md: fix spelling typo and add necessary space
[linux-block.git] / drivers / md / raid1.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
96de0e25 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
191ea9b2
N
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
1da177e4
LT
24 */
25
5a0e3ad6 26#include <linux/slab.h>
25570727 27#include <linux/delay.h>
bff61975 28#include <linux/blkdev.h>
056075c7 29#include <linux/module.h>
bff61975 30#include <linux/seq_file.h>
8bda470e 31#include <linux/ratelimit.h>
3f07c014 32
109e3765 33#include <trace/events/block.h>
3f07c014 34
43b2e5d8 35#include "md.h"
ef740c37 36#include "raid1.h"
935fe098 37#include "md-bitmap.h"
191ea9b2 38
394ed8e4
SL
39#define UNSUPPORTED_MDDEV_FLAGS \
40 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 41 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
42 (1L << MD_HAS_PPL) | \
43 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 44
fd76863e 45static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
46static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 47
578b54ad
N
48#define raid1_log(md, fmt, args...) \
49 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
50
fb0eb5df
ML
51#include "raid1-10.c"
52
98d30c58
ML
53/*
54 * for resync bio, r1bio pointer can be retrieved from the per-bio
55 * 'struct resync_pages'.
56 */
57static inline struct r1bio *get_resync_r1bio(struct bio *bio)
58{
59 return get_resync_pages(bio)->raid_bio;
60}
61
dd0fc66f 62static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
63{
64 struct pool_info *pi = data;
9f2c9d12 65 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
66
67 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 68 return kzalloc(size, gfp_flags);
1da177e4
LT
69}
70
71static void r1bio_pool_free(void *r1_bio, void *data)
72{
73 kfree(r1_bio);
74}
75
8e005f7c 76#define RESYNC_DEPTH 32
1da177e4 77#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 78#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
79#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
80#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
81#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 82
dd0fc66f 83static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
84{
85 struct pool_info *pi = data;
9f2c9d12 86 struct r1bio *r1_bio;
1da177e4 87 struct bio *bio;
da1aab3d 88 int need_pages;
98d30c58
ML
89 int j;
90 struct resync_pages *rps;
1da177e4
LT
91
92 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 93 if (!r1_bio)
1da177e4 94 return NULL;
1da177e4 95
6da2ec56
KC
96 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
97 gfp_flags);
98d30c58
ML
98 if (!rps)
99 goto out_free_r1bio;
100
1da177e4
LT
101 /*
102 * Allocate bios : 1 for reading, n-1 for writing
103 */
104 for (j = pi->raid_disks ; j-- ; ) {
6746557f 105 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
106 if (!bio)
107 goto out_free_bio;
108 r1_bio->bios[j] = bio;
109 }
110 /*
111 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
112 * the first bio.
113 * If this is a user-requested check/repair, allocate
114 * RESYNC_PAGES for each bio.
1da177e4 115 */
d11c171e 116 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 117 need_pages = pi->raid_disks;
d11c171e 118 else
da1aab3d 119 need_pages = 1;
98d30c58
ML
120 for (j = 0; j < pi->raid_disks; j++) {
121 struct resync_pages *rp = &rps[j];
122
d11c171e 123 bio = r1_bio->bios[j];
d11c171e 124
98d30c58
ML
125 if (j < need_pages) {
126 if (resync_alloc_pages(rp, gfp_flags))
127 goto out_free_pages;
128 } else {
129 memcpy(rp, &rps[0], sizeof(*rp));
130 resync_get_all_pages(rp);
131 }
132
98d30c58
ML
133 rp->raid_bio = r1_bio;
134 bio->bi_private = rp;
1da177e4
LT
135 }
136
137 r1_bio->master_bio = NULL;
138
139 return r1_bio;
140
da1aab3d 141out_free_pages:
491221f8 142 while (--j >= 0)
98d30c58 143 resync_free_pages(&rps[j]);
da1aab3d 144
1da177e4 145out_free_bio:
8f19ccb2 146 while (++j < pi->raid_disks)
1da177e4 147 bio_put(r1_bio->bios[j]);
98d30c58
ML
148 kfree(rps);
149
150out_free_r1bio:
1da177e4
LT
151 r1bio_pool_free(r1_bio, data);
152 return NULL;
153}
154
155static void r1buf_pool_free(void *__r1_bio, void *data)
156{
157 struct pool_info *pi = data;
98d30c58 158 int i;
9f2c9d12 159 struct r1bio *r1bio = __r1_bio;
98d30c58 160 struct resync_pages *rp = NULL;
1da177e4 161
98d30c58
ML
162 for (i = pi->raid_disks; i--; ) {
163 rp = get_resync_pages(r1bio->bios[i]);
164 resync_free_pages(rp);
1da177e4 165 bio_put(r1bio->bios[i]);
98d30c58
ML
166 }
167
168 /* resync pages array stored in the 1st bio's .bi_private */
169 kfree(rp);
1da177e4
LT
170
171 r1bio_pool_free(r1bio, data);
172}
173
e8096360 174static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
175{
176 int i;
177
8f19ccb2 178 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 179 struct bio **bio = r1_bio->bios + i;
4367af55 180 if (!BIO_SPECIAL(*bio))
1da177e4
LT
181 bio_put(*bio);
182 *bio = NULL;
183 }
184}
185
9f2c9d12 186static void free_r1bio(struct r1bio *r1_bio)
1da177e4 187{
e8096360 188 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 189
1da177e4 190 put_all_bios(conf, r1_bio);
afeee514 191 mempool_free(r1_bio, &conf->r1bio_pool);
1da177e4
LT
192}
193
9f2c9d12 194static void put_buf(struct r1bio *r1_bio)
1da177e4 195{
e8096360 196 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 197 sector_t sect = r1_bio->sector;
3e198f78
N
198 int i;
199
8f19ccb2 200 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
201 struct bio *bio = r1_bio->bios[i];
202 if (bio->bi_end_io)
203 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
204 }
1da177e4 205
afeee514 206 mempool_free(r1_bio, &conf->r1buf_pool);
1da177e4 207
af5f42a7 208 lower_barrier(conf, sect);
1da177e4
LT
209}
210
9f2c9d12 211static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
212{
213 unsigned long flags;
fd01b88c 214 struct mddev *mddev = r1_bio->mddev;
e8096360 215 struct r1conf *conf = mddev->private;
fd76863e 216 int idx;
1da177e4 217
fd76863e 218 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 221 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
9f2c9d12 233static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
234{
235 struct bio *bio = r1_bio->master_bio;
e8096360 236 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
237
238 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 239 bio->bi_status = BLK_STS_IOERR;
4246a0b6 240
37011e3a
N
241 bio_endio(bio);
242 /*
243 * Wake up any possible resync thread that waits for the device
244 * to go idle.
245 */
246 allow_barrier(conf, r1_bio->sector);
d2eb35ac
N
247}
248
9f2c9d12 249static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
250{
251 struct bio *bio = r1_bio->master_bio;
252
4b6d287f
N
253 /* if nobody has done the final endio yet, do it now */
254 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
255 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
256 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
257 (unsigned long long) bio->bi_iter.bi_sector,
258 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 259
d2eb35ac 260 call_bio_endio(r1_bio);
4b6d287f 261 }
1da177e4
LT
262 free_r1bio(r1_bio);
263}
264
265/*
266 * Update disk head position estimator based on IRQ completion info.
267 */
9f2c9d12 268static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 269{
e8096360 270 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
271
272 conf->mirrors[disk].head_position =
273 r1_bio->sector + (r1_bio->sectors);
274}
275
ba3ae3be
NK
276/*
277 * Find the disk number which triggered given bio
278 */
9f2c9d12 279static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
280{
281 int mirror;
30194636
N
282 struct r1conf *conf = r1_bio->mddev->private;
283 int raid_disks = conf->raid_disks;
ba3ae3be 284
8f19ccb2 285 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
286 if (r1_bio->bios[mirror] == bio)
287 break;
288
8f19ccb2 289 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
290 update_head_pos(mirror, r1_bio);
291
292 return mirror;
293}
294
4246a0b6 295static void raid1_end_read_request(struct bio *bio)
1da177e4 296{
4e4cbee9 297 int uptodate = !bio->bi_status;
9f2c9d12 298 struct r1bio *r1_bio = bio->bi_private;
e8096360 299 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 300 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 301
1da177e4
LT
302 /*
303 * this branch is our 'one mirror IO has finished' event handler:
304 */
e5872d58 305 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 306
dd00a99e
N
307 if (uptodate)
308 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
309 else if (test_bit(FailFast, &rdev->flags) &&
310 test_bit(R1BIO_FailFast, &r1_bio->state))
311 /* This was a fail-fast read so we definitely
312 * want to retry */
313 ;
dd00a99e
N
314 else {
315 /* If all other devices have failed, we want to return
316 * the error upwards rather than fail the last device.
317 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 318 */
dd00a99e
N
319 unsigned long flags;
320 spin_lock_irqsave(&conf->device_lock, flags);
321 if (r1_bio->mddev->degraded == conf->raid_disks ||
322 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 323 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
324 uptodate = 1;
325 spin_unlock_irqrestore(&conf->device_lock, flags);
326 }
1da177e4 327
7ad4d4a6 328 if (uptodate) {
1da177e4 329 raid_end_bio_io(r1_bio);
e5872d58 330 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 331 } else {
1da177e4
LT
332 /*
333 * oops, read error:
334 */
335 char b[BDEVNAME_SIZE];
1d41c216
N
336 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
337 mdname(conf->mddev),
338 bdevname(rdev->bdev, b),
339 (unsigned long long)r1_bio->sector);
d2eb35ac 340 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 341 reschedule_retry(r1_bio);
7ad4d4a6 342 /* don't drop the reference on read_disk yet */
1da177e4 343 }
1da177e4
LT
344}
345
9f2c9d12 346static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
347{
348 /* it really is the end of this request */
349 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
350 bio_free_pages(r1_bio->behind_master_bio);
351 bio_put(r1_bio->behind_master_bio);
352 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
353 }
354 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
355 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356 r1_bio->sectors,
357 !test_bit(R1BIO_Degraded, &r1_bio->state),
358 test_bit(R1BIO_BehindIO, &r1_bio->state));
cd5ff9a1
N
359 md_write_end(r1_bio->mddev);
360}
361
9f2c9d12 362static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 363{
cd5ff9a1
N
364 if (!atomic_dec_and_test(&r1_bio->remaining))
365 return;
366
367 if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 reschedule_retry(r1_bio);
369 else {
370 close_write(r1_bio);
4367af55
N
371 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 reschedule_retry(r1_bio);
373 else
374 raid_end_bio_io(r1_bio);
4e78064f
N
375 }
376}
377
4246a0b6 378static void raid1_end_write_request(struct bio *bio)
1da177e4 379{
9f2c9d12 380 struct r1bio *r1_bio = bio->bi_private;
e5872d58 381 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 382 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 383 struct bio *to_put = NULL;
e5872d58
N
384 int mirror = find_bio_disk(r1_bio, bio);
385 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
386 bool discard_error;
387
4e4cbee9 388 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 389
e9c7469b
TH
390 /*
391 * 'one mirror IO has finished' event handler:
392 */
4e4cbee9 393 if (bio->bi_status && !discard_error) {
e5872d58
N
394 set_bit(WriteErrorSeen, &rdev->flags);
395 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
396 set_bit(MD_RECOVERY_NEEDED, &
397 conf->mddev->recovery);
398
212e7eb7
N
399 if (test_bit(FailFast, &rdev->flags) &&
400 (bio->bi_opf & MD_FAILFAST) &&
401 /* We never try FailFast to WriteMostly devices */
402 !test_bit(WriteMostly, &rdev->flags)) {
403 md_error(r1_bio->mddev, rdev);
404 if (!test_bit(Faulty, &rdev->flags))
405 /* This is the only remaining device,
406 * We need to retry the write without
407 * FailFast
408 */
409 set_bit(R1BIO_WriteError, &r1_bio->state);
410 else {
411 /* Finished with this branch */
412 r1_bio->bios[mirror] = NULL;
413 to_put = bio;
414 }
415 } else
416 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 417 } else {
1da177e4 418 /*
e9c7469b
TH
419 * Set R1BIO_Uptodate in our master bio, so that we
420 * will return a good error code for to the higher
421 * levels even if IO on some other mirrored buffer
422 * fails.
423 *
424 * The 'master' represents the composite IO operation
425 * to user-side. So if something waits for IO, then it
426 * will wait for the 'master' bio.
1da177e4 427 */
4367af55
N
428 sector_t first_bad;
429 int bad_sectors;
430
cd5ff9a1
N
431 r1_bio->bios[mirror] = NULL;
432 to_put = bio;
3056e3ae
AL
433 /*
434 * Do not set R1BIO_Uptodate if the current device is
435 * rebuilding or Faulty. This is because we cannot use
436 * such device for properly reading the data back (we could
437 * potentially use it, if the current write would have felt
438 * before rdev->recovery_offset, but for simplicity we don't
439 * check this here.
440 */
e5872d58
N
441 if (test_bit(In_sync, &rdev->flags) &&
442 !test_bit(Faulty, &rdev->flags))
3056e3ae 443 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 444
4367af55 445 /* Maybe we can clear some bad blocks. */
e5872d58 446 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 447 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
448 r1_bio->bios[mirror] = IO_MADE_GOOD;
449 set_bit(R1BIO_MadeGood, &r1_bio->state);
450 }
451 }
452
e9c7469b 453 if (behind) {
e5872d58 454 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
455 atomic_dec(&r1_bio->behind_remaining);
456
457 /*
458 * In behind mode, we ACK the master bio once the I/O
459 * has safely reached all non-writemostly
460 * disks. Setting the Returned bit ensures that this
461 * gets done only once -- we don't ever want to return
462 * -EIO here, instead we'll wait
463 */
464 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
465 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
466 /* Maybe we can return now */
467 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
468 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
469 pr_debug("raid1: behind end write sectors"
470 " %llu-%llu\n",
4f024f37
KO
471 (unsigned long long) mbio->bi_iter.bi_sector,
472 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 473 call_bio_endio(r1_bio);
4b6d287f
N
474 }
475 }
476 }
4367af55 477 if (r1_bio->bios[mirror] == NULL)
e5872d58 478 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 479
1da177e4 480 /*
1da177e4
LT
481 * Let's see if all mirrored write operations have finished
482 * already.
