Merge tag 'dma-mapping-6.8-2024-01-18' of git://git.infradead.org/users/hch/dma-mapping
[linux-2.6-block.git] / drivers / md / raid10.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
25985edc 9 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
10 */
11
5a0e3ad6 12#include <linux/slab.h>
25570727 13#include <linux/delay.h>
bff61975 14#include <linux/blkdev.h>
056075c7 15#include <linux/module.h>
bff61975 16#include <linux/seq_file.h>
8bda470e 17#include <linux/ratelimit.h>
3ea7daa5 18#include <linux/kthread.h>
afd75628 19#include <linux/raid/md_p.h>
109e3765 20#include <trace/events/block.h>
43b2e5d8 21#include "md.h"
1979dbbe
LN
22
23#define RAID_1_10_NAME "raid10"
ef740c37 24#include "raid10.h"
dab8b292 25#include "raid0.h"
935fe098 26#include "md-bitmap.h"
1da177e4
LT
27
28/*
29 * RAID10 provides a combination of RAID0 and RAID1 functionality.
30 * The layout of data is defined by
31 * chunk_size
32 * raid_disks
33 * near_copies (stored in low byte of layout)
34 * far_copies (stored in second byte of layout)
c93983bf 35 * far_offset (stored in bit 16 of layout )
475901af 36 * use_far_sets (stored in bit 17 of layout )
8bce6d35 37 * use_far_sets_bugfixed (stored in bit 18 of layout )
1da177e4 38 *
475901af
JB
39 * The data to be stored is divided into chunks using chunksize. Each device
40 * is divided into far_copies sections. In each section, chunks are laid out
41 * in a style similar to raid0, but near_copies copies of each chunk is stored
42 * (each on a different drive). The starting device for each section is offset
43 * near_copies from the starting device of the previous section. Thus there
44 * are (near_copies * far_copies) of each chunk, and each is on a different
45 * drive. near_copies and far_copies must be at least one, and their product
46 * is at most raid_disks.
c93983bf
N
47 *
48 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
49 * The copies are still in different stripes, but instead of being very far
50 * apart on disk, there are adjacent stripes.
51 *
52 * The far and offset algorithms are handled slightly differently if
53 * 'use_far_sets' is true. In this case, the array's devices are grouped into
54 * sets that are (near_copies * far_copies) in size. The far copied stripes
55 * are still shifted by 'near_copies' devices, but this shifting stays confined
56 * to the set rather than the entire array. This is done to improve the number
57 * of device combinations that can fail without causing the array to fail.
58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59 * on a device):
60 * A B C D A B C D E
61 * ... ...
62 * D A B C E A B C D
63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64 * [A B] [C D] [A B] [C D E]
65 * |...| |...| |...| | ... |
66 * [B A] [D C] [B A] [E C D]
1da177e4
LT
67 */
68
e879a879
N
69static void allow_barrier(struct r10conf *conf);
70static void lower_barrier(struct r10conf *conf);
635f6416 71static int _enough(struct r10conf *conf, int previous, int ignore);
1919cbb2 72static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
73static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74 int *skipped);
75static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
4246a0b6 76static void end_reshape_write(struct bio *bio);
3ea7daa5 77static void end_reshape(struct r10conf *conf);
0a27ec96 78
578b54ad
N
79#define raid10_log(md, fmt, args...) \
80 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
81
fb0eb5df
ML
82#include "raid1-10.c"
83
b9b083f9
YK
84#define NULL_CMD
85#define cmd_before(conf, cmd) \
86 do { \
87 write_sequnlock_irq(&(conf)->resync_lock); \
88 cmd; \
89 } while (0)
90#define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
91
92#define wait_event_barrier_cmd(conf, cond, cmd) \
93 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
94 cmd_after(conf))
95
96#define wait_event_barrier(conf, cond) \
97 wait_event_barrier_cmd(conf, cond, NULL_CMD)
98
f0250618
ML
99/*
100 * for resync bio, r10bio pointer can be retrieved from the per-bio
101 * 'struct resync_pages'.
102 */
103static inline struct r10bio *get_resync_r10bio(struct bio *bio)
104{
105 return get_resync_pages(bio)->raid_bio;
106}
107
dd0fc66f 108static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 109{
e879a879 110 struct r10conf *conf = data;
c2968285 111 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
1da177e4 112
69335ef3
N
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
7eaceacc 115 return kzalloc(size, gfp_flags);
1da177e4
LT
116}
117
8db87912 118#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
0310fa21
N
119/* amount of memory to reserve for resync requests */
120#define RESYNC_WINDOW (1024*1024)
121/* maximum number of concurrent requests, memory permitting */
122#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
4b242e97 123#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
8db87912 124#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4
LT
125
126/*
127 * When performing a resync, we need to read and compare, so
128 * we need as many pages are there are copies.
129 * When performing a recovery, we need 2 bios, one for read,
130 * one for write (we recover only one drive per r10buf)
131 *
132 */
dd0fc66f 133static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 134{
e879a879 135 struct r10conf *conf = data;
9f2c9d12 136 struct r10bio *r10_bio;
1da177e4 137 struct bio *bio;
f0250618
ML
138 int j;
139 int nalloc, nalloc_rp;
140 struct resync_pages *rps;
1da177e4
LT
141
142 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 143 if (!r10_bio)
1da177e4 144 return NULL;
1da177e4 145
3ea7daa5
N
146 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
147 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
148 nalloc = conf->copies; /* resync */
149 else
150 nalloc = 2; /* recovery */
151
f0250618
ML
152 /* allocate once for all bios */
153 if (!conf->have_replacement)
154 nalloc_rp = nalloc;
155 else
156 nalloc_rp = nalloc * 2;
6da2ec56 157 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
f0250618
ML
158 if (!rps)
159 goto out_free_r10bio;
160
1da177e4
LT
161 /*
162 * Allocate bios.
163 */
164 for (j = nalloc ; j-- ; ) {
066ff571 165 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
1da177e4
LT
166 if (!bio)
167 goto out_free_bio;
066ff571 168 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
1da177e4 169 r10_bio->devs[j].bio = bio;
69335ef3
N
170 if (!conf->have_replacement)
171 continue;
066ff571 172 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
69335ef3
N
173 if (!bio)
174 goto out_free_bio;
066ff571 175 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
69335ef3 176 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
177 }
178 /*
179 * Allocate RESYNC_PAGES data pages and attach them
180 * where needed.
181 */
f0250618 182 for (j = 0; j < nalloc; j++) {
69335ef3 183 struct bio *rbio = r10_bio->devs[j].repl_bio;
f0250618
ML
184 struct resync_pages *rp, *rp_repl;
185
186 rp = &rps[j];
187 if (rbio)
188 rp_repl = &rps[nalloc + j];
189
1da177e4 190 bio = r10_bio->devs[j].bio;
f0250618
ML
191
192 if (!j || test_bit(MD_RECOVERY_SYNC,
193 &conf->mddev->recovery)) {
194 if (resync_alloc_pages(rp, gfp_flags))
1da177e4 195 goto out_free_pages;
f0250618
ML
196 } else {
197 memcpy(rp, &rps[0], sizeof(*rp));
198 resync_get_all_pages(rp);
199 }
1da177e4 200
f0250618
ML
201 rp->raid_bio = r10_bio;
202 bio->bi_private = rp;
203 if (rbio) {
204 memcpy(rp_repl, rp, sizeof(*rp));
205 rbio->bi_private = rp_repl;
1da177e4
LT
206 }
207 }
208
209 return r10_bio;
210
211out_free_pages:
f0250618 212 while (--j >= 0)
45422b70 213 resync_free_pages(&rps[j]);
f0250618 214
5fdd2cf8 215 j = 0;
1da177e4 216out_free_bio:
5fdd2cf8 217 for ( ; j < nalloc; j++) {
218 if (r10_bio->devs[j].bio)
066ff571
CH
219 bio_uninit(r10_bio->devs[j].bio);
220 kfree(r10_bio->devs[j].bio);
69335ef3 221 if (r10_bio->devs[j].repl_bio)
066ff571
CH
222 bio_uninit(r10_bio->devs[j].repl_bio);
223 kfree(r10_bio->devs[j].repl_bio);
69335ef3 224 }
f0250618
ML
225 kfree(rps);
226out_free_r10bio:
c7afa803 227 rbio_pool_free(r10_bio, conf);
1da177e4
LT
228 return NULL;
229}
230
231static void r10buf_pool_free(void *__r10_bio, void *data)
232{
e879a879 233 struct r10conf *conf = data;
9f2c9d12 234 struct r10bio *r10bio = __r10_bio;
1da177e4 235 int j;
f0250618 236 struct resync_pages *rp = NULL;
1da177e4 237
f0250618 238 for (j = conf->copies; j--; ) {
1da177e4 239 struct bio *bio = r10bio->devs[j].bio;
f0250618 240
eb81b328
GJ
241 if (bio) {
242 rp = get_resync_pages(bio);
243 resync_free_pages(rp);
066ff571
CH
244 bio_uninit(bio);
245 kfree(bio);
eb81b328 246 }
f0250618 247
69335ef3 248 bio = r10bio->devs[j].repl_bio;
066ff571
CH
249 if (bio) {
250 bio_uninit(bio);
251 kfree(bio);
252 }
1da177e4 253 }
f0250618
ML
254
255 /* resync pages array stored in the 1st bio's .bi_private */
256 kfree(rp);
257
c7afa803 258 rbio_pool_free(r10bio, conf);
1da177e4
LT
259}
260
e879a879 261static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
262{
263 int i;
264
c2968285 265 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 266 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 267 if (!BIO_SPECIAL(*bio))
1da177e4
LT
268 bio_put(*bio);
269 *bio = NULL;
69335ef3
N
270 bio = &r10_bio->devs[i].repl_bio;
271 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
272 bio_put(*bio);
273 *bio = NULL;
1da177e4
LT
274 }
275}
276
9f2c9d12 277static void free_r10bio(struct r10bio *r10_bio)
1da177e4 278{
e879a879 279 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 280
1da177e4 281 put_all_bios(conf, r10_bio);
afeee514 282 mempool_free(r10_bio, &conf->r10bio_pool);
1da177e4
LT
283}
284
9f2c9d12 285static void put_buf(struct r10bio *r10_bio)
1da177e4 286{
e879a879 287 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 288
afeee514 289 mempool_free(r10_bio, &conf->r10buf_pool);
1da177e4 290
0a27ec96 291 lower_barrier(conf);
1da177e4
LT
292}
293
0c0be98b
YK
294static void wake_up_barrier(struct r10conf *conf)
295{
296 if (wq_has_sleeper(&conf->wait_barrier))
297 wake_up(&conf->wait_barrier);
298}
299
9f2c9d12 300static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
301{
302 unsigned long flags;
fd01b88c 303 struct mddev *mddev = r10_bio->mddev;
e879a879 304 struct r10conf *conf = mddev->private;
1da177e4
LT
305
306 spin_lock_irqsave(&conf->device_lock, flags);
307 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 308 conf->nr_queued ++;
1da177e4
LT
309 spin_unlock_irqrestore(&conf->device_lock, flags);
310
388667be
AJ
311 /* wake up frozen array... */
312 wake_up(&conf->wait_barrier);
313
1da177e4
LT
314 md_wakeup_thread(mddev->thread);
315}
316
317/*
318 * raid_end_bio_io() is called when we have finished servicing a mirrored
319 * operation and are ready to return a success/failure code to the buffer
320 * cache layer.
321 */
9f2c9d12 322static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
323{
324 struct bio *bio = r10_bio->master_bio;
e879a879 325 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 326
856e08e2 327 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4e4cbee9 328 bio->bi_status = BLK_STS_IOERR;
fd16f2e8
N
329
330 bio_endio(bio);
331 /*
332 * Wake up any possible resync thread that waits for the device
333 * to go idle.
334 */
335 allow_barrier(conf);
336
1da177e4
LT
337 free_r10bio(r10_bio);
338}
339
340/*
341 * Update disk head position estimator based on IRQ completion info.
342 */
9f2c9d12 343static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 344{
e879a879 345 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
346
347 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
348 r10_bio->devs[slot].addr + (r10_bio->sectors);
349}
350
778ca018
NK
351/*
352 * Find the disk number which triggered given bio
353 */
e879a879 354static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 355 struct bio *bio, int *slotp, int *replp)
778ca018
NK
356{
357 int slot;
69335ef3 358 int repl = 0;
778ca018 359
c2968285 360 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
778ca018
NK
361 if (r10_bio->devs[slot].bio == bio)
362 break;
69335ef3
N
363 if (r10_bio->devs[slot].repl_bio == bio) {
364 repl = 1;
365 break;
366 }
367 }
778ca018 368
778ca018
NK
369 update_head_pos(slot, r10_bio);
370
749c55e9
N
371 if (slotp)
372 *slotp = slot;
69335ef3
N
373 if (replp)
374 *replp = repl;
778ca018
NK
375 return r10_bio->devs[slot].devnum;
376}
377
4246a0b6 378static void raid10_end_read_request(struct bio *bio)
1da177e4 379{
4e4cbee9 380 int uptodate = !bio->bi_status;
9f2c9d12 381 struct r10bio *r10_bio = bio->bi_private;
a0e764c5 382 int slot;
abbf098e 383 struct md_rdev *rdev;
e879a879 384 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 385
1da177e4 386 slot = r10_bio->read_slot;
abbf098e 387 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
388 /*
389 * this branch is our 'one mirror IO has finished' event handler:
390 */
4443ae10
N
391 update_head_pos(slot, r10_bio);
392
393 if (uptodate) {
1da177e4
LT
394 /*
395 * Set R10BIO_Uptodate in our master bio, so that
396 * we will return a good error code to the higher
397 * levels even if IO on some other mirrored buffer fails.
398 *
399 * The 'master' represents the composite IO operation to
400 * user-side. So if something waits for IO, then it will
401 * wait for the 'master' bio.
402 */
403 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
404 } else {
405 /* If all other devices that store this block have
406 * failed, we want to return the error upwards rather
407 * than fail the last device. Here we redefine
408 * "uptodate" to mean "Don't want to retry"
409 */
635f6416
N
410 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
411 rdev->raid_disk))
fae8cc5e 412 uptodate = 1;
fae8cc5e
N
413 }
414 if (uptodate) {
1da177e4 415 raid_end_bio_io(r10_bio);
abbf098e 416 rdev_dec_pending(rdev, conf->mddev);
4443ae10 417 } else {
1da177e4 418 /*
7c4e06ff 419 * oops, read error - keep the refcount on the rdev
1da177e4 420 */
913cce5a 421 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
8bda470e 422 mdname(conf->mddev),
913cce5a 423 rdev->bdev,
8bda470e 424 (unsigned long long)r10_bio->sector);
856e08e2 425 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
426 reschedule_retry(r10_bio);
427 }
1da177e4
LT
428}
429
9f2c9d12 430static void close_write(struct r10bio *r10_bio)
bd870a16
N
431{
432 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
433 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
434 r10_bio->sectors,
435 !test_bit(R10BIO_Degraded, &r10_bio->state),
436 0);
bd870a16
N
437 md_write_end(r10_bio->mddev);
438}
439
9f2c9d12 440static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
441{
442 if (atomic_dec_and_test(&r10_bio->remaining)) {
443 if (test_bit(R10BIO_WriteError, &r10_bio->state))
444 reschedule_retry(r10_bio);
445 else {
446 close_write(r10_bio);
447 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
448 reschedule_retry(r10_bio);
449 else
450 raid_end_bio_io(r10_bio);
451 }
452 }
453}
454
4246a0b6 455static void raid10_end_write_request(struct bio *bio)
1da177e4 456{
9f2c9d12 457 struct r10bio *r10_bio = bio->bi_private;
778ca018 458 int dev;
749c55e9 459 int dec_rdev = 1;
e879a879 460 struct r10conf *conf = r10_bio->mddev->private;
475b0321 461 int slot, repl;
4ca40c2c 462 struct md_rdev *rdev = NULL;
1919cbb2 463 struct bio *to_put = NULL;
579ed34f
SL
464 bool discard_error;
465
4e4cbee9 466 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 467
475b0321 468 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 469
475b0321
N
470 if (repl)
471 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
472 if (!rdev) {
473 smp_rmb();
474 repl = 0;
475b0321 475 rdev = conf->mirrors[dev].rdev;
4ca40c2c 476 }
1da177e4
LT
477 /*
478 * this branch is our 'one mirror IO has finished' event handler:
479 */
4e4cbee9 480 if (bio->bi_status && !discard_error) {
475b0321
N
481 if (repl)
482 /* Never record new bad blocks to replacement,
483 * just fail it.
484 */
485 md_error(rdev->mddev, rdev);
486 else {
487 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
488 if (!test_and_set_bit(WantReplacement, &rdev->flags))
489 set_bit(MD_RECOVERY_NEEDED,
490 &rdev->mddev->recovery);
1919cbb2 491
475b0321 492 dec_rdev = 0;
1919cbb2
N
493 if (test_bit(FailFast, &rdev->flags) &&
494 (bio->bi_opf & MD_FAILFAST)) {
495 md_error(rdev->mddev, rdev);
7cee6d4e
YY
496 }
497
498 /*
499 * When the device is faulty, it is not necessary to
500 * handle write error.
7cee6d4e
YY
501 */
502 if (!test_bit(Faulty, &rdev->flags))
1919cbb2 503 set_bit(R10BIO_WriteError, &r10_bio->state);
7cee6d4e 504 else {
5ba03936
WS
505 /* Fail the request */
506 set_bit(R10BIO_Degraded, &r10_bio->state);
7cee6d4e
YY
507 r10_bio->devs[slot].bio = NULL;
508 to_put = bio;
509 dec_rdev = 1;
510 }
475b0321 511 }
749c55e9 512 } else {
1da177e4
LT
513 /*
514 * Set R10BIO_Uptodate in our master bio, so that
515 * we will return a good error code for to the higher
516 * levels even if IO on some other mirrored buffer fails.
517 *
518 * The 'master' represents the composite IO operation to
519 * user-side. So if something waits for IO, then it will
520 * wait for the 'master' bio.
521 */
749c55e9
N
522 sector_t first_bad;
523 int bad_sectors;
524
3056e3ae
AL
525 /*
526 * Do not set R10BIO_Uptodate if the current device is
527 * rebuilding or Faulty. This is because we cannot use
528 * such device for properly reading the data back (we could
529 * potentially use it, if the current write would have felt
530 * before rdev->recovery_offset, but for simplicity we don't
531 * check this here.
532 */
533 if (test_bit(In_sync, &rdev->flags) &&
534 !test_bit(Faulty, &rdev->flags))
535 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 536
749c55e9 537 /* Maybe we can clear some bad blocks. */
475b0321 538 if (is_badblock(rdev,
749c55e9
N
539 r10_bio->devs[slot].addr,
540 r10_bio->sectors,
579ed34f 541 &first_bad, &bad_sectors) && !discard_error) {
749c55e9 542 bio_put(bio);
475b0321
N
543 if (repl)
544 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
545 else
546 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
547 dec_rdev = 0;
548 set_bit(R10BIO_MadeGood, &r10_bio->state);
549 }
550 }
551
1da177e4
LT
552 /*
553 *
554 * Let's see if all mirrored write operations have finished
555 * already.
556 */
19d5f834 557 one_write_done(r10_bio);
749c55e9 558 if (dec_rdev)
884162df 559 rdev_dec_pending(rdev, conf->mddev);
1919cbb2
N
560 if (to_put)
561 bio_put(to_put);
1da177e4
LT
562}
563
1da177e4
LT
564/*
565 * RAID10 layout manager
25985edc 566 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
567 * parameters: near_copies and far_copies.
568 * near_copies * far_copies must be <= raid_disks.
569 * Normally one of these will be 1.
570 * If both are 1, we get raid0.
571 * If near_copies == raid_disks, we get raid1.
572 *
25985edc 573 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
574 * first chunk, followed by near_copies copies of the next chunk and
575 * so on.
576 * If far_copies > 1, then after 1/far_copies of the array has been assigned
577 * as described above, we start again with a device offset of near_copies.
578 * So we effectively have another copy of the whole array further down all
579 * the drives, but with blocks on different drives.
580 * With this layout, and block is never stored twice on the one device.
581 *
582 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 583 * on each device that it is on.
1da177e4
LT
584 *
585 * raid10_find_virt does the reverse mapping, from a device and a
586 * sector offset to a virtual address
587 */
588
f8c9e74f 589static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
590{
591 int n,f;
592 sector_t sector;
593 sector_t chunk;
594 sector_t stripe;
595 int dev;
1da177e4 596 int slot = 0;
9a3152ab
JB
597 int last_far_set_start, last_far_set_size;
598
599 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
600 last_far_set_start *= geo->far_set_size;
601
602 last_far_set_size = geo->far_set_size;
603 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
604
605 /* now calculate first sector/dev */
5cf00fcd
N
606 chunk = r10bio->sector >> geo->chunk_shift;
607 sector = r10bio->sector & geo->chunk_mask;
1da177e4 608
5cf00fcd 609 chunk *= geo->near_copies;
1da177e4 610 stripe = chunk;
5cf00fcd
N
611 dev = sector_div(stripe, geo->raid_disks);
612 if (geo->far_offset)
613 stripe *= geo->far_copies;
1da177e4 614
5cf00fcd 615 sector += stripe << geo->chunk_shift;
1da177e4
LT
616
617 /* and calculate all the others */
5cf00fcd 618 for (n = 0; n < geo->near_copies; n++) {
1da177e4 619 int d = dev;
475901af 620 int set;
1da177e4 621 sector_t s = sector;
1da177e4 622 r10bio->devs[slot].devnum = d;
4c0ca26b 623 r10bio->devs[slot].addr = s;
1da177e4
LT
624 slot++;
625
5cf00fcd 626 for (f = 1; f < geo->far_copies; f++) {
475901af 627 set = d / geo->far_set_size;
5cf00fcd 628 d += geo->near_copies;
475901af 629
9a3152ab
JB
630 if ((geo->raid_disks % geo->far_set_size) &&
631 (d > last_far_set_start)) {
632 d -= last_far_set_start;
633 d %= last_far_set_size;
634 d += last_far_set_start;
635 } else {
636 d %= geo->far_set_size;
637 d += geo->far_set_size * set;
638 }
5cf00fcd 639 s += geo->stride;
1da177e4
LT
640 r10bio->devs[slot].devnum = d;
641 r10bio->devs[slot].addr = s;
642 slot++;
643 }
644 dev++;
5cf00fcd 645 if (dev >= geo->raid_disks) {
1da177e4 646 dev = 0;
5cf00fcd 647 sector += (geo->chunk_mask + 1);
1da177e4
LT
648 }
649 }
f8c9e74f
N
650}
651
652static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
653{
654 struct geom *geo = &conf->geo;
655
656 if (conf->reshape_progress != MaxSector &&
657 ((r10bio->sector >= conf->reshape_progress) !=
658 conf->mddev->reshape_backwards)) {
659 set_bit(R10BIO_Previous, &r10bio->state);
660 geo = &conf->prev;
661 } else
662 clear_bit(R10BIO_Previous, &r10bio->state);
663
664 __raid10_find_phys(geo, r10bio);
1da177e4
LT
665}
666
e879a879 667static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
668{
669 sector_t offset, chunk, vchunk;
f8c9e74f
N
670 /* Never use conf->prev as this is only called during resync
671 * or recovery, so reshape isn't happening
672 */
5cf00fcd 673 struct geom *geo = &conf->geo;
475901af
JB
674 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
675 int far_set_size = geo->far_set_size;
9a3152ab
JB
676 int last_far_set_start;
677
678 if (geo->raid_disks % geo->far_set_size) {
679 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
680 last_far_set_start *= geo->far_set_size;
681
682 if (dev >= last_far_set_start) {
683 far_set_size = geo->far_set_size;
684 far_set_size += (geo->raid_disks % geo->far_set_size);
685 far_set_start = last_far_set_start;
686 }
687 }
1da177e4 688
5cf00fcd
N
689 offset = sector & geo->chunk_mask;
690 if (geo->far_offset) {
c93983bf 691 int fc;
5cf00fcd
N
692 chunk = sector >> geo->chunk_shift;
693 fc = sector_div(chunk, geo->far_copies);
694 dev -= fc * geo->near_copies;
475901af
JB
695 if (dev < far_set_start)
696 dev += far_set_size;
c93983bf 697 } else {
5cf00fcd
N
698 while (sector >= geo->stride) {
699 sector -= geo->stride;
475901af
JB
700 if (dev < (geo->near_copies + far_set_start))
701 dev += far_set_size - geo->near_copies;
c93983bf 702 else
5cf00fcd 703 dev -= geo->near_copies;
c93983bf 704 }
5cf00fcd 705 chunk = sector >> geo->chunk_shift;
c93983bf 706 }
5cf00fcd
N
707 vchunk = chunk * geo->raid_disks + dev;
708 sector_div(vchunk, geo->near_copies);
709 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
710}
711
1da177e4
LT
712/*
713 * This routine returns the disk from which the requested read should
714 * be done. There is a per-array 'next expected sequential IO' sector
715 * number - if this matches on the next IO then we use the last disk.
