md/raid1/10: remove unused queue
[linux-2.6-block.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
3f07c014
IM
40#include <linux/sched/signal.h>
41
109e3765 42#include <trace/events/block.h>
3f07c014 43
43b2e5d8 44#include "md.h"
ef740c37
CH
45#include "raid1.h"
46#include "bitmap.h"
191ea9b2 47
394ed8e4
SL
48#define UNSUPPORTED_MDDEV_FLAGS \
49 ((1L << MD_HAS_JOURNAL) | \
ea0213e0
AP
50 (1L << MD_JOURNAL_CLEAN) | \
51 (1L << MD_HAS_PPL))
394ed8e4 52
1da177e4
LT
53/*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56#define NR_RAID1_BIOS 256
57
473e87ce
JB
58/* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63#define IO_BLOCKED ((struct bio *)1)
64/* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68#define IO_MADE_GOOD ((struct bio *)2)
69
70#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
34db0cd6
N
72/* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76static int max_queued_requests = 1024;
1da177e4 77
fd76863e 78static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 80
578b54ad
N
81#define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
98d30c58
ML
84/*
85 * 'strct resync_pages' stores actual pages used for doing the resync
86 * IO, and it is per-bio, so make .bi_private points to it.
87 */
88static inline struct resync_pages *get_resync_pages(struct bio *bio)
89{
90 return bio->bi_private;
91}
92
93/*
94 * for resync bio, r1bio pointer can be retrieved from the per-bio
95 * 'struct resync_pages'.
96 */
97static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98{
99 return get_resync_pages(bio)->raid_bio;
100}
101
dd0fc66f 102static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
103{
104 struct pool_info *pi = data;
9f2c9d12 105 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
106
107 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 108 return kzalloc(size, gfp_flags);
1da177e4
LT
109}
110
111static void r1bio_pool_free(void *r1_bio, void *data)
112{
113 kfree(r1_bio);
114}
115
8e005f7c 116#define RESYNC_DEPTH 32
1da177e4 117#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 118#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
120#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 122
dd0fc66f 123static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
124{
125 struct pool_info *pi = data;
9f2c9d12 126 struct r1bio *r1_bio;
1da177e4 127 struct bio *bio;
da1aab3d 128 int need_pages;
98d30c58
ML
129 int j;
130 struct resync_pages *rps;
1da177e4
LT
131
132 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 133 if (!r1_bio)
1da177e4 134 return NULL;
1da177e4 135
98d30c58
ML
136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 gfp_flags);
138 if (!rps)
139 goto out_free_r1bio;
140
1da177e4
LT
141 /*
142 * Allocate bios : 1 for reading, n-1 for writing
143 */
144 for (j = pi->raid_disks ; j-- ; ) {
6746557f 145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
146 if (!bio)
147 goto out_free_bio;
148 r1_bio->bios[j] = bio;
149 }
150 /*
151 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
152 * the first bio.
153 * If this is a user-requested check/repair, allocate
154 * RESYNC_PAGES for each bio.
