Merge tag 'pinctrl-v6.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-block.git] / drivers / md / raid1.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
96de0e25 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
191ea9b2
N
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
1da177e4
LT
24 */
25
5a0e3ad6 26#include <linux/slab.h>
25570727 27#include <linux/delay.h>
bff61975 28#include <linux/blkdev.h>
056075c7 29#include <linux/module.h>
bff61975 30#include <linux/seq_file.h>
8bda470e 31#include <linux/ratelimit.h>
69b00b5b 32#include <linux/interval_tree_generic.h>
3f07c014 33
109e3765 34#include <trace/events/block.h>
3f07c014 35
43b2e5d8 36#include "md.h"
ef740c37 37#include "raid1.h"
935fe098 38#include "md-bitmap.h"
191ea9b2 39
394ed8e4
SL
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 42 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 45
fd76863e 46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 48
1979dbbe 49#define RAID_1_10_NAME "raid1"
fb0eb5df
ML
50#include "raid1-10.c"
51
69b00b5b
GJ
52#define START(node) ((node)->start)
53#define LAST(node) ((node)->last)
54INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 START, LAST, static inline, raid1_rb);
56
d0d2d8ba
GJ
57static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 struct serial_info *si, int idx)
3e148a32 59{
3e148a32
GJ
60 unsigned long flags;
61 int ret = 0;
d0d2d8ba
GJ
62 sector_t lo = r1_bio->sector;
63 sector_t hi = lo + r1_bio->sectors;
025471f9 64 struct serial_in_rdev *serial = &rdev->serial[idx];
3e148a32 65
69b00b5b
GJ
66 spin_lock_irqsave(&serial->serial_lock, flags);
67 /* collision happened */
68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69 ret = -EBUSY;
d0d2d8ba 70 else {
69b00b5b
GJ
71 si->start = lo;
72 si->last = hi;
73 raid1_rb_insert(si, &serial->serial_rb);
d0d2d8ba 74 }
69b00b5b 75 spin_unlock_irqrestore(&serial->serial_lock, flags);
3e148a32
GJ
76
77 return ret;
78}
79
d0d2d8ba
GJ
80static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81{
82 struct mddev *mddev = rdev->mddev;
83 struct serial_info *si;
84 int idx = sector_to_idx(r1_bio->sector);
85 struct serial_in_rdev *serial = &rdev->serial[idx];
86
87 if (WARN_ON(!mddev->serial_info_pool))
88 return;
89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 wait_event(serial->serial_io_wait,
91 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92}
93
404659cf 94static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
3e148a32 95{
69b00b5b 96 struct serial_info *si;
3e148a32
GJ
97 unsigned long flags;
98 int found = 0;
99 struct mddev *mddev = rdev->mddev;
025471f9
GJ
100 int idx = sector_to_idx(lo);
101 struct serial_in_rdev *serial = &rdev->serial[idx];
69b00b5b
GJ
102
103 spin_lock_irqsave(&serial->serial_lock, flags);
104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 si; si = raid1_rb_iter_next(si, lo, hi)) {
106 if (si->start == lo && si->last == hi) {
107 raid1_rb_remove(si, &serial->serial_rb);
108 mempool_free(si, mddev->serial_info_pool);
3e148a32
GJ
109 found = 1;
110 break;
111 }
69b00b5b 112 }
3e148a32 113 if (!found)
404659cf 114 WARN(1, "The write IO is not recorded for serialization\n");
69b00b5b
GJ
115 spin_unlock_irqrestore(&serial->serial_lock, flags);
116 wake_up(&serial->serial_io_wait);
3e148a32
GJ
117}
118
98d30c58
ML
119/*
120 * for resync bio, r1bio pointer can be retrieved from the per-bio
121 * 'struct resync_pages'.
122 */
123static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124{
125 return get_resync_pages(bio)->raid_bio;
126}
127
dd0fc66f 128static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
129{
130 struct pool_info *pi = data;
9f2c9d12 131 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
132
133 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 134 return kzalloc(size, gfp_flags);
1da177e4
LT
135}
136
8e005f7c 137#define RESYNC_DEPTH 32
1da177e4 138#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 139#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
141#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 143
dd0fc66f 144static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
145{
146 struct pool_info *pi = data;
9f2c9d12 147 struct r1bio *r1_bio;
1da177e4 148 struct bio *bio;
da1aab3d 149 int need_pages;
98d30c58
ML
150 int j;
151 struct resync_pages *rps;
1da177e4
LT
152
153 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 154 if (!r1_bio)
1da177e4 155 return NULL;
1da177e4 156
6da2ec56
KC
157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158 gfp_flags);
98d30c58
ML
159 if (!rps)
160 goto out_free_r1bio;
161
1da177e4
LT
162 /*
163 * Allocate bios : 1 for reading, n-1 for writing
164 */
165 for (j = pi->raid_disks ; j-- ; ) {
066ff571 166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
1da177e4
LT
167 if (!bio)
168 goto out_free_bio;
066ff571 169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
1da177e4
LT
170 r1_bio->bios[j] = bio;
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
174 * the first bio.
175 * If this is a user-requested check/repair, allocate
176 * RESYNC_PAGES for each bio.
1da177e4 177 */
d11c171e 178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 179 need_pages = pi->raid_disks;
d11c171e 180 else
da1aab3d 181 need_pages = 1;
98d30c58
ML
182 for (j = 0; j < pi->raid_disks; j++) {
183 struct resync_pages *rp = &rps[j];
184
d11c171e 185 bio = r1_bio->bios[j];
d11c171e 186
98d30c58
ML
187 if (j < need_pages) {
188 if (resync_alloc_pages(rp, gfp_flags))
189 goto out_free_pages;
190 } else {
191 memcpy(rp, &rps[0], sizeof(*rp));
192 resync_get_all_pages(rp);
193 }
194
98d30c58
ML
195 rp->raid_bio = r1_bio;
196 bio->bi_private = rp;
1da177e4
LT
197 }
198
199 r1_bio->master_bio = NULL;
200
201 return r1_bio;
202
da1aab3d 203out_free_pages:
491221f8 204 while (--j >= 0)
98d30c58 205 resync_free_pages(&rps[j]);
da1aab3d 206
1da177e4 207out_free_bio:
066ff571
CH
208 while (++j < pi->raid_disks) {
209 bio_uninit(r1_bio->bios[j]);
210 kfree(r1_bio->bios[j]);
211 }
98d30c58
ML
212 kfree(rps);
213
214out_free_r1bio:
c7afa803 215 rbio_pool_free(r1_bio, data);
1da177e4
LT
216 return NULL;
217}
218
219static void r1buf_pool_free(void *__r1_bio, void *data)
220{
221 struct pool_info *pi = data;
98d30c58 222 int i;
9f2c9d12 223 struct r1bio *r1bio = __r1_bio;
98d30c58 224 struct resync_pages *rp = NULL;
1da177e4 225
98d30c58
ML
226 for (i = pi->raid_disks; i--; ) {
227 rp = get_resync_pages(r1bio->bios[i]);
228 resync_free_pages(rp);
066ff571
CH
229 bio_uninit(r1bio->bios[i]);
230 kfree(r1bio->bios[i]);
98d30c58
ML
231 }
232
233 /* resync pages array stored in the 1st bio's .bi_private */
234 kfree(rp);
1da177e4 235
c7afa803 236 rbio_pool_free(r1bio, data);
1da177e4
LT
237}
238
e8096360 239static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
240{
241 int i;
242
8f19ccb2 243 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 244 struct bio **bio = r1_bio->bios + i;
4367af55 245 if (!BIO_SPECIAL(*bio))
1da177e4
LT
246 bio_put(*bio);
247 *bio = NULL;
248 }
249}
250
9f2c9d12 251static void free_r1bio(struct r1bio *r1_bio)
1da177e4 252{
e8096360 253 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 254
1da177e4 255 put_all_bios(conf, r1_bio);
afeee514 256 mempool_free(r1_bio, &conf->r1bio_pool);
1da177e4
LT
257}
258
9f2c9d12 259static void put_buf(struct r1bio *r1_bio)
1da177e4 260{
e8096360 261 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 262 sector_t sect = r1_bio->sector;
3e198f78
N
263 int i;
264
8f19ccb2 265 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
266 struct bio *bio = r1_bio->bios[i];
267 if (bio->bi_end_io)
268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 }
1da177e4 270
afeee514 271 mempool_free(r1_bio, &conf->r1buf_pool);
1da177e4 272
af5f42a7 273 lower_barrier(conf, sect);
1da177e4
LT
274}
275
9f2c9d12 276static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
277{
278 unsigned long flags;
fd01b88c 279 struct mddev *mddev = r1_bio->mddev;
e8096360 280 struct r1conf *conf = mddev->private;
fd76863e 281 int idx;
1da177e4 282
fd76863e 283 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
284 spin_lock_irqsave(&conf->device_lock, flags);
285 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 286 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
287 spin_unlock_irqrestore(&conf->device_lock, flags);
288
17999be4 289 wake_up(&conf->wait_barrier);
1da177e4
LT
290 md_wakeup_thread(mddev->thread);
291}
292
293/*
294 * raid_end_bio_io() is called when we have finished servicing a mirrored
295 * operation and are ready to return a success/failure code to the buffer
296 * cache layer.
297 */
9f2c9d12 298static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
299{
300 struct bio *bio = r1_bio->master_bio;
d2eb35ac
N
301
302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 303 bio->bi_status = BLK_STS_IOERR;
4246a0b6 304
37011e3a 305 bio_endio(bio);
d2eb35ac
N
306}
307
9f2c9d12 308static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
309{
310 struct bio *bio = r1_bio->master_bio;
c91114c2 311 struct r1conf *conf = r1_bio->mddev->private;
c5d736f5 312 sector_t sector = r1_bio->sector;
1da177e4 313
4b6d287f
N
314 /* if nobody has done the final endio yet, do it now */
315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
318 (unsigned long long) bio->bi_iter.bi_sector,
319 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 320
d2eb35ac 321 call_bio_endio(r1_bio);
4b6d287f 322 }
c5d736f5
XH
323
324 free_r1bio(r1_bio);
c91114c2
DJ
325 /*
326 * Wake up any possible resync thread that waits for the device
327 * to go idle. All I/Os, even write-behind writes, are done.
328 */
c5d736f5 329 allow_barrier(conf, sector);
1da177e4
LT
330}
331
332/*
333 * Update disk head position estimator based on IRQ completion info.
334 */
9f2c9d12 335static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 336{
e8096360 337 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
338
339 conf->mirrors[disk].head_position =
340 r1_bio->sector + (r1_bio->sectors);
341}
342
ba3ae3be
NK
343/*
344 * Find the disk number which triggered given bio
345 */
9f2c9d12 346static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
347{
348 int mirror;
30194636
N
349 struct r1conf *conf = r1_bio->mddev->private;
350 int raid_disks = conf->raid_disks;
ba3ae3be 351
8f19ccb2 352 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
353 if (r1_bio->bios[mirror] == bio)
354 break;
355
8f19ccb2 356 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
357 update_head_pos(mirror, r1_bio);
358
359 return mirror;
360}
361
4246a0b6 362static void raid1_end_read_request(struct bio *bio)
1da177e4 363{
4e4cbee9 364 int uptodate = !bio->bi_status;
9f2c9d12 365 struct r1bio *r1_bio = bio->bi_private;
e8096360 366 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 368
1da177e4
LT
369 /*
370 * this branch is our 'one mirror IO has finished' event handler:
371 */
e5872d58 372 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 373
dd00a99e
N
374 if (uptodate)
375 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
376 else if (test_bit(FailFast, &rdev->flags) &&
377 test_bit(R1BIO_FailFast, &r1_bio->state))
378 /* This was a fail-fast read so we definitely
379 * want to retry */
380 ;
dd00a99e
N
381 else {
382 /* If all other devices have failed, we want to return
383 * the error upwards rather than fail the last device.
384 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 385 */
dd00a99e
N
386 unsigned long flags;
387 spin_lock_irqsave(&conf->device_lock, flags);
388 if (r1_bio->mddev->degraded == conf->raid_disks ||
389 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 390 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
391 uptodate = 1;
392 spin_unlock_irqrestore(&conf->device_lock, flags);
393 }
1da177e4 394
7ad4d4a6 395 if (uptodate) {
1da177e4 396 raid_end_bio_io(r1_bio);
e5872d58 397 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 398 } else {
1da177e4
LT
399 /*
400 * oops, read error:
401 */
913cce5a 402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
1d41c216 403 mdname(conf->mddev),
913cce5a 404 rdev->bdev,
1d41c216 405 (unsigned long long)r1_bio->sector);
d2eb35ac 406 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 407 reschedule_retry(r1_bio);
7ad4d4a6 408 /* don't drop the reference on read_disk yet */
1da177e4 409 }
1da177e4
LT
410}
411
9f2c9d12 412static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
413{
414 /* it really is the end of this request */
415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
416 bio_free_pages(r1_bio->behind_master_bio);
417 bio_put(r1_bio->behind_master_bio);
418 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
419 }
420 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422 r1_bio->sectors,
423 !test_bit(R1BIO_Degraded, &r1_bio->state),
424 test_bit(R1BIO_BehindIO, &r1_bio->state));
cd5ff9a1
N
425 md_write_end(r1_bio->mddev);
426}
427
9f2c9d12 428static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 429{
cd5ff9a1
N
430 if (!atomic_dec_and_test(&r1_bio->remaining))
431 return;
432
433 if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 reschedule_retry(r1_bio);
435 else {
436 close_write(r1_bio);
4367af55
N
437 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 reschedule_retry(r1_bio);
439 else
440 raid_end_bio_io(r1_bio);
4e78064f
N
441 }
442}
443
4246a0b6 444static void raid1_end_write_request(struct bio *bio)
1da177e4 445{
9f2c9d12 446 struct r1bio *r1_bio = bio->bi_private;
e5872d58 447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 448 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 449 struct bio *to_put = NULL;
e5872d58
N
450 int mirror = find_bio_disk(r1_bio, bio);
451 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd 452 bool discard_error;
69df9cfc
GJ
453 sector_t lo = r1_bio->sector;
454 sector_t hi = r1_bio->sector + r1_bio->sectors;
e3f948cd 455
4e4cbee9 456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 457
e9c7469b
TH
458 /*
459 * 'one mirror IO has finished' event handler:
460 */
4e4cbee9 461 if (bio->bi_status && !discard_error) {
e5872d58
N
462 set_bit(WriteErrorSeen, &rdev->flags);
463 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
464 set_bit(MD_RECOVERY_NEEDED, &
465 conf->mddev->recovery);
466
212e7eb7
N
467 if (test_bit(FailFast, &rdev->flags) &&
468 (bio->bi_opf & MD_FAILFAST) &&
469 /* We never try FailFast to WriteMostly devices */
470 !test_bit(WriteMostly, &rdev->flags)) {
471 md_error(r1_bio->mddev, rdev);
eeba6809
YY
472 }
473
474 /*
475 * When the device is faulty, it is not necessary to
476 * handle write error.
eeba6809
YY
477 */
478 if (!test_bit(Faulty, &rdev->flags))
212e7eb7 479 set_bit(R1BIO_WriteError, &r1_bio->state);
eeba6809 480 else {
2417b986
PC
481 /* Fail the request */
482 set_bit(R1BIO_Degraded, &r1_bio->state);
eeba6809
YY
483 /* Finished with this branch */
484 r1_bio->bios[mirror] = NULL;
485 to_put = bio;
486 }
4367af55 487 } else {
1da177e4 488 /*
e9c7469b
TH
489 * Set R1BIO_Uptodate in our master bio, so that we
490 * will return a good error code for to the higher
491 * levels even if IO on some other mirrored buffer
492 * fails.