716 * There is also a per-disk 'last know head position' sector that is
717 * maintained from IRQ contexts, both the normal and the resync IO
718 * completion handlers update this position correctly. If there is no
719 * perfect sequential match then we pick the disk whose head is closest.
720 *
721 * If there are 2 mirrors in the same 2 devices, performance degrades
722 * because position is mirror, not device based.
723 *
724 * The rdev for the device selected will have nr_pending incremented.
725 */
726
727/*
728 * FIXME: possibly should rethink readbalancing and do it differently
729 * depending on near_copies / far_copies geometry.
730 */
96c3fd1f
N
731static struct md_rdev *read_balance(struct r10conf *conf,
732 struct r10bio *r10_bio,
733 int *max_sectors)
1da177e4 734{
af3a2cd6 735 const sector_t this_sector = r10_bio->sector;
56d99121 736 int disk, slot;
856e08e2
N
737 int sectors = r10_bio->sectors;
738 int best_good_sectors;
56d99121 739 sector_t new_distance, best_dist;
e9eeba28 740 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
56d99121 741 int do_balance;
e9eeba28
GJ
742 int best_dist_slot, best_pending_slot;
743 bool has_nonrot_disk = false;
744 unsigned int min_pending;
5cf00fcd 745 struct geom *geo = &conf->geo;
1da177e4
LT
746
747 raid10_find_phys(conf, r10_bio);
e9eeba28
GJ
748 best_dist_slot = -1;
749 min_pending = UINT_MAX;
750 best_dist_rdev = NULL;
751 best_pending_rdev = NULL;
56d99121 752 best_dist = MaxSector;
856e08e2 753 best_good_sectors = 0;
56d99121 754 do_balance = 1;
8d3ca83d 755 clear_bit(R10BIO_FailFast, &r10_bio->state);
1da177e4
LT
756 /*
757 * Check if we can balance. We can balance on the whole
6cce3b23
N
758 * device if no resync is going on (recovery is ok), or below
759 * the resync window. We take the first readable disk when
760 * above the resync window.
1da177e4 761 */
d4098c72
GJ
762 if ((conf->mddev->recovery_cp < MaxSector
763 && (this_sector + sectors >= conf->next_resync)) ||
764 (mddev_is_clustered(conf->mddev) &&
765 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
766 this_sector + sectors)))
56d99121 767 do_balance = 0;
1da177e4 768
56d99121 769 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
770 sector_t first_bad;
771 int bad_sectors;
772 sector_t dev_sector;
e9eeba28
GJ
773 unsigned int pending;
774 bool nonrot;
856e08e2 775
56d99121
N
776 if (r10_bio->devs[slot].bio == IO_BLOCKED)
777 continue;
1da177e4 778 disk = r10_bio->devs[slot].devnum;
a448af25 779 rdev = conf->mirrors[disk].replacement;
abbf098e 780 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
2ae6aaf7 781 r10_bio->devs[slot].addr + sectors >
a448af25
YK
782 rdev->recovery_offset)
783 rdev = conf->mirrors[disk].rdev;
050b6615 784 if (rdev == NULL ||
8ae12666 785 test_bit(Faulty, &rdev->flags))
abbf098e
N
786 continue;
787 if (!test_bit(In_sync, &rdev->flags) &&
788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
789 continue;
790
856e08e2
N
791 dev_sector = r10_bio->devs[slot].addr;
792 if (is_badblock(rdev, dev_sector, sectors,
793 &first_bad, &bad_sectors)) {
794 if (best_dist < MaxSector)
795 /* Already have a better slot */
796 continue;
797 if (first_bad <= dev_sector) {
798 /* Cannot read here. If this is the
799 * 'primary' device, then we must not read
800 * beyond 'bad_sectors' from another device.
801 */
802 bad_sectors -= (dev_sector - first_bad);
803 if (!do_balance && sectors > bad_sectors)
804 sectors = bad_sectors;
805 if (best_good_sectors > sectors)
806 best_good_sectors = sectors;
807 } else {
808 sector_t good_sectors =
809 first_bad - dev_sector;
810 if (good_sectors > best_good_sectors) {
811 best_good_sectors = good_sectors;
e9eeba28
GJ
812 best_dist_slot = slot;
813 best_dist_rdev = rdev;
856e08e2
N
814 }
815 if (!do_balance)
816 /* Must read from here */
817 break;
818 }
819 continue;
820 } else
821 best_good_sectors = sectors;
822
56d99121
N
823 if (!do_balance)
824 break;
1da177e4 825
10f0d2a5 826 nonrot = bdev_nonrot(rdev->bdev);
e9eeba28
GJ
827 has_nonrot_disk |= nonrot;
828 pending = atomic_read(&rdev->nr_pending);
829 if (min_pending > pending && nonrot) {
830 min_pending = pending;
831 best_pending_slot = slot;
832 best_pending_rdev = rdev;
833 }
834
835 if (best_dist_slot >= 0)
8d3ca83d
N
836 /* At least 2 disks to choose from so failfast is OK */
837 set_bit(R10BIO_FailFast, &r10_bio->state);
22dfdf52
N
838 /* This optimisation is debatable, and completely destroys
839 * sequential read speed for 'far copies' arrays. So only
840 * keep it for 'near' arrays, and review those later.
841 */
e9eeba28 842 if (geo->near_copies > 1 && !pending)
8d3ca83d 843 new_distance = 0;
8ed3a195
KS
844
845 /* for far > 1 always use the lowest address */
8d3ca83d 846 else if (geo->far_copies > 1)
56d99121 847 new_distance = r10_bio->devs[slot].addr;
8ed3a195 848 else
56d99121
N
849 new_distance = abs(r10_bio->devs[slot].addr -
850 conf->mirrors[disk].head_position);
e9eeba28 851
56d99121
N
852 if (new_distance < best_dist) {
853 best_dist = new_distance;
e9eeba28
GJ
854 best_dist_slot = slot;
855 best_dist_rdev = rdev;
1da177e4
LT
856 }
857 }
abbf098e 858 if (slot >= conf->copies) {
e9eeba28
GJ
859 if (has_nonrot_disk) {
860 slot = best_pending_slot;
861 rdev = best_pending_rdev;
862 } else {
863 slot = best_dist_slot;
864 rdev = best_dist_rdev;
865 }
abbf098e 866 }
1da177e4 867
56d99121 868 if (slot >= 0) {
56d99121 869 atomic_inc(&rdev->nr_pending);
56d99121
N
870 r10_bio->read_slot = slot;
871 } else
96c3fd1f 872 rdev = NULL;
856e08e2 873 *max_sectors = best_good_sectors;
1da177e4 874
96c3fd1f 875 return rdev;
1da177e4
LT
876}
877
e879a879 878static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
879{
880 /* Any writes that have been queued but are awaiting
881 * bitmap updates get flushed here.
a35e63ef 882 */
a35e63ef
N
883 spin_lock_irq(&conf->device_lock);
884
885 if (conf->pending_bio_list.head) {
18022a1b 886 struct blk_plug plug;
a35e63ef 887 struct bio *bio;
18022a1b 888
a35e63ef 889 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef 890 spin_unlock_irq(&conf->device_lock);
474beb57
N
891
892 /*
893 * As this is called in a wait_event() loop (see freeze_array),
894 * current->state might be TASK_UNINTERRUPTIBLE which will
895 * cause a warning when we prepare to wait again. As it is
896 * rare that this path is taken, it is perfectly safe to force
897 * us to go around the wait_event() loop again, so the warning
898 * is a false-positive. Silence the warning by resetting
899 * thread state
900 */
901 __set_current_state(TASK_RUNNING);
902
18022a1b 903 blk_start_plug(&plug);
9efcc2c3 904 raid1_prepare_flush_writes(conf->mddev->bitmap);
34db0cd6 905 wake_up(&conf->wait_barrier);
a35e63ef
N
906
907 while (bio) { /* submit pending writes */
908 struct bio *next = bio->bi_next;
8295efbe
YK
909
910 raid1_submit_write(bio);
a35e63ef 911 bio = next;
01044462 912 cond_resched();
a35e63ef 913 }
18022a1b 914 blk_finish_plug(&plug);
a35e63ef
N
915 } else
916 spin_unlock_irq(&conf->device_lock);
a35e63ef 917}
7eaceacc 918
0a27ec96
N
919/* Barriers....
920 * Sometimes we need to suspend IO while we do something else,
921 * either some resync/recovery, or reconfigure the array.
922 * To do this we raise a 'barrier'.
923 * The 'barrier' is a counter that can be raised multiple times
924 * to count how many activities are happening which preclude
925 * normal IO.
926 * We can only raise the barrier if there is no pending IO.
927 * i.e. if nr_pending == 0.
928 * We choose only to raise the barrier if no-one is waiting for the
929 * barrier to go down. This means that as soon as an IO request
930 * is ready, no other operations which require a barrier will start
931 * until the IO request has had a chance.
932 *
933 * So: regular IO calls 'wait_barrier'. When that returns there
934 * is no backgroup IO happening, It must arrange to call
935 * allow_barrier when it has finished its IO.
936 * backgroup IO calls must call raise_barrier. Once that returns
937 * there is no normal IO happeing. It must arrange to call
938 * lower_barrier when the particular background IO completes.
1da177e4 939 */
1da177e4 940
e879a879 941static void raise_barrier(struct r10conf *conf, int force)
1da177e4 942{
b9b083f9 943 write_seqlock_irq(&conf->resync_lock);
9fdfe6d4
YK
944
945 if (WARN_ON_ONCE(force && !conf->barrier))
946 force = false;
0a27ec96 947
6cce3b23 948 /* Wait until no block IO is waiting (unless 'force') */
b9b083f9 949 wait_event_barrier(conf, force || !conf->nr_waiting);
0a27ec96
N
950
951 /* block any new IO from starting */
b9b083f9 952 WRITE_ONCE(conf->barrier, conf->barrier + 1);
0a27ec96 953
c3b328ac 954 /* Now wait for all pending IO to complete */
b9b083f9
YK
955 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
956 conf->barrier < RESYNC_DEPTH);
0a27ec96 957
b9b083f9 958 write_sequnlock_irq(&conf->resync_lock);
0a27ec96
N
959}
960
e879a879 961static void lower_barrier(struct r10conf *conf)
0a27ec96
N
962{
963 unsigned long flags;
b9b083f9
YK
964
965 write_seqlock_irqsave(&conf->resync_lock, flags);
966 WRITE_ONCE(conf->barrier, conf->barrier - 1);
967 write_sequnlock_irqrestore(&conf->resync_lock, flags);
0a27ec96
N
968 wake_up(&conf->wait_barrier);
969}
970
ed2e063f
YK
971static bool stop_waiting_barrier(struct r10conf *conf)
972{
973 struct bio_list *bio_list = current->bio_list;
44693154 974 struct md_thread *thread;
ed2e063f
YK
975
976 /* barrier is dropped */
977 if (!conf->barrier)
978 return true;
979
980 /*
981 * If there are already pending requests (preventing the barrier from
982 * rising completely), and the pre-process bio queue isn't empty, then
983 * don't wait, as we need to empty that queue to get the nr_pending
984 * count down.
985 */
986 if (atomic_read(&conf->nr_pending) && bio_list &&
987 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
988 return true;
989
44693154
YK
990 /* daemon thread must exist while handling io */
991 thread = rcu_dereference_protected(conf->mddev->thread, true);
72c215ed
LN
992 /*
993 * move on if io is issued from raid10d(), nr_pending is not released
994 * from original io(see handle_read_error()). All raise barrier is
995 * blocked until this io is done.
996 */
44693154 997 if (thread->tsk == current) {
72c215ed 998 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
ed2e063f 999 return true;
72c215ed 1000 }
ed2e063f
YK
1001
1002 return false;
1003}
1004
b9b083f9
YK
1005static bool wait_barrier_nolock(struct r10conf *conf)
1006{
1007 unsigned int seq = read_seqbegin(&conf->resync_lock);
1008
1009 if (READ_ONCE(conf->barrier))
1010 return false;
1011
1012 atomic_inc(&conf->nr_pending);
1013 if (!read_seqretry(&conf->resync_lock, seq))
1014 return true;
1015
1016 if (atomic_dec_and_test(&conf->nr_pending))
1017 wake_up_barrier(conf);
1018
1019 return false;
1020}
1021
c9aa889b 1022static bool wait_barrier(struct r10conf *conf, bool nowait)
0a27ec96 1023{
c9aa889b
VV
1024 bool ret = true;
1025
b9b083f9
YK
1026 if (wait_barrier_nolock(conf))
1027 return true;
1028
1029 write_seqlock_irq(&conf->resync_lock);
0a27ec96 1030 if (conf->barrier) {
c9aa889b
VV
1031 /* Return false when nowait flag is set */
1032 if (nowait) {
1033 ret = false;
1034 } else {
0de57e54 1035 conf->nr_waiting++;
c9aa889b 1036 raid10_log(conf->mddev, "wait barrier");
b9b083f9 1037 wait_event_barrier(conf, stop_waiting_barrier(conf));
0de57e54 1038 conf->nr_waiting--;
c9aa889b 1039 }
0e5313e2
TM
1040 if (!conf->nr_waiting)
1041 wake_up(&conf->wait_barrier);
1da177e4 1042 }
c9aa889b
VV
1043 /* Only increment nr_pending when we wait */
1044 if (ret)
1045 atomic_inc(&conf->nr_pending);
b9b083f9 1046 write_sequnlock_irq(&conf->resync_lock);
c9aa889b 1047 return ret;
1da177e4
LT
1048}
1049
e879a879 1050static void allow_barrier(struct r10conf *conf)
0a27ec96 1051{
0e5313e2
TM
1052 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1053 (conf->array_freeze_pending))
0c0be98b 1054 wake_up_barrier(conf);
0a27ec96
N
1055}
1056
e2d59925 1057static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1058{
1059 /* stop syncio and normal IO and wait for everything to
f188593e 1060 * go quiet.
4443ae10 1061 * We increment barrier and nr_waiting, and then
e2d59925 1062 * wait until nr_pending match nr_queued+extra
1c830532
N
1063 * This is called in the context of one normal IO request
1064 * that has failed. Thus any sync request that might be pending
1065 * will be blocked by nr_pending, and we need to wait for
1066 * pending IO requests to complete or be queued for re-try.
e2d59925 1067 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1068 * must match the number of pending IOs (nr_pending) before
1069 * we continue.
4443ae10 1070 */
b9b083f9 1071 write_seqlock_irq(&conf->resync_lock);
0e5313e2 1072 conf->array_freeze_pending++;
b9b083f9 1073 WRITE_ONCE(conf->barrier, conf->barrier + 1);
4443ae10 1074 conf->nr_waiting++;
b9b083f9
YK
1075 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1076 conf->nr_queued + extra, flush_pending_writes(conf));
0e5313e2 1077 conf->array_freeze_pending--;
b9b083f9 1078 write_sequnlock_irq(&conf->resync_lock);
4443ae10
N
1079}
1080
e879a879 1081static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1082{
1083 /* reverse the effect of the freeze */
b9b083f9
YK
1084 write_seqlock_irq(&conf->resync_lock);
1085 WRITE_ONCE(conf->barrier, conf->barrier - 1);
4443ae10
N
1086 conf->nr_waiting--;
1087 wake_up(&conf->wait_barrier);
b9b083f9 1088 write_sequnlock_irq(&conf->resync_lock);
4443ae10
N
1089}
1090
f8c9e74f
N
1091static sector_t choose_data_offset(struct r10bio *r10_bio,
1092 struct md_rdev *rdev)
1093{
1094 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1095 test_bit(R10BIO_Previous, &r10_bio->state))
1096 return rdev->data_offset;
1097 else
1098 return rdev->new_data_offset;
1099}
1100
57c67df4
N
1101static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1102{
daae161f 1103 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
57c67df4
N
1104 struct mddev *mddev = plug->cb.data;
1105 struct r10conf *conf = mddev->private;
1106 struct bio *bio;
1107
9efcc2c3 1108 if (from_schedule) {
57c67df4
N
1109 spin_lock_irq(&conf->device_lock);
1110 bio_list_merge(&conf->pending_bio_list, &plug->pending);
57c67df4 1111 spin_unlock_irq(&conf->device_lock);
a8d5fdd4 1112 wake_up_barrier(conf);
57c67df4
N
1113 md_wakeup_thread(mddev->thread);
1114 kfree(plug);
1115 return;
1116 }
1117
1118 /* we aren't scheduling, so we can do the write-out directly. */
1119 bio = bio_list_get(&plug->pending);
9efcc2c3 1120 raid1_prepare_flush_writes(mddev->bitmap);
a8d5fdd4 1121 wake_up_barrier(conf);
57c67df4
N
1122
1123 while (bio) { /* submit pending writes */
1124 struct bio *next = bio->bi_next;
8295efbe
YK
1125
1126 raid1_submit_write(bio);
57c67df4 1127 bio = next;
01044462 1128 cond_resched();
57c67df4
N
1129 }
1130 kfree(plug);
1131}
1132
caea3c47
GJ
1133/*
1134 * 1. Register the new request and wait if the reconstruction thread has put
1135 * up a bar for new requests. Continue immediately if no resync is active
1136 * currently.
1137 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1138 */
c9aa889b 1139static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
caea3c47
GJ
1140 struct bio *bio, sector_t sectors)
1141{
c9aa889b
VV
1142 /* Bail out if REQ_NOWAIT is set for the bio */
1143 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1144 bio_wouldblock_error(bio);
1145 return false;
1146 }
caea3c47
GJ
1147 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1148 bio->bi_iter.bi_sector < conf->reshape_progress &&
1149 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
caea3c47 1150 allow_barrier(conf);
c9aa889b
VV
1151 if (bio->bi_opf & REQ_NOWAIT) {
1152 bio_wouldblock_error(bio);
1153 return false;
1154 }
1155 raid10_log(conf->mddev, "wait reshape");
caea3c47
GJ
1156 wait_event(conf->wait_barrier,
1157 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1158 conf->reshape_progress >= bio->bi_iter.bi_sector +
1159 sectors);
c9aa889b 1160 wait_barrier(conf, false);
caea3c47 1161 }
c9aa889b 1162 return true;
caea3c47
GJ
1163}
1164
bb5f1ed7 1165static void raid10_read_request(struct mddev *mddev, struct bio *bio,
82045523 1166 struct r10bio *r10_bio, bool io_accounting)
1da177e4 1167{
e879a879 1168 struct r10conf *conf = mddev->private;
1da177e4 1169 struct bio *read_bio;
cb1802ff
BVA
1170 const enum req_op op = bio_op(bio);
1171 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
bb5f1ed7 1172 int max_sectors;
bb5f1ed7 1173 struct md_rdev *rdev;
545250f2
N
1174 char b[BDEVNAME_SIZE];
1175 int slot = r10_bio->read_slot;
1176 struct md_rdev *err_rdev = NULL;
1177 gfp_t gfp = GFP_NOIO;
bb5f1ed7 1178
93decc56 1179 if (slot >= 0 && r10_bio->devs[slot].rdev) {
545250f2
N
1180 /*
1181 * This is an error retry, but we cannot
1182 * safely dereference the rdev in the r10_bio,
1183 * we must use the one in conf.
1184 * If it has already been disconnected (unlikely)
1185 * we lose the device name in error messages.
1186 */
1187 int disk;
1188 /*
1189 * As we are blocking raid10, it is a little safer to
1190 * use __GFP_HIGH.
1191 */
1192 gfp = GFP_NOIO | __GFP_HIGH;
1193
545250f2 1194 disk = r10_bio->devs[slot].devnum;
a448af25 1195 err_rdev = conf->mirrors[disk].rdev;
545250f2 1196 if (err_rdev)
900d156b 1197 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
545250f2
N
1198 else {
1199 strcpy(b, "???");
1200 /* This never gets dereferenced */
1201 err_rdev = r10_bio->devs[slot].rdev;
1202 }
545250f2 1203 }
bb5f1ed7 1204
c9aa889b
VV
1205 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1206 return;
bb5f1ed7
RL
1207 rdev = read_balance(conf, r10_bio, &max_sectors);
1208 if (!rdev) {
545250f2
N
1209 if (err_rdev) {
1210 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1211 mdname(mddev), b,
1212 (unsigned long long)r10_bio->sector);
1213 }
bb5f1ed7
RL
1214 raid_end_bio_io(r10_bio);
1215 return;
1216 }
545250f2 1217 if (err_rdev)
913cce5a 1218 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
545250f2 1219 mdname(mddev),
913cce5a 1220 rdev->bdev,
545250f2 1221 (unsigned long long)r10_bio->sector);
fc9977dd
N
1222 if (max_sectors < bio_sectors(bio)) {
1223 struct bio *split = bio_split(bio, max_sectors,
afeee514 1224 gfp, &conf->bio_split);
fc9977dd 1225 bio_chain(split, bio);
e820d55c 1226 allow_barrier(conf);
ed00aabd 1227 submit_bio_noacct(bio);
c9aa889b 1228 wait_barrier(conf, false);
fc9977dd
N
1229 bio = split;
1230 r10_bio->master_bio = bio;
1231 r10_bio->sectors = max_sectors;
1232 }
bb5f1ed7
RL
1233 slot = r10_bio->read_slot;
1234
82045523
YK
1235 if (io_accounting) {
1236 md_account_bio(mddev, &bio);
1237 r10_bio->master_bio = bio;
1238 }
abfc426d 1239 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
bb5f1ed7
RL
1240
1241 r10_bio->devs[slot].bio = read_bio;
1242 r10_bio->devs[slot].rdev = rdev;
1243
1244 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1245 choose_data_offset(r10_bio, rdev);
bb5f1ed7 1246 read_bio->bi_end_io = raid10_end_read_request;
c34b7ac6 1247 read_bio->bi_opf = op | do_sync;
bb5f1ed7
RL
1248 if (test_bit(FailFast, &rdev->flags) &&
1249 test_bit(R10BIO_FailFast, &r10_bio->state))
1250 read_bio->bi_opf |= MD_FAILFAST;
1251 read_bio->bi_private = r10_bio;
1252
1253 if (mddev->gendisk)
1c02fca6 1254 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
bb5f1ed7 1255 r10_bio->sector);
ed00aabd 1256 submit_bio_noacct(read_bio);
bb5f1ed7
RL
1257 return;
1258}
1259
27f26a0f
GJ
1260static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1261 struct bio *bio, bool replacement,
fc9977dd 1262 int n_copy)
bb5f1ed7 1263{
cb1802ff
BVA
1264 const enum req_op op = bio_op(bio);
1265 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1266 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
6cce3b23 1267 unsigned long flags;
27f26a0f
GJ
1268 struct r10conf *conf = mddev->private;
1269 struct md_rdev *rdev;
1270 int devnum = r10_bio->devs[n_copy].devnum;
1271 struct bio *mbio;
1272
a448af25
YK
1273 rdev = replacement ? conf->mirrors[devnum].replacement :
1274 conf->mirrors[devnum].rdev;
27f26a0f 1275
abfc426d 1276 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
27f26a0f
GJ
1277 if (replacement)
1278 r10_bio->devs[n_copy].repl_bio = mbio;
1279 else
1280 r10_bio->devs[n_copy].bio = mbio;
1281
1282 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1283 choose_data_offset(r10_bio, rdev));
27f26a0f 1284 mbio->bi_end_io = raid10_end_write_request;
c34b7ac6 1285 mbio->bi_opf = op | do_sync | do_fua;
27f26a0f
GJ
1286 if (!replacement && test_bit(FailFast,
1287 &conf->mirrors[devnum].rdev->flags)
1288 && enough(conf, devnum))
1289 mbio->bi_opf |= MD_FAILFAST;
1290 mbio->bi_private = r10_bio;
1291
1292 if (conf->mddev->gendisk)
1c02fca6 1293 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
27f26a0f
GJ
1294 r10_bio->sector);
1295 /* flush_pending_writes() needs access to the rdev so...*/
309dca30 1296 mbio->bi_bdev = (void *)rdev;
27f26a0f
GJ
1297
1298 atomic_inc(&r10_bio->remaining);
1299
460af1f9 1300 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
23b245c0 1301 spin_lock_irqsave(&conf->device_lock, flags);
27f26a0f 1302 bio_list_add(&conf->pending_bio_list, mbio);
23b245c0 1303 spin_unlock_irqrestore(&conf->device_lock, flags);
27f26a0f 1304 md_wakeup_thread(mddev->thread);
23b245c0 1305 }
27f26a0f
GJ
1306}
1307
f2e7e269
XN
1308static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1309{
1310 int i;
1311 struct r10conf *conf = mddev->private;
1312 struct md_rdev *blocked_rdev;
1313
1314retry_wait:
1315 blocked_rdev = NULL;
f2e7e269 1316 for (i = 0; i < conf->copies; i++) {
67364349
LN
1317 struct md_rdev *rdev, *rrdev;
1318
a448af25
YK
1319 rdev = conf->mirrors[i].rdev;
1320 rrdev = conf->mirrors[i].replacement;
f2e7e269
XN
1321 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1322 atomic_inc(&rdev->nr_pending);
1323 blocked_rdev = rdev;
1324 break;
1325 }
1326 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1327 atomic_inc(&rrdev->nr_pending);
1328 blocked_rdev = rrdev;
1329 break;
1330 }
1331
1332 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1333 sector_t first_bad;
1334 sector_t dev_sector = r10_bio->devs[i].addr;
1335 int bad_sectors;
1336 int is_bad;
1337
1338 /*
1339 * Discard request doesn't care the write result
1340 * so it doesn't need to wait blocked disk here.
