raid5: need to set STRIPE_HANDLE for batch head
[linux-block.git] / drivers / md / raid1.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
96de0e25 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
191ea9b2
N
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
1da177e4
LT
24 */
25
5a0e3ad6 26#include <linux/slab.h>
25570727 27#include <linux/delay.h>
bff61975 28#include <linux/blkdev.h>
056075c7 29#include <linux/module.h>
bff61975 30#include <linux/seq_file.h>
8bda470e 31#include <linux/ratelimit.h>
3f07c014 32
109e3765 33#include <trace/events/block.h>
3f07c014 34
43b2e5d8 35#include "md.h"
ef740c37 36#include "raid1.h"
935fe098 37#include "md-bitmap.h"
191ea9b2 38
394ed8e4
SL
39#define UNSUPPORTED_MDDEV_FLAGS \
40 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 41 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
42 (1L << MD_HAS_PPL) | \
43 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 44
fd76863e 45static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
46static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 47
578b54ad
N
48#define raid1_log(md, fmt, args...) \
49 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
50
fb0eb5df
ML
51#include "raid1-10.c"
52
3e148a32
GJ
53static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
54{
55 struct wb_info *wi, *temp_wi;
56 unsigned long flags;
57 int ret = 0;
58 struct mddev *mddev = rdev->mddev;
59
60 wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO);
61
62 spin_lock_irqsave(&rdev->wb_list_lock, flags);
63 list_for_each_entry(temp_wi, &rdev->wb_list, list) {
64 /* collision happened */
65 if (hi > temp_wi->lo && lo < temp_wi->hi) {
66 ret = -EBUSY;
67 break;
68 }
69 }
70
71 if (!ret) {
72 wi->lo = lo;
73 wi->hi = hi;
74 list_add(&wi->list, &rdev->wb_list);
75 } else
76 mempool_free(wi, mddev->wb_info_pool);
77 spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
78
79 return ret;
80}
81
82static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
83{
84 struct wb_info *wi;
85 unsigned long flags;
86 int found = 0;
87 struct mddev *mddev = rdev->mddev;
88
89 spin_lock_irqsave(&rdev->wb_list_lock, flags);
90 list_for_each_entry(wi, &rdev->wb_list, list)
91 if (hi == wi->hi && lo == wi->lo) {
92 list_del(&wi->list);
93 mempool_free(wi, mddev->wb_info_pool);
94 found = 1;
95 break;
96 }
97
98 if (!found)
16d4b746 99 WARN(1, "The write behind IO is not recorded\n");
3e148a32
GJ
100 spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
101 wake_up(&rdev->wb_io_wait);
102}
103
98d30c58
ML
104/*
105 * for resync bio, r1bio pointer can be retrieved from the per-bio
106 * 'struct resync_pages'.
107 */
108static inline struct r1bio *get_resync_r1bio(struct bio *bio)
109{
110 return get_resync_pages(bio)->raid_bio;
111}
112
dd0fc66f 113static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
114{
115 struct pool_info *pi = data;
9f2c9d12 116 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
117
118 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 119 return kzalloc(size, gfp_flags);
1da177e4
LT
120}
121
8e005f7c 122#define RESYNC_DEPTH 32
1da177e4 123#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 124#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
125#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
126#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
127#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 128
dd0fc66f 129static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
130{
131 struct pool_info *pi = data;
9f2c9d12 132 struct r1bio *r1_bio;
1da177e4 133 struct bio *bio;
da1aab3d 134 int need_pages;
98d30c58
ML
135 int j;
136 struct resync_pages *rps;
1da177e4
LT
137
138 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 139 if (!r1_bio)
1da177e4 140 return NULL;
1da177e4 141
6da2ec56
KC
142 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
143 gfp_flags);
98d30c58
ML
144 if (!rps)
145 goto out_free_r1bio;
146
1da177e4
LT
147 /*
148 * Allocate bios : 1 for reading, n-1 for writing
149 */
150 for (j = pi->raid_disks ; j-- ; ) {
6746557f 151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
152 if (!bio)
153 goto out_free_bio;
154 r1_bio->bios[j] = bio;
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
158 * the first bio.
159 * If this is a user-requested check/repair, allocate
160 * RESYNC_PAGES for each bio.
1da177e4 161 */
d11c171e 162 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 163 need_pages = pi->raid_disks;
d11c171e 164 else
da1aab3d 165 need_pages = 1;
98d30c58
ML
166 for (j = 0; j < pi->raid_disks; j++) {
167 struct resync_pages *rp = &rps[j];
168
d11c171e 169 bio = r1_bio->bios[j];
d11c171e 170
98d30c58
ML
171 if (j < need_pages) {
172 if (resync_alloc_pages(rp, gfp_flags))
173 goto out_free_pages;
174 } else {
175 memcpy(rp, &rps[0], sizeof(*rp));
176 resync_get_all_pages(rp);
177 }
178
98d30c58
ML
179 rp->raid_bio = r1_bio;
180 bio->bi_private = rp;
1da177e4
LT
181 }
182
183 r1_bio->master_bio = NULL;
184
185 return r1_bio;
186
da1aab3d 187out_free_pages:
491221f8 188 while (--j >= 0)
98d30c58 189 resync_free_pages(&rps[j]);
da1aab3d 190
1da177e4 191out_free_bio:
8f19ccb2 192 while (++j < pi->raid_disks)
1da177e4 193 bio_put(r1_bio->bios[j]);
98d30c58
ML
194 kfree(rps);
195
196out_free_r1bio:
c7afa803 197 rbio_pool_free(r1_bio, data);
1da177e4
LT
198 return NULL;
199}
200
201static void r1buf_pool_free(void *__r1_bio, void *data)
202{
203 struct pool_info *pi = data;
98d30c58 204 int i;
9f2c9d12 205 struct r1bio *r1bio = __r1_bio;
98d30c58 206 struct resync_pages *rp = NULL;
1da177e4 207
98d30c58
ML
208 for (i = pi->raid_disks; i--; ) {
209 rp = get_resync_pages(r1bio->bios[i]);
210 resync_free_pages(rp);
1da177e4 211 bio_put(r1bio->bios[i]);
98d30c58
ML
212 }
213
214 /* resync pages array stored in the 1st bio's .bi_private */
215 kfree(rp);
1da177e4 216
c7afa803 217 rbio_pool_free(r1bio, data);
1da177e4
LT
218}
219
e8096360 220static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
221{
222 int i;
223
8f19ccb2 224 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 225 struct bio **bio = r1_bio->bios + i;
4367af55 226 if (!BIO_SPECIAL(*bio))
1da177e4
LT
227 bio_put(*bio);
228 *bio = NULL;
229 }
230}
231
9f2c9d12 232static void free_r1bio(struct r1bio *r1_bio)
1da177e4 233{
e8096360 234 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 235
1da177e4 236 put_all_bios(conf, r1_bio);
afeee514 237 mempool_free(r1_bio, &conf->r1bio_pool);
1da177e4
LT
238}
239
9f2c9d12 240static void put_buf(struct r1bio *r1_bio)
1da177e4 241{
e8096360 242 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 243 sector_t sect = r1_bio->sector;
3e198f78
N
244 int i;
245
8f19ccb2 246 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
247 struct bio *bio = r1_bio->bios[i];
248 if (bio->bi_end_io)
249 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
250 }
1da177e4 251
afeee514 252 mempool_free(r1_bio, &conf->r1buf_pool);
1da177e4 253
af5f42a7 254 lower_barrier(conf, sect);
1da177e4
LT
255}
256
9f2c9d12 257static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
258{
259 unsigned long flags;
fd01b88c 260 struct mddev *mddev = r1_bio->mddev;
e8096360 261 struct r1conf *conf = mddev->private;
fd76863e 262 int idx;
1da177e4 263
fd76863e 264 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
265 spin_lock_irqsave(&conf->device_lock, flags);
266 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 267 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
268 spin_unlock_irqrestore(&conf->device_lock, flags);
269
17999be4 270 wake_up(&conf->wait_barrier);
1da177e4
LT
271 md_wakeup_thread(mddev->thread);
272}
273
274/*
275 * raid_end_bio_io() is called when we have finished servicing a mirrored
276 * operation and are ready to return a success/failure code to the buffer
277 * cache layer.
278 */
9f2c9d12 279static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
280{
281 struct bio *bio = r1_bio->master_bio;
e8096360 282 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
283
284 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 285 bio->bi_status = BLK_STS_IOERR;
4246a0b6 286
37011e3a
N
287 bio_endio(bio);
288 /*
289 * Wake up any possible resync thread that waits for the device
290 * to go idle.
291 */
292 allow_barrier(conf, r1_bio->sector);
d2eb35ac
N
293}
294
9f2c9d12 295static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
296{
297 struct bio *bio = r1_bio->master_bio;
298
4b6d287f
N
299 /* if nobody has done the final endio yet, do it now */
300 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
301 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
302 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
303 (unsigned long long) bio->bi_iter.bi_sector,
304 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 305
d2eb35ac 306 call_bio_endio(r1_bio);
4b6d287f 307 }
1da177e4
LT
308 free_r1bio(r1_bio);
309}
310
311/*
312 * Update disk head position estimator based on IRQ completion info.
313 */
9f2c9d12 314static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 315{
e8096360 316 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
317
318 conf->mirrors[disk].head_position =
319 r1_bio->sector + (r1_bio->sectors);
320}
321
ba3ae3be
NK
322/*
323 * Find the disk number which triggered given bio
324 */
9f2c9d12 325static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
326{
327 int mirror;
30194636
N
328 struct r1conf *conf = r1_bio->mddev->private;
329 int raid_disks = conf->raid_disks;
ba3ae3be 330
8f19ccb2 331 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
332 if (r1_bio->bios[mirror] == bio)
333 break;
334
8f19ccb2 335 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
336 update_head_pos(mirror, r1_bio);
337
338 return mirror;
339}
340
4246a0b6 341static void raid1_end_read_request(struct bio *bio)
1da177e4 342{
4e4cbee9 343 int uptodate = !bio->bi_status;
9f2c9d12 344 struct r1bio *r1_bio = bio->bi_private;
e8096360 345 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 346 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 347
1da177e4
LT
348 /*
349 * this branch is our 'one mirror IO has finished' event handler:
350 */
e5872d58 351 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 352
dd00a99e
N
353 if (uptodate)
354 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
355 else if (test_bit(FailFast, &rdev->flags) &&
356 test_bit(R1BIO_FailFast, &r1_bio->state))
357 /* This was a fail-fast read so we definitely
358 * want to retry */
359 ;
dd00a99e
N
360 else {
361 /* If all other devices have failed, we want to return
362 * the error upwards rather than fail the last device.
363 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 364 */
dd00a99e
N
365 unsigned long flags;
366 spin_lock_irqsave(&conf->device_lock, flags);
367 if (r1_bio->mddev->degraded == conf->raid_disks ||
368 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 369 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
370 uptodate = 1;
371 spin_unlock_irqrestore(&conf->device_lock, flags);
372 }
1da177e4 373
7ad4d4a6 374 if (uptodate) {
1da177e4 375 raid_end_bio_io(r1_bio);
e5872d58 376 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 377 } else {
1da177e4
LT
378 /*
379 * oops, read error:
380 */
381 char b[BDEVNAME_SIZE];
1d41c216
N
382 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
383 mdname(conf->mddev),
384 bdevname(rdev->bdev, b),
385 (unsigned long long)r1_bio->sector);
d2eb35ac 386 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 387 reschedule_retry(r1_bio);
7ad4d4a6 388 /* don't drop the reference on read_disk yet */
1da177e4 389 }
1da177e4
LT
390}
391
9f2c9d12 392static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
393{
394 /* it really is the end of this request */
395 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
396 bio_free_pages(r1_bio->behind_master_bio);
397 bio_put(r1_bio->behind_master_bio);
398 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
399 }
400 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
401 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
402 r1_bio->sectors,
403 !test_bit(R1BIO_Degraded, &r1_bio->state),
404 test_bit(R1BIO_BehindIO, &r1_bio->state));
cd5ff9a1
N
405 md_write_end(r1_bio->mddev);
406}
407
9f2c9d12 408static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 409{
cd5ff9a1
N
410 if (!atomic_dec_and_test(&r1_bio->remaining))
411 return;
412
413 if (test_bit(R1BIO_WriteError, &r1_bio->state))
414 reschedule_retry(r1_bio);
415 else {
416 close_write(r1_bio);
4367af55
N
417 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
418 reschedule_retry(r1_bio);
419 else
420 raid_end_bio_io(r1_bio);
4e78064f
N
421 }
422}
423
4246a0b6 424static void raid1_end_write_request(struct bio *bio)
1da177e4 425{
9f2c9d12 426 struct r1bio *r1_bio = bio->bi_private;
e5872d58 427 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 428 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 429 struct bio *to_put = NULL;
e5872d58
N
430 int mirror = find_bio_disk(r1_bio, bio);
431 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
432 bool discard_error;
433
4e4cbee9 434 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 435
e9c7469b
TH
436 /*
437 * 'one mirror IO has finished' event handler:
438 */
4e4cbee9 439 if (bio->bi_status && !discard_error) {
e5872d58
N
440 set_bit(WriteErrorSeen, &rdev->flags);
441 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
442 set_bit(MD_RECOVERY_NEEDED, &
443 conf->mddev->recovery);
444
212e7eb7
N
445 if (test_bit(FailFast, &rdev->flags) &&
446 (bio->bi_opf & MD_FAILFAST) &&
447 /* We never try FailFast to WriteMostly devices */
448 !test_bit(WriteMostly, &rdev->flags)) {
449 md_error(r1_bio->mddev, rdev);
eeba6809
YY
450 }
451
452 /*
453 * When the device is faulty, it is not necessary to
454 * handle write error.
455 * For failfast, this is the only remaining device,
456 * We need to retry the write without FailFast.
457 */
458 if (!test_bit(Faulty, &rdev->flags))
212e7eb7 459 set_bit(R1BIO_WriteError, &r1_bio->state);
eeba6809
YY
460 else {
461 /* Finished with this branch */
462 r1_bio->bios[mirror] = NULL;
463 to_put = bio;
464 }
4367af55 465 } else {
1da177e4 466 /*
e9c7469b
TH
467 * Set R1BIO_Uptodate in our master bio, so that we
468 * will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer
470 * fails.
471 *
472 * The 'master' represents the composite IO operation
473 * to user-side. So if something waits for IO, then it
474 * will wait for the 'master' bio.
1da177e4 475 */
4367af55
N
476 sector_t first_bad;
477 int bad_sectors;
478
cd5ff9a1
N
479 r1_bio->bios[mirror] = NULL;
480 to_put = bio;
3056e3ae
AL
481 /*
482 * Do not set R1BIO_Uptodate if the current device is
483 * rebuilding or Faulty. This is because we cannot use
484 * such device for properly reading the data back (we could
485 * potentially use it, if the current write would have felt
486 * before rdev->recovery_offset, but for simplicity we don't
487 * check this here.
