block: remove support for bio remapping from ->make_request
[linux-2.6-block.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
bff61975 24#include <linux/seq_file.h>
8bda470e 25#include <linux/ratelimit.h>
43b2e5d8 26#include "md.h"
ef740c37 27#include "raid10.h"
dab8b292 28#include "raid0.h"
ef740c37 29#include "bitmap.h"
1da177e4
LT
30
31/*
32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
33 * The layout of data is defined by
34 * chunk_size
35 * raid_disks
36 * near_copies (stored in low byte of layout)
37 * far_copies (stored in second byte of layout)
c93983bf 38 * far_offset (stored in bit 16 of layout )
1da177e4
LT
39 *
40 * The data to be stored is divided into chunks using chunksize.
41 * Each device is divided into far_copies sections.
42 * In each section, chunks are laid out in a style similar to raid0, but
43 * near_copies copies of each chunk is stored (each on a different drive).
44 * The starting device for each section is offset near_copies from the starting
45 * device of the previous section.
c93983bf 46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
47 * drive.
48 * near_copies and far_copies must be at least one, and their product is at most
49 * raid_disks.
c93983bf
N
50 *
51 * If far_offset is true, then the far_copies are handled a bit differently.
52 * The copies are still in different stripes, but instead of be very far apart
53 * on disk, there are adjacent stripes.
1da177e4
LT
54 */
55
56/*
57 * Number of guaranteed r10bios in case of extreme VM load:
58 */
59#define NR_RAID10_BIOS 256
60
0a27ec96
N
61static void allow_barrier(conf_t *conf);
62static void lower_barrier(conf_t *conf);
63
dd0fc66f 64static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
65{
66 conf_t *conf = data;
1da177e4
LT
67 int size = offsetof(struct r10bio_s, devs[conf->copies]);
68
69 /* allocate a r10bio with room for raid_disks entries in the bios array */
7eaceacc 70 return kzalloc(size, gfp_flags);
1da177e4
LT
71}
72
73static void r10bio_pool_free(void *r10_bio, void *data)
74{
75 kfree(r10_bio);
76}
77
0310fa21 78/* Maximum size of each resync request */
1da177e4 79#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 80#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
81/* amount of memory to reserve for resync requests */
82#define RESYNC_WINDOW (1024*1024)
83/* maximum number of concurrent requests, memory permitting */
84#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
85
86/*
87 * When performing a resync, we need to read and compare, so
88 * we need as many pages are there are copies.
89 * When performing a recovery, we need 2 bios, one for read,
90 * one for write (we recover only one drive per r10buf)
91 *
92 */
dd0fc66f 93static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
94{
95 conf_t *conf = data;
96 struct page *page;
97 r10bio_t *r10_bio;
98 struct bio *bio;
99 int i, j;
100 int nalloc;
101
102 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 103 if (!r10_bio)
1da177e4 104 return NULL;
1da177e4
LT
105
106 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
107 nalloc = conf->copies; /* resync */
108 else
109 nalloc = 2; /* recovery */
110
111 /*
112 * Allocate bios.
113 */
114 for (j = nalloc ; j-- ; ) {
6746557f 115 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
116 if (!bio)
117 goto out_free_bio;
118 r10_bio->devs[j].bio = bio;
119 }
120 /*
121 * Allocate RESYNC_PAGES data pages and attach them
122 * where needed.
123 */
124 for (j = 0 ; j < nalloc; j++) {
125 bio = r10_bio->devs[j].bio;
126 for (i = 0; i < RESYNC_PAGES; i++) {
c65060ad
NK
127 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
128 &conf->mddev->recovery)) {
129 /* we can share bv_page's during recovery */
130 struct bio *rbio = r10_bio->devs[0].bio;
131 page = rbio->bi_io_vec[i].bv_page;
132 get_page(page);
133 } else
134 page = alloc_page(gfp_flags);
1da177e4
LT
135 if (unlikely(!page))
136 goto out_free_pages;
137
138 bio->bi_io_vec[i].bv_page = page;
139 }
140 }
141
142 return r10_bio;
143
144out_free_pages:
145 for ( ; i > 0 ; i--)
1345b1d8 146 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
147 while (j--)
148 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
150 j = -1;
151out_free_bio:
152 while ( ++j < nalloc )
153 bio_put(r10_bio->devs[j].bio);
154 r10bio_pool_free(r10_bio, conf);
155 return NULL;
156}
157
158static void r10buf_pool_free(void *__r10_bio, void *data)
159{
160 int i;
161 conf_t *conf = data;
162 r10bio_t *r10bio = __r10_bio;
163 int j;
164
165 for (j=0; j < conf->copies; j++) {
166 struct bio *bio = r10bio->devs[j].bio;
167 if (bio) {
168 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 169 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
170 bio->bi_io_vec[i].bv_page = NULL;
171 }
172 bio_put(bio);
173 }
174 }
175 r10bio_pool_free(r10bio, conf);
176}
177
178static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
179{
180 int i;
181
182 for (i = 0; i < conf->copies; i++) {
183 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 184 if (!BIO_SPECIAL(*bio))
1da177e4
LT
185 bio_put(*bio);
186 *bio = NULL;
187 }
188}
189
858119e1 190static void free_r10bio(r10bio_t *r10_bio)
1da177e4 191{
070ec55d 192 conf_t *conf = r10_bio->mddev->private;
1da177e4 193
1da177e4
LT
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
196}
197
858119e1 198static void put_buf(r10bio_t *r10_bio)
1da177e4 199{
070ec55d 200 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
201
202 mempool_free(r10_bio, conf->r10buf_pool);
203
0a27ec96 204 lower_barrier(conf);
1da177e4
LT
205}
206
207static void reschedule_retry(r10bio_t *r10_bio)
208{
209 unsigned long flags;
210 mddev_t *mddev = r10_bio->mddev;
070ec55d 211 conf_t *conf = mddev->private;
1da177e4
LT
212
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 215 conf->nr_queued ++;
1da177e4
LT
216 spin_unlock_irqrestore(&conf->device_lock, flags);
217
388667be
AJ
218 /* wake up frozen array... */
219 wake_up(&conf->wait_barrier);
220
1da177e4
LT
221 md_wakeup_thread(mddev->thread);
222}
223
224/*
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
228 */
229static void raid_end_bio_io(r10bio_t *r10_bio)
230{
231 struct bio *bio = r10_bio->master_bio;
856e08e2
N
232 int done;
233 conf_t *conf = r10_bio->mddev->private;
1da177e4 234
856e08e2
N
235 if (bio->bi_phys_segments) {
236 unsigned long flags;
237 spin_lock_irqsave(&conf->device_lock, flags);
238 bio->bi_phys_segments--;
239 done = (bio->bi_phys_segments == 0);
240 spin_unlock_irqrestore(&conf->device_lock, flags);
241 } else
242 done = 1;
243 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
244 clear_bit(BIO_UPTODATE, &bio->bi_flags);
245 if (done) {
246 bio_endio(bio, 0);
247 /*
248 * Wake up any possible resync thread that waits for the device
249 * to go idle.
250 */
251 allow_barrier(conf);
252 }
1da177e4
LT
253 free_r10bio(r10_bio);
254}
255
256/*
257 * Update disk head position estimator based on IRQ completion info.
258 */
259static inline void update_head_pos(int slot, r10bio_t *r10_bio)
260{
070ec55d 261 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
262
263 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
264 r10_bio->devs[slot].addr + (r10_bio->sectors);
265}
266
778ca018
NK
267/*
268 * Find the disk number which triggered given bio
269 */
749c55e9
N
270static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio,
271 struct bio *bio, int *slotp)
778ca018
NK
272{
273 int slot;
274
275 for (slot = 0; slot < conf->copies; slot++)
276 if (r10_bio->devs[slot].bio == bio)
277 break;
278
279 BUG_ON(slot == conf->copies);
280 update_head_pos(slot, r10_bio);
281
749c55e9
N
282 if (slotp)
283 *slotp = slot;
778ca018
NK
284 return r10_bio->devs[slot].devnum;
285}
286
6712ecf8 287static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
288{
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 290 r10bio_t *r10_bio = bio->bi_private;
1da177e4 291 int slot, dev;
070ec55d 292 conf_t *conf = r10_bio->mddev->private;
1da177e4 293
1da177e4
LT
294
295 slot = r10_bio->read_slot;
296 dev = r10_bio->devs[slot].devnum;
297 /*
298 * this branch is our 'one mirror IO has finished' event handler:
299 */
4443ae10
N
300 update_head_pos(slot, r10_bio);
301
302 if (uptodate) {
1da177e4
LT
303 /*
304 * Set R10BIO_Uptodate in our master bio, so that
305 * we will return a good error code to the higher
306 * levels even if IO on some other mirrored buffer fails.
307 *
308 * The 'master' represents the composite IO operation to
309 * user-side. So if something waits for IO, then it will
310 * wait for the 'master' bio.
311 */
312 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 313 raid_end_bio_io(r10_bio);
7c4e06ff 314 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
4443ae10 315 } else {
1da177e4 316 /*
7c4e06ff 317 * oops, read error - keep the refcount on the rdev
1da177e4
LT
318 */
319 char b[BDEVNAME_SIZE];
8bda470e
CD
320 printk_ratelimited(KERN_ERR
321 "md/raid10:%s: %s: rescheduling sector %llu\n",
322 mdname(conf->mddev),
323 bdevname(conf->mirrors[dev].rdev->bdev, b),
324 (unsigned long long)r10_bio->sector);
856e08e2 325 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
326 reschedule_retry(r10_bio);
327 }
1da177e4
LT
328}
329
bd870a16
N
330static void close_write(r10bio_t *r10_bio)
331{
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 r10_bio->sectors,
335 !test_bit(R10BIO_Degraded, &r10_bio->state),
336 0);
337 md_write_end(r10_bio->mddev);
338}
339
6712ecf8 340static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
341{
342 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 343 r10bio_t *r10_bio = bio->bi_private;
778ca018 344 int dev;
749c55e9 345 int dec_rdev = 1;
070ec55d 346 conf_t *conf = r10_bio->mddev->private;
749c55e9 347 int slot;
1da177e4 348
749c55e9 349 dev = find_bio_disk(conf, r10_bio, bio, &slot);
1da177e4
LT
350
351 /*
352 * this branch is our 'one mirror IO has finished' event handler:
353 */
6cce3b23 354 if (!uptodate) {
bd870a16
N
355 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
356 set_bit(R10BIO_WriteError, &r10_bio->state);
357 dec_rdev = 0;
749c55e9 358 } else {
1da177e4
LT
359 /*
360 * Set R10BIO_Uptodate in our master bio, so that
361 * we will return a good error code for to the higher
362 * levels even if IO on some other mirrored buffer fails.
363 *
364 * The 'master' represents the composite IO operation to
365 * user-side. So if something waits for IO, then it will
366 * wait for the 'master' bio.
367 */
749c55e9
N
368 sector_t first_bad;
369 int bad_sectors;
370
1da177e4
LT
371 set_bit(R10BIO_Uptodate, &r10_bio->state);
372
749c55e9
N
373 /* Maybe we can clear some bad blocks. */
374 if (is_badblock(conf->mirrors[dev].rdev,
375 r10_bio->devs[slot].addr,
376 r10_bio->sectors,
377 &first_bad, &bad_sectors)) {
378 bio_put(bio);
379 r10_bio->devs[slot].bio = IO_MADE_GOOD;
380 dec_rdev = 0;
381 set_bit(R10BIO_MadeGood, &r10_bio->state);
382 }
383 }
384
1da177e4
LT
385 /*
386 *
387 * Let's see if all mirrored write operations have finished
388 * already.
389 */
390 if (atomic_dec_and_test(&r10_bio->remaining)) {
bd870a16 391 if (test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 392 reschedule_retry(r10_bio);
bd870a16
N
393 else {
394 close_write(r10_bio);
395 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
396 reschedule_retry(r10_bio);
397 else
398 raid_end_bio_io(r10_bio);
399 }
1da177e4 400 }
749c55e9
N
401 if (dec_rdev)
402 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
403}
404
405
406/*
407 * RAID10 layout manager
25985edc 408 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
409 * parameters: near_copies and far_copies.
410 * near_copies * far_copies must be <= raid_disks.
411 * Normally one of these will be 1.
412 * If both are 1, we get raid0.
413 * If near_copies == raid_disks, we get raid1.
414 *
25985edc 415 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
416 * first chunk, followed by near_copies copies of the next chunk and
417 * so on.
418 * If far_copies > 1, then after 1/far_copies of the array has been assigned
419 * as described above, we start again with a device offset of near_copies.
420 * So we effectively have another copy of the whole array further down all
421 * the drives, but with blocks on different drives.
422 * With this layout, and block is never stored twice on the one device.
423 *
424 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 425 * on each device that it is on.