483 */
af6d7b76 484 r1_bio_write_done(r1_bio);
c70810b3 485
04b857f7
N
486 if (to_put)
487 bio_put(to_put);
1da177e4
LT
488}
489
fd76863e 490static sector_t align_to_barrier_unit_end(sector_t start_sector,
491 sector_t sectors)
492{
493 sector_t len;
494
495 WARN_ON(sectors == 0);
496 /*
497 * len is the number of sectors from start_sector to end of the
498 * barrier unit which start_sector belongs to.
499 */
500 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
501 start_sector;
502
503 if (len > sectors)
504 len = sectors;
505
506 return len;
507}
508
1da177e4
LT
509/*
510 * This routine returns the disk from which the requested read should
511 * be done. There is a per-array 'next expected sequential IO' sector
512 * number - if this matches on the next IO then we use the last disk.
513 * There is also a per-disk 'last know head position' sector that is
514 * maintained from IRQ contexts, both the normal and the resync IO
515 * completion handlers update this position correctly. If there is no
516 * perfect sequential match then we pick the disk whose head is closest.
517 *
518 * If there are 2 mirrors in the same 2 devices, performance degrades
519 * because position is mirror, not device based.
520 *
521 * The rdev for the device selected will have nr_pending incremented.
522 */
e8096360 523static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 524{
af3a2cd6 525 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
526 int sectors;
527 int best_good_sectors;
9dedf603
SL
528 int best_disk, best_dist_disk, best_pending_disk;
529 int has_nonrot_disk;
be4d3280 530 int disk;
76073054 531 sector_t best_dist;
9dedf603 532 unsigned int min_pending;
3cb03002 533 struct md_rdev *rdev;
f3ac8bf7 534 int choose_first;
12cee5a8 535 int choose_next_idle;
1da177e4
LT
536
537 rcu_read_lock();
538 /*
8ddf9efe 539 * Check if we can balance. We can balance on the whole
1da177e4
LT
540 * device if no resync is going on, or below the resync window.
541 * We take the first readable disk when above the resync window.
542 */
543 retry:
d2eb35ac 544 sectors = r1_bio->sectors;
76073054 545 best_disk = -1;
9dedf603 546 best_dist_disk = -1;
76073054 547 best_dist = MaxSector;
9dedf603
SL
548 best_pending_disk = -1;
549 min_pending = UINT_MAX;
d2eb35ac 550 best_good_sectors = 0;
9dedf603 551 has_nonrot_disk = 0;
12cee5a8 552 choose_next_idle = 0;
2e52d449 553 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 554
7d49ffcf
GR
555 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
556 (mddev_is_clustered(conf->mddev) &&
90382ed9 557 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
558 this_sector + sectors)))
559 choose_first = 1;
560 else
561 choose_first = 0;
1da177e4 562
be4d3280 563 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 564 sector_t dist;
d2eb35ac
N
565 sector_t first_bad;
566 int bad_sectors;
9dedf603 567 unsigned int pending;
12cee5a8 568 bool nonrot;
d2eb35ac 569
f3ac8bf7
N
570 rdev = rcu_dereference(conf->mirrors[disk].rdev);
571 if (r1_bio->bios[disk] == IO_BLOCKED
572 || rdev == NULL
76073054 573 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 574 continue;
76073054
N
575 if (!test_bit(In_sync, &rdev->flags) &&
576 rdev->recovery_offset < this_sector + sectors)
1da177e4 577 continue;
76073054
N
578 if (test_bit(WriteMostly, &rdev->flags)) {
579 /* Don't balance among write-mostly, just
580 * use the first as a last resort */
d1901ef0 581 if (best_dist_disk < 0) {
307729c8
N
582 if (is_badblock(rdev, this_sector, sectors,
583 &first_bad, &bad_sectors)) {
816b0acf 584 if (first_bad <= this_sector)
307729c8
N
585 /* Cannot use this */
586 continue;
587 best_good_sectors = first_bad - this_sector;
588 } else
589 best_good_sectors = sectors;
d1901ef0
TH
590 best_dist_disk = disk;
591 best_pending_disk = disk;
307729c8 592 }
76073054
N
593 continue;
594 }
595 /* This is a reasonable device to use. It might
596 * even be best.
597 */
d2eb35ac
N
598 if (is_badblock(rdev, this_sector, sectors,
599 &first_bad, &bad_sectors)) {
600 if (best_dist < MaxSector)
601 /* already have a better device */
602 continue;
603 if (first_bad <= this_sector) {
604 /* cannot read here. If this is the 'primary'
605 * device, then we must not read beyond
606 * bad_sectors from another device..
607 */
608 bad_sectors -= (this_sector - first_bad);
609 if (choose_first && sectors > bad_sectors)
610 sectors = bad_sectors;
611 if (best_good_sectors > sectors)
612 best_good_sectors = sectors;
613
614 } else {
615 sector_t good_sectors = first_bad - this_sector;
616 if (good_sectors > best_good_sectors) {
617 best_good_sectors = good_sectors;
618 best_disk = disk;
619 }
620 if (choose_first)
621 break;
622 }
623 continue;
d82dd0e3
TM
624 } else {
625 if ((sectors > best_good_sectors) && (best_disk >= 0))
626 best_disk = -1;
d2eb35ac 627 best_good_sectors = sectors;
d82dd0e3 628 }
d2eb35ac 629
2e52d449
N
630 if (best_disk >= 0)
631 /* At least two disks to choose from so failfast is OK */
632 set_bit(R1BIO_FailFast, &r1_bio->state);
633
12cee5a8
SL
634 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
635 has_nonrot_disk |= nonrot;
9dedf603 636 pending = atomic_read(&rdev->nr_pending);
76073054 637 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 638 if (choose_first) {
76073054 639 best_disk = disk;
1da177e4
LT
640 break;
641 }
12cee5a8
SL
642 /* Don't change to another disk for sequential reads */
643 if (conf->mirrors[disk].next_seq_sect == this_sector
644 || dist == 0) {
645 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
646 struct raid1_info *mirror = &conf->mirrors[disk];
647
648 best_disk = disk;
649 /*
650 * If buffered sequential IO size exceeds optimal
651 * iosize, check if there is idle disk. If yes, choose
652 * the idle disk. read_balance could already choose an
653 * idle disk before noticing it's a sequential IO in
654 * this disk. This doesn't matter because this disk
655 * will idle, next time it will be utilized after the
656 * first disk has IO size exceeds optimal iosize. In
657 * this way, iosize of the first disk will be optimal
658 * iosize at least. iosize of the second disk might be
659 * small, but not a big deal since when the second disk
660 * starts IO, the first disk is likely still busy.
661 */
662 if (nonrot && opt_iosize > 0 &&
663 mirror->seq_start != MaxSector &&
664 mirror->next_seq_sect > opt_iosize &&
665 mirror->next_seq_sect - opt_iosize >=
666 mirror->seq_start) {
667 choose_next_idle = 1;
668 continue;
669 }
670 break;
671 }
12cee5a8
SL
672
673 if (choose_next_idle)
674 continue;
9dedf603
SL
675
676 if (min_pending > pending) {
677 min_pending = pending;
678 best_pending_disk = disk;
679 }
680
76073054
N
681 if (dist < best_dist) {
682 best_dist = dist;
9dedf603 683 best_dist_disk = disk;
1da177e4 684 }
f3ac8bf7 685 }
1da177e4 686
9dedf603
SL
687 /*
688 * If all disks are rotational, choose the closest disk. If any disk is
689 * non-rotational, choose the disk with less pending request even the
690 * disk is rotational, which might/might not be optimal for raids with
691 * mixed ratation/non-rotational disks depending on workload.
692 */
693 if (best_disk == -1) {
2e52d449 694 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
695 best_disk = best_pending_disk;
696 else
697 best_disk = best_dist_disk;
698 }
699
76073054
N
700 if (best_disk >= 0) {
701 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
702 if (!rdev)
703 goto retry;
704 atomic_inc(&rdev->nr_pending);
d2eb35ac 705 sectors = best_good_sectors;
12cee5a8
SL
706
707 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
708 conf->mirrors[best_disk].seq_start = this_sector;
709
be4d3280 710 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
711 }
712 rcu_read_unlock();
d2eb35ac 713 *max_sectors = sectors;
1da177e4 714
76073054 715 return best_disk;
1da177e4
LT
716}
717
5c675f83 718static int raid1_congested(struct mddev *mddev, int bits)
0d129228 719{
e8096360 720 struct r1conf *conf = mddev->private;
0d129228
N
721 int i, ret = 0;
722
4452226e 723 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
724 conf->pending_count >= max_queued_requests)
725 return 1;
726
0d129228 727 rcu_read_lock();
f53e29fc 728 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 729 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 730 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 731 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 732
1ed7242e
JB
733 BUG_ON(!q);
734
0d129228
N
735 /* Note the '|| 1' - when read_balance prefers
736 * non-congested targets, it can be removed
737 */
4452226e 738 if ((bits & (1 << WB_async_congested)) || 1)
dc3b17cc 739 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228 740 else
dc3b17cc 741 ret &= bdi_congested(q->backing_dev_info, bits);
0d129228
N
742 }
743 }
744 rcu_read_unlock();
745 return ret;
746}
0d129228 747
673ca68d
N
748static void flush_bio_list(struct r1conf *conf, struct bio *bio)
749{
750 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
e64e4018 751 md_bitmap_unplug(conf->mddev->bitmap);
673ca68d
N
752 wake_up(&conf->wait_barrier);
753
754 while (bio) { /* submit pending writes */
755 struct bio *next = bio->bi_next;
74d46992 756 struct md_rdev *rdev = (void *)bio->bi_disk;
673ca68d 757 bio->bi_next = NULL;
74d46992 758 bio_set_dev(bio, rdev->bdev);
673ca68d 759 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 760 bio_io_error(bio);
673ca68d 761 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 762 !blk_queue_discard(bio->bi_disk->queue)))
673ca68d
N
763 /* Just ignore it */
764 bio_endio(bio);
765 else
766 generic_make_request(bio);
767 bio = next;
768 }
769}
770
e8096360 771static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
772{
773 /* Any writes that have been queued but are awaiting
774 * bitmap updates get flushed here.
a35e63ef 775 */
a35e63ef
N
776 spin_lock_irq(&conf->device_lock);
777
778 if (conf->pending_bio_list.head) {
18022a1b 779 struct blk_plug plug;
a35e63ef 780 struct bio *bio;
18022a1b 781
a35e63ef 782 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 783 conf->pending_count = 0;
a35e63ef 784 spin_unlock_irq(&conf->device_lock);
474beb57
N
785
786 /*
787 * As this is called in a wait_event() loop (see freeze_array),
788 * current->state might be TASK_UNINTERRUPTIBLE which will
789 * cause a warning when we prepare to wait again. As it is
790 * rare that this path is taken, it is perfectly safe to force
791 * us to go around the wait_event() loop again, so the warning
792 * is a false-positive. Silence the warning by resetting
793 * thread state
794 */
795 __set_current_state(TASK_RUNNING);
18022a1b 796 blk_start_plug(&plug);
673ca68d 797 flush_bio_list(conf, bio);
18022a1b 798 blk_finish_plug(&plug);
a35e63ef
N
799 } else
800 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
801}
802
17999be4
N
803/* Barriers....
804 * Sometimes we need to suspend IO while we do something else,
805 * either some resync/recovery, or reconfigure the array.
806 * To do this we raise a 'barrier'.
807 * The 'barrier' is a counter that can be raised multiple times
808 * to count how many activities are happening which preclude
809 * normal IO.
810 * We can only raise the barrier if there is no pending IO.
811 * i.e. if nr_pending == 0.
812 * We choose only to raise the barrier if no-one is waiting for the
813 * barrier to go down. This means that as soon as an IO request
814 * is ready, no other operations which require a barrier will start
815 * until the IO request has had a chance.
816 *
817 * So: regular IO calls 'wait_barrier'. When that returns there
818 * is no backgroup IO happening, It must arrange to call
819 * allow_barrier when it has finished its IO.
820 * backgroup IO calls must call raise_barrier. Once that returns
821 * there is no normal IO happeing. It must arrange to call
822 * lower_barrier when the particular background IO completes.
1da177e4 823 */
8c242593 824static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 825{
fd76863e 826 int idx = sector_to_idx(sector_nr);
827
1da177e4 828 spin_lock_irq(&conf->resync_lock);
17999be4
N
829
830 /* Wait until no block IO is waiting */
824e47da 831 wait_event_lock_irq(conf->wait_barrier,
832 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 833 conf->resync_lock);
17999be4
N
834
835 /* block any new IO from starting */
824e47da 836 atomic_inc(&conf->barrier[idx]);
837 /*
838 * In raise_barrier() we firstly increase conf->barrier[idx] then
839 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
840 * increase conf->nr_pending[idx] then check conf->barrier[idx].
841 * A memory barrier here to make sure conf->nr_pending[idx] won't
842 * be fetched before conf->barrier[idx] is increased. Otherwise
843 * there will be a race between raise_barrier() and _wait_barrier().
844 */
845 smp_mb__after_atomic();
17999be4 846
79ef3a8a 847 /* For these conditions we must wait:
848 * A: while the array is in frozen state
fd76863e 849 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
850 * existing in corresponding I/O barrier bucket.
851 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
852 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 853 */
17999be4 854 wait_event_lock_irq(conf->wait_barrier,
8c242593 855 (!conf->array_frozen &&
824e47da 856 !atomic_read(&conf->nr_pending[idx]) &&
8c242593
YY
857 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
858 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
eed8c02e 859 conf->resync_lock);
17999be4 860
8c242593
YY
861 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
862 atomic_dec(&conf->barrier[idx]);
863 spin_unlock_irq(&conf->resync_lock);
864 wake_up(&conf->wait_barrier);
865 return -EINTR;
866 }
867
43ac9b84 868 atomic_inc(&conf->nr_sync_pending);
17999be4 869 spin_unlock_irq(&conf->resync_lock);
8c242593
YY
870
871 return 0;
17999be4
N
872}
873
fd76863e 874static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 875{
fd76863e 876 int idx = sector_to_idx(sector_nr);
877
824e47da 878 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 879
824e47da 880 atomic_dec(&conf->barrier[idx]);
43ac9b84 881 atomic_dec(&conf->nr_sync_pending);
17999be4
N
882 wake_up(&conf->wait_barrier);
883}
884
fd76863e 885static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 886{
824e47da 887 /*
888 * We need to increase conf->nr_pending[idx] very early here,
889 * then raise_barrier() can be blocked when it waits for
890 * conf->nr_pending[idx] to be 0. Then we can avoid holding
891 * conf->resync_lock when there is no barrier raised in same
892 * barrier unit bucket. Also if the array is frozen, I/O
893 * should be blocked until array is unfrozen.