1341 */
1342 if (!r10_bio->sectors)
1343 continue;
1344
1345 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1346 &first_bad, &bad_sectors);
1347 if (is_bad < 0) {
1348 /*
1349 * Mustn't write here until the bad block
1350 * is acknowledged
1351 */
1352 atomic_inc(&rdev->nr_pending);
1353 set_bit(BlockedBadBlocks, &rdev->flags);
1354 blocked_rdev = rdev;
1355 break;
1356 }
1357 }
1358 }
f2e7e269
XN
1359
1360 if (unlikely(blocked_rdev)) {
1361 /* Have to wait for this device to get unblocked, then retry */
1362 allow_barrier(conf);
1363 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1364 __func__, blocked_rdev->raid_disk);
1365 md_wait_for_blocked_rdev(blocked_rdev, mddev);
c9aa889b 1366 wait_barrier(conf, false);
f2e7e269
XN
1367 goto retry_wait;
1368 }
1369}
1370
27f26a0f
GJ
1371static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1372 struct r10bio *r10_bio)
1373{
1374 struct r10conf *conf = mddev->private;
1375 int i;
bb5f1ed7 1376 sector_t sectors;
d4432c23 1377 int max_sectors;
1da177e4 1378
cb8a7a7e
GJ
1379 if ((mddev_is_clustered(mddev) &&
1380 md_cluster_ops->area_resyncing(mddev, WRITE,
1381 bio->bi_iter.bi_sector,
1382 bio_end_sector(bio)))) {
1383 DEFINE_WAIT(w);
c9aa889b
VV
1384 /* Bail out if REQ_NOWAIT is set for the bio */
1385 if (bio->bi_opf & REQ_NOWAIT) {
1386 bio_wouldblock_error(bio);
1387 return;
1388 }
cb8a7a7e
GJ
1389 for (;;) {
1390 prepare_to_wait(&conf->wait_barrier,
1391 &w, TASK_IDLE);
1392 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1393 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1394 break;
1395 schedule();
1396 }
1397 finish_wait(&conf->wait_barrier, &w);
1398 }
1399
fc9977dd 1400 sectors = r10_bio->sectors;
c9aa889b
VV
1401 if (!regular_request_wait(mddev, conf, bio, sectors))
1402 return;
3ea7daa5 1403 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3ea7daa5 1404 (mddev->reshape_backwards
4f024f37
KO
1405 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1406 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1407 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1408 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1409 /* Need to update reshape_position in metadata */
1410 mddev->reshape_position = conf->reshape_progress;
2953079c
SL
1411 set_mask_bits(&mddev->sb_flags, 0,
1412 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
3ea7daa5 1413 md_wakeup_thread(mddev->thread);
c9aa889b
VV
1414 if (bio->bi_opf & REQ_NOWAIT) {
1415 allow_barrier(conf);
1416 bio_wouldblock_error(bio);
1417 return;
1418 }
578b54ad 1419 raid10_log(conf->mddev, "wait reshape metadata");
3ea7daa5 1420 wait_event(mddev->sb_wait,
2953079c 1421 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
3ea7daa5
N
1422
1423 conf->reshape_safe = mddev->reshape_position;
1424 }
1425
6bfe0b49 1426 /* first select target devices under rcu_lock and
1da177e4
LT
1427 * inc refcount on their rdev. Record them by setting
1428 * bios[x] to bio
d4432c23
N
1429 * If there are known/acknowledged bad blocks on any device
1430 * on which we have seen a write error, we want to avoid
1431 * writing to those blocks. This potentially requires several
1432 * writes to write around the bad blocks. Each set of writes
fd16f2e8 1433 * gets its own r10_bio with a set of bios attached.
1da177e4 1434 */
c3b328ac 1435
69335ef3 1436 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1437 raid10_find_phys(conf, r10_bio);
f2e7e269
XN
1438
1439 wait_blocked_dev(mddev, r10_bio);
1440
d4432c23
N
1441 max_sectors = r10_bio->sectors;
1442
1da177e4
LT
1443 for (i = 0; i < conf->copies; i++) {
1444 int d = r10_bio->devs[i].devnum;
2ae6aaf7
LN
1445 struct md_rdev *rdev, *rrdev;
1446
a448af25
YK
1447 rdev = conf->mirrors[d].rdev;
1448 rrdev = conf->mirrors[d].replacement;
8ae12666 1449 if (rdev && (test_bit(Faulty, &rdev->flags)))
e7c0c3fa 1450 rdev = NULL;
8ae12666 1451 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
475b0321
N
1452 rrdev = NULL;
1453
d4432c23 1454 r10_bio->devs[i].bio = NULL;
475b0321 1455 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1456
1457 if (!rdev && !rrdev) {
6cce3b23 1458 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1459 continue;
1460 }
e7c0c3fa 1461 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1462 sector_t first_bad;
1463 sector_t dev_sector = r10_bio->devs[i].addr;
1464 int bad_sectors;
1465 int is_bad;
1466
bb5f1ed7 1467 is_bad = is_badblock(rdev, dev_sector, max_sectors,
d4432c23 1468 &first_bad, &bad_sectors);
d4432c23
N
1469 if (is_bad && first_bad <= dev_sector) {
1470 /* Cannot write here at all */
1471 bad_sectors -= (dev_sector - first_bad);
1472 if (bad_sectors < max_sectors)
1473 /* Mustn't write more than bad_sectors
1474 * to other devices yet
1475 */
1476 max_sectors = bad_sectors;
1477 /* We don't set R10BIO_Degraded as that
1478 * only applies if the disk is missing,
1479 * so it might be re-added, and we want to
1480 * know to recover this chunk.
1481 * In this case the device is here, and the
1482 * fact that this chunk is not in-sync is
1483 * recorded in the bad block log.
1484 */
1485 continue;
1486 }
1487 if (is_bad) {
1488 int good_sectors = first_bad - dev_sector;
1489 if (good_sectors < max_sectors)
1490 max_sectors = good_sectors;
1491 }
6cce3b23 1492 }
e7c0c3fa
N
1493 if (rdev) {
1494 r10_bio->devs[i].bio = bio;
1495 atomic_inc(&rdev->nr_pending);
1496 }
475b0321
N
1497 if (rrdev) {
1498 r10_bio->devs[i].repl_bio = bio;
1499 atomic_inc(&rrdev->nr_pending);
1500 }
1da177e4 1501 }
1da177e4 1502
6b6c8110 1503 if (max_sectors < r10_bio->sectors)
d4432c23 1504 r10_bio->sectors = max_sectors;
fc9977dd
N
1505
1506 if (r10_bio->sectors < bio_sectors(bio)) {
1507 struct bio *split = bio_split(bio, r10_bio->sectors,
afeee514 1508 GFP_NOIO, &conf->bio_split);
fc9977dd 1509 bio_chain(split, bio);
e820d55c 1510 allow_barrier(conf);
ed00aabd 1511 submit_bio_noacct(bio);
c9aa889b 1512 wait_barrier(conf, false);
fc9977dd
N
1513 bio = split;
1514 r10_bio->master_bio = bio;
d4432c23 1515 }
d4432c23 1516
82045523
YK
1517 md_account_bio(mddev, &bio);
1518 r10_bio->master_bio = bio;
4e78064f 1519 atomic_set(&r10_bio->remaining, 1);
e64e4018 1520 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1521
1da177e4 1522 for (i = 0; i < conf->copies; i++) {
27f26a0f 1523 if (r10_bio->devs[i].bio)
fc9977dd 1524 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
27f26a0f 1525 if (r10_bio->devs[i].repl_bio)
fc9977dd 1526 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
d4432c23 1527 }
079fa166 1528 one_write_done(r10_bio);
20d0189b
KO
1529}
1530
fc9977dd 1531static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
bb5f1ed7
RL
1532{
1533 struct r10conf *conf = mddev->private;
1534 struct r10bio *r10_bio;
1535
afeee514 1536 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
bb5f1ed7
RL
1537
1538 r10_bio->master_bio = bio;
fc9977dd 1539 r10_bio->sectors = sectors;
bb5f1ed7
RL
1540
1541 r10_bio->mddev = mddev;
1542 r10_bio->sector = bio->bi_iter.bi_sector;
1543 r10_bio->state = 0;
93decc56 1544 r10_bio->read_slot = -1;
c2968285
XN
1545 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1546 conf->geo.raid_disks);
bb5f1ed7
RL
1547
1548 if (bio_data_dir(bio) == READ)
82045523 1549 raid10_read_request(mddev, bio, r10_bio, true);
bb5f1ed7
RL
1550 else
1551 raid10_write_request(mddev, bio, r10_bio);
1552}
1553
254c271d
XN
1554static void raid_end_discard_bio(struct r10bio *r10bio)
1555{
1556 struct r10conf *conf = r10bio->mddev->private;
1557 struct r10bio *first_r10bio;
1558
1559 while (atomic_dec_and_test(&r10bio->remaining)) {
1560
1561 allow_barrier(conf);
1562
1563 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1564 first_r10bio = (struct r10bio *)r10bio->master_bio;
1565 free_r10bio(r10bio);
1566 r10bio = first_r10bio;
1567 } else {
1568 md_write_end(r10bio->mddev);
1569 bio_endio(r10bio->master_bio);
1570 free_r10bio(r10bio);
1571 break;
1572 }
1573 }
1574}
1575
d30588b2
XN
1576static void raid10_end_discard_request(struct bio *bio)
1577{
1578 struct r10bio *r10_bio = bio->bi_private;
1579 struct r10conf *conf = r10_bio->mddev->private;
1580 struct md_rdev *rdev = NULL;
1581 int dev;
1582 int slot, repl;
1583
1584 /*
1585 * We don't care the return value of discard bio
1586 */
1587 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1588 set_bit(R10BIO_Uptodate, &r10_bio->state);
1589
1590 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
a448af25
YK
1591 rdev = repl ? conf->mirrors[dev].replacement :
1592 conf->mirrors[dev].rdev;
d30588b2 1593
254c271d 1594 raid_end_discard_bio(r10_bio);
d30588b2
XN
1595 rdev_dec_pending(rdev, conf->mddev);
1596}
1597
1598/*
1599 * There are some limitations to handle discard bio
1600 * 1st, the discard size is bigger than stripe_size*2.
1601 * 2st, if the discard bio spans reshape progress, we use the old way to
1602 * handle discard bio
1603 */
1604static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1605{
1606 struct r10conf *conf = mddev->private;
1607 struct geom *geo = &conf->geo;
254c271d
XN
1608 int far_copies = geo->far_copies;
1609 bool first_copy = true;
1610 struct r10bio *r10_bio, *first_r10bio;
d30588b2
XN
1611 struct bio *split;
1612 int disk;
1613 sector_t chunk;
1614 unsigned int stripe_size;
1615 unsigned int stripe_data_disks;
1616 sector_t split_size;
1617 sector_t bio_start, bio_end;
1618 sector_t first_stripe_index, last_stripe_index;
1619 sector_t start_disk_offset;
1620 unsigned int start_disk_index;
1621 sector_t end_disk_offset;
1622 unsigned int end_disk_index;
1623 unsigned int remainder;
1624
1625 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1626 return -EAGAIN;
1627
c9aa889b
VV
1628 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1629 bio_wouldblock_error(bio);
1630 return 0;
1631 }
1632 wait_barrier(conf, false);
d30588b2
XN
1633
1634 /*
1635 * Check reshape again to avoid reshape happens after checking
1636 * MD_RECOVERY_RESHAPE and before wait_barrier
1637 */
1638 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1639 goto out;
1640
1641 if (geo->near_copies)
1642 stripe_data_disks = geo->raid_disks / geo->near_copies +
1643 geo->raid_disks % geo->near_copies;
1644 else
1645 stripe_data_disks = geo->raid_disks;
1646
1647 stripe_size = stripe_data_disks << geo->chunk_shift;
1648
1649 bio_start = bio->bi_iter.bi_sector;
1650 bio_end = bio_end_sector(bio);
1651
1652 /*
1653 * Maybe one discard bio is smaller than strip size or across one
1654 * stripe and discard region is larger than one stripe size. For far
1655 * offset layout, if the discard region is not aligned with stripe
1656 * size, there is hole when we submit discard bio to member disk.
1657 * For simplicity, we only handle discard bio which discard region
1658 * is bigger than stripe_size * 2
1659 */
1660 if (bio_sectors(bio) < stripe_size*2)
1661 goto out;
1662
1663 /*
1664 * Keep bio aligned with strip size.
1665 */
1666 div_u64_rem(bio_start, stripe_size, &remainder);
1667 if (remainder) {
1668 split_size = stripe_size - remainder;
1669 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1670 bio_chain(split, bio);
1671 allow_barrier(conf);
1672 /* Resend the fist split part */
1673 submit_bio_noacct(split);
c9aa889b 1674 wait_barrier(conf, false);
d30588b2
XN
1675 }
1676 div_u64_rem(bio_end, stripe_size, &remainder);
1677 if (remainder) {
1678 split_size = bio_sectors(bio) - remainder;
1679 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1680 bio_chain(split, bio);
1681 allow_barrier(conf);
1682 /* Resend the second split part */
1683 submit_bio_noacct(bio);
1684 bio = split;
c9aa889b 1685 wait_barrier(conf, false);
d30588b2
XN
1686 }
1687
d30588b2
XN
1688 bio_start = bio->bi_iter.bi_sector;
1689 bio_end = bio_end_sector(bio);
1690
1691 /*
1692 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1693 * One stripe contains the chunks from all member disk (one chunk from
1694 * one disk at the same HBA address). For layout detail, see 'man md 4'
1695 */
1696 chunk = bio_start >> geo->chunk_shift;
1697 chunk *= geo->near_copies;
1698 first_stripe_index = chunk;
1699 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1700 if (geo->far_offset)
1701 first_stripe_index *= geo->far_copies;
1702 start_disk_offset = (bio_start & geo->chunk_mask) +
1703 (first_stripe_index << geo->chunk_shift);
1704
1705 chunk = bio_end >> geo->chunk_shift;
1706 chunk *= geo->near_copies;
1707 last_stripe_index = chunk;
1708 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1709 if (geo->far_offset)
1710 last_stripe_index *= geo->far_copies;
1711 end_disk_offset = (bio_end & geo->chunk_mask) +
1712 (last_stripe_index << geo->chunk_shift);
1713
254c271d
XN
1714retry_discard:
1715 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1716 r10_bio->mddev = mddev;
1717 r10_bio->state = 0;
1718 r10_bio->sectors = 0;
1719 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1720 wait_blocked_dev(mddev, r10_bio);
1721
1722 /*
1723 * For far layout it needs more than one r10bio to cover all regions.
1724 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1725 * to record the discard bio. Other r10bio->master_bio record the first
1726 * r10bio. The first r10bio only release after all other r10bios finish.
1727 * The discard bio returns only first r10bio finishes
1728 */
1729 if (first_copy) {
1730 r10_bio->master_bio = bio;
1731 set_bit(R10BIO_Discard, &r10_bio->state);
1732 first_copy = false;
1733 first_r10bio = r10_bio;
1734 } else
1735 r10_bio->master_bio = (struct bio *)first_r10bio;
1736
46d4703b
XN
1737 /*
1738 * first select target devices under rcu_lock and
1739 * inc refcount on their rdev. Record them by setting
1740 * bios[x] to bio
1741 */
d30588b2 1742 for (disk = 0; disk < geo->raid_disks; disk++) {
67364349 1743 struct md_rdev *rdev, *rrdev;
d30588b2 1744
a448af25
YK
1745 rdev = conf->mirrors[disk].rdev;
1746 rrdev = conf->mirrors[disk].replacement;
d30588b2
XN
1747 r10_bio->devs[disk].bio = NULL;
1748 r10_bio->devs[disk].repl_bio = NULL;
1749
1750 if (rdev && (test_bit(Faulty, &rdev->flags)))
1751 rdev = NULL;
1752 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1753 rrdev = NULL;
1754 if (!rdev && !rrdev)
1755 continue;
1756
1757 if (rdev) {
1758 r10_bio->devs[disk].bio = bio;
1759 atomic_inc(&rdev->nr_pending);
1760 }
1761 if (rrdev) {
1762 r10_bio->devs[disk].repl_bio = bio;
1763 atomic_inc(&rrdev->nr_pending);
1764 }
1765 }
d30588b2
XN
1766
1767 atomic_set(&r10_bio->remaining, 1);
1768 for (disk = 0; disk < geo->raid_disks; disk++) {
1769 sector_t dev_start, dev_end;
1770 struct bio *mbio, *rbio = NULL;
d30588b2
XN
1771
1772 /*
1773 * Now start to calculate the start and end address for each disk.
1774 * The space between dev_start and dev_end is the discard region.
1775 *
1776 * For dev_start, it needs to consider three conditions:
1777 * 1st, the disk is before start_disk, you can imagine the disk in
1778 * the next stripe. So the dev_start is the start address of next
1779 * stripe.
1780 * 2st, the disk is after start_disk, it means the disk is at the
1781 * same stripe of first disk
1782 * 3st, the first disk itself, we can use start_disk_offset directly
1783 */
1784 if (disk < start_disk_index)
1785 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1786 else if (disk > start_disk_index)
1787 dev_start = first_stripe_index * mddev->chunk_sectors;
1788 else
1789 dev_start = start_disk_offset;
1790
1791 if (disk < end_disk_index)
1792 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1793 else if (disk > end_disk_index)
1794 dev_end = last_stripe_index * mddev->chunk_sectors;
1795 else
1796 dev_end = end_disk_offset;
1797
1798 /*
1799 * It only handles discard bio which size is >= stripe size, so
46d4703b
XN
1800 * dev_end > dev_start all the time.
1801 * It doesn't need to use rcu lock to get rdev here. We already
1802 * add rdev->nr_pending in the first loop.
d30588b2
XN
1803 */
1804 if (r10_bio->devs[disk].bio) {
46d4703b 1805 struct md_rdev *rdev = conf->mirrors[disk].rdev;
abfc426d
CH
1806 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1807 &mddev->bio_set);
d30588b2
XN
1808 mbio->bi_end_io = raid10_end_discard_request;
1809 mbio->bi_private = r10_bio;
1810 r10_bio->devs[disk].bio = mbio;
1811 r10_bio->devs[disk].devnum = disk;
1812 atomic_inc(&r10_bio->remaining);
1813 md_submit_discard_bio(mddev, rdev, mbio,
1814 dev_start + choose_data_offset(r10_bio, rdev),
1815 dev_end - dev_start);
1816 bio_endio(mbio);
1817 }
1818 if (r10_bio->devs[disk].repl_bio) {
46d4703b 1819 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
abfc426d
CH
1820 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1821 &mddev->bio_set);
d30588b2
XN
1822 rbio->bi_end_io = raid10_end_discard_request;
1823 rbio->bi_private = r10_bio;
1824 r10_bio->devs[disk].repl_bio = rbio;
1825 r10_bio->devs[disk].devnum = disk;
1826 atomic_inc(&r10_bio->remaining);
1827 md_submit_discard_bio(mddev, rrdev, rbio,
1828 dev_start + choose_data_offset(r10_bio, rrdev),
1829 dev_end - dev_start);
1830 bio_endio(rbio);
1831 }
1832 }
1833
254c271d
XN
1834 if (!geo->far_offset && --far_copies) {
1835 first_stripe_index += geo->stride >> geo->chunk_shift;
1836 start_disk_offset += geo->stride;
1837 last_stripe_index += geo->stride >> geo->chunk_shift;
1838 end_disk_offset += geo->stride;
1839 atomic_inc(&first_r10bio->remaining);
1840 raid_end_discard_bio(r10_bio);
c9aa889b 1841 wait_barrier(conf, false);
254c271d 1842 goto retry_discard;
d30588b2
XN
1843 }
1844
254c271d
XN
1845 raid_end_discard_bio(r10_bio);
1846
d30588b2
XN
1847 return 0;
1848out:
1849 allow_barrier(conf);
1850 return -EAGAIN;
1851}
1852
cc27b0c7 1853static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
20d0189b
KO
1854{
1855 struct r10conf *conf = mddev->private;
1856 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1857 int chunk_sects = chunk_mask + 1;
fc9977dd 1858 int sectors = bio_sectors(bio);
20d0189b 1859
775d7831
DJ
1860 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1861 && md_flush_request(mddev, bio))
cc27b0c7 1862 return true;
20d0189b 1863
cc27b0c7
N
1864 if (!md_write_start(mddev, bio))
1865 return false;
1866
d30588b2
XN
1867 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1868 if (!raid10_handle_discard(mddev, bio))
1869 return true;
1870
fc9977dd
N
1871 /*
1872 * If this request crosses a chunk boundary, we need to split
1873 * it.
1874 */
1875 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1876 sectors > chunk_sects
1877 && (conf->geo.near_copies < conf->geo.raid_disks
1878 || conf->prev.near_copies <
1879 conf->prev.raid_disks)))
1880 sectors = chunk_sects -
1881 (bio->bi_iter.bi_sector &
1882 (chunk_sects - 1));
1883 __make_request(mddev, bio, sectors);
079fa166
N
1884
1885 /* In case raid10d snuck in to freeze_array */
0c0be98b 1886 wake_up_barrier(conf);
cc27b0c7 1887 return true;
1da177e4
LT
1888}
1889
849674e4 1890static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1891{
e879a879 1892 struct r10conf *conf = mddev->private;
1da177e4
LT
1893 int i;
1894
a448af25
YK
1895 lockdep_assert_held(&mddev->lock);
1896
5cf00fcd 1897 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1898 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1899 if (conf->geo.near_copies > 1)
1900 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1901 if (conf->geo.far_copies > 1) {
1902 if (conf->geo.far_offset)
1903 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1904 else
5cf00fcd 1905 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
8bce6d35
N
1906 if (conf->geo.far_set_size != conf->geo.raid_disks)
1907 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
c93983bf 1908 }
5cf00fcd
N
1909 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1910 conf->geo.raid_disks - mddev->degraded);
d44b0a92 1911 for (i = 0; i < conf->geo.raid_disks; i++) {
a448af25
YK
1912 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1913
d44b0a92
N
1914 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1915 }
1da177e4
LT
1916 seq_printf(seq, "]");
1917}
1918
700c7213
N
1919/* check if there are enough drives for
1920 * every block to appear on atleast one.
1921 * Don't consider the device numbered 'ignore'
1922 * as we might be about to remove it.
1923 */
635f6416 1924static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1925{
1926 int first = 0;
725d6e57 1927 int has_enough = 0;
635f6416
N
1928 int disks, ncopies;
1929 if (previous) {
1930 disks = conf->prev.raid_disks;
1931 ncopies = conf->prev.near_copies;
1932 } else {
1933 disks = conf->geo.raid_disks;
1934 ncopies = conf->geo.near_copies;
1935 }
700c7213
N
1936
1937 do {
1938 int n = conf->copies;
1939 int cnt = 0;
80b48124 1940 int this = first;
700c7213 1941 while (n--) {
725d6e57
N
1942 struct md_rdev *rdev;
1943 if (this != ignore &&
a448af25 1944 (rdev = conf->mirrors[this].rdev) &&
725d6e57 1945 test_bit(In_sync, &rdev->flags))
700c7213 1946 cnt++;
635f6416 1947 this = (this+1) % disks;
700c7213
N
1948 }
1949 if (cnt == 0)
725d6e57 1950 goto out;
635f6416 1951 first = (first + ncopies) % disks;
700c7213 1952 } while (first != 0);
725d6e57
N
1953 has_enough = 1;
1954out:
725d6e57 1955 return has_enough;
700c7213
N
1956}
1957
f8c9e74f
N
1958static int enough(struct r10conf *conf, int ignore)
1959{
635f6416
N
1960 /* when calling 'enough', both 'prev' and 'geo' must
1961 * be stable.