1da177e4 155 */
d11c171e 156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 157 need_pages = pi->raid_disks;
d11c171e 158 else
da1aab3d 159 need_pages = 1;
98d30c58
ML
160 for (j = 0; j < pi->raid_disks; j++) {
161 struct resync_pages *rp = &rps[j];
162
d11c171e 163 bio = r1_bio->bios[j];
d11c171e 164
98d30c58
ML
165 if (j < need_pages) {
166 if (resync_alloc_pages(rp, gfp_flags))
167 goto out_free_pages;
168 } else {
169 memcpy(rp, &rps[0], sizeof(*rp));
170 resync_get_all_pages(rp);
171 }
172
173 rp->idx = 0;
174 rp->raid_bio = r1_bio;
175 bio->bi_private = rp;
1da177e4
LT
176 }
177
178 r1_bio->master_bio = NULL;
179
180 return r1_bio;
181
da1aab3d 182out_free_pages:
491221f8 183 while (--j >= 0)
98d30c58 184 resync_free_pages(&rps[j]);
da1aab3d 185
1da177e4 186out_free_bio:
8f19ccb2 187 while (++j < pi->raid_disks)
1da177e4 188 bio_put(r1_bio->bios[j]);
98d30c58
ML
189 kfree(rps);
190
191out_free_r1bio:
1da177e4
LT
192 r1bio_pool_free(r1_bio, data);
193 return NULL;
194}
195
196static void r1buf_pool_free(void *__r1_bio, void *data)
197{
198 struct pool_info *pi = data;
98d30c58 199 int i;
9f2c9d12 200 struct r1bio *r1bio = __r1_bio;
98d30c58 201 struct resync_pages *rp = NULL;
1da177e4 202
98d30c58
ML
203 for (i = pi->raid_disks; i--; ) {
204 rp = get_resync_pages(r1bio->bios[i]);
205 resync_free_pages(rp);
1da177e4 206 bio_put(r1bio->bios[i]);
98d30c58
ML
207 }
208
209 /* resync pages array stored in the 1st bio's .bi_private */
210 kfree(rp);
1da177e4
LT
211
212 r1bio_pool_free(r1bio, data);
213}
214
e8096360 215static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
216{
217 int i;
218
8f19ccb2 219 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 220 struct bio **bio = r1_bio->bios + i;
4367af55 221 if (!BIO_SPECIAL(*bio))
1da177e4
LT
222 bio_put(*bio);
223 *bio = NULL;
224 }
225}
226
9f2c9d12 227static void free_r1bio(struct r1bio *r1_bio)
1da177e4 228{
e8096360 229 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 230
1da177e4
LT
231 put_all_bios(conf, r1_bio);
232 mempool_free(r1_bio, conf->r1bio_pool);
233}
234
9f2c9d12 235static void put_buf(struct r1bio *r1_bio)
1da177e4 236{
e8096360 237 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 238 sector_t sect = r1_bio->sector;
3e198f78
N
239 int i;
240
8f19ccb2 241 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
242 struct bio *bio = r1_bio->bios[i];
243 if (bio->bi_end_io)
244 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245 }
1da177e4
LT
246
247 mempool_free(r1_bio, conf->r1buf_pool);
248
af5f42a7 249 lower_barrier(conf, sect);
1da177e4
LT
250}
251
9f2c9d12 252static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
253{
254 unsigned long flags;
fd01b88c 255 struct mddev *mddev = r1_bio->mddev;
e8096360 256 struct r1conf *conf = mddev->private;
fd76863e 257 int idx;
1da177e4 258
fd76863e 259 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
260 spin_lock_irqsave(&conf->device_lock, flags);
261 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 262 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
263 spin_unlock_irqrestore(&conf->device_lock, flags);
264
17999be4 265 wake_up(&conf->wait_barrier);
1da177e4
LT
266 md_wakeup_thread(mddev->thread);
267}
268
269/*
270 * raid_end_bio_io() is called when we have finished servicing a mirrored
271 * operation and are ready to return a success/failure code to the buffer
272 * cache layer.
273 */
9f2c9d12 274static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
275{
276 struct bio *bio = r1_bio->master_bio;
e8096360 277 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
278
279 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
280 bio->bi_error = -EIO;
281
37011e3a
N
282 bio_endio(bio);
283 /*
284 * Wake up any possible resync thread that waits for the device
285 * to go idle.
286 */
287 allow_barrier(conf, r1_bio->sector);
d2eb35ac
N
288}
289
9f2c9d12 290static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
291{
292 struct bio *bio = r1_bio->master_bio;
293
4b6d287f
N
294 /* if nobody has done the final endio yet, do it now */
295 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
296 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
298 (unsigned long long) bio->bi_iter.bi_sector,
299 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 300
d2eb35ac 301 call_bio_endio(r1_bio);
4b6d287f 302 }
1da177e4
LT
303 free_r1bio(r1_bio);
304}
305
306/*
307 * Update disk head position estimator based on IRQ completion info.
