md/raid10: improve code of mrdev in raid10_sync_request
[linux-2.6-block.git] / drivers / md / raid10.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
25985edc 9 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
10 */
11
5a0e3ad6 12#include <linux/slab.h>
25570727 13#include <linux/delay.h>
bff61975 14#include <linux/blkdev.h>
056075c7 15#include <linux/module.h>
bff61975 16#include <linux/seq_file.h>
8bda470e 17#include <linux/ratelimit.h>
3ea7daa5 18#include <linux/kthread.h>
afd75628 19#include <linux/raid/md_p.h>
109e3765 20#include <trace/events/block.h>
43b2e5d8 21#include "md.h"
ef740c37 22#include "raid10.h"
dab8b292 23#include "raid0.h"
935fe098 24#include "md-bitmap.h"
1da177e4
LT
25
26/*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
c93983bf 33 * far_offset (stored in bit 16 of layout )
475901af 34 * use_far_sets (stored in bit 17 of layout )
8bce6d35 35 * use_far_sets_bugfixed (stored in bit 18 of layout )
1da177e4 36 *
475901af
JB
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
c93983bf
N
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 * A B C D A B C D E
59 * ... ...
60 * D A B C E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
1da177e4
LT
65 */
66
e879a879
N
67static void allow_barrier(struct r10conf *conf);
68static void lower_barrier(struct r10conf *conf);
635f6416 69static int _enough(struct r10conf *conf, int previous, int ignore);
1919cbb2 70static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 int *skipped);
73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
4246a0b6 74static void end_reshape_write(struct bio *bio);
3ea7daa5 75static void end_reshape(struct r10conf *conf);
0a27ec96 76
578b54ad
N
77#define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
fb0eb5df
ML
80#include "raid1-10.c"
81
b9b083f9
YK
82#define NULL_CMD
83#define cmd_before(conf, cmd) \
84 do { \
85 write_sequnlock_irq(&(conf)->resync_lock); \
86 cmd; \
87 } while (0)
88#define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90#define wait_event_barrier_cmd(conf, cond, cmd) \
91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92 cmd_after(conf))
93
94#define wait_event_barrier(conf, cond) \
95 wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
f0250618
ML
97/*
98 * for resync bio, r10bio pointer can be retrieved from the per-bio
99 * 'struct resync_pages'.
100 */
101static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102{
103 return get_resync_pages(bio)->raid_bio;
104}
105
dd0fc66f 106static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 107{
e879a879 108 struct r10conf *conf = data;
c2968285 109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
1da177e4 110
69335ef3
N
111 /* allocate a r10bio with room for raid_disks entries in the
112 * bios array */
7eaceacc 113 return kzalloc(size, gfp_flags);
1da177e4
LT
114}
115
8db87912 116#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
0310fa21
N
117/* amount of memory to reserve for resync requests */
118#define RESYNC_WINDOW (1024*1024)
119/* maximum number of concurrent requests, memory permitting */
120#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
4b242e97 121#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
8db87912 122#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4
LT
123
124/*
125 * When performing a resync, we need to read and compare, so
126 * we need as many pages are there are copies.
127 * When performing a recovery, we need 2 bios, one for read,
128 * one for write (we recover only one drive per r10buf)
129 *
130 */
dd0fc66f 131static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 132{
e879a879 133 struct r10conf *conf = data;
9f2c9d12 134 struct r10bio *r10_bio;
1da177e4 135 struct bio *bio;
f0250618
ML
136 int j;
137 int nalloc, nalloc_rp;
138 struct resync_pages *rps;
1da177e4
LT
139
140 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 141 if (!r10_bio)
1da177e4 142 return NULL;
1da177e4 143
3ea7daa5
N
144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
146 nalloc = conf->copies; /* resync */
147 else
148 nalloc = 2; /* recovery */
149
f0250618
ML
150 /* allocate once for all bios */
151 if (!conf->have_replacement)
152 nalloc_rp = nalloc;
153 else
154 nalloc_rp = nalloc * 2;
6da2ec56 155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
f0250618
ML
156 if (!rps)
157 goto out_free_r10bio;
158
1da177e4
LT
159 /*
160 * Allocate bios.
161 */
162 for (j = nalloc ; j-- ; ) {
066ff571 163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
1da177e4
LT
164 if (!bio)
165 goto out_free_bio;
066ff571 166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
1da177e4 167 r10_bio->devs[j].bio = bio;
69335ef3
N
168 if (!conf->have_replacement)
169 continue;
066ff571 170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
69335ef3
N
171 if (!bio)
172 goto out_free_bio;
066ff571 173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
69335ef3 174 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
175 }
176 /*
177 * Allocate RESYNC_PAGES data pages and attach them
178 * where needed.
179 */
f0250618 180 for (j = 0; j < nalloc; j++) {
69335ef3 181 struct bio *rbio = r10_bio->devs[j].repl_bio;
f0250618
ML
182 struct resync_pages *rp, *rp_repl;
183
184 rp = &rps[j];
185 if (rbio)
186 rp_repl = &rps[nalloc + j];
187
1da177e4 188 bio = r10_bio->devs[j].bio;
f0250618
ML
189
190 if (!j || test_bit(MD_RECOVERY_SYNC,
191 &conf->mddev->recovery)) {
192 if (resync_alloc_pages(rp, gfp_flags))
1da177e4 193 goto out_free_pages;
f0250618
ML
194 } else {
195 memcpy(rp, &rps[0], sizeof(*rp));
196 resync_get_all_pages(rp);
197 }
1da177e4 198
f0250618
ML
199 rp->raid_bio = r10_bio;
200 bio->bi_private = rp;
201 if (rbio) {
202 memcpy(rp_repl, rp, sizeof(*rp));
203 rbio->bi_private = rp_repl;
1da177e4
LT
204 }
205 }
206
207 return r10_bio;
208
209out_free_pages:
f0250618 210 while (--j >= 0)
45422b70 211 resync_free_pages(&rps[j]);
f0250618 212
5fdd2cf8 213 j = 0;
1da177e4 214out_free_bio:
5fdd2cf8 215 for ( ; j < nalloc; j++) {
216 if (r10_bio->devs[j].bio)
066ff571
CH
217 bio_uninit(r10_bio->devs[j].bio);
218 kfree(r10_bio->devs[j].bio);
69335ef3 219 if (r10_bio->devs[j].repl_bio)
066ff571
CH
220 bio_uninit(r10_bio->devs[j].repl_bio);
221 kfree(r10_bio->devs[j].repl_bio);
69335ef3 222 }
f0250618
ML
223 kfree(rps);
224out_free_r10bio:
c7afa803 225 rbio_pool_free(r10_bio, conf);
1da177e4
LT
226 return NULL;
227}
228
229static void r10buf_pool_free(void *__r10_bio, void *data)
230{
e879a879 231 struct r10conf *conf = data;
9f2c9d12 232 struct r10bio *r10bio = __r10_bio;
1da177e4 233 int j;
f0250618 234 struct resync_pages *rp = NULL;
1da177e4 235
f0250618 236 for (j = conf->copies; j--; ) {
1da177e4 237 struct bio *bio = r10bio->devs[j].bio;
f0250618 238
eb81b328
GJ
239 if (bio) {
240 rp = get_resync_pages(bio);
241 resync_free_pages(rp);
066ff571
CH
242 bio_uninit(bio);
243 kfree(bio);
eb81b328 244 }
f0250618 245
69335ef3 246 bio = r10bio->devs[j].repl_bio;
066ff571
CH
247 if (bio) {
248 bio_uninit(bio);
249 kfree(bio);
250 }
1da177e4 251 }
f0250618
ML
252
253 /* resync pages array stored in the 1st bio's .bi_private */
254 kfree(rp);
255
c7afa803 256 rbio_pool_free(r10bio, conf);
1da177e4
LT
257}
258
e879a879 259static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
260{
261 int i;
262
c2968285 263 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 264 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 265 if (!BIO_SPECIAL(*bio))
1da177e4
LT
266 bio_put(*bio);
267 *bio = NULL;
69335ef3
N
268 bio = &r10_bio->devs[i].repl_bio;
269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270 bio_put(*bio);
271 *bio = NULL;
1da177e4
LT
272 }
273}
274
9f2c9d12 275static void free_r10bio(struct r10bio *r10_bio)
1da177e4 276{
e879a879 277 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 278
1da177e4 279 put_all_bios(conf, r10_bio);
afeee514 280 mempool_free(r10_bio, &conf->r10bio_pool);
1da177e4
LT
281}
282
9f2c9d12 283static void put_buf(struct r10bio *r10_bio)
1da177e4 284{
e879a879 285 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 286
afeee514 287 mempool_free(r10_bio, &conf->r10buf_pool);
1da177e4 288
0a27ec96 289 lower_barrier(conf);
1da177e4
LT
290}
291
0c0be98b
YK
292static void wake_up_barrier(struct r10conf *conf)
293{
294 if (wq_has_sleeper(&conf->wait_barrier))
295 wake_up(&conf->wait_barrier);
296}
297
9f2c9d12 298static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
299{
300 unsigned long flags;
fd01b88c 301 struct mddev *mddev = r10_bio->mddev;
e879a879 302 struct r10conf *conf = mddev->private;
1da177e4
LT
303
304 spin_lock_irqsave(&conf->device_lock, flags);
305 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 306 conf->nr_queued ++;
1da177e4
LT
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308
388667be
AJ
309 /* wake up frozen array... */
310 wake_up(&conf->wait_barrier);
311
1da177e4
LT
312 md_wakeup_thread(mddev->thread);
313}
314
315/*
316 * raid_end_bio_io() is called when we have finished servicing a mirrored
317 * operation and are ready to return a success/failure code to the buffer
318 * cache layer.
319 */
9f2c9d12 320static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
321{
322 struct bio *bio = r10_bio->master_bio;
e879a879 323 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 324
856e08e2 325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4e4cbee9 326 bio->bi_status = BLK_STS_IOERR;
fd16f2e8 327
528bc2cf
GJ
328 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
329 bio_end_io_acct(bio, r10_bio->start_time);
fd16f2e8
N
330 bio_endio(bio);
331 /*
332 * Wake up any possible resync thread that waits for the device
333 * to go idle.
334 */
335 allow_barrier(conf);
336
1da177e4
LT
337 free_r10bio(r10_bio);
338}
339
340/*
341 * Update disk head position estimator based on IRQ completion info.
342 */
9f2c9d12 343static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 344{
e879a879 345 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
346
347 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
348 r10_bio->devs[slot].addr + (r10_bio->sectors);
349}
350
778ca018
NK
351/*
352 * Find the disk number which triggered given bio
353 */
e879a879 354static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 355 struct bio *bio, int *slotp, int *replp)
778ca018
NK
356{
357 int slot;
69335ef3 358 int repl = 0;
778ca018 359
c2968285 360 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
778ca018
NK
361 if (r10_bio->devs[slot].bio == bio)
362 break;
69335ef3
N
363 if (r10_bio->devs[slot].repl_bio == bio) {
364 repl = 1;
365 break;
366 }
367 }
778ca018 368
778ca018
NK
369 update_head_pos(slot, r10_bio);
370
749c55e9
N
371 if (slotp)
372 *slotp = slot;
69335ef3
N
373 if (replp)
374 *replp = repl;
778ca018
NK
375 return r10_bio->devs[slot].devnum;
376}
377
4246a0b6 378static void raid10_end_read_request(struct bio *bio)
1da177e4 379{
4e4cbee9 380 int uptodate = !bio->bi_status;
9f2c9d12 381 struct r10bio *r10_bio = bio->bi_private;
a0e764c5 382 int slot;
abbf098e 383 struct md_rdev *rdev;
e879a879 384 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 385
1da177e4 386 slot = r10_bio->read_slot;
abbf098e 387 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
388 /*
389 * this branch is our 'one mirror IO has finished' event handler:
390 */
4443ae10
N
391 update_head_pos(slot, r10_bio);
392
393 if (uptodate) {
1da177e4
LT
394 /*
395 * Set R10BIO_Uptodate in our master bio, so that
396 * we will return a good error code to the higher
397 * levels even if IO on some other mirrored buffer fails.
398 *
399 * The 'master' represents the composite IO operation to
400 * user-side. So if something waits for IO, then it will
401 * wait for the 'master' bio.
402 */
403 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
404 } else {
405 /* If all other devices that store this block have
406 * failed, we want to return the error upwards rather
407 * than fail the last device. Here we redefine
408 * "uptodate" to mean "Don't want to retry"
409 */
635f6416
N
410 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
411 rdev->raid_disk))
fae8cc5e 412 uptodate = 1;
fae8cc5e
N
413 }
414 if (uptodate) {
1da177e4 415 raid_end_bio_io(r10_bio);
abbf098e 416 rdev_dec_pending(rdev, conf->mddev);
4443ae10 417 } else {
1da177e4 418 /*
7c4e06ff 419 * oops, read error - keep the refcount on the rdev
1da177e4 420 */
913cce5a 421 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
8bda470e 422 mdname(conf->mddev),
913cce5a 423 rdev->bdev,
8bda470e 424 (unsigned long long)r10_bio->sector);
856e08e2 425 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
426 reschedule_retry(r10_bio);
427 }
1da177e4
LT
428}
429
9f2c9d12 430static void close_write(struct r10bio *r10_bio)
bd870a16
N
431{
432 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
433 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
434 r10_bio->sectors,
435 !test_bit(R10BIO_Degraded, &r10_bio->state),
436 0);
bd870a16
N
437 md_write_end(r10_bio->mddev);
438}
439
9f2c9d12 440static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
441{
442 if (atomic_dec_and_test(&r10_bio->remaining)) {
443 if (test_bit(R10BIO_WriteError, &r10_bio->state))
444 reschedule_retry(r10_bio);
445 else {
446 close_write(r10_bio);
447 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
448 reschedule_retry(r10_bio);
449 else
450 raid_end_bio_io(r10_bio);
451 }
452 }
453}
454
4246a0b6 455static void raid10_end_write_request(struct bio *bio)
1da177e4 456{
9f2c9d12 457 struct r10bio *r10_bio = bio->bi_private;
778ca018 458 int dev;
749c55e9 459 int dec_rdev = 1;
e879a879 460 struct r10conf *conf = r10_bio->mddev->private;
475b0321 461 int slot, repl;
4ca40c2c 462 struct md_rdev *rdev = NULL;
1919cbb2 463 struct bio *to_put = NULL;
579ed34f
SL
464 bool discard_error;
465
4e4cbee9 466 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 467
475b0321 468 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 469
475b0321
N
470 if (repl)
471 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
472 if (!rdev) {
473 smp_rmb();
474 repl = 0;
475b0321 475 rdev = conf->mirrors[dev].rdev;
4ca40c2c 476 }
1da177e4
LT
477 /*
478 * this branch is our 'one mirror IO has finished' event handler:
479 */
4e4cbee9 480 if (bio->bi_status && !discard_error) {
475b0321
N
481 if (repl)
482 /* Never record new bad blocks to replacement,
483 * just fail it.
484 */
485 md_error(rdev->mddev, rdev);
486 else {
487 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
488 if (!test_and_set_bit(WantReplacement, &rdev->flags))
489 set_bit(MD_RECOVERY_NEEDED,
490 &rdev->mddev->recovery);
1919cbb2 491
475b0321 492 dec_rdev = 0;
1919cbb2
N
493 if (test_bit(FailFast, &rdev->flags) &&
494 (bio->bi_opf & MD_FAILFAST)) {
495 md_error(rdev->mddev, rdev);
7cee6d4e
YY
496 }
497
498 /*
499 * When the device is faulty, it is not necessary to
500 * handle write error.
7cee6d4e
YY
501 */
502 if (!test_bit(Faulty, &rdev->flags))
1919cbb2 503 set_bit(R10BIO_WriteError, &r10_bio->state);
7cee6d4e 504 else {
5ba03936
WS
505 /* Fail the request */
506 set_bit(R10BIO_Degraded, &r10_bio->state);
7cee6d4e
YY
507 r10_bio->devs[slot].bio = NULL;
508 to_put = bio;
509 dec_rdev = 1;
510 }
475b0321 511 }
749c55e9 512 } else {
1da177e4
LT
513 /*
514 * Set R10BIO_Uptodate in our master bio, so that
515 * we will return a good error code for to the higher
516 * levels even if IO on some other mirrored buffer fails.
517 *
518 * The 'master' represents the composite IO operation to
519 * user-side. So if something waits for IO, then it will
520 * wait for the 'master' bio.
521 */
749c55e9
N
522 sector_t first_bad;
523 int bad_sectors;
524
3056e3ae
AL
525 /*
526 * Do not set R10BIO_Uptodate if the current device is
527 * rebuilding or Faulty. This is because we cannot use
528 * such device for properly reading the data back (we could
529 * potentially use it, if the current write would have felt
530 * before rdev->recovery_offset, but for simplicity we don't
531 * check this here.
532 */
533 if (test_bit(In_sync, &rdev->flags) &&
534 !test_bit(Faulty, &rdev->flags))
535 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 536
749c55e9 537 /* Maybe we can clear some bad blocks. */
475b0321 538 if (is_badblock(rdev,
749c55e9
N
539 r10_bio->devs[slot].addr,
540 r10_bio->sectors,
579ed34f 541 &first_bad, &bad_sectors) && !discard_error) {
749c55e9 542 bio_put(bio);
475b0321
N
543 if (repl)
544 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
545 else
546 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
547 dec_rdev = 0;
548 set_bit(R10BIO_MadeGood, &r10_bio->state);
549 }
550 }
551
1da177e4
LT
552 /*
553 *
554 * Let's see if all mirrored write operations have finished
555 * already.
556 */
19d5f834 557 one_write_done(r10_bio);
749c55e9 558 if (dec_rdev)
884162df 559 rdev_dec_pending(rdev, conf->mddev);
1919cbb2
N
560 if (to_put)
561 bio_put(to_put);
1da177e4
LT
562}
563
1da177e4
LT
564/*
565 * RAID10 layout manager
25985edc 566 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
567 * parameters: near_copies and far_copies.
568 * near_copies * far_copies must be <= raid_disks.
569 * Normally one of these will be 1.
570 * If both are 1, we get raid0.
571 * If near_copies == raid_disks, we get raid1.
572 *
25985edc 573 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
574 * first chunk, followed by near_copies copies of the next chunk and
575 * so on.
576 * If far_copies > 1, then after 1/far_copies of the array has been assigned
577 * as described above, we start again with a device offset of near_copies.
578 * So we effectively have another copy of the whole array further down all
579 * the drives, but with blocks on different drives.
580 * With this layout, and block is never stored twice on the one device.
581 *
582 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 583 * on each device that it is on.
1da177e4
LT
584 *
585 * raid10_find_virt does the reverse mapping, from a device and a
586 * sector offset to a virtual address
587 */
588
f8c9e74f 589static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
590{
591 int n,f;
592 sector_t sector;
593 sector_t chunk;
594 sector_t stripe;
595 int dev;
1da177e4 596 int slot = 0;
9a3152ab
JB
597 int last_far_set_start, last_far_set_size;
598
599 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
600 last_far_set_start *= geo->far_set_size;
601
602 last_far_set_size = geo->far_set_size;
603 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
604
605 /* now calculate first sector/dev */
5cf00fcd
N
606 chunk = r10bio->sector >> geo->chunk_shift;
607 sector = r10bio->sector & geo->chunk_mask;
1da177e4 608
5cf00fcd 609 chunk *= geo->near_copies;
1da177e4 610 stripe = chunk;
5cf00fcd
N
611 dev = sector_div(stripe, geo->raid_disks);
612 if (geo->far_offset)
613 stripe *= geo->far_copies;
1da177e4 614
5cf00fcd 615 sector += stripe << geo->chunk_shift;
1da177e4
LT
616
617 /* and calculate all the others */
5cf00fcd 618 for (n = 0; n < geo->near_copies; n++) {
1da177e4 619 int d = dev;
475901af 620 int set;
1da177e4 621 sector_t s = sector;
1da177e4 622 r10bio->devs[slot].devnum = d;
4c0ca26b 623 r10bio->devs[slot].addr = s;
1da177e4
LT
624 slot++;
625
5cf00fcd 626 for (f = 1; f < geo->far_copies; f++) {
475901af 627 set = d / geo->far_set_size;
5cf00fcd 628 d += geo->near_copies;
475901af 629
9a3152ab
JB
630 if ((geo->raid_disks % geo->far_set_size) &&
631 (d > last_far_set_start)) {
632 d -= last_far_set_start;
633 d %= last_far_set_size;
634 d += last_far_set_start;
635 } else {
636 d %= geo->far_set_size;
637 d += geo->far_set_size * set;
638 }
5cf00fcd 639 s += geo->stride;
1da177e4
LT
640 r10bio->devs[slot].devnum = d;
641 r10bio->devs[slot].addr = s;
642 slot++;
643 }
644 dev++;
5cf00fcd 645 if (dev >= geo->raid_disks) {
1da177e4 646 dev = 0;
5cf00fcd 647 sector += (geo->chunk_mask + 1);
1da177e4
LT
648 }
649 }
f8c9e74f
N
650}
651
652static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
653{
654 struct geom *geo = &conf->geo;
655
656 if (conf->reshape_progress != MaxSector &&
657 ((r10bio->sector >= conf->reshape_progress) !=
658 conf->mddev->reshape_backwards)) {
659 set_bit(R10BIO_Previous, &r10bio->state);
660 geo = &conf->prev;
661 } else
662 clear_bit(R10BIO_Previous, &r10bio->state);
663
664 __raid10_find_phys(geo, r10bio);
1da177e4
LT
665}
666
e879a879 667static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
668{
669 sector_t offset, chunk, vchunk;
f8c9e74f
N
670 /* Never use conf->prev as this is only called during resync
671 * or recovery, so reshape isn't happening
672 */
5cf00fcd 673 struct geom *geo = &conf->geo;
475901af
JB
674 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
675 int far_set_size = geo->far_set_size;
9a3152ab
JB
676 int last_far_set_start;
677
678 if (geo->raid_disks % geo->far_set_size) {
679 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
680 last_far_set_start *= geo->far_set_size;
681
682 if (dev >= last_far_set_start) {
683 far_set_size = geo->far_set_size;
684 far_set_size += (geo->raid_disks % geo->far_set_size);
685 far_set_start = last_far_set_start;
686 }
687 }
1da177e4 688
5cf00fcd
N
689 offset = sector & geo->chunk_mask;
690 if (geo->far_offset) {
c93983bf 691 int fc;
5cf00fcd
N
692 chunk = sector >> geo->chunk_shift;
693 fc = sector_div(chunk, geo->far_copies);
694 dev -= fc * geo->near_copies;
475901af
JB
695 if (dev < far_set_start)
696 dev += far_set_size;
c93983bf 697 } else {
5cf00fcd
N
698 while (sector >= geo->stride) {
699 sector -= geo->stride;
475901af
JB
700 if (dev < (geo->near_copies + far_set_start))
701 dev += far_set_size - geo->near_copies;
c93983bf 702 else
5cf00fcd 703 dev -= geo->near_copies;
c93983bf 704 }
5cf00fcd 705 chunk = sector >> geo->chunk_shift;
c93983bf 706 }
5cf00fcd
N
707 vchunk = chunk * geo->raid_disks + dev;
708 sector_div(vchunk, geo->near_copies);
709 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
710}
711
1da177e4
LT
712/*
713 * This routine returns the disk from which the requested read should
714 * be done. There is a per-array 'next expected sequential IO' sector
715 * number - if this matches on the next IO then we use the last disk.
716 * There is also a per-disk 'last know head position' sector that is
717 * maintained from IRQ contexts, both the normal and the resync IO
718 * completion handlers update this position correctly. If there is no
719 * perfect sequential match then we pick the disk whose head is closest.
720 *
721 * If there are 2 mirrors in the same 2 devices, performance degrades
722 * because position is mirror, not device based.
723 *
724 * The rdev for the device selected will have nr_pending incremented.
725 */
726
727/*
728 * FIXME: possibly should rethink readbalancing and do it differently
729 * depending on near_copies / far_copies geometry.
730 */
96c3fd1f
N
731static struct md_rdev *read_balance(struct r10conf *conf,
732 struct r10bio *r10_bio,
733 int *max_sectors)
1da177e4 734{
af3a2cd6 735 const sector_t this_sector = r10_bio->sector;
56d99121 736 int disk, slot;
856e08e2
N
737 int sectors = r10_bio->sectors;
738 int best_good_sectors;
56d99121 739 sector_t new_distance, best_dist;
e9eeba28 740 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
56d99121 741 int do_balance;
e9eeba28
GJ
742 int best_dist_slot, best_pending_slot;
743 bool has_nonrot_disk = false;
744 unsigned int min_pending;
5cf00fcd 745 struct geom *geo = &conf->geo;
1da177e4
LT
746
747 raid10_find_phys(conf, r10_bio);
748 rcu_read_lock();
e9eeba28
GJ
749 best_dist_slot = -1;
750 min_pending = UINT_MAX;
751 best_dist_rdev = NULL;
752 best_pending_rdev = NULL;
56d99121 753 best_dist = MaxSector;
856e08e2 754 best_good_sectors = 0;
56d99121 755 do_balance = 1;
8d3ca83d 756 clear_bit(R10BIO_FailFast, &r10_bio->state);
1da177e4
LT
757 /*
758 * Check if we can balance. We can balance on the whole
6cce3b23
N
759 * device if no resync is going on (recovery is ok), or below
760 * the resync window. We take the first readable disk when
761 * above the resync window.
