppage);
fc9977dd
N
3612 if (conf->bio_split)
3613 bioset_free(conf->bio_split);
dab8b292
TM
3614 kfree(conf);
3615 }
3616 return ERR_PTR(err);
3617}
3618
849674e4 3619static int raid10_run(struct mddev *mddev)
dab8b292 3620{
e879a879 3621 struct r10conf *conf;
dab8b292 3622 int i, disk_idx, chunk_size;
dc280d98 3623 struct raid10_info *disk;
3cb03002 3624 struct md_rdev *rdev;
dab8b292 3625 sector_t size;
3ea7daa5
N
3626 sector_t min_offset_diff = 0;
3627 int first = 1;
532a2a3f 3628 bool discard_supported = false;
dab8b292 3629
a415c0f1
N
3630 if (mddev_init_writes_pending(mddev) < 0)
3631 return -ENOMEM;
3632
dab8b292
TM
3633 if (mddev->private == NULL) {
3634 conf = setup_conf(mddev);
3635 if (IS_ERR(conf))
3636 return PTR_ERR(conf);
3637 mddev->private = conf;
3638 }
3639 conf = mddev->private;
3640 if (!conf)
3641 goto out;
3642
dab8b292
TM
3643 mddev->thread = conf->thread;
3644 conf->thread = NULL;
3645
8f6c2e4b 3646 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3647 if (mddev->queue) {
532a2a3f
SL
3648 blk_queue_max_discard_sectors(mddev->queue,
3649 mddev->chunk_sectors);
5026d7a9 3650 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7 3651 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
cc4d1efd
JB
3652 blk_queue_io_min(mddev->queue, chunk_size);
3653 if (conf->geo.raid_disks % conf->geo.near_copies)
3654 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3655 else
3656 blk_queue_io_opt(mddev->queue, chunk_size *
3657 (conf->geo.raid_disks / conf->geo.near_copies));
3658 }
8f6c2e4b 3659
dafb20fa 3660 rdev_for_each(rdev, mddev) {
3ea7daa5 3661 long long diff;
34b343cf 3662
1da177e4 3663 disk_idx = rdev->raid_disk;
f8c9e74f
N
3664 if (disk_idx < 0)
3665 continue;
3666 if (disk_idx >= conf->geo.raid_disks &&
3667 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3668 continue;
3669 disk = conf->mirrors + disk_idx;
3670
56a2559b
N
3671 if (test_bit(Replacement, &rdev->flags)) {
3672 if (disk->replacement)
3673 goto out_free_conf;
3674 disk->replacement = rdev;
3675 } else {
3676 if (disk->rdev)
3677 goto out_free_conf;
3678 disk->rdev = rdev;
3679 }
3ea7daa5
N
3680 diff = (rdev->new_data_offset - rdev->data_offset);
3681 if (!mddev->reshape_backwards)
3682 diff = -diff;
3683 if (diff < 0)
3684 diff = 0;
3685 if (first || diff < min_offset_diff)
3686 min_offset_diff = diff;
56a2559b 3687
cc4d1efd
JB
3688 if (mddev->gendisk)
3689 disk_stack_limits(mddev->gendisk, rdev->bdev,
3690 rdev->data_offset << 9);
1da177e4
LT
3691
3692 disk->head_position = 0;
532a2a3f
SL
3693
3694 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3695 discard_supported = true;
6f287ca6 3696 first = 0;
1da177e4 3697 }
3ea7daa5 3698
ed30be07
JB
3699 if (mddev->queue) {
3700 if (discard_supported)
3701 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3702 mddev->queue);
3703 else
3704 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3705 mddev->queue);
3706 }
6d508242 3707 /* need to check that every block has at least one working mirror */
700c7213 3708 if (!enough(conf, -1)) {
08464e09 3709 pr_err("md/raid10:%s: not enough operational mirrors.\n",
6d508242 3710 mdname(mddev));
1da177e4
LT
3711 goto out_free_conf;
3712 }
3713
3ea7daa5
N
3714 if (conf->reshape_progress != MaxSector) {
3715 /* must ensure that shape change is supported */
3716 if (conf->geo.far_copies != 1 &&
3717 conf->geo.far_offset == 0)
3718 goto out_free_conf;
3719 if (conf->prev.far_copies != 1 &&
78eaa0d4 3720 conf->prev.far_offset == 0)
3ea7daa5
N
3721 goto out_free_conf;
3722 }
3723
1da177e4 3724 mddev->degraded = 0;
f8c9e74f
N
3725 for (i = 0;
3726 i < conf->geo.raid_disks
3727 || i < conf->prev.raid_disks;
3728 i++) {
1da177e4
LT
3729
3730 disk = conf->mirrors + i;
3731
56a2559b
N
3732 if (!disk->rdev && disk->replacement) {
3733 /* The replacement is all we have - use it */
3734 disk->rdev = disk->replacement;
3735 disk->replacement = NULL;
3736 clear_bit(Replacement, &disk->rdev->flags);
3737 }
3738
5fd6c1dc 3739 if (!disk->rdev ||
2e333e89 3740 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3741 disk->head_position = 0;
3742 mddev->degraded++;
0b59bb64
N
3743 if (disk->rdev &&
3744 disk->rdev->saved_raid_disk < 0)
8c2e870a 3745 conf->fullsync = 1;
1da177e4 3746 }
d890fa2b 3747 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3748 }
3749
8c6ac868 3750 if (mddev->recovery_cp != MaxSector)
08464e09
N
3751 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3752 mdname(mddev));
3753 pr_info("md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3754 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3755 conf->geo.raid_disks);
1da177e4
LT
3756 /*
3757 * Ok, everything is just fine now
3758 */
dab8b292
TM
3759 mddev->dev_sectors = conf->dev_sectors;
3760 size = raid10_size(mddev, 0, 0);
3761 md_set_array_sectors(mddev, size);
3762 mddev->resync_max_sectors = size;
46533ff7 3763 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
1da177e4 3764
cc4d1efd 3765 if (mddev->queue) {
5cf00fcd 3766 int stripe = conf->geo.raid_disks *
9d8f0363 3767 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3768
3769 /* Calculate max read-ahead size.