308 */
9f2c9d12 309static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 310{
e8096360 311 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
312
313 conf->mirrors[disk].head_position =
314 r1_bio->sector + (r1_bio->sectors);
315}
316
ba3ae3be
NK
317/*
318 * Find the disk number which triggered given bio
319 */
9f2c9d12 320static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
321{
322 int mirror;
30194636
N
323 struct r1conf *conf = r1_bio->mddev->private;
324 int raid_disks = conf->raid_disks;
ba3ae3be 325
8f19ccb2 326 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
327 if (r1_bio->bios[mirror] == bio)
328 break;
329
8f19ccb2 330 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
331 update_head_pos(mirror, r1_bio);
332
333 return mirror;
334}
335
4246a0b6 336static void raid1_end_read_request(struct bio *bio)
1da177e4 337{
4246a0b6 338 int uptodate = !bio->bi_error;
9f2c9d12 339 struct r1bio *r1_bio = bio->bi_private;
e8096360 340 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 341 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 342
1da177e4
LT
343 /*
344 * this branch is our 'one mirror IO has finished' event handler:
345 */
e5872d58 346 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 347
dd00a99e
N
348 if (uptodate)
349 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
350 else if (test_bit(FailFast, &rdev->flags) &&
351 test_bit(R1BIO_FailFast, &r1_bio->state))
352 /* This was a fail-fast read so we definitely
353 * want to retry */
354 ;
dd00a99e
N
355 else {
356 /* If all other devices have failed, we want to return
357 * the error upwards rather than fail the last device.
358 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 359 */
dd00a99e
N
360 unsigned long flags;
361 spin_lock_irqsave(&conf->device_lock, flags);
362 if (r1_bio->mddev->degraded == conf->raid_disks ||
363 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 364 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
365 uptodate = 1;
366 spin_unlock_irqrestore(&conf->device_lock, flags);
367 }
1da177e4 368
7ad4d4a6 369 if (uptodate) {
1da177e4 370 raid_end_bio_io(r1_bio);
e5872d58 371 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 372 } else {
1da177e4
LT
373 /*
374 * oops, read error:
375 */
376 char b[BDEVNAME_SIZE];
1d41c216
N
377 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378 mdname(conf->mddev),
379 bdevname(rdev->bdev, b),
380 (unsigned long long)r1_bio->sector);
d2eb35ac 381 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 382 reschedule_retry(r1_bio);
7ad4d4a6 383 /* don't drop the reference on read_disk yet */
1da177e4 384 }
1da177e4
LT
385}
386
9f2c9d12 387static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
388{
389 /* it really is the end of this request */
390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
391 bio_free_pages(r1_bio->behind_master_bio);
392 bio_put(r1_bio->behind_master_bio);
393 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
394 }
395 /* clear the bitmap if all writes complete successfully */
396 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397 r1_bio->sectors,
398 !test_bit(R1BIO_Degraded, &r1_bio->state),
399 test_bit(R1BIO_BehindIO, &r1_bio->state));
400 md_write_end(r1_bio->mddev);
401}
402
9f2c9d12 403static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 404{
cd5ff9a1
N
405 if (!atomic_dec_and_test(&r1_bio->remaining))
406 return;
407
408 if (test_bit(R1BIO_WriteError, &r1_bio->state))
409 reschedule_retry(r1_bio);
410 else {
411 close_write(r1_bio);
4367af55
N
412 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413 reschedule_retry(r1_bio);
414 else
415 raid_end_bio_io(r1_bio);
4e78064f
N
416 }
417}
418
4246a0b6 419static void raid1_end_write_request(struct bio *bio)
1da177e4 420{
9f2c9d12 421 struct r1bio *r1_bio = bio->bi_private;
e5872d58 422 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 423 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 424 struct bio *to_put = NULL;
e5872d58
N
425 int mirror = find_bio_disk(r1_bio, bio);
426 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
427 bool discard_error;
428
429 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 430
e9c7469b
TH
431 /*
432 * 'one mirror IO has finished' event handler:
433 */
e3f948cd 434 if (bio->bi_error && !discard_error) {
e5872d58
N
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
437 set_bit(MD_RECOVERY_NEEDED, &
438 conf->mddev->recovery);
439
212e7eb7
N
440 if (test_bit(FailFast, &rdev->flags) &&
441 (bio->bi_opf & MD_FAILFAST) &&
442 /* We never try FailFast to WriteMostly devices */
443 !test_bit(WriteMostly, &rdev->flags)) {
444 md_error(r1_bio->mddev, rdev);
445 if (!test_bit(Faulty, &rdev->flags))
446 /* This is the only remaining device,
447 * We need to retry the write without
448 * FailFast
449 */
450 set_bit(R1BIO_WriteError, &r1_bio->state);
451 else {
452 /* Finished with this branch */
453 r1_bio->bios[mirror] = NULL;
454 to_put = bio;
455 }
456 } else
457 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 458 } else {
1da177e4 459 /*
e9c7469b
TH
460 * Set R1BIO_Uptodate in our master bio, so that we
461 * will return a good error code for to the higher
462 * levels even if IO on some other mirrored buffer
463 * fails.
