drbd: remove drbd_req_make_private_bio
[linux-block.git] / drivers / md / raid1.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
96de0e25 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
191ea9b2
N
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
1da177e4
LT
24 */
25
5a0e3ad6 26#include <linux/slab.h>
25570727 27#include <linux/delay.h>
bff61975 28#include <linux/blkdev.h>
056075c7 29#include <linux/module.h>
bff61975 30#include <linux/seq_file.h>
8bda470e 31#include <linux/ratelimit.h>
69b00b5b 32#include <linux/interval_tree_generic.h>
3f07c014 33
109e3765 34#include <trace/events/block.h>
3f07c014 35
43b2e5d8 36#include "md.h"
ef740c37 37#include "raid1.h"
935fe098 38#include "md-bitmap.h"
191ea9b2 39
394ed8e4
SL
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 42 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 45
fd76863e 46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 48
578b54ad
N
49#define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
fb0eb5df
ML
52#include "raid1-10.c"
53
69b00b5b
GJ
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
d0d2d8ba
GJ
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
3e148a32 61{
3e148a32
GJ
62 unsigned long flags;
63 int ret = 0;
d0d2d8ba
GJ
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
025471f9 66 struct serial_in_rdev *serial = &rdev->serial[idx];
3e148a32 67
69b00b5b
GJ
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
d0d2d8ba 72 else {
69b00b5b
GJ
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
d0d2d8ba 76 }
69b00b5b 77 spin_unlock_irqrestore(&serial->serial_lock, flags);
3e148a32
GJ
78
79 return ret;
80}
81
d0d2d8ba
GJ
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
404659cf 96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
3e148a32 97{
69b00b5b 98 struct serial_info *si;
3e148a32
GJ
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
025471f9
GJ
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
69b00b5b
GJ
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
3e148a32
GJ
111 found = 1;
112 break;
113 }
69b00b5b 114 }
3e148a32 115 if (!found)
404659cf 116 WARN(1, "The write IO is not recorded for serialization\n");
69b00b5b
GJ
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
3e148a32
GJ
119}
120
98d30c58
ML
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127 return get_resync_pages(bio)->raid_bio;
128}
129
dd0fc66f 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
131{
132 struct pool_info *pi = data;
9f2c9d12 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 136 return kzalloc(size, gfp_flags);
1da177e4
LT
137}
138
8e005f7c 139#define RESYNC_DEPTH 32
1da177e4 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 145
dd0fc66f 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
147{
148 struct pool_info *pi = data;
9f2c9d12 149 struct r1bio *r1_bio;
1da177e4 150 struct bio *bio;
da1aab3d 151 int need_pages;
98d30c58
ML
152 int j;
153 struct resync_pages *rps;
1da177e4
LT
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 156 if (!r1_bio)
1da177e4 157 return NULL;
1da177e4 158
6da2ec56
KC
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
98d30c58
ML
161 if (!rps)
162 goto out_free_r1bio;
163
1da177e4
LT
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
6746557f 168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
169 if (!bio)
170 goto out_free_bio;
171 r1_bio->bios[j] = bio;
172 }
173 /*
174 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
175 * the first bio.
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
1da177e4 178 */
d11c171e 179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 180 need_pages = pi->raid_disks;
d11c171e 181 else
da1aab3d 182 need_pages = 1;
98d30c58
ML
183 for (j = 0; j < pi->raid_disks; j++) {
184 struct resync_pages *rp = &rps[j];
185
d11c171e 186 bio = r1_bio->bios[j];
d11c171e 187
98d30c58
ML
188 if (j < need_pages) {
189 if (resync_alloc_pages(rp, gfp_flags))
190 goto out_free_pages;
191 } else {
192 memcpy(rp, &rps[0], sizeof(*rp));
193 resync_get_all_pages(rp);
194 }
195
98d30c58
ML
196 rp->raid_bio = r1_bio;
197 bio->bi_private = rp;
1da177e4
LT
198 }
199
200 r1_bio->master_bio = NULL;
201
202 return r1_bio;
203
da1aab3d 204out_free_pages:
491221f8 205 while (--j >= 0)
98d30c58 206 resync_free_pages(&rps[j]);
da1aab3d 207
1da177e4 208out_free_bio:
8f19ccb2 209 while (++j < pi->raid_disks)
1da177e4 210 bio_put(r1_bio->bios[j]);
98d30c58
ML
211 kfree(rps);
212
213out_free_r1bio:
c7afa803 214 rbio_pool_free(r1_bio, data);
1da177e4
LT
215 return NULL;
216}
217
218static void r1buf_pool_free(void *__r1_bio, void *data)
219{
220 struct pool_info *pi = data;
98d30c58 221 int i;
9f2c9d12 222 struct r1bio *r1bio = __r1_bio;
98d30c58 223 struct resync_pages *rp = NULL;
1da177e4 224
98d30c58
ML
225 for (i = pi->raid_disks; i--; ) {
226 rp = get_resync_pages(r1bio->bios[i]);
227 resync_free_pages(rp);
1da177e4 228 bio_put(r1bio->bios[i]);
98d30c58
ML
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
1da177e4 233
c7afa803 234 rbio_pool_free(r1bio, data);
1da177e4
LT
235}
236
e8096360 237static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
238{
239 int i;
240
8f19ccb2 241 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 242 struct bio **bio = r1_bio->bios + i;
4367af55 243 if (!BIO_SPECIAL(*bio))
1da177e4
LT
244 bio_put(*bio);
245 *bio = NULL;
246 }
247}
248
9f2c9d12 249static void free_r1bio(struct r1bio *r1_bio)
1da177e4 250{
e8096360 251 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 252
1da177e4 253 put_all_bios(conf, r1_bio);
afeee514 254 mempool_free(r1_bio, &conf->r1bio_pool);
1da177e4
LT
255}
256
9f2c9d12 257static void put_buf(struct r1bio *r1_bio)
1da177e4 258{
e8096360 259 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 260 sector_t sect = r1_bio->sector;
3e198f78
N
261 int i;
262
8f19ccb2 263 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
264 struct bio *bio = r1_bio->bios[i];
265 if (bio->bi_end_io)
266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 }
1da177e4 268
afeee514 269 mempool_free(r1_bio, &conf->r1buf_pool);
1da177e4 270
af5f42a7 271 lower_barrier(conf, sect);
1da177e4
LT
272}
273
9f2c9d12 274static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
275{
276 unsigned long flags;
fd01b88c 277 struct mddev *mddev = r1_bio->mddev;
e8096360 278 struct r1conf *conf = mddev->private;
fd76863e 279 int idx;
1da177e4 280
fd76863e 281 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
282 spin_lock_irqsave(&conf->device_lock, flags);
283 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 284 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
285 spin_unlock_irqrestore(&conf->device_lock, flags);
286
17999be4 287 wake_up(&conf->wait_barrier);
1da177e4
LT
288 md_wakeup_thread(mddev->thread);
289}
290
291/*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
9f2c9d12 296static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
297{
298 struct bio *bio = r1_bio->master_bio;
d2eb35ac
N
299
300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 301 bio->bi_status = BLK_STS_IOERR;
4246a0b6 302
37011e3a 303 bio_endio(bio);
d2eb35ac
N
304}
305
9f2c9d12 306static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
307{
308 struct bio *bio = r1_bio->master_bio;
c91114c2 309 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 310
4b6d287f
N
311 /* if nobody has done the final endio yet, do it now */
312 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
313 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
314 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
315 (unsigned long long) bio->bi_iter.bi_sector,
316 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 317
d2eb35ac 318 call_bio_endio(r1_bio);
4b6d287f 319 }
c91114c2
DJ
320 /*
321 * Wake up any possible resync thread that waits for the device
322 * to go idle. All I/Os, even write-behind writes, are done.
323 */
324 allow_barrier(conf, r1_bio->sector);
325
1da177e4
LT
326 free_r1bio(r1_bio);
327}
328
329/*
330 * Update disk head position estimator based on IRQ completion info.
331 */
9f2c9d12 332static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 333{
e8096360 334 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
335
336 conf->mirrors[disk].head_position =
337 r1_bio->sector + (r1_bio->sectors);
338}
339
ba3ae3be
NK
340/*
341 * Find the disk number which triggered given bio
342 */
9f2c9d12 343static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
344{
345 int mirror;
30194636
N
346 struct r1conf *conf = r1_bio->mddev->private;
347 int raid_disks = conf->raid_disks;
ba3ae3be 348
8f19ccb2 349 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
350 if (r1_bio->bios[mirror] == bio)
351 break;
352
8f19ccb2 353 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
354 update_head_pos(mirror, r1_bio);
355
356 return mirror;
357}
358
4246a0b6 359static void raid1_end_read_request(struct bio *bio)
1da177e4 360{
4e4cbee9 361 int uptodate = !bio->bi_status;
9f2c9d12 362 struct r1bio *r1_bio = bio->bi_private;
e8096360 363 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 364 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 365
1da177e4
LT
366 /*
367 * this branch is our 'one mirror IO has finished' event handler:
368 */
e5872d58 369 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 370
dd00a99e
N
371 if (uptodate)
372 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
373 else if (test_bit(FailFast, &rdev->flags) &&
374 test_bit(R1BIO_FailFast, &r1_bio->state))
375 /* This was a fail-fast read so we definitely
376 * want to retry */
377 ;
dd00a99e
N
378 else {
379 /* If all other devices have failed, we want to return
380 * the error upwards rather than fail the last device.
381 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 382 */
dd00a99e
N
383 unsigned long flags;
384 spin_lock_irqsave(&conf->device_lock, flags);
385 if (r1_bio->mddev->degraded == conf->raid_disks ||
386 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 387 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
388 uptodate = 1;
389 spin_unlock_irqrestore(&conf->device_lock, flags);
390 }
1da177e4 391
7ad4d4a6 392 if (uptodate) {
1da177e4 393 raid_end_bio_io(r1_bio);
e5872d58 394 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 395 } else {
1da177e4
LT
396 /*
397 * oops, read error:
398 */
399 char b[BDEVNAME_SIZE];
1d41c216
N
400 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
401 mdname(conf->mddev),
402 bdevname(rdev->bdev, b),
403 (unsigned long long)r1_bio->sector);
d2eb35ac 404 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 405 reschedule_retry(r1_bio);
7ad4d4a6 406 /* don't drop the reference on read_disk yet */
1da177e4 407 }
1da177e4
LT
408}
409
9f2c9d12 410static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
411{
412 /* it really is the end of this request */
413 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
414 bio_free_pages(r1_bio->behind_master_bio);
415 bio_put(r1_bio->behind_master_bio);
416 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
417 }
418 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
419 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
420 r1_bio->sectors,
421 !test_bit(R1BIO_Degraded, &r1_bio->state),
422 test_bit(R1BIO_BehindIO, &r1_bio->state));
cd5ff9a1
N
423 md_write_end(r1_bio->mddev);
424}
425
9f2c9d12 426static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 427{
cd5ff9a1
N
428 if (!atomic_dec_and_test(&r1_bio->remaining))
429 return;
430
431 if (test_bit(R1BIO_WriteError, &r1_bio->state))
432 reschedule_retry(r1_bio);
433 else {
434 close_write(r1_bio);
4367af55
N
435 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else
438 raid_end_bio_io(r1_bio);
4e78064f
N
439 }
440}
441
4246a0b6 442static void raid1_end_write_request(struct bio *bio)
1da177e4 443{
9f2c9d12 444 struct r1bio *r1_bio = bio->bi_private;
e5872d58 445 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 446 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 447 struct bio *to_put = NULL;
e5872d58
N
448 int mirror = find_bio_disk(r1_bio, bio);
449 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd 450 bool discard_error;
69df9cfc
GJ
451 sector_t lo = r1_bio->sector;
452 sector_t hi = r1_bio->sector + r1_bio->sectors;
e3f948cd 453
4e4cbee9 454 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 455
e9c7469b
TH
456 /*
457 * 'one mirror IO has finished' event handler:
458 */
4e4cbee9 459 if (bio->bi_status && !discard_error) {
e5872d58
N
460 set_bit(WriteErrorSeen, &rdev->flags);
461 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
462 set_bit(MD_RECOVERY_NEEDED, &
463 conf->mddev->recovery);
464
212e7eb7
N
465 if (test_bit(FailFast, &rdev->flags) &&
466 (bio->bi_opf & MD_FAILFAST) &&
467 /* We never try FailFast to WriteMostly devices */
468 !test_bit(WriteMostly, &rdev->flags)) {
469 md_error(r1_bio->mddev, rdev);
eeba6809
YY
470 }
471
472 /*
473 * When the device is faulty, it is not necessary to
474 * handle write error.
475 * For failfast, this is the only remaining device,
476 * We need to retry the write without FailFast.
477 */
478 if (!test_bit(Faulty, &rdev->flags))
212e7eb7 479 set_bit(R1BIO_WriteError, &r1_bio->state);
eeba6809
YY
480 else {
481 /* Finished with this branch */
482 r1_bio->bios[mirror] = NULL;
483 to_put = bio;
484 }
4367af55 485 } else {
1da177e4 486 /*
e9c7469b
TH
487 * Set R1BIO_Uptodate in our master bio, so that we
488 * will return a good error code for to the higher
489 * levels even if IO on some other mirrored buffer
490 * fails.
491 *
492 * The 'master' represents the composite IO operation
493 * to user-side. So if something waits for IO, then it
494 * will wait for the 'master' bio.
1da177e4 495 */
4367af55
N
496 sector_t first_bad;
497 int bad_sectors;
498
cd5ff9a1
N
499 r1_bio->bios[mirror] = NULL;
500 to_put = bio;
3056e3ae
AL
501 /*
502 * Do not set R1BIO_Uptodate if the current device is
503 * rebuilding or Faulty. This is because we cannot use
504 * such device for properly reading the data back (we could
505 * potentially use it, if the current write would have felt
506 * before rdev->recovery_offset, but for simplicity we don't
507 * check this here.