1da177e4 762 */
d4098c72
GJ
763 if ((conf->mddev->recovery_cp < MaxSector
764 && (this_sector + sectors >= conf->next_resync)) ||
765 (mddev_is_clustered(conf->mddev) &&
766 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
767 this_sector + sectors)))
56d99121 768 do_balance = 0;
1da177e4 769
56d99121 770 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
771 sector_t first_bad;
772 int bad_sectors;
773 sector_t dev_sector;
e9eeba28
GJ
774 unsigned int pending;
775 bool nonrot;
856e08e2 776
56d99121
N
777 if (r10_bio->devs[slot].bio == IO_BLOCKED)
778 continue;
1da177e4 779 disk = r10_bio->devs[slot].devnum;
abbf098e
N
780 rdev = rcu_dereference(conf->mirrors[disk].replacement);
781 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615 784 if (rdev == NULL ||
8ae12666 785 test_bit(Faulty, &rdev->flags))
abbf098e
N
786 continue;
787 if (!test_bit(In_sync, &rdev->flags) &&
788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
789 continue;
790
856e08e2
N
791 dev_sector = r10_bio->devs[slot].addr;
792 if (is_badblock(rdev, dev_sector, sectors,
793 &first_bad, &bad_sectors)) {
794 if (best_dist < MaxSector)
795 /* Already have a better slot */
796 continue;
797 if (first_bad <= dev_sector) {
798 /* Cannot read here. If this is the
799 * 'primary' device, then we must not read
800 * beyond 'bad_sectors' from another device.
801 */
802 bad_sectors -= (dev_sector - first_bad);
803 if (!do_balance && sectors > bad_sectors)
804 sectors = bad_sectors;
805 if (best_good_sectors > sectors)
806 best_good_sectors = sectors;
807 } else {
808 sector_t good_sectors =
809 first_bad - dev_sector;
810 if (good_sectors > best_good_sectors) {
811 best_good_sectors = good_sectors;
e9eeba28
GJ
812 best_dist_slot = slot;
813 best_dist_rdev = rdev;
856e08e2
N
814 }
815 if (!do_balance)
816 /* Must read from here */
817 break;
818 }
819 continue;
820 } else
821 best_good_sectors = sectors;
822
56d99121
N
823 if (!do_balance)
824 break;
1da177e4 825
10f0d2a5 826 nonrot = bdev_nonrot(rdev->bdev);
e9eeba28
GJ
827 has_nonrot_disk |= nonrot;
828 pending = atomic_read(&rdev->nr_pending);
829 if (min_pending > pending && nonrot) {
830 min_pending = pending;
831 best_pending_slot = slot;
832 best_pending_rdev = rdev;
833 }
834
835 if (best_dist_slot >= 0)
8d3ca83d
N
836 /* At least 2 disks to choose from so failfast is OK */
837 set_bit(R10BIO_FailFast, &r10_bio->state);
22dfdf52
N
838 /* This optimisation is debatable, and completely destroys
839 * sequential read speed for 'far copies' arrays. So only
840 * keep it for 'near' arrays, and review those later.
841 */
e9eeba28 842 if (geo->near_copies > 1 && !pending)
8d3ca83d 843 new_distance = 0;
8ed3a195
KS
844
845 /* for far > 1 always use the lowest address */
8d3ca83d 846 else if (geo->far_copies > 1)
56d99121 847 new_distance = r10_bio->devs[slot].addr;
8ed3a195 848 else
56d99121
N
849 new_distance = abs(r10_bio->devs[slot].addr -
850 conf->mirrors[disk].head_position);
e9eeba28 851
56d99121
N
852 if (new_distance < best_dist) {
853 best_dist = new_distance;
e9eeba28
GJ
854 best_dist_slot = slot;
855 best_dist_rdev = rdev;
1da177e4
LT
856 }
857 }
abbf098e 858 if (slot >= conf->copies) {
e9eeba28
GJ
859 if (has_nonrot_disk) {
860 slot = best_pending_slot;
861 rdev = best_pending_rdev;
862 } else {
863 slot = best_dist_slot;
864 rdev = best_dist_rdev;
865 }
abbf098e 866 }
1da177e4 867
56d99121 868 if (slot >= 0) {
56d99121 869 atomic_inc(&rdev->nr_pending);
56d99121
N
870 r10_bio->read_slot = slot;
871 } else
96c3fd1f 872 rdev = NULL;
1da177e4 873 rcu_read_unlock();
856e08e2 874 *max_sectors = best_good_sectors;
1da177e4 875
96c3fd1f 876 return rdev;
1da177e4
LT
877}
878
e879a879 879static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
880{
881 /* Any writes that have been queued but are awaiting
882 * bitmap updates get flushed here.
a35e63ef 883 */
a35e63ef
N
884 spin_lock_irq(&conf->device_lock);
885
886 if (conf->pending_bio_list.head) {
18022a1b 887 struct blk_plug plug;
a35e63ef 888 struct bio *bio;
18022a1b 889
a35e63ef 890 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef 891 spin_unlock_irq(&conf->device_lock);
474beb57
N
892
893 /*
894 * As this is called in a wait_event() loop (see freeze_array),
895 * current->state might be TASK_UNINTERRUPTIBLE which will
896 * cause a warning when we prepare to wait again. As it is
897 * rare that this path is taken, it is perfectly safe to force
898 * us to go around the wait_event() loop again, so the warning
899 * is a false-positive. Silence the warning by resetting
900 * thread state
901 */
902 __set_current_state(TASK_RUNNING);
903
18022a1b 904 blk_start_plug(&plug);
a35e63ef
N
905 /* flush any pending bitmap writes to disk
906 * before proceeding w/ I/O */
e64e4018 907 md_bitmap_unplug(conf->mddev->bitmap);
34db0cd6 908 wake_up(&conf->wait_barrier);
a35e63ef
N
909
910 while (bio) { /* submit pending writes */
911 struct bio *next = bio->bi_next;
309dca30 912 struct md_rdev *rdev = (void*)bio->bi_bdev;
a35e63ef 913 bio->bi_next = NULL;
74d46992 914 bio_set_dev(bio, rdev->bdev);
a9ae93c8 915 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 916 bio_io_error(bio);
a9ae93c8 917 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
70200574 918 !bdev_max_discard_sectors(bio->bi_bdev)))
532a2a3f 919 /* Just ignore it */
4246a0b6 920 bio_endio(bio);
532a2a3f 921 else
ed00aabd 922 submit_bio_noacct(bio);
a35e63ef
N
923 bio = next;
924 }
18022a1b 925 blk_finish_plug(&plug);
a35e63ef
N
926 } else
927 spin_unlock_irq(&conf->device_lock);
a35e63ef 928}
7eaceacc 929
0a27ec96
N
930/* Barriers....
931 * Sometimes we need to suspend IO while we do something else,
932 * either some resync/recovery, or reconfigure the array.
933 * To do this we raise a 'barrier'.
934 * The 'barrier' is a counter that can be raised multiple times
935 * to count how many activities are happening which preclude
936 * normal IO.
937 * We can only raise the barrier if there is no pending IO.
938 * i.e. if nr_pending == 0.
939 * We choose only to raise the barrier if no-one is waiting for the
940 * barrier to go down. This means that as soon as an IO request
941 * is ready, no other operations which require a barrier will start
942 * until the IO request has had a chance.
943 *
944 * So: regular IO calls 'wait_barrier'. When that returns there
945 * is no backgroup IO happening, It must arrange to call
946 * allow_barrier when it has finished its IO.
947 * backgroup IO calls must call raise_barrier. Once that returns
948 * there is no normal IO happeing. It must arrange to call
949 * lower_barrier when the particular background IO completes.
1da177e4 950 */
1da177e4 951
e879a879 952static void raise_barrier(struct r10conf *conf, int force)
1da177e4 953{
b9b083f9 954 write_seqlock_irq(&conf->resync_lock);
9fdfe6d4
YK
955
956 if (WARN_ON_ONCE(force && !conf->barrier))
957 force = false;
0a27ec96 958
6cce3b23 959 /* Wait until no block IO is waiting (unless 'force') */
b9b083f9 960 wait_event_barrier(conf, force || !conf->nr_waiting);
0a27ec96
N
961
962 /* block any new IO from starting */
b9b083f9 963 WRITE_ONCE(conf->barrier, conf->barrier + 1);
0a27ec96 964
c3b328ac 965 /* Now wait for all pending IO to complete */
b9b083f9
YK
966 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
967 conf->barrier < RESYNC_DEPTH);
0a27ec96 968
b9b083f9 969 write_sequnlock_irq(&conf->resync_lock);
0a27ec96
N
970}
971
e879a879 972static void lower_barrier(struct r10conf *conf)
0a27ec96
N
973{
974 unsigned long flags;
b9b083f9
YK
975
976 write_seqlock_irqsave(&conf->resync_lock, flags);
977 WRITE_ONCE(conf->barrier, conf->barrier - 1);
978 write_sequnlock_irqrestore(&conf->resync_lock, flags);
0a27ec96
N
979 wake_up(&conf->wait_barrier);
980}
981
ed2e063f
YK
982static bool stop_waiting_barrier(struct r10conf *conf)
983{
984 struct bio_list *bio_list = current->bio_list;
44693154 985 struct md_thread *thread;
ed2e063f
YK
986
987 /* barrier is dropped */
988 if (!conf->barrier)
989 return true;
990
991 /*
992 * If there are already pending requests (preventing the barrier from
993 * rising completely), and the pre-process bio queue isn't empty, then
994 * don't wait, as we need to empty that queue to get the nr_pending
995 * count down.
996 */
997 if (atomic_read(&conf->nr_pending) && bio_list &&
998 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
999 return true;
1000
44693154
YK
1001 /* daemon thread must exist while handling io */
1002 thread = rcu_dereference_protected(conf->mddev->thread, true);
72c215ed
LN
1003 /*
1004 * move on if io is issued from raid10d(), nr_pending is not released
1005 * from original io(see handle_read_error()). All raise barrier is
1006 * blocked until this io is done.
1007 */
44693154 1008 if (thread->tsk == current) {
72c215ed 1009 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
ed2e063f 1010 return true;
72c215ed 1011 }
ed2e063f
YK
1012
1013 return false;
1014}
1015
b9b083f9
YK
1016static bool wait_barrier_nolock(struct r10conf *conf)
1017{
1018 unsigned int seq = read_seqbegin(&conf->resync_lock);
1019
1020 if (READ_ONCE(conf->barrier))
1021 return false;
1022
1023 atomic_inc(&conf->nr_pending);
1024 if (!read_seqretry(&conf->resync_lock, seq))
1025 return true;
1026
1027 if (atomic_dec_and_test(&conf->nr_pending))
1028 wake_up_barrier(conf);
1029
1030 return false;
1031}
1032
c9aa889b 1033static bool wait_barrier(struct r10conf *conf, bool nowait)
0a27ec96 1034{
c9aa889b
VV
1035 bool ret = true;
1036
b9b083f9
YK
1037 if (wait_barrier_nolock(conf))
1038 return true;
1039
1040 write_seqlock_irq(&conf->resync_lock);
0a27ec96 1041 if (conf->barrier) {
c9aa889b
VV
1042 /* Return false when nowait flag is set */
1043 if (nowait) {
1044 ret = false;
1045 } else {
0de57e54 1046 conf->nr_waiting++;
c9aa889b 1047 raid10_log(conf->mddev, "wait barrier");
b9b083f9 1048 wait_event_barrier(conf, stop_waiting_barrier(conf));
0de57e54 1049 conf->nr_waiting--;
c9aa889b 1050 }
0e5313e2
TM
1051 if (!conf->nr_waiting)
1052 wake_up(&conf->wait_barrier);
1da177e4 1053 }
c9aa889b
VV
1054 /* Only increment nr_pending when we wait */
1055 if (ret)
1056 atomic_inc(&conf->nr_pending);
b9b083f9 1057 write_sequnlock_irq(&conf->resync_lock);
c9aa889b 1058 return ret;
1da177e4
LT
1059}
1060
e879a879 1061static void allow_barrier(struct r10conf *conf)
0a27ec96 1062{
0e5313e2
TM
1063 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1064 (conf->array_freeze_pending))
0c0be98b 1065 wake_up_barrier(conf);
0a27ec96
N
1066}
1067
e2d59925 1068static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1069{
1070 /* stop syncio and normal IO and wait for everything to
f188593e 1071 * go quiet.
4443ae10 1072 * We increment barrier and nr_waiting, and then
e2d59925 1073 * wait until nr_pending match nr_queued+extra
1c830532
N
1074 * This is called in the context of one normal IO request
1075 * that has failed. Thus any sync request that might be pending
1076 * will be blocked by nr_pending, and we need to wait for
1077 * pending IO requests to complete or be queued for re-try.
e2d59925 1078 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1079 * must match the number of pending IOs (nr_pending) before
1080 * we continue.
4443ae10 1081 */
b9b083f9 1082 write_seqlock_irq(&conf->resync_lock);
0e5313e2 1083 conf->array_freeze_pending++;
b9b083f9 1084 WRITE_ONCE(conf->barrier, conf->barrier + 1);
4443ae10 1085 conf->nr_waiting++;
b9b083f9
YK
1086 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1087 conf->nr_queued + extra, flush_pending_writes(conf));
0e5313e2 1088 conf->array_freeze_pending--;
b9b083f9 1089 write_sequnlock_irq(&conf->resync_lock);
4443ae10
N
1090}
1091
e879a879 1092static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1093{
1094 /* reverse the effect of the freeze */
b9b083f9
YK
1095 write_seqlock_irq(&conf->resync_lock);
1096 WRITE_ONCE(conf->barrier, conf->barrier - 1);
4443ae10
N
1097 conf->nr_waiting--;
1098 wake_up(&conf->wait_barrier);
b9b083f9 1099 write_sequnlock_irq(&conf->resync_lock);
4443ae10
N
1100}
1101
f8c9e74f
N
1102static sector_t choose_data_offset(struct r10bio *r10_bio,
1103 struct md_rdev *rdev)
1104{
1105 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1106 test_bit(R10BIO_Previous, &r10_bio->state))
1107 return rdev->data_offset;
1108 else
1109 return rdev->new_data_offset;
1110}
1111
57c67df4
N
1112static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1113{
daae161f 1114 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
57c67df4
N
1115 struct mddev *mddev = plug->cb.data;
1116 struct r10conf *conf = mddev->private;
1117 struct bio *bio;
1118
874807a8 1119 if (from_schedule || current->bio_list) {
57c67df4
N
1120 spin_lock_irq(&conf->device_lock);
1121 bio_list_merge(&conf->pending_bio_list, &plug->pending);
57c67df4 1122 spin_unlock_irq(&conf->device_lock);
ee0b0244 1123 wake_up(&conf->wait_barrier);
57c67df4
N
1124 md_wakeup_thread(mddev->thread);
1125 kfree(plug);
1126 return;
1127 }
1128
1129 /* we aren't scheduling, so we can do the write-out directly. */
1130 bio = bio_list_get(&plug->pending);
e64e4018 1131 md_bitmap_unplug(mddev->bitmap);
57c67df4
N
1132 wake_up(&conf->wait_barrier);
1133
1134 while (bio) { /* submit pending writes */
1135 struct bio *next = bio->bi_next;
309dca30 1136 struct md_rdev *rdev = (void*)bio->bi_bdev;
57c67df4 1137 bio->bi_next = NULL;
74d46992 1138 bio_set_dev(bio, rdev->bdev);
a9ae93c8 1139 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 1140 bio_io_error(bio);
a9ae93c8 1141 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
70200574 1142 !bdev_max_discard_sectors(bio->bi_bdev)))
32f9f570 1143 /* Just ignore it */
4246a0b6 1144 bio_endio(bio);
32f9f570 1145 else
ed00aabd 1146 submit_bio_noacct(bio);
57c67df4
N
1147 bio = next;
1148 }
1149 kfree(plug);
1150}
1151
caea3c47
GJ
1152/*
1153 * 1. Register the new request and wait if the reconstruction thread has put
1154 * up a bar for new requests. Continue immediately if no resync is active
1155 * currently.
1156 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1157 */
c9aa889b 1158static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
caea3c47
GJ
1159 struct bio *bio, sector_t sectors)
1160{
c9aa889b
VV
1161 /* Bail out if REQ_NOWAIT is set for the bio */
1162 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1163 bio_wouldblock_error(bio);
1164 return false;
1165 }
caea3c47
GJ
1166 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1167 bio->bi_iter.bi_sector < conf->reshape_progress &&
1168 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
caea3c47 1169 allow_barrier(conf);
c9aa889b
VV
1170 if (bio->bi_opf & REQ_NOWAIT) {
1171 bio_wouldblock_error(bio);
1172 return false;
1173 }
1174 raid10_log(conf->mddev, "wait reshape");
caea3c47
GJ
1175 wait_event(conf->wait_barrier,
1176 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1177 conf->reshape_progress >= bio->bi_iter.bi_sector +
1178 sectors);
c9aa889b 1179 wait_barrier(conf, false);
caea3c47 1180 }
c9aa889b 1181 return true;
caea3c47
GJ
1182}
1183
bb5f1ed7
RL
1184static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1185 struct r10bio *r10_bio)
1da177e4 1186{
e879a879 1187 struct r10conf *conf = mddev->private;
1da177e4 1188 struct bio *read_bio;
cb1802ff
BVA
1189 const enum req_op op = bio_op(bio);
1190 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
bb5f1ed7 1191 int max_sectors;
bb5f1ed7 1192 struct md_rdev *rdev;
545250f2
N
1193 char b[BDEVNAME_SIZE];
1194 int slot = r10_bio->read_slot;
1195 struct md_rdev *err_rdev = NULL;
1196 gfp_t gfp = GFP_NOIO;
bb5f1ed7 1197
93decc56 1198 if (slot >= 0 && r10_bio->devs[slot].rdev) {
545250f2
N
1199 /*
1200 * This is an error retry, but we cannot
1201 * safely dereference the rdev in the r10_bio,
1202 * we must use the one in conf.
1203 * If it has already been disconnected (unlikely)
1204 * we lose the device name in error messages.
1205 */
1206 int disk;
1207 /*
1208 * As we are blocking raid10, it is a little safer to
1209 * use __GFP_HIGH.
1210 */
1211 gfp = GFP_NOIO | __GFP_HIGH;
1212
1213 rcu_read_lock();
1214 disk = r10_bio->devs[slot].devnum;
1215 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1216 if (err_rdev)
900d156b 1217 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
545250f2
N
1218 else {
1219 strcpy(b, "???");
1220 /* This never gets dereferenced */
1221 err_rdev = r10_bio->devs[slot].rdev;
1222 }
1223 rcu_read_unlock();
1224 }
bb5f1ed7 1225
c9aa889b
VV
1226 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1227 return;
bb5f1ed7
RL
1228 rdev = read_balance(conf, r10_bio, &max_sectors);
1229 if (!rdev) {
545250f2
N
1230 if (err_rdev) {
1231 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1232 mdname(mddev), b,
1233 (unsigned long long)r10_bio->sector);
1234 }
bb5f1ed7
RL
1235 raid_end_bio_io(r10_bio);
1236 return;
1237 }
545250f2 1238 if (err_rdev)
913cce5a 1239 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
545250f2 1240 mdname(mddev),
913cce5a 1241 rdev->bdev,
545250f2 1242 (unsigned long long)r10_bio->sector);
fc9977dd
N
1243 if (max_sectors < bio_sectors(bio)) {
1244 struct bio *split = bio_split(bio, max_sectors,
afeee514 1245 gfp, &conf->bio_split);
fc9977dd 1246 bio_chain(split, bio);
e820d55c 1247 allow_barrier(conf);
ed00aabd 1248 submit_bio_noacct(bio);
c9aa889b 1249 wait_barrier(conf, false);
fc9977dd
N
1250 bio = split;
1251 r10_bio->master_bio = bio;
1252 r10_bio->sectors = max_sectors;
1253 }
bb5f1ed7
RL
1254 slot = r10_bio->read_slot;
1255
7cddb055
YK
1256 if (!r10_bio->start_time &&
1257 blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
528bc2cf 1258 r10_bio->start_time = bio_start_io_acct(bio);
abfc426d 1259 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
bb5f1ed7
RL
1260
1261 r10_bio->devs[slot].bio = read_bio;
1262 r10_bio->devs[slot].rdev = rdev;
1263
1264 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1265 choose_data_offset(r10_bio, rdev);
bb5f1ed7 1266 read_bio->bi_end_io = raid10_end_read_request;
c34b7ac6 1267 read_bio->bi_opf = op | do_sync;
bb5f1ed7
RL
1268 if (test_bit(FailFast, &rdev->flags) &&
1269 test_bit(R10BIO_FailFast, &r10_bio->state))
1270 read_bio->bi_opf |= MD_FAILFAST;
1271 read_bio->bi_private = r10_bio;
1272
1273 if (mddev->gendisk)
1c02fca6 1274 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
bb5f1ed7 1275 r10_bio->sector);
ed00aabd 1276 submit_bio_noacct(read_bio);
bb5f1ed7
RL
1277 return;
1278}
1279
27f26a0f
GJ
1280static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1281 struct bio *bio, bool replacement,
fc9977dd 1282 int n_copy)
bb5f1ed7 1283{
cb1802ff
BVA
1284 const enum req_op op = bio_op(bio);
1285 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1286 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
6cce3b23 1287 unsigned long flags;
57c67df4 1288 struct blk_plug_cb *cb;
daae161f 1289 struct raid1_plug_cb *plug = NULL;
27f26a0f
GJ
1290 struct r10conf *conf = mddev->private;
1291 struct md_rdev *rdev;
1292 int devnum = r10_bio->devs[n_copy].devnum;
1293 struct bio *mbio;
1294
1295 if (replacement) {
1296 rdev = conf->mirrors[devnum].replacement;
1297 if (rdev == NULL) {
1298 /* Replacement just got moved to main 'rdev' */
1299 smp_mb();
1300 rdev = conf->mirrors[devnum].rdev;
1301 }
1302 } else
1303 rdev = conf->mirrors[devnum].rdev;
1304
abfc426d 1305 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
27f26a0f
GJ
1306 if (replacement)
1307 r10_bio->devs[n_copy].repl_bio = mbio;
1308 else
1309 r10_bio->devs[n_copy].bio = mbio;
1310
1311 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1312 choose_data_offset(r10_bio, rdev));
27f26a0f 1313 mbio->bi_end_io = raid10_end_write_request;
c34b7ac6 1314 mbio->bi_opf = op | do_sync | do_fua;
27f26a0f
GJ
1315 if (!replacement && test_bit(FailFast,
1316 &conf->mirrors[devnum].rdev->flags)
1317 && enough(conf, devnum))
1318 mbio->bi_opf |= MD_FAILFAST;
1319 mbio->bi_private = r10_bio;
1320
1321 if (conf->mddev->gendisk)
1c02fca6 1322 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
27f26a0f
GJ
1323 r10_bio->sector);
1324 /* flush_pending_writes() needs access to the rdev so...*/
309dca30 1325 mbio->bi_bdev = (void *)rdev;
27f26a0f
GJ
1326
1327 atomic_inc(&r10_bio->remaining);
1328
1329 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1330 if (cb)
daae161f 1331 plug = container_of(cb, struct raid1_plug_cb, cb);
27f26a0f
GJ
1332 else
1333 plug = NULL;
27f26a0f
GJ
1334 if (plug) {
1335 bio_list_add(&plug->pending, mbio);
27f26a0f 1336 } else {
23b245c0 1337 spin_lock_irqsave(&conf->device_lock, flags);
27f26a0f 1338 bio_list_add(&conf->pending_bio_list, mbio);
23b245c0 1339 spin_unlock_irqrestore(&conf->device_lock, flags);
27f26a0f 1340 md_wakeup_thread(mddev->thread);
23b245c0 1341 }
27f26a0f
GJ
1342}
1343
f2e7e269
XN
1344static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1345{
1346 int i;
1347 struct r10conf *conf = mddev->private;
1348 struct md_rdev *blocked_rdev;
1349
1350retry_wait:
1351 blocked_rdev = NULL;
1352 rcu_read_lock();
1353 for (i = 0; i < conf->copies; i++) {
1354 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1355 struct md_rdev *rrdev = rcu_dereference(
1356 conf->mirrors[i].replacement);
1357 if (rdev == rrdev)
1358 rrdev = NULL;
1359 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1360 atomic_inc(&rdev->nr_pending);
1361 blocked_rdev = rdev;
1362 break;
1363 }
1364 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1365 atomic_inc(&rrdev->nr_pending);
1366 blocked_rdev = rrdev;
1367 break;
1368 }
1369
1370 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1371 sector_t first_bad;
1372 sector_t dev_sector = r10_bio->devs[i].addr;
1373 int bad_sectors;
1374 int is_bad;
1375
1376 /*
1377 * Discard request doesn't care the write result
1378 * so it doesn't need to wait blocked disk here.