488 */
e5872d58
N
489 if (test_bit(In_sync, &rdev->flags) &&
490 !test_bit(Faulty, &rdev->flags))
3056e3ae 491 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 492
4367af55 493 /* Maybe we can clear some bad blocks. */
e5872d58 494 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 495 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
496 r1_bio->bios[mirror] = IO_MADE_GOOD;
497 set_bit(R1BIO_MadeGood, &r1_bio->state);
498 }
499 }
500
e9c7469b 501 if (behind) {
3e148a32
GJ
502 if (test_bit(WBCollisionCheck, &rdev->flags)) {
503 sector_t lo = r1_bio->sector;
504 sector_t hi = r1_bio->sector + r1_bio->sectors;
505
506 remove_wb(rdev, lo, hi);
507 }
e5872d58 508 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
509 atomic_dec(&r1_bio->behind_remaining);
510
511 /*
512 * In behind mode, we ACK the master bio once the I/O
513 * has safely reached all non-writemostly
514 * disks. Setting the Returned bit ensures that this
515 * gets done only once -- we don't ever want to return
516 * -EIO here, instead we'll wait
517 */
518 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
519 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
520 /* Maybe we can return now */
521 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
522 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
523 pr_debug("raid1: behind end write sectors"
524 " %llu-%llu\n",
4f024f37
KO
525 (unsigned long long) mbio->bi_iter.bi_sector,
526 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 527 call_bio_endio(r1_bio);
4b6d287f
N
528 }
529 }
530 }
4367af55 531 if (r1_bio->bios[mirror] == NULL)
e5872d58 532 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 533
1da177e4 534 /*
1da177e4
LT
535 * Let's see if all mirrored write operations have finished
536 * already.
537 */
af6d7b76 538 r1_bio_write_done(r1_bio);
c70810b3 539
04b857f7
N
540 if (to_put)
541 bio_put(to_put);
1da177e4
LT
542}
543
fd76863e 544static sector_t align_to_barrier_unit_end(sector_t start_sector,
545 sector_t sectors)
546{
547 sector_t len;
548
549 WARN_ON(sectors == 0);
550 /*
551 * len is the number of sectors from start_sector to end of the
552 * barrier unit which start_sector belongs to.
553 */
554 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
555 start_sector;
556
557 if (len > sectors)
558 len = sectors;
559
560 return len;
561}
562
1da177e4
LT
563/*
564 * This routine returns the disk from which the requested read should
565 * be done. There is a per-array 'next expected sequential IO' sector
566 * number - if this matches on the next IO then we use the last disk.
567 * There is also a per-disk 'last know head position' sector that is
568 * maintained from IRQ contexts, both the normal and the resync IO
569 * completion handlers update this position correctly. If there is no
570 * perfect sequential match then we pick the disk whose head is closest.
571 *
572 * If there are 2 mirrors in the same 2 devices, performance degrades
573 * because position is mirror, not device based.
574 *
575 * The rdev for the device selected will have nr_pending incremented.
576 */
e8096360 577static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 578{
af3a2cd6 579 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
580 int sectors;
581 int best_good_sectors;
9dedf603
SL
582 int best_disk, best_dist_disk, best_pending_disk;
583 int has_nonrot_disk;
be4d3280 584 int disk;
76073054 585 sector_t best_dist;
9dedf603 586 unsigned int min_pending;
3cb03002 587 struct md_rdev *rdev;
f3ac8bf7 588 int choose_first;
12cee5a8 589 int choose_next_idle;
1da177e4
LT
590
591 rcu_read_lock();
592 /*
8ddf9efe 593 * Check if we can balance. We can balance on the whole
1da177e4
LT
594 * device if no resync is going on, or below the resync window.
595 * We take the first readable disk when above the resync window.
596 */
597 retry:
d2eb35ac 598 sectors = r1_bio->sectors;
76073054 599 best_disk = -1;
9dedf603 600 best_dist_disk = -1;
76073054 601 best_dist = MaxSector;
9dedf603
SL
602 best_pending_disk = -1;
603 min_pending = UINT_MAX;
d2eb35ac 604 best_good_sectors = 0;
9dedf603 605 has_nonrot_disk = 0;
12cee5a8 606 choose_next_idle = 0;
2e52d449 607 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 608
7d49ffcf
GR
609 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
610 (mddev_is_clustered(conf->mddev) &&
90382ed9 611 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
612 this_sector + sectors)))
613 choose_first = 1;
614 else
615 choose_first = 0;
1da177e4 616
be4d3280 617 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 618 sector_t dist;
d2eb35ac
N
619 sector_t first_bad;
620 int bad_sectors;
9dedf603 621 unsigned int pending;
12cee5a8 622 bool nonrot;
d2eb35ac 623
f3ac8bf7
N
624 rdev = rcu_dereference(conf->mirrors[disk].rdev);
625 if (r1_bio->bios[disk] == IO_BLOCKED
626 || rdev == NULL
76073054 627 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 628 continue;
76073054
N
629 if (!test_bit(In_sync, &rdev->flags) &&
630 rdev->recovery_offset < this_sector + sectors)
1da177e4 631 continue;
76073054
N
632 if (test_bit(WriteMostly, &rdev->flags)) {
633 /* Don't balance among write-mostly, just
634 * use the first as a last resort */
d1901ef0 635 if (best_dist_disk < 0) {
307729c8
N
636 if (is_badblock(rdev, this_sector, sectors,
637 &first_bad, &bad_sectors)) {
816b0acf 638 if (first_bad <= this_sector)
307729c8
N
639 /* Cannot use this */
640 continue;
641 best_good_sectors = first_bad - this_sector;
642 } else
643 best_good_sectors = sectors;
d1901ef0
TH
644 best_dist_disk = disk;
645 best_pending_disk = disk;
307729c8 646 }
76073054
N
647 continue;
648 }
649 /* This is a reasonable device to use. It might
650 * even be best.
651 */
d2eb35ac
N
652 if (is_badblock(rdev, this_sector, sectors,
653 &first_bad, &bad_sectors)) {
654 if (best_dist < MaxSector)
655 /* already have a better device */
656 continue;
657 if (first_bad <= this_sector) {
658 /* cannot read here. If this is the 'primary'
659 * device, then we must not read beyond
660 * bad_sectors from another device..
661 */
662 bad_sectors -= (this_sector - first_bad);
663 if (choose_first && sectors > bad_sectors)
664 sectors = bad_sectors;
665 if (best_good_sectors > sectors)
666 best_good_sectors = sectors;
667
668 } else {
669 sector_t good_sectors = first_bad - this_sector;
670 if (good_sectors > best_good_sectors) {
671 best_good_sectors = good_sectors;
672 best_disk = disk;
673 }
674 if (choose_first)
675 break;
676 }
677 continue;
d82dd0e3
TM
678 } else {
679 if ((sectors > best_good_sectors) && (best_disk >= 0))
680 best_disk = -1;
d2eb35ac 681 best_good_sectors = sectors;
d82dd0e3 682 }
d2eb35ac 683
2e52d449
N
684 if (best_disk >= 0)
685 /* At least two disks to choose from so failfast is OK */
686 set_bit(R1BIO_FailFast, &r1_bio->state);
687
12cee5a8
SL
688 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
689 has_nonrot_disk |= nonrot;
9dedf603 690 pending = atomic_read(&rdev->nr_pending);
76073054 691 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 692 if (choose_first) {
76073054 693 best_disk = disk;
1da177e4
LT
694 break;
695 }
12cee5a8
SL
696 /* Don't change to another disk for sequential reads */
697 if (conf->mirrors[disk].next_seq_sect == this_sector
698 || dist == 0) {
699 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
700 struct raid1_info *mirror = &conf->mirrors[disk];
701
702 best_disk = disk;
703 /*
704 * If buffered sequential IO size exceeds optimal
705 * iosize, check if there is idle disk. If yes, choose
706 * the idle disk. read_balance could already choose an
707 * idle disk before noticing it's a sequential IO in
708 * this disk. This doesn't matter because this disk
709 * will idle, next time it will be utilized after the
710 * first disk has IO size exceeds optimal iosize. In
711 * this way, iosize of the first disk will be optimal
712 * iosize at least. iosize of the second disk might be
713 * small, but not a big deal since when the second disk
714 * starts IO, the first disk is likely still busy.
715 */
716 if (nonrot && opt_iosize > 0 &&
717 mirror->seq_start != MaxSector &&
718 mirror->next_seq_sect > opt_iosize &&
719 mirror->next_seq_sect - opt_iosize >=
720 mirror->seq_start) {
721 choose_next_idle = 1;
722 continue;
723 }
724 break;
725 }
12cee5a8
SL
726
727 if (choose_next_idle)
728 continue;
9dedf603
SL
729
730 if (min_pending > pending) {
731 min_pending = pending;
732 best_pending_disk = disk;
733 }
734
76073054
N
735 if (dist < best_dist) {
736 best_dist = dist;
9dedf603 737 best_dist_disk = disk;
1da177e4 738 }
f3ac8bf7 739 }
1da177e4 740
9dedf603
SL
741 /*
742 * If all disks are rotational, choose the closest disk. If any disk is
743 * non-rotational, choose the disk with less pending request even the
744 * disk is rotational, which might/might not be optimal for raids with
745 * mixed ratation/non-rotational disks depending on workload.
746 */
747 if (best_disk == -1) {
2e52d449 748 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
749 best_disk = best_pending_disk;
750 else
751 best_disk = best_dist_disk;
752 }
753
76073054
N
754 if (best_disk >= 0) {
755 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
756 if (!rdev)
757 goto retry;
758 atomic_inc(&rdev->nr_pending);
d2eb35ac 759 sectors = best_good_sectors;
12cee5a8
SL
760
761 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
762 conf->mirrors[best_disk].seq_start = this_sector;
763
be4d3280 764 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
765 }
766 rcu_read_unlock();
d2eb35ac 767 *max_sectors = sectors;
1da177e4 768
76073054 769 return best_disk;
1da177e4
LT
770}
771
5c675f83 772static int raid1_congested(struct mddev *mddev, int bits)
0d129228 773{
e8096360 774 struct r1conf *conf = mddev->private;
0d129228
N
775 int i, ret = 0;
776
4452226e 777 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
778 conf->pending_count >= max_queued_requests)
779 return 1;
780
0d129228 781 rcu_read_lock();
f53e29fc 782 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 783 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 784 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 785 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 786
1ed7242e
JB
787 BUG_ON(!q);
788
0d129228
N
789 /* Note the '|| 1' - when read_balance prefers
790 * non-congested targets, it can be removed
791 */
4452226e 792 if ((bits & (1 << WB_async_congested)) || 1)
dc3b17cc 793 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228 794 else
dc3b17cc 795 ret &= bdi_congested(q->backing_dev_info, bits);
0d129228
N
796 }
797 }
798 rcu_read_unlock();
799 return ret;
800}
0d129228 801
673ca68d
N
802static void flush_bio_list(struct r1conf *conf, struct bio *bio)
803{
804 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
e64e4018 805 md_bitmap_unplug(conf->mddev->bitmap);
673ca68d
N
806 wake_up(&conf->wait_barrier);
807
808 while (bio) { /* submit pending writes */
809 struct bio *next = bio->bi_next;
74d46992 810 struct md_rdev *rdev = (void *)bio->bi_disk;
673ca68d 811 bio->bi_next = NULL;
74d46992 812 bio_set_dev(bio, rdev->bdev);
673ca68d 813 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 814 bio_io_error(bio);
673ca68d 815 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 816 !blk_queue_discard(bio->bi_disk->queue)))
673ca68d
N
817 /* Just ignore it */
818 bio_endio(bio);
819 else
820 generic_make_request(bio);
821 bio = next;
5fa4f8ba 822 cond_resched();
673ca68d
N
823 }
824}
825
e8096360 826static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
827{
828 /* Any writes that have been queued but are awaiting
829 * bitmap updates get flushed here.
a35e63ef 830 */
a35e63ef
N
831 spin_lock_irq(&conf->device_lock);
832
833 if (conf->pending_bio_list.head) {
18022a1b 834 struct blk_plug plug;
a35e63ef 835 struct bio *bio;
18022a1b 836
a35e63ef 837 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 838 conf->pending_count = 0;
a35e63ef 839 spin_unlock_irq(&conf->device_lock);
474beb57
N
840
841 /*
842 * As this is called in a wait_event() loop (see freeze_array),
843 * current->state might be TASK_UNINTERRUPTIBLE which will
844 * cause a warning when we prepare to wait again. As it is
845 * rare that this path is taken, it is perfectly safe to force
846 * us to go around the wait_event() loop again, so the warning
847 * is a false-positive. Silence the warning by resetting
848 * thread state
849 */
850 __set_current_state(TASK_RUNNING);
18022a1b 851 blk_start_plug(&plug);
673ca68d 852 flush_bio_list(conf, bio);
18022a1b 853 blk_finish_plug(&plug);
a35e63ef
N
854 } else
855 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
856}
857
17999be4
N
858/* Barriers....
859 * Sometimes we need to suspend IO while we do something else,
860 * either some resync/recovery, or reconfigure the array.
861 * To do this we raise a 'barrier'.
862 * The 'barrier' is a counter that can be raised multiple times
863 * to count how many activities are happening which preclude
864 * normal IO.
865 * We can only raise the barrier if there is no pending IO.
866 * i.e. if nr_pending == 0.
867 * We choose only to raise the barrier if no-one is waiting for the
868 * barrier to go down. This means that as soon as an IO request
869 * is ready, no other operations which require a barrier will start
870 * until the IO request has had a chance.
871 *
872 * So: regular IO calls 'wait_barrier'. When that returns there
873 * is no backgroup IO happening, It must arrange to call
874 * allow_barrier when it has finished its IO.
875 * backgroup IO calls must call raise_barrier. Once that returns
876 * there is no normal IO happeing. It must arrange to call
877 * lower_barrier when the particular background IO completes.
4675719d
HT
878 *
879 * If resync/recovery is interrupted, returns -EINTR;
880 * Otherwise, returns 0.
1da177e4 881 */
4675719d 882static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 883{
fd76863e 884 int idx = sector_to_idx(sector_nr);
885
1da177e4 886 spin_lock_irq(&conf->resync_lock);
17999be4
N
887
888 /* Wait until no block IO is waiting */
824e47da 889 wait_event_lock_irq(conf->wait_barrier,
890 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 891 conf->resync_lock);
17999be4
N
892
893 /* block any new IO from starting */
824e47da 894 atomic_inc(&conf->barrier[idx]);
895 /*
896 * In raise_barrier() we firstly increase conf->barrier[idx] then
897 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
898 * increase conf->nr_pending[idx] then check conf->barrier[idx].