3770 * We need to readahead at least twice a whole stripe....
3771 * maybe...
3772 */
5cf00fcd 3773 stripe /= conf->geo.near_copies;
dc3b17cc
JK
3774 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3775 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
1da177e4
LT
3776 }
3777
a91a2785
MP
3778 if (md_integrity_register(mddev))
3779 goto out_free_conf;
3780
3ea7daa5
N
3781 if (conf->reshape_progress != MaxSector) {
3782 unsigned long before_length, after_length;
3783
3784 before_length = ((1 << conf->prev.chunk_shift) *
3785 conf->prev.far_copies);
3786 after_length = ((1 << conf->geo.chunk_shift) *
3787 conf->geo.far_copies);
3788
3789 if (max(before_length, after_length) > min_offset_diff) {
3790 /* This cannot work */
08464e09 3791 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3ea7daa5
N
3792 goto out_free_conf;
3793 }
3794 conf->offset_diff = min_offset_diff;
3795
3ea7daa5
N
3796 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3797 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3798 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3799 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3800 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3801 "reshape");
3802 }
3803
1da177e4
LT
3804 return 0;
3805
3806out_free_conf:
01f96c0a 3807 md_unregister_thread(&mddev->thread);
644df1a8 3808 mempool_destroy(conf->r10bio_pool);
1345b1d8 3809 safe_put_page(conf->tmppage);
990a8baf 3810 kfree(conf->mirrors);
1da177e4
LT
3811 kfree(conf);
3812 mddev->private = NULL;
3813out:
3814 return -EIO;
3815}
3816
afa0f557 3817static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 3818{
afa0f557 3819 struct r10conf *conf = priv;
1da177e4 3820
644df1a8 3821 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3822 safe_put_page(conf->tmppage);
990a8baf 3823 kfree(conf->mirrors);
c4796e21
N
3824 kfree(conf->mirrors_old);
3825 kfree(conf->mirrors_new);
fc9977dd
N
3826 if (conf->bio_split)
3827 bioset_free(conf->bio_split);
1da177e4 3828 kfree(conf);
1da177e4
LT
3829}
3830
b03e0ccb 3831static void raid10_quiesce(struct mddev *mddev, int quiesce)
6cce3b23 3832{
e879a879 3833 struct r10conf *conf = mddev->private;
6cce3b23 3834
b03e0ccb 3835 if (quiesce)
6cce3b23 3836 raise_barrier(conf, 0);
b03e0ccb 3837 else
6cce3b23 3838 lower_barrier(conf);
6cce3b23 3839}
1da177e4 3840
006a09a0
N
3841static int raid10_resize(struct mddev *mddev, sector_t sectors)
3842{
3843 /* Resize of 'far' arrays is not supported.
3844 * For 'near' and 'offset' arrays we can set the
3845 * number of sectors used to be an appropriate multiple
3846 * of the chunk size.
3847 * For 'offset', this is far_copies*chunksize.
3848 * For 'near' the multiplier is the LCM of
3849 * near_copies and raid_disks.
3850 * So if far_copies > 1 && !far_offset, fail.
3851 * Else find LCM(raid_disks, near_copy)*far_copies and
3852 * multiply by chunk_size. Then round to this number.
