raid5-cache: fix lockdep warning
[linux-block.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
8e005f7c 95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 96
dd0fc66f 97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
98{
99 struct pool_info *pi = data;
9f2c9d12 100 struct r1bio *r1_bio;
1da177e4 101 struct bio *bio;
da1aab3d 102 int need_pages;
1da177e4
LT
103 int i, j;
104
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 106 if (!r1_bio)
1da177e4 107 return NULL;
1da177e4
LT
108
109 /*
110 * Allocate bios : 1 for reading, n-1 for writing
111 */
112 for (j = pi->raid_disks ; j-- ; ) {
6746557f 113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
1da177e4 123 */
d11c171e 124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 125 need_pages = pi->raid_disks;
d11c171e 126 else
da1aab3d
N
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
d11c171e 129 bio = r1_bio->bios[j];
a0787606 130 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 131
a0787606 132 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 133 goto out_free_pages;
d11c171e
N
134 }
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
141 }
142
143 r1_bio->master_bio = NULL;
144
145 return r1_bio;
146
da1aab3d 147out_free_pages:
491221f8
GJ
148 while (--j >= 0)
149 bio_free_pages(r1_bio->bios[j]);
da1aab3d 150
1da177e4 151out_free_bio:
8f19ccb2 152 while (++j < pi->raid_disks)
1da177e4
LT
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156}
157
158static void r1buf_pool_free(void *__r1_bio, void *data)
159{
160 struct pool_info *pi = data;
d11c171e 161 int i,j;
9f2c9d12 162 struct r1bio *r1bio = __r1_bio;
1da177e4 163
d11c171e
N
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 170 }
1da177e4
LT
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175}
176
e8096360 177static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
178{
179 int i;
180
8f19ccb2 181 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 182 struct bio **bio = r1_bio->bios + i;
4367af55 183 if (!BIO_SPECIAL(*bio))
1da177e4
LT
184 bio_put(*bio);
185 *bio = NULL;
186 }
187}
188
9f2c9d12 189static void free_r1bio(struct r1bio *r1_bio)
1da177e4 190{
e8096360 191 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 192
1da177e4
LT
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195}
196
9f2c9d12 197static void put_buf(struct r1bio *r1_bio)
1da177e4 198{
e8096360 199 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
200 int i;
201
8f19ccb2 202 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
1da177e4
LT
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
17999be4 210 lower_barrier(conf);
1da177e4
LT
211}
212
9f2c9d12 213static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
214{
215 unsigned long flags;
fd01b88c 216 struct mddev *mddev = r1_bio->mddev;
e8096360 217 struct r1conf *conf = mddev->private;
1da177e4
LT
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
9f2c9d12 233static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
234{
235 struct bio *bio = r1_bio->master_bio;
236 int done;
e8096360 237 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 238 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 239 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
240
241 if (bio->bi_phys_segments) {
242 unsigned long flags;
243 spin_lock_irqsave(&conf->device_lock, flags);
244 bio->bi_phys_segments--;
245 done = (bio->bi_phys_segments == 0);
246 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 247 /*
248 * make_request() might be waiting for
249 * bi_phys_segments to decrease
250 */
251 wake_up(&conf->wait_barrier);
d2eb35ac
N
252 } else
253 done = 1;
254
255 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
256 bio->bi_error = -EIO;
257
d2eb35ac 258 if (done) {
4246a0b6 259 bio_endio(bio);
d2eb35ac
N
260 /*
261 * Wake up any possible resync thread that waits for the device
262 * to go idle.
263 */
79ef3a8a 264 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
265 }
266}
267
9f2c9d12 268static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
269{
270 struct bio *bio = r1_bio->master_bio;
271
4b6d287f
N
272 /* if nobody has done the final endio yet, do it now */
273 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
274 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
275 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
276 (unsigned long long) bio->bi_iter.bi_sector,
277 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 278
d2eb35ac 279 call_bio_endio(r1_bio);
4b6d287f 280 }
1da177e4
LT
281 free_r1bio(r1_bio);
282}
283
284/*
285 * Update disk head position estimator based on IRQ completion info.
286 */
9f2c9d12 287static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 288{
e8096360 289 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
290
291 conf->mirrors[disk].head_position =
292 r1_bio->sector + (r1_bio->sectors);
293}
294
ba3ae3be
NK
295/*
296 * Find the disk number which triggered given bio
297 */
9f2c9d12 298static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
299{
300 int mirror;
30194636
N
301 struct r1conf *conf = r1_bio->mddev->private;
302 int raid_disks = conf->raid_disks;
ba3ae3be 303
8f19ccb2 304 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
305 if (r1_bio->bios[mirror] == bio)
306 break;
307
8f19ccb2 308 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
309 update_head_pos(mirror, r1_bio);
310
311 return mirror;
312}
313
4246a0b6 314static void raid1_end_read_request(struct bio *bio)
1da177e4 315{
4246a0b6 316 int uptodate = !bio->bi_error;
9f2c9d12 317 struct r1bio *r1_bio = bio->bi_private;
e8096360 318 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 319 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 320
1da177e4
LT
321 /*
322 * this branch is our 'one mirror IO has finished' event handler:
323 */
e5872d58 324 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 325
dd00a99e
N
326 if (uptodate)
327 set_bit(R1BIO_Uptodate, &r1_bio->state);
328 else {
329 /* If all other devices have failed, we want to return
330 * the error upwards rather than fail the last device.
331 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 332 */
dd00a99e
N
333 unsigned long flags;
334 spin_lock_irqsave(&conf->device_lock, flags);
335 if (r1_bio->mddev->degraded == conf->raid_disks ||
336 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 337 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
338 uptodate = 1;
339 spin_unlock_irqrestore(&conf->device_lock, flags);
340 }
1da177e4 341
7ad4d4a6 342 if (uptodate) {
1da177e4 343 raid_end_bio_io(r1_bio);
e5872d58 344 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 345 } else {
1da177e4
LT
346 /*
347 * oops, read error:
348 */
349 char b[BDEVNAME_SIZE];
1d41c216
N
350 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
351 mdname(conf->mddev),
352 bdevname(rdev->bdev, b),
353 (unsigned long long)r1_bio->sector);
d2eb35ac 354 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 355 reschedule_retry(r1_bio);
7ad4d4a6 356 /* don't drop the reference on read_disk yet */
1da177e4 357 }
1da177e4
LT
358}
359
9f2c9d12 360static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
361{
362 /* it really is the end of this request */
363 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
364 /* free extra copy of the data pages */
365 int i = r1_bio->behind_page_count;
366 while (i--)
367 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
368 kfree(r1_bio->behind_bvecs);
369 r1_bio->behind_bvecs = NULL;
370 }
371 /* clear the bitmap if all writes complete successfully */
372 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
373 r1_bio->sectors,
374 !test_bit(R1BIO_Degraded, &r1_bio->state),
375 test_bit(R1BIO_BehindIO, &r1_bio->state));
376 md_write_end(r1_bio->mddev);
377}
378
9f2c9d12 379static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 380{
cd5ff9a1
N
381 if (!atomic_dec_and_test(&r1_bio->remaining))
382 return;
383
384 if (test_bit(R1BIO_WriteError, &r1_bio->state))
385 reschedule_retry(r1_bio);
386 else {
387 close_write(r1_bio);
4367af55
N
388 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
389 reschedule_retry(r1_bio);
390 else
391 raid_end_bio_io(r1_bio);
4e78064f
N
392 }
393}
394
4246a0b6 395static void raid1_end_write_request(struct bio *bio)
1da177e4 396{
9f2c9d12 397 struct r1bio *r1_bio = bio->bi_private;
e5872d58 398 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 399 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 400 struct bio *to_put = NULL;
e5872d58
N
401 int mirror = find_bio_disk(r1_bio, bio);
402 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
403 bool discard_error;
404
405 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 406
e9c7469b
TH
407 /*
408 * 'one mirror IO has finished' event handler:
409 */
e3f948cd 410 if (bio->bi_error && !discard_error) {
e5872d58
N
411 set_bit(WriteErrorSeen, &rdev->flags);
412 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
413 set_bit(MD_RECOVERY_NEEDED, &
414 conf->mddev->recovery);
415
cd5ff9a1 416 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 417 } else {
1da177e4 418 /*
e9c7469b
TH
419 * Set R1BIO_Uptodate in our master bio, so that we
420 * will return a good error code for to the higher
421 * levels even if IO on some other mirrored buffer
422 * fails.
423 *
424 * The 'master' represents the composite IO operation
425 * to user-side. So if something waits for IO, then it
426 * will wait for the 'master' bio.
1da177e4 427 */
4367af55
N
428 sector_t first_bad;
429 int bad_sectors;
430
cd5ff9a1
N
431 r1_bio->bios[mirror] = NULL;
432 to_put = bio;
3056e3ae
AL
433 /*
434 * Do not set R1BIO_Uptodate if the current device is
435 * rebuilding or Faulty. This is because we cannot use
436 * such device for properly reading the data back (we could
437 * potentially use it, if the current write would have felt
438 * before rdev->recovery_offset, but for simplicity we don't
439 * check this here.
440 */
e5872d58
N
441 if (test_bit(In_sync, &rdev->flags) &&
442 !test_bit(Faulty, &rdev->flags))
3056e3ae 443 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 444
4367af55 445 /* Maybe we can clear some bad blocks. */
e5872d58 446 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 447 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
448 r1_bio->bios[mirror] = IO_MADE_GOOD;
449 set_bit(R1BIO_MadeGood, &r1_bio->state);
450 }
451 }
452
e9c7469b 453 if (behind) {
e5872d58 454 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
455 atomic_dec(&r1_bio->behind_remaining);
456
457 /*
458 * In behind mode, we ACK the master bio once the I/O
459 * has safely reached all non-writemostly
460 * disks. Setting the Returned bit ensures that this
461 * gets done only once -- we don't ever want to return
462 * -EIO here, instead we'll wait
463 */
464 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
465 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
466 /* Maybe we can return now */
467 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
468 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
469 pr_debug("raid1: behind end write sectors"
470 " %llu-%llu\n",
4f024f37
KO
471 (unsigned long long) mbio->bi_iter.bi_sector,
472 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 473 call_bio_endio(r1_bio);
4b6d287f
N
474 }
475 }
476 }
4367af55 477 if (r1_bio->bios[mirror] == NULL)
e5872d58 478 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 479
1da177e4 480 /*
1da177e4
LT
481 * Let's see if all mirrored write operations have finished
482 * already.
483 */
af6d7b76 484 r1_bio_write_done(r1_bio);
c70810b3 485
04b857f7
N
486 if (to_put)
487 bio_put(to_put);
1da177e4
LT
488}
489
1da177e4
LT
490/*
491 * This routine returns the disk from which the requested read should
492 * be done. There is a per-array 'next expected sequential IO' sector
493 * number - if this matches on the next IO then we use the last disk.
494 * There is also a per-disk 'last know head position' sector that is
495 * maintained from IRQ contexts, both the normal and the resync IO
496 * completion handlers update this position correctly. If there is no
497 * perfect sequential match then we pick the disk whose head is closest.
498 *
499 * If there are 2 mirrors in the same 2 devices, performance degrades
500 * because position is mirror, not device based.
501 *
502 * The rdev for the device selected will have nr_pending incremented.
503 */
e8096360 504static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 505{
af3a2cd6 506 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
507 int sectors;
508 int best_good_sectors;
9dedf603
SL
509 int best_disk, best_dist_disk, best_pending_disk;
510 int has_nonrot_disk;
be4d3280 511 int disk;
76073054 512 sector_t best_dist;
9dedf603 513 unsigned int min_pending;
3cb03002 514 struct md_rdev *rdev;
f3ac8bf7 515 int choose_first;
12cee5a8 516 int choose_next_idle;
1da177e4
LT
517
518 rcu_read_lock();
519 /*
8ddf9efe 520 * Check if we can balance. We can balance on the whole
1da177e4
LT
521 * device if no resync is going on, or below the resync window.
522 * We take the first readable disk when above the resync window.
523 */
524 retry:
d2eb35ac 525 sectors = r1_bio->sectors;
76073054 526 best_disk = -1;
9dedf603 527 best_dist_disk = -1;
76073054 528 best_dist = MaxSector;
9dedf603
SL
529 best_pending_disk = -1;
530 min_pending = UINT_MAX;
d2eb35ac 531 best_good_sectors = 0;
9dedf603 532 has_nonrot_disk = 0;
12cee5a8 533 choose_next_idle = 0;
d2eb35ac 534
7d49ffcf
GR
535 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
536 (mddev_is_clustered(conf->mddev) &&
90382ed9 537 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
538 this_sector + sectors)))
539 choose_first = 1;
540 else
541 choose_first = 0;
1da177e4 542
be4d3280 543 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 544 sector_t dist;
d2eb35ac
N
545 sector_t first_bad;
546 int bad_sectors;
9dedf603 547 unsigned int pending;
12cee5a8 548 bool nonrot;
d2eb35ac 549
f3ac8bf7
N
550 rdev = rcu_dereference(conf->mirrors[disk].rdev);
551 if (r1_bio->bios[disk] == IO_BLOCKED
552 || rdev == NULL
76073054 553 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 554 continue;
76073054
N
555 if (!test_bit(In_sync, &rdev->flags) &&
556 rdev->recovery_offset < this_sector + sectors)
1da177e4 557 continue;
76073054
N
558 if (test_bit(WriteMostly, &rdev->flags)) {
559 /* Don't balance among write-mostly, just
560 * use the first as a last resort */
d1901ef0 561 if (best_dist_disk < 0) {
307729c8
N
562 if (is_badblock(rdev, this_sector, sectors,
563 &first_bad, &bad_sectors)) {
816b0acf 564 if (first_bad <= this_sector)
307729c8
N
565 /* Cannot use this */
566 continue;
567 best_good_sectors = first_bad - this_sector;
568 } else
569 best_good_sectors = sectors;
d1901ef0
TH
570 best_dist_disk = disk;
571 best_pending_disk = disk;
307729c8 572 }
76073054
N
573 continue;
574 }
575 /* This is a reasonable device to use. It might
576 * even be best.