493 *
494 * The 'master' represents the composite IO operation
495 * to user-side. So if something waits for IO, then it
496 * will wait for the 'master' bio.
1da177e4 497 */
cd5ff9a1
N
498 r1_bio->bios[mirror] = NULL;
499 to_put = bio;
3056e3ae
AL
500 /*
501 * Do not set R1BIO_Uptodate if the current device is
502 * rebuilding or Faulty. This is because we cannot use
503 * such device for properly reading the data back (we could
504 * potentially use it, if the current write would have felt
505 * before rdev->recovery_offset, but for simplicity we don't
506 * check this here.
507 */
e5872d58
N
508 if (test_bit(In_sync, &rdev->flags) &&
509 !test_bit(Faulty, &rdev->flags))
3056e3ae 510 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 511
4367af55 512 /* Maybe we can clear some bad blocks. */
3a0f007b
YK
513 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
514 !discard_error) {
4367af55
N
515 r1_bio->bios[mirror] = IO_MADE_GOOD;
516 set_bit(R1BIO_MadeGood, &r1_bio->state);
517 }
518 }
519
e9c7469b 520 if (behind) {
69df9cfc 521 if (test_bit(CollisionCheck, &rdev->flags))
404659cf 522 remove_serial(rdev, lo, hi);
e5872d58 523 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
524 atomic_dec(&r1_bio->behind_remaining);
525
526 /*
527 * In behind mode, we ACK the master bio once the I/O
528 * has safely reached all non-writemostly
529 * disks. Setting the Returned bit ensures that this
530 * gets done only once -- we don't ever want to return
531 * -EIO here, instead we'll wait
532 */
533 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 /* Maybe we can return now */
536 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
538 pr_debug("raid1: behind end write sectors"
539 " %llu-%llu\n",
4f024f37
KO
540 (unsigned long long) mbio->bi_iter.bi_sector,
541 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 542 call_bio_endio(r1_bio);
4b6d287f
N
543 }
544 }
69df9cfc
GJ
545 } else if (rdev->mddev->serialize_policy)
546 remove_serial(rdev, lo, hi);
4367af55 547 if (r1_bio->bios[mirror] == NULL)
e5872d58 548 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 549
1da177e4 550 /*
1da177e4
LT
551 * Let's see if all mirrored write operations have finished
552 * already.
553 */
af6d7b76 554 r1_bio_write_done(r1_bio);
c70810b3 555
04b857f7
N
556 if (to_put)
557 bio_put(to_put);
1da177e4
LT
558}
559
fd76863e 560static sector_t align_to_barrier_unit_end(sector_t start_sector,
561 sector_t sectors)
562{
563 sector_t len;
564
565 WARN_ON(sectors == 0);
566 /*
567 * len is the number of sectors from start_sector to end of the
568 * barrier unit which start_sector belongs to.
569 */
570 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571 start_sector;
572
573 if (len > sectors)
574 len = sectors;
575
576 return len;
577}
578
31a73331
YK
579static void update_read_sectors(struct r1conf *conf, int disk,
580 sector_t this_sector, int len)
581{
582 struct raid1_info *info = &conf->mirrors[disk];
583
584 atomic_inc(&info->rdev->nr_pending);
585 if (info->next_seq_sect != this_sector)
586 info->seq_start = this_sector;
587 info->next_seq_sect = this_sector + len;
588}
589
590static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
591 int *max_sectors)
592{
593 sector_t this_sector = r1_bio->sector;
594 int len = r1_bio->sectors;
595 int disk;
596
597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 struct md_rdev *rdev;
599 int read_len;
600
601 if (r1_bio->bios[disk] == IO_BLOCKED)
602 continue;
603
604 rdev = conf->mirrors[disk].rdev;
605 if (!rdev || test_bit(Faulty, &rdev->flags))
606 continue;
607
608 /* choose the first disk even if it has some bad blocks. */
609 read_len = raid1_check_read_range(rdev, this_sector, &len);
610 if (read_len > 0) {
611 update_read_sectors(conf, disk, this_sector, read_len);
612 *max_sectors = read_len;
613 return disk;
614 }
615 }
616
617 return -1;
618}
619
9f3ced79
YK
620static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
621 int *max_sectors)
622{
623 sector_t this_sector = r1_bio->sector;
624 int best_disk = -1;
625 int best_len = 0;
626 int disk;
627
628 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
629 struct md_rdev *rdev;
630 int len;
631 int read_len;
632
633 if (r1_bio->bios[disk] == IO_BLOCKED)
634 continue;
635
636 rdev = conf->mirrors[disk].rdev;
637 if (!rdev || test_bit(Faulty, &rdev->flags) ||
638 test_bit(WriteMostly, &rdev->flags))
639 continue;
640
641 /* keep track of the disk with the most readable sectors. */
642 len = r1_bio->sectors;
643 read_len = raid1_check_read_range(rdev, this_sector, &len);
644 if (read_len > best_len) {
645 best_disk = disk;
646 best_len = read_len;
647 }
648 }
649
650 if (best_disk != -1) {
651 *max_sectors = best_len;
652 update_read_sectors(conf, best_disk, this_sector, best_len);
653 }
654
655 return best_disk;
656}
657
dfa8ecd1
YK
658static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
659 int *max_sectors)
660{
661 sector_t this_sector = r1_bio->sector;
662 int bb_disk = -1;
663 int bb_read_len = 0;
664 int disk;
665
666 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
667 struct md_rdev *rdev;
668 int len;
669 int read_len;
670
671 if (r1_bio->bios[disk] == IO_BLOCKED)
672 continue;
673
674 rdev = conf->mirrors[disk].rdev;
675 if (!rdev || test_bit(Faulty, &rdev->flags) ||
676 !test_bit(WriteMostly, &rdev->flags))
677 continue;
678
679 /* there are no bad blocks, we can use this disk */
680 len = r1_bio->sectors;
681 read_len = raid1_check_read_range(rdev, this_sector, &len);
682 if (read_len == r1_bio->sectors) {
683 update_read_sectors(conf, disk, this_sector, read_len);
684 return disk;
685 }
686
687 /*
688 * there are partial bad blocks, choose the rdev with largest
689 * read length.
690 */
691 if (read_len > bb_read_len) {
692 bb_disk = disk;
693 bb_read_len = read_len;
694 }
695 }
696
697 if (bb_disk != -1) {
698 *max_sectors = bb_read_len;
699 update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
700 }
701
702 return bb_disk;
703}
704
ba58f57f
YK
705static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
706{
707 /* TODO: address issues with this check and concurrency. */
708 return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
709 conf->mirrors[disk].head_position == r1_bio->sector;
710}
711
712/*
713 * If buffered sequential IO size exceeds optimal iosize, check if there is idle
714 * disk. If yes, choose the idle disk.
715 */
716static bool should_choose_next(struct r1conf *conf, int disk)
717{
718 struct raid1_info *mirror = &conf->mirrors[disk];
719 int opt_iosize;
720
721 if (!test_bit(Nonrot, &mirror->rdev->flags))
722 return false;
723
724 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
725 return opt_iosize > 0 && mirror->seq_start != MaxSector &&
726 mirror->next_seq_sect > opt_iosize &&
727 mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
728}
729
0091c5a2 730static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
1da177e4 731{
0091c5a2
YK
732 if (!rdev || test_bit(Faulty, &rdev->flags))
733 return false;
d2eb35ac 734
0091c5a2
YK
735 /* still in recovery */
736 if (!test_bit(In_sync, &rdev->flags) &&
737 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors)
738 return false;
739
740 /* don't read from slow disk unless have to */
741 if (test_bit(WriteMostly, &rdev->flags))
742 return false;
743
744 /* don't split IO for bad blocks unless have to */
745 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
746 return false;
747
748 return true;
749}
750
751struct read_balance_ctl {
752 sector_t closest_dist;
753 int closest_dist_disk;
754 int min_pending;
755 int min_pending_disk;
756 int sequential_disk;
757 int readable_disks;
758};
759
760static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
761{
762 int disk;
763 struct read_balance_ctl ctl = {
764 .closest_dist_disk = -1,
765 .closest_dist = MaxSector,
766 .min_pending_disk = -1,
767 .min_pending = UINT_MAX,
768 .sequential_disk = -1,
769 };
31a73331 770
be4d3280 771 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
0091c5a2 772 struct md_rdev *rdev;
76073054 773 sector_t dist;
9dedf603 774 unsigned int pending;
d2eb35ac 775
0091c5a2 776 if (r1_bio->bios[disk] == IO_BLOCKED)
76073054 777 continue;
0091c5a2
YK
778
779 rdev = conf->mirrors[disk].rdev;
780 if (!rdev_readable(rdev, r1_bio))
d2eb35ac 781 continue;
d2eb35ac 782
0091c5a2
YK
783 /* At least two disks to choose from so failfast is OK */
784 if (ctl.readable_disks++ == 1)
2e52d449
N
785 set_bit(R1BIO_FailFast, &r1_bio->state);
786
9dedf603 787 pending = atomic_read(&rdev->nr_pending);
0091c5a2
YK
788 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
789
12cee5a8 790 /* Don't change to another disk for sequential reads */
ba58f57f 791 if (is_sequential(conf, disk, r1_bio)) {
0091c5a2
YK
792 if (!should_choose_next(conf, disk))
793 return disk;
794
ba58f57f
YK
795 /*
796 * Add 'pending' to avoid choosing this disk if
797 * there is other idle disk.
798 */
799 pending++;
800 /*
801 * If there is no other idle disk, this disk
802 * will be chosen.
803 */
0091c5a2 804 ctl.sequential_disk = disk;
12cee5a8 805 }
12cee5a8 806
0091c5a2
YK
807 if (ctl.min_pending > pending) {
808 ctl.min_pending = pending;
809 ctl.min_pending_disk = disk;
9dedf603
SL
810 }
811
0091c5a2
YK
812 if (ctl.closest_dist > dist) {
813 ctl.closest_dist = dist;
814 ctl.closest_dist_disk = disk;
1da177e4 815 }
f3ac8bf7 816 }
1da177e4 817
257ac239
YK
818 /*
819 * sequential IO size exceeds optimal iosize, however, there is no other
820 * idle disk, so choose the sequential disk.
821 */
0091c5a2
YK
822 if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
823 return ctl.sequential_disk;
257ac239 824
9dedf603
SL
825 /*
826 * If all disks are rotational, choose the closest disk. If any disk is
827 * non-rotational, choose the disk with less pending request even the
828 * disk is rotational, which might/might not be optimal for raids with
829 * mixed ratation/non-rotational disks depending on workload.
830 */
0091c5a2
YK
831 if (ctl.min_pending_disk != -1 &&
832 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
833 return ctl.min_pending_disk;
834 else
835 return ctl.closest_dist_disk;
836}
9dedf603 837
0091c5a2
YK
838/*
839 * This routine returns the disk from which the requested read should be done.
840 *
841 * 1) If resync is in progress, find the first usable disk and use it even if it
842 * has some bad blocks.
843 *
844 * 2) Now that there is no resync, loop through all disks and skipping slow
845 * disks and disks with bad blocks for now. Only pay attention to key disk
846 * choice.
847 *
848 * 3) If we've made it this far, now look for disks with bad blocks and choose
849 * the one with most number of sectors.
850 *
851 * 4) If we are all the way at the end, we have no choice but to use a disk even
852 * if it is write mostly.
853 *
854 * The rdev for the device selected will have nr_pending incremented.
855 */
856static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
857 int *max_sectors)
858{
859 int disk;
12cee5a8 860
0091c5a2 861 clear_bit(R1BIO_FailFast, &r1_bio->state);
1da177e4 862
0091c5a2
YK
863 if (raid1_should_read_first(conf->mddev, r1_bio->sector,
864 r1_bio->sectors))
865 return choose_first_rdev(conf, r1_bio, max_sectors);
866
867 disk = choose_best_rdev(conf, r1_bio);
868 if (disk >= 0) {
869 *max_sectors = r1_bio->sectors;
870 update_read_sectors(conf, disk, r1_bio->sector,
871 r1_bio->sectors);
872 return disk;
873 }
dfa8ecd1 874
9f3ced79
YK
875 /*
876 * If we are here it means we didn't find a perfectly good disk so
877 * now spend a bit more time trying to find one with the most good
878 * sectors.
879 */
880 disk = choose_bb_rdev(conf, r1_bio, max_sectors);
881 if (disk >= 0)
882 return disk;
883
dfa8ecd1 884 return choose_slow_rdev(conf, r1_bio, max_sectors);
1da177e4
LT
885}
886
21bd9a68
JW
887static void wake_up_barrier(struct r1conf *conf)
888{
889 if (wq_has_sleeper(&conf->wait_barrier))
890 wake_up(&conf->wait_barrier);
891}
892
673ca68d
N
893static void flush_bio_list(struct r1conf *conf, struct bio *bio)
894{
895 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
9efcc2c3 896 raid1_prepare_flush_writes(conf->mddev->bitmap);
21bd9a68 897 wake_up_barrier(conf);
673ca68d
N
898
899 while (bio) { /* submit pending writes */
900 struct bio *next = bio->bi_next;
8295efbe
YK
901
902 raid1_submit_write(bio);
673ca68d 903 bio = next;
5fa4f8ba 904 cond_resched();
673ca68d
N
905 }
906}
907
e8096360 908static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
909{
910 /* Any writes that have been queued but are awaiting
911 * bitmap updates get flushed here.
a35e63ef 912 */
a35e63ef
N
913 spin_lock_irq(&conf->device_lock);
914
915 if (conf->pending_bio_list.head) {
18022a1b 916 struct blk_plug plug;
a35e63ef 917 struct bio *bio;
18022a1b 918
a35e63ef 919 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef 920 spin_unlock_irq(&conf->device_lock);
474beb57
N
921
922 /*
923 * As this is called in a wait_event() loop (see freeze_array),
924 * current->state might be TASK_UNINTERRUPTIBLE which will
925 * cause a warning when we prepare to wait again. As it is
926 * rare that this path is taken, it is perfectly safe to force
927 * us to go around the wait_event() loop again, so the warning
928 * is a false-positive. Silence the warning by resetting
929 * thread state
930 */
931 __set_current_state(TASK_RUNNING);
18022a1b 932 blk_start_plug(&plug);
673ca68d 933 flush_bio_list(conf, bio);
18022a1b 934 blk_finish_plug(&plug);
a35e63ef
N
935 } else
936 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
937}
938
17999be4
N
939/* Barriers....
940 * Sometimes we need to suspend IO while we do something else,
941 * either some resync/recovery, or reconfigure the array.
942 * To do this we raise a 'barrier'.
943 * The 'barrier' is a counter that can be raised multiple times
944 * to count how many activities are happening which preclude
945 * normal IO.
946 * We can only raise the barrier if there is no pending IO.
947 * i.e. if nr_pending == 0.
948 * We choose only to raise the barrier if no-one is waiting for the
949 * barrier to go down. This means that as soon as an IO request
950 * is ready, no other operations which require a barrier will start
951 * until the IO request has had a chance.
952 *
953 * So: regular IO calls 'wait_barrier'. When that returns there
954 * is no backgroup IO happening, It must arrange to call
955 * allow_barrier when it has finished its IO.
956 * backgroup IO calls must call raise_barrier. Once that returns
957 * there is no normal IO happeing. It must arrange to call
958 * lower_barrier when the particular background IO completes.
4675719d
HT
959 *
960 * If resync/recovery is interrupted, returns -EINTR;
961 * Otherwise, returns 0.