464 *
465 * The 'master' represents the composite IO operation
466 * to user-side. So if something waits for IO, then it
467 * will wait for the 'master' bio.
1da177e4 468 */
4367af55
N
469 sector_t first_bad;
470 int bad_sectors;
471
cd5ff9a1
N
472 r1_bio->bios[mirror] = NULL;
473 to_put = bio;
3056e3ae
AL
474 /*
475 * Do not set R1BIO_Uptodate if the current device is
476 * rebuilding or Faulty. This is because we cannot use
477 * such device for properly reading the data back (we could
478 * potentially use it, if the current write would have felt
479 * before rdev->recovery_offset, but for simplicity we don't
480 * check this here.
481 */
e5872d58
N
482 if (test_bit(In_sync, &rdev->flags) &&
483 !test_bit(Faulty, &rdev->flags))
3056e3ae 484 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 485
4367af55 486 /* Maybe we can clear some bad blocks. */
e5872d58 487 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 488 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
489 r1_bio->bios[mirror] = IO_MADE_GOOD;
490 set_bit(R1BIO_MadeGood, &r1_bio->state);
491 }
492 }
493
e9c7469b 494 if (behind) {
841c1316
ML
495 /* we release behind master bio when all write are done */
496 if (r1_bio->behind_master_bio == bio)
497 to_put = NULL;
498
e5872d58 499 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
500 atomic_dec(&r1_bio->behind_remaining);
501
502 /*
503 * In behind mode, we ACK the master bio once the I/O
504 * has safely reached all non-writemostly
505 * disks. Setting the Returned bit ensures that this
506 * gets done only once -- we don't ever want to return
507 * -EIO here, instead we'll wait
508 */
509 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511 /* Maybe we can return now */
512 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
514 pr_debug("raid1: behind end write sectors"
515 " %llu-%llu\n",
4f024f37
KO
516 (unsigned long long) mbio->bi_iter.bi_sector,
517 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 518 call_bio_endio(r1_bio);
4b6d287f
N
519 }
520 }
521 }
4367af55 522 if (r1_bio->bios[mirror] == NULL)
e5872d58 523 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 524
1da177e4 525 /*
1da177e4
LT
526 * Let's see if all mirrored write operations have finished
527 * already.
528 */
af6d7b76 529 r1_bio_write_done(r1_bio);
c70810b3 530
04b857f7
N
531 if (to_put)
532 bio_put(to_put);
1da177e4
LT
533}
534
fd76863e 535static sector_t align_to_barrier_unit_end(sector_t start_sector,
536 sector_t sectors)
537{
538 sector_t len;
539
540 WARN_ON(sectors == 0);
541 /*
542 * len is the number of sectors from start_sector to end of the
543 * barrier unit which start_sector belongs to.
544 */
545 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546 start_sector;
547
548 if (len > sectors)
549 len = sectors;
550
551 return len;
552}
553
1da177e4
LT
554/*
555 * This routine returns the disk from which the requested read should
556 * be done. There is a per-array 'next expected sequential IO' sector
557 * number - if this matches on the next IO then we use the last disk.
558 * There is also a per-disk 'last know head position' sector that is
559 * maintained from IRQ contexts, both the normal and the resync IO
560 * completion handlers update this position correctly. If there is no
561 * perfect sequential match then we pick the disk whose head is closest.
562 *
563 * If there are 2 mirrors in the same 2 devices, performance degrades
564 * because position is mirror, not device based.
565 *
566 * The rdev for the device selected will have nr_pending incremented.