577 */
d2eb35ac
N
578 if (is_badblock(rdev, this_sector, sectors,
579 &first_bad, &bad_sectors)) {
580 if (best_dist < MaxSector)
581 /* already have a better device */
582 continue;
583 if (first_bad <= this_sector) {
584 /* cannot read here. If this is the 'primary'
585 * device, then we must not read beyond
586 * bad_sectors from another device..
587 */
588 bad_sectors -= (this_sector - first_bad);
589 if (choose_first && sectors > bad_sectors)
590 sectors = bad_sectors;
591 if (best_good_sectors > sectors)
592 best_good_sectors = sectors;
593
594 } else {
595 sector_t good_sectors = first_bad - this_sector;
596 if (good_sectors > best_good_sectors) {
597 best_good_sectors = good_sectors;
598 best_disk = disk;
599 }
600 if (choose_first)
601 break;
602 }
603 continue;
604 } else
605 best_good_sectors = sectors;
606
12cee5a8
SL
607 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
608 has_nonrot_disk |= nonrot;
9dedf603 609 pending = atomic_read(&rdev->nr_pending);
76073054 610 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 611 if (choose_first) {
76073054 612 best_disk = disk;
1da177e4
LT
613 break;
614 }
12cee5a8
SL
615 /* Don't change to another disk for sequential reads */
616 if (conf->mirrors[disk].next_seq_sect == this_sector
617 || dist == 0) {
618 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
619 struct raid1_info *mirror = &conf->mirrors[disk];
620
621 best_disk = disk;
622 /*
623 * If buffered sequential IO size exceeds optimal
624 * iosize, check if there is idle disk. If yes, choose
625 * the idle disk. read_balance could already choose an
626 * idle disk before noticing it's a sequential IO in
627 * this disk. This doesn't matter because this disk
628 * will idle, next time it will be utilized after the
629 * first disk has IO size exceeds optimal iosize. In
630 * this way, iosize of the first disk will be optimal
631 * iosize at least. iosize of the second disk might be
632 * small, but not a big deal since when the second disk
633 * starts IO, the first disk is likely still busy.
634 */
635 if (nonrot && opt_iosize > 0 &&
636 mirror->seq_start != MaxSector &&
637 mirror->next_seq_sect > opt_iosize &&
638 mirror->next_seq_sect - opt_iosize >=
639 mirror->seq_start) {
640 choose_next_idle = 1;
641 continue;
642 }
643 break;
644 }
645 /* If device is idle, use it */
646 if (pending == 0) {
647 best_disk = disk;
648 break;
649 }
650
651 if (choose_next_idle)
652 continue;
9dedf603
SL
653
654 if (min_pending > pending) {
655 min_pending = pending;
656 best_pending_disk = disk;
657 }
658
76073054
N
659 if (dist < best_dist) {
660 best_dist = dist;
9dedf603 661 best_dist_disk = disk;
1da177e4 662 }
f3ac8bf7 663 }
1da177e4 664
9dedf603
SL
665 /*
666 * If all disks are rotational, choose the closest disk. If any disk is
667 * non-rotational, choose the disk with less pending request even the
668 * disk is rotational, which might/might not be optimal for raids with
669 * mixed ratation/non-rotational disks depending on workload.
670 */
671 if (best_disk == -1) {
672 if (has_nonrot_disk)
673 best_disk = best_pending_disk;
674 else
675 best_disk = best_dist_disk;
676 }
677
76073054
N
678 if (best_disk >= 0) {
679 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
680 if (!rdev)
681 goto retry;
682 atomic_inc(&rdev->nr_pending);
d2eb35ac 683 sectors = best_good_sectors;
12cee5a8
SL
684
685 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
686 conf->mirrors[best_disk].seq_start = this_sector;
687
be4d3280 688 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
689 }
690 rcu_read_unlock();
d2eb35ac 691 *max_sectors = sectors;
1da177e4 692
76073054 693 return best_disk;
1da177e4
LT
694}
695
5c675f83 696static int raid1_congested(struct mddev *mddev, int bits)
0d129228 697{
e8096360 698 struct r1conf *conf = mddev->private;
0d129228
N
699 int i, ret = 0;
700
4452226e 701 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
702 conf->pending_count >= max_queued_requests)
703 return 1;
704
0d129228 705 rcu_read_lock();
f53e29fc 706 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 707 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 708 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 709 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 710
1ed7242e
JB
711 BUG_ON(!q);
712
0d129228
N
713 /* Note the '|| 1' - when read_balance prefers
714 * non-congested targets, it can be removed
715 */
4452226e 716 if ((bits & (1 << WB_async_congested)) || 1)
0d129228
N
717 ret |= bdi_congested(&q->backing_dev_info, bits);
718 else
719 ret &= bdi_congested(&q->backing_dev_info, bits);
720 }
721 }
722 rcu_read_unlock();
723 return ret;
724}
0d129228 725
e8096360 726static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
727{
728 /* Any writes that have been queued but are awaiting
729 * bitmap updates get flushed here.
a35e63ef 730 */
a35e63ef
N
731 spin_lock_irq(&conf->device_lock);
732
733 if (conf->pending_bio_list.head) {
734 struct bio *bio;
735 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 736 conf->pending_count = 0;
a35e63ef
N
737 spin_unlock_irq(&conf->device_lock);
738 /* flush any pending bitmap writes to
739 * disk before proceeding w/ I/O */
740 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 741 wake_up(&conf->wait_barrier);
a35e63ef
N
742
743 while (bio) { /* submit pending writes */
744 struct bio *next = bio->bi_next;
5e2c7a36 745 struct md_rdev *rdev = (void*)bio->bi_bdev;
a35e63ef 746 bio->bi_next = NULL;
5e2c7a36
N
747 bio->bi_bdev = rdev->bdev;
748 if (test_bit(Faulty, &rdev->flags)) {
749 bio->bi_error = -EIO;
750 bio_endio(bio);
751 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
752 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
2ff8cc2c 753 /* Just ignore it */
4246a0b6 754 bio_endio(bio);
2ff8cc2c
SL
755 else
756 generic_make_request(bio);
a35e63ef
N
757 bio = next;
758 }
a35e63ef
N
759 } else
760 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
761}
762
17999be4
N
763/* Barriers....
764 * Sometimes we need to suspend IO while we do something else,
765 * either some resync/recovery, or reconfigure the array.
766 * To do this we raise a 'barrier'.
767 * The 'barrier' is a counter that can be raised multiple times
768 * to count how many activities are happening which preclude
769 * normal IO.
770 * We can only raise the barrier if there is no pending IO.
771 * i.e. if nr_pending == 0.
772 * We choose only to raise the barrier if no-one is waiting for the
773 * barrier to go down. This means that as soon as an IO request
774 * is ready, no other operations which require a barrier will start
775 * until the IO request has had a chance.
776 *
777 * So: regular IO calls 'wait_barrier'. When that returns there
778 * is no backgroup IO happening, It must arrange to call
779 * allow_barrier when it has finished its IO.
780 * backgroup IO calls must call raise_barrier. Once that returns
781 * there is no normal IO happeing. It must arrange to call
782 * lower_barrier when the particular background IO completes.
1da177e4 783 */
c2fd4c94 784static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
785{
786 spin_lock_irq(&conf->resync_lock);
17999be4
N
787
788 /* Wait until no block IO is waiting */
789 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 790 conf->resync_lock);
17999be4
N
791
792 /* block any new IO from starting */
793 conf->barrier++;
c2fd4c94 794 conf->next_resync = sector_nr;
17999be4 795
79ef3a8a 796 /* For these conditions we must wait:
797 * A: while the array is in frozen state
798 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
799 * the max count which allowed.
800 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
801 * next resync will reach to the window which normal bios are
802 * handling.
2f73d3c5 803 * D: while there are any active requests in the current window.
79ef3a8a 804 */
17999be4 805 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 806 !conf->array_frozen &&
79ef3a8a 807 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 808 conf->current_window_requests == 0 &&
79ef3a8a 809 (conf->start_next_window >=
810 conf->next_resync + RESYNC_SECTORS),
eed8c02e 811 conf->resync_lock);
17999be4 812
34e97f17 813 conf->nr_pending++;
17999be4
N
814 spin_unlock_irq(&conf->resync_lock);
815}
816
e8096360 817static void lower_barrier(struct r1conf *conf)
17999be4
N
818{
819 unsigned long flags;
709ae487 820 BUG_ON(conf->barrier <= 0);
17999be4
N
821 spin_lock_irqsave(&conf->resync_lock, flags);
822 conf->barrier--;
34e97f17 823 conf->nr_pending--;
17999be4
N
824 spin_unlock_irqrestore(&conf->resync_lock, flags);
825 wake_up(&conf->wait_barrier);
826}
827
79ef3a8a 828static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 829{
79ef3a8a 830 bool wait = false;
831
832 if (conf->array_frozen || !bio)
833 wait = true;
834 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
835 if ((conf->mddev->curr_resync_completed
836 >= bio_end_sector(bio)) ||
f2c771a6 837 (conf->start_next_window + NEXT_NORMALIO_DISTANCE
23554960 838 <= bio->bi_iter.bi_sector))
79ef3a8a 839 wait = false;
840 else
841 wait = true;
842 }
843
844 return wait;
845}
846
847static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
848{
849 sector_t sector = 0;
850
17999be4 851 spin_lock_irq(&conf->resync_lock);
79ef3a8a 852 if (need_to_wait_for_sync(conf, bio)) {
17999be4 853 conf->nr_waiting++;
d6b42dcb
N
854 /* Wait for the barrier to drop.
855 * However if there are already pending
856 * requests (preventing the barrier from
857 * rising completely), and the
5965b642 858 * per-process bio queue isn't empty,
d6b42dcb 859 * then don't wait, as we need to empty
5965b642
N
860 * that queue to allow conf->start_next_window
861 * to increase.
d6b42dcb
N
862 */
863 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 864 !conf->array_frozen &&
865 (!conf->barrier ||
5965b642
N
866 ((conf->start_next_window <
867 conf->next_resync + RESYNC_SECTORS) &&
868 current->bio_list &&
869 !bio_list_empty(current->bio_list))),
eed8c02e 870 conf->resync_lock);
17999be4 871 conf->nr_waiting--;
1da177e4 872 }
79ef3a8a 873
874 if (bio && bio_data_dir(bio) == WRITE) {
e8ff8bf0 875 if (bio->bi_iter.bi_sector >= conf->next_resync) {
79ef3a8a 876 if (conf->start_next_window == MaxSector)
877 conf->start_next_window =
878 conf->next_resync +
879 NEXT_NORMALIO_DISTANCE;
880
881 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 882 <= bio->bi_iter.bi_sector)
79ef3a8a 883 conf->next_window_requests++;
884 else
885 conf->current_window_requests++;
79ef3a8a 886 sector = conf->start_next_window;
41a336e0 887 }
79ef3a8a 888 }
889
17999be4 890 conf->nr_pending++;
1da177e4 891 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 892 return sector;
1da177e4
LT
893}
894
79ef3a8a 895static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
896 sector_t bi_sector)
17999be4
N
897{
898 unsigned long flags;
79ef3a8a 899
17999be4
N
900 spin_lock_irqsave(&conf->resync_lock, flags);
901 conf->nr_pending--;
79ef3a8a 902 if (start_next_window) {
903 if (start_next_window == conf->start_next_window) {
904 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
905 <= bi_sector)
906 conf->next_window_requests--;
907 else
908 conf->current_window_requests--;
909 } else
910 conf->current_window_requests--;
911
912 if (!conf->current_window_requests) {
913 if (conf->next_window_requests) {
914 conf->current_window_requests =
915 conf->next_window_requests;
916 conf->next_window_requests = 0;
917 conf->start_next_window +=
918 NEXT_NORMALIO_DISTANCE;
919 } else
920 conf->start_next_window = MaxSector;
921 }
922 }
17999be4
N
923 spin_unlock_irqrestore(&conf->resync_lock, flags);
924 wake_up(&conf->wait_barrier);
925}
926
e2d59925 927static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
928{
929 /* stop syncio and normal IO and wait for everything to
930 * go quite.
b364e3d0 931 * We wait until nr_pending match nr_queued+extra
1c830532
N
932 * This is called in the context of one normal IO request
933 * that has failed. Thus any sync request that might be pending
934 * will be blocked by nr_pending, and we need to wait for
935 * pending IO requests to complete or be queued for re-try.
e2d59925 936 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
937 * must match the number of pending IOs (nr_pending) before
938 * we continue.