1da177e4 962 */
4675719d 963static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 964{
fd76863e 965 int idx = sector_to_idx(sector_nr);
966
1da177e4 967 spin_lock_irq(&conf->resync_lock);
17999be4
N
968
969 /* Wait until no block IO is waiting */
824e47da 970 wait_event_lock_irq(conf->wait_barrier,
971 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 972 conf->resync_lock);
17999be4
N
973
974 /* block any new IO from starting */
824e47da 975 atomic_inc(&conf->barrier[idx]);
976 /*
977 * In raise_barrier() we firstly increase conf->barrier[idx] then
978 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
979 * increase conf->nr_pending[idx] then check conf->barrier[idx].
980 * A memory barrier here to make sure conf->nr_pending[idx] won't
981 * be fetched before conf->barrier[idx] is increased. Otherwise
982 * there will be a race between raise_barrier() and _wait_barrier().
983 */
984 smp_mb__after_atomic();
17999be4 985
79ef3a8a 986 /* For these conditions we must wait:
987 * A: while the array is in frozen state
fd76863e 988 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
989 * existing in corresponding I/O barrier bucket.
990 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
991 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 992 */
17999be4 993 wait_event_lock_irq(conf->wait_barrier,
8c242593 994 (!conf->array_frozen &&
824e47da 995 !atomic_read(&conf->nr_pending[idx]) &&
8c242593
YY
996 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
997 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
eed8c02e 998 conf->resync_lock);
17999be4 999
8c242593
YY
1000 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1001 atomic_dec(&conf->barrier[idx]);
1002 spin_unlock_irq(&conf->resync_lock);
1003 wake_up(&conf->wait_barrier);
1004 return -EINTR;
1005 }
1006
43ac9b84 1007 atomic_inc(&conf->nr_sync_pending);
17999be4 1008 spin_unlock_irq(&conf->resync_lock);
8c242593
YY
1009
1010 return 0;
17999be4
N
1011}
1012
fd76863e 1013static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 1014{
fd76863e 1015 int idx = sector_to_idx(sector_nr);
1016
824e47da 1017 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 1018
824e47da 1019 atomic_dec(&conf->barrier[idx]);
43ac9b84 1020 atomic_dec(&conf->nr_sync_pending);
17999be4
N
1021 wake_up(&conf->wait_barrier);
1022}
1023
5aa70503 1024static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
17999be4 1025{
5aa70503
VV
1026 bool ret = true;
1027
824e47da 1028 /*
1029 * We need to increase conf->nr_pending[idx] very early here,
1030 * then raise_barrier() can be blocked when it waits for
1031 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1032 * conf->resync_lock when there is no barrier raised in same
1033 * barrier unit bucket. Also if the array is frozen, I/O
1034 * should be blocked until array is unfrozen.
1035 */
1036 atomic_inc(&conf->nr_pending[idx]);
1037 /*
1038 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1039 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1040 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1041 * barrier is necessary here to make sure conf->barrier[idx] won't be
1042 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1043 * will be a race between _wait_barrier() and raise_barrier().
1044 */
1045 smp_mb__after_atomic();
79ef3a8a 1046
824e47da 1047 /*
1048 * Don't worry about checking two atomic_t variables at same time
1049 * here. If during we check conf->barrier[idx], the array is
1050 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1051 * 0, it is safe to return and make the I/O continue. Because the
1052 * array is frozen, all I/O returned here will eventually complete
1053 * or be queued, no race will happen. See code comment in
1054 * frozen_array().
1055 */
1056 if (!READ_ONCE(conf->array_frozen) &&
1057 !atomic_read(&conf->barrier[idx]))
5aa70503 1058 return ret;
79ef3a8a 1059
824e47da 1060 /*
1061 * After holding conf->resync_lock, conf->nr_pending[idx]
1062 * should be decreased before waiting for barrier to drop.
1063 * Otherwise, we may encounter a race condition because
1064 * raise_barrer() might be waiting for conf->nr_pending[idx]
1065 * to be 0 at same time.
1066 */
1067 spin_lock_irq(&conf->resync_lock);
1068 atomic_inc(&conf->nr_waiting[idx]);
1069 atomic_dec(&conf->nr_pending[idx]);
1070 /*
1071 * In case freeze_array() is waiting for
1072 * get_unqueued_pending() == extra
1073 */
21bd9a68 1074 wake_up_barrier(conf);
824e47da 1075 /* Wait for the barrier in same barrier unit bucket to drop. */
5aa70503
VV
1076
1077 /* Return false when nowait flag is set */
1078 if (nowait) {
1079 ret = false;
1080 } else {
1081 wait_event_lock_irq(conf->wait_barrier,
1082 !conf->array_frozen &&
1083 !atomic_read(&conf->barrier[idx]),
1084 conf->resync_lock);
1085 atomic_inc(&conf->nr_pending[idx]);
1086 }
1087
824e47da 1088 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 1089 spin_unlock_irq(&conf->resync_lock);
5aa70503 1090 return ret;
79ef3a8a 1091}
1092
5aa70503 1093static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
79ef3a8a 1094{
fd76863e 1095 int idx = sector_to_idx(sector_nr);
5aa70503 1096 bool ret = true;
79ef3a8a 1097
824e47da 1098 /*
1099 * Very similar to _wait_barrier(). The difference is, for read
1100 * I/O we don't need wait for sync I/O, but if the whole array
1101 * is frozen, the read I/O still has to wait until the array is
1102 * unfrozen. Since there is no ordering requirement with
1103 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1104 */
1105 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 1106
824e47da 1107 if (!READ_ONCE(conf->array_frozen))
5aa70503 1108 return ret;
824e47da 1109
1110 spin_lock_irq(&conf->resync_lock);
1111 atomic_inc(&conf->nr_waiting[idx]);
1112 atomic_dec(&conf->nr_pending[idx]);
1113 /*
1114 * In case freeze_array() is waiting for
1115 * get_unqueued_pending() == extra
1116 */
21bd9a68 1117 wake_up_barrier(conf);
824e47da 1118 /* Wait for array to be unfrozen */
5aa70503
VV
1119
1120 /* Return false when nowait flag is set */
1121 if (nowait) {
1122 /* Return false when nowait flag is set */
1123 ret = false;
1124 } else {
1125 wait_event_lock_irq(conf->wait_barrier,
1126 !conf->array_frozen,
1127 conf->resync_lock);
1128 atomic_inc(&conf->nr_pending[idx]);
1129 }
1130
824e47da 1131 atomic_dec(&conf->nr_waiting[idx]);
1da177e4 1132 spin_unlock_irq(&conf->resync_lock);
5aa70503 1133 return ret;
1da177e4
LT
1134}
1135
5aa70503 1136static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
17999be4 1137{
fd76863e 1138 int idx = sector_to_idx(sector_nr);
79ef3a8a 1139
5aa70503 1140 return _wait_barrier(conf, idx, nowait);
fd76863e 1141}
1142
fd76863e 1143static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1144{
824e47da 1145 atomic_dec(&conf->nr_pending[idx]);
21bd9a68 1146 wake_up_barrier(conf);
17999be4
N
1147}
1148
fd76863e 1149static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1150{
1151 int idx = sector_to_idx(sector_nr);
1152
1153 _allow_barrier(conf, idx);
1154}
1155
fd76863e 1156/* conf->resync_lock should be held */
1157static int get_unqueued_pending(struct r1conf *conf)
1158{
1159 int idx, ret;
1160
43ac9b84
XN
1161 ret = atomic_read(&conf->nr_sync_pending);
1162 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1163 ret += atomic_read(&conf->nr_pending[idx]) -
1164 atomic_read(&conf->nr_queued[idx]);
fd76863e 1165
1166 return ret;
1167}
1168
e2d59925 1169static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1170{
fd76863e 1171 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1172 * go quiet.
fd76863e 1173 * This is called in two situations:
1174 * 1) management command handlers (reshape, remove disk, quiesce).
1175 * 2) one normal I/O request failed.
1176
1177 * After array_frozen is set to 1, new sync IO will be blocked at
1178 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1179 * or wait_read_barrier(). The flying I/Os will either complete or be
1180 * queued. When everything goes quite, there are only queued I/Os left.
1181
1182 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1183 * barrier bucket index which this I/O request hits. When all sync and
1184 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1185 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1186 * in handle_read_error(), we may call freeze_array() before trying to
1187 * fix the read error. In this case, the error read I/O is not queued,
1188 * so get_unqueued_pending() == 1.
1189 *
1190 * Therefore before this function returns, we need to wait until
1191 * get_unqueued_pendings(conf) gets equal to extra. For
1192 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1193 */
1194 spin_lock_irq(&conf->resync_lock);
b364e3d0 1195 conf->array_frozen = 1;
28be4fd3 1196 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
fd76863e 1197 wait_event_lock_irq_cmd(
1198 conf->wait_barrier,
1199 get_unqueued_pending(conf) == extra,
1200 conf->resync_lock,
1201 flush_pending_writes(conf));
ddaf22ab
N
1202 spin_unlock_irq(&conf->resync_lock);
1203}
e8096360 1204static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1205{
1206 /* reverse the effect of the freeze */
1207 spin_lock_irq(&conf->resync_lock);
b364e3d0 1208 conf->array_frozen = 0;
ddaf22ab 1209 spin_unlock_irq(&conf->resync_lock);
824e47da 1210 wake_up(&conf->wait_barrier);
ddaf22ab
N
1211}
1212
16d56e2f 1213static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1214 struct bio *bio)
4b6d287f 1215{
cb83efcf 1216 int size = bio->bi_iter.bi_size;
841c1316
ML
1217 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1218 int i = 0;
1219 struct bio *behind_bio = NULL;
1220
609be106
CH
1221 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1222 &r1_bio->mddev->bio_set);
4b6d287f 1223
41743c1f 1224 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1225 if (!bio_has_data(bio)) {
1226 behind_bio->bi_iter.bi_size = size;
41743c1f 1227 goto skip_copy;
16d56e2f 1228 }
41743c1f 1229
841c1316
ML
1230 while (i < vcnt && size) {
1231 struct page *page;
1232 int len = min_t(int, PAGE_SIZE, size);
1233
1234 page = alloc_page(GFP_NOIO);
1235 if (unlikely(!page))
1236 goto free_pages;
1237
b42473cd
JT
1238 if (!bio_add_page(behind_bio, page, len, 0)) {
1239 put_page(page);
1240 goto free_pages;
1241 }
841c1316
ML
1242
1243 size -= len;
1244 i++;
4b6d287f 1245 }
841c1316 1246
cb83efcf 1247 bio_copy_data(behind_bio, bio);
41743c1f 1248skip_copy:
56a64c17 1249 r1_bio->behind_master_bio = behind_bio;
af6d7b76 1250 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1251
16d56e2f 1252 return;
841c1316
ML
1253
1254free_pages:
4f024f37
KO
1255 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1256 bio->bi_iter.bi_size);
841c1316 1257 bio_free_pages(behind_bio);
16d56e2f 1258 bio_put(behind_bio);
4b6d287f
N
1259}
1260
f54a9d0e
N
1261static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1262{
1263 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1264 cb);
1265 struct mddev *mddev = plug->cb.data;
1266 struct r1conf *conf = mddev->private;
1267 struct bio *bio;
1268
9efcc2c3 1269 if (from_schedule) {
f54a9d0e
N
1270 spin_lock_irq(&conf->device_lock);
1271 bio_list_merge(&conf->pending_bio_list, &plug->pending);
f54a9d0e 1272 spin_unlock_irq(&conf->device_lock);
21bd9a68 1273 wake_up_barrier(conf);
f54a9d0e
N
1274 md_wakeup_thread(mddev->thread);
1275 kfree(plug);
1276 return;
1277 }
1278
1279 /* we aren't scheduling, so we can do the write-out directly. */
1280 bio = bio_list_get(&plug->pending);
673ca68d 1281 flush_bio_list(conf, bio);
f54a9d0e
N
1282 kfree(plug);
1283}
1284
689389a0
N
1285static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1286{
1287 r1_bio->master_bio = bio;
1288 r1_bio->sectors = bio_sectors(bio);
1289 r1_bio->state = 0;
1290 r1_bio->mddev = mddev;
1291 r1_bio->sector = bio->bi_iter.bi_sector;
1292}
1293
fd76863e 1294static inline struct r1bio *
689389a0 1295alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1296{
1297 struct r1conf *conf = mddev->private;
1298 struct r1bio *r1_bio;
1299
afeee514 1300 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
689389a0
N
1301 /* Ensure no bio records IO_BLOCKED */
1302 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1303 init_r1bio(r1_bio, mddev, bio);
fd76863e 1304 return r1_bio;
1305}
1306
c230e7e5 1307static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1308 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1309{
e8096360 1310 struct r1conf *conf = mddev->private;
0eaf822c 1311 struct raid1_info *mirror;
1da177e4 1312 struct bio *read_bio;
3b046a97 1313 struct bitmap *bitmap = mddev->bitmap;
3c5e514d
BVA
1314 const enum req_op op = bio_op(bio);
1315 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
3b046a97
RL
1316 int max_sectors;
1317 int rdisk;
9b8ae7b9 1318 bool r1bio_existed = !!r1_bio;
689389a0 1319 char b[BDEVNAME_SIZE];
3b046a97 1320
fd76863e 1321 /*
689389a0
N
1322 * If r1_bio is set, we are blocking the raid1d thread
1323 * so there is a tiny risk of deadlock. So ask for
1324 * emergency memory if needed.
fd76863e 1325 */
689389a0 1326 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1327
9b8ae7b9 1328 if (r1bio_existed) {
689389a0 1329 /* Need to get the block device name carefully */
2d32777d
YK
1330 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1331
689389a0 1332 if (rdev)
900d156b 1333 snprintf(b, sizeof(b), "%pg", rdev->bdev);
689389a0
N
1334 else
1335 strcpy(b, "???");
689389a0 1336 }
3b046a97 1337
fd76863e 1338 /*
fd76863e 1339 * Still need barrier for READ in case that whole
1340 * array is frozen.
fd76863e 1341 */
5aa70503
VV
1342 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1343 bio->bi_opf & REQ_NOWAIT)) {
1344 bio_wouldblock_error(bio);
1345 return;
1346 }
fd76863e 1347
689389a0
N
1348 if (!r1_bio)
1349 r1_bio = alloc_r1bio(mddev, bio);
1350 else
1351 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1352 r1_bio->sectors = max_read_sectors;
fd76863e 1353
1354 /*
1355 * make_request() can abort the operation when read-ahead is being
1356 * used and no empty request is available.