1379 */
1380 if (!r10_bio->sectors)
1381 continue;
1382
1383 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1384 &first_bad, &bad_sectors);
1385 if (is_bad < 0) {
1386 /*
1387 * Mustn't write here until the bad block
1388 * is acknowledged
1389 */
1390 atomic_inc(&rdev->nr_pending);
1391 set_bit(BlockedBadBlocks, &rdev->flags);
1392 blocked_rdev = rdev;
1393 break;
1394 }
1395 }
1396 }
1397 rcu_read_unlock();
1398
1399 if (unlikely(blocked_rdev)) {
1400 /* Have to wait for this device to get unblocked, then retry */
1401 allow_barrier(conf);
1402 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1403 __func__, blocked_rdev->raid_disk);
1404 md_wait_for_blocked_rdev(blocked_rdev, mddev);
c9aa889b 1405 wait_barrier(conf, false);
f2e7e269
XN
1406 goto retry_wait;
1407 }
1408}
1409
27f26a0f
GJ
1410static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1411 struct r10bio *r10_bio)
1412{
1413 struct r10conf *conf = mddev->private;
1414 int i;
bb5f1ed7 1415 sector_t sectors;
d4432c23 1416 int max_sectors;
1da177e4 1417
cb8a7a7e
GJ
1418 if ((mddev_is_clustered(mddev) &&
1419 md_cluster_ops->area_resyncing(mddev, WRITE,
1420 bio->bi_iter.bi_sector,
1421 bio_end_sector(bio)))) {
1422 DEFINE_WAIT(w);
c9aa889b
VV
1423 /* Bail out if REQ_NOWAIT is set for the bio */
1424 if (bio->bi_opf & REQ_NOWAIT) {
1425 bio_wouldblock_error(bio);
1426 return;
1427 }
cb8a7a7e
GJ
1428 for (;;) {
1429 prepare_to_wait(&conf->wait_barrier,
1430 &w, TASK_IDLE);
1431 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1432 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1433 break;
1434 schedule();
1435 }
1436 finish_wait(&conf->wait_barrier, &w);
1437 }
1438
fc9977dd 1439 sectors = r10_bio->sectors;
c9aa889b
VV
1440 if (!regular_request_wait(mddev, conf, bio, sectors))
1441 return;
3ea7daa5 1442 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3ea7daa5 1443 (mddev->reshape_backwards
4f024f37
KO
1444 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1445 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1446 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1447 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1448 /* Need to update reshape_position in metadata */
1449 mddev->reshape_position = conf->reshape_progress;
2953079c
SL
1450 set_mask_bits(&mddev->sb_flags, 0,
1451 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
3ea7daa5 1452 md_wakeup_thread(mddev->thread);
c9aa889b
VV
1453 if (bio->bi_opf & REQ_NOWAIT) {
1454 allow_barrier(conf);
1455 bio_wouldblock_error(bio);
1456 return;
1457 }
578b54ad 1458 raid10_log(conf->mddev, "wait reshape metadata");
3ea7daa5 1459 wait_event(mddev->sb_wait,
2953079c 1460 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
3ea7daa5
N
1461
1462 conf->reshape_safe = mddev->reshape_position;
1463 }
1464
6bfe0b49 1465 /* first select target devices under rcu_lock and
1da177e4
LT
1466 * inc refcount on their rdev. Record them by setting
1467 * bios[x] to bio
d4432c23
N
1468 * If there are known/acknowledged bad blocks on any device
1469 * on which we have seen a write error, we want to avoid
1470 * writing to those blocks. This potentially requires several
1471 * writes to write around the bad blocks. Each set of writes
fd16f2e8 1472 * gets its own r10_bio with a set of bios attached.
1da177e4 1473 */
c3b328ac 1474
69335ef3 1475 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1476 raid10_find_phys(conf, r10_bio);
f2e7e269
XN
1477
1478 wait_blocked_dev(mddev, r10_bio);
1479
1da177e4 1480 rcu_read_lock();
d4432c23
N
1481 max_sectors = r10_bio->sectors;
1482
1da177e4
LT
1483 for (i = 0; i < conf->copies; i++) {
1484 int d = r10_bio->devs[i].devnum;
3cb03002 1485 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1486 struct md_rdev *rrdev = rcu_dereference(
1487 conf->mirrors[d].replacement);
4ca40c2c
N
1488 if (rdev == rrdev)
1489 rrdev = NULL;
8ae12666 1490 if (rdev && (test_bit(Faulty, &rdev->flags)))
e7c0c3fa 1491 rdev = NULL;
8ae12666 1492 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
475b0321
N
1493 rrdev = NULL;
1494
d4432c23 1495 r10_bio->devs[i].bio = NULL;
475b0321 1496 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1497
1498 if (!rdev && !rrdev) {
6cce3b23 1499 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1500 continue;
1501 }
e7c0c3fa 1502 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1503 sector_t first_bad;
1504 sector_t dev_sector = r10_bio->devs[i].addr;
1505 int bad_sectors;
1506 int is_bad;
1507
bb5f1ed7 1508 is_bad = is_badblock(rdev, dev_sector, max_sectors,
d4432c23 1509 &first_bad, &bad_sectors);
d4432c23
N
1510 if (is_bad && first_bad <= dev_sector) {
1511 /* Cannot write here at all */
1512 bad_sectors -= (dev_sector - first_bad);
1513 if (bad_sectors < max_sectors)
1514 /* Mustn't write more than bad_sectors
1515 * to other devices yet
1516 */
1517 max_sectors = bad_sectors;
1518 /* We don't set R10BIO_Degraded as that
1519 * only applies if the disk is missing,
1520 * so it might be re-added, and we want to
1521 * know to recover this chunk.
1522 * In this case the device is here, and the
1523 * fact that this chunk is not in-sync is
1524 * recorded in the bad block log.
1525 */
1526 continue;
1527 }
1528 if (is_bad) {
1529 int good_sectors = first_bad - dev_sector;
1530 if (good_sectors < max_sectors)
1531 max_sectors = good_sectors;
1532 }
6cce3b23 1533 }
e7c0c3fa
N
1534 if (rdev) {
1535 r10_bio->devs[i].bio = bio;
1536 atomic_inc(&rdev->nr_pending);
1537 }
475b0321
N
1538 if (rrdev) {
1539 r10_bio->devs[i].repl_bio = bio;
1540 atomic_inc(&rrdev->nr_pending);
1541 }
1da177e4
LT
1542 }
1543 rcu_read_unlock();
1544
6b6c8110 1545 if (max_sectors < r10_bio->sectors)
d4432c23 1546 r10_bio->sectors = max_sectors;
fc9977dd
N
1547
1548 if (r10_bio->sectors < bio_sectors(bio)) {
1549 struct bio *split = bio_split(bio, r10_bio->sectors,
afeee514 1550 GFP_NOIO, &conf->bio_split);
fc9977dd 1551 bio_chain(split, bio);
e820d55c 1552 allow_barrier(conf);
ed00aabd 1553 submit_bio_noacct(bio);
c9aa889b 1554 wait_barrier(conf, false);
fc9977dd
N
1555 bio = split;
1556 r10_bio->master_bio = bio;
d4432c23 1557 }
d4432c23 1558
528bc2cf
GJ
1559 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1560 r10_bio->start_time = bio_start_io_acct(bio);
4e78064f 1561 atomic_set(&r10_bio->remaining, 1);
e64e4018 1562 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1563
1da177e4 1564 for (i = 0; i < conf->copies; i++) {
27f26a0f 1565 if (r10_bio->devs[i].bio)
fc9977dd 1566 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
27f26a0f 1567 if (r10_bio->devs[i].repl_bio)
fc9977dd 1568 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
d4432c23 1569 }
079fa166 1570 one_write_done(r10_bio);
20d0189b
KO
1571}
1572
fc9977dd 1573static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
bb5f1ed7
RL
1574{
1575 struct r10conf *conf = mddev->private;
1576 struct r10bio *r10_bio;
1577
afeee514 1578 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
bb5f1ed7
RL
1579
1580 r10_bio->master_bio = bio;
fc9977dd 1581 r10_bio->sectors = sectors;
bb5f1ed7
RL
1582
1583 r10_bio->mddev = mddev;
1584 r10_bio->sector = bio->bi_iter.bi_sector;
1585 r10_bio->state = 0;
93decc56 1586 r10_bio->read_slot = -1;
7cddb055 1587 r10_bio->start_time = 0;
c2968285
XN
1588 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1589 conf->geo.raid_disks);
bb5f1ed7
RL
1590
1591 if (bio_data_dir(bio) == READ)
1592 raid10_read_request(mddev, bio, r10_bio);
1593 else
1594 raid10_write_request(mddev, bio, r10_bio);
1595}
1596
254c271d
XN
1597static void raid_end_discard_bio(struct r10bio *r10bio)
1598{
1599 struct r10conf *conf = r10bio->mddev->private;
1600 struct r10bio *first_r10bio;
1601
1602 while (atomic_dec_and_test(&r10bio->remaining)) {
1603
1604 allow_barrier(conf);
1605
1606 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1607 first_r10bio = (struct r10bio *)r10bio->master_bio;
1608 free_r10bio(r10bio);
1609 r10bio = first_r10bio;
1610 } else {
1611 md_write_end(r10bio->mddev);
1612 bio_endio(r10bio->master_bio);
1613 free_r10bio(r10bio);
1614 break;
1615 }
1616 }
1617}
1618
d30588b2
XN
1619static void raid10_end_discard_request(struct bio *bio)
1620{
1621 struct r10bio *r10_bio = bio->bi_private;
1622 struct r10conf *conf = r10_bio->mddev->private;
1623 struct md_rdev *rdev = NULL;
1624 int dev;
1625 int slot, repl;
1626
1627 /*
1628 * We don't care the return value of discard bio
1629 */
1630 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1631 set_bit(R10BIO_Uptodate, &r10_bio->state);
1632
1633 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1634 if (repl)
1635 rdev = conf->mirrors[dev].replacement;
1636 if (!rdev) {
1637 /*
1638 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1639 * replacement before setting replacement to NULL. It can read
dccb8ad6 1640 * rdev first without barrier protect even replacement is NULL
d30588b2
XN
1641 */
1642 smp_rmb();
1643 rdev = conf->mirrors[dev].rdev;
1644 }
1645
254c271d 1646 raid_end_discard_bio(r10_bio);
d30588b2
XN
1647 rdev_dec_pending(rdev, conf->mddev);
1648}
1649
1650/*
1651 * There are some limitations to handle discard bio
1652 * 1st, the discard size is bigger than stripe_size*2.
1653 * 2st, if the discard bio spans reshape progress, we use the old way to
1654 * handle discard bio
1655 */
1656static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1657{
1658 struct r10conf *conf = mddev->private;
1659 struct geom *geo = &conf->geo;
254c271d
XN
1660 int far_copies = geo->far_copies;
1661 bool first_copy = true;
1662 struct r10bio *r10_bio, *first_r10bio;
d30588b2
XN
1663 struct bio *split;
1664 int disk;
1665 sector_t chunk;
1666 unsigned int stripe_size;
1667 unsigned int stripe_data_disks;
1668 sector_t split_size;
1669 sector_t bio_start, bio_end;
1670 sector_t first_stripe_index, last_stripe_index;
1671 sector_t start_disk_offset;
1672 unsigned int start_disk_index;
1673 sector_t end_disk_offset;
1674 unsigned int end_disk_index;
1675 unsigned int remainder;
1676
1677 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1678 return -EAGAIN;
1679
c9aa889b
VV
1680 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1681 bio_wouldblock_error(bio);
1682 return 0;
1683 }
1684 wait_barrier(conf, false);
d30588b2
XN
1685
1686 /*
1687 * Check reshape again to avoid reshape happens after checking
1688 * MD_RECOVERY_RESHAPE and before wait_barrier
1689 */
1690 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1691 goto out;
1692
1693 if (geo->near_copies)
1694 stripe_data_disks = geo->raid_disks / geo->near_copies +
1695 geo->raid_disks % geo->near_copies;
1696 else
1697 stripe_data_disks = geo->raid_disks;
1698
1699 stripe_size = stripe_data_disks << geo->chunk_shift;
1700
1701 bio_start = bio->bi_iter.bi_sector;
1702 bio_end = bio_end_sector(bio);
1703
1704 /*
1705 * Maybe one discard bio is smaller than strip size or across one
1706 * stripe and discard region is larger than one stripe size. For far
1707 * offset layout, if the discard region is not aligned with stripe
1708 * size, there is hole when we submit discard bio to member disk.
1709 * For simplicity, we only handle discard bio which discard region
1710 * is bigger than stripe_size * 2
1711 */
1712 if (bio_sectors(bio) < stripe_size*2)
1713 goto out;
1714
1715 /*
1716 * Keep bio aligned with strip size.
1717 */
1718 div_u64_rem(bio_start, stripe_size, &remainder);
1719 if (remainder) {
1720 split_size = stripe_size - remainder;
1721 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1722 bio_chain(split, bio);
1723 allow_barrier(conf);
1724 /* Resend the fist split part */
1725 submit_bio_noacct(split);
c9aa889b 1726 wait_barrier(conf, false);
d30588b2
XN
1727 }
1728 div_u64_rem(bio_end, stripe_size, &remainder);
1729 if (remainder) {
1730 split_size = bio_sectors(bio) - remainder;
1731 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1732 bio_chain(split, bio);
1733 allow_barrier(conf);
1734 /* Resend the second split part */
1735 submit_bio_noacct(bio);
1736 bio = split;
c9aa889b 1737 wait_barrier(conf, false);
d30588b2
XN
1738 }
1739
d30588b2
XN
1740 bio_start = bio->bi_iter.bi_sector;
1741 bio_end = bio_end_sector(bio);
1742
1743 /*
1744 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1745 * One stripe contains the chunks from all member disk (one chunk from
1746 * one disk at the same HBA address). For layout detail, see 'man md 4'
1747 */
1748 chunk = bio_start >> geo->chunk_shift;
1749 chunk *= geo->near_copies;
1750 first_stripe_index = chunk;
1751 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1752 if (geo->far_offset)
1753 first_stripe_index *= geo->far_copies;
1754 start_disk_offset = (bio_start & geo->chunk_mask) +
1755 (first_stripe_index << geo->chunk_shift);
1756
1757 chunk = bio_end >> geo->chunk_shift;
1758 chunk *= geo->near_copies;
1759 last_stripe_index = chunk;
1760 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1761 if (geo->far_offset)
1762 last_stripe_index *= geo->far_copies;
1763 end_disk_offset = (bio_end & geo->chunk_mask) +
1764 (last_stripe_index << geo->chunk_shift);
1765
254c271d
XN
1766retry_discard:
1767 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1768 r10_bio->mddev = mddev;
1769 r10_bio->state = 0;
1770 r10_bio->sectors = 0;
1771 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1772 wait_blocked_dev(mddev, r10_bio);
1773
1774 /*
1775 * For far layout it needs more than one r10bio to cover all regions.
1776 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1777 * to record the discard bio. Other r10bio->master_bio record the first
1778 * r10bio. The first r10bio only release after all other r10bios finish.
1779 * The discard bio returns only first r10bio finishes
1780 */
1781 if (first_copy) {
1782 r10_bio->master_bio = bio;
1783 set_bit(R10BIO_Discard, &r10_bio->state);
1784 first_copy = false;
1785 first_r10bio = r10_bio;
1786 } else
1787 r10_bio->master_bio = (struct bio *)first_r10bio;
1788
46d4703b
XN
1789 /*
1790 * first select target devices under rcu_lock and
1791 * inc refcount on their rdev. Record them by setting
1792 * bios[x] to bio
1793 */
d30588b2
XN
1794 rcu_read_lock();
1795 for (disk = 0; disk < geo->raid_disks; disk++) {
1796 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1797 struct md_rdev *rrdev = rcu_dereference(
1798 conf->mirrors[disk].replacement);
1799
1800 r10_bio->devs[disk].bio = NULL;
1801 r10_bio->devs[disk].repl_bio = NULL;
1802
1803 if (rdev && (test_bit(Faulty, &rdev->flags)))
1804 rdev = NULL;
1805 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1806 rrdev = NULL;
1807 if (!rdev && !rrdev)
1808 continue;
1809
1810 if (rdev) {
1811 r10_bio->devs[disk].bio = bio;
1812 atomic_inc(&rdev->nr_pending);
1813 }
1814 if (rrdev) {
1815 r10_bio->devs[disk].repl_bio = bio;
1816 atomic_inc(&rrdev->nr_pending);
1817 }
1818 }
1819 rcu_read_unlock();
1820
1821 atomic_set(&r10_bio->remaining, 1);
1822 for (disk = 0; disk < geo->raid_disks; disk++) {
1823 sector_t dev_start, dev_end;
1824 struct bio *mbio, *rbio = NULL;
d30588b2
XN
1825
1826 /*
1827 * Now start to calculate the start and end address for each disk.
1828 * The space between dev_start and dev_end is the discard region.
1829 *
1830 * For dev_start, it needs to consider three conditions:
1831 * 1st, the disk is before start_disk, you can imagine the disk in
1832 * the next stripe. So the dev_start is the start address of next
1833 * stripe.
1834 * 2st, the disk is after start_disk, it means the disk is at the
1835 * same stripe of first disk
1836 * 3st, the first disk itself, we can use start_disk_offset directly
1837 */
1838 if (disk < start_disk_index)
1839 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1840 else if (disk > start_disk_index)
1841 dev_start = first_stripe_index * mddev->chunk_sectors;
1842 else
1843 dev_start = start_disk_offset;
1844
1845 if (disk < end_disk_index)
1846 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1847 else if (disk > end_disk_index)
1848 dev_end = last_stripe_index * mddev->chunk_sectors;
1849 else
1850 dev_end = end_disk_offset;
1851
1852 /*
1853 * It only handles discard bio which size is >= stripe size, so
46d4703b
XN
1854 * dev_end > dev_start all the time.
1855 * It doesn't need to use rcu lock to get rdev here. We already
1856 * add rdev->nr_pending in the first loop.
d30588b2
XN
1857 */
1858 if (r10_bio->devs[disk].bio) {
46d4703b 1859 struct md_rdev *rdev = conf->mirrors[disk].rdev;
abfc426d
CH
1860 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1861 &mddev->bio_set);
d30588b2
XN
1862 mbio->bi_end_io = raid10_end_discard_request;
1863 mbio->bi_private = r10_bio;
1864 r10_bio->devs[disk].bio = mbio;
1865 r10_bio->devs[disk].devnum = disk;
1866 atomic_inc(&r10_bio->remaining);
1867 md_submit_discard_bio(mddev, rdev, mbio,
1868 dev_start + choose_data_offset(r10_bio, rdev),
1869 dev_end - dev_start);
1870 bio_endio(mbio);
1871 }
1872 if (r10_bio->devs[disk].repl_bio) {
46d4703b 1873 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
abfc426d
CH
1874 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1875 &mddev->bio_set);
d30588b2
XN
1876 rbio->bi_end_io = raid10_end_discard_request;
1877 rbio->bi_private = r10_bio;
1878 r10_bio->devs[disk].repl_bio = rbio;
1879 r10_bio->devs[disk].devnum = disk;
1880 atomic_inc(&r10_bio->remaining);
1881 md_submit_discard_bio(mddev, rrdev, rbio,
1882 dev_start + choose_data_offset(r10_bio, rrdev),
1883 dev_end - dev_start);
1884 bio_endio(rbio);
1885 }
1886 }
1887
254c271d
XN
1888 if (!geo->far_offset && --far_copies) {
1889 first_stripe_index += geo->stride >> geo->chunk_shift;
1890 start_disk_offset += geo->stride;
1891 last_stripe_index += geo->stride >> geo->chunk_shift;
1892 end_disk_offset += geo->stride;
1893 atomic_inc(&first_r10bio->remaining);
1894 raid_end_discard_bio(r10_bio);
c9aa889b 1895 wait_barrier(conf, false);
254c271d 1896 goto retry_discard;
d30588b2
XN
1897 }
1898
254c271d
XN
1899 raid_end_discard_bio(r10_bio);
1900
d30588b2
XN
1901 return 0;
1902out:
1903 allow_barrier(conf);
1904 return -EAGAIN;
1905}
1906
cc27b0c7 1907static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
20d0189b
KO
1908{
1909 struct r10conf *conf = mddev->private;
1910 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1911 int chunk_sects = chunk_mask + 1;
fc9977dd 1912 int sectors = bio_sectors(bio);
20d0189b 1913
775d7831
DJ
1914 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1915 && md_flush_request(mddev, bio))
cc27b0c7 1916 return true;
20d0189b 1917
cc27b0c7
N
1918 if (!md_write_start(mddev, bio))
1919 return false;
1920
d30588b2
XN
1921 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1922 if (!raid10_handle_discard(mddev, bio))
1923 return true;
1924
fc9977dd
N
1925 /*
1926 * If this request crosses a chunk boundary, we need to split
1927 * it.
1928 */
1929 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1930 sectors > chunk_sects
1931 && (conf->geo.near_copies < conf->geo.raid_disks
1932 || conf->prev.near_copies <
1933 conf->prev.raid_disks)))
1934 sectors = chunk_sects -
1935 (bio->bi_iter.bi_sector &
1936 (chunk_sects - 1));
1937 __make_request(mddev, bio, sectors);
079fa166
N
1938
1939 /* In case raid10d snuck in to freeze_array */
0c0be98b 1940 wake_up_barrier(conf);
cc27b0c7 1941 return true;
1da177e4
LT
1942}
1943
849674e4 1944static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1945{
e879a879 1946 struct r10conf *conf = mddev->private;
1da177e4
LT
1947 int i;
1948
5cf00fcd 1949 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1950 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1951 if (conf->geo.near_copies > 1)
1952 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1953 if (conf->geo.far_copies > 1) {
1954 if (conf->geo.far_offset)
1955 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1956 else
5cf00fcd 1957 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
8bce6d35
N
1958 if (conf->geo.far_set_size != conf->geo.raid_disks)
1959 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
c93983bf 1960 }
5cf00fcd
N
1961 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1962 conf->geo.raid_disks - mddev->degraded);
d44b0a92
N
1963 rcu_read_lock();
1964 for (i = 0; i < conf->geo.raid_disks; i++) {
1965 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1966 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1967 }
1968 rcu_read_unlock();
1da177e4
LT
1969 seq_printf(seq, "]");
1970}
1971
700c7213
N
1972/* check if there are enough drives for
1973 * every block to appear on atleast one.
1974 * Don't consider the device numbered 'ignore'
1975 * as we might be about to remove it.
1976 */
635f6416 1977static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1978{
1979 int first = 0;
725d6e57 1980 int has_enough = 0;
635f6416
N
1981 int disks, ncopies;
1982 if (previous) {
1983 disks = conf->prev.raid_disks;
1984 ncopies = conf->prev.near_copies;
1985 } else {
1986 disks = conf->geo.raid_disks;
1987 ncopies = conf->geo.near_copies;
1988 }
700c7213 1989
725d6e57 1990 rcu_read_lock();
700c7213
N
1991 do {
1992 int n = conf->copies;
1993 int cnt = 0;
80b48124 1994 int this = first;
700c7213 1995 while (n--) {
725d6e57
N
1996 struct md_rdev *rdev;
1997 if (this != ignore &&
1998 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1999 test_bit(In_sync, &rdev->flags))
700c7213 2000 cnt++;
635f6416 2001 this = (this+1) % disks;
700c7213
N
2002 }
2003 if (cnt == 0)
725d6e57 2004 goto out;
635f6416 2005 first = (first + ncopies) % disks;
700c7213 2006 } while (first != 0);
725d6e57
N
2007 has_enough = 1;
2008out:
2009 rcu_read_unlock();
2010 return has_enough;
700c7213
N
2011}
2012
f8c9e74f
N
2013static int enough(struct r10conf *conf, int ignore)
2014{
635f6416
N
2015 /* when calling 'enough', both 'prev' and 'geo' must
2016 * be stable.
2017 * This is ensured if ->reconfig_mutex or ->device_lock
2018 * is held.
2019 */
2020 return _enough(conf, 0, ignore) &&
2021 _enough(conf, 1, ignore);
f8c9e74f
N
2022}
2023
9631abdb
MT
2024/**
2025 * raid10_error() - RAID10 error handler.
2026 * @mddev: affected md device.
2027 * @rdev: member device to fail.