1da177e4
LT
426 *
427 * raid10_find_virt does the reverse mapping, from a device and a
428 * sector offset to a virtual address
429 */
430
431static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
432{
433 int n,f;
434 sector_t sector;
435 sector_t chunk;
436 sector_t stripe;
437 int dev;
438
439 int slot = 0;
440
441 /* now calculate first sector/dev */
442 chunk = r10bio->sector >> conf->chunk_shift;
443 sector = r10bio->sector & conf->chunk_mask;
444
445 chunk *= conf->near_copies;
446 stripe = chunk;
447 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
448 if (conf->far_offset)
449 stripe *= conf->far_copies;
1da177e4
LT
450
451 sector += stripe << conf->chunk_shift;
452
453 /* and calculate all the others */
454 for (n=0; n < conf->near_copies; n++) {
455 int d = dev;
456 sector_t s = sector;
457 r10bio->devs[slot].addr = sector;
458 r10bio->devs[slot].devnum = d;
459 slot++;
460
461 for (f = 1; f < conf->far_copies; f++) {
462 d += conf->near_copies;
463 if (d >= conf->raid_disks)
464 d -= conf->raid_disks;
465 s += conf->stride;
466 r10bio->devs[slot].devnum = d;
467 r10bio->devs[slot].addr = s;
468 slot++;
469 }
470 dev++;
471 if (dev >= conf->raid_disks) {
472 dev = 0;
473 sector += (conf->chunk_mask + 1);
474 }
475 }
476 BUG_ON(slot != conf->copies);
477}
478
479static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
480{
481 sector_t offset, chunk, vchunk;
482
1da177e4 483 offset = sector & conf->chunk_mask;
c93983bf
N
484 if (conf->far_offset) {
485 int fc;
486 chunk = sector >> conf->chunk_shift;
487 fc = sector_div(chunk, conf->far_copies);
488 dev -= fc * conf->near_copies;
489 if (dev < 0)
490 dev += conf->raid_disks;
491 } else {
64a742bc 492 while (sector >= conf->stride) {
c93983bf
N
493 sector -= conf->stride;
494 if (dev < conf->near_copies)
495 dev += conf->raid_disks - conf->near_copies;
496 else
497 dev -= conf->near_copies;
498 }
499 chunk = sector >> conf->chunk_shift;
500 }
1da177e4
LT
501 vchunk = chunk * conf->raid_disks + dev;
502 sector_div(vchunk, conf->near_copies);
503 return (vchunk << conf->chunk_shift) + offset;
504}
505
506/**
507 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
508 * @q: request queue
cc371e66 509 * @bvm: properties of new bio
1da177e4
LT
510 * @biovec: the request that could be merged to it.
511 *
512 * Return amount of bytes we can accept at this offset
513 * If near_copies == raid_disk, there are no striping issues,
514 * but in that case, the function isn't called at all.
515 */
cc371e66
AK
516static int raid10_mergeable_bvec(struct request_queue *q,
517 struct bvec_merge_data *bvm,
518 struct bio_vec *biovec)
1da177e4
LT
519{
520 mddev_t *mddev = q->queuedata;
cc371e66 521 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 522 int max;
9d8f0363 523 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 524 unsigned int bio_sectors = bvm->bi_size >> 9;
1da177e4
LT
525
526 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
527 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
cc371e66
AK
528 if (max <= biovec->bv_len && bio_sectors == 0)
529 return biovec->bv_len;
1da177e4
LT
530 else
531 return max;
532}
533
534/*
535 * This routine returns the disk from which the requested read should
536 * be done. There is a per-array 'next expected sequential IO' sector
537 * number - if this matches on the next IO then we use the last disk.
538 * There is also a per-disk 'last know head position' sector that is
539 * maintained from IRQ contexts, both the normal and the resync IO
540 * completion handlers update this position correctly. If there is no
541 * perfect sequential match then we pick the disk whose head is closest.
542 *
543 * If there are 2 mirrors in the same 2 devices, performance degrades
544 * because position is mirror, not device based.
545 *
546 * The rdev for the device selected will have nr_pending incremented.
547 */
548
549/*
550 * FIXME: possibly should rethink readbalancing and do it differently
551 * depending on near_copies / far_copies geometry.
552 */
856e08e2 553static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
1da177e4 554{
af3a2cd6 555 const sector_t this_sector = r10_bio->sector;
56d99121 556 int disk, slot;
856e08e2
N
557 int sectors = r10_bio->sectors;
558 int best_good_sectors;
56d99121 559 sector_t new_distance, best_dist;
d6065f7b 560 mdk_rdev_t *rdev;
56d99121
N
561 int do_balance;
562 int best_slot;
1da177e4
LT
563
564 raid10_find_phys(conf, r10_bio);
565 rcu_read_lock();
56d99121 566retry:
856e08e2 567 sectors = r10_bio->sectors;
56d99121
N
568 best_slot = -1;
569 best_dist = MaxSector;
856e08e2 570 best_good_sectors = 0;
56d99121 571 do_balance = 1;
1da177e4
LT
572 /*
573 * Check if we can balance. We can balance on the whole
6cce3b23
N
574 * device if no resync is going on (recovery is ok), or below
575 * the resync window. We take the first readable disk when
576 * above the resync window.
1da177e4
LT
577 */
578 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
579 && (this_sector + sectors >= conf->next_resync))
580 do_balance = 0;
1da177e4 581
56d99121 582 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
583 sector_t first_bad;
584 int bad_sectors;
585 sector_t dev_sector;
586
56d99121
N
587 if (r10_bio->devs[slot].bio == IO_BLOCKED)
588 continue;
1da177e4 589 disk = r10_bio->devs[slot].devnum;
56d99121
N
590 rdev = rcu_dereference(conf->mirrors[disk].rdev);
591 if (rdev == NULL)
1da177e4 592 continue;
56d99121
N
593 if (!test_bit(In_sync, &rdev->flags))
594 continue;
595
856e08e2
N
596 dev_sector = r10_bio->devs[slot].addr;
597 if (is_badblock(rdev, dev_sector, sectors,
598 &first_bad, &bad_sectors)) {
599 if (best_dist < MaxSector)
600 /* Already have a better slot */
601 continue;
602 if (first_bad <= dev_sector) {
603 /* Cannot read here. If this is the
604 * 'primary' device, then we must not read
605 * beyond 'bad_sectors' from another device.
606 */
607 bad_sectors -= (dev_sector - first_bad);
608 if (!do_balance && sectors > bad_sectors)
609 sectors = bad_sectors;
610 if (best_good_sectors > sectors)
611 best_good_sectors = sectors;
612 } else {
613 sector_t good_sectors =
614 first_bad - dev_sector;
615 if (good_sectors > best_good_sectors) {
616 best_good_sectors = good_sectors;
617 best_slot = slot;
618 }
619 if (!do_balance)
620 /* Must read from here */
621 break;
622 }
623 continue;
624 } else
625 best_good_sectors = sectors;
626
56d99121
N
627 if (!do_balance)
628 break;
1da177e4 629
22dfdf52
N
630 /* This optimisation is debatable, and completely destroys
631 * sequential read speed for 'far copies' arrays. So only
632 * keep it for 'near' arrays, and review those later.
633 */
56d99121 634 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 635 break;
8ed3a195
KS
636
637 /* for far > 1 always use the lowest address */
638 if (conf->far_copies > 1)
56d99121 639 new_distance = r10_bio->devs[slot].addr;
8ed3a195 640 else
56d99121
N
641 new_distance = abs(r10_bio->devs[slot].addr -
642 conf->mirrors[disk].head_position);
643 if (new_distance < best_dist) {
644 best_dist = new_distance;
645 best_slot = slot;
1da177e4
LT
646 }
647 }
56d99121
N
648 if (slot == conf->copies)
649 slot = best_slot;
1da177e4 650
56d99121
N
651 if (slot >= 0) {
652 disk = r10_bio->devs[slot].devnum;
653 rdev = rcu_dereference(conf->mirrors[disk].rdev);
654 if (!rdev)
655 goto retry;
656 atomic_inc(&rdev->nr_pending);
657 if (test_bit(Faulty, &rdev->flags)) {
658 /* Cannot risk returning a device that failed
659 * before we inc'ed nr_pending
660 */
661 rdev_dec_pending(rdev, conf->mddev);
662 goto retry;
663 }
664 r10_bio->read_slot = slot;
665 } else
29fc7e3e 666 disk = -1;
1da177e4 667 rcu_read_unlock();
856e08e2 668 *max_sectors = best_good_sectors;
1da177e4
LT
669
670 return disk;
671}
672
0d129228
N
673static int raid10_congested(void *data, int bits)
674{
675 mddev_t *mddev = data;
070ec55d 676 conf_t *conf = mddev->private;
0d129228
N
677 int i, ret = 0;
678
3fa841d7
N
679 if (mddev_congested(mddev, bits))
680 return 1;
0d129228 681 rcu_read_lock();
84707f38 682 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
0d129228
N
683 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
684 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 685 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
686
687 ret |= bdi_congested(&q->backing_dev_info, bits);
688 }
689 }
690 rcu_read_unlock();
691 return ret;
692}
693
7eaceacc 694static void flush_pending_writes(conf_t *conf)
a35e63ef
N
695{
696 /* Any writes that have been queued but are awaiting
697 * bitmap updates get flushed here.
a35e63ef 698 */
a35e63ef
N
699 spin_lock_irq(&conf->device_lock);
700
701 if (conf->pending_bio_list.head) {
702 struct bio *bio;
703 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef
N
704 spin_unlock_irq(&conf->device_lock);
705 /* flush any pending bitmap writes to disk
706 * before proceeding w/ I/O */
707 bitmap_unplug(conf->mddev->bitmap);
708
709 while (bio) { /* submit pending writes */
710 struct bio *next = bio->bi_next;
711 bio->bi_next = NULL;
712 generic_make_request(bio);
713 bio = next;
714 }
a35e63ef
N
715 } else
716 spin_unlock_irq(&conf->device_lock);
a35e63ef 717}
7eaceacc 718
0a27ec96
N
719/* Barriers....
720 * Sometimes we need to suspend IO while we do something else,
721 * either some resync/recovery, or reconfigure the array.
722 * To do this we raise a 'barrier'.
723 * The 'barrier' is a counter that can be raised multiple times
724 * to count how many activities are happening which preclude
725 * normal IO.
726 * We can only raise the barrier if there is no pending IO.
727 * i.e. if nr_pending == 0.
728 * We choose only to raise the barrier if no-one is waiting for the
729 * barrier to go down. This means that as soon as an IO request
730 * is ready, no other operations which require a barrier will start
731 * until the IO request has had a chance.
732 *
733 * So: regular IO calls 'wait_barrier'. When that returns there
734 * is no backgroup IO happening, It must arrange to call
735 * allow_barrier when it has finished its IO.
736 * backgroup IO calls must call raise_barrier. Once that returns
737 * there is no normal IO happeing. It must arrange to call
738 * lower_barrier when the particular background IO completes.
1da177e4 739 */
1da177e4 740
6cce3b23 741static void raise_barrier(conf_t *conf, int force)
1da177e4 742{
6cce3b23 743 BUG_ON(force && !conf->barrier);
1da177e4 744 spin_lock_irq(&conf->resync_lock);
0a27ec96 745
6cce3b23
N
746 /* Wait until no block IO is waiting (unless 'force') */
747 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 748 conf->resync_lock, );
0a27ec96
N
749
750 /* block any new IO from starting */
751 conf->barrier++;
752
c3b328ac 753 /* Now wait for all pending IO to complete */
0a27ec96
N
754 wait_event_lock_irq(conf->wait_barrier,
755 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 756 conf->resync_lock, );
0a27ec96
N
757
758 spin_unlock_irq(&conf->resync_lock);
759}
760
761static void lower_barrier(conf_t *conf)
762{
763 unsigned long flags;
764 spin_lock_irqsave(&conf->resync_lock, flags);
765 conf->barrier--;
766 spin_unlock_irqrestore(&conf->resync_lock, flags);
767 wake_up(&conf->wait_barrier);
768}
769
770static void wait_barrier(conf_t *conf)
771{
772 spin_lock_irq(&conf->resync_lock);
773 if (conf->barrier) {
774 conf->nr_waiting++;
775 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
776 conf->resync_lock,
c3b328ac 777 );
0a27ec96 778 conf->nr_waiting--;
1da177e4 779 }
0a27ec96 780 conf->nr_pending++;
1da177e4
LT
781 spin_unlock_irq(&conf->resync_lock);
782}
783
0a27ec96
N
784static void allow_barrier(conf_t *conf)
785{
786 unsigned long flags;
787 spin_lock_irqsave(&conf->resync_lock, flags);
788 conf->nr_pending--;
789 spin_unlock_irqrestore(&conf->resync_lock, flags);
790 wake_up(&conf->wait_barrier);
791}
792
4443ae10
N
793static void freeze_array(conf_t *conf)
794{
795 /* stop syncio and normal IO and wait for everything to
f188593e 796 * go quiet.
4443ae10 797 * We increment barrier and nr_waiting, and then
1c830532
N
798 * wait until nr_pending match nr_queued+1
799 * This is called in the context of one normal IO request
800 * that has failed. Thus any sync request that might be pending
801 * will be blocked by nr_pending, and we need to wait for
802 * pending IO requests to complete or be queued for re-try.
803 * Thus the number queued (nr_queued) plus this request (1)
804 * must match the number of pending IOs (nr_pending) before
805 * we continue.