508 */
e5872d58
N
509 if (test_bit(In_sync, &rdev->flags) &&
510 !test_bit(Faulty, &rdev->flags))
3056e3ae 511 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 512
4367af55 513 /* Maybe we can clear some bad blocks. */
e5872d58 514 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 515 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
516 r1_bio->bios[mirror] = IO_MADE_GOOD;
517 set_bit(R1BIO_MadeGood, &r1_bio->state);
518 }
519 }
520
e9c7469b 521 if (behind) {
69df9cfc 522 if (test_bit(CollisionCheck, &rdev->flags))
404659cf 523 remove_serial(rdev, lo, hi);
e5872d58 524 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
525 atomic_dec(&r1_bio->behind_remaining);
526
527 /*
528 * In behind mode, we ACK the master bio once the I/O
529 * has safely reached all non-writemostly
530 * disks. Setting the Returned bit ensures that this
531 * gets done only once -- we don't ever want to return
532 * -EIO here, instead we'll wait
533 */
534 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
535 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
536 /* Maybe we can return now */
537 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
538 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
539 pr_debug("raid1: behind end write sectors"
540 " %llu-%llu\n",
4f024f37
KO
541 (unsigned long long) mbio->bi_iter.bi_sector,
542 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 543 call_bio_endio(r1_bio);
4b6d287f
N
544 }
545 }
69df9cfc
GJ
546 } else if (rdev->mddev->serialize_policy)
547 remove_serial(rdev, lo, hi);
4367af55 548 if (r1_bio->bios[mirror] == NULL)
e5872d58 549 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 550
1da177e4 551 /*
1da177e4
LT
552 * Let's see if all mirrored write operations have finished
553 * already.
554 */
af6d7b76 555 r1_bio_write_done(r1_bio);
c70810b3 556
04b857f7
N
557 if (to_put)
558 bio_put(to_put);
1da177e4
LT
559}
560
fd76863e 561static sector_t align_to_barrier_unit_end(sector_t start_sector,
562 sector_t sectors)
563{
564 sector_t len;
565
566 WARN_ON(sectors == 0);
567 /*
568 * len is the number of sectors from start_sector to end of the
569 * barrier unit which start_sector belongs to.
570 */
571 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
572 start_sector;
573
574 if (len > sectors)
575 len = sectors;
576
577 return len;
578}
579
1da177e4
LT
580/*
581 * This routine returns the disk from which the requested read should
582 * be done. There is a per-array 'next expected sequential IO' sector
583 * number - if this matches on the next IO then we use the last disk.
584 * There is also a per-disk 'last know head position' sector that is
585 * maintained from IRQ contexts, both the normal and the resync IO
586 * completion handlers update this position correctly. If there is no
587 * perfect sequential match then we pick the disk whose head is closest.
588 *
589 * If there are 2 mirrors in the same 2 devices, performance degrades
590 * because position is mirror, not device based.
591 *
592 * The rdev for the device selected will have nr_pending incremented.
593 */
e8096360 594static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 595{
af3a2cd6 596 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
597 int sectors;
598 int best_good_sectors;
9dedf603
SL
599 int best_disk, best_dist_disk, best_pending_disk;
600 int has_nonrot_disk;
be4d3280 601 int disk;
76073054 602 sector_t best_dist;
9dedf603 603 unsigned int min_pending;
3cb03002 604 struct md_rdev *rdev;
f3ac8bf7 605 int choose_first;
12cee5a8 606 int choose_next_idle;
1da177e4
LT
607
608 rcu_read_lock();
609 /*
8ddf9efe 610 * Check if we can balance. We can balance on the whole
1da177e4
LT
611 * device if no resync is going on, or below the resync window.
612 * We take the first readable disk when above the resync window.
613 */
614 retry:
d2eb35ac 615 sectors = r1_bio->sectors;
76073054 616 best_disk = -1;
9dedf603 617 best_dist_disk = -1;
76073054 618 best_dist = MaxSector;
9dedf603
SL
619 best_pending_disk = -1;
620 min_pending = UINT_MAX;
d2eb35ac 621 best_good_sectors = 0;
9dedf603 622 has_nonrot_disk = 0;
12cee5a8 623 choose_next_idle = 0;
2e52d449 624 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 625
7d49ffcf
GR
626 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
627 (mddev_is_clustered(conf->mddev) &&
90382ed9 628 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
629 this_sector + sectors)))
630 choose_first = 1;
631 else
632 choose_first = 0;
1da177e4 633
be4d3280 634 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 635 sector_t dist;
d2eb35ac
N
636 sector_t first_bad;
637 int bad_sectors;
9dedf603 638 unsigned int pending;
12cee5a8 639 bool nonrot;
d2eb35ac 640
f3ac8bf7
N
641 rdev = rcu_dereference(conf->mirrors[disk].rdev);
642 if (r1_bio->bios[disk] == IO_BLOCKED
643 || rdev == NULL
76073054 644 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 645 continue;
76073054
N
646 if (!test_bit(In_sync, &rdev->flags) &&
647 rdev->recovery_offset < this_sector + sectors)
1da177e4 648 continue;
76073054
N
649 if (test_bit(WriteMostly, &rdev->flags)) {
650 /* Don't balance among write-mostly, just
651 * use the first as a last resort */
d1901ef0 652 if (best_dist_disk < 0) {
307729c8
N
653 if (is_badblock(rdev, this_sector, sectors,
654 &first_bad, &bad_sectors)) {
816b0acf 655 if (first_bad <= this_sector)
307729c8
N
656 /* Cannot use this */
657 continue;
658 best_good_sectors = first_bad - this_sector;
659 } else
660 best_good_sectors = sectors;
d1901ef0
TH
661 best_dist_disk = disk;
662 best_pending_disk = disk;
307729c8 663 }
76073054
N
664 continue;
665 }
666 /* This is a reasonable device to use. It might
667 * even be best.
668 */
d2eb35ac
N
669 if (is_badblock(rdev, this_sector, sectors,
670 &first_bad, &bad_sectors)) {
671 if (best_dist < MaxSector)
672 /* already have a better device */
673 continue;
674 if (first_bad <= this_sector) {
675 /* cannot read here. If this is the 'primary'
676 * device, then we must not read beyond
677 * bad_sectors from another device..
678 */
679 bad_sectors -= (this_sector - first_bad);
680 if (choose_first && sectors > bad_sectors)
681 sectors = bad_sectors;
682 if (best_good_sectors > sectors)
683 best_good_sectors = sectors;
684
685 } else {
686 sector_t good_sectors = first_bad - this_sector;
687 if (good_sectors > best_good_sectors) {
688 best_good_sectors = good_sectors;
689 best_disk = disk;
690 }
691 if (choose_first)
692 break;
693 }
694 continue;
d82dd0e3
TM
695 } else {
696 if ((sectors > best_good_sectors) && (best_disk >= 0))
697 best_disk = -1;
d2eb35ac 698 best_good_sectors = sectors;
d82dd0e3 699 }
d2eb35ac 700
2e52d449
N
701 if (best_disk >= 0)
702 /* At least two disks to choose from so failfast is OK */
703 set_bit(R1BIO_FailFast, &r1_bio->state);
704
12cee5a8
SL
705 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
706 has_nonrot_disk |= nonrot;
9dedf603 707 pending = atomic_read(&rdev->nr_pending);
76073054 708 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 709 if (choose_first) {
76073054 710 best_disk = disk;
1da177e4
LT
711 break;
712 }
12cee5a8
SL
713 /* Don't change to another disk for sequential reads */
714 if (conf->mirrors[disk].next_seq_sect == this_sector
715 || dist == 0) {
716 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
717 struct raid1_info *mirror = &conf->mirrors[disk];
718
719 best_disk = disk;
720 /*
721 * If buffered sequential IO size exceeds optimal
722 * iosize, check if there is idle disk. If yes, choose
723 * the idle disk. read_balance could already choose an
724 * idle disk before noticing it's a sequential IO in
725 * this disk. This doesn't matter because this disk
726 * will idle, next time it will be utilized after the
727 * first disk has IO size exceeds optimal iosize. In
728 * this way, iosize of the first disk will be optimal
729 * iosize at least. iosize of the second disk might be
730 * small, but not a big deal since when the second disk
731 * starts IO, the first disk is likely still busy.
732 */
733 if (nonrot && opt_iosize > 0 &&
734 mirror->seq_start != MaxSector &&
735 mirror->next_seq_sect > opt_iosize &&
736 mirror->next_seq_sect - opt_iosize >=
737 mirror->seq_start) {
738 choose_next_idle = 1;
739 continue;
740 }
741 break;
742 }
12cee5a8
SL
743
744 if (choose_next_idle)
745 continue;
9dedf603
SL
746
747 if (min_pending > pending) {
748 min_pending = pending;
749 best_pending_disk = disk;
750 }
751
76073054
N
752 if (dist < best_dist) {
753 best_dist = dist;
9dedf603 754 best_dist_disk = disk;
1da177e4 755 }
f3ac8bf7 756 }
1da177e4 757
9dedf603
SL
758 /*
759 * If all disks are rotational, choose the closest disk. If any disk is
760 * non-rotational, choose the disk with less pending request even the
761 * disk is rotational, which might/might not be optimal for raids with
762 * mixed ratation/non-rotational disks depending on workload.
763 */
764 if (best_disk == -1) {
2e52d449 765 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
766 best_disk = best_pending_disk;
767 else
768 best_disk = best_dist_disk;
769 }
770
76073054
N
771 if (best_disk >= 0) {
772 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
773 if (!rdev)
774 goto retry;
775 atomic_inc(&rdev->nr_pending);
d2eb35ac 776 sectors = best_good_sectors;
12cee5a8
SL
777
778 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
779 conf->mirrors[best_disk].seq_start = this_sector;
780
be4d3280 781 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
782 }
783 rcu_read_unlock();
d2eb35ac 784 *max_sectors = sectors;
1da177e4 785
76073054 786 return best_disk;
1da177e4
LT
787}
788
673ca68d
N
789static void flush_bio_list(struct r1conf *conf, struct bio *bio)
790{
791 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
e64e4018 792 md_bitmap_unplug(conf->mddev->bitmap);
673ca68d
N
793 wake_up(&conf->wait_barrier);
794
795 while (bio) { /* submit pending writes */
796 struct bio *next = bio->bi_next;
309dca30 797 struct md_rdev *rdev = (void *)bio->bi_bdev;
673ca68d 798 bio->bi_next = NULL;
74d46992 799 bio_set_dev(bio, rdev->bdev);
673ca68d 800 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 801 bio_io_error(bio);
673ca68d 802 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
309dca30 803 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
673ca68d
N
804 /* Just ignore it */
805 bio_endio(bio);
806 else
ed00aabd 807 submit_bio_noacct(bio);
673ca68d 808 bio = next;
5fa4f8ba 809 cond_resched();
673ca68d
N
810 }
811}
812
e8096360 813static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
814{
815 /* Any writes that have been queued but are awaiting
816 * bitmap updates get flushed here.
a35e63ef 817 */
a35e63ef
N
818 spin_lock_irq(&conf->device_lock);
819
820 if (conf->pending_bio_list.head) {
18022a1b 821 struct blk_plug plug;
a35e63ef 822 struct bio *bio;
18022a1b 823
a35e63ef 824 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 825 conf->pending_count = 0;
a35e63ef 826 spin_unlock_irq(&conf->device_lock);
474beb57
N
827
828 /*
829 * As this is called in a wait_event() loop (see freeze_array),
830 * current->state might be TASK_UNINTERRUPTIBLE which will
831 * cause a warning when we prepare to wait again. As it is
832 * rare that this path is taken, it is perfectly safe to force
833 * us to go around the wait_event() loop again, so the warning
834 * is a false-positive. Silence the warning by resetting
835 * thread state
836 */
837 __set_current_state(TASK_RUNNING);
18022a1b 838 blk_start_plug(&plug);
673ca68d 839 flush_bio_list(conf, bio);
18022a1b 840 blk_finish_plug(&plug);
a35e63ef
N
841 } else
842 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
843}
844
17999be4
N
845/* Barriers....
846 * Sometimes we need to suspend IO while we do something else,
847 * either some resync/recovery, or reconfigure the array.
848 * To do this we raise a 'barrier'.
849 * The 'barrier' is a counter that can be raised multiple times
850 * to count how many activities are happening which preclude
851 * normal IO.
852 * We can only raise the barrier if there is no pending IO.
853 * i.e. if nr_pending == 0.
854 * We choose only to raise the barrier if no-one is waiting for the
855 * barrier to go down. This means that as soon as an IO request
856 * is ready, no other operations which require a barrier will start
857 * until the IO request has had a chance.
858 *
859 * So: regular IO calls 'wait_barrier'. When that returns there
860 * is no backgroup IO happening, It must arrange to call
861 * allow_barrier when it has finished its IO.
862 * backgroup IO calls must call raise_barrier. Once that returns
863 * there is no normal IO happeing. It must arrange to call
864 * lower_barrier when the particular background IO completes.
4675719d
HT
865 *
866 * If resync/recovery is interrupted, returns -EINTR;
867 * Otherwise, returns 0.
1da177e4 868 */
4675719d 869static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 870{
fd76863e 871 int idx = sector_to_idx(sector_nr);
872
1da177e4 873 spin_lock_irq(&conf->resync_lock);
17999be4
N
874
875 /* Wait until no block IO is waiting */
824e47da 876 wait_event_lock_irq(conf->wait_barrier,
877 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 878 conf->resync_lock);
17999be4
N
879
880 /* block any new IO from starting */
824e47da 881 atomic_inc(&conf->barrier[idx]);
882 /*
883 * In raise_barrier() we firstly increase conf->barrier[idx] then
884 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886 * A memory barrier here to make sure conf->nr_pending[idx] won't
887 * be fetched before conf->barrier[idx] is increased. Otherwise
888 * there will be a race between raise_barrier() and _wait_barrier().
889 */
890 smp_mb__after_atomic();
17999be4 891
79ef3a8a 892 /* For these conditions we must wait:
893 * A: while the array is in frozen state
fd76863e 894 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895 * existing in corresponding I/O barrier bucket.
896 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 898 */
17999be4 899 wait_event_lock_irq(conf->wait_barrier,
8c242593 900 (!conf->array_frozen &&
824e47da 901 !atomic_read(&conf->nr_pending[idx]) &&
8c242593
YY
902 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
eed8c02e 904 conf->resync_lock);
17999be4 905
8c242593
YY
906 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907 atomic_dec(&conf->barrier[idx]);
908 spin_unlock_irq(&conf->resync_lock);
909 wake_up(&conf->wait_barrier);
910 return -EINTR;
911 }
912
43ac9b84 913 atomic_inc(&conf->nr_sync_pending);
17999be4 914 spin_unlock_irq(&conf->resync_lock);
8c242593
YY
915
916 return 0;
17999be4
N
917}
918
fd76863e 919static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 920{
fd76863e 921 int idx = sector_to_idx(sector_nr);
922
824e47da 923 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 924
824e47da 925 atomic_dec(&conf->barrier[idx]);
43ac9b84 926 atomic_dec(&conf->nr_sync_pending);
17999be4
N
927 wake_up(&conf->wait_barrier);
928}
929
fd76863e 930static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 931{
824e47da 932 /*
933 * We need to increase conf->nr_pending[idx] very early here,
934 * then raise_barrier() can be blocked when it waits for
935 * conf->nr_pending[idx] to be 0. Then we can avoid holding
936 * conf->resync_lock when there is no barrier raised in same
937 * barrier unit bucket. Also if the array is frozen, I/O
938 * should be blocked until array is unfrozen.