3853 * This is mostly done by raid10_size()
3854 */
3855 struct r10conf *conf = mddev->private;
3856 sector_t oldsize, size;
3857
f8c9e74f
N
3858 if (mddev->reshape_position != MaxSector)
3859 return -EBUSY;
3860
5cf00fcd 3861 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3862 return -EINVAL;
3863
3864 oldsize = raid10_size(mddev, 0, 0);
3865 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3866 if (mddev->external_size &&
3867 mddev->array_sectors > size)
006a09a0 3868 return -EINVAL;
a4a6125a
N
3869 if (mddev->bitmap) {
3870 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3871 if (ret)
3872 return ret;
3873 }
3874 md_set_array_sectors(mddev, size);
006a09a0
N
3875 if (sectors > mddev->dev_sectors &&
3876 mddev->recovery_cp > oldsize) {
3877 mddev->recovery_cp = oldsize;
3878 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3879 }
6508fdbf
N
3880 calc_sectors(conf, sectors);
3881 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3882 mddev->resync_max_sectors = size;
3883 return 0;
3884}
3885
53a6ab4d 3886static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 3887{
3cb03002 3888 struct md_rdev *rdev;
e879a879 3889 struct r10conf *conf;
dab8b292
TM
3890
3891 if (mddev->degraded > 0) {
08464e09
N
3892 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3893 mdname(mddev));
dab8b292
TM
3894 return ERR_PTR(-EINVAL);
3895 }
53a6ab4d 3896 sector_div(size, devs);
dab8b292 3897
dab8b292
TM
3898 /* Set new parameters */
3899 mddev->new_level = 10;
3900 /* new layout: far_copies = 1, near_copies = 2 */
3901 mddev->new_layout = (1<<8) + 2;
3902 mddev->new_chunk_sectors = mddev->chunk_sectors;
3903 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3904 mddev->raid_disks *= 2;
3905 /* make sure it will be not marked as dirty */
3906 mddev->recovery_cp = MaxSector;
53a6ab4d 3907 mddev->dev_sectors = size;
dab8b292
TM
3908
3909 conf = setup_conf(mddev);
02214dc5 3910 if (!IS_ERR(conf)) {
dafb20fa 3911 rdev_for_each(rdev, mddev)
53a6ab4d 3912 if (rdev->raid_disk >= 0) {
e93f68a1 3913 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
3914 rdev->sectors = size;
3915 }
02214dc5
KW
3916 conf->barrier = 1;
3917 }
3918
dab8b292
TM
3919 return conf;
3920}
3921
fd01b88c 3922static void *raid10_takeover(struct mddev *mddev)
dab8b292 3923{
e373ab10 3924 struct r0conf *raid0_conf;
dab8b292
TM
3925
3926 /* raid10 can take over:
3927 * raid0 - providing it has only two drives
3928 */
3929 if (mddev->level == 0) {
3930 /* for raid0 takeover only one zone is supported */
e373ab10
N
3931 raid0_conf = mddev->private;
3932 if (raid0_conf->nr_strip_zones > 1) {
08464e09
N
3933 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3934 mdname(mddev));
dab8b292
TM
3935 return ERR_PTR(-EINVAL);
3936 }
53a6ab4d
N
3937 return raid10_takeover_raid0(mddev,
3938 raid0_conf->strip_zone->zone_end,
3939 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
3940 }
3941 return ERR_PTR(-EINVAL);
3942}
3943
3ea7daa5
N
3944static int raid10_check_reshape(struct mddev *mddev)
3945{
3946 /* Called when there is a request to change
3947 * - layout (to ->new_layout)
3948 * - chunk size (to ->new_chunk_sectors)
3949 * - raid_disks (by delta_disks)
3950 * or when trying to restart a reshape that was ongoing.
3951 *
3952 * We need to validate the request and possibly allocate
3953 * space if that might be an issue later.
3954 *
3955 * Currently we reject any reshape of a 'far' mode array,
3956 * allow chunk size to change if new is generally acceptable,
3957 * allow raid_disks to increase, and allow
3958 * a switch between 'near' mode and 'offset' mode.
3959 */
3960 struct r10conf *conf = mddev->private;
3961 struct geom geo;
3962
3963 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3964 return -EINVAL;
3965
3966 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3967 /* mustn't change number of copies */
3968 return -EINVAL;
3969 if (geo.far_copies > 1 && !geo.far_offset)
3970 /* Cannot switch to 'far' mode */
3971 return -EINVAL;
3972
3973 if (mddev->array_sectors & geo.chunk_mask)
3974 /* not factor of array size */
3975 return -EINVAL;
3976
3ea7daa5
N
3977 if (!enough(conf, -1))
3978 return -EINVAL;
3979
3980 kfree(conf->mirrors_new);
3981 conf->mirrors_new = NULL;
3982 if (mddev->delta_disks > 0) {
3983 /* allocate new 'mirrors' list */
3984 conf->mirrors_new = kzalloc(
dc280d98 3985 sizeof(struct raid10_info)
3ea7daa5
N
3986 *(mddev->raid_disks +
3987 mddev->delta_disks),
3988 GFP_KERNEL);
3989 if (!conf->mirrors_new)
3990 return -ENOMEM;
3991 }
3992 return 0;
3993}
3994
3995/*
3996 * Need to check if array has failed when deciding whether to:
3997 * - start an array
3998 * - remove non-faulty devices
3999 * - add a spare
4000 * - allow a reshape
4001 * This determination is simple when no reshape is happening.
4002 * However if there is a reshape, we need to carefully check
4003 * both the before and after sections.
4004 * This is because some failed devices may only affect one
4005 * of the two sections, and some non-in_sync devices may
4006 * be insync in the section most affected by failed devices.
4007 */
4008static int calc_degraded(struct r10conf *conf)
4009{
4010 int degraded, degraded2;
4011 int i;
4012
4013 rcu_read_lock();
4014 degraded = 0;
4015 /* 'prev' section first */
4016 for (i = 0; i < conf->prev.raid_disks; i++) {
4017 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4018 if (!rdev || test_bit(Faulty, &rdev->flags))
4019 degraded++;
4020 else if (!test_bit(In_sync, &rdev->flags))
4021 /* When we can reduce the number of devices in
4022 * an array, this might not contribute to
4023 * 'degraded'. It does now.
4024 */
4025 degraded++;
4026 }
4027 rcu_read_unlock();
4028 if (conf->geo.raid_disks == conf->prev.raid_disks)
4029 return degraded;
4030 rcu_read_lock();
4031 degraded2 = 0;
4032 for (i = 0; i < conf->geo.raid_disks; i++) {
4033 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4034 if (!rdev || test_bit(Faulty, &rdev->flags))
4035 degraded2++;
4036 else if (!test_bit(In_sync, &rdev->flags)) {
4037 /* If reshape is increasing the number of devices,
4038 * this section has already been recovered, so
4039 * it doesn't contribute to degraded.