1357 */
3b046a97
RL
1358 rdisk = read_balance(conf, r1_bio, &max_sectors);
1359
1360 if (rdisk < 0) {
1361 /* couldn't find anywhere to read from */
9b8ae7b9 1362 if (r1bio_existed) {
689389a0
N
1363 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1364 mdname(mddev),
1365 b,
1366 (unsigned long long)r1_bio->sector);
1367 }
3b046a97
RL
1368 raid_end_bio_io(r1_bio);
1369 return;
1370 }
1371 mirror = conf->mirrors + rdisk;
1372
9b8ae7b9 1373 if (r1bio_existed)
913cce5a 1374 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
689389a0
N
1375 mdname(mddev),
1376 (unsigned long long)r1_bio->sector,
913cce5a 1377 mirror->rdev->bdev);
689389a0 1378
3b046a97
RL
1379 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1380 bitmap) {
1381 /*
1382 * Reading from a write-mostly device must take care not to
1383 * over-take any writes that are 'behind'
1384 */
28be4fd3 1385 mddev_add_trace_msg(mddev, "raid1 wait behind writes");
3b046a97
RL
1386 wait_event(bitmap->behind_wait,
1387 atomic_read(&bitmap->behind_writes) == 0);
1388 }
c230e7e5
N
1389
1390 if (max_sectors < bio_sectors(bio)) {
1391 struct bio *split = bio_split(bio, max_sectors,
afeee514 1392 gfp, &conf->bio_split);
c230e7e5 1393 bio_chain(split, bio);
ed00aabd 1394 submit_bio_noacct(bio);
c230e7e5
N
1395 bio = split;
1396 r1_bio->master_bio = bio;
1397 r1_bio->sectors = max_sectors;
1398 }
1399
3b046a97 1400 r1_bio->read_disk = rdisk;
bb2a9ace
YK
1401 if (!r1bio_existed) {
1402 md_account_bio(mddev, &bio);
1403 r1_bio->master_bio = bio;
1404 }
abfc426d
CH
1405 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1406 &mddev->bio_set);
3b046a97
RL
1407
1408 r1_bio->bios[rdisk] = read_bio;
1409
1410 read_bio->bi_iter.bi_sector = r1_bio->sector +
1411 mirror->rdev->data_offset;
3b046a97 1412 read_bio->bi_end_io = raid1_end_read_request;
c34b7ac6 1413 read_bio->bi_opf = op | do_sync;
3b046a97
RL
1414 if (test_bit(FailFast, &mirror->rdev->flags) &&
1415 test_bit(R1BIO_FailFast, &r1_bio->state))
1416 read_bio->bi_opf |= MD_FAILFAST;
1417 read_bio->bi_private = r1_bio;
c396b90e 1418 mddev_trace_remap(mddev, read_bio, r1_bio->sector);
ed00aabd 1419 submit_bio_noacct(read_bio);
3b046a97
RL
1420}
1421
c230e7e5
N
1422static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1423 int max_write_sectors)
3b046a97
RL
1424{
1425 struct r1conf *conf = mddev->private;
fd76863e 1426 struct r1bio *r1_bio;
1f68f0c4 1427 int i, disks;
3b046a97 1428 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1429 unsigned long flags;
3cb03002 1430 struct md_rdev *blocked_rdev;
1f68f0c4 1431 int first_clone;
1f68f0c4 1432 int max_sectors;
6607cd31 1433 bool write_behind = false;
9e55a22f 1434 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
191ea9b2 1435
b3143b9a 1436 if (mddev_is_clustered(mddev) &&
90382ed9 1437 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1438 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1439
6eef4b21 1440 DEFINE_WAIT(w);
5aa70503
VV
1441 if (bio->bi_opf & REQ_NOWAIT) {
1442 bio_wouldblock_error(bio);
1443 return;
1444 }
6eef4b21 1445 for (;;) {
6eef4b21 1446 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1447 &w, TASK_IDLE);
f81f7302 1448 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1449 bio->bi_iter.bi_sector,
b3143b9a 1450 bio_end_sector(bio)))
6eef4b21
N
1451 break;
1452 schedule();
1453 }
1454 finish_wait(&conf->wait_barrier, &w);
1455 }
f81f7302
GJ
1456
1457 /*
1458 * Register the new request and wait if the reconstruction
1459 * thread has put up a bar for new requests.
1460 * Continue immediately if no resync is active currently.
1461 */
5aa70503
VV
1462 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1463 bio->bi_opf & REQ_NOWAIT)) {
1464 bio_wouldblock_error(bio);
1465 return;
1466 }
fd76863e 1467
992db13a 1468 retry_write:
689389a0 1469 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1470 r1_bio->sectors = max_write_sectors;
1da177e4 1471
1f68f0c4 1472 /* first select target devices under rcu_lock and
1da177e4
LT
1473 * inc refcount on their rdev. Record them by setting
1474 * bios[x] to bio
1f68f0c4
N
1475 * If there are known/acknowledged bad blocks on any device on
1476 * which we have seen a write error, we want to avoid writing those
1477 * blocks.
1478 * This potentially requires several writes to write around
1479 * the bad blocks. Each set of writes gets it's own r1bio
1480 * with a set of bios attached.
1da177e4 1481 */
c3b328ac 1482
8f19ccb2 1483 disks = conf->raid_disks * 2;
6bfe0b49 1484 blocked_rdev = NULL;
1f68f0c4 1485 max_sectors = r1_bio->sectors;
1da177e4 1486 for (i = 0; i < disks; i++) {
2d32777d 1487 struct md_rdev *rdev = conf->mirrors[i].rdev;
6607cd31
GJ
1488
1489 /*
1490 * The write-behind io is only attempted on drives marked as
1491 * write-mostly, which means we could allocate write behind
1492 * bio later.
1493 */
9e55a22f 1494 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
6607cd31
GJ
1495 write_behind = true;
1496
6bfe0b49
DW
1497 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1498 atomic_inc(&rdev->nr_pending);
1499 blocked_rdev = rdev;
1500 break;
1501 }
1f68f0c4 1502 r1_bio->bios[i] = NULL;
8ae12666 1503 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1504 if (i < conf->raid_disks)
1505 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1506 continue;
1507 }
1508
1509 atomic_inc(&rdev->nr_pending);
1510 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1511 sector_t first_bad;
1512 int bad_sectors;
1513 int is_bad;
1514
3b046a97 1515 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1516 &first_bad, &bad_sectors);
1517 if (is_bad < 0) {
1518 /* mustn't write here until the bad block is
1519 * acknowledged*/
1520 set_bit(BlockedBadBlocks, &rdev->flags);
1521 blocked_rdev = rdev;
1522 break;
1523 }
1524 if (is_bad && first_bad <= r1_bio->sector) {
1525 /* Cannot write here at all */
1526 bad_sectors -= (r1_bio->sector - first_bad);
1527 if (bad_sectors < max_sectors)
1528 /* mustn't write more than bad_sectors
1529 * to other devices yet
1530 */
1531 max_sectors = bad_sectors;
03c902e1 1532 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1533 /* We don't set R1BIO_Degraded as that
1534 * only applies if the disk is
1535 * missing, so it might be re-added,
1536 * and we want to know to recover this
1537 * chunk.
1538 * In this case the device is here,
1539 * and the fact that this chunk is not
1540 * in-sync is recorded in the bad
1541 * block log
1542 */
1543 continue;
964147d5 1544 }
1f68f0c4
N
1545 if (is_bad) {
1546 int good_sectors = first_bad - r1_bio->sector;
1547 if (good_sectors < max_sectors)
1548 max_sectors = good_sectors;
1549 }
1550 }
1551 r1_bio->bios[i] = bio;
1da177e4 1552 }
1da177e4 1553
6bfe0b49
DW
1554 if (unlikely(blocked_rdev)) {
1555 /* Wait for this device to become unblocked */
1556 int j;
1557
1558 for (j = 0; j < i; j++)
1559 if (r1_bio->bios[j])
1560 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
fcf3f7e2 1561 mempool_free(r1_bio, &conf->r1bio_pool);
fd76863e 1562 allow_barrier(conf, bio->bi_iter.bi_sector);
5aa70503
VV
1563
1564 if (bio->bi_opf & REQ_NOWAIT) {
1565 bio_wouldblock_error(bio);
1566 return;
1567 }
28be4fd3
CH
1568 mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1569 blocked_rdev->raid_disk);
6bfe0b49 1570 md_wait_for_blocked_rdev(blocked_rdev, mddev);
5aa70503 1571 wait_barrier(conf, bio->bi_iter.bi_sector, false);
6bfe0b49
DW
1572 goto retry_write;
1573 }
1574
6607cd31
GJ
1575 /*
1576 * When using a bitmap, we may call alloc_behind_master_bio below.
1577 * alloc_behind_master_bio allocates a copy of the data payload a page
1578 * at a time and thus needs a new bio that can fit the whole payload
1579 * this bio in page sized chunks.
1580 */
1581 if (write_behind && bitmap)
1582 max_sectors = min_t(int, max_sectors,
1583 BIO_MAX_VECS * (PAGE_SIZE >> 9));
c230e7e5
N
1584 if (max_sectors < bio_sectors(bio)) {
1585 struct bio *split = bio_split(bio, max_sectors,
afeee514 1586 GFP_NOIO, &conf->bio_split);
c230e7e5 1587 bio_chain(split, bio);
ed00aabd 1588 submit_bio_noacct(bio);
c230e7e5
N
1589 bio = split;
1590 r1_bio->master_bio = bio;
1f68f0c4 1591 r1_bio->sectors = max_sectors;
191ea9b2 1592 }
4b6d287f 1593
bb2a9ace
YK
1594 md_account_bio(mddev, &bio);
1595 r1_bio->master_bio = bio;
4e78064f 1596 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1597 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1598
1f68f0c4 1599 first_clone = 1;
d8c84c4f 1600
1da177e4 1601 for (i = 0; i < disks; i++) {
8e58e327 1602 struct bio *mbio = NULL;
69df9cfc 1603 struct md_rdev *rdev = conf->mirrors[i].rdev;
1da177e4
LT
1604 if (!r1_bio->bios[i])
1605 continue;
1606
46669e86 1607 if (first_clone) {
1f68f0c4
N
1608 /* do behind I/O ?
1609 * Not if there are too many, or cannot
1610 * allocate memory, or a reader on WriteMostly
1611 * is waiting for behind writes to flush */
6b2460e6 1612 if (bitmap && write_behind &&
1f68f0c4
N
1613 (atomic_read(&bitmap->behind_writes)
1614 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1615 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1616 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1617 }
1f68f0c4 1618
e64e4018
AS
1619 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1620 test_bit(R1BIO_BehindIO, &r1_bio->state));
1f68f0c4
N
1621 first_clone = 0;
1622 }
8e58e327 1623
841c1316 1624 if (r1_bio->behind_master_bio) {
abfc426d
CH
1625 mbio = bio_alloc_clone(rdev->bdev,
1626 r1_bio->behind_master_bio,
1627 GFP_NOIO, &mddev->bio_set);
69df9cfc 1628 if (test_bit(CollisionCheck, &rdev->flags))
d0d2d8ba 1629 wait_for_serialization(rdev, r1_bio);
3e148a32 1630 if (test_bit(WriteMostly, &rdev->flags))
4b6d287f 1631 atomic_inc(&r1_bio->behind_remaining);
abfc426d
CH
1632 } else {
1633 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1634 &mddev->bio_set);
1635
1636 if (mddev->serialize_policy)
1637 wait_for_serialization(rdev, r1_bio);
1638 }
4b6d287f 1639
1f68f0c4
N
1640 r1_bio->bios[i] = mbio;
1641
2e94275e 1642 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1f68f0c4 1643 mbio->bi_end_io = raid1_end_write_request;
a682e003 1644 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
2e94275e
GJ
1645 if (test_bit(FailFast, &rdev->flags) &&
1646 !test_bit(WriteMostly, &rdev->flags) &&
212e7eb7
N
1647 conf->raid_disks - mddev->degraded > 1)
1648 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1649 mbio->bi_private = r1_bio;
1650
1da177e4 1651 atomic_inc(&r1_bio->remaining);
c396b90e 1652 mddev_trace_remap(mddev, mbio, r1_bio->sector);
109e3765 1653 /* flush_pending_writes() needs access to the rdev so...*/
2e94275e 1654 mbio->bi_bdev = (void *)rdev;
460af1f9 1655 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
23b245c0 1656 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e 1657 bio_list_add(&conf->pending_bio_list, mbio);
23b245c0 1658 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1659 md_wakeup_thread(mddev->thread);
23b245c0 1660 }
1da177e4 1661 }
1f68f0c4 1662
079fa166
N
1663 r1_bio_write_done(r1_bio);
1664
1665 /* In case raid1d snuck in to freeze_array */
21bd9a68 1666 wake_up_barrier(conf);
1da177e4
LT
1667}
1668
cc27b0c7 1669static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1670{
fd76863e 1671 sector_t sectors;
3b046a97 1672
775d7831
DJ
1673 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1674 && md_flush_request(mddev, bio))
cc27b0c7 1675 return true;
3b046a97 1676
c230e7e5
N
1677 /*
1678 * There is a limit to the maximum size, but
1679 * the read/write handler might find a lower limit
1680 * due to bad blocks. To avoid multiple splits,
1681 * we pass the maximum number of sectors down
1682 * and let the lower level perform the split.
1683 */
1684 sectors = align_to_barrier_unit_end(
1685 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1686
c230e7e5 1687 if (bio_data_dir(bio) == READ)
689389a0 1688 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1689 else {
1690 if (!md_write_start(mddev,bio))
1691 return false;
c230e7e5 1692 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1693 }
1694 return true;
3b046a97
RL
1695}
1696
849674e4 1697static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1698{
e8096360 1699 struct r1conf *conf = mddev->private;
1da177e4
LT
1700 int i;
1701
2d32777d
YK
1702 lockdep_assert_held(&mddev->lock);
1703
1da177e4 1704 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1705 conf->raid_disks - mddev->degraded);
ddac7c7e 1706 for (i = 0; i < conf->raid_disks; i++) {
2d32777d
YK
1707 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1708
1da177e4 1709 seq_printf(seq, "%s",
ddac7c7e
N
1710 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1711 }
1da177e4
LT
1712 seq_printf(seq, "]");
1713}
1714
9631abdb
MT
1715/**
1716 * raid1_error() - RAID1 error handler.
1717 * @mddev: affected md device.
1718 * @rdev: member device to fail.
1719 *
1720 * The routine acknowledges &rdev failure and determines new @mddev state.
1721 * If it failed, then:
1722 * - &MD_BROKEN flag is set in &mddev->flags.
1723 * - recovery is disabled.
1724 * Otherwise, it must be degraded:
1725 * - recovery is interrupted.
1726 * - &mddev->degraded is bumped.
1727 *
1728 * @rdev is marked as &Faulty excluding case when array is failed and
1729 * &mddev->fail_last_dev is off.
1730 */
849674e4 1731static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1732{
e8096360 1733 struct r1conf *conf = mddev->private;
423f04d6 1734 unsigned long flags;
1da177e4 1735
2e52d449 1736 spin_lock_irqsave(&conf->device_lock, flags);
9631abdb
MT
1737
1738 if (test_bit(In_sync, &rdev->flags) &&
1739 (conf->raid_disks - mddev->degraded) == 1) {
1740 set_bit(MD_BROKEN, &mddev->flags);
1741
1742 if (!mddev->fail_last_dev) {
1743 conf->recovery_disabled = mddev->recovery_disabled;
1744 spin_unlock_irqrestore(&conf->device_lock, flags);
1745 return;
1746 }
4044ba58 1747 }
de393cde 1748 set_bit(Blocked, &rdev->flags);
ebda52fa 1749 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1750 mddev->degraded++;
ebda52fa 1751 set_bit(Faulty, &rdev->flags);
423f04d6 1752 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1753 /*
1754 * if recovery is running, make sure it aborts.
1755 */
1756 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1757 set_mask_bits(&mddev->sb_flags, 0,
1758 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
913cce5a 1759 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1d41c216 1760 "md/raid1:%s: Operation continuing on %d devices.\n",
913cce5a 1761 mdname(mddev), rdev->bdev,
1d41c216 1762 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1763}
1764
e8096360 1765static void print_conf(struct r1conf *conf)
1da177e4
LT
1766{
1767 int i;
1da177e4 1768
1d41c216 1769 pr_debug("RAID1 conf printout:\n");
1da177e4 1770 if (!conf) {
1d41c216 1771 pr_debug("(!conf)\n");
1da177e4
LT
1772 return;
1773 }
1d41c216
N
1774 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1775 conf->raid_disks);
1da177e4 1776
2d32777d 1777 lockdep_assert_held(&conf->mddev->reconfig_mutex);
1da177e4 1778 for (i = 0; i < conf->raid_disks; i++) {
2d32777d 1779 struct md_rdev *rdev = conf->mirrors[i].rdev;
ddac7c7e 1780 if (rdev)
913cce5a 1781 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1d41c216
N
1782 i, !test_bit(In_sync, &rdev->flags),
1783 !test_bit(Faulty, &rdev->flags),
913cce5a 1784 rdev->bdev);
1da177e4
LT
1785 }
1786}
1787
e8096360 1788static void close_sync(struct r1conf *conf)
1da177e4 1789{
f6eca2d4
ND
1790 int idx;
1791
1792 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
5aa70503 1793 _wait_barrier(conf, idx, false);
f6eca2d4
ND
1794 _allow_barrier(conf, idx);
1795 }
1da177e4 1796
afeee514 1797 mempool_exit(&conf->r1buf_pool);
1da177e4
LT
1798}
1799
fd01b88c 1800static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1801{
1802 int i;
e8096360 1803 struct r1conf *conf = mddev->private;
6b965620
N
1804 int count = 0;
1805 unsigned long flags;
1da177e4
LT
1806
1807 /*
f72ffdd6 1808 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1809 * and mark them readable.