4443ae10
N
806 */
807 spin_lock_irq(&conf->resync_lock);
808 conf->barrier++;
809 conf->nr_waiting++;
810 wait_event_lock_irq(conf->wait_barrier,
1c830532 811 conf->nr_pending == conf->nr_queued+1,
4443ae10 812 conf->resync_lock,
c3b328ac
N
813 flush_pending_writes(conf));
814
4443ae10
N
815 spin_unlock_irq(&conf->resync_lock);
816}
817
818static void unfreeze_array(conf_t *conf)
819{
820 /* reverse the effect of the freeze */
821 spin_lock_irq(&conf->resync_lock);
822 conf->barrier--;
823 conf->nr_waiting--;
824 wake_up(&conf->wait_barrier);
825 spin_unlock_irq(&conf->resync_lock);
826}
827
5a7bbad2 828static void make_request(mddev_t *mddev, struct bio * bio)
1da177e4 829{
070ec55d 830 conf_t *conf = mddev->private;
1da177e4
LT
831 mirror_info_t *mirror;
832 r10bio_t *r10_bio;
833 struct bio *read_bio;
834 int i;
835 int chunk_sects = conf->chunk_mask + 1;
a362357b 836 const int rw = bio_data_dir(bio);
2c7d46ec 837 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 838 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 839 unsigned long flags;
6bfe0b49 840 mdk_rdev_t *blocked_rdev;
c3b328ac 841 int plugged;
d4432c23
N
842 int sectors_handled;
843 int max_sectors;
1da177e4 844
e9c7469b
TH
845 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
846 md_flush_request(mddev, bio);
5a7bbad2 847 return;
e5dcdd80
N
848 }
849
1da177e4
LT
850 /* If this request crosses a chunk boundary, we need to
851 * split it. This will only happen for 1 PAGE (or less) requests.
852 */
853 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
854 > chunk_sects &&
855 conf->near_copies < conf->raid_disks)) {
856 struct bio_pair *bp;
857 /* Sanity check -- queue functions should prevent this happening */
858 if (bio->bi_vcnt != 1 ||
859 bio->bi_idx != 0)
860 goto bad_map;
861 /* This is a one page bio that upper layers
862 * refuse to split for us, so we need to split it.
863 */
6feef531 864 bp = bio_split(bio,
1da177e4 865 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
866
867 /* Each of these 'make_request' calls will call 'wait_barrier'.
868 * If the first succeeds but the second blocks due to the resync
869 * thread raising the barrier, we will deadlock because the
870 * IO to the underlying device will be queued in generic_make_request
871 * and will never complete, so will never reduce nr_pending.
872 * So increment nr_waiting here so no new raise_barriers will
873 * succeed, and so the second wait_barrier cannot block.
874 */
875 spin_lock_irq(&conf->resync_lock);
876 conf->nr_waiting++;
877 spin_unlock_irq(&conf->resync_lock);
878
5a7bbad2
CH
879 make_request(mddev, &bp->bio1);
880 make_request(mddev, &bp->bio2);
1da177e4 881
51e9ac77
N
882 spin_lock_irq(&conf->resync_lock);
883 conf->nr_waiting--;
884 wake_up(&conf->wait_barrier);
885 spin_unlock_irq(&conf->resync_lock);
886
1da177e4 887 bio_pair_release(bp);
5a7bbad2 888 return;
1da177e4 889 bad_map:
128595ed
N
890 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
891 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
892 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
893
6712ecf8 894 bio_io_error(bio);
5a7bbad2 895 return;
1da177e4
LT
896 }
897
3d310eb7 898 md_write_start(mddev, bio);
06d91a5f 899
1da177e4
LT
900 /*
901 * Register the new request and wait if the reconstruction
902 * thread has put up a bar for new requests.
903 * Continue immediately if no resync is active currently.
904 */
0a27ec96 905 wait_barrier(conf);
1da177e4 906
1da177e4
LT
907 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
908
909 r10_bio->master_bio = bio;
910 r10_bio->sectors = bio->bi_size >> 9;
911
912 r10_bio->mddev = mddev;
913 r10_bio->sector = bio->bi_sector;
6cce3b23 914 r10_bio->state = 0;
1da177e4 915
856e08e2
N
916 /* We might need to issue multiple reads to different
917 * devices if there are bad blocks around, so we keep
918 * track of the number of reads in bio->bi_phys_segments.
919 * If this is 0, there is only one r10_bio and no locking
920 * will be needed when the request completes. If it is
921 * non-zero, then it is the number of not-completed requests.
922 */
923 bio->bi_phys_segments = 0;
924 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
925
a362357b 926 if (rw == READ) {
1da177e4
LT
927 /*
928 * read balancing logic:
929 */
856e08e2
N
930 int disk;
931 int slot;
932
933read_again:
934 disk = read_balance(conf, r10_bio, &max_sectors);
935 slot = r10_bio->read_slot;
1da177e4
LT
936 if (disk < 0) {
937 raid_end_bio_io(r10_bio);
5a7bbad2 938 return;
1da177e4
LT
939 }
940 mirror = conf->mirrors + disk;
941
a167f663 942 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
943 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
944 max_sectors);
1da177e4
LT
945
946 r10_bio->devs[slot].bio = read_bio;
947
948 read_bio->bi_sector = r10_bio->devs[slot].addr +
949 mirror->rdev->data_offset;
950 read_bio->bi_bdev = mirror->rdev->bdev;
951 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 952 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
953 read_bio->bi_private = r10_bio;
954
856e08e2
N
955 if (max_sectors < r10_bio->sectors) {
956 /* Could not read all from this device, so we will
957 * need another r10_bio.
958 */
856e08e2
N
959 sectors_handled = (r10_bio->sectors + max_sectors
960 - bio->bi_sector);
961 r10_bio->sectors = max_sectors;
962 spin_lock_irq(&conf->device_lock);
963 if (bio->bi_phys_segments == 0)
964 bio->bi_phys_segments = 2;
965 else
966 bio->bi_phys_segments++;
967 spin_unlock(&conf->device_lock);
968 /* Cannot call generic_make_request directly
969 * as that will be queued in __generic_make_request
970 * and subsequent mempool_alloc might block
971 * waiting for it. so hand bio over to raid10d.
972 */
973 reschedule_retry(r10_bio);
974
975 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
976
977 r10_bio->master_bio = bio;
978 r10_bio->sectors = ((bio->bi_size >> 9)
979 - sectors_handled);
980 r10_bio->state = 0;
981 r10_bio->mddev = mddev;
982 r10_bio->sector = bio->bi_sector + sectors_handled;
983 goto read_again;
984 } else
985 generic_make_request(read_bio);
5a7bbad2 986 return;
1da177e4
LT
987 }
988
989 /*
990 * WRITE:
991 */
6bfe0b49 992 /* first select target devices under rcu_lock and
1da177e4
LT
993 * inc refcount on their rdev. Record them by setting
994 * bios[x] to bio
d4432c23
N
995 * If there are known/acknowledged bad blocks on any device
996 * on which we have seen a write error, we want to avoid
997 * writing to those blocks. This potentially requires several
998 * writes to write around the bad blocks. Each set of writes
999 * gets its own r10_bio with a set of bios attached. The number
1000 * of r10_bios is recored in bio->bi_phys_segments just as with
1001 * the read case.
1da177e4 1002 */
c3b328ac
N
1003 plugged = mddev_check_plugged(mddev);
1004
1da177e4 1005 raid10_find_phys(conf, r10_bio);
d4432c23 1006retry_write:
cb6969e8 1007 blocked_rdev = NULL;
1da177e4 1008 rcu_read_lock();
d4432c23
N
1009 max_sectors = r10_bio->sectors;
1010
1da177e4
LT
1011 for (i = 0; i < conf->copies; i++) {
1012 int d = r10_bio->devs[i].devnum;
d6065f7b 1013 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
6bfe0b49
DW
1014 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1015 atomic_inc(&rdev->nr_pending);
1016 blocked_rdev = rdev;
1017 break;
1018 }
d4432c23
N
1019 r10_bio->devs[i].bio = NULL;
1020 if (!rdev || test_bit(Faulty, &rdev->flags)) {
6cce3b23 1021 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1022 continue;
1023 }
1024 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1025 sector_t first_bad;
1026 sector_t dev_sector = r10_bio->devs[i].addr;
1027 int bad_sectors;
1028 int is_bad;
1029
1030 is_bad = is_badblock(rdev, dev_sector,
1031 max_sectors,
1032 &first_bad, &bad_sectors);
1033 if (is_bad < 0) {
1034 /* Mustn't write here until the bad block
1035 * is acknowledged
1036 */
1037 atomic_inc(&rdev->nr_pending);
1038 set_bit(BlockedBadBlocks, &rdev->flags);
1039 blocked_rdev = rdev;
1040 break;
1041 }
1042 if (is_bad && first_bad <= dev_sector) {
1043 /* Cannot write here at all */
1044 bad_sectors -= (dev_sector - first_bad);
1045 if (bad_sectors < max_sectors)
1046 /* Mustn't write more than bad_sectors
1047 * to other devices yet
1048 */
1049 max_sectors = bad_sectors;
1050 /* We don't set R10BIO_Degraded as that
1051 * only applies if the disk is missing,
1052 * so it might be re-added, and we want to
1053 * know to recover this chunk.
1054 * In this case the device is here, and the
1055 * fact that this chunk is not in-sync is
1056 * recorded in the bad block log.
1057 */
1058 continue;
1059 }
1060 if (is_bad) {
1061 int good_sectors = first_bad - dev_sector;
1062 if (good_sectors < max_sectors)
1063 max_sectors = good_sectors;
1064 }
6cce3b23 1065 }
d4432c23
N
1066 r10_bio->devs[i].bio = bio;
1067 atomic_inc(&rdev->nr_pending);
1da177e4
LT
1068 }
1069 rcu_read_unlock();
1070
6bfe0b49
DW
1071 if (unlikely(blocked_rdev)) {
1072 /* Have to wait for this device to get unblocked, then retry */
1073 int j;
1074 int d;
1075
1076 for (j = 0; j < i; j++)
1077 if (r10_bio->devs[j].bio) {
1078 d = r10_bio->devs[j].devnum;
1079 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1080 }
1081 allow_barrier(conf);
1082 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1083 wait_barrier(conf);
1084 goto retry_write;
1085 }
1086
d4432c23
N
1087 if (max_sectors < r10_bio->sectors) {
1088 /* We are splitting this into multiple parts, so
1089 * we need to prepare for allocating another r10_bio.
1090 */
1091 r10_bio->sectors = max_sectors;
1092 spin_lock_irq(&conf->device_lock);
1093 if (bio->bi_phys_segments == 0)
1094 bio->bi_phys_segments = 2;
1095 else
1096 bio->bi_phys_segments++;
1097 spin_unlock_irq(&conf->device_lock);
1098 }
1099 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1100
4e78064f 1101 atomic_set(&r10_bio->remaining, 1);
d4432c23 1102 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1103
1da177e4
LT
1104 for (i = 0; i < conf->copies; i++) {
1105 struct bio *mbio;
1106 int d = r10_bio->devs[i].devnum;
1107 if (!r10_bio->devs[i].bio)
1108 continue;
1109
a167f663 1110 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1111 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1112 max_sectors);
1da177e4
LT
1113 r10_bio->devs[i].bio = mbio;
1114
d4432c23
N
1115 mbio->bi_sector = (r10_bio->devs[i].addr+
1116 conf->mirrors[d].rdev->data_offset);
1da177e4
LT
1117 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1118 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 1119 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
1120 mbio->bi_private = r10_bio;
1121
1122 atomic_inc(&r10_bio->remaining);
4e78064f
N
1123 spin_lock_irqsave(&conf->device_lock, flags);
1124 bio_list_add(&conf->pending_bio_list, mbio);
4e78064f 1125 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1126 }
1127
4e78064f
N
1128 if (atomic_dec_and_test(&r10_bio->remaining)) {
1129 /* This matches the end of raid10_end_write_request() */
1130 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
1131 r10_bio->sectors,
1132 !test_bit(R10BIO_Degraded, &r10_bio->state),
1133 0);
f6f953aa
AR
1134 md_write_end(mddev);
1135 raid_end_bio_io(r10_bio);
f6f953aa
AR
1136 }
1137
a35e63ef
N
1138 /* In case raid10d snuck in to freeze_array */
1139 wake_up(&conf->wait_barrier);
1140
d4432c23 1141 if (sectors_handled < (bio->bi_size >> 9)) {
5e570289 1142 /* We need another r10_bio. It has already been counted
d4432c23
N
1143 * in bio->bi_phys_segments.
1144 */
1145 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1146
1147 r10_bio->master_bio = bio;
1148 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1149
1150 r10_bio->mddev = mddev;
1151 r10_bio->sector = bio->bi_sector + sectors_handled;
1152 r10_bio->state = 0;
1153 goto retry_write;
1154 }
1155
c3b328ac 1156 if (do_sync || !mddev->bitmap || !plugged)
e3881a68 1157 md_wakeup_thread(mddev->thread);
1da177e4
LT
1158}
1159
1160static void status(struct seq_file *seq, mddev_t *mddev)
1161{
070ec55d 1162 conf_t *conf = mddev->private;
1da177e4
LT
1163 int i;
1164
1165 if (conf->near_copies < conf->raid_disks)
9d8f0363 1166 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1da177e4
LT
1167 if (conf->near_copies > 1)
1168 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
1169 if (conf->far_copies > 1) {
1170 if (conf->far_offset)
1171 seq_printf(seq, " %d offset-copies", conf->far_copies);
1172 else
1173 seq_printf(seq, " %d far-copies", conf->far_copies);
1174 }
1da177e4 1175 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 1176 conf->raid_disks - mddev->degraded);
1da177e4
LT
1177 for (i = 0; i < conf->raid_disks; i++)
1178 seq_printf(seq, "%s",
1179 conf->mirrors[i].rdev &&
b2d444d7 1180 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1181 seq_printf(seq, "]");
1182}
1183
700c7213
N
1184/* check if there are enough drives for
1185 * every block to appear on atleast one.
1186 * Don't consider the device numbered 'ignore'
1187 * as we might be about to remove it.
