md: Whenassemble the array, consult the superblock of the freshest device
[linux-block.git] / drivers / md / raid1.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
96de0e25 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
191ea9b2
N
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
1da177e4
LT
24 */
25
5a0e3ad6 26#include <linux/slab.h>
25570727 27#include <linux/delay.h>
bff61975 28#include <linux/blkdev.h>
056075c7 29#include <linux/module.h>
bff61975 30#include <linux/seq_file.h>
8bda470e 31#include <linux/ratelimit.h>
69b00b5b 32#include <linux/interval_tree_generic.h>
3f07c014 33
109e3765 34#include <trace/events/block.h>
3f07c014 35
43b2e5d8 36#include "md.h"
ef740c37 37#include "raid1.h"
935fe098 38#include "md-bitmap.h"
191ea9b2 39
394ed8e4
SL
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 42 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 45
fd76863e 46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 48
578b54ad
N
49#define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
fb0eb5df
ML
52#include "raid1-10.c"
53
69b00b5b
GJ
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
d0d2d8ba
GJ
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
3e148a32 61{
3e148a32
GJ
62 unsigned long flags;
63 int ret = 0;
d0d2d8ba
GJ
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
025471f9 66 struct serial_in_rdev *serial = &rdev->serial[idx];
3e148a32 67
69b00b5b
GJ
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
d0d2d8ba 72 else {
69b00b5b
GJ
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
d0d2d8ba 76 }
69b00b5b 77 spin_unlock_irqrestore(&serial->serial_lock, flags);
3e148a32
GJ
78
79 return ret;
80}
81
d0d2d8ba
GJ
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
404659cf 96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
3e148a32 97{
69b00b5b 98 struct serial_info *si;
3e148a32
GJ
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
025471f9
GJ
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
69b00b5b
GJ
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
3e148a32
GJ
111 found = 1;
112 break;
113 }
69b00b5b 114 }
3e148a32 115 if (!found)
404659cf 116 WARN(1, "The write IO is not recorded for serialization\n");
69b00b5b
GJ
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
3e148a32
GJ
119}
120
98d30c58
ML
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127 return get_resync_pages(bio)->raid_bio;
128}
129
dd0fc66f 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
131{
132 struct pool_info *pi = data;
9f2c9d12 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 136 return kzalloc(size, gfp_flags);
1da177e4
LT
137}
138
8e005f7c 139#define RESYNC_DEPTH 32
1da177e4 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 145
dd0fc66f 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
147{
148 struct pool_info *pi = data;
9f2c9d12 149 struct r1bio *r1_bio;
1da177e4 150 struct bio *bio;
da1aab3d 151 int need_pages;
98d30c58
ML
152 int j;
153 struct resync_pages *rps;
1da177e4
LT
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 156 if (!r1_bio)
1da177e4 157 return NULL;
1da177e4 158
6da2ec56
KC
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
98d30c58
ML
161 if (!rps)
162 goto out_free_r1bio;
163
1da177e4
LT
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
066ff571 168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
1da177e4
LT
169 if (!bio)
170 goto out_free_bio;
066ff571 171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
1da177e4
LT
172 r1_bio->bios[j] = bio;
173 }
174 /*
175 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
176 * the first bio.
177 * If this is a user-requested check/repair, allocate
178 * RESYNC_PAGES for each bio.
1da177e4 179 */
d11c171e 180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 181 need_pages = pi->raid_disks;
d11c171e 182 else
da1aab3d 183 need_pages = 1;
98d30c58
ML
184 for (j = 0; j < pi->raid_disks; j++) {
185 struct resync_pages *rp = &rps[j];
186
d11c171e 187 bio = r1_bio->bios[j];
d11c171e 188
98d30c58
ML
189 if (j < need_pages) {
190 if (resync_alloc_pages(rp, gfp_flags))
191 goto out_free_pages;
192 } else {
193 memcpy(rp, &rps[0], sizeof(*rp));
194 resync_get_all_pages(rp);
195 }
196
98d30c58
ML
197 rp->raid_bio = r1_bio;
198 bio->bi_private = rp;
1da177e4
LT
199 }
200
201 r1_bio->master_bio = NULL;
202
203 return r1_bio;
204
da1aab3d 205out_free_pages:
491221f8 206 while (--j >= 0)
98d30c58 207 resync_free_pages(&rps[j]);
da1aab3d 208
1da177e4 209out_free_bio:
066ff571
CH
210 while (++j < pi->raid_disks) {
211 bio_uninit(r1_bio->bios[j]);
212 kfree(r1_bio->bios[j]);
213 }
98d30c58
ML
214 kfree(rps);
215
216out_free_r1bio:
c7afa803 217 rbio_pool_free(r1_bio, data);
1da177e4
LT
218 return NULL;
219}
220
221static void r1buf_pool_free(void *__r1_bio, void *data)
222{
223 struct pool_info *pi = data;
98d30c58 224 int i;
9f2c9d12 225 struct r1bio *r1bio = __r1_bio;
98d30c58 226 struct resync_pages *rp = NULL;
1da177e4 227
98d30c58
ML
228 for (i = pi->raid_disks; i--; ) {
229 rp = get_resync_pages(r1bio->bios[i]);
230 resync_free_pages(rp);
066ff571
CH
231 bio_uninit(r1bio->bios[i]);
232 kfree(r1bio->bios[i]);
98d30c58
ML
233 }
234
235 /* resync pages array stored in the 1st bio's .bi_private */
236 kfree(rp);
1da177e4 237
c7afa803 238 rbio_pool_free(r1bio, data);
1da177e4
LT
239}
240
e8096360 241static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
242{
243 int i;
244
8f19ccb2 245 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 246 struct bio **bio = r1_bio->bios + i;
4367af55 247 if (!BIO_SPECIAL(*bio))
1da177e4
LT
248 bio_put(*bio);
249 *bio = NULL;
250 }
251}
252
9f2c9d12 253static void free_r1bio(struct r1bio *r1_bio)
1da177e4 254{
e8096360 255 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 256
1da177e4 257 put_all_bios(conf, r1_bio);
afeee514 258 mempool_free(r1_bio, &conf->r1bio_pool);
1da177e4
LT
259}
260
9f2c9d12 261static void put_buf(struct r1bio *r1_bio)
1da177e4 262{
e8096360 263 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 264 sector_t sect = r1_bio->sector;
3e198f78
N
265 int i;
266
8f19ccb2 267 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
268 struct bio *bio = r1_bio->bios[i];
269 if (bio->bi_end_io)
270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 }
1da177e4 272
afeee514 273 mempool_free(r1_bio, &conf->r1buf_pool);
1da177e4 274
af5f42a7 275 lower_barrier(conf, sect);
1da177e4
LT
276}
277
9f2c9d12 278static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
279{
280 unsigned long flags;
fd01b88c 281 struct mddev *mddev = r1_bio->mddev;
e8096360 282 struct r1conf *conf = mddev->private;
fd76863e 283 int idx;
1da177e4 284
fd76863e 285 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
286 spin_lock_irqsave(&conf->device_lock, flags);
287 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 288 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
289 spin_unlock_irqrestore(&conf->device_lock, flags);
290
17999be4 291 wake_up(&conf->wait_barrier);
1da177e4
LT
292 md_wakeup_thread(mddev->thread);
293}
294
295/*
296 * raid_end_bio_io() is called when we have finished servicing a mirrored
297 * operation and are ready to return a success/failure code to the buffer
298 * cache layer.
299 */
9f2c9d12 300static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
301{
302 struct bio *bio = r1_bio->master_bio;
d2eb35ac
N
303
304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 305 bio->bi_status = BLK_STS_IOERR;
4246a0b6 306
37011e3a 307 bio_endio(bio);
d2eb35ac
N
308}
309
9f2c9d12 310static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
311{
312 struct bio *bio = r1_bio->master_bio;
c91114c2 313 struct r1conf *conf = r1_bio->mddev->private;
c5d736f5 314 sector_t sector = r1_bio->sector;
1da177e4 315
4b6d287f
N
316 /* if nobody has done the final endio yet, do it now */
317 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
318 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
320 (unsigned long long) bio->bi_iter.bi_sector,
321 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 322
d2eb35ac 323 call_bio_endio(r1_bio);
4b6d287f 324 }
c5d736f5
XH
325
326 free_r1bio(r1_bio);
c91114c2
DJ
327 /*
328 * Wake up any possible resync thread that waits for the device
329 * to go idle. All I/Os, even write-behind writes, are done.
330 */
c5d736f5 331 allow_barrier(conf, sector);
1da177e4
LT
332}
333
334/*
335 * Update disk head position estimator based on IRQ completion info.
336 */
9f2c9d12 337static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 338{
e8096360 339 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
340
341 conf->mirrors[disk].head_position =
342 r1_bio->sector + (r1_bio->sectors);
343}
344
ba3ae3be
NK
345/*
346 * Find the disk number which triggered given bio
347 */
9f2c9d12 348static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
349{
350 int mirror;
30194636
N
351 struct r1conf *conf = r1_bio->mddev->private;
352 int raid_disks = conf->raid_disks;
ba3ae3be 353
8f19ccb2 354 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
355 if (r1_bio->bios[mirror] == bio)
356 break;
357
8f19ccb2 358 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
359 update_head_pos(mirror, r1_bio);
360
361 return mirror;
362}
363
4246a0b6 364static void raid1_end_read_request(struct bio *bio)
1da177e4 365{
4e4cbee9 366 int uptodate = !bio->bi_status;
9f2c9d12 367 struct r1bio *r1_bio = bio->bi_private;
e8096360 368 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 369 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 370
1da177e4
LT
371 /*
372 * this branch is our 'one mirror IO has finished' event handler:
373 */
e5872d58 374 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 375
dd00a99e
N
376 if (uptodate)
377 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
378 else if (test_bit(FailFast, &rdev->flags) &&
379 test_bit(R1BIO_FailFast, &r1_bio->state))
380 /* This was a fail-fast read so we definitely
381 * want to retry */
382 ;
dd00a99e
N
383 else {
384 /* If all other devices have failed, we want to return
385 * the error upwards rather than fail the last device.
386 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 387 */
dd00a99e
N
388 unsigned long flags;
389 spin_lock_irqsave(&conf->device_lock, flags);
390 if (r1_bio->mddev->degraded == conf->raid_disks ||
391 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 392 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
393 uptodate = 1;
394 spin_unlock_irqrestore(&conf->device_lock, flags);
395 }
1da177e4 396
7ad4d4a6 397 if (uptodate) {
1da177e4 398 raid_end_bio_io(r1_bio);
e5872d58 399 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 400 } else {
1da177e4
LT
401 /*
402 * oops, read error:
403 */
913cce5a 404 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
1d41c216 405 mdname(conf->mddev),
913cce5a 406 rdev->bdev,
1d41c216 407 (unsigned long long)r1_bio->sector);
d2eb35ac 408 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 409 reschedule_retry(r1_bio);
7ad4d4a6 410 /* don't drop the reference on read_disk yet */
1da177e4 411 }
1da177e4
LT
412}
413
9f2c9d12 414static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
415{
416 /* it really is the end of this request */
417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
418 bio_free_pages(r1_bio->behind_master_bio);
419 bio_put(r1_bio->behind_master_bio);
420 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
421 }
422 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
423 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
424 r1_bio->sectors,
425 !test_bit(R1BIO_Degraded, &r1_bio->state),
426 test_bit(R1BIO_BehindIO, &r1_bio->state));
cd5ff9a1
N
427 md_write_end(r1_bio->mddev);
428}
429
9f2c9d12 430static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 431{
cd5ff9a1
N
432 if (!atomic_dec_and_test(&r1_bio->remaining))
433 return;
434
435 if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else {
438 close_write(r1_bio);
4367af55
N
439 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 reschedule_retry(r1_bio);
441 else
442 raid_end_bio_io(r1_bio);
4e78064f
N
443 }
444}
445
4246a0b6 446static void raid1_end_write_request(struct bio *bio)
1da177e4 447{
9f2c9d12 448 struct r1bio *r1_bio = bio->bi_private;
e5872d58 449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 450 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 451 struct bio *to_put = NULL;
e5872d58
N
452 int mirror = find_bio_disk(r1_bio, bio);
453 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd 454 bool discard_error;
69df9cfc
GJ
455 sector_t lo = r1_bio->sector;
456 sector_t hi = r1_bio->sector + r1_bio->sectors;
e3f948cd 457
4e4cbee9 458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 459
e9c7469b
TH
460 /*
461 * 'one mirror IO has finished' event handler:
462 */
4e4cbee9 463 if (bio->bi_status && !discard_error) {
e5872d58
N
464 set_bit(WriteErrorSeen, &rdev->flags);
465 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
466 set_bit(MD_RECOVERY_NEEDED, &
467 conf->mddev->recovery);
468
212e7eb7
N
469 if (test_bit(FailFast, &rdev->flags) &&
470 (bio->bi_opf & MD_FAILFAST) &&
471 /* We never try FailFast to WriteMostly devices */
472 !test_bit(WriteMostly, &rdev->flags)) {
473 md_error(r1_bio->mddev, rdev);
eeba6809
YY
474 }
475
476 /*
477 * When the device is faulty, it is not necessary to
478 * handle write error.
eeba6809
YY
479 */
480 if (!test_bit(Faulty, &rdev->flags))
212e7eb7 481 set_bit(R1BIO_WriteError, &r1_bio->state);
eeba6809 482 else {
2417b986
PC
483 /* Fail the request */
484 set_bit(R1BIO_Degraded, &r1_bio->state);
eeba6809
YY
485 /* Finished with this branch */
486 r1_bio->bios[mirror] = NULL;
487 to_put = bio;
488 }
4367af55 489 } else {
1da177e4 490 /*
e9c7469b
TH
491 * Set R1BIO_Uptodate in our master bio, so that we
492 * will return a good error code for to the higher
493 * levels even if IO on some other mirrored buffer
494 * fails.
495 *
496 * The 'master' represents the composite IO operation
497 * to user-side. So if something waits for IO, then it
498 * will wait for the 'master' bio.
1da177e4 499 */
4367af55
N
500 sector_t first_bad;
501 int bad_sectors;
502
cd5ff9a1
N
503 r1_bio->bios[mirror] = NULL;
504 to_put = bio;
3056e3ae
AL
505 /*
506 * Do not set R1BIO_Uptodate if the current device is
507 * rebuilding or Faulty. This is because we cannot use
508 * such device for properly reading the data back (we could
509 * potentially use it, if the current write would have felt
510 * before rdev->recovery_offset, but for simplicity we don't
511 * check this here.