1810 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1811 * device_lock used to avoid races with raid1_end_read_request
1812 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1813 */
423f04d6 1814 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1815 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1816 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1817 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1818 if (repl
1aee41f6 1819 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1820 && repl->recovery_offset == MaxSector
1821 && !test_bit(Faulty, &repl->flags)
1822 && !test_and_set_bit(In_sync, &repl->flags)) {
1823 /* replacement has just become active */
1824 if (!rdev ||
1825 !test_and_clear_bit(In_sync, &rdev->flags))
1826 count++;
1827 if (rdev) {
1828 /* Replaced device not technically
1829 * faulty, but we need to be sure
1830 * it gets removed and never re-added
1831 */
1832 set_bit(Faulty, &rdev->flags);
1833 sysfs_notify_dirent_safe(
1834 rdev->sysfs_state);
1835 }
1836 }
ddac7c7e 1837 if (rdev
61e4947c 1838 && rdev->recovery_offset == MaxSector
ddac7c7e 1839 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1840 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1841 count++;
654e8b5a 1842 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1843 }
1844 }
6b965620
N
1845 mddev->degraded -= count;
1846 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1847
1848 print_conf(conf);
6b965620 1849 return count;
1da177e4
LT
1850}
1851
969d6589
YK
1852static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1853 bool replacement)
1854{
1855 struct raid1_info *info = conf->mirrors + disk;
1856
1857 if (replacement)
1858 info += conf->raid_disks;
1859
1860 if (info->rdev)
1861 return false;
1862
2c27d09d
YK
1863 if (bdev_nonrot(rdev->bdev)) {
1864 set_bit(Nonrot, &rdev->flags);
1865 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1866 }
1867
969d6589
YK
1868 rdev->raid_disk = disk;
1869 info->head_position = 0;
1870 info->seq_start = MaxSector;
1871 WRITE_ONCE(info->rdev, rdev);
1872
1873 return true;
1874}
1875
1876static bool raid1_remove_conf(struct r1conf *conf, int disk)
1877{
1878 struct raid1_info *info = conf->mirrors + disk;
1879 struct md_rdev *rdev = info->rdev;
1880
1881 if (!rdev || test_bit(In_sync, &rdev->flags) ||
1882 atomic_read(&rdev->nr_pending))
1883 return false;
1884
1885 /* Only remove non-faulty devices if recovery is not possible. */
1886 if (!test_bit(Faulty, &rdev->flags) &&
1887 rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1888 rdev->mddev->degraded < conf->raid_disks)
1889 return false;
1890
2c27d09d
YK
1891 if (test_and_clear_bit(Nonrot, &rdev->flags))
1892 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1893
969d6589
YK
1894 WRITE_ONCE(info->rdev, NULL);
1895 return true;
1896}
1897
fd01b88c 1898static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1899{
e8096360 1900 struct r1conf *conf = mddev->private;
199050ea 1901 int err = -EEXIST;
ffb1e7a0 1902 int mirror = 0, repl_slot = -1;
0eaf822c 1903 struct raid1_info *p;
6c2fce2e 1904 int first = 0;
30194636 1905 int last = conf->raid_disks - 1;
1da177e4 1906
5389042f
N
1907 if (mddev->recovery_disabled == conf->recovery_disabled)
1908 return -EBUSY;
1909
1501efad
DW
1910 if (md_integrity_add_rdev(rdev, mddev))
1911 return -ENXIO;
1912
6c2fce2e
NB
1913 if (rdev->raid_disk >= 0)
1914 first = last = rdev->raid_disk;
1915
70bcecdb
GR
1916 /*
1917 * find the disk ... but prefer rdev->saved_raid_disk
1918 * if possible.
1919 */
1920 if (rdev->saved_raid_disk >= 0 &&
1921 rdev->saved_raid_disk >= first &&
9e753ba9 1922 rdev->saved_raid_disk < conf->raid_disks &&
70bcecdb
GR
1923 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1924 first = last = rdev->saved_raid_disk;
1925
7ef449d1 1926 for (mirror = first; mirror <= last; mirror++) {
ebfeb444 1927 p = conf->mirrors + mirror;
7ef449d1 1928 if (!p->rdev) {
97894f7d
CH
1929 err = mddev_stack_new_rdev(mddev, rdev);
1930 if (err)
1931 return err;
1da177e4 1932
969d6589 1933 raid1_add_conf(conf, rdev, mirror, false);
6aea114a
N
1934 /* As all devices are equivalent, we don't need a full recovery
1935 * if this was recently any drive of the array
1936 */
1937 if (rdev->saved_raid_disk < 0)
41158c7e 1938 conf->fullsync = 1;
1da177e4
LT
1939 break;
1940 }
7ef449d1 1941 if (test_bit(WantReplacement, &p->rdev->flags) &&
ffb1e7a0
LN
1942 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1943 repl_slot = mirror;
7ef449d1 1944 }
ffb1e7a0
LN
1945
1946 if (err && repl_slot >= 0) {
1947 /* Add this device as a replacement */
ffb1e7a0
LN
1948 clear_bit(In_sync, &rdev->flags);
1949 set_bit(Replacement, &rdev->flags);
969d6589 1950 raid1_add_conf(conf, rdev, repl_slot, true);
ffb1e7a0
LN
1951 err = 0;
1952 conf->fullsync = 1;
ffb1e7a0
LN
1953 }
1954
1da177e4 1955 print_conf(conf);
199050ea 1956 return err;
1da177e4
LT
1957}
1958
b8321b68 1959static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1960{
e8096360 1961 struct r1conf *conf = mddev->private;
1da177e4 1962 int err = 0;
b8321b68 1963 int number = rdev->raid_disk;
df203da4 1964 struct raid1_info *p = conf->mirrors + number;
8b0472b5
ZS
1965
1966 if (unlikely(number >= conf->raid_disks))
1967 goto abort;
1968
969d6589
YK
1969 if (rdev != p->rdev) {
1970 number += conf->raid_disks;
1971 p = conf->mirrors + number;
1972 }
b014f14c 1973
1da177e4 1974 print_conf(conf);
b8321b68 1975 if (rdev == p->rdev) {
969d6589 1976 if (!raid1_remove_conf(conf, number)) {
dfc70645
N
1977 err = -EBUSY;
1978 goto abort;
1979 }
969d6589
YK
1980
1981 if (number < conf->raid_disks &&
1982 conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1983 /* We just removed a device that is being replaced.
1984 * Move down the replacement. We drain all IO before
1985 * doing this to avoid confusion.
1986 */
1987 struct md_rdev *repl =
1988 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1989 freeze_array(conf, 0);
3de59bb9
YY
1990 if (atomic_read(&repl->nr_pending)) {
1991 /* It means that some queued IO of retry_list
1992 * hold repl. Thus, we cannot set replacement
1993 * as NULL, avoiding rdev NULL pointer
1994 * dereference in sync_request_write and
1995 * handle_write_finished.
1996 */
1997 err = -EBUSY;
1998 unfreeze_array(conf);
1999 goto abort;
2000 }
8c7a2c2b 2001 clear_bit(Replacement, &repl->flags);
2d32777d 2002 WRITE_ONCE(p->rdev, repl);
8c7a2c2b 2003 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 2004 unfreeze_array(conf);
e5bc9c3c
GJ
2005 }
2006
2007 clear_bit(WantReplacement, &rdev->flags);
a91a2785 2008 err = md_integrity_register(mddev);
1da177e4
LT
2009 }
2010abort:
2011
2012 print_conf(conf);
2013 return err;
2014}
2015
4246a0b6 2016static void end_sync_read(struct bio *bio)
1da177e4 2017{
98d30c58 2018 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 2019
0fc280f6 2020 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 2021
1da177e4
LT
2022 /*
2023 * we have read a block, now it needs to be re-written,
2024 * or re-read if the read failed.
2025 * We don't do much here, just schedule handling by raid1d
2026 */
4e4cbee9 2027 if (!bio->bi_status)
1da177e4 2028 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
2029
2030 if (atomic_dec_and_test(&r1_bio->remaining))
2031 reschedule_retry(r1_bio);
1da177e4
LT
2032}
2033
dfcc34c9
ND
2034static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2035{
2036 sector_t sync_blocks = 0;
2037 sector_t s = r1_bio->sector;
2038 long sectors_to_go = r1_bio->sectors;
2039
2040 /* make sure these bits don't get cleared. */
2041 do {
2042 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
2043 s += sync_blocks;
2044 sectors_to_go -= sync_blocks;
2045 } while (sectors_to_go > 0);
2046}
2047
449808a2
HT
2048static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2049{
2050 if (atomic_dec_and_test(&r1_bio->remaining)) {
2051 struct mddev *mddev = r1_bio->mddev;
2052 int s = r1_bio->sectors;
2053
2054 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2055 test_bit(R1BIO_WriteError, &r1_bio->state))
2056 reschedule_retry(r1_bio);
2057 else {
2058 put_buf(r1_bio);
2059 md_done_sync(mddev, s, uptodate);
2060 }
2061 }
2062}
2063
4246a0b6 2064static void end_sync_write(struct bio *bio)
1da177e4 2065{
4e4cbee9 2066 int uptodate = !bio->bi_status;
98d30c58 2067 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 2068 struct mddev *mddev = r1_bio->mddev;
e8096360 2069 struct r1conf *conf = mddev->private;
854abd75 2070 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 2071
6b1117d5 2072 if (!uptodate) {
dfcc34c9 2073 abort_sync_write(mddev, r1_bio);
854abd75
N
2074 set_bit(WriteErrorSeen, &rdev->flags);
2075 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
2076 set_bit(MD_RECOVERY_NEEDED, &
2077 mddev->recovery);
d8f05d29 2078 set_bit(R1BIO_WriteError, &r1_bio->state);
3a0f007b
YK
2079 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2080 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2081 r1_bio->sector, r1_bio->sectors)) {
4367af55 2082 set_bit(R1BIO_MadeGood, &r1_bio->state);
3a0f007b 2083 }
e3b9703e 2084
449808a2 2085 put_sync_write_buf(r1_bio, uptodate);
1da177e4
LT
2086}
2087
3cb03002 2088static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
7dab2455 2089 int sectors, struct page *page, blk_opf_t rw)
d8f05d29 2090{
4ce4c73f 2091 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
d8f05d29
N
2092 /* success */
2093 return 1;
7dab2455 2094 if (rw == REQ_OP_WRITE) {
d8f05d29 2095 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
2096 if (!test_and_set_bit(WantReplacement,
2097 &rdev->flags))
2098 set_bit(MD_RECOVERY_NEEDED, &
2099 rdev->mddev->recovery);
2100 }
d8f05d29
N
2101 /* need to record an error - either for the block or the device */
2102 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2103 md_error(rdev->mddev, rdev);
2104 return 0;
2105}
2106
9f2c9d12 2107static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 2108{
a68e5870
N
2109 /* Try some synchronous reads of other devices to get
2110 * good data, much like with normal read errors. Only
2111 * read into the pages we already have so we don't
2112 * need to re-issue the read request.
2113 * We don't need to freeze the array, because being in an
2114 * active sync request, there is no normal IO, and
2115 * no overlapping syncs.
06f60385
N
2116 * We don't need to check is_badblock() again as we
2117 * made sure that anything with a bad block in range
2118 * will have bi_end_io clear.
a68e5870 2119 */
fd01b88c 2120 struct mddev *mddev = r1_bio->mddev;
e8096360 2121 struct r1conf *conf = mddev->private;
a68e5870 2122 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 2123 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
2124 sector_t sect = r1_bio->sector;
2125 int sectors = r1_bio->sectors;
2126 int idx = 0;
2e52d449
N
2127 struct md_rdev *rdev;
2128
2129 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2130 if (test_bit(FailFast, &rdev->flags)) {
2131 /* Don't try recovering from here - just fail it
2132 * ... unless it is the last working device of course */
2133 md_error(mddev, rdev);
2134 if (test_bit(Faulty, &rdev->flags))
2135 /* Don't try to read from here, but make sure
2136 * put_buf does it's thing
2137 */
2138 bio->bi_end_io = end_sync_write;
2139 }
a68e5870
N
2140
2141 while(sectors) {
2142 int s = sectors;
2143 int d = r1_bio->read_disk;
2144 int success = 0;
78d7f5f7 2145 int start;
a68e5870
N
2146
2147 if (s > (PAGE_SIZE>>9))
2148 s = PAGE_SIZE >> 9;
2149 do {
2150 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2151 /* No rcu protection needed here devices
2152 * can only be removed when no resync is
2153 * active, and resync is currently active
2154 */
2155 rdev = conf->mirrors[d].rdev;
9d3d8011 2156 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 2157 pages[idx],
4ce4c73f 2158 REQ_OP_READ, false)) {
a68e5870
N
2159 success = 1;
2160 break;
2161 }
2162 }
2163 d++;
8f19ccb2 2164 if (d == conf->raid_disks * 2)
a68e5870
N
2165 d = 0;
2166 } while (!success && d != r1_bio->read_disk);
2167
78d7f5f7 2168 if (!success) {
3a9f28a5
N
2169 int abort = 0;
2170 /* Cannot read from anywhere, this block is lost.
2171 * Record a bad block on each device. If that doesn't
2172 * work just disable and interrupt the recovery.
2173 * Don't fail devices as that won't really help.
2174 */
ac483eb3
CH
2175 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2176 mdname(mddev), bio->bi_bdev,
1d41c216 2177 (unsigned long long)r1_bio->sector);
8f19ccb2 2178 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
2179 rdev = conf->mirrors[d].rdev;
2180 if (!rdev || test_bit(Faulty, &rdev->flags))
2181 continue;
2182 if (!rdev_set_badblocks(rdev, sect, s, 0))
2183 abort = 1;
2184 }
2185 if (abort) {
d890fa2b
N
2186 conf->recovery_disabled =
2187 mddev->recovery_disabled;
3a9f28a5
N
2188 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2189 md_done_sync(mddev, r1_bio->sectors, 0);
2190 put_buf(r1_bio);
2191 return 0;
2192 }
2193 /* Try next page */
2194 sectors -= s;
2195 sect += s;
2196 idx++;
2197 continue;
d11c171e 2198 }
78d7f5f7
N
2199
2200 start = d;
2201 /* write it back and re-read */
2202 while (d != r1_bio->read_disk) {
2203 if (d == 0)
8f19ccb2 2204 d = conf->raid_disks * 2;
78d7f5f7
N
2205 d--;
2206 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2207 continue;
2208 rdev = conf->mirrors[d].rdev;
d8f05d29 2209 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2210 pages[idx],
7dab2455 2211 REQ_OP_WRITE) == 0) {
78d7f5f7
N
2212 r1_bio->bios[d]->bi_end_io = NULL;
2213 rdev_dec_pending(rdev, mddev);
9d3d8011 2214 }
78d7f5f7
N
2215 }
2216 d = start;
2217 while (d != r1_bio->read_disk) {
2218 if (d == 0)
8f19ccb2 2219 d = conf->raid_disks * 2;
78d7f5f7
N
2220 d--;
2221 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2222 continue;
2223 rdev = conf->mirrors[d].rdev;
d8f05d29 2224 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2225 pages[idx],
7dab2455 2226 REQ_OP_READ) != 0)
9d3d8011 2227 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2228 }
a68e5870
N
2229 sectors -= s;
2230 sect += s;
2231 idx ++;
2232 }
78d7f5f7 2233 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2234 bio->bi_status = 0;
a68e5870
N
2235 return 1;
2236}
2237
c95e6385 2238static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2239{
2240 /* We have read all readable devices. If we haven't
2241 * got the block, then there is no hope left.