ddaf22ab
N
939 */
940 spin_lock_irq(&conf->resync_lock);
b364e3d0 941 conf->array_frozen = 1;
eed8c02e 942 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 943 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
944 conf->resync_lock,
945 flush_pending_writes(conf));
ddaf22ab
N
946 spin_unlock_irq(&conf->resync_lock);
947}
e8096360 948static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
949{
950 /* reverse the effect of the freeze */
951 spin_lock_irq(&conf->resync_lock);
b364e3d0 952 conf->array_frozen = 0;
ddaf22ab
N
953 wake_up(&conf->wait_barrier);
954 spin_unlock_irq(&conf->resync_lock);
955}
956
f72ffdd6 957/* duplicate the data pages for behind I/O
4e78064f 958 */
9f2c9d12 959static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
960{
961 int i;
962 struct bio_vec *bvec;
2ca68f5e 963 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 964 GFP_NOIO);
2ca68f5e 965 if (unlikely(!bvecs))
af6d7b76 966 return;
4b6d287f 967
cb34e057 968 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
969 bvecs[i] = *bvec;
970 bvecs[i].bv_page = alloc_page(GFP_NOIO);
971 if (unlikely(!bvecs[i].bv_page))
4b6d287f 972 goto do_sync_io;
2ca68f5e
N
973 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
974 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
975 kunmap(bvecs[i].bv_page);
4b6d287f
N
976 kunmap(bvec->bv_page);
977 }
2ca68f5e 978 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
979 r1_bio->behind_page_count = bio->bi_vcnt;
980 set_bit(R1BIO_BehindIO, &r1_bio->state);
981 return;
4b6d287f
N
982
983do_sync_io:
af6d7b76 984 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
985 if (bvecs[i].bv_page)
986 put_page(bvecs[i].bv_page);
987 kfree(bvecs);
4f024f37
KO
988 pr_debug("%dB behind alloc failed, doing sync I/O\n",
989 bio->bi_iter.bi_size);
4b6d287f
N
990}
991
f54a9d0e
N
992struct raid1_plug_cb {
993 struct blk_plug_cb cb;
994 struct bio_list pending;
995 int pending_cnt;
996};
997
998static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
999{
1000 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1001 cb);
1002 struct mddev *mddev = plug->cb.data;
1003 struct r1conf *conf = mddev->private;
1004 struct bio *bio;
1005
874807a8 1006 if (from_schedule || current->bio_list) {
f54a9d0e
N
1007 spin_lock_irq(&conf->device_lock);
1008 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1009 conf->pending_count += plug->pending_cnt;
1010 spin_unlock_irq(&conf->device_lock);
ee0b0244 1011 wake_up(&conf->wait_barrier);
f54a9d0e
N
1012 md_wakeup_thread(mddev->thread);
1013 kfree(plug);
1014 return;
1015 }
1016
1017 /* we aren't scheduling, so we can do the write-out directly. */
1018 bio = bio_list_get(&plug->pending);
1019 bitmap_unplug(mddev->bitmap);
1020 wake_up(&conf->wait_barrier);
1021
1022 while (bio) { /* submit pending writes */
1023 struct bio *next = bio->bi_next;
5e2c7a36 1024 struct md_rdev *rdev = (void*)bio->bi_bdev;
f54a9d0e 1025 bio->bi_next = NULL;
5e2c7a36
N
1026 bio->bi_bdev = rdev->bdev;
1027 if (test_bit(Faulty, &rdev->flags)) {
1028 bio->bi_error = -EIO;
1029 bio_endio(bio);
1030 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1031 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
32f9f570 1032 /* Just ignore it */
4246a0b6 1033 bio_endio(bio);
32f9f570
SL
1034 else
1035 generic_make_request(bio);
f54a9d0e
N
1036 bio = next;
1037 }
1038 kfree(plug);
1039}
1040
849674e4 1041static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1042{
e8096360 1043 struct r1conf *conf = mddev->private;
0eaf822c 1044 struct raid1_info *mirror;
9f2c9d12 1045 struct r1bio *r1_bio;
1da177e4 1046 struct bio *read_bio;
1f68f0c4 1047 int i, disks;
84255d10 1048 struct bitmap *bitmap;
191ea9b2 1049 unsigned long flags;
796a5cf0 1050 const int op = bio_op(bio);
a362357b 1051 const int rw = bio_data_dir(bio);
1eff9d32
JA
1052 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1053 const unsigned long do_flush_fua = (bio->bi_opf &
28a8f0d3 1054 (REQ_PREFLUSH | REQ_FUA));
3cb03002 1055 struct md_rdev *blocked_rdev;
f54a9d0e
N
1056 struct blk_plug_cb *cb;
1057 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1058 int first_clone;
1059 int sectors_handled;
1060 int max_sectors;
79ef3a8a 1061 sector_t start_next_window;
191ea9b2 1062
1da177e4
LT
1063 /*
1064 * Register the new request and wait if the reconstruction
1065 * thread has put up a bar for new requests.
1066 * Continue immediately if no resync is active currently.
1067 */
62de608d 1068
3d310eb7
N
1069 md_write_start(mddev, bio); /* wait on superblock update early */
1070
6eef4b21 1071 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1072 ((bio_end_sector(bio) > mddev->suspend_lo &&
1073 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1074 (mddev_is_clustered(mddev) &&
90382ed9
GR
1075 md_cluster_ops->area_resyncing(mddev, WRITE,
1076 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1077 /* As the suspend_* range is controlled by
1078 * userspace, we want an interruptible
1079 * wait.
1080 */
1081 DEFINE_WAIT(w);
1082 for (;;) {
1083 flush_signals(current);
1084 prepare_to_wait(&conf->wait_barrier,
1085 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1086 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1087 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1088 (mddev_is_clustered(mddev) &&
90382ed9 1089 !md_cluster_ops->area_resyncing(mddev, WRITE,
589a1c49 1090 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1091 break;
1092 schedule();
1093 }
1094 finish_wait(&conf->wait_barrier, &w);
1095 }
62de608d 1096
79ef3a8a 1097 start_next_window = wait_barrier(conf, bio);
1da177e4 1098
84255d10
N
1099 bitmap = mddev->bitmap;
1100
1da177e4 1101 /*
70246286 1102 * make_request() can abort the operation when read-ahead is being
1da177e4
LT
1103 * used and no empty request is available.
1104 *
1105 */
1106 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1107
1108 r1_bio->master_bio = bio;
aa8b57aa 1109 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1110 r1_bio->state = 0;
1da177e4 1111 r1_bio->mddev = mddev;
4f024f37 1112 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1113
d2eb35ac
N
1114 /* We might need to issue multiple reads to different
1115 * devices if there are bad blocks around, so we keep
1116 * track of the number of reads in bio->bi_phys_segments.
1117 * If this is 0, there is only one r1_bio and no locking
1118 * will be needed when requests complete. If it is
1119 * non-zero, then it is the number of not-completed requests.
1120 */
1121 bio->bi_phys_segments = 0;
b7c44ed9 1122 bio_clear_flag(bio, BIO_SEG_VALID);
d2eb35ac 1123
a362357b 1124 if (rw == READ) {
1da177e4
LT
1125 /*
1126 * read balancing logic:
1127 */
d2eb35ac
N
1128 int rdisk;
1129
1130read_again:
1131 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1132
1133 if (rdisk < 0) {
1134 /* couldn't find anywhere to read from */
1135 raid_end_bio_io(r1_bio);
5a7bbad2 1136 return;
1da177e4
LT
1137 }
1138 mirror = conf->mirrors + rdisk;
1139
e555190d
N
1140 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1141 bitmap) {
1142 /* Reading from a write-mostly device must
1143 * take care not to over-take any writes
1144 * that are 'behind'
1145 */
1146 wait_event(bitmap->behind_wait,
1147 atomic_read(&bitmap->behind_writes) == 0);
1148 }
1da177e4 1149 r1_bio->read_disk = rdisk;
f0cc9a05 1150 r1_bio->start_next_window = 0;
1da177e4 1151
a167f663 1152 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1153 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1154 max_sectors);
1da177e4
LT
1155
1156 r1_bio->bios[rdisk] = read_bio;
1157
4f024f37
KO
1158 read_bio->bi_iter.bi_sector = r1_bio->sector +
1159 mirror->rdev->data_offset;
1da177e4
LT
1160 read_bio->bi_bdev = mirror->rdev->bdev;
1161 read_bio->bi_end_io = raid1_end_read_request;
796a5cf0 1162 bio_set_op_attrs(read_bio, op, do_sync);
1da177e4
LT
1163 read_bio->bi_private = r1_bio;
1164
d2eb35ac
N
1165 if (max_sectors < r1_bio->sectors) {
1166 /* could not read all from this device, so we will
1167 * need another r1_bio.
1168 */
d2eb35ac
N
1169
1170 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1171 - bio->bi_iter.bi_sector);
d2eb35ac
N
1172 r1_bio->sectors = max_sectors;
1173 spin_lock_irq(&conf->device_lock);
1174 if (bio->bi_phys_segments == 0)
1175 bio->bi_phys_segments = 2;
1176 else
1177 bio->bi_phys_segments++;
1178 spin_unlock_irq(&conf->device_lock);
1179 /* Cannot call generic_make_request directly
1180 * as that will be queued in __make_request
1181 * and subsequent mempool_alloc might block waiting
1182 * for it. So hand bio over to raid1d.
1183 */
1184 reschedule_retry(r1_bio);
1185
1186 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1187
1188 r1_bio->master_bio = bio;
aa8b57aa 1189 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1190 r1_bio->state = 0;
1191 r1_bio->mddev = mddev;
4f024f37
KO
1192 r1_bio->sector = bio->bi_iter.bi_sector +
1193 sectors_handled;
d2eb35ac
N
1194 goto read_again;
1195 } else
1196 generic_make_request(read_bio);
5a7bbad2 1197 return;
1da177e4
LT
1198 }
1199
1200 /*
1201 * WRITE:
1202 */
34db0cd6
N
1203 if (conf->pending_count >= max_queued_requests) {
1204 md_wakeup_thread(mddev->thread);
1205 wait_event(conf->wait_barrier,
1206 conf->pending_count < max_queued_requests);
1207 }
1f68f0c4 1208 /* first select target devices under rcu_lock and
1da177e4
LT
1209 * inc refcount on their rdev. Record them by setting
1210 * bios[x] to bio
1f68f0c4
N
1211 * If there are known/acknowledged bad blocks on any device on
1212 * which we have seen a write error, we want to avoid writing those
1213 * blocks.
1214 * This potentially requires several writes to write around
1215 * the bad blocks. Each set of writes gets it's own r1bio
1216 * with a set of bios attached.
1da177e4 1217 */
c3b328ac 1218
8f19ccb2 1219 disks = conf->raid_disks * 2;
6bfe0b49 1220 retry_write:
79ef3a8a 1221 r1_bio->start_next_window = start_next_window;
6bfe0b49 1222 blocked_rdev = NULL;
1da177e4 1223 rcu_read_lock();
1f68f0c4 1224 max_sectors = r1_bio->sectors;
1da177e4 1225 for (i = 0; i < disks; i++) {
3cb03002 1226 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1227 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1228 atomic_inc(&rdev->nr_pending);
1229 blocked_rdev = rdev;
1230 break;
1231 }
1f68f0c4 1232 r1_bio->bios[i] = NULL;
8ae12666 1233 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1234 if (i < conf->raid_disks)
1235 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1236 continue;
1237 }
1238
1239 atomic_inc(&rdev->nr_pending);
1240 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1241 sector_t first_bad;
1242 int bad_sectors;
1243 int is_bad;
1244
1245 is_bad = is_badblock(rdev, r1_bio->sector,
1246 max_sectors,
1247 &first_bad, &bad_sectors);
1248 if (is_bad < 0) {
1249 /* mustn't write here until the bad block is
1250 * acknowledged*/
1251 set_bit(BlockedBadBlocks, &rdev->flags);
1252 blocked_rdev = rdev;
1253 break;
1254 }
1255 if (is_bad && first_bad <= r1_bio->sector) {
1256 /* Cannot write here at all */
1257 bad_sectors -= (r1_bio->sector - first_bad);
1258 if (bad_sectors < max_sectors)
1259 /* mustn't write more than bad_sectors
1260 * to other devices yet
1261 */
1262 max_sectors = bad_sectors;
03c902e1 1263 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1264 /* We don't set R1BIO_Degraded as that
1265 * only applies if the disk is
1266 * missing, so it might be re-added,
1267 * and we want to know to recover this
1268 * chunk.
1269 * In this case the device is here,
1270 * and the fact that this chunk is not
1271 * in-sync is recorded in the bad
1272 * block log
1273 */
1274 continue;
964147d5 1275 }
1f68f0c4
N
1276 if (is_bad) {
1277 int good_sectors = first_bad - r1_bio->sector;
1278 if (good_sectors < max_sectors)
1279 max_sectors = good_sectors;
1280 }
1281 }
1282 r1_bio->bios[i] = bio;
1da177e4
LT
1283 }
1284 rcu_read_unlock();
1285
6bfe0b49
DW
1286 if (unlikely(blocked_rdev)) {
1287 /* Wait for this device to become unblocked */
1288 int j;
79ef3a8a 1289 sector_t old = start_next_window;
6bfe0b49
DW
1290
1291 for (j = 0; j < i; j++)
1292 if (r1_bio->bios[j])
1293 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1294 r1_bio->state = 0;
4f024f37 1295 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1296 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1297 start_next_window = wait_barrier(conf, bio);
1298 /*
1299 * We must make sure the multi r1bios of bio have
1300 * the same value of bi_phys_segments
1301 */
1302 if (bio->bi_phys_segments && old &&
1303 old != start_next_window)
1304 /* Wait for the former r1bio(s) to complete */
1305 wait_event(conf->wait_barrier,
1306 bio->bi_phys_segments == 1);
6bfe0b49
DW
1307 goto retry_write;
1308 }
1309
1f68f0c4
N
1310 if (max_sectors < r1_bio->sectors) {
1311 /* We are splitting this write into multiple parts, so
1312 * we need to prepare for allocating another r1_bio.