512 */
e5872d58
N
513 if (test_bit(In_sync, &rdev->flags) &&
514 !test_bit(Faulty, &rdev->flags))
3056e3ae 515 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 516
4367af55 517 /* Maybe we can clear some bad blocks. */
e5872d58 518 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 519 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
520 r1_bio->bios[mirror] = IO_MADE_GOOD;
521 set_bit(R1BIO_MadeGood, &r1_bio->state);
522 }
523 }
524
e9c7469b 525 if (behind) {
69df9cfc 526 if (test_bit(CollisionCheck, &rdev->flags))
404659cf 527 remove_serial(rdev, lo, hi);
e5872d58 528 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
529 atomic_dec(&r1_bio->behind_remaining);
530
531 /*
532 * In behind mode, we ACK the master bio once the I/O
533 * has safely reached all non-writemostly
534 * disks. Setting the Returned bit ensures that this
535 * gets done only once -- we don't ever want to return
536 * -EIO here, instead we'll wait
537 */
538 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
539 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
540 /* Maybe we can return now */
541 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
542 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
543 pr_debug("raid1: behind end write sectors"
544 " %llu-%llu\n",
4f024f37
KO
545 (unsigned long long) mbio->bi_iter.bi_sector,
546 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 547 call_bio_endio(r1_bio);
4b6d287f
N
548 }
549 }
69df9cfc
GJ
550 } else if (rdev->mddev->serialize_policy)
551 remove_serial(rdev, lo, hi);
4367af55 552 if (r1_bio->bios[mirror] == NULL)
e5872d58 553 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 554
1da177e4 555 /*
1da177e4
LT
556 * Let's see if all mirrored write operations have finished
557 * already.
558 */
af6d7b76 559 r1_bio_write_done(r1_bio);
c70810b3 560
04b857f7
N
561 if (to_put)
562 bio_put(to_put);
1da177e4
LT
563}
564
fd76863e 565static sector_t align_to_barrier_unit_end(sector_t start_sector,
566 sector_t sectors)
567{
568 sector_t len;
569
570 WARN_ON(sectors == 0);
571 /*
572 * len is the number of sectors from start_sector to end of the
573 * barrier unit which start_sector belongs to.
574 */
575 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
576 start_sector;
577
578 if (len > sectors)
579 len = sectors;
580
581 return len;
582}
583
1da177e4
LT
584/*
585 * This routine returns the disk from which the requested read should
586 * be done. There is a per-array 'next expected sequential IO' sector
587 * number - if this matches on the next IO then we use the last disk.
588 * There is also a per-disk 'last know head position' sector that is
589 * maintained from IRQ contexts, both the normal and the resync IO
590 * completion handlers update this position correctly. If there is no
591 * perfect sequential match then we pick the disk whose head is closest.
592 *
593 * If there are 2 mirrors in the same 2 devices, performance degrades
594 * because position is mirror, not device based.
595 *
596 * The rdev for the device selected will have nr_pending incremented.
597 */
e8096360 598static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 599{
af3a2cd6 600 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
601 int sectors;
602 int best_good_sectors;
9dedf603
SL
603 int best_disk, best_dist_disk, best_pending_disk;
604 int has_nonrot_disk;
be4d3280 605 int disk;
76073054 606 sector_t best_dist;
9dedf603 607 unsigned int min_pending;
3cb03002 608 struct md_rdev *rdev;
f3ac8bf7 609 int choose_first;
12cee5a8 610 int choose_next_idle;
1da177e4 611
1da177e4 612 /*
8ddf9efe 613 * Check if we can balance. We can balance on the whole
1da177e4
LT
614 * device if no resync is going on, or below the resync window.
615 * We take the first readable disk when above the resync window.
616 */
617 retry:
d2eb35ac 618 sectors = r1_bio->sectors;
76073054 619 best_disk = -1;
9dedf603 620 best_dist_disk = -1;
76073054 621 best_dist = MaxSector;
9dedf603
SL
622 best_pending_disk = -1;
623 min_pending = UINT_MAX;
d2eb35ac 624 best_good_sectors = 0;
9dedf603 625 has_nonrot_disk = 0;
12cee5a8 626 choose_next_idle = 0;
2e52d449 627 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 628
7d49ffcf
GR
629 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
630 (mddev_is_clustered(conf->mddev) &&
90382ed9 631 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
632 this_sector + sectors)))
633 choose_first = 1;
634 else
635 choose_first = 0;
1da177e4 636
be4d3280 637 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 638 sector_t dist;
d2eb35ac
N
639 sector_t first_bad;
640 int bad_sectors;
9dedf603 641 unsigned int pending;
12cee5a8 642 bool nonrot;
d2eb35ac 643
2d32777d 644 rdev = conf->mirrors[disk].rdev;
f3ac8bf7
N
645 if (r1_bio->bios[disk] == IO_BLOCKED
646 || rdev == NULL
76073054 647 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 648 continue;
76073054
N
649 if (!test_bit(In_sync, &rdev->flags) &&
650 rdev->recovery_offset < this_sector + sectors)
1da177e4 651 continue;
76073054
N
652 if (test_bit(WriteMostly, &rdev->flags)) {
653 /* Don't balance among write-mostly, just
654 * use the first as a last resort */
d1901ef0 655 if (best_dist_disk < 0) {
307729c8
N
656 if (is_badblock(rdev, this_sector, sectors,
657 &first_bad, &bad_sectors)) {
816b0acf 658 if (first_bad <= this_sector)
307729c8
N
659 /* Cannot use this */
660 continue;
661 best_good_sectors = first_bad - this_sector;
662 } else
663 best_good_sectors = sectors;
d1901ef0
TH
664 best_dist_disk = disk;
665 best_pending_disk = disk;
307729c8 666 }
76073054
N
667 continue;
668 }
669 /* This is a reasonable device to use. It might
670 * even be best.
671 */
d2eb35ac
N
672 if (is_badblock(rdev, this_sector, sectors,
673 &first_bad, &bad_sectors)) {
674 if (best_dist < MaxSector)
675 /* already have a better device */
676 continue;
677 if (first_bad <= this_sector) {
678 /* cannot read here. If this is the 'primary'
679 * device, then we must not read beyond
680 * bad_sectors from another device..
681 */
682 bad_sectors -= (this_sector - first_bad);
683 if (choose_first && sectors > bad_sectors)
684 sectors = bad_sectors;
685 if (best_good_sectors > sectors)
686 best_good_sectors = sectors;
687
688 } else {
689 sector_t good_sectors = first_bad - this_sector;
690 if (good_sectors > best_good_sectors) {
691 best_good_sectors = good_sectors;
692 best_disk = disk;
693 }
694 if (choose_first)
695 break;
696 }
697 continue;
d82dd0e3
TM
698 } else {
699 if ((sectors > best_good_sectors) && (best_disk >= 0))
700 best_disk = -1;
d2eb35ac 701 best_good_sectors = sectors;
d82dd0e3 702 }
d2eb35ac 703
2e52d449
N
704 if (best_disk >= 0)
705 /* At least two disks to choose from so failfast is OK */
706 set_bit(R1BIO_FailFast, &r1_bio->state);
707
10f0d2a5 708 nonrot = bdev_nonrot(rdev->bdev);
12cee5a8 709 has_nonrot_disk |= nonrot;
9dedf603 710 pending = atomic_read(&rdev->nr_pending);
76073054 711 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 712 if (choose_first) {
76073054 713 best_disk = disk;
1da177e4
LT
714 break;
715 }
12cee5a8
SL
716 /* Don't change to another disk for sequential reads */
717 if (conf->mirrors[disk].next_seq_sect == this_sector
718 || dist == 0) {
719 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
720 struct raid1_info *mirror = &conf->mirrors[disk];
721
722 best_disk = disk;
723 /*
724 * If buffered sequential IO size exceeds optimal
725 * iosize, check if there is idle disk. If yes, choose
726 * the idle disk. read_balance could already choose an
727 * idle disk before noticing it's a sequential IO in
728 * this disk. This doesn't matter because this disk
729 * will idle, next time it will be utilized after the
730 * first disk has IO size exceeds optimal iosize. In
731 * this way, iosize of the first disk will be optimal
732 * iosize at least. iosize of the second disk might be
733 * small, but not a big deal since when the second disk
734 * starts IO, the first disk is likely still busy.
735 */
736 if (nonrot && opt_iosize > 0 &&
737 mirror->seq_start != MaxSector &&
738 mirror->next_seq_sect > opt_iosize &&
739 mirror->next_seq_sect - opt_iosize >=
740 mirror->seq_start) {
741 choose_next_idle = 1;
742 continue;
743 }
744 break;
745 }
12cee5a8
SL
746
747 if (choose_next_idle)
748 continue;
9dedf603
SL
749
750 if (min_pending > pending) {
751 min_pending = pending;
752 best_pending_disk = disk;
753 }
754
76073054
N
755 if (dist < best_dist) {
756 best_dist = dist;
9dedf603 757 best_dist_disk = disk;
1da177e4 758 }
f3ac8bf7 759 }
1da177e4 760
9dedf603
SL
761 /*
762 * If all disks are rotational, choose the closest disk. If any disk is
763 * non-rotational, choose the disk with less pending request even the
764 * disk is rotational, which might/might not be optimal for raids with
765 * mixed ratation/non-rotational disks depending on workload.
766 */
767 if (best_disk == -1) {
2e52d449 768 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
769 best_disk = best_pending_disk;
770 else
771 best_disk = best_dist_disk;
772 }
773
76073054 774 if (best_disk >= 0) {
2d32777d 775 rdev = conf->mirrors[best_disk].rdev;
8ddf9efe
N
776 if (!rdev)
777 goto retry;
778 atomic_inc(&rdev->nr_pending);
d2eb35ac 779 sectors = best_good_sectors;
12cee5a8
SL
780
781 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
782 conf->mirrors[best_disk].seq_start = this_sector;
783
be4d3280 784 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4 785 }
d2eb35ac 786 *max_sectors = sectors;
1da177e4 787
76073054 788 return best_disk;
1da177e4
LT
789}
790
21bd9a68
JW
791static void wake_up_barrier(struct r1conf *conf)
792{
793 if (wq_has_sleeper(&conf->wait_barrier))
794 wake_up(&conf->wait_barrier);
795}
796
673ca68d
N
797static void flush_bio_list(struct r1conf *conf, struct bio *bio)
798{
799 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
9efcc2c3 800 raid1_prepare_flush_writes(conf->mddev->bitmap);
21bd9a68 801 wake_up_barrier(conf);
673ca68d
N
802
803 while (bio) { /* submit pending writes */
804 struct bio *next = bio->bi_next;
8295efbe
YK
805
806 raid1_submit_write(bio);
673ca68d 807 bio = next;
5fa4f8ba 808 cond_resched();
673ca68d
N
809 }
810}
811
e8096360 812static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
813{
814 /* Any writes that have been queued but are awaiting
815 * bitmap updates get flushed here.
a35e63ef 816 */
a35e63ef
N
817 spin_lock_irq(&conf->device_lock);
818
819 if (conf->pending_bio_list.head) {
18022a1b 820 struct blk_plug plug;
a35e63ef 821 struct bio *bio;
18022a1b 822
a35e63ef 823 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef 824 spin_unlock_irq(&conf->device_lock);
474beb57
N
825
826 /*
827 * As this is called in a wait_event() loop (see freeze_array),
828 * current->state might be TASK_UNINTERRUPTIBLE which will
829 * cause a warning when we prepare to wait again. As it is
830 * rare that this path is taken, it is perfectly safe to force
831 * us to go around the wait_event() loop again, so the warning
832 * is a false-positive. Silence the warning by resetting
833 * thread state
834 */
835 __set_current_state(TASK_RUNNING);
18022a1b 836 blk_start_plug(&plug);
673ca68d 837 flush_bio_list(conf, bio);
18022a1b 838 blk_finish_plug(&plug);
a35e63ef
N
839 } else
840 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
841}
842
17999be4
N
843/* Barriers....
844 * Sometimes we need to suspend IO while we do something else,
845 * either some resync/recovery, or reconfigure the array.
846 * To do this we raise a 'barrier'.
847 * The 'barrier' is a counter that can be raised multiple times
848 * to count how many activities are happening which preclude
849 * normal IO.
850 * We can only raise the barrier if there is no pending IO.
851 * i.e. if nr_pending == 0.
852 * We choose only to raise the barrier if no-one is waiting for the
853 * barrier to go down. This means that as soon as an IO request
854 * is ready, no other operations which require a barrier will start
855 * until the IO request has had a chance.
856 *
857 * So: regular IO calls 'wait_barrier'. When that returns there
858 * is no backgroup IO happening, It must arrange to call
859 * allow_barrier when it has finished its IO.
860 * backgroup IO calls must call raise_barrier. Once that returns
861 * there is no normal IO happeing. It must arrange to call
862 * lower_barrier when the particular background IO completes.
4675719d
HT
863 *
864 * If resync/recovery is interrupted, returns -EINTR;
865 * Otherwise, returns 0.
1da177e4 866 */
4675719d 867static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 868{
fd76863e 869 int idx = sector_to_idx(sector_nr);
870
1da177e4 871 spin_lock_irq(&conf->resync_lock);
17999be4
N
872
873 /* Wait until no block IO is waiting */
824e47da 874 wait_event_lock_irq(conf->wait_barrier,
875 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 876 conf->resync_lock);
17999be4
N
877
878 /* block any new IO from starting */
824e47da 879 atomic_inc(&conf->barrier[idx]);
880 /*
881 * In raise_barrier() we firstly increase conf->barrier[idx] then
882 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
883 * increase conf->nr_pending[idx] then check conf->barrier[idx].
884 * A memory barrier here to make sure conf->nr_pending[idx] won't
885 * be fetched before conf->barrier[idx] is increased. Otherwise
886 * there will be a race between raise_barrier() and _wait_barrier().
887 */
888 smp_mb__after_atomic();
17999be4 889
79ef3a8a 890 /* For these conditions we must wait:
891 * A: while the array is in frozen state
fd76863e 892 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
893 * existing in corresponding I/O barrier bucket.
894 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
895 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 896 */
17999be4 897 wait_event_lock_irq(conf->wait_barrier,
8c242593 898 (!conf->array_frozen &&
824e47da 899 !atomic_read(&conf->nr_pending[idx]) &&
8c242593
YY
900 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
901 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
eed8c02e 902 conf->resync_lock);
17999be4 903
8c242593
YY
904 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
905 atomic_dec(&conf->barrier[idx]);
906 spin_unlock_irq(&conf->resync_lock);
907 wake_up(&conf->wait_barrier);
908 return -EINTR;
909 }
910
43ac9b84 911 atomic_inc(&conf->nr_sync_pending);
17999be4 912 spin_unlock_irq(&conf->resync_lock);
8c242593
YY
913
914 return 0;
17999be4
N
915}
916
fd76863e 917static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 918{
fd76863e 919 int idx = sector_to_idx(sector_nr);
920
824e47da 921 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 922
824e47da 923 atomic_dec(&conf->barrier[idx]);
43ac9b84 924 atomic_dec(&conf->nr_sync_pending);
17999be4
N
925 wake_up(&conf->wait_barrier);
926}
927
5aa70503 928static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
17999be4 929{
5aa70503
VV
930 bool ret = true;
931
824e47da 932 /*
933 * We need to increase conf->nr_pending[idx] very early here,
934 * then raise_barrier() can be blocked when it waits for
935 * conf->nr_pending[idx] to be 0. Then we can avoid holding
936 * conf->resync_lock when there is no barrier raised in same
937 * barrier unit bucket. Also if the array is frozen, I/O
938 * should be blocked until array is unfrozen.