4040 * else it does.
4041 */
4042 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4043 degraded2++;
4044 }
4045 }
4046 rcu_read_unlock();
4047 if (degraded2 > degraded)
4048 return degraded2;
4049 return degraded;
4050}
4051
4052static int raid10_start_reshape(struct mddev *mddev)
4053{
4054 /* A 'reshape' has been requested. This commits
4055 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4056 * This also checks if there are enough spares and adds them
4057 * to the array.
4058 * We currently require enough spares to make the final
4059 * array non-degraded. We also require that the difference
4060 * between old and new data_offset - on each device - is
4061 * enough that we never risk over-writing.
4062 */
4063
4064 unsigned long before_length, after_length;
4065 sector_t min_offset_diff = 0;
4066 int first = 1;
4067 struct geom new;
4068 struct r10conf *conf = mddev->private;
4069 struct md_rdev *rdev;
4070 int spares = 0;
bb63a701 4071 int ret;
3ea7daa5
N
4072
4073 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4074 return -EBUSY;
4075
4076 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4077 return -EINVAL;
4078
4079 before_length = ((1 << conf->prev.chunk_shift) *
4080 conf->prev.far_copies);
4081 after_length = ((1 << conf->geo.chunk_shift) *
4082 conf->geo.far_copies);
4083
4084 rdev_for_each(rdev, mddev) {
4085 if (!test_bit(In_sync, &rdev->flags)
4086 && !test_bit(Faulty, &rdev->flags))
4087 spares++;
4088 if (rdev->raid_disk >= 0) {
4089 long long diff = (rdev->new_data_offset
4090 - rdev->data_offset);
4091 if (!mddev->reshape_backwards)
4092 diff = -diff;
4093 if (diff < 0)
4094 diff = 0;
4095 if (first || diff < min_offset_diff)
4096 min_offset_diff = diff;
b506335e 4097 first = 0;
3ea7daa5
N
4098 }
4099 }
4100
4101 if (max(before_length, after_length) > min_offset_diff)
4102 return -EINVAL;
4103
4104 if (spares < mddev->delta_disks)
4105 return -EINVAL;
4106
4107 conf->offset_diff = min_offset_diff;
4108 spin_lock_irq(&conf->device_lock);
4109 if (conf->mirrors_new) {
4110 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4111 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4112 smp_mb();
c4796e21 4113 kfree(conf->mirrors_old);
3ea7daa5
N
4114 conf->mirrors_old = conf->mirrors;
4115 conf->mirrors = conf->mirrors_new;
4116 conf->mirrors_new = NULL;
4117 }
4118 setup_geo(&conf->geo, mddev, geo_start);
4119 smp_mb();
4120 if (mddev->reshape_backwards) {
4121 sector_t size = raid10_size(mddev, 0, 0);
4122 if (size < mddev->array_sectors) {
4123 spin_unlock_irq(&conf->device_lock);
08464e09
N
4124 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4125 mdname(mddev));
3ea7daa5
N
4126 return -EINVAL;
4127 }
4128 mddev->resync_max_sectors = size;
4129 conf->reshape_progress = size;
4130 } else
4131 conf->reshape_progress = 0;
299b0685 4132 conf->reshape_safe = conf->reshape_progress;
3ea7daa5
N
4133 spin_unlock_irq(&conf->device_lock);
4134
bb63a701
N
4135 if (mddev->delta_disks && mddev->bitmap) {
4136 ret = bitmap_resize(mddev->bitmap,
4137 raid10_size(mddev, 0,
4138 conf->geo.raid_disks),
4139 0, 0);
4140 if (ret)
4141 goto abort;
4142 }
3ea7daa5
N
4143 if (mddev->delta_disks > 0) {
4144 rdev_for_each(rdev, mddev)
4145 if (rdev->raid_disk < 0 &&
4146 !test_bit(Faulty, &rdev->flags)) {
4147 if (raid10_add_disk(mddev, rdev) == 0) {
4148 if (rdev->raid_disk >=
4149 conf->prev.raid_disks)
4150 set_bit(In_sync, &rdev->flags);
4151 else
4152 rdev->recovery_offset = 0;
4153
4154 if (sysfs_link_rdev(mddev, rdev))
4155 /* Failure here is OK */;
4156 }
4157 } else if (rdev->raid_disk >= conf->prev.raid_disks
4158 && !test_bit(Faulty, &rdev->flags)) {
4159 /* This is a spare that was manually added */
4160 set_bit(In_sync, &rdev->flags);
4161 }
4162 }
4163 /* When a reshape changes the number of devices,
4164 * ->degraded is measured against the larger of the
4165 * pre and post numbers.