1313 */
1314 r1_bio->sectors = max_sectors;
1315 spin_lock_irq(&conf->device_lock);
1316 if (bio->bi_phys_segments == 0)
1317 bio->bi_phys_segments = 2;
1318 else
1319 bio->bi_phys_segments++;
1320 spin_unlock_irq(&conf->device_lock);
191ea9b2 1321 }
4f024f37 1322 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1323
4e78064f 1324 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1325 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1326
1f68f0c4 1327 first_clone = 1;
1da177e4
LT
1328 for (i = 0; i < disks; i++) {
1329 struct bio *mbio;
1330 if (!r1_bio->bios[i])
1331 continue;
1332
a167f663 1333 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1334 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1335
1336 if (first_clone) {
1337 /* do behind I/O ?
1338 * Not if there are too many, or cannot
1339 * allocate memory, or a reader on WriteMostly
1340 * is waiting for behind writes to flush */
1341 if (bitmap &&
1342 (atomic_read(&bitmap->behind_writes)
1343 < mddev->bitmap_info.max_write_behind) &&
1344 !waitqueue_active(&bitmap->behind_wait))
1345 alloc_behind_pages(mbio, r1_bio);
1346
1347 bitmap_startwrite(bitmap, r1_bio->sector,
1348 r1_bio->sectors,
1349 test_bit(R1BIO_BehindIO,
1350 &r1_bio->state));
1351 first_clone = 0;
1352 }
2ca68f5e 1353 if (r1_bio->behind_bvecs) {
4b6d287f
N
1354 struct bio_vec *bvec;
1355 int j;
1356
cb34e057
KO
1357 /*
1358 * We trimmed the bio, so _all is legit
4b6d287f 1359 */
d74c6d51 1360 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1361 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1362 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1363 atomic_inc(&r1_bio->behind_remaining);
1364 }
1365
1f68f0c4
N
1366 r1_bio->bios[i] = mbio;
1367
4f024f37 1368 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1369 conf->mirrors[i].rdev->data_offset);
5e2c7a36 1370 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1f68f0c4 1371 mbio->bi_end_io = raid1_end_write_request;
288dab8a 1372 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1f68f0c4
N
1373 mbio->bi_private = r1_bio;
1374
1da177e4 1375 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1376
1377 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1378 if (cb)
1379 plug = container_of(cb, struct raid1_plug_cb, cb);
1380 else
1381 plug = NULL;
4e78064f 1382 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1383 if (plug) {
1384 bio_list_add(&plug->pending, mbio);
1385 plug->pending_cnt++;
1386 } else {
1387 bio_list_add(&conf->pending_bio_list, mbio);
1388 conf->pending_count++;
1389 }
4e78064f 1390 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1391 if (!plug)
b357f04a 1392 md_wakeup_thread(mddev->thread);
1da177e4 1393 }
079fa166
N
1394 /* Mustn't call r1_bio_write_done before this next test,
1395 * as it could result in the bio being freed.
1396 */
aa8b57aa 1397 if (sectors_handled < bio_sectors(bio)) {
079fa166 1398 r1_bio_write_done(r1_bio);
1f68f0c4
N
1399 /* We need another r1_bio. It has already been counted
1400 * in bio->bi_phys_segments
1401 */
1402 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1403 r1_bio->master_bio = bio;
aa8b57aa 1404 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1405 r1_bio->state = 0;
1406 r1_bio->mddev = mddev;
4f024f37 1407 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1408 goto retry_write;
1409 }
1410
079fa166
N
1411 r1_bio_write_done(r1_bio);
1412
1413 /* In case raid1d snuck in to freeze_array */
1414 wake_up(&conf->wait_barrier);
1da177e4
LT
1415}
1416
849674e4 1417static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1418{
e8096360 1419 struct r1conf *conf = mddev->private;
1da177e4
LT
1420 int i;
1421
1422 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1423 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1424 rcu_read_lock();
1425 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1426 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1427 seq_printf(seq, "%s",
ddac7c7e
N
1428 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1429 }
1430 rcu_read_unlock();
1da177e4
LT
1431 seq_printf(seq, "]");
1432}
1433
849674e4 1434static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1435{
1436 char b[BDEVNAME_SIZE];
e8096360 1437 struct r1conf *conf = mddev->private;
423f04d6 1438 unsigned long flags;
1da177e4
LT
1439
1440 /*
1441 * If it is not operational, then we have already marked it as dead
1442 * else if it is the last working disks, ignore the error, let the
1443 * next level up know.
1444 * else mark the drive as failed
1445 */
b2d444d7 1446 if (test_bit(In_sync, &rdev->flags)
4044ba58 1447 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1448 /*
1449 * Don't fail the drive, act as though we were just a
4044ba58
N
1450 * normal single drive.
1451 * However don't try a recovery from this drive as
1452 * it is very likely to fail.
1da177e4 1453 */
5389042f 1454 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1455 return;
4044ba58 1456 }
de393cde 1457 set_bit(Blocked, &rdev->flags);
423f04d6 1458 spin_lock_irqsave(&conf->device_lock, flags);
c04be0aa 1459 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1460 mddev->degraded++;
dd00a99e 1461 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1462 } else
1463 set_bit(Faulty, &rdev->flags);
423f04d6 1464 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1465 /*
1466 * if recovery is running, make sure it aborts.
1467 */
1468 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
85ad1d13
GJ
1469 set_mask_bits(&mddev->flags, 0,
1470 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1d41c216
N
1471 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1472 "md/raid1:%s: Operation continuing on %d devices.\n",
1473 mdname(mddev), bdevname(rdev->bdev, b),
1474 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1475}
1476
e8096360 1477static void print_conf(struct r1conf *conf)
1da177e4
LT
1478{
1479 int i;
1da177e4 1480
1d41c216 1481 pr_debug("RAID1 conf printout:\n");
1da177e4 1482 if (!conf) {
1d41c216 1483 pr_debug("(!conf)\n");
1da177e4
LT
1484 return;
1485 }
1d41c216
N
1486 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1487 conf->raid_disks);
1da177e4 1488
ddac7c7e 1489 rcu_read_lock();
1da177e4
LT
1490 for (i = 0; i < conf->raid_disks; i++) {
1491 char b[BDEVNAME_SIZE];
3cb03002 1492 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1493 if (rdev)
1d41c216
N
1494 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1495 i, !test_bit(In_sync, &rdev->flags),
1496 !test_bit(Faulty, &rdev->flags),
1497 bdevname(rdev->bdev,b));
1da177e4 1498 }
ddac7c7e 1499 rcu_read_unlock();
1da177e4
LT
1500}
1501
e8096360 1502static void close_sync(struct r1conf *conf)
1da177e4 1503{
79ef3a8a 1504 wait_barrier(conf, NULL);
1505 allow_barrier(conf, 0, 0);
1da177e4
LT
1506
1507 mempool_destroy(conf->r1buf_pool);
1508 conf->r1buf_pool = NULL;
79ef3a8a 1509
669cc7ba 1510 spin_lock_irq(&conf->resync_lock);
e8ff8bf0 1511 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
79ef3a8a 1512 conf->start_next_window = MaxSector;
669cc7ba
N
1513 conf->current_window_requests +=
1514 conf->next_window_requests;
1515 conf->next_window_requests = 0;
1516 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1517}
1518
fd01b88c 1519static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1520{
1521 int i;
e8096360 1522 struct r1conf *conf = mddev->private;
6b965620
N
1523 int count = 0;
1524 unsigned long flags;
1da177e4
LT
1525
1526 /*
f72ffdd6 1527 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1528 * and mark them readable.
1529 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1530 * device_lock used to avoid races with raid1_end_read_request
1531 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1532 */
423f04d6 1533 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1534 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1535 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1536 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1537 if (repl
1aee41f6 1538 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1539 && repl->recovery_offset == MaxSector
1540 && !test_bit(Faulty, &repl->flags)
1541 && !test_and_set_bit(In_sync, &repl->flags)) {
1542 /* replacement has just become active */
1543 if (!rdev ||
1544 !test_and_clear_bit(In_sync, &rdev->flags))
1545 count++;
1546 if (rdev) {
1547 /* Replaced device not technically
1548 * faulty, but we need to be sure
1549 * it gets removed and never re-added
1550 */
1551 set_bit(Faulty, &rdev->flags);
1552 sysfs_notify_dirent_safe(
1553 rdev->sysfs_state);
1554 }
1555 }
ddac7c7e 1556 if (rdev
61e4947c 1557 && rdev->recovery_offset == MaxSector
ddac7c7e 1558 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1559 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1560 count++;
654e8b5a 1561 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1562 }
1563 }
6b965620
N
1564 mddev->degraded -= count;
1565 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1566
1567 print_conf(conf);
6b965620 1568 return count;
1da177e4
LT
1569}
1570
fd01b88c 1571static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1572{
e8096360 1573 struct r1conf *conf = mddev->private;
199050ea 1574 int err = -EEXIST;
41158c7e 1575 int mirror = 0;
0eaf822c 1576 struct raid1_info *p;
6c2fce2e 1577 int first = 0;
30194636 1578 int last = conf->raid_disks - 1;
1da177e4 1579
5389042f
N
1580 if (mddev->recovery_disabled == conf->recovery_disabled)
1581 return -EBUSY;
1582
1501efad
DW
1583 if (md_integrity_add_rdev(rdev, mddev))
1584 return -ENXIO;
1585
6c2fce2e
NB
1586 if (rdev->raid_disk >= 0)
1587 first = last = rdev->raid_disk;
1588
70bcecdb
GR
1589 /*
1590 * find the disk ... but prefer rdev->saved_raid_disk
1591 * if possible.
1592 */
1593 if (rdev->saved_raid_disk >= 0 &&
1594 rdev->saved_raid_disk >= first &&
1595 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1596 first = last = rdev->saved_raid_disk;
1597
7ef449d1
N
1598 for (mirror = first; mirror <= last; mirror++) {
1599 p = conf->mirrors+mirror;
1600 if (!p->rdev) {
1da177e4 1601
9092c02d
JB
1602 if (mddev->gendisk)
1603 disk_stack_limits(mddev->gendisk, rdev->bdev,
1604 rdev->data_offset << 9);
1da177e4
LT
1605
1606 p->head_position = 0;
1607 rdev->raid_disk = mirror;
199050ea 1608 err = 0;
6aea114a
N
1609 /* As all devices are equivalent, we don't need a full recovery
1610 * if this was recently any drive of the array
1611 */
1612 if (rdev->saved_raid_disk < 0)
41158c7e 1613 conf->fullsync = 1;
d6065f7b 1614 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1615 break;
1616 }
7ef449d1
N
1617 if (test_bit(WantReplacement, &p->rdev->flags) &&
1618 p[conf->raid_disks].rdev == NULL) {
1619 /* Add this device as a replacement */
1620 clear_bit(In_sync, &rdev->flags);
1621 set_bit(Replacement, &rdev->flags);
1622 rdev->raid_disk = mirror;
1623 err = 0;
1624 conf->fullsync = 1;
1625 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1626 break;
1627 }
1628 }
9092c02d 1629 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1630 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1631 print_conf(conf);
199050ea 1632 return err;
1da177e4
LT
1633}
1634
b8321b68 1635static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1636{
e8096360 1637 struct r1conf *conf = mddev->private;
1da177e4 1638 int err = 0;
b8321b68 1639 int number = rdev->raid_disk;
0eaf822c 1640 struct raid1_info *p = conf->mirrors + number;
1da177e4 1641
b014f14c
N
1642 if (rdev != p->rdev)
1643 p = conf->mirrors + conf->raid_disks + number;
1644
1da177e4 1645 print_conf(conf);
b8321b68 1646 if (rdev == p->rdev) {
b2d444d7 1647 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1648 atomic_read(&rdev->nr_pending)) {
1649 err = -EBUSY;
1650 goto abort;
1651 }
046abeed 1652 /* Only remove non-faulty devices if recovery
dfc70645
N
1653 * is not possible.
1654 */
1655 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1656 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1657 mddev->degraded < conf->raid_disks) {
1658 err = -EBUSY;
1659 goto abort;
1660 }
1da177e4 1661 p->rdev = NULL;
d787be40
N
1662 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1663 synchronize_rcu();
1664 if (atomic_read(&rdev->nr_pending)) {
1665 /* lost the race, try later */
1666 err = -EBUSY;
1667 p->rdev = rdev;
1668 goto abort;
1669 }
1670 }
1671 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1672 /* We just removed a device that is being replaced.
1673 * Move down the replacement. We drain all IO before
1674 * doing this to avoid confusion.
1675 */
1676 struct md_rdev *repl =
1677 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1678 freeze_array(conf, 0);
8c7a2c2b
N
1679 clear_bit(Replacement, &repl->flags);
1680 p->rdev = repl;
1681 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1682 unfreeze_array(conf);
8c7a2c2b
N
1683 clear_bit(WantReplacement, &rdev->flags);
1684 } else
b014f14c 1685 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1686 err = md_integrity_register(mddev);
1da177e4
LT
1687 }
1688abort:
1689
1690 print_conf(conf);
1691 return err;
1692}
1693
4246a0b6 1694static void end_sync_read(struct bio *bio)
1da177e4 1695{
9f2c9d12 1696 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1697
0fc280f6 1698 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1699
1da177e4
LT
1700 /*
1701 * we have read a block, now it needs to be re-written,
1702 * or re-read if the read failed.