899 * A memory barrier here to make sure conf->nr_pending[idx] won't
900 * be fetched before conf->barrier[idx] is increased. Otherwise
901 * there will be a race between raise_barrier() and _wait_barrier().
902 */
903 smp_mb__after_atomic();
17999be4 904
79ef3a8a 905 /* For these conditions we must wait:
906 * A: while the array is in frozen state
fd76863e 907 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
908 * existing in corresponding I/O barrier bucket.
909 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
910 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 911 */
17999be4 912 wait_event_lock_irq(conf->wait_barrier,
8c242593 913 (!conf->array_frozen &&
824e47da 914 !atomic_read(&conf->nr_pending[idx]) &&
8c242593
YY
915 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
916 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
eed8c02e 917 conf->resync_lock);
17999be4 918
8c242593
YY
919 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
920 atomic_dec(&conf->barrier[idx]);
921 spin_unlock_irq(&conf->resync_lock);
922 wake_up(&conf->wait_barrier);
923 return -EINTR;
924 }
925
43ac9b84 926 atomic_inc(&conf->nr_sync_pending);
17999be4 927 spin_unlock_irq(&conf->resync_lock);
8c242593
YY
928
929 return 0;
17999be4
N
930}
931
fd76863e 932static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 933{
fd76863e 934 int idx = sector_to_idx(sector_nr);
935
824e47da 936 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 937
824e47da 938 atomic_dec(&conf->barrier[idx]);
43ac9b84 939 atomic_dec(&conf->nr_sync_pending);
17999be4
N
940 wake_up(&conf->wait_barrier);
941}
942
fd76863e 943static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 944{
824e47da 945 /*
946 * We need to increase conf->nr_pending[idx] very early here,
947 * then raise_barrier() can be blocked when it waits for
948 * conf->nr_pending[idx] to be 0. Then we can avoid holding
949 * conf->resync_lock when there is no barrier raised in same
950 * barrier unit bucket. Also if the array is frozen, I/O
951 * should be blocked until array is unfrozen.
952 */
953 atomic_inc(&conf->nr_pending[idx]);
954 /*
955 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
956 * check conf->barrier[idx]. In raise_barrier() we firstly increase
957 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
958 * barrier is necessary here to make sure conf->barrier[idx] won't be
959 * fetched before conf->nr_pending[idx] is increased. Otherwise there
960 * will be a race between _wait_barrier() and raise_barrier().
961 */
962 smp_mb__after_atomic();
79ef3a8a 963
824e47da 964 /*
965 * Don't worry about checking two atomic_t variables at same time
966 * here. If during we check conf->barrier[idx], the array is
967 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
968 * 0, it is safe to return and make the I/O continue. Because the
969 * array is frozen, all I/O returned here will eventually complete
970 * or be queued, no race will happen. See code comment in
971 * frozen_array().
972 */
973 if (!READ_ONCE(conf->array_frozen) &&
974 !atomic_read(&conf->barrier[idx]))
975 return;
79ef3a8a 976
824e47da 977 /*
978 * After holding conf->resync_lock, conf->nr_pending[idx]
979 * should be decreased before waiting for barrier to drop.
980 * Otherwise, we may encounter a race condition because
981 * raise_barrer() might be waiting for conf->nr_pending[idx]
982 * to be 0 at same time.
983 */
984 spin_lock_irq(&conf->resync_lock);
985 atomic_inc(&conf->nr_waiting[idx]);
986 atomic_dec(&conf->nr_pending[idx]);
987 /*
988 * In case freeze_array() is waiting for
989 * get_unqueued_pending() == extra
990 */
991 wake_up(&conf->wait_barrier);
992 /* Wait for the barrier in same barrier unit bucket to drop. */
993 wait_event_lock_irq(conf->wait_barrier,
994 !conf->array_frozen &&
995 !atomic_read(&conf->barrier[idx]),
996 conf->resync_lock);
997 atomic_inc(&conf->nr_pending[idx]);
998 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 999 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 1000}
1001
fd76863e 1002static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 1003{
fd76863e 1004 int idx = sector_to_idx(sector_nr);
79ef3a8a 1005
824e47da 1006 /*
1007 * Very similar to _wait_barrier(). The difference is, for read
1008 * I/O we don't need wait for sync I/O, but if the whole array
1009 * is frozen, the read I/O still has to wait until the array is
1010 * unfrozen. Since there is no ordering requirement with
1011 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1012 */
1013 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 1014
824e47da 1015 if (!READ_ONCE(conf->array_frozen))
1016 return;
1017
1018 spin_lock_irq(&conf->resync_lock);
1019 atomic_inc(&conf->nr_waiting[idx]);
1020 atomic_dec(&conf->nr_pending[idx]);
1021 /*
1022 * In case freeze_array() is waiting for
1023 * get_unqueued_pending() == extra
1024 */
1025 wake_up(&conf->wait_barrier);
1026 /* Wait for array to be unfrozen */
1027 wait_event_lock_irq(conf->wait_barrier,
1028 !conf->array_frozen,
1029 conf->resync_lock);
1030 atomic_inc(&conf->nr_pending[idx]);
1031 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
1032 spin_unlock_irq(&conf->resync_lock);
1033}
1034
fd76863e 1035static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 1036{
fd76863e 1037 int idx = sector_to_idx(sector_nr);
79ef3a8a 1038
fd76863e 1039 _wait_barrier(conf, idx);
1040}
1041
fd76863e 1042static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1043{
824e47da 1044 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
1045 wake_up(&conf->wait_barrier);
1046}
1047
fd76863e 1048static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1049{
1050 int idx = sector_to_idx(sector_nr);
1051
1052 _allow_barrier(conf, idx);
1053}
1054
fd76863e 1055/* conf->resync_lock should be held */
1056static int get_unqueued_pending(struct r1conf *conf)
1057{
1058 int idx, ret;
1059
43ac9b84
XN
1060 ret = atomic_read(&conf->nr_sync_pending);
1061 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1062 ret += atomic_read(&conf->nr_pending[idx]) -
1063 atomic_read(&conf->nr_queued[idx]);
fd76863e 1064
1065 return ret;
1066}
1067
e2d59925 1068static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1069{
fd76863e 1070 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1071 * go quiet.
fd76863e 1072 * This is called in two situations:
1073 * 1) management command handlers (reshape, remove disk, quiesce).
1074 * 2) one normal I/O request failed.
1075
1076 * After array_frozen is set to 1, new sync IO will be blocked at
1077 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1078 * or wait_read_barrier(). The flying I/Os will either complete or be
1079 * queued. When everything goes quite, there are only queued I/Os left.
1080
1081 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1082 * barrier bucket index which this I/O request hits. When all sync and
1083 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1084 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1085 * in handle_read_error(), we may call freeze_array() before trying to
1086 * fix the read error. In this case, the error read I/O is not queued,
1087 * so get_unqueued_pending() == 1.
1088 *
1089 * Therefore before this function returns, we need to wait until
1090 * get_unqueued_pendings(conf) gets equal to extra. For
1091 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1092 */
1093 spin_lock_irq(&conf->resync_lock);
b364e3d0 1094 conf->array_frozen = 1;
578b54ad 1095 raid1_log(conf->mddev, "wait freeze");
fd76863e 1096 wait_event_lock_irq_cmd(
1097 conf->wait_barrier,
1098 get_unqueued_pending(conf) == extra,
1099 conf->resync_lock,
1100 flush_pending_writes(conf));
ddaf22ab
N
1101 spin_unlock_irq(&conf->resync_lock);
1102}
e8096360 1103static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1104{
1105 /* reverse the effect of the freeze */
1106 spin_lock_irq(&conf->resync_lock);
b364e3d0 1107 conf->array_frozen = 0;
ddaf22ab 1108 spin_unlock_irq(&conf->resync_lock);
824e47da 1109 wake_up(&conf->wait_barrier);
ddaf22ab
N
1110}
1111
16d56e2f 1112static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1113 struct bio *bio)
4b6d287f 1114{
cb83efcf 1115 int size = bio->bi_iter.bi_size;
841c1316
ML
1116 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1117 int i = 0;
1118 struct bio *behind_bio = NULL;
1119
1120 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1121 if (!behind_bio)
16d56e2f 1122 return;
4b6d287f 1123
41743c1f 1124 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1125 if (!bio_has_data(bio)) {
1126 behind_bio->bi_iter.bi_size = size;
41743c1f 1127 goto skip_copy;
16d56e2f 1128 }
41743c1f 1129
dba40d46
MD
1130 behind_bio->bi_write_hint = bio->bi_write_hint;
1131
841c1316
ML
1132 while (i < vcnt && size) {
1133 struct page *page;
1134 int len = min_t(int, PAGE_SIZE, size);
1135
1136 page = alloc_page(GFP_NOIO);
1137 if (unlikely(!page))
1138 goto free_pages;
1139
1140 bio_add_page(behind_bio, page, len, 0);
1141
1142 size -= len;
1143 i++;
4b6d287f 1144 }
841c1316 1145
cb83efcf 1146 bio_copy_data(behind_bio, bio);
41743c1f 1147skip_copy:
56a64c17 1148 r1_bio->behind_master_bio = behind_bio;
af6d7b76 1149 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1150
16d56e2f 1151 return;
841c1316
ML
1152
1153free_pages:
4f024f37
KO
1154 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1155 bio->bi_iter.bi_size);
841c1316 1156 bio_free_pages(behind_bio);
16d56e2f 1157 bio_put(behind_bio);
4b6d287f
N
1158}
1159
f54a9d0e
N
1160struct raid1_plug_cb {
1161 struct blk_plug_cb cb;
1162 struct bio_list pending;
1163 int pending_cnt;
1164};
1165
1166static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1167{
1168 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1169 cb);
1170 struct mddev *mddev = plug->cb.data;
1171 struct r1conf *conf = mddev->private;
1172 struct bio *bio;
1173
874807a8 1174 if (from_schedule || current->bio_list) {
f54a9d0e
N
1175 spin_lock_irq(&conf->device_lock);
1176 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1177 conf->pending_count += plug->pending_cnt;
1178 spin_unlock_irq(&conf->device_lock);
ee0b0244 1179 wake_up(&conf->wait_barrier);
f54a9d0e
N
1180 md_wakeup_thread(mddev->thread);
1181 kfree(plug);
1182 return;
1183 }
1184
1185 /* we aren't scheduling, so we can do the write-out directly. */
1186 bio = bio_list_get(&plug->pending);
673ca68d 1187 flush_bio_list(conf, bio);
f54a9d0e
N
1188 kfree(plug);
1189}
1190
689389a0
N
1191static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1192{
1193 r1_bio->master_bio = bio;
1194 r1_bio->sectors = bio_sectors(bio);
1195 r1_bio->state = 0;
1196 r1_bio->mddev = mddev;
1197 r1_bio->sector = bio->bi_iter.bi_sector;
1198}
1199
fd76863e 1200static inline struct r1bio *
689389a0 1201alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1202{
1203 struct r1conf *conf = mddev->private;
1204 struct r1bio *r1_bio;
1205
afeee514 1206 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
689389a0
N
1207 /* Ensure no bio records IO_BLOCKED */
1208 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1209 init_r1bio(r1_bio, mddev, bio);
fd76863e 1210 return r1_bio;
1211}
1212
c230e7e5 1213static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1214 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1215{
e8096360 1216 struct r1conf *conf = mddev->private;
0eaf822c 1217 struct raid1_info *mirror;
1da177e4 1218 struct bio *read_bio;
3b046a97
RL
1219 struct bitmap *bitmap = mddev->bitmap;
1220 const int op = bio_op(bio);
1221 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1222 int max_sectors;
1223 int rdisk;
689389a0
N
1224 bool print_msg = !!r1_bio;
1225 char b[BDEVNAME_SIZE];
3b046a97 1226
fd76863e 1227 /*
689389a0
N
1228 * If r1_bio is set, we are blocking the raid1d thread
1229 * so there is a tiny risk of deadlock. So ask for
1230 * emergency memory if needed.
fd76863e 1231 */
689389a0 1232 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1233
689389a0
N
1234 if (print_msg) {
1235 /* Need to get the block device name carefully */
1236 struct md_rdev *rdev;
1237 rcu_read_lock();
1238 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1239 if (rdev)
1240 bdevname(rdev->bdev, b);
1241 else
1242 strcpy(b, "???");
1243 rcu_read_unlock();
1244 }
3b046a97 1245
fd76863e 1246 /*
fd76863e 1247 * Still need barrier for READ in case that whole
1248 * array is frozen.
fd76863e 1249 */
fd76863e 1250 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1251
689389a0
N
1252 if (!r1_bio)
1253 r1_bio = alloc_r1bio(mddev, bio);
1254 else
1255 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1256 r1_bio->sectors = max_read_sectors;
fd76863e 1257
1258 /*
1259 * make_request() can abort the operation when read-ahead is being
1260 * used and no empty request is available.