2028 *
2029 * The routine acknowledges &rdev failure and determines new @mddev state.
2030 * If it failed, then:
2031 * - &MD_BROKEN flag is set in &mddev->flags.
2032 * Otherwise, it must be degraded:
2033 * - recovery is interrupted.
2034 * - &mddev->degraded is bumped.
62bca04b 2035 *
9631abdb
MT
2036 * @rdev is marked as &Faulty excluding case when array is failed and
2037 * &mddev->fail_last_dev is off.
2038 */
849674e4 2039static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2040{
e879a879 2041 struct r10conf *conf = mddev->private;
635f6416 2042 unsigned long flags;
1da177e4 2043
635f6416 2044 spin_lock_irqsave(&conf->device_lock, flags);
9631abdb
MT
2045
2046 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2047 set_bit(MD_BROKEN, &mddev->flags);
2048
2049 if (!mddev->fail_last_dev) {
2050 spin_unlock_irqrestore(&conf->device_lock, flags);
2051 return;
2052 }
635f6416 2053 }
2446dba0 2054 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 2055 mddev->degraded++;
9631abdb 2056
2446dba0 2057 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 2058 set_bit(Blocked, &rdev->flags);
b2d444d7 2059 set_bit(Faulty, &rdev->flags);
2953079c
SL
2060 set_mask_bits(&mddev->sb_flags, 0,
2061 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
635f6416 2062 spin_unlock_irqrestore(&conf->device_lock, flags);
913cce5a 2063 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
08464e09 2064 "md/raid10:%s: Operation continuing on %d devices.\n",
913cce5a 2065 mdname(mddev), rdev->bdev,
08464e09 2066 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
2067}
2068
e879a879 2069static void print_conf(struct r10conf *conf)
1da177e4
LT
2070{
2071 int i;
4056ca51 2072 struct md_rdev *rdev;
1da177e4 2073
08464e09 2074 pr_debug("RAID10 conf printout:\n");
1da177e4 2075 if (!conf) {
08464e09 2076 pr_debug("(!conf)\n");
1da177e4
LT
2077 return;
2078 }
08464e09
N
2079 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2080 conf->geo.raid_disks);
1da177e4 2081
4056ca51
N
2082 /* This is only called with ->reconfix_mutex held, so
2083 * rcu protection of rdev is not needed */
5cf00fcd 2084 for (i = 0; i < conf->geo.raid_disks; i++) {
4056ca51
N
2085 rdev = conf->mirrors[i].rdev;
2086 if (rdev)
913cce5a 2087 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
08464e09
N
2088 i, !test_bit(In_sync, &rdev->flags),
2089 !test_bit(Faulty, &rdev->flags),
913cce5a 2090 rdev->bdev);
1da177e4
LT
2091 }
2092}
2093
e879a879 2094static void close_sync(struct r10conf *conf)
1da177e4 2095{
c9aa889b 2096 wait_barrier(conf, false);
0a27ec96 2097 allow_barrier(conf);
1da177e4 2098
afeee514 2099 mempool_exit(&conf->r10buf_pool);
1da177e4
LT
2100}
2101
fd01b88c 2102static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
2103{
2104 int i;
e879a879 2105 struct r10conf *conf = mddev->private;
dc280d98 2106 struct raid10_info *tmp;
6b965620
N
2107 int count = 0;
2108 unsigned long flags;
1da177e4
LT
2109
2110 /*
2111 * Find all non-in_sync disks within the RAID10 configuration
2112 * and mark them in_sync
2113 */
5cf00fcd 2114 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 2115 tmp = conf->mirrors + i;
4ca40c2c
N
2116 if (tmp->replacement
2117 && tmp->replacement->recovery_offset == MaxSector
2118 && !test_bit(Faulty, &tmp->replacement->flags)
2119 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2120 /* Replacement has just become active */
2121 if (!tmp->rdev
2122 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2123 count++;
2124 if (tmp->rdev) {
2125 /* Replaced device not technically faulty,
2126 * but we need to be sure it gets removed
2127 * and never re-added.
2128 */
2129 set_bit(Faulty, &tmp->rdev->flags);
2130 sysfs_notify_dirent_safe(
2131 tmp->rdev->sysfs_state);
2132 }
2133 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2134 } else if (tmp->rdev
61e4947c 2135 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
2136 && !test_bit(Faulty, &tmp->rdev->flags)
2137 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 2138 count++;
2863b9eb 2139 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
2140 }
2141 }
6b965620
N
2142 spin_lock_irqsave(&conf->device_lock, flags);
2143 mddev->degraded -= count;
2144 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
2145
2146 print_conf(conf);
6b965620 2147 return count;
1da177e4
LT
2148}
2149
fd01b88c 2150static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2151{
e879a879 2152 struct r10conf *conf = mddev->private;
199050ea 2153 int err = -EEXIST;
1da177e4 2154 int mirror;
6c2fce2e 2155 int first = 0;
5cf00fcd 2156 int last = conf->geo.raid_disks - 1;
1da177e4
LT
2157
2158 if (mddev->recovery_cp < MaxSector)
2159 /* only hot-add to in-sync arrays, as recovery is
2160 * very different from resync
2161 */
199050ea 2162 return -EBUSY;
635f6416 2163 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 2164 return -EINVAL;
1da177e4 2165
1501efad
DW
2166 if (md_integrity_add_rdev(rdev, mddev))
2167 return -ENXIO;
2168
a53a6c85 2169 if (rdev->raid_disk >= 0)
6c2fce2e 2170 first = last = rdev->raid_disk;
1da177e4 2171
2c4193df 2172 if (rdev->saved_raid_disk >= first &&
9e753ba9 2173 rdev->saved_raid_disk < conf->geo.raid_disks &&
6cce3b23
N
2174 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2175 mirror = rdev->saved_raid_disk;
2176 else
6c2fce2e 2177 mirror = first;
2bb77736 2178 for ( ; mirror <= last ; mirror++) {
dc280d98 2179 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
2180 if (p->recovery_disabled == mddev->recovery_disabled)
2181 continue;
b7044d41
N
2182 if (p->rdev) {
2183 if (!test_bit(WantReplacement, &p->rdev->flags) ||
2184 p->replacement != NULL)
2185 continue;
2186 clear_bit(In_sync, &rdev->flags);
2187 set_bit(Replacement, &rdev->flags);
2188 rdev->raid_disk = mirror;
2189 err = 0;
9092c02d
JB
2190 if (mddev->gendisk)
2191 disk_stack_limits(mddev->gendisk, rdev->bdev,
2192 rdev->data_offset << 9);
b7044d41
N
2193 conf->fullsync = 1;
2194 rcu_assign_pointer(p->replacement, rdev);
2195 break;
2196 }
1da177e4 2197
9092c02d
JB
2198 if (mddev->gendisk)
2199 disk_stack_limits(mddev->gendisk, rdev->bdev,
2200 rdev->data_offset << 9);
1da177e4 2201
2bb77736 2202 p->head_position = 0;
d890fa2b 2203 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
2204 rdev->raid_disk = mirror;
2205 err = 0;
2206 if (rdev->saved_raid_disk != mirror)
2207 conf->fullsync = 1;
2208 rcu_assign_pointer(p->rdev, rdev);
2209 break;
2210 }
532a2a3f 2211
1da177e4 2212 print_conf(conf);
199050ea 2213 return err;
1da177e4
LT
2214}
2215
b8321b68 2216static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2217{
e879a879 2218 struct r10conf *conf = mddev->private;
1da177e4 2219 int err = 0;
b8321b68 2220 int number = rdev->raid_disk;
c8ab903e 2221 struct md_rdev **rdevp;
d17f744e 2222 struct raid10_info *p;
1da177e4
LT
2223
2224 print_conf(conf);
d17f744e
MP
2225 if (unlikely(number >= mddev->raid_disks))
2226 return 0;
2227 p = conf->mirrors + number;
c8ab903e
N
2228 if (rdev == p->rdev)
2229 rdevp = &p->rdev;
2230 else if (rdev == p->replacement)
2231 rdevp = &p->replacement;
2232 else
2233 return 0;
2234
2235 if (test_bit(In_sync, &rdev->flags) ||
2236 atomic_read(&rdev->nr_pending)) {
2237 err = -EBUSY;
2238 goto abort;
2239 }
d787be40 2240 /* Only remove non-faulty devices if recovery
c8ab903e
N
2241 * is not possible.
2242 */
2243 if (!test_bit(Faulty, &rdev->flags) &&
2244 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 2245 (!p->replacement || p->replacement == rdev) &&
63aced61 2246 number < conf->geo.raid_disks &&
c8ab903e
N
2247 enough(conf, -1)) {
2248 err = -EBUSY;
2249 goto abort;
1da177e4 2250 }
c8ab903e 2251 *rdevp = NULL;
d787be40
N
2252 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2253 synchronize_rcu();
2254 if (atomic_read(&rdev->nr_pending)) {
2255 /* lost the race, try later */
2256 err = -EBUSY;
2257 *rdevp = rdev;
2258 goto abort;
2259 }
2260 }
2261 if (p->replacement) {
4ca40c2c
N
2262 /* We must have just cleared 'rdev' */
2263 p->rdev = p->replacement;
2264 clear_bit(Replacement, &p->replacement->flags);
2265 smp_mb(); /* Make sure other CPUs may see both as identical
2266 * but will never see neither -- if they are careful.
2267 */
2268 p->replacement = NULL;
e5bc9c3c 2269 }
4ca40c2c 2270
e5bc9c3c 2271 clear_bit(WantReplacement, &rdev->flags);
c8ab903e
N
2272 err = md_integrity_register(mddev);
2273
1da177e4
LT
2274abort:
2275
2276 print_conf(conf);
2277 return err;
2278}
2279
81fa1520 2280static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1da177e4 2281{
e879a879 2282 struct r10conf *conf = r10_bio->mddev->private;
0eb3ff12 2283
4e4cbee9 2284 if (!bio->bi_status)
0eb3ff12 2285 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
2286 else
2287 /* The write handler will notice the lack of
2288 * R10BIO_Uptodate and record any errors etc
2289 */
4dbcdc75
N
2290 atomic_add(r10_bio->sectors,
2291 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
2292
2293 /* for reconstruct, we always reschedule after a read.
2294 * for resync, only after all reads
2295 */
73d5c38a 2296 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
2297 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2298 atomic_dec_and_test(&r10_bio->remaining)) {
2299 /* we have read all the blocks,
2300 * do the comparison in process context in raid10d
2301 */
2302 reschedule_retry(r10_bio);
2303 }
1da177e4
LT
2304}
2305
81fa1520
ML
2306static void end_sync_read(struct bio *bio)
2307{
f0250618 2308 struct r10bio *r10_bio = get_resync_r10bio(bio);
81fa1520
ML
2309 struct r10conf *conf = r10_bio->mddev->private;
2310 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2311
2312 __end_sync_read(r10_bio, bio, d);
2313}
2314
2315static void end_reshape_read(struct bio *bio)
2316{
f0250618 2317 /* reshape read bio isn't allocated from r10buf_pool */
81fa1520
ML
2318 struct r10bio *r10_bio = bio->bi_private;
2319
2320 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2321}
2322
9f2c9d12 2323static void end_sync_request(struct r10bio *r10_bio)
1da177e4 2324{
fd01b88c 2325 struct mddev *mddev = r10_bio->mddev;
dfc70645 2326
1da177e4
LT
2327 while (atomic_dec_and_test(&r10_bio->remaining)) {
2328 if (r10_bio->master_bio == NULL) {
2329 /* the primary of several recovery bios */
73d5c38a 2330 sector_t s = r10_bio->sectors;
1a0b7cd8
N
2331 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2332 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2333 reschedule_retry(r10_bio);
2334 else
2335 put_buf(r10_bio);
73d5c38a 2336 md_done_sync(mddev, s, 1);
1da177e4
LT
2337 break;
2338 } else {
9f2c9d12 2339 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
2340 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2341 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2342 reschedule_retry(r10_bio);
2343 else
2344 put_buf(r10_bio);
1da177e4
LT
2345 r10_bio = r10_bio2;
2346 }
2347 }
1da177e4
LT
2348}
2349
4246a0b6 2350static void end_sync_write(struct bio *bio)
5e570289 2351{
f0250618 2352 struct r10bio *r10_bio = get_resync_r10bio(bio);
fd01b88c 2353 struct mddev *mddev = r10_bio->mddev;
e879a879 2354 struct r10conf *conf = mddev->private;
5e570289
N
2355 int d;
2356 sector_t first_bad;
2357 int bad_sectors;
2358 int slot;
9ad1aefc 2359 int repl;
4ca40c2c 2360 struct md_rdev *rdev = NULL;
5e570289 2361
9ad1aefc
N
2362 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2363 if (repl)
2364 rdev = conf->mirrors[d].replacement;
547414d1 2365 else
9ad1aefc 2366 rdev = conf->mirrors[d].rdev;
5e570289 2367
4e4cbee9 2368 if (bio->bi_status) {
9ad1aefc
N
2369 if (repl)
2370 md_error(mddev, rdev);
2371 else {
2372 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2373 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2374 set_bit(MD_RECOVERY_NEEDED,
2375 &rdev->mddev->recovery);
9ad1aefc
N
2376 set_bit(R10BIO_WriteError, &r10_bio->state);
2377 }
2378 } else if (is_badblock(rdev,
5e570289
N
2379 r10_bio->devs[slot].addr,
2380 r10_bio->sectors,
2381 &first_bad, &bad_sectors))
2382 set_bit(R10BIO_MadeGood, &r10_bio->state);
2383
9ad1aefc 2384 rdev_dec_pending(rdev, mddev);
5e570289
N
2385
2386 end_sync_request(r10_bio);
2387}
2388
1da177e4
LT
2389/*
2390 * Note: sync and recover and handled very differently for raid10
2391 * This code is for resync.
2392 * For resync, we read through virtual addresses and read all blocks.
2393 * If there is any error, we schedule a write. The lowest numbered
2394 * drive is authoritative.
2395 * However requests come for physical address, so we need to map.
2396 * For every physical address there are raid_disks/copies virtual addresses,
2397 * which is always are least one, but is not necessarly an integer.
2398 * This means that a physical address can span multiple chunks, so we may
2399 * have to submit multiple io requests for a single sync request.
2400 */
2401/*
2402 * We check if all blocks are in-sync and only write to blocks that
2403 * aren't in sync
2404 */
9f2c9d12 2405static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2406{
e879a879 2407 struct r10conf *conf = mddev->private;
1da177e4
LT
2408 int i, first;
2409 struct bio *tbio, *fbio;
f4380a91 2410 int vcnt;
cdb76be3 2411 struct page **tpages, **fpages;
1da177e4
LT
2412
2413 atomic_set(&r10_bio->remaining, 1);
2414
2415 /* find the first device with a block */
2416 for (i=0; i<conf->copies; i++)
4e4cbee9 2417 if (!r10_bio->devs[i].bio->bi_status)
1da177e4
LT
2418 break;
2419
2420 if (i == conf->copies)
2421 goto done;
2422
2423 first = i;
2424 fbio = r10_bio->devs[i].bio;
cc578588
AP
2425 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2426 fbio->bi_iter.bi_idx = 0;
cdb76be3 2427 fpages = get_resync_pages(fbio)->pages;
1da177e4 2428
f4380a91 2429 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2430 /* now find blocks with errors */
0eb3ff12
N
2431 for (i=0 ; i < conf->copies ; i++) {
2432 int j, d;
8d3ca83d 2433 struct md_rdev *rdev;
f0250618 2434 struct resync_pages *rp;
1da177e4 2435
1da177e4 2436 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2437
2438 if (tbio->bi_end_io != end_sync_read)
2439 continue;
2440 if (i == first)
1da177e4 2441 continue;
cdb76be3
ML
2442
2443 tpages = get_resync_pages(tbio)->pages;
8d3ca83d
N
2444 d = r10_bio->devs[i].devnum;
2445 rdev = conf->mirrors[d].rdev;
4e4cbee9 2446 if (!r10_bio->devs[i].bio->bi_status) {
0eb3ff12
N
2447 /* We know that the bi_io_vec layout is the same for
2448 * both 'first' and 'i', so we just compare them.
2449 * All vec entries are PAGE_SIZE;
2450 */
7bb23c49
N
2451 int sectors = r10_bio->sectors;
2452 for (j = 0; j < vcnt; j++) {
2453 int len = PAGE_SIZE;
2454 if (sectors < (len / 512))
2455 len = sectors * 512;
cdb76be3
ML
2456 if (memcmp(page_address(fpages[j]),
2457 page_address(tpages[j]),
7bb23c49 2458 len))
0eb3ff12 2459 break;
7bb23c49
N
2460 sectors -= len/512;
2461 }
0eb3ff12
N
2462 if (j == vcnt)
2463 continue;
7f7583d4 2464 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2465 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2466 /* Don't fix anything. */
2467 continue;
8d3ca83d
N
2468 } else if (test_bit(FailFast, &rdev->flags)) {
2469 /* Just give up on this device */
2470 md_error(rdev->mddev, rdev);
2471 continue;
0eb3ff12 2472 }
f84ee364
N
2473 /* Ok, we need to write this bio, either to correct an
2474 * inconsistency or to correct an unreadable block.
1da177e4
LT
2475 * First we need to fixup bv_offset, bv_len and
2476 * bi_vecs, as the read request might have corrupted these
2477 */
f0250618 2478 rp = get_resync_pages(tbio);
a7c50c94 2479 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
8be185f2 2480
fb0eb5df
ML
2481 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2482
f0250618
ML
2483 rp->raid_bio = r10_bio;
2484 tbio->bi_private = rp;
4f024f37 2485 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4
LT
2486 tbio->bi_end_io = end_sync_write;
2487
c31df25f
KO
2488 bio_copy_data(tbio, fbio);
2489
1da177e4
LT
2490 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2491 atomic_inc(&r10_bio->remaining);
aa8b57aa 2492 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2493
1919cbb2
N
2494 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2495 tbio->bi_opf |= MD_FAILFAST;
4f024f37 2496 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
ed00aabd 2497 submit_bio_noacct(tbio);
1da177e4
LT
2498 }
2499
9ad1aefc
N
2500 /* Now write out to any replacement devices
2501 * that are active
2502 */
2503 for (i = 0; i < conf->copies; i++) {
c31df25f 2504 int d;
9ad1aefc
N
2505
2506 tbio = r10_bio->devs[i].repl_bio;
2507 if (!tbio || !tbio->bi_end_io)
2508 continue;
2509 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2510 && r10_bio->devs[i].bio != fbio)
c31df25f 2511 bio_copy_data(tbio, fbio);
9ad1aefc
N
2512 d = r10_bio->devs[i].devnum;
2513 atomic_inc(&r10_bio->remaining);
2514 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2515 bio_sectors(tbio));
ed00aabd 2516 submit_bio_noacct(tbio);
9ad1aefc
N
2517 }
2518
1da177e4
LT
2519done:
2520 if (atomic_dec_and_test(&r10_bio->remaining)) {
2521 md_done_sync(mddev, r10_bio->sectors, 1);
2522 put_buf(r10_bio);
2523 }
2524}
2525
2526/*
2527 * Now for the recovery code.
2528 * Recovery happens across physical sectors.
2529 * We recover all non-is_sync drives by finding the virtual address of
2530 * each, and then choose a working drive that also has that virt address.
2531 * There is a separate r10_bio for each non-in_sync drive.
2532 * Only the first two slots are in use. The first for reading,
2533 * The second for writing.
2534 *
2535 */
9f2c9d12 2536static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2537{
2538 /* We got a read error during recovery.
2539 * We repeat the read in smaller page-sized sections.
2540 * If a read succeeds, write it to the new device or record
2541 * a bad block if we cannot.
2542 * If a read fails, record a bad block on both old and
2543 * new devices.
2544 */
fd01b88c 2545 struct mddev *mddev = r10_bio->mddev;
e879a879 2546 struct r10conf *conf = mddev->private;
5e570289
N
2547 struct bio *bio = r10_bio->devs[0].bio;
2548 sector_t sect = 0;
2549 int sectors = r10_bio->sectors;
2550 int idx = 0;
2551 int dr = r10_bio->devs[0].devnum;
2552 int dw = r10_bio->devs[1].devnum;
cdb76be3 2553 struct page **pages = get_resync_pages(bio)->pages;
5e570289
N
2554
2555 while (sectors) {
2556 int s = sectors;
3cb03002 2557 struct md_rdev *rdev;
5e570289
N
2558 sector_t addr;
2559 int ok;
2560
2561 if (s > (PAGE_SIZE>>9))
2562 s = PAGE_SIZE >> 9;
2563
2564 rdev = conf->mirrors[dr].rdev;
2565 addr = r10_bio->devs[0].addr + sect,
2566 ok = sync_page_io(rdev,
2567 addr,
2568 s << 9,
cdb76be3 2569 pages[idx],
4ce4c73f 2570 REQ_OP_READ, false);
5e570289
N
2571 if (ok) {
2572 rdev = conf->mirrors[dw].rdev;
2573 addr = r10_bio->devs[1].addr + sect;
2574 ok = sync_page_io(rdev,
2575 addr,
2576 s << 9,
cdb76be3 2577 pages[idx],
4ce4c73f 2578 REQ_OP_WRITE, false);
b7044d41 2579 if (!ok) {
5e570289 2580 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2581 if (!test_and_set_bit(WantReplacement,
2582 &rdev->flags))
2583 set_bit(MD_RECOVERY_NEEDED,
2584 &rdev->mddev->recovery);
2585 }
5e570289
N
2586 }
2587 if (!ok) {
2588 /* We don't worry if we cannot set a bad block -
2589 * it really is bad so there is no loss in not
2590 * recording it yet
2591 */
2592 rdev_set_badblocks(rdev, addr, s, 0);
2593
2594 if (rdev != conf->mirrors[dw].rdev) {
2595 /* need bad block on destination too */
3cb03002 2596 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2597 addr = r10_bio->devs[1].addr + sect;
2598 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2599 if (!ok) {
2600 /* just abort the recovery */
08464e09
N
2601 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2602 mdname(mddev));
5e570289
N
2603
2604 conf->mirrors[dw].recovery_disabled
2605 = mddev->recovery_disabled;
2606 set_bit(MD_RECOVERY_INTR,
2607 &mddev->recovery);
2608 break;
2609 }
2610 }
2611 }
2612
2613 sectors -= s;
2614 sect += s;
2615 idx++;
2616 }
2617}
1da177e4 2618
9f2c9d12 2619static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2620{
e879a879 2621 struct r10conf *conf = mddev->private;
c65060ad 2622 int d;
26208a7c
YK
2623 struct bio *wbio = r10_bio->devs[1].bio;
2624 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2625
2626 /* Need to test wbio2->bi_end_io before we call
2627 * submit_bio_noacct as if the former is NULL,
2628 * the latter is free to free wbio2.
2629 */
2630 if (wbio2 && !wbio2->bi_end_io)
2631 wbio2 = NULL;
1da177e4 2632
5e570289
N
2633 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2634 fix_recovery_read_error(r10_bio);
26208a7c
YK
2635 if (wbio->bi_end_io)
2636 end_sync_request(r10_bio);
2637 if (wbio2)
2638 end_sync_request(r10_bio);
5e570289
N
2639 return;
2640 }
2641
c65060ad
NK
2642 /*
2643 * share the pages with the first bio
1da177e4
LT
2644 * and submit the write request
2645 */
1da177e4 2646 d = r10_bio->devs[1].devnum;
24afd80d
N
2647 if (wbio->bi_end_io) {
2648 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2649 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
ed00aabd 2650 submit_bio_noacct(wbio);
24afd80d 2651 }
0eb25bb0 2652 if (wbio2) {
24afd80d
N
2653 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2654 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2655 bio_sectors(wbio2));
ed00aabd 2656 submit_bio_noacct(wbio2);
24afd80d 2657 }
1da177e4
LT
2658}
2659
1e50915f
RB
2660/*
2661 * Used by fix_read_error() to decay the per rdev read_errors.
2662 * We halve the read error count for every hour that has elapsed
2663 * since the last recorded read error.
2664 *
2665 */
fd01b88c 2666static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f 2667{
0e3ef49e 2668 long cur_time_mon;
1e50915f
RB
2669 unsigned long hours_since_last;
2670 unsigned int read_errors = atomic_read(&rdev->read_errors);
2671
0e3ef49e 2672 cur_time_mon = ktime_get_seconds();
1e50915f 2673
0e3ef49e 2674 if (rdev->last_read_error == 0) {
1e50915f
RB
2675 /* first time we've seen a read error */
2676 rdev->last_read_error = cur_time_mon;
2677 return;
2678 }
2679
0e3ef49e
AB
2680 hours_since_last = (long)(cur_time_mon -
2681 rdev->last_read_error) / 3600;
1e50915f
RB
2682
2683 rdev->last_read_error = cur_time_mon;
2684
2685 /*
2686 * if hours_since_last is > the number of bits in read_errors
2687 * just set read errors to 0. We do this to avoid
2688 * overflowing the shift of read_errors by hours_since_last.