1188 */
1189static int enough(conf_t *conf, int ignore)
1190{
1191 int first = 0;
1192
1193 do {
1194 int n = conf->copies;
1195 int cnt = 0;
1196 while (n--) {
1197 if (conf->mirrors[first].rdev &&
1198 first != ignore)
1199 cnt++;
1200 first = (first+1) % conf->raid_disks;
1201 }
1202 if (cnt == 0)
1203 return 0;
1204 } while (first != 0);
1205 return 1;
1206}
1207
1da177e4
LT
1208static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1209{
1210 char b[BDEVNAME_SIZE];
070ec55d 1211 conf_t *conf = mddev->private;
1da177e4
LT
1212
1213 /*
1214 * If it is not operational, then we have already marked it as dead
1215 * else if it is the last working disks, ignore the error, let the
1216 * next level up know.
1217 * else mark the drive as failed
1218 */
b2d444d7 1219 if (test_bit(In_sync, &rdev->flags)
700c7213 1220 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1221 /*
1222 * Don't fail the drive, just return an IO error.
1da177e4
LT
1223 */
1224 return;
c04be0aa
N
1225 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1226 unsigned long flags;
1227 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1228 mddev->degraded++;
c04be0aa 1229 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1230 /*
1231 * if recovery is running, make sure it aborts.
1232 */
dfc70645 1233 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1234 }
de393cde 1235 set_bit(Blocked, &rdev->flags);
b2d444d7 1236 set_bit(Faulty, &rdev->flags);
850b2b42 1237 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1238 printk(KERN_ALERT
1239 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1240 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed
N
1241 mdname(mddev), bdevname(rdev->bdev, b),
1242 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1243}
1244
1245static void print_conf(conf_t *conf)
1246{
1247 int i;
1248 mirror_info_t *tmp;
1249
128595ed 1250 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1251 if (!conf) {
128595ed 1252 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1253 return;
1254 }
128595ed 1255 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1256 conf->raid_disks);
1257
1258 for (i = 0; i < conf->raid_disks; i++) {
1259 char b[BDEVNAME_SIZE];
1260 tmp = conf->mirrors + i;
1261 if (tmp->rdev)
128595ed 1262 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1263 i, !test_bit(In_sync, &tmp->rdev->flags),
1264 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1265 bdevname(tmp->rdev->bdev,b));
1266 }
1267}
1268
1269static void close_sync(conf_t *conf)
1270{
0a27ec96
N
1271 wait_barrier(conf);
1272 allow_barrier(conf);
1da177e4
LT
1273
1274 mempool_destroy(conf->r10buf_pool);
1275 conf->r10buf_pool = NULL;
1276}
1277
1278static int raid10_spare_active(mddev_t *mddev)
1279{
1280 int i;
1281 conf_t *conf = mddev->private;
1282 mirror_info_t *tmp;
6b965620
N
1283 int count = 0;
1284 unsigned long flags;
1da177e4
LT
1285
1286 /*
1287 * Find all non-in_sync disks within the RAID10 configuration
1288 * and mark them in_sync
1289 */
1290 for (i = 0; i < conf->raid_disks; i++) {
1291 tmp = conf->mirrors + i;
1292 if (tmp->rdev
b2d444d7 1293 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 1294 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1295 count++;
e6ffbcb6 1296 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1297 }
1298 }
6b965620
N
1299 spin_lock_irqsave(&conf->device_lock, flags);
1300 mddev->degraded -= count;
1301 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1302
1303 print_conf(conf);
6b965620 1304 return count;
1da177e4
LT
1305}
1306
1307
1308static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1309{
1310 conf_t *conf = mddev->private;
199050ea 1311 int err = -EEXIST;
1da177e4 1312 int mirror;
6c2fce2e 1313 int first = 0;
84707f38 1314 int last = conf->raid_disks - 1;
1da177e4
LT
1315
1316 if (mddev->recovery_cp < MaxSector)
1317 /* only hot-add to in-sync arrays, as recovery is
1318 * very different from resync
1319 */
199050ea 1320 return -EBUSY;
700c7213 1321 if (!enough(conf, -1))
199050ea 1322 return -EINVAL;
1da177e4 1323
a53a6c85 1324 if (rdev->raid_disk >= 0)
6c2fce2e 1325 first = last = rdev->raid_disk;
1da177e4 1326
2c4193df 1327 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1328 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1329 mirror = rdev->saved_raid_disk;
1330 else
6c2fce2e 1331 mirror = first;
2bb77736
N
1332 for ( ; mirror <= last ; mirror++) {
1333 mirror_info_t *p = &conf->mirrors[mirror];
1334 if (p->recovery_disabled == mddev->recovery_disabled)
1335 continue;
1336 if (!p->rdev)
1337 continue;
1da177e4 1338
2bb77736
N
1339 disk_stack_limits(mddev->gendisk, rdev->bdev,
1340 rdev->data_offset << 9);
1341 /* as we don't honour merge_bvec_fn, we must
1342 * never risk violating it, so limit
1343 * ->max_segments to one lying with a single
1344 * page, as a one page request is never in
1345 * violation.
1346 */
1347 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1348 blk_queue_max_segments(mddev->queue, 1);
1349 blk_queue_segment_boundary(mddev->queue,
1350 PAGE_CACHE_SIZE - 1);
1da177e4
LT
1351 }
1352
2bb77736
N
1353 p->head_position = 0;
1354 rdev->raid_disk = mirror;
1355 err = 0;
1356 if (rdev->saved_raid_disk != mirror)
1357 conf->fullsync = 1;
1358 rcu_assign_pointer(p->rdev, rdev);
1359 break;
1360 }
1361
ac5e7113 1362 md_integrity_add_rdev(rdev, mddev);
1da177e4 1363 print_conf(conf);
199050ea 1364 return err;
1da177e4
LT
1365}
1366
1367static int raid10_remove_disk(mddev_t *mddev, int number)
1368{
1369 conf_t *conf = mddev->private;
1370 int err = 0;
1371 mdk_rdev_t *rdev;
1372 mirror_info_t *p = conf->mirrors+ number;
1373
1374 print_conf(conf);
1375 rdev = p->rdev;
1376 if (rdev) {
b2d444d7 1377 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1378 atomic_read(&rdev->nr_pending)) {
1379 err = -EBUSY;
1380 goto abort;
1381 }
dfc70645
N
1382 /* Only remove faulty devices in recovery
1383 * is not possible.
1384 */
1385 if (!test_bit(Faulty, &rdev->flags) &&
2bb77736 1386 mddev->recovery_disabled != p->recovery_disabled &&
700c7213 1387 enough(conf, -1)) {
dfc70645
N
1388 err = -EBUSY;
1389 goto abort;
1390 }
1da177e4 1391 p->rdev = NULL;
fbd568a3 1392 synchronize_rcu();
1da177e4
LT
1393 if (atomic_read(&rdev->nr_pending)) {
1394 /* lost the race, try later */
1395 err = -EBUSY;
1396 p->rdev = rdev;
ac5e7113 1397 goto abort;
1da177e4 1398 }
a91a2785 1399 err = md_integrity_register(mddev);
1da177e4
LT
1400 }
1401abort:
1402
1403 print_conf(conf);
1404 return err;
1405}
1406
1407
6712ecf8 1408static void end_sync_read(struct bio *bio, int error)
1da177e4 1409{
7b92813c 1410 r10bio_t *r10_bio = bio->bi_private;
070ec55d 1411 conf_t *conf = r10_bio->mddev->private;
778ca018 1412 int d;
1da177e4 1413
749c55e9 1414 d = find_bio_disk(conf, r10_bio, bio, NULL);
0eb3ff12
N
1415
1416 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1417 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1418 else
1419 /* The write handler will notice the lack of
1420 * R10BIO_Uptodate and record any errors etc
1421 */
4dbcdc75
N
1422 atomic_add(r10_bio->sectors,
1423 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1424
1425 /* for reconstruct, we always reschedule after a read.
1426 * for resync, only after all reads
1427 */
73d5c38a 1428 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1429 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1430 atomic_dec_and_test(&r10_bio->remaining)) {
1431 /* we have read all the blocks,
1432 * do the comparison in process context in raid10d
1433 */
1434 reschedule_retry(r10_bio);
1435 }
1da177e4
LT
1436}
1437
5e570289 1438static void end_sync_request(r10bio_t *r10_bio)
1da177e4 1439{
1da177e4 1440 mddev_t *mddev = r10_bio->mddev;
dfc70645 1441
1da177e4
LT
1442 while (atomic_dec_and_test(&r10_bio->remaining)) {
1443 if (r10_bio->master_bio == NULL) {
1444 /* the primary of several recovery bios */
73d5c38a 1445 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1446 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1447 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1448 reschedule_retry(r10_bio);
1449 else
1450 put_buf(r10_bio);
73d5c38a 1451 md_done_sync(mddev, s, 1);
1da177e4
LT
1452 break;
1453 } else {
1454 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1a0b7cd8
N
1455 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1456 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1457 reschedule_retry(r10_bio);
1458 else
1459 put_buf(r10_bio);
1da177e4
LT
1460 r10_bio = r10_bio2;
1461 }
1462 }
1da177e4
LT
1463}
1464
5e570289
N
1465static void end_sync_write(struct bio *bio, int error)
1466{
1467 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1468 r10bio_t *r10_bio = bio->bi_private;
1469 mddev_t *mddev = r10_bio->mddev;
1470 conf_t *conf = mddev->private;
1471 int d;
1472 sector_t first_bad;
1473 int bad_sectors;
1474 int slot;
1475
1476 d = find_bio_disk(conf, r10_bio, bio, &slot);
1477
1478 if (!uptodate) {
1479 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1480 set_bit(R10BIO_WriteError, &r10_bio->state);
1481 } else if (is_badblock(conf->mirrors[d].rdev,
1482 r10_bio->devs[slot].addr,
1483 r10_bio->sectors,
1484 &first_bad, &bad_sectors))
1485 set_bit(R10BIO_MadeGood, &r10_bio->state);
1486
1487 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1488
1489 end_sync_request(r10_bio);
1490}
1491
1da177e4
LT
1492/*
1493 * Note: sync and recover and handled very differently for raid10
1494 * This code is for resync.
1495 * For resync, we read through virtual addresses and read all blocks.
1496 * If there is any error, we schedule a write. The lowest numbered
1497 * drive is authoritative.
1498 * However requests come for physical address, so we need to map.
1499 * For every physical address there are raid_disks/copies virtual addresses,
1500 * which is always are least one, but is not necessarly an integer.
1501 * This means that a physical address can span multiple chunks, so we may
1502 * have to submit multiple io requests for a single sync request.
1503 */
1504/*
1505 * We check if all blocks are in-sync and only write to blocks that
1506 * aren't in sync
1507 */
1508static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1509{
070ec55d 1510 conf_t *conf = mddev->private;
1da177e4
LT
1511 int i, first;
1512 struct bio *tbio, *fbio;
1513
1514 atomic_set(&r10_bio->remaining, 1);
1515
1516 /* find the first device with a block */
1517 for (i=0; i<conf->copies; i++)
1518 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1519 break;
1520
1521 if (i == conf->copies)
1522 goto done;
1523
1524 first = i;
1525 fbio = r10_bio->devs[i].bio;
1526
1527 /* now find blocks with errors */
0eb3ff12
N
1528 for (i=0 ; i < conf->copies ; i++) {
1529 int j, d;
1530 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1531
1da177e4 1532 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1533
1534 if (tbio->bi_end_io != end_sync_read)
1535 continue;
1536 if (i == first)
1da177e4 1537 continue;
0eb3ff12
N
1538 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1539 /* We know that the bi_io_vec layout is the same for
1540 * both 'first' and 'i', so we just compare them.
1541 * All vec entries are PAGE_SIZE;
1542 */
1543 for (j = 0; j < vcnt; j++)
1544 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1545 page_address(tbio->bi_io_vec[j].bv_page),
1546 PAGE_SIZE))
1547 break;
1548 if (j == vcnt)
1549 continue;
1550 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
1551 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1552 /* Don't fix anything. */
1553 continue;
0eb3ff12 1554 }
f84ee364
N
1555 /* Ok, we need to write this bio, either to correct an
1556 * inconsistency or to correct an unreadable block.
1da177e4
LT
1557 * First we need to fixup bv_offset, bv_len and
1558 * bi_vecs, as the read request might have corrupted these
1559 */
1560 tbio->bi_vcnt = vcnt;
1561 tbio->bi_size = r10_bio->sectors << 9;
1562 tbio->bi_idx = 0;
1563 tbio->bi_phys_segments = 0;
1da177e4
LT
1564 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1565 tbio->bi_flags |= 1 << BIO_UPTODATE;
1566 tbio->bi_next = NULL;
1567 tbio->bi_rw = WRITE;
1568 tbio->bi_private = r10_bio;
1569 tbio->bi_sector = r10_bio->devs[i].addr;
1570
1571 for (j=0; j < vcnt ; j++) {
1572 tbio->bi_io_vec[j].bv_offset = 0;
1573 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1574
1575 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1576 page_address(fbio->bi_io_vec[j].bv_page),
1577 PAGE_SIZE);
1578 }
1579 tbio->bi_end_io = end_sync_write;
1580
1581 d = r10_bio->devs[i].devnum;
1582 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1583 atomic_inc(&r10_bio->remaining);
1584 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1585
1586 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1587 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1588 generic_make_request(tbio);
1589 }
1590
1591done:
1592 if (atomic_dec_and_test(&r10_bio->remaining)) {
1593 md_done_sync(mddev, r10_bio->sectors, 1);
1594 put_buf(r10_bio);
1595 }
1596}
1597
1598/*
1599 * Now for the recovery code.