1261 */
3b046a97
RL
1262 rdisk = read_balance(conf, r1_bio, &max_sectors);
1263
1264 if (rdisk < 0) {
1265 /* couldn't find anywhere to read from */
689389a0
N
1266 if (print_msg) {
1267 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1268 mdname(mddev),
1269 b,
1270 (unsigned long long)r1_bio->sector);
1271 }
3b046a97
RL
1272 raid_end_bio_io(r1_bio);
1273 return;
1274 }
1275 mirror = conf->mirrors + rdisk;
1276
689389a0
N
1277 if (print_msg)
1278 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1279 mdname(mddev),
1280 (unsigned long long)r1_bio->sector,
1281 bdevname(mirror->rdev->bdev, b));
1282
3b046a97
RL
1283 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1284 bitmap) {
1285 /*
1286 * Reading from a write-mostly device must take care not to
1287 * over-take any writes that are 'behind'
1288 */
1289 raid1_log(mddev, "wait behind writes");
1290 wait_event(bitmap->behind_wait,
1291 atomic_read(&bitmap->behind_writes) == 0);
1292 }
c230e7e5
N
1293
1294 if (max_sectors < bio_sectors(bio)) {
1295 struct bio *split = bio_split(bio, max_sectors,
afeee514 1296 gfp, &conf->bio_split);
c230e7e5
N
1297 bio_chain(split, bio);
1298 generic_make_request(bio);
1299 bio = split;
1300 r1_bio->master_bio = bio;
1301 r1_bio->sectors = max_sectors;
1302 }
1303
3b046a97 1304 r1_bio->read_disk = rdisk;
3b046a97 1305
afeee514 1306 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
3b046a97
RL
1307
1308 r1_bio->bios[rdisk] = read_bio;
1309
1310 read_bio->bi_iter.bi_sector = r1_bio->sector +
1311 mirror->rdev->data_offset;
74d46992 1312 bio_set_dev(read_bio, mirror->rdev->bdev);
3b046a97
RL
1313 read_bio->bi_end_io = raid1_end_read_request;
1314 bio_set_op_attrs(read_bio, op, do_sync);
1315 if (test_bit(FailFast, &mirror->rdev->flags) &&
1316 test_bit(R1BIO_FailFast, &r1_bio->state))
1317 read_bio->bi_opf |= MD_FAILFAST;
1318 read_bio->bi_private = r1_bio;
1319
1320 if (mddev->gendisk)
74d46992
CH
1321 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1322 disk_devt(mddev->gendisk), r1_bio->sector);
3b046a97 1323
c230e7e5 1324 generic_make_request(read_bio);
3b046a97
RL
1325}
1326
c230e7e5
N
1327static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1328 int max_write_sectors)
3b046a97
RL
1329{
1330 struct r1conf *conf = mddev->private;
fd76863e 1331 struct r1bio *r1_bio;
1f68f0c4 1332 int i, disks;
3b046a97 1333 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1334 unsigned long flags;
3cb03002 1335 struct md_rdev *blocked_rdev;
f54a9d0e
N
1336 struct blk_plug_cb *cb;
1337 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1338 int first_clone;
1f68f0c4 1339 int max_sectors;
191ea9b2 1340
b3143b9a 1341 if (mddev_is_clustered(mddev) &&
90382ed9 1342 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1343 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1344
6eef4b21
N
1345 DEFINE_WAIT(w);
1346 for (;;) {
6eef4b21 1347 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1348 &w, TASK_IDLE);
f81f7302 1349 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1350 bio->bi_iter.bi_sector,
b3143b9a 1351 bio_end_sector(bio)))
6eef4b21
N
1352 break;
1353 schedule();
1354 }
1355 finish_wait(&conf->wait_barrier, &w);
1356 }
f81f7302
GJ
1357
1358 /*
1359 * Register the new request and wait if the reconstruction
1360 * thread has put up a bar for new requests.
1361 * Continue immediately if no resync is active currently.
1362 */
fd76863e 1363 wait_barrier(conf, bio->bi_iter.bi_sector);
1364
689389a0 1365 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1366 r1_bio->sectors = max_write_sectors;
1da177e4 1367
34db0cd6
N
1368 if (conf->pending_count >= max_queued_requests) {
1369 md_wakeup_thread(mddev->thread);
578b54ad 1370 raid1_log(mddev, "wait queued");
34db0cd6
N
1371 wait_event(conf->wait_barrier,
1372 conf->pending_count < max_queued_requests);
1373 }
1f68f0c4 1374 /* first select target devices under rcu_lock and
1da177e4
LT
1375 * inc refcount on their rdev. Record them by setting
1376 * bios[x] to bio
1f68f0c4
N
1377 * If there are known/acknowledged bad blocks on any device on
1378 * which we have seen a write error, we want to avoid writing those
1379 * blocks.
1380 * This potentially requires several writes to write around
1381 * the bad blocks. Each set of writes gets it's own r1bio
1382 * with a set of bios attached.
1da177e4 1383 */
c3b328ac 1384
8f19ccb2 1385 disks = conf->raid_disks * 2;
6bfe0b49
DW
1386 retry_write:
1387 blocked_rdev = NULL;
1da177e4 1388 rcu_read_lock();
1f68f0c4 1389 max_sectors = r1_bio->sectors;
1da177e4 1390 for (i = 0; i < disks; i++) {
3cb03002 1391 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1392 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1393 atomic_inc(&rdev->nr_pending);
1394 blocked_rdev = rdev;
1395 break;
1396 }
1f68f0c4 1397 r1_bio->bios[i] = NULL;
8ae12666 1398 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1399 if (i < conf->raid_disks)
1400 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1401 continue;
1402 }
1403
1404 atomic_inc(&rdev->nr_pending);
1405 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1406 sector_t first_bad;
1407 int bad_sectors;
1408 int is_bad;
1409
3b046a97 1410 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1411 &first_bad, &bad_sectors);
1412 if (is_bad < 0) {
1413 /* mustn't write here until the bad block is
1414 * acknowledged*/
1415 set_bit(BlockedBadBlocks, &rdev->flags);
1416 blocked_rdev = rdev;
1417 break;
1418 }
1419 if (is_bad && first_bad <= r1_bio->sector) {
1420 /* Cannot write here at all */
1421 bad_sectors -= (r1_bio->sector - first_bad);
1422 if (bad_sectors < max_sectors)
1423 /* mustn't write more than bad_sectors
1424 * to other devices yet
1425 */
1426 max_sectors = bad_sectors;
03c902e1 1427 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1428 /* We don't set R1BIO_Degraded as that
1429 * only applies if the disk is
1430 * missing, so it might be re-added,
1431 * and we want to know to recover this
1432 * chunk.
1433 * In this case the device is here,
1434 * and the fact that this chunk is not
1435 * in-sync is recorded in the bad
1436 * block log
1437 */
1438 continue;
964147d5 1439 }
1f68f0c4
N
1440 if (is_bad) {
1441 int good_sectors = first_bad - r1_bio->sector;
1442 if (good_sectors < max_sectors)
1443 max_sectors = good_sectors;
1444 }
1445 }
1446 r1_bio->bios[i] = bio;
1da177e4
LT
1447 }
1448 rcu_read_unlock();
1449
6bfe0b49
DW
1450 if (unlikely(blocked_rdev)) {
1451 /* Wait for this device to become unblocked */
1452 int j;
1453
1454 for (j = 0; j < i; j++)
1455 if (r1_bio->bios[j])
1456 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1457 r1_bio->state = 0;
fd76863e 1458 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1459 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1460 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1461 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1462 goto retry_write;
1463 }
1464
c230e7e5
N
1465 if (max_sectors < bio_sectors(bio)) {
1466 struct bio *split = bio_split(bio, max_sectors,
afeee514 1467 GFP_NOIO, &conf->bio_split);
c230e7e5
N
1468 bio_chain(split, bio);
1469 generic_make_request(bio);
1470 bio = split;
1471 r1_bio->master_bio = bio;
1f68f0c4 1472 r1_bio->sectors = max_sectors;
191ea9b2 1473 }
4b6d287f 1474
4e78064f 1475 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1476 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1477
1f68f0c4 1478 first_clone = 1;
d8c84c4f 1479
1da177e4 1480 for (i = 0; i < disks; i++) {
8e58e327 1481 struct bio *mbio = NULL;
1da177e4
LT
1482 if (!r1_bio->bios[i])
1483 continue;
1484
1f68f0c4
N
1485 if (first_clone) {
1486 /* do behind I/O ?
1487 * Not if there are too many, or cannot
1488 * allocate memory, or a reader on WriteMostly
1489 * is waiting for behind writes to flush */
1490 if (bitmap &&
1491 (atomic_read(&bitmap->behind_writes)
1492 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1493 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1494 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1495 }
1f68f0c4 1496
e64e4018
AS
1497 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1498 test_bit(R1BIO_BehindIO, &r1_bio->state));
1f68f0c4
N
1499 first_clone = 0;
1500 }
8e58e327 1501
16d56e2f
SL
1502 if (r1_bio->behind_master_bio)
1503 mbio = bio_clone_fast(r1_bio->behind_master_bio,
afeee514 1504 GFP_NOIO, &mddev->bio_set);
16d56e2f 1505 else
afeee514 1506 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
8e58e327 1507
841c1316 1508 if (r1_bio->behind_master_bio) {
3e148a32
GJ
1509 struct md_rdev *rdev = conf->mirrors[i].rdev;
1510
1511 if (test_bit(WBCollisionCheck, &rdev->flags)) {
1512 sector_t lo = r1_bio->sector;
1513 sector_t hi = r1_bio->sector + r1_bio->sectors;
1514
1515 wait_event(rdev->wb_io_wait,
1516 check_and_add_wb(rdev, lo, hi) == 0);
1517 }
1518 if (test_bit(WriteMostly, &rdev->flags))
4b6d287f
N
1519 atomic_inc(&r1_bio->behind_remaining);
1520 }
1521
1f68f0c4
N
1522 r1_bio->bios[i] = mbio;
1523
4f024f37 1524 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1525 conf->mirrors[i].rdev->data_offset);
74d46992 1526 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1f68f0c4 1527 mbio->bi_end_io = raid1_end_write_request;
a682e003 1528 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1529 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1530 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1531 conf->raid_disks - mddev->degraded > 1)
1532 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1533 mbio->bi_private = r1_bio;
1534
1da177e4 1535 atomic_inc(&r1_bio->remaining);
f54a9d0e 1536
109e3765 1537 if (mddev->gendisk)
74d46992 1538 trace_block_bio_remap(mbio->bi_disk->queue,
109e3765
N
1539 mbio, disk_devt(mddev->gendisk),
1540 r1_bio->sector);
1541 /* flush_pending_writes() needs access to the rdev so...*/
74d46992 1542 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
109e3765 1543
f54a9d0e
N
1544 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1545 if (cb)
1546 plug = container_of(cb, struct raid1_plug_cb, cb);
1547 else
1548 plug = NULL;
f54a9d0e
N
1549 if (plug) {
1550 bio_list_add(&plug->pending, mbio);
1551 plug->pending_cnt++;
1552 } else {
23b245c0 1553 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1554 bio_list_add(&conf->pending_bio_list, mbio);
1555 conf->pending_count++;
23b245c0 1556 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1557 md_wakeup_thread(mddev->thread);
23b245c0 1558 }
1da177e4 1559 }
1f68f0c4 1560
079fa166
N
1561 r1_bio_write_done(r1_bio);
1562
1563 /* In case raid1d snuck in to freeze_array */
1564 wake_up(&conf->wait_barrier);
1da177e4
LT
1565}
1566
cc27b0c7 1567static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1568{
fd76863e 1569 sector_t sectors;
3b046a97 1570
775d7831
DJ
1571 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1572 && md_flush_request(mddev, bio))
cc27b0c7 1573 return true;
3b046a97 1574
c230e7e5
N
1575 /*
1576 * There is a limit to the maximum size, but
1577 * the read/write handler might find a lower limit
1578 * due to bad blocks. To avoid multiple splits,
1579 * we pass the maximum number of sectors down
1580 * and let the lower level perform the split.
1581 */
1582 sectors = align_to_barrier_unit_end(
1583 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1584
c230e7e5 1585 if (bio_data_dir(bio) == READ)
689389a0 1586 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1587 else {
1588 if (!md_write_start(mddev,bio))
1589 return false;
c230e7e5 1590 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1591 }
1592 return true;
3b046a97
RL
1593}
1594
849674e4 1595static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1596{
e8096360 1597 struct r1conf *conf = mddev->private;
1da177e4
LT
1598 int i;
1599
1600 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1601 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1602 rcu_read_lock();
1603 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1604 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1605 seq_printf(seq, "%s",
ddac7c7e
N
1606 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1607 }
1608 rcu_read_unlock();
1da177e4
LT
1609 seq_printf(seq, "]");
1610}
1611
849674e4 1612static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1613{
1614 char b[BDEVNAME_SIZE];
e8096360 1615 struct r1conf *conf = mddev->private;
423f04d6 1616 unsigned long flags;
1da177e4
LT
1617
1618 /*
1619 * If it is not operational, then we have already marked it as dead
9a567843
GJ
1620 * else if it is the last working disks with "fail_last_dev == false",
1621 * ignore the error, let the next level up know.
1da177e4
LT
1622 * else mark the drive as failed
1623 */
2e52d449 1624 spin_lock_irqsave(&conf->device_lock, flags);
9a567843 1625 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
4044ba58 1626 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1627 /*
1628 * Don't fail the drive, act as though we were just a
4044ba58
N
1629 * normal single drive.
1630 * However don't try a recovery from this drive as
1631 * it is very likely to fail.
1da177e4 1632 */
5389042f 1633 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1634 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1635 return;
4044ba58 1636 }
de393cde 1637 set_bit(Blocked, &rdev->flags);
ebda52fa 1638 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1639 mddev->degraded++;
ebda52fa 1640 set_bit(Faulty, &rdev->flags);
423f04d6 1641 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1642 /*
1643 * if recovery is running, make sure it aborts.
1644 */
1645 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1646 set_mask_bits(&mddev->sb_flags, 0,
1647 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1648 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1649 "md/raid1:%s: Operation continuing on %d devices.\n",
1650 mdname(mddev), bdevname(rdev->bdev, b),
1651 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1652}
1653
e8096360 1654static void print_conf(struct r1conf *conf)
1da177e4
LT
1655{
1656 int i;
1da177e4 1657
1d41c216 1658 pr_debug("RAID1 conf printout:\n");
1da177e4 1659 if (!conf) {
1d41c216 1660 pr_debug("(!conf)\n");
1da177e4
LT
1661 return;
1662 }
1d41c216
N
1663 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1664 conf->raid_disks);
1da177e4 1665
ddac7c7e 1666 rcu_read_lock();
1da177e4
LT
1667 for (i = 0; i < conf->raid_disks; i++) {
1668 char b[BDEVNAME_SIZE];
3cb03002 1669 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1670 if (rdev)
1d41c216
N
1671 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1672 i, !test_bit(In_sync, &rdev->flags),
1673 !test_bit(Faulty, &rdev->flags),
1674 bdevname(rdev->bdev,b));
1da177e4 1675 }
ddac7c7e 1676 rcu_read_unlock();
1da177e4
LT
1677}
1678
e8096360 1679static void close_sync(struct r1conf *conf)
1da177e4 1680{
f6eca2d4
ND
1681 int idx;
1682
1683 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1684 _wait_barrier(conf, idx);
1685 _allow_barrier(conf, idx);
1686 }
1da177e4 1687
afeee514 1688 mempool_exit(&conf->r1buf_pool);
1da177e4
LT
1689}
1690
fd01b88c 1691static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1692{
1693 int i;
e8096360 1694 struct r1conf *conf = mddev->private;
6b965620
N
1695 int count = 0;
1696 unsigned long flags;
1da177e4
LT
1697
1698 /*
f72ffdd6 1699 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1700 * and mark them readable.