894 */
895 atomic_inc(&conf->nr_pending[idx]);
896 /*
897 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
898 * check conf->barrier[idx]. In raise_barrier() we firstly increase
899 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
900 * barrier is necessary here to make sure conf->barrier[idx] won't be
901 * fetched before conf->nr_pending[idx] is increased. Otherwise there
902 * will be a race between _wait_barrier() and raise_barrier().
903 */
904 smp_mb__after_atomic();
79ef3a8a 905
824e47da 906 /*
907 * Don't worry about checking two atomic_t variables at same time
908 * here. If during we check conf->barrier[idx], the array is
909 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
910 * 0, it is safe to return and make the I/O continue. Because the
911 * array is frozen, all I/O returned here will eventually complete
912 * or be queued, no race will happen. See code comment in
913 * frozen_array().
914 */
915 if (!READ_ONCE(conf->array_frozen) &&
916 !atomic_read(&conf->barrier[idx]))
917 return;
79ef3a8a 918
824e47da 919 /*
920 * After holding conf->resync_lock, conf->nr_pending[idx]
921 * should be decreased before waiting for barrier to drop.
922 * Otherwise, we may encounter a race condition because
923 * raise_barrer() might be waiting for conf->nr_pending[idx]
924 * to be 0 at same time.
925 */
926 spin_lock_irq(&conf->resync_lock);
927 atomic_inc(&conf->nr_waiting[idx]);
928 atomic_dec(&conf->nr_pending[idx]);
929 /*
930 * In case freeze_array() is waiting for
931 * get_unqueued_pending() == extra
932 */
933 wake_up(&conf->wait_barrier);
934 /* Wait for the barrier in same barrier unit bucket to drop. */
935 wait_event_lock_irq(conf->wait_barrier,
936 !conf->array_frozen &&
937 !atomic_read(&conf->barrier[idx]),
938 conf->resync_lock);
939 atomic_inc(&conf->nr_pending[idx]);
940 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 941 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 942}
943
fd76863e 944static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 945{
fd76863e 946 int idx = sector_to_idx(sector_nr);
79ef3a8a 947
824e47da 948 /*
949 * Very similar to _wait_barrier(). The difference is, for read
950 * I/O we don't need wait for sync I/O, but if the whole array
951 * is frozen, the read I/O still has to wait until the array is
952 * unfrozen. Since there is no ordering requirement with
953 * conf->barrier[idx] here, memory barrier is unnecessary as well.
954 */
955 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 956
824e47da 957 if (!READ_ONCE(conf->array_frozen))
958 return;
959
960 spin_lock_irq(&conf->resync_lock);
961 atomic_inc(&conf->nr_waiting[idx]);
962 atomic_dec(&conf->nr_pending[idx]);
963 /*
964 * In case freeze_array() is waiting for
965 * get_unqueued_pending() == extra
966 */
967 wake_up(&conf->wait_barrier);
968 /* Wait for array to be unfrozen */
969 wait_event_lock_irq(conf->wait_barrier,
970 !conf->array_frozen,
971 conf->resync_lock);
972 atomic_inc(&conf->nr_pending[idx]);
973 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
974 spin_unlock_irq(&conf->resync_lock);
975}
976
fd76863e 977static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 978{
fd76863e 979 int idx = sector_to_idx(sector_nr);
79ef3a8a 980
fd76863e 981 _wait_barrier(conf, idx);
982}
983
fd76863e 984static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 985{
824e47da 986 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
987 wake_up(&conf->wait_barrier);
988}
989
fd76863e 990static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
991{
992 int idx = sector_to_idx(sector_nr);
993
994 _allow_barrier(conf, idx);
995}
996
fd76863e 997/* conf->resync_lock should be held */
998static int get_unqueued_pending(struct r1conf *conf)
999{
1000 int idx, ret;
1001
43ac9b84
XN
1002 ret = atomic_read(&conf->nr_sync_pending);
1003 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1004 ret += atomic_read(&conf->nr_pending[idx]) -
1005 atomic_read(&conf->nr_queued[idx]);
fd76863e 1006
1007 return ret;
1008}
1009
e2d59925 1010static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1011{
fd76863e 1012 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1013 * go quiet.
fd76863e 1014 * This is called in two situations:
1015 * 1) management command handlers (reshape, remove disk, quiesce).
1016 * 2) one normal I/O request failed.
1017
1018 * After array_frozen is set to 1, new sync IO will be blocked at
1019 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1020 * or wait_read_barrier(). The flying I/Os will either complete or be
1021 * queued. When everything goes quite, there are only queued I/Os left.
1022
1023 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1024 * barrier bucket index which this I/O request hits. When all sync and
1025 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1026 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1027 * in handle_read_error(), we may call freeze_array() before trying to
1028 * fix the read error. In this case, the error read I/O is not queued,
1029 * so get_unqueued_pending() == 1.
1030 *
1031 * Therefore before this function returns, we need to wait until
1032 * get_unqueued_pendings(conf) gets equal to extra. For
1033 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1034 */
1035 spin_lock_irq(&conf->resync_lock);
b364e3d0 1036 conf->array_frozen = 1;
578b54ad 1037 raid1_log(conf->mddev, "wait freeze");
fd76863e 1038 wait_event_lock_irq_cmd(
1039 conf->wait_barrier,
1040 get_unqueued_pending(conf) == extra,
1041 conf->resync_lock,
1042 flush_pending_writes(conf));
ddaf22ab
N
1043 spin_unlock_irq(&conf->resync_lock);
1044}
e8096360 1045static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1046{
1047 /* reverse the effect of the freeze */
1048 spin_lock_irq(&conf->resync_lock);
b364e3d0 1049 conf->array_frozen = 0;
ddaf22ab 1050 spin_unlock_irq(&conf->resync_lock);
824e47da 1051 wake_up(&conf->wait_barrier);
ddaf22ab
N
1052}
1053
16d56e2f 1054static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1055 struct bio *bio)
4b6d287f 1056{
cb83efcf 1057 int size = bio->bi_iter.bi_size;
841c1316
ML
1058 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1059 int i = 0;
1060 struct bio *behind_bio = NULL;
1061
1062 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1063 if (!behind_bio)
16d56e2f 1064 return;
4b6d287f 1065
41743c1f 1066 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1067 if (!bio_has_data(bio)) {
1068 behind_bio->bi_iter.bi_size = size;
41743c1f 1069 goto skip_copy;
16d56e2f 1070 }
41743c1f 1071
dba40d46
MD
1072 behind_bio->bi_write_hint = bio->bi_write_hint;
1073
841c1316
ML
1074 while (i < vcnt && size) {
1075 struct page *page;
1076 int len = min_t(int, PAGE_SIZE, size);
1077
1078 page = alloc_page(GFP_NOIO);
1079 if (unlikely(!page))
1080 goto free_pages;
1081
1082 bio_add_page(behind_bio, page, len, 0);
1083
1084 size -= len;
1085 i++;
4b6d287f 1086 }
841c1316 1087
cb83efcf 1088 bio_copy_data(behind_bio, bio);
41743c1f 1089skip_copy:
56a64c17 1090 r1_bio->behind_master_bio = behind_bio;
af6d7b76 1091 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1092
16d56e2f 1093 return;
841c1316
ML
1094
1095free_pages:
4f024f37
KO
1096 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1097 bio->bi_iter.bi_size);
841c1316 1098 bio_free_pages(behind_bio);
16d56e2f 1099 bio_put(behind_bio);
4b6d287f
N
1100}
1101
f54a9d0e
N
1102struct raid1_plug_cb {
1103 struct blk_plug_cb cb;
1104 struct bio_list pending;
1105 int pending_cnt;
1106};
1107
1108static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1109{
1110 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1111 cb);
1112 struct mddev *mddev = plug->cb.data;
1113 struct r1conf *conf = mddev->private;
1114 struct bio *bio;
1115
874807a8 1116 if (from_schedule || current->bio_list) {
f54a9d0e
N
1117 spin_lock_irq(&conf->device_lock);
1118 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1119 conf->pending_count += plug->pending_cnt;
1120 spin_unlock_irq(&conf->device_lock);
ee0b0244 1121 wake_up(&conf->wait_barrier);
f54a9d0e
N
1122 md_wakeup_thread(mddev->thread);
1123 kfree(plug);
1124 return;
1125 }
1126
1127 /* we aren't scheduling, so we can do the write-out directly. */
1128 bio = bio_list_get(&plug->pending);
673ca68d 1129 flush_bio_list(conf, bio);
f54a9d0e
N
1130 kfree(plug);
1131}
1132
689389a0
N
1133static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1134{
1135 r1_bio->master_bio = bio;
1136 r1_bio->sectors = bio_sectors(bio);
1137 r1_bio->state = 0;
1138 r1_bio->mddev = mddev;
1139 r1_bio->sector = bio->bi_iter.bi_sector;
1140}
1141
fd76863e 1142static inline struct r1bio *
689389a0 1143alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1144{
1145 struct r1conf *conf = mddev->private;
1146 struct r1bio *r1_bio;
1147
afeee514 1148 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
689389a0
N
1149 /* Ensure no bio records IO_BLOCKED */
1150 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1151 init_r1bio(r1_bio, mddev, bio);
fd76863e 1152 return r1_bio;
1153}
1154
c230e7e5 1155static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1156 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1157{
e8096360 1158 struct r1conf *conf = mddev->private;
0eaf822c 1159 struct raid1_info *mirror;
1da177e4 1160 struct bio *read_bio;
3b046a97
RL
1161 struct bitmap *bitmap = mddev->bitmap;
1162 const int op = bio_op(bio);
1163 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1164 int max_sectors;
1165 int rdisk;
689389a0
N
1166 bool print_msg = !!r1_bio;
1167 char b[BDEVNAME_SIZE];
3b046a97 1168
fd76863e 1169 /*
689389a0
N
1170 * If r1_bio is set, we are blocking the raid1d thread
1171 * so there is a tiny risk of deadlock. So ask for
1172 * emergency memory if needed.
fd76863e 1173 */
689389a0 1174 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1175
689389a0
N
1176 if (print_msg) {
1177 /* Need to get the block device name carefully */
1178 struct md_rdev *rdev;
1179 rcu_read_lock();
1180 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1181 if (rdev)
1182 bdevname(rdev->bdev, b);
1183 else
1184 strcpy(b, "???");
1185 rcu_read_unlock();
1186 }
3b046a97 1187
fd76863e 1188 /*
fd76863e 1189 * Still need barrier for READ in case that whole
1190 * array is frozen.
fd76863e 1191 */
fd76863e 1192 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1193
689389a0
N
1194 if (!r1_bio)
1195 r1_bio = alloc_r1bio(mddev, bio);
1196 else
1197 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1198 r1_bio->sectors = max_read_sectors;
fd76863e 1199
1200 /*
1201 * make_request() can abort the operation when read-ahead is being
1202 * used and no empty request is available.
1203 */
3b046a97
RL
1204 rdisk = read_balance(conf, r1_bio, &max_sectors);
1205
1206 if (rdisk < 0) {
1207 /* couldn't find anywhere to read from */
689389a0
N
1208 if (print_msg) {
1209 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1210 mdname(mddev),
1211 b,
1212 (unsigned long long)r1_bio->sector);
1213 }
3b046a97
RL
1214 raid_end_bio_io(r1_bio);
1215 return;
1216 }
1217 mirror = conf->mirrors + rdisk;
1218
689389a0
N
1219 if (print_msg)
1220 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1221 mdname(mddev),
1222 (unsigned long long)r1_bio->sector,
1223 bdevname(mirror->rdev->bdev, b));
1224
3b046a97
RL
1225 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1226 bitmap) {
1227 /*
1228 * Reading from a write-mostly device must take care not to
1229 * over-take any writes that are 'behind'
1230 */
1231 raid1_log(mddev, "wait behind writes");
1232 wait_event(bitmap->behind_wait,
1233 atomic_read(&bitmap->behind_writes) == 0);
1234 }
c230e7e5
N
1235
1236 if (max_sectors < bio_sectors(bio)) {
1237 struct bio *split = bio_split(bio, max_sectors,
afeee514 1238 gfp, &conf->bio_split);
c230e7e5
N
1239 bio_chain(split, bio);
1240 generic_make_request(bio);
1241 bio = split;
1242 r1_bio->master_bio = bio;
1243 r1_bio->sectors = max_sectors;
1244 }
1245
3b046a97 1246 r1_bio->read_disk = rdisk;
3b046a97 1247
afeee514 1248 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
3b046a97
RL
1249
1250 r1_bio->bios[rdisk] = read_bio;
1251
1252 read_bio->bi_iter.bi_sector = r1_bio->sector +
1253 mirror->rdev->data_offset;
74d46992 1254 bio_set_dev(read_bio, mirror->rdev->bdev);
3b046a97
RL
1255 read_bio->bi_end_io = raid1_end_read_request;
1256 bio_set_op_attrs(read_bio, op, do_sync);
1257 if (test_bit(FailFast, &mirror->rdev->flags) &&
1258 test_bit(R1BIO_FailFast, &r1_bio->state))
1259 read_bio->bi_opf |= MD_FAILFAST;
1260 read_bio->bi_private = r1_bio;
1261
1262 if (mddev->gendisk)
74d46992
CH
1263 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1264 disk_devt(mddev->gendisk), r1_bio->sector);
3b046a97 1265
c230e7e5 1266 generic_make_request(read_bio);
3b046a97
RL
1267}
1268
c230e7e5
N
1269static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1270 int max_write_sectors)
3b046a97
RL
1271{
1272 struct r1conf *conf = mddev->private;
fd76863e 1273 struct r1bio *r1_bio;
1f68f0c4 1274 int i, disks;
3b046a97 1275 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1276 unsigned long flags;
3cb03002 1277 struct md_rdev *blocked_rdev;
f54a9d0e
N
1278 struct blk_plug_cb *cb;
1279 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1280 int first_clone;
1f68f0c4 1281 int max_sectors;
191ea9b2 1282
b3143b9a 1283 if (mddev_is_clustered(mddev) &&
90382ed9 1284 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1285 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1286
6eef4b21
N
1287 DEFINE_WAIT(w);
1288 for (;;) {
6eef4b21 1289 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1290 &w, TASK_IDLE);
f81f7302 1291 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1292 bio->bi_iter.bi_sector,
b3143b9a 1293 bio_end_sector(bio)))
6eef4b21
N
1294 break;
1295 schedule();
1296 }
1297 finish_wait(&conf->wait_barrier, &w);
1298 }
f81f7302
GJ
1299
1300 /*
1301 * Register the new request and wait if the reconstruction
1302 * thread has put up a bar for new requests.