4166 */
4167 spin_lock_irq(&conf->device_lock);
4168 mddev->degraded = calc_degraded(conf);
4169 spin_unlock_irq(&conf->device_lock);
4170 mddev->raid_disks = conf->geo.raid_disks;
4171 mddev->reshape_position = conf->reshape_progress;
2953079c 4172 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5
N
4173
4174 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4175 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4176 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4177 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4178 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4179
4180 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4181 "reshape");
4182 if (!mddev->sync_thread) {
bb63a701
N
4183 ret = -EAGAIN;
4184 goto abort;
3ea7daa5
N
4185 }
4186 conf->reshape_checkpoint = jiffies;
4187 md_wakeup_thread(mddev->sync_thread);
4188 md_new_event(mddev);
4189 return 0;
bb63a701
N
4190
4191abort:
4192 mddev->recovery = 0;
4193 spin_lock_irq(&conf->device_lock);
4194 conf->geo = conf->prev;
4195 mddev->raid_disks = conf->geo.raid_disks;
4196 rdev_for_each(rdev, mddev)
4197 rdev->new_data_offset = rdev->data_offset;
4198 smp_wmb();
4199 conf->reshape_progress = MaxSector;
299b0685 4200 conf->reshape_safe = MaxSector;
bb63a701
N
4201 mddev->reshape_position = MaxSector;
4202 spin_unlock_irq(&conf->device_lock);
4203 return ret;
3ea7daa5
N
4204}
4205
4206/* Calculate the last device-address that could contain
4207 * any block from the chunk that includes the array-address 's'
4208 * and report the next address.
4209 * i.e. the address returned will be chunk-aligned and after
4210 * any data that is in the chunk containing 's'.
4211 */
4212static sector_t last_dev_address(sector_t s, struct geom *geo)
4213{
4214 s = (s | geo->chunk_mask) + 1;
4215 s >>= geo->chunk_shift;
4216 s *= geo->near_copies;
4217 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4218 s *= geo->far_copies;
4219 s <<= geo->chunk_shift;
4220 return s;
4221}
4222
4223/* Calculate the first device-address that could contain
4224 * any block from the chunk that includes the array-address 's'.
4225 * This too will be the start of a chunk
4226 */
4227static sector_t first_dev_address(sector_t s, struct geom *geo)
4228{
4229 s >>= geo->chunk_shift;
4230 s *= geo->near_copies;
4231 sector_div(s, geo->raid_disks);
4232 s *= geo->far_copies;
4233 s <<= geo->chunk_shift;
4234 return s;
4235}
4236
4237static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4238 int *skipped)
4239{
4240 /* We simply copy at most one chunk (smallest of old and new)
4241 * at a time, possibly less if that exceeds RESYNC_PAGES,
4242 * or we hit a bad block or something.
4243 * This might mean we pause for normal IO in the middle of
02ec5026 4244 * a chunk, but that is not a problem as mddev->reshape_position
3ea7daa5
N
4245 * can record any location.
4246 *
4247 * If we will want to write to a location that isn't
4248 * yet recorded as 'safe' (i.e. in metadata on disk) then
4249 * we need to flush all reshape requests and update the metadata.
4250 *
4251 * When reshaping forwards (e.g. to more devices), we interpret
4252 * 'safe' as the earliest block which might not have been copied
4253 * down yet. We divide this by previous stripe size and multiply
4254 * by previous stripe length to get lowest device offset that we
4255 * cannot write to yet.
4256 * We interpret 'sector_nr' as an address that we want to write to.
4257 * From this we use last_device_address() to find where we might
4258 * write to, and first_device_address on the 'safe' position.
4259 * If this 'next' write position is after the 'safe' position,
4260 * we must update the metadata to increase the 'safe' position.
4261 *
4262 * When reshaping backwards, we round in the opposite direction
4263 * and perform the reverse test: next write position must not be
4264 * less than current safe position.
4265 *
4266 * In all this the minimum difference in data offsets
4267 * (conf->offset_diff - always positive) allows a bit of slack,
02ec5026 4268 * so next can be after 'safe', but not by more than offset_diff
3ea7daa5
N
4269 *
4270 * We need to prepare all the bios here before we start any IO
4271 * to ensure the size we choose is acceptable to all devices.
4272 * The means one for each copy for write-out and an extra one for
4273 * read-in.
4274 * We store the read-in bio in ->master_bio and the others in
4275 * ->devs[x].bio and ->devs[x].repl_bio.
4276 */
4277 struct r10conf *conf = mddev->private;
4278 struct r10bio *r10_bio;
4279 sector_t next, safe, last;
4280 int max_sectors;
4281 int nr_sectors;
4282 int s;
4283 struct md_rdev *rdev;
4284 int need_flush = 0;
4285 struct bio *blist;
4286 struct bio *bio, *read_bio;
4287 int sectors_done = 0;
f0250618 4288 struct page **pages;
3ea7daa5
N
4289
4290 if (sector_nr == 0) {
4291 /* If restarting in the middle, skip the initial sectors */
4292 if (mddev->reshape_backwards &&
4293 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4294 sector_nr = (raid10_size(mddev, 0, 0)
4295 - conf->reshape_progress);
4296 } else if (!mddev->reshape_backwards &&
4297 conf->reshape_progress > 0)
4298 sector_nr = conf->reshape_progress;
4299 if (sector_nr) {
4300 mddev->curr_resync_completed = sector_nr;
4301 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4302 *skipped = 1;
4303 return sector_nr;
4304 }
4305 }
4306
4307 /* We don't use sector_nr to track where we are up to
4308 * as that doesn't work well for ->reshape_backwards.
4309 * So just use ->reshape_progress.