939 */
940 atomic_inc(&conf->nr_pending[idx]);
941 /*
942 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
943 * check conf->barrier[idx]. In raise_barrier() we firstly increase
944 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
945 * barrier is necessary here to make sure conf->barrier[idx] won't be
946 * fetched before conf->nr_pending[idx] is increased. Otherwise there
947 * will be a race between _wait_barrier() and raise_barrier().
948 */
949 smp_mb__after_atomic();
79ef3a8a 950
824e47da 951 /*
952 * Don't worry about checking two atomic_t variables at same time
953 * here. If during we check conf->barrier[idx], the array is
954 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
955 * 0, it is safe to return and make the I/O continue. Because the
956 * array is frozen, all I/O returned here will eventually complete
957 * or be queued, no race will happen. See code comment in
958 * frozen_array().
959 */
960 if (!READ_ONCE(conf->array_frozen) &&
961 !atomic_read(&conf->barrier[idx]))
962 return;
79ef3a8a 963
824e47da 964 /*
965 * After holding conf->resync_lock, conf->nr_pending[idx]
966 * should be decreased before waiting for barrier to drop.
967 * Otherwise, we may encounter a race condition because
968 * raise_barrer() might be waiting for conf->nr_pending[idx]
969 * to be 0 at same time.
970 */
971 spin_lock_irq(&conf->resync_lock);
972 atomic_inc(&conf->nr_waiting[idx]);
973 atomic_dec(&conf->nr_pending[idx]);
974 /*
975 * In case freeze_array() is waiting for
976 * get_unqueued_pending() == extra
977 */
978 wake_up(&conf->wait_barrier);
979 /* Wait for the barrier in same barrier unit bucket to drop. */
980 wait_event_lock_irq(conf->wait_barrier,
981 !conf->array_frozen &&
982 !atomic_read(&conf->barrier[idx]),
983 conf->resync_lock);
984 atomic_inc(&conf->nr_pending[idx]);
985 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 986 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 987}
988
fd76863e 989static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 990{
fd76863e 991 int idx = sector_to_idx(sector_nr);
79ef3a8a 992
824e47da 993 /*
994 * Very similar to _wait_barrier(). The difference is, for read
995 * I/O we don't need wait for sync I/O, but if the whole array
996 * is frozen, the read I/O still has to wait until the array is
997 * unfrozen. Since there is no ordering requirement with
998 * conf->barrier[idx] here, memory barrier is unnecessary as well.
999 */
1000 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 1001
824e47da 1002 if (!READ_ONCE(conf->array_frozen))
1003 return;
1004
1005 spin_lock_irq(&conf->resync_lock);
1006 atomic_inc(&conf->nr_waiting[idx]);
1007 atomic_dec(&conf->nr_pending[idx]);
1008 /*
1009 * In case freeze_array() is waiting for
1010 * get_unqueued_pending() == extra
1011 */
1012 wake_up(&conf->wait_barrier);
1013 /* Wait for array to be unfrozen */
1014 wait_event_lock_irq(conf->wait_barrier,
1015 !conf->array_frozen,
1016 conf->resync_lock);
1017 atomic_inc(&conf->nr_pending[idx]);
1018 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
1019 spin_unlock_irq(&conf->resync_lock);
1020}
1021
fd76863e 1022static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 1023{
fd76863e 1024 int idx = sector_to_idx(sector_nr);
79ef3a8a 1025
fd76863e 1026 _wait_barrier(conf, idx);
1027}
1028
fd76863e 1029static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1030{
824e47da 1031 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
1032 wake_up(&conf->wait_barrier);
1033}
1034
fd76863e 1035static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1036{
1037 int idx = sector_to_idx(sector_nr);
1038
1039 _allow_barrier(conf, idx);
1040}
1041
fd76863e 1042/* conf->resync_lock should be held */
1043static int get_unqueued_pending(struct r1conf *conf)
1044{
1045 int idx, ret;
1046
43ac9b84
XN
1047 ret = atomic_read(&conf->nr_sync_pending);
1048 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1049 ret += atomic_read(&conf->nr_pending[idx]) -
1050 atomic_read(&conf->nr_queued[idx]);
fd76863e 1051
1052 return ret;
1053}
1054
e2d59925 1055static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1056{
fd76863e 1057 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1058 * go quiet.
fd76863e 1059 * This is called in two situations:
1060 * 1) management command handlers (reshape, remove disk, quiesce).
1061 * 2) one normal I/O request failed.
1062
1063 * After array_frozen is set to 1, new sync IO will be blocked at
1064 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1065 * or wait_read_barrier(). The flying I/Os will either complete or be
1066 * queued. When everything goes quite, there are only queued I/Os left.
1067
1068 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1069 * barrier bucket index which this I/O request hits. When all sync and
1070 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1071 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1072 * in handle_read_error(), we may call freeze_array() before trying to
1073 * fix the read error. In this case, the error read I/O is not queued,
1074 * so get_unqueued_pending() == 1.
1075 *
1076 * Therefore before this function returns, we need to wait until
1077 * get_unqueued_pendings(conf) gets equal to extra. For
1078 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1079 */
1080 spin_lock_irq(&conf->resync_lock);
b364e3d0 1081 conf->array_frozen = 1;
578b54ad 1082 raid1_log(conf->mddev, "wait freeze");
fd76863e 1083 wait_event_lock_irq_cmd(
1084 conf->wait_barrier,
1085 get_unqueued_pending(conf) == extra,
1086 conf->resync_lock,
1087 flush_pending_writes(conf));
ddaf22ab
N
1088 spin_unlock_irq(&conf->resync_lock);
1089}
e8096360 1090static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1091{
1092 /* reverse the effect of the freeze */
1093 spin_lock_irq(&conf->resync_lock);
b364e3d0 1094 conf->array_frozen = 0;
ddaf22ab 1095 spin_unlock_irq(&conf->resync_lock);
824e47da 1096 wake_up(&conf->wait_barrier);
ddaf22ab
N
1097}
1098
16d56e2f 1099static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1100 struct bio *bio)
4b6d287f 1101{
cb83efcf 1102 int size = bio->bi_iter.bi_size;
841c1316
ML
1103 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1104 int i = 0;
1105 struct bio *behind_bio = NULL;
1106
1107 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1108 if (!behind_bio)
16d56e2f 1109 return;
4b6d287f 1110
41743c1f 1111 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1112 if (!bio_has_data(bio)) {
1113 behind_bio->bi_iter.bi_size = size;
41743c1f 1114 goto skip_copy;
16d56e2f 1115 }
41743c1f 1116
dba40d46
MD
1117 behind_bio->bi_write_hint = bio->bi_write_hint;
1118
841c1316
ML
1119 while (i < vcnt && size) {
1120 struct page *page;
1121 int len = min_t(int, PAGE_SIZE, size);
1122
1123 page = alloc_page(GFP_NOIO);
1124 if (unlikely(!page))
1125 goto free_pages;
1126
1127 bio_add_page(behind_bio, page, len, 0);
1128
1129 size -= len;
1130 i++;
4b6d287f 1131 }
841c1316 1132
cb83efcf 1133 bio_copy_data(behind_bio, bio);
41743c1f 1134skip_copy:
56a64c17 1135 r1_bio->behind_master_bio = behind_bio;
af6d7b76 1136 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1137
16d56e2f 1138 return;
841c1316
ML
1139
1140free_pages:
4f024f37
KO
1141 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1142 bio->bi_iter.bi_size);
841c1316 1143 bio_free_pages(behind_bio);
16d56e2f 1144 bio_put(behind_bio);
4b6d287f
N
1145}
1146
f54a9d0e
N
1147struct raid1_plug_cb {
1148 struct blk_plug_cb cb;
1149 struct bio_list pending;
1150 int pending_cnt;
1151};
1152
1153static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1154{
1155 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1156 cb);
1157 struct mddev *mddev = plug->cb.data;
1158 struct r1conf *conf = mddev->private;
1159 struct bio *bio;
1160
874807a8 1161 if (from_schedule || current->bio_list) {
f54a9d0e
N
1162 spin_lock_irq(&conf->device_lock);
1163 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1164 conf->pending_count += plug->pending_cnt;
1165 spin_unlock_irq(&conf->device_lock);
ee0b0244 1166 wake_up(&conf->wait_barrier);
f54a9d0e
N
1167 md_wakeup_thread(mddev->thread);
1168 kfree(plug);
1169 return;
1170 }
1171
1172 /* we aren't scheduling, so we can do the write-out directly. */
1173 bio = bio_list_get(&plug->pending);
673ca68d 1174 flush_bio_list(conf, bio);
f54a9d0e
N
1175 kfree(plug);
1176}
1177
689389a0
N
1178static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1179{
1180 r1_bio->master_bio = bio;
1181 r1_bio->sectors = bio_sectors(bio);
1182 r1_bio->state = 0;
1183 r1_bio->mddev = mddev;
1184 r1_bio->sector = bio->bi_iter.bi_sector;
1185}
1186
fd76863e 1187static inline struct r1bio *
689389a0 1188alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1189{
1190 struct r1conf *conf = mddev->private;
1191 struct r1bio *r1_bio;
1192
afeee514 1193 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
689389a0
N
1194 /* Ensure no bio records IO_BLOCKED */
1195 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1196 init_r1bio(r1_bio, mddev, bio);
fd76863e 1197 return r1_bio;
1198}
1199
c230e7e5 1200static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1201 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1202{
e8096360 1203 struct r1conf *conf = mddev->private;
0eaf822c 1204 struct raid1_info *mirror;
1da177e4 1205 struct bio *read_bio;
3b046a97
RL
1206 struct bitmap *bitmap = mddev->bitmap;
1207 const int op = bio_op(bio);
1208 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1209 int max_sectors;
1210 int rdisk;
689389a0
N
1211 bool print_msg = !!r1_bio;
1212 char b[BDEVNAME_SIZE];
3b046a97 1213
fd76863e 1214 /*
689389a0
N
1215 * If r1_bio is set, we are blocking the raid1d thread
1216 * so there is a tiny risk of deadlock. So ask for
1217 * emergency memory if needed.
fd76863e 1218 */
689389a0 1219 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1220
689389a0
N
1221 if (print_msg) {
1222 /* Need to get the block device name carefully */
1223 struct md_rdev *rdev;
1224 rcu_read_lock();
1225 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1226 if (rdev)
1227 bdevname(rdev->bdev, b);
1228 else
1229 strcpy(b, "???");
1230 rcu_read_unlock();
1231 }
3b046a97 1232
fd76863e 1233 /*
fd76863e 1234 * Still need barrier for READ in case that whole
1235 * array is frozen.
fd76863e 1236 */
fd76863e 1237 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1238
689389a0
N
1239 if (!r1_bio)
1240 r1_bio = alloc_r1bio(mddev, bio);
1241 else
1242 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1243 r1_bio->sectors = max_read_sectors;
fd76863e 1244
1245 /*
1246 * make_request() can abort the operation when read-ahead is being
1247 * used and no empty request is available.
1248 */
3b046a97
RL
1249 rdisk = read_balance(conf, r1_bio, &max_sectors);
1250
1251 if (rdisk < 0) {
1252 /* couldn't find anywhere to read from */
689389a0
N
1253 if (print_msg) {
1254 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1255 mdname(mddev),
1256 b,
1257 (unsigned long long)r1_bio->sector);
1258 }
3b046a97
RL
1259 raid_end_bio_io(r1_bio);
1260 return;
1261 }
1262 mirror = conf->mirrors + rdisk;
1263
689389a0
N
1264 if (print_msg)
1265 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1266 mdname(mddev),
1267 (unsigned long long)r1_bio->sector,
1268 bdevname(mirror->rdev->bdev, b));
1269
3b046a97
RL
1270 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1271 bitmap) {
1272 /*
1273 * Reading from a write-mostly device must take care not to
1274 * over-take any writes that are 'behind'
1275 */
1276 raid1_log(mddev, "wait behind writes");
1277 wait_event(bitmap->behind_wait,
1278 atomic_read(&bitmap->behind_writes) == 0);
1279 }
c230e7e5
N
1280
1281 if (max_sectors < bio_sectors(bio)) {
1282 struct bio *split = bio_split(bio, max_sectors,
afeee514 1283 gfp, &conf->bio_split);
c230e7e5 1284 bio_chain(split, bio);
ed00aabd 1285 submit_bio_noacct(bio);
c230e7e5
N
1286 bio = split;
1287 r1_bio->master_bio = bio;
1288 r1_bio->sectors = max_sectors;
1289 }
1290
3b046a97 1291 r1_bio->read_disk = rdisk;
3b046a97 1292
afeee514 1293 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
3b046a97
RL
1294
1295 r1_bio->bios[rdisk] = read_bio;
1296
1297 read_bio->bi_iter.bi_sector = r1_bio->sector +
1298 mirror->rdev->data_offset;
74d46992 1299 bio_set_dev(read_bio, mirror->rdev->bdev);
3b046a97
RL
1300 read_bio->bi_end_io = raid1_end_read_request;
1301 bio_set_op_attrs(read_bio, op, do_sync);
1302 if (test_bit(FailFast, &mirror->rdev->flags) &&
1303 test_bit(R1BIO_FailFast, &r1_bio->state))
1304 read_bio->bi_opf |= MD_FAILFAST;
1305 read_bio->bi_private = r1_bio;
1306
1307 if (mddev->gendisk)
1c02fca6
CH
1308 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1309 r1_bio->sector);
3b046a97 1310
ed00aabd 1311 submit_bio_noacct(read_bio);
3b046a97
RL
1312}
1313
c230e7e5
N
1314static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1315 int max_write_sectors)
3b046a97
RL
1316{
1317 struct r1conf *conf = mddev->private;
fd76863e 1318 struct r1bio *r1_bio;
1f68f0c4 1319 int i, disks;
3b046a97 1320 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1321 unsigned long flags;
3cb03002 1322 struct md_rdev *blocked_rdev;
f54a9d0e
N
1323 struct blk_plug_cb *cb;
1324 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1325 int first_clone;
1f68f0c4 1326 int max_sectors;
191ea9b2 1327
b3143b9a 1328 if (mddev_is_clustered(mddev) &&
90382ed9 1329 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1330 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1331
6eef4b21
N
1332 DEFINE_WAIT(w);
1333 for (;;) {
6eef4b21 1334 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1335 &w, TASK_IDLE);
f81f7302 1336 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1337 bio->bi_iter.bi_sector,
b3143b9a 1338 bio_end_sector(bio)))
6eef4b21
N
1339 break;
1340 schedule();
1341 }
1342 finish_wait(&conf->wait_barrier, &w);
1343 }
f81f7302
GJ
1344
1345 /*
1346 * Register the new request and wait if the reconstruction
1347 * thread has put up a bar for new requests.