1303 * Continue immediately if no resync is active currently.
1304 */
fd76863e 1305 wait_barrier(conf, bio->bi_iter.bi_sector);
1306
689389a0 1307 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1308 r1_bio->sectors = max_write_sectors;
1da177e4 1309
34db0cd6
N
1310 if (conf->pending_count >= max_queued_requests) {
1311 md_wakeup_thread(mddev->thread);
578b54ad 1312 raid1_log(mddev, "wait queued");
34db0cd6
N
1313 wait_event(conf->wait_barrier,
1314 conf->pending_count < max_queued_requests);
1315 }
1f68f0c4 1316 /* first select target devices under rcu_lock and
1da177e4
LT
1317 * inc refcount on their rdev. Record them by setting
1318 * bios[x] to bio
1f68f0c4
N
1319 * If there are known/acknowledged bad blocks on any device on
1320 * which we have seen a write error, we want to avoid writing those
1321 * blocks.
1322 * This potentially requires several writes to write around
1323 * the bad blocks. Each set of writes gets it's own r1bio
1324 * with a set of bios attached.
1da177e4 1325 */
c3b328ac 1326
8f19ccb2 1327 disks = conf->raid_disks * 2;
6bfe0b49
DW
1328 retry_write:
1329 blocked_rdev = NULL;
1da177e4 1330 rcu_read_lock();
1f68f0c4 1331 max_sectors = r1_bio->sectors;
1da177e4 1332 for (i = 0; i < disks; i++) {
3cb03002 1333 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1334 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1335 atomic_inc(&rdev->nr_pending);
1336 blocked_rdev = rdev;
1337 break;
1338 }
1f68f0c4 1339 r1_bio->bios[i] = NULL;
8ae12666 1340 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1341 if (i < conf->raid_disks)
1342 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1343 continue;
1344 }
1345
1346 atomic_inc(&rdev->nr_pending);
1347 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1348 sector_t first_bad;
1349 int bad_sectors;
1350 int is_bad;
1351
3b046a97 1352 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1353 &first_bad, &bad_sectors);
1354 if (is_bad < 0) {
1355 /* mustn't write here until the bad block is
1356 * acknowledged*/
1357 set_bit(BlockedBadBlocks, &rdev->flags);
1358 blocked_rdev = rdev;
1359 break;
1360 }
1361 if (is_bad && first_bad <= r1_bio->sector) {
1362 /* Cannot write here at all */
1363 bad_sectors -= (r1_bio->sector - first_bad);
1364 if (bad_sectors < max_sectors)
1365 /* mustn't write more than bad_sectors
1366 * to other devices yet
1367 */
1368 max_sectors = bad_sectors;
03c902e1 1369 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1370 /* We don't set R1BIO_Degraded as that
1371 * only applies if the disk is
1372 * missing, so it might be re-added,
1373 * and we want to know to recover this
1374 * chunk.
1375 * In this case the device is here,
1376 * and the fact that this chunk is not
1377 * in-sync is recorded in the bad
1378 * block log
1379 */
1380 continue;
964147d5 1381 }
1f68f0c4
N
1382 if (is_bad) {
1383 int good_sectors = first_bad - r1_bio->sector;
1384 if (good_sectors < max_sectors)
1385 max_sectors = good_sectors;
1386 }
1387 }
1388 r1_bio->bios[i] = bio;
1da177e4
LT
1389 }
1390 rcu_read_unlock();
1391
6bfe0b49
DW
1392 if (unlikely(blocked_rdev)) {
1393 /* Wait for this device to become unblocked */
1394 int j;
1395
1396 for (j = 0; j < i; j++)
1397 if (r1_bio->bios[j])
1398 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1399 r1_bio->state = 0;
fd76863e 1400 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1401 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1402 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1403 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1404 goto retry_write;
1405 }
1406
c230e7e5
N
1407 if (max_sectors < bio_sectors(bio)) {
1408 struct bio *split = bio_split(bio, max_sectors,
afeee514 1409 GFP_NOIO, &conf->bio_split);
c230e7e5
N
1410 bio_chain(split, bio);
1411 generic_make_request(bio);
1412 bio = split;
1413 r1_bio->master_bio = bio;
1f68f0c4 1414 r1_bio->sectors = max_sectors;
191ea9b2 1415 }
4b6d287f 1416
4e78064f 1417 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1418 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1419
1f68f0c4 1420 first_clone = 1;
d8c84c4f 1421
1da177e4 1422 for (i = 0; i < disks; i++) {
8e58e327 1423 struct bio *mbio = NULL;
1da177e4
LT
1424 if (!r1_bio->bios[i])
1425 continue;
1426
1f68f0c4
N
1427
1428 if (first_clone) {
1429 /* do behind I/O ?
1430 * Not if there are too many, or cannot
1431 * allocate memory, or a reader on WriteMostly
1432 * is waiting for behind writes to flush */
1433 if (bitmap &&
1434 (atomic_read(&bitmap->behind_writes)
1435 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1436 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1437 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1438 }
1f68f0c4 1439
e64e4018
AS
1440 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1441 test_bit(R1BIO_BehindIO, &r1_bio->state));
1f68f0c4
N
1442 first_clone = 0;
1443 }
8e58e327 1444
16d56e2f
SL
1445 if (r1_bio->behind_master_bio)
1446 mbio = bio_clone_fast(r1_bio->behind_master_bio,
afeee514 1447 GFP_NOIO, &mddev->bio_set);
16d56e2f 1448 else
afeee514 1449 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
8e58e327 1450
841c1316 1451 if (r1_bio->behind_master_bio) {
4b6d287f
N
1452 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1453 atomic_inc(&r1_bio->behind_remaining);
1454 }
1455
1f68f0c4
N
1456 r1_bio->bios[i] = mbio;
1457
4f024f37 1458 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1459 conf->mirrors[i].rdev->data_offset);
74d46992 1460 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1f68f0c4 1461 mbio->bi_end_io = raid1_end_write_request;
a682e003 1462 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1463 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1464 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1465 conf->raid_disks - mddev->degraded > 1)
1466 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1467 mbio->bi_private = r1_bio;
1468
1da177e4 1469 atomic_inc(&r1_bio->remaining);
f54a9d0e 1470
109e3765 1471 if (mddev->gendisk)
74d46992 1472 trace_block_bio_remap(mbio->bi_disk->queue,
109e3765
N
1473 mbio, disk_devt(mddev->gendisk),
1474 r1_bio->sector);
1475 /* flush_pending_writes() needs access to the rdev so...*/
74d46992 1476 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
109e3765 1477
f54a9d0e
N
1478 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1479 if (cb)
1480 plug = container_of(cb, struct raid1_plug_cb, cb);
1481 else
1482 plug = NULL;
f54a9d0e
N
1483 if (plug) {
1484 bio_list_add(&plug->pending, mbio);
1485 plug->pending_cnt++;
1486 } else {
23b245c0 1487 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1488 bio_list_add(&conf->pending_bio_list, mbio);
1489 conf->pending_count++;
23b245c0 1490 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1491 md_wakeup_thread(mddev->thread);
23b245c0 1492 }
1da177e4 1493 }
1f68f0c4 1494
079fa166
N
1495 r1_bio_write_done(r1_bio);
1496
1497 /* In case raid1d snuck in to freeze_array */
1498 wake_up(&conf->wait_barrier);
1da177e4
LT
1499}
1500
cc27b0c7 1501static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1502{
fd76863e 1503 sector_t sectors;
3b046a97 1504
aff8da09
SL
1505 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1506 md_flush_request(mddev, bio);
cc27b0c7 1507 return true;
aff8da09 1508 }
3b046a97 1509
c230e7e5
N
1510 /*
1511 * There is a limit to the maximum size, but
1512 * the read/write handler might find a lower limit
1513 * due to bad blocks. To avoid multiple splits,
1514 * we pass the maximum number of sectors down
1515 * and let the lower level perform the split.
1516 */
1517 sectors = align_to_barrier_unit_end(
1518 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1519
c230e7e5 1520 if (bio_data_dir(bio) == READ)
689389a0 1521 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1522 else {
1523 if (!md_write_start(mddev,bio))
1524 return false;
c230e7e5 1525 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1526 }
1527 return true;
3b046a97
RL
1528}
1529
849674e4 1530static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1531{
e8096360 1532 struct r1conf *conf = mddev->private;
1da177e4
LT
1533 int i;
1534
1535 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1536 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1537 rcu_read_lock();
1538 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1539 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1540 seq_printf(seq, "%s",
ddac7c7e
N
1541 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1542 }
1543 rcu_read_unlock();
1da177e4
LT
1544 seq_printf(seq, "]");
1545}
1546
849674e4 1547static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1548{
1549 char b[BDEVNAME_SIZE];
e8096360 1550 struct r1conf *conf = mddev->private;
423f04d6 1551 unsigned long flags;
1da177e4
LT
1552
1553 /*
1554 * If it is not operational, then we have already marked it as dead
1555 * else if it is the last working disks, ignore the error, let the
1556 * next level up know.
1557 * else mark the drive as failed
1558 */
2e52d449 1559 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1560 if (test_bit(In_sync, &rdev->flags)
4044ba58 1561 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1562 /*
1563 * Don't fail the drive, act as though we were just a
4044ba58
N
1564 * normal single drive.
1565 * However don't try a recovery from this drive as
1566 * it is very likely to fail.
1da177e4 1567 */
5389042f 1568 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1569 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1570 return;
4044ba58 1571 }
de393cde 1572 set_bit(Blocked, &rdev->flags);
ebda52fa 1573 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1574 mddev->degraded++;
ebda52fa 1575 set_bit(Faulty, &rdev->flags);
423f04d6 1576 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1577 /*
1578 * if recovery is running, make sure it aborts.
1579 */
1580 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1581 set_mask_bits(&mddev->sb_flags, 0,
1582 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1583 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1584 "md/raid1:%s: Operation continuing on %d devices.\n",
1585 mdname(mddev), bdevname(rdev->bdev, b),
1586 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1587}
1588
e8096360 1589static void print_conf(struct r1conf *conf)
1da177e4
LT
1590{
1591 int i;
1da177e4 1592
1d41c216 1593 pr_debug("RAID1 conf printout:\n");
1da177e4 1594 if (!conf) {
1d41c216 1595 pr_debug("(!conf)\n");
1da177e4
LT
1596 return;
1597 }
1d41c216
N
1598 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1599 conf->raid_disks);
1da177e4 1600
ddac7c7e 1601 rcu_read_lock();
1da177e4
LT
1602 for (i = 0; i < conf->raid_disks; i++) {
1603 char b[BDEVNAME_SIZE];
3cb03002 1604 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1605 if (rdev)
1d41c216
N
1606 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1607 i, !test_bit(In_sync, &rdev->flags),
1608 !test_bit(Faulty, &rdev->flags),
1609 bdevname(rdev->bdev,b));
1da177e4 1610 }
ddac7c7e 1611 rcu_read_unlock();
1da177e4
LT
1612}
1613
e8096360 1614static void close_sync(struct r1conf *conf)
1da177e4 1615{
f6eca2d4
ND
1616 int idx;
1617
1618 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1619 _wait_barrier(conf, idx);
1620 _allow_barrier(conf, idx);
1621 }
1da177e4 1622
afeee514 1623 mempool_exit(&conf->r1buf_pool);
1da177e4
LT
1624}
1625
fd01b88c 1626static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1627{
1628 int i;
e8096360 1629 struct r1conf *conf = mddev->private;
6b965620
N
1630 int count = 0;
1631 unsigned long flags;
1da177e4
LT
1632
1633 /*
f72ffdd6 1634 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1635 * and mark them readable.
1636 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1637 * device_lock used to avoid races with raid1_end_read_request
1638 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1639 */
423f04d6 1640 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1641 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1642 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1643 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1644 if (repl
1aee41f6 1645 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1646 && repl->recovery_offset == MaxSector
1647 && !test_bit(Faulty, &repl->flags)
1648 && !test_and_set_bit(In_sync, &repl->flags)) {
1649 /* replacement has just become active */
1650 if (!rdev ||
1651 !test_and_clear_bit(In_sync, &rdev->flags))
1652 count++;
1653 if (rdev) {
1654 /* Replaced device not technically
1655 * faulty, but we need to be sure
1656 * it gets removed and never re-added
1657 */
1658 set_bit(Faulty, &rdev->flags);
1659 sysfs_notify_dirent_safe(
1660 rdev->sysfs_state);
1661 }
1662 }
ddac7c7e 1663 if (rdev
61e4947c 1664 && rdev->recovery_offset == MaxSector
ddac7c7e 1665 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1666 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1667 count++;
654e8b5a 1668 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1669 }
1670 }
6b965620
N
1671 mddev->degraded -= count;
1672 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1673
1674 print_conf(conf);
6b965620 1675 return count;
1da177e4
LT
1676}
1677
fd01b88c 1678static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1679{
e8096360 1680 struct r1conf *conf = mddev->private;
199050ea 1681 int err = -EEXIST;
41158c7e 1682 int mirror = 0;
0eaf822c 1683 struct raid1_info *p;
6c2fce2e 1684 int first = 0;
30194636 1685 int last = conf->raid_disks - 1;
1da177e4 1686
5389042f
N
1687 if (mddev->recovery_disabled == conf->recovery_disabled)
1688 return -EBUSY;
1689
1501efad
DW
1690 if (md_integrity_add_rdev(rdev, mddev))
1691 return -ENXIO;
1692
6c2fce2e
NB
1693 if (rdev->raid_disk >= 0)
1694 first = last = rdev->raid_disk;
1695
70bcecdb
GR
1696 /*
1697 * find the disk ... but prefer rdev->saved_raid_disk
1698 * if possible.