1701 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1702 * device_lock used to avoid races with raid1_end_read_request
1703 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1704 */
423f04d6 1705 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1706 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1707 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1708 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1709 if (repl
1aee41f6 1710 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1711 && repl->recovery_offset == MaxSector
1712 && !test_bit(Faulty, &repl->flags)
1713 && !test_and_set_bit(In_sync, &repl->flags)) {
1714 /* replacement has just become active */
1715 if (!rdev ||
1716 !test_and_clear_bit(In_sync, &rdev->flags))
1717 count++;
1718 if (rdev) {
1719 /* Replaced device not technically
1720 * faulty, but we need to be sure
1721 * it gets removed and never re-added
1722 */
1723 set_bit(Faulty, &rdev->flags);
1724 sysfs_notify_dirent_safe(
1725 rdev->sysfs_state);
1726 }
1727 }
ddac7c7e 1728 if (rdev
61e4947c 1729 && rdev->recovery_offset == MaxSector
ddac7c7e 1730 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1731 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1732 count++;
654e8b5a 1733 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1734 }
1735 }
6b965620
N
1736 mddev->degraded -= count;
1737 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1738
1739 print_conf(conf);
6b965620 1740 return count;
1da177e4
LT
1741}
1742
fd01b88c 1743static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1744{
e8096360 1745 struct r1conf *conf = mddev->private;
199050ea 1746 int err = -EEXIST;
41158c7e 1747 int mirror = 0;
0eaf822c 1748 struct raid1_info *p;
6c2fce2e 1749 int first = 0;
30194636 1750 int last = conf->raid_disks - 1;
1da177e4 1751
5389042f
N
1752 if (mddev->recovery_disabled == conf->recovery_disabled)
1753 return -EBUSY;
1754
1501efad
DW
1755 if (md_integrity_add_rdev(rdev, mddev))
1756 return -ENXIO;
1757
6c2fce2e
NB
1758 if (rdev->raid_disk >= 0)
1759 first = last = rdev->raid_disk;
1760
70bcecdb
GR
1761 /*
1762 * find the disk ... but prefer rdev->saved_raid_disk
1763 * if possible.
1764 */
1765 if (rdev->saved_raid_disk >= 0 &&
1766 rdev->saved_raid_disk >= first &&
9e753ba9 1767 rdev->saved_raid_disk < conf->raid_disks &&
70bcecdb
GR
1768 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1769 first = last = rdev->saved_raid_disk;
1770
7ef449d1 1771 for (mirror = first; mirror <= last; mirror++) {
ebfeb444 1772 p = conf->mirrors + mirror;
7ef449d1 1773 if (!p->rdev) {
9092c02d
JB
1774 if (mddev->gendisk)
1775 disk_stack_limits(mddev->gendisk, rdev->bdev,
1776 rdev->data_offset << 9);
1da177e4
LT
1777
1778 p->head_position = 0;
1779 rdev->raid_disk = mirror;
199050ea 1780 err = 0;
6aea114a
N
1781 /* As all devices are equivalent, we don't need a full recovery
1782 * if this was recently any drive of the array
1783 */
1784 if (rdev->saved_raid_disk < 0)
41158c7e 1785 conf->fullsync = 1;
d6065f7b 1786 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1787 break;
1788 }
7ef449d1
N
1789 if (test_bit(WantReplacement, &p->rdev->flags) &&
1790 p[conf->raid_disks].rdev == NULL) {
1791 /* Add this device as a replacement */
1792 clear_bit(In_sync, &rdev->flags);
1793 set_bit(Replacement, &rdev->flags);
1794 rdev->raid_disk = mirror;
1795 err = 0;
1796 conf->fullsync = 1;
1797 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1798 break;
1799 }
1800 }
9092c02d 1801 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
8b904b5b 1802 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1803 print_conf(conf);
199050ea 1804 return err;
1da177e4
LT
1805}
1806
b8321b68 1807static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1808{
e8096360 1809 struct r1conf *conf = mddev->private;
1da177e4 1810 int err = 0;
b8321b68 1811 int number = rdev->raid_disk;
0eaf822c 1812 struct raid1_info *p = conf->mirrors + number;
1da177e4 1813
b014f14c
N
1814 if (rdev != p->rdev)
1815 p = conf->mirrors + conf->raid_disks + number;
1816
1da177e4 1817 print_conf(conf);
b8321b68 1818 if (rdev == p->rdev) {
b2d444d7 1819 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1820 atomic_read(&rdev->nr_pending)) {
1821 err = -EBUSY;
1822 goto abort;
1823 }
046abeed 1824 /* Only remove non-faulty devices if recovery
dfc70645
N
1825 * is not possible.
1826 */
1827 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1828 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1829 mddev->degraded < conf->raid_disks) {
1830 err = -EBUSY;
1831 goto abort;
1832 }
1da177e4 1833 p->rdev = NULL;
d787be40
N
1834 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1835 synchronize_rcu();
1836 if (atomic_read(&rdev->nr_pending)) {
1837 /* lost the race, try later */
1838 err = -EBUSY;
1839 p->rdev = rdev;
1840 goto abort;
1841 }
1842 }
1843 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1844 /* We just removed a device that is being replaced.
1845 * Move down the replacement. We drain all IO before
1846 * doing this to avoid confusion.
1847 */
1848 struct md_rdev *repl =
1849 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1850 freeze_array(conf, 0);
3de59bb9
YY
1851 if (atomic_read(&repl->nr_pending)) {
1852 /* It means that some queued IO of retry_list
1853 * hold repl. Thus, we cannot set replacement
1854 * as NULL, avoiding rdev NULL pointer
1855 * dereference in sync_request_write and
1856 * handle_write_finished.
1857 */
1858 err = -EBUSY;
1859 unfreeze_array(conf);
1860 goto abort;
1861 }
8c7a2c2b
N
1862 clear_bit(Replacement, &repl->flags);
1863 p->rdev = repl;
1864 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1865 unfreeze_array(conf);
e5bc9c3c
GJ
1866 }
1867
1868 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1869 err = md_integrity_register(mddev);
1da177e4
LT
1870 }
1871abort:
1872
1873 print_conf(conf);
1874 return err;
1875}
1876
4246a0b6 1877static void end_sync_read(struct bio *bio)
1da177e4 1878{
98d30c58 1879 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1880
0fc280f6 1881 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1882
1da177e4
LT
1883 /*
1884 * we have read a block, now it needs to be re-written,
1885 * or re-read if the read failed.
1886 * We don't do much here, just schedule handling by raid1d
1887 */
4e4cbee9 1888 if (!bio->bi_status)
1da177e4 1889 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1890
1891 if (atomic_dec_and_test(&r1_bio->remaining))
1892 reschedule_retry(r1_bio);
1da177e4
LT
1893}
1894
dfcc34c9
ND
1895static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1896{
1897 sector_t sync_blocks = 0;
1898 sector_t s = r1_bio->sector;
1899 long sectors_to_go = r1_bio->sectors;
1900
1901 /* make sure these bits don't get cleared. */
1902 do {
1903 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1904 s += sync_blocks;
1905 sectors_to_go -= sync_blocks;
1906 } while (sectors_to_go > 0);
1907}
1908
449808a2
HT
1909static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1910{
1911 if (atomic_dec_and_test(&r1_bio->remaining)) {
1912 struct mddev *mddev = r1_bio->mddev;
1913 int s = r1_bio->sectors;
1914
1915 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1916 test_bit(R1BIO_WriteError, &r1_bio->state))
1917 reschedule_retry(r1_bio);
1918 else {
1919 put_buf(r1_bio);
1920 md_done_sync(mddev, s, uptodate);
1921 }
1922 }
1923}
1924
4246a0b6 1925static void end_sync_write(struct bio *bio)
1da177e4 1926{
4e4cbee9 1927 int uptodate = !bio->bi_status;
98d30c58 1928 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1929 struct mddev *mddev = r1_bio->mddev;
e8096360 1930 struct r1conf *conf = mddev->private;
4367af55
N
1931 sector_t first_bad;
1932 int bad_sectors;
854abd75 1933 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1934
6b1117d5 1935 if (!uptodate) {
dfcc34c9 1936 abort_sync_write(mddev, r1_bio);
854abd75
N
1937 set_bit(WriteErrorSeen, &rdev->flags);
1938 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1939 set_bit(MD_RECOVERY_NEEDED, &
1940 mddev->recovery);
d8f05d29 1941 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1942 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1943 &first_bad, &bad_sectors) &&
1944 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1945 r1_bio->sector,
1946 r1_bio->sectors,
1947 &first_bad, &bad_sectors)
1948 )
4367af55 1949 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1950
449808a2 1951 put_sync_write_buf(r1_bio, uptodate);
1da177e4
LT
1952}
1953
3cb03002 1954static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1955 int sectors, struct page *page, int rw)
1956{
796a5cf0 1957 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1958 /* success */
1959 return 1;
19d67169 1960 if (rw == WRITE) {
d8f05d29 1961 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1962 if (!test_and_set_bit(WantReplacement,
1963 &rdev->flags))
1964 set_bit(MD_RECOVERY_NEEDED, &
1965 rdev->mddev->recovery);
1966 }
d8f05d29
N
1967 /* need to record an error - either for the block or the device */
1968 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1969 md_error(rdev->mddev, rdev);
1970 return 0;
1971}
1972
9f2c9d12 1973static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1974{
a68e5870
N
1975 /* Try some synchronous reads of other devices to get
1976 * good data, much like with normal read errors. Only
1977 * read into the pages we already have so we don't
1978 * need to re-issue the read request.
1979 * We don't need to freeze the array, because being in an
1980 * active sync request, there is no normal IO, and
1981 * no overlapping syncs.
06f60385
N
1982 * We don't need to check is_badblock() again as we
1983 * made sure that anything with a bad block in range
1984 * will have bi_end_io clear.
a68e5870 1985 */
fd01b88c 1986 struct mddev *mddev = r1_bio->mddev;
e8096360 1987 struct r1conf *conf = mddev->private;
a68e5870 1988 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 1989 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
1990 sector_t sect = r1_bio->sector;
1991 int sectors = r1_bio->sectors;
1992 int idx = 0;
2e52d449
N
1993 struct md_rdev *rdev;
1994
1995 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1996 if (test_bit(FailFast, &rdev->flags)) {
1997 /* Don't try recovering from here - just fail it
1998 * ... unless it is the last working device of course */
1999 md_error(mddev, rdev);
2000 if (test_bit(Faulty, &rdev->flags))
2001 /* Don't try to read from here, but make sure
2002 * put_buf does it's thing
2003 */
2004 bio->bi_end_io = end_sync_write;
2005 }
a68e5870
N
2006
2007 while(sectors) {
2008 int s = sectors;
2009 int d = r1_bio->read_disk;
2010 int success = 0;
78d7f5f7 2011 int start;
a68e5870
N
2012
2013 if (s > (PAGE_SIZE>>9))
2014 s = PAGE_SIZE >> 9;
2015 do {
2016 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2017 /* No rcu protection needed here devices
2018 * can only be removed when no resync is
2019 * active, and resync is currently active
2020 */
2021 rdev = conf->mirrors[d].rdev;
9d3d8011 2022 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 2023 pages[idx],
796a5cf0 2024 REQ_OP_READ, 0, false)) {
a68e5870
N
2025 success = 1;
2026 break;
2027 }
2028 }
2029 d++;
8f19ccb2 2030 if (d == conf->raid_disks * 2)
a68e5870
N
2031 d = 0;
2032 } while (!success && d != r1_bio->read_disk);
2033
78d7f5f7 2034 if (!success) {
a68e5870 2035 char b[BDEVNAME_SIZE];
3a9f28a5
N
2036 int abort = 0;
2037 /* Cannot read from anywhere, this block is lost.
2038 * Record a bad block on each device. If that doesn't
2039 * work just disable and interrupt the recovery.
2040 * Don't fail devices as that won't really help.
2041 */
1d41c216 2042 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
74d46992 2043 mdname(mddev), bio_devname(bio, b),
1d41c216 2044 (unsigned long long)r1_bio->sector);
8f19ccb2 2045 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
2046 rdev = conf->mirrors[d].rdev;
2047 if (!rdev || test_bit(Faulty, &rdev->flags))
2048 continue;
2049 if (!rdev_set_badblocks(rdev, sect, s, 0))
2050 abort = 1;
2051 }
2052 if (abort) {
d890fa2b
N
2053 conf->recovery_disabled =
2054 mddev->recovery_disabled;
3a9f28a5
N
2055 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2056 md_done_sync(mddev, r1_bio->sectors, 0);
2057 put_buf(r1_bio);
2058 return 0;
2059 }
2060 /* Try next page */
2061 sectors -= s;
2062 sect += s;
2063 idx++;
2064 continue;
d11c171e 2065 }
78d7f5f7
N
2066
2067 start = d;
2068 /* write it back and re-read */
2069 while (d != r1_bio->read_disk) {
2070 if (d == 0)
8f19ccb2 2071 d = conf->raid_disks * 2;
78d7f5f7
N
2072 d--;
2073 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2074 continue;
2075 rdev = conf->mirrors[d].rdev;
d8f05d29 2076 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2077 pages[idx],
d8f05d29 2078 WRITE) == 0) {
78d7f5f7
N
2079 r1_bio->bios[d]->bi_end_io = NULL;
2080 rdev_dec_pending(rdev, mddev);
9d3d8011 2081 }
78d7f5f7
N
2082 }
2083 d = start;
2084 while (d != r1_bio->read_disk) {
2085 if (d == 0)
8f19ccb2 2086 d = conf->raid_disks * 2;
78d7f5f7
N
2087 d--;
2088 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2089 continue;
2090 rdev = conf->mirrors[d].rdev;
d8f05d29 2091 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2092 pages[idx],
d8f05d29 2093 READ) != 0)
9d3d8011 2094 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2095 }
a68e5870
N
2096 sectors -= s;
2097 sect += s;
2098 idx ++;
2099 }
78d7f5f7 2100 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2101 bio->bi_status = 0;
a68e5870
N
2102 return 1;
2103}
2104
c95e6385 2105static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2106{
2107 /* We have read all readable devices. If we haven't
2108 * got the block, then there is no hope left.
2109 * If we have, then we want to do a comparison
2110 * and skip the write if everything is the same.