939 */
940 atomic_inc(&conf->nr_pending[idx]);
941 /*
942 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
943 * check conf->barrier[idx]. In raise_barrier() we firstly increase
944 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
945 * barrier is necessary here to make sure conf->barrier[idx] won't be
946 * fetched before conf->nr_pending[idx] is increased. Otherwise there
947 * will be a race between _wait_barrier() and raise_barrier().
948 */
949 smp_mb__after_atomic();
79ef3a8a 950
824e47da 951 /*
952 * Don't worry about checking two atomic_t variables at same time
953 * here. If during we check conf->barrier[idx], the array is
954 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
955 * 0, it is safe to return and make the I/O continue. Because the
956 * array is frozen, all I/O returned here will eventually complete
957 * or be queued, no race will happen. See code comment in
958 * frozen_array().
959 */
960 if (!READ_ONCE(conf->array_frozen) &&
961 !atomic_read(&conf->barrier[idx]))
5aa70503 962 return ret;
79ef3a8a 963
824e47da 964 /*
965 * After holding conf->resync_lock, conf->nr_pending[idx]
966 * should be decreased before waiting for barrier to drop.
967 * Otherwise, we may encounter a race condition because
968 * raise_barrer() might be waiting for conf->nr_pending[idx]
969 * to be 0 at same time.
970 */
971 spin_lock_irq(&conf->resync_lock);
972 atomic_inc(&conf->nr_waiting[idx]);
973 atomic_dec(&conf->nr_pending[idx]);
974 /*
975 * In case freeze_array() is waiting for
976 * get_unqueued_pending() == extra
977 */
21bd9a68 978 wake_up_barrier(conf);
824e47da 979 /* Wait for the barrier in same barrier unit bucket to drop. */
5aa70503
VV
980
981 /* Return false when nowait flag is set */
982 if (nowait) {
983 ret = false;
984 } else {
985 wait_event_lock_irq(conf->wait_barrier,
986 !conf->array_frozen &&
987 !atomic_read(&conf->barrier[idx]),
988 conf->resync_lock);
989 atomic_inc(&conf->nr_pending[idx]);
990 }
991
824e47da 992 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 993 spin_unlock_irq(&conf->resync_lock);
5aa70503 994 return ret;
79ef3a8a 995}
996
5aa70503 997static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
79ef3a8a 998{
fd76863e 999 int idx = sector_to_idx(sector_nr);
5aa70503 1000 bool ret = true;
79ef3a8a 1001
824e47da 1002 /*
1003 * Very similar to _wait_barrier(). The difference is, for read
1004 * I/O we don't need wait for sync I/O, but if the whole array
1005 * is frozen, the read I/O still has to wait until the array is
1006 * unfrozen. Since there is no ordering requirement with
1007 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1008 */
1009 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 1010
824e47da 1011 if (!READ_ONCE(conf->array_frozen))
5aa70503 1012 return ret;
824e47da 1013
1014 spin_lock_irq(&conf->resync_lock);
1015 atomic_inc(&conf->nr_waiting[idx]);
1016 atomic_dec(&conf->nr_pending[idx]);
1017 /*
1018 * In case freeze_array() is waiting for
1019 * get_unqueued_pending() == extra
1020 */
21bd9a68 1021 wake_up_barrier(conf);
824e47da 1022 /* Wait for array to be unfrozen */
5aa70503
VV
1023
1024 /* Return false when nowait flag is set */
1025 if (nowait) {
1026 /* Return false when nowait flag is set */
1027 ret = false;
1028 } else {
1029 wait_event_lock_irq(conf->wait_barrier,
1030 !conf->array_frozen,
1031 conf->resync_lock);
1032 atomic_inc(&conf->nr_pending[idx]);
1033 }
1034
824e47da 1035 atomic_dec(&conf->nr_waiting[idx]);
1da177e4 1036 spin_unlock_irq(&conf->resync_lock);
5aa70503 1037 return ret;
1da177e4
LT
1038}
1039
5aa70503 1040static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
17999be4 1041{
fd76863e 1042 int idx = sector_to_idx(sector_nr);
79ef3a8a 1043
5aa70503 1044 return _wait_barrier(conf, idx, nowait);
fd76863e 1045}
1046
fd76863e 1047static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1048{
824e47da 1049 atomic_dec(&conf->nr_pending[idx]);
21bd9a68 1050 wake_up_barrier(conf);
17999be4
N
1051}
1052
fd76863e 1053static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1054{
1055 int idx = sector_to_idx(sector_nr);
1056
1057 _allow_barrier(conf, idx);
1058}
1059
fd76863e 1060/* conf->resync_lock should be held */
1061static int get_unqueued_pending(struct r1conf *conf)
1062{
1063 int idx, ret;
1064
43ac9b84
XN
1065 ret = atomic_read(&conf->nr_sync_pending);
1066 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1067 ret += atomic_read(&conf->nr_pending[idx]) -
1068 atomic_read(&conf->nr_queued[idx]);
fd76863e 1069
1070 return ret;
1071}
1072
e2d59925 1073static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1074{
fd76863e 1075 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1076 * go quiet.
fd76863e 1077 * This is called in two situations:
1078 * 1) management command handlers (reshape, remove disk, quiesce).
1079 * 2) one normal I/O request failed.
1080
1081 * After array_frozen is set to 1, new sync IO will be blocked at
1082 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1083 * or wait_read_barrier(). The flying I/Os will either complete or be
1084 * queued. When everything goes quite, there are only queued I/Os left.
1085
1086 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1087 * barrier bucket index which this I/O request hits. When all sync and
1088 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1089 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1090 * in handle_read_error(), we may call freeze_array() before trying to
1091 * fix the read error. In this case, the error read I/O is not queued,
1092 * so get_unqueued_pending() == 1.
1093 *
1094 * Therefore before this function returns, we need to wait until
1095 * get_unqueued_pendings(conf) gets equal to extra. For
1096 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1097 */
1098 spin_lock_irq(&conf->resync_lock);
b364e3d0 1099 conf->array_frozen = 1;
578b54ad 1100 raid1_log(conf->mddev, "wait freeze");
fd76863e 1101 wait_event_lock_irq_cmd(
1102 conf->wait_barrier,
1103 get_unqueued_pending(conf) == extra,
1104 conf->resync_lock,
1105 flush_pending_writes(conf));
ddaf22ab
N
1106 spin_unlock_irq(&conf->resync_lock);
1107}
e8096360 1108static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1109{
1110 /* reverse the effect of the freeze */
1111 spin_lock_irq(&conf->resync_lock);
b364e3d0 1112 conf->array_frozen = 0;
ddaf22ab 1113 spin_unlock_irq(&conf->resync_lock);
824e47da 1114 wake_up(&conf->wait_barrier);
ddaf22ab
N
1115}
1116
16d56e2f 1117static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1118 struct bio *bio)
4b6d287f 1119{
cb83efcf 1120 int size = bio->bi_iter.bi_size;
841c1316
ML
1121 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1122 int i = 0;
1123 struct bio *behind_bio = NULL;
1124
609be106
CH
1125 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1126 &r1_bio->mddev->bio_set);
4b6d287f 1127
41743c1f 1128 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1129 if (!bio_has_data(bio)) {
1130 behind_bio->bi_iter.bi_size = size;
41743c1f 1131 goto skip_copy;
16d56e2f 1132 }
41743c1f 1133
841c1316
ML
1134 while (i < vcnt && size) {
1135 struct page *page;
1136 int len = min_t(int, PAGE_SIZE, size);
1137
1138 page = alloc_page(GFP_NOIO);
1139 if (unlikely(!page))
1140 goto free_pages;
1141
b42473cd
JT
1142 if (!bio_add_page(behind_bio, page, len, 0)) {
1143 put_page(page);
1144 goto free_pages;
1145 }
841c1316
ML
1146
1147 size -= len;
1148 i++;
4b6d287f 1149 }
841c1316 1150
cb83efcf 1151 bio_copy_data(behind_bio, bio);
41743c1f 1152skip_copy:
56a64c17 1153 r1_bio->behind_master_bio = behind_bio;
af6d7b76 1154 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1155
16d56e2f 1156 return;
841c1316
ML
1157
1158free_pages:
4f024f37
KO
1159 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1160 bio->bi_iter.bi_size);
841c1316 1161 bio_free_pages(behind_bio);
16d56e2f 1162 bio_put(behind_bio);
4b6d287f
N
1163}
1164
f54a9d0e
N
1165static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1166{
1167 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1168 cb);
1169 struct mddev *mddev = plug->cb.data;
1170 struct r1conf *conf = mddev->private;
1171 struct bio *bio;
1172
9efcc2c3 1173 if (from_schedule) {
f54a9d0e
N
1174 spin_lock_irq(&conf->device_lock);
1175 bio_list_merge(&conf->pending_bio_list, &plug->pending);
f54a9d0e 1176 spin_unlock_irq(&conf->device_lock);
21bd9a68 1177 wake_up_barrier(conf);
f54a9d0e
N
1178 md_wakeup_thread(mddev->thread);
1179 kfree(plug);
1180 return;
1181 }
1182
1183 /* we aren't scheduling, so we can do the write-out directly. */
1184 bio = bio_list_get(&plug->pending);
673ca68d 1185 flush_bio_list(conf, bio);
f54a9d0e
N
1186 kfree(plug);
1187}
1188
689389a0
N
1189static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1190{
1191 r1_bio->master_bio = bio;
1192 r1_bio->sectors = bio_sectors(bio);
1193 r1_bio->state = 0;
1194 r1_bio->mddev = mddev;
1195 r1_bio->sector = bio->bi_iter.bi_sector;
1196}
1197
fd76863e 1198static inline struct r1bio *
689389a0 1199alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1200{
1201 struct r1conf *conf = mddev->private;
1202 struct r1bio *r1_bio;
1203
afeee514 1204 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
689389a0
N
1205 /* Ensure no bio records IO_BLOCKED */
1206 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1207 init_r1bio(r1_bio, mddev, bio);
fd76863e 1208 return r1_bio;
1209}
1210
c230e7e5 1211static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1212 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1213{
e8096360 1214 struct r1conf *conf = mddev->private;
0eaf822c 1215 struct raid1_info *mirror;
1da177e4 1216 struct bio *read_bio;
3b046a97 1217 struct bitmap *bitmap = mddev->bitmap;
3c5e514d
BVA
1218 const enum req_op op = bio_op(bio);
1219 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
3b046a97
RL
1220 int max_sectors;
1221 int rdisk;
9b8ae7b9 1222 bool r1bio_existed = !!r1_bio;
689389a0 1223 char b[BDEVNAME_SIZE];
3b046a97 1224
fd76863e 1225 /*
689389a0
N
1226 * If r1_bio is set, we are blocking the raid1d thread
1227 * so there is a tiny risk of deadlock. So ask for
1228 * emergency memory if needed.
fd76863e 1229 */
689389a0 1230 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1231
9b8ae7b9 1232 if (r1bio_existed) {
689389a0 1233 /* Need to get the block device name carefully */
2d32777d
YK
1234 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1235
689389a0 1236 if (rdev)
900d156b 1237 snprintf(b, sizeof(b), "%pg", rdev->bdev);
689389a0
N
1238 else
1239 strcpy(b, "???");
689389a0 1240 }
3b046a97 1241
fd76863e 1242 /*
fd76863e 1243 * Still need barrier for READ in case that whole
1244 * array is frozen.
fd76863e 1245 */
5aa70503
VV
1246 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1247 bio->bi_opf & REQ_NOWAIT)) {
1248 bio_wouldblock_error(bio);
1249 return;
1250 }
fd76863e 1251
689389a0
N
1252 if (!r1_bio)
1253 r1_bio = alloc_r1bio(mddev, bio);
1254 else
1255 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1256 r1_bio->sectors = max_read_sectors;
fd76863e 1257
1258 /*
1259 * make_request() can abort the operation when read-ahead is being
1260 * used and no empty request is available.
1261 */
3b046a97
RL
1262 rdisk = read_balance(conf, r1_bio, &max_sectors);
1263
1264 if (rdisk < 0) {
1265 /* couldn't find anywhere to read from */
9b8ae7b9 1266 if (r1bio_existed) {
689389a0
N
1267 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1268 mdname(mddev),
1269 b,
1270 (unsigned long long)r1_bio->sector);
1271 }
3b046a97
RL
1272 raid_end_bio_io(r1_bio);
1273 return;
1274 }
1275 mirror = conf->mirrors + rdisk;
1276
9b8ae7b9 1277 if (r1bio_existed)
913cce5a 1278 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
689389a0
N
1279 mdname(mddev),
1280 (unsigned long long)r1_bio->sector,
913cce5a 1281 mirror->rdev->bdev);
689389a0 1282
3b046a97
RL
1283 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1284 bitmap) {
1285 /*
1286 * Reading from a write-mostly device must take care not to
1287 * over-take any writes that are 'behind'
1288 */
1289 raid1_log(mddev, "wait behind writes");
1290 wait_event(bitmap->behind_wait,
1291 atomic_read(&bitmap->behind_writes) == 0);
1292 }
c230e7e5
N
1293
1294 if (max_sectors < bio_sectors(bio)) {
1295 struct bio *split = bio_split(bio, max_sectors,
afeee514 1296 gfp, &conf->bio_split);
c230e7e5 1297 bio_chain(split, bio);
ed00aabd 1298 submit_bio_noacct(bio);
c230e7e5
N
1299 bio = split;
1300 r1_bio->master_bio = bio;
1301 r1_bio->sectors = max_sectors;
1302 }
1303
3b046a97 1304 r1_bio->read_disk = rdisk;
bb2a9ace
YK
1305 if (!r1bio_existed) {
1306 md_account_bio(mddev, &bio);
1307 r1_bio->master_bio = bio;
1308 }
abfc426d
CH
1309 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1310 &mddev->bio_set);
3b046a97
RL
1311
1312 r1_bio->bios[rdisk] = read_bio;
1313
1314 read_bio->bi_iter.bi_sector = r1_bio->sector +
1315 mirror->rdev->data_offset;
3b046a97 1316 read_bio->bi_end_io = raid1_end_read_request;
c34b7ac6 1317 read_bio->bi_opf = op | do_sync;
3b046a97
RL
1318 if (test_bit(FailFast, &mirror->rdev->flags) &&
1319 test_bit(R1BIO_FailFast, &r1_bio->state))
1320 read_bio->bi_opf |= MD_FAILFAST;
1321 read_bio->bi_private = r1_bio;
1322
1323 if (mddev->gendisk)
1c02fca6
CH
1324 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1325 r1_bio->sector);
3b046a97 1326
ed00aabd 1327 submit_bio_noacct(read_bio);
3b046a97
RL
1328}
1329
c230e7e5
N
1330static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1331 int max_write_sectors)
3b046a97
RL
1332{
1333 struct r1conf *conf = mddev->private;
fd76863e 1334 struct r1bio *r1_bio;
1f68f0c4 1335 int i, disks;
3b046a97 1336 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1337 unsigned long flags;
3cb03002 1338 struct md_rdev *blocked_rdev;
1f68f0c4 1339 int first_clone;
1f68f0c4 1340 int max_sectors;
6607cd31 1341 bool write_behind = false;
9e55a22f 1342 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
191ea9b2 1343
b3143b9a 1344 if (mddev_is_clustered(mddev) &&
90382ed9 1345 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1346 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1347
6eef4b21 1348 DEFINE_WAIT(w);
5aa70503
VV
1349 if (bio->bi_opf & REQ_NOWAIT) {
1350 bio_wouldblock_error(bio);
1351 return;
1352 }
6eef4b21 1353 for (;;) {
6eef4b21 1354 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1355 &w, TASK_IDLE);
f81f7302 1356 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1357 bio->bi_iter.bi_sector,
b3143b9a 1358 bio_end_sector(bio)))
6eef4b21
N
1359 break;
1360 schedule();
1361 }
1362 finish_wait(&conf->wait_barrier, &w);
1363 }
f81f7302
GJ
1364
1365 /*
1366 * Register the new request and wait if the reconstruction
1367 * thread has put up a bar for new requests.