1600 * Recovery happens across physical sectors.
1601 * We recover all non-is_sync drives by finding the virtual address of
1602 * each, and then choose a working drive that also has that virt address.
1603 * There is a separate r10_bio for each non-in_sync drive.
1604 * Only the first two slots are in use. The first for reading,
1605 * The second for writing.
1606 *
1607 */
5e570289
N
1608static void fix_recovery_read_error(r10bio_t *r10_bio)
1609{
1610 /* We got a read error during recovery.
1611 * We repeat the read in smaller page-sized sections.
1612 * If a read succeeds, write it to the new device or record
1613 * a bad block if we cannot.
1614 * If a read fails, record a bad block on both old and
1615 * new devices.
1616 */
1617 mddev_t *mddev = r10_bio->mddev;
1618 conf_t *conf = mddev->private;
1619 struct bio *bio = r10_bio->devs[0].bio;
1620 sector_t sect = 0;
1621 int sectors = r10_bio->sectors;
1622 int idx = 0;
1623 int dr = r10_bio->devs[0].devnum;
1624 int dw = r10_bio->devs[1].devnum;
1625
1626 while (sectors) {
1627 int s = sectors;
1628 mdk_rdev_t *rdev;
1629 sector_t addr;
1630 int ok;
1631
1632 if (s > (PAGE_SIZE>>9))
1633 s = PAGE_SIZE >> 9;
1634
1635 rdev = conf->mirrors[dr].rdev;
1636 addr = r10_bio->devs[0].addr + sect,
1637 ok = sync_page_io(rdev,
1638 addr,
1639 s << 9,
1640 bio->bi_io_vec[idx].bv_page,
1641 READ, false);
1642 if (ok) {
1643 rdev = conf->mirrors[dw].rdev;
1644 addr = r10_bio->devs[1].addr + sect;
1645 ok = sync_page_io(rdev,
1646 addr,
1647 s << 9,
1648 bio->bi_io_vec[idx].bv_page,
1649 WRITE, false);
1650 if (!ok)
1651 set_bit(WriteErrorSeen, &rdev->flags);
1652 }
1653 if (!ok) {
1654 /* We don't worry if we cannot set a bad block -
1655 * it really is bad so there is no loss in not
1656 * recording it yet
1657 */
1658 rdev_set_badblocks(rdev, addr, s, 0);
1659
1660 if (rdev != conf->mirrors[dw].rdev) {
1661 /* need bad block on destination too */
1662 mdk_rdev_t *rdev2 = conf->mirrors[dw].rdev;
1663 addr = r10_bio->devs[1].addr + sect;
1664 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1665 if (!ok) {
1666 /* just abort the recovery */
1667 printk(KERN_NOTICE
1668 "md/raid10:%s: recovery aborted"
1669 " due to read error\n",
1670 mdname(mddev));
1671
1672 conf->mirrors[dw].recovery_disabled
1673 = mddev->recovery_disabled;
1674 set_bit(MD_RECOVERY_INTR,
1675 &mddev->recovery);
1676 break;
1677 }
1678 }
1679 }
1680
1681 sectors -= s;
1682 sect += s;
1683 idx++;
1684 }
1685}
1da177e4
LT
1686
1687static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1688{
070ec55d 1689 conf_t *conf = mddev->private;
c65060ad
NK
1690 int d;
1691 struct bio *wbio;
1da177e4 1692
5e570289
N
1693 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1694 fix_recovery_read_error(r10_bio);
1695 end_sync_request(r10_bio);
1696 return;
1697 }
1698
c65060ad
NK
1699 /*
1700 * share the pages with the first bio
1da177e4
LT
1701 * and submit the write request
1702 */
1da177e4 1703 wbio = r10_bio->devs[1].bio;
1da177e4
LT
1704 d = r10_bio->devs[1].devnum;
1705
1706 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1707 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
5e570289 1708 generic_make_request(wbio);
1da177e4
LT
1709}
1710
1711
1e50915f
RB
1712/*
1713 * Used by fix_read_error() to decay the per rdev read_errors.
1714 * We halve the read error count for every hour that has elapsed
1715 * since the last recorded read error.
1716 *
1717 */
1718static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1719{
1720 struct timespec cur_time_mon;
1721 unsigned long hours_since_last;
1722 unsigned int read_errors = atomic_read(&rdev->read_errors);
1723
1724 ktime_get_ts(&cur_time_mon);
1725
1726 if (rdev->last_read_error.tv_sec == 0 &&
1727 rdev->last_read_error.tv_nsec == 0) {
1728 /* first time we've seen a read error */
1729 rdev->last_read_error = cur_time_mon;
1730 return;
1731 }
1732
1733 hours_since_last = (cur_time_mon.tv_sec -
1734 rdev->last_read_error.tv_sec) / 3600;
1735
1736 rdev->last_read_error = cur_time_mon;
1737
1738 /*
1739 * if hours_since_last is > the number of bits in read_errors
1740 * just set read errors to 0. We do this to avoid
1741 * overflowing the shift of read_errors by hours_since_last.
1742 */
1743 if (hours_since_last >= 8 * sizeof(read_errors))
1744 atomic_set(&rdev->read_errors, 0);
1745 else
1746 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1747}
1748
58c54fcc
N
1749static int r10_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1750 int sectors, struct page *page, int rw)
1751{
1752 sector_t first_bad;
1753 int bad_sectors;
1754
1755 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1756 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1757 return -1;
1758 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1759 /* success */
1760 return 1;
1761 if (rw == WRITE)
1762 set_bit(WriteErrorSeen, &rdev->flags);
1763 /* need to record an error - either for the block or the device */
1764 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1765 md_error(rdev->mddev, rdev);
1766 return 0;
1767}
1768
1da177e4
LT
1769/*
1770 * This is a kernel thread which:
1771 *
1772 * 1. Retries failed read operations on working mirrors.
1773 * 2. Updates the raid superblock when problems encounter.
6814d536 1774 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1775 */
1776
6814d536
N
1777static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1778{
1779 int sect = 0; /* Offset from r10_bio->sector */
1780 int sectors = r10_bio->sectors;
1781 mdk_rdev_t*rdev;
1e50915f 1782 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 1783 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 1784
7c4e06ff
N
1785 /* still own a reference to this rdev, so it cannot
1786 * have been cleared recently.
1787 */
1788 rdev = conf->mirrors[d].rdev;
1e50915f 1789
7c4e06ff
N
1790 if (test_bit(Faulty, &rdev->flags))
1791 /* drive has already been failed, just ignore any
1792 more fix_read_error() attempts */
1793 return;
1e50915f 1794
7c4e06ff
N
1795 check_decay_read_errors(mddev, rdev);
1796 atomic_inc(&rdev->read_errors);
1797 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1798 char b[BDEVNAME_SIZE];
1799 bdevname(rdev->bdev, b);
1e50915f 1800
7c4e06ff
N
1801 printk(KERN_NOTICE
1802 "md/raid10:%s: %s: Raid device exceeded "
1803 "read_error threshold [cur %d:max %d]\n",
1804 mdname(mddev), b,
1805 atomic_read(&rdev->read_errors), max_read_errors);
1806 printk(KERN_NOTICE
1807 "md/raid10:%s: %s: Failing raid device\n",
1808 mdname(mddev), b);
1809 md_error(mddev, conf->mirrors[d].rdev);
1810 return;
1e50915f 1811 }
1e50915f 1812
6814d536
N
1813 while(sectors) {
1814 int s = sectors;
1815 int sl = r10_bio->read_slot;
1816 int success = 0;
1817 int start;
1818
1819 if (s > (PAGE_SIZE>>9))
1820 s = PAGE_SIZE >> 9;
1821
1822 rcu_read_lock();
1823 do {
8dbed5ce
N
1824 sector_t first_bad;
1825 int bad_sectors;
1826
0544a21d 1827 d = r10_bio->devs[sl].devnum;
6814d536
N
1828 rdev = rcu_dereference(conf->mirrors[d].rdev);
1829 if (rdev &&
8dbed5ce
N
1830 test_bit(In_sync, &rdev->flags) &&
1831 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1832 &first_bad, &bad_sectors) == 0) {
6814d536
N
1833 atomic_inc(&rdev->nr_pending);
1834 rcu_read_unlock();
2b193363 1835 success = sync_page_io(rdev,
6814d536 1836 r10_bio->devs[sl].addr +
ccebd4c4 1837 sect,
6814d536 1838 s<<9,
ccebd4c4 1839 conf->tmppage, READ, false);
6814d536
N
1840 rdev_dec_pending(rdev, mddev);
1841 rcu_read_lock();
1842 if (success)
1843 break;
1844 }
1845 sl++;
1846 if (sl == conf->copies)
1847 sl = 0;
1848 } while (!success && sl != r10_bio->read_slot);
1849 rcu_read_unlock();
1850
1851 if (!success) {
58c54fcc
N
1852 /* Cannot read from anywhere, just mark the block
1853 * as bad on the first device to discourage future
1854 * reads.
1855 */
6814d536 1856 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
1857 rdev = conf->mirrors[dn].rdev;
1858
1859 if (!rdev_set_badblocks(
1860 rdev,
1861 r10_bio->devs[r10_bio->read_slot].addr
1862 + sect,
1863 s, 0))
1864 md_error(mddev, rdev);
6814d536
N
1865 break;
1866 }
1867
1868 start = sl;
1869 /* write it back and re-read */
1870 rcu_read_lock();
1871 while (sl != r10_bio->read_slot) {
67b8dc4b 1872 char b[BDEVNAME_SIZE];
0544a21d 1873
6814d536
N
1874 if (sl==0)
1875 sl = conf->copies;
1876 sl--;
1877 d = r10_bio->devs[sl].devnum;
1878 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
1879 if (!rdev ||
1880 !test_bit(In_sync, &rdev->flags))
1881 continue;
1882
1883 atomic_inc(&rdev->nr_pending);
1884 rcu_read_unlock();
58c54fcc
N
1885 if (r10_sync_page_io(rdev,
1886 r10_bio->devs[sl].addr +
1887 sect,
1888 s<<9, conf->tmppage, WRITE)
1294b9c9
N
1889 == 0) {
1890 /* Well, this device is dead */
1891 printk(KERN_NOTICE
1892 "md/raid10:%s: read correction "
1893 "write failed"
1894 " (%d sectors at %llu on %s)\n",
1895 mdname(mddev), s,
1896 (unsigned long long)(
1897 sect + rdev->data_offset),
1898 bdevname(rdev->bdev, b));
1899 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1900 "drive\n",
1901 mdname(mddev),
1902 bdevname(rdev->bdev, b));
6814d536 1903 }
1294b9c9
N
1904 rdev_dec_pending(rdev, mddev);
1905 rcu_read_lock();
6814d536
N
1906 }
1907 sl = start;
1908 while (sl != r10_bio->read_slot) {
1294b9c9 1909 char b[BDEVNAME_SIZE];
0544a21d 1910
6814d536
N
1911 if (sl==0)
1912 sl = conf->copies;
1913 sl--;
1914 d = r10_bio->devs[sl].devnum;
1915 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
1916 if (!rdev ||
1917 !test_bit(In_sync, &rdev->flags))
1918 continue;
6814d536 1919
1294b9c9
N
1920 atomic_inc(&rdev->nr_pending);
1921 rcu_read_unlock();
58c54fcc
N
1922 switch (r10_sync_page_io(rdev,
1923 r10_bio->devs[sl].addr +
1924 sect,
1925 s<<9, conf->tmppage,
1926 READ)) {
1927 case 0:
1294b9c9
N
1928 /* Well, this device is dead */
1929 printk(KERN_NOTICE
1930 "md/raid10:%s: unable to read back "
1931 "corrected sectors"
1932 " (%d sectors at %llu on %s)\n",
1933 mdname(mddev), s,
1934 (unsigned long long)(
1935 sect + rdev->data_offset),
1936 bdevname(rdev->bdev, b));
1937 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1938 "drive\n",
1939 mdname(mddev),
1940 bdevname(rdev->bdev, b));
58c54fcc
N
1941 break;
1942 case 1:
1294b9c9
N
1943 printk(KERN_INFO
1944 "md/raid10:%s: read error corrected"
1945 " (%d sectors at %llu on %s)\n",
1946 mdname(mddev), s,
1947 (unsigned long long)(
1948 sect + rdev->data_offset),
1949 bdevname(rdev->bdev, b));
1950 atomic_add(s, &rdev->corrected_errors);
6814d536 1951 }
1294b9c9
N
1952
1953 rdev_dec_pending(rdev, mddev);
1954 rcu_read_lock();
6814d536
N
1955 }
1956 rcu_read_unlock();
1957
1958 sectors -= s;
1959 sect += s;
1960 }
1961}
1962
bd870a16
N
1963static void bi_complete(struct bio *bio, int error)
1964{
1965 complete((struct completion *)bio->bi_private);
1966}
1967
1968static int submit_bio_wait(int rw, struct bio *bio)
1969{
1970 struct completion event;
1971 rw |= REQ_SYNC;
1972
1973 init_completion(&event);
1974 bio->bi_private = &event;
1975 bio->bi_end_io = bi_complete;
1976 submit_bio(rw, bio);
1977 wait_for_completion(&event);
1978
1979 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1980}
1981
1982static int narrow_write_error(r10bio_t *r10_bio, int i)
1983{
1984 struct bio *bio = r10_bio->master_bio;
1985 mddev_t *mddev = r10_bio->mddev;
1986 conf_t *conf = mddev->private;
1987 mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
1988 /* bio has the data to be written to slot 'i' where
1989 * we just recently had a write error.