1962 * This is ensured if ->reconfig_mutex or ->device_lock
1963 * is held.
1964 */
1965 return _enough(conf, 0, ignore) &&
1966 _enough(conf, 1, ignore);
f8c9e74f
N
1967}
1968
9631abdb
MT
1969/**
1970 * raid10_error() - RAID10 error handler.
1971 * @mddev: affected md device.
1972 * @rdev: member device to fail.
1973 *
1974 * The routine acknowledges &rdev failure and determines new @mddev state.
1975 * If it failed, then:
1976 * - &MD_BROKEN flag is set in &mddev->flags.
1977 * Otherwise, it must be degraded:
1978 * - recovery is interrupted.
1979 * - &mddev->degraded is bumped.
62bca04b 1980 *
9631abdb
MT
1981 * @rdev is marked as &Faulty excluding case when array is failed and
1982 * &mddev->fail_last_dev is off.
1983 */
849674e4 1984static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1985{
e879a879 1986 struct r10conf *conf = mddev->private;
635f6416 1987 unsigned long flags;
1da177e4 1988
635f6416 1989 spin_lock_irqsave(&conf->device_lock, flags);
9631abdb
MT
1990
1991 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1992 set_bit(MD_BROKEN, &mddev->flags);
1993
1994 if (!mddev->fail_last_dev) {
1995 spin_unlock_irqrestore(&conf->device_lock, flags);
1996 return;
1997 }
635f6416 1998 }
2446dba0 1999 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 2000 mddev->degraded++;
9631abdb 2001
2446dba0 2002 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 2003 set_bit(Blocked, &rdev->flags);
b2d444d7 2004 set_bit(Faulty, &rdev->flags);
2953079c
SL
2005 set_mask_bits(&mddev->sb_flags, 0,
2006 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
635f6416 2007 spin_unlock_irqrestore(&conf->device_lock, flags);
913cce5a 2008 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
08464e09 2009 "md/raid10:%s: Operation continuing on %d devices.\n",
913cce5a 2010 mdname(mddev), rdev->bdev,
08464e09 2011 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
2012}
2013
e879a879 2014static void print_conf(struct r10conf *conf)
1da177e4
LT
2015{
2016 int i;
4056ca51 2017 struct md_rdev *rdev;
1da177e4 2018
08464e09 2019 pr_debug("RAID10 conf printout:\n");
1da177e4 2020 if (!conf) {
08464e09 2021 pr_debug("(!conf)\n");
1da177e4
LT
2022 return;
2023 }
08464e09
N
2024 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2025 conf->geo.raid_disks);
1da177e4 2026
a448af25 2027 lockdep_assert_held(&conf->mddev->reconfig_mutex);
5cf00fcd 2028 for (i = 0; i < conf->geo.raid_disks; i++) {
4056ca51
N
2029 rdev = conf->mirrors[i].rdev;
2030 if (rdev)
913cce5a 2031 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
08464e09
N
2032 i, !test_bit(In_sync, &rdev->flags),
2033 !test_bit(Faulty, &rdev->flags),
913cce5a 2034 rdev->bdev);
1da177e4
LT
2035 }
2036}
2037
e879a879 2038static void close_sync(struct r10conf *conf)
1da177e4 2039{
c9aa889b 2040 wait_barrier(conf, false);
0a27ec96 2041 allow_barrier(conf);
1da177e4 2042
afeee514 2043 mempool_exit(&conf->r10buf_pool);
1da177e4
LT
2044}
2045
fd01b88c 2046static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
2047{
2048 int i;
e879a879 2049 struct r10conf *conf = mddev->private;
dc280d98 2050 struct raid10_info *tmp;
6b965620
N
2051 int count = 0;
2052 unsigned long flags;
1da177e4
LT
2053
2054 /*
2055 * Find all non-in_sync disks within the RAID10 configuration
2056 * and mark them in_sync
2057 */
5cf00fcd 2058 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 2059 tmp = conf->mirrors + i;
4ca40c2c
N
2060 if (tmp->replacement
2061 && tmp->replacement->recovery_offset == MaxSector
2062 && !test_bit(Faulty, &tmp->replacement->flags)
2063 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2064 /* Replacement has just become active */
2065 if (!tmp->rdev
2066 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2067 count++;
2068 if (tmp->rdev) {
2069 /* Replaced device not technically faulty,
2070 * but we need to be sure it gets removed
2071 * and never re-added.
2072 */
2073 set_bit(Faulty, &tmp->rdev->flags);
2074 sysfs_notify_dirent_safe(
2075 tmp->rdev->sysfs_state);
2076 }
2077 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2078 } else if (tmp->rdev
61e4947c 2079 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
2080 && !test_bit(Faulty, &tmp->rdev->flags)
2081 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 2082 count++;
2863b9eb 2083 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
2084 }
2085 }
6b965620
N
2086 spin_lock_irqsave(&conf->device_lock, flags);
2087 mddev->degraded -= count;
2088 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
2089
2090 print_conf(conf);
6b965620 2091 return count;
1da177e4
LT
2092}
2093
fd01b88c 2094static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2095{
e879a879 2096 struct r10conf *conf = mddev->private;
199050ea 2097 int err = -EEXIST;
6090368a 2098 int mirror, repl_slot = -1;
6c2fce2e 2099 int first = 0;
5cf00fcd 2100 int last = conf->geo.raid_disks - 1;
6090368a 2101 struct raid10_info *p;
1da177e4
LT
2102
2103 if (mddev->recovery_cp < MaxSector)
2104 /* only hot-add to in-sync arrays, as recovery is
2105 * very different from resync
2106 */
199050ea 2107 return -EBUSY;
635f6416 2108 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 2109 return -EINVAL;
1da177e4 2110
1501efad
DW
2111 if (md_integrity_add_rdev(rdev, mddev))
2112 return -ENXIO;
2113
a53a6c85 2114 if (rdev->raid_disk >= 0)
6c2fce2e 2115 first = last = rdev->raid_disk;
1da177e4 2116
2c4193df 2117 if (rdev->saved_raid_disk >= first &&
9e753ba9 2118 rdev->saved_raid_disk < conf->geo.raid_disks &&
6cce3b23
N
2119 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2120 mirror = rdev->saved_raid_disk;
2121 else
6c2fce2e 2122 mirror = first;
2bb77736 2123 for ( ; mirror <= last ; mirror++) {
6090368a 2124 p = &conf->mirrors[mirror];
2bb77736
N
2125 if (p->recovery_disabled == mddev->recovery_disabled)
2126 continue;
b7044d41 2127 if (p->rdev) {
6090368a
LN
2128 if (test_bit(WantReplacement, &p->rdev->flags) &&
2129 p->replacement == NULL && repl_slot < 0)
2130 repl_slot = mirror;
2131 continue;
b7044d41 2132 }
1da177e4 2133
9092c02d
JB
2134 if (mddev->gendisk)
2135 disk_stack_limits(mddev->gendisk, rdev->bdev,
2136 rdev->data_offset << 9);
1da177e4 2137
2bb77736 2138 p->head_position = 0;
d890fa2b 2139 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
2140 rdev->raid_disk = mirror;
2141 err = 0;
2142 if (rdev->saved_raid_disk != mirror)
2143 conf->fullsync = 1;
a448af25 2144 WRITE_ONCE(p->rdev, rdev);
2bb77736
N
2145 break;
2146 }
532a2a3f 2147
6090368a
LN
2148 if (err && repl_slot >= 0) {
2149 p = &conf->mirrors[repl_slot];
2150 clear_bit(In_sync, &rdev->flags);
2151 set_bit(Replacement, &rdev->flags);
2152 rdev->raid_disk = repl_slot;
2153 err = 0;
2154 if (mddev->gendisk)
2155 disk_stack_limits(mddev->gendisk, rdev->bdev,
2156 rdev->data_offset << 9);
2157 conf->fullsync = 1;
a448af25 2158 WRITE_ONCE(p->replacement, rdev);
6090368a
LN
2159 }
2160
1da177e4 2161 print_conf(conf);
199050ea 2162 return err;
1da177e4
LT
2163}
2164
b8321b68 2165static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 2166{
e879a879 2167 struct r10conf *conf = mddev->private;
1da177e4 2168 int err = 0;
b8321b68 2169 int number = rdev->raid_disk;
c8ab903e 2170 struct md_rdev **rdevp;
d17f744e 2171 struct raid10_info *p;
1da177e4
LT
2172
2173 print_conf(conf);
d17f744e
MP
2174 if (unlikely(number >= mddev->raid_disks))
2175 return 0;
2176 p = conf->mirrors + number;
c8ab903e
N
2177 if (rdev == p->rdev)
2178 rdevp = &p->rdev;
2179 else if (rdev == p->replacement)
2180 rdevp = &p->replacement;
2181 else
2182 return 0;
2183
2184 if (test_bit(In_sync, &rdev->flags) ||
2185 atomic_read(&rdev->nr_pending)) {
2186 err = -EBUSY;
2187 goto abort;
2188 }
d787be40 2189 /* Only remove non-faulty devices if recovery
c8ab903e
N
2190 * is not possible.
2191 */
2192 if (!test_bit(Faulty, &rdev->flags) &&
2193 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 2194 (!p->replacement || p->replacement == rdev) &&
63aced61 2195 number < conf->geo.raid_disks &&
c8ab903e
N
2196 enough(conf, -1)) {
2197 err = -EBUSY;
2198 goto abort;
1da177e4 2199 }
a448af25 2200 WRITE_ONCE(*rdevp, NULL);
d787be40 2201 if (p->replacement) {
4ca40c2c 2202 /* We must have just cleared 'rdev' */
a448af25 2203 WRITE_ONCE(p->rdev, p->replacement);
4ca40c2c 2204 clear_bit(Replacement, &p->replacement->flags);
a448af25 2205 WRITE_ONCE(p->replacement, NULL);
e5bc9c3c 2206 }
4ca40c2c 2207
e5bc9c3c 2208 clear_bit(WantReplacement, &rdev->flags);
c8ab903e
N
2209 err = md_integrity_register(mddev);
2210
1da177e4
LT
2211abort:
2212
2213 print_conf(conf);
2214 return err;
2215}
2216
81fa1520 2217static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1da177e4 2218{
e879a879 2219 struct r10conf *conf = r10_bio->mddev->private;
0eb3ff12 2220
4e4cbee9 2221 if (!bio->bi_status)
0eb3ff12 2222 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
2223 else
2224 /* The write handler will notice the lack of
2225 * R10BIO_Uptodate and record any errors etc
2226 */
4dbcdc75
N
2227 atomic_add(r10_bio->sectors,
2228 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
2229
2230 /* for reconstruct, we always reschedule after a read.
2231 * for resync, only after all reads
2232 */
73d5c38a 2233 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
2234 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2235 atomic_dec_and_test(&r10_bio->remaining)) {
2236 /* we have read all the blocks,
2237 * do the comparison in process context in raid10d
2238 */
2239 reschedule_retry(r10_bio);
2240 }
1da177e4
LT
2241}
2242
81fa1520
ML
2243static void end_sync_read(struct bio *bio)
2244{
f0250618 2245 struct r10bio *r10_bio = get_resync_r10bio(bio);
81fa1520
ML
2246 struct r10conf *conf = r10_bio->mddev->private;
2247 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2248
2249 __end_sync_read(r10_bio, bio, d);
2250}
2251
2252static void end_reshape_read(struct bio *bio)
2253{
f0250618 2254 /* reshape read bio isn't allocated from r10buf_pool */
81fa1520
ML
2255 struct r10bio *r10_bio = bio->bi_private;
2256
2257 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2258}
2259
9f2c9d12 2260static void end_sync_request(struct r10bio *r10_bio)
1da177e4 2261{
fd01b88c 2262 struct mddev *mddev = r10_bio->mddev;
dfc70645 2263
1da177e4
LT
2264 while (atomic_dec_and_test(&r10_bio->remaining)) {
2265 if (r10_bio->master_bio == NULL) {
2266 /* the primary of several recovery bios */
73d5c38a 2267 sector_t s = r10_bio->sectors;
1a0b7cd8
N
2268 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2269 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2270 reschedule_retry(r10_bio);
2271 else
2272 put_buf(r10_bio);
73d5c38a 2273 md_done_sync(mddev, s, 1);
1da177e4
LT
2274 break;
2275 } else {
9f2c9d12 2276 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
2277 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2278 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2279 reschedule_retry(r10_bio);
2280 else
2281 put_buf(r10_bio);
1da177e4
LT
2282 r10_bio = r10_bio2;
2283 }
2284 }
1da177e4
LT
2285}
2286
4246a0b6 2287static void end_sync_write(struct bio *bio)
5e570289 2288{
f0250618 2289 struct r10bio *r10_bio = get_resync_r10bio(bio);
fd01b88c 2290 struct mddev *mddev = r10_bio->mddev;
e879a879 2291 struct r10conf *conf = mddev->private;
5e570289
N
2292 int d;
2293 sector_t first_bad;
2294 int bad_sectors;
2295 int slot;
9ad1aefc 2296 int repl;
4ca40c2c 2297 struct md_rdev *rdev = NULL;
5e570289 2298
9ad1aefc
N
2299 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2300 if (repl)
2301 rdev = conf->mirrors[d].replacement;
547414d1 2302 else
9ad1aefc 2303 rdev = conf->mirrors[d].rdev;
5e570289 2304
4e4cbee9 2305 if (bio->bi_status) {
9ad1aefc
N
2306 if (repl)
2307 md_error(mddev, rdev);
2308 else {
2309 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2310 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2311 set_bit(MD_RECOVERY_NEEDED,
2312 &rdev->mddev->recovery);
9ad1aefc
N
2313 set_bit(R10BIO_WriteError, &r10_bio->state);
2314 }
2315 } else if (is_badblock(rdev,
5e570289
N
2316 r10_bio->devs[slot].addr,
2317 r10_bio->sectors,
2318 &first_bad, &bad_sectors))
2319 set_bit(R10BIO_MadeGood, &r10_bio->state);
2320
9ad1aefc 2321 rdev_dec_pending(rdev, mddev);
5e570289
N
2322
2323 end_sync_request(r10_bio);
2324}
2325
1da177e4
LT
2326/*
2327 * Note: sync and recover and handled very differently for raid10
2328 * This code is for resync.
2329 * For resync, we read through virtual addresses and read all blocks.
2330 * If there is any error, we schedule a write. The lowest numbered
2331 * drive is authoritative.
2332 * However requests come for physical address, so we need to map.
2333 * For every physical address there are raid_disks/copies virtual addresses,
2334 * which is always are least one, but is not necessarly an integer.
2335 * This means that a physical address can span multiple chunks, so we may
2336 * have to submit multiple io requests for a single sync request.
2337 */
2338/*
2339 * We check if all blocks are in-sync and only write to blocks that
2340 * aren't in sync
2341 */
9f2c9d12 2342static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2343{
e879a879 2344 struct r10conf *conf = mddev->private;
1da177e4
LT
2345 int i, first;
2346 struct bio *tbio, *fbio;
f4380a91 2347 int vcnt;
cdb76be3 2348 struct page **tpages, **fpages;
1da177e4
LT
2349
2350 atomic_set(&r10_bio->remaining, 1);
2351
2352 /* find the first device with a block */
2353 for (i=0; i<conf->copies; i++)
4e4cbee9 2354 if (!r10_bio->devs[i].bio->bi_status)
1da177e4
LT
2355 break;
2356
2357 if (i == conf->copies)
2358 goto done;
2359
2360 first = i;
2361 fbio = r10_bio->devs[i].bio;
cc578588
AP
2362 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2363 fbio->bi_iter.bi_idx = 0;
cdb76be3 2364 fpages = get_resync_pages(fbio)->pages;
1da177e4 2365
f4380a91 2366 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2367 /* now find blocks with errors */
0eb3ff12
N
2368 for (i=0 ; i < conf->copies ; i++) {
2369 int j, d;
8d3ca83d 2370 struct md_rdev *rdev;
f0250618 2371 struct resync_pages *rp;
1da177e4 2372
1da177e4 2373 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2374
2375 if (tbio->bi_end_io != end_sync_read)
2376 continue;
2377 if (i == first)
1da177e4 2378 continue;
cdb76be3
ML
2379
2380 tpages = get_resync_pages(tbio)->pages;
8d3ca83d
N
2381 d = r10_bio->devs[i].devnum;
2382 rdev = conf->mirrors[d].rdev;
4e4cbee9 2383 if (!r10_bio->devs[i].bio->bi_status) {
0eb3ff12
N
2384 /* We know that the bi_io_vec layout is the same for
2385 * both 'first' and 'i', so we just compare them.
2386 * All vec entries are PAGE_SIZE;
2387 */
7bb23c49
N
2388 int sectors = r10_bio->sectors;
2389 for (j = 0; j < vcnt; j++) {
2390 int len = PAGE_SIZE;
2391 if (sectors < (len / 512))
2392 len = sectors * 512;
cdb76be3
ML
2393 if (memcmp(page_address(fpages[j]),
2394 page_address(tpages[j]),
7bb23c49 2395 len))
0eb3ff12 2396 break;
7bb23c49
N
2397 sectors -= len/512;
2398 }
0eb3ff12
N
2399 if (j == vcnt)
2400 continue;
7f7583d4 2401 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2402 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2403 /* Don't fix anything. */
2404 continue;
8d3ca83d
N
2405 } else if (test_bit(FailFast, &rdev->flags)) {
2406 /* Just give up on this device */
2407 md_error(rdev->mddev, rdev);
2408 continue;
0eb3ff12 2409 }
f84ee364
N
2410 /* Ok, we need to write this bio, either to correct an
2411 * inconsistency or to correct an unreadable block.
1da177e4
LT
2412 * First we need to fixup bv_offset, bv_len and
2413 * bi_vecs, as the read request might have corrupted these
2414 */
f0250618 2415 rp = get_resync_pages(tbio);
a7c50c94 2416 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
8be185f2 2417
fb0eb5df
ML
2418 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2419
f0250618
ML
2420 rp->raid_bio = r10_bio;
2421 tbio->bi_private = rp;
4f024f37 2422 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4
LT
2423 tbio->bi_end_io = end_sync_write;
2424
c31df25f
KO
2425 bio_copy_data(tbio, fbio);
2426
1da177e4
LT
2427 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2428 atomic_inc(&r10_bio->remaining);
aa8b57aa 2429 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2430
1919cbb2
N
2431 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2432 tbio->bi_opf |= MD_FAILFAST;
4f024f37 2433 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
ed00aabd 2434 submit_bio_noacct(tbio);
1da177e4
LT
2435 }
2436
9ad1aefc
N
2437 /* Now write out to any replacement devices
2438 * that are active
2439 */
2440 for (i = 0; i < conf->copies; i++) {
c31df25f 2441 int d;
9ad1aefc
N
2442
2443 tbio = r10_bio->devs[i].repl_bio;
2444 if (!tbio || !tbio->bi_end_io)
2445 continue;
2446 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2447 && r10_bio->devs[i].bio != fbio)
c31df25f 2448 bio_copy_data(tbio, fbio);
9ad1aefc
N
2449 d = r10_bio->devs[i].devnum;
2450 atomic_inc(&r10_bio->remaining);
2451 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2452 bio_sectors(tbio));
ed00aabd 2453 submit_bio_noacct(tbio);
9ad1aefc
N
2454 }
2455
1da177e4
LT
2456done:
2457 if (atomic_dec_and_test(&r10_bio->remaining)) {
2458 md_done_sync(mddev, r10_bio->sectors, 1);
2459 put_buf(r10_bio);
2460 }
2461}
2462
2463/*
2464 * Now for the recovery code.
2465 * Recovery happens across physical sectors.
2466 * We recover all non-is_sync drives by finding the virtual address of
2467 * each, and then choose a working drive that also has that virt address.
2468 * There is a separate r10_bio for each non-in_sync drive.
2469 * Only the first two slots are in use. The first for reading,
2470 * The second for writing.
2471 *
2472 */
9f2c9d12 2473static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2474{
2475 /* We got a read error during recovery.
2476 * We repeat the read in smaller page-sized sections.
2477 * If a read succeeds, write it to the new device or record
2478 * a bad block if we cannot.
2479 * If a read fails, record a bad block on both old and
2480 * new devices.
2481 */
fd01b88c 2482 struct mddev *mddev = r10_bio->mddev;
e879a879 2483 struct r10conf *conf = mddev->private;
5e570289
N
2484 struct bio *bio = r10_bio->devs[0].bio;
2485 sector_t sect = 0;
2486 int sectors = r10_bio->sectors;
2487 int idx = 0;
2488 int dr = r10_bio->devs[0].devnum;
2489 int dw = r10_bio->devs[1].devnum;
cdb76be3 2490 struct page **pages = get_resync_pages(bio)->pages;
5e570289
N
2491
2492 while (sectors) {
2493 int s = sectors;
3cb03002 2494 struct md_rdev *rdev;
5e570289
N
2495 sector_t addr;
2496 int ok;
2497
2498 if (s > (PAGE_SIZE>>9))
2499 s = PAGE_SIZE >> 9;
2500
2501 rdev = conf->mirrors[dr].rdev;
2502 addr = r10_bio->devs[0].addr + sect,
2503 ok = sync_page_io(rdev,
2504 addr,
2505 s << 9,
cdb76be3 2506 pages[idx],
4ce4c73f 2507 REQ_OP_READ, false);
5e570289
N
2508 if (ok) {
2509 rdev = conf->mirrors[dw].rdev;
2510 addr = r10_bio->devs[1].addr + sect;
2511 ok = sync_page_io(rdev,
2512 addr,
2513 s << 9,
cdb76be3 2514 pages[idx],
4ce4c73f 2515 REQ_OP_WRITE, false);
b7044d41 2516 if (!ok) {
5e570289 2517 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2518 if (!test_and_set_bit(WantReplacement,
2519 &rdev->flags))
2520 set_bit(MD_RECOVERY_NEEDED,
2521 &rdev->mddev->recovery);
2522 }
5e570289
N
2523 }
2524 if (!ok) {
2525 /* We don't worry if we cannot set a bad block -
2526 * it really is bad so there is no loss in not
2527 * recording it yet
2528 */
2529 rdev_set_badblocks(rdev, addr, s, 0);
2530
2531 if (rdev != conf->mirrors[dw].rdev) {
2532 /* need bad block on destination too */
3cb03002 2533 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2534 addr = r10_bio->devs[1].addr + sect;
2535 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2536 if (!ok) {
2537 /* just abort the recovery */
08464e09
N
2538 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2539 mdname(mddev));
5e570289
N
2540
2541 conf->mirrors[dw].recovery_disabled
2542 = mddev->recovery_disabled;
2543 set_bit(MD_RECOVERY_INTR,
2544 &mddev->recovery);
2545 break;
2546 }
2547 }
2548 }
2549
2550 sectors -= s;
2551 sect += s;
2552 idx++;
2553 }
2554}
1da177e4 2555
9f2c9d12 2556static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2557{
e879a879 2558 struct r10conf *conf = mddev->private;
c65060ad 2559 int d;
26208a7c
YK
2560 struct bio *wbio = r10_bio->devs[1].bio;
2561 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2562
2563 /* Need to test wbio2->bi_end_io before we call
2564 * submit_bio_noacct as if the former is NULL,
2565 * the latter is free to free wbio2.
2566 */
2567 if (wbio2 && !wbio2->bi_end_io)
2568 wbio2 = NULL;
1da177e4 2569
5e570289
N
2570 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2571 fix_recovery_read_error(r10_bio);
26208a7c
YK
2572 if (wbio->bi_end_io)
2573 end_sync_request(r10_bio);
2574 if (wbio2)
2575 end_sync_request(r10_bio);
5e570289
N
2576 return;
2577 }
2578
c65060ad
NK
2579 /*
2580 * share the pages with the first bio
1da177e4
LT
2581 * and submit the write request
2582 */
1da177e4 2583 d = r10_bio->devs[1].devnum;
24afd80d
N
2584 if (wbio->bi_end_io) {
2585 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2586 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
ed00aabd 2587 submit_bio_noacct(wbio);
24afd80d 2588 }
0eb25bb0 2589 if (wbio2) {
24afd80d
N
2590 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2591 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2592 bio_sectors(wbio2));
ed00aabd 2593 submit_bio_noacct(wbio2);
24afd80d 2594 }
1da177e4
LT
2595}
2596
3cb03002 2597static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
265ad47a 2598 int sectors, struct page *page, enum req_op op)
58c54fcc
N
2599{
2600 sector_t first_bad;
2601 int bad_sectors;
2602
2603 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
265ad47a 2604 && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
58c54fcc 2605 return -1;
265ad47a 2606 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
58c54fcc
N
2607 /* success */
2608 return 1;
265ad47a 2609 if (op == REQ_OP_WRITE) {
58c54fcc 2610 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2611 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2612 set_bit(MD_RECOVERY_NEEDED,
2613 &rdev->mddev->recovery);
2614 }
58c54fcc
N
2615 /* need to record an error - either for the block or the device */
2616 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2617 md_error(rdev->mddev, rdev);
2618 return 0;
2619}
2620
1da177e4
LT
2621/*
2622 * This is a kernel thread which:
2623 *
2624 * 1. Retries failed read operations on working mirrors.