1348 * Continue immediately if no resync is active currently.
1349 */
fd76863e 1350 wait_barrier(conf, bio->bi_iter.bi_sector);
1351
689389a0 1352 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1353 r1_bio->sectors = max_write_sectors;
1da177e4 1354
34db0cd6
N
1355 if (conf->pending_count >= max_queued_requests) {
1356 md_wakeup_thread(mddev->thread);
578b54ad 1357 raid1_log(mddev, "wait queued");
34db0cd6
N
1358 wait_event(conf->wait_barrier,
1359 conf->pending_count < max_queued_requests);
1360 }
1f68f0c4 1361 /* first select target devices under rcu_lock and
1da177e4
LT
1362 * inc refcount on their rdev. Record them by setting
1363 * bios[x] to bio
1f68f0c4
N
1364 * If there are known/acknowledged bad blocks on any device on
1365 * which we have seen a write error, we want to avoid writing those
1366 * blocks.
1367 * This potentially requires several writes to write around
1368 * the bad blocks. Each set of writes gets it's own r1bio
1369 * with a set of bios attached.
1da177e4 1370 */
c3b328ac 1371
8f19ccb2 1372 disks = conf->raid_disks * 2;
6bfe0b49
DW
1373 retry_write:
1374 blocked_rdev = NULL;
1da177e4 1375 rcu_read_lock();
1f68f0c4 1376 max_sectors = r1_bio->sectors;
1da177e4 1377 for (i = 0; i < disks; i++) {
3cb03002 1378 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1379 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1380 atomic_inc(&rdev->nr_pending);
1381 blocked_rdev = rdev;
1382 break;
1383 }
1f68f0c4 1384 r1_bio->bios[i] = NULL;
8ae12666 1385 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1386 if (i < conf->raid_disks)
1387 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1388 continue;
1389 }
1390
1391 atomic_inc(&rdev->nr_pending);
1392 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1393 sector_t first_bad;
1394 int bad_sectors;
1395 int is_bad;
1396
3b046a97 1397 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1398 &first_bad, &bad_sectors);
1399 if (is_bad < 0) {
1400 /* mustn't write here until the bad block is
1401 * acknowledged*/
1402 set_bit(BlockedBadBlocks, &rdev->flags);
1403 blocked_rdev = rdev;
1404 break;
1405 }
1406 if (is_bad && first_bad <= r1_bio->sector) {
1407 /* Cannot write here at all */
1408 bad_sectors -= (r1_bio->sector - first_bad);
1409 if (bad_sectors < max_sectors)
1410 /* mustn't write more than bad_sectors
1411 * to other devices yet
1412 */
1413 max_sectors = bad_sectors;
03c902e1 1414 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1415 /* We don't set R1BIO_Degraded as that
1416 * only applies if the disk is
1417 * missing, so it might be re-added,
1418 * and we want to know to recover this
1419 * chunk.
1420 * In this case the device is here,
1421 * and the fact that this chunk is not
1422 * in-sync is recorded in the bad
1423 * block log
1424 */
1425 continue;
964147d5 1426 }
1f68f0c4
N
1427 if (is_bad) {
1428 int good_sectors = first_bad - r1_bio->sector;
1429 if (good_sectors < max_sectors)
1430 max_sectors = good_sectors;
1431 }
1432 }
1433 r1_bio->bios[i] = bio;
1da177e4
LT
1434 }
1435 rcu_read_unlock();
1436
6bfe0b49
DW
1437 if (unlikely(blocked_rdev)) {
1438 /* Wait for this device to become unblocked */
1439 int j;
1440
1441 for (j = 0; j < i; j++)
1442 if (r1_bio->bios[j])
1443 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1444 r1_bio->state = 0;
fd76863e 1445 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1446 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1447 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1448 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1449 goto retry_write;
1450 }
1451
c230e7e5
N
1452 if (max_sectors < bio_sectors(bio)) {
1453 struct bio *split = bio_split(bio, max_sectors,
afeee514 1454 GFP_NOIO, &conf->bio_split);
c230e7e5 1455 bio_chain(split, bio);
ed00aabd 1456 submit_bio_noacct(bio);
c230e7e5
N
1457 bio = split;
1458 r1_bio->master_bio = bio;
1f68f0c4 1459 r1_bio->sectors = max_sectors;
191ea9b2 1460 }
4b6d287f 1461
4e78064f 1462 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1463 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1464
1f68f0c4 1465 first_clone = 1;
d8c84c4f 1466
1da177e4 1467 for (i = 0; i < disks; i++) {
8e58e327 1468 struct bio *mbio = NULL;
69df9cfc 1469 struct md_rdev *rdev = conf->mirrors[i].rdev;
1da177e4
LT
1470 if (!r1_bio->bios[i])
1471 continue;
1472
1f68f0c4
N
1473 if (first_clone) {
1474 /* do behind I/O ?
1475 * Not if there are too many, or cannot
1476 * allocate memory, or a reader on WriteMostly
1477 * is waiting for behind writes to flush */
1478 if (bitmap &&
1479 (atomic_read(&bitmap->behind_writes)
1480 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1481 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1482 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1483 }
1f68f0c4 1484
e64e4018
AS
1485 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1486 test_bit(R1BIO_BehindIO, &r1_bio->state));
1f68f0c4
N
1487 first_clone = 0;
1488 }
8e58e327 1489
16d56e2f
SL
1490 if (r1_bio->behind_master_bio)
1491 mbio = bio_clone_fast(r1_bio->behind_master_bio,
afeee514 1492 GFP_NOIO, &mddev->bio_set);
16d56e2f 1493 else
afeee514 1494 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
8e58e327 1495
841c1316 1496 if (r1_bio->behind_master_bio) {
69df9cfc 1497 if (test_bit(CollisionCheck, &rdev->flags))
d0d2d8ba 1498 wait_for_serialization(rdev, r1_bio);
3e148a32 1499 if (test_bit(WriteMostly, &rdev->flags))
4b6d287f 1500 atomic_inc(&r1_bio->behind_remaining);
69df9cfc 1501 } else if (mddev->serialize_policy)
d0d2d8ba 1502 wait_for_serialization(rdev, r1_bio);
4b6d287f 1503
1f68f0c4
N
1504 r1_bio->bios[i] = mbio;
1505
4f024f37 1506 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1507 conf->mirrors[i].rdev->data_offset);
74d46992 1508 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1f68f0c4 1509 mbio->bi_end_io = raid1_end_write_request;
a682e003 1510 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1511 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1512 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1513 conf->raid_disks - mddev->degraded > 1)
1514 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1515 mbio->bi_private = r1_bio;
1516
1da177e4 1517 atomic_inc(&r1_bio->remaining);
f54a9d0e 1518
109e3765 1519 if (mddev->gendisk)
1c02fca6 1520 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
109e3765
N
1521 r1_bio->sector);
1522 /* flush_pending_writes() needs access to the rdev so...*/
309dca30 1523 mbio->bi_bdev = (void *)conf->mirrors[i].rdev;
109e3765 1524
f54a9d0e
N
1525 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1526 if (cb)
1527 plug = container_of(cb, struct raid1_plug_cb, cb);
1528 else
1529 plug = NULL;
f54a9d0e
N
1530 if (plug) {
1531 bio_list_add(&plug->pending, mbio);
1532 plug->pending_cnt++;
1533 } else {
23b245c0 1534 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1535 bio_list_add(&conf->pending_bio_list, mbio);
1536 conf->pending_count++;
23b245c0 1537 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1538 md_wakeup_thread(mddev->thread);
23b245c0 1539 }
1da177e4 1540 }
1f68f0c4 1541
079fa166
N
1542 r1_bio_write_done(r1_bio);
1543
1544 /* In case raid1d snuck in to freeze_array */
1545 wake_up(&conf->wait_barrier);
1da177e4
LT
1546}
1547
cc27b0c7 1548static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1549{
fd76863e 1550 sector_t sectors;
3b046a97 1551
775d7831
DJ
1552 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1553 && md_flush_request(mddev, bio))
cc27b0c7 1554 return true;
3b046a97 1555
c230e7e5
N
1556 /*
1557 * There is a limit to the maximum size, but
1558 * the read/write handler might find a lower limit
1559 * due to bad blocks. To avoid multiple splits,
1560 * we pass the maximum number of sectors down
1561 * and let the lower level perform the split.
1562 */
1563 sectors = align_to_barrier_unit_end(
1564 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1565
c230e7e5 1566 if (bio_data_dir(bio) == READ)
689389a0 1567 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1568 else {
1569 if (!md_write_start(mddev,bio))
1570 return false;
c230e7e5 1571 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1572 }
1573 return true;
3b046a97
RL
1574}
1575
849674e4 1576static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1577{
e8096360 1578 struct r1conf *conf = mddev->private;
1da177e4
LT
1579 int i;
1580
1581 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1582 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1583 rcu_read_lock();
1584 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1585 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1586 seq_printf(seq, "%s",
ddac7c7e
N
1587 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1588 }
1589 rcu_read_unlock();
1da177e4
LT
1590 seq_printf(seq, "]");
1591}
1592
849674e4 1593static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1594{
1595 char b[BDEVNAME_SIZE];
e8096360 1596 struct r1conf *conf = mddev->private;
423f04d6 1597 unsigned long flags;
1da177e4
LT
1598
1599 /*
1600 * If it is not operational, then we have already marked it as dead
9a567843
GJ
1601 * else if it is the last working disks with "fail_last_dev == false",
1602 * ignore the error, let the next level up know.
1da177e4
LT
1603 * else mark the drive as failed
1604 */
2e52d449 1605 spin_lock_irqsave(&conf->device_lock, flags);
9a567843 1606 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
4044ba58 1607 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1608 /*
1609 * Don't fail the drive, act as though we were just a
4044ba58
N
1610 * normal single drive.
1611 * However don't try a recovery from this drive as
1612 * it is very likely to fail.
1da177e4 1613 */
5389042f 1614 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1615 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1616 return;
4044ba58 1617 }
de393cde 1618 set_bit(Blocked, &rdev->flags);
ebda52fa 1619 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1620 mddev->degraded++;
ebda52fa 1621 set_bit(Faulty, &rdev->flags);
423f04d6 1622 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1623 /*
1624 * if recovery is running, make sure it aborts.
1625 */
1626 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1627 set_mask_bits(&mddev->sb_flags, 0,
1628 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1629 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1630 "md/raid1:%s: Operation continuing on %d devices.\n",
1631 mdname(mddev), bdevname(rdev->bdev, b),
1632 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1633}
1634
e8096360 1635static void print_conf(struct r1conf *conf)
1da177e4
LT
1636{
1637 int i;
1da177e4 1638
1d41c216 1639 pr_debug("RAID1 conf printout:\n");
1da177e4 1640 if (!conf) {
1d41c216 1641 pr_debug("(!conf)\n");
1da177e4
LT
1642 return;
1643 }
1d41c216
N
1644 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1645 conf->raid_disks);
1da177e4 1646
ddac7c7e 1647 rcu_read_lock();
1da177e4
LT
1648 for (i = 0; i < conf->raid_disks; i++) {
1649 char b[BDEVNAME_SIZE];
3cb03002 1650 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1651 if (rdev)
1d41c216
N
1652 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1653 i, !test_bit(In_sync, &rdev->flags),
1654 !test_bit(Faulty, &rdev->flags),
1655 bdevname(rdev->bdev,b));
1da177e4 1656 }
ddac7c7e 1657 rcu_read_unlock();
1da177e4
LT
1658}
1659
e8096360 1660static void close_sync(struct r1conf *conf)
1da177e4 1661{
f6eca2d4
ND
1662 int idx;
1663
1664 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1665 _wait_barrier(conf, idx);
1666 _allow_barrier(conf, idx);
1667 }
1da177e4 1668
afeee514 1669 mempool_exit(&conf->r1buf_pool);
1da177e4
LT
1670}
1671
fd01b88c 1672static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1673{
1674 int i;
e8096360 1675 struct r1conf *conf = mddev->private;
6b965620
N
1676 int count = 0;
1677 unsigned long flags;
1da177e4
LT
1678
1679 /*
f72ffdd6 1680 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1681 * and mark them readable.
1682 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1683 * device_lock used to avoid races with raid1_end_read_request
1684 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1685 */
423f04d6 1686 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1687 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1688 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1689 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1690 if (repl
1aee41f6 1691 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1692 && repl->recovery_offset == MaxSector
1693 && !test_bit(Faulty, &repl->flags)
1694 && !test_and_set_bit(In_sync, &repl->flags)) {
1695 /* replacement has just become active */
1696 if (!rdev ||
1697 !test_and_clear_bit(In_sync, &rdev->flags))
1698 count++;
1699 if (rdev) {
1700 /* Replaced device not technically
1701 * faulty, but we need to be sure
1702 * it gets removed and never re-added
1703 */
1704 set_bit(Faulty, &rdev->flags);
1705 sysfs_notify_dirent_safe(
1706 rdev->sysfs_state);
1707 }
1708 }
ddac7c7e 1709 if (rdev
61e4947c 1710 && rdev->recovery_offset == MaxSector
ddac7c7e 1711 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1712 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1713 count++;
654e8b5a 1714 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1715 }
1716 }
6b965620
N
1717 mddev->degraded -= count;
1718 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1719
1720 print_conf(conf);
6b965620 1721 return count;
1da177e4
LT
1722}
1723
fd01b88c 1724static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1725{
e8096360 1726 struct r1conf *conf = mddev->private;
199050ea 1727 int err = -EEXIST;
41158c7e 1728 int mirror = 0;
0eaf822c 1729 struct raid1_info *p;
6c2fce2e 1730 int first = 0;
30194636 1731 int last = conf->raid_disks - 1;
1da177e4 1732
5389042f
N
1733 if (mddev->recovery_disabled == conf->recovery_disabled)
1734 return -EBUSY;
1735
1501efad
DW
1736 if (md_integrity_add_rdev(rdev, mddev))
1737 return -ENXIO;
1738
6c2fce2e
NB
1739 if (rdev->raid_disk >= 0)
1740 first = last = rdev->raid_disk;
1741
70bcecdb
GR
1742 /*
1743 * find the disk ... but prefer rdev->saved_raid_disk
1744 * if possible.