1699 */
1700 if (rdev->saved_raid_disk >= 0 &&
1701 rdev->saved_raid_disk >= first &&
9e753ba9 1702 rdev->saved_raid_disk < conf->raid_disks &&
70bcecdb
GR
1703 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1704 first = last = rdev->saved_raid_disk;
1705
7ef449d1
N
1706 for (mirror = first; mirror <= last; mirror++) {
1707 p = conf->mirrors+mirror;
1708 if (!p->rdev) {
1da177e4 1709
9092c02d
JB
1710 if (mddev->gendisk)
1711 disk_stack_limits(mddev->gendisk, rdev->bdev,
1712 rdev->data_offset << 9);
1da177e4
LT
1713
1714 p->head_position = 0;
1715 rdev->raid_disk = mirror;
199050ea 1716 err = 0;
6aea114a
N
1717 /* As all devices are equivalent, we don't need a full recovery
1718 * if this was recently any drive of the array
1719 */
1720 if (rdev->saved_raid_disk < 0)
41158c7e 1721 conf->fullsync = 1;
d6065f7b 1722 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1723 break;
1724 }
7ef449d1
N
1725 if (test_bit(WantReplacement, &p->rdev->flags) &&
1726 p[conf->raid_disks].rdev == NULL) {
1727 /* Add this device as a replacement */
1728 clear_bit(In_sync, &rdev->flags);
1729 set_bit(Replacement, &rdev->flags);
1730 rdev->raid_disk = mirror;
1731 err = 0;
1732 conf->fullsync = 1;
1733 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1734 break;
1735 }
1736 }
9092c02d 1737 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
8b904b5b 1738 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1739 print_conf(conf);
199050ea 1740 return err;
1da177e4
LT
1741}
1742
b8321b68 1743static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1744{
e8096360 1745 struct r1conf *conf = mddev->private;
1da177e4 1746 int err = 0;
b8321b68 1747 int number = rdev->raid_disk;
0eaf822c 1748 struct raid1_info *p = conf->mirrors + number;
1da177e4 1749
b014f14c
N
1750 if (rdev != p->rdev)
1751 p = conf->mirrors + conf->raid_disks + number;
1752
1da177e4 1753 print_conf(conf);
b8321b68 1754 if (rdev == p->rdev) {
b2d444d7 1755 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1756 atomic_read(&rdev->nr_pending)) {
1757 err = -EBUSY;
1758 goto abort;
1759 }
046abeed 1760 /* Only remove non-faulty devices if recovery
dfc70645
N
1761 * is not possible.
1762 */
1763 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1764 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1765 mddev->degraded < conf->raid_disks) {
1766 err = -EBUSY;
1767 goto abort;
1768 }
1da177e4 1769 p->rdev = NULL;
d787be40
N
1770 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1771 synchronize_rcu();
1772 if (atomic_read(&rdev->nr_pending)) {
1773 /* lost the race, try later */
1774 err = -EBUSY;
1775 p->rdev = rdev;
1776 goto abort;
1777 }
1778 }
1779 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1780 /* We just removed a device that is being replaced.
1781 * Move down the replacement. We drain all IO before
1782 * doing this to avoid confusion.
1783 */
1784 struct md_rdev *repl =
1785 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1786 freeze_array(conf, 0);
3de59bb9
YY
1787 if (atomic_read(&repl->nr_pending)) {
1788 /* It means that some queued IO of retry_list
1789 * hold repl. Thus, we cannot set replacement
1790 * as NULL, avoiding rdev NULL pointer
1791 * dereference in sync_request_write and
1792 * handle_write_finished.
1793 */
1794 err = -EBUSY;
1795 unfreeze_array(conf);
1796 goto abort;
1797 }
8c7a2c2b
N
1798 clear_bit(Replacement, &repl->flags);
1799 p->rdev = repl;
1800 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1801 unfreeze_array(conf);
e5bc9c3c
GJ
1802 }
1803
1804 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1805 err = md_integrity_register(mddev);
1da177e4
LT
1806 }
1807abort:
1808
1809 print_conf(conf);
1810 return err;
1811}
1812
4246a0b6 1813static void end_sync_read(struct bio *bio)
1da177e4 1814{
98d30c58 1815 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1816
0fc280f6 1817 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1818
1da177e4
LT
1819 /*
1820 * we have read a block, now it needs to be re-written,
1821 * or re-read if the read failed.
1822 * We don't do much here, just schedule handling by raid1d
1823 */
4e4cbee9 1824 if (!bio->bi_status)
1da177e4 1825 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1826
1827 if (atomic_dec_and_test(&r1_bio->remaining))
1828 reschedule_retry(r1_bio);
1da177e4
LT
1829}
1830
dfcc34c9
ND
1831static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1832{
1833 sector_t sync_blocks = 0;
1834 sector_t s = r1_bio->sector;
1835 long sectors_to_go = r1_bio->sectors;
1836
1837 /* make sure these bits don't get cleared. */
1838 do {
1839 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1840 s += sync_blocks;
1841 sectors_to_go -= sync_blocks;
1842 } while (sectors_to_go > 0);
1843}
1844
4246a0b6 1845static void end_sync_write(struct bio *bio)
1da177e4 1846{
4e4cbee9 1847 int uptodate = !bio->bi_status;
98d30c58 1848 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1849 struct mddev *mddev = r1_bio->mddev;
e8096360 1850 struct r1conf *conf = mddev->private;
4367af55
N
1851 sector_t first_bad;
1852 int bad_sectors;
854abd75 1853 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1854
6b1117d5 1855 if (!uptodate) {
dfcc34c9 1856 abort_sync_write(mddev, r1_bio);
854abd75
N
1857 set_bit(WriteErrorSeen, &rdev->flags);
1858 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1859 set_bit(MD_RECOVERY_NEEDED, &
1860 mddev->recovery);
d8f05d29 1861 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1862 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1863 &first_bad, &bad_sectors) &&
1864 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1865 r1_bio->sector,
1866 r1_bio->sectors,
1867 &first_bad, &bad_sectors)
1868 )
4367af55 1869 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1870
1da177e4 1871 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1872 int s = r1_bio->sectors;
d8f05d29
N
1873 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1874 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1875 reschedule_retry(r1_bio);
1876 else {
1877 put_buf(r1_bio);
1878 md_done_sync(mddev, s, uptodate);
1879 }
1da177e4 1880 }
1da177e4
LT
1881}
1882
3cb03002 1883static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1884 int sectors, struct page *page, int rw)
1885{
796a5cf0 1886 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1887 /* success */
1888 return 1;
19d67169 1889 if (rw == WRITE) {
d8f05d29 1890 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1891 if (!test_and_set_bit(WantReplacement,
1892 &rdev->flags))
1893 set_bit(MD_RECOVERY_NEEDED, &
1894 rdev->mddev->recovery);
1895 }
d8f05d29
N
1896 /* need to record an error - either for the block or the device */
1897 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1898 md_error(rdev->mddev, rdev);
1899 return 0;
1900}
1901
9f2c9d12 1902static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1903{
a68e5870
N
1904 /* Try some synchronous reads of other devices to get
1905 * good data, much like with normal read errors. Only
1906 * read into the pages we already have so we don't
1907 * need to re-issue the read request.
1908 * We don't need to freeze the array, because being in an
1909 * active sync request, there is no normal IO, and
1910 * no overlapping syncs.
06f60385
N
1911 * We don't need to check is_badblock() again as we
1912 * made sure that anything with a bad block in range
1913 * will have bi_end_io clear.
a68e5870 1914 */
fd01b88c 1915 struct mddev *mddev = r1_bio->mddev;
e8096360 1916 struct r1conf *conf = mddev->private;
a68e5870 1917 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 1918 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
1919 sector_t sect = r1_bio->sector;
1920 int sectors = r1_bio->sectors;
1921 int idx = 0;
2e52d449
N
1922 struct md_rdev *rdev;
1923
1924 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1925 if (test_bit(FailFast, &rdev->flags)) {
1926 /* Don't try recovering from here - just fail it
1927 * ... unless it is the last working device of course */
1928 md_error(mddev, rdev);
1929 if (test_bit(Faulty, &rdev->flags))
1930 /* Don't try to read from here, but make sure
1931 * put_buf does it's thing
1932 */
1933 bio->bi_end_io = end_sync_write;
1934 }
a68e5870
N
1935
1936 while(sectors) {
1937 int s = sectors;
1938 int d = r1_bio->read_disk;
1939 int success = 0;
78d7f5f7 1940 int start;
a68e5870
N
1941
1942 if (s > (PAGE_SIZE>>9))
1943 s = PAGE_SIZE >> 9;
1944 do {
1945 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1946 /* No rcu protection needed here devices
1947 * can only be removed when no resync is
1948 * active, and resync is currently active
1949 */
1950 rdev = conf->mirrors[d].rdev;
9d3d8011 1951 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 1952 pages[idx],
796a5cf0 1953 REQ_OP_READ, 0, false)) {
a68e5870
N
1954 success = 1;
1955 break;
1956 }
1957 }
1958 d++;
8f19ccb2 1959 if (d == conf->raid_disks * 2)
a68e5870
N
1960 d = 0;
1961 } while (!success && d != r1_bio->read_disk);
1962
78d7f5f7 1963 if (!success) {
a68e5870 1964 char b[BDEVNAME_SIZE];
3a9f28a5
N
1965 int abort = 0;
1966 /* Cannot read from anywhere, this block is lost.
1967 * Record a bad block on each device. If that doesn't
1968 * work just disable and interrupt the recovery.
1969 * Don't fail devices as that won't really help.
1970 */
1d41c216 1971 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
74d46992 1972 mdname(mddev), bio_devname(bio, b),
1d41c216 1973 (unsigned long long)r1_bio->sector);
8f19ccb2 1974 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1975 rdev = conf->mirrors[d].rdev;
1976 if (!rdev || test_bit(Faulty, &rdev->flags))
1977 continue;
1978 if (!rdev_set_badblocks(rdev, sect, s, 0))
1979 abort = 1;
1980 }
1981 if (abort) {
d890fa2b
N
1982 conf->recovery_disabled =
1983 mddev->recovery_disabled;
3a9f28a5
N
1984 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1985 md_done_sync(mddev, r1_bio->sectors, 0);
1986 put_buf(r1_bio);
1987 return 0;
1988 }
1989 /* Try next page */
1990 sectors -= s;
1991 sect += s;
1992 idx++;
1993 continue;
d11c171e 1994 }
78d7f5f7
N
1995
1996 start = d;
1997 /* write it back and re-read */
1998 while (d != r1_bio->read_disk) {
1999 if (d == 0)
8f19ccb2 2000 d = conf->raid_disks * 2;
78d7f5f7
N
2001 d--;
2002 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2003 continue;
2004 rdev = conf->mirrors[d].rdev;
d8f05d29 2005 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2006 pages[idx],
d8f05d29 2007 WRITE) == 0) {
78d7f5f7
N
2008 r1_bio->bios[d]->bi_end_io = NULL;
2009 rdev_dec_pending(rdev, mddev);
9d3d8011 2010 }
78d7f5f7
N
2011 }
2012 d = start;
2013 while (d != r1_bio->read_disk) {
2014 if (d == 0)
8f19ccb2 2015 d = conf->raid_disks * 2;
78d7f5f7
N
2016 d--;
2017 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2018 continue;
2019 rdev = conf->mirrors[d].rdev;
d8f05d29 2020 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2021 pages[idx],
d8f05d29 2022 READ) != 0)
9d3d8011 2023 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2024 }
a68e5870
N
2025 sectors -= s;
2026 sect += s;
2027 idx ++;
2028 }
78d7f5f7 2029 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2030 bio->bi_status = 0;
a68e5870
N
2031 return 1;
2032}
2033
c95e6385 2034static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2035{
2036 /* We have read all readable devices. If we haven't
2037 * got the block, then there is no hope left.
2038 * If we have, then we want to do a comparison
2039 * and skip the write if everything is the same.