2625 * 2. Updates the raid superblock when problems encounter.
6814d536 2626 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2627 */
2628
e879a879 2629static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2630{
2631 int sect = 0; /* Offset from r10_bio->sector */
605eeda6 2632 int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
13db16d7 2633 struct md_rdev *rdev;
605eeda6 2634 int d = r10_bio->devs[slot].devnum;
1e50915f 2635
7c4e06ff
N
2636 /* still own a reference to this rdev, so it cannot
2637 * have been cleared recently.
2638 */
2639 rdev = conf->mirrors[d].rdev;
1e50915f 2640
7c4e06ff
N
2641 if (test_bit(Faulty, &rdev->flags))
2642 /* drive has already been failed, just ignore any
2643 more fix_read_error() attempts */
2644 return;
1e50915f 2645
1979dbbe 2646 if (exceed_read_errors(mddev, rdev)) {
605eeda6 2647 r10_bio->devs[slot].bio = IO_BLOCKED;
7c4e06ff 2648 return;
1e50915f 2649 }
1e50915f 2650
6814d536
N
2651 while(sectors) {
2652 int s = sectors;
605eeda6 2653 int sl = slot;
6814d536
N
2654 int success = 0;
2655 int start;
2656
2657 if (s > (PAGE_SIZE>>9))
2658 s = PAGE_SIZE >> 9;
2659
6814d536 2660 do {
8dbed5ce
N
2661 sector_t first_bad;
2662 int bad_sectors;
2663
0544a21d 2664 d = r10_bio->devs[sl].devnum;
a448af25 2665 rdev = conf->mirrors[d].rdev;
6814d536 2666 if (rdev &&
8dbed5ce 2667 test_bit(In_sync, &rdev->flags) &&
f5b67ae8 2668 !test_bit(Faulty, &rdev->flags) &&
8dbed5ce
N
2669 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2670 &first_bad, &bad_sectors) == 0) {
6814d536 2671 atomic_inc(&rdev->nr_pending);
2b193363 2672 success = sync_page_io(rdev,
6814d536 2673 r10_bio->devs[sl].addr +
ccebd4c4 2674 sect,
6814d536 2675 s<<9,
796a5cf0 2676 conf->tmppage,
4ce4c73f 2677 REQ_OP_READ, false);
6814d536 2678 rdev_dec_pending(rdev, mddev);
6814d536
N
2679 if (success)
2680 break;
2681 }
2682 sl++;
2683 if (sl == conf->copies)
2684 sl = 0;
02c67a3b 2685 } while (sl != slot);
6814d536
N
2686
2687 if (!success) {
58c54fcc
N
2688 /* Cannot read from anywhere, just mark the block
2689 * as bad on the first device to discourage future
2690 * reads.
2691 */
605eeda6 2692 int dn = r10_bio->devs[slot].devnum;
58c54fcc
N
2693 rdev = conf->mirrors[dn].rdev;
2694
2695 if (!rdev_set_badblocks(
2696 rdev,
605eeda6 2697 r10_bio->devs[slot].addr
58c54fcc 2698 + sect,
fae8cc5e 2699 s, 0)) {
58c54fcc 2700 md_error(mddev, rdev);
605eeda6 2701 r10_bio->devs[slot].bio
fae8cc5e
N
2702 = IO_BLOCKED;
2703 }
6814d536
N
2704 break;
2705 }
2706
2707 start = sl;
2708 /* write it back and re-read */
605eeda6 2709 while (sl != slot) {
6814d536
N
2710 if (sl==0)
2711 sl = conf->copies;
2712 sl--;
2713 d = r10_bio->devs[sl].devnum;
a448af25 2714 rdev = conf->mirrors[d].rdev;
1294b9c9 2715 if (!rdev ||
f5b67ae8 2716 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2717 !test_bit(In_sync, &rdev->flags))
2718 continue;
2719
2720 atomic_inc(&rdev->nr_pending);
58c54fcc
N
2721 if (r10_sync_page_io(rdev,
2722 r10_bio->devs[sl].addr +
2723 sect,
265ad47a 2724 s, conf->tmppage, REQ_OP_WRITE)
1294b9c9
N
2725 == 0) {
2726 /* Well, this device is dead */
913cce5a 2727 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
08464e09
N
2728 mdname(mddev), s,
2729 (unsigned long long)(
2730 sect +
2731 choose_data_offset(r10_bio,
2732 rdev)),
913cce5a
CH
2733 rdev->bdev);
2734 pr_notice("md/raid10:%s: %pg: failing drive\n",
08464e09 2735 mdname(mddev),
913cce5a 2736 rdev->bdev);
6814d536 2737 }
1294b9c9 2738 rdev_dec_pending(rdev, mddev);
6814d536
N
2739 }
2740 sl = start;
605eeda6 2741 while (sl != slot) {
6814d536
N
2742 if (sl==0)
2743 sl = conf->copies;
2744 sl--;
2745 d = r10_bio->devs[sl].devnum;
a448af25 2746 rdev = conf->mirrors[d].rdev;
1294b9c9 2747 if (!rdev ||
f5b67ae8 2748 test_bit(Faulty, &rdev->flags) ||
1294b9c9
N
2749 !test_bit(In_sync, &rdev->flags))
2750 continue;
6814d536 2751
1294b9c9 2752 atomic_inc(&rdev->nr_pending);
58c54fcc
N
2753 switch (r10_sync_page_io(rdev,
2754 r10_bio->devs[sl].addr +
2755 sect,
265ad47a 2756 s, conf->tmppage, REQ_OP_READ)) {
58c54fcc 2757 case 0:
1294b9c9 2758 /* Well, this device is dead */
913cce5a 2759 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
1294b9c9
N
2760 mdname(mddev), s,
2761 (unsigned long long)(
f8c9e74f
N
2762 sect +
2763 choose_data_offset(r10_bio, rdev)),
913cce5a
CH
2764 rdev->bdev);
2765 pr_notice("md/raid10:%s: %pg: failing drive\n",
1294b9c9 2766 mdname(mddev),
913cce5a 2767 rdev->bdev);
58c54fcc
N
2768 break;
2769 case 1:
913cce5a 2770 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
1294b9c9
N
2771 mdname(mddev), s,
2772 (unsigned long long)(
f8c9e74f
N
2773 sect +
2774 choose_data_offset(r10_bio, rdev)),
913cce5a 2775 rdev->bdev);
1294b9c9 2776 atomic_add(s, &rdev->corrected_errors);
6814d536 2777 }
1294b9c9
N
2778
2779 rdev_dec_pending(rdev, mddev);
6814d536 2780 }
6814d536
N
2781
2782 sectors -= s;
2783 sect += s;
2784 }
2785}
2786
9f2c9d12 2787static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2788{
2789 struct bio *bio = r10_bio->master_bio;
fd01b88c 2790 struct mddev *mddev = r10_bio->mddev;
e879a879 2791 struct r10conf *conf = mddev->private;
3cb03002 2792 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2793 /* bio has the data to be written to slot 'i' where
2794 * we just recently had a write error.
2795 * We repeatedly clone the bio and trim down to one block,
2796 * then try the write. Where the write fails we record
2797 * a bad block.
2798 * It is conceivable that the bio doesn't exactly align with
2799 * blocks. We must handle this.
2800 *
2801 * We currently own a reference to the rdev.
2802 */
2803
2804 int block_sectors;
2805 sector_t sector;
2806 int sectors;
2807 int sect_to_write = r10_bio->sectors;
2808 int ok = 1;
2809
2810 if (rdev->badblocks.shift < 0)
2811 return 0;
2812
f04ebb0b
N
2813 block_sectors = roundup(1 << rdev->badblocks.shift,
2814 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2815 sector = r10_bio->sector;
2816 sectors = ((r10_bio->sector + block_sectors)
2817 & ~(sector_t)(block_sectors - 1))
2818 - sector;
2819
2820 while (sect_to_write) {
2821 struct bio *wbio;
27028626 2822 sector_t wsector;
bd870a16
N
2823 if (sectors > sect_to_write)
2824 sectors = sect_to_write;
2825 /* Write at 'sector' for 'sectors' */
abfc426d
CH
2826 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2827 &mddev->bio_set);
4f024f37 2828 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
27028626
TM
2829 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2830 wbio->bi_iter.bi_sector = wsector +
2831 choose_data_offset(r10_bio, rdev);
c34b7ac6 2832 wbio->bi_opf = REQ_OP_WRITE;
4e49ea4a
MC
2833
2834 if (submit_bio_wait(wbio) < 0)
bd870a16 2835 /* Failure! */
27028626 2836 ok = rdev_set_badblocks(rdev, wsector,
bd870a16
N
2837 sectors, 0)
2838 && ok;
2839
2840 bio_put(wbio);
2841 sect_to_write -= sectors;
2842 sector += sectors;
2843 sectors = block_sectors;
2844 }
2845 return ok;
2846}
2847
9f2c9d12 2848static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2849{
2850 int slot = r10_bio->read_slot;
560f8e55 2851 struct bio *bio;
e879a879 2852 struct r10conf *conf = mddev->private;
abbf098e 2853 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2854
2855 /* we got a read error. Maybe the drive is bad. Maybe just
2856 * the block and we can fix it.
2857 * We freeze all other IO, and try reading the block from
2858 * other devices. When we find one, we re-write
2859 * and check it that fixes the read error.
2860 * This is all done synchronously while the array is
2861 * frozen.
2862 */
fae8cc5e 2863 bio = r10_bio->devs[slot].bio;
fae8cc5e
N
2864 bio_put(bio);
2865 r10_bio->devs[slot].bio = NULL;
2866
8d3ca83d
N
2867 if (mddev->ro)
2868 r10_bio->devs[slot].bio = IO_BLOCKED;
2869 else if (!test_bit(FailFast, &rdev->flags)) {
e2d59925 2870 freeze_array(conf, 1);
560f8e55
N
2871 fix_read_error(conf, mddev, r10_bio);
2872 unfreeze_array(conf);
fae8cc5e 2873 } else
8d3ca83d 2874 md_error(mddev, rdev);
fae8cc5e 2875
abbf098e 2876 rdev_dec_pending(rdev, mddev);
545250f2 2877 r10_bio->state = 0;
82045523 2878 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
72c215ed
LN
2879 /*
2880 * allow_barrier after re-submit to ensure no sync io
2881 * can be issued while regular io pending.
2882 */
2883 allow_barrier(conf);
560f8e55
N
2884}
2885
e879a879 2886static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2887{
2888 /* Some sort of write request has finished and it
2889 * succeeded in writing where we thought there was a
2890 * bad block. So forget the bad block.
1a0b7cd8
N
2891 * Or possibly if failed and we need to record
2892 * a bad block.
749c55e9
N
2893 */
2894 int m;
3cb03002 2895 struct md_rdev *rdev;
749c55e9
N
2896
2897 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2898 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2899 for (m = 0; m < conf->copies; m++) {
2900 int dev = r10_bio->devs[m].devnum;
2901 rdev = conf->mirrors[dev].rdev;
01a69cab
YY
2902 if (r10_bio->devs[m].bio == NULL ||
2903 r10_bio->devs[m].bio->bi_end_io == NULL)
1a0b7cd8 2904 continue;
4e4cbee9 2905 if (!r10_bio->devs[m].bio->bi_status) {
749c55e9
N
2906 rdev_clear_badblocks(
2907 rdev,
2908 r10_bio->devs[m].addr,
c6563a8c 2909 r10_bio->sectors, 0);
1a0b7cd8
N
2910 } else {
2911 if (!rdev_set_badblocks(
2912 rdev,
2913 r10_bio->devs[m].addr,
2914 r10_bio->sectors, 0))
2915 md_error(conf->mddev, rdev);
749c55e9 2916 }
9ad1aefc 2917 rdev = conf->mirrors[dev].replacement;
01a69cab
YY
2918 if (r10_bio->devs[m].repl_bio == NULL ||
2919 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
9ad1aefc 2920 continue;
4246a0b6 2921
4e4cbee9 2922 if (!r10_bio->devs[m].repl_bio->bi_status) {
9ad1aefc
N
2923 rdev_clear_badblocks(
2924 rdev,
2925 r10_bio->devs[m].addr,
c6563a8c 2926 r10_bio->sectors, 0);
9ad1aefc
N
2927 } else {
2928 if (!rdev_set_badblocks(
2929 rdev,
2930 r10_bio->devs[m].addr,
2931 r10_bio->sectors, 0))
2932 md_error(conf->mddev, rdev);
2933 }
1a0b7cd8 2934 }
749c55e9
N
2935 put_buf(r10_bio);
2936 } else {
95af587e 2937 bool fail = false;
bd870a16
N
2938 for (m = 0; m < conf->copies; m++) {
2939 int dev = r10_bio->devs[m].devnum;
2940 struct bio *bio = r10_bio->devs[m].bio;
2941 rdev = conf->mirrors[dev].rdev;
2942 if (bio == IO_MADE_GOOD) {
749c55e9
N
2943 rdev_clear_badblocks(
2944 rdev,
2945 r10_bio->devs[m].addr,
c6563a8c 2946 r10_bio->sectors, 0);
749c55e9 2947 rdev_dec_pending(rdev, conf->mddev);
4e4cbee9 2948 } else if (bio != NULL && bio->bi_status) {
95af587e 2949 fail = true;
bd870a16
N
2950 if (!narrow_write_error(r10_bio, m)) {
2951 md_error(conf->mddev, rdev);
2952 set_bit(R10BIO_Degraded,
2953 &r10_bio->state);
2954 }
2955 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2956 }
475b0321
N
2957 bio = r10_bio->devs[m].repl_bio;
2958 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2959 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2960 rdev_clear_badblocks(
2961 rdev,
2962 r10_bio->devs[m].addr,
c6563a8c 2963 r10_bio->sectors, 0);
475b0321
N
2964 rdev_dec_pending(rdev, conf->mddev);
2965 }
bd870a16 2966 }
95af587e
N
2967 if (fail) {
2968 spin_lock_irq(&conf->device_lock);
2969 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
23ddba80 2970 conf->nr_queued++;
95af587e 2971 spin_unlock_irq(&conf->device_lock);
cf25ae78
GJ
2972 /*
2973 * In case freeze_array() is waiting for condition
2974 * nr_pending == nr_queued + extra to be true.
2975 */
2976 wake_up(&conf->wait_barrier);
95af587e 2977 md_wakeup_thread(conf->mddev->thread);
c340702c
N
2978 } else {
2979 if (test_bit(R10BIO_WriteError,
2980 &r10_bio->state))
2981 close_write(r10_bio);
95af587e 2982 raid_end_bio_io(r10_bio);
c340702c 2983 }
749c55e9
N
2984 }
2985}
2986
4ed8731d 2987static void raid10d(struct md_thread *thread)
1da177e4 2988{
4ed8731d 2989 struct mddev *mddev = thread->mddev;
9f2c9d12 2990 struct r10bio *r10_bio;
1da177e4 2991 unsigned long flags;
e879a879 2992 struct r10conf *conf = mddev->private;
1da177e4 2993 struct list_head *head = &conf->retry_list;
e1dfa0a2 2994 struct blk_plug plug;
1da177e4
LT
2995
2996 md_check_recovery(mddev);
1da177e4 2997
95af587e 2998 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2999 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
95af587e
N
3000 LIST_HEAD(tmp);
3001 spin_lock_irqsave(&conf->device_lock, flags);
2953079c 3002 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
23ddba80
SL
3003 while (!list_empty(&conf->bio_end_io_list)) {
3004 list_move(conf->bio_end_io_list.prev, &tmp);
3005 conf->nr_queued--;
3006 }
95af587e
N
3007 }
3008 spin_unlock_irqrestore(&conf->device_lock, flags);
3009 while (!list_empty(&tmp)) {
a452744b
MP
3010 r10_bio = list_first_entry(&tmp, struct r10bio,
3011 retry_list);
95af587e 3012 list_del(&r10_bio->retry_list);
c340702c
N
3013 if (mddev->degraded)
3014 set_bit(R10BIO_Degraded, &r10_bio->state);
3015
3016 if (test_bit(R10BIO_WriteError,
3017 &r10_bio->state))
3018 close_write(r10_bio);
95af587e
N
3019 raid_end_bio_io(r10_bio);
3020 }
3021 }
3022
e1dfa0a2 3023 blk_start_plug(&plug);
1da177e4 3024 for (;;) {
6cce3b23 3025
0021b7bc 3026 flush_pending_writes(conf);
6cce3b23 3027
a35e63ef
N
3028 spin_lock_irqsave(&conf->device_lock, flags);
3029 if (list_empty(head)) {
3030 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3031 break;
a35e63ef 3032 }
9f2c9d12 3033 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 3034 list_del(head->prev);
4443ae10 3035 conf->nr_queued--;
1da177e4
LT
3036 spin_unlock_irqrestore(&conf->device_lock, flags);
3037
3038 mddev = r10_bio->mddev;
070ec55d 3039 conf = mddev->private;
bd870a16
N
3040 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3041 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 3042 handle_write_completed(conf, r10_bio);
3ea7daa5
N
3043 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3044 reshape_request_write(mddev, r10_bio);
749c55e9 3045 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 3046 sync_request_write(mddev, r10_bio);
7eaceacc 3047 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 3048 recovery_request_write(mddev, r10_bio);
856e08e2 3049 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 3050 handle_read_error(mddev, r10_bio);
fc9977dd
N
3051 else
3052 WARN_ON_ONCE(1);
560f8e55 3053
1d9d5241 3054 cond_resched();
2953079c 3055 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 3056 md_check_recovery(mddev);
1da177e4 3057 }
e1dfa0a2 3058 blk_finish_plug(&plug);
1da177e4
LT
3059}
3060
e879a879 3061static int init_resync(struct r10conf *conf)
1da177e4 3062{
afeee514 3063 int ret, buffs, i;
1da177e4
LT
3064
3065 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514 3066 BUG_ON(mempool_initialized(&conf->r10buf_pool));
69335ef3 3067 conf->have_replacement = 0;
5cf00fcd 3068 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
3069 if (conf->mirrors[i].replacement)
3070 conf->have_replacement = 1;
afeee514
KO
3071 ret = mempool_init(&conf->r10buf_pool, buffs,
3072 r10buf_pool_alloc, r10buf_pool_free, conf);
3073 if (ret)
3074 return ret;
1da177e4
LT
3075 conf->next_resync = 0;
3076 return 0;
3077}
3078
208410b5
SL
3079static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3080{
afeee514 3081 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
208410b5
SL
3082 struct rsync_pages *rp;
3083 struct bio *bio;
3084 int nalloc;
3085 int i;
3086
3087 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3088 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3089 nalloc = conf->copies; /* resync */
3090 else
3091 nalloc = 2; /* recovery */
3092
3093 for (i = 0; i < nalloc; i++) {
3094 bio = r10bio->devs[i].bio;
3095 rp = bio->bi_private;
a7c50c94 3096 bio_reset(bio, NULL, 0);
208410b5
SL
3097 bio->bi_private = rp;
3098 bio = r10bio->devs[i].repl_bio;
3099 if (bio) {
3100 rp = bio->bi_private;
a7c50c94 3101 bio_reset(bio, NULL, 0);
208410b5
SL
3102 bio->bi_private = rp;
3103 }
3104 }
3105 return r10bio;
3106}
3107
8db87912
GJ
3108/*
3109 * Set cluster_sync_high since we need other nodes to add the
3110 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3111 */
3112static void raid10_set_cluster_sync_high(struct r10conf *conf)
3113{
3114 sector_t window_size;
3115 int extra_chunk, chunks;
3116
3117 /*
3118 * First, here we define "stripe" as a unit which across
3119 * all member devices one time, so we get chunks by use
3120 * raid_disks / near_copies. Otherwise, if near_copies is
3121 * close to raid_disks, then resync window could increases
3122 * linearly with the increase of raid_disks, which means
3123 * we will suspend a really large IO window while it is not
3124 * necessary. If raid_disks is not divisible by near_copies,
3125 * an extra chunk is needed to ensure the whole "stripe" is
3126 * covered.
3127 */
3128
3129 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3130 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3131 extra_chunk = 0;
3132 else
3133 extra_chunk = 1;
3134 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3135
3136 /*
3137 * At least use a 32M window to align with raid1's resync window
3138 */
3139 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3140 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3141
3142 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3143}
3144
1da177e4
LT
3145/*
3146 * perform a "sync" on one "block"
3147 *
3148 * We need to make sure that no normal I/O request - particularly write
3149 * requests - conflict with active sync requests.
3150 *
3151 * This is achieved by tracking pending requests and a 'barrier' concept
3152 * that can be installed to exclude normal IO requests.
3153 *
3154 * Resync and recovery are handled very differently.
3155 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3156 *
3157 * For resync, we iterate over virtual addresses, read all copies,
3158 * and update if there are differences. If only one copy is live,
3159 * skip it.
3160 * For recovery, we iterate over physical addresses, read a good
3161 * value for each non-in_sync drive, and over-write.
3162 *
3163 * So, for recovery we may have several outstanding complex requests for a
3164 * given address, one for each out-of-sync device. We model this by allocating
3165 * a number of r10_bio structures, one for each out-of-sync device.
3166 * As we setup these structures, we collect all bio's together into a list
3167 * which we then process collectively to add pages, and then process again
ed00aabd 3168 * to pass to submit_bio_noacct.
1da177e4
LT
3169 *
3170 * The r10_bio structures are linked using a borrowed master_bio pointer.
3171 * This link is counted in ->remaining. When the r10_bio that points to NULL
3172 * has its remaining count decremented to 0, the whole complex operation
3173 * is complete.
3174 *
3175 */
3176
849674e4 3177static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 3178 int *skipped)
1da177e4 3179{
e879a879 3180 struct r10conf *conf = mddev->private;
9f2c9d12 3181 struct r10bio *r10_bio;
1da177e4
LT
3182 struct bio *biolist = NULL, *bio;
3183 sector_t max_sector, nr_sectors;
1da177e4 3184 int i;
6cce3b23 3185 int max_sync;
57dab0bd 3186 sector_t sync_blocks;
1da177e4
LT
3187 sector_t sectors_skipped = 0;
3188 int chunks_skipped = 0;
5cf00fcd 3189 sector_t chunk_mask = conf->geo.chunk_mask;
022e510f 3190 int page_idx = 0;
8d355a46 3191 int error_disk = -1;
1da177e4 3192
7e83ccbe
MW
3193 /*
3194 * Allow skipping a full rebuild for incremental assembly
3195 * of a clean array, like RAID1 does.
3196 */
3197 if (mddev->bitmap == NULL &&
3198 mddev->recovery_cp == MaxSector &&
13765120
N
3199 mddev->reshape_position == MaxSector &&
3200 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 3201 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 3202 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
3203 conf->fullsync == 0) {
3204 *skipped = 1;
13765120 3205 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
3206 }
3207
a405c6f0
LN
3208 if (!mempool_initialized(&conf->r10buf_pool))
3209 if (init_resync(conf))
3210 return 0;
3211
1da177e4 3212 skipped:
58c0fed4 3213 max_sector = mddev->dev_sectors;
3ea7daa5
N
3214 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3215 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
3216 max_sector = mddev->resync_max_sectors;
3217 if (sector_nr >= max_sector) {
8db87912
GJ
3218 conf->cluster_sync_low = 0;
3219 conf->cluster_sync_high = 0;
3220
6cce3b23
N
3221 /* If we aborted, we need to abort the
3222 * sync on the 'current' bitmap chucks (there can
3223 * be several when recovering multiple devices).
3224 * as we may have started syncing it but not finished.
3225 * We can find the current address in
3226 * mddev->curr_resync, but for recovery,
3227 * we need to convert that to several
3228 * virtual addresses.