1745 */
1746 if (rdev->saved_raid_disk >= 0 &&
1747 rdev->saved_raid_disk >= first &&
9e753ba9 1748 rdev->saved_raid_disk < conf->raid_disks &&
70bcecdb
GR
1749 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1750 first = last = rdev->saved_raid_disk;
1751
7ef449d1 1752 for (mirror = first; mirror <= last; mirror++) {
ebfeb444 1753 p = conf->mirrors + mirror;
7ef449d1 1754 if (!p->rdev) {
9092c02d
JB
1755 if (mddev->gendisk)
1756 disk_stack_limits(mddev->gendisk, rdev->bdev,
1757 rdev->data_offset << 9);
1da177e4
LT
1758
1759 p->head_position = 0;
1760 rdev->raid_disk = mirror;
199050ea 1761 err = 0;
6aea114a
N
1762 /* As all devices are equivalent, we don't need a full recovery
1763 * if this was recently any drive of the array
1764 */
1765 if (rdev->saved_raid_disk < 0)
41158c7e 1766 conf->fullsync = 1;
d6065f7b 1767 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1768 break;
1769 }
7ef449d1
N
1770 if (test_bit(WantReplacement, &p->rdev->flags) &&
1771 p[conf->raid_disks].rdev == NULL) {
1772 /* Add this device as a replacement */
1773 clear_bit(In_sync, &rdev->flags);
1774 set_bit(Replacement, &rdev->flags);
1775 rdev->raid_disk = mirror;
1776 err = 0;
1777 conf->fullsync = 1;
1778 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1779 break;
1780 }
1781 }
9092c02d 1782 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
8b904b5b 1783 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1784 print_conf(conf);
199050ea 1785 return err;
1da177e4
LT
1786}
1787
b8321b68 1788static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1789{
e8096360 1790 struct r1conf *conf = mddev->private;
1da177e4 1791 int err = 0;
b8321b68 1792 int number = rdev->raid_disk;
0eaf822c 1793 struct raid1_info *p = conf->mirrors + number;
1da177e4 1794
b014f14c
N
1795 if (rdev != p->rdev)
1796 p = conf->mirrors + conf->raid_disks + number;
1797
1da177e4 1798 print_conf(conf);
b8321b68 1799 if (rdev == p->rdev) {
b2d444d7 1800 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1801 atomic_read(&rdev->nr_pending)) {
1802 err = -EBUSY;
1803 goto abort;
1804 }
046abeed 1805 /* Only remove non-faulty devices if recovery
dfc70645
N
1806 * is not possible.
1807 */
1808 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1809 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1810 mddev->degraded < conf->raid_disks) {
1811 err = -EBUSY;
1812 goto abort;
1813 }
1da177e4 1814 p->rdev = NULL;
d787be40
N
1815 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1816 synchronize_rcu();
1817 if (atomic_read(&rdev->nr_pending)) {
1818 /* lost the race, try later */
1819 err = -EBUSY;
1820 p->rdev = rdev;
1821 goto abort;
1822 }
1823 }
1824 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1825 /* We just removed a device that is being replaced.
1826 * Move down the replacement. We drain all IO before
1827 * doing this to avoid confusion.
1828 */
1829 struct md_rdev *repl =
1830 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1831 freeze_array(conf, 0);
3de59bb9
YY
1832 if (atomic_read(&repl->nr_pending)) {
1833 /* It means that some queued IO of retry_list
1834 * hold repl. Thus, we cannot set replacement
1835 * as NULL, avoiding rdev NULL pointer
1836 * dereference in sync_request_write and
1837 * handle_write_finished.
1838 */
1839 err = -EBUSY;
1840 unfreeze_array(conf);
1841 goto abort;
1842 }
8c7a2c2b
N
1843 clear_bit(Replacement, &repl->flags);
1844 p->rdev = repl;
1845 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1846 unfreeze_array(conf);
e5bc9c3c
GJ
1847 }
1848
1849 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1850 err = md_integrity_register(mddev);
1da177e4
LT
1851 }
1852abort:
1853
1854 print_conf(conf);
1855 return err;
1856}
1857
4246a0b6 1858static void end_sync_read(struct bio *bio)
1da177e4 1859{
98d30c58 1860 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1861
0fc280f6 1862 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1863
1da177e4
LT
1864 /*
1865 * we have read a block, now it needs to be re-written,
1866 * or re-read if the read failed.
1867 * We don't do much here, just schedule handling by raid1d
1868 */
4e4cbee9 1869 if (!bio->bi_status)
1da177e4 1870 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1871
1872 if (atomic_dec_and_test(&r1_bio->remaining))
1873 reschedule_retry(r1_bio);
1da177e4
LT
1874}
1875
dfcc34c9
ND
1876static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1877{
1878 sector_t sync_blocks = 0;
1879 sector_t s = r1_bio->sector;
1880 long sectors_to_go = r1_bio->sectors;
1881
1882 /* make sure these bits don't get cleared. */
1883 do {
1884 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1885 s += sync_blocks;
1886 sectors_to_go -= sync_blocks;
1887 } while (sectors_to_go > 0);
1888}
1889
449808a2
HT
1890static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1891{
1892 if (atomic_dec_and_test(&r1_bio->remaining)) {
1893 struct mddev *mddev = r1_bio->mddev;
1894 int s = r1_bio->sectors;
1895
1896 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1897 test_bit(R1BIO_WriteError, &r1_bio->state))
1898 reschedule_retry(r1_bio);
1899 else {
1900 put_buf(r1_bio);
1901 md_done_sync(mddev, s, uptodate);
1902 }
1903 }
1904}
1905
4246a0b6 1906static void end_sync_write(struct bio *bio)
1da177e4 1907{
4e4cbee9 1908 int uptodate = !bio->bi_status;
98d30c58 1909 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1910 struct mddev *mddev = r1_bio->mddev;
e8096360 1911 struct r1conf *conf = mddev->private;
4367af55
N
1912 sector_t first_bad;
1913 int bad_sectors;
854abd75 1914 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1915
6b1117d5 1916 if (!uptodate) {
dfcc34c9 1917 abort_sync_write(mddev, r1_bio);
854abd75
N
1918 set_bit(WriteErrorSeen, &rdev->flags);
1919 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1920 set_bit(MD_RECOVERY_NEEDED, &
1921 mddev->recovery);
d8f05d29 1922 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1923 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1924 &first_bad, &bad_sectors) &&
1925 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1926 r1_bio->sector,
1927 r1_bio->sectors,
1928 &first_bad, &bad_sectors)
1929 )
4367af55 1930 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1931
449808a2 1932 put_sync_write_buf(r1_bio, uptodate);
1da177e4
LT
1933}
1934
3cb03002 1935static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1936 int sectors, struct page *page, int rw)
1937{
796a5cf0 1938 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1939 /* success */
1940 return 1;
19d67169 1941 if (rw == WRITE) {
d8f05d29 1942 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1943 if (!test_and_set_bit(WantReplacement,
1944 &rdev->flags))
1945 set_bit(MD_RECOVERY_NEEDED, &
1946 rdev->mddev->recovery);
1947 }
d8f05d29
N
1948 /* need to record an error - either for the block or the device */
1949 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1950 md_error(rdev->mddev, rdev);
1951 return 0;
1952}
1953
9f2c9d12 1954static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1955{
a68e5870
N
1956 /* Try some synchronous reads of other devices to get
1957 * good data, much like with normal read errors. Only
1958 * read into the pages we already have so we don't
1959 * need to re-issue the read request.
1960 * We don't need to freeze the array, because being in an
1961 * active sync request, there is no normal IO, and
1962 * no overlapping syncs.
06f60385
N
1963 * We don't need to check is_badblock() again as we
1964 * made sure that anything with a bad block in range
1965 * will have bi_end_io clear.
a68e5870 1966 */
fd01b88c 1967 struct mddev *mddev = r1_bio->mddev;
e8096360 1968 struct r1conf *conf = mddev->private;
a68e5870 1969 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 1970 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
1971 sector_t sect = r1_bio->sector;
1972 int sectors = r1_bio->sectors;
1973 int idx = 0;
2e52d449
N
1974 struct md_rdev *rdev;
1975
1976 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1977 if (test_bit(FailFast, &rdev->flags)) {
1978 /* Don't try recovering from here - just fail it
1979 * ... unless it is the last working device of course */
1980 md_error(mddev, rdev);
1981 if (test_bit(Faulty, &rdev->flags))
1982 /* Don't try to read from here, but make sure
1983 * put_buf does it's thing
1984 */
1985 bio->bi_end_io = end_sync_write;
1986 }
a68e5870
N
1987
1988 while(sectors) {
1989 int s = sectors;
1990 int d = r1_bio->read_disk;
1991 int success = 0;
78d7f5f7 1992 int start;
a68e5870
N
1993
1994 if (s > (PAGE_SIZE>>9))
1995 s = PAGE_SIZE >> 9;
1996 do {
1997 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1998 /* No rcu protection needed here devices
1999 * can only be removed when no resync is
2000 * active, and resync is currently active
2001 */
2002 rdev = conf->mirrors[d].rdev;
9d3d8011 2003 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 2004 pages[idx],
796a5cf0 2005 REQ_OP_READ, 0, false)) {
a68e5870
N
2006 success = 1;
2007 break;
2008 }
2009 }
2010 d++;
8f19ccb2 2011 if (d == conf->raid_disks * 2)
a68e5870
N
2012 d = 0;
2013 } while (!success && d != r1_bio->read_disk);
2014
78d7f5f7 2015 if (!success) {
a68e5870 2016 char b[BDEVNAME_SIZE];
3a9f28a5
N
2017 int abort = 0;
2018 /* Cannot read from anywhere, this block is lost.
2019 * Record a bad block on each device. If that doesn't
2020 * work just disable and interrupt the recovery.
2021 * Don't fail devices as that won't really help.
2022 */
1d41c216 2023 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
74d46992 2024 mdname(mddev), bio_devname(bio, b),
1d41c216 2025 (unsigned long long)r1_bio->sector);
8f19ccb2 2026 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
2027 rdev = conf->mirrors[d].rdev;
2028 if (!rdev || test_bit(Faulty, &rdev->flags))
2029 continue;
2030 if (!rdev_set_badblocks(rdev, sect, s, 0))
2031 abort = 1;
2032 }
2033 if (abort) {
d890fa2b
N
2034 conf->recovery_disabled =
2035 mddev->recovery_disabled;
3a9f28a5
N
2036 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2037 md_done_sync(mddev, r1_bio->sectors, 0);
2038 put_buf(r1_bio);
2039 return 0;
2040 }
2041 /* Try next page */
2042 sectors -= s;
2043 sect += s;
2044 idx++;
2045 continue;
d11c171e 2046 }
78d7f5f7
N
2047
2048 start = d;
2049 /* write it back and re-read */
2050 while (d != r1_bio->read_disk) {
2051 if (d == 0)
8f19ccb2 2052 d = conf->raid_disks * 2;
78d7f5f7
N
2053 d--;
2054 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2055 continue;
2056 rdev = conf->mirrors[d].rdev;
d8f05d29 2057 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2058 pages[idx],
d8f05d29 2059 WRITE) == 0) {
78d7f5f7
N
2060 r1_bio->bios[d]->bi_end_io = NULL;
2061 rdev_dec_pending(rdev, mddev);
9d3d8011 2062 }
78d7f5f7
N
2063 }
2064 d = start;
2065 while (d != r1_bio->read_disk) {
2066 if (d == 0)
8f19ccb2 2067 d = conf->raid_disks * 2;
78d7f5f7
N
2068 d--;
2069 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2070 continue;
2071 rdev = conf->mirrors[d].rdev;
d8f05d29 2072 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2073 pages[idx],
d8f05d29 2074 READ) != 0)
9d3d8011 2075 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2076 }
a68e5870
N
2077 sectors -= s;
2078 sect += s;
2079 idx ++;
2080 }
78d7f5f7 2081 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2082 bio->bi_status = 0;
a68e5870
N
2083 return 1;
2084}
2085
c95e6385 2086static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2087{
2088 /* We have read all readable devices. If we haven't
2089 * got the block, then there is no hope left.
2090 * If we have, then we want to do a comparison
2091 * and skip the write if everything is the same.