567 */
e8096360 568static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 569{
af3a2cd6 570 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
571 int sectors;
572 int best_good_sectors;
9dedf603
SL
573 int best_disk, best_dist_disk, best_pending_disk;
574 int has_nonrot_disk;
be4d3280 575 int disk;
76073054 576 sector_t best_dist;
9dedf603 577 unsigned int min_pending;
3cb03002 578 struct md_rdev *rdev;
f3ac8bf7 579 int choose_first;
12cee5a8 580 int choose_next_idle;
1da177e4
LT
581
582 rcu_read_lock();
583 /*
8ddf9efe 584 * Check if we can balance. We can balance on the whole
1da177e4
LT
585 * device if no resync is going on, or below the resync window.
586 * We take the first readable disk when above the resync window.
587 */
588 retry:
d2eb35ac 589 sectors = r1_bio->sectors;
76073054 590 best_disk = -1;
9dedf603 591 best_dist_disk = -1;
76073054 592 best_dist = MaxSector;
9dedf603
SL
593 best_pending_disk = -1;
594 min_pending = UINT_MAX;
d2eb35ac 595 best_good_sectors = 0;
9dedf603 596 has_nonrot_disk = 0;
12cee5a8 597 choose_next_idle = 0;
2e52d449 598 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 599
7d49ffcf
GR
600 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601 (mddev_is_clustered(conf->mddev) &&
90382ed9 602 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
603 this_sector + sectors)))
604 choose_first = 1;
605 else
606 choose_first = 0;
1da177e4 607
be4d3280 608 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 609 sector_t dist;
d2eb35ac
N
610 sector_t first_bad;
611 int bad_sectors;
9dedf603 612 unsigned int pending;
12cee5a8 613 bool nonrot;
d2eb35ac 614
f3ac8bf7
N
615 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616 if (r1_bio->bios[disk] == IO_BLOCKED
617 || rdev == NULL
76073054 618 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 619 continue;
76073054
N
620 if (!test_bit(In_sync, &rdev->flags) &&
621 rdev->recovery_offset < this_sector + sectors)
1da177e4 622 continue;
76073054
N
623 if (test_bit(WriteMostly, &rdev->flags)) {
624 /* Don't balance among write-mostly, just
625 * use the first as a last resort */
d1901ef0 626 if (best_dist_disk < 0) {
307729c8
N
627 if (is_badblock(rdev, this_sector, sectors,
628 &first_bad, &bad_sectors)) {
816b0acf 629 if (first_bad <= this_sector)
307729c8
N
630 /* Cannot use this */
631 continue;
632 best_good_sectors = first_bad - this_sector;
633 } else
634 best_good_sectors = sectors;
d1901ef0
TH
635 best_dist_disk = disk;
636 best_pending_disk = disk;
307729c8 637 }
76073054
N
638 continue;
639 }
640 /* This is a reasonable device to use. It might
641 * even be best.
642 */
d2eb35ac
N
643 if (is_badblock(rdev, this_sector, sectors,
644 &first_bad, &bad_sectors)) {
645 if (best_dist < MaxSector)
646 /* already have a better device */
647 continue;
648 if (first_bad <= this_sector) {
649 /* cannot read here. If this is the 'primary'
650 * device, then we must not read beyond
651 * bad_sectors from another device..
652 */
653 bad_sectors -= (this_sector - first_bad);
654 if (choose_first && sectors > bad_sectors)
655 sectors = bad_sectors;
656 if (best_good_sectors > sectors)
657 best_good_sectors = sectors;
658
659 } else {
660 sector_t good_sectors = first_bad - this_sector;
661 if (good_sectors > best_good_sectors) {
662 best_good_sectors = good_sectors;
663 best_disk = disk;
664 }
665 if (choose_first)
666 break;
667 }
668 continue;
669 } else
670 best_good_sectors = sectors;
671
2e52d449
N
672 if (best_disk >= 0)
673 /* At least two disks to choose from so failfast is OK */
674 set_bit(R1BIO_FailFast, &r1_bio->state);
675
12cee5a8
SL
676 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
677 has_nonrot_disk |= nonrot;
9dedf603 678 pending = atomic_read(&rdev->nr_pending);
76073054 679 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 680 if (choose_first) {
76073054 681 best_disk = disk;
1da177e4
LT
682 break;
683 }
12cee5a8
SL
684 /* Don't change to another disk for sequential reads */
685 if (conf->mirrors[disk].next_seq_sect == this_sector
686 || dist == 0) {
687 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
688 struct raid1_info *mirror = &conf->mirrors[disk];
689
690 best_disk = disk;
691 /*
692 * If buffered sequential IO size exceeds optimal
693 * iosize, check if there is idle disk. If yes, choose
694 * the idle disk. read_balance could already choose an
695 * idle disk before noticing it's a sequential IO in
696 * this disk. This doesn't matter because this disk
697 * will idle, next time it will be utilized after the
698 * first disk has IO size exceeds optimal iosize. In
699 * this way, iosize of the first disk will be optimal
700 * iosize at least. iosize of the second disk might be
701 * small, but not a big deal since when the second disk
702 * starts IO, the first disk is likely still busy.