1703 * We don't do much here, just schedule handling by raid1d
1704 */
4246a0b6 1705 if (!bio->bi_error)
1da177e4 1706 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1707
1708 if (atomic_dec_and_test(&r1_bio->remaining))
1709 reschedule_retry(r1_bio);
1da177e4
LT
1710}
1711
4246a0b6 1712static void end_sync_write(struct bio *bio)
1da177e4 1713{
4246a0b6 1714 int uptodate = !bio->bi_error;
9f2c9d12 1715 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1716 struct mddev *mddev = r1_bio->mddev;
e8096360 1717 struct r1conf *conf = mddev->private;
4367af55
N
1718 sector_t first_bad;
1719 int bad_sectors;
854abd75 1720 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1721
6b1117d5 1722 if (!uptodate) {
57dab0bd 1723 sector_t sync_blocks = 0;
6b1117d5
N
1724 sector_t s = r1_bio->sector;
1725 long sectors_to_go = r1_bio->sectors;
1726 /* make sure these bits doesn't get cleared. */
1727 do {
5e3db645 1728 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1729 &sync_blocks, 1);
1730 s += sync_blocks;
1731 sectors_to_go -= sync_blocks;
1732 } while (sectors_to_go > 0);
854abd75
N
1733 set_bit(WriteErrorSeen, &rdev->flags);
1734 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1735 set_bit(MD_RECOVERY_NEEDED, &
1736 mddev->recovery);
d8f05d29 1737 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1738 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1739 &first_bad, &bad_sectors) &&
1740 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1741 r1_bio->sector,
1742 r1_bio->sectors,
1743 &first_bad, &bad_sectors)
1744 )
4367af55 1745 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1746
1da177e4 1747 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1748 int s = r1_bio->sectors;
d8f05d29
N
1749 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1750 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1751 reschedule_retry(r1_bio);
1752 else {
1753 put_buf(r1_bio);
1754 md_done_sync(mddev, s, uptodate);
1755 }
1da177e4 1756 }
1da177e4
LT
1757}
1758
3cb03002 1759static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1760 int sectors, struct page *page, int rw)
1761{
796a5cf0 1762 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1763 /* success */
1764 return 1;
19d67169 1765 if (rw == WRITE) {
d8f05d29 1766 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1767 if (!test_and_set_bit(WantReplacement,
1768 &rdev->flags))
1769 set_bit(MD_RECOVERY_NEEDED, &
1770 rdev->mddev->recovery);
1771 }
d8f05d29
N
1772 /* need to record an error - either for the block or the device */
1773 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1774 md_error(rdev->mddev, rdev);
1775 return 0;
1776}
1777
9f2c9d12 1778static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1779{
a68e5870
N
1780 /* Try some synchronous reads of other devices to get
1781 * good data, much like with normal read errors. Only
1782 * read into the pages we already have so we don't
1783 * need to re-issue the read request.
1784 * We don't need to freeze the array, because being in an
1785 * active sync request, there is no normal IO, and
1786 * no overlapping syncs.
06f60385
N
1787 * We don't need to check is_badblock() again as we
1788 * made sure that anything with a bad block in range
1789 * will have bi_end_io clear.
a68e5870 1790 */
fd01b88c 1791 struct mddev *mddev = r1_bio->mddev;
e8096360 1792 struct r1conf *conf = mddev->private;
a68e5870
N
1793 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1794 sector_t sect = r1_bio->sector;
1795 int sectors = r1_bio->sectors;
1796 int idx = 0;
1797
1798 while(sectors) {
1799 int s = sectors;
1800 int d = r1_bio->read_disk;
1801 int success = 0;
3cb03002 1802 struct md_rdev *rdev;
78d7f5f7 1803 int start;
a68e5870
N
1804
1805 if (s > (PAGE_SIZE>>9))
1806 s = PAGE_SIZE >> 9;
1807 do {
1808 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1809 /* No rcu protection needed here devices
1810 * can only be removed when no resync is
1811 * active, and resync is currently active
1812 */
1813 rdev = conf->mirrors[d].rdev;
9d3d8011 1814 if (sync_page_io(rdev, sect, s<<9,
a68e5870 1815 bio->bi_io_vec[idx].bv_page,
796a5cf0 1816 REQ_OP_READ, 0, false)) {
a68e5870
N
1817 success = 1;
1818 break;
1819 }
1820 }
1821 d++;
8f19ccb2 1822 if (d == conf->raid_disks * 2)
a68e5870
N
1823 d = 0;
1824 } while (!success && d != r1_bio->read_disk);
1825
78d7f5f7 1826 if (!success) {
a68e5870 1827 char b[BDEVNAME_SIZE];
3a9f28a5
N
1828 int abort = 0;
1829 /* Cannot read from anywhere, this block is lost.
1830 * Record a bad block on each device. If that doesn't
1831 * work just disable and interrupt the recovery.
1832 * Don't fail devices as that won't really help.
1833 */
1d41c216
N
1834 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1835 mdname(mddev),
1836 bdevname(bio->bi_bdev, b),
1837 (unsigned long long)r1_bio->sector);
8f19ccb2 1838 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1839 rdev = conf->mirrors[d].rdev;
1840 if (!rdev || test_bit(Faulty, &rdev->flags))
1841 continue;
1842 if (!rdev_set_badblocks(rdev, sect, s, 0))
1843 abort = 1;
1844 }
1845 if (abort) {
d890fa2b
N
1846 conf->recovery_disabled =
1847 mddev->recovery_disabled;
3a9f28a5
N
1848 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1849 md_done_sync(mddev, r1_bio->sectors, 0);
1850 put_buf(r1_bio);
1851 return 0;
1852 }
1853 /* Try next page */
1854 sectors -= s;
1855 sect += s;
1856 idx++;
1857 continue;
d11c171e 1858 }
78d7f5f7
N
1859
1860 start = d;
1861 /* write it back and re-read */
1862 while (d != r1_bio->read_disk) {
1863 if (d == 0)
8f19ccb2 1864 d = conf->raid_disks * 2;
78d7f5f7
N
1865 d--;
1866 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1867 continue;
1868 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1869 if (r1_sync_page_io(rdev, sect, s,
1870 bio->bi_io_vec[idx].bv_page,
1871 WRITE) == 0) {
78d7f5f7
N
1872 r1_bio->bios[d]->bi_end_io = NULL;
1873 rdev_dec_pending(rdev, mddev);
9d3d8011 1874 }
78d7f5f7
N
1875 }
1876 d = start;
1877 while (d != r1_bio->read_disk) {
1878 if (d == 0)
8f19ccb2 1879 d = conf->raid_disks * 2;
78d7f5f7
N
1880 d--;
1881 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1882 continue;
1883 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1884 if (r1_sync_page_io(rdev, sect, s,
1885 bio->bi_io_vec[idx].bv_page,
1886 READ) != 0)
9d3d8011 1887 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1888 }
a68e5870
N
1889 sectors -= s;
1890 sect += s;
1891 idx ++;
1892 }
78d7f5f7 1893 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 1894 bio->bi_error = 0;
a68e5870
N
1895 return 1;
1896}
1897
c95e6385 1898static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1899{
1900 /* We have read all readable devices. If we haven't
1901 * got the block, then there is no hope left.
1902 * If we have, then we want to do a comparison
1903 * and skip the write if everything is the same.
1904 * If any blocks failed to read, then we need to
1905 * attempt an over-write
1906 */
fd01b88c 1907 struct mddev *mddev = r1_bio->mddev;
e8096360 1908 struct r1conf *conf = mddev->private;
a68e5870
N
1909 int primary;
1910 int i;
f4380a91 1911 int vcnt;
a68e5870 1912
30bc9b53
N
1913 /* Fix variable parts of all bios */
1914 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1915 for (i = 0; i < conf->raid_disks * 2; i++) {
1916 int j;
1917 int size;
4246a0b6 1918 int error;
30bc9b53
N
1919 struct bio *b = r1_bio->bios[i];
1920 if (b->bi_end_io != end_sync_read)
1921 continue;
4246a0b6
CH
1922 /* fixup the bio for reuse, but preserve errno */
1923 error = b->bi_error;
30bc9b53 1924 bio_reset(b);
4246a0b6 1925 b->bi_error = error;
30bc9b53 1926 b->bi_vcnt = vcnt;
4f024f37
KO
1927 b->bi_iter.bi_size = r1_bio->sectors << 9;
1928 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1929 conf->mirrors[i].rdev->data_offset;
1930 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1931 b->bi_end_io = end_sync_read;
1932 b->bi_private = r1_bio;
1933
4f024f37 1934 size = b->bi_iter.bi_size;
30bc9b53
N
1935 for (j = 0; j < vcnt ; j++) {
1936 struct bio_vec *bi;
1937 bi = &b->bi_io_vec[j];
1938 bi->bv_offset = 0;
1939 if (size > PAGE_SIZE)
1940 bi->bv_len = PAGE_SIZE;
1941 else
1942 bi->bv_len = size;
1943 size -= PAGE_SIZE;
1944 }
1945 }
8f19ccb2 1946 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 1947 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 1948 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
1949 r1_bio->bios[primary]->bi_end_io = NULL;
1950 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1951 break;
1952 }
1953 r1_bio->read_disk = primary;
8f19ccb2 1954 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1955 int j;
78d7f5f7
N
1956 struct bio *pbio = r1_bio->bios[primary];
1957 struct bio *sbio = r1_bio->bios[i];
4246a0b6 1958 int error = sbio->bi_error;
a68e5870 1959
2aabaa65 1960 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 1961 continue;
4246a0b6
CH
1962 /* Now we can 'fixup' the error value */
1963 sbio->bi_error = 0;
78d7f5f7 1964
4246a0b6 1965 if (!error) {
78d7f5f7
N
1966 for (j = vcnt; j-- ; ) {
1967 struct page *p, *s;
1968 p = pbio->bi_io_vec[j].bv_page;
1969 s = sbio->bi_io_vec[j].bv_page;
1970 if (memcmp(page_address(p),
1971 page_address(s),
5020ad7d 1972 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1973 break;
69382e85 1974 }
78d7f5f7
N
1975 } else
1976 j = 0;
1977 if (j >= 0)
7f7583d4 1978 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 1979 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 1980 && !error)) {
78d7f5f7
N
1981 /* No need to write to this device. */
1982 sbio->bi_end_io = NULL;
1983 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1984 continue;
1985 }
d3b45c2a
KO
1986
1987 bio_copy_data(sbio, pbio);
78d7f5f7 1988 }
a68e5870
N
1989}
1990
9f2c9d12 1991static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1992{
e8096360 1993 struct r1conf *conf = mddev->private;
a68e5870 1994 int i;
8f19ccb2 1995 int disks = conf->raid_disks * 2;
a68e5870
N
1996 struct bio *bio, *wbio;
1997
1998 bio = r1_bio->bios[r1_bio->read_disk];
1999
a68e5870
N
2000 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2001 /* ouch - failed to read all of that. */
2002 if (!fix_sync_read_error(r1_bio))
2003 return;
7ca78d57
N
2004
2005 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2006 process_checks(r1_bio);
2007
d11c171e
N
2008 /*
2009 * schedule writes
2010 */
1da177e4
LT
2011 atomic_set(&r1_bio->remaining, 1);
2012 for (i = 0; i < disks ; i++) {
2013 wbio = r1_bio->bios[i];
3e198f78
N
2014 if (wbio->bi_end_io == NULL ||
2015 (wbio->bi_end_io == end_sync_read &&
2016 (i == r1_bio->read_disk ||
2017 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2018 continue;
2019
796a5cf0 2020 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
3e198f78 2021 wbio->bi_end_io = end_sync_write;
1da177e4 2022 atomic_inc(&r1_bio->remaining);
aa8b57aa 2023 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2024
1da177e4
LT
2025 generic_make_request(wbio);
2026 }
2027
2028 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2029 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2030 int s = r1_bio->sectors;
2031 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2032 test_bit(R1BIO_WriteError, &r1_bio->state))
2033 reschedule_retry(r1_bio);
2034 else {
2035 put_buf(r1_bio);
2036 md_done_sync(mddev, s, 1);
2037 }
1da177e4
LT
2038 }
2039}
2040
2041/*
2042 * This is a kernel thread which:
2043 *
2044 * 1. Retries failed read operations on working mirrors.