2242 * If we have, then we want to do a comparison
2243 * and skip the write if everything is the same.
2244 * If any blocks failed to read, then we need to
2245 * attempt an over-write
2246 */
fd01b88c 2247 struct mddev *mddev = r1_bio->mddev;
e8096360 2248 struct r1conf *conf = mddev->private;
a68e5870
N
2249 int primary;
2250 int i;
f4380a91 2251 int vcnt;
a68e5870 2252
30bc9b53
N
2253 /* Fix variable parts of all bios */
2254 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2255 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2256 blk_status_t status;
30bc9b53 2257 struct bio *b = r1_bio->bios[i];
98d30c58 2258 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2259 if (b->bi_end_io != end_sync_read)
2260 continue;
4246a0b6 2261 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2262 status = b->bi_status;
a7c50c94 2263 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
4e4cbee9 2264 b->bi_status = status;
4f024f37 2265 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2266 conf->mirrors[i].rdev->data_offset;
30bc9b53 2267 b->bi_end_io = end_sync_read;
98d30c58
ML
2268 rp->raid_bio = r1_bio;
2269 b->bi_private = rp;
30bc9b53 2270
fb0eb5df
ML
2271 /* initialize bvec table again */
2272 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2273 }
8f19ccb2 2274 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2275 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2276 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2277 r1_bio->bios[primary]->bi_end_io = NULL;
2278 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2279 break;
2280 }
2281 r1_bio->read_disk = primary;
8f19ccb2 2282 for (i = 0; i < conf->raid_disks * 2; i++) {
2b070cfe 2283 int j = 0;
78d7f5f7
N
2284 struct bio *pbio = r1_bio->bios[primary];
2285 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2286 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2287 struct page **ppages = get_resync_pages(pbio)->pages;
2288 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2289 struct bio_vec *bi;
8fc04e6e 2290 int page_len[RESYNC_PAGES] = { 0 };
6dc4f100 2291 struct bvec_iter_all iter_all;
a68e5870 2292
2aabaa65 2293 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2294 continue;
4246a0b6 2295 /* Now we can 'fixup' the error value */
4e4cbee9 2296 sbio->bi_status = 0;
78d7f5f7 2297
2b070cfe
CH
2298 bio_for_each_segment_all(bi, sbio, iter_all)
2299 page_len[j++] = bi->bv_len;
60928a91 2300
4e4cbee9 2301 if (!status) {
78d7f5f7 2302 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2303 if (memcmp(page_address(ppages[j]),
2304 page_address(spages[j]),
60928a91 2305 page_len[j]))
78d7f5f7 2306 break;
69382e85 2307 }
78d7f5f7
N
2308 } else
2309 j = 0;
2310 if (j >= 0)
7f7583d4 2311 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2312 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2313 && !status)) {
78d7f5f7
N
2314 /* No need to write to this device. */
2315 sbio->bi_end_io = NULL;
2316 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2317 continue;
2318 }
d3b45c2a
KO
2319
2320 bio_copy_data(sbio, pbio);
78d7f5f7 2321 }
a68e5870
N
2322}
2323
9f2c9d12 2324static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2325{
e8096360 2326 struct r1conf *conf = mddev->private;
a68e5870 2327 int i;
8f19ccb2 2328 int disks = conf->raid_disks * 2;
037d2ff6 2329 struct bio *wbio;
a68e5870 2330
a68e5870
N
2331 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2332 /* ouch - failed to read all of that. */
2333 if (!fix_sync_read_error(r1_bio))
2334 return;
7ca78d57
N
2335
2336 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2337 process_checks(r1_bio);
2338
d11c171e
N
2339 /*
2340 * schedule writes
2341 */
1da177e4
LT
2342 atomic_set(&r1_bio->remaining, 1);
2343 for (i = 0; i < disks ; i++) {
2344 wbio = r1_bio->bios[i];
3e198f78
N
2345 if (wbio->bi_end_io == NULL ||
2346 (wbio->bi_end_io == end_sync_read &&
2347 (i == r1_bio->read_disk ||
2348 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2349 continue;
dfcc34c9
ND
2350 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2351 abort_sync_write(mddev, r1_bio);
0c9d5b12 2352 continue;
dfcc34c9 2353 }
1da177e4 2354
c34b7ac6 2355 wbio->bi_opf = REQ_OP_WRITE;
212e7eb7
N
2356 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2357 wbio->bi_opf |= MD_FAILFAST;
2358
3e198f78 2359 wbio->bi_end_io = end_sync_write;
1da177e4 2360 atomic_inc(&r1_bio->remaining);
aa8b57aa 2361 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2362
ed00aabd 2363 submit_bio_noacct(wbio);
1da177e4
LT
2364 }
2365
449808a2 2366 put_sync_write_buf(r1_bio, 1);
1da177e4
LT
2367}
2368
2369/*
2370 * This is a kernel thread which:
2371 *
2372 * 1. Retries failed read operations on working mirrors.
2373 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2374 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2375 */
2376
ca294b34 2377static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
867868fb 2378{
ca294b34
LN
2379 sector_t sect = r1_bio->sector;
2380 int sectors = r1_bio->sectors;
2381 int read_disk = r1_bio->read_disk;
fd01b88c 2382 struct mddev *mddev = conf->mddev;
9f3fe29d 2383 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
ca294b34
LN
2384
2385 if (exceed_read_errors(mddev, rdev)) {
2386 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2387 return;
2388 }
2389
867868fb
N
2390 while(sectors) {
2391 int s = sectors;
2392 int d = read_disk;
2393 int success = 0;
2394 int start;
867868fb
N
2395
2396 if (s > (PAGE_SIZE>>9))
2397 s = PAGE_SIZE >> 9;
2398
2399 do {
2d32777d 2400 rdev = conf->mirrors[d].rdev;
867868fb 2401 if (rdev &&
da8840a7 2402 (test_bit(In_sync, &rdev->flags) ||
2403 (!test_bit(Faulty, &rdev->flags) &&
2404 rdev->recovery_offset >= sect + s)) &&
3a0f007b 2405 rdev_has_badblock(rdev, sect, s) == 0) {
707a6a42 2406 atomic_inc(&rdev->nr_pending);
707a6a42 2407 if (sync_page_io(rdev, sect, s<<9,
4ce4c73f 2408 conf->tmppage, REQ_OP_READ, false))
707a6a42
N
2409 success = 1;
2410 rdev_dec_pending(rdev, mddev);
2411 if (success)
2412 break;
2d32777d
YK
2413 }
2414
707a6a42
N
2415 d++;
2416 if (d == conf->raid_disks * 2)
2417 d = 0;
02c67a3b 2418 } while (d != read_disk);
867868fb
N
2419
2420 if (!success) {
d8f05d29 2421 /* Cannot read from anywhere - mark it bad */
3cb03002 2422 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2423 if (!rdev_set_badblocks(rdev, sect, s, 0))
2424 md_error(mddev, rdev);
867868fb
N
2425 break;
2426 }
2427 /* write it back and re-read */
2428 start = d;
2429 while (d != read_disk) {
2430 if (d==0)
8f19ccb2 2431 d = conf->raid_disks * 2;
867868fb 2432 d--;
2d32777d 2433 rdev = conf->mirrors[d].rdev;
867868fb 2434 if (rdev &&
707a6a42
N
2435 !test_bit(Faulty, &rdev->flags)) {
2436 atomic_inc(&rdev->nr_pending);
d8f05d29 2437 r1_sync_page_io(rdev, sect, s,
7dab2455 2438 conf->tmppage, REQ_OP_WRITE);
707a6a42 2439 rdev_dec_pending(rdev, mddev);
2d32777d 2440 }
867868fb
N
2441 }
2442 d = start;
2443 while (d != read_disk) {
867868fb 2444 if (d==0)
8f19ccb2 2445 d = conf->raid_disks * 2;
867868fb 2446 d--;
2d32777d 2447 rdev = conf->mirrors[d].rdev;
867868fb 2448 if (rdev &&
b8cb6b4c 2449 !test_bit(Faulty, &rdev->flags)) {
707a6a42 2450 atomic_inc(&rdev->nr_pending);
d8f05d29 2451 if (r1_sync_page_io(rdev, sect, s,
7dab2455 2452 conf->tmppage, REQ_OP_READ)) {
867868fb 2453 atomic_add(s, &rdev->corrected_errors);
913cce5a 2454 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
1d41c216
N
2455 mdname(mddev), s,
2456 (unsigned long long)(sect +
2457 rdev->data_offset),
913cce5a 2458 rdev->bdev);
867868fb 2459 }
707a6a42 2460 rdev_dec_pending(rdev, mddev);
2d32777d 2461 }
867868fb
N
2462 }
2463 sectors -= s;
2464 sect += s;
2465 }
2466}
2467
9f2c9d12 2468static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2469{
fd01b88c 2470 struct mddev *mddev = r1_bio->mddev;
e8096360 2471 struct r1conf *conf = mddev->private;
3cb03002 2472 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2473
2474 /* bio has the data to be written to device 'i' where
2475 * we just recently had a write error.
2476 * We repeatedly clone the bio and trim down to one block,
2477 * then try the write. Where the write fails we record
2478 * a bad block.
2479 * It is conceivable that the bio doesn't exactly align with
2480 * blocks. We must handle this somehow.
2481 *
2482 * We currently own a reference on the rdev.
2483 */
2484
2485 int block_sectors;
2486 sector_t sector;
2487 int sectors;
2488 int sect_to_write = r1_bio->sectors;
2489 int ok = 1;
2490
2491 if (rdev->badblocks.shift < 0)
2492 return 0;
2493
ab713cdc
ND
2494 block_sectors = roundup(1 << rdev->badblocks.shift,
2495 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2496 sector = r1_bio->sector;
2497 sectors = ((sector + block_sectors)
2498 & ~(sector_t)(block_sectors - 1))
2499 - sector;
2500
cd5ff9a1
N
2501 while (sect_to_write) {
2502 struct bio *wbio;
2503 if (sectors > sect_to_write)
2504 sectors = sect_to_write;
2505 /* Write at 'sector' for 'sectors'*/
2506
b783863f 2507 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
abfc426d
CH
2508 wbio = bio_alloc_clone(rdev->bdev,
2509 r1_bio->behind_master_bio,
2510 GFP_NOIO, &mddev->bio_set);
b783863f 2511 } else {
abfc426d
CH
2512 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2513 GFP_NOIO, &mddev->bio_set);
b783863f
KO
2514 }
2515
c34b7ac6 2516 wbio->bi_opf = REQ_OP_WRITE;
4f024f37
KO
2517 wbio->bi_iter.bi_sector = r1_bio->sector;
2518 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2519
6678d83f 2520 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2521 wbio->bi_iter.bi_sector += rdev->data_offset;
4e49ea4a
MC
2522
2523 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2524 /* failure! */
2525 ok = rdev_set_badblocks(rdev, sector,
2526 sectors, 0)
2527 && ok;
2528
2529 bio_put(wbio);
2530 sect_to_write -= sectors;
2531 sector += sectors;
2532 sectors = block_sectors;
2533 }
2534 return ok;
2535}
2536
e8096360 2537static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2538{
2539 int m;
2540 int s = r1_bio->sectors;
8f19ccb2 2541 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2542 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2543 struct bio *bio = r1_bio->bios[m];
2544 if (bio->bi_end_io == NULL)
2545 continue;
4e4cbee9 2546 if (!bio->bi_status &&
62096bce 2547 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2548 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2549 }
4e4cbee9 2550 if (bio->bi_status &&
62096bce
N
2551 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2552 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2553 md_error(conf->mddev, rdev);
2554 }
2555 }
2556 put_buf(r1_bio);
2557 md_done_sync(conf->mddev, s, 1);
2558}
2559
e8096360 2560static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2561{
fd76863e 2562 int m, idx;
55ce74d4 2563 bool fail = false;
fd76863e 2564
8f19ccb2 2565 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2566 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2567 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2568 rdev_clear_badblocks(rdev,
2569 r1_bio->sector,
c6563a8c 2570 r1_bio->sectors, 0);
62096bce
N
2571 rdev_dec_pending(rdev, conf->mddev);
2572 } else if (r1_bio->bios[m] != NULL) {
2573 /* This drive got a write error. We need to
2574 * narrow down and record precise write
2575 * errors.
2576 */
55ce74d4 2577 fail = true;
62096bce
N
2578 if (!narrow_write_error(r1_bio, m)) {
2579 md_error(conf->mddev,
2580 conf->mirrors[m].rdev);
2581 /* an I/O failed, we can't clear the bitmap */
2582 set_bit(R1BIO_Degraded, &r1_bio->state);
2583 }
2584 rdev_dec_pending(conf->mirrors[m].rdev,
2585 conf->mddev);
2586 }
55ce74d4
N
2587 if (fail) {
2588 spin_lock_irq(&conf->device_lock);
2589 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2590 idx = sector_to_idx(r1_bio->sector);
824e47da 2591 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2592 spin_unlock_irq(&conf->device_lock);
824e47da 2593 /*
2594 * In case freeze_array() is waiting for condition
2595 * get_unqueued_pending() == extra to be true.
2596 */
2597 wake_up(&conf->wait_barrier);
55ce74d4 2598 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2599 } else {
2600 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2601 close_write(r1_bio);
55ce74d4 2602 raid_end_bio_io(r1_bio);
bd8688a1 2603 }
62096bce
N
2604}
2605
e8096360 2606static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2607{
fd01b88c 2608 struct mddev *mddev = conf->mddev;
62096bce 2609 struct bio *bio;
3cb03002 2610 struct md_rdev *rdev;
c069da44 2611 sector_t sector;
62096bce
N
2612
2613 clear_bit(R1BIO_ReadError, &r1_bio->state);
2614 /* we got a read error. Maybe the drive is bad. Maybe just
2615 * the block and we can fix it.
2616 * We freeze all other IO, and try reading the block from
2617 * other devices. When we find one, we re-write
2618 * and check it that fixes the read error.