2092 * If any blocks failed to read, then we need to
2093 * attempt an over-write
2094 */
fd01b88c 2095 struct mddev *mddev = r1_bio->mddev;
e8096360 2096 struct r1conf *conf = mddev->private;
a68e5870
N
2097 int primary;
2098 int i;
f4380a91 2099 int vcnt;
a68e5870 2100
30bc9b53
N
2101 /* Fix variable parts of all bios */
2102 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2103 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2104 blk_status_t status;
30bc9b53 2105 struct bio *b = r1_bio->bios[i];
98d30c58 2106 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2107 if (b->bi_end_io != end_sync_read)
2108 continue;
4246a0b6 2109 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2110 status = b->bi_status;
30bc9b53 2111 bio_reset(b);
4e4cbee9 2112 b->bi_status = status;
4f024f37 2113 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2114 conf->mirrors[i].rdev->data_offset;
74d46992 2115 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
30bc9b53 2116 b->bi_end_io = end_sync_read;
98d30c58
ML
2117 rp->raid_bio = r1_bio;
2118 b->bi_private = rp;
30bc9b53 2119
fb0eb5df
ML
2120 /* initialize bvec table again */
2121 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2122 }
8f19ccb2 2123 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2124 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2125 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2126 r1_bio->bios[primary]->bi_end_io = NULL;
2127 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2128 break;
2129 }
2130 r1_bio->read_disk = primary;
8f19ccb2 2131 for (i = 0; i < conf->raid_disks * 2; i++) {
2b070cfe 2132 int j = 0;
78d7f5f7
N
2133 struct bio *pbio = r1_bio->bios[primary];
2134 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2135 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2136 struct page **ppages = get_resync_pages(pbio)->pages;
2137 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2138 struct bio_vec *bi;
8fc04e6e 2139 int page_len[RESYNC_PAGES] = { 0 };
6dc4f100 2140 struct bvec_iter_all iter_all;
a68e5870 2141
2aabaa65 2142 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2143 continue;
4246a0b6 2144 /* Now we can 'fixup' the error value */
4e4cbee9 2145 sbio->bi_status = 0;
78d7f5f7 2146
2b070cfe
CH
2147 bio_for_each_segment_all(bi, sbio, iter_all)
2148 page_len[j++] = bi->bv_len;
60928a91 2149
4e4cbee9 2150 if (!status) {
78d7f5f7 2151 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2152 if (memcmp(page_address(ppages[j]),
2153 page_address(spages[j]),
60928a91 2154 page_len[j]))
78d7f5f7 2155 break;
69382e85 2156 }
78d7f5f7
N
2157 } else
2158 j = 0;
2159 if (j >= 0)
7f7583d4 2160 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2161 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2162 && !status)) {
78d7f5f7
N
2163 /* No need to write to this device. */
2164 sbio->bi_end_io = NULL;
2165 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2166 continue;
2167 }
d3b45c2a
KO
2168
2169 bio_copy_data(sbio, pbio);
78d7f5f7 2170 }
a68e5870
N
2171}
2172
9f2c9d12 2173static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2174{
e8096360 2175 struct r1conf *conf = mddev->private;
a68e5870 2176 int i;
8f19ccb2 2177 int disks = conf->raid_disks * 2;
037d2ff6 2178 struct bio *wbio;
a68e5870 2179
a68e5870
N
2180 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2181 /* ouch - failed to read all of that. */
2182 if (!fix_sync_read_error(r1_bio))
2183 return;
7ca78d57
N
2184
2185 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2186 process_checks(r1_bio);
2187
d11c171e
N
2188 /*
2189 * schedule writes
2190 */
1da177e4
LT
2191 atomic_set(&r1_bio->remaining, 1);
2192 for (i = 0; i < disks ; i++) {
2193 wbio = r1_bio->bios[i];
3e198f78
N
2194 if (wbio->bi_end_io == NULL ||
2195 (wbio->bi_end_io == end_sync_read &&
2196 (i == r1_bio->read_disk ||
2197 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2198 continue;
dfcc34c9
ND
2199 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2200 abort_sync_write(mddev, r1_bio);
0c9d5b12 2201 continue;
dfcc34c9 2202 }
1da177e4 2203
796a5cf0 2204 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2205 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2206 wbio->bi_opf |= MD_FAILFAST;
2207
3e198f78 2208 wbio->bi_end_io = end_sync_write;
1da177e4 2209 atomic_inc(&r1_bio->remaining);
aa8b57aa 2210 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2211
ed00aabd 2212 submit_bio_noacct(wbio);
1da177e4
LT
2213 }
2214
449808a2 2215 put_sync_write_buf(r1_bio, 1);
1da177e4
LT
2216}
2217
2218/*
2219 * This is a kernel thread which:
2220 *
2221 * 1. Retries failed read operations on working mirrors.
2222 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2223 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2224 */
2225
e8096360 2226static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2227 sector_t sect, int sectors)
2228{
fd01b88c 2229 struct mddev *mddev = conf->mddev;
867868fb
N
2230 while(sectors) {
2231 int s = sectors;
2232 int d = read_disk;
2233 int success = 0;
2234 int start;
3cb03002 2235 struct md_rdev *rdev;
867868fb
N
2236
2237 if (s > (PAGE_SIZE>>9))
2238 s = PAGE_SIZE >> 9;
2239
2240 do {
d2eb35ac
N
2241 sector_t first_bad;
2242 int bad_sectors;
2243
707a6a42
N
2244 rcu_read_lock();
2245 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2246 if (rdev &&
da8840a7 2247 (test_bit(In_sync, &rdev->flags) ||
2248 (!test_bit(Faulty, &rdev->flags) &&
2249 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2250 is_badblock(rdev, sect, s,
707a6a42
N
2251 &first_bad, &bad_sectors) == 0) {
2252 atomic_inc(&rdev->nr_pending);
2253 rcu_read_unlock();
2254 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2255 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2256 success = 1;
2257 rdev_dec_pending(rdev, mddev);
2258 if (success)
2259 break;
2260 } else
2261 rcu_read_unlock();
2262 d++;
2263 if (d == conf->raid_disks * 2)
2264 d = 0;
867868fb
N
2265 } while (!success && d != read_disk);
2266
2267 if (!success) {
d8f05d29 2268 /* Cannot read from anywhere - mark it bad */
3cb03002 2269 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2270 if (!rdev_set_badblocks(rdev, sect, s, 0))
2271 md_error(mddev, rdev);
867868fb
N
2272 break;
2273 }
2274 /* write it back and re-read */
2275 start = d;
2276 while (d != read_disk) {
2277 if (d==0)
8f19ccb2 2278 d = conf->raid_disks * 2;
867868fb 2279 d--;
707a6a42
N
2280 rcu_read_lock();
2281 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2282 if (rdev &&
707a6a42
N
2283 !test_bit(Faulty, &rdev->flags)) {
2284 atomic_inc(&rdev->nr_pending);
2285 rcu_read_unlock();
d8f05d29
N
2286 r1_sync_page_io(rdev, sect, s,
2287 conf->tmppage, WRITE);
707a6a42
N
2288 rdev_dec_pending(rdev, mddev);
2289 } else
2290 rcu_read_unlock();
867868fb
N
2291 }
2292 d = start;
2293 while (d != read_disk) {
2294 char b[BDEVNAME_SIZE];
2295 if (d==0)
8f19ccb2 2296 d = conf->raid_disks * 2;
867868fb 2297 d--;
707a6a42
N
2298 rcu_read_lock();
2299 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2300 if (rdev &&
b8cb6b4c 2301 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2302 atomic_inc(&rdev->nr_pending);
2303 rcu_read_unlock();
d8f05d29
N
2304 if (r1_sync_page_io(rdev, sect, s,
2305 conf->tmppage, READ)) {
867868fb 2306 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2307 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2308 mdname(mddev), s,
2309 (unsigned long long)(sect +
2310 rdev->data_offset),
2311 bdevname(rdev->bdev, b));
867868fb 2312 }
707a6a42
N
2313 rdev_dec_pending(rdev, mddev);
2314 } else
2315 rcu_read_unlock();
867868fb
N
2316 }
2317 sectors -= s;
2318 sect += s;
2319 }
2320}
2321
9f2c9d12 2322static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2323{
fd01b88c 2324 struct mddev *mddev = r1_bio->mddev;
e8096360 2325 struct r1conf *conf = mddev->private;
3cb03002 2326 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2327
2328 /* bio has the data to be written to device 'i' where
2329 * we just recently had a write error.
2330 * We repeatedly clone the bio and trim down to one block,
2331 * then try the write. Where the write fails we record
2332 * a bad block.
2333 * It is conceivable that the bio doesn't exactly align with
2334 * blocks. We must handle this somehow.
2335 *
2336 * We currently own a reference on the rdev.
2337 */
2338
2339 int block_sectors;
2340 sector_t sector;
2341 int sectors;
2342 int sect_to_write = r1_bio->sectors;
2343 int ok = 1;
2344
2345 if (rdev->badblocks.shift < 0)
2346 return 0;
2347
ab713cdc
ND
2348 block_sectors = roundup(1 << rdev->badblocks.shift,
2349 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2350 sector = r1_bio->sector;
2351 sectors = ((sector + block_sectors)
2352 & ~(sector_t)(block_sectors - 1))
2353 - sector;
2354
cd5ff9a1
N
2355 while (sect_to_write) {
2356 struct bio *wbio;
2357 if (sectors > sect_to_write)
2358 sectors = sect_to_write;
2359 /* Write at 'sector' for 'sectors'*/
2360
b783863f 2361 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2362 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2363 GFP_NOIO,
afeee514 2364 &mddev->bio_set);
b783863f 2365 } else {
d7a10308 2366 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
afeee514 2367 &mddev->bio_set);
b783863f
KO
2368 }
2369
796a5cf0 2370 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2371 wbio->bi_iter.bi_sector = r1_bio->sector;
2372 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2373
6678d83f 2374 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2375 wbio->bi_iter.bi_sector += rdev->data_offset;
74d46992 2376 bio_set_dev(wbio, rdev->bdev);
4e49ea4a
MC
2377
2378 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2379 /* failure! */
2380 ok = rdev_set_badblocks(rdev, sector,
2381 sectors, 0)
2382 && ok;
2383
2384 bio_put(wbio);
2385 sect_to_write -= sectors;
2386 sector += sectors;
2387 sectors = block_sectors;
2388 }
2389 return ok;
2390}
2391
e8096360 2392static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2393{
2394 int m;
2395 int s = r1_bio->sectors;
8f19ccb2 2396 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2397 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2398 struct bio *bio = r1_bio->bios[m];
2399 if (bio->bi_end_io == NULL)
2400 continue;
4e4cbee9 2401 if (!bio->bi_status &&
62096bce 2402 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2403 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2404 }
4e4cbee9 2405 if (bio->bi_status &&
62096bce
N
2406 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2407 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2408 md_error(conf->mddev, rdev);
2409 }
2410 }
2411 put_buf(r1_bio);
2412 md_done_sync(conf->mddev, s, 1);
2413}
2414
e8096360 2415static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2416{
fd76863e 2417 int m, idx;
55ce74d4 2418 bool fail = false;
fd76863e 2419
8f19ccb2 2420 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2421 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2422 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2423 rdev_clear_badblocks(rdev,
2424 r1_bio->sector,
c6563a8c 2425 r1_bio->sectors, 0);
62096bce
N
2426 rdev_dec_pending(rdev, conf->mddev);
2427 } else if (r1_bio->bios[m] != NULL) {
2428 /* This drive got a write error. We need to
2429 * narrow down and record precise write
2430 * errors.
2431 */
55ce74d4 2432 fail = true;
62096bce
N
2433 if (!narrow_write_error(r1_bio, m)) {
2434 md_error(conf->mddev,
2435 conf->mirrors[m].rdev);
2436 /* an I/O failed, we can't clear the bitmap */
2437 set_bit(R1BIO_Degraded, &r1_bio->state);
2438 }
2439 rdev_dec_pending(conf->mirrors[m].rdev,
2440 conf->mddev);
2441 }
55ce74d4
N
2442 if (fail) {
2443 spin_lock_irq(&conf->device_lock);
2444 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2445 idx = sector_to_idx(r1_bio->sector);
824e47da 2446 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2447 spin_unlock_irq(&conf->device_lock);
824e47da 2448 /*
2449 * In case freeze_array() is waiting for condition
2450 * get_unqueued_pending() == extra to be true.
2451 */
2452 wake_up(&conf->wait_barrier);
55ce74d4 2453 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2454 } else {
2455 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2456 close_write(r1_bio);
55ce74d4 2457 raid_end_bio_io(r1_bio);
bd8688a1 2458 }
62096bce
N
2459}
2460
e8096360 2461static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2462{
fd01b88c 2463 struct mddev *mddev = conf->mddev;
62096bce 2464 struct bio *bio;
3cb03002 2465 struct md_rdev *rdev;
62096bce
N
2466
2467 clear_bit(R1BIO_ReadError, &r1_bio->state);
2468 /* we got a read error. Maybe the drive is bad. Maybe just
2469 * the block and we can fix it.
2470 * We freeze all other IO, and try reading the block from
2471 * other devices. When we find one, we re-write
2472 * and check it that fixes the read error.
2473 * This is all done synchronously while the array is
2474 * frozen
2475 */
7449f699
TM
2476
2477 bio = r1_bio->bios[r1_bio->read_disk];
7449f699
TM
2478 bio_put(bio);
2479 r1_bio->bios[r1_bio->read_disk] = NULL;
2480
2e52d449
N
2481 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2482 if (mddev->ro == 0
2483 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2484 freeze_array(conf, 1);
62096bce
N
2485 fix_read_error(conf, r1_bio->read_disk,
2486 r1_bio->sector, r1_bio->sectors);
2487 unfreeze_array(conf);
b33d1062
GK
2488 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2489 md_error(mddev, rdev);
7449f699
TM
2490 } else {
2491 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2492 }
2493
2e52d449 2494 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2495 allow_barrier(conf, r1_bio->sector);
2496 bio = r1_bio->master_bio;
62096bce 2497
689389a0
N
2498 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2499 r1_bio->state = 0;
2500 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2501}
2502
4ed8731d 2503static void raid1d(struct md_thread *thread)
1da177e4 2504{
4ed8731d 2505 struct mddev *mddev = thread->mddev;
9f2c9d12 2506 struct r1bio *r1_bio;
1da177e4 2507 unsigned long flags;
e8096360 2508 struct r1conf *conf = mddev->private;
1da177e4 2509 struct list_head *head = &conf->retry_list;
e1dfa0a2 2510 struct blk_plug plug;
fd76863e 2511 int idx;
1da177e4
LT
2512
2513 md_check_recovery(mddev);
e1dfa0a2 2514
55ce74d4 2515 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2516 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2517 LIST_HEAD(tmp);
2518 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2519 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2520 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2521 spin_unlock_irqrestore(&conf->device_lock, flags);
2522 while (!list_empty(&tmp)) {
a452744b
MP
2523 r1_bio = list_first_entry(&tmp, struct r1bio,
2524 retry_list);
55ce74d4 2525 list_del(&r1_bio->retry_list);
fd76863e 2526 idx = sector_to_idx(r1_bio->sector);
824e47da 2527 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2528 if (mddev->degraded)
2529 set_bit(R1BIO_Degraded, &r1_bio->state);
2530 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2531 close_write(r1_bio);
55ce74d4
N
2532 raid_end_bio_io(r1_bio);
2533 }
2534 }
2535
e1dfa0a2 2536 blk_start_plug(&plug);
1da177e4 2537 for (;;) {
191ea9b2 2538
0021b7bc 2539 flush_pending_writes(conf);
191ea9b2 2540
a35e63ef
N
2541 spin_lock_irqsave(&conf->device_lock, flags);
2542 if (list_empty(head)) {
2543 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2544 break;
a35e63ef 2545 }
9f2c9d12 2546 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2547 list_del(head->prev);
fd76863e 2548 idx = sector_to_idx(r1_bio->sector);
824e47da 2549 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2550 spin_unlock_irqrestore(&conf->device_lock, flags);
2551
2552 mddev = r1_bio->mddev;
070ec55d 2553 conf = mddev->private;
4367af55 2554 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2555 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2556 test_bit(R1BIO_WriteError, &r1_bio->state))
2557 handle_sync_write_finished(conf, r1_bio);
2558 else
4367af55 2559 sync_request_write(mddev, r1_bio);
cd5ff9a1 2560 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2561 test_bit(R1BIO_WriteError, &r1_bio->state))
2562 handle_write_finished(conf, r1_bio);
2563 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2564 handle_read_error(conf, r1_bio);
2565 else
c230e7e5 2566 WARN_ON_ONCE(1);
62096bce 2567
1d9d5241 2568 cond_resched();
2953079c 2569 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2570 md_check_recovery(mddev);
1da177e4 2571 }
e1dfa0a2 2572 blk_finish_plug(&plug);
1da177e4
LT
2573}
2574
e8096360 2575static int init_resync(struct r1conf *conf)
1da177e4
LT
2576{
2577 int buffs;
2578
2579 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514
KO
2580 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2581
2582 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2583 r1buf_pool_free, conf->poolinfo);
1da177e4
LT
2584}
2585
208410b5
SL
2586static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2587{
afeee514 2588 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
208410b5
SL
2589 struct resync_pages *rps;
2590 struct bio *bio;
2591 int i;
2592
2593 for (i = conf->poolinfo->raid_disks; i--; ) {
2594 bio = r1bio->bios[i];
2595 rps = bio->bi_private;
2596 bio_reset(bio);
2597 bio->bi_private = rps;
2598 }
2599 r1bio->master_bio = NULL;
2600 return r1bio;
2601}
2602
1da177e4
LT
2603/*
2604 * perform a "sync" on one "block"
2605 *
2606 * We need to make sure that no normal I/O request - particularly write
2607 * requests - conflict with active sync requests.