1990 * We repeatedly clone the bio and trim down to one block,
1991 * then try the write. Where the write fails we record
1992 * a bad block.
1993 * It is conceivable that the bio doesn't exactly align with
1994 * blocks. We must handle this.
1995 *
1996 * We currently own a reference to the rdev.
1997 */
1998
1999 int block_sectors;
2000 sector_t sector;
2001 int sectors;
2002 int sect_to_write = r10_bio->sectors;
2003 int ok = 1;
2004
2005 if (rdev->badblocks.shift < 0)
2006 return 0;
2007
2008 block_sectors = 1 << rdev->badblocks.shift;
2009 sector = r10_bio->sector;
2010 sectors = ((r10_bio->sector + block_sectors)
2011 & ~(sector_t)(block_sectors - 1))
2012 - sector;
2013
2014 while (sect_to_write) {
2015 struct bio *wbio;
2016 if (sectors > sect_to_write)
2017 sectors = sect_to_write;
2018 /* Write at 'sector' for 'sectors' */
2019 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2020 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2021 wbio->bi_sector = (r10_bio->devs[i].addr+
2022 rdev->data_offset+
2023 (sector - r10_bio->sector));
2024 wbio->bi_bdev = rdev->bdev;
2025 if (submit_bio_wait(WRITE, wbio) == 0)
2026 /* Failure! */
2027 ok = rdev_set_badblocks(rdev, sector,
2028 sectors, 0)
2029 && ok;
2030
2031 bio_put(wbio);
2032 sect_to_write -= sectors;
2033 sector += sectors;
2034 sectors = block_sectors;
2035 }
2036 return ok;
2037}
2038
560f8e55
N
2039static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
2040{
2041 int slot = r10_bio->read_slot;
2042 int mirror = r10_bio->devs[slot].devnum;
2043 struct bio *bio;
2044 conf_t *conf = mddev->private;
2045 mdk_rdev_t *rdev;
2046 char b[BDEVNAME_SIZE];
2047 unsigned long do_sync;
856e08e2 2048 int max_sectors;
560f8e55
N
2049
2050 /* we got a read error. Maybe the drive is bad. Maybe just
2051 * the block and we can fix it.
2052 * We freeze all other IO, and try reading the block from
2053 * other devices. When we find one, we re-write
2054 * and check it that fixes the read error.
2055 * This is all done synchronously while the array is
2056 * frozen.
2057 */
2058 if (mddev->ro == 0) {
2059 freeze_array(conf);
2060 fix_read_error(conf, mddev, r10_bio);
2061 unfreeze_array(conf);
2062 }
2063 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2064
2065 bio = r10_bio->devs[slot].bio;
7399c31b 2066 bdevname(bio->bi_bdev, b);
560f8e55
N
2067 r10_bio->devs[slot].bio =
2068 mddev->ro ? IO_BLOCKED : NULL;
7399c31b 2069read_more:
856e08e2 2070 mirror = read_balance(conf, r10_bio, &max_sectors);
7399c31b 2071 if (mirror == -1) {
560f8e55
N
2072 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2073 " read error for block %llu\n",
7399c31b 2074 mdname(mddev), b,
560f8e55
N
2075 (unsigned long long)r10_bio->sector);
2076 raid_end_bio_io(r10_bio);
2077 bio_put(bio);
2078 return;
2079 }
2080
2081 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
7399c31b
N
2082 if (bio)
2083 bio_put(bio);
560f8e55
N
2084 slot = r10_bio->read_slot;
2085 rdev = conf->mirrors[mirror].rdev;
2086 printk_ratelimited(
2087 KERN_ERR
2088 "md/raid10:%s: %s: redirecting"
2089 "sector %llu to another mirror\n",
2090 mdname(mddev),
2091 bdevname(rdev->bdev, b),
2092 (unsigned long long)r10_bio->sector);
2093 bio = bio_clone_mddev(r10_bio->master_bio,
2094 GFP_NOIO, mddev);
7399c31b
N
2095 md_trim_bio(bio,
2096 r10_bio->sector - bio->bi_sector,
2097 max_sectors);
560f8e55
N
2098 r10_bio->devs[slot].bio = bio;
2099 bio->bi_sector = r10_bio->devs[slot].addr
2100 + rdev->data_offset;
2101 bio->bi_bdev = rdev->bdev;
2102 bio->bi_rw = READ | do_sync;
2103 bio->bi_private = r10_bio;
2104 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2105 if (max_sectors < r10_bio->sectors) {
2106 /* Drat - have to split this up more */
2107 struct bio *mbio = r10_bio->master_bio;
2108 int sectors_handled =
2109 r10_bio->sector + max_sectors
2110 - mbio->bi_sector;
2111 r10_bio->sectors = max_sectors;
2112 spin_lock_irq(&conf->device_lock);
2113 if (mbio->bi_phys_segments == 0)
2114 mbio->bi_phys_segments = 2;
2115 else
2116 mbio->bi_phys_segments++;
2117 spin_unlock_irq(&conf->device_lock);
2118 generic_make_request(bio);
2119 bio = NULL;
2120
2121 r10_bio = mempool_alloc(conf->r10bio_pool,
2122 GFP_NOIO);
2123 r10_bio->master_bio = mbio;
2124 r10_bio->sectors = (mbio->bi_size >> 9)
2125 - sectors_handled;
2126 r10_bio->state = 0;
2127 set_bit(R10BIO_ReadError,
2128 &r10_bio->state);
2129 r10_bio->mddev = mddev;
2130 r10_bio->sector = mbio->bi_sector
2131 + sectors_handled;
2132
2133 goto read_more;
2134 } else
2135 generic_make_request(bio);
560f8e55
N
2136}
2137
749c55e9
N
2138static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio)
2139{
2140 /* Some sort of write request has finished and it
2141 * succeeded in writing where we thought there was a
2142 * bad block. So forget the bad block.
1a0b7cd8
N
2143 * Or possibly if failed and we need to record
2144 * a bad block.
749c55e9
N
2145 */
2146 int m;
2147 mdk_rdev_t *rdev;
2148
2149 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2150 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2151 for (m = 0; m < conf->copies; m++) {
2152 int dev = r10_bio->devs[m].devnum;
2153 rdev = conf->mirrors[dev].rdev;
2154 if (r10_bio->devs[m].bio == NULL)
2155 continue;
2156 if (test_bit(BIO_UPTODATE,
749c55e9 2157 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2158 rdev_clear_badblocks(
2159 rdev,
2160 r10_bio->devs[m].addr,
2161 r10_bio->sectors);
1a0b7cd8
N
2162 } else {
2163 if (!rdev_set_badblocks(
2164 rdev,
2165 r10_bio->devs[m].addr,
2166 r10_bio->sectors, 0))
2167 md_error(conf->mddev, rdev);
749c55e9 2168 }
1a0b7cd8 2169 }
749c55e9
N
2170 put_buf(r10_bio);
2171 } else {
bd870a16
N
2172 for (m = 0; m < conf->copies; m++) {
2173 int dev = r10_bio->devs[m].devnum;
2174 struct bio *bio = r10_bio->devs[m].bio;
2175 rdev = conf->mirrors[dev].rdev;
2176 if (bio == IO_MADE_GOOD) {
749c55e9
N
2177 rdev_clear_badblocks(
2178 rdev,
2179 r10_bio->devs[m].addr,
2180 r10_bio->sectors);
2181 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2182 } else if (bio != NULL &&
2183 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2184 if (!narrow_write_error(r10_bio, m)) {
2185 md_error(conf->mddev, rdev);
2186 set_bit(R10BIO_Degraded,
2187 &r10_bio->state);
2188 }
2189 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2190 }
bd870a16
N
2191 }
2192 if (test_bit(R10BIO_WriteError,
2193 &r10_bio->state))
2194 close_write(r10_bio);
749c55e9
N
2195 raid_end_bio_io(r10_bio);
2196 }
2197}
2198
1da177e4
LT
2199static void raid10d(mddev_t *mddev)
2200{
2201 r10bio_t *r10_bio;
1da177e4 2202 unsigned long flags;
070ec55d 2203 conf_t *conf = mddev->private;
1da177e4 2204 struct list_head *head = &conf->retry_list;
e1dfa0a2 2205 struct blk_plug plug;
1da177e4
LT
2206
2207 md_check_recovery(mddev);
1da177e4 2208
e1dfa0a2 2209 blk_start_plug(&plug);
1da177e4 2210 for (;;) {
6cce3b23 2211
7eaceacc 2212 flush_pending_writes(conf);
6cce3b23 2213
a35e63ef
N
2214 spin_lock_irqsave(&conf->device_lock, flags);
2215 if (list_empty(head)) {
2216 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2217 break;
a35e63ef 2218 }
1da177e4
LT
2219 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
2220 list_del(head->prev);
4443ae10 2221 conf->nr_queued--;
1da177e4
LT
2222 spin_unlock_irqrestore(&conf->device_lock, flags);
2223
2224 mddev = r10_bio->mddev;
070ec55d 2225 conf = mddev->private;
bd870a16
N
2226 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2227 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2228 handle_write_completed(conf, r10_bio);
2229 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2230 sync_request_write(mddev, r10_bio);
7eaceacc 2231 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2232 recovery_request_write(mddev, r10_bio);
856e08e2 2233 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2234 handle_read_error(mddev, r10_bio);
856e08e2
N
2235 else {
2236 /* just a partial read to be scheduled from a
2237 * separate context
2238 */
2239 int slot = r10_bio->read_slot;
2240 generic_make_request(r10_bio->devs[slot].bio);
2241 }
560f8e55 2242
1d9d5241 2243 cond_resched();
de393cde
N
2244 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2245 md_check_recovery(mddev);
1da177e4 2246 }
e1dfa0a2 2247 blk_finish_plug(&plug);
1da177e4
LT
2248}
2249
2250
2251static int init_resync(conf_t *conf)
2252{
2253 int buffs;
2254
2255 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2256 BUG_ON(conf->r10buf_pool);
1da177e4
LT
2257 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2258 if (!conf->r10buf_pool)
2259 return -ENOMEM;
2260 conf->next_resync = 0;
2261 return 0;
2262}
2263
2264/*
2265 * perform a "sync" on one "block"
2266 *
2267 * We need to make sure that no normal I/O request - particularly write
2268 * requests - conflict with active sync requests.
2269 *
2270 * This is achieved by tracking pending requests and a 'barrier' concept
2271 * that can be installed to exclude normal IO requests.
2272 *
2273 * Resync and recovery are handled very differently.
2274 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2275 *
2276 * For resync, we iterate over virtual addresses, read all copies,
2277 * and update if there are differences. If only one copy is live,
2278 * skip it.
2279 * For recovery, we iterate over physical addresses, read a good
2280 * value for each non-in_sync drive, and over-write.
2281 *
2282 * So, for recovery we may have several outstanding complex requests for a
2283 * given address, one for each out-of-sync device. We model this by allocating
2284 * a number of r10_bio structures, one for each out-of-sync device.
2285 * As we setup these structures, we collect all bio's together into a list
2286 * which we then process collectively to add pages, and then process again
2287 * to pass to generic_make_request.
2288 *
2289 * The r10_bio structures are linked using a borrowed master_bio pointer.
2290 * This link is counted in ->remaining. When the r10_bio that points to NULL
2291 * has its remaining count decremented to 0, the whole complex operation
2292 * is complete.
2293 *
2294 */
2295
ab9d47e9
N
2296static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
2297 int *skipped, int go_faster)
1da177e4 2298{
070ec55d 2299 conf_t *conf = mddev->private;
1da177e4
LT
2300 r10bio_t *r10_bio;
2301 struct bio *biolist = NULL, *bio;
2302 sector_t max_sector, nr_sectors;
1da177e4 2303 int i;
6cce3b23 2304 int max_sync;
57dab0bd 2305 sector_t sync_blocks;
1da177e4
LT
2306 sector_t sectors_skipped = 0;
2307 int chunks_skipped = 0;
2308
2309 if (!conf->r10buf_pool)
2310 if (init_resync(conf))
57afd89f 2311 return 0;
1da177e4
LT
2312
2313 skipped:
58c0fed4 2314 max_sector = mddev->dev_sectors;
1da177e4
LT
2315 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2316 max_sector = mddev->resync_max_sectors;
2317 if (sector_nr >= max_sector) {
6cce3b23
N
2318 /* If we aborted, we need to abort the
2319 * sync on the 'current' bitmap chucks (there can
2320 * be several when recovering multiple devices).
2321 * as we may have started syncing it but not finished.
2322 * We can find the current address in
2323 * mddev->curr_resync, but for recovery,
2324 * we need to convert that to several
2325 * virtual addresses.
2326 */
2327 if (mddev->curr_resync < max_sector) { /* aborted */
2328 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2329 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2330 &sync_blocks, 1);
2331 else for (i=0; i<conf->raid_disks; i++) {
2332 sector_t sect =
2333 raid10_find_virt(conf, mddev->curr_resync, i);
2334 bitmap_end_sync(mddev->bitmap, sect,
2335 &sync_blocks, 1);
2336 }
2337 } else /* completed sync */
2338 conf->fullsync = 0;
2339
2340 bitmap_close_sync(mddev->bitmap);
1da177e4 2341 close_sync(conf);
57afd89f 2342 *skipped = 1;
1da177e4
LT
2343 return sectors_skipped;
2344 }
2345 if (chunks_skipped >= conf->raid_disks) {
2346 /* if there has been nothing to do on any drive,
2347 * then there is nothing to do at all..