2040 * If any blocks failed to read, then we need to
2041 * attempt an over-write
2042 */
fd01b88c 2043 struct mddev *mddev = r1_bio->mddev;
e8096360 2044 struct r1conf *conf = mddev->private;
a68e5870
N
2045 int primary;
2046 int i;
f4380a91 2047 int vcnt;
a68e5870 2048
30bc9b53
N
2049 /* Fix variable parts of all bios */
2050 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2051 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2052 blk_status_t status;
30bc9b53 2053 struct bio *b = r1_bio->bios[i];
98d30c58 2054 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2055 if (b->bi_end_io != end_sync_read)
2056 continue;
4246a0b6 2057 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2058 status = b->bi_status;
30bc9b53 2059 bio_reset(b);
4e4cbee9 2060 b->bi_status = status;
4f024f37 2061 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2062 conf->mirrors[i].rdev->data_offset;
74d46992 2063 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
30bc9b53 2064 b->bi_end_io = end_sync_read;
98d30c58
ML
2065 rp->raid_bio = r1_bio;
2066 b->bi_private = rp;
30bc9b53 2067
fb0eb5df
ML
2068 /* initialize bvec table again */
2069 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2070 }
8f19ccb2 2071 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2072 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2073 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2074 r1_bio->bios[primary]->bi_end_io = NULL;
2075 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2076 break;
2077 }
2078 r1_bio->read_disk = primary;
8f19ccb2 2079 for (i = 0; i < conf->raid_disks * 2; i++) {
2b070cfe 2080 int j = 0;
78d7f5f7
N
2081 struct bio *pbio = r1_bio->bios[primary];
2082 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2083 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2084 struct page **ppages = get_resync_pages(pbio)->pages;
2085 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2086 struct bio_vec *bi;
8fc04e6e 2087 int page_len[RESYNC_PAGES] = { 0 };
6dc4f100 2088 struct bvec_iter_all iter_all;
a68e5870 2089
2aabaa65 2090 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2091 continue;
4246a0b6 2092 /* Now we can 'fixup' the error value */
4e4cbee9 2093 sbio->bi_status = 0;
78d7f5f7 2094
2b070cfe
CH
2095 bio_for_each_segment_all(bi, sbio, iter_all)
2096 page_len[j++] = bi->bv_len;
60928a91 2097
4e4cbee9 2098 if (!status) {
78d7f5f7 2099 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2100 if (memcmp(page_address(ppages[j]),
2101 page_address(spages[j]),
60928a91 2102 page_len[j]))
78d7f5f7 2103 break;
69382e85 2104 }
78d7f5f7
N
2105 } else
2106 j = 0;
2107 if (j >= 0)
7f7583d4 2108 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2109 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2110 && !status)) {
78d7f5f7
N
2111 /* No need to write to this device. */
2112 sbio->bi_end_io = NULL;
2113 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2114 continue;
2115 }
d3b45c2a
KO
2116
2117 bio_copy_data(sbio, pbio);
78d7f5f7 2118 }
a68e5870
N
2119}
2120
9f2c9d12 2121static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2122{
e8096360 2123 struct r1conf *conf = mddev->private;
a68e5870 2124 int i;
8f19ccb2 2125 int disks = conf->raid_disks * 2;
037d2ff6 2126 struct bio *wbio;
a68e5870 2127
a68e5870
N
2128 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2129 /* ouch - failed to read all of that. */
2130 if (!fix_sync_read_error(r1_bio))
2131 return;
7ca78d57
N
2132
2133 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2134 process_checks(r1_bio);
2135
d11c171e
N
2136 /*
2137 * schedule writes
2138 */
1da177e4
LT
2139 atomic_set(&r1_bio->remaining, 1);
2140 for (i = 0; i < disks ; i++) {
2141 wbio = r1_bio->bios[i];
3e198f78
N
2142 if (wbio->bi_end_io == NULL ||
2143 (wbio->bi_end_io == end_sync_read &&
2144 (i == r1_bio->read_disk ||
2145 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2146 continue;
dfcc34c9
ND
2147 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2148 abort_sync_write(mddev, r1_bio);
0c9d5b12 2149 continue;
dfcc34c9 2150 }
1da177e4 2151
796a5cf0 2152 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2153 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2154 wbio->bi_opf |= MD_FAILFAST;
2155
3e198f78 2156 wbio->bi_end_io = end_sync_write;
1da177e4 2157 atomic_inc(&r1_bio->remaining);
aa8b57aa 2158 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2159
1da177e4
LT
2160 generic_make_request(wbio);
2161 }
2162
2163 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2164 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2165 int s = r1_bio->sectors;
2166 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2167 test_bit(R1BIO_WriteError, &r1_bio->state))
2168 reschedule_retry(r1_bio);
2169 else {
2170 put_buf(r1_bio);
2171 md_done_sync(mddev, s, 1);
2172 }
1da177e4
LT
2173 }
2174}
2175
2176/*
2177 * This is a kernel thread which:
2178 *
2179 * 1. Retries failed read operations on working mirrors.
2180 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2181 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2182 */
2183
e8096360 2184static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2185 sector_t sect, int sectors)
2186{
fd01b88c 2187 struct mddev *mddev = conf->mddev;
867868fb
N
2188 while(sectors) {
2189 int s = sectors;
2190 int d = read_disk;
2191 int success = 0;
2192 int start;
3cb03002 2193 struct md_rdev *rdev;
867868fb
N
2194
2195 if (s > (PAGE_SIZE>>9))
2196 s = PAGE_SIZE >> 9;
2197
2198 do {
d2eb35ac
N
2199 sector_t first_bad;
2200 int bad_sectors;
2201
707a6a42
N
2202 rcu_read_lock();
2203 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2204 if (rdev &&
da8840a7 2205 (test_bit(In_sync, &rdev->flags) ||
2206 (!test_bit(Faulty, &rdev->flags) &&
2207 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2208 is_badblock(rdev, sect, s,
707a6a42
N
2209 &first_bad, &bad_sectors) == 0) {
2210 atomic_inc(&rdev->nr_pending);
2211 rcu_read_unlock();
2212 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2213 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2214 success = 1;
2215 rdev_dec_pending(rdev, mddev);
2216 if (success)
2217 break;
2218 } else
2219 rcu_read_unlock();
2220 d++;
2221 if (d == conf->raid_disks * 2)
2222 d = 0;
867868fb
N
2223 } while (!success && d != read_disk);
2224
2225 if (!success) {
d8f05d29 2226 /* Cannot read from anywhere - mark it bad */
3cb03002 2227 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2228 if (!rdev_set_badblocks(rdev, sect, s, 0))
2229 md_error(mddev, rdev);
867868fb
N
2230 break;
2231 }
2232 /* write it back and re-read */
2233 start = d;
2234 while (d != read_disk) {
2235 if (d==0)
8f19ccb2 2236 d = conf->raid_disks * 2;
867868fb 2237 d--;
707a6a42
N
2238 rcu_read_lock();
2239 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2240 if (rdev &&
707a6a42
N
2241 !test_bit(Faulty, &rdev->flags)) {
2242 atomic_inc(&rdev->nr_pending);
2243 rcu_read_unlock();
d8f05d29
N
2244 r1_sync_page_io(rdev, sect, s,
2245 conf->tmppage, WRITE);
707a6a42
N
2246 rdev_dec_pending(rdev, mddev);
2247 } else
2248 rcu_read_unlock();
867868fb
N
2249 }
2250 d = start;
2251 while (d != read_disk) {
2252 char b[BDEVNAME_SIZE];
2253 if (d==0)
8f19ccb2 2254 d = conf->raid_disks * 2;
867868fb 2255 d--;
707a6a42
N
2256 rcu_read_lock();
2257 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2258 if (rdev &&
b8cb6b4c 2259 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2260 atomic_inc(&rdev->nr_pending);
2261 rcu_read_unlock();
d8f05d29
N
2262 if (r1_sync_page_io(rdev, sect, s,
2263 conf->tmppage, READ)) {
867868fb 2264 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2265 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2266 mdname(mddev), s,
2267 (unsigned long long)(sect +
2268 rdev->data_offset),
2269 bdevname(rdev->bdev, b));
867868fb 2270 }
707a6a42
N
2271 rdev_dec_pending(rdev, mddev);
2272 } else
2273 rcu_read_unlock();
867868fb
N
2274 }
2275 sectors -= s;
2276 sect += s;
2277 }
2278}
2279
9f2c9d12 2280static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2281{
fd01b88c 2282 struct mddev *mddev = r1_bio->mddev;
e8096360 2283 struct r1conf *conf = mddev->private;
3cb03002 2284 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2285
2286 /* bio has the data to be written to device 'i' where
2287 * we just recently had a write error.
2288 * We repeatedly clone the bio and trim down to one block,
2289 * then try the write. Where the write fails we record
2290 * a bad block.
2291 * It is conceivable that the bio doesn't exactly align with
2292 * blocks. We must handle this somehow.
2293 *
2294 * We currently own a reference on the rdev.
2295 */
2296
2297 int block_sectors;
2298 sector_t sector;
2299 int sectors;
2300 int sect_to_write = r1_bio->sectors;
2301 int ok = 1;
2302
2303 if (rdev->badblocks.shift < 0)
2304 return 0;
2305
ab713cdc
ND
2306 block_sectors = roundup(1 << rdev->badblocks.shift,
2307 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2308 sector = r1_bio->sector;
2309 sectors = ((sector + block_sectors)
2310 & ~(sector_t)(block_sectors - 1))
2311 - sector;
2312
cd5ff9a1
N
2313 while (sect_to_write) {
2314 struct bio *wbio;
2315 if (sectors > sect_to_write)
2316 sectors = sect_to_write;
2317 /* Write at 'sector' for 'sectors'*/
2318
b783863f 2319 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2320 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2321 GFP_NOIO,
afeee514 2322 &mddev->bio_set);
b783863f 2323 } else {
d7a10308 2324 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
afeee514 2325 &mddev->bio_set);
b783863f
KO
2326 }
2327
796a5cf0 2328 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2329 wbio->bi_iter.bi_sector = r1_bio->sector;
2330 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2331
6678d83f 2332 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2333 wbio->bi_iter.bi_sector += rdev->data_offset;
74d46992 2334 bio_set_dev(wbio, rdev->bdev);
4e49ea4a
MC
2335
2336 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2337 /* failure! */
2338 ok = rdev_set_badblocks(rdev, sector,
2339 sectors, 0)
2340 && ok;
2341
2342 bio_put(wbio);
2343 sect_to_write -= sectors;
2344 sector += sectors;
2345 sectors = block_sectors;
2346 }
2347 return ok;
2348}
2349
e8096360 2350static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2351{
2352 int m;
2353 int s = r1_bio->sectors;
8f19ccb2 2354 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2355 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2356 struct bio *bio = r1_bio->bios[m];
2357 if (bio->bi_end_io == NULL)
2358 continue;
4e4cbee9 2359 if (!bio->bi_status &&
62096bce 2360 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2361 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2362 }
4e4cbee9 2363 if (bio->bi_status &&
62096bce
N
2364 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2365 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2366 md_error(conf->mddev, rdev);
2367 }
2368 }
2369 put_buf(r1_bio);
2370 md_done_sync(conf->mddev, s, 1);
2371}
2372
e8096360 2373static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2374{
fd76863e 2375 int m, idx;
55ce74d4 2376 bool fail = false;
fd76863e 2377
8f19ccb2 2378 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2379 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2380 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2381 rdev_clear_badblocks(rdev,
2382 r1_bio->sector,
c6563a8c 2383 r1_bio->sectors, 0);
62096bce
N
2384 rdev_dec_pending(rdev, conf->mddev);
2385 } else if (r1_bio->bios[m] != NULL) {
2386 /* This drive got a write error. We need to
2387 * narrow down and record precise write
2388 * errors.
2389 */
55ce74d4 2390 fail = true;
62096bce
N
2391 if (!narrow_write_error(r1_bio, m)) {
2392 md_error(conf->mddev,
2393 conf->mirrors[m].rdev);
2394 /* an I/O failed, we can't clear the bitmap */
2395 set_bit(R1BIO_Degraded, &r1_bio->state);
2396 }
2397 rdev_dec_pending(conf->mirrors[m].rdev,
2398 conf->mddev);
2399 }
55ce74d4
N
2400 if (fail) {
2401 spin_lock_irq(&conf->device_lock);
2402 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2403 idx = sector_to_idx(r1_bio->sector);
824e47da 2404 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2405 spin_unlock_irq(&conf->device_lock);
824e47da 2406 /*
2407 * In case freeze_array() is waiting for condition
2408 * get_unqueued_pending() == extra to be true.
2409 */
2410 wake_up(&conf->wait_barrier);
55ce74d4 2411 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2412 } else {
2413 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2414 close_write(r1_bio);
55ce74d4 2415 raid_end_bio_io(r1_bio);
bd8688a1 2416 }
62096bce
N
2417}
2418
e8096360 2419static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2420{
fd01b88c 2421 struct mddev *mddev = conf->mddev;
62096bce 2422 struct bio *bio;
3cb03002 2423 struct md_rdev *rdev;
62096bce
N
2424
2425 clear_bit(R1BIO_ReadError, &r1_bio->state);
2426 /* we got a read error. Maybe the drive is bad. Maybe just
2427 * the block and we can fix it.
2428 * We freeze all other IO, and try reading the block from
2429 * other devices. When we find one, we re-write
2430 * and check it that fixes the read error.
2431 * This is all done synchronously while the array is
2432 * frozen
2433 */
7449f699
TM
2434
2435 bio = r1_bio->bios[r1_bio->read_disk];
7449f699
TM
2436 bio_put(bio);
2437 r1_bio->bios[r1_bio->read_disk] = NULL;
2438
2e52d449
N
2439 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2440 if (mddev->ro == 0
2441 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2442 freeze_array(conf, 1);
62096bce
N
2443 fix_read_error(conf, r1_bio->read_disk,
2444 r1_bio->sector, r1_bio->sectors);
2445 unfreeze_array(conf);
b33d1062
GK
2446 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2447 md_error(mddev, rdev);
7449f699
TM
2448 } else {
2449 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2450 }
2451
2e52d449 2452 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2453 allow_barrier(conf, r1_bio->sector);
2454 bio = r1_bio->master_bio;
62096bce 2455
689389a0
N
2456 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2457 r1_bio->state = 0;
2458 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2459}
2460
4ed8731d 2461static void raid1d(struct md_thread *thread)
1da177e4 2462{
4ed8731d 2463 struct mddev *mddev = thread->mddev;
9f2c9d12 2464 struct r1bio *r1_bio;
1da177e4 2465 unsigned long flags;
e8096360 2466 struct r1conf *conf = mddev->private;
1da177e4 2467 struct list_head *head = &conf->retry_list;
e1dfa0a2 2468 struct blk_plug plug;
fd76863e 2469 int idx;
1da177e4
LT
2470
2471 md_check_recovery(mddev);
e1dfa0a2 2472
55ce74d4 2473 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2474 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2475 LIST_HEAD(tmp);
2476 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2477 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2478 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2479 spin_unlock_irqrestore(&conf->device_lock, flags);
2480 while (!list_empty(&tmp)) {
a452744b
MP
2481 r1_bio = list_first_entry(&tmp, struct r1bio,
2482 retry_list);
55ce74d4 2483 list_del(&r1_bio->retry_list);
fd76863e 2484 idx = sector_to_idx(r1_bio->sector);
824e47da 2485 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2486 if (mddev->degraded)
2487 set_bit(R1BIO_Degraded, &r1_bio->state);
2488 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2489 close_write(r1_bio);
55ce74d4
N
2490 raid_end_bio_io(r1_bio);
2491 }
2492 }
2493
e1dfa0a2 2494 blk_start_plug(&plug);
1da177e4 2495 for (;;) {
191ea9b2 2496
0021b7bc 2497 flush_pending_writes(conf);
191ea9b2 2498
a35e63ef
N
2499 spin_lock_irqsave(&conf->device_lock, flags);
2500 if (list_empty(head)) {
2501 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2502 break;
a35e63ef 2503 }
9f2c9d12 2504 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2505 list_del(head->prev);
fd76863e 2506 idx = sector_to_idx(r1_bio->sector);
824e47da 2507 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2508 spin_unlock_irqrestore(&conf->device_lock, flags);
2509
2510 mddev = r1_bio->mddev;
070ec55d 2511 conf = mddev->private;
4367af55 2512 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2513 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2514 test_bit(R1BIO_WriteError, &r1_bio->state))
2515 handle_sync_write_finished(conf, r1_bio);
2516 else
4367af55 2517 sync_request_write(mddev, r1_bio);
cd5ff9a1 2518 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2519 test_bit(R1BIO_WriteError, &r1_bio->state))
2520 handle_write_finished(conf, r1_bio);
2521 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2522 handle_read_error(conf, r1_bio);
2523 else
c230e7e5 2524 WARN_ON_ONCE(1);
62096bce 2525
1d9d5241 2526 cond_resched();
2953079c 2527 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2528 md_check_recovery(mddev);
1da177e4 2529 }
e1dfa0a2 2530 blk_finish_plug(&plug);
1da177e4
LT
2531}
2532
e8096360 2533static int init_resync(struct r1conf *conf)
1da177e4
LT
2534{
2535 int buffs;
2536
2537 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514
KO
2538 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2539
2540 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2541 r1buf_pool_free, conf->poolinfo);
1da177e4
LT
2542}
2543
208410b5
SL
2544static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2545{
afeee514 2546 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
208410b5
SL
2547 struct resync_pages *rps;
2548 struct bio *bio;
2549 int i;
2550
2551 for (i = conf->poolinfo->raid_disks; i--; ) {
2552 bio = r1bio->bios[i];
2553 rps = bio->bi_private;
2554 bio_reset(bio);
2555 bio->bi_private = rps;
2556 }
2557 r1bio->master_bio = NULL;
2558 return r1bio;
2559}
2560
1da177e4
LT
2561/*
2562 * perform a "sync" on one "block"
2563 *
2564 * We need to make sure that no normal I/O request - particularly write
2565 * requests - conflict with active sync requests.