2608 *
2609 * This is achieved by tracking pending requests and a 'barrier' concept
2610 * that can be installed to exclude normal IO requests.
2611 */
2612
849674e4
SL
2613static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2614 int *skipped)
1da177e4 2615{
e8096360 2616 struct r1conf *conf = mddev->private;
9f2c9d12 2617 struct r1bio *r1_bio;
1da177e4
LT
2618 struct bio *bio;
2619 sector_t max_sector, nr_sectors;
3e198f78 2620 int disk = -1;
1da177e4 2621 int i;
3e198f78
N
2622 int wonly = -1;
2623 int write_targets = 0, read_targets = 0;
57dab0bd 2624 sector_t sync_blocks;
e3b9703e 2625 int still_degraded = 0;
06f60385
N
2626 int good_sectors = RESYNC_SECTORS;
2627 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2628 int idx = sector_to_idx(sector_nr);
022e510f 2629 int page_idx = 0;
1da177e4 2630
afeee514 2631 if (!mempool_initialized(&conf->r1buf_pool))
1da177e4 2632 if (init_resync(conf))
57afd89f 2633 return 0;
1da177e4 2634
58c0fed4 2635 max_sector = mddev->dev_sectors;
1da177e4 2636 if (sector_nr >= max_sector) {
191ea9b2
N
2637 /* If we aborted, we need to abort the
2638 * sync on the 'current' bitmap chunk (there will
2639 * only be one in raid1 resync.
2640 * We can find the current addess in mddev->curr_resync
2641 */
6a806c51 2642 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
2643 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2644 &sync_blocks, 1);
6a806c51 2645 else /* completed sync */
191ea9b2 2646 conf->fullsync = 0;
6a806c51 2647
e64e4018 2648 md_bitmap_close_sync(mddev->bitmap);
1da177e4 2649 close_sync(conf);
c40f341f
GR
2650
2651 if (mddev_is_clustered(mddev)) {
2652 conf->cluster_sync_low = 0;
2653 conf->cluster_sync_high = 0;
c40f341f 2654 }
1da177e4
LT
2655 return 0;
2656 }
2657
07d84d10
N
2658 if (mddev->bitmap == NULL &&
2659 mddev->recovery_cp == MaxSector &&
6394cca5 2660 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2661 conf->fullsync == 0) {
2662 *skipped = 1;
2663 return max_sector - sector_nr;
2664 }
6394cca5
N
2665 /* before building a request, check if we can skip these blocks..
2666 * This call the bitmap_start_sync doesn't actually record anything
2667 */
e64e4018 2668 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2669 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2670 /* We can skip this block, and probably several more */
2671 *skipped = 1;
2672 return sync_blocks;
2673 }
17999be4 2674
7ac50447
TM
2675 /*
2676 * If there is non-resync activity waiting for a turn, then let it
2677 * though before starting on this new sync request.
2678 */
824e47da 2679 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2680 schedule_timeout_uninterruptible(1);
2681
c40f341f
GR
2682 /* we are incrementing sector_nr below. To be safe, we check against
2683 * sector_nr + two times RESYNC_SECTORS
2684 */
2685
e64e4018 2686 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
c40f341f 2687 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
17999be4 2688
8c242593
YY
2689
2690 if (raise_barrier(conf, sector_nr))
2691 return 0;
2692
2693 r1_bio = raid1_alloc_init_r1buf(conf);
1da177e4 2694
3e198f78 2695 rcu_read_lock();
1da177e4 2696 /*
3e198f78
N
2697 * If we get a correctably read error during resync or recovery,
2698 * we might want to read from a different device. So we
2699 * flag all drives that could conceivably be read from for READ,
2700 * and any others (which will be non-In_sync devices) for WRITE.
2701 * If a read fails, we try reading from something else for which READ
2702 * is OK.
1da177e4 2703 */
1da177e4 2704
1da177e4
LT
2705 r1_bio->mddev = mddev;
2706 r1_bio->sector = sector_nr;
191ea9b2 2707 r1_bio->state = 0;
1da177e4 2708 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2709 /* make sure good_sectors won't go across barrier unit boundary */
2710 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2711
8f19ccb2 2712 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2713 struct md_rdev *rdev;
1da177e4 2714 bio = r1_bio->bios[i];
1da177e4 2715
3e198f78
N
2716 rdev = rcu_dereference(conf->mirrors[i].rdev);
2717 if (rdev == NULL ||
06f60385 2718 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2719 if (i < conf->raid_disks)
2720 still_degraded = 1;
3e198f78 2721 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2722 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2723 bio->bi_end_io = end_sync_write;
2724 write_targets ++;
3e198f78
N
2725 } else {
2726 /* may need to read from here */
06f60385
N
2727 sector_t first_bad = MaxSector;
2728 int bad_sectors;
2729
2730 if (is_badblock(rdev, sector_nr, good_sectors,
2731 &first_bad, &bad_sectors)) {
2732 if (first_bad > sector_nr)
2733 good_sectors = first_bad - sector_nr;
2734 else {
2735 bad_sectors -= (sector_nr - first_bad);
2736 if (min_bad == 0 ||
2737 min_bad > bad_sectors)
2738 min_bad = bad_sectors;
2739 }
2740 }
2741 if (sector_nr < first_bad) {
2742 if (test_bit(WriteMostly, &rdev->flags)) {
2743 if (wonly < 0)
2744 wonly = i;
2745 } else {
2746 if (disk < 0)
2747 disk = i;
2748 }
796a5cf0 2749 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2750 bio->bi_end_io = end_sync_read;
2751 read_targets++;
d57368af
AL
2752 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2753 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2754 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2755 /*
2756 * The device is suitable for reading (InSync),
2757 * but has bad block(s) here. Let's try to correct them,
2758 * if we are doing resync or repair. Otherwise, leave
2759 * this device alone for this sync request.
2760 */
796a5cf0 2761 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2762 bio->bi_end_io = end_sync_write;
2763 write_targets++;
3e198f78 2764 }
3e198f78 2765 }
028288df 2766 if (rdev && bio->bi_end_io) {
06f60385 2767 atomic_inc(&rdev->nr_pending);
4f024f37 2768 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2769 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2770 if (test_bit(FailFast, &rdev->flags))
2771 bio->bi_opf |= MD_FAILFAST;
06f60385 2772 }
1da177e4 2773 }
3e198f78
N
2774 rcu_read_unlock();
2775 if (disk < 0)
2776 disk = wonly;
2777 r1_bio->read_disk = disk;
191ea9b2 2778
06f60385
N
2779 if (read_targets == 0 && min_bad > 0) {
2780 /* These sectors are bad on all InSync devices, so we
2781 * need to mark them bad on all write targets
2782 */
2783 int ok = 1;
8f19ccb2 2784 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2785 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2786 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2787 ok = rdev_set_badblocks(rdev, sector_nr,
2788 min_bad, 0
2789 ) && ok;
2790 }
2953079c 2791 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2792 *skipped = 1;
2793 put_buf(r1_bio);
2794
2795 if (!ok) {
2796 /* Cannot record the badblocks, so need to
2797 * abort the resync.
2798 * If there are multiple read targets, could just
2799 * fail the really bad ones ???
2800 */
2801 conf->recovery_disabled = mddev->recovery_disabled;
2802 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2803 return 0;
2804 } else
2805 return min_bad;
2806
2807 }
2808 if (min_bad > 0 && min_bad < good_sectors) {
2809 /* only resync enough to reach the next bad->good
2810 * transition */
2811 good_sectors = min_bad;
2812 }
2813
3e198f78
N
2814 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2815 /* extra read targets are also write targets */
2816 write_targets += read_targets-1;
2817
2818 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2819 /* There is nowhere to write, so all non-sync
2820 * drives must be failed - so we are finished
2821 */
b7219ccb
N
2822 sector_t rv;
2823 if (min_bad > 0)
2824 max_sector = sector_nr + min_bad;
2825 rv = max_sector - sector_nr;
57afd89f 2826 *skipped = 1;
1da177e4 2827 put_buf(r1_bio);
1da177e4
LT
2828 return rv;
2829 }
2830
c6207277
N
2831 if (max_sector > mddev->resync_max)
2832 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2833 if (max_sector > sector_nr + good_sectors)
2834 max_sector = sector_nr + good_sectors;
1da177e4 2835 nr_sectors = 0;
289e99e8 2836 sync_blocks = 0;
1da177e4
LT
2837 do {
2838 struct page *page;
2839 int len = PAGE_SIZE;
2840 if (sector_nr + (len>>9) > max_sector)
2841 len = (max_sector - sector_nr) << 9;
2842 if (len == 0)
2843 break;
6a806c51 2844 if (sync_blocks == 0) {
e64e4018
AS
2845 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2846 &sync_blocks, still_degraded) &&
e5de485f
N
2847 !conf->fullsync &&
2848 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2849 break;
7571ae88 2850 if ((len >> 9) > sync_blocks)
6a806c51 2851 len = sync_blocks<<9;
ab7a30c7 2852 }
191ea9b2 2853
8f19ccb2 2854 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2855 struct resync_pages *rp;
2856
1da177e4 2857 bio = r1_bio->bios[i];
98d30c58 2858 rp = get_resync_pages(bio);
1da177e4 2859 if (bio->bi_end_io) {
022e510f 2860 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2861
2862 /*
2863 * won't fail because the vec table is big
2864 * enough to hold all these pages
2865 */
2866 bio_add_page(bio, page, len, 0);
1da177e4
LT
2867 }
2868 }
2869 nr_sectors += len>>9;
2870 sector_nr += len>>9;
191ea9b2 2871 sync_blocks -= (len>>9);
022e510f 2872 } while (++page_idx < RESYNC_PAGES);
98d30c58 2873
1da177e4
LT
2874 r1_bio->sectors = nr_sectors;
2875
c40f341f
GR
2876 if (mddev_is_clustered(mddev) &&
2877 conf->cluster_sync_high < sector_nr + nr_sectors) {
2878 conf->cluster_sync_low = mddev->curr_resync_completed;
2879 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2880 /* Send resync message */
2881 md_cluster_ops->resync_info_update(mddev,
2882 conf->cluster_sync_low,
2883 conf->cluster_sync_high);
2884 }
2885
d11c171e
N
2886 /* For a user-requested sync, we read all readable devices and do a
2887 * compare
2888 */
2889 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2890 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2891 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2892 bio = r1_bio->bios[i];
2893 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2894 read_targets--;
74d46992 2895 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2896 if (read_targets == 1)
2897 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 2898 submit_bio_noacct(bio);
d11c171e
N
2899 }
2900 }
2901 } else {
2902 atomic_set(&r1_bio->remaining, 1);
2903 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2904 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2905 if (read_targets == 1)
2906 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 2907 submit_bio_noacct(bio);
d11c171e 2908 }
1da177e4
LT
2909 return nr_sectors;
2910}
2911
fd01b88c 2912static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2913{
2914 if (sectors)
2915 return sectors;
2916
2917 return mddev->dev_sectors;
2918}
2919
e8096360 2920static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2921{
e8096360 2922 struct r1conf *conf;
709ae487 2923 int i;
0eaf822c 2924 struct raid1_info *disk;
3cb03002 2925 struct md_rdev *rdev;
709ae487 2926 int err = -ENOMEM;
1da177e4 2927
e8096360 2928 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2929 if (!conf)
709ae487 2930 goto abort;
1da177e4 2931
fd76863e 2932 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2933 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2934 if (!conf->nr_pending)
2935 goto abort;
2936
2937 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2938 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2939 if (!conf->nr_waiting)
2940 goto abort;
2941
2942 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2943 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2944 if (!conf->nr_queued)
2945 goto abort;
2946
2947 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2948 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2949 if (!conf->barrier)
2950 goto abort;
2951
6396bb22
KC
2952 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2953 mddev->raid_disks, 2),
2954 GFP_KERNEL);
1da177e4 2955 if (!conf->mirrors)
709ae487 2956 goto abort;
1da177e4 2957
ddaf22ab
N
2958 conf->tmppage = alloc_page(GFP_KERNEL);
2959 if (!conf->tmppage)
709ae487 2960 goto abort;
ddaf22ab 2961
709ae487 2962 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2963 if (!conf->poolinfo)
709ae487 2964 goto abort;
8f19ccb2 2965 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3f677f9c 2966 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 2967 rbio_pool_free, conf->poolinfo);
afeee514 2968 if (err)
709ae487
N
2969 goto abort;
2970
afeee514
KO
2971 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2972 if (err)
c230e7e5
N
2973 goto abort;
2974
ed9bfdf1 2975 conf->poolinfo->mddev = mddev;
1da177e4 2976
c19d5798 2977 err = -EINVAL;
e7e72bf6 2978 spin_lock_init(&conf->device_lock);
dafb20fa 2979 rdev_for_each(rdev, mddev) {
709ae487 2980 int disk_idx = rdev->raid_disk;
1da177e4
LT
2981 if (disk_idx >= mddev->raid_disks
2982 || disk_idx < 0)
2983 continue;
c19d5798 2984 if (test_bit(Replacement, &rdev->flags))
02b898f2 2985 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2986 else
2987 disk = conf->mirrors + disk_idx;
1da177e4 2988
c19d5798
N
2989 if (disk->rdev)
2990 goto abort;
1da177e4 2991 disk->rdev = rdev;
1da177e4 2992 disk->head_position = 0;