2045 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2046 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2047 */
2048
e8096360 2049static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2050 sector_t sect, int sectors)
2051{
fd01b88c 2052 struct mddev *mddev = conf->mddev;
867868fb
N
2053 while(sectors) {
2054 int s = sectors;
2055 int d = read_disk;
2056 int success = 0;
2057 int start;
3cb03002 2058 struct md_rdev *rdev;
867868fb
N
2059
2060 if (s > (PAGE_SIZE>>9))
2061 s = PAGE_SIZE >> 9;
2062
2063 do {
d2eb35ac
N
2064 sector_t first_bad;
2065 int bad_sectors;
2066
707a6a42
N
2067 rcu_read_lock();
2068 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2069 if (rdev &&
da8840a7 2070 (test_bit(In_sync, &rdev->flags) ||
2071 (!test_bit(Faulty, &rdev->flags) &&
2072 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2073 is_badblock(rdev, sect, s,
707a6a42
N
2074 &first_bad, &bad_sectors) == 0) {
2075 atomic_inc(&rdev->nr_pending);
2076 rcu_read_unlock();
2077 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2078 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2079 success = 1;
2080 rdev_dec_pending(rdev, mddev);
2081 if (success)
2082 break;
2083 } else
2084 rcu_read_unlock();
2085 d++;
2086 if (d == conf->raid_disks * 2)
2087 d = 0;
867868fb
N
2088 } while (!success && d != read_disk);
2089
2090 if (!success) {
d8f05d29 2091 /* Cannot read from anywhere - mark it bad */
3cb03002 2092 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2093 if (!rdev_set_badblocks(rdev, sect, s, 0))
2094 md_error(mddev, rdev);
867868fb
N
2095 break;
2096 }
2097 /* write it back and re-read */
2098 start = d;
2099 while (d != read_disk) {
2100 if (d==0)
8f19ccb2 2101 d = conf->raid_disks * 2;
867868fb 2102 d--;
707a6a42
N
2103 rcu_read_lock();
2104 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2105 if (rdev &&
707a6a42
N
2106 !test_bit(Faulty, &rdev->flags)) {
2107 atomic_inc(&rdev->nr_pending);
2108 rcu_read_unlock();
d8f05d29
N
2109 r1_sync_page_io(rdev, sect, s,
2110 conf->tmppage, WRITE);
707a6a42
N
2111 rdev_dec_pending(rdev, mddev);
2112 } else
2113 rcu_read_unlock();
867868fb
N
2114 }
2115 d = start;
2116 while (d != read_disk) {
2117 char b[BDEVNAME_SIZE];
2118 if (d==0)
8f19ccb2 2119 d = conf->raid_disks * 2;
867868fb 2120 d--;
707a6a42
N
2121 rcu_read_lock();
2122 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2123 if (rdev &&
b8cb6b4c 2124 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2125 atomic_inc(&rdev->nr_pending);
2126 rcu_read_unlock();
d8f05d29
N
2127 if (r1_sync_page_io(rdev, sect, s,
2128 conf->tmppage, READ)) {
867868fb 2129 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2130 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2131 mdname(mddev), s,
2132 (unsigned long long)(sect +
2133 rdev->data_offset),
2134 bdevname(rdev->bdev, b));
867868fb 2135 }
707a6a42
N
2136 rdev_dec_pending(rdev, mddev);
2137 } else
2138 rcu_read_unlock();
867868fb
N
2139 }
2140 sectors -= s;
2141 sect += s;
2142 }
2143}
2144
9f2c9d12 2145static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2146{
fd01b88c 2147 struct mddev *mddev = r1_bio->mddev;
e8096360 2148 struct r1conf *conf = mddev->private;
3cb03002 2149 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2150
2151 /* bio has the data to be written to device 'i' where
2152 * we just recently had a write error.
2153 * We repeatedly clone the bio and trim down to one block,
2154 * then try the write. Where the write fails we record
2155 * a bad block.
2156 * It is conceivable that the bio doesn't exactly align with
2157 * blocks. We must handle this somehow.
2158 *
2159 * We currently own a reference on the rdev.
2160 */
2161
2162 int block_sectors;
2163 sector_t sector;
2164 int sectors;
2165 int sect_to_write = r1_bio->sectors;
2166 int ok = 1;
2167
2168 if (rdev->badblocks.shift < 0)
2169 return 0;
2170
ab713cdc
ND
2171 block_sectors = roundup(1 << rdev->badblocks.shift,
2172 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2173 sector = r1_bio->sector;
2174 sectors = ((sector + block_sectors)
2175 & ~(sector_t)(block_sectors - 1))
2176 - sector;
2177
cd5ff9a1
N
2178 while (sect_to_write) {
2179 struct bio *wbio;
2180 if (sectors > sect_to_write)
2181 sectors = sect_to_write;
2182 /* Write at 'sector' for 'sectors'*/
2183
b783863f
KO
2184 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2185 unsigned vcnt = r1_bio->behind_page_count;
2186 struct bio_vec *vec = r1_bio->behind_bvecs;
2187
2188 while (!vec->bv_page) {
2189 vec++;
2190 vcnt--;
2191 }
2192
2193 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2194 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2195
2196 wbio->bi_vcnt = vcnt;
2197 } else {
2198 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2199 }
2200
796a5cf0 2201 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2202 wbio->bi_iter.bi_sector = r1_bio->sector;
2203 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2204
6678d83f 2205 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2206 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1 2207 wbio->bi_bdev = rdev->bdev;
4e49ea4a
MC
2208
2209 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2210 /* failure! */
2211 ok = rdev_set_badblocks(rdev, sector,
2212 sectors, 0)
2213 && ok;
2214
2215 bio_put(wbio);
2216 sect_to_write -= sectors;
2217 sector += sectors;
2218 sectors = block_sectors;
2219 }
2220 return ok;
2221}
2222
e8096360 2223static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2224{
2225 int m;
2226 int s = r1_bio->sectors;
8f19ccb2 2227 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2228 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2229 struct bio *bio = r1_bio->bios[m];
2230 if (bio->bi_end_io == NULL)
2231 continue;
4246a0b6 2232 if (!bio->bi_error &&
62096bce 2233 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2234 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2235 }
4246a0b6 2236 if (bio->bi_error &&
62096bce
N
2237 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2238 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2239 md_error(conf->mddev, rdev);
2240 }
2241 }
2242 put_buf(r1_bio);
2243 md_done_sync(conf->mddev, s, 1);
2244}
2245
e8096360 2246static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2247{
2248 int m;
55ce74d4 2249 bool fail = false;
8f19ccb2 2250 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2251 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2252 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2253 rdev_clear_badblocks(rdev,
2254 r1_bio->sector,
c6563a8c 2255 r1_bio->sectors, 0);
62096bce
N
2256 rdev_dec_pending(rdev, conf->mddev);
2257 } else if (r1_bio->bios[m] != NULL) {
2258 /* This drive got a write error. We need to
2259 * narrow down and record precise write
2260 * errors.
2261 */
55ce74d4 2262 fail = true;
62096bce
N
2263 if (!narrow_write_error(r1_bio, m)) {
2264 md_error(conf->mddev,
2265 conf->mirrors[m].rdev);
2266 /* an I/O failed, we can't clear the bitmap */
2267 set_bit(R1BIO_Degraded, &r1_bio->state);
2268 }
2269 rdev_dec_pending(conf->mirrors[m].rdev,
2270 conf->mddev);
2271 }
55ce74d4
N
2272 if (fail) {
2273 spin_lock_irq(&conf->device_lock);
2274 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
ccfc7bf1 2275 conf->nr_queued++;
55ce74d4
N
2276 spin_unlock_irq(&conf->device_lock);
2277 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2278 } else {
2279 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2280 close_write(r1_bio);
55ce74d4 2281 raid_end_bio_io(r1_bio);
bd8688a1 2282 }
62096bce
N
2283}
2284
e8096360 2285static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2286{
2287 int disk;
2288 int max_sectors;
fd01b88c 2289 struct mddev *mddev = conf->mddev;
62096bce
N
2290 struct bio *bio;
2291 char b[BDEVNAME_SIZE];
3cb03002 2292 struct md_rdev *rdev;
62096bce
N
2293
2294 clear_bit(R1BIO_ReadError, &r1_bio->state);
2295 /* we got a read error. Maybe the drive is bad. Maybe just
2296 * the block and we can fix it.
2297 * We freeze all other IO, and try reading the block from
2298 * other devices. When we find one, we re-write
2299 * and check it that fixes the read error.
2300 * This is all done synchronously while the array is
2301 * frozen
2302 */
7449f699
TM
2303
2304 bio = r1_bio->bios[r1_bio->read_disk];
2305 bdevname(bio->bi_bdev, b);
2306 bio_put(bio);
2307 r1_bio->bios[r1_bio->read_disk] = NULL;
2308
62096bce 2309 if (mddev->ro == 0) {
e2d59925 2310 freeze_array(conf, 1);
62096bce
N
2311 fix_read_error(conf, r1_bio->read_disk,
2312 r1_bio->sector, r1_bio->sectors);
2313 unfreeze_array(conf);
7449f699
TM
2314 } else {
2315 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2316 }
2317
7ad4d4a6 2318 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce 2319
62096bce
N
2320read_more:
2321 disk = read_balance(conf, r1_bio, &max_sectors);
2322 if (disk == -1) {
1d41c216
N
2323 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2324 mdname(mddev), b, (unsigned long long)r1_bio->sector);
62096bce
N
2325 raid_end_bio_io(r1_bio);
2326 } else {
2327 const unsigned long do_sync
1eff9d32 2328 = r1_bio->master_bio->bi_opf & REQ_SYNC;
62096bce
N
2329 r1_bio->read_disk = disk;
2330 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2331 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2332 max_sectors);
62096bce
N
2333 r1_bio->bios[r1_bio->read_disk] = bio;
2334 rdev = conf->mirrors[disk].rdev;
1d41c216
N
2335 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2336 mdname(mddev),
2337 (unsigned long long)r1_bio->sector,
2338 bdevname(rdev->bdev, b));
4f024f37 2339 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2340 bio->bi_bdev = rdev->bdev;
2341 bio->bi_end_io = raid1_end_read_request;
796a5cf0 2342 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
62096bce
N
2343 bio->bi_private = r1_bio;
2344 if (max_sectors < r1_bio->sectors) {
2345 /* Drat - have to split this up more */
2346 struct bio *mbio = r1_bio->master_bio;
2347 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2348 - mbio->bi_iter.bi_sector);
62096bce
N
2349 r1_bio->sectors = max_sectors;
2350 spin_lock_irq(&conf->device_lock);
2351 if (mbio->bi_phys_segments == 0)
2352 mbio->bi_phys_segments = 2;
2353 else
2354 mbio->bi_phys_segments++;
2355 spin_unlock_irq(&conf->device_lock);
2356 generic_make_request(bio);
2357 bio = NULL;
2358
2359 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2360
2361 r1_bio->master_bio = mbio;
aa8b57aa 2362 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2363 r1_bio->state = 0;
2364 set_bit(R1BIO_ReadError, &r1_bio->state);
2365 r1_bio->mddev = mddev;
4f024f37
KO
2366 r1_bio->sector = mbio->bi_iter.bi_sector +
2367 sectors_handled;
62096bce
N
2368
2369 goto read_more;
2370 } else
2371 generic_make_request(bio);
2372 }
2373}
2374
4ed8731d 2375static void raid1d(struct md_thread *thread)
1da177e4 2376{
4ed8731d 2377 struct mddev *mddev = thread->mddev;
9f2c9d12 2378 struct r1bio *r1_bio;
1da177e4 2379 unsigned long flags;
e8096360 2380 struct r1conf *conf = mddev->private;
1da177e4 2381 struct list_head *head = &conf->retry_list;
e1dfa0a2 2382 struct blk_plug plug;
1da177e4
LT
2383
2384 md_check_recovery(mddev);
e1dfa0a2 2385
55ce74d4
N
2386 if (!list_empty_careful(&conf->bio_end_io_list) &&
2387 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2388 LIST_HEAD(tmp);
2389 spin_lock_irqsave(&conf->device_lock, flags);
2390 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
ccfc7bf1
ND
2391 while (!list_empty(&conf->bio_end_io_list)) {
2392 list_move(conf->bio_end_io_list.prev, &tmp);
2393 conf->nr_queued--;
2394 }
55ce74d4
N
2395 }
2396 spin_unlock_irqrestore(&conf->device_lock, flags);
2397 while (!list_empty(&tmp)) {
a452744b
MP
2398 r1_bio = list_first_entry(&tmp, struct r1bio,
2399 retry_list);
55ce74d4 2400 list_del(&r1_bio->retry_list);
bd8688a1
N
2401 if (mddev->degraded)
2402 set_bit(R1BIO_Degraded, &r1_bio->state);
2403 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2404 close_write(r1_bio);
55ce74d4
N
2405 raid_end_bio_io(r1_bio);
2406 }
2407 }
2408
e1dfa0a2 2409 blk_start_plug(&plug);
1da177e4 2410 for (;;) {
191ea9b2 2411
0021b7bc 2412 flush_pending_writes(conf);
191ea9b2 2413
a35e63ef
N
2414 spin_lock_irqsave(&conf->device_lock, flags);
2415 if (list_empty(head)) {
2416 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2417 break;
a35e63ef 2418 }
9f2c9d12 2419 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2420 list_del(head->prev);
ddaf22ab 2421 conf->nr_queued--;
1da177e4
LT
2422 spin_unlock_irqrestore(&conf->device_lock, flags);
2423
2424 mddev = r1_bio->mddev;
070ec55d 2425 conf = mddev->private;
4367af55 2426 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2427 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2428 test_bit(R1BIO_WriteError, &r1_bio->state))
2429 handle_sync_write_finished(conf, r1_bio);
2430 else
4367af55 2431 sync_request_write(mddev, r1_bio);
cd5ff9a1 2432 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2433 test_bit(R1BIO_WriteError, &r1_bio->state))
2434 handle_write_finished(conf, r1_bio);
2435 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2436 handle_read_error(conf, r1_bio);
2437 else
d2eb35ac
N
2438 /* just a partial read to be scheduled from separate
2439 * context
2440 */
2441 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2442
1d9d5241 2443 cond_resched();
de393cde
N
2444 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2445 md_check_recovery(mddev);
1da177e4 2446 }
e1dfa0a2 2447 blk_finish_plug(&plug);
1da177e4
LT
2448}
2449
e8096360 2450static int init_resync(struct r1conf *conf)
1da177e4
LT
2451{
2452 int buffs;
2453
2454 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2455 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2456 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2457 conf->poolinfo);
2458 if (!conf->r1buf_pool)
2459 return -ENOMEM;
2460 conf->next_resync = 0;
2461 return 0;
2462}
2463
2464/*
2465 * perform a "sync" on one "block"
2466 *
2467 * We need to make sure that no normal I/O request - particularly write
2468 * requests - conflict with active sync requests.