2348 */
57afd89f
N
2349 *skipped = 1;
2350 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2351 }
2352
c6207277
N
2353 if (max_sector > mddev->resync_max)
2354 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2355
1da177e4
LT
2356 /* make sure whole request will fit in a chunk - if chunks
2357 * are meaningful
2358 */
2359 if (conf->near_copies < conf->raid_disks &&
2360 max_sector > (sector_nr | conf->chunk_mask))
2361 max_sector = (sector_nr | conf->chunk_mask) + 1;
2362 /*
2363 * If there is non-resync activity waiting for us then
2364 * put in a delay to throttle resync.
2365 */
0a27ec96 2366 if (!go_faster && conf->nr_waiting)
1da177e4 2367 msleep_interruptible(1000);
1da177e4
LT
2368
2369 /* Again, very different code for resync and recovery.
2370 * Both must result in an r10bio with a list of bios that
2371 * have bi_end_io, bi_sector, bi_bdev set,
2372 * and bi_private set to the r10bio.
2373 * For recovery, we may actually create several r10bios
2374 * with 2 bios in each, that correspond to the bios in the main one.
2375 * In this case, the subordinate r10bios link back through a
2376 * borrowed master_bio pointer, and the counter in the master
2377 * includes a ref from each subordinate.
2378 */
2379 /* First, we decide what to do and set ->bi_end_io
2380 * To end_sync_read if we want to read, and
2381 * end_sync_write if we will want to write.
2382 */
2383
6cce3b23 2384 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2385 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2386 /* recovery... the complicated one */
e875ecea 2387 int j;
1da177e4
LT
2388 r10_bio = NULL;
2389
ab9d47e9
N
2390 for (i=0 ; i<conf->raid_disks; i++) {
2391 int still_degraded;
2392 r10bio_t *rb2;
2393 sector_t sect;
2394 int must_sync;
e875ecea 2395 int any_working;
1da177e4 2396
ab9d47e9
N
2397 if (conf->mirrors[i].rdev == NULL ||
2398 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2399 continue;
1da177e4 2400
ab9d47e9
N
2401 still_degraded = 0;
2402 /* want to reconstruct this device */
2403 rb2 = r10_bio;
2404 sect = raid10_find_virt(conf, sector_nr, i);
2405 /* Unless we are doing a full sync, we only need
2406 * to recover the block if it is set in the bitmap
2407 */
2408 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2409 &sync_blocks, 1);
2410 if (sync_blocks < max_sync)
2411 max_sync = sync_blocks;
2412 if (!must_sync &&
2413 !conf->fullsync) {
2414 /* yep, skip the sync_blocks here, but don't assume
2415 * that there will never be anything to do here
2416 */
2417 chunks_skipped = -1;
2418 continue;
2419 }
6cce3b23 2420
ab9d47e9
N
2421 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2422 raise_barrier(conf, rb2 != NULL);
2423 atomic_set(&r10_bio->remaining, 0);
18055569 2424
ab9d47e9
N
2425 r10_bio->master_bio = (struct bio*)rb2;
2426 if (rb2)
2427 atomic_inc(&rb2->remaining);
2428 r10_bio->mddev = mddev;
2429 set_bit(R10BIO_IsRecover, &r10_bio->state);
2430 r10_bio->sector = sect;
1da177e4 2431
ab9d47e9
N
2432 raid10_find_phys(conf, r10_bio);
2433
2434 /* Need to check if the array will still be
2435 * degraded
2436 */
2437 for (j=0; j<conf->raid_disks; j++)
2438 if (conf->mirrors[j].rdev == NULL ||
2439 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2440 still_degraded = 1;
87fc767b 2441 break;
1da177e4 2442 }
ab9d47e9
N
2443
2444 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2445 &sync_blocks, still_degraded);
2446
e875ecea 2447 any_working = 0;
ab9d47e9 2448 for (j=0; j<conf->copies;j++) {
e875ecea 2449 int k;
ab9d47e9 2450 int d = r10_bio->devs[j].devnum;
5e570289 2451 sector_t from_addr, to_addr;
40c356ce
N
2452 mdk_rdev_t *rdev;
2453 sector_t sector, first_bad;
2454 int bad_sectors;
ab9d47e9
N
2455 if (!conf->mirrors[d].rdev ||
2456 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2457 continue;
2458 /* This is where we read from */
e875ecea 2459 any_working = 1;
40c356ce
N
2460 rdev = conf->mirrors[d].rdev;
2461 sector = r10_bio->devs[j].addr;
2462
2463 if (is_badblock(rdev, sector, max_sync,
2464 &first_bad, &bad_sectors)) {
2465 if (first_bad > sector)
2466 max_sync = first_bad - sector;
2467 else {
2468 bad_sectors -= (sector
2469 - first_bad);
2470 if (max_sync > bad_sectors)
2471 max_sync = bad_sectors;
2472 continue;
2473 }
2474 }
ab9d47e9
N
2475 bio = r10_bio->devs[0].bio;
2476 bio->bi_next = biolist;
2477 biolist = bio;
2478 bio->bi_private = r10_bio;
2479 bio->bi_end_io = end_sync_read;
2480 bio->bi_rw = READ;
5e570289
N
2481 from_addr = r10_bio->devs[j].addr;
2482 bio->bi_sector = from_addr +
ab9d47e9
N
2483 conf->mirrors[d].rdev->data_offset;
2484 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2485 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2486 atomic_inc(&r10_bio->remaining);
2487 /* and we write to 'i' */
2488
2489 for (k=0; k<conf->copies; k++)
2490 if (r10_bio->devs[k].devnum == i)
2491 break;
2492 BUG_ON(k == conf->copies);
2493 bio = r10_bio->devs[1].bio;
2494 bio->bi_next = biolist;
2495 biolist = bio;
2496 bio->bi_private = r10_bio;
2497 bio->bi_end_io = end_sync_write;
2498 bio->bi_rw = WRITE;
5e570289
N
2499 to_addr = r10_bio->devs[k].addr;
2500 bio->bi_sector = to_addr +
ab9d47e9
N
2501 conf->mirrors[i].rdev->data_offset;
2502 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2503
2504 r10_bio->devs[0].devnum = d;
5e570289 2505 r10_bio->devs[0].addr = from_addr;
ab9d47e9 2506 r10_bio->devs[1].devnum = i;
5e570289 2507 r10_bio->devs[1].addr = to_addr;
ab9d47e9
N
2508
2509 break;
2510 }
2511 if (j == conf->copies) {
e875ecea
N
2512 /* Cannot recover, so abort the recovery or
2513 * record a bad block */
ab9d47e9
N
2514 put_buf(r10_bio);
2515 if (rb2)
2516 atomic_dec(&rb2->remaining);
2517 r10_bio = rb2;
e875ecea
N
2518 if (any_working) {
2519 /* problem is that there are bad blocks
2520 * on other device(s)
2521 */
2522 int k;
2523 for (k = 0; k < conf->copies; k++)
2524 if (r10_bio->devs[k].devnum == i)
2525 break;
2526 if (!rdev_set_badblocks(
2527 conf->mirrors[i].rdev,
2528 r10_bio->devs[k].addr,
2529 max_sync, 0))
2530 any_working = 0;
2531 }
2532 if (!any_working) {
2533 if (!test_and_set_bit(MD_RECOVERY_INTR,
2534 &mddev->recovery))
2535 printk(KERN_INFO "md/raid10:%s: insufficient "
2536 "working devices for recovery.\n",
2537 mdname(mddev));
2538 conf->mirrors[i].recovery_disabled
2539 = mddev->recovery_disabled;
2540 }
ab9d47e9 2541 break;
1da177e4 2542 }
ab9d47e9 2543 }
1da177e4
LT
2544 if (biolist == NULL) {
2545 while (r10_bio) {
2546 r10bio_t *rb2 = r10_bio;
2547 r10_bio = (r10bio_t*) rb2->master_bio;
2548 rb2->master_bio = NULL;
2549 put_buf(rb2);
2550 }
2551 goto giveup;
2552 }
2553 } else {
2554 /* resync. Schedule a read for every block at this virt offset */
2555 int count = 0;
6cce3b23 2556
78200d45
N
2557 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2558
6cce3b23
N
2559 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2560 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
2561 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2562 &mddev->recovery)) {
6cce3b23
N
2563 /* We can skip this block */
2564 *skipped = 1;
2565 return sync_blocks + sectors_skipped;
2566 }
2567 if (sync_blocks < max_sync)
2568 max_sync = sync_blocks;
1da177e4
LT
2569 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2570
1da177e4
LT
2571 r10_bio->mddev = mddev;
2572 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
2573 raise_barrier(conf, 0);
2574 conf->next_resync = sector_nr;
1da177e4
LT
2575
2576 r10_bio->master_bio = NULL;
2577 r10_bio->sector = sector_nr;
2578 set_bit(R10BIO_IsSync, &r10_bio->state);
2579 raid10_find_phys(conf, r10_bio);
2580 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2581
2582 for (i=0; i<conf->copies; i++) {
2583 int d = r10_bio->devs[i].devnum;
40c356ce
N
2584 sector_t first_bad, sector;
2585 int bad_sectors;
2586
1da177e4
LT
2587 bio = r10_bio->devs[i].bio;
2588 bio->bi_end_io = NULL;
af03b8e4 2589 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 2590 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 2591 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 2592 continue;
40c356ce
N
2593 sector = r10_bio->devs[i].addr;
2594 if (is_badblock(conf->mirrors[d].rdev,
2595 sector, max_sync,
2596 &first_bad, &bad_sectors)) {
2597 if (first_bad > sector)
2598 max_sync = first_bad - sector;
2599 else {
2600 bad_sectors -= (sector - first_bad);
2601 if (max_sync > bad_sectors)
2602 max_sync = max_sync;
2603 continue;
2604 }
2605 }
1da177e4
LT
2606 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2607 atomic_inc(&r10_bio->remaining);
2608 bio->bi_next = biolist;
2609 biolist = bio;
2610 bio->bi_private = r10_bio;
2611 bio->bi_end_io = end_sync_read;
802ba064 2612 bio->bi_rw = READ;
40c356ce 2613 bio->bi_sector = sector +
1da177e4
LT
2614 conf->mirrors[d].rdev->data_offset;
2615 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2616 count++;
2617 }
2618
2619 if (count < 2) {
2620 for (i=0; i<conf->copies; i++) {
2621 int d = r10_bio->devs[i].devnum;
2622 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
2623 rdev_dec_pending(conf->mirrors[d].rdev,
2624 mddev);
1da177e4
LT
2625 }
2626 put_buf(r10_bio);
2627 biolist = NULL;
2628 goto giveup;
2629 }
2630 }
2631
2632 for (bio = biolist; bio ; bio=bio->bi_next) {
2633
2634 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2635 if (bio->bi_end_io)
2636 bio->bi_flags |= 1 << BIO_UPTODATE;
2637 bio->bi_vcnt = 0;
2638 bio->bi_idx = 0;
2639 bio->bi_phys_segments = 0;
1da177e4
LT
2640 bio->bi_size = 0;
2641 }
2642
2643 nr_sectors = 0;
6cce3b23
N
2644 if (sector_nr + max_sync < max_sector)
2645 max_sector = sector_nr + max_sync;
1da177e4
LT
2646 do {
2647 struct page *page;
2648 int len = PAGE_SIZE;
1da177e4
LT
2649 if (sector_nr + (len>>9) > max_sector)
2650 len = (max_sector - sector_nr) << 9;
2651 if (len == 0)
2652 break;
2653 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 2654 struct bio *bio2;
1da177e4 2655 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
2656 if (bio_add_page(bio, page, len, 0))
2657 continue;
2658
2659 /* stop here */
2660 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2661 for (bio2 = biolist;
2662 bio2 && bio2 != bio;
2663 bio2 = bio2->bi_next) {
2664 /* remove last page from this bio */
2665 bio2->bi_vcnt--;
2666 bio2->bi_size -= len;
2667 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 2668 }
ab9d47e9 2669 goto bio_full;
1da177e4
LT
2670 }
2671 nr_sectors += len>>9;
2672 sector_nr += len>>9;
2673 } while (biolist->bi_vcnt < RESYNC_PAGES);
2674 bio_full:
2675 r10_bio->sectors = nr_sectors;
2676
2677 while (biolist) {
2678 bio = biolist;
2679 biolist = biolist->bi_next;
2680
2681 bio->bi_next = NULL;
2682 r10_bio = bio->bi_private;
2683 r10_bio->sectors = nr_sectors;
2684
2685 if (bio->bi_end_io == end_sync_read) {
2686 md_sync_acct(bio->bi_bdev, nr_sectors);
2687 generic_make_request(bio);
2688 }
2689 }
2690
57afd89f
N
2691 if (sectors_skipped)
2692 /* pretend they weren't skipped, it makes
2693 * no important difference in this case
2694 */
2695 md_done_sync(mddev, sectors_skipped, 1);
2696
1da177e4
LT
2697 return sectors_skipped + nr_sectors;
2698 giveup:
2699 /* There is nowhere to write, so all non-sync
e875ecea
N
2700 * drives must be failed or in resync, all drives
2701 * have a bad block, so try the next chunk...