2689 */
2690 if (hours_since_last >= 8 * sizeof(read_errors))
2691 atomic_set(&rdev->read_errors, 0);
2692 else
2693 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2694}
2695
3cb03002 2696static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
265ad47a 2697 int sectors, struct page *page, enum req_op op)
58c54fcc
N
2698{
2699 sector_t first_bad;
2700 int bad_sectors;
2701
2702 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
265ad47a 2703 && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
58c54fcc 2704 return -1;
265ad47a 2705 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
58c54fcc
N
2706 /* success */
2707 return 1;
265ad47a 2708 if (op == REQ_OP_WRITE) {
58c54fcc 2709 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2710 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2711 set_bit(MD_RECOVERY_NEEDED,
2712 &rdev->mddev->recovery);
2713 }
58c54fcc
N
2714 /* need to record an error - either for the block or the device */
2715 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2716 md_error(rdev->mddev, rdev);
2717 return 0;
2718}
2719
1da177e4
LT
2720/*
2721 * This is a kernel thread which:
2722 *
2723 * 1. Retries failed read operations on working mirrors.
2724 * 2. Updates the raid superblock when problems encounter.
6814d536 2725 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2726 */
2727
e879a879 2728static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2729{
2730 int sect = 0; /* Offset from r10_bio->sector */
2731 int sectors = r10_bio->sectors;
13db16d7 2732 struct md_rdev *rdev;
1e50915f 2733 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2734 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2735
7c4e06ff
N
2736 /* still own a reference to this rdev, so it cannot
2737 * have been cleared recently.
2738 */
2739 rdev = conf->mirrors[d].rdev;
1e50915f 2740
7c4e06ff
N
2741 if (test_bit(Faulty, &rdev->flags))
2742 /* drive has already been failed, just ignore any
2743 more fix_read_error() attempts */
2744 return;
1e50915f 2745
7c4e06ff
N
2746 check_decay_read_errors(mddev, rdev);
2747 atomic_inc(&rdev->read_errors);
2748 if (atomic_read(&rdev->read_errors) > max_read_errors) {
913cce5a
CH
2749 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2750 mdname(mddev), rdev->bdev,
08464e09 2751 atomic_read(&rdev->read_errors), max_read_errors);
913cce5a
CH
2752 pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2753 mdname(mddev), rdev->bdev);
d683c8e0 2754 md_error(mddev, rdev);
fae8cc5e 2755 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2756 return;
1e50915f 2757 }
1e50915f 2758
6814d536
N
2759 while(sectors) {
2760 int s = sectors;
2761 int sl = r10_bio->read_slot;
2762 int success = 0;
2763 int start;
2764
2765 if (s > (PAGE_SIZE>>9))
2766 s = PAGE_SIZE >> 9;
2767
2768 rcu_read_lock();
2769 do {
8dbed5ce
N
2770 sector_t first_bad;
2771 int bad_sectors;
2772
0544a21d 2773 d = r10_bio->devs[sl].devnum;
6814d536
N
2774 rdev = rcu_dereference(conf->mirrors[d].rdev);
2775 if (rdev &&
8dbed5ce 2776 test_bit(In_sync, &rdev->flags) &&
f5b67ae8 2777 !test_bit(Faulty, &rdev->flags) &&
8dbed5ce
N
2778 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2779 &first_bad, &bad_sectors) == 0) {
6814d536
N
2780 atomic_inc(&rdev->nr_pending);
2781 rcu_read_unlock();
2b193363 2782 success = sync_page_io(rdev,
6814d536 2783 r10_bio->devs[sl].addr +
ccebd4c4 2784 sect,
6814d536 2785 s<<9,
796a5cf0 2786 conf->tmppage,
4ce4c73f 2787 REQ_OP_READ, false);
6814d536
N
2788 rdev_dec_pending(rdev, mddev);
2789 rcu_read_lock();
2790 if (success)
2791 break;
2792 }
2793 sl++;
2794 if (sl == conf->copies)
2795 sl = 0;
2796 } while (!success && sl != r10_bio->read_slot);
2797 rcu_read_unlock();
2798
2799 if (!success) {
58c54fcc
N
2800 /* Cannot read from anywhere, just mark the block
2801 * as bad on the first device to discourage future
2802 * reads.
2803 */
6814d536 2804 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2805 rdev = conf->mirrors[dn].rdev;
2806
2807 if (!rdev_set_badblocks(
2808 rdev,
2809 r10_bio->devs[r10_bio->read_slot].addr
2810 + sect,
fae8cc5e 2811 s, 0)) {
58c54fcc 2812 md_error(mddev, rdev);
fae8cc5e
N
2813 r10_bio->devs[r10_bio->read_slot].bio
2814 = IO_BLOCKED;
2815 }
6814d536
N
2816 break;
2817 }
2818
2819 start = sl;
2820 /* write it back and re-read */
2821 rcu_read_lock();
2822 while (sl != r10_bio->read_slot) {
6814d536
N
2823 if (sl==0)
2824 sl = conf->copies;
2825 sl--;
2826 d = r10_bio->devs[sl].devnum;
2827 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2828 if (!rdev ||
f5b67ae8 2829 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2830 !test_bit(In_sync, &rdev->flags))
2831 continue;
2832
2833 atomic_inc(&rdev->nr_pending);
2834 rcu_read_unlock();
58c54fcc
N
2835 if (r10_sync_page_io(rdev,
2836 r10_bio->devs[sl].addr +
2837 sect,
265ad47a 2838 s, conf->tmppage, REQ_OP_WRITE)
1294b9c9
N
2839 == 0) {
2840 /* Well, this device is dead */
913cce5a 2841 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
08464e09
N
2842 mdname(mddev), s,
2843 (unsigned long long)(
2844 sect +
2845 choose_data_offset(r10_bio,
2846 rdev)),
913cce5a
CH
2847 rdev->bdev);
2848 pr_notice("md/raid10:%s: %pg: failing drive\n",
08464e09 2849 mdname(mddev),
913cce5a 2850 rdev->bdev);
6814d536 2851 }
1294b9c9
N
2852 rdev_dec_pending(rdev, mddev);
2853 rcu_read_lock();
6814d536
N
2854 }
2855 sl = start;
2856 while (sl != r10_bio->read_slot) {
6814d536
N
2857 if (sl==0)
2858 sl = conf->copies;
2859 sl--;
2860 d = r10_bio->devs[sl].devnum;
2861 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2862 if (!rdev ||
f5b67ae8 2863 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2864 !test_bit(In_sync, &rdev->flags))
2865 continue;
6814d536 2866
1294b9c9
N
2867 atomic_inc(&rdev->nr_pending);
2868 rcu_read_unlock();
58c54fcc
N
2869 switch (r10_sync_page_io(rdev,
2870 r10_bio->devs[sl].addr +
2871 sect,
265ad47a 2872 s, conf->tmppage, REQ_OP_READ)) {
58c54fcc 2873 case 0:
1294b9c9 2874 /* Well, this device is dead */
913cce5a 2875 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
1294b9c9
N
2876 mdname(mddev), s,
2877 (unsigned long long)(
f8c9e74f
N
2878 sect +
2879 choose_data_offset(r10_bio, rdev)),
913cce5a
CH
2880 rdev->bdev);
2881 pr_notice("md/raid10:%s: %pg: failing drive\n",
1294b9c9 2882 mdname(mddev),
913cce5a 2883 rdev->bdev);
58c54fcc
N
2884 break;
2885 case 1:
913cce5a 2886 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
1294b9c9
N
2887 mdname(mddev), s,
2888 (unsigned long long)(
f8c9e74f
N
2889 sect +
2890 choose_data_offset(r10_bio, rdev)),
913cce5a 2891 rdev->bdev);
1294b9c9 2892 atomic_add(s, &rdev->corrected_errors);
6814d536 2893 }
1294b9c9
N
2894
2895 rdev_dec_pending(rdev, mddev);
2896 rcu_read_lock();
6814d536
N
2897 }
2898 rcu_read_unlock();
2899
2900 sectors -= s;
2901 sect += s;
2902 }
2903}
2904
9f2c9d12 2905static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2906{
2907 struct bio *bio = r10_bio->master_bio;
fd01b88c 2908 struct mddev *mddev = r10_bio->mddev;
e879a879 2909 struct r10conf *conf = mddev->private;
3cb03002 2910 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2911 /* bio has the data to be written to slot 'i' where
2912 * we just recently had a write error.
2913 * We repeatedly clone the bio and trim down to one block,
2914 * then try the write. Where the write fails we record
2915 * a bad block.
2916 * It is conceivable that the bio doesn't exactly align with
2917 * blocks. We must handle this.
2918 *
2919 * We currently own a reference to the rdev.
2920 */
2921
2922 int block_sectors;
2923 sector_t sector;
2924 int sectors;
2925 int sect_to_write = r10_bio->sectors;
2926 int ok = 1;
2927
2928 if (rdev->badblocks.shift < 0)
2929 return 0;
2930
f04ebb0b
N
2931 block_sectors = roundup(1 << rdev->badblocks.shift,
2932 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2933 sector = r10_bio->sector;
2934 sectors = ((r10_bio->sector + block_sectors)
2935 & ~(sector_t)(block_sectors - 1))
2936 - sector;
2937
2938 while (sect_to_write) {
2939 struct bio *wbio;
27028626 2940 sector_t wsector;
bd870a16
N
2941 if (sectors > sect_to_write)
2942 sectors = sect_to_write;
2943 /* Write at 'sector' for 'sectors' */
abfc426d
CH
2944 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2945 &mddev->bio_set);
4f024f37 2946 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
27028626
TM
2947 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2948 wbio->bi_iter.bi_sector = wsector +
2949 choose_data_offset(r10_bio, rdev);
c34b7ac6 2950 wbio->bi_opf = REQ_OP_WRITE;
4e49ea4a
MC
2951
2952 if (submit_bio_wait(wbio) < 0)
bd870a16 2953 /* Failure! */
27028626 2954 ok = rdev_set_badblocks(rdev, wsector,
bd870a16
N
2955 sectors, 0)
2956 && ok;
2957
2958 bio_put(wbio);
2959 sect_to_write -= sectors;
2960 sector += sectors;
2961 sectors = block_sectors;
2962 }
2963 return ok;
2964}
2965
9f2c9d12 2966static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2967{
2968 int slot = r10_bio->read_slot;
560f8e55 2969 struct bio *bio;
e879a879 2970 struct r10conf *conf = mddev->private;
abbf098e 2971 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2972
2973 /* we got a read error. Maybe the drive is bad. Maybe just
2974 * the block and we can fix it.
2975 * We freeze all other IO, and try reading the block from
2976 * other devices. When we find one, we re-write
2977 * and check it that fixes the read error.
2978 * This is all done synchronously while the array is
2979 * frozen.
2980 */
fae8cc5e 2981 bio = r10_bio->devs[slot].bio;
fae8cc5e
N
2982 bio_put(bio);
2983 r10_bio->devs[slot].bio = NULL;
2984
8d3ca83d
N
2985 if (mddev->ro)
2986 r10_bio->devs[slot].bio = IO_BLOCKED;
2987 else if (!test_bit(FailFast, &rdev->flags)) {
e2d59925 2988 freeze_array(conf, 1);
560f8e55
N
2989 fix_read_error(conf, mddev, r10_bio);
2990 unfreeze_array(conf);
fae8cc5e 2991 } else
8d3ca83d 2992 md_error(mddev, rdev);
fae8cc5e 2993
abbf098e 2994 rdev_dec_pending(rdev, mddev);
545250f2
N
2995 r10_bio->state = 0;
2996 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
72c215ed
LN
2997 /*
2998 * allow_barrier after re-submit to ensure no sync io
2999 * can be issued while regular io pending.
3000 */
3001 allow_barrier(conf);
560f8e55
N
3002}
3003
e879a879 3004static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
3005{
3006 /* Some sort of write request has finished and it
3007 * succeeded in writing where we thought there was a
3008 * bad block. So forget the bad block.
1a0b7cd8
N
3009 * Or possibly if failed and we need to record
3010 * a bad block.
749c55e9
N
3011 */
3012 int m;
3cb03002 3013 struct md_rdev *rdev;
749c55e9
N
3014
3015 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
3016 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
3017 for (m = 0; m < conf->copies; m++) {
3018 int dev = r10_bio->devs[m].devnum;
3019 rdev = conf->mirrors[dev].rdev;
01a69cab
YY
3020 if (r10_bio->devs[m].bio == NULL ||
3021 r10_bio->devs[m].bio->bi_end_io == NULL)
1a0b7cd8 3022 continue;
4e4cbee9 3023 if (!r10_bio->devs[m].bio->bi_status) {
749c55e9
N
3024 rdev_clear_badblocks(
3025 rdev,
3026 r10_bio->devs[m].addr,
c6563a8c 3027 r10_bio->sectors, 0);
1a0b7cd8
N
3028 } else {
3029 if (!rdev_set_badblocks(
3030 rdev,
3031 r10_bio->devs[m].addr,
3032 r10_bio->sectors, 0))
3033 md_error(conf->mddev, rdev);
749c55e9 3034 }
9ad1aefc 3035 rdev = conf->mirrors[dev].replacement;
01a69cab
YY
3036 if (r10_bio->devs[m].repl_bio == NULL ||
3037 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
9ad1aefc 3038 continue;
4246a0b6 3039
4e4cbee9 3040 if (!r10_bio->devs[m].repl_bio->bi_status) {
9ad1aefc
N
3041 rdev_clear_badblocks(
3042 rdev,
3043 r10_bio->devs[m].addr,
c6563a8c 3044 r10_bio->sectors, 0);
9ad1aefc
N
3045 } else {
3046 if (!rdev_set_badblocks(
3047 rdev,
3048 r10_bio->devs[m].addr,
3049 r10_bio->sectors, 0))
3050 md_error(conf->mddev, rdev);
3051 }
1a0b7cd8 3052 }
749c55e9
N
3053 put_buf(r10_bio);
3054 } else {
95af587e 3055 bool fail = false;
bd870a16
N
3056 for (m = 0; m < conf->copies; m++) {
3057 int dev = r10_bio->devs[m].devnum;
3058 struct bio *bio = r10_bio->devs[m].bio;
3059 rdev = conf->mirrors[dev].rdev;
3060 if (bio == IO_MADE_GOOD) {
749c55e9
N
3061 rdev_clear_badblocks(
3062 rdev,
3063 r10_bio->devs[m].addr,
c6563a8c 3064 r10_bio->sectors, 0);
749c55e9 3065 rdev_dec_pending(rdev, conf->mddev);
4e4cbee9 3066 } else if (bio != NULL && bio->bi_status) {
95af587e 3067 fail = true;
bd870a16
N
3068 if (!narrow_write_error(r10_bio, m)) {
3069 md_error(conf->mddev, rdev);
3070 set_bit(R10BIO_Degraded,
3071 &r10_bio->state);
3072 }
3073 rdev_dec_pending(rdev, conf->mddev);
749c55e9 3074 }
475b0321
N
3075 bio = r10_bio->devs[m].repl_bio;
3076 rdev = conf->mirrors[dev].replacement;
4ca40c2c 3077 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
3078 rdev_clear_badblocks(
3079 rdev,
3080 r10_bio->devs[m].addr,
c6563a8c 3081 r10_bio->sectors, 0);
475b0321
N
3082 rdev_dec_pending(rdev, conf->mddev);
3083 }
bd870a16 3084 }
95af587e
N
3085 if (fail) {
3086 spin_lock_irq(&conf->device_lock);
3087 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
23ddba80 3088 conf->nr_queued++;
95af587e 3089 spin_unlock_irq(&conf->device_lock);
cf25ae78
GJ
3090 /*
3091 * In case freeze_array() is waiting for condition
3092 * nr_pending == nr_queued + extra to be true.
3093 */
3094 wake_up(&conf->wait_barrier);
95af587e 3095 md_wakeup_thread(conf->mddev->thread);
c340702c
N
3096 } else {
3097 if (test_bit(R10BIO_WriteError,
3098 &r10_bio->state))
3099 close_write(r10_bio);
95af587e 3100 raid_end_bio_io(r10_bio);
c340702c 3101 }
749c55e9
N
3102 }
3103}
3104
4ed8731d 3105static void raid10d(struct md_thread *thread)
1da177e4 3106{
4ed8731d 3107 struct mddev *mddev = thread->mddev;
9f2c9d12 3108 struct r10bio *r10_bio;
1da177e4 3109 unsigned long flags;
e879a879 3110 struct r10conf *conf = mddev->private;
1da177e4 3111 struct list_head *head = &conf->retry_list;
e1dfa0a2 3112 struct blk_plug plug;
1da177e4
LT
3113
3114 md_check_recovery(mddev);
1da177e4 3115
95af587e 3116 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 3117 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
95af587e
N
3118 LIST_HEAD(tmp);
3119 spin_lock_irqsave(&conf->device_lock, flags);
2953079c 3120 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
23ddba80
SL
3121 while (!list_empty(&conf->bio_end_io_list)) {
3122 list_move(conf->bio_end_io_list.prev, &tmp);
3123 conf->nr_queued--;
3124 }
95af587e
N
3125 }
3126 spin_unlock_irqrestore(&conf->device_lock, flags);
3127 while (!list_empty(&tmp)) {
a452744b
MP
3128 r10_bio = list_first_entry(&tmp, struct r10bio,
3129 retry_list);
95af587e 3130 list_del(&r10_bio->retry_list);
c340702c
N
3131 if (mddev->degraded)
3132 set_bit(R10BIO_Degraded, &r10_bio->state);
3133
3134 if (test_bit(R10BIO_WriteError,
3135 &r10_bio->state))
3136 close_write(r10_bio);
95af587e
N
3137 raid_end_bio_io(r10_bio);
3138 }
3139 }
3140
e1dfa0a2 3141 blk_start_plug(&plug);
1da177e4 3142 for (;;) {
6cce3b23 3143
0021b7bc 3144 flush_pending_writes(conf);
6cce3b23 3145
a35e63ef
N
3146 spin_lock_irqsave(&conf->device_lock, flags);
3147 if (list_empty(head)) {
3148 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3149 break;
a35e63ef 3150 }
9f2c9d12 3151 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 3152 list_del(head->prev);
4443ae10 3153 conf->nr_queued--;
1da177e4
LT
3154 spin_unlock_irqrestore(&conf->device_lock, flags);
3155
3156 mddev = r10_bio->mddev;
070ec55d 3157 conf = mddev->private;
bd870a16
N
3158 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3159 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 3160 handle_write_completed(conf, r10_bio);
3ea7daa5
N
3161 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3162 reshape_request_write(mddev, r10_bio);
749c55e9 3163 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 3164 sync_request_write(mddev, r10_bio);
7eaceacc 3165 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 3166 recovery_request_write(mddev, r10_bio);
856e08e2 3167 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 3168 handle_read_error(mddev, r10_bio);
fc9977dd
N
3169 else
3170 WARN_ON_ONCE(1);
560f8e55 3171
1d9d5241 3172 cond_resched();
2953079c 3173 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 3174 md_check_recovery(mddev);
1da177e4 3175 }
e1dfa0a2 3176 blk_finish_plug(&plug);
1da177e4
LT
3177}
3178
e879a879 3179static int init_resync(struct r10conf *conf)
1da177e4 3180{
afeee514 3181 int ret, buffs, i;
1da177e4
LT
3182
3183 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514 3184 BUG_ON(mempool_initialized(&conf->r10buf_pool));
69335ef3 3185 conf->have_replacement = 0;
5cf00fcd 3186 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
3187 if (conf->mirrors[i].replacement)
3188 conf->have_replacement = 1;
afeee514
KO
3189 ret = mempool_init(&conf->r10buf_pool, buffs,
3190 r10buf_pool_alloc, r10buf_pool_free, conf);
3191 if (ret)
3192 return ret;
1da177e4
LT
3193 conf->next_resync = 0;
3194 return 0;
3195}
3196
208410b5
SL
3197static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3198{
afeee514 3199 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
208410b5
SL
3200 struct rsync_pages *rp;
3201 struct bio *bio;
3202 int nalloc;
3203 int i;
3204
3205 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3206 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3207 nalloc = conf->copies; /* resync */
3208 else
3209 nalloc = 2; /* recovery */
3210
3211 for (i = 0; i < nalloc; i++) {
3212 bio = r10bio->devs[i].bio;
3213 rp = bio->bi_private;
a7c50c94 3214 bio_reset(bio, NULL, 0);
208410b5
SL
3215 bio->bi_private = rp;
3216 bio = r10bio->devs[i].repl_bio;
3217 if (bio) {
3218 rp = bio->bi_private;
a7c50c94 3219 bio_reset(bio, NULL, 0);
208410b5
SL
3220 bio->bi_private = rp;
3221 }
3222 }
3223 return r10bio;
3224}
3225
8db87912
GJ
3226/*
3227 * Set cluster_sync_high since we need other nodes to add the
3228 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3229 */
3230static void raid10_set_cluster_sync_high(struct r10conf *conf)
3231{
3232 sector_t window_size;
3233 int extra_chunk, chunks;
3234
3235 /*
3236 * First, here we define "stripe" as a unit which across
3237 * all member devices one time, so we get chunks by use
3238 * raid_disks / near_copies. Otherwise, if near_copies is
3239 * close to raid_disks, then resync window could increases
3240 * linearly with the increase of raid_disks, which means
3241 * we will suspend a really large IO window while it is not
3242 * necessary. If raid_disks is not divisible by near_copies,
3243 * an extra chunk is needed to ensure the whole "stripe" is
3244 * covered.
3245 */
3246
3247 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3248 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3249 extra_chunk = 0;
3250 else
3251 extra_chunk = 1;
3252 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3253
3254 /*
3255 * At least use a 32M window to align with raid1's resync window
3256 */
3257 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3258 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3259
3260 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3261}
3262
1da177e4
LT
3263/*
3264 * perform a "sync" on one "block"
3265 *
3266 * We need to make sure that no normal I/O request - particularly write
3267 * requests - conflict with active sync requests.
3268 *
3269 * This is achieved by tracking pending requests and a 'barrier' concept
3270 * that can be installed to exclude normal IO requests.
3271 *
3272 * Resync and recovery are handled very differently.
3273 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3274 *
3275 * For resync, we iterate over virtual addresses, read all copies,
3276 * and update if there are differences. If only one copy is live,
3277 * skip it.
3278 * For recovery, we iterate over physical addresses, read a good
3279 * value for each non-in_sync drive, and over-write.
3280 *
3281 * So, for recovery we may have several outstanding complex requests for a
3282 * given address, one for each out-of-sync device. We model this by allocating
3283 * a number of r10_bio structures, one for each out-of-sync device.
3284 * As we setup these structures, we collect all bio's together into a list
3285 * which we then process collectively to add pages, and then process again
ed00aabd 3286 * to pass to submit_bio_noacct.
1da177e4
LT
3287 *
3288 * The r10_bio structures are linked using a borrowed master_bio pointer.
3289 * This link is counted in ->remaining. When the r10_bio that points to NULL
3290 * has its remaining count decremented to 0, the whole complex operation
3291 * is complete.
3292 *
3293 */
3294
849674e4 3295static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 3296 int *skipped)
1da177e4 3297{
e879a879 3298 struct r10conf *conf = mddev->private;
9f2c9d12 3299 struct r10bio *r10_bio;
1da177e4
LT
3300 struct bio *biolist = NULL, *bio;
3301 sector_t max_sector, nr_sectors;
1da177e4 3302 int i;
6cce3b23 3303 int max_sync;
57dab0bd 3304 sector_t sync_blocks;
1da177e4
LT
3305 sector_t sectors_skipped = 0;
3306 int chunks_skipped = 0;
5cf00fcd 3307 sector_t chunk_mask = conf->geo.chunk_mask;
022e510f 3308 int page_idx = 0;
1da177e4 3309
7e83ccbe
MW
3310 /*
3311 * Allow skipping a full rebuild for incremental assembly
3312 * of a clean array, like RAID1 does.
3313 */
3314 if (mddev->bitmap == NULL &&
3315 mddev->recovery_cp == MaxSector &&
13765120
N
3316 mddev->reshape_position == MaxSector &&
3317 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 3318 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 3319 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
3320 conf->fullsync == 0) {
3321 *skipped = 1;
13765120 3322 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
3323 }
3324
a405c6f0
LN
3325 if (!mempool_initialized(&conf->r10buf_pool))
3326 if (init_resync(conf))
3327 return 0;
3328
1da177e4 3329 skipped:
58c0fed4 3330 max_sector = mddev->dev_sectors;
3ea7daa5
N
3331 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3332 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
3333 max_sector = mddev->resync_max_sectors;
3334 if (sector_nr >= max_sector) {
8db87912
GJ
3335 conf->cluster_sync_low = 0;
3336 conf->cluster_sync_high = 0;
3337
6cce3b23
N
3338 /* If we aborted, we need to abort the
3339 * sync on the 'current' bitmap chucks (there can
3340 * be several when recovering multiple devices).