4310 */
4311 if (mddev->reshape_backwards) {
4312 /* 'next' is the earliest device address that we might
4313 * write to for this chunk in the new layout
4314 */
4315 next = first_dev_address(conf->reshape_progress - 1,
4316 &conf->geo);
4317
4318 /* 'safe' is the last device address that we might read from
4319 * in the old layout after a restart
4320 */
4321 safe = last_dev_address(conf->reshape_safe - 1,
4322 &conf->prev);
4323
4324 if (next + conf->offset_diff < safe)
4325 need_flush = 1;
4326
4327 last = conf->reshape_progress - 1;
4328 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4329 & conf->prev.chunk_mask);
4330 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4331 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4332 } else {
4333 /* 'next' is after the last device address that we
4334 * might write to for this chunk in the new layout
4335 */
4336 next = last_dev_address(conf->reshape_progress, &conf->geo);
4337
4338 /* 'safe' is the earliest device address that we might
4339 * read from in the old layout after a restart
4340 */
4341 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4342
4343 /* Need to update metadata if 'next' might be beyond 'safe'
4344 * as that would possibly corrupt data
4345 */
4346 if (next > safe + conf->offset_diff)
4347 need_flush = 1;
4348
4349 sector_nr = conf->reshape_progress;
4350 last = sector_nr | (conf->geo.chunk_mask
4351 & conf->prev.chunk_mask);
4352
4353 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4354 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4355 }
4356
4357 if (need_flush ||
4358 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4359 /* Need to update reshape_position in metadata */
4360 wait_barrier(conf);
4361 mddev->reshape_position = conf->reshape_progress;
4362 if (mddev->reshape_backwards)
4363 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4364 - conf->reshape_progress;
4365 else
4366 mddev->curr_resync_completed = conf->reshape_progress;
4367 conf->reshape_checkpoint = jiffies;
2953079c 4368 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5 4369 md_wakeup_thread(mddev->thread);
2953079c 4370 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
4371 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4372 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4373 allow_barrier(conf);
4374 return sectors_done;
4375 }
3ea7daa5
N
4376 conf->reshape_safe = mddev->reshape_position;
4377 allow_barrier(conf);
4378 }
4379
4380read_more:
4381 /* Now schedule reads for blocks from sector_nr to last */
208410b5 4382 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 4383 r10_bio->state = 0;
3ea7daa5
N
4384 raise_barrier(conf, sectors_done != 0);
4385 atomic_set(&r10_bio->remaining, 0);
4386 r10_bio->mddev = mddev;
4387 r10_bio->sector = sector_nr;
4388 set_bit(R10BIO_IsReshape, &r10_bio->state);
4389 r10_bio->sectors = last - sector_nr + 1;
4390 rdev = read_balance(conf, r10_bio, &max_sectors);
4391 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4392
4393 if (!rdev) {
4394 /* Cannot read from here, so need to record bad blocks
4395 * on all the target devices.
4396 */
4397 // FIXME
e337aead 4398 mempool_free(r10_bio, conf->r10buf_pool);
3ea7daa5
N
4399 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4400 return sectors_done;
4401 }
4402
4403 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4404
74d46992 4405 bio_set_dev(read_bio, rdev->bdev);
4f024f37 4406 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4407 + rdev->data_offset);
4408 read_bio->bi_private = r10_bio;
81fa1520 4409 read_bio->bi_end_io = end_reshape_read;
796a5cf0 4410 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
ce0b0a46 4411 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4e4cbee9 4412 read_bio->bi_status = 0;
3ea7daa5 4413 read_bio->bi_vcnt = 0;
4f024f37 4414 read_bio->bi_iter.bi_size = 0;
3ea7daa5
N
4415 r10_bio->master_bio = read_bio;
4416 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4417
4418 /* Now find the locations in the new layout */
4419 __raid10_find_phys(&conf->geo, r10_bio);
4420
4421 blist = read_bio;
4422 read_bio->bi_next = NULL;
4423
d094d686 4424 rcu_read_lock();
3ea7daa5
N
4425 for (s = 0; s < conf->copies*2; s++) {
4426 struct bio *b;
4427 int d = r10_bio->devs[s/2].devnum;
4428 struct md_rdev *rdev2;
4429 if (s&1) {
d094d686 4430 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4431 b = r10_bio->devs[s/2].repl_bio;
4432 } else {
d094d686 4433 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4434 b = r10_bio->devs[s/2].bio;
4435 }
4436 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4437 continue;
8be185f2 4438
74d46992 4439 bio_set_dev(b, rdev2->bdev);
4f024f37
KO
4440 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4441 rdev2->new_data_offset;
3ea7daa5 4442 b->bi_end_io = end_reshape_write;
796a5cf0 4443 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
3ea7daa5 4444 b->bi_next = blist;
3ea7daa5
N
4445 blist = b;
4446 }
4447
4448 /* Now add as many pages as possible to all of these bios. */
4449
4450 nr_sectors = 0;
f0250618 4451 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 4452 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
f0250618 4453 struct page *page = pages[s / (PAGE_SIZE >> 9)];
3ea7daa5
N
4454 int len = (max_sectors - s) << 9;
4455 if (len > PAGE_SIZE)
4456 len = PAGE_SIZE;
4457 for (bio = blist; bio ; bio = bio->bi_next) {
c85ba149
ML
4458 /*
4459 * won't fail because the vec table is big enough
4460 * to hold all these pages
4461 */
4462 bio_add_page(bio, page, len, 0);
3ea7daa5
N
4463 }
4464 sector_nr += len >> 9;
4465 nr_sectors += len >> 9;
4466 }
d094d686 4467 rcu_read_unlock();
3ea7daa5
N
4468 r10_bio->sectors = nr_sectors;
4469
4470 /* Now submit the read */
74d46992 4471 md_sync_acct_bio(read_bio, r10_bio->sectors);
3ea7daa5
N
4472 atomic_inc(&r10_bio->remaining);
4473 read_bio->bi_next = NULL;
4474 generic_make_request(read_bio);
4475 sector_nr += nr_sectors;
4476 sectors_done += nr_sectors;
4477 if (sector_nr <= last)
4478 goto read_more;
4479
4480 /* Now that we have done the whole section we can
4481 * update reshape_progress
4482 */
4483 if (mddev->reshape_backwards)
4484 conf->reshape_progress -= sectors_done;
4485 else
4486 conf->reshape_progress += sectors_done;
4487
4488 return sectors_done;
4489}
4490
4491static void end_reshape_request(struct r10bio *r10_bio);
4492static int handle_reshape_read_error(struct mddev *mddev,
4493 struct r10bio *r10_bio);
4494static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4495{
4496 /* Reshape read completed. Hopefully we have a block
4497 * to write out.