1da177e4 2702 */
09b4068a
N
2703 if (sector_nr + max_sync < max_sector)
2704 max_sector = sector_nr + max_sync;
2705
2706 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
2707 chunks_skipped ++;
2708 sector_nr = max_sector;
1da177e4 2709 goto skipped;
1da177e4
LT
2710}
2711
80c3a6ce
DW
2712static sector_t
2713raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2714{
2715 sector_t size;
070ec55d 2716 conf_t *conf = mddev->private;
80c3a6ce
DW
2717
2718 if (!raid_disks)
84707f38 2719 raid_disks = conf->raid_disks;
80c3a6ce 2720 if (!sectors)
dab8b292 2721 sectors = conf->dev_sectors;
80c3a6ce
DW
2722
2723 size = sectors >> conf->chunk_shift;
2724 sector_div(size, conf->far_copies);
2725 size = size * raid_disks;
2726 sector_div(size, conf->near_copies);
2727
2728 return size << conf->chunk_shift;
2729}
2730
dab8b292
TM
2731
2732static conf_t *setup_conf(mddev_t *mddev)
1da177e4 2733{
dab8b292 2734 conf_t *conf = NULL;
c93983bf 2735 int nc, fc, fo;
1da177e4 2736 sector_t stride, size;
dab8b292 2737 int err = -EINVAL;
1da177e4 2738
f73ea873
MT
2739 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2740 !is_power_of_2(mddev->new_chunk_sectors)) {
128595ed
N
2741 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2742 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2743 mdname(mddev), PAGE_SIZE);
dab8b292 2744 goto out;
1da177e4 2745 }
2604b703 2746
f73ea873
MT
2747 nc = mddev->new_layout & 255;
2748 fc = (mddev->new_layout >> 8) & 255;
2749 fo = mddev->new_layout & (1<<16);
dab8b292 2750
1da177e4 2751 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
f73ea873 2752 (mddev->new_layout >> 17)) {
128595ed 2753 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 2754 mdname(mddev), mddev->new_layout);
1da177e4
LT
2755 goto out;
2756 }
dab8b292
TM
2757
2758 err = -ENOMEM;
4443ae10 2759 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
dab8b292 2760 if (!conf)
1da177e4 2761 goto out;
dab8b292 2762
4443ae10 2763 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
dab8b292
TM
2764 GFP_KERNEL);
2765 if (!conf->mirrors)
2766 goto out;
4443ae10
N
2767
2768 conf->tmppage = alloc_page(GFP_KERNEL);
2769 if (!conf->tmppage)
dab8b292
TM
2770 goto out;
2771
1da177e4 2772
64a742bc 2773 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
2774 conf->near_copies = nc;
2775 conf->far_copies = fc;
2776 conf->copies = nc*fc;
c93983bf 2777 conf->far_offset = fo;
dab8b292
TM
2778 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2779 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2780
2781 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2782 r10bio_pool_free, conf);
2783 if (!conf->r10bio_pool)
2784 goto out;
2785
58c0fed4 2786 size = mddev->dev_sectors >> conf->chunk_shift;
64a742bc
N
2787 sector_div(size, fc);
2788 size = size * conf->raid_disks;
2789 sector_div(size, nc);
2790 /* 'size' is now the number of chunks in the array */
2791 /* calculate "used chunks per device" in 'stride' */
2792 stride = size * conf->copies;
af03b8e4
N
2793
2794 /* We need to round up when dividing by raid_disks to
2795 * get the stride size.
2796 */
2797 stride += conf->raid_disks - 1;
64a742bc 2798 sector_div(stride, conf->raid_disks);
dab8b292
TM
2799
2800 conf->dev_sectors = stride << conf->chunk_shift;
64a742bc 2801
c93983bf 2802 if (fo)
64a742bc
N
2803 stride = 1;
2804 else
c93983bf 2805 sector_div(stride, fc);
64a742bc
N
2806 conf->stride = stride << conf->chunk_shift;
2807
1da177e4 2808
e7e72bf6 2809 spin_lock_init(&conf->device_lock);
dab8b292
TM
2810 INIT_LIST_HEAD(&conf->retry_list);
2811
2812 spin_lock_init(&conf->resync_lock);
2813 init_waitqueue_head(&conf->wait_barrier);
2814
2815 conf->thread = md_register_thread(raid10d, mddev, NULL);
2816 if (!conf->thread)
2817 goto out;
2818
dab8b292
TM
2819 conf->mddev = mddev;
2820 return conf;
2821
2822 out:
128595ed 2823 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
dab8b292
TM
2824 mdname(mddev));
2825 if (conf) {
2826 if (conf->r10bio_pool)
2827 mempool_destroy(conf->r10bio_pool);
2828 kfree(conf->mirrors);
2829 safe_put_page(conf->tmppage);
2830 kfree(conf);
2831 }
2832 return ERR_PTR(err);
2833}
2834
2835static int run(mddev_t *mddev)
2836{
2837 conf_t *conf;
2838 int i, disk_idx, chunk_size;
2839 mirror_info_t *disk;
2840 mdk_rdev_t *rdev;
2841 sector_t size;
2842
2843 /*
2844 * copy the already verified devices into our private RAID10
2845 * bookkeeping area. [whatever we allocate in run(),
2846 * should be freed in stop()]
2847 */
2848
2849 if (mddev->private == NULL) {
2850 conf = setup_conf(mddev);
2851 if (IS_ERR(conf))
2852 return PTR_ERR(conf);
2853 mddev->private = conf;
2854 }
2855 conf = mddev->private;
2856 if (!conf)
2857 goto out;
2858
dab8b292
TM
2859 mddev->thread = conf->thread;
2860 conf->thread = NULL;
2861
8f6c2e4b
MP
2862 chunk_size = mddev->chunk_sectors << 9;
2863 blk_queue_io_min(mddev->queue, chunk_size);
2864 if (conf->raid_disks % conf->near_copies)
2865 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2866 else
2867 blk_queue_io_opt(mddev->queue, chunk_size *
2868 (conf->raid_disks / conf->near_copies));
2869
159ec1fc 2870 list_for_each_entry(rdev, &mddev->disks, same_set) {
34b343cf 2871
1da177e4 2872 disk_idx = rdev->raid_disk;
84707f38 2873 if (disk_idx >= conf->raid_disks
1da177e4
LT
2874 || disk_idx < 0)
2875 continue;
2876 disk = conf->mirrors + disk_idx;
2877
2878 disk->rdev = rdev;
8f6c2e4b
MP
2879 disk_stack_limits(mddev->gendisk, rdev->bdev,
2880 rdev->data_offset << 9);
1da177e4 2881 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2882 * violating it, so limit max_segments to 1 lying
2883 * within a single page.
1da177e4 2884 */
627a2d3c
N
2885 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2886 blk_queue_max_segments(mddev->queue, 1);
2887 blk_queue_segment_boundary(mddev->queue,
2888 PAGE_CACHE_SIZE - 1);
2889 }
1da177e4
LT
2890
2891 disk->head_position = 0;
1da177e4 2892 }
6d508242 2893 /* need to check that every block has at least one working mirror */
700c7213 2894 if (!enough(conf, -1)) {
128595ed 2895 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 2896 mdname(mddev));
1da177e4
LT
2897 goto out_free_conf;
2898 }
2899
2900 mddev->degraded = 0;
2901 for (i = 0; i < conf->raid_disks; i++) {
2902
2903 disk = conf->mirrors + i;
2904
5fd6c1dc 2905 if (!disk->rdev ||
2e333e89 2906 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
2907 disk->head_position = 0;
2908 mddev->degraded++;
8c2e870a
NB
2909 if (disk->rdev)
2910 conf->fullsync = 1;
1da177e4
LT
2911 }
2912 }
2913
8c6ac868 2914 if (mddev->recovery_cp != MaxSector)
128595ed 2915 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
2916 " -- starting background reconstruction\n",
2917 mdname(mddev));
1da177e4 2918 printk(KERN_INFO
128595ed 2919 "md/raid10:%s: active with %d out of %d devices\n",
84707f38
N
2920 mdname(mddev), conf->raid_disks - mddev->degraded,
2921 conf->raid_disks);
1da177e4
LT
2922 /*
2923 * Ok, everything is just fine now
2924 */
dab8b292
TM
2925 mddev->dev_sectors = conf->dev_sectors;
2926 size = raid10_size(mddev, 0, 0);
2927 md_set_array_sectors(mddev, size);
2928 mddev->resync_max_sectors = size;
1da177e4 2929
0d129228
N
2930 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2931 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 2932
1da177e4
LT
2933 /* Calculate max read-ahead size.
2934 * We need to readahead at least twice a whole stripe....
2935 * maybe...
2936 */
2937 {
9d8f0363
AN
2938 int stripe = conf->raid_disks *
2939 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
2940 stripe /= conf->near_copies;
2941 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2942 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2943 }
2944
84707f38 2945 if (conf->near_copies < conf->raid_disks)
1da177e4 2946 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
a91a2785
MP
2947
2948 if (md_integrity_register(mddev))
2949 goto out_free_conf;
2950
1da177e4
LT
2951 return 0;
2952
2953out_free_conf:
589a594b 2954 md_unregister_thread(mddev->thread);
1da177e4
LT
2955 if (conf->r10bio_pool)
2956 mempool_destroy(conf->r10bio_pool);
1345b1d8 2957 safe_put_page(conf->tmppage);
990a8baf 2958 kfree(conf->mirrors);
1da177e4
LT
2959 kfree(conf);
2960 mddev->private = NULL;
2961out:
2962 return -EIO;
2963}
2964
2965static int stop(mddev_t *mddev)
2966{
070ec55d 2967 conf_t *conf = mddev->private;
1da177e4 2968
409c57f3
N
2969 raise_barrier(conf, 0);
2970 lower_barrier(conf);
2971
1da177e4
LT
2972 md_unregister_thread(mddev->thread);
2973 mddev->thread = NULL;
2974 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2975 if (conf->r10bio_pool)
2976 mempool_destroy(conf->r10bio_pool);
990a8baf 2977 kfree(conf->mirrors);
1da177e4
LT
2978 kfree(conf);
2979 mddev->private = NULL;
2980 return 0;
2981}
2982
6cce3b23
N
2983static void raid10_quiesce(mddev_t *mddev, int state)
2984{
070ec55d 2985 conf_t *conf = mddev->private;
6cce3b23
N
2986
2987 switch(state) {
2988 case 1:
2989 raise_barrier(conf, 0);
2990 break;
2991 case 0:
2992 lower_barrier(conf);
2993 break;
2994 }
6cce3b23 2995}
1da177e4 2996
dab8b292
TM
2997static void *raid10_takeover_raid0(mddev_t *mddev)
2998{
2999 mdk_rdev_t *rdev;
3000 conf_t *conf;
3001
3002 if (mddev->degraded > 0) {
128595ed
N
3003 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3004 mdname(mddev));
dab8b292
TM
3005 return ERR_PTR(-EINVAL);
3006 }
3007
dab8b292
TM
3008 /* Set new parameters */
3009 mddev->new_level = 10;
3010 /* new layout: far_copies = 1, near_copies = 2 */
3011 mddev->new_layout = (1<<8) + 2;
3012 mddev->new_chunk_sectors = mddev->chunk_sectors;
3013 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3014 mddev->raid_disks *= 2;
3015 /* make sure it will be not marked as dirty */
3016 mddev->recovery_cp = MaxSector;
3017
3018 conf = setup_conf(mddev);
02214dc5 3019 if (!IS_ERR(conf)) {
e93f68a1
N
3020 list_for_each_entry(rdev, &mddev->disks, same_set)
3021 if (rdev->raid_disk >= 0)
3022 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3023 conf->barrier = 1;
3024 }
3025
dab8b292
TM
3026 return conf;
3027}
3028
3029static void *raid10_takeover(mddev_t *mddev)
3030{
3031 struct raid0_private_data *raid0_priv;
3032
3033 /* raid10 can take over:
3034 * raid0 - providing it has only two drives
3035 */
3036 if (mddev->level == 0) {
3037 /* for raid0 takeover only one zone is supported */
3038 raid0_priv = mddev->private;
3039 if (raid0_priv->nr_strip_zones > 1) {
128595ed
N
3040 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3041 " with more than one zone.\n",
3042 mdname(mddev));
dab8b292
TM
3043 return ERR_PTR(-EINVAL);
3044 }
3045 return raid10_takeover_raid0(mddev);
3046 }
3047 return ERR_PTR(-EINVAL);
3048}
3049
2604b703 3050static struct mdk_personality raid10_personality =
1da177e4
LT
3051{
3052 .name = "raid10",
2604b703 3053 .level = 10,
1da177e4
LT
3054 .owner = THIS_MODULE,
3055 .make_request = make_request,
3056 .run = run,
3057 .stop = stop,
3058 .status = status,
3059 .error_handler = error,
3060 .hot_add_disk = raid10_add_disk,
3061 .hot_remove_disk= raid10_remove_disk,
3062 .spare_active = raid10_spare_active,
3063 .sync_request = sync_request,
6cce3b23 3064 .quiesce = raid10_quiesce,
80c3a6ce 3065 .size = raid10_size,
dab8b292 3066 .takeover = raid10_takeover,
1da177e4
LT
3067};
3068
3069static int __init raid_init(void)
3070{
2604b703 3071 return register_md_personality(&raid10_personality);
1da177e4
LT
3072}
3073
3074static void raid_exit(void)
3075{
2604b703 3076 unregister_md_personality(&raid10_personality);
1da177e4
LT
3077}
3078
3079module_init(raid_init);
3080module_exit(raid_exit);
3081MODULE_LICENSE("GPL");
0efb9e61 3082MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 3083MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 3084MODULE_ALIAS("md-raid10");
2604b703 3085MODULE_ALIAS("md-level-10");