1368 * Continue immediately if no resync is active currently.
1369 */
5aa70503
VV
1370 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1371 bio->bi_opf & REQ_NOWAIT)) {
1372 bio_wouldblock_error(bio);
1373 return;
1374 }
fd76863e 1375
992db13a 1376 retry_write:
689389a0 1377 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1378 r1_bio->sectors = max_write_sectors;
1da177e4 1379
1f68f0c4 1380 /* first select target devices under rcu_lock and
1da177e4
LT
1381 * inc refcount on their rdev. Record them by setting
1382 * bios[x] to bio
1f68f0c4
N
1383 * If there are known/acknowledged bad blocks on any device on
1384 * which we have seen a write error, we want to avoid writing those
1385 * blocks.
1386 * This potentially requires several writes to write around
1387 * the bad blocks. Each set of writes gets it's own r1bio
1388 * with a set of bios attached.
1da177e4 1389 */
c3b328ac 1390
8f19ccb2 1391 disks = conf->raid_disks * 2;
6bfe0b49 1392 blocked_rdev = NULL;
1f68f0c4 1393 max_sectors = r1_bio->sectors;
1da177e4 1394 for (i = 0; i < disks; i++) {
2d32777d 1395 struct md_rdev *rdev = conf->mirrors[i].rdev;
6607cd31
GJ
1396
1397 /*
1398 * The write-behind io is only attempted on drives marked as
1399 * write-mostly, which means we could allocate write behind
1400 * bio later.
1401 */
9e55a22f 1402 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
6607cd31
GJ
1403 write_behind = true;
1404
6bfe0b49
DW
1405 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1406 atomic_inc(&rdev->nr_pending);
1407 blocked_rdev = rdev;
1408 break;
1409 }
1f68f0c4 1410 r1_bio->bios[i] = NULL;
8ae12666 1411 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1412 if (i < conf->raid_disks)
1413 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1414 continue;
1415 }
1416
1417 atomic_inc(&rdev->nr_pending);
1418 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1419 sector_t first_bad;
1420 int bad_sectors;
1421 int is_bad;
1422
3b046a97 1423 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1424 &first_bad, &bad_sectors);
1425 if (is_bad < 0) {
1426 /* mustn't write here until the bad block is
1427 * acknowledged*/
1428 set_bit(BlockedBadBlocks, &rdev->flags);
1429 blocked_rdev = rdev;
1430 break;
1431 }
1432 if (is_bad && first_bad <= r1_bio->sector) {
1433 /* Cannot write here at all */
1434 bad_sectors -= (r1_bio->sector - first_bad);
1435 if (bad_sectors < max_sectors)
1436 /* mustn't write more than bad_sectors
1437 * to other devices yet
1438 */
1439 max_sectors = bad_sectors;
03c902e1 1440 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1441 /* We don't set R1BIO_Degraded as that
1442 * only applies if the disk is
1443 * missing, so it might be re-added,
1444 * and we want to know to recover this
1445 * chunk.
1446 * In this case the device is here,
1447 * and the fact that this chunk is not
1448 * in-sync is recorded in the bad
1449 * block log
1450 */
1451 continue;
964147d5 1452 }
1f68f0c4
N
1453 if (is_bad) {
1454 int good_sectors = first_bad - r1_bio->sector;
1455 if (good_sectors < max_sectors)
1456 max_sectors = good_sectors;
1457 }
1458 }
1459 r1_bio->bios[i] = bio;
1da177e4 1460 }
1da177e4 1461
6bfe0b49
DW
1462 if (unlikely(blocked_rdev)) {
1463 /* Wait for this device to become unblocked */
1464 int j;
1465
1466 for (j = 0; j < i; j++)
1467 if (r1_bio->bios[j])
1468 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
992db13a 1469 free_r1bio(r1_bio);
fd76863e 1470 allow_barrier(conf, bio->bi_iter.bi_sector);
5aa70503
VV
1471
1472 if (bio->bi_opf & REQ_NOWAIT) {
1473 bio_wouldblock_error(bio);
1474 return;
1475 }
578b54ad 1476 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1477 md_wait_for_blocked_rdev(blocked_rdev, mddev);
5aa70503 1478 wait_barrier(conf, bio->bi_iter.bi_sector, false);
6bfe0b49
DW
1479 goto retry_write;
1480 }
1481
6607cd31
GJ
1482 /*
1483 * When using a bitmap, we may call alloc_behind_master_bio below.
1484 * alloc_behind_master_bio allocates a copy of the data payload a page
1485 * at a time and thus needs a new bio that can fit the whole payload
1486 * this bio in page sized chunks.
1487 */
1488 if (write_behind && bitmap)
1489 max_sectors = min_t(int, max_sectors,
1490 BIO_MAX_VECS * (PAGE_SIZE >> 9));
c230e7e5
N
1491 if (max_sectors < bio_sectors(bio)) {
1492 struct bio *split = bio_split(bio, max_sectors,
afeee514 1493 GFP_NOIO, &conf->bio_split);
c230e7e5 1494 bio_chain(split, bio);
ed00aabd 1495 submit_bio_noacct(bio);
c230e7e5
N
1496 bio = split;
1497 r1_bio->master_bio = bio;
1f68f0c4 1498 r1_bio->sectors = max_sectors;
191ea9b2 1499 }
4b6d287f 1500
bb2a9ace
YK
1501 md_account_bio(mddev, &bio);
1502 r1_bio->master_bio = bio;
4e78064f 1503 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1504 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1505
1f68f0c4 1506 first_clone = 1;
d8c84c4f 1507
1da177e4 1508 for (i = 0; i < disks; i++) {
8e58e327 1509 struct bio *mbio = NULL;
69df9cfc 1510 struct md_rdev *rdev = conf->mirrors[i].rdev;
1da177e4
LT
1511 if (!r1_bio->bios[i])
1512 continue;
1513
46669e86 1514 if (first_clone) {
1f68f0c4
N
1515 /* do behind I/O ?
1516 * Not if there are too many, or cannot
1517 * allocate memory, or a reader on WriteMostly
1518 * is waiting for behind writes to flush */
6b2460e6 1519 if (bitmap && write_behind &&
1f68f0c4
N
1520 (atomic_read(&bitmap->behind_writes)
1521 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1522 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1523 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1524 }
1f68f0c4 1525
e64e4018
AS
1526 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1527 test_bit(R1BIO_BehindIO, &r1_bio->state));
1f68f0c4
N
1528 first_clone = 0;
1529 }
8e58e327 1530
841c1316 1531 if (r1_bio->behind_master_bio) {
abfc426d
CH
1532 mbio = bio_alloc_clone(rdev->bdev,
1533 r1_bio->behind_master_bio,
1534 GFP_NOIO, &mddev->bio_set);
69df9cfc 1535 if (test_bit(CollisionCheck, &rdev->flags))
d0d2d8ba 1536 wait_for_serialization(rdev, r1_bio);
3e148a32 1537 if (test_bit(WriteMostly, &rdev->flags))
4b6d287f 1538 atomic_inc(&r1_bio->behind_remaining);
abfc426d
CH
1539 } else {
1540 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1541 &mddev->bio_set);
1542
1543 if (mddev->serialize_policy)
1544 wait_for_serialization(rdev, r1_bio);
1545 }
4b6d287f 1546
1f68f0c4
N
1547 r1_bio->bios[i] = mbio;
1548
2e94275e 1549 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1f68f0c4 1550 mbio->bi_end_io = raid1_end_write_request;
a682e003 1551 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
2e94275e
GJ
1552 if (test_bit(FailFast, &rdev->flags) &&
1553 !test_bit(WriteMostly, &rdev->flags) &&
212e7eb7
N
1554 conf->raid_disks - mddev->degraded > 1)
1555 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1556 mbio->bi_private = r1_bio;
1557
1da177e4 1558 atomic_inc(&r1_bio->remaining);
f54a9d0e 1559
109e3765 1560 if (mddev->gendisk)
1c02fca6 1561 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
109e3765
N
1562 r1_bio->sector);
1563 /* flush_pending_writes() needs access to the rdev so...*/
2e94275e 1564 mbio->bi_bdev = (void *)rdev;
460af1f9 1565 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
23b245c0 1566 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e 1567 bio_list_add(&conf->pending_bio_list, mbio);
23b245c0 1568 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1569 md_wakeup_thread(mddev->thread);
23b245c0 1570 }
1da177e4 1571 }
1f68f0c4 1572
079fa166
N
1573 r1_bio_write_done(r1_bio);
1574
1575 /* In case raid1d snuck in to freeze_array */
21bd9a68 1576 wake_up_barrier(conf);
1da177e4
LT
1577}
1578
cc27b0c7 1579static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1580{
fd76863e 1581 sector_t sectors;
3b046a97 1582
775d7831
DJ
1583 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1584 && md_flush_request(mddev, bio))
cc27b0c7 1585 return true;
3b046a97 1586
c230e7e5
N
1587 /*
1588 * There is a limit to the maximum size, but
1589 * the read/write handler might find a lower limit
1590 * due to bad blocks. To avoid multiple splits,
1591 * we pass the maximum number of sectors down
1592 * and let the lower level perform the split.
1593 */
1594 sectors = align_to_barrier_unit_end(
1595 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1596
c230e7e5 1597 if (bio_data_dir(bio) == READ)
689389a0 1598 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1599 else {
1600 if (!md_write_start(mddev,bio))
1601 return false;
c230e7e5 1602 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1603 }
1604 return true;
3b046a97
RL
1605}
1606
849674e4 1607static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1608{
e8096360 1609 struct r1conf *conf = mddev->private;
1da177e4
LT
1610 int i;
1611
2d32777d
YK
1612 lockdep_assert_held(&mddev->lock);
1613
1da177e4 1614 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1615 conf->raid_disks - mddev->degraded);
ddac7c7e 1616 for (i = 0; i < conf->raid_disks; i++) {
2d32777d
YK
1617 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1618
1da177e4 1619 seq_printf(seq, "%s",
ddac7c7e
N
1620 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1621 }
1da177e4
LT
1622 seq_printf(seq, "]");
1623}
1624
9631abdb
MT
1625/**
1626 * raid1_error() - RAID1 error handler.
1627 * @mddev: affected md device.
1628 * @rdev: member device to fail.
1629 *
1630 * The routine acknowledges &rdev failure and determines new @mddev state.
1631 * If it failed, then:
1632 * - &MD_BROKEN flag is set in &mddev->flags.
1633 * - recovery is disabled.
1634 * Otherwise, it must be degraded:
1635 * - recovery is interrupted.
1636 * - &mddev->degraded is bumped.
1637 *
1638 * @rdev is marked as &Faulty excluding case when array is failed and
1639 * &mddev->fail_last_dev is off.
1640 */
849674e4 1641static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1642{
e8096360 1643 struct r1conf *conf = mddev->private;
423f04d6 1644 unsigned long flags;
1da177e4 1645
2e52d449 1646 spin_lock_irqsave(&conf->device_lock, flags);
9631abdb
MT
1647
1648 if (test_bit(In_sync, &rdev->flags) &&
1649 (conf->raid_disks - mddev->degraded) == 1) {
1650 set_bit(MD_BROKEN, &mddev->flags);
1651
1652 if (!mddev->fail_last_dev) {
1653 conf->recovery_disabled = mddev->recovery_disabled;
1654 spin_unlock_irqrestore(&conf->device_lock, flags);
1655 return;
1656 }
4044ba58 1657 }
de393cde 1658 set_bit(Blocked, &rdev->flags);
ebda52fa 1659 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1660 mddev->degraded++;
ebda52fa 1661 set_bit(Faulty, &rdev->flags);
423f04d6 1662 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1663 /*
1664 * if recovery is running, make sure it aborts.
1665 */
1666 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1667 set_mask_bits(&mddev->sb_flags, 0,
1668 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
913cce5a 1669 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1d41c216 1670 "md/raid1:%s: Operation continuing on %d devices.\n",
913cce5a 1671 mdname(mddev), rdev->bdev,
1d41c216 1672 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1673}
1674
e8096360 1675static void print_conf(struct r1conf *conf)
1da177e4
LT
1676{
1677 int i;
1da177e4 1678
1d41c216 1679 pr_debug("RAID1 conf printout:\n");
1da177e4 1680 if (!conf) {
1d41c216 1681 pr_debug("(!conf)\n");
1da177e4
LT
1682 return;
1683 }
1d41c216
N
1684 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1685 conf->raid_disks);
1da177e4 1686
2d32777d 1687 lockdep_assert_held(&conf->mddev->reconfig_mutex);
1da177e4 1688 for (i = 0; i < conf->raid_disks; i++) {
2d32777d 1689 struct md_rdev *rdev = conf->mirrors[i].rdev;
ddac7c7e 1690 if (rdev)
913cce5a 1691 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1d41c216
N
1692 i, !test_bit(In_sync, &rdev->flags),
1693 !test_bit(Faulty, &rdev->flags),
913cce5a 1694 rdev->bdev);
1da177e4
LT
1695 }
1696}
1697
e8096360 1698static void close_sync(struct r1conf *conf)
1da177e4 1699{
f6eca2d4
ND
1700 int idx;
1701
1702 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
5aa70503 1703 _wait_barrier(conf, idx, false);
f6eca2d4
ND
1704 _allow_barrier(conf, idx);
1705 }
1da177e4 1706
afeee514 1707 mempool_exit(&conf->r1buf_pool);
1da177e4
LT
1708}
1709
fd01b88c 1710static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1711{
1712 int i;
e8096360 1713 struct r1conf *conf = mddev->private;
6b965620
N
1714 int count = 0;
1715 unsigned long flags;
1da177e4
LT
1716
1717 /*
f72ffdd6 1718 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1719 * and mark them readable.