2469 *
2470 * This is achieved by tracking pending requests and a 'barrier' concept
2471 * that can be installed to exclude normal IO requests.
2472 */
2473
849674e4
SL
2474static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2475 int *skipped)
1da177e4 2476{
e8096360 2477 struct r1conf *conf = mddev->private;
9f2c9d12 2478 struct r1bio *r1_bio;
1da177e4
LT
2479 struct bio *bio;
2480 sector_t max_sector, nr_sectors;
3e198f78 2481 int disk = -1;
1da177e4 2482 int i;
3e198f78
N
2483 int wonly = -1;
2484 int write_targets = 0, read_targets = 0;
57dab0bd 2485 sector_t sync_blocks;
e3b9703e 2486 int still_degraded = 0;
06f60385
N
2487 int good_sectors = RESYNC_SECTORS;
2488 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2489
2490 if (!conf->r1buf_pool)
2491 if (init_resync(conf))
57afd89f 2492 return 0;
1da177e4 2493
58c0fed4 2494 max_sector = mddev->dev_sectors;
1da177e4 2495 if (sector_nr >= max_sector) {
191ea9b2
N
2496 /* If we aborted, we need to abort the
2497 * sync on the 'current' bitmap chunk (there will
2498 * only be one in raid1 resync.
2499 * We can find the current addess in mddev->curr_resync
2500 */
6a806c51
N
2501 if (mddev->curr_resync < max_sector) /* aborted */
2502 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2503 &sync_blocks, 1);
6a806c51 2504 else /* completed sync */
191ea9b2 2505 conf->fullsync = 0;
6a806c51
N
2506
2507 bitmap_close_sync(mddev->bitmap);
1da177e4 2508 close_sync(conf);
c40f341f
GR
2509
2510 if (mddev_is_clustered(mddev)) {
2511 conf->cluster_sync_low = 0;
2512 conf->cluster_sync_high = 0;
c40f341f 2513 }
1da177e4
LT
2514 return 0;
2515 }
2516
07d84d10
N
2517 if (mddev->bitmap == NULL &&
2518 mddev->recovery_cp == MaxSector &&
6394cca5 2519 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2520 conf->fullsync == 0) {
2521 *skipped = 1;
2522 return max_sector - sector_nr;
2523 }
6394cca5
N
2524 /* before building a request, check if we can skip these blocks..
2525 * This call the bitmap_start_sync doesn't actually record anything
2526 */
e3b9703e 2527 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2528 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2529 /* We can skip this block, and probably several more */
2530 *skipped = 1;
2531 return sync_blocks;
2532 }
17999be4 2533
7ac50447
TM
2534 /*
2535 * If there is non-resync activity waiting for a turn, then let it
2536 * though before starting on this new sync request.
2537 */
2538 if (conf->nr_waiting)
2539 schedule_timeout_uninterruptible(1);
2540
c40f341f
GR
2541 /* we are incrementing sector_nr below. To be safe, we check against
2542 * sector_nr + two times RESYNC_SECTORS
2543 */
2544
2545 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2546 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
1c4588e9 2547 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2548
c2fd4c94 2549 raise_barrier(conf, sector_nr);
1da177e4 2550
3e198f78 2551 rcu_read_lock();
1da177e4 2552 /*
3e198f78
N
2553 * If we get a correctably read error during resync or recovery,
2554 * we might want to read from a different device. So we
2555 * flag all drives that could conceivably be read from for READ,
2556 * and any others (which will be non-In_sync devices) for WRITE.
2557 * If a read fails, we try reading from something else for which READ
2558 * is OK.
1da177e4 2559 */
1da177e4 2560
1da177e4
LT
2561 r1_bio->mddev = mddev;
2562 r1_bio->sector = sector_nr;
191ea9b2 2563 r1_bio->state = 0;
1da177e4 2564 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2565
8f19ccb2 2566 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2567 struct md_rdev *rdev;
1da177e4 2568 bio = r1_bio->bios[i];
2aabaa65 2569 bio_reset(bio);
1da177e4 2570
3e198f78
N
2571 rdev = rcu_dereference(conf->mirrors[i].rdev);
2572 if (rdev == NULL ||
06f60385 2573 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2574 if (i < conf->raid_disks)
2575 still_degraded = 1;
3e198f78 2576 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2577 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2578 bio->bi_end_io = end_sync_write;
2579 write_targets ++;
3e198f78
N
2580 } else {
2581 /* may need to read from here */
06f60385
N
2582 sector_t first_bad = MaxSector;
2583 int bad_sectors;
2584
2585 if (is_badblock(rdev, sector_nr, good_sectors,
2586 &first_bad, &bad_sectors)) {
2587 if (first_bad > sector_nr)
2588 good_sectors = first_bad - sector_nr;
2589 else {
2590 bad_sectors -= (sector_nr - first_bad);
2591 if (min_bad == 0 ||
2592 min_bad > bad_sectors)
2593 min_bad = bad_sectors;
2594 }
2595 }
2596 if (sector_nr < first_bad) {
2597 if (test_bit(WriteMostly, &rdev->flags)) {
2598 if (wonly < 0)
2599 wonly = i;
2600 } else {
2601 if (disk < 0)
2602 disk = i;
2603 }
796a5cf0 2604 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2605 bio->bi_end_io = end_sync_read;
2606 read_targets++;
d57368af
AL
2607 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2608 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2609 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2610 /*
2611 * The device is suitable for reading (InSync),
2612 * but has bad block(s) here. Let's try to correct them,
2613 * if we are doing resync or repair. Otherwise, leave
2614 * this device alone for this sync request.
2615 */
796a5cf0 2616 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2617 bio->bi_end_io = end_sync_write;
2618 write_targets++;
3e198f78 2619 }
3e198f78 2620 }
06f60385
N
2621 if (bio->bi_end_io) {
2622 atomic_inc(&rdev->nr_pending);
4f024f37 2623 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2624 bio->bi_bdev = rdev->bdev;
2625 bio->bi_private = r1_bio;
2626 }
1da177e4 2627 }
3e198f78
N
2628 rcu_read_unlock();
2629 if (disk < 0)
2630 disk = wonly;
2631 r1_bio->read_disk = disk;
191ea9b2 2632
06f60385
N
2633 if (read_targets == 0 && min_bad > 0) {
2634 /* These sectors are bad on all InSync devices, so we
2635 * need to mark them bad on all write targets
2636 */
2637 int ok = 1;
8f19ccb2 2638 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2639 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2640 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2641 ok = rdev_set_badblocks(rdev, sector_nr,
2642 min_bad, 0
2643 ) && ok;
2644 }
2645 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2646 *skipped = 1;
2647 put_buf(r1_bio);
2648
2649 if (!ok) {
2650 /* Cannot record the badblocks, so need to
2651 * abort the resync.
2652 * If there are multiple read targets, could just
2653 * fail the really bad ones ???
2654 */
2655 conf->recovery_disabled = mddev->recovery_disabled;
2656 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2657 return 0;
2658 } else
2659 return min_bad;
2660
2661 }
2662 if (min_bad > 0 && min_bad < good_sectors) {
2663 /* only resync enough to reach the next bad->good
2664 * transition */
2665 good_sectors = min_bad;
2666 }
2667
3e198f78
N
2668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2669 /* extra read targets are also write targets */
2670 write_targets += read_targets-1;
2671
2672 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2673 /* There is nowhere to write, so all non-sync
2674 * drives must be failed - so we are finished
2675 */
b7219ccb
N
2676 sector_t rv;
2677 if (min_bad > 0)
2678 max_sector = sector_nr + min_bad;
2679 rv = max_sector - sector_nr;
57afd89f 2680 *skipped = 1;
1da177e4 2681 put_buf(r1_bio);
1da177e4
LT
2682 return rv;
2683 }
2684
c6207277
N
2685 if (max_sector > mddev->resync_max)
2686 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2687 if (max_sector > sector_nr + good_sectors)
2688 max_sector = sector_nr + good_sectors;
1da177e4 2689 nr_sectors = 0;
289e99e8 2690 sync_blocks = 0;
1da177e4
LT
2691 do {
2692 struct page *page;
2693 int len = PAGE_SIZE;
2694 if (sector_nr + (len>>9) > max_sector)
2695 len = (max_sector - sector_nr) << 9;
2696 if (len == 0)
2697 break;
6a806c51
N
2698 if (sync_blocks == 0) {
2699 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2700 &sync_blocks, still_degraded) &&
2701 !conf->fullsync &&
2702 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2703 break;
7571ae88 2704 if ((len >> 9) > sync_blocks)
6a806c51 2705 len = sync_blocks<<9;
ab7a30c7 2706 }
191ea9b2 2707
8f19ccb2 2708 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2709 bio = r1_bio->bios[i];
2710 if (bio->bi_end_io) {
d11c171e 2711 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2712 if (bio_add_page(bio, page, len, 0) == 0) {
2713 /* stop here */
d11c171e 2714 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2715 while (i > 0) {
2716 i--;
2717 bio = r1_bio->bios[i];
6a806c51
N
2718 if (bio->bi_end_io==NULL)
2719 continue;
1da177e4
LT
2720 /* remove last page from this bio */
2721 bio->bi_vcnt--;
4f024f37 2722 bio->bi_iter.bi_size -= len;
b7c44ed9 2723 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4
LT
2724 }
2725 goto bio_full;
2726 }
2727 }
2728 }
2729 nr_sectors += len>>9;
2730 sector_nr += len>>9;
191ea9b2 2731 sync_blocks -= (len>>9);
1da177e4
LT
2732 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2733 bio_full:
1da177e4
LT
2734 r1_bio->sectors = nr_sectors;
2735
c40f341f
GR
2736 if (mddev_is_clustered(mddev) &&
2737 conf->cluster_sync_high < sector_nr + nr_sectors) {
2738 conf->cluster_sync_low = mddev->curr_resync_completed;
2739 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2740 /* Send resync message */
2741 md_cluster_ops->resync_info_update(mddev,
2742 conf->cluster_sync_low,
2743 conf->cluster_sync_high);
2744 }
2745
d11c171e
N
2746 /* For a user-requested sync, we read all readable devices and do a
2747 * compare
2748 */
2749 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2750 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2751 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2752 bio = r1_bio->bios[i];
2753 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2754 read_targets--;
ddac7c7e 2755 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2756 generic_make_request(bio);
2757 }
2758 }
2759 } else {
2760 atomic_set(&r1_bio->remaining, 1);
2761 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2762 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2763 generic_make_request(bio);
1da177e4 2764
d11c171e 2765 }
1da177e4
LT
2766 return nr_sectors;
2767}
2768
fd01b88c 2769static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2770{
2771 if (sectors)
2772 return sectors;
2773
2774 return mddev->dev_sectors;
2775}
2776
e8096360 2777static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2778{
e8096360 2779 struct r1conf *conf;
709ae487 2780 int i;
0eaf822c 2781 struct raid1_info *disk;
3cb03002 2782 struct md_rdev *rdev;
709ae487 2783 int err = -ENOMEM;
1da177e4 2784
e8096360 2785 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2786 if (!conf)
709ae487 2787 goto abort;
1da177e4 2788
0eaf822c 2789 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2790 * mddev->raid_disks * 2,
1da177e4
LT
2791 GFP_KERNEL);
2792 if (!conf->mirrors)
709ae487 2793 goto abort;
1da177e4 2794
ddaf22ab
N
2795 conf->tmppage = alloc_page(GFP_KERNEL);
2796 if (!conf->tmppage)
709ae487 2797 goto abort;
ddaf22ab 2798
709ae487 2799 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2800 if (!conf->poolinfo)
709ae487 2801 goto abort;
8f19ccb2 2802 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2803 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2804 r1bio_pool_free,
2805 conf->poolinfo);
2806 if (!conf->r1bio_pool)
709ae487
N
2807 goto abort;
2808
ed9bfdf1 2809 conf->poolinfo->mddev = mddev;
1da177e4 2810
c19d5798 2811 err = -EINVAL;
e7e72bf6 2812 spin_lock_init(&conf->device_lock);
dafb20fa 2813 rdev_for_each(rdev, mddev) {
aba336bd 2814 struct request_queue *q;
709ae487 2815 int disk_idx = rdev->raid_disk;
1da177e4
LT
2816 if (disk_idx >= mddev->raid_disks
2817 || disk_idx < 0)
2818 continue;
c19d5798 2819 if (test_bit(Replacement, &rdev->flags))
02b898f2 2820 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2821 else
2822 disk = conf->mirrors + disk_idx;
1da177e4 2823
c19d5798
N
2824 if (disk->rdev)
2825 goto abort;
1da177e4 2826 disk->rdev = rdev;
aba336bd 2827 q = bdev_get_queue(rdev->bdev);
1da177e4
LT
2828
2829 disk->head_position = 0;
12cee5a8 2830 disk->seq_start = MaxSector;
1da177e4
LT
2831 }
2832 conf->raid_disks = mddev->raid_disks;
2833 conf->mddev = mddev;