3341 * as we may have started syncing it but not finished.
3342 * We can find the current address in
3343 * mddev->curr_resync, but for recovery,
3344 * we need to convert that to several
3345 * virtual addresses.
3346 */
3ea7daa5
N
3347 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3348 end_reshape(conf);
b3968552 3349 close_sync(conf);
3ea7daa5
N
3350 return 0;
3351 }
3352
6cce3b23
N
3353 if (mddev->curr_resync < max_sector) { /* aborted */
3354 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
e64e4018
AS
3355 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3356 &sync_blocks, 1);
5cf00fcd 3357 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
3358 sector_t sect =
3359 raid10_find_virt(conf, mddev->curr_resync, i);
e64e4018
AS
3360 md_bitmap_end_sync(mddev->bitmap, sect,
3361 &sync_blocks, 1);
6cce3b23 3362 }
9ad1aefc
N
3363 } else {
3364 /* completed sync */
3365 if ((!mddev->bitmap || conf->fullsync)
3366 && conf->have_replacement
3367 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3368 /* Completed a full sync so the replacements
3369 * are now fully recovered.
3370 */
f90145f3
N
3371 rcu_read_lock();
3372 for (i = 0; i < conf->geo.raid_disks; i++) {
3373 struct md_rdev *rdev =
3374 rcu_dereference(conf->mirrors[i].replacement);
3375 if (rdev)
3376 rdev->recovery_offset = MaxSector;
3377 }
3378 rcu_read_unlock();
9ad1aefc 3379 }
6cce3b23 3380 conf->fullsync = 0;
9ad1aefc 3381 }
e64e4018 3382 md_bitmap_close_sync(mddev->bitmap);
1da177e4 3383 close_sync(conf);
57afd89f 3384 *skipped = 1;
1da177e4
LT
3385 return sectors_skipped;
3386 }
3ea7daa5
N
3387
3388 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3389 return reshape_request(mddev, sector_nr, skipped);
3390
5cf00fcd 3391 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
3392 /* if there has been nothing to do on any drive,
3393 * then there is nothing to do at all..
3394 */
57afd89f
N
3395 *skipped = 1;
3396 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
3397 }
3398
c6207277
N
3399 if (max_sector > mddev->resync_max)
3400 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3401
1da177e4
LT
3402 /* make sure whole request will fit in a chunk - if chunks
3403 * are meaningful
3404 */
5cf00fcd
N
3405 if (conf->geo.near_copies < conf->geo.raid_disks &&
3406 max_sector > (sector_nr | chunk_mask))
3407 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4 3408
7ac50447
TM
3409 /*
3410 * If there is non-resync activity waiting for a turn, then let it
3411 * though before starting on this new sync request.
3412 */
3413 if (conf->nr_waiting)
3414 schedule_timeout_uninterruptible(1);
3415
1da177e4
LT
3416 /* Again, very different code for resync and recovery.
3417 * Both must result in an r10bio with a list of bios that
309dca30 3418 * have bi_end_io, bi_sector, bi_bdev set,
1da177e4
LT
3419 * and bi_private set to the r10bio.
3420 * For recovery, we may actually create several r10bios
3421 * with 2 bios in each, that correspond to the bios in the main one.
3422 * In this case, the subordinate r10bios link back through a
3423 * borrowed master_bio pointer, and the counter in the master
3424 * includes a ref from each subordinate.
3425 */
3426 /* First, we decide what to do and set ->bi_end_io
3427 * To end_sync_read if we want to read, and
3428 * end_sync_write if we will want to write.
3429 */
3430
6cce3b23 3431 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3432 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3433 /* recovery... the complicated one */
e875ecea 3434 int j;
1da177e4
LT
3435 r10_bio = NULL;
3436
5cf00fcd 3437 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3438 int still_degraded;
9f2c9d12 3439 struct r10bio *rb2;
ab9d47e9
N
3440 sector_t sect;
3441 int must_sync;
e875ecea 3442 int any_working;
dc280d98 3443 struct raid10_info *mirror = &conf->mirrors[i];
f90145f3 3444 struct md_rdev *mrdev, *mreplace;
24afd80d 3445
f90145f3
N
3446 rcu_read_lock();
3447 mrdev = rcu_dereference(mirror->rdev);
3448 mreplace = rcu_dereference(mirror->replacement);
3449
59f8f0b5
LN
3450 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3451 test_bit(In_sync, &mrdev->flags)))
3452 mrdev = NULL;
34817a24
LN
3453 if (mreplace && test_bit(Faulty, &mreplace->flags))
3454 mreplace = NULL;
ee37d731 3455
59f8f0b5 3456 if (!mrdev && !mreplace) {
f90145f3 3457 rcu_read_unlock();
ab9d47e9 3458 continue;
f90145f3 3459 }
1da177e4 3460
ab9d47e9
N
3461 still_degraded = 0;
3462 /* want to reconstruct this device */
3463 rb2 = r10_bio;
3464 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3465 if (sect >= mddev->resync_max_sectors) {
3466 /* last stripe is not complete - don't
3467 * try to recover this sector.
3468 */
f90145f3 3469 rcu_read_unlock();
fc448a18
N
3470 continue;
3471 }
24afd80d
N
3472 /* Unless we are doing a full sync, or a replacement
3473 * we only need to recover the block if it is set in
3474 * the bitmap
ab9d47e9 3475 */
e64e4018
AS
3476 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3477 &sync_blocks, 1);
ab9d47e9
N
3478 if (sync_blocks < max_sync)
3479 max_sync = sync_blocks;
3480 if (!must_sync &&
f90145f3 3481 mreplace == NULL &&
ab9d47e9
N
3482 !conf->fullsync) {
3483 /* yep, skip the sync_blocks here, but don't assume
3484 * that there will never be anything to do here
3485 */
3486 chunks_skipped = -1;
f90145f3 3487 rcu_read_unlock();
ab9d47e9
N
3488 continue;
3489 }
59f8f0b5
LN
3490 if (mrdev)
3491 atomic_inc(&mrdev->nr_pending);
f90145f3
N
3492 if (mreplace)
3493 atomic_inc(&mreplace->nr_pending);
3494 rcu_read_unlock();
6cce3b23 3495
208410b5 3496 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3497 r10_bio->state = 0;
ab9d47e9
N
3498 raise_barrier(conf, rb2 != NULL);
3499 atomic_set(&r10_bio->remaining, 0);
18055569 3500
ab9d47e9
N
3501 r10_bio->master_bio = (struct bio*)rb2;
3502 if (rb2)
3503 atomic_inc(&rb2->remaining);
3504 r10_bio->mddev = mddev;
3505 set_bit(R10BIO_IsRecover, &r10_bio->state);
3506 r10_bio->sector = sect;
1da177e4 3507
ab9d47e9
N
3508 raid10_find_phys(conf, r10_bio);
3509
3510 /* Need to check if the array will still be
3511 * degraded
3512 */
f90145f3
N
3513 rcu_read_lock();
3514 for (j = 0; j < conf->geo.raid_disks; j++) {
3515 struct md_rdev *rdev = rcu_dereference(
3516 conf->mirrors[j].rdev);
3517 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
ab9d47e9 3518 still_degraded = 1;
87fc767b 3519 break;
1da177e4 3520 }
f90145f3 3521 }
ab9d47e9 3522
e64e4018
AS
3523 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3524 &sync_blocks, still_degraded);
ab9d47e9 3525
e875ecea 3526 any_working = 0;
ab9d47e9 3527 for (j=0; j<conf->copies;j++) {
e875ecea 3528 int k;
ab9d47e9 3529 int d = r10_bio->devs[j].devnum;
5e570289 3530 sector_t from_addr, to_addr;
f90145f3
N
3531 struct md_rdev *rdev =
3532 rcu_dereference(conf->mirrors[d].rdev);
40c356ce
N
3533 sector_t sector, first_bad;
3534 int bad_sectors;
f90145f3
N
3535 if (!rdev ||
3536 !test_bit(In_sync, &rdev->flags))
ab9d47e9
N
3537 continue;
3538 /* This is where we read from */
e875ecea 3539 any_working = 1;
40c356ce
N
3540 sector = r10_bio->devs[j].addr;
3541
3542 if (is_badblock(rdev, sector, max_sync,
3543 &first_bad, &bad_sectors)) {
3544 if (first_bad > sector)
3545 max_sync = first_bad - sector;
3546 else {
3547 bad_sectors -= (sector
3548 - first_bad);
3549 if (max_sync > bad_sectors)
3550 max_sync = bad_sectors;
3551 continue;
3552 }
3553 }
ab9d47e9
N
3554 bio = r10_bio->devs[0].bio;
3555 bio->bi_next = biolist;
3556 biolist = bio;
ab9d47e9 3557 bio->bi_end_io = end_sync_read;
c34b7ac6 3558 bio->bi_opf = REQ_OP_READ;
8d3ca83d
N
3559 if (test_bit(FailFast, &rdev->flags))
3560 bio->bi_opf |= MD_FAILFAST;
5e570289 3561 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3562 bio->bi_iter.bi_sector = from_addr +
3563 rdev->data_offset;
74d46992 3564 bio_set_dev(bio, rdev->bdev);
24afd80d
N
3565 atomic_inc(&rdev->nr_pending);
3566 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3567
3568 for (k=0; k<conf->copies; k++)
3569 if (r10_bio->devs[k].devnum == i)
3570 break;
3571 BUG_ON(k == conf->copies);
5e570289 3572 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3573 r10_bio->devs[0].devnum = d;
5e570289 3574 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3575 r10_bio->devs[1].devnum = i;
5e570289 3576 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3577
59f8f0b5 3578 if (mrdev) {
24afd80d
N
3579 bio = r10_bio->devs[1].bio;
3580 bio->bi_next = biolist;
3581 biolist = bio;
24afd80d 3582 bio->bi_end_io = end_sync_write;
c34b7ac6 3583 bio->bi_opf = REQ_OP_WRITE;
4f024f37 3584 bio->bi_iter.bi_sector = to_addr
f90145f3 3585 + mrdev->data_offset;
74d46992 3586 bio_set_dev(bio, mrdev->bdev);
24afd80d
N
3587 atomic_inc(&r10_bio->remaining);
3588 } else
3589 r10_bio->devs[1].bio->bi_end_io = NULL;
3590
3591 /* and maybe write to replacement */
3592 bio = r10_bio->devs[1].repl_bio;
3593 if (bio)
3594 bio->bi_end_io = NULL;
34817a24 3595 /* Note: if replace is not NULL, then bio
24afd80d
N
3596 * cannot be NULL as r10buf_pool_alloc will
3597 * have allocated it.
24afd80d 3598 */
34817a24 3599 if (!mreplace)
24afd80d
N
3600 break;
3601 bio->bi_next = biolist;
3602 biolist = bio;
24afd80d 3603 bio->bi_end_io = end_sync_write;
c34b7ac6 3604 bio->bi_opf = REQ_OP_WRITE;
4f024f37 3605 bio->bi_iter.bi_sector = to_addr +
f90145f3 3606 mreplace->data_offset;
74d46992 3607 bio_set_dev(bio, mreplace->bdev);
24afd80d 3608 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3609 break;
3610 }
f90145f3 3611 rcu_read_unlock();
ab9d47e9 3612 if (j == conf->copies) {
e875ecea
N
3613 /* Cannot recover, so abort the recovery or
3614 * record a bad block */
e875ecea
N
3615 if (any_working) {
3616 /* problem is that there are bad blocks
3617 * on other device(s)
3618 */
3619 int k;
3620 for (k = 0; k < conf->copies; k++)
3621 if (r10_bio->devs[k].devnum == i)
3622 break;
59f8f0b5 3623 if (mrdev && !test_bit(In_sync,
f90145f3 3624 &mrdev->flags)
24afd80d 3625 && !rdev_set_badblocks(
f90145f3 3626 mrdev,
24afd80d
N
3627 r10_bio->devs[k].addr,
3628 max_sync, 0))
3629 any_working = 0;
f90145f3 3630 if (mreplace &&
24afd80d 3631 !rdev_set_badblocks(
f90145f3 3632 mreplace,
e875ecea
N
3633 r10_bio->devs[k].addr,
3634 max_sync, 0))
3635 any_working = 0;
3636 }
3637 if (!any_working) {
3638 if (!test_and_set_bit(MD_RECOVERY_INTR,
3639 &mddev->recovery))
08464e09 3640 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
e875ecea 3641 mdname(mddev));
24afd80d 3642 mirror->recovery_disabled
e875ecea
N
3643 = mddev->recovery_disabled;
3644 }
e8b84915
N
3645 put_buf(r10_bio);
3646 if (rb2)
3647 atomic_dec(&rb2->remaining);
3648 r10_bio = rb2;
59f8f0b5
LN
3649 if (mrdev)
3650 rdev_dec_pending(mrdev, mddev);
f90145f3
N
3651 if (mreplace)
3652 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3653 break;
1da177e4 3654 }
59f8f0b5
LN
3655 if (mrdev)
3656 rdev_dec_pending(mrdev, mddev);
f90145f3
N
3657 if (mreplace)
3658 rdev_dec_pending(mreplace, mddev);
8d3ca83d
N
3659 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3660 /* Only want this if there is elsewhere to
3661 * read from. 'j' is currently the first
3662 * readable copy.
3663 */
3664 int targets = 1;
3665 for (; j < conf->copies; j++) {
3666 int d = r10_bio->devs[j].devnum;
3667 if (conf->mirrors[d].rdev &&
3668 test_bit(In_sync,
3669 &conf->mirrors[d].rdev->flags))
3670 targets++;
3671 }
3672 if (targets == 1)
3673 r10_bio->devs[0].bio->bi_opf
3674 &= ~MD_FAILFAST;
3675 }
ab9d47e9 3676 }
1da177e4
LT
3677 if (biolist == NULL) {
3678 while (r10_bio) {
9f2c9d12
N
3679 struct r10bio *rb2 = r10_bio;
3680 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3681 rb2->master_bio = NULL;
3682 put_buf(rb2);
3683 }
3684 goto giveup;
3685 }
3686 } else {
3687 /* resync. Schedule a read for every block at this virt offset */
3688 int count = 0;
6cce3b23 3689
8db87912
GJ
3690 /*
3691 * Since curr_resync_completed could probably not update in
3692 * time, and we will set cluster_sync_low based on it.
3693 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3694 * safety reason, which ensures curr_resync_completed is
3695 * updated in bitmap_cond_end_sync.
3696 */
e64e4018
AS
3697 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3698 mddev_is_clustered(mddev) &&
3699 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
78200d45 3700
e64e4018
AS
3701 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3702 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3703 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3704 &mddev->recovery)) {
6cce3b23
N
3705 /* We can skip this block */
3706 *skipped = 1;
3707 return sync_blocks + sectors_skipped;
3708 }
3709 if (sync_blocks < max_sync)
3710 max_sync = sync_blocks;
208410b5 3711 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3712 r10_bio->state = 0;
1da177e4 3713
1da177e4
LT
3714 r10_bio->mddev = mddev;
3715 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3716 raise_barrier(conf, 0);
3717 conf->next_resync = sector_nr;
1da177e4
LT
3718
3719 r10_bio->master_bio = NULL;
3720 r10_bio->sector = sector_nr;
3721 set_bit(R10BIO_IsSync, &r10_bio->state);
3722 raid10_find_phys(conf, r10_bio);
5cf00fcd 3723 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3724
5cf00fcd 3725 for (i = 0; i < conf->copies; i++) {
1da177e4 3726 int d = r10_bio->devs[i].devnum;
40c356ce
N
3727 sector_t first_bad, sector;
3728 int bad_sectors;
f90145f3 3729 struct md_rdev *rdev;
40c356ce 3730
9ad1aefc
N
3731 if (r10_bio->devs[i].repl_bio)
3732 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3733
1da177e4 3734 bio = r10_bio->devs[i].bio;
4e4cbee9 3735 bio->bi_status = BLK_STS_IOERR;
f90145f3
N
3736 rcu_read_lock();
3737 rdev = rcu_dereference(conf->mirrors[d].rdev);
3738 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3739 rcu_read_unlock();
1da177e4 3740 continue;
f90145f3 3741 }
40c356ce 3742 sector = r10_bio->devs[i].addr;
f90145f3 3743 if (is_badblock(rdev, sector, max_sync,
40c356ce
N
3744 &first_bad, &bad_sectors)) {
3745 if (first_bad > sector)
3746 max_sync = first_bad - sector;
3747 else {
3748 bad_sectors -= (sector - first_bad);
3749 if (max_sync > bad_sectors)
91502f09 3750 max_sync = bad_sectors;
f90145f3 3751 rcu_read_unlock();
40c356ce
N
3752 continue;
3753 }
3754 }
f90145f3 3755 atomic_inc(&rdev->nr_pending);
1da177e4
LT
3756 atomic_inc(&r10_bio->remaining);
3757 bio->bi_next = biolist;
3758 biolist = bio;
1da177e4 3759 bio->bi_end_io = end_sync_read;
c34b7ac6 3760 bio->bi_opf = REQ_OP_READ;
1cdd1257 3761 if (test_bit(FailFast, &rdev->flags))
8d3ca83d 3762 bio->bi_opf |= MD_FAILFAST;
f90145f3 3763 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3764 bio_set_dev(bio, rdev->bdev);
1da177e4 3765 count++;
9ad1aefc 3766
f90145f3
N
3767 rdev = rcu_dereference(conf->mirrors[d].replacement);
3768 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3769 rcu_read_unlock();
9ad1aefc 3770 continue;
f90145f3
N
3771 }
3772 atomic_inc(&rdev->nr_pending);
9ad1aefc
N
3773
3774 /* Need to set up for writing to the replacement */
3775 bio = r10_bio->devs[i].repl_bio;
4e4cbee9 3776 bio->bi_status = BLK_STS_IOERR;
9ad1aefc
N
3777
3778 sector = r10_bio->devs[i].addr;
9ad1aefc
N
3779 bio->bi_next = biolist;
3780 biolist = bio;
9ad1aefc 3781 bio->bi_end_io = end_sync_write;
c34b7ac6 3782 bio->bi_opf = REQ_OP_WRITE;
1cdd1257 3783 if (test_bit(FailFast, &rdev->flags))
1919cbb2 3784 bio->bi_opf |= MD_FAILFAST;
f90145f3 3785 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3786 bio_set_dev(bio, rdev->bdev);
9ad1aefc 3787 count++;
1cdd1257 3788 rcu_read_unlock();
1da177e4
LT
3789 }
3790
3791 if (count < 2) {
3792 for (i=0; i<conf->copies; i++) {
3793 int d = r10_bio->devs[i].devnum;
3794 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3795 rdev_dec_pending(conf->mirrors[d].rdev,
3796 mddev);
9ad1aefc
N
3797 if (r10_bio->devs[i].repl_bio &&
3798 r10_bio->devs[i].repl_bio->bi_end_io)
3799 rdev_dec_pending(
3800 conf->mirrors[d].replacement,
3801 mddev);
1da177e4
LT
3802 }
3803 put_buf(r10_bio);
3804 biolist = NULL;
3805 goto giveup;
3806 }
3807 }
3808
1da177e4 3809 nr_sectors = 0;
6cce3b23
N
3810 if (sector_nr + max_sync < max_sector)
3811 max_sector = sector_nr + max_sync;
1da177e4
LT
3812 do {
3813 struct page *page;
3814 int len = PAGE_SIZE;
1da177e4
LT
3815 if (sector_nr + (len>>9) > max_sector)
3816 len = (max_sector - sector_nr) << 9;
3817 if (len == 0)
3818 break;
3819 for (bio= biolist ; bio ; bio=bio->bi_next) {
f0250618 3820 struct resync_pages *rp = get_resync_pages(bio);
022e510f 3821 page = resync_fetch_page(rp, page_idx);
0c67dd64
JT
3822 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3823 bio->bi_status = BLK_STS_RESOURCE;
3824 bio_endio(bio);
3825 goto giveup;
3826 }
1da177e4
LT
3827 }
3828 nr_sectors += len>>9;
3829 sector_nr += len>>9;
022e510f 3830 } while (++page_idx < RESYNC_PAGES);
1da177e4
LT
3831 r10_bio->sectors = nr_sectors;
3832
8db87912
GJ
3833 if (mddev_is_clustered(mddev) &&
3834 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3835 /* It is resync not recovery */
3836 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3837 conf->cluster_sync_low = mddev->curr_resync_completed;
3838 raid10_set_cluster_sync_high(conf);
3839 /* Send resync message */
3840 md_cluster_ops->resync_info_update(mddev,
3841 conf->cluster_sync_low,
3842 conf->cluster_sync_high);
3843 }
3844 } else if (mddev_is_clustered(mddev)) {
3845 /* This is recovery not resync */
3846 sector_t sect_va1, sect_va2;
3847 bool broadcast_msg = false;
3848
3849 for (i = 0; i < conf->geo.raid_disks; i++) {
3850 /*
3851 * sector_nr is a device address for recovery, so we
3852 * need translate it to array address before compare
3853 * with cluster_sync_high.
3854 */
3855 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3856
3857 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3858 broadcast_msg = true;
3859 /*
3860 * curr_resync_completed is similar as
3861 * sector_nr, so make the translation too.
3862 */
3863 sect_va2 = raid10_find_virt(conf,
3864 mddev->curr_resync_completed, i);
3865
3866 if (conf->cluster_sync_low == 0 ||
3867 conf->cluster_sync_low > sect_va2)
3868 conf->cluster_sync_low = sect_va2;
3869 }
3870 }
3871 if (broadcast_msg) {
3872 raid10_set_cluster_sync_high(conf);
3873 md_cluster_ops->resync_info_update(mddev,
3874 conf->cluster_sync_low,
3875 conf->cluster_sync_high);
3876 }
3877 }
3878
1da177e4
LT
3879 while (biolist) {
3880 bio = biolist;
3881 biolist = biolist->bi_next;
3882
3883 bio->bi_next = NULL;
f0250618 3884 r10_bio = get_resync_r10bio(bio);
1da177e4
LT
3885 r10_bio->sectors = nr_sectors;
3886
3887 if (bio->bi_end_io == end_sync_read) {
74d46992 3888 md_sync_acct_bio(bio, nr_sectors);
4e4cbee9 3889 bio->bi_status = 0;
ed00aabd 3890 submit_bio_noacct(bio);
1da177e4
LT
3891 }
3892 }
3893
57afd89f
N
3894 if (sectors_skipped)
3895 /* pretend they weren't skipped, it makes
3896 * no important difference in this case
3897 */
3898 md_done_sync(mddev, sectors_skipped, 1);
3899
1da177e4
LT
3900 return sectors_skipped + nr_sectors;
3901 giveup:
3902 /* There is nowhere to write, so all non-sync
e875ecea
N
3903 * drives must be failed or in resync, all drives
3904 * have a bad block, so try the next chunk...
1da177e4 3905 */
09b4068a
N
3906 if (sector_nr + max_sync < max_sector)
3907 max_sector = sector_nr + max_sync;
3908
3909 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3910 chunks_skipped ++;
3911 sector_nr = max_sector;
1da177e4 3912 goto skipped;
1da177e4
LT
3913}
3914
80c3a6ce 3915static sector_t
fd01b88c 3916raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3917{
3918 sector_t size;
e879a879 3919 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3920
3921 if (!raid_disks)
3ea7daa5
N
3922 raid_disks = min(conf->geo.raid_disks,
3923 conf->prev.raid_disks);
80c3a6ce 3924 if (!sectors)
dab8b292 3925 sectors = conf->dev_sectors;
80c3a6ce 3926
5cf00fcd
N
3927 size = sectors >> conf->geo.chunk_shift;
3928 sector_div(size, conf->geo.far_copies);
80c3a6ce 3929 size = size * raid_disks;
5cf00fcd 3930 sector_div(size, conf->geo.near_copies);
80c3a6ce 3931
5cf00fcd 3932 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3933}
3934
6508fdbf
N
3935static void calc_sectors(struct r10conf *conf, sector_t size)
3936{
3937 /* Calculate the number of sectors-per-device that will
3938 * actually be used, and set conf->dev_sectors and
3939 * conf->stride
3940 */
3941
5cf00fcd
N
3942 size = size >> conf->geo.chunk_shift;
3943 sector_div(size, conf->geo.far_copies);
3944 size = size * conf->geo.raid_disks;
3945 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3946 /* 'size' is now the number of chunks in the array */
3947 /* calculate "used chunks per device" */
3948 size = size * conf->copies;
3949
3950 /* We need to round up when dividing by raid_disks to
3951 * get the stride size.