2619 * This is all done synchronously while the array is
2620 * frozen
2621 */
7449f699
TM
2622
2623 bio = r1_bio->bios[r1_bio->read_disk];
7449f699
TM
2624 bio_put(bio);
2625 r1_bio->bios[r1_bio->read_disk] = NULL;
2626
2e52d449
N
2627 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2628 if (mddev->ro == 0
2629 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2630 freeze_array(conf, 1);
ca294b34 2631 fix_read_error(conf, r1_bio);
62096bce 2632 unfreeze_array(conf);
b33d1062
GK
2633 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2634 md_error(mddev, rdev);
7449f699
TM
2635 } else {
2636 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2637 }
2638
2e52d449 2639 rdev_dec_pending(rdev, conf->mddev);
c069da44 2640 sector = r1_bio->sector;
689389a0 2641 bio = r1_bio->master_bio;
62096bce 2642
689389a0
N
2643 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2644 r1_bio->state = 0;
2645 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
c069da44 2646 allow_barrier(conf, sector);
62096bce
N
2647}
2648
4ed8731d 2649static void raid1d(struct md_thread *thread)
1da177e4 2650{
4ed8731d 2651 struct mddev *mddev = thread->mddev;
9f2c9d12 2652 struct r1bio *r1_bio;
1da177e4 2653 unsigned long flags;
e8096360 2654 struct r1conf *conf = mddev->private;
1da177e4 2655 struct list_head *head = &conf->retry_list;
e1dfa0a2 2656 struct blk_plug plug;
fd76863e 2657 int idx;
1da177e4
LT
2658
2659 md_check_recovery(mddev);
e1dfa0a2 2660
55ce74d4 2661 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2662 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2663 LIST_HEAD(tmp);
2664 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2665 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2666 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2667 spin_unlock_irqrestore(&conf->device_lock, flags);
2668 while (!list_empty(&tmp)) {
a452744b
MP
2669 r1_bio = list_first_entry(&tmp, struct r1bio,
2670 retry_list);
55ce74d4 2671 list_del(&r1_bio->retry_list);
fd76863e 2672 idx = sector_to_idx(r1_bio->sector);
824e47da 2673 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2674 if (mddev->degraded)
2675 set_bit(R1BIO_Degraded, &r1_bio->state);
2676 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2677 close_write(r1_bio);
55ce74d4
N
2678 raid_end_bio_io(r1_bio);
2679 }
2680 }
2681
e1dfa0a2 2682 blk_start_plug(&plug);
1da177e4 2683 for (;;) {
191ea9b2 2684
0021b7bc 2685 flush_pending_writes(conf);
191ea9b2 2686
a35e63ef
N
2687 spin_lock_irqsave(&conf->device_lock, flags);
2688 if (list_empty(head)) {
2689 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2690 break;
a35e63ef 2691 }
9f2c9d12 2692 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2693 list_del(head->prev);
fd76863e 2694 idx = sector_to_idx(r1_bio->sector);
824e47da 2695 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2696 spin_unlock_irqrestore(&conf->device_lock, flags);
2697
2698 mddev = r1_bio->mddev;
070ec55d 2699 conf = mddev->private;
4367af55 2700 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2701 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2702 test_bit(R1BIO_WriteError, &r1_bio->state))
2703 handle_sync_write_finished(conf, r1_bio);
2704 else
4367af55 2705 sync_request_write(mddev, r1_bio);
cd5ff9a1 2706 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2707 test_bit(R1BIO_WriteError, &r1_bio->state))
2708 handle_write_finished(conf, r1_bio);
2709 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2710 handle_read_error(conf, r1_bio);
2711 else
c230e7e5 2712 WARN_ON_ONCE(1);
62096bce 2713
1d9d5241 2714 cond_resched();
2953079c 2715 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2716 md_check_recovery(mddev);
1da177e4 2717 }
e1dfa0a2 2718 blk_finish_plug(&plug);
1da177e4
LT
2719}
2720
e8096360 2721static int init_resync(struct r1conf *conf)
1da177e4
LT
2722{
2723 int buffs;
2724
2725 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514
KO
2726 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2727
2728 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2729 r1buf_pool_free, conf->poolinfo);
1da177e4
LT
2730}
2731
208410b5
SL
2732static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2733{
afeee514 2734 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
208410b5
SL
2735 struct resync_pages *rps;
2736 struct bio *bio;
2737 int i;
2738
2739 for (i = conf->poolinfo->raid_disks; i--; ) {
2740 bio = r1bio->bios[i];
2741 rps = bio->bi_private;
a7c50c94 2742 bio_reset(bio, NULL, 0);
208410b5
SL
2743 bio->bi_private = rps;
2744 }
2745 r1bio->master_bio = NULL;
2746 return r1bio;
2747}
2748
1da177e4
LT
2749/*
2750 * perform a "sync" on one "block"
2751 *
2752 * We need to make sure that no normal I/O request - particularly write
2753 * requests - conflict with active sync requests.
2754 *
2755 * This is achieved by tracking pending requests and a 'barrier' concept
2756 * that can be installed to exclude normal IO requests.
2757 */
2758
849674e4
SL
2759static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2760 int *skipped)
1da177e4 2761{
e8096360 2762 struct r1conf *conf = mddev->private;
9f2c9d12 2763 struct r1bio *r1_bio;
1da177e4
LT
2764 struct bio *bio;
2765 sector_t max_sector, nr_sectors;
3e198f78 2766 int disk = -1;
1da177e4 2767 int i;
3e198f78
N
2768 int wonly = -1;
2769 int write_targets = 0, read_targets = 0;
57dab0bd 2770 sector_t sync_blocks;
e3b9703e 2771 int still_degraded = 0;
06f60385
N
2772 int good_sectors = RESYNC_SECTORS;
2773 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2774 int idx = sector_to_idx(sector_nr);
022e510f 2775 int page_idx = 0;
1da177e4 2776
afeee514 2777 if (!mempool_initialized(&conf->r1buf_pool))
1da177e4 2778 if (init_resync(conf))
57afd89f 2779 return 0;
1da177e4 2780
58c0fed4 2781 max_sector = mddev->dev_sectors;
1da177e4 2782 if (sector_nr >= max_sector) {
191ea9b2
N
2783 /* If we aborted, we need to abort the
2784 * sync on the 'current' bitmap chunk (there will
2785 * only be one in raid1 resync.
2786 * We can find the current addess in mddev->curr_resync
2787 */
6a806c51 2788 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
2789 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2790 &sync_blocks, 1);
6a806c51 2791 else /* completed sync */
191ea9b2 2792 conf->fullsync = 0;
6a806c51 2793
e64e4018 2794 md_bitmap_close_sync(mddev->bitmap);
1da177e4 2795 close_sync(conf);
c40f341f
GR
2796
2797 if (mddev_is_clustered(mddev)) {
2798 conf->cluster_sync_low = 0;
2799 conf->cluster_sync_high = 0;
c40f341f 2800 }
1da177e4
LT
2801 return 0;
2802 }
2803
07d84d10
N
2804 if (mddev->bitmap == NULL &&
2805 mddev->recovery_cp == MaxSector &&
6394cca5 2806 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2807 conf->fullsync == 0) {
2808 *skipped = 1;
2809 return max_sector - sector_nr;
2810 }
6394cca5
N
2811 /* before building a request, check if we can skip these blocks..
2812 * This call the bitmap_start_sync doesn't actually record anything
2813 */
e64e4018 2814 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2815 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2816 /* We can skip this block, and probably several more */
2817 *skipped = 1;
2818 return sync_blocks;
2819 }
17999be4 2820
7ac50447
TM
2821 /*
2822 * If there is non-resync activity waiting for a turn, then let it
2823 * though before starting on this new sync request.
2824 */
824e47da 2825 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2826 schedule_timeout_uninterruptible(1);
2827
c40f341f
GR
2828 /* we are incrementing sector_nr below. To be safe, we check against
2829 * sector_nr + two times RESYNC_SECTORS
2830 */
2831
e64e4018 2832 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
c40f341f 2833 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
17999be4 2834
8c242593
YY
2835
2836 if (raise_barrier(conf, sector_nr))
2837 return 0;
2838
2839 r1_bio = raid1_alloc_init_r1buf(conf);
1da177e4
LT
2840
2841 /*
3e198f78
N
2842 * If we get a correctably read error during resync or recovery,
2843 * we might want to read from a different device. So we
2844 * flag all drives that could conceivably be read from for READ,
2845 * and any others (which will be non-In_sync devices) for WRITE.
2846 * If a read fails, we try reading from something else for which READ
2847 * is OK.
1da177e4 2848 */
1da177e4 2849
1da177e4
LT
2850 r1_bio->mddev = mddev;
2851 r1_bio->sector = sector_nr;
191ea9b2 2852 r1_bio->state = 0;
1da177e4 2853 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2854 /* make sure good_sectors won't go across barrier unit boundary */
2855 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2856
8f19ccb2 2857 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2858 struct md_rdev *rdev;
1da177e4 2859 bio = r1_bio->bios[i];
1da177e4 2860
2d32777d 2861 rdev = conf->mirrors[i].rdev;
3e198f78 2862 if (rdev == NULL ||
06f60385 2863 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2864 if (i < conf->raid_disks)
2865 still_degraded = 1;
3e198f78 2866 } else if (!test_bit(In_sync, &rdev->flags)) {
c34b7ac6 2867 bio->bi_opf = REQ_OP_WRITE;
1da177e4
LT
2868 bio->bi_end_io = end_sync_write;
2869 write_targets ++;
3e198f78
N
2870 } else {
2871 /* may need to read from here */
06f60385
N
2872 sector_t first_bad = MaxSector;
2873 int bad_sectors;
2874
2875 if (is_badblock(rdev, sector_nr, good_sectors,
2876 &first_bad, &bad_sectors)) {
2877 if (first_bad > sector_nr)
2878 good_sectors = first_bad - sector_nr;
2879 else {
2880 bad_sectors -= (sector_nr - first_bad);
2881 if (min_bad == 0 ||
2882 min_bad > bad_sectors)
2883 min_bad = bad_sectors;
2884 }
2885 }
2886 if (sector_nr < first_bad) {
2887 if (test_bit(WriteMostly, &rdev->flags)) {
2888 if (wonly < 0)
2889 wonly = i;
2890 } else {
2891 if (disk < 0)
2892 disk = i;
2893 }
c34b7ac6 2894 bio->bi_opf = REQ_OP_READ;
06f60385
N
2895 bio->bi_end_io = end_sync_read;
2896 read_targets++;
d57368af
AL
2897 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2898 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2899 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2900 /*
2901 * The device is suitable for reading (InSync),
2902 * but has bad block(s) here. Let's try to correct them,
2903 * if we are doing resync or repair. Otherwise, leave
2904 * this device alone for this sync request.
2905 */
c34b7ac6 2906 bio->bi_opf = REQ_OP_WRITE;
d57368af
AL
2907 bio->bi_end_io = end_sync_write;
2908 write_targets++;
3e198f78 2909 }
3e198f78 2910 }
028288df 2911 if (rdev && bio->bi_end_io) {
06f60385 2912 atomic_inc(&rdev->nr_pending);
4f024f37 2913 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2914 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2915 if (test_bit(FailFast, &rdev->flags))
2916 bio->bi_opf |= MD_FAILFAST;
06f60385 2917 }
1da177e4 2918 }
3e198f78
N
2919 if (disk < 0)
2920 disk = wonly;
2921 r1_bio->read_disk = disk;
191ea9b2 2922
06f60385
N
2923 if (read_targets == 0 && min_bad > 0) {
2924 /* These sectors are bad on all InSync devices, so we
2925 * need to mark them bad on all write targets
2926 */
2927 int ok = 1;
8f19ccb2 2928 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2929 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2930 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2931 ok = rdev_set_badblocks(rdev, sector_nr,
2932 min_bad, 0
2933 ) && ok;
2934 }
2953079c 2935 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2936 *skipped = 1;
2937 put_buf(r1_bio);
2938
2939 if (!ok) {
2940 /* Cannot record the badblocks, so need to
2941 * abort the resync.
2942 * If there are multiple read targets, could just
2943 * fail the really bad ones ???