2566 *
2567 * This is achieved by tracking pending requests and a 'barrier' concept
2568 * that can be installed to exclude normal IO requests.
2569 */
2570
849674e4
SL
2571static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2572 int *skipped)
1da177e4 2573{
e8096360 2574 struct r1conf *conf = mddev->private;
9f2c9d12 2575 struct r1bio *r1_bio;
1da177e4
LT
2576 struct bio *bio;
2577 sector_t max_sector, nr_sectors;
3e198f78 2578 int disk = -1;
1da177e4 2579 int i;
3e198f78
N
2580 int wonly = -1;
2581 int write_targets = 0, read_targets = 0;
57dab0bd 2582 sector_t sync_blocks;
e3b9703e 2583 int still_degraded = 0;
06f60385
N
2584 int good_sectors = RESYNC_SECTORS;
2585 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2586 int idx = sector_to_idx(sector_nr);
022e510f 2587 int page_idx = 0;
1da177e4 2588
afeee514 2589 if (!mempool_initialized(&conf->r1buf_pool))
1da177e4 2590 if (init_resync(conf))
57afd89f 2591 return 0;
1da177e4 2592
58c0fed4 2593 max_sector = mddev->dev_sectors;
1da177e4 2594 if (sector_nr >= max_sector) {
191ea9b2
N
2595 /* If we aborted, we need to abort the
2596 * sync on the 'current' bitmap chunk (there will
2597 * only be one in raid1 resync.
2598 * We can find the current addess in mddev->curr_resync
2599 */
6a806c51 2600 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
2601 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2602 &sync_blocks, 1);
6a806c51 2603 else /* completed sync */
191ea9b2 2604 conf->fullsync = 0;
6a806c51 2605
e64e4018 2606 md_bitmap_close_sync(mddev->bitmap);
1da177e4 2607 close_sync(conf);
c40f341f
GR
2608
2609 if (mddev_is_clustered(mddev)) {
2610 conf->cluster_sync_low = 0;
2611 conf->cluster_sync_high = 0;
c40f341f 2612 }
1da177e4
LT
2613 return 0;
2614 }
2615
07d84d10
N
2616 if (mddev->bitmap == NULL &&
2617 mddev->recovery_cp == MaxSector &&
6394cca5 2618 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2619 conf->fullsync == 0) {
2620 *skipped = 1;
2621 return max_sector - sector_nr;
2622 }
6394cca5
N
2623 /* before building a request, check if we can skip these blocks..
2624 * This call the bitmap_start_sync doesn't actually record anything
2625 */
e64e4018 2626 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2627 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2628 /* We can skip this block, and probably several more */
2629 *skipped = 1;
2630 return sync_blocks;
2631 }
17999be4 2632
7ac50447
TM
2633 /*
2634 * If there is non-resync activity waiting for a turn, then let it
2635 * though before starting on this new sync request.
2636 */
824e47da 2637 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2638 schedule_timeout_uninterruptible(1);
2639
c40f341f
GR
2640 /* we are incrementing sector_nr below. To be safe, we check against
2641 * sector_nr + two times RESYNC_SECTORS
2642 */
2643
e64e4018 2644 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
c40f341f 2645 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
17999be4 2646
8c242593
YY
2647
2648 if (raise_barrier(conf, sector_nr))
2649 return 0;
2650
2651 r1_bio = raid1_alloc_init_r1buf(conf);
1da177e4 2652
3e198f78 2653 rcu_read_lock();
1da177e4 2654 /*
3e198f78
N
2655 * If we get a correctably read error during resync or recovery,
2656 * we might want to read from a different device. So we
2657 * flag all drives that could conceivably be read from for READ,
2658 * and any others (which will be non-In_sync devices) for WRITE.
2659 * If a read fails, we try reading from something else for which READ
2660 * is OK.
1da177e4 2661 */
1da177e4 2662
1da177e4
LT
2663 r1_bio->mddev = mddev;
2664 r1_bio->sector = sector_nr;
191ea9b2 2665 r1_bio->state = 0;
1da177e4 2666 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2667 /* make sure good_sectors won't go across barrier unit boundary */
2668 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2669
8f19ccb2 2670 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2671 struct md_rdev *rdev;
1da177e4 2672 bio = r1_bio->bios[i];
1da177e4 2673
3e198f78
N
2674 rdev = rcu_dereference(conf->mirrors[i].rdev);
2675 if (rdev == NULL ||
06f60385 2676 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2677 if (i < conf->raid_disks)
2678 still_degraded = 1;
3e198f78 2679 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2680 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2681 bio->bi_end_io = end_sync_write;
2682 write_targets ++;
3e198f78
N
2683 } else {
2684 /* may need to read from here */
06f60385
N
2685 sector_t first_bad = MaxSector;
2686 int bad_sectors;
2687
2688 if (is_badblock(rdev, sector_nr, good_sectors,
2689 &first_bad, &bad_sectors)) {
2690 if (first_bad > sector_nr)
2691 good_sectors = first_bad - sector_nr;
2692 else {
2693 bad_sectors -= (sector_nr - first_bad);
2694 if (min_bad == 0 ||
2695 min_bad > bad_sectors)
2696 min_bad = bad_sectors;
2697 }
2698 }
2699 if (sector_nr < first_bad) {
2700 if (test_bit(WriteMostly, &rdev->flags)) {
2701 if (wonly < 0)
2702 wonly = i;
2703 } else {
2704 if (disk < 0)
2705 disk = i;
2706 }
796a5cf0 2707 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2708 bio->bi_end_io = end_sync_read;
2709 read_targets++;
d57368af
AL
2710 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2711 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2712 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2713 /*
2714 * The device is suitable for reading (InSync),
2715 * but has bad block(s) here. Let's try to correct them,
2716 * if we are doing resync or repair. Otherwise, leave
2717 * this device alone for this sync request.
2718 */
796a5cf0 2719 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2720 bio->bi_end_io = end_sync_write;
2721 write_targets++;
3e198f78 2722 }
3e198f78 2723 }
06f60385
N
2724 if (bio->bi_end_io) {
2725 atomic_inc(&rdev->nr_pending);
4f024f37 2726 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2727 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2728 if (test_bit(FailFast, &rdev->flags))
2729 bio->bi_opf |= MD_FAILFAST;
06f60385 2730 }
1da177e4 2731 }
3e198f78
N
2732 rcu_read_unlock();
2733 if (disk < 0)
2734 disk = wonly;
2735 r1_bio->read_disk = disk;
191ea9b2 2736
06f60385
N
2737 if (read_targets == 0 && min_bad > 0) {
2738 /* These sectors are bad on all InSync devices, so we
2739 * need to mark them bad on all write targets
2740 */
2741 int ok = 1;
8f19ccb2 2742 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2743 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2744 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2745 ok = rdev_set_badblocks(rdev, sector_nr,
2746 min_bad, 0
2747 ) && ok;
2748 }
2953079c 2749 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2750 *skipped = 1;
2751 put_buf(r1_bio);
2752
2753 if (!ok) {
2754 /* Cannot record the badblocks, so need to
2755 * abort the resync.
2756 * If there are multiple read targets, could just
2757 * fail the really bad ones ???
2758 */
2759 conf->recovery_disabled = mddev->recovery_disabled;
2760 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2761 return 0;
2762 } else
2763 return min_bad;
2764
2765 }
2766 if (min_bad > 0 && min_bad < good_sectors) {
2767 /* only resync enough to reach the next bad->good
2768 * transition */
2769 good_sectors = min_bad;
2770 }
2771
3e198f78
N
2772 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2773 /* extra read targets are also write targets */
2774 write_targets += read_targets-1;
2775
2776 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2777 /* There is nowhere to write, so all non-sync
2778 * drives must be failed - so we are finished
2779 */
b7219ccb
N
2780 sector_t rv;
2781 if (min_bad > 0)
2782 max_sector = sector_nr + min_bad;
2783 rv = max_sector - sector_nr;
57afd89f 2784 *skipped = 1;
1da177e4 2785 put_buf(r1_bio);
1da177e4
LT
2786 return rv;
2787 }
2788
c6207277
N
2789 if (max_sector > mddev->resync_max)
2790 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2791 if (max_sector > sector_nr + good_sectors)
2792 max_sector = sector_nr + good_sectors;
1da177e4 2793 nr_sectors = 0;
289e99e8 2794 sync_blocks = 0;
1da177e4
LT
2795 do {
2796 struct page *page;
2797 int len = PAGE_SIZE;
2798 if (sector_nr + (len>>9) > max_sector)
2799 len = (max_sector - sector_nr) << 9;
2800 if (len == 0)
2801 break;
6a806c51 2802 if (sync_blocks == 0) {
e64e4018
AS
2803 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2804 &sync_blocks, still_degraded) &&
e5de485f
N
2805 !conf->fullsync &&
2806 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2807 break;
7571ae88 2808 if ((len >> 9) > sync_blocks)
6a806c51 2809 len = sync_blocks<<9;
ab7a30c7 2810 }
191ea9b2 2811
8f19ccb2 2812 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2813 struct resync_pages *rp;
2814
1da177e4 2815 bio = r1_bio->bios[i];
98d30c58 2816 rp = get_resync_pages(bio);
1da177e4 2817 if (bio->bi_end_io) {
022e510f 2818 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2819
2820 /*
2821 * won't fail because the vec table is big
2822 * enough to hold all these pages
2823 */
2824 bio_add_page(bio, page, len, 0);
1da177e4
LT
2825 }
2826 }
2827 nr_sectors += len>>9;
2828 sector_nr += len>>9;
191ea9b2 2829 sync_blocks -= (len>>9);
022e510f 2830 } while (++page_idx < RESYNC_PAGES);
98d30c58 2831
1da177e4
LT
2832 r1_bio->sectors = nr_sectors;
2833
c40f341f
GR
2834 if (mddev_is_clustered(mddev) &&
2835 conf->cluster_sync_high < sector_nr + nr_sectors) {
2836 conf->cluster_sync_low = mddev->curr_resync_completed;
2837 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2838 /* Send resync message */
2839 md_cluster_ops->resync_info_update(mddev,
2840 conf->cluster_sync_low,
2841 conf->cluster_sync_high);
2842 }
2843
d11c171e
N
2844 /* For a user-requested sync, we read all readable devices and do a
2845 * compare
2846 */
2847 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2848 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2849 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2850 bio = r1_bio->bios[i];
2851 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2852 read_targets--;
74d46992 2853 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2854 if (read_targets == 1)
2855 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2856 generic_make_request(bio);
2857 }
2858 }
2859 } else {
2860 atomic_set(&r1_bio->remaining, 1);
2861 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2862 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2863 if (read_targets == 1)
2864 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2865 generic_make_request(bio);
1da177e4 2866
d11c171e 2867 }
1da177e4
LT
2868 return nr_sectors;
2869}
2870
fd01b88c 2871static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2872{
2873 if (sectors)
2874 return sectors;
2875
2876 return mddev->dev_sectors;
2877}
2878
e8096360 2879static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2880{
e8096360 2881 struct r1conf *conf;
709ae487 2882 int i;
0eaf822c 2883 struct raid1_info *disk;
3cb03002 2884 struct md_rdev *rdev;
709ae487 2885 int err = -ENOMEM;
1da177e4 2886
e8096360 2887 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2888 if (!conf)
709ae487 2889 goto abort;
1da177e4 2890
fd76863e 2891 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2892 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2893 if (!conf->nr_pending)
2894 goto abort;
2895
2896 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2897 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2898 if (!conf->nr_waiting)
2899 goto abort;
2900
2901 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2902 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2903 if (!conf->nr_queued)
2904 goto abort;
2905
2906 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2907 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2908 if (!conf->barrier)
2909 goto abort;
2910
6396bb22
KC
2911 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2912 mddev->raid_disks, 2),
2913 GFP_KERNEL);
1da177e4 2914 if (!conf->mirrors)
709ae487 2915 goto abort;
1da177e4 2916
ddaf22ab
N
2917 conf->tmppage = alloc_page(GFP_KERNEL);
2918 if (!conf->tmppage)
709ae487 2919 goto abort;
ddaf22ab 2920
709ae487 2921 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2922 if (!conf->poolinfo)
709ae487 2923 goto abort;
8f19ccb2 2924 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3f677f9c 2925 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
afeee514
KO
2926 r1bio_pool_free, conf->poolinfo);
2927 if (err)
709ae487
N
2928 goto abort;
2929
afeee514
KO
2930 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2931 if (err)
c230e7e5
N
2932 goto abort;
2933
ed9bfdf1 2934 conf->poolinfo->mddev = mddev;
1da177e4 2935
c19d5798 2936 err = -EINVAL;
e7e72bf6 2937 spin_lock_init(&conf->device_lock);
dafb20fa 2938 rdev_for_each(rdev, mddev) {
709ae487 2939 int disk_idx = rdev->raid_disk;
1da177e4
LT
2940 if (disk_idx >= mddev->raid_disks
2941 || disk_idx < 0)
2942 continue;
c19d5798 2943 if (test_bit(Replacement, &rdev->flags))
02b898f2 2944 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2945 else
2946 disk = conf->mirrors + disk_idx;
1da177e4 2947
c19d5798
N