3952 */
5cf00fcd 3953 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3954
5cf00fcd 3955 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3956
5cf00fcd
N
3957 if (conf->geo.far_offset)
3958 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3959 else {
5cf00fcd
N
3960 sector_div(size, conf->geo.far_copies);
3961 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3962 }
3963}
dab8b292 3964
deb200d0
N
3965enum geo_type {geo_new, geo_old, geo_start};
3966static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3967{
3968 int nc, fc, fo;
3969 int layout, chunk, disks;
3970 switch (new) {
3971 case geo_old:
3972 layout = mddev->layout;
3973 chunk = mddev->chunk_sectors;
3974 disks = mddev->raid_disks - mddev->delta_disks;
3975 break;
3976 case geo_new:
3977 layout = mddev->new_layout;
3978 chunk = mddev->new_chunk_sectors;
3979 disks = mddev->raid_disks;
3980 break;
3981 default: /* avoid 'may be unused' warnings */
3982 case geo_start: /* new when starting reshape - raid_disks not
3983 * updated yet. */
3984 layout = mddev->new_layout;
3985 chunk = mddev->new_chunk_sectors;
3986 disks = mddev->raid_disks + mddev->delta_disks;
3987 break;
3988 }
8bce6d35 3989 if (layout >> 19)
deb200d0
N
3990 return -1;
3991 if (chunk < (PAGE_SIZE >> 9) ||
3992 !is_power_of_2(chunk))
3993 return -2;
3994 nc = layout & 255;
3995 fc = (layout >> 8) & 255;
3996 fo = layout & (1<<16);
3997 geo->raid_disks = disks;
3998 geo->near_copies = nc;
3999 geo->far_copies = fc;
4000 geo->far_offset = fo;
8bce6d35
N
4001 switch (layout >> 17) {
4002 case 0: /* original layout. simple but not always optimal */
4003 geo->far_set_size = disks;
4004 break;
4005 case 1: /* "improved" layout which was buggy. Hopefully no-one is
4006 * actually using this, but leave code here just in case.*/
4007 geo->far_set_size = disks/fc;
4008 WARN(geo->far_set_size < fc,
4009 "This RAID10 layout does not provide data safety - please backup and create new array\n");
4010 break;
4011 case 2: /* "improved" layout fixed to match documentation */
4012 geo->far_set_size = fc * nc;
4013 break;
4014 default: /* Not a valid layout */
4015 return -1;
4016 }
deb200d0
N
4017 geo->chunk_mask = chunk - 1;
4018 geo->chunk_shift = ffz(~chunk);
4019 return nc*fc;
4020}
4021
c9ac2acd
YK
4022static void raid10_free_conf(struct r10conf *conf)
4023{
4024 if (!conf)
4025 return;
4026
4027 mempool_exit(&conf->r10bio_pool);
4028 kfree(conf->mirrors);
4029 kfree(conf->mirrors_old);
4030 kfree(conf->mirrors_new);
4031 safe_put_page(conf->tmppage);
4032 bioset_exit(&conf->bio_split);
4033 kfree(conf);
4034}
4035
e879a879 4036static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 4037{
e879a879 4038 struct r10conf *conf = NULL;
dab8b292 4039 int err = -EINVAL;
deb200d0
N
4040 struct geom geo;
4041 int copies;
4042
4043 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 4044
deb200d0 4045 if (copies == -2) {
08464e09
N
4046 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4047 mdname(mddev), PAGE_SIZE);
dab8b292 4048 goto out;
1da177e4 4049 }
2604b703 4050
deb200d0 4051 if (copies < 2 || copies > mddev->raid_disks) {
08464e09
N
4052 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4053 mdname(mddev), mddev->new_layout);
1da177e4
LT
4054 goto out;
4055 }
dab8b292
TM
4056
4057 err = -ENOMEM;
e879a879 4058 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 4059 if (!conf)
1da177e4 4060 goto out;
dab8b292 4061
3ea7daa5 4062 /* FIXME calc properly */
6396bb22
KC
4063 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4064 sizeof(struct raid10_info),
dab8b292
TM
4065 GFP_KERNEL);
4066 if (!conf->mirrors)
4067 goto out;
4443ae10
N
4068
4069 conf->tmppage = alloc_page(GFP_KERNEL);
4070 if (!conf->tmppage)
dab8b292
TM
4071 goto out;
4072
deb200d0
N
4073 conf->geo = geo;
4074 conf->copies = copies;
3f677f9c 4075 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
c7afa803 4076 rbio_pool_free, conf);
afeee514 4077 if (err)
dab8b292
TM
4078 goto out;
4079
afeee514
KO
4080 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4081 if (err)
fc9977dd
N
4082 goto out;
4083
6508fdbf 4084 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
4085 if (mddev->reshape_position == MaxSector) {
4086 conf->prev = conf->geo;
4087 conf->reshape_progress = MaxSector;
4088 } else {
4089 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4090 err = -EINVAL;
4091 goto out;
4092 }
4093 conf->reshape_progress = mddev->reshape_position;
4094 if (conf->prev.far_offset)
4095 conf->prev.stride = 1 << conf->prev.chunk_shift;
4096 else
4097 /* far_copies must be 1 */
4098 conf->prev.stride = conf->dev_sectors;
4099 }
299b0685 4100 conf->reshape_safe = conf->reshape_progress;
e7e72bf6 4101 spin_lock_init(&conf->device_lock);
dab8b292 4102 INIT_LIST_HEAD(&conf->retry_list);
95af587e 4103 INIT_LIST_HEAD(&conf->bio_end_io_list);
dab8b292 4104
b9b083f9 4105 seqlock_init(&conf->resync_lock);
dab8b292 4106 init_waitqueue_head(&conf->wait_barrier);
0e5313e2 4107 atomic_set(&conf->nr_pending, 0);
dab8b292 4108
afeee514 4109 err = -ENOMEM;
44693154
YK
4110 rcu_assign_pointer(conf->thread,
4111 md_register_thread(raid10d, mddev, "raid10"));
dab8b292
TM
4112 if (!conf->thread)
4113 goto out;
4114
dab8b292
TM
4115 conf->mddev = mddev;
4116 return conf;
4117
4118 out:
c9ac2acd 4119 raid10_free_conf(conf);
dab8b292
TM
4120 return ERR_PTR(err);
4121}
4122
16ef5101
CH
4123static void raid10_set_io_opt(struct r10conf *conf)
4124{
4125 int raid_disks = conf->geo.raid_disks;
4126
4127 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4128 raid_disks /= conf->geo.near_copies;
4129 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4130 raid_disks);
4131}
4132
849674e4 4133static int raid10_run(struct mddev *mddev)
dab8b292 4134{
e879a879 4135 struct r10conf *conf;
16ef5101 4136 int i, disk_idx;
dc280d98 4137 struct raid10_info *disk;
3cb03002 4138 struct md_rdev *rdev;
dab8b292 4139 sector_t size;
3ea7daa5
N
4140 sector_t min_offset_diff = 0;
4141 int first = 1;
dab8b292 4142
a415c0f1
N
4143 if (mddev_init_writes_pending(mddev) < 0)
4144 return -ENOMEM;
4145
dab8b292
TM
4146 if (mddev->private == NULL) {
4147 conf = setup_conf(mddev);
4148 if (IS_ERR(conf))
4149 return PTR_ERR(conf);
4150 mddev->private = conf;
4151 }
4152 conf = mddev->private;
4153 if (!conf)
4154 goto out;
4155
44693154
YK
4156 rcu_assign_pointer(mddev->thread, conf->thread);
4157 rcu_assign_pointer(conf->thread, NULL);
f0ddb83d 4158
8db87912
GJ
4159 if (mddev_is_clustered(conf->mddev)) {
4160 int fc, fo;
4161
4162 fc = (mddev->layout >> 8) & 255;
4163 fo = mddev->layout & (1<<16);
4164 if (fc > 1 || fo > 0) {
4165 pr_err("only near layout is supported by clustered"
4166 " raid10\n");
43a52123 4167 goto out_free_conf;
8db87912
GJ
4168 }
4169 }
4170
cc4d1efd 4171 if (mddev->queue) {
3deff1a7 4172 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
16ef5101
CH
4173 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4174 raid10_set_io_opt(conf);
cc4d1efd 4175 }
8f6c2e4b 4176
dafb20fa 4177 rdev_for_each(rdev, mddev) {
3ea7daa5 4178 long long diff;
34b343cf 4179
1da177e4 4180 disk_idx = rdev->raid_disk;
f8c9e74f
N
4181 if (disk_idx < 0)
4182 continue;
4183 if (disk_idx >= conf->geo.raid_disks &&
4184 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
4185 continue;
4186 disk = conf->mirrors + disk_idx;
4187
56a2559b
N
4188 if (test_bit(Replacement, &rdev->flags)) {
4189 if (disk->replacement)
4190 goto out_free_conf;
4191 disk->replacement = rdev;
4192 } else {
4193 if (disk->rdev)
4194 goto out_free_conf;
4195 disk->rdev = rdev;
4196 }
3ea7daa5
N
4197 diff = (rdev->new_data_offset - rdev->data_offset);
4198 if (!mddev->reshape_backwards)
4199 diff = -diff;
4200 if (diff < 0)
4201 diff = 0;
4202 if (first || diff < min_offset_diff)
4203 min_offset_diff = diff;
56a2559b 4204
cc4d1efd
JB
4205 if (mddev->gendisk)
4206 disk_stack_limits(mddev->gendisk, rdev->bdev,
4207 rdev->data_offset << 9);
1da177e4
LT
4208
4209 disk->head_position = 0;
6f287ca6 4210 first = 0;
1da177e4 4211 }
3ea7daa5 4212
6d508242 4213 /* need to check that every block has at least one working mirror */
700c7213 4214 if (!enough(conf, -1)) {
08464e09 4215 pr_err("md/raid10:%s: not enough operational mirrors.\n",
6d508242 4216 mdname(mddev));
1da177e4
LT
4217 goto out_free_conf;
4218 }
4219
3ea7daa5
N
4220 if (conf->reshape_progress != MaxSector) {
4221 /* must ensure that shape change is supported */
4222 if (conf->geo.far_copies != 1 &&
4223 conf->geo.far_offset == 0)
4224 goto out_free_conf;
4225 if (conf->prev.far_copies != 1 &&
78eaa0d4 4226 conf->prev.far_offset == 0)
3ea7daa5
N
4227 goto out_free_conf;
4228 }
4229
1da177e4 4230 mddev->degraded = 0;
f8c9e74f
N
4231 for (i = 0;
4232 i < conf->geo.raid_disks
4233 || i < conf->prev.raid_disks;
4234 i++) {
1da177e4
LT
4235
4236 disk = conf->mirrors + i;
4237
56a2559b
N
4238 if (!disk->rdev && disk->replacement) {
4239 /* The replacement is all we have - use it */
4240 disk->rdev = disk->replacement;
4241 disk->replacement = NULL;
4242 clear_bit(Replacement, &disk->rdev->flags);
4243 }
4244
5fd6c1dc 4245 if (!disk->rdev ||
2e333e89 4246 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
4247 disk->head_position = 0;
4248 mddev->degraded++;
0b59bb64
N
4249 if (disk->rdev &&
4250 disk->rdev->saved_raid_disk < 0)
8c2e870a 4251 conf->fullsync = 1;
1da177e4 4252 }
bda31539
BC
4253
4254 if (disk->replacement &&
4255 !test_bit(In_sync, &disk->replacement->flags) &&
4256 disk->replacement->saved_raid_disk < 0) {
4257 conf->fullsync = 1;
4258 }
4259
d890fa2b 4260 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
4261 }
4262
8c6ac868 4263 if (mddev->recovery_cp != MaxSector)
08464e09
N
4264 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4265 mdname(mddev));
4266 pr_info("md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
4267 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4268 conf->geo.raid_disks);
1da177e4
LT
4269 /*
4270 * Ok, everything is just fine now
4271 */
dab8b292
TM
4272 mddev->dev_sectors = conf->dev_sectors;
4273 size = raid10_size(mddev, 0, 0);
4274 md_set_array_sectors(mddev, size);
4275 mddev->resync_max_sectors = size;
46533ff7 4276 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
1da177e4 4277
a91a2785
MP
4278 if (md_integrity_register(mddev))
4279 goto out_free_conf;
4280
3ea7daa5
N
4281 if (conf->reshape_progress != MaxSector) {
4282 unsigned long before_length, after_length;
4283
4284 before_length = ((1 << conf->prev.chunk_shift) *
4285 conf->prev.far_copies);
4286 after_length = ((1 << conf->geo.chunk_shift) *
4287 conf->geo.far_copies);
4288
4289 if (max(before_length, after_length) > min_offset_diff) {
4290 /* This cannot work */
08464e09 4291 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3ea7daa5
N
4292 goto out_free_conf;
4293 }
4294 conf->offset_diff = min_offset_diff;
4295
3ea7daa5
N
4296 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4297 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4298 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4299 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
44693154
YK
4300 rcu_assign_pointer(mddev->sync_thread,
4301 md_register_thread(md_do_sync, mddev, "reshape"));
e406f12d
AP
4302 if (!mddev->sync_thread)
4303 goto out_free_conf;
3ea7daa5
N
4304 }
4305
1da177e4
LT
4306 return 0;
4307
4308out_free_conf:
01f96c0a 4309 md_unregister_thread(&mddev->thread);
c9ac2acd 4310 raid10_free_conf(conf);
1da177e4
LT
4311 mddev->private = NULL;
4312out:
4313 return -EIO;
4314}
4315
afa0f557 4316static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 4317{
c9ac2acd 4318 raid10_free_conf(priv);
1da177e4
LT
4319}
4320
b03e0ccb 4321static void raid10_quiesce(struct mddev *mddev, int quiesce)
6cce3b23 4322{
e879a879 4323 struct r10conf *conf = mddev->private;
6cce3b23 4324
b03e0ccb 4325 if (quiesce)
6cce3b23 4326 raise_barrier(conf, 0);
b03e0ccb 4327 else
6cce3b23 4328 lower_barrier(conf);
6cce3b23 4329}
1da177e4 4330
006a09a0
N
4331static int raid10_resize(struct mddev *mddev, sector_t sectors)
4332{
4333 /* Resize of 'far' arrays is not supported.
4334 * For 'near' and 'offset' arrays we can set the
4335 * number of sectors used to be an appropriate multiple
4336 * of the chunk size.
4337 * For 'offset', this is far_copies*chunksize.
4338 * For 'near' the multiplier is the LCM of
4339 * near_copies and raid_disks.
4340 * So if far_copies > 1 && !far_offset, fail.
4341 * Else find LCM(raid_disks, near_copy)*far_copies and
4342 * multiply by chunk_size. Then round to this number.
4343 * This is mostly done by raid10_size()
4344 */
4345 struct r10conf *conf = mddev->private;
4346 sector_t oldsize, size;
4347
f8c9e74f
N
4348 if (mddev->reshape_position != MaxSector)
4349 return -EBUSY;
4350
5cf00fcd 4351 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
4352 return -EINVAL;
4353
4354 oldsize = raid10_size(mddev, 0, 0);
4355 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
4356 if (mddev->external_size &&
4357 mddev->array_sectors > size)
006a09a0 4358 return -EINVAL;
a4a6125a 4359 if (mddev->bitmap) {
e64e4018 4360 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
a4a6125a
N
4361 if (ret)
4362 return ret;
4363 }
4364 md_set_array_sectors(mddev, size);
006a09a0
N
4365 if (sectors > mddev->dev_sectors &&
4366 mddev->recovery_cp > oldsize) {
4367 mddev->recovery_cp = oldsize;
4368 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4369 }
6508fdbf
N
4370 calc_sectors(conf, sectors);
4371 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
4372 mddev->resync_max_sectors = size;
4373 return 0;
4374}
4375
53a6ab4d 4376static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 4377{
3cb03002 4378 struct md_rdev *rdev;
e879a879 4379 struct r10conf *conf;
dab8b292
TM
4380
4381 if (mddev->degraded > 0) {
08464e09
N
4382 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4383 mdname(mddev));
dab8b292
TM
4384 return ERR_PTR(-EINVAL);
4385 }
53a6ab4d 4386 sector_div(size, devs);
dab8b292 4387
dab8b292
TM
4388 /* Set new parameters */
4389 mddev->new_level = 10;
4390 /* new layout: far_copies = 1, near_copies = 2 */
4391 mddev->new_layout = (1<<8) + 2;
4392 mddev->new_chunk_sectors = mddev->chunk_sectors;
4393 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
4394 mddev->raid_disks *= 2;
4395 /* make sure it will be not marked as dirty */
4396 mddev->recovery_cp = MaxSector;
53a6ab4d 4397 mddev->dev_sectors = size;
dab8b292
TM
4398
4399 conf = setup_conf(mddev);
02214dc5 4400 if (!IS_ERR(conf)) {
dafb20fa 4401 rdev_for_each(rdev, mddev)
53a6ab4d 4402 if (rdev->raid_disk >= 0) {
e93f68a1 4403 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
4404 rdev->sectors = size;
4405 }
b9b083f9 4406 WRITE_ONCE(conf->barrier, 1);
02214dc5
KW
4407 }
4408
dab8b292
TM
4409 return conf;
4410}
4411
fd01b88c 4412static void *raid10_takeover(struct mddev *mddev)
dab8b292 4413{
e373ab10 4414 struct r0conf *raid0_conf;
dab8b292
TM
4415
4416 /* raid10 can take over:
4417 * raid0 - providing it has only two drives
4418 */
4419 if (mddev->level == 0) {
4420 /* for raid0 takeover only one zone is supported */
e373ab10
N
4421 raid0_conf = mddev->private;
4422 if (raid0_conf->nr_strip_zones > 1) {
08464e09
N
4423 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4424 mdname(mddev));
dab8b292
TM
4425 return ERR_PTR(-EINVAL);
4426 }
53a6ab4d
N
4427 return raid10_takeover_raid0(mddev,
4428 raid0_conf->strip_zone->zone_end,
4429 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
4430 }
4431 return ERR_PTR(-EINVAL);
4432}
4433
3ea7daa5
N
4434static int raid10_check_reshape(struct mddev *mddev)
4435{
4436 /* Called when there is a request to change
4437 * - layout (to ->new_layout)
4438 * - chunk size (to ->new_chunk_sectors)
4439 * - raid_disks (by delta_disks)
4440 * or when trying to restart a reshape that was ongoing.
4441 *
4442 * We need to validate the request and possibly allocate
4443 * space if that might be an issue later.
4444 *
4445 * Currently we reject any reshape of a 'far' mode array,
4446 * allow chunk size to change if new is generally acceptable,
4447 * allow raid_disks to increase, and allow
4448 * a switch between 'near' mode and 'offset' mode.
4449 */
4450 struct r10conf *conf = mddev->private;
4451 struct geom geo;
4452
4453 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4454 return -EINVAL;
4455
4456 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4457 /* mustn't change number of copies */
4458 return -EINVAL;
4459 if (geo.far_copies > 1 && !geo.far_offset)
4460 /* Cannot switch to 'far' mode */
4461 return -EINVAL;
4462
4463 if (mddev->array_sectors & geo.chunk_mask)
4464 /* not factor of array size */
4465 return -EINVAL;
4466
3ea7daa5
N
4467 if (!enough(conf, -1))
4468 return -EINVAL;
4469
4470 kfree(conf->mirrors_new);
4471 conf->mirrors_new = NULL;
4472 if (mddev->delta_disks > 0) {
4473 /* allocate new 'mirrors' list */
6396bb22
KC
4474 conf->mirrors_new =
4475 kcalloc(mddev->raid_disks + mddev->delta_disks,
4476 sizeof(struct raid10_info),
4477 GFP_KERNEL);
3ea7daa5
N
4478 if (!conf->mirrors_new)
4479 return -ENOMEM;
4480 }
4481 return 0;
4482}
4483
4484/*
4485 * Need to check if array has failed when deciding whether to:
4486 * - start an array
4487 * - remove non-faulty devices
4488 * - add a spare
4489 * - allow a reshape
4490 * This determination is simple when no reshape is happening.
4491 * However if there is a reshape, we need to carefully check
4492 * both the before and after sections.
4493 * This is because some failed devices may only affect one
4494 * of the two sections, and some non-in_sync devices may
4495 * be insync in the section most affected by failed devices.
4496 */
4497static int calc_degraded(struct r10conf *conf)
4498{
4499 int degraded, degraded2;
4500 int i;
4501
4502 rcu_read_lock();
4503 degraded = 0;
4504 /* 'prev' section first */
4505 for (i = 0; i < conf->prev.raid_disks; i++) {
4506 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4507 if (!rdev || test_bit(Faulty, &rdev->flags))
4508 degraded++;
4509 else if (!test_bit(In_sync, &rdev->flags))
4510 /* When we can reduce the number of devices in
4511 * an array, this might not contribute to
4512 * 'degraded'. It does now.
4513 */
4514 degraded++;
4515 }
4516 rcu_read_unlock();
4517 if (conf->geo.raid_disks == conf->prev.raid_disks)
4518 return degraded;
4519 rcu_read_lock();
4520 degraded2 = 0;
4521 for (i = 0; i < conf->geo.raid_disks; i++) {
4522 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4523 if (!rdev || test_bit(Faulty, &rdev->flags))
4524 degraded2++;
4525 else if (!test_bit(In_sync, &rdev->flags)) {
4526 /* If reshape is increasing the number of devices,
4527 * this section has already been recovered, so
4528 * it doesn't contribute to degraded.
4529 * else it does.
4530 */
4531 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4532 degraded2++;
4533 }
4534 }
4535 rcu_read_unlock();
4536 if (degraded2 > degraded)
4537 return degraded2;
4538 return degraded;
4539}
4540
4541static int raid10_start_reshape(struct mddev *mddev)
4542{
4543 /* A 'reshape' has been requested. This commits
4544 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4545 * This also checks if there are enough spares and adds them
4546 * to the array.
4547 * We currently require enough spares to make the final
4548 * array non-degraded. We also require that the difference
4549 * between old and new data_offset - on each device - is
4550 * enough that we never risk over-writing.
4551 */
4552
4553 unsigned long before_length, after_length;
4554 sector_t min_offset_diff = 0;
4555 int first = 1;
4556 struct geom new;
4557 struct r10conf *conf = mddev->private;
4558 struct md_rdev *rdev;
4559 int spares = 0;
bb63a701 4560 int ret;
3ea7daa5
N
4561
4562 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4563 return -EBUSY;
4564
4565 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4566 return -EINVAL;
4567
4568 before_length = ((1 << conf->prev.chunk_shift) *
4569 conf->prev.far_copies);
4570 after_length = ((1 << conf->geo.chunk_shift) *
4571 conf->geo.far_copies);
4572
4573 rdev_for_each(rdev, mddev) {
4574 if (!test_bit(In_sync, &rdev->flags)
4575 && !test_bit(Faulty, &rdev->flags))
4576 spares++;
4577 if (rdev->raid_disk >= 0) {
4578 long long diff = (rdev->new_data_offset
4579 - rdev->data_offset);
4580 if (!mddev->reshape_backwards)
4581 diff = -diff;
4582 if (diff < 0)
4583 diff = 0;
4584 if (first || diff < min_offset_diff)
4585 min_offset_diff = diff;
b506335e 4586 first = 0;
3ea7daa5
N
4587 }
4588 }
4589
4590 if (max(before_length, after_length) > min_offset_diff)
4591 return -EINVAL;
4592
4593 if (spares < mddev->delta_disks)
4594 return -EINVAL;
4595
4596 conf->offset_diff = min_offset_diff;
4597 spin_lock_irq(&conf->device_lock);
4598 if (conf->mirrors_new) {
4599 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4600 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4601 smp_mb();
c4796e21 4602 kfree(conf->mirrors_old);
3ea7daa5
N
4603 conf->mirrors_old = conf->mirrors;
4604 conf->mirrors = conf->mirrors_new;
4605 conf->mirrors_new = NULL;
4606 }
4607 setup_geo(&conf->geo, mddev, geo_start);
4608 smp_mb();
4609 if (mddev->reshape_backwards) {
4610 sector_t size = raid10_size(mddev, 0, 0);
4611 if (size < mddev->array_sectors) {
4612 spin_unlock_irq(&conf->device_lock);
08464e09
N
4613 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4614 mdname(mddev));
3ea7daa5
N
4615 return -EINVAL;
4616 }
4617 mddev->resync_max_sectors = size;
4618 conf->reshape_progress = size;
4619 } else
4620 conf->reshape_progress = 0;
299b0685 4621 conf->reshape_safe = conf->reshape_progress;
3ea7daa5
N
4622 spin_unlock_irq(&conf->device_lock);
4623
bb63a701 4624 if (mddev->delta_disks && mddev->bitmap) {
afd75628
GJ
4625 struct mdp_superblock_1 *sb = NULL;
4626 sector_t oldsize, newsize;
4627
4628 oldsize = raid10_size(mddev, 0, 0);
4629 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4630
4631 if (!mddev_is_clustered(mddev)) {
4632 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4633 if (ret)
4634 goto abort;
4635 else
4636 goto out;
4637 }
4638
4639 rdev_for_each(rdev, mddev) {
4640 if (rdev->raid_disk > -1 &&
4641 !test_bit(Faulty, &rdev->flags))
4642 sb = page_address(rdev->sb_page);
4643 }
4644
4645 /*
4646 * some node is already performing reshape, and no need to
4647 * call md_bitmap_resize again since it should be called when
4648 * receiving BITMAP_RESIZE msg
4649 */
4650 if ((sb && (le32_to_cpu(sb->feature_map) &
4651 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4652 goto out;
4653
4654 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
bb63a701
N
4655 if (ret)
4656 goto abort;
afd75628
GJ
4657
4658 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4659 if (ret) {
4660 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4661 goto abort;
4662 }
bb63a701 4663 }
afd75628 4664out:
3ea7daa5
N
4665 if (mddev->delta_disks > 0) {
4666 rdev_for_each(rdev, mddev)
4667 if (rdev->raid_disk < 0 &&
4668 !test_bit(Faulty, &rdev->flags)) {
4669 if (raid10_add_disk(mddev, rdev) == 0) {
4670 if (rdev->raid_disk >=
4671 conf->prev.raid_disks)
4672 set_bit(In_sync, &rdev->flags);
4673 else
4674 rdev->recovery_offset = 0;
4675
38ffc01f
DLM
4676 /* Failure here is OK */
4677 sysfs_link_rdev(mddev, rdev);
3ea7daa5
N
4678 }
4679 } else if (rdev->raid_disk >= conf->prev.raid_disks
4680 && !test_bit(Faulty, &rdev->flags)) {
4681 /* This is a spare that was manually added */
4682 set_bit(In_sync, &rdev->flags);
4683 }
4684 }
4685 /* When a reshape changes the number of devices,
4686 * ->degraded is measured against the larger of the
4687 * pre and post numbers.