1da177e4 2834 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2835 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2836
2837 spin_lock_init(&conf->resync_lock);
17999be4 2838 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2839
191ea9b2 2840 bio_list_init(&conf->pending_bio_list);
34db0cd6 2841 conf->pending_count = 0;
d890fa2b 2842 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2843
79ef3a8a 2844 conf->start_next_window = MaxSector;
2845 conf->current_window_requests = conf->next_window_requests = 0;
2846
c19d5798 2847 err = -EIO;
8f19ccb2 2848 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2849
2850 disk = conf->mirrors + i;
2851
c19d5798
N
2852 if (i < conf->raid_disks &&
2853 disk[conf->raid_disks].rdev) {
2854 /* This slot has a replacement. */
2855 if (!disk->rdev) {
2856 /* No original, just make the replacement
2857 * a recovering spare
2858 */
2859 disk->rdev =
2860 disk[conf->raid_disks].rdev;
2861 disk[conf->raid_disks].rdev = NULL;
2862 } else if (!test_bit(In_sync, &disk->rdev->flags))
2863 /* Original is not in_sync - bad */
2864 goto abort;
2865 }
2866
5fd6c1dc
N
2867 if (!disk->rdev ||
2868 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2869 disk->head_position = 0;
4f0a5e01
JB
2870 if (disk->rdev &&
2871 (disk->rdev->saved_raid_disk < 0))
918f0238 2872 conf->fullsync = 1;
be4d3280 2873 }
1da177e4 2874 }
709ae487 2875
709ae487 2876 err = -ENOMEM;
0232605d 2877 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 2878 if (!conf->thread)
709ae487 2879 goto abort;
1da177e4 2880
709ae487
N
2881 return conf;
2882
2883 abort:
2884 if (conf) {
644df1a8 2885 mempool_destroy(conf->r1bio_pool);
709ae487
N
2886 kfree(conf->mirrors);
2887 safe_put_page(conf->tmppage);
2888 kfree(conf->poolinfo);
2889 kfree(conf);
2890 }
2891 return ERR_PTR(err);
2892}
2893
afa0f557 2894static void raid1_free(struct mddev *mddev, void *priv);
849674e4 2895static int raid1_run(struct mddev *mddev)
709ae487 2896{
e8096360 2897 struct r1conf *conf;
709ae487 2898 int i;
3cb03002 2899 struct md_rdev *rdev;
5220ea1e 2900 int ret;
2ff8cc2c 2901 bool discard_supported = false;
709ae487
N
2902
2903 if (mddev->level != 1) {
1d41c216
N
2904 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
2905 mdname(mddev), mddev->level);
709ae487
N
2906 return -EIO;
2907 }
2908 if (mddev->reshape_position != MaxSector) {
1d41c216
N
2909 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
2910 mdname(mddev));
709ae487
N
2911 return -EIO;
2912 }
1da177e4 2913 /*
709ae487
N
2914 * copy the already verified devices into our private RAID1
2915 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2916 * should be freed in raid1_free()]
1da177e4 2917 */
709ae487
N
2918 if (mddev->private == NULL)
2919 conf = setup_conf(mddev);
2920 else
2921 conf = mddev->private;
1da177e4 2922
709ae487
N
2923 if (IS_ERR(conf))
2924 return PTR_ERR(conf);
1da177e4 2925
c8dc9c65 2926 if (mddev->queue)
5026d7a9
PA
2927 blk_queue_max_write_same_sectors(mddev->queue, 0);
2928
dafb20fa 2929 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2930 if (!mddev->gendisk)
2931 continue;
709ae487
N
2932 disk_stack_limits(mddev->gendisk, rdev->bdev,
2933 rdev->data_offset << 9);
2ff8cc2c
SL
2934 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2935 discard_supported = true;
1da177e4 2936 }
191ea9b2 2937
709ae487
N
2938 mddev->degraded = 0;
2939 for (i=0; i < conf->raid_disks; i++)
2940 if (conf->mirrors[i].rdev == NULL ||
2941 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2942 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2943 mddev->degraded++;
2944
2945 if (conf->raid_disks - mddev->degraded == 1)
2946 mddev->recovery_cp = MaxSector;
2947
8c6ac868 2948 if (mddev->recovery_cp != MaxSector)
1d41c216
N
2949 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
2950 mdname(mddev));
2951 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2952 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2953 mddev->raid_disks);
709ae487 2954
1da177e4
LT
2955 /*
2956 * Ok, everything is just fine now
2957 */
709ae487
N
2958 mddev->thread = conf->thread;
2959 conf->thread = NULL;
2960 mddev->private = conf;
2961
1f403624 2962 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2963
1ed7242e 2964 if (mddev->queue) {
2ff8cc2c
SL
2965 if (discard_supported)
2966 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2967 mddev->queue);
2968 else
2969 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970 mddev->queue);
1ed7242e 2971 }
5220ea1e 2972
2973 ret = md_integrity_register(mddev);
5aa61f42
N
2974 if (ret) {
2975 md_unregister_thread(&mddev->thread);
afa0f557 2976 raid1_free(mddev, conf);
5aa61f42 2977 }
5220ea1e 2978 return ret;
1da177e4
LT
2979}
2980
afa0f557 2981static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2982{
afa0f557 2983 struct r1conf *conf = priv;
409c57f3 2984
644df1a8 2985 mempool_destroy(conf->r1bio_pool);
990a8baf 2986 kfree(conf->mirrors);
0fea7ed8 2987 safe_put_page(conf->tmppage);
990a8baf 2988 kfree(conf->poolinfo);
1da177e4 2989 kfree(conf);
1da177e4
LT
2990}
2991
fd01b88c 2992static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2993{
2994 /* no resync is happening, and there is enough space
2995 * on all devices, so we can resize.
2996 * We need to make sure resync covers any new space.
2997 * If the array is shrinking we should possibly wait until
2998 * any io in the removed space completes, but it hardly seems
2999 * worth it.
3000 */
a4a6125a
N
3001 sector_t newsize = raid1_size(mddev, sectors, 0);
3002 if (mddev->external_size &&
3003 mddev->array_sectors > newsize)
b522adcd 3004 return -EINVAL;
a4a6125a
N
3005 if (mddev->bitmap) {
3006 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3007 if (ret)
3008 return ret;
3009 }
3010 md_set_array_sectors(mddev, newsize);
f233ea5c 3011 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3012 revalidate_disk(mddev->gendisk);
b522adcd 3013 if (sectors > mddev->dev_sectors &&
b098636c 3014 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3015 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3016 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3017 }
b522adcd 3018 mddev->dev_sectors = sectors;
4b5c7ae8 3019 mddev->resync_max_sectors = sectors;
1da177e4
LT
3020 return 0;
3021}
3022
fd01b88c 3023static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3024{
3025 /* We need to:
3026 * 1/ resize the r1bio_pool
3027 * 2/ resize conf->mirrors
3028 *
3029 * We allocate a new r1bio_pool if we can.
3030 * Then raise a device barrier and wait until all IO stops.
3031 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3032 *
3033 * At the same time, we "pack" the devices so that all the missing
3034 * devices have the higher raid_disk numbers.
1da177e4
LT
3035 */
3036 mempool_t *newpool, *oldpool;
3037 struct pool_info *newpoolinfo;
0eaf822c 3038 struct raid1_info *newmirrors;
e8096360 3039 struct r1conf *conf = mddev->private;
63c70c4f 3040 int cnt, raid_disks;
c04be0aa 3041 unsigned long flags;
b5470dc5 3042 int d, d2, err;
1da177e4 3043
63c70c4f 3044 /* Cannot change chunk_size, layout, or level */
664e7c41 3045 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3046 mddev->layout != mddev->new_layout ||
3047 mddev->level != mddev->new_level) {
664e7c41 3048 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3049 mddev->new_layout = mddev->layout;
3050 mddev->new_level = mddev->level;
3051 return -EINVAL;
3052 }
3053
28c1b9fd
GR
3054 if (!mddev_is_clustered(mddev)) {
3055 err = md_allow_write(mddev);
3056 if (err)
3057 return err;
3058 }
2a2275d6 3059
63c70c4f
N
3060 raid_disks = mddev->raid_disks + mddev->delta_disks;
3061
6ea9c07c
N
3062 if (raid_disks < conf->raid_disks) {
3063 cnt=0;
3064 for (d= 0; d < conf->raid_disks; d++)
3065 if (conf->mirrors[d].rdev)
3066 cnt++;
3067 if (cnt > raid_disks)
1da177e4 3068 return -EBUSY;
6ea9c07c 3069 }
1da177e4
LT
3070
3071 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3072 if (!newpoolinfo)
3073 return -ENOMEM;
3074 newpoolinfo->mddev = mddev;
8f19ccb2 3075 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3076
3077 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3078 r1bio_pool_free, newpoolinfo);
3079 if (!newpool) {
3080 kfree(newpoolinfo);
3081 return -ENOMEM;
3082 }
0eaf822c 3083 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3084 GFP_KERNEL);
1da177e4
LT
3085 if (!newmirrors) {
3086 kfree(newpoolinfo);
3087 mempool_destroy(newpool);
3088 return -ENOMEM;
3089 }
1da177e4 3090
e2d59925 3091 freeze_array(conf, 0);
1da177e4
LT
3092
3093 /* ok, everything is stopped */
3094 oldpool = conf->r1bio_pool;
3095 conf->r1bio_pool = newpool;
6ea9c07c 3096
a88aa786 3097 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3098 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3099 if (rdev && rdev->raid_disk != d2) {
36fad858 3100 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3101 rdev->raid_disk = d2;
36fad858
NK
3102 sysfs_unlink_rdev(mddev, rdev);
3103 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3104 pr_warn("md/raid1:%s: cannot register rd%d\n",
3105 mdname(mddev), rdev->raid_disk);
6ea9c07c 3106 }
a88aa786
N
3107 if (rdev)
3108 newmirrors[d2++].rdev = rdev;
3109 }
1da177e4
LT
3110 kfree(conf->mirrors);
3111 conf->mirrors = newmirrors;
3112 kfree(conf->poolinfo);
3113 conf->poolinfo = newpoolinfo;
3114
c04be0aa 3115 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3116 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3117 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3118 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3119 mddev->delta_disks = 0;
1da177e4 3120
e2d59925 3121 unfreeze_array(conf);
1da177e4 3122
985ca973 3123 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3124 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3125 md_wakeup_thread(mddev->thread);
3126
3127 mempool_destroy(oldpool);
3128 return 0;
3129}
3130
fd01b88c 3131static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3132{
e8096360 3133 struct r1conf *conf = mddev->private;
36fa3063
N
3134
3135 switch(state) {
6eef4b21
N
3136 case 2: /* wake for suspend */
3137 wake_up(&conf->wait_barrier);
3138 break;
9e6603da 3139 case 1:
07169fd4 3140 freeze_array(conf, 0);
36fa3063 3141 break;
9e6603da 3142 case 0:
07169fd4 3143 unfreeze_array(conf);
36fa3063
N
3144 break;
3145 }
36fa3063
N
3146}
3147
fd01b88c 3148static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3149{
3150 /* raid1 can take over:
3151 * raid5 with 2 devices, any layout or chunk size
3152 */
3153 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3154 struct r1conf *conf;
709ae487
N
3155 mddev->new_level = 1;
3156 mddev->new_layout = 0;
3157 mddev->new_chunk_sectors = 0;
3158 conf = setup_conf(mddev);
3159 if (!IS_ERR(conf))
07169fd4 3160 /* Array must appear to be quiesced */
3161 conf->array_frozen = 1;
709ae487
N
3162 return conf;
3163 }
3164 return ERR_PTR(-EINVAL);
3165}
1da177e4 3166
84fc4b56 3167static struct md_personality raid1_personality =
1da177e4
LT
3168{
3169 .name = "raid1",
2604b703 3170 .level = 1,
1da177e4 3171 .owner = THIS_MODULE,
849674e4
SL
3172 .make_request = raid1_make_request,
3173 .run = raid1_run,
afa0f557 3174 .free = raid1_free,
849674e4
SL
3175 .status = raid1_status,
3176 .error_handler = raid1_error,
1da177e4
LT
3177 .hot_add_disk = raid1_add_disk,
3178 .hot_remove_disk= raid1_remove_disk,
3179 .spare_active = raid1_spare_active,
849674e4 3180 .sync_request = raid1_sync_request,
1da177e4 3181 .resize = raid1_resize,
80c3a6ce 3182 .size = raid1_size,
63c70c4f 3183 .check_reshape = raid1_reshape,
36fa3063 3184 .quiesce = raid1_quiesce,
709ae487 3185 .takeover = raid1_takeover,
5c675f83 3186 .congested = raid1_congested,
1da177e4
LT
3187};
3188
3189static int __init raid_init(void)
3190{
2604b703 3191 return register_md_personality(&raid1_personality);
1da177e4
LT
3192}
3193
3194static void raid_exit(void)
3195{
2604b703 3196 unregister_md_personality(&raid1_personality);
1da177e4
LT
3197}
3198
3199module_init(raid_init);
3200module_exit(raid_exit);
3201MODULE_LICENSE("GPL");
0efb9e61 3202MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3203MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3204MODULE_ALIAS("md-raid1");
2604b703 3205MODULE_ALIAS("md-level-1");
34db0cd6
N
3206
3207module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);