2948 if (disk->rdev)
2949 goto abort;
1da177e4 2950 disk->rdev = rdev;
1da177e4 2951 disk->head_position = 0;
12cee5a8 2952 disk->seq_start = MaxSector;
1da177e4
LT
2953 }
2954 conf->raid_disks = mddev->raid_disks;
2955 conf->mddev = mddev;
1da177e4 2956 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2957 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2958
2959 spin_lock_init(&conf->resync_lock);
17999be4 2960 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2961
191ea9b2 2962 bio_list_init(&conf->pending_bio_list);
34db0cd6 2963 conf->pending_count = 0;
d890fa2b 2964 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2965
c19d5798 2966 err = -EIO;
8f19ccb2 2967 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2968
2969 disk = conf->mirrors + i;
2970
c19d5798
N
2971 if (i < conf->raid_disks &&
2972 disk[conf->raid_disks].rdev) {
2973 /* This slot has a replacement. */
2974 if (!disk->rdev) {
2975 /* No original, just make the replacement
2976 * a recovering spare
2977 */
2978 disk->rdev =
2979 disk[conf->raid_disks].rdev;
2980 disk[conf->raid_disks].rdev = NULL;
2981 } else if (!test_bit(In_sync, &disk->rdev->flags))
2982 /* Original is not in_sync - bad */
2983 goto abort;
2984 }
2985
5fd6c1dc
N
2986 if (!disk->rdev ||
2987 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2988 disk->head_position = 0;
4f0a5e01
JB
2989 if (disk->rdev &&
2990 (disk->rdev->saved_raid_disk < 0))
918f0238 2991 conf->fullsync = 1;
be4d3280 2992 }
1da177e4 2993 }
709ae487 2994
709ae487 2995 err = -ENOMEM;
0232605d 2996 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 2997 if (!conf->thread)
709ae487 2998 goto abort;
1da177e4 2999
709ae487
N
3000 return conf;
3001
3002 abort:
3003 if (conf) {
afeee514 3004 mempool_exit(&conf->r1bio_pool);
709ae487
N
3005 kfree(conf->mirrors);
3006 safe_put_page(conf->tmppage);
3007 kfree(conf->poolinfo);
fd76863e 3008 kfree(conf->nr_pending);
3009 kfree(conf->nr_waiting);
3010 kfree(conf->nr_queued);
3011 kfree(conf->barrier);
afeee514 3012 bioset_exit(&conf->bio_split);
709ae487
N
3013 kfree(conf);
3014 }
3015 return ERR_PTR(err);
3016}
3017
afa0f557 3018static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3019static int raid1_run(struct mddev *mddev)
709ae487 3020{
e8096360 3021 struct r1conf *conf;
709ae487 3022 int i;
3cb03002 3023 struct md_rdev *rdev;
5220ea1e 3024 int ret;
2ff8cc2c 3025 bool discard_supported = false;
709ae487
N
3026
3027 if (mddev->level != 1) {
1d41c216
N
3028 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3029 mdname(mddev), mddev->level);
709ae487
N
3030 return -EIO;
3031 }
3032 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3033 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3034 mdname(mddev));
709ae487
N
3035 return -EIO;
3036 }
a415c0f1
N
3037 if (mddev_init_writes_pending(mddev) < 0)
3038 return -ENOMEM;
1da177e4 3039 /*
709ae487
N
3040 * copy the already verified devices into our private RAID1
3041 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3042 * should be freed in raid1_free()]
1da177e4 3043 */
709ae487
N
3044 if (mddev->private == NULL)
3045 conf = setup_conf(mddev);
3046 else
3047 conf = mddev->private;
1da177e4 3048
709ae487
N
3049 if (IS_ERR(conf))
3050 return PTR_ERR(conf);
1da177e4 3051
3deff1a7 3052 if (mddev->queue) {
5026d7a9 3053 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7
CH
3054 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3055 }
5026d7a9 3056
dafb20fa 3057 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3058 if (!mddev->gendisk)
3059 continue;
709ae487
N
3060 disk_stack_limits(mddev->gendisk, rdev->bdev,
3061 rdev->data_offset << 9);
2ff8cc2c
SL
3062 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3063 discard_supported = true;
1da177e4 3064 }
191ea9b2 3065
709ae487
N
3066 mddev->degraded = 0;
3067 for (i=0; i < conf->raid_disks; i++)
3068 if (conf->mirrors[i].rdev == NULL ||
3069 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3070 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3071 mddev->degraded++;
3072
3073 if (conf->raid_disks - mddev->degraded == 1)
3074 mddev->recovery_cp = MaxSector;
3075
8c6ac868 3076 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3077 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3078 mdname(mddev));
3079 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3080 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3081 mddev->raid_disks);
709ae487 3082
1da177e4
LT
3083 /*
3084 * Ok, everything is just fine now
3085 */
709ae487
N
3086 mddev->thread = conf->thread;
3087 conf->thread = NULL;
3088 mddev->private = conf;
46533ff7 3089 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3090
1f403624 3091 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3092
1ed7242e 3093 if (mddev->queue) {
2ff8cc2c 3094 if (discard_supported)
8b904b5b 3095 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
2ff8cc2c
SL
3096 mddev->queue);
3097 else
8b904b5b 3098 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
2ff8cc2c 3099 mddev->queue);
1ed7242e 3100 }
5220ea1e 3101
3102 ret = md_integrity_register(mddev);
5aa61f42
N
3103 if (ret) {
3104 md_unregister_thread(&mddev->thread);
afa0f557 3105 raid1_free(mddev, conf);
5aa61f42 3106 }
5220ea1e 3107 return ret;
1da177e4
LT
3108}
3109
afa0f557 3110static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3111{
afa0f557 3112 struct r1conf *conf = priv;
409c57f3 3113
afeee514 3114 mempool_exit(&conf->r1bio_pool);
990a8baf 3115 kfree(conf->mirrors);
0fea7ed8 3116 safe_put_page(conf->tmppage);
990a8baf 3117 kfree(conf->poolinfo);
fd76863e 3118 kfree(conf->nr_pending);
3119 kfree(conf->nr_waiting);
3120 kfree(conf->nr_queued);
3121 kfree(conf->barrier);
afeee514 3122 bioset_exit(&conf->bio_split);
1da177e4 3123 kfree(conf);
1da177e4
LT
3124}
3125
fd01b88c 3126static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3127{
3128 /* no resync is happening, and there is enough space
3129 * on all devices, so we can resize.
3130 * We need to make sure resync covers any new space.
3131 * If the array is shrinking we should possibly wait until
3132 * any io in the removed space completes, but it hardly seems
3133 * worth it.
3134 */
a4a6125a
N
3135 sector_t newsize = raid1_size(mddev, sectors, 0);
3136 if (mddev->external_size &&
3137 mddev->array_sectors > newsize)
b522adcd 3138 return -EINVAL;
a4a6125a 3139 if (mddev->bitmap) {
e64e4018 3140 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
a4a6125a
N
3141 if (ret)
3142 return ret;
3143 }
3144 md_set_array_sectors(mddev, newsize);
b522adcd 3145 if (sectors > mddev->dev_sectors &&
b098636c 3146 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3147 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3148 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3149 }
b522adcd 3150 mddev->dev_sectors = sectors;
4b5c7ae8 3151 mddev->resync_max_sectors = sectors;
1da177e4
LT
3152 return 0;
3153}
3154
fd01b88c 3155static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3156{
3157 /* We need to:
3158 * 1/ resize the r1bio_pool
3159 * 2/ resize conf->mirrors
3160 *
3161 * We allocate a new r1bio_pool if we can.
3162 * Then raise a device barrier and wait until all IO stops.
3163 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3164 *
3165 * At the same time, we "pack" the devices so that all the missing
3166 * devices have the higher raid_disk numbers.
1da177e4 3167 */
afeee514 3168 mempool_t newpool, oldpool;
1da177e4 3169 struct pool_info *newpoolinfo;
0eaf822c 3170 struct raid1_info *newmirrors;
e8096360 3171 struct r1conf *conf = mddev->private;
63c70c4f 3172 int cnt, raid_disks;
c04be0aa 3173 unsigned long flags;
2214c260 3174 int d, d2;
afeee514
KO
3175 int ret;
3176
3177 memset(&newpool, 0, sizeof(newpool));
3178 memset(&oldpool, 0, sizeof(oldpool));
1da177e4 3179
63c70c4f 3180 /* Cannot change chunk_size, layout, or level */
664e7c41 3181 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3182 mddev->layout != mddev->new_layout ||
3183 mddev->level != mddev->new_level) {
664e7c41 3184 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3185 mddev->new_layout = mddev->layout;
3186 mddev->new_level = mddev->level;
3187 return -EINVAL;
3188 }
3189
2214c260
AP
3190 if (!mddev_is_clustered(mddev))
3191 md_allow_write(mddev);
2a2275d6 3192
63c70c4f
N
3193 raid_disks = mddev->raid_disks + mddev->delta_disks;
3194
6ea9c07c
N
3195 if (raid_disks < conf->raid_disks) {
3196 cnt=0;
3197 for (d= 0; d < conf->raid_disks; d++)
3198 if (conf->mirrors[d].rdev)
3199 cnt++;
3200 if (cnt > raid_disks)
1da177e4 3201 return -EBUSY;
6ea9c07c 3202 }
1da177e4
LT
3203
3204 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3205 if (!newpoolinfo)
3206 return -ENOMEM;
3207 newpoolinfo->mddev = mddev;
8f19ccb2 3208 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4 3209
3f677f9c 3210 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
afeee514
KO
3211 r1bio_pool_free, newpoolinfo);
3212 if (ret) {
1da177e4 3213 kfree(newpoolinfo);
afeee514 3214 return ret;
1da177e4 3215 }
6396bb22
KC
3216 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3217 raid_disks, 2),
8f19ccb2 3218 GFP_KERNEL);
1da177e4
LT
3219 if (!newmirrors) {
3220 kfree(newpoolinfo);
afeee514 3221 mempool_exit(&newpool);
1da177e4
LT
3222 return -ENOMEM;
3223 }
1da177e4 3224
e2d59925 3225 freeze_array(conf, 0);
1da177e4
LT
3226
3227 /* ok, everything is stopped */
3228 oldpool = conf->r1bio_pool;
3229 conf->r1bio_pool = newpool;
6ea9c07c 3230
a88aa786 3231 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3232 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3233 if (rdev && rdev->raid_disk != d2) {
36fad858 3234 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3235 rdev->raid_disk = d2;
36fad858
NK
3236 sysfs_unlink_rdev(mddev, rdev);
3237 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3238 pr_warn("md/raid1:%s: cannot register rd%d\n",
3239 mdname(mddev), rdev->raid_disk);
6ea9c07c 3240 }
a88aa786
N
3241 if (rdev)
3242 newmirrors[d2++].rdev = rdev;
3243 }
1da177e4
LT
3244 kfree(conf->mirrors);
3245 conf->mirrors = newmirrors;
3246 kfree(conf->poolinfo);
3247 conf->poolinfo = newpoolinfo;
3248
c04be0aa 3249 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3250 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3251 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3252 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3253 mddev->delta_disks = 0;
1da177e4 3254
e2d59925 3255 unfreeze_array(conf);
1da177e4 3256
985ca973 3257 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3258 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3259 md_wakeup_thread(mddev->thread);
3260
afeee514 3261 mempool_exit(&oldpool);
1da177e4
LT
3262 return 0;
3263}
3264
b03e0ccb 3265static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3266{
e8096360 3267 struct r1conf *conf = mddev->private;
36fa3063 3268
b03e0ccb 3269 if (quiesce)
07169fd4 3270 freeze_array(conf, 0);
b03e0ccb 3271 else
07169fd4 3272 unfreeze_array(conf);
36fa3063
N
3273}
3274
fd01b88c 3275static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3276{
3277 /* raid1 can take over:
3278 * raid5 with 2 devices, any layout or chunk size
3279 */
3280 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3281 struct r1conf *conf;
709ae487
N
3282 mddev->new_level = 1;
3283 mddev->new_layout = 0;
3284 mddev->new_chunk_sectors = 0;
3285 conf = setup_conf(mddev);
6995f0b2 3286 if (!IS_ERR(conf)) {
07169fd4 3287 /* Array must appear to be quiesced */
3288 conf->array_frozen = 1;
394ed8e4
SL
3289 mddev_clear_unsupported_flags(mddev,
3290 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3291 }
709ae487
N
3292 return conf;
3293 }
3294 return ERR_PTR(-EINVAL);
3295}
1da177e4 3296
84fc4b56 3297static struct md_personality raid1_personality =
1da177e4
LT
3298{
3299 .name = "raid1",
2604b703 3300 .level = 1,
1da177e4 3301 .owner = THIS_MODULE,
849674e4
SL
3302 .make_request = raid1_make_request,
3303 .run = raid1_run,
afa0f557 3304 .free = raid1_free,
849674e4
SL
3305 .status = raid1_status,
3306 .error_handler = raid1_error,
1da177e4
LT
3307 .hot_add_disk = raid1_add_disk,
3308 .hot_remove_disk= raid1_remove_disk,
3309 .spare_active = raid1_spare_active,
849674e4 3310 .sync_request = raid1_sync_request,
1da177e4 3311 .resize = raid1_resize,
80c3a6ce 3312 .size = raid1_size,
63c70c4f 3313 .check_reshape = raid1_reshape,
36fa3063 3314 .quiesce = raid1_quiesce,
709ae487 3315 .takeover = raid1_takeover,
5c675f83 3316 .congested = raid1_congested,
1da177e4
LT
3317};
3318
3319static int __init raid_init(void)
3320{
2604b703 3321 return register_md_personality(&raid1_personality);
1da177e4
LT
3322}
3323
3324static void raid_exit(void)
3325{
2604b703 3326 unregister_md_personality(&raid1_personality);
1da177e4
LT
3327}
3328
3329module_init(raid_init);
3330module_exit(raid_exit);
3331MODULE_LICENSE("GPL");
0efb9e61 3332MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3333MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3334MODULE_ALIAS("md-raid1");
2604b703 3335MODULE_ALIAS("md-level-1");
34db0cd6
N
3336
3337module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);