12cee5a8 2993 disk->seq_start = MaxSector;
1da177e4
LT
2994 }
2995 conf->raid_disks = mddev->raid_disks;
2996 conf->mddev = mddev;
1da177e4 2997 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2998 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2999
3000 spin_lock_init(&conf->resync_lock);
17999be4 3001 init_waitqueue_head(&conf->wait_barrier);
1da177e4 3002
191ea9b2 3003 bio_list_init(&conf->pending_bio_list);
34db0cd6 3004 conf->pending_count = 0;
d890fa2b 3005 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 3006
c19d5798 3007 err = -EIO;
8f19ccb2 3008 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
3009
3010 disk = conf->mirrors + i;
3011
c19d5798
N
3012 if (i < conf->raid_disks &&
3013 disk[conf->raid_disks].rdev) {
3014 /* This slot has a replacement. */
3015 if (!disk->rdev) {
3016 /* No original, just make the replacement
3017 * a recovering spare
3018 */
3019 disk->rdev =
3020 disk[conf->raid_disks].rdev;
3021 disk[conf->raid_disks].rdev = NULL;
3022 } else if (!test_bit(In_sync, &disk->rdev->flags))
3023 /* Original is not in_sync - bad */
3024 goto abort;
3025 }
3026
5fd6c1dc
N
3027 if (!disk->rdev ||
3028 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3029 disk->head_position = 0;
4f0a5e01
JB
3030 if (disk->rdev &&
3031 (disk->rdev->saved_raid_disk < 0))
918f0238 3032 conf->fullsync = 1;
be4d3280 3033 }
1da177e4 3034 }
709ae487 3035
709ae487 3036 err = -ENOMEM;
0232605d 3037 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3038 if (!conf->thread)
709ae487 3039 goto abort;
1da177e4 3040
709ae487
N
3041 return conf;
3042
3043 abort:
3044 if (conf) {
afeee514 3045 mempool_exit(&conf->r1bio_pool);
709ae487
N
3046 kfree(conf->mirrors);
3047 safe_put_page(conf->tmppage);
3048 kfree(conf->poolinfo);
fd76863e 3049 kfree(conf->nr_pending);
3050 kfree(conf->nr_waiting);
3051 kfree(conf->nr_queued);
3052 kfree(conf->barrier);
afeee514 3053 bioset_exit(&conf->bio_split);
709ae487
N
3054 kfree(conf);
3055 }
3056 return ERR_PTR(err);
3057}
3058
afa0f557 3059static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3060static int raid1_run(struct mddev *mddev)
709ae487 3061{
e8096360 3062 struct r1conf *conf;
709ae487 3063 int i;
3cb03002 3064 struct md_rdev *rdev;
5220ea1e 3065 int ret;
2ff8cc2c 3066 bool discard_supported = false;
709ae487
N
3067
3068 if (mddev->level != 1) {
1d41c216
N
3069 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3070 mdname(mddev), mddev->level);
709ae487
N
3071 return -EIO;
3072 }
3073 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3074 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3075 mdname(mddev));
709ae487
N
3076 return -EIO;
3077 }
a415c0f1
N
3078 if (mddev_init_writes_pending(mddev) < 0)
3079 return -ENOMEM;
1da177e4 3080 /*
709ae487
N
3081 * copy the already verified devices into our private RAID1
3082 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3083 * should be freed in raid1_free()]
1da177e4 3084 */
709ae487
N
3085 if (mddev->private == NULL)
3086 conf = setup_conf(mddev);
3087 else
3088 conf = mddev->private;
1da177e4 3089
709ae487
N
3090 if (IS_ERR(conf))
3091 return PTR_ERR(conf);
1da177e4 3092
3deff1a7 3093 if (mddev->queue) {
5026d7a9 3094 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7
CH
3095 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3096 }
5026d7a9 3097
dafb20fa 3098 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3099 if (!mddev->gendisk)
3100 continue;
709ae487
N
3101 disk_stack_limits(mddev->gendisk, rdev->bdev,
3102 rdev->data_offset << 9);
2ff8cc2c
SL
3103 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3104 discard_supported = true;
1da177e4 3105 }
191ea9b2 3106
709ae487 3107 mddev->degraded = 0;
ebfeb444 3108 for (i = 0; i < conf->raid_disks; i++)
709ae487
N
3109 if (conf->mirrors[i].rdev == NULL ||
3110 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3111 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3112 mddev->degraded++;
07f1a685
YY
3113 /*
3114 * RAID1 needs at least one disk in active
3115 */
3116 if (conf->raid_disks - mddev->degraded < 1) {
3117 ret = -EINVAL;
3118 goto abort;
3119 }
709ae487
N
3120
3121 if (conf->raid_disks - mddev->degraded == 1)
3122 mddev->recovery_cp = MaxSector;
3123
8c6ac868 3124 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3125 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3126 mdname(mddev));
3127 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3128 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3129 mddev->raid_disks);
709ae487 3130
1da177e4
LT
3131 /*
3132 * Ok, everything is just fine now
3133 */
709ae487
N
3134 mddev->thread = conf->thread;
3135 conf->thread = NULL;
3136 mddev->private = conf;
46533ff7 3137 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3138
1f403624 3139 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3140
1ed7242e 3141 if (mddev->queue) {
2ff8cc2c 3142 if (discard_supported)
8b904b5b 3143 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
2ff8cc2c
SL
3144 mddev->queue);
3145 else
8b904b5b 3146 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
2ff8cc2c 3147 mddev->queue);
1ed7242e 3148 }
5220ea1e 3149
ebfeb444 3150 ret = md_integrity_register(mddev);
5aa61f42
N
3151 if (ret) {
3152 md_unregister_thread(&mddev->thread);
07f1a685 3153 goto abort;
5aa61f42 3154 }
07f1a685
YY
3155 return 0;
3156
3157abort:
3158 raid1_free(mddev, conf);
5220ea1e 3159 return ret;
1da177e4
LT
3160}
3161
afa0f557 3162static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3163{
afa0f557 3164 struct r1conf *conf = priv;
409c57f3 3165
afeee514 3166 mempool_exit(&conf->r1bio_pool);
990a8baf 3167 kfree(conf->mirrors);
0fea7ed8 3168 safe_put_page(conf->tmppage);
990a8baf 3169 kfree(conf->poolinfo);
fd76863e 3170 kfree(conf->nr_pending);
3171 kfree(conf->nr_waiting);
3172 kfree(conf->nr_queued);
3173 kfree(conf->barrier);
afeee514 3174 bioset_exit(&conf->bio_split);
1da177e4 3175 kfree(conf);
1da177e4
LT
3176}
3177
fd01b88c 3178static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3179{
3180 /* no resync is happening, and there is enough space
3181 * on all devices, so we can resize.
3182 * We need to make sure resync covers any new space.
3183 * If the array is shrinking we should possibly wait until
3184 * any io in the removed space completes, but it hardly seems
3185 * worth it.
3186 */
a4a6125a
N
3187 sector_t newsize = raid1_size(mddev, sectors, 0);
3188 if (mddev->external_size &&
3189 mddev->array_sectors > newsize)
b522adcd 3190 return -EINVAL;
a4a6125a 3191 if (mddev->bitmap) {
e64e4018 3192 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
a4a6125a
N
3193 if (ret)
3194 return ret;
3195 }
3196 md_set_array_sectors(mddev, newsize);
b522adcd 3197 if (sectors > mddev->dev_sectors &&
b098636c 3198 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3199 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3200 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3201 }
b522adcd 3202 mddev->dev_sectors = sectors;
4b5c7ae8 3203 mddev->resync_max_sectors = sectors;
1da177e4
LT
3204 return 0;
3205}
3206
fd01b88c 3207static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3208{
3209 /* We need to:
3210 * 1/ resize the r1bio_pool
3211 * 2/ resize conf->mirrors
3212 *
3213 * We allocate a new r1bio_pool if we can.
3214 * Then raise a device barrier and wait until all IO stops.
3215 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3216 *
3217 * At the same time, we "pack" the devices so that all the missing
3218 * devices have the higher raid_disk numbers.
1da177e4 3219 */
afeee514 3220 mempool_t newpool, oldpool;
1da177e4 3221 struct pool_info *newpoolinfo;
0eaf822c 3222 struct raid1_info *newmirrors;
e8096360 3223 struct r1conf *conf = mddev->private;
63c70c4f 3224 int cnt, raid_disks;
c04be0aa 3225 unsigned long flags;
2214c260 3226 int d, d2;
afeee514
KO
3227 int ret;
3228
3229 memset(&newpool, 0, sizeof(newpool));
3230 memset(&oldpool, 0, sizeof(oldpool));
1da177e4 3231
63c70c4f 3232 /* Cannot change chunk_size, layout, or level */
664e7c41 3233 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3234 mddev->layout != mddev->new_layout ||
3235 mddev->level != mddev->new_level) {
664e7c41 3236 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3237 mddev->new_layout = mddev->layout;
3238 mddev->new_level = mddev->level;
3239 return -EINVAL;
3240 }
3241
2214c260
AP
3242 if (!mddev_is_clustered(mddev))
3243 md_allow_write(mddev);
2a2275d6 3244
63c70c4f
N
3245 raid_disks = mddev->raid_disks + mddev->delta_disks;
3246
6ea9c07c
N
3247 if (raid_disks < conf->raid_disks) {
3248 cnt=0;
3249 for (d= 0; d < conf->raid_disks; d++)
3250 if (conf->mirrors[d].rdev)
3251 cnt++;
3252 if (cnt > raid_disks)
1da177e4 3253 return -EBUSY;
6ea9c07c 3254 }
1da177e4
LT
3255
3256 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3257 if (!newpoolinfo)
3258 return -ENOMEM;
3259 newpoolinfo->mddev = mddev;
8f19ccb2 3260 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4 3261
3f677f9c 3262 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3263 rbio_pool_free, newpoolinfo);
afeee514 3264 if (ret) {
1da177e4 3265 kfree(newpoolinfo);
afeee514 3266 return ret;
1da177e4 3267 }
6396bb22
KC
3268 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3269 raid_disks, 2),
8f19ccb2 3270 GFP_KERNEL);
1da177e4
LT
3271 if (!newmirrors) {
3272 kfree(newpoolinfo);
afeee514 3273 mempool_exit(&newpool);
1da177e4
LT
3274 return -ENOMEM;
3275 }
1da177e4 3276
e2d59925 3277 freeze_array(conf, 0);
1da177e4
LT
3278
3279 /* ok, everything is stopped */
3280 oldpool = conf->r1bio_pool;
3281 conf->r1bio_pool = newpool;
6ea9c07c 3282
a88aa786 3283 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3284 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3285 if (rdev && rdev->raid_disk != d2) {
36fad858 3286 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3287 rdev->raid_disk = d2;
36fad858
NK
3288 sysfs_unlink_rdev(mddev, rdev);
3289 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3290 pr_warn("md/raid1:%s: cannot register rd%d\n",
3291 mdname(mddev), rdev->raid_disk);
6ea9c07c 3292 }
a88aa786
N
3293 if (rdev)
3294 newmirrors[d2++].rdev = rdev;
3295 }
1da177e4
LT
3296 kfree(conf->mirrors);
3297 conf->mirrors = newmirrors;
3298 kfree(conf->poolinfo);
3299 conf->poolinfo = newpoolinfo;
3300
c04be0aa 3301 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3302 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3303 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3304 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3305 mddev->delta_disks = 0;
1da177e4 3306
e2d59925 3307 unfreeze_array(conf);
1da177e4 3308
985ca973 3309 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3310 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3311 md_wakeup_thread(mddev->thread);
3312
afeee514 3313 mempool_exit(&oldpool);
1da177e4
LT
3314 return 0;
3315}
3316
b03e0ccb 3317static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3318{
e8096360 3319 struct r1conf *conf = mddev->private;
36fa3063 3320
b03e0ccb 3321 if (quiesce)
07169fd4 3322 freeze_array(conf, 0);
b03e0ccb 3323 else
07169fd4 3324 unfreeze_array(conf);
36fa3063
N
3325}
3326
fd01b88c 3327static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3328{
3329 /* raid1 can take over:
3330 * raid5 with 2 devices, any layout or chunk size
3331 */
3332 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3333 struct r1conf *conf;
709ae487
N
3334 mddev->new_level = 1;
3335 mddev->new_layout = 0;
3336 mddev->new_chunk_sectors = 0;
3337 conf = setup_conf(mddev);
6995f0b2 3338 if (!IS_ERR(conf)) {
07169fd4 3339 /* Array must appear to be quiesced */
3340 conf->array_frozen = 1;
394ed8e4
SL
3341 mddev_clear_unsupported_flags(mddev,
3342 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3343 }
709ae487
N
3344 return conf;
3345 }
3346 return ERR_PTR(-EINVAL);
3347}
1da177e4 3348
84fc4b56 3349static struct md_personality raid1_personality =
1da177e4
LT
3350{
3351 .name = "raid1",
2604b703 3352 .level = 1,
1da177e4 3353 .owner = THIS_MODULE,
849674e4
SL
3354 .make_request = raid1_make_request,
3355 .run = raid1_run,
afa0f557 3356 .free = raid1_free,
849674e4
SL
3357 .status = raid1_status,
3358 .error_handler = raid1_error,
1da177e4
LT
3359 .hot_add_disk = raid1_add_disk,
3360 .hot_remove_disk= raid1_remove_disk,
3361 .spare_active = raid1_spare_active,
849674e4 3362 .sync_request = raid1_sync_request,
1da177e4 3363 .resize = raid1_resize,
80c3a6ce 3364 .size = raid1_size,
63c70c4f 3365 .check_reshape = raid1_reshape,
36fa3063 3366 .quiesce = raid1_quiesce,
709ae487 3367 .takeover = raid1_takeover,
1da177e4
LT
3368};
3369
3370static int __init raid_init(void)
3371{
2604b703 3372 return register_md_personality(&raid1_personality);
1da177e4
LT
3373}
3374
3375static void raid_exit(void)
3376{
2604b703 3377 unregister_md_personality(&raid1_personality);
1da177e4
LT
3378}
3379
3380module_init(raid_init);
3381module_exit(raid_exit);
3382MODULE_LICENSE("GPL");
0efb9e61 3383MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3384MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3385MODULE_ALIAS("md-raid1");
2604b703 3386MODULE_ALIAS("md-level-1");
34db0cd6
N
3387
3388module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);