1720 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1721 * device_lock used to avoid races with raid1_end_read_request
1722 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1723 */
423f04d6 1724 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1725 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1726 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1727 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1728 if (repl
1aee41f6 1729 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1730 && repl->recovery_offset == MaxSector
1731 && !test_bit(Faulty, &repl->flags)
1732 && !test_and_set_bit(In_sync, &repl->flags)) {
1733 /* replacement has just become active */
1734 if (!rdev ||
1735 !test_and_clear_bit(In_sync, &rdev->flags))
1736 count++;
1737 if (rdev) {
1738 /* Replaced device not technically
1739 * faulty, but we need to be sure
1740 * it gets removed and never re-added
1741 */
1742 set_bit(Faulty, &rdev->flags);
1743 sysfs_notify_dirent_safe(
1744 rdev->sysfs_state);
1745 }
1746 }
ddac7c7e 1747 if (rdev
61e4947c 1748 && rdev->recovery_offset == MaxSector
ddac7c7e 1749 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1750 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1751 count++;
654e8b5a 1752 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1753 }
1754 }
6b965620
N
1755 mddev->degraded -= count;
1756 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1757
1758 print_conf(conf);
6b965620 1759 return count;
1da177e4
LT
1760}
1761
fd01b88c 1762static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1763{
e8096360 1764 struct r1conf *conf = mddev->private;
199050ea 1765 int err = -EEXIST;
ffb1e7a0 1766 int mirror = 0, repl_slot = -1;
0eaf822c 1767 struct raid1_info *p;
6c2fce2e 1768 int first = 0;
30194636 1769 int last = conf->raid_disks - 1;
1da177e4 1770
5389042f
N
1771 if (mddev->recovery_disabled == conf->recovery_disabled)
1772 return -EBUSY;
1773
1501efad
DW
1774 if (md_integrity_add_rdev(rdev, mddev))
1775 return -ENXIO;
1776
6c2fce2e
NB
1777 if (rdev->raid_disk >= 0)
1778 first = last = rdev->raid_disk;
1779
70bcecdb
GR
1780 /*
1781 * find the disk ... but prefer rdev->saved_raid_disk
1782 * if possible.
1783 */
1784 if (rdev->saved_raid_disk >= 0 &&
1785 rdev->saved_raid_disk >= first &&
9e753ba9 1786 rdev->saved_raid_disk < conf->raid_disks &&
70bcecdb
GR
1787 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1788 first = last = rdev->saved_raid_disk;
1789
7ef449d1 1790 for (mirror = first; mirror <= last; mirror++) {
ebfeb444 1791 p = conf->mirrors + mirror;
7ef449d1 1792 if (!p->rdev) {
9092c02d
JB
1793 if (mddev->gendisk)
1794 disk_stack_limits(mddev->gendisk, rdev->bdev,
1795 rdev->data_offset << 9);
1da177e4
LT
1796
1797 p->head_position = 0;
1798 rdev->raid_disk = mirror;
199050ea 1799 err = 0;
6aea114a
N
1800 /* As all devices are equivalent, we don't need a full recovery
1801 * if this was recently any drive of the array
1802 */
1803 if (rdev->saved_raid_disk < 0)
41158c7e 1804 conf->fullsync = 1;
2d32777d 1805 WRITE_ONCE(p->rdev, rdev);
1da177e4
LT
1806 break;
1807 }
7ef449d1 1808 if (test_bit(WantReplacement, &p->rdev->flags) &&
ffb1e7a0
LN
1809 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1810 repl_slot = mirror;
7ef449d1 1811 }
ffb1e7a0
LN
1812
1813 if (err && repl_slot >= 0) {
1814 /* Add this device as a replacement */
1815 p = conf->mirrors + repl_slot;
1816 clear_bit(In_sync, &rdev->flags);
1817 set_bit(Replacement, &rdev->flags);
1818 rdev->raid_disk = repl_slot;
1819 err = 0;
1820 conf->fullsync = 1;
2d32777d 1821 WRITE_ONCE(p[conf->raid_disks].rdev, rdev);
ffb1e7a0
LN
1822 }
1823
1da177e4 1824 print_conf(conf);
199050ea 1825 return err;
1da177e4
LT
1826}
1827
b8321b68 1828static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1829{
e8096360 1830 struct r1conf *conf = mddev->private;
1da177e4 1831 int err = 0;
b8321b68 1832 int number = rdev->raid_disk;
df203da4 1833 struct raid1_info *p = conf->mirrors + number;
8b0472b5
ZS
1834
1835 if (unlikely(number >= conf->raid_disks))
1836 goto abort;
1837
b014f14c
N
1838 if (rdev != p->rdev)
1839 p = conf->mirrors + conf->raid_disks + number;
1840
1da177e4 1841 print_conf(conf);
b8321b68 1842 if (rdev == p->rdev) {
b2d444d7 1843 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1844 atomic_read(&rdev->nr_pending)) {
1845 err = -EBUSY;
1846 goto abort;
1847 }
046abeed 1848 /* Only remove non-faulty devices if recovery
dfc70645
N
1849 * is not possible.
1850 */
1851 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1852 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1853 mddev->degraded < conf->raid_disks) {
1854 err = -EBUSY;
1855 goto abort;
1856 }
2d32777d 1857 WRITE_ONCE(p->rdev, NULL);
d787be40 1858 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1859 /* We just removed a device that is being replaced.
1860 * Move down the replacement. We drain all IO before
1861 * doing this to avoid confusion.
1862 */
1863 struct md_rdev *repl =
1864 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1865 freeze_array(conf, 0);
3de59bb9
YY
1866 if (atomic_read(&repl->nr_pending)) {
1867 /* It means that some queued IO of retry_list
1868 * hold repl. Thus, we cannot set replacement
1869 * as NULL, avoiding rdev NULL pointer
1870 * dereference in sync_request_write and
1871 * handle_write_finished.
1872 */
1873 err = -EBUSY;
1874 unfreeze_array(conf);
1875 goto abort;
1876 }
8c7a2c2b 1877 clear_bit(Replacement, &repl->flags);
2d32777d 1878 WRITE_ONCE(p->rdev, repl);
8c7a2c2b 1879 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1880 unfreeze_array(conf);
e5bc9c3c
GJ
1881 }
1882
1883 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1884 err = md_integrity_register(mddev);
1da177e4
LT
1885 }
1886abort:
1887
1888 print_conf(conf);
1889 return err;
1890}
1891
4246a0b6 1892static void end_sync_read(struct bio *bio)
1da177e4 1893{
98d30c58 1894 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1895
0fc280f6 1896 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1897
1da177e4
LT
1898 /*
1899 * we have read a block, now it needs to be re-written,
1900 * or re-read if the read failed.
1901 * We don't do much here, just schedule handling by raid1d
1902 */
4e4cbee9 1903 if (!bio->bi_status)
1da177e4 1904 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1905
1906 if (atomic_dec_and_test(&r1_bio->remaining))
1907 reschedule_retry(r1_bio);
1da177e4
LT
1908}
1909
dfcc34c9
ND
1910static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1911{
1912 sector_t sync_blocks = 0;
1913 sector_t s = r1_bio->sector;
1914 long sectors_to_go = r1_bio->sectors;
1915
1916 /* make sure these bits don't get cleared. */
1917 do {
1918 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1919 s += sync_blocks;
1920 sectors_to_go -= sync_blocks;
1921 } while (sectors_to_go > 0);
1922}
1923
449808a2
HT
1924static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1925{
1926 if (atomic_dec_and_test(&r1_bio->remaining)) {
1927 struct mddev *mddev = r1_bio->mddev;
1928 int s = r1_bio->sectors;
1929
1930 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1931 test_bit(R1BIO_WriteError, &r1_bio->state))
1932 reschedule_retry(r1_bio);
1933 else {
1934 put_buf(r1_bio);
1935 md_done_sync(mddev, s, uptodate);
1936 }
1937 }
1938}
1939
4246a0b6 1940static void end_sync_write(struct bio *bio)
1da177e4 1941{
4e4cbee9 1942 int uptodate = !bio->bi_status;
98d30c58 1943 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1944 struct mddev *mddev = r1_bio->mddev;
e8096360 1945 struct r1conf *conf = mddev->private;
4367af55
N
1946 sector_t first_bad;
1947 int bad_sectors;
854abd75 1948 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1949
6b1117d5 1950 if (!uptodate) {
dfcc34c9 1951 abort_sync_write(mddev, r1_bio);
854abd75
N
1952 set_bit(WriteErrorSeen, &rdev->flags);
1953 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1954 set_bit(MD_RECOVERY_NEEDED, &
1955 mddev->recovery);
d8f05d29 1956 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1957 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1958 &first_bad, &bad_sectors) &&
1959 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1960 r1_bio->sector,
1961 r1_bio->sectors,
1962 &first_bad, &bad_sectors)
1963 )
4367af55 1964 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1965
449808a2 1966 put_sync_write_buf(r1_bio, uptodate);
1da177e4
LT
1967}
1968
3cb03002 1969static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
4ce4c73f 1970 int sectors, struct page *page, int rw)
d8f05d29 1971{
4ce4c73f 1972 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
d8f05d29
N
1973 /* success */
1974 return 1;
19d67169 1975 if (rw == WRITE) {
d8f05d29 1976 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1977 if (!test_and_set_bit(WantReplacement,
1978 &rdev->flags))
1979 set_bit(MD_RECOVERY_NEEDED, &
1980 rdev->mddev->recovery);
1981 }
d8f05d29
N
1982 /* need to record an error - either for the block or the device */
1983 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1984 md_error(rdev->mddev, rdev);
1985 return 0;
1986}
1987
9f2c9d12 1988static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1989{
a68e5870
N
1990 /* Try some synchronous reads of other devices to get
1991 * good data, much like with normal read errors. Only
1992 * read into the pages we already have so we don't
1993 * need to re-issue the read request.
1994 * We don't need to freeze the array, because being in an
1995 * active sync request, there is no normal IO, and
1996 * no overlapping syncs.
06f60385
N
1997 * We don't need to check is_badblock() again as we
1998 * made sure that anything with a bad block in range
1999 * will have bi_end_io clear.
a68e5870 2000 */
fd01b88c 2001 struct mddev *mddev = r1_bio->mddev;
e8096360 2002 struct r1conf *conf = mddev->private;
a68e5870 2003 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 2004 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
2005 sector_t sect = r1_bio->sector;
2006 int sectors = r1_bio->sectors;
2007 int idx = 0;
2e52d449
N
2008 struct md_rdev *rdev;
2009
2010 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2011 if (test_bit(FailFast, &rdev->flags)) {
2012 /* Don't try recovering from here - just fail it
2013 * ... unless it is the last working device of course */
2014 md_error(mddev, rdev);
2015 if (test_bit(Faulty, &rdev->flags))
2016 /* Don't try to read from here, but make sure
2017 * put_buf does it's thing
2018 */
2019 bio->bi_end_io = end_sync_write;
2020 }
a68e5870
N
2021
2022 while(sectors) {
2023 int s = sectors;
2024 int d = r1_bio->read_disk;
2025 int success = 0;
78d7f5f7 2026 int start;
a68e5870
N
2027
2028 if (s > (PAGE_SIZE>>9))
2029 s = PAGE_SIZE >> 9;
2030 do {
2031 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2032 /* No rcu protection needed here devices
2033 * can only be removed when no resync is
2034 * active, and resync is currently active
2035 */
2036 rdev = conf->mirrors[d].rdev;
9d3d8011 2037 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 2038 pages[idx],
4ce4c73f 2039 REQ_OP_READ, false)) {
a68e5870
N
2040 success = 1;
2041 break;
2042 }
2043 }
2044 d++;
8f19ccb2 2045 if (d == conf->raid_disks * 2)
a68e5870
N
2046 d = 0;
2047 } while (!success && d != r1_bio->read_disk);
2048
78d7f5f7 2049 if (!success) {
3a9f28a5
N
2050 int abort = 0;
2051 /* Cannot read from anywhere, this block is lost.
2052 * Record a bad block on each device. If that doesn't
2053 * work just disable and interrupt the recovery.
2054 * Don't fail devices as that won't really help.
2055 */
ac483eb3
CH
2056 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2057 mdname(mddev), bio->bi_bdev,
1d41c216 2058 (unsigned long long)r1_bio->sector);
8f19ccb2 2059 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
2060 rdev = conf->mirrors[d].rdev;
2061 if (!rdev || test_bit(Faulty, &rdev->flags))
2062 continue;
2063 if (!rdev_set_badblocks(rdev, sect, s, 0))
2064 abort = 1;
2065 }
2066 if (abort) {
d890fa2b
N
2067 conf->recovery_disabled =
2068 mddev->recovery_disabled;
3a9f28a5
N
2069 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2070 md_done_sync(mddev, r1_bio->sectors, 0);
2071 put_buf(r1_bio);
2072 return 0;
2073 }
2074 /* Try next page */
2075 sectors -= s;
2076 sect += s;
2077 idx++;
2078 continue;
d11c171e 2079 }
78d7f5f7
N
2080
2081 start = d;
2082 /* write it back and re-read */
2083 while (d != r1_bio->read_disk) {
2084 if (d == 0)
8f19ccb2 2085 d = conf->raid_disks * 2;
78d7f5f7
N
2086 d--;
2087 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2088 continue;
2089 rdev = conf->mirrors[d].rdev;
d8f05d29 2090 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2091 pages[idx],
d8f05d29 2092 WRITE) == 0) {
78d7f5f7
N
2093 r1_bio->bios[d]->bi_end_io = NULL;
2094 rdev_dec_pending(rdev, mddev);
9d3d8011 2095 }
78d7f5f7
N
2096 }
2097 d = start;
2098 while (d != r1_bio->read_disk) {
2099 if (d == 0)
8f19ccb2 2100 d = conf->raid_disks * 2;
78d7f5f7
N
2101 d--;
2102 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2103 continue;
2104 rdev = conf->mirrors[d].rdev;
d8f05d29 2105 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2106 pages[idx],
d8f05d29 2107 READ) != 0)
9d3d8011 2108 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2109 }
a68e5870
N
2110 sectors -= s;
2111 sect += s;
2112 idx ++;
2113 }
78d7f5f7 2114 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2115 bio->bi_status = 0;
a68e5870
N
2116 return 1;
2117}
2118
c95e6385 2119static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2120{
2121 /* We have read all readable devices. If we haven't
2122 * got the block, then there is no hope left.
2123 * If we have, then we want to do a comparison
2124 * and skip the write if everything is the same.