703 */
704 if (nonrot && opt_iosize > 0 &&
705 mirror->seq_start != MaxSector &&
706 mirror->next_seq_sect > opt_iosize &&
707 mirror->next_seq_sect - opt_iosize >=
708 mirror->seq_start) {
709 choose_next_idle = 1;
710 continue;
711 }
712 break;
713 }
12cee5a8
SL
714
715 if (choose_next_idle)
716 continue;
9dedf603
SL
717
718 if (min_pending > pending) {
719 min_pending = pending;
720 best_pending_disk = disk;
721 }
722
76073054
N
723 if (dist < best_dist) {
724 best_dist = dist;
9dedf603 725 best_dist_disk = disk;
1da177e4 726 }
f3ac8bf7 727 }
1da177e4 728
9dedf603
SL
729 /*
730 * If all disks are rotational, choose the closest disk. If any disk is
731 * non-rotational, choose the disk with less pending request even the
732 * disk is rotational, which might/might not be optimal for raids with
733 * mixed ratation/non-rotational disks depending on workload.
734 */
735 if (best_disk == -1) {
2e52d449 736 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
737 best_disk = best_pending_disk;
738 else
739 best_disk = best_dist_disk;
740 }
741
76073054
N
742 if (best_disk >= 0) {
743 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
744 if (!rdev)
745 goto retry;
746 atomic_inc(&rdev->nr_pending);
d2eb35ac 747 sectors = best_good_sectors;
12cee5a8
SL
748
749 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
750 conf->mirrors[best_disk].seq_start = this_sector;
751
be4d3280 752 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
753 }
754 rcu_read_unlock();
d2eb35ac 755 *max_sectors = sectors;
1da177e4 756
76073054 757 return best_disk;
1da177e4
LT
758}
759
5c675f83 760static int raid1_congested(struct mddev *mddev, int bits)
0d129228 761{
e8096360 762 struct r1conf *conf = mddev->private;
0d129228
N
763 int i, ret = 0;
764
4452226e 765 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
766 conf->pending_count >= max_queued_requests)
767 return 1;
768
0d129228 769 rcu_read_lock();
f53e29fc 770 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 771 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 772 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 773 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 774
1ed7242e
JB
775 BUG_ON(!q);
776
0d129228
N
777 /* Note the '|| 1' - when read_balance prefers
778 * non-congested targets, it can be removed
779 */
4452226e 780 if ((bits & (1 << WB_async_congested)) || 1)
dc3b17cc 781 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228 782 else
dc3b17cc 783 ret &= bdi_congested(q->backing_dev_info, bits);
0d129228
N
784 }
785 }
786 rcu_read_unlock();
787 return ret;
788}
0d129228 789
673ca68d
N
790static void flush_bio_list(struct r1conf *conf, struct bio *bio)
791{
792 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
793 bitmap_unplug(conf->mddev->bitmap);
794 wake_up(&conf->wait_barrier);
795
796 while (bio) { /* submit pending writes */
797 struct bio *next = bio->bi_next;
798 struct md_rdev *rdev = (void*)bio->bi_bdev;
799 bio->bi_next = NULL;
800 bio->bi_bdev = rdev->bdev;
801 if (test_bit(Faulty, &rdev->flags)) {
802 bio->bi_error = -EIO;
803 bio_endio(bio);
804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
805 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
806 /* Just ignore it */
807 bio_endio(bio);
808 else
809 generic_make_request(bio);
810 bio = next;
811 }
812}
813
e8096360 814static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
815{
816 /* Any writes that have been queued but are awaiting
817 * bitmap updates get flushed here.