2111 * If any blocks failed to read, then we need to
2112 * attempt an over-write
2113 */
fd01b88c 2114 struct mddev *mddev = r1_bio->mddev;
e8096360 2115 struct r1conf *conf = mddev->private;
a68e5870
N
2116 int primary;
2117 int i;
f4380a91 2118 int vcnt;
a68e5870 2119
30bc9b53
N
2120 /* Fix variable parts of all bios */
2121 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2122 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2123 blk_status_t status;
30bc9b53 2124 struct bio *b = r1_bio->bios[i];
98d30c58 2125 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2126 if (b->bi_end_io != end_sync_read)
2127 continue;
4246a0b6 2128 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2129 status = b->bi_status;
30bc9b53 2130 bio_reset(b);
4e4cbee9 2131 b->bi_status = status;
4f024f37 2132 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2133 conf->mirrors[i].rdev->data_offset;
74d46992 2134 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
30bc9b53 2135 b->bi_end_io = end_sync_read;
98d30c58
ML
2136 rp->raid_bio = r1_bio;
2137 b->bi_private = rp;
30bc9b53 2138
fb0eb5df
ML
2139 /* initialize bvec table again */
2140 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2141 }
8f19ccb2 2142 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2143 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2144 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2145 r1_bio->bios[primary]->bi_end_io = NULL;
2146 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2147 break;
2148 }
2149 r1_bio->read_disk = primary;
8f19ccb2 2150 for (i = 0; i < conf->raid_disks * 2; i++) {
2b070cfe 2151 int j = 0;
78d7f5f7
N
2152 struct bio *pbio = r1_bio->bios[primary];
2153 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2154 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2155 struct page **ppages = get_resync_pages(pbio)->pages;
2156 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2157 struct bio_vec *bi;
8fc04e6e 2158 int page_len[RESYNC_PAGES] = { 0 };
6dc4f100 2159 struct bvec_iter_all iter_all;
a68e5870 2160
2aabaa65 2161 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2162 continue;
4246a0b6 2163 /* Now we can 'fixup' the error value */
4e4cbee9 2164 sbio->bi_status = 0;
78d7f5f7 2165
2b070cfe
CH
2166 bio_for_each_segment_all(bi, sbio, iter_all)
2167 page_len[j++] = bi->bv_len;
60928a91 2168
4e4cbee9 2169 if (!status) {
78d7f5f7 2170 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2171 if (memcmp(page_address(ppages[j]),
2172 page_address(spages[j]),
60928a91 2173 page_len[j]))
78d7f5f7 2174 break;
69382e85 2175 }
78d7f5f7
N
2176 } else
2177 j = 0;
2178 if (j >= 0)
7f7583d4 2179 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2180 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2181 && !status)) {
78d7f5f7
N
2182 /* No need to write to this device. */
2183 sbio->bi_end_io = NULL;
2184 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2185 continue;
2186 }
d3b45c2a
KO
2187
2188 bio_copy_data(sbio, pbio);
78d7f5f7 2189 }
a68e5870
N
2190}
2191
9f2c9d12 2192static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2193{
e8096360 2194 struct r1conf *conf = mddev->private;
a68e5870 2195 int i;
8f19ccb2 2196 int disks = conf->raid_disks * 2;
037d2ff6 2197 struct bio *wbio;
a68e5870 2198
a68e5870
N
2199 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2200 /* ouch - failed to read all of that. */
2201 if (!fix_sync_read_error(r1_bio))
2202 return;
7ca78d57
N
2203
2204 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2205 process_checks(r1_bio);
2206
d11c171e
N
2207 /*
2208 * schedule writes
2209 */
1da177e4
LT
2210 atomic_set(&r1_bio->remaining, 1);
2211 for (i = 0; i < disks ; i++) {
2212 wbio = r1_bio->bios[i];
3e198f78
N
2213 if (wbio->bi_end_io == NULL ||
2214 (wbio->bi_end_io == end_sync_read &&
2215 (i == r1_bio->read_disk ||
2216 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2217 continue;
dfcc34c9
ND
2218 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2219 abort_sync_write(mddev, r1_bio);
0c9d5b12 2220 continue;
dfcc34c9 2221 }
1da177e4 2222
796a5cf0 2223 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2224 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2225 wbio->bi_opf |= MD_FAILFAST;
2226
3e198f78 2227 wbio->bi_end_io = end_sync_write;
1da177e4 2228 atomic_inc(&r1_bio->remaining);
aa8b57aa 2229 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2230
1da177e4
LT
2231 generic_make_request(wbio);
2232 }
2233
449808a2 2234 put_sync_write_buf(r1_bio, 1);
1da177e4
LT
2235}
2236
2237/*
2238 * This is a kernel thread which:
2239 *
2240 * 1. Retries failed read operations on working mirrors.
2241 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2242 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2243 */
2244
e8096360 2245static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2246 sector_t sect, int sectors)
2247{
fd01b88c 2248 struct mddev *mddev = conf->mddev;
867868fb
N
2249 while(sectors) {
2250 int s = sectors;
2251 int d = read_disk;
2252 int success = 0;
2253 int start;
3cb03002 2254 struct md_rdev *rdev;
867868fb
N
2255
2256 if (s > (PAGE_SIZE>>9))
2257 s = PAGE_SIZE >> 9;
2258
2259 do {
d2eb35ac
N
2260 sector_t first_bad;
2261 int bad_sectors;
2262
707a6a42
N
2263 rcu_read_lock();
2264 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2265 if (rdev &&
da8840a7 2266 (test_bit(In_sync, &rdev->flags) ||
2267 (!test_bit(Faulty, &rdev->flags) &&
2268 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2269 is_badblock(rdev, sect, s,
707a6a42
N
2270 &first_bad, &bad_sectors) == 0) {
2271 atomic_inc(&rdev->nr_pending);
2272 rcu_read_unlock();
2273 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2274 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2275 success = 1;
2276 rdev_dec_pending(rdev, mddev);
2277 if (success)
2278 break;
2279 } else
2280 rcu_read_unlock();
2281 d++;
2282 if (d == conf->raid_disks * 2)
2283 d = 0;
867868fb
N
2284 } while (!success && d != read_disk);
2285
2286 if (!success) {
d8f05d29 2287 /* Cannot read from anywhere - mark it bad */
3cb03002 2288 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2289 if (!rdev_set_badblocks(rdev, sect, s, 0))
2290 md_error(mddev, rdev);
867868fb
N
2291 break;
2292 }
2293 /* write it back and re-read */
2294 start = d;
2295 while (d != read_disk) {
2296 if (d==0)
8f19ccb2 2297 d = conf->raid_disks * 2;
867868fb 2298 d--;
707a6a42
N
2299 rcu_read_lock();
2300 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2301 if (rdev &&
707a6a42
N
2302 !test_bit(Faulty, &rdev->flags)) {
2303 atomic_inc(&rdev->nr_pending);
2304 rcu_read_unlock();
d8f05d29
N
2305 r1_sync_page_io(rdev, sect, s,
2306 conf->tmppage, WRITE);
707a6a42
N
2307 rdev_dec_pending(rdev, mddev);
2308 } else
2309 rcu_read_unlock();
867868fb
N
2310 }
2311 d = start;
2312 while (d != read_disk) {
2313 char b[BDEVNAME_SIZE];
2314 if (d==0)
8f19ccb2 2315 d = conf->raid_disks * 2;
867868fb 2316 d--;
707a6a42
N
2317 rcu_read_lock();
2318 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2319 if (rdev &&
b8cb6b4c 2320 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2321 atomic_inc(&rdev->nr_pending);
2322 rcu_read_unlock();
d8f05d29
N
2323 if (r1_sync_page_io(rdev, sect, s,
2324 conf->tmppage, READ)) {
867868fb 2325 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2326 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2327 mdname(mddev), s,
2328 (unsigned long long)(sect +
2329 rdev->data_offset),
2330 bdevname(rdev->bdev, b));
867868fb 2331 }
707a6a42
N
2332 rdev_dec_pending(rdev, mddev);
2333 } else
2334 rcu_read_unlock();
867868fb
N
2335 }
2336 sectors -= s;
2337 sect += s;
2338 }
2339}
2340
9f2c9d12 2341static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2342{
fd01b88c 2343 struct mddev *mddev = r1_bio->mddev;
e8096360 2344 struct r1conf *conf = mddev->private;
3cb03002 2345 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2346
2347 /* bio has the data to be written to device 'i' where
2348 * we just recently had a write error.
2349 * We repeatedly clone the bio and trim down to one block,
2350 * then try the write. Where the write fails we record
2351 * a bad block.
2352 * It is conceivable that the bio doesn't exactly align with
2353 * blocks. We must handle this somehow.
2354 *
2355 * We currently own a reference on the rdev.
2356 */
2357
2358 int block_sectors;
2359 sector_t sector;
2360 int sectors;
2361 int sect_to_write = r1_bio->sectors;
2362 int ok = 1;
2363
2364 if (rdev->badblocks.shift < 0)
2365 return 0;
2366
ab713cdc
ND
2367 block_sectors = roundup(1 << rdev->badblocks.shift,
2368 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2369 sector = r1_bio->sector;
2370 sectors = ((sector + block_sectors)
2371 & ~(sector_t)(block_sectors - 1))
2372 - sector;
2373
cd5ff9a1
N
2374 while (sect_to_write) {
2375 struct bio *wbio;
2376 if (sectors > sect_to_write)
2377 sectors = sect_to_write;
2378 /* Write at 'sector' for 'sectors'*/
2379
b783863f 2380 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2381 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2382 GFP_NOIO,
afeee514 2383 &mddev->bio_set);
b783863f 2384 } else {
d7a10308 2385 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
afeee514 2386 &mddev->bio_set);
b783863f
KO
2387 }
2388
796a5cf0 2389 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2390 wbio->bi_iter.bi_sector = r1_bio->sector;
2391 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2392
6678d83f 2393 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2394 wbio->bi_iter.bi_sector += rdev->data_offset;
74d46992 2395 bio_set_dev(wbio, rdev->bdev);
4e49ea4a
MC
2396
2397 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2398 /* failure! */
2399 ok = rdev_set_badblocks(rdev, sector,
2400 sectors, 0)
2401 && ok;
2402
2403 bio_put(wbio);
2404 sect_to_write -= sectors;
2405 sector += sectors;
2406 sectors = block_sectors;
2407 }
2408 return ok;
2409}
2410
e8096360 2411static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2412{
2413 int m;
2414 int s = r1_bio->sectors;
8f19ccb2 2415 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2416 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2417 struct bio *bio = r1_bio->bios[m];
2418 if (bio->bi_end_io == NULL)
2419 continue;
4e4cbee9 2420 if (!bio->bi_status &&
62096bce 2421 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2422 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2423 }
4e4cbee9 2424 if (bio->bi_status &&
62096bce
N
2425 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2426 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2427 md_error(conf->mddev, rdev);
2428 }
2429 }
2430 put_buf(r1_bio);
2431 md_done_sync(conf->mddev, s, 1);
2432}
2433
e8096360 2434static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2435{
fd76863e 2436 int m, idx;
55ce74d4 2437 bool fail = false;
fd76863e 2438
8f19ccb2 2439 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2440 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2441 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2442 rdev_clear_badblocks(rdev,
2443 r1_bio->sector,
c6563a8c 2444 r1_bio->sectors, 0);
62096bce
N
2445 rdev_dec_pending(rdev, conf->mddev);
2446 } else if (r1_bio->bios[m] != NULL) {
2447 /* This drive got a write error. We need to
2448 * narrow down and record precise write
2449 * errors.
2450 */
55ce74d4 2451 fail = true;
62096bce
N
2452 if (!narrow_write_error(r1_bio, m)) {
2453 md_error(conf->mddev,
2454 conf->mirrors[m].rdev);
2455 /* an I/O failed, we can't clear the bitmap */
2456 set_bit(R1BIO_Degraded, &r1_bio->state);
2457 }
2458 rdev_dec_pending(conf->mirrors[m].rdev,
2459 conf->mddev);
2460 }
55ce74d4
N
2461 if (fail) {
2462 spin_lock_irq(&conf->device_lock);
2463 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2464 idx = sector_to_idx(r1_bio->sector);
824e47da 2465 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2466 spin_unlock_irq(&conf->device_lock);
824e47da 2467 /*
2468 * In case freeze_array() is waiting for condition
2469 * get_unqueued_pending() == extra to be true.
2470 */
2471 wake_up(&conf->wait_barrier);
55ce74d4 2472 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2473 } else {
2474 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2475 close_write(r1_bio);
55ce74d4 2476 raid_end_bio_io(r1_bio);
bd8688a1 2477 }
62096bce
N
2478}
2479
e8096360 2480static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2481{
fd01b88c 2482 struct mddev *mddev = conf->mddev;
62096bce 2483 struct bio *bio;
3cb03002 2484 struct md_rdev *rdev;
62096bce
N
2485
2486 clear_bit(R1BIO_ReadError, &r1_bio->state);
2487 /* we got a read error. Maybe the drive is bad. Maybe just
2488 * the block and we can fix it.
2489 * We freeze all other IO, and try reading the block from
2490 * other devices. When we find one, we re-write
2491 * and check it that fixes the read error.
2492 * This is all done synchronously while the array is
2493 * frozen
2494 */
7449f699
TM
2495
2496 bio = r1_bio->bios[r1_bio->read_disk];
7449f699
TM
2497 bio_put(bio);
2498 r1_bio->bios[r1_bio->read_disk] = NULL;
2499
2e52d449
N
2500 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2501 if (mddev->ro == 0
2502 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2503 freeze_array(conf, 1);
62096bce
N
2504 fix_read_error(conf, r1_bio->read_disk,
2505 r1_bio->sector, r1_bio->sectors);
2506 unfreeze_array(conf);
b33d1062
GK
2507 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2508 md_error(mddev, rdev);
7449f699
TM
2509 } else {
2510 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2511 }
2512
2e52d449 2513 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2514 allow_barrier(conf, r1_bio->sector);
2515 bio = r1_bio->master_bio;
62096bce 2516
689389a0
N
2517 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2518 r1_bio->state = 0;
2519 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2520}
2521
4ed8731d 2522static void raid1d(struct md_thread *thread)
1da177e4 2523{
4ed8731d 2524 struct mddev *mddev = thread->mddev;
9f2c9d12 2525 struct r1bio *r1_bio;
1da177e4 2526 unsigned long flags;
e8096360 2527 struct r1conf *conf = mddev->private;
1da177e4 2528 struct list_head *head = &conf->retry_list;
e1dfa0a2 2529 struct blk_plug plug;
fd76863e 2530 int idx;
1da177e4
LT
2531
2532 md_check_recovery(mddev);
e1dfa0a2 2533
55ce74d4 2534 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2535 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2536 LIST_HEAD(tmp);
2537 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2538 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2539 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2540 spin_unlock_irqrestore(&conf->device_lock, flags);
2541 while (!list_empty(&tmp)) {
a452744b
MP
2542 r1_bio = list_first_entry(&tmp, struct r1bio,
2543 retry_list);
55ce74d4 2544 list_del(&r1_bio->retry_list);
fd76863e 2545 idx = sector_to_idx(r1_bio->sector);
824e47da 2546 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2547 if (mddev->degraded)
2548 set_bit(R1BIO_Degraded, &r1_bio->state);
2549 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2550 close_write(r1_bio);
55ce74d4
N
2551 raid_end_bio_io(r1_bio);
2552 }
2553 }
2554
e1dfa0a2 2555 blk_start_plug(&plug);
1da177e4 2556 for (;;) {
191ea9b2 2557
0021b7bc 2558 flush_pending_writes(conf);
191ea9b2 2559
a35e63ef
N
2560 spin_lock_irqsave(&conf->device_lock, flags);
2561 if (list_empty(head)) {
2562 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2563 break;
a35e63ef 2564 }
9f2c9d12 2565 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2566 list_del(head->prev);
fd76863e 2567 idx = sector_to_idx(r1_bio->sector);
824e47da 2568 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2569 spin_unlock_irqrestore(&conf->device_lock, flags);
2570
2571 mddev = r1_bio->mddev;
070ec55d 2572 conf = mddev->private;
4367af55 2573 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2574 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2575 test_bit(R1BIO_WriteError, &r1_bio->state))
2576 handle_sync_write_finished(conf, r1_bio);
2577 else
4367af55 2578 sync_request_write(mddev, r1_bio);
cd5ff9a1 2579 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2580 test_bit(R1BIO_WriteError, &r1_bio->state))
2581 handle_write_finished(conf, r1_bio);
2582 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2583 handle_read_error(conf, r1_bio);
2584 else
c230e7e5 2585 WARN_ON_ONCE(1);
62096bce 2586
1d9d5241 2587 cond_resched();
2953079c 2588 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2589 md_check_recovery(mddev);
1da177e4 2590 }
e1dfa0a2 2591 blk_finish_plug(&plug);
1da177e4
LT
2592}
2593
e8096360 2594static int init_resync(struct r1conf *conf)
1da177e4
LT
2595{
2596 int buffs;
2597
2598 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514
KO
2599 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2600
2601 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2602 r1buf_pool_free, conf->poolinfo);
1da177e4
LT
2603}
2604
208410b5
SL
2605static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2606{
afeee514 2607 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
208410b5
SL
2608 struct resync_pages *rps;
2609 struct bio *bio;
2610 int i;
2611
2612 for (i = conf->poolinfo->raid_disks; i--; ) {
2613 bio = r1bio->bios[i];
2614 rps = bio->bi_private;
2615 bio_reset(bio);
2616 bio->bi_private = rps;
2617 }
2618 r1bio->master_bio = NULL;
2619 return r1bio;
2620}
2621
1da177e4
LT
2622/*
2623 * perform a "sync" on one "block"
2624 *
2625 * We need to make sure that no normal I/O request - particularly write
2626 * requests - conflict with active sync requests.