3229 */
3ea7daa5
N
3230 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3231 end_reshape(conf);
b3968552 3232 close_sync(conf);
3ea7daa5
N
3233 return 0;
3234 }
3235
6cce3b23
N
3236 if (mddev->curr_resync < max_sector) { /* aborted */
3237 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
e64e4018
AS
3238 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3239 &sync_blocks, 1);
5cf00fcd 3240 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
3241 sector_t sect =
3242 raid10_find_virt(conf, mddev->curr_resync, i);
e64e4018
AS
3243 md_bitmap_end_sync(mddev->bitmap, sect,
3244 &sync_blocks, 1);
6cce3b23 3245 }
9ad1aefc
N
3246 } else {
3247 /* completed sync */
3248 if ((!mddev->bitmap || conf->fullsync)
3249 && conf->have_replacement
3250 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3251 /* Completed a full sync so the replacements
3252 * are now fully recovered.
3253 */
f90145f3
N
3254 for (i = 0; i < conf->geo.raid_disks; i++) {
3255 struct md_rdev *rdev =
a448af25
YK
3256 conf->mirrors[i].replacement;
3257
f90145f3
N
3258 if (rdev)
3259 rdev->recovery_offset = MaxSector;
3260 }
9ad1aefc 3261 }
6cce3b23 3262 conf->fullsync = 0;
9ad1aefc 3263 }
e64e4018 3264 md_bitmap_close_sync(mddev->bitmap);
1da177e4 3265 close_sync(conf);
57afd89f 3266 *skipped = 1;
1da177e4
LT
3267 return sectors_skipped;
3268 }
3ea7daa5
N
3269
3270 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3271 return reshape_request(mddev, sector_nr, skipped);
3272
5cf00fcd 3273 if (chunks_skipped >= conf->geo.raid_disks) {
8d355a46
LN
3274 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3275 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery");
3276 if (error_disk >= 0 &&
3277 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3278 /*
3279 * recovery fails, set mirrors.recovery_disabled,
3280 * device shouldn't be added to there.
3281 */
3282 conf->mirrors[error_disk].recovery_disabled =
3283 mddev->recovery_disabled;
3284 return 0;
3285 }
3286 /*
3287 * if there has been nothing to do on any drive,
3288 * then there is nothing to do at all.
1da177e4 3289 */
57afd89f
N
3290 *skipped = 1;
3291 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
3292 }
3293
c6207277
N
3294 if (max_sector > mddev->resync_max)
3295 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3296
1da177e4
LT
3297 /* make sure whole request will fit in a chunk - if chunks
3298 * are meaningful
3299 */
5cf00fcd
N
3300 if (conf->geo.near_copies < conf->geo.raid_disks &&
3301 max_sector > (sector_nr | chunk_mask))
3302 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4 3303
7ac50447
TM
3304 /*
3305 * If there is non-resync activity waiting for a turn, then let it
3306 * though before starting on this new sync request.
3307 */
3308 if (conf->nr_waiting)
3309 schedule_timeout_uninterruptible(1);
3310
1da177e4
LT
3311 /* Again, very different code for resync and recovery.
3312 * Both must result in an r10bio with a list of bios that
309dca30 3313 * have bi_end_io, bi_sector, bi_bdev set,
1da177e4
LT
3314 * and bi_private set to the r10bio.
3315 * For recovery, we may actually create several r10bios
3316 * with 2 bios in each, that correspond to the bios in the main one.
3317 * In this case, the subordinate r10bios link back through a
3318 * borrowed master_bio pointer, and the counter in the master
3319 * includes a ref from each subordinate.
3320 */
3321 /* First, we decide what to do and set ->bi_end_io
3322 * To end_sync_read if we want to read, and
3323 * end_sync_write if we will want to write.
3324 */
3325
6cce3b23 3326 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3327 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3328 /* recovery... the complicated one */
e875ecea 3329 int j;
1da177e4
LT
3330 r10_bio = NULL;
3331
5cf00fcd 3332 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3333 int still_degraded;
9f2c9d12 3334 struct r10bio *rb2;
ab9d47e9
N
3335 sector_t sect;
3336 int must_sync;
e875ecea 3337 int any_working;
dc280d98 3338 struct raid10_info *mirror = &conf->mirrors[i];
f90145f3 3339 struct md_rdev *mrdev, *mreplace;
24afd80d 3340
a448af25
YK
3341 mrdev = mirror->rdev;
3342 mreplace = mirror->replacement;
f90145f3 3343
59f8f0b5
LN
3344 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3345 test_bit(In_sync, &mrdev->flags)))
3346 mrdev = NULL;
34817a24
LN
3347 if (mreplace && test_bit(Faulty, &mreplace->flags))
3348 mreplace = NULL;
ee37d731 3349
a448af25 3350 if (!mrdev && !mreplace)
ab9d47e9 3351 continue;
1da177e4 3352
ab9d47e9
N
3353 still_degraded = 0;
3354 /* want to reconstruct this device */
3355 rb2 = r10_bio;
3356 sect = raid10_find_virt(conf, sector_nr, i);
a448af25 3357 if (sect >= mddev->resync_max_sectors)
fc448a18
N
3358 /* last stripe is not complete - don't
3359 * try to recover this sector.
3360 */
3361 continue;
24afd80d
N
3362 /* Unless we are doing a full sync, or a replacement
3363 * we only need to recover the block if it is set in
3364 * the bitmap
ab9d47e9 3365 */
e64e4018
AS
3366 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3367 &sync_blocks, 1);
ab9d47e9
N
3368 if (sync_blocks < max_sync)
3369 max_sync = sync_blocks;
3370 if (!must_sync &&
f90145f3 3371 mreplace == NULL &&
ab9d47e9
N
3372 !conf->fullsync) {
3373 /* yep, skip the sync_blocks here, but don't assume
3374 * that there will never be anything to do here
3375 */
3376 chunks_skipped = -1;
3377 continue;
3378 }
59f8f0b5
LN
3379 if (mrdev)
3380 atomic_inc(&mrdev->nr_pending);
f90145f3
N
3381 if (mreplace)
3382 atomic_inc(&mreplace->nr_pending);
6cce3b23 3383
208410b5 3384 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3385 r10_bio->state = 0;
ab9d47e9
N
3386 raise_barrier(conf, rb2 != NULL);
3387 atomic_set(&r10_bio->remaining, 0);
18055569 3388
ab9d47e9
N
3389 r10_bio->master_bio = (struct bio*)rb2;
3390 if (rb2)
3391 atomic_inc(&rb2->remaining);
3392 r10_bio->mddev = mddev;
3393 set_bit(R10BIO_IsRecover, &r10_bio->state);
3394 r10_bio->sector = sect;
1da177e4 3395
ab9d47e9
N
3396 raid10_find_phys(conf, r10_bio);
3397
3398 /* Need to check if the array will still be
3399 * degraded
3400 */
f90145f3 3401 for (j = 0; j < conf->geo.raid_disks; j++) {
a448af25
YK
3402 struct md_rdev *rdev = conf->mirrors[j].rdev;
3403
f90145f3 3404 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
ab9d47e9 3405 still_degraded = 1;
87fc767b 3406 break;
1da177e4 3407 }
f90145f3 3408 }
ab9d47e9 3409
e64e4018
AS
3410 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3411 &sync_blocks, still_degraded);
ab9d47e9 3412
e875ecea 3413 any_working = 0;
ab9d47e9 3414 for (j=0; j<conf->copies;j++) {
e875ecea 3415 int k;
ab9d47e9 3416 int d = r10_bio->devs[j].devnum;
5e570289 3417 sector_t from_addr, to_addr;
a448af25 3418 struct md_rdev *rdev = conf->mirrors[d].rdev;
40c356ce
N
3419 sector_t sector, first_bad;
3420 int bad_sectors;
f90145f3
N
3421 if (!rdev ||
3422 !test_bit(In_sync, &rdev->flags))
ab9d47e9
N
3423 continue;
3424 /* This is where we read from */
e875ecea 3425 any_working = 1;
40c356ce
N
3426 sector = r10_bio->devs[j].addr;
3427
3428 if (is_badblock(rdev, sector, max_sync,
3429 &first_bad, &bad_sectors)) {
3430 if (first_bad > sector)
3431 max_sync = first_bad - sector;
3432 else {
3433 bad_sectors -= (sector
3434 - first_bad);
3435 if (max_sync > bad_sectors)
3436 max_sync = bad_sectors;
3437 continue;
3438 }
3439 }
ab9d47e9
N
3440 bio = r10_bio->devs[0].bio;
3441 bio->bi_next = biolist;
3442 biolist = bio;
ab9d47e9 3443 bio->bi_end_io = end_sync_read;
c34b7ac6 3444 bio->bi_opf = REQ_OP_READ;
8d3ca83d
N
3445 if (test_bit(FailFast, &rdev->flags))
3446 bio->bi_opf |= MD_FAILFAST;
5e570289 3447 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3448 bio->bi_iter.bi_sector = from_addr +
3449 rdev->data_offset;
74d46992 3450 bio_set_dev(bio, rdev->bdev);
24afd80d
N
3451 atomic_inc(&rdev->nr_pending);
3452 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3453
3454 for (k=0; k<conf->copies; k++)
3455 if (r10_bio->devs[k].devnum == i)
3456 break;
3457 BUG_ON(k == conf->copies);
5e570289 3458 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3459 r10_bio->devs[0].devnum = d;
5e570289 3460 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3461 r10_bio->devs[1].devnum = i;
5e570289 3462 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3463
59f8f0b5 3464 if (mrdev) {
24afd80d
N
3465 bio = r10_bio->devs[1].bio;
3466 bio->bi_next = biolist;
3467 biolist = bio;
24afd80d 3468 bio->bi_end_io = end_sync_write;
c34b7ac6 3469 bio->bi_opf = REQ_OP_WRITE;
4f024f37 3470 bio->bi_iter.bi_sector = to_addr
f90145f3 3471 + mrdev->data_offset;
74d46992 3472 bio_set_dev(bio, mrdev->bdev);
24afd80d
N
3473 atomic_inc(&r10_bio->remaining);
3474 } else
3475 r10_bio->devs[1].bio->bi_end_io = NULL;
3476
3477 /* and maybe write to replacement */
3478 bio = r10_bio->devs[1].repl_bio;
3479 if (bio)
3480 bio->bi_end_io = NULL;
34817a24 3481 /* Note: if replace is not NULL, then bio
24afd80d
N
3482 * cannot be NULL as r10buf_pool_alloc will
3483 * have allocated it.
24afd80d 3484 */
34817a24 3485 if (!mreplace)
24afd80d
N
3486 break;
3487 bio->bi_next = biolist;
3488 biolist = bio;
24afd80d 3489 bio->bi_end_io = end_sync_write;
c34b7ac6 3490 bio->bi_opf = REQ_OP_WRITE;
4f024f37 3491 bio->bi_iter.bi_sector = to_addr +
f90145f3 3492 mreplace->data_offset;
74d46992 3493 bio_set_dev(bio, mreplace->bdev);
24afd80d 3494 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3495 break;
3496 }
3497 if (j == conf->copies) {
e875ecea
N
3498 /* Cannot recover, so abort the recovery or
3499 * record a bad block */
e875ecea
N
3500 if (any_working) {
3501 /* problem is that there are bad blocks
3502 * on other device(s)
3503 */
3504 int k;
3505 for (k = 0; k < conf->copies; k++)
3506 if (r10_bio->devs[k].devnum == i)
3507 break;
59f8f0b5 3508 if (mrdev && !test_bit(In_sync,
f90145f3 3509 &mrdev->flags)
24afd80d 3510 && !rdev_set_badblocks(
f90145f3 3511 mrdev,
24afd80d
N
3512 r10_bio->devs[k].addr,
3513 max_sync, 0))
3514 any_working = 0;
f90145f3 3515 if (mreplace &&
24afd80d 3516 !rdev_set_badblocks(
f90145f3 3517 mreplace,
e875ecea
N
3518 r10_bio->devs[k].addr,
3519 max_sync, 0))
3520 any_working = 0;
3521 }
3522 if (!any_working) {
3523 if (!test_and_set_bit(MD_RECOVERY_INTR,
3524 &mddev->recovery))
08464e09 3525 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
e875ecea 3526 mdname(mddev));
24afd80d 3527 mirror->recovery_disabled
e875ecea 3528 = mddev->recovery_disabled;
8d355a46
LN
3529 } else {
3530 error_disk = i;
e875ecea 3531 }
e8b84915
N
3532 put_buf(r10_bio);
3533 if (rb2)
3534 atomic_dec(&rb2->remaining);
3535 r10_bio = rb2;
59f8f0b5
LN
3536 if (mrdev)
3537 rdev_dec_pending(mrdev, mddev);
f90145f3
N
3538 if (mreplace)
3539 rdev_dec_pending(mreplace, mddev);
ab9d47e9 3540 break;
1da177e4 3541 }
59f8f0b5
LN
3542 if (mrdev)
3543 rdev_dec_pending(mrdev, mddev);
f90145f3
N
3544 if (mreplace)
3545 rdev_dec_pending(mreplace, mddev);
8d3ca83d
N
3546 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3547 /* Only want this if there is elsewhere to
3548 * read from. 'j' is currently the first
3549 * readable copy.
3550 */
3551 int targets = 1;
3552 for (; j < conf->copies; j++) {
3553 int d = r10_bio->devs[j].devnum;
3554 if (conf->mirrors[d].rdev &&
3555 test_bit(In_sync,
3556 &conf->mirrors[d].rdev->flags))
3557 targets++;
3558 }
3559 if (targets == 1)
3560 r10_bio->devs[0].bio->bi_opf
3561 &= ~MD_FAILFAST;
3562 }
ab9d47e9 3563 }
1da177e4
LT
3564 if (biolist == NULL) {
3565 while (r10_bio) {
9f2c9d12
N
3566 struct r10bio *rb2 = r10_bio;
3567 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3568 rb2->master_bio = NULL;
3569 put_buf(rb2);
3570 }
3571 goto giveup;
3572 }
3573 } else {
3574 /* resync. Schedule a read for every block at this virt offset */
3575 int count = 0;
6cce3b23 3576
8db87912
GJ
3577 /*
3578 * Since curr_resync_completed could probably not update in
3579 * time, and we will set cluster_sync_low based on it.
3580 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3581 * safety reason, which ensures curr_resync_completed is
3582 * updated in bitmap_cond_end_sync.
3583 */
e64e4018
AS
3584 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3585 mddev_is_clustered(mddev) &&
3586 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
78200d45 3587
e64e4018
AS
3588 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3589 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3590 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3591 &mddev->recovery)) {
6cce3b23
N
3592 /* We can skip this block */
3593 *skipped = 1;
3594 return sync_blocks + sectors_skipped;
3595 }
3596 if (sync_blocks < max_sync)
3597 max_sync = sync_blocks;
208410b5 3598 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 3599 r10_bio->state = 0;
1da177e4 3600
1da177e4
LT
3601 r10_bio->mddev = mddev;
3602 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3603 raise_barrier(conf, 0);
3604 conf->next_resync = sector_nr;
1da177e4
LT
3605
3606 r10_bio->master_bio = NULL;
3607 r10_bio->sector = sector_nr;
3608 set_bit(R10BIO_IsSync, &r10_bio->state);
3609 raid10_find_phys(conf, r10_bio);
5cf00fcd 3610 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3611
5cf00fcd 3612 for (i = 0; i < conf->copies; i++) {
1da177e4 3613 int d = r10_bio->devs[i].devnum;
40c356ce
N
3614 sector_t first_bad, sector;
3615 int bad_sectors;
f90145f3 3616 struct md_rdev *rdev;
40c356ce 3617
9ad1aefc
N
3618 if (r10_bio->devs[i].repl_bio)
3619 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3620
1da177e4 3621 bio = r10_bio->devs[i].bio;
4e4cbee9 3622 bio->bi_status = BLK_STS_IOERR;
a448af25
YK
3623 rdev = conf->mirrors[d].rdev;
3624 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
1da177e4 3625 continue;
a448af25 3626
40c356ce 3627 sector = r10_bio->devs[i].addr;
f90145f3 3628 if (is_badblock(rdev, sector, max_sync,
40c356ce
N
3629 &first_bad, &bad_sectors)) {
3630 if (first_bad > sector)
3631 max_sync = first_bad - sector;
3632 else {
3633 bad_sectors -= (sector - first_bad);
3634 if (max_sync > bad_sectors)
91502f09 3635 max_sync = bad_sectors;
40c356ce
N
3636 continue;
3637 }
3638 }
f90145f3 3639 atomic_inc(&rdev->nr_pending);
1da177e4
LT
3640 atomic_inc(&r10_bio->remaining);
3641 bio->bi_next = biolist;
3642 biolist = bio;
1da177e4 3643 bio->bi_end_io = end_sync_read;
c34b7ac6 3644 bio->bi_opf = REQ_OP_READ;
1cdd1257 3645 if (test_bit(FailFast, &rdev->flags))
8d3ca83d 3646 bio->bi_opf |= MD_FAILFAST;
f90145f3 3647 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3648 bio_set_dev(bio, rdev->bdev);
1da177e4 3649 count++;
9ad1aefc 3650
a448af25
YK
3651 rdev = conf->mirrors[d].replacement;
3652 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
9ad1aefc 3653 continue;
a448af25 3654
f90145f3 3655 atomic_inc(&rdev->nr_pending);
9ad1aefc
N
3656
3657 /* Need to set up for writing to the replacement */
3658 bio = r10_bio->devs[i].repl_bio;
4e4cbee9 3659 bio->bi_status = BLK_STS_IOERR;
9ad1aefc
N
3660
3661 sector = r10_bio->devs[i].addr;
9ad1aefc
N
3662 bio->bi_next = biolist;
3663 biolist = bio;
9ad1aefc 3664 bio->bi_end_io = end_sync_write;
c34b7ac6 3665 bio->bi_opf = REQ_OP_WRITE;
1cdd1257 3666 if (test_bit(FailFast, &rdev->flags))
1919cbb2 3667 bio->bi_opf |= MD_FAILFAST;
f90145f3 3668 bio->bi_iter.bi_sector = sector + rdev->data_offset;
74d46992 3669 bio_set_dev(bio, rdev->bdev);
9ad1aefc 3670 count++;
1da177e4
LT
3671 }
3672
3673 if (count < 2) {
3674 for (i=0; i<conf->copies; i++) {
3675 int d = r10_bio->devs[i].devnum;
3676 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3677 rdev_dec_pending(conf->mirrors[d].rdev,
3678 mddev);
9ad1aefc
N
3679 if (r10_bio->devs[i].repl_bio &&
3680 r10_bio->devs[i].repl_bio->bi_end_io)
3681 rdev_dec_pending(
3682 conf->mirrors[d].replacement,
3683 mddev);
1da177e4
LT
3684 }
3685 put_buf(r10_bio);
3686 biolist = NULL;
3687 goto giveup;
3688 }
3689 }
3690
1da177e4 3691 nr_sectors = 0;
6cce3b23
N
3692 if (sector_nr + max_sync < max_sector)
3693 max_sector = sector_nr + max_sync;
1da177e4
LT
3694 do {
3695 struct page *page;
3696 int len = PAGE_SIZE;
1da177e4
LT
3697 if (sector_nr + (len>>9) > max_sector)
3698 len = (max_sector - sector_nr) << 9;
3699 if (len == 0)
3700 break;
3701 for (bio= biolist ; bio ; bio=bio->bi_next) {
f0250618 3702 struct resync_pages *rp = get_resync_pages(bio);
022e510f 3703 page = resync_fetch_page(rp, page_idx);
0c67dd64
JT
3704 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3705 bio->bi_status = BLK_STS_RESOURCE;
3706 bio_endio(bio);
3707 goto giveup;
3708 }
1da177e4
LT
3709 }
3710 nr_sectors += len>>9;
3711 sector_nr += len>>9;
022e510f 3712 } while (++page_idx < RESYNC_PAGES);
1da177e4
LT
3713 r10_bio->sectors = nr_sectors;
3714
8db87912
GJ
3715 if (mddev_is_clustered(mddev) &&
3716 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3717 /* It is resync not recovery */
3718 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3719 conf->cluster_sync_low = mddev->curr_resync_completed;
3720 raid10_set_cluster_sync_high(conf);
3721 /* Send resync message */
3722 md_cluster_ops->resync_info_update(mddev,
3723 conf->cluster_sync_low,
3724 conf->cluster_sync_high);
3725 }
3726 } else if (mddev_is_clustered(mddev)) {
3727 /* This is recovery not resync */
3728 sector_t sect_va1, sect_va2;
3729 bool broadcast_msg = false;
3730
3731 for (i = 0; i < conf->geo.raid_disks; i++) {
3732 /*
3733 * sector_nr is a device address for recovery, so we
3734 * need translate it to array address before compare
3735 * with cluster_sync_high.
3736 */
3737 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3738
3739 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3740 broadcast_msg = true;
3741 /*
3742 * curr_resync_completed is similar as
3743 * sector_nr, so make the translation too.
3744 */
3745 sect_va2 = raid10_find_virt(conf,
3746 mddev->curr_resync_completed, i);
3747
3748 if (conf->cluster_sync_low == 0 ||
3749 conf->cluster_sync_low > sect_va2)
3750 conf->cluster_sync_low = sect_va2;
3751 }
3752 }
3753 if (broadcast_msg) {
3754 raid10_set_cluster_sync_high(conf);
3755 md_cluster_ops->resync_info_update(mddev,
3756 conf->cluster_sync_low,
3757 conf->cluster_sync_high);
3758 }
3759 }
3760
1da177e4
LT
3761 while (biolist) {
3762 bio = biolist;
3763 biolist = biolist->bi_next;
3764
3765 bio->bi_next = NULL;
f0250618 3766 r10_bio = get_resync_r10bio(bio);
1da177e4
LT
3767 r10_bio->sectors = nr_sectors;
3768
3769 if (bio->bi_end_io == end_sync_read) {
74d46992 3770 md_sync_acct_bio(bio, nr_sectors);
4e4cbee9 3771 bio->bi_status = 0;
ed00aabd 3772 submit_bio_noacct(bio);
1da177e4
LT
3773 }
3774 }
3775
57afd89f
N
3776 if (sectors_skipped)
3777 /* pretend they weren't skipped, it makes
3778 * no important difference in this case
3779 */
3780 md_done_sync(mddev, sectors_skipped, 1);
3781
1da177e4
LT
3782 return sectors_skipped + nr_sectors;
3783 giveup:
3784 /* There is nowhere to write, so all non-sync
e875ecea
N
3785 * drives must be failed or in resync, all drives
3786 * have a bad block, so try the next chunk...
1da177e4 3787 */
09b4068a
N
3788 if (sector_nr + max_sync < max_sector)
3789 max_sector = sector_nr + max_sync;
3790
3791 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3792 chunks_skipped ++;
3793 sector_nr = max_sector;
1da177e4 3794 goto skipped;
1da177e4
LT
3795}
3796
80c3a6ce 3797static sector_t
fd01b88c 3798raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3799{
3800 sector_t size;
e879a879 3801 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3802
3803 if (!raid_disks)
3ea7daa5
N
3804 raid_disks = min(conf->geo.raid_disks,
3805 conf->prev.raid_disks);
80c3a6ce 3806 if (!sectors)
dab8b292 3807 sectors = conf->dev_sectors;
80c3a6ce 3808
5cf00fcd
N
3809 size = sectors >> conf->geo.chunk_shift;
3810 sector_div(size, conf->geo.far_copies);
80c3a6ce 3811 size = size * raid_disks;
5cf00fcd 3812 sector_div(size, conf->geo.near_copies);
80c3a6ce 3813
5cf00fcd 3814 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3815}
3816
6508fdbf
N
3817static void calc_sectors(struct r10conf *conf, sector_t size)
3818{
3819 /* Calculate the number of sectors-per-device that will
3820 * actually be used, and set conf->dev_sectors and
3821 * conf->stride
3822 */
3823
5cf00fcd
N
3824 size = size >> conf->geo.chunk_shift;
3825 sector_div(size, conf->geo.far_copies);
3826 size = size * conf->geo.raid_disks;
3827 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3828 /* 'size' is now the number of chunks in the array */
3829 /* calculate "used chunks per device" */
3830 size = size * conf->copies;
3831
3832 /* We need to round up when dividing by raid_disks to
3833 * get the stride size.