4688 */
4689 spin_lock_irq(&conf->device_lock);
4690 mddev->degraded = calc_degraded(conf);
4691 spin_unlock_irq(&conf->device_lock);
4692 mddev->raid_disks = conf->geo.raid_disks;
4693 mddev->reshape_position = conf->reshape_progress;
2953079c 4694 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5
N
4695
4696 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4697 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4698 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4699 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4700 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4701
44693154
YK
4702 rcu_assign_pointer(mddev->sync_thread,
4703 md_register_thread(md_do_sync, mddev, "reshape"));
3ea7daa5 4704 if (!mddev->sync_thread) {
bb63a701
N
4705 ret = -EAGAIN;
4706 goto abort;
3ea7daa5
N
4707 }
4708 conf->reshape_checkpoint = jiffies;
4709 md_wakeup_thread(mddev->sync_thread);
54679486 4710 md_new_event();
3ea7daa5 4711 return 0;
bb63a701
N
4712
4713abort:
4714 mddev->recovery = 0;
4715 spin_lock_irq(&conf->device_lock);
4716 conf->geo = conf->prev;
4717 mddev->raid_disks = conf->geo.raid_disks;
4718 rdev_for_each(rdev, mddev)
4719 rdev->new_data_offset = rdev->data_offset;
4720 smp_wmb();
4721 conf->reshape_progress = MaxSector;
299b0685 4722 conf->reshape_safe = MaxSector;
bb63a701
N
4723 mddev->reshape_position = MaxSector;
4724 spin_unlock_irq(&conf->device_lock);
4725 return ret;
3ea7daa5
N
4726}
4727
4728/* Calculate the last device-address that could contain
4729 * any block from the chunk that includes the array-address 's'
4730 * and report the next address.
4731 * i.e. the address returned will be chunk-aligned and after
4732 * any data that is in the chunk containing 's'.
4733 */
4734static sector_t last_dev_address(sector_t s, struct geom *geo)
4735{
4736 s = (s | geo->chunk_mask) + 1;
4737 s >>= geo->chunk_shift;
4738 s *= geo->near_copies;
4739 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4740 s *= geo->far_copies;
4741 s <<= geo->chunk_shift;
4742 return s;
4743}
4744
4745/* Calculate the first device-address that could contain
4746 * any block from the chunk that includes the array-address 's'.
4747 * This too will be the start of a chunk
4748 */
4749static sector_t first_dev_address(sector_t s, struct geom *geo)
4750{
4751 s >>= geo->chunk_shift;
4752 s *= geo->near_copies;
4753 sector_div(s, geo->raid_disks);
4754 s *= geo->far_copies;
4755 s <<= geo->chunk_shift;
4756 return s;
4757}
4758
4759static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4760 int *skipped)
4761{
4762 /* We simply copy at most one chunk (smallest of old and new)
4763 * at a time, possibly less if that exceeds RESYNC_PAGES,
4764 * or we hit a bad block or something.
4765 * This might mean we pause for normal IO in the middle of
02ec5026 4766 * a chunk, but that is not a problem as mddev->reshape_position
3ea7daa5
N
4767 * can record any location.
4768 *
4769 * If we will want to write to a location that isn't
4770 * yet recorded as 'safe' (i.e. in metadata on disk) then
4771 * we need to flush all reshape requests and update the metadata.
4772 *
4773 * When reshaping forwards (e.g. to more devices), we interpret
4774 * 'safe' as the earliest block which might not have been copied
4775 * down yet. We divide this by previous stripe size and multiply
4776 * by previous stripe length to get lowest device offset that we
4777 * cannot write to yet.
4778 * We interpret 'sector_nr' as an address that we want to write to.
4779 * From this we use last_device_address() to find where we might
4780 * write to, and first_device_address on the 'safe' position.
4781 * If this 'next' write position is after the 'safe' position,
4782 * we must update the metadata to increase the 'safe' position.
4783 *
4784 * When reshaping backwards, we round in the opposite direction
4785 * and perform the reverse test: next write position must not be
4786 * less than current safe position.
4787 *
4788 * In all this the minimum difference in data offsets
4789 * (conf->offset_diff - always positive) allows a bit of slack,
02ec5026 4790 * so next can be after 'safe', but not by more than offset_diff
3ea7daa5
N
4791 *
4792 * We need to prepare all the bios here before we start any IO
4793 * to ensure the size we choose is acceptable to all devices.
4794 * The means one for each copy for write-out and an extra one for
4795 * read-in.
4796 * We store the read-in bio in ->master_bio and the others in
4797 * ->devs[x].bio and ->devs[x].repl_bio.
4798 */
4799 struct r10conf *conf = mddev->private;
4800 struct r10bio *r10_bio;
4801 sector_t next, safe, last;
4802 int max_sectors;
4803 int nr_sectors;
4804 int s;
4805 struct md_rdev *rdev;
4806 int need_flush = 0;
4807 struct bio *blist;
4808 struct bio *bio, *read_bio;
4809 int sectors_done = 0;
f0250618 4810 struct page **pages;
3ea7daa5
N
4811
4812 if (sector_nr == 0) {
4813 /* If restarting in the middle, skip the initial sectors */
4814 if (mddev->reshape_backwards &&
4815 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4816 sector_nr = (raid10_size(mddev, 0, 0)
4817 - conf->reshape_progress);
4818 } else if (!mddev->reshape_backwards &&
4819 conf->reshape_progress > 0)
4820 sector_nr = conf->reshape_progress;
4821 if (sector_nr) {
4822 mddev->curr_resync_completed = sector_nr;
e1a86dbb 4823 sysfs_notify_dirent_safe(mddev->sysfs_completed);
3ea7daa5
N
4824 *skipped = 1;
4825 return sector_nr;
4826 }
4827 }
4828
4829 /* We don't use sector_nr to track where we are up to
4830 * as that doesn't work well for ->reshape_backwards.
4831 * So just use ->reshape_progress.
4832 */
4833 if (mddev->reshape_backwards) {
4834 /* 'next' is the earliest device address that we might
4835 * write to for this chunk in the new layout
4836 */
4837 next = first_dev_address(conf->reshape_progress - 1,
4838 &conf->geo);
4839
4840 /* 'safe' is the last device address that we might read from
4841 * in the old layout after a restart
4842 */
4843 safe = last_dev_address(conf->reshape_safe - 1,
4844 &conf->prev);
4845
4846 if (next + conf->offset_diff < safe)
4847 need_flush = 1;
4848
4849 last = conf->reshape_progress - 1;
4850 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4851 & conf->prev.chunk_mask);
e287308b
ZL
4852 if (sector_nr + RESYNC_SECTORS < last)
4853 sector_nr = last + 1 - RESYNC_SECTORS;
3ea7daa5
N
4854 } else {
4855 /* 'next' is after the last device address that we
4856 * might write to for this chunk in the new layout
4857 */
4858 next = last_dev_address(conf->reshape_progress, &conf->geo);
4859
4860 /* 'safe' is the earliest device address that we might
4861 * read from in the old layout after a restart
4862 */
4863 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4864
4865 /* Need to update metadata if 'next' might be beyond 'safe'
4866 * as that would possibly corrupt data
4867 */
4868 if (next > safe + conf->offset_diff)
4869 need_flush = 1;
4870
4871 sector_nr = conf->reshape_progress;
4872 last = sector_nr | (conf->geo.chunk_mask
4873 & conf->prev.chunk_mask);
4874
e287308b
ZL
4875 if (sector_nr + RESYNC_SECTORS <= last)
4876 last = sector_nr + RESYNC_SECTORS - 1;
3ea7daa5
N
4877 }
4878
4879 if (need_flush ||
4880 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4881 /* Need to update reshape_position in metadata */
c9aa889b 4882 wait_barrier(conf, false);
3ea7daa5
N
4883 mddev->reshape_position = conf->reshape_progress;
4884 if (mddev->reshape_backwards)
4885 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4886 - conf->reshape_progress;
4887 else
4888 mddev->curr_resync_completed = conf->reshape_progress;
4889 conf->reshape_checkpoint = jiffies;
2953079c 4890 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5 4891 md_wakeup_thread(mddev->thread);
2953079c 4892 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
4893 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4894 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4895 allow_barrier(conf);
4896 return sectors_done;
4897 }
3ea7daa5
N
4898 conf->reshape_safe = mddev->reshape_position;
4899 allow_barrier(conf);
4900 }
4901
1d0ffd26 4902 raise_barrier(conf, 0);
3ea7daa5
N
4903read_more:
4904 /* Now schedule reads for blocks from sector_nr to last */
208410b5 4905 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 4906 r10_bio->state = 0;
1d0ffd26 4907 raise_barrier(conf, 1);
3ea7daa5
N
4908 atomic_set(&r10_bio->remaining, 0);
4909 r10_bio->mddev = mddev;
4910 r10_bio->sector = sector_nr;
4911 set_bit(R10BIO_IsReshape, &r10_bio->state);
4912 r10_bio->sectors = last - sector_nr + 1;
4913 rdev = read_balance(conf, r10_bio, &max_sectors);
4914 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4915
4916 if (!rdev) {
4917 /* Cannot read from here, so need to record bad blocks
4918 * on all the target devices.
4919 */
4920 // FIXME
afeee514 4921 mempool_free(r10_bio, &conf->r10buf_pool);
3ea7daa5
N
4922 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4923 return sectors_done;
4924 }
4925
609be106
CH
4926 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4927 GFP_KERNEL, &mddev->bio_set);
4f024f37 4928 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4929 + rdev->data_offset);
4930 read_bio->bi_private = r10_bio;
81fa1520 4931 read_bio->bi_end_io = end_reshape_read;
3ea7daa5
N
4932 r10_bio->master_bio = read_bio;
4933 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4934
7564beda
GJ
4935 /*
4936 * Broadcast RESYNC message to other nodes, so all nodes would not
4937 * write to the region to avoid conflict.
4938 */
4939 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4940 struct mdp_superblock_1 *sb = NULL;
4941 int sb_reshape_pos = 0;
4942
4943 conf->cluster_sync_low = sector_nr;
4944 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4945 sb = page_address(rdev->sb_page);
4946 if (sb) {
4947 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4948 /*
4949 * Set cluster_sync_low again if next address for array
4950 * reshape is less than cluster_sync_low. Since we can't
4951 * update cluster_sync_low until it has finished reshape.
4952 */
4953 if (sb_reshape_pos < conf->cluster_sync_low)
4954 conf->cluster_sync_low = sb_reshape_pos;
4955 }
4956
4957 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4958 conf->cluster_sync_high);
4959 }
4960
3ea7daa5
N
4961 /* Now find the locations in the new layout */
4962 __raid10_find_phys(&conf->geo, r10_bio);
4963
4964 blist = read_bio;
4965 read_bio->bi_next = NULL;
4966
d094d686 4967 rcu_read_lock();
3ea7daa5
N
4968 for (s = 0; s < conf->copies*2; s++) {
4969 struct bio *b;
4970 int d = r10_bio->devs[s/2].devnum;
4971 struct md_rdev *rdev2;
4972 if (s&1) {
d094d686 4973 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
4974 b = r10_bio->devs[s/2].repl_bio;
4975 } else {
d094d686 4976 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
4977 b = r10_bio->devs[s/2].bio;
4978 }
4979 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4980 continue;
8be185f2 4981
74d46992 4982 bio_set_dev(b, rdev2->bdev);
4f024f37
KO
4983 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4984 rdev2->new_data_offset;
3ea7daa5 4985 b->bi_end_io = end_reshape_write;
c34b7ac6 4986 b->bi_opf = REQ_OP_WRITE;
3ea7daa5 4987 b->bi_next = blist;
3ea7daa5
N
4988 blist = b;
4989 }
4990
4991 /* Now add as many pages as possible to all of these bios. */
4992
4993 nr_sectors = 0;
f0250618 4994 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 4995 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
f0250618 4996 struct page *page = pages[s / (PAGE_SIZE >> 9)];
3ea7daa5
N
4997 int len = (max_sectors - s) << 9;
4998 if (len > PAGE_SIZE)
4999 len = PAGE_SIZE;
5000 for (bio = blist; bio ; bio = bio->bi_next) {
0c67dd64
JT
5001 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
5002 bio->bi_status = BLK_STS_RESOURCE;
5003 bio_endio(bio);
5004 return sectors_done;
5005 }
3ea7daa5
N
5006 }
5007 sector_nr += len >> 9;
5008 nr_sectors += len >> 9;
5009 }
d094d686 5010 rcu_read_unlock();
3ea7daa5
N
5011 r10_bio->sectors = nr_sectors;
5012
5013 /* Now submit the read */
74d46992 5014 md_sync_acct_bio(read_bio, r10_bio->sectors);
3ea7daa5
N
5015 atomic_inc(&r10_bio->remaining);
5016 read_bio->bi_next = NULL;
ed00aabd 5017 submit_bio_noacct(read_bio);
3ea7daa5
N
5018 sectors_done += nr_sectors;
5019 if (sector_nr <= last)
5020 goto read_more;
5021
1d0ffd26
XN
5022 lower_barrier(conf);
5023
3ea7daa5
N
5024 /* Now that we have done the whole section we can
5025 * update reshape_progress
5026 */
5027 if (mddev->reshape_backwards)
5028 conf->reshape_progress -= sectors_done;
5029 else
5030 conf->reshape_progress += sectors_done;
5031
5032 return sectors_done;
5033}
5034
5035static void end_reshape_request(struct r10bio *r10_bio);
5036static int handle_reshape_read_error(struct mddev *mddev,
5037 struct r10bio *r10_bio);
5038static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5039{
5040 /* Reshape read completed. Hopefully we have a block
5041 * to write out.
5042 * If we got a read error then we do sync 1-page reads from
5043 * elsewhere until we find the data - or give up.
5044 */
5045 struct r10conf *conf = mddev->private;
5046 int s;
5047
5048 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5049 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5050 /* Reshape has been aborted */
5051 md_done_sync(mddev, r10_bio->sectors, 0);
5052 return;
5053 }
5054
5055 /* We definitely have the data in the pages, schedule the
5056 * writes.
5057 */
5058 atomic_set(&r10_bio->remaining, 1);
5059 for (s = 0; s < conf->copies*2; s++) {
5060 struct bio *b;
5061 int d = r10_bio->devs[s/2].devnum;
5062 struct md_rdev *rdev;
d094d686 5063 rcu_read_lock();
3ea7daa5 5064 if (s&1) {
d094d686 5065 rdev = rcu_dereference(conf->mirrors[d].replacement);
3ea7daa5
N
5066 b = r10_bio->devs[s/2].repl_bio;
5067 } else {
d094d686 5068 rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
5069 b = r10_bio->devs[s/2].bio;
5070 }
d094d686
N
5071 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5072 rcu_read_unlock();
3ea7daa5 5073 continue;
d094d686 5074 }
3ea7daa5 5075 atomic_inc(&rdev->nr_pending);
d094d686 5076 rcu_read_unlock();
74d46992 5077 md_sync_acct_bio(b, r10_bio->sectors);
3ea7daa5
N
5078 atomic_inc(&r10_bio->remaining);
5079 b->bi_next = NULL;
ed00aabd 5080 submit_bio_noacct(b);
3ea7daa5
N
5081 }
5082 end_reshape_request(r10_bio);
5083}
5084
5085static void end_reshape(struct r10conf *conf)
5086{
5087 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5088 return;
5089
5090 spin_lock_irq(&conf->device_lock);
5091 conf->prev = conf->geo;
5092 md_finish_reshape(conf->mddev);
5093 smp_wmb();
5094 conf->reshape_progress = MaxSector;
299b0685 5095 conf->reshape_safe = MaxSector;
3ea7daa5
N
5096 spin_unlock_irq(&conf->device_lock);
5097
c2e4cd57 5098 if (conf->mddev->queue)
16ef5101 5099 raid10_set_io_opt(conf);
3ea7daa5
N
5100 conf->fullsync = 0;
5101}
5102
7564beda
GJ
5103static void raid10_update_reshape_pos(struct mddev *mddev)
5104{
5105 struct r10conf *conf = mddev->private;
5ebaf80b 5106 sector_t lo, hi;
7564beda 5107
5ebaf80b
GJ
5108 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5109 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5110 || mddev->reshape_position == MaxSector)
5111 conf->reshape_progress = mddev->reshape_position;
5112 else
5113 WARN_ON_ONCE(1);
7564beda
GJ
5114}
5115
3ea7daa5
N
5116static int handle_reshape_read_error(struct mddev *mddev,
5117 struct r10bio *r10_bio)
5118{
5119 /* Use sync reads to get the blocks from somewhere else */
5120 int sectors = r10_bio->sectors;
3ea7daa5 5121 struct r10conf *conf = mddev->private;
584ed9fa 5122 struct r10bio *r10b;
3ea7daa5
N
5123 int slot = 0;
5124 int idx = 0;
2d06e3b7
ML
5125 struct page **pages;
5126
8cf05a78 5127 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
584ed9fa
MK
5128 if (!r10b) {
5129 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5130 return -ENOMEM;
5131 }
5132
2d06e3b7
ML
5133 /* reshape IOs share pages from .devs[0].bio */
5134 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 5135
e0ee7785
N
5136 r10b->sector = r10_bio->sector;
5137 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
5138
5139 while (sectors) {
5140 int s = sectors;
5141 int success = 0;
5142 int first_slot = slot;
5143
5144 if (s > (PAGE_SIZE >> 9))
5145 s = PAGE_SIZE >> 9;
5146
d094d686 5147 rcu_read_lock();
3ea7daa5 5148 while (!success) {
e0ee7785 5149 int d = r10b->devs[slot].devnum;
d094d686 5150 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
3ea7daa5
N
5151 sector_t addr;
5152 if (rdev == NULL ||
5153 test_bit(Faulty, &rdev->flags) ||
5154 !test_bit(In_sync, &rdev->flags))
5155 goto failed;
5156
e0ee7785 5157 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
d094d686
N
5158 atomic_inc(&rdev->nr_pending);
5159 rcu_read_unlock();
3ea7daa5
N
5160 success = sync_page_io(rdev,
5161 addr,
5162 s << 9,
2d06e3b7 5163 pages[idx],
4ce4c73f 5164 REQ_OP_READ, false);
d094d686
N
5165 rdev_dec_pending(rdev, mddev);
5166 rcu_read_lock();
3ea7daa5
N
5167 if (success)
5168 break;
5169 failed:
5170 slot++;
5171 if (slot >= conf->copies)
5172 slot = 0;
5173 if (slot == first_slot)
5174 break;
5175 }
d094d686 5176 rcu_read_unlock();
3ea7daa5
N
5177 if (!success) {
5178 /* couldn't read this block, must give up */
5179 set_bit(MD_RECOVERY_INTR,
5180 &mddev->recovery);
584ed9fa 5181 kfree(r10b);
3ea7daa5
N
5182 return -EIO;
5183 }
5184 sectors -= s;
5185 idx++;
5186 }
584ed9fa 5187 kfree(r10b);
3ea7daa5
N
5188 return 0;
5189}
5190
4246a0b6 5191static void end_reshape_write(struct bio *bio)
3ea7daa5 5192{
f0250618 5193 struct r10bio *r10_bio = get_resync_r10bio(bio);
3ea7daa5
N
5194 struct mddev *mddev = r10_bio->mddev;
5195 struct r10conf *conf = mddev->private;
5196 int d;
5197 int slot;
5198 int repl;
5199 struct md_rdev *rdev = NULL;
5200
5201 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5202 if (repl)
5203 rdev = conf->mirrors[d].replacement;
5204 if (!rdev) {
5205 smp_mb();
5206 rdev = conf->mirrors[d].rdev;
5207 }
5208
4e4cbee9 5209 if (bio->bi_status) {
3ea7daa5
N
5210 /* FIXME should record badblock */
5211 md_error(mddev, rdev);
5212 }
5213
5214 rdev_dec_pending(rdev, mddev);
5215 end_reshape_request(r10_bio);
5216}
5217
5218static void end_reshape_request(struct r10bio *r10_bio)
5219{
5220 if (!atomic_dec_and_test(&r10_bio->remaining))
5221 return;
5222 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5223 bio_put(r10_bio->master_bio);
5224 put_buf(r10_bio);
5225}
5226
5227static void raid10_finish_reshape(struct mddev *mddev)
5228{
5229 struct r10conf *conf = mddev->private;
5230
5231 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5232 return;
5233
5234 if (mddev->delta_disks > 0) {
3ea7daa5
N
5235 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5236 mddev->recovery_cp = mddev->resync_max_sectors;
5237 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5238 }
8876391e 5239 mddev->resync_max_sectors = mddev->array_sectors;
63aced61
N
5240 } else {
5241 int d;
d094d686 5242 rcu_read_lock();
63aced61
N
5243 for (d = conf->geo.raid_disks ;
5244 d < conf->geo.raid_disks - mddev->delta_disks;
5245 d++) {
d094d686 5246 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
63aced61
N
5247 if (rdev)
5248 clear_bit(In_sync, &rdev->flags);
d094d686 5249 rdev = rcu_dereference(conf->mirrors[d].replacement);
63aced61
N
5250 if (rdev)
5251 clear_bit(In_sync, &rdev->flags);
5252 }
d094d686 5253 rcu_read_unlock();
3ea7daa5
N
5254 }
5255 mddev->layout = mddev->new_layout;
5256 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5257 mddev->reshape_position = MaxSector;
5258 mddev->delta_disks = 0;
5259 mddev->reshape_backwards = 0;
5260}
5261
84fc4b56 5262static struct md_personality raid10_personality =
1da177e4
LT
5263{
5264 .name = "raid10",
2604b703 5265 .level = 10,
1da177e4 5266 .owner = THIS_MODULE,
849674e4
SL
5267 .make_request = raid10_make_request,
5268 .run = raid10_run,
afa0f557 5269 .free = raid10_free,
849674e4
SL
5270 .status = raid10_status,
5271 .error_handler = raid10_error,
1da177e4
LT
5272 .hot_add_disk = raid10_add_disk,
5273 .hot_remove_disk= raid10_remove_disk,
5274 .spare_active = raid10_spare_active,
849674e4 5275 .sync_request = raid10_sync_request,
6cce3b23 5276 .quiesce = raid10_quiesce,
80c3a6ce 5277 .size = raid10_size,
006a09a0 5278 .resize = raid10_resize,
dab8b292 5279 .takeover = raid10_takeover,
3ea7daa5
N
5280 .check_reshape = raid10_check_reshape,
5281 .start_reshape = raid10_start_reshape,
5282 .finish_reshape = raid10_finish_reshape,
7564beda 5283 .update_reshape_pos = raid10_update_reshape_pos,
1da177e4
LT
5284};
5285
5286static int __init raid_init(void)
5287{
2604b703 5288 return register_md_personality(&raid10_personality);
1da177e4
LT
5289}
5290
5291static void raid_exit(void)
5292{
2604b703 5293 unregister_md_personality(&raid10_personality);
1da177e4
LT
5294}
5295
5296module_init(raid_init);
5297module_exit(raid_exit);
5298MODULE_LICENSE("GPL");
0efb9e61 5299MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 5300MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 5301MODULE_ALIAS("md-raid10");
2604b703 5302MODULE_ALIAS("md-level-10");