2627 *
2628 * This is achieved by tracking pending requests and a 'barrier' concept
2629 * that can be installed to exclude normal IO requests.
2630 */
2631
849674e4
SL
2632static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2633 int *skipped)
1da177e4 2634{
e8096360 2635 struct r1conf *conf = mddev->private;
9f2c9d12 2636 struct r1bio *r1_bio;
1da177e4
LT
2637 struct bio *bio;
2638 sector_t max_sector, nr_sectors;
3e198f78 2639 int disk = -1;
1da177e4 2640 int i;
3e198f78
N
2641 int wonly = -1;
2642 int write_targets = 0, read_targets = 0;
57dab0bd 2643 sector_t sync_blocks;
e3b9703e 2644 int still_degraded = 0;
06f60385
N
2645 int good_sectors = RESYNC_SECTORS;
2646 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2647 int idx = sector_to_idx(sector_nr);
022e510f 2648 int page_idx = 0;
1da177e4 2649
afeee514 2650 if (!mempool_initialized(&conf->r1buf_pool))
1da177e4 2651 if (init_resync(conf))
57afd89f 2652 return 0;
1da177e4 2653
58c0fed4 2654 max_sector = mddev->dev_sectors;
1da177e4 2655 if (sector_nr >= max_sector) {
191ea9b2
N
2656 /* If we aborted, we need to abort the
2657 * sync on the 'current' bitmap chunk (there will
2658 * only be one in raid1 resync.
2659 * We can find the current addess in mddev->curr_resync
2660 */
6a806c51 2661 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
2662 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2663 &sync_blocks, 1);
6a806c51 2664 else /* completed sync */
191ea9b2 2665 conf->fullsync = 0;
6a806c51 2666
e64e4018 2667 md_bitmap_close_sync(mddev->bitmap);
1da177e4 2668 close_sync(conf);
c40f341f
GR
2669
2670 if (mddev_is_clustered(mddev)) {
2671 conf->cluster_sync_low = 0;
2672 conf->cluster_sync_high = 0;
c40f341f 2673 }
1da177e4
LT
2674 return 0;
2675 }
2676
07d84d10
N
2677 if (mddev->bitmap == NULL &&
2678 mddev->recovery_cp == MaxSector &&
6394cca5 2679 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2680 conf->fullsync == 0) {
2681 *skipped = 1;
2682 return max_sector - sector_nr;
2683 }
6394cca5
N
2684 /* before building a request, check if we can skip these blocks..
2685 * This call the bitmap_start_sync doesn't actually record anything
2686 */
e64e4018 2687 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2688 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2689 /* We can skip this block, and probably several more */
2690 *skipped = 1;
2691 return sync_blocks;
2692 }
17999be4 2693
7ac50447
TM
2694 /*
2695 * If there is non-resync activity waiting for a turn, then let it
2696 * though before starting on this new sync request.
2697 */
824e47da 2698 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2699 schedule_timeout_uninterruptible(1);
2700
c40f341f
GR
2701 /* we are incrementing sector_nr below. To be safe, we check against
2702 * sector_nr + two times RESYNC_SECTORS
2703 */
2704
e64e4018 2705 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
c40f341f 2706 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
17999be4 2707
8c242593
YY
2708
2709 if (raise_barrier(conf, sector_nr))
2710 return 0;
2711
2712 r1_bio = raid1_alloc_init_r1buf(conf);
1da177e4 2713
3e198f78 2714 rcu_read_lock();
1da177e4 2715 /*
3e198f78
N
2716 * If we get a correctably read error during resync or recovery,
2717 * we might want to read from a different device. So we
2718 * flag all drives that could conceivably be read from for READ,
2719 * and any others (which will be non-In_sync devices) for WRITE.
2720 * If a read fails, we try reading from something else for which READ
2721 * is OK.
1da177e4 2722 */
1da177e4 2723
1da177e4
LT
2724 r1_bio->mddev = mddev;
2725 r1_bio->sector = sector_nr;
191ea9b2 2726 r1_bio->state = 0;
1da177e4 2727 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2728 /* make sure good_sectors won't go across barrier unit boundary */
2729 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2730
8f19ccb2 2731 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2732 struct md_rdev *rdev;
1da177e4 2733 bio = r1_bio->bios[i];
1da177e4 2734
3e198f78
N
2735 rdev = rcu_dereference(conf->mirrors[i].rdev);
2736 if (rdev == NULL ||
06f60385 2737 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2738 if (i < conf->raid_disks)
2739 still_degraded = 1;
3e198f78 2740 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2741 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2742 bio->bi_end_io = end_sync_write;
2743 write_targets ++;
3e198f78
N
2744 } else {
2745 /* may need to read from here */
06f60385
N
2746 sector_t first_bad = MaxSector;
2747 int bad_sectors;
2748
2749 if (is_badblock(rdev, sector_nr, good_sectors,
2750 &first_bad, &bad_sectors)) {
2751 if (first_bad > sector_nr)
2752 good_sectors = first_bad - sector_nr;
2753 else {
2754 bad_sectors -= (sector_nr - first_bad);
2755 if (min_bad == 0 ||
2756 min_bad > bad_sectors)
2757 min_bad = bad_sectors;
2758 }
2759 }
2760 if (sector_nr < first_bad) {
2761 if (test_bit(WriteMostly, &rdev->flags)) {
2762 if (wonly < 0)
2763 wonly = i;
2764 } else {
2765 if (disk < 0)
2766 disk = i;
2767 }
796a5cf0 2768 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2769 bio->bi_end_io = end_sync_read;
2770 read_targets++;
d57368af
AL
2771 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2772 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2773 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2774 /*
2775 * The device is suitable for reading (InSync),
2776 * but has bad block(s) here. Let's try to correct them,
2777 * if we are doing resync or repair. Otherwise, leave
2778 * this device alone for this sync request.
2779 */
796a5cf0 2780 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2781 bio->bi_end_io = end_sync_write;
2782 write_targets++;
3e198f78 2783 }
3e198f78 2784 }
06f60385
N
2785 if (bio->bi_end_io) {
2786 atomic_inc(&rdev->nr_pending);
4f024f37 2787 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2788 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2789 if (test_bit(FailFast, &rdev->flags))
2790 bio->bi_opf |= MD_FAILFAST;
06f60385 2791 }
1da177e4 2792 }
3e198f78
N
2793 rcu_read_unlock();
2794 if (disk < 0)
2795 disk = wonly;
2796 r1_bio->read_disk = disk;
191ea9b2 2797
06f60385
N
2798 if (read_targets == 0 && min_bad > 0) {
2799 /* These sectors are bad on all InSync devices, so we
2800 * need to mark them bad on all write targets
2801 */
2802 int ok = 1;
8f19ccb2 2803 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2804 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2805 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2806 ok = rdev_set_badblocks(rdev, sector_nr,
2807 min_bad, 0
2808 ) && ok;
2809 }
2953079c 2810 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2811 *skipped = 1;
2812 put_buf(r1_bio);
2813
2814 if (!ok) {
2815 /* Cannot record the badblocks, so need to
2816 * abort the resync.
2817 * If there are multiple read targets, could just
2818 * fail the really bad ones ???
2819 */
2820 conf->recovery_disabled = mddev->recovery_disabled;
2821 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2822 return 0;
2823 } else
2824 return min_bad;
2825
2826 }
2827 if (min_bad > 0 && min_bad < good_sectors) {
2828 /* only resync enough to reach the next bad->good
2829 * transition */
2830 good_sectors = min_bad;
2831 }
2832
3e198f78
N
2833 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2834 /* extra read targets are also write targets */
2835 write_targets += read_targets-1;
2836
2837 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2838 /* There is nowhere to write, so all non-sync
2839 * drives must be failed - so we are finished
2840 */
b7219ccb
N
2841 sector_t rv;
2842 if (min_bad > 0)
2843 max_sector = sector_nr + min_bad;
2844 rv = max_sector - sector_nr;
57afd89f 2845 *skipped = 1;
1da177e4 2846 put_buf(r1_bio);
1da177e4
LT
2847 return rv;
2848 }
2849
c6207277
N
2850 if (max_sector > mddev->resync_max)
2851 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2852 if (max_sector > sector_nr + good_sectors)
2853 max_sector = sector_nr + good_sectors;
1da177e4 2854 nr_sectors = 0;
289e99e8 2855 sync_blocks = 0;
1da177e4
LT
2856 do {
2857 struct page *page;
2858 int len = PAGE_SIZE;
2859 if (sector_nr + (len>>9) > max_sector)
2860 len = (max_sector - sector_nr) << 9;
2861 if (len == 0)
2862 break;
6a806c51 2863 if (sync_blocks == 0) {
e64e4018
AS
2864 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2865 &sync_blocks, still_degraded) &&
e5de485f
N
2866 !conf->fullsync &&
2867 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2868 break;
7571ae88 2869 if ((len >> 9) > sync_blocks)
6a806c51 2870 len = sync_blocks<<9;
ab7a30c7 2871 }
191ea9b2 2872
8f19ccb2 2873 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2874 struct resync_pages *rp;
2875
1da177e4 2876 bio = r1_bio->bios[i];
98d30c58 2877 rp = get_resync_pages(bio);
1da177e4 2878 if (bio->bi_end_io) {
022e510f 2879 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2880
2881 /*
2882 * won't fail because the vec table is big
2883 * enough to hold all these pages
2884 */
2885 bio_add_page(bio, page, len, 0);
1da177e4
LT
2886 }
2887 }
2888 nr_sectors += len>>9;
2889 sector_nr += len>>9;
191ea9b2 2890 sync_blocks -= (len>>9);
022e510f 2891 } while (++page_idx < RESYNC_PAGES);
98d30c58 2892
1da177e4
LT
2893 r1_bio->sectors = nr_sectors;
2894
c40f341f
GR
2895 if (mddev_is_clustered(mddev) &&
2896 conf->cluster_sync_high < sector_nr + nr_sectors) {
2897 conf->cluster_sync_low = mddev->curr_resync_completed;
2898 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2899 /* Send resync message */
2900 md_cluster_ops->resync_info_update(mddev,
2901 conf->cluster_sync_low,
2902 conf->cluster_sync_high);
2903 }
2904
d11c171e
N
2905 /* For a user-requested sync, we read all readable devices and do a
2906 * compare
2907 */
2908 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2909 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2910 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2911 bio = r1_bio->bios[i];
2912 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2913 read_targets--;
74d46992 2914 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2915 if (read_targets == 1)
2916 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2917 generic_make_request(bio);
2918 }
2919 }
2920 } else {
2921 atomic_set(&r1_bio->remaining, 1);
2922 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2923 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2924 if (read_targets == 1)
2925 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2926 generic_make_request(bio);
d11c171e 2927 }
1da177e4
LT
2928 return nr_sectors;
2929}
2930
fd01b88c 2931static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2932{
2933 if (sectors)
2934 return sectors;
2935
2936 return mddev->dev_sectors;
2937}
2938
e8096360 2939static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2940{
e8096360 2941 struct r1conf *conf;
709ae487 2942 int i;
0eaf822c 2943 struct raid1_info *disk;
3cb03002 2944 struct md_rdev *rdev;
709ae487 2945 int err = -ENOMEM;
1da177e4 2946
e8096360 2947 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2948 if (!conf)
709ae487 2949 goto abort;
1da177e4 2950
fd76863e 2951 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2952 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2953 if (!conf->nr_pending)
2954 goto abort;
2955
2956 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2957 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2958 if (!conf->nr_waiting)
2959 goto abort;
2960
2961 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2962 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2963 if (!conf->nr_queued)
2964 goto abort;
2965
2966 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2967 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2968 if (!conf->barrier)
2969 goto abort;
2970
6396bb22
KC
2971 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2972 mddev->raid_disks, 2),
2973 GFP_KERNEL);
1da177e4 2974 if (!conf->mirrors)
709ae487 2975 goto abort;
1da177e4 2976
ddaf22ab
N
2977 conf->tmppage = alloc_page(GFP_KERNEL);
2978 if (!conf->tmppage)
709ae487 2979 goto abort;
ddaf22ab 2980
709ae487 2981 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2982 if (!conf->poolinfo)
709ae487 2983 goto abort;
8f19ccb2 2984 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3f677f9c 2985 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 2986 rbio_pool_free, conf->poolinfo);
afeee514 2987 if (err)
709ae487
N
2988 goto abort;
2989
afeee514
KO
2990 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2991 if (err)
c230e7e5
N
2992 goto abort;
2993
ed9bfdf1 2994 conf->poolinfo->mddev = mddev;
1da177e4 2995
c19d5798 2996 err = -EINVAL;
e7e72bf6 2997 spin_lock_init(&conf->device_lock);
dafb20fa 2998 rdev_for_each(rdev, mddev) {
709ae487 2999 int disk_idx = rdev->raid_disk;
1da177e4
LT
3000 if (disk_idx >= mddev->raid_disks
3001 || disk_idx < 0)
3002 continue;
c19d5798 3003 if (test_bit(Replacement, &rdev->flags))
02b898f2 3004 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
3005 else
3006 disk = conf->mirrors + disk_idx;
1da177e4 3007
c19d5798
N
3008 if (disk->rdev)
3009 goto abort;
1da177e4 3010 disk->rdev = rdev;
1da177e4 3011 disk->head_position = 0;
12cee5a8 3012 disk->seq_start = MaxSector;