3834 */
5cf00fcd 3835 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3836
5cf00fcd 3837 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3838
5cf00fcd
N
3839 if (conf->geo.far_offset)
3840 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3841 else {
5cf00fcd
N
3842 sector_div(size, conf->geo.far_copies);
3843 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3844 }
3845}
dab8b292 3846
deb200d0
N
3847enum geo_type {geo_new, geo_old, geo_start};
3848static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3849{
3850 int nc, fc, fo;
3851 int layout, chunk, disks;
3852 switch (new) {
3853 case geo_old:
3854 layout = mddev->layout;
3855 chunk = mddev->chunk_sectors;
3856 disks = mddev->raid_disks - mddev->delta_disks;
3857 break;
3858 case geo_new:
3859 layout = mddev->new_layout;
3860 chunk = mddev->new_chunk_sectors;
3861 disks = mddev->raid_disks;
3862 break;
3863 default: /* avoid 'may be unused' warnings */
3864 case geo_start: /* new when starting reshape - raid_disks not
3865 * updated yet. */
3866 layout = mddev->new_layout;
3867 chunk = mddev->new_chunk_sectors;
3868 disks = mddev->raid_disks + mddev->delta_disks;
3869 break;
3870 }
8bce6d35 3871 if (layout >> 19)
deb200d0
N
3872 return -1;
3873 if (chunk < (PAGE_SIZE >> 9) ||
3874 !is_power_of_2(chunk))
3875 return -2;
3876 nc = layout & 255;
3877 fc = (layout >> 8) & 255;
3878 fo = layout & (1<<16);
3879 geo->raid_disks = disks;
3880 geo->near_copies = nc;
3881 geo->far_copies = fc;
3882 geo->far_offset = fo;
8bce6d35
N
3883 switch (layout >> 17) {
3884 case 0: /* original layout. simple but not always optimal */
3885 geo->far_set_size = disks;
3886 break;
3887 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3888 * actually using this, but leave code here just in case.*/
3889 geo->far_set_size = disks/fc;
3890 WARN(geo->far_set_size < fc,
3891 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3892 break;
3893 case 2: /* "improved" layout fixed to match documentation */
3894 geo->far_set_size = fc * nc;
3895 break;
3896 default: /* Not a valid layout */
3897 return -1;
3898 }
deb200d0
N
3899 geo->chunk_mask = chunk - 1;
3900 geo->chunk_shift = ffz(~chunk);
3901 return nc*fc;
3902}
3903
c9ac2acd
YK
3904static void raid10_free_conf(struct r10conf *conf)
3905{
3906 if (!conf)
3907 return;
3908
3909 mempool_exit(&conf->r10bio_pool);
3910 kfree(conf->mirrors);
3911 kfree(conf->mirrors_old);
3912 kfree(conf->mirrors_new);
3913 safe_put_page(conf->tmppage);
3914 bioset_exit(&conf->bio_split);
3915 kfree(conf);
3916}
3917
e879a879 3918static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3919{
e879a879 3920 struct r10conf *conf = NULL;
dab8b292 3921 int err = -EINVAL;
deb200d0
N
3922 struct geom geo;
3923 int copies;
3924
3925 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3926
deb200d0 3927 if (copies == -2) {
08464e09
N
3928 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3929 mdname(mddev), PAGE_SIZE);
dab8b292 3930 goto out;
1da177e4 3931 }
2604b703 3932
deb200d0 3933 if (copies < 2 || copies > mddev->raid_disks) {
08464e09
N
3934 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3935 mdname(mddev), mddev->new_layout);
1da177e4
LT
3936 goto out;
3937 }
dab8b292
TM
3938
3939 err = -ENOMEM;
e879a879 3940 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3941 if (!conf)
1da177e4 3942 goto out;
dab8b292 3943
3ea7daa5 3944 /* FIXME calc properly */
6396bb22
KC
3945 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3946 sizeof(struct raid10_info),
dab8b292
TM
3947 GFP_KERNEL);
3948 if (!conf->mirrors)
3949 goto out;
4443ae10
N
3950
3951 conf->tmppage = alloc_page(GFP_KERNEL);
3952 if (!conf->tmppage)
dab8b292
TM
3953 goto out;
3954
deb200d0
N
3955 conf->geo = geo;
3956 conf->copies = copies;
3f677f9c 3957 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
c7afa803 3958 rbio_pool_free, conf);
afeee514 3959 if (err)
dab8b292
TM
3960 goto out;
3961
afeee514
KO
3962 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3963 if (err)
fc9977dd
N
3964 goto out;
3965
6508fdbf 3966 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3967 if (mddev->reshape_position == MaxSector) {
3968 conf->prev = conf->geo;
3969 conf->reshape_progress = MaxSector;
3970 } else {
3971 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3972 err = -EINVAL;
3973 goto out;
3974 }
3975 conf->reshape_progress = mddev->reshape_position;
3976 if (conf->prev.far_offset)
3977 conf->prev.stride = 1 << conf->prev.chunk_shift;
3978 else
3979 /* far_copies must be 1 */
3980 conf->prev.stride = conf->dev_sectors;
3981 }
299b0685 3982 conf->reshape_safe = conf->reshape_progress;
e7e72bf6 3983 spin_lock_init(&conf->device_lock);
dab8b292 3984 INIT_LIST_HEAD(&conf->retry_list);
95af587e 3985 INIT_LIST_HEAD(&conf->bio_end_io_list);
dab8b292 3986
b9b083f9 3987 seqlock_init(&conf->resync_lock);
dab8b292 3988 init_waitqueue_head(&conf->wait_barrier);
0e5313e2 3989 atomic_set(&conf->nr_pending, 0);
dab8b292 3990
afeee514 3991 err = -ENOMEM;
44693154
YK
3992 rcu_assign_pointer(conf->thread,
3993 md_register_thread(raid10d, mddev, "raid10"));
dab8b292
TM
3994 if (!conf->thread)
3995 goto out;
3996
dab8b292
TM
3997 conf->mddev = mddev;
3998 return conf;
3999
4000 out:
c9ac2acd 4001 raid10_free_conf(conf);
dab8b292
TM
4002 return ERR_PTR(err);
4003}
4004
16ef5101
CH
4005static void raid10_set_io_opt(struct r10conf *conf)
4006{
4007 int raid_disks = conf->geo.raid_disks;
4008
4009 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4010 raid_disks /= conf->geo.near_copies;
4011 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4012 raid_disks);
4013}
4014
849674e4 4015static int raid10_run(struct mddev *mddev)
dab8b292 4016{
e879a879 4017 struct r10conf *conf;
16ef5101 4018 int i, disk_idx;
dc280d98 4019 struct raid10_info *disk;
3cb03002 4020 struct md_rdev *rdev;
dab8b292 4021 sector_t size;
3ea7daa5
N
4022 sector_t min_offset_diff = 0;
4023 int first = 1;
dab8b292
TM
4024
4025 if (mddev->private == NULL) {
4026 conf = setup_conf(mddev);
4027 if (IS_ERR(conf))
4028 return PTR_ERR(conf);
4029 mddev->private = conf;
4030 }
4031 conf = mddev->private;
4032 if (!conf)
4033 goto out;
4034
44693154
YK
4035 rcu_assign_pointer(mddev->thread, conf->thread);
4036 rcu_assign_pointer(conf->thread, NULL);
f0ddb83d 4037
8db87912
GJ
4038 if (mddev_is_clustered(conf->mddev)) {
4039 int fc, fo;
4040
4041 fc = (mddev->layout >> 8) & 255;
4042 fo = mddev->layout & (1<<16);
4043 if (fc > 1 || fo > 0) {
4044 pr_err("only near layout is supported by clustered"
4045 " raid10\n");
43a52123 4046 goto out_free_conf;
8db87912
GJ
4047 }
4048 }
4049
cc4d1efd 4050 if (mddev->queue) {
3deff1a7 4051 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
16ef5101
CH
4052 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4053 raid10_set_io_opt(conf);
cc4d1efd 4054 }
8f6c2e4b 4055
dafb20fa 4056 rdev_for_each(rdev, mddev) {
3ea7daa5 4057 long long diff;
34b343cf 4058
1da177e4 4059 disk_idx = rdev->raid_disk;
f8c9e74f
N
4060 if (disk_idx < 0)
4061 continue;
4062 if (disk_idx >= conf->geo.raid_disks &&
4063 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
4064 continue;
4065 disk = conf->mirrors + disk_idx;
4066
56a2559b
N
4067 if (test_bit(Replacement, &rdev->flags)) {
4068 if (disk->replacement)
4069 goto out_free_conf;
4070 disk->replacement = rdev;
4071 } else {
4072 if (disk->rdev)
4073 goto out_free_conf;
4074 disk->rdev = rdev;
4075 }
3ea7daa5
N
4076 diff = (rdev->new_data_offset - rdev->data_offset);
4077 if (!mddev->reshape_backwards)
4078 diff = -diff;
4079 if (diff < 0)
4080 diff = 0;
4081 if (first || diff < min_offset_diff)
4082 min_offset_diff = diff;
56a2559b 4083
cc4d1efd
JB
4084 if (mddev->gendisk)
4085 disk_stack_limits(mddev->gendisk, rdev->bdev,
4086 rdev->data_offset << 9);
1da177e4
LT
4087
4088 disk->head_position = 0;
6f287ca6 4089 first = 0;
1da177e4 4090 }
3ea7daa5 4091
6d508242 4092 /* need to check that every block has at least one working mirror */
700c7213 4093 if (!enough(conf, -1)) {
08464e09 4094 pr_err("md/raid10:%s: not enough operational mirrors.\n",
6d508242 4095 mdname(mddev));
1da177e4
LT
4096 goto out_free_conf;
4097 }
4098
3ea7daa5
N
4099 if (conf->reshape_progress != MaxSector) {
4100 /* must ensure that shape change is supported */
4101 if (conf->geo.far_copies != 1 &&
4102 conf->geo.far_offset == 0)
4103 goto out_free_conf;
4104 if (conf->prev.far_copies != 1 &&
78eaa0d4 4105 conf->prev.far_offset == 0)
3ea7daa5
N
4106 goto out_free_conf;
4107 }
4108
1da177e4 4109 mddev->degraded = 0;
f8c9e74f
N
4110 for (i = 0;
4111 i < conf->geo.raid_disks
4112 || i < conf->prev.raid_disks;
4113 i++) {
1da177e4
LT
4114
4115 disk = conf->mirrors + i;
4116
56a2559b
N
4117 if (!disk->rdev && disk->replacement) {
4118 /* The replacement is all we have - use it */
4119 disk->rdev = disk->replacement;
4120 disk->replacement = NULL;
4121 clear_bit(Replacement, &disk->rdev->flags);
4122 }
4123
5fd6c1dc 4124 if (!disk->rdev ||
2e333e89 4125 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
4126 disk->head_position = 0;
4127 mddev->degraded++;
0b59bb64
N
4128 if (disk->rdev &&
4129 disk->rdev->saved_raid_disk < 0)
8c2e870a 4130 conf->fullsync = 1;
1da177e4 4131 }
bda31539
BC
4132
4133 if (disk->replacement &&
4134 !test_bit(In_sync, &disk->replacement->flags) &&
4135 disk->replacement->saved_raid_disk < 0) {
4136 conf->fullsync = 1;
4137 }
4138
d890fa2b 4139 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
4140 }
4141
8c6ac868 4142 if (mddev->recovery_cp != MaxSector)
08464e09
N
4143 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4144 mdname(mddev));
4145 pr_info("md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
4146 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4147 conf->geo.raid_disks);
1da177e4
LT
4148 /*
4149 * Ok, everything is just fine now
4150 */
dab8b292
TM
4151 mddev->dev_sectors = conf->dev_sectors;
4152 size = raid10_size(mddev, 0, 0);
4153 md_set_array_sectors(mddev, size);
4154 mddev->resync_max_sectors = size;
46533ff7 4155 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
1da177e4 4156
a91a2785
MP
4157 if (md_integrity_register(mddev))
4158 goto out_free_conf;
4159
3ea7daa5
N
4160 if (conf->reshape_progress != MaxSector) {
4161 unsigned long before_length, after_length;
4162
4163 before_length = ((1 << conf->prev.chunk_shift) *
4164 conf->prev.far_copies);
4165 after_length = ((1 << conf->geo.chunk_shift) *
4166 conf->geo.far_copies);
4167
4168 if (max(before_length, after_length) > min_offset_diff) {
4169 /* This cannot work */
08464e09 4170 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3ea7daa5
N
4171 goto out_free_conf;
4172 }
4173 conf->offset_diff = min_offset_diff;
4174
3ea7daa5
N
4175 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4176 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4177 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4178 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
44693154
YK
4179 rcu_assign_pointer(mddev->sync_thread,
4180 md_register_thread(md_do_sync, mddev, "reshape"));
e406f12d
AP
4181 if (!mddev->sync_thread)
4182 goto out_free_conf;
3ea7daa5
N
4183 }
4184
1da177e4
LT
4185 return 0;
4186
4187out_free_conf:
7eb8ff02 4188 md_unregister_thread(mddev, &mddev->thread);
c9ac2acd 4189 raid10_free_conf(conf);
1da177e4
LT
4190 mddev->private = NULL;
4191out:
4192 return -EIO;
4193}
4194
afa0f557 4195static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 4196{
c9ac2acd 4197 raid10_free_conf(priv);
1da177e4
LT
4198}
4199
b03e0ccb 4200static void raid10_quiesce(struct mddev *mddev, int quiesce)
6cce3b23 4201{
e879a879 4202 struct r10conf *conf = mddev->private;
6cce3b23 4203
b03e0ccb 4204 if (quiesce)
6cce3b23 4205 raise_barrier(conf, 0);
b03e0ccb 4206 else
6cce3b23 4207 lower_barrier(conf);
6cce3b23 4208}
1da177e4 4209
006a09a0
N
4210static int raid10_resize(struct mddev *mddev, sector_t sectors)
4211{
4212 /* Resize of 'far' arrays is not supported.
4213 * For 'near' and 'offset' arrays we can set the
4214 * number of sectors used to be an appropriate multiple
4215 * of the chunk size.
4216 * For 'offset', this is far_copies*chunksize.
4217 * For 'near' the multiplier is the LCM of
4218 * near_copies and raid_disks.
4219 * So if far_copies > 1 && !far_offset, fail.
4220 * Else find LCM(raid_disks, near_copy)*far_copies and
4221 * multiply by chunk_size. Then round to this number.
4222 * This is mostly done by raid10_size()
4223 */
4224 struct r10conf *conf = mddev->private;
4225 sector_t oldsize, size;
4226
f8c9e74f
N
4227 if (mddev->reshape_position != MaxSector)
4228 return -EBUSY;
4229
5cf00fcd 4230 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
4231 return -EINVAL;
4232
4233 oldsize = raid10_size(mddev, 0, 0);
4234 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
4235 if (mddev->external_size &&
4236 mddev->array_sectors > size)
006a09a0 4237 return -EINVAL;
a4a6125a 4238 if (mddev->bitmap) {
e64e4018 4239 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
a4a6125a
N
4240 if (ret)
4241 return ret;
4242 }
4243 md_set_array_sectors(mddev, size);
006a09a0
N
4244 if (sectors > mddev->dev_sectors &&
4245 mddev->recovery_cp > oldsize) {
4246 mddev->recovery_cp = oldsize;
4247 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4248 }
6508fdbf
N
4249 calc_sectors(conf, sectors);
4250 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
4251 mddev->resync_max_sectors = size;
4252 return 0;
4253}
4254
53a6ab4d 4255static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 4256{
3cb03002 4257 struct md_rdev *rdev;
e879a879 4258 struct r10conf *conf;
dab8b292
TM
4259
4260 if (mddev->degraded > 0) {
08464e09
N
4261 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4262 mdname(mddev));
dab8b292
TM
4263 return ERR_PTR(-EINVAL);
4264 }
53a6ab4d 4265 sector_div(size, devs);
dab8b292 4266
dab8b292
TM
4267 /* Set new parameters */
4268 mddev->new_level = 10;
4269 /* new layout: far_copies = 1, near_copies = 2 */
4270 mddev->new_layout = (1<<8) + 2;
4271 mddev->new_chunk_sectors = mddev->chunk_sectors;
4272 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
4273 mddev->raid_disks *= 2;
4274 /* make sure it will be not marked as dirty */
4275 mddev->recovery_cp = MaxSector;
53a6ab4d 4276 mddev->dev_sectors = size;
dab8b292
TM
4277
4278 conf = setup_conf(mddev);
02214dc5 4279 if (!IS_ERR(conf)) {
dafb20fa 4280 rdev_for_each(rdev, mddev)
53a6ab4d 4281 if (rdev->raid_disk >= 0) {
e93f68a1 4282 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
4283 rdev->sectors = size;
4284 }
02214dc5
KW
4285 }
4286
dab8b292
TM
4287 return conf;
4288}
4289
fd01b88c 4290static void *raid10_takeover(struct mddev *mddev)
dab8b292 4291{
e373ab10 4292 struct r0conf *raid0_conf;
dab8b292
TM
4293
4294 /* raid10 can take over:
4295 * raid0 - providing it has only two drives
4296 */
4297 if (mddev->level == 0) {
4298 /* for raid0 takeover only one zone is supported */
e373ab10
N
4299 raid0_conf = mddev->private;
4300 if (raid0_conf->nr_strip_zones > 1) {
08464e09
N
4301 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4302 mdname(mddev));
dab8b292
TM
4303 return ERR_PTR(-EINVAL);
4304 }
53a6ab4d
N
4305 return raid10_takeover_raid0(mddev,
4306 raid0_conf->strip_zone->zone_end,
4307 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
4308 }
4309 return ERR_PTR(-EINVAL);
4310}
4311
3ea7daa5
N
4312static int raid10_check_reshape(struct mddev *mddev)
4313{
4314 /* Called when there is a request to change
4315 * - layout (to ->new_layout)
4316 * - chunk size (to ->new_chunk_sectors)
4317 * - raid_disks (by delta_disks)
4318 * or when trying to restart a reshape that was ongoing.
4319 *
4320 * We need to validate the request and possibly allocate
4321 * space if that might be an issue later.
4322 *
4323 * Currently we reject any reshape of a 'far' mode array,
4324 * allow chunk size to change if new is generally acceptable,
4325 * allow raid_disks to increase, and allow
4326 * a switch between 'near' mode and 'offset' mode.
4327 */
4328 struct r10conf *conf = mddev->private;
4329 struct geom geo;
4330
4331 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4332 return -EINVAL;
4333
4334 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4335 /* mustn't change number of copies */
4336 return -EINVAL;
4337 if (geo.far_copies > 1 && !geo.far_offset)
4338 /* Cannot switch to 'far' mode */
4339 return -EINVAL;
4340
4341 if (mddev->array_sectors & geo.chunk_mask)
4342 /* not factor of array size */
4343 return -EINVAL;
4344
3ea7daa5
N
4345 if (!enough(conf, -1))
4346 return -EINVAL;
4347
4348 kfree(conf->mirrors_new);
4349 conf->mirrors_new = NULL;
4350 if (mddev->delta_disks > 0) {
4351 /* allocate new 'mirrors' list */
6396bb22
KC
4352 conf->mirrors_new =
4353 kcalloc(mddev->raid_disks + mddev->delta_disks,
4354 sizeof(struct raid10_info),
4355 GFP_KERNEL);
3ea7daa5
N
4356 if (!conf->mirrors_new)
4357 return -ENOMEM;
4358 }
4359 return 0;
4360}
4361
4362/*
4363 * Need to check if array has failed when deciding whether to:
4364 * - start an array
4365 * - remove non-faulty devices
4366 * - add a spare
4367 * - allow a reshape
4368 * This determination is simple when no reshape is happening.
4369 * However if there is a reshape, we need to carefully check
4370 * both the before and after sections.
4371 * This is because some failed devices may only affect one
4372 * of the two sections, and some non-in_sync devices may
4373 * be insync in the section most affected by failed devices.
4374 */
4375static int calc_degraded(struct r10conf *conf)
4376{
4377 int degraded, degraded2;
4378 int i;
4379
3ea7daa5
N
4380 degraded = 0;
4381 /* 'prev' section first */
4382 for (i = 0; i < conf->prev.raid_disks; i++) {
a448af25
YK
4383 struct md_rdev *rdev = conf->mirrors[i].rdev;
4384
3ea7daa5
N
4385 if (!rdev || test_bit(Faulty, &rdev->flags))
4386 degraded++;
4387 else if (!test_bit(In_sync, &rdev->flags))
4388 /* When we can reduce the number of devices in
4389 * an array, this might not contribute to
4390 * 'degraded'. It does now.
4391 */
4392 degraded++;
4393 }
3ea7daa5
N
4394 if (conf->geo.raid_disks == conf->prev.raid_disks)
4395 return degraded;
3ea7daa5
N
4396 degraded2 = 0;
4397 for (i = 0; i < conf->geo.raid_disks; i++) {
a448af25
YK
4398 struct md_rdev *rdev = conf->mirrors[i].rdev;
4399
3ea7daa5
N
4400 if (!rdev || test_bit(Faulty, &rdev->flags))
4401 degraded2++;
4402 else if (!test_bit(In_sync, &rdev->flags)) {
4403 /* If reshape is increasing the number of devices,
4404 * this section has already been recovered, so
4405 * it doesn't contribute to degraded.
4406 * else it does.
4407 */
4408 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4409 degraded2++;
4410 }
4411 }
3ea7daa5
N
4412 if (degraded2 > degraded)
4413 return degraded2;
4414 return degraded;
4415}
4416
4417static int raid10_start_reshape(struct mddev *mddev)
4418{
4419 /* A 'reshape' has been requested. This commits
4420 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4421 * This also checks if there are enough spares and adds them
4422 * to the array.
4423 * We currently require enough spares to make the final
4424 * array non-degraded. We also require that the difference
4425 * between old and new data_offset - on each device - is
4426 * enough that we never risk over-writing.
4427 */
4428
4429 unsigned long before_length, after_length;
4430 sector_t min_offset_diff = 0;
4431 int first = 1;
4432 struct geom new;
4433 struct r10conf *conf = mddev->private;
4434 struct md_rdev *rdev;
4435 int spares = 0;
bb63a701 4436 int ret;
3ea7daa5
N
4437
4438 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4439 return -EBUSY;
4440
4441 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4442 return -EINVAL;
4443
4444 before_length = ((1 << conf->prev.chunk_shift) *
4445 conf->prev.far_copies);
4446 after_length = ((1 << conf->geo.chunk_shift) *
4447 conf->geo.far_copies);
4448
4449 rdev_for_each(rdev, mddev) {
4450 if (!test_bit(In_sync, &rdev->flags)
4451 && !test_bit(Faulty, &rdev->flags))
4452 spares++;
4453 if (rdev->raid_disk >= 0) {
4454 long long diff = (rdev->new_data_offset
4455 - rdev->data_offset);
4456 if (!mddev->reshape_backwards)
4457 diff = -diff;
4458 if (diff < 0)
4459 diff = 0;
4460 if (first || diff < min_offset_diff)
4461 min_offset_diff = diff;
b506335e 4462 first = 0;
3ea7daa5
N
4463 }
4464 }
4465
4466 if (max(before_length, after_length) > min_offset_diff)
4467 return -EINVAL;
4468
4469 if (spares < mddev->delta_disks)
4470 return -EINVAL;
4471
4472 conf->offset_diff = min_offset_diff;
4473 spin_lock_irq(&conf->device_lock);
4474 if (conf->mirrors_new) {
4475 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4476 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4477 smp_mb();
c4796e21 4478 kfree(conf->mirrors_old);
3ea7daa5
N
4479 conf->mirrors_old = conf->mirrors;
4480 conf->mirrors = conf->mirrors_new;
4481 conf->mirrors_new = NULL;
4482 }
4483 setup_geo(&conf->geo, mddev, geo_start);
4484 smp_mb();
4485 if (mddev->reshape_backwards) {
4486 sector_t size = raid10_size(mddev, 0, 0);
4487 if (size < mddev->array_sectors) {
4488 spin_unlock_irq(&conf->device_lock);
08464e09
N
4489 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4490 mdname(mddev));
3ea7daa5
N
4491 return -EINVAL;
4492 }
4493 mddev->resync_max_sectors = size;
4494 conf->reshape_progress = size;
4495 } else
4496 conf->reshape_progress = 0;
299b0685 4497 conf->reshape_safe = conf->reshape_progress;
3ea7daa5
N
4498 spin_unlock_irq(&conf->device_lock);
4499
bb63a701 4500 if (mddev->delta_disks && mddev->bitmap) {
afd75628
GJ
4501 struct mdp_superblock_1 *sb = NULL;
4502 sector_t oldsize, newsize;
4503
4504 oldsize = raid10_size(mddev, 0, 0);
4505 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4506
4507 if (!mddev_is_clustered(mddev)) {
4508 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4509 if (ret)
4510 goto abort;
4511 else
4512 goto out;
4513 }
4514
4515 rdev_for_each(rdev, mddev) {
4516 if (rdev->raid_disk > -1 &&
4517 !test_bit(Faulty, &rdev->flags))
4518 sb = page_address(rdev->sb_page);
4519 }
4520
4521 /*
4522 * some node is already performing reshape, and no need to
4523 * call md_bitmap_resize again since it should be called when
4524 * receiving BITMAP_RESIZE msg
4525 */
4526 if ((sb && (le32_to_cpu(sb->feature_map) &
4527 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4528 goto out;
4529
4530 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
bb63a701
N
4531 if (ret)
4532 goto abort;
afd75628
GJ
4533
4534 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4535 if (ret) {
4536 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4537 goto abort;
4538 }
bb63a701 4539 }
afd75628 4540out:
3ea7daa5
N
4541 if (mddev->delta_disks > 0) {
4542 rdev_for_each(rdev, mddev)
4543 if (rdev->raid_disk < 0 &&
4544 !test_bit(Faulty, &rdev->flags)) {
4545 if (raid10_add_disk(mddev, rdev) == 0) {
4546 if (rdev->raid_disk >=
4547 conf->prev.raid_disks)
4548 set_bit(In_sync, &rdev->flags);
4549 else
4550 rdev->recovery_offset = 0;
4551
38ffc01f
DLM
4552 /* Failure here is OK */
4553 sysfs_link_rdev(mddev, rdev);
3ea7daa5
N
4554 }
4555 } else if (rdev->raid_disk >= conf->prev.raid_disks
4556 && !test_bit(Faulty, &rdev->flags)) {
4557 /* This is a spare that was manually added */
4558 set_bit(In_sync, &rdev->flags);
4559 }
4560 }
4561 /* When a reshape changes the number of devices,
4562 * ->degraded is measured against the larger of the
4563 * pre and post numbers.