2125 * If any blocks failed to read, then we need to
2126 * attempt an over-write
2127 */
fd01b88c 2128 struct mddev *mddev = r1_bio->mddev;
e8096360 2129 struct r1conf *conf = mddev->private;
a68e5870
N
2130 int primary;
2131 int i;
f4380a91 2132 int vcnt;
a68e5870 2133
30bc9b53
N
2134 /* Fix variable parts of all bios */
2135 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2136 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2137 blk_status_t status;
30bc9b53 2138 struct bio *b = r1_bio->bios[i];
98d30c58 2139 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2140 if (b->bi_end_io != end_sync_read)
2141 continue;
4246a0b6 2142 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2143 status = b->bi_status;
a7c50c94 2144 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
4e4cbee9 2145 b->bi_status = status;
4f024f37 2146 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2147 conf->mirrors[i].rdev->data_offset;
30bc9b53 2148 b->bi_end_io = end_sync_read;
98d30c58
ML
2149 rp->raid_bio = r1_bio;
2150 b->bi_private = rp;
30bc9b53 2151
fb0eb5df
ML
2152 /* initialize bvec table again */
2153 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2154 }
8f19ccb2 2155 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2156 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2157 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2158 r1_bio->bios[primary]->bi_end_io = NULL;
2159 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2160 break;
2161 }
2162 r1_bio->read_disk = primary;
8f19ccb2 2163 for (i = 0; i < conf->raid_disks * 2; i++) {
2b070cfe 2164 int j = 0;
78d7f5f7
N
2165 struct bio *pbio = r1_bio->bios[primary];
2166 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2167 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2168 struct page **ppages = get_resync_pages(pbio)->pages;
2169 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2170 struct bio_vec *bi;
8fc04e6e 2171 int page_len[RESYNC_PAGES] = { 0 };
6dc4f100 2172 struct bvec_iter_all iter_all;
a68e5870 2173
2aabaa65 2174 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2175 continue;
4246a0b6 2176 /* Now we can 'fixup' the error value */
4e4cbee9 2177 sbio->bi_status = 0;
78d7f5f7 2178
2b070cfe
CH
2179 bio_for_each_segment_all(bi, sbio, iter_all)
2180 page_len[j++] = bi->bv_len;
60928a91 2181
4e4cbee9 2182 if (!status) {
78d7f5f7 2183 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2184 if (memcmp(page_address(ppages[j]),
2185 page_address(spages[j]),
60928a91 2186 page_len[j]))
78d7f5f7 2187 break;
69382e85 2188 }
78d7f5f7
N
2189 } else
2190 j = 0;
2191 if (j >= 0)
7f7583d4 2192 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2193 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2194 && !status)) {
78d7f5f7
N
2195 /* No need to write to this device. */
2196 sbio->bi_end_io = NULL;
2197 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2198 continue;
2199 }
d3b45c2a
KO
2200
2201 bio_copy_data(sbio, pbio);
78d7f5f7 2202 }
a68e5870
N
2203}
2204
9f2c9d12 2205static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2206{
e8096360 2207 struct r1conf *conf = mddev->private;
a68e5870 2208 int i;
8f19ccb2 2209 int disks = conf->raid_disks * 2;
037d2ff6 2210 struct bio *wbio;
a68e5870 2211
a68e5870
N
2212 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2213 /* ouch - failed to read all of that. */
2214 if (!fix_sync_read_error(r1_bio))
2215 return;
7ca78d57
N
2216
2217 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2218 process_checks(r1_bio);
2219
d11c171e
N
2220 /*
2221 * schedule writes
2222 */
1da177e4
LT
2223 atomic_set(&r1_bio->remaining, 1);
2224 for (i = 0; i < disks ; i++) {
2225 wbio = r1_bio->bios[i];
3e198f78
N
2226 if (wbio->bi_end_io == NULL ||
2227 (wbio->bi_end_io == end_sync_read &&
2228 (i == r1_bio->read_disk ||
2229 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2230 continue;
dfcc34c9
ND
2231 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2232 abort_sync_write(mddev, r1_bio);
0c9d5b12 2233 continue;
dfcc34c9 2234 }
1da177e4 2235
c34b7ac6 2236 wbio->bi_opf = REQ_OP_WRITE;
212e7eb7
N
2237 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2238 wbio->bi_opf |= MD_FAILFAST;
2239
3e198f78 2240 wbio->bi_end_io = end_sync_write;
1da177e4 2241 atomic_inc(&r1_bio->remaining);
aa8b57aa 2242 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2243
ed00aabd 2244 submit_bio_noacct(wbio);
1da177e4
LT
2245 }
2246
449808a2 2247 put_sync_write_buf(r1_bio, 1);
1da177e4
LT
2248}
2249
2250/*
2251 * This is a kernel thread which:
2252 *
2253 * 1. Retries failed read operations on working mirrors.
2254 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2255 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2256 */
2257
e8096360 2258static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2259 sector_t sect, int sectors)
2260{
fd01b88c 2261 struct mddev *mddev = conf->mddev;
867868fb
N
2262 while(sectors) {
2263 int s = sectors;
2264 int d = read_disk;
2265 int success = 0;
2266 int start;
3cb03002 2267 struct md_rdev *rdev;
867868fb
N
2268
2269 if (s > (PAGE_SIZE>>9))
2270 s = PAGE_SIZE >> 9;
2271
2272 do {
d2eb35ac
N
2273 sector_t first_bad;
2274 int bad_sectors;
2275
2d32777d 2276 rdev = conf->mirrors[d].rdev;
867868fb 2277 if (rdev &&
da8840a7 2278 (test_bit(In_sync, &rdev->flags) ||
2279 (!test_bit(Faulty, &rdev->flags) &&
2280 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2281 is_badblock(rdev, sect, s,
707a6a42
N
2282 &first_bad, &bad_sectors) == 0) {
2283 atomic_inc(&rdev->nr_pending);
707a6a42 2284 if (sync_page_io(rdev, sect, s<<9,
4ce4c73f 2285 conf->tmppage, REQ_OP_READ, false))
707a6a42
N
2286 success = 1;
2287 rdev_dec_pending(rdev, mddev);
2288 if (success)
2289 break;
2d32777d
YK
2290 }
2291
707a6a42
N
2292 d++;
2293 if (d == conf->raid_disks * 2)
2294 d = 0;
02c67a3b 2295 } while (d != read_disk);
867868fb
N
2296
2297 if (!success) {
d8f05d29 2298 /* Cannot read from anywhere - mark it bad */
3cb03002 2299 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2300 if (!rdev_set_badblocks(rdev, sect, s, 0))
2301 md_error(mddev, rdev);
867868fb
N
2302 break;
2303 }
2304 /* write it back and re-read */
2305 start = d;
2306 while (d != read_disk) {
2307 if (d==0)
8f19ccb2 2308 d = conf->raid_disks * 2;
867868fb 2309 d--;
2d32777d 2310 rdev = conf->mirrors[d].rdev;
867868fb 2311 if (rdev &&
707a6a42
N
2312 !test_bit(Faulty, &rdev->flags)) {
2313 atomic_inc(&rdev->nr_pending);
d8f05d29
N
2314 r1_sync_page_io(rdev, sect, s,
2315 conf->tmppage, WRITE);
707a6a42 2316 rdev_dec_pending(rdev, mddev);
2d32777d 2317 }
867868fb
N
2318 }
2319 d = start;
2320 while (d != read_disk) {
867868fb 2321 if (d==0)
8f19ccb2 2322 d = conf->raid_disks * 2;
867868fb 2323 d--;
2d32777d 2324 rdev = conf->mirrors[d].rdev;
867868fb 2325 if (rdev &&
b8cb6b4c 2326 !test_bit(Faulty, &rdev->flags)) {
707a6a42 2327 atomic_inc(&rdev->nr_pending);
d8f05d29
N
2328 if (r1_sync_page_io(rdev, sect, s,
2329 conf->tmppage, READ)) {
867868fb 2330 atomic_add(s, &rdev->corrected_errors);
913cce5a 2331 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
1d41c216
N
2332 mdname(mddev), s,
2333 (unsigned long long)(sect +
2334 rdev->data_offset),
913cce5a 2335 rdev->bdev);
867868fb 2336 }
707a6a42 2337 rdev_dec_pending(rdev, mddev);
2d32777d 2338 }
867868fb
N
2339 }
2340 sectors -= s;
2341 sect += s;
2342 }
2343}
2344
9f2c9d12 2345static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2346{
fd01b88c 2347 struct mddev *mddev = r1_bio->mddev;
e8096360 2348 struct r1conf *conf = mddev->private;
3cb03002 2349 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2350
2351 /* bio has the data to be written to device 'i' where
2352 * we just recently had a write error.
2353 * We repeatedly clone the bio and trim down to one block,
2354 * then try the write. Where the write fails we record
2355 * a bad block.
2356 * It is conceivable that the bio doesn't exactly align with
2357 * blocks. We must handle this somehow.
2358 *
2359 * We currently own a reference on the rdev.
2360 */
2361
2362 int block_sectors;
2363 sector_t sector;
2364 int sectors;
2365 int sect_to_write = r1_bio->sectors;
2366 int ok = 1;
2367
2368 if (rdev->badblocks.shift < 0)
2369 return 0;
2370
ab713cdc
ND
2371 block_sectors = roundup(1 << rdev->badblocks.shift,
2372 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2373 sector = r1_bio->sector;
2374 sectors = ((sector + block_sectors)
2375 & ~(sector_t)(block_sectors - 1))
2376 - sector;
2377
cd5ff9a1
N
2378 while (sect_to_write) {
2379 struct bio *wbio;
2380 if (sectors > sect_to_write)
2381 sectors = sect_to_write;
2382 /* Write at 'sector' for 'sectors'*/
2383
b783863f 2384 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
abfc426d
CH
2385 wbio = bio_alloc_clone(rdev->bdev,
2386 r1_bio->behind_master_bio,
2387 GFP_NOIO, &mddev->bio_set);
b783863f 2388 } else {
abfc426d
CH
2389 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2390 GFP_NOIO, &mddev->bio_set);
b783863f
KO
2391 }
2392
c34b7ac6 2393 wbio->bi_opf = REQ_OP_WRITE;
4f024f37
KO
2394 wbio->bi_iter.bi_sector = r1_bio->sector;
2395 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2396
6678d83f 2397 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2398 wbio->bi_iter.bi_sector += rdev->data_offset;
4e49ea4a
MC
2399
2400 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2401 /* failure! */
2402 ok = rdev_set_badblocks(rdev, sector,
2403 sectors, 0)
2404 && ok;
2405
2406 bio_put(wbio);
2407 sect_to_write -= sectors;
2408 sector += sectors;
2409 sectors = block_sectors;
2410 }
2411 return ok;
2412}
2413
e8096360 2414static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2415{
2416 int m;
2417 int s = r1_bio->sectors;
8f19ccb2 2418 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2419 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2420 struct bio *bio = r1_bio->bios[m];
2421 if (bio->bi_end_io == NULL)
2422 continue;
4e4cbee9 2423 if (!bio->bi_status &&
62096bce 2424 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2425 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2426 }
4e4cbee9 2427 if (bio->bi_status &&
62096bce
N
2428 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2429 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2430 md_error(conf->mddev, rdev);
2431 }
2432 }
2433 put_buf(r1_bio);
2434 md_done_sync(conf->mddev, s, 1);
2435}
2436
e8096360 2437static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2438{
fd76863e 2439 int m, idx;
55ce74d4 2440 bool fail = false;
fd76863e 2441
8f19ccb2 2442 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2443 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2444 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2445 rdev_clear_badblocks(rdev,
2446 r1_bio->sector,
c6563a8c 2447 r1_bio->sectors, 0);
62096bce
N
2448 rdev_dec_pending(rdev, conf->mddev);
2449 } else if (r1_bio->bios[m] != NULL) {
2450 /* This drive got a write error. We need to
2451 * narrow down and record precise write
2452 * errors.
2453 */
55ce74d4 2454 fail = true;
62096bce
N
2455 if (!narrow_write_error(r1_bio, m)) {
2456 md_error(conf->mddev,
2457 conf->mirrors[m].rdev);
2458 /* an I/O failed, we can't clear the bitmap */
2459 set_bit(R1BIO_Degraded, &r1_bio->state);
2460 }
2461 rdev_dec_pending(conf->mirrors[m].rdev,
2462 conf->mddev);
2463 }
55ce74d4
N
2464 if (fail) {
2465 spin_lock_irq(&conf->device_lock);
2466 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2467 idx = sector_to_idx(r1_bio->sector);
824e47da 2468 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2469 spin_unlock_irq(&conf->device_lock);
824e47da 2470 /*
2471 * In case freeze_array() is waiting for condition
2472 * get_unqueued_pending() == extra to be true.
2473 */
2474 wake_up(&conf->wait_barrier);
55ce74d4 2475 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2476 } else {
2477 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2478 close_write(r1_bio);
55ce74d4 2479 raid_end_bio_io(r1_bio);
bd8688a1 2480 }
62096bce
N
2481}
2482
e8096360 2483static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2484{
fd01b88c 2485 struct mddev *mddev = conf->mddev;
62096bce 2486 struct bio *bio;
3cb03002 2487 struct md_rdev *rdev;
c069da44 2488 sector_t sector;
62096bce
N
2489
2490 clear_bit(R1BIO_ReadError, &r1_bio->state);
2491 /* we got a read error. Maybe the drive is bad. Maybe just
2492 * the block and we can fix it.
2493 * We freeze all other IO, and try reading the block from
2494 * other devices. When we find one, we re-write
2495 * and check it that fixes the read error.