2944 */
2945 conf->recovery_disabled = mddev->recovery_disabled;
2946 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2947 return 0;
2948 } else
2949 return min_bad;
2950
2951 }
2952 if (min_bad > 0 && min_bad < good_sectors) {
2953 /* only resync enough to reach the next bad->good
2954 * transition */
2955 good_sectors = min_bad;
2956 }
2957
3e198f78
N
2958 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2959 /* extra read targets are also write targets */
2960 write_targets += read_targets-1;
2961
2962 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2963 /* There is nowhere to write, so all non-sync
2964 * drives must be failed - so we are finished
2965 */
b7219ccb
N
2966 sector_t rv;
2967 if (min_bad > 0)
2968 max_sector = sector_nr + min_bad;
2969 rv = max_sector - sector_nr;
57afd89f 2970 *skipped = 1;
1da177e4 2971 put_buf(r1_bio);
1da177e4
LT
2972 return rv;
2973 }
2974
c6207277
N
2975 if (max_sector > mddev->resync_max)
2976 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2977 if (max_sector > sector_nr + good_sectors)
2978 max_sector = sector_nr + good_sectors;
1da177e4 2979 nr_sectors = 0;
289e99e8 2980 sync_blocks = 0;
1da177e4
LT
2981 do {
2982 struct page *page;
2983 int len = PAGE_SIZE;
2984 if (sector_nr + (len>>9) > max_sector)
2985 len = (max_sector - sector_nr) << 9;
2986 if (len == 0)
2987 break;
6a806c51 2988 if (sync_blocks == 0) {
e64e4018
AS
2989 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2990 &sync_blocks, still_degraded) &&
e5de485f
N
2991 !conf->fullsync &&
2992 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2993 break;
7571ae88 2994 if ((len >> 9) > sync_blocks)
6a806c51 2995 len = sync_blocks<<9;
ab7a30c7 2996 }
191ea9b2 2997
8f19ccb2 2998 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2999 struct resync_pages *rp;
3000
1da177e4 3001 bio = r1_bio->bios[i];
98d30c58 3002 rp = get_resync_pages(bio);
1da177e4 3003 if (bio->bi_end_io) {
022e510f 3004 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
3005
3006 /*
3007 * won't fail because the vec table is big
3008 * enough to hold all these pages
3009 */
f8312322 3010 __bio_add_page(bio, page, len, 0);
1da177e4
LT
3011 }
3012 }
3013 nr_sectors += len>>9;
3014 sector_nr += len>>9;
191ea9b2 3015 sync_blocks -= (len>>9);
022e510f 3016 } while (++page_idx < RESYNC_PAGES);
98d30c58 3017
1da177e4
LT
3018 r1_bio->sectors = nr_sectors;
3019
c40f341f
GR
3020 if (mddev_is_clustered(mddev) &&
3021 conf->cluster_sync_high < sector_nr + nr_sectors) {
3022 conf->cluster_sync_low = mddev->curr_resync_completed;
3023 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3024 /* Send resync message */
3025 md_cluster_ops->resync_info_update(mddev,
3026 conf->cluster_sync_low,
3027 conf->cluster_sync_high);
3028 }
3029
d11c171e
N
3030 /* For a user-requested sync, we read all readable devices and do a
3031 * compare
3032 */
3033 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3034 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 3035 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
3036 bio = r1_bio->bios[i];
3037 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 3038 read_targets--;
74d46992 3039 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
3040 if (read_targets == 1)
3041 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 3042 submit_bio_noacct(bio);
d11c171e
N
3043 }
3044 }
3045 } else {
3046 atomic_set(&r1_bio->remaining, 1);
3047 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 3048 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
3049 if (read_targets == 1)
3050 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 3051 submit_bio_noacct(bio);
d11c171e 3052 }
1da177e4
LT
3053 return nr_sectors;
3054}
3055
fd01b88c 3056static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3057{
3058 if (sectors)
3059 return sectors;
3060
3061 return mddev->dev_sectors;
3062}
3063
e8096360 3064static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 3065{
e8096360 3066 struct r1conf *conf;
709ae487 3067 int i;
0eaf822c 3068 struct raid1_info *disk;
3cb03002 3069 struct md_rdev *rdev;
709ae487 3070 int err = -ENOMEM;
1da177e4 3071
e8096360 3072 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 3073 if (!conf)
709ae487 3074 goto abort;
1da177e4 3075
fd76863e 3076 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 3077 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3078 if (!conf->nr_pending)
3079 goto abort;
3080
3081 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 3082 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3083 if (!conf->nr_waiting)
3084 goto abort;
3085
3086 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 3087 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3088 if (!conf->nr_queued)
3089 goto abort;
3090
3091 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 3092 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3093 if (!conf->barrier)
3094 goto abort;
3095
6396bb22
KC
3096 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3097 mddev->raid_disks, 2),
3098 GFP_KERNEL);
1da177e4 3099 if (!conf->mirrors)
709ae487 3100 goto abort;
1da177e4 3101
ddaf22ab
N
3102 conf->tmppage = alloc_page(GFP_KERNEL);
3103 if (!conf->tmppage)
709ae487 3104 goto abort;
ddaf22ab 3105
709ae487 3106 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 3107 if (!conf->poolinfo)
709ae487 3108 goto abort;
8f19ccb2 3109 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3f677f9c 3110 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3111 rbio_pool_free, conf->poolinfo);
afeee514 3112 if (err)
709ae487
N
3113 goto abort;
3114
afeee514
KO
3115 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3116 if (err)
c230e7e5
N
3117 goto abort;
3118
ed9bfdf1 3119 conf->poolinfo->mddev = mddev;
1da177e4 3120
c19d5798 3121 err = -EINVAL;
e7e72bf6 3122 spin_lock_init(&conf->device_lock);
969d6589 3123 conf->raid_disks = mddev->raid_disks;
dafb20fa 3124 rdev_for_each(rdev, mddev) {
709ae487 3125 int disk_idx = rdev->raid_disk;
969d6589
YK
3126
3127 if (disk_idx >= conf->raid_disks || disk_idx < 0)
1da177e4 3128 continue;
1da177e4 3129
969d6589
YK
3130 if (!raid1_add_conf(conf, rdev, disk_idx,
3131 test_bit(Replacement, &rdev->flags)))
c19d5798 3132 goto abort;
1da177e4 3133 }
1da177e4 3134 conf->mddev = mddev;
1da177e4 3135 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 3136 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
3137
3138 spin_lock_init(&conf->resync_lock);
17999be4 3139 init_waitqueue_head(&conf->wait_barrier);
1da177e4 3140
191ea9b2 3141 bio_list_init(&conf->pending_bio_list);
d890fa2b 3142 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 3143
c19d5798 3144 err = -EIO;
8f19ccb2 3145 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
3146
3147 disk = conf->mirrors + i;
3148
c19d5798
N
3149 if (i < conf->raid_disks &&
3150 disk[conf->raid_disks].rdev) {
3151 /* This slot has a replacement. */
3152 if (!disk->rdev) {
3153 /* No original, just make the replacement
3154 * a recovering spare
3155 */
3156 disk->rdev =
3157 disk[conf->raid_disks].rdev;
3158 disk[conf->raid_disks].rdev = NULL;
3159 } else if (!test_bit(In_sync, &disk->rdev->flags))
3160 /* Original is not in_sync - bad */
3161 goto abort;
3162 }
3163
5fd6c1dc
N
3164 if (!disk->rdev ||
3165 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3166 disk->head_position = 0;
4f0a5e01
JB
3167 if (disk->rdev &&
3168 (disk->rdev->saved_raid_disk < 0))
918f0238 3169 conf->fullsync = 1;
be4d3280 3170 }
1da177e4 3171 }
709ae487 3172
709ae487 3173 err = -ENOMEM;
44693154
YK
3174 rcu_assign_pointer(conf->thread,
3175 md_register_thread(raid1d, mddev, "raid1"));
1d41c216 3176 if (!conf->thread)
709ae487 3177 goto abort;
1da177e4 3178
709ae487
N
3179 return conf;
3180
3181 abort:
3182 if (conf) {
afeee514 3183 mempool_exit(&conf->r1bio_pool);
709ae487
N
3184 kfree(conf->mirrors);
3185 safe_put_page(conf->tmppage);
3186 kfree(conf->poolinfo);
fd76863e 3187 kfree(conf->nr_pending);
3188 kfree(conf->nr_waiting);
3189 kfree(conf->nr_queued);
3190 kfree(conf->barrier);
afeee514 3191 bioset_exit(&conf->bio_split);
709ae487
N
3192 kfree(conf);
3193 }
3194 return ERR_PTR(err);
3195}
3196
97894f7d
CH
3197static int raid1_set_limits(struct mddev *mddev)
3198{
3199 struct queue_limits lim;
3200
3201 blk_set_stacking_limits(&lim);
3202 lim.max_write_zeroes_sectors = 0;
3203 mddev_stack_rdev_limits(mddev, &lim);
396799eb 3204 return queue_limits_set(mddev->gendisk->queue, &lim);
97894f7d
CH
3205}
3206
afa0f557 3207static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3208static int raid1_run(struct mddev *mddev)
709ae487 3209{
e8096360 3210 struct r1conf *conf;
709ae487 3211 int i;
5220ea1e 3212 int ret;
709ae487
N
3213
3214 if (mddev->level != 1) {
1d41c216
N
3215 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3216 mdname(mddev), mddev->level);
709ae487
N
3217 return -EIO;
3218 }
3219 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3220 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3221 mdname(mddev));
709ae487
N
3222 return -EIO;
3223 }
b8494823 3224
1da177e4 3225 /*
709ae487
N
3226 * copy the already verified devices into our private RAID1
3227 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3228 * should be freed in raid1_free()]
1da177e4 3229 */
709ae487
N
3230 if (mddev->private == NULL)
3231 conf = setup_conf(mddev);
3232 else
3233 conf = mddev->private;
1da177e4 3234
709ae487
N
3235 if (IS_ERR(conf))
3236 return PTR_ERR(conf);
1da177e4 3237
176df894 3238 if (!mddev_is_dm(mddev)) {
97894f7d
CH
3239 ret = raid1_set_limits(mddev);
3240 if (ret)
3241 goto abort;
1da177e4 3242 }
191ea9b2 3243
709ae487 3244 mddev->degraded = 0;
ebfeb444 3245 for (i = 0; i < conf->raid_disks; i++)
709ae487
N
3246 if (conf->mirrors[i].rdev == NULL ||
3247 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3248 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3249 mddev->degraded++;
07f1a685
YY
3250 /*
3251 * RAID1 needs at least one disk in active
3252 */
3253 if (conf->raid_disks - mddev->degraded < 1) {
7eb8ff02 3254 md_unregister_thread(mddev, &conf->thread);
07f1a685
YY
3255 ret = -EINVAL;
3256 goto abort;
3257 }
709ae487
N
3258
3259 if (conf->raid_disks - mddev->degraded == 1)
3260 mddev->recovery_cp = MaxSector;
3261
8c6ac868 3262 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3263 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3264 mdname(mddev));
3265 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3266 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3267 mddev->raid_disks);
709ae487 3268
1da177e4
LT
3269 /*
3270 * Ok, everything is just fine now
3271 */
44693154
YK
3272 rcu_assign_pointer(mddev->thread, conf->thread);
3273 rcu_assign_pointer(conf->thread, NULL);
709ae487 3274 mddev->private = conf;
46533ff7 3275 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3276
1f403624 3277 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3278
ebfeb444 3279 ret = md_integrity_register(mddev);
5aa61f42 3280 if (ret) {
7eb8ff02 3281 md_unregister_thread(mddev, &mddev->thread);
07f1a685 3282 goto abort;
5aa61f42 3283 }
07f1a685
YY
3284 return 0;
3285
3286abort:
3287 raid1_free(mddev, conf);
5220ea1e 3288 return ret;
1da177e4
LT
3289}
3290
afa0f557 3291static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3292{
afa0f557 3293 struct r1conf *conf = priv;
409c57f3 3294
afeee514 3295 mempool_exit(&conf->r1bio_pool);
990a8baf 3296 kfree(conf->mirrors);
0fea7ed8 3297 safe_put_page(conf->tmppage);
990a8baf 3298 kfree(conf->poolinfo);
fd76863e 3299 kfree(conf->nr_pending);
3300 kfree(conf->nr_waiting);
3301 kfree(conf->nr_queued);
3302 kfree(conf->barrier);
afeee514 3303 bioset_exit(&conf->bio_split);
1da177e4 3304 kfree(conf);
1da177e4
LT
3305}
3306
fd01b88c 3307static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3308{
3309 /* no resync is happening, and there is enough space
3310 * on all devices, so we can resize.
3311 * We need to make sure resync covers any new space.
3312 * If the array is shrinking we should possibly wait until
3313 * any io in the removed space completes, but it hardly seems
3314 * worth it.
3315 */
a4a6125a
N
3316 sector_t newsize = raid1_size(mddev, sectors, 0);
3317 if (mddev->external_size &&
3318 mddev->array_sectors > newsize)
b522adcd 3319 return -EINVAL;
a4a6125a 3320 if (mddev->bitmap) {
e64e4018 3321 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
a4a6125a
N
3322 if (ret)
3323 return ret;
3324 }
3325 md_set_array_sectors(mddev, newsize);
b522adcd 3326 if (sectors > mddev->dev_sectors &&
b098636c 3327 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3328 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3329 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330 }
b522adcd 3331 mddev->dev_sectors = sectors;
4b5c7ae8 3332 mddev->resync_max_sectors = sectors;
1da177e4
LT
3333 return 0;
3334}
3335
fd01b88c 3336static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3337{
3338 /* We need to:
3339 * 1/ resize the r1bio_pool
3340 * 2/ resize conf->mirrors
3341 *
3342 * We allocate a new r1bio_pool if we can.
3343 * Then raise a device barrier and wait until all IO stops.
3344 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3345 *
3346 * At the same time, we "pack" the devices so that all the missing
3347 * devices have the higher raid_disk numbers.
1da177e4 3348 */
afeee514 3349 mempool_t newpool, oldpool;
1da177e4 3350 struct pool_info *newpoolinfo;
0eaf822c 3351 struct raid1_info *newmirrors;
e8096360 3352 struct r1conf *conf = mddev->private;
63c70c4f 3353 int cnt, raid_disks;
c04be0aa 3354 unsigned long flags;
2214c260 3355 int d, d2;
afeee514
KO
3356 int ret;
3357
3358 memset(&newpool, 0, sizeof(newpool));
3359 memset(&oldpool, 0, sizeof(oldpool));
1da177e4 3360
63c70c4f 3361 /* Cannot change chunk_size, layout, or level */
664e7c41 3362 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3363 mddev->layout != mddev->new_layout ||
3364 mddev->level != mddev->new_level) {
664e7c41 3365 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3366 mddev->new_layout = mddev->layout;
3367 mddev->new_level = mddev->level;
3368 return -EINVAL;
3369 }
3370
2214c260
AP
3371 if (!mddev_is_clustered(mddev))
3372 md_allow_write(mddev);
2a2275d6 3373
63c70c4f
N
3374 raid_disks = mddev->raid_disks + mddev->delta_disks;
3375
6ea9c07c
N
3376 if (raid_disks < conf->raid_disks) {
3377 cnt=0;
3378 for (d= 0; d < conf->raid_disks; d++)
3379 if (conf->mirrors[d].rdev)
3380 cnt++;
3381 if (cnt > raid_disks)
1da177e4 3382 return -EBUSY;
6ea9c07c 3383 }
1da177e4
LT
3384
3385 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3386 if (!newpoolinfo)
3387 return -ENOMEM;
3388 newpoolinfo->mddev = mddev;
8f19ccb2 3389 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4 3390
3f677f9c 3391 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3392 rbio_pool_free, newpoolinfo);
afeee514 3393 if (ret) {
1da177e4 3394 kfree(newpoolinfo);
afeee514 3395 return ret;
1da177e4 3396 }
6396bb22
KC
3397 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3398 raid_disks, 2),
8f19ccb2 3399 GFP_KERNEL);
1da177e4
LT
3400 if (!newmirrors) {
3401 kfree(newpoolinfo);
afeee514 3402 mempool_exit(&newpool);
1da177e4
LT
3403 return -ENOMEM;
3404 }
1da177e4 3405
e2d59925 3406 freeze_array(conf, 0);
1da177e4
LT
3407
3408 /* ok, everything is stopped */
3409 oldpool = conf->r1bio_pool;
3410 conf->r1bio_pool = newpool;
6ea9c07c 3411
a88aa786 3412 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3413 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3414 if (rdev && rdev->raid_disk != d2) {
36fad858 3415 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3416 rdev->raid_disk = d2;
36fad858
NK
3417 sysfs_unlink_rdev(mddev, rdev);
3418 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3419 pr_warn("md/raid1:%s: cannot register rd%d\n",
3420 mdname(mddev), rdev->raid_disk);
6ea9c07c 3421 }
a88aa786
N
3422 if (rdev)
3423 newmirrors[d2++].rdev = rdev;
3424 }
1da177e4
LT
3425 kfree(conf->mirrors);
3426 conf->mirrors = newmirrors;
3427 kfree(conf->poolinfo);
3428 conf->poolinfo = newpoolinfo;
3429
c04be0aa 3430 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3431 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3432 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3433 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3434 mddev->delta_disks = 0;
1da177e4 3435
e2d59925 3436 unfreeze_array(conf);
1da177e4 3437
985ca973 3438 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3439 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3440 md_wakeup_thread(mddev->thread);
3441
afeee514 3442 mempool_exit(&oldpool);
1da177e4
LT
3443 return 0;
3444}
3445
b03e0ccb 3446static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3447{
e8096360 3448 struct r1conf *conf = mddev->private;
36fa3063 3449
b03e0ccb 3450 if (quiesce)
07169fd4 3451 freeze_array(conf, 0);
b03e0ccb 3452 else
07169fd4 3453 unfreeze_array(conf);
36fa3063
N
3454}
3455
fd01b88c 3456static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3457{
3458 /* raid1 can take over:
3459 * raid5 with 2 devices, any layout or chunk size
3460 */
3461 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3462 struct r1conf *conf;
709ae487
N
3463 mddev->new_level = 1;
3464 mddev->new_layout = 0;
3465 mddev->new_chunk_sectors = 0;
3466 conf = setup_conf(mddev);
6995f0b2 3467 if (!IS_ERR(conf)) {
07169fd4 3468 /* Array must appear to be quiesced */
3469 conf->array_frozen = 1;
394ed8e4
SL
3470 mddev_clear_unsupported_flags(mddev,
3471 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3472 }
709ae487
N
3473 return conf;
3474 }
3475 return ERR_PTR(-EINVAL);
3476}
1da177e4 3477
84fc4b56 3478static struct md_personality raid1_personality =
1da177e4
LT
3479{
3480 .name = "raid1",
2604b703 3481 .level = 1,
1da177e4 3482 .owner = THIS_MODULE,
849674e4
SL
3483 .make_request = raid1_make_request,
3484 .run = raid1_run,
afa0f557 3485 .free = raid1_free,
849674e4
SL
3486 .status = raid1_status,
3487 .error_handler = raid1_error,
1da177e4
LT
3488 .hot_add_disk = raid1_add_disk,
3489 .hot_remove_disk= raid1_remove_disk,
3490 .spare_active = raid1_spare_active,
849674e4 3491 .sync_request = raid1_sync_request,
1da177e4 3492 .resize = raid1_resize,
80c3a6ce 3493 .size = raid1_size,
63c70c4f 3494 .check_reshape = raid1_reshape,
36fa3063 3495 .quiesce = raid1_quiesce,
709ae487 3496 .takeover = raid1_takeover,
1da177e4
LT
3497};
3498
3499static int __init raid_init(void)
3500{
2604b703 3501 return register_md_personality(&raid1_personality);
1da177e4
LT
3502}
3503
3504static void raid_exit(void)
3505{
2604b703 3506 unregister_md_personality(&raid1_personality);
1da177e4
LT
3507}
3508
3509module_init(raid_init);
3510module_exit(raid_exit);
3511MODULE_LICENSE("GPL");
0efb9e61 3512MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3513MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3514MODULE_ALIAS("md-raid1");
2604b703 3515MODULE_ALIAS("md-level-1");