4498 * If we got a read error then we do sync 1-page reads from
4499 * elsewhere until we find the data - or give up.
4500 */
4501 struct r10conf *conf = mddev->private;
4502 int s;
4503
4504 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4505 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4506 /* Reshape has been aborted */
4507 md_done_sync(mddev, r10_bio->sectors, 0);
4508 return;
4509 }
4510
4511 /* We definitely have the data in the pages, schedule the
4512 * writes.
4513 */
4514 atomic_set(&r10_bio->remaining, 1);
4515 for (s = 0; s < conf->copies*2; s++) {
4516 struct bio *b;
4517 int d = r10_bio->devs[s/2].devnum;
4518 struct md_rdev *rdev;
d094d686 4519 rcu_read_lock();
3ea7daa5 4520 if (s&1) {
d094d686 4521 rdev = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4522 b = r10_bio->devs[s/2].repl_bio;
4523 } else {
d094d686 4524 rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4525 b = r10_bio->devs[s/2].bio;
4526 }
d094d686
N
4527 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4528 rcu_read_unlock();
3ea7daa5 4529 continue;
d094d686 4530 }
3ea7daa5 4531 atomic_inc(&rdev->nr_pending);
d094d686 4532 rcu_read_unlock();
74d46992 4533 md_sync_acct_bio(b, r10_bio->sectors);
3ea7daa5
N
4534 atomic_inc(&r10_bio->remaining);
4535 b->bi_next = NULL;
4536 generic_make_request(b);
4537 }
4538 end_reshape_request(r10_bio);
4539}
4540
4541static void end_reshape(struct r10conf *conf)
4542{
4543 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4544 return;
4545
4546 spin_lock_irq(&conf->device_lock);
4547 conf->prev = conf->geo;
4548 md_finish_reshape(conf->mddev);
4549 smp_wmb();
4550 conf->reshape_progress = MaxSector;
299b0685 4551 conf->reshape_safe = MaxSector;
3ea7daa5
N
4552 spin_unlock_irq(&conf->device_lock);
4553
4554 /* read-ahead size must cover two whole stripes, which is
4555 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4556 */
4557 if (conf->mddev->queue) {
4558 int stripe = conf->geo.raid_disks *
4559 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4560 stripe /= conf->geo.near_copies;
dc3b17cc
JK
4561 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4562 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3ea7daa5
N
4563 }
4564 conf->fullsync = 0;
4565}
4566
3ea7daa5
N
4567static int handle_reshape_read_error(struct mddev *mddev,
4568 struct r10bio *r10_bio)
4569{
4570 /* Use sync reads to get the blocks from somewhere else */
4571 int sectors = r10_bio->sectors;
3ea7daa5 4572 struct r10conf *conf = mddev->private;
584ed9fa 4573 struct r10bio *r10b;
3ea7daa5
N
4574 int slot = 0;
4575 int idx = 0;
2d06e3b7
ML
4576 struct page **pages;
4577
584ed9fa
MK
4578 r10b = kmalloc(sizeof(*r10b) +
4579 sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4580 if (!r10b) {
4581 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4582 return -ENOMEM;
4583 }
4584
2d06e3b7
ML
4585 /* reshape IOs share pages from .devs[0].bio */
4586 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 4587
e0ee7785
N
4588 r10b->sector = r10_bio->sector;
4589 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4590
4591 while (sectors) {
4592 int s = sectors;
4593 int success = 0;
4594 int first_slot = slot;
4595
4596 if (s > (PAGE_SIZE >> 9))
4597 s = PAGE_SIZE >> 9;
4598
d094d686 4599 rcu_read_lock();
3ea7daa5 4600 while (!success) {
e0ee7785 4601 int d = r10b->devs[slot].devnum;
d094d686 4602 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4603 sector_t addr;
4604 if (rdev == NULL ||
4605 test_bit(Faulty, &rdev->flags) ||
4606 !test_bit(In_sync, &rdev->flags))
4607 goto failed;
4608
e0ee7785 4609 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
d094d686
N
4610 atomic_inc(&rdev->nr_pending);
4611 rcu_read_unlock();
3ea7daa5
N
4612 success = sync_page_io(rdev,
4613 addr,
4614 s << 9,
2d06e3b7 4615 pages[idx],
796a5cf0 4616 REQ_OP_READ, 0, false);
d094d686
N
4617 rdev_dec_pending(rdev, mddev);
4618 rcu_read_lock();
3ea7daa5
N
4619 if (success)
4620 break;
4621 failed:
4622 slot++;
4623 if (slot >= conf->copies)
4624 slot = 0;
4625 if (slot == first_slot)
4626 break;
4627 }
d094d686 4628 rcu_read_unlock();
3ea7daa5
N
4629 if (!success) {