2496 * This is all done synchronously while the array is
2497 * frozen
2498 */
7449f699
TM
2499
2500 bio = r1_bio->bios[r1_bio->read_disk];
7449f699
TM
2501 bio_put(bio);
2502 r1_bio->bios[r1_bio->read_disk] = NULL;
2503
2e52d449
N
2504 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2505 if (mddev->ro == 0
2506 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2507 freeze_array(conf, 1);
62096bce
N
2508 fix_read_error(conf, r1_bio->read_disk,
2509 r1_bio->sector, r1_bio->sectors);
2510 unfreeze_array(conf);
b33d1062
GK
2511 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2512 md_error(mddev, rdev);
7449f699
TM
2513 } else {
2514 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2515 }
2516
2e52d449 2517 rdev_dec_pending(rdev, conf->mddev);
c069da44 2518 sector = r1_bio->sector;
689389a0 2519 bio = r1_bio->master_bio;
62096bce 2520
689389a0
N
2521 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2522 r1_bio->state = 0;
2523 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
c069da44 2524 allow_barrier(conf, sector);
62096bce
N
2525}
2526
4ed8731d 2527static void raid1d(struct md_thread *thread)
1da177e4 2528{
4ed8731d 2529 struct mddev *mddev = thread->mddev;
9f2c9d12 2530 struct r1bio *r1_bio;
1da177e4 2531 unsigned long flags;
e8096360 2532 struct r1conf *conf = mddev->private;
1da177e4 2533 struct list_head *head = &conf->retry_list;
e1dfa0a2 2534 struct blk_plug plug;
fd76863e 2535 int idx;
1da177e4
LT
2536
2537 md_check_recovery(mddev);
e1dfa0a2 2538
55ce74d4 2539 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2540 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2541 LIST_HEAD(tmp);
2542 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2543 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2544 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2545 spin_unlock_irqrestore(&conf->device_lock, flags);
2546 while (!list_empty(&tmp)) {
a452744b
MP
2547 r1_bio = list_first_entry(&tmp, struct r1bio,
2548 retry_list);
55ce74d4 2549 list_del(&r1_bio->retry_list);
fd76863e 2550 idx = sector_to_idx(r1_bio->sector);
824e47da 2551 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2552 if (mddev->degraded)
2553 set_bit(R1BIO_Degraded, &r1_bio->state);
2554 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2555 close_write(r1_bio);
55ce74d4
N
2556 raid_end_bio_io(r1_bio);
2557 }
2558 }
2559
e1dfa0a2 2560 blk_start_plug(&plug);
1da177e4 2561 for (;;) {
191ea9b2 2562
0021b7bc 2563 flush_pending_writes(conf);
191ea9b2 2564
a35e63ef
N
2565 spin_lock_irqsave(&conf->device_lock, flags);
2566 if (list_empty(head)) {
2567 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2568 break;
a35e63ef 2569 }
9f2c9d12 2570 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2571 list_del(head->prev);
fd76863e 2572 idx = sector_to_idx(r1_bio->sector);
824e47da 2573 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2574 spin_unlock_irqrestore(&conf->device_lock, flags);
2575
2576 mddev = r1_bio->mddev;
070ec55d 2577 conf = mddev->private;
4367af55 2578 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2579 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2580 test_bit(R1BIO_WriteError, &r1_bio->state))
2581 handle_sync_write_finished(conf, r1_bio);
2582 else
4367af55 2583 sync_request_write(mddev, r1_bio);
cd5ff9a1 2584 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2585 test_bit(R1BIO_WriteError, &r1_bio->state))
2586 handle_write_finished(conf, r1_bio);
2587 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2588 handle_read_error(conf, r1_bio);
2589 else
c230e7e5 2590 WARN_ON_ONCE(1);
62096bce 2591
1d9d5241 2592 cond_resched();
2953079c 2593 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2594 md_check_recovery(mddev);
1da177e4 2595 }
e1dfa0a2 2596 blk_finish_plug(&plug);
1da177e4
LT
2597}
2598
e8096360 2599static int init_resync(struct r1conf *conf)
1da177e4
LT
2600{
2601 int buffs;
2602
2603 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514
KO
2604 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2605
2606 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2607 r1buf_pool_free, conf->poolinfo);
1da177e4
LT
2608}
2609
208410b5
SL
2610static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2611{
afeee514 2612 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
208410b5
SL
2613 struct resync_pages *rps;
2614 struct bio *bio;
2615 int i;
2616
2617 for (i = conf->poolinfo->raid_disks; i--; ) {
2618 bio = r1bio->bios[i];
2619 rps = bio->bi_private;
a7c50c94 2620 bio_reset(bio, NULL, 0);
208410b5
SL
2621 bio->bi_private = rps;
2622 }
2623 r1bio->master_bio = NULL;
2624 return r1bio;
2625}
2626
1da177e4
LT
2627/*
2628 * perform a "sync" on one "block"
2629 *
2630 * We need to make sure that no normal I/O request - particularly write
2631 * requests - conflict with active sync requests.
2632 *
2633 * This is achieved by tracking pending requests and a 'barrier' concept
2634 * that can be installed to exclude normal IO requests.
2635 */
2636
849674e4
SL
2637static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2638 int *skipped)
1da177e4 2639{
e8096360 2640 struct r1conf *conf = mddev->private;
9f2c9d12 2641 struct r1bio *r1_bio;
1da177e4
LT
2642 struct bio *bio;
2643 sector_t max_sector, nr_sectors;
3e198f78 2644 int disk = -1;
1da177e4 2645 int i;
3e198f78
N
2646 int wonly = -1;
2647 int write_targets = 0, read_targets = 0;
57dab0bd 2648 sector_t sync_blocks;
e3b9703e 2649 int still_degraded = 0;
06f60385
N
2650 int good_sectors = RESYNC_SECTORS;
2651 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2652 int idx = sector_to_idx(sector_nr);
022e510f 2653 int page_idx = 0;
1da177e4 2654
afeee514 2655 if (!mempool_initialized(&conf->r1buf_pool))
1da177e4 2656 if (init_resync(conf))
57afd89f 2657 return 0;
1da177e4 2658
58c0fed4 2659 max_sector = mddev->dev_sectors;
1da177e4 2660 if (sector_nr >= max_sector) {
191ea9b2
N
2661 /* If we aborted, we need to abort the
2662 * sync on the 'current' bitmap chunk (there will
2663 * only be one in raid1 resync.
2664 * We can find the current addess in mddev->curr_resync
2665 */
6a806c51 2666 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
2667 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2668 &sync_blocks, 1);
6a806c51 2669 else /* completed sync */
191ea9b2 2670 conf->fullsync = 0;
6a806c51 2671
e64e4018 2672 md_bitmap_close_sync(mddev->bitmap);
1da177e4 2673 close_sync(conf);
c40f341f
GR
2674
2675 if (mddev_is_clustered(mddev)) {
2676 conf->cluster_sync_low = 0;
2677 conf->cluster_sync_high = 0;
c40f341f 2678 }
1da177e4
LT
2679 return 0;
2680 }
2681
07d84d10
N
2682 if (mddev->bitmap == NULL &&
2683 mddev->recovery_cp == MaxSector &&
6394cca5 2684 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2685 conf->fullsync == 0) {
2686 *skipped = 1;
2687 return max_sector - sector_nr;
2688 }
6394cca5
N
2689 /* before building a request, check if we can skip these blocks..
2690 * This call the bitmap_start_sync doesn't actually record anything
2691 */
e64e4018 2692 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2693 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2694 /* We can skip this block, and probably several more */
2695 *skipped = 1;
2696 return sync_blocks;
2697 }
17999be4 2698
7ac50447
TM
2699 /*
2700 * If there is non-resync activity waiting for a turn, then let it
2701 * though before starting on this new sync request.
2702 */
824e47da 2703 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2704 schedule_timeout_uninterruptible(1);
2705
c40f341f
GR
2706 /* we are incrementing sector_nr below. To be safe, we check against
2707 * sector_nr + two times RESYNC_SECTORS
2708 */
2709
e64e4018 2710 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
c40f341f 2711 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
17999be4 2712
8c242593
YY
2713
2714 if (raise_barrier(conf, sector_nr))
2715 return 0;
2716
2717 r1_bio = raid1_alloc_init_r1buf(conf);
1da177e4
LT
2718
2719 /*
3e198f78
N
2720 * If we get a correctably read error during resync or recovery,
2721 * we might want to read from a different device. So we
2722 * flag all drives that could conceivably be read from for READ,
2723 * and any others (which will be non-In_sync devices) for WRITE.
2724 * If a read fails, we try reading from something else for which READ
2725 * is OK.
1da177e4 2726 */
1da177e4 2727
1da177e4
LT
2728 r1_bio->mddev = mddev;
2729 r1_bio->sector = sector_nr;
191ea9b2 2730 r1_bio->state = 0;
1da177e4 2731 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2732 /* make sure good_sectors won't go across barrier unit boundary */
2733 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2734
8f19ccb2 2735 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2736 struct md_rdev *rdev;
1da177e4 2737 bio = r1_bio->bios[i];
1da177e4 2738
2d32777d 2739 rdev = conf->mirrors[i].rdev;
3e198f78 2740 if (rdev == NULL ||
06f60385 2741 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2742 if (i < conf->raid_disks)
2743 still_degraded = 1;
3e198f78 2744 } else if (!test_bit(In_sync, &rdev->flags)) {
c34b7ac6 2745 bio->bi_opf = REQ_OP_WRITE;
1da177e4
LT
2746 bio->bi_end_io = end_sync_write;
2747 write_targets ++;
3e198f78
N
2748 } else {
2749 /* may need to read from here */
06f60385
N
2750 sector_t first_bad = MaxSector;
2751 int bad_sectors;
2752
2753 if (is_badblock(rdev, sector_nr, good_sectors,
2754 &first_bad, &bad_sectors)) {
2755 if (first_bad > sector_nr)
2756 good_sectors = first_bad - sector_nr;
2757 else {
2758 bad_sectors -= (sector_nr - first_bad);
2759 if (min_bad == 0 ||
2760 min_bad > bad_sectors)
2761 min_bad = bad_sectors;
2762 }
2763 }
2764 if (sector_nr < first_bad) {
2765 if (test_bit(WriteMostly, &rdev->flags)) {
2766 if (wonly < 0)
2767 wonly = i;
2768 } else {
2769 if (disk < 0)
2770 disk = i;
2771 }
c34b7ac6 2772 bio->bi_opf = REQ_OP_READ;
06f60385
N
2773 bio->bi_end_io = end_sync_read;
2774 read_targets++;
d57368af
AL
2775 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2776 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2777 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2778 /*
2779 * The device is suitable for reading (InSync),
2780 * but has bad block(s) here. Let's try to correct them,
2781 * if we are doing resync or repair. Otherwise, leave
2782 * this device alone for this sync request.
2783 */
c34b7ac6 2784 bio->bi_opf = REQ_OP_WRITE;
d57368af
AL
2785 bio->bi_end_io = end_sync_write;
2786 write_targets++;
3e198f78 2787 }
3e198f78 2788 }
028288df 2789 if (rdev && bio->bi_end_io) {
06f60385 2790 atomic_inc(&rdev->nr_pending);
4f024f37 2791 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2792 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2793 if (test_bit(FailFast, &rdev->flags))
2794 bio->bi_opf |= MD_FAILFAST;
06f60385 2795 }
1da177e4 2796 }
3e198f78
N
2797 if (disk < 0)
2798 disk = wonly;
2799 r1_bio->read_disk = disk;
191ea9b2 2800
06f60385
N
2801 if (read_targets == 0 && min_bad > 0) {
2802 /* These sectors are bad on all InSync devices, so we
2803 * need to mark them bad on all write targets
2804 */
2805 int ok = 1;
8f19ccb2 2806 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2807 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2808 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2809 ok = rdev_set_badblocks(rdev, sector_nr,
2810 min_bad, 0
2811 ) && ok;
2812 }
2953079c 2813 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2814 *skipped = 1;
2815 put_buf(r1_bio);
2816
2817 if (!ok) {
2818 /* Cannot record the badblocks, so need to
2819 * abort the resync.
2820 * If there are multiple read targets, could just
2821 * fail the really bad ones ???
2822 */
2823 conf->recovery_disabled = mddev->recovery_disabled;
2824 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2825 return 0;
2826 } else
2827 return min_bad;
2828
2829 }
2830 if (min_bad > 0 && min_bad < good_sectors) {
2831 /* only resync enough to reach the next bad->good
2832 * transition */
2833 good_sectors = min_bad;
2834 }
2835
3e198f78
N
2836 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2837 /* extra read targets are also write targets */
2838 write_targets += read_targets-1;
2839
2840 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2841 /* There is nowhere to write, so all non-sync
2842 * drives must be failed - so we are finished
2843 */
b7219ccb
N
2844 sector_t rv;
2845 if (min_bad > 0)
2846 max_sector = sector_nr + min_bad;
2847 rv = max_sector - sector_nr;
57afd89f 2848 *skipped = 1;
1da177e4 2849 put_buf(r1_bio);
1da177e4
LT
2850 return rv;
2851 }
2852
c6207277
N
2853 if (max_sector > mddev->resync_max)
2854 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2855 if (max_sector > sector_nr + good_sectors)
2856 max_sector = sector_nr + good_sectors;
1da177e4 2857 nr_sectors = 0;
289e99e8 2858 sync_blocks = 0;
1da177e4
LT
2859 do {
2860 struct page *page;
2861 int len = PAGE_SIZE;
2862 if (sector_nr + (len>>9) > max_sector)
2863 len = (max_sector - sector_nr) << 9;
2864 if (len == 0)
2865 break;
6a806c51 2866 if (sync_blocks == 0) {
e64e4018
AS
2867 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2868 &sync_blocks, still_degraded) &&
e5de485f
N
2869 !conf->fullsync &&
2870 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2871 break;
7571ae88 2872 if ((len >> 9) > sync_blocks)
6a806c51 2873 len = sync_blocks<<9;
ab7a30c7 2874 }
191ea9b2 2875
8f19ccb2 2876 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2877 struct resync_pages *rp;
2878
1da177e4 2879 bio = r1_bio->bios[i];
98d30c58 2880 rp = get_resync_pages(bio);
1da177e4 2881 if (bio->bi_end_io) {
022e510f 2882 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2883
2884 /*
2885 * won't fail because the vec table is big
2886 * enough to hold all these pages
2887 */
f8312322 2888 __bio_add_page(bio, page, len, 0);
1da177e4
LT
2889 }
2890 }
2891 nr_sectors += len>>9;
2892 sector_nr += len>>9;
191ea9b2 2893 sync_blocks -= (len>>9);
022e510f 2894 } while (++page_idx < RESYNC_PAGES);
98d30c58 2895
1da177e4
LT
2896 r1_bio->sectors = nr_sectors;
2897
c40f341f
GR
2898 if (mddev_is_clustered(mddev) &&
2899 conf->cluster_sync_high < sector_nr + nr_sectors) {
2900 conf->cluster_sync_low = mddev->curr_resync_completed;
2901 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2902 /* Send resync message */
2903 md_cluster_ops->resync_info_update(mddev,
2904 conf->cluster_sync_low,
2905 conf->cluster_sync_high);
2906 }
2907
d11c171e
N
2908 /* For a user-requested sync, we read all readable devices and do a
2909 * compare
2910 */
2911 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2912 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2913 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2914 bio = r1_bio->bios[i];
2915 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2916 read_targets--;
74d46992 2917 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2918 if (read_targets == 1)
2919 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 2920 submit_bio_noacct(bio);
d11c171e
N
2921 }
2922 }
2923 } else {
2924 atomic_set(&r1_bio->remaining, 1);
2925 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2926 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2927 if (read_targets == 1)
2928 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 2929 submit_bio_noacct(bio);
d11c171e 2930 }
1da177e4
LT