a35e63ef 818 */
a35e63ef
N
819 spin_lock_irq(&conf->device_lock);
820
821 if (conf->pending_bio_list.head) {
822 struct bio *bio;
823 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 824 conf->pending_count = 0;
a35e63ef 825 spin_unlock_irq(&conf->device_lock);
673ca68d 826 flush_bio_list(conf, bio);
a35e63ef
N
827 } else
828 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
829}
830
17999be4
N
831/* Barriers....
832 * Sometimes we need to suspend IO while we do something else,
833 * either some resync/recovery, or reconfigure the array.
834 * To do this we raise a 'barrier'.
835 * The 'barrier' is a counter that can be raised multiple times
836 * to count how many activities are happening which preclude
837 * normal IO.
838 * We can only raise the barrier if there is no pending IO.
839 * i.e. if nr_pending == 0.
840 * We choose only to raise the barrier if no-one is waiting for the
841 * barrier to go down. This means that as soon as an IO request
842 * is ready, no other operations which require a barrier will start
843 * until the IO request has had a chance.
844 *
845 * So: regular IO calls 'wait_barrier'. When that returns there
846 * is no backgroup IO happening, It must arrange to call
847 * allow_barrier when it has finished its IO.
848 * backgroup IO calls must call raise_barrier. Once that returns
849 * there is no normal IO happeing. It must arrange to call
850 * lower_barrier when the particular background IO completes.
1da177e4 851 */
c2fd4c94 852static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 853{
fd76863e 854 int idx = sector_to_idx(sector_nr);
855
1da177e4 856 spin_lock_irq(&conf->resync_lock);
17999be4
N
857
858 /* Wait until no block IO is waiting */
824e47da 859 wait_event_lock_irq(conf->wait_barrier,
860 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 861 conf->resync_lock);
17999be4
N
862
863 /* block any new IO from starting */
824e47da 864 atomic_inc(&conf->barrier[idx]);
865 /*
866 * In raise_barrier() we firstly increase conf->barrier[idx] then
867 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
868 * increase conf->nr_pending[idx] then check conf->barrier[idx].
869 * A memory barrier here to make sure conf->nr_pending[idx] won't
870 * be fetched before conf->barrier[idx] is increased. Otherwise
871 * there will be a race between raise_barrier() and _wait_barrier().
872 */
873 smp_mb__after_atomic();
17999be4 874
79ef3a8a 875 /* For these conditions we must wait:
876 * A: while the array is in frozen state
fd76863e 877 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
878 * existing in corresponding I/O barrier bucket.
879 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
880 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 881 */
17999be4 882 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 883 !conf->array_frozen &&
824e47da 884 !atomic_read(&conf->nr_pending[idx]) &&
885 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
eed8c02e 886 conf->resync_lock);
17999be4 887
824e47da 888 atomic_inc(&conf->nr_pending[idx]);
17999be4
N
889 spin_unlock_irq(&conf->resync_lock);
890}
891
fd76863e 892static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 893{
fd76863e 894 int idx = sector_to_idx(sector_nr);
895
824e47da 896 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 897
824e47da 898 atomic_dec(&conf->barrier[idx]);
899 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
900 wake_up(&conf->wait_barrier);
901}
902
fd76863e 903static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 904{
824e47da 905 /*
906 * We need to increase conf->nr_pending[idx] very early here,
907 * then raise_barrier() can be blocked when it waits for
908 * conf->nr_pending[idx] to be 0. Then we can avoid holding
909 * conf->resync_lock when there is no barrier raised in same
910 * barrier unit bucket. Also if the array is frozen, I/O
911 * should be blocked until array is unfrozen.
912 */
913 atomic_inc(&conf->nr_pending[idx]);
914 /*
915 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
916 * check conf->barrier[idx]. In raise_barrier() we firstly increase
917 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
918 * barrier is necessary here to make sure conf->barrier[idx] won't be
919 * fetched before conf->nr_pending[idx] is increased. Otherwise there
920 * will be a race between _wait_barrier() and raise_barrier().