4630 /* couldn't read this block, must give up */
4631 set_bit(MD_RECOVERY_INTR,
4632 &mddev->recovery);
584ed9fa 4633 kfree(r10b);
3ea7daa5
N
4634 return -EIO;
4635 }
4636 sectors -= s;
4637 idx++;
4638 }
584ed9fa 4639 kfree(r10b);
3ea7daa5
N
4640 return 0;
4641}
4642
4246a0b6 4643static void end_reshape_write(struct bio *bio)
3ea7daa5 4644{
f0250618 4645 struct r10bio *r10_bio = get_resync_r10bio(bio);
3ea7daa5
N
4646 struct mddev *mddev = r10_bio->mddev;
4647 struct r10conf *conf = mddev->private;
4648 int d;
4649 int slot;
4650 int repl;
4651 struct md_rdev *rdev = NULL;
4652
4653 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4654 if (repl)
4655 rdev = conf->mirrors[d].replacement;
4656 if (!rdev) {
4657 smp_mb();
4658 rdev = conf->mirrors[d].rdev;
4659 }
4660
4e4cbee9 4661 if (bio->bi_status) {
3ea7daa5
N
4662 /* FIXME should record badblock */
4663 md_error(mddev, rdev);
4664 }
4665
4666 rdev_dec_pending(rdev, mddev);
4667 end_reshape_request(r10_bio);
4668}
4669
4670static void end_reshape_request(struct r10bio *r10_bio)
4671{
4672 if (!atomic_dec_and_test(&r10_bio->remaining))
4673 return;
4674 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4675 bio_put(r10_bio->master_bio);
4676 put_buf(r10_bio);
4677}
4678
4679static void raid10_finish_reshape(struct mddev *mddev)
4680{
4681 struct r10conf *conf = mddev->private;
4682
4683 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4684 return;
4685
4686 if (mddev->delta_disks > 0) {
4687 sector_t size = raid10_size(mddev, 0, 0);
4688 md_set_array_sectors(mddev, size);
4689 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4690 mddev->recovery_cp = mddev->resync_max_sectors;
4691 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4692 }
4693 mddev->resync_max_sectors = size;
859644f0
HM
4694 if (mddev->queue) {
4695 set_capacity(mddev->gendisk, mddev->array_sectors);
4696 revalidate_disk(mddev->gendisk);
4697 }
63aced61
N
4698 } else {
4699 int d;
d094d686 4700 rcu_read_lock();
63aced61
N
4701 for (d = conf->geo.raid_disks ;
4702 d < conf->geo.raid_disks - mddev->delta_disks;
4703 d++) {
d094d686 4704 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
63aced61
N
4705 if (rdev)
4706 clear_bit(In_sync, &rdev->flags);
d094d686 4707 rdev = rcu_dereference(conf->mirrors[d].replacement);
63aced61
N
4708 if (rdev)
4709 clear_bit(In_sync, &rdev->flags);
4710 }
d094d686 4711 rcu_read_unlock();
3ea7daa5
N
4712 }
4713 mddev->layout = mddev->new_layout;
4714 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4715 mddev->reshape_position = MaxSector;
4716 mddev->delta_disks = 0;
4717 mddev->reshape_backwards = 0;
4718}
4719
84fc4b56 4720static struct md_personality raid10_personality =
1da177e4
LT
4721{
4722 .name = "raid10",
2604b703 4723 .level = 10,
1da177e4 4724 .owner = THIS_MODULE,
849674e4
SL
4725 .make_request = raid10_make_request,
4726 .run = raid10_run,
afa0f557 4727 .free = raid10_free,
849674e4
SL
4728 .status = raid10_status,
4729 .error_handler = raid10_error,
1da177e4
LT
4730 .hot_add_disk = raid10_add_disk,
4731 .hot_remove_disk= raid10_remove_disk,
4732 .spare_active = raid10_spare_active,
849674e4 4733 .sync_request = raid10_sync_request,
6cce3b23 4734 .quiesce = raid10_quiesce,
80c3a6ce 4735 .size = raid10_size,
006a09a0 4736 .resize = raid10_resize,
dab8b292 4737 .takeover = raid10_takeover,
3ea7daa5
N
4738 .check_reshape = raid10_check_reshape,
4739 .start_reshape = raid10_start_reshape,
4740 .finish_reshape = raid10_finish_reshape,
5c675f83 4741 .congested = raid10_congested,
1da177e4
LT
4742};
4743
4744static int __init raid_init(void)
4745{
2604b703 4746 return register_md_personality(&raid10_personality);
1da177e4
LT
4747}
4748
4749static void raid_exit(void)
4750{
2604b703 4751 unregister_md_personality(&raid10_personality);
1da177e4
LT
4752}
4753
4754module_init(raid_init);
4755module_exit(raid_exit);
4756MODULE_LICENSE("GPL");
0efb9e61 4757MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4758MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4759MODULE_ALIAS("md-raid10");
2604b703 4760MODULE_ALIAS("md-level-10");
34db0cd6
N
4761
4762module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);