2931 return nr_sectors;
2932}
2933
fd01b88c 2934static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2935{
2936 if (sectors)
2937 return sectors;
2938
2939 return mddev->dev_sectors;
2940}
2941
e8096360 2942static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2943{
e8096360 2944 struct r1conf *conf;
709ae487 2945 int i;
0eaf822c 2946 struct raid1_info *disk;
3cb03002 2947 struct md_rdev *rdev;
709ae487 2948 int err = -ENOMEM;
1da177e4 2949
e8096360 2950 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2951 if (!conf)
709ae487 2952 goto abort;
1da177e4 2953
fd76863e 2954 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2955 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2956 if (!conf->nr_pending)
2957 goto abort;
2958
2959 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2960 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2961 if (!conf->nr_waiting)
2962 goto abort;
2963
2964 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2965 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2966 if (!conf->nr_queued)
2967 goto abort;
2968
2969 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2970 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2971 if (!conf->barrier)
2972 goto abort;
2973
6396bb22
KC
2974 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2975 mddev->raid_disks, 2),
2976 GFP_KERNEL);
1da177e4 2977 if (!conf->mirrors)
709ae487 2978 goto abort;
1da177e4 2979
ddaf22ab
N
2980 conf->tmppage = alloc_page(GFP_KERNEL);
2981 if (!conf->tmppage)
709ae487 2982 goto abort;
ddaf22ab 2983
709ae487 2984 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2985 if (!conf->poolinfo)
709ae487 2986 goto abort;
8f19ccb2 2987 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3f677f9c 2988 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 2989 rbio_pool_free, conf->poolinfo);
afeee514 2990 if (err)
709ae487
N
2991 goto abort;
2992
afeee514
KO
2993 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2994 if (err)
c230e7e5
N
2995 goto abort;
2996
ed9bfdf1 2997 conf->poolinfo->mddev = mddev;
1da177e4 2998
c19d5798 2999 err = -EINVAL;
e7e72bf6 3000 spin_lock_init(&conf->device_lock);
dafb20fa 3001 rdev_for_each(rdev, mddev) {
709ae487 3002 int disk_idx = rdev->raid_disk;
1da177e4
LT
3003 if (disk_idx >= mddev->raid_disks
3004 || disk_idx < 0)
3005 continue;
c19d5798 3006 if (test_bit(Replacement, &rdev->flags))
02b898f2 3007 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
3008 else
3009 disk = conf->mirrors + disk_idx;
1da177e4 3010
c19d5798
N
3011 if (disk->rdev)
3012 goto abort;
1da177e4 3013 disk->rdev = rdev;
1da177e4 3014 disk->head_position = 0;
12cee5a8 3015 disk->seq_start = MaxSector;
1da177e4
LT
3016 }
3017 conf->raid_disks = mddev->raid_disks;
3018 conf->mddev = mddev;
1da177e4 3019 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 3020 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
3021
3022 spin_lock_init(&conf->resync_lock);
17999be4 3023 init_waitqueue_head(&conf->wait_barrier);
1da177e4 3024
191ea9b2 3025 bio_list_init(&conf->pending_bio_list);
d890fa2b 3026 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 3027
c19d5798 3028 err = -EIO;
8f19ccb2 3029 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
3030
3031 disk = conf->mirrors + i;
3032
c19d5798
N
3033 if (i < conf->raid_disks &&
3034 disk[conf->raid_disks].rdev) {
3035 /* This slot has a replacement. */
3036 if (!disk->rdev) {
3037 /* No original, just make the replacement
3038 * a recovering spare
3039 */
3040 disk->rdev =
3041 disk[conf->raid_disks].rdev;
3042 disk[conf->raid_disks].rdev = NULL;
3043 } else if (!test_bit(In_sync, &disk->rdev->flags))
3044 /* Original is not in_sync - bad */
3045 goto abort;
3046 }
3047
5fd6c1dc
N
3048 if (!disk->rdev ||
3049 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3050 disk->head_position = 0;
4f0a5e01
JB
3051 if (disk->rdev &&
3052 (disk->rdev->saved_raid_disk < 0))
918f0238 3053 conf->fullsync = 1;
be4d3280 3054 }
1da177e4 3055 }
709ae487 3056
709ae487 3057 err = -ENOMEM;
44693154
YK
3058 rcu_assign_pointer(conf->thread,
3059 md_register_thread(raid1d, mddev, "raid1"));
1d41c216 3060 if (!conf->thread)
709ae487 3061 goto abort;
1da177e4 3062
709ae487
N
3063 return conf;
3064
3065 abort:
3066 if (conf) {
afeee514 3067 mempool_exit(&conf->r1bio_pool);
709ae487
N
3068 kfree(conf->mirrors);
3069 safe_put_page(conf->tmppage);
3070 kfree(conf->poolinfo);
fd76863e 3071 kfree(conf->nr_pending);
3072 kfree(conf->nr_waiting);
3073 kfree(conf->nr_queued);
3074 kfree(conf->barrier);
afeee514 3075 bioset_exit(&conf->bio_split);
709ae487
N
3076 kfree(conf);
3077 }
3078 return ERR_PTR(err);
3079}
3080
afa0f557 3081static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3082static int raid1_run(struct mddev *mddev)
709ae487 3083{
e8096360 3084 struct r1conf *conf;
709ae487 3085 int i;
3cb03002 3086 struct md_rdev *rdev;
5220ea1e 3087 int ret;
709ae487
N
3088
3089 if (mddev->level != 1) {
1d41c216
N
3090 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3091 mdname(mddev), mddev->level);
709ae487
N
3092 return -EIO;
3093 }
3094 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3095 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3096 mdname(mddev));
709ae487
N
3097 return -EIO;
3098 }
b8494823 3099
1da177e4 3100 /*
709ae487
N
3101 * copy the already verified devices into our private RAID1
3102 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3103 * should be freed in raid1_free()]
1da177e4 3104 */
709ae487
N
3105 if (mddev->private == NULL)
3106 conf = setup_conf(mddev);
3107 else
3108 conf = mddev->private;
1da177e4 3109
709ae487
N
3110 if (IS_ERR(conf))
3111 return PTR_ERR(conf);
1da177e4 3112
10fa225c 3113 if (mddev->queue)
3deff1a7 3114 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 3115
dafb20fa 3116 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3117 if (!mddev->gendisk)
3118 continue;
709ae487
N
3119 disk_stack_limits(mddev->gendisk, rdev->bdev,
3120 rdev->data_offset << 9);
1da177e4 3121 }
191ea9b2 3122
709ae487 3123 mddev->degraded = 0;
ebfeb444 3124 for (i = 0; i < conf->raid_disks; i++)
709ae487
N
3125 if (conf->mirrors[i].rdev == NULL ||
3126 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3127 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3128 mddev->degraded++;
07f1a685
YY
3129 /*
3130 * RAID1 needs at least one disk in active
3131 */
3132 if (conf->raid_disks - mddev->degraded < 1) {
7eb8ff02 3133 md_unregister_thread(mddev, &conf->thread);
07f1a685
YY
3134 ret = -EINVAL;
3135 goto abort;
3136 }
709ae487
N
3137
3138 if (conf->raid_disks - mddev->degraded == 1)
3139 mddev->recovery_cp = MaxSector;
3140
8c6ac868 3141 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3142 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3143 mdname(mddev));
3144 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3145 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3146 mddev->raid_disks);
709ae487 3147
1da177e4
LT
3148 /*
3149 * Ok, everything is just fine now
3150 */
44693154
YK
3151 rcu_assign_pointer(mddev->thread, conf->thread);
3152 rcu_assign_pointer(conf->thread, NULL);
709ae487 3153 mddev->private = conf;
46533ff7 3154 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3155
1f403624 3156 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3157
ebfeb444 3158 ret = md_integrity_register(mddev);
5aa61f42 3159 if (ret) {
7eb8ff02 3160 md_unregister_thread(mddev, &mddev->thread);
07f1a685 3161 goto abort;
5aa61f42 3162 }
07f1a685
YY
3163 return 0;
3164
3165abort:
3166 raid1_free(mddev, conf);
5220ea1e 3167 return ret;
1da177e4
LT
3168}
3169
afa0f557 3170static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3171{
afa0f557 3172 struct r1conf *conf = priv;
409c57f3 3173
afeee514 3174 mempool_exit(&conf->r1bio_pool);
990a8baf 3175 kfree(conf->mirrors);
0fea7ed8 3176 safe_put_page(conf->tmppage);
990a8baf 3177 kfree(conf->poolinfo);
fd76863e 3178 kfree(conf->nr_pending);
3179 kfree(conf->nr_waiting);
3180 kfree(conf->nr_queued);
3181 kfree(conf->barrier);
afeee514 3182 bioset_exit(&conf->bio_split);
1da177e4 3183 kfree(conf);
1da177e4
LT
3184}
3185
fd01b88c 3186static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3187{
3188 /* no resync is happening, and there is enough space
3189 * on all devices, so we can resize.
3190 * We need to make sure resync covers any new space.
3191 * If the array is shrinking we should possibly wait until
3192 * any io in the removed space completes, but it hardly seems
3193 * worth it.
3194 */
a4a6125a
N
3195 sector_t newsize = raid1_size(mddev, sectors, 0);
3196 if (mddev->external_size &&
3197 mddev->array_sectors > newsize)
b522adcd 3198 return -EINVAL;
a4a6125a 3199 if (mddev->bitmap) {
e64e4018 3200 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
a4a6125a
N
3201 if (ret)
3202 return ret;
3203 }
3204 md_set_array_sectors(mddev, newsize);
b522adcd 3205 if (sectors > mddev->dev_sectors &&
b098636c 3206 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3207 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3208 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3209 }
b522adcd 3210 mddev->dev_sectors = sectors;
4b5c7ae8 3211 mddev->resync_max_sectors = sectors;
1da177e4
LT
3212 return 0;
3213}
3214
fd01b88c 3215static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3216{
3217 /* We need to:
3218 * 1/ resize the r1bio_pool
3219 * 2/ resize conf->mirrors
3220 *
3221 * We allocate a new r1bio_pool if we can.
3222 * Then raise a device barrier and wait until all IO stops.
3223 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3224 *
3225 * At the same time, we "pack" the devices so that all the missing
3226 * devices have the higher raid_disk numbers.
1da177e4 3227 */
afeee514 3228 mempool_t newpool, oldpool;
1da177e4 3229 struct pool_info *newpoolinfo;
0eaf822c 3230 struct raid1_info *newmirrors;
e8096360 3231 struct r1conf *conf = mddev->private;
63c70c4f 3232 int cnt, raid_disks;
c04be0aa 3233 unsigned long flags;
2214c260 3234 int d, d2;
afeee514
KO
3235 int ret;
3236
3237 memset(&newpool, 0, sizeof(newpool));
3238 memset(&oldpool, 0, sizeof(oldpool));
1da177e4 3239
63c70c4f 3240 /* Cannot change chunk_size, layout, or level */
664e7c41 3241 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3242 mddev->layout != mddev->new_layout ||
3243 mddev->level != mddev->new_level) {
664e7c41 3244 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3245 mddev->new_layout = mddev->layout;
3246 mddev->new_level = mddev->level;
3247 return -EINVAL;
3248 }
3249
2214c260
AP
3250 if (!mddev_is_clustered(mddev))
3251 md_allow_write(mddev);
2a2275d6 3252
63c70c4f
N
3253 raid_disks = mddev->raid_disks + mddev->delta_disks;
3254
6ea9c07c
N
3255 if (raid_disks < conf->raid_disks) {
3256 cnt=0;
3257 for (d= 0; d < conf->raid_disks; d++)
3258 if (conf->mirrors[d].rdev)
3259 cnt++;
3260 if (cnt > raid_disks)
1da177e4 3261 return -EBUSY;
6ea9c07c 3262 }
1da177e4
LT
3263
3264 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3265 if (!newpoolinfo)
3266 return -ENOMEM;
3267 newpoolinfo->mddev = mddev;
8f19ccb2 3268 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4 3269
3f677f9c 3270 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3271 rbio_pool_free, newpoolinfo);
afeee514 3272 if (ret) {
1da177e4 3273 kfree(newpoolinfo);
afeee514 3274 return ret;
1da177e4 3275 }
6396bb22
KC
3276 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3277 raid_disks, 2),
8f19ccb2 3278 GFP_KERNEL);
1da177e4
LT
3279 if (!newmirrors) {
3280 kfree(newpoolinfo);
afeee514 3281 mempool_exit(&newpool);
1da177e4
LT
3282 return -ENOMEM;
3283 }
1da177e4 3284
e2d59925 3285 freeze_array(conf, 0);
1da177e4
LT
3286
3287 /* ok, everything is stopped */
3288 oldpool = conf->r1bio_pool;
3289 conf->r1bio_pool = newpool;
6ea9c07c 3290
a88aa786 3291 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3292 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3293 if (rdev && rdev->raid_disk != d2) {
36fad858 3294 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3295 rdev->raid_disk = d2;
36fad858
NK
3296 sysfs_unlink_rdev(mddev, rdev);
3297 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3298 pr_warn("md/raid1:%s: cannot register rd%d\n",
3299 mdname(mddev), rdev->raid_disk);
6ea9c07c 3300 }
a88aa786
N
3301 if (rdev)
3302 newmirrors[d2++].rdev = rdev;
3303 }
1da177e4
LT
3304 kfree(conf->mirrors);
3305 conf->mirrors = newmirrors;
3306 kfree(conf->poolinfo);
3307 conf->poolinfo = newpoolinfo;
3308
c04be0aa 3309 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3310 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3311 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3312 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3313 mddev->delta_disks = 0;
1da177e4 3314
e2d59925 3315 unfreeze_array(conf);
1da177e4 3316
985ca973 3317 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3318 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3319 md_wakeup_thread(mddev->thread);
3320
afeee514 3321 mempool_exit(&oldpool);
1da177e4
LT
3322 return 0;
3323}
3324
b03e0ccb 3325static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3326{
e8096360 3327 struct r1conf *conf = mddev->private;
36fa3063 3328
b03e0ccb 3329 if (quiesce)
07169fd4 3330 freeze_array(conf, 0);
b03e0ccb 3331 else
07169fd4 3332 unfreeze_array(conf);
36fa3063
N
3333}
3334
fd01b88c 3335static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3336{
3337 /* raid1 can take over:
3338 * raid5 with 2 devices, any layout or chunk size
3339 */
3340 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3341 struct r1conf *conf;
709ae487
N
3342 mddev->new_level = 1;
3343 mddev->new_layout = 0;
3344 mddev->new_chunk_sectors = 0;
3345 conf = setup_conf(mddev);
6995f0b2 3346 if (!IS_ERR(conf)) {
07169fd4 3347 /* Array must appear to be quiesced */
3348 conf->array_frozen = 1;
394ed8e4
SL
3349 mddev_clear_unsupported_flags(mddev,
3350 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3351 }
709ae487
N
3352 return conf;
3353 }
3354 return ERR_PTR(-EINVAL);
3355}
1da177e4 3356
84fc4b56 3357static struct md_personality raid1_personality =
1da177e4
LT
3358{
3359 .name = "raid1",
2604b703 3360 .level = 1,
1da177e4 3361 .owner = THIS_MODULE,
849674e4
SL
3362 .make_request = raid1_make_request,
3363 .run = raid1_run,
afa0f557 3364 .free = raid1_free,
849674e4
SL
3365 .status = raid1_status,
3366 .error_handler = raid1_error,
1da177e4
LT
3367 .hot_add_disk = raid1_add_disk,
3368 .hot_remove_disk= raid1_remove_disk,
3369 .spare_active = raid1_spare_active,
849674e4 3370 .sync_request = raid1_sync_request,
1da177e4 3371 .resize = raid1_resize,
80c3a6ce 3372 .size = raid1_size,
63c70c4f 3373 .check_reshape = raid1_reshape,
36fa3063 3374 .quiesce = raid1_quiesce,
709ae487 3375 .takeover = raid1_takeover,
1da177e4
LT
3376};
3377
3378static int __init raid_init(void)
3379{
2604b703 3380 return register_md_personality(&raid1_personality);
1da177e4
LT
3381}
3382
3383static void raid_exit(void)
3384{
2604b703 3385 unregister_md_personality(&raid1_personality);
1da177e4
LT
3386}
3387
3388module_init(raid_init);
3389module_exit(raid_exit);
3390MODULE_LICENSE("GPL");
0efb9e61 3391MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3392MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3393MODULE_ALIAS("md-raid1");
2604b703 3394MODULE_ALIAS("md-level-1");