4564 */
4565 spin_lock_irq(&conf->device_lock);
4566 mddev->degraded = calc_degraded(conf);
4567 spin_unlock_irq(&conf->device_lock);
4568 mddev->raid_disks = conf->geo.raid_disks;
4569 mddev->reshape_position = conf->reshape_progress;
2953079c 4570 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5
N
4571
4572 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4573 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4574 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4575 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4576 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4577
44693154
YK
4578 rcu_assign_pointer(mddev->sync_thread,
4579 md_register_thread(md_do_sync, mddev, "reshape"));
3ea7daa5 4580 if (!mddev->sync_thread) {
bb63a701
N
4581 ret = -EAGAIN;
4582 goto abort;
3ea7daa5
N
4583 }
4584 conf->reshape_checkpoint = jiffies;
4585 md_wakeup_thread(mddev->sync_thread);
54679486 4586 md_new_event();
3ea7daa5 4587 return 0;
bb63a701
N
4588
4589abort:
4590 mddev->recovery = 0;
4591 spin_lock_irq(&conf->device_lock);
4592 conf->geo = conf->prev;
4593 mddev->raid_disks = conf->geo.raid_disks;
4594 rdev_for_each(rdev, mddev)
4595 rdev->new_data_offset = rdev->data_offset;
4596 smp_wmb();
4597 conf->reshape_progress = MaxSector;
299b0685 4598 conf->reshape_safe = MaxSector;
bb63a701
N
4599 mddev->reshape_position = MaxSector;
4600 spin_unlock_irq(&conf->device_lock);
4601 return ret;
3ea7daa5
N
4602}
4603
4604/* Calculate the last device-address that could contain
4605 * any block from the chunk that includes the array-address 's'
4606 * and report the next address.
4607 * i.e. the address returned will be chunk-aligned and after
4608 * any data that is in the chunk containing 's'.
4609 */
4610static sector_t last_dev_address(sector_t s, struct geom *geo)
4611{
4612 s = (s | geo->chunk_mask) + 1;
4613 s >>= geo->chunk_shift;
4614 s *= geo->near_copies;
4615 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4616 s *= geo->far_copies;
4617 s <<= geo->chunk_shift;
4618 return s;
4619}
4620
4621/* Calculate the first device-address that could contain
4622 * any block from the chunk that includes the array-address 's'.
4623 * This too will be the start of a chunk
4624 */
4625static sector_t first_dev_address(sector_t s, struct geom *geo)
4626{
4627 s >>= geo->chunk_shift;
4628 s *= geo->near_copies;
4629 sector_div(s, geo->raid_disks);
4630 s *= geo->far_copies;
4631 s <<= geo->chunk_shift;
4632 return s;
4633}
4634
4635static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4636 int *skipped)
4637{
4638 /* We simply copy at most one chunk (smallest of old and new)
4639 * at a time, possibly less if that exceeds RESYNC_PAGES,
4640 * or we hit a bad block or something.
4641 * This might mean we pause for normal IO in the middle of
02ec5026 4642 * a chunk, but that is not a problem as mddev->reshape_position
3ea7daa5
N
4643 * can record any location.
4644 *
4645 * If we will want to write to a location that isn't
4646 * yet recorded as 'safe' (i.e. in metadata on disk) then
4647 * we need to flush all reshape requests and update the metadata.
4648 *
4649 * When reshaping forwards (e.g. to more devices), we interpret
4650 * 'safe' as the earliest block which might not have been copied
4651 * down yet. We divide this by previous stripe size and multiply
4652 * by previous stripe length to get lowest device offset that we
4653 * cannot write to yet.
4654 * We interpret 'sector_nr' as an address that we want to write to.
4655 * From this we use last_device_address() to find where we might
4656 * write to, and first_device_address on the 'safe' position.
4657 * If this 'next' write position is after the 'safe' position,
4658 * we must update the metadata to increase the 'safe' position.
4659 *
4660 * When reshaping backwards, we round in the opposite direction
4661 * and perform the reverse test: next write position must not be
4662 * less than current safe position.
4663 *
4664 * In all this the minimum difference in data offsets
4665 * (conf->offset_diff - always positive) allows a bit of slack,
02ec5026 4666 * so next can be after 'safe', but not by more than offset_diff
3ea7daa5
N
4667 *
4668 * We need to prepare all the bios here before we start any IO
4669 * to ensure the size we choose is acceptable to all devices.
4670 * The means one for each copy for write-out and an extra one for
4671 * read-in.
4672 * We store the read-in bio in ->master_bio and the others in
4673 * ->devs[x].bio and ->devs[x].repl_bio.
4674 */
4675 struct r10conf *conf = mddev->private;
4676 struct r10bio *r10_bio;
4677 sector_t next, safe, last;
4678 int max_sectors;
4679 int nr_sectors;
4680 int s;
4681 struct md_rdev *rdev;
4682 int need_flush = 0;
4683 struct bio *blist;
4684 struct bio *bio, *read_bio;
4685 int sectors_done = 0;
f0250618 4686 struct page **pages;
3ea7daa5
N
4687
4688 if (sector_nr == 0) {
4689 /* If restarting in the middle, skip the initial sectors */
4690 if (mddev->reshape_backwards &&
4691 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4692 sector_nr = (raid10_size(mddev, 0, 0)
4693 - conf->reshape_progress);
4694 } else if (!mddev->reshape_backwards &&
4695 conf->reshape_progress > 0)
4696 sector_nr = conf->reshape_progress;
4697 if (sector_nr) {
4698 mddev->curr_resync_completed = sector_nr;
e1a86dbb 4699 sysfs_notify_dirent_safe(mddev->sysfs_completed);
3ea7daa5
N
4700 *skipped = 1;
4701 return sector_nr;
4702 }
4703 }
4704
4705 /* We don't use sector_nr to track where we are up to
4706 * as that doesn't work well for ->reshape_backwards.
4707 * So just use ->reshape_progress.
4708 */
4709 if (mddev->reshape_backwards) {
4710 /* 'next' is the earliest device address that we might
4711 * write to for this chunk in the new layout
4712 */
4713 next = first_dev_address(conf->reshape_progress - 1,
4714 &conf->geo);
4715
4716 /* 'safe' is the last device address that we might read from
4717 * in the old layout after a restart
4718 */
4719 safe = last_dev_address(conf->reshape_safe - 1,
4720 &conf->prev);
4721
4722 if (next + conf->offset_diff < safe)
4723 need_flush = 1;
4724
4725 last = conf->reshape_progress - 1;
4726 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4727 & conf->prev.chunk_mask);
e287308b
ZL
4728 if (sector_nr + RESYNC_SECTORS < last)
4729 sector_nr = last + 1 - RESYNC_SECTORS;
3ea7daa5
N
4730 } else {
4731 /* 'next' is after the last device address that we
4732 * might write to for this chunk in the new layout
4733 */
4734 next = last_dev_address(conf->reshape_progress, &conf->geo);
4735
4736 /* 'safe' is the earliest device address that we might
4737 * read from in the old layout after a restart
4738 */
4739 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4740
4741 /* Need to update metadata if 'next' might be beyond 'safe'
4742 * as that would possibly corrupt data
4743 */
4744 if (next > safe + conf->offset_diff)
4745 need_flush = 1;
4746
4747 sector_nr = conf->reshape_progress;
4748 last = sector_nr | (conf->geo.chunk_mask
4749 & conf->prev.chunk_mask);
4750
e287308b
ZL
4751 if (sector_nr + RESYNC_SECTORS <= last)
4752 last = sector_nr + RESYNC_SECTORS - 1;
3ea7daa5
N
4753 }
4754
4755 if (need_flush ||
4756 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4757 /* Need to update reshape_position in metadata */
c9aa889b 4758 wait_barrier(conf, false);
3ea7daa5
N
4759 mddev->reshape_position = conf->reshape_progress;
4760 if (mddev->reshape_backwards)
4761 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4762 - conf->reshape_progress;
4763 else
4764 mddev->curr_resync_completed = conf->reshape_progress;
4765 conf->reshape_checkpoint = jiffies;
2953079c 4766 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3ea7daa5 4767 md_wakeup_thread(mddev->thread);
2953079c 4768 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
c91abf5a
N
4769 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4770 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4771 allow_barrier(conf);
4772 return sectors_done;
4773 }
3ea7daa5
N
4774 conf->reshape_safe = mddev->reshape_position;
4775 allow_barrier(conf);
4776 }
4777
1d0ffd26 4778 raise_barrier(conf, 0);
3ea7daa5
N
4779read_more:
4780 /* Now schedule reads for blocks from sector_nr to last */
208410b5 4781 r10_bio = raid10_alloc_init_r10buf(conf);
cb8b12b5 4782 r10_bio->state = 0;
1d0ffd26 4783 raise_barrier(conf, 1);
3ea7daa5
N
4784 atomic_set(&r10_bio->remaining, 0);
4785 r10_bio->mddev = mddev;
4786 r10_bio->sector = sector_nr;
4787 set_bit(R10BIO_IsReshape, &r10_bio->state);
4788 r10_bio->sectors = last - sector_nr + 1;
4789 rdev = read_balance(conf, r10_bio, &max_sectors);
4790 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4791
4792 if (!rdev) {
4793 /* Cannot read from here, so need to record bad blocks
4794 * on all the target devices.
4795 */
4796 // FIXME
afeee514 4797 mempool_free(r10_bio, &conf->r10buf_pool);
3ea7daa5
N
4798 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4799 return sectors_done;
4800 }
4801
609be106
CH
4802 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4803 GFP_KERNEL, &mddev->bio_set);
4f024f37 4804 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4805 + rdev->data_offset);
4806 read_bio->bi_private = r10_bio;
81fa1520 4807 read_bio->bi_end_io = end_reshape_read;
3ea7daa5
N
4808 r10_bio->master_bio = read_bio;
4809 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4810
7564beda
GJ
4811 /*
4812 * Broadcast RESYNC message to other nodes, so all nodes would not
4813 * write to the region to avoid conflict.
4814 */
4815 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4816 struct mdp_superblock_1 *sb = NULL;
4817 int sb_reshape_pos = 0;
4818
4819 conf->cluster_sync_low = sector_nr;
4820 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4821 sb = page_address(rdev->sb_page);
4822 if (sb) {
4823 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4824 /*
4825 * Set cluster_sync_low again if next address for array
4826 * reshape is less than cluster_sync_low. Since we can't
4827 * update cluster_sync_low until it has finished reshape.
4828 */
4829 if (sb_reshape_pos < conf->cluster_sync_low)
4830 conf->cluster_sync_low = sb_reshape_pos;
4831 }
4832
4833 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4834 conf->cluster_sync_high);
4835 }
4836
3ea7daa5
N
4837 /* Now find the locations in the new layout */
4838 __raid10_find_phys(&conf->geo, r10_bio);
4839
4840 blist = read_bio;
4841 read_bio->bi_next = NULL;
4842
4843 for (s = 0; s < conf->copies*2; s++) {
4844 struct bio *b;
4845 int d = r10_bio->devs[s/2].devnum;
4846 struct md_rdev *rdev2;
4847 if (s&1) {
a448af25 4848 rdev2 = conf->mirrors[d].replacement;
3ea7daa5
N
4849 b = r10_bio->devs[s/2].repl_bio;
4850 } else {
a448af25 4851 rdev2 = conf->mirrors[d].rdev;
3ea7daa5
N
4852 b = r10_bio->devs[s/2].bio;
4853 }
4854 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4855 continue;
8be185f2 4856
74d46992 4857 bio_set_dev(b, rdev2->bdev);
4f024f37
KO
4858 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4859 rdev2->new_data_offset;
3ea7daa5 4860 b->bi_end_io = end_reshape_write;
c34b7ac6 4861 b->bi_opf = REQ_OP_WRITE;
3ea7daa5 4862 b->bi_next = blist;
3ea7daa5
N
4863 blist = b;
4864 }
4865
4866 /* Now add as many pages as possible to all of these bios. */
4867
4868 nr_sectors = 0;
f0250618 4869 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 4870 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
f0250618 4871 struct page *page = pages[s / (PAGE_SIZE >> 9)];
3ea7daa5
N
4872 int len = (max_sectors - s) << 9;
4873 if (len > PAGE_SIZE)
4874 len = PAGE_SIZE;
4875 for (bio = blist; bio ; bio = bio->bi_next) {
0c67dd64
JT
4876 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4877 bio->bi_status = BLK_STS_RESOURCE;
4878 bio_endio(bio);
4879 return sectors_done;
4880 }
3ea7daa5
N
4881 }
4882 sector_nr += len >> 9;
4883 nr_sectors += len >> 9;
4884 }
3ea7daa5
N
4885 r10_bio->sectors = nr_sectors;
4886
4887 /* Now submit the read */
74d46992 4888 md_sync_acct_bio(read_bio, r10_bio->sectors);
3ea7daa5
N
4889 atomic_inc(&r10_bio->remaining);
4890 read_bio->bi_next = NULL;
ed00aabd 4891 submit_bio_noacct(read_bio);
3ea7daa5
N
4892 sectors_done += nr_sectors;
4893 if (sector_nr <= last)
4894 goto read_more;
4895
1d0ffd26
XN
4896 lower_barrier(conf);
4897
3ea7daa5
N
4898 /* Now that we have done the whole section we can
4899 * update reshape_progress
4900 */
4901 if (mddev->reshape_backwards)
4902 conf->reshape_progress -= sectors_done;
4903 else
4904 conf->reshape_progress += sectors_done;
4905
4906 return sectors_done;
4907}
4908
4909static void end_reshape_request(struct r10bio *r10_bio);
4910static int handle_reshape_read_error(struct mddev *mddev,
4911 struct r10bio *r10_bio);
4912static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4913{
4914 /* Reshape read completed. Hopefully we have a block
4915 * to write out.
4916 * If we got a read error then we do sync 1-page reads from
4917 * elsewhere until we find the data - or give up.
4918 */
4919 struct r10conf *conf = mddev->private;
4920 int s;
4921
4922 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4923 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4924 /* Reshape has been aborted */
4925 md_done_sync(mddev, r10_bio->sectors, 0);
4926 return;
4927 }
4928
4929 /* We definitely have the data in the pages, schedule the
4930 * writes.
4931 */
4932 atomic_set(&r10_bio->remaining, 1);
4933 for (s = 0; s < conf->copies*2; s++) {
4934 struct bio *b;
4935 int d = r10_bio->devs[s/2].devnum;
4936 struct md_rdev *rdev;
4937 if (s&1) {
a448af25 4938 rdev = conf->mirrors[d].replacement;
3ea7daa5
N
4939 b = r10_bio->devs[s/2].repl_bio;
4940 } else {
a448af25 4941 rdev = conf->mirrors[d].rdev;
3ea7daa5
N
4942 b = r10_bio->devs[s/2].bio;
4943 }
a448af25 4944 if (!rdev || test_bit(Faulty, &rdev->flags))
3ea7daa5 4945 continue;
a448af25 4946
3ea7daa5 4947 atomic_inc(&rdev->nr_pending);
74d46992 4948 md_sync_acct_bio(b, r10_bio->sectors);
3ea7daa5
N
4949 atomic_inc(&r10_bio->remaining);
4950 b->bi_next = NULL;
ed00aabd 4951 submit_bio_noacct(b);
3ea7daa5
N
4952 }
4953 end_reshape_request(r10_bio);
4954}
4955
4956static void end_reshape(struct r10conf *conf)
4957{
4958 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4959 return;
4960
4961 spin_lock_irq(&conf->device_lock);
4962 conf->prev = conf->geo;
4963 md_finish_reshape(conf->mddev);
4964 smp_wmb();
4965 conf->reshape_progress = MaxSector;
299b0685 4966 conf->reshape_safe = MaxSector;
3ea7daa5
N
4967 spin_unlock_irq(&conf->device_lock);
4968
c2e4cd57 4969 if (conf->mddev->queue)
16ef5101 4970 raid10_set_io_opt(conf);
3ea7daa5
N
4971 conf->fullsync = 0;
4972}
4973
7564beda
GJ
4974static void raid10_update_reshape_pos(struct mddev *mddev)
4975{
4976 struct r10conf *conf = mddev->private;
5ebaf80b 4977 sector_t lo, hi;
7564beda 4978
5ebaf80b
GJ
4979 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4980 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4981 || mddev->reshape_position == MaxSector)
4982 conf->reshape_progress = mddev->reshape_position;
4983 else
4984 WARN_ON_ONCE(1);
7564beda
GJ
4985}
4986
3ea7daa5
N
4987static int handle_reshape_read_error(struct mddev *mddev,
4988 struct r10bio *r10_bio)
4989{
4990 /* Use sync reads to get the blocks from somewhere else */
4991 int sectors = r10_bio->sectors;
3ea7daa5 4992 struct r10conf *conf = mddev->private;
584ed9fa 4993 struct r10bio *r10b;
3ea7daa5
N
4994 int slot = 0;
4995 int idx = 0;
2d06e3b7
ML
4996 struct page **pages;
4997
8cf05a78 4998 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
584ed9fa
MK
4999 if (!r10b) {
5000 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5001 return -ENOMEM;
5002 }
5003
2d06e3b7
ML
5004 /* reshape IOs share pages from .devs[0].bio */
5005 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
3ea7daa5 5006
e0ee7785
N
5007 r10b->sector = r10_bio->sector;
5008 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
5009
5010 while (sectors) {
5011 int s = sectors;
5012 int success = 0;
5013 int first_slot = slot;
5014
5015 if (s > (PAGE_SIZE >> 9))
5016 s = PAGE_SIZE >> 9;
5017
5018 while (!success) {
e0ee7785 5019 int d = r10b->devs[slot].devnum;
a448af25 5020 struct md_rdev *rdev = conf->mirrors[d].rdev;
3ea7daa5
N
5021 sector_t addr;
5022 if (rdev == NULL ||
5023 test_bit(Faulty, &rdev->flags) ||
5024 !test_bit(In_sync, &rdev->flags))
5025 goto failed;
5026
e0ee7785 5027 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
d094d686 5028 atomic_inc(&rdev->nr_pending);
3ea7daa5
N
5029 success = sync_page_io(rdev,
5030 addr,
5031 s << 9,
2d06e3b7 5032 pages[idx],
4ce4c73f 5033 REQ_OP_READ, false);
d094d686 5034 rdev_dec_pending(rdev, mddev);
3ea7daa5
N
5035 if (success)
5036 break;
5037 failed:
5038 slot++;
5039 if (slot >= conf->copies)
5040 slot = 0;
5041 if (slot == first_slot)
5042 break;
5043 }
5044 if (!success) {
5045 /* couldn't read this block, must give up */
5046 set_bit(MD_RECOVERY_INTR,
5047 &mddev->recovery);
584ed9fa 5048 kfree(r10b);
3ea7daa5
N
5049 return -EIO;
5050 }
5051 sectors -= s;
5052 idx++;
5053 }
584ed9fa 5054 kfree(r10b);
3ea7daa5
N
5055 return 0;
5056}
5057
4246a0b6 5058static void end_reshape_write(struct bio *bio)
3ea7daa5 5059{
f0250618 5060 struct r10bio *r10_bio = get_resync_r10bio(bio);
3ea7daa5
N
5061 struct mddev *mddev = r10_bio->mddev;
5062 struct r10conf *conf = mddev->private;
5063 int d;
5064 int slot;
5065 int repl;
5066 struct md_rdev *rdev = NULL;
5067
5068 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
a448af25
YK
5069 rdev = repl ? conf->mirrors[d].replacement :
5070 conf->mirrors[d].rdev;
3ea7daa5 5071
4e4cbee9 5072 if (bio->bi_status) {
3ea7daa5
N
5073 /* FIXME should record badblock */
5074 md_error(mddev, rdev);
5075 }
5076
5077 rdev_dec_pending(rdev, mddev);
5078 end_reshape_request(r10_bio);
5079}
5080
5081static void end_reshape_request(struct r10bio *r10_bio)
5082{
5083 if (!atomic_dec_and_test(&r10_bio->remaining))
5084 return;
5085 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5086 bio_put(r10_bio->master_bio);
5087 put_buf(r10_bio);
5088}
5089
5090static void raid10_finish_reshape(struct mddev *mddev)
5091{
5092 struct r10conf *conf = mddev->private;
5093
5094 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5095 return;
5096
5097 if (mddev->delta_disks > 0) {
3ea7daa5
N
5098 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5099 mddev->recovery_cp = mddev->resync_max_sectors;
5100 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5101 }
8876391e 5102 mddev->resync_max_sectors = mddev->array_sectors;
63aced61
N
5103 } else {
5104 int d;
5105 for (d = conf->geo.raid_disks ;
5106 d < conf->geo.raid_disks - mddev->delta_disks;
5107 d++) {
a448af25 5108 struct md_rdev *rdev = conf->mirrors[d].rdev;
63aced61
N
5109 if (rdev)
5110 clear_bit(In_sync, &rdev->flags);
a448af25 5111 rdev = conf->mirrors[d].replacement;
63aced61
N
5112 if (rdev)
5113 clear_bit(In_sync, &rdev->flags);
5114 }
3ea7daa5
N
5115 }
5116 mddev->layout = mddev->new_layout;
5117 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5118 mddev->reshape_position = MaxSector;
5119 mddev->delta_disks = 0;
5120 mddev->reshape_backwards = 0;
5121}
5122
84fc4b56 5123static struct md_personality raid10_personality =
1da177e4
LT
5124{
5125 .name = "raid10",
2604b703 5126 .level = 10,
1da177e4 5127 .owner = THIS_MODULE,
849674e4
SL
5128 .make_request = raid10_make_request,
5129 .run = raid10_run,
afa0f557 5130 .free = raid10_free,
849674e4
SL
5131 .status = raid10_status,
5132 .error_handler = raid10_error,
1da177e4
LT
5133 .hot_add_disk = raid10_add_disk,
5134 .hot_remove_disk= raid10_remove_disk,
5135 .spare_active = raid10_spare_active,
849674e4 5136 .sync_request = raid10_sync_request,
6cce3b23 5137 .quiesce = raid10_quiesce,
80c3a6ce 5138 .size = raid10_size,
006a09a0 5139 .resize = raid10_resize,
dab8b292 5140 .takeover = raid10_takeover,
3ea7daa5
N
5141 .check_reshape = raid10_check_reshape,
5142 .start_reshape = raid10_start_reshape,
5143 .finish_reshape = raid10_finish_reshape,
7564beda 5144 .update_reshape_pos = raid10_update_reshape_pos,
1da177e4
LT
5145};
5146
5147static int __init raid_init(void)
5148{
2604b703 5149 return register_md_personality(&raid10_personality);
1da177e4
LT
5150}
5151
5152static void raid_exit(void)
5153{
2604b703 5154 unregister_md_personality(&raid10_personality);
1da177e4
LT
5155}
5156
5157module_init(raid_init);
5158module_exit(raid_exit);
5159MODULE_LICENSE("GPL");
0efb9e61 5160MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 5161MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 5162MODULE_ALIAS("md-raid10");
2604b703 5163MODULE_ALIAS("md-level-10");