1da177e4
LT
3013 }
3014 conf->raid_disks = mddev->raid_disks;
3015 conf->mddev = mddev;
1da177e4 3016 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 3017 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
3018
3019 spin_lock_init(&conf->resync_lock);
17999be4 3020 init_waitqueue_head(&conf->wait_barrier);
1da177e4 3021
191ea9b2 3022 bio_list_init(&conf->pending_bio_list);
34db0cd6 3023 conf->pending_count = 0;
d890fa2b 3024 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 3025
c19d5798 3026 err = -EIO;
8f19ccb2 3027 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
3028
3029 disk = conf->mirrors + i;
3030
c19d5798
N
3031 if (i < conf->raid_disks &&
3032 disk[conf->raid_disks].rdev) {
3033 /* This slot has a replacement. */
3034 if (!disk->rdev) {
3035 /* No original, just make the replacement
3036 * a recovering spare
3037 */
3038 disk->rdev =
3039 disk[conf->raid_disks].rdev;
3040 disk[conf->raid_disks].rdev = NULL;
3041 } else if (!test_bit(In_sync, &disk->rdev->flags))
3042 /* Original is not in_sync - bad */
3043 goto abort;
3044 }
3045
5fd6c1dc
N
3046 if (!disk->rdev ||
3047 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3048 disk->head_position = 0;
4f0a5e01
JB
3049 if (disk->rdev &&
3050 (disk->rdev->saved_raid_disk < 0))
918f0238 3051 conf->fullsync = 1;
be4d3280 3052 }
1da177e4 3053 }
709ae487 3054
709ae487 3055 err = -ENOMEM;
0232605d 3056 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3057 if (!conf->thread)
709ae487 3058 goto abort;
1da177e4 3059
709ae487
N
3060 return conf;
3061
3062 abort:
3063 if (conf) {
afeee514 3064 mempool_exit(&conf->r1bio_pool);
709ae487
N
3065 kfree(conf->mirrors);
3066 safe_put_page(conf->tmppage);
3067 kfree(conf->poolinfo);
fd76863e 3068 kfree(conf->nr_pending);
3069 kfree(conf->nr_waiting);
3070 kfree(conf->nr_queued);
3071 kfree(conf->barrier);
afeee514 3072 bioset_exit(&conf->bio_split);
709ae487
N
3073 kfree(conf);
3074 }
3075 return ERR_PTR(err);
3076}
3077
afa0f557 3078static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3079static int raid1_run(struct mddev *mddev)
709ae487 3080{
e8096360 3081 struct r1conf *conf;
709ae487 3082 int i;
3cb03002 3083 struct md_rdev *rdev;
5220ea1e 3084 int ret;
2ff8cc2c 3085 bool discard_supported = false;
709ae487
N
3086
3087 if (mddev->level != 1) {
1d41c216
N
3088 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3089 mdname(mddev), mddev->level);
709ae487
N
3090 return -EIO;
3091 }
3092 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3093 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3094 mdname(mddev));
709ae487
N
3095 return -EIO;
3096 }
a415c0f1
N
3097 if (mddev_init_writes_pending(mddev) < 0)
3098 return -ENOMEM;
1da177e4 3099 /*
709ae487
N
3100 * copy the already verified devices into our private RAID1
3101 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3102 * should be freed in raid1_free()]
1da177e4 3103 */
709ae487
N
3104 if (mddev->private == NULL)
3105 conf = setup_conf(mddev);
3106 else
3107 conf = mddev->private;
1da177e4 3108
709ae487
N
3109 if (IS_ERR(conf))
3110 return PTR_ERR(conf);
1da177e4 3111
3deff1a7 3112 if (mddev->queue) {
5026d7a9 3113 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7
CH
3114 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3115 }
5026d7a9 3116
dafb20fa 3117 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3118 if (!mddev->gendisk)
3119 continue;
709ae487
N
3120 disk_stack_limits(mddev->gendisk, rdev->bdev,
3121 rdev->data_offset << 9);
2ff8cc2c
SL
3122 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3123 discard_supported = true;
1da177e4 3124 }
191ea9b2 3125
709ae487 3126 mddev->degraded = 0;
ebfeb444 3127 for (i = 0; i < conf->raid_disks; i++)
709ae487
N
3128 if (conf->mirrors[i].rdev == NULL ||
3129 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3130 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3131 mddev->degraded++;
07f1a685
YY
3132 /*
3133 * RAID1 needs at least one disk in active
3134 */
3135 if (conf->raid_disks - mddev->degraded < 1) {
3136 ret = -EINVAL;
3137 goto abort;
3138 }
709ae487
N
3139
3140 if (conf->raid_disks - mddev->degraded == 1)
3141 mddev->recovery_cp = MaxSector;
3142
8c6ac868 3143 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3144 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3145 mdname(mddev));
3146 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3147 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3148 mddev->raid_disks);
709ae487 3149
1da177e4
LT
3150 /*
3151 * Ok, everything is just fine now
3152 */
709ae487
N
3153 mddev->thread = conf->thread;
3154 conf->thread = NULL;
3155 mddev->private = conf;
46533ff7 3156 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3157
1f403624 3158 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3159
1ed7242e 3160 if (mddev->queue) {
2ff8cc2c 3161 if (discard_supported)
8b904b5b 3162 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
2ff8cc2c
SL
3163 mddev->queue);
3164 else
8b904b5b 3165 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
2ff8cc2c 3166 mddev->queue);
1ed7242e 3167 }
5220ea1e 3168
ebfeb444 3169 ret = md_integrity_register(mddev);
5aa61f42
N
3170 if (ret) {
3171 md_unregister_thread(&mddev->thread);
07f1a685 3172 goto abort;
5aa61f42 3173 }
07f1a685
YY
3174 return 0;
3175
3176abort:
3177 raid1_free(mddev, conf);
5220ea1e 3178 return ret;
1da177e4
LT
3179}
3180
afa0f557 3181static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3182{
afa0f557 3183 struct r1conf *conf = priv;
409c57f3 3184
afeee514 3185 mempool_exit(&conf->r1bio_pool);
990a8baf 3186 kfree(conf->mirrors);
0fea7ed8 3187 safe_put_page(conf->tmppage);
990a8baf 3188 kfree(conf->poolinfo);
fd76863e 3189 kfree(conf->nr_pending);
3190 kfree(conf->nr_waiting);
3191 kfree(conf->nr_queued);
3192 kfree(conf->barrier);
afeee514 3193 bioset_exit(&conf->bio_split);
1da177e4 3194 kfree(conf);
1da177e4
LT
3195}
3196
fd01b88c 3197static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3198{
3199 /* no resync is happening, and there is enough space
3200 * on all devices, so we can resize.
3201 * We need to make sure resync covers any new space.
3202 * If the array is shrinking we should possibly wait until
3203 * any io in the removed space completes, but it hardly seems
3204 * worth it.
3205 */
a4a6125a
N
3206 sector_t newsize = raid1_size(mddev, sectors, 0);
3207 if (mddev->external_size &&
3208 mddev->array_sectors > newsize)
b522adcd 3209 return -EINVAL;
a4a6125a 3210 if (mddev->bitmap) {
e64e4018 3211 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
a4a6125a
N
3212 if (ret)
3213 return ret;
3214 }
3215 md_set_array_sectors(mddev, newsize);
b522adcd 3216 if (sectors > mddev->dev_sectors &&
b098636c 3217 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3218 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3219 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3220 }
b522adcd 3221 mddev->dev_sectors = sectors;
4b5c7ae8 3222 mddev->resync_max_sectors = sectors;
1da177e4
LT
3223 return 0;
3224}
3225
fd01b88c 3226static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3227{
3228 /* We need to:
3229 * 1/ resize the r1bio_pool
3230 * 2/ resize conf->mirrors
3231 *
3232 * We allocate a new r1bio_pool if we can.
3233 * Then raise a device barrier and wait until all IO stops.
3234 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3235 *
3236 * At the same time, we "pack" the devices so that all the missing
3237 * devices have the higher raid_disk numbers.
1da177e4 3238 */
afeee514 3239 mempool_t newpool, oldpool;
1da177e4 3240 struct pool_info *newpoolinfo;
0eaf822c 3241 struct raid1_info *newmirrors;
e8096360 3242 struct r1conf *conf = mddev->private;
63c70c4f 3243 int cnt, raid_disks;
c04be0aa 3244 unsigned long flags;
2214c260 3245 int d, d2;
afeee514
KO
3246 int ret;
3247
3248 memset(&newpool, 0, sizeof(newpool));
3249 memset(&oldpool, 0, sizeof(oldpool));
1da177e4 3250
63c70c4f 3251 /* Cannot change chunk_size, layout, or level */
664e7c41 3252 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3253 mddev->layout != mddev->new_layout ||
3254 mddev->level != mddev->new_level) {
664e7c41 3255 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3256 mddev->new_layout = mddev->layout;
3257 mddev->new_level = mddev->level;
3258 return -EINVAL;
3259 }
3260
2214c260
AP
3261 if (!mddev_is_clustered(mddev))
3262 md_allow_write(mddev);
2a2275d6 3263
63c70c4f
N
3264 raid_disks = mddev->raid_disks + mddev->delta_disks;
3265
6ea9c07c
N
3266 if (raid_disks < conf->raid_disks) {
3267 cnt=0;
3268 for (d= 0; d < conf->raid_disks; d++)
3269 if (conf->mirrors[d].rdev)
3270 cnt++;
3271 if (cnt > raid_disks)
1da177e4 3272 return -EBUSY;
6ea9c07c 3273 }
1da177e4
LT
3274
3275 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3276 if (!newpoolinfo)
3277 return -ENOMEM;
3278 newpoolinfo->mddev = mddev;
8f19ccb2 3279 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4 3280
3f677f9c 3281 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3282 rbio_pool_free, newpoolinfo);
afeee514 3283 if (ret) {
1da177e4 3284 kfree(newpoolinfo);
afeee514 3285 return ret;
1da177e4 3286 }
6396bb22
KC
3287 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3288 raid_disks, 2),
8f19ccb2 3289 GFP_KERNEL);
1da177e4
LT
3290 if (!newmirrors) {
3291 kfree(newpoolinfo);
afeee514 3292 mempool_exit(&newpool);
1da177e4
LT
3293 return -ENOMEM;
3294 }
1da177e4 3295
e2d59925 3296 freeze_array(conf, 0);
1da177e4
LT
3297
3298 /* ok, everything is stopped */
3299 oldpool = conf->r1bio_pool;
3300 conf->r1bio_pool = newpool;
6ea9c07c 3301
a88aa786 3302 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3303 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3304 if (rdev && rdev->raid_disk != d2) {
36fad858 3305 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3306 rdev->raid_disk = d2;
36fad858
NK
3307 sysfs_unlink_rdev(mddev, rdev);
3308 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3309 pr_warn("md/raid1:%s: cannot register rd%d\n",
3310 mdname(mddev), rdev->raid_disk);
6ea9c07c 3311 }
a88aa786
N
3312 if (rdev)
3313 newmirrors[d2++].rdev = rdev;
3314 }
1da177e4
LT
3315 kfree(conf->mirrors);
3316 conf->mirrors = newmirrors;
3317 kfree(conf->poolinfo);
3318 conf->poolinfo = newpoolinfo;
3319
c04be0aa 3320 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3321 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3322 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3323 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3324 mddev->delta_disks = 0;
1da177e4 3325
e2d59925 3326 unfreeze_array(conf);
1da177e4 3327
985ca973 3328 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3329 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330 md_wakeup_thread(mddev->thread);
3331
afeee514 3332 mempool_exit(&oldpool);
1da177e4
LT
3333 return 0;
3334}
3335
b03e0ccb 3336static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3337{
e8096360 3338 struct r1conf *conf = mddev->private;
36fa3063 3339
b03e0ccb 3340 if (quiesce)
07169fd4 3341 freeze_array(conf, 0);
b03e0ccb 3342 else
07169fd4 3343 unfreeze_array(conf);
36fa3063
N
3344}
3345
fd01b88c 3346static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3347{
3348 /* raid1 can take over:
3349 * raid5 with 2 devices, any layout or chunk size
3350 */
3351 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3352 struct r1conf *conf;
709ae487
N
3353 mddev->new_level = 1;
3354 mddev->new_layout = 0;
3355 mddev->new_chunk_sectors = 0;
3356 conf = setup_conf(mddev);
6995f0b2 3357 if (!IS_ERR(conf)) {
07169fd4 3358 /* Array must appear to be quiesced */
3359 conf->array_frozen = 1;
394ed8e4
SL
3360 mddev_clear_unsupported_flags(mddev,
3361 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3362 }
709ae487
N
3363 return conf;
3364 }
3365 return ERR_PTR(-EINVAL);
3366}
1da177e4 3367
84fc4b56 3368static struct md_personality raid1_personality =
1da177e4
LT
3369{
3370 .name = "raid1",
2604b703 3371 .level = 1,
1da177e4 3372 .owner = THIS_MODULE,
849674e4
SL
3373 .make_request = raid1_make_request,
3374 .run = raid1_run,
afa0f557 3375 .free = raid1_free,
849674e4
SL
3376 .status = raid1_status,
3377 .error_handler = raid1_error,
1da177e4
LT
3378 .hot_add_disk = raid1_add_disk,
3379 .hot_remove_disk= raid1_remove_disk,
3380 .spare_active = raid1_spare_active,
849674e4 3381 .sync_request = raid1_sync_request,
1da177e4 3382 .resize = raid1_resize,
80c3a6ce 3383 .size = raid1_size,
63c70c4f 3384 .check_reshape = raid1_reshape,
36fa3063 3385 .quiesce = raid1_quiesce,
709ae487 3386 .takeover = raid1_takeover,
5c675f83 3387 .congested = raid1_congested,
1da177e4
LT
3388};
3389
3390static int __init raid_init(void)
3391{
2604b703 3392 return register_md_personality(&raid1_personality);
1da177e4
LT
3393}
3394
3395static void raid_exit(void)
3396{
2604b703 3397 unregister_md_personality(&raid1_personality);
1da177e4
LT
3398}
3399
3400module_init(raid_init);
3401module_exit(raid_exit);
3402MODULE_LICENSE("GPL");
0efb9e61 3403MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3404MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3405MODULE_ALIAS("md-raid1");
2604b703 3406MODULE_ALIAS("md-level-1");
34db0cd6
N
3407
3408module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);