921 */
922 smp_mb__after_atomic();
79ef3a8a 923
824e47da 924 /*
925 * Don't worry about checking two atomic_t variables at same time
926 * here. If during we check conf->barrier[idx], the array is
927 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
928 * 0, it is safe to return and make the I/O continue. Because the
929 * array is frozen, all I/O returned here will eventually complete
930 * or be queued, no race will happen. See code comment in
931 * frozen_array().
932 */
933 if (!READ_ONCE(conf->array_frozen) &&
934 !atomic_read(&conf->barrier[idx]))
935 return;
79ef3a8a 936
824e47da 937 /*
938 * After holding conf->resync_lock, conf->nr_pending[idx]
939 * should be decreased before waiting for barrier to drop.
940 * Otherwise, we may encounter a race condition because
941 * raise_barrer() might be waiting for conf->nr_pending[idx]
942 * to be 0 at same time.
943 */
944 spin_lock_irq(&conf->resync_lock);
945 atomic_inc(&conf->nr_waiting[idx]);
946 atomic_dec(&conf->nr_pending[idx]);
947 /*
948 * In case freeze_array() is waiting for
949 * get_unqueued_pending() == extra
950 */
951 wake_up(&conf->wait_barrier);
952 /* Wait for the barrier in same barrier unit bucket to drop. */
953 wait_event_lock_irq(conf->wait_barrier,
954 !conf->array_frozen &&
955 !atomic_read(&conf->barrier[idx]),
956 conf->resync_lock);
957 atomic_inc(&conf->nr_pending[idx]);
958 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 959 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 960}
961
fd76863e 962static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 963{
fd76863e 964 int idx = sector_to_idx(sector_nr);
79ef3a8a 965
824e47da 966 /*
967 * Very similar to _wait_barrier(). The difference is, for read
968 * I/O we don't need wait for sync I/O, but if the whole array
969 * is frozen, the read I/O still has to wait until the array is
970 * unfrozen. Since there is no ordering requirement with
971 * conf->barrier[idx] here, memory barrier is unnecessary as well.
972 */
973 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 974
824e47da 975 if (!READ_ONCE(conf->array_frozen))
976 return;
977
978 spin_lock_irq(&conf->resync_lock);
979 atomic_inc(&conf->nr_waiting[idx]);
980 atomic_dec(&conf->nr_pending[idx]);
981 /*
982 * In case freeze_array() is waiting for
983 * get_unqueued_pending() == extra
984 */
985 wake_up(&conf->wait_barrier);
986 /* Wait for array to be unfrozen */
987 wait_event_lock_irq(conf->wait_barrier,
988 !conf->array_frozen,
989 conf->resync_lock);
990 atomic_inc(&conf->nr_pending[idx]);
991 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
992 spin_unlock_irq(&conf->resync_lock);
993}
994
fd76863e 995static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 996{
fd76863e 997 int idx = sector_to_idx(sector_nr);
79ef3a8a 998
fd76863e 999 _wait_barrier(conf, idx);
1000}
1001
1002static void wait_all_barriers(struct r1conf *conf)
1003{
1004 int idx;
1005
1006 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1007 _wait_barrier(conf, idx);
1008}
1009
1010static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1011{
824e47da 1012 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
1013 wake_up(&conf->wait_barrier);
1014}
1015
fd76863e 1016static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1017{
1018 int idx = sector_to_idx(sector_nr);
1019
1020 _allow_barrier(conf, idx);
1021}
1022
1023static void allow_all_barriers(struct r1conf *conf)
1024{
1025 int idx;
1026
1027 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1028 _allow_barrier(conf, idx);
1029}
1030
1031/* conf->resync_lock should be held */
1032static int get_unqueued_pending(struct r1conf *conf)
1033{
1034 int idx, ret;
1035
1036 for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1037 ret += atomic_read(&conf->nr_pending[idx]) -
1038 atomic_read(&conf->nr_queued[idx]);
fd76863e 1039
1040 return ret;
1041}
1042
e2d59925 1043static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1044{
fd76863e 1045 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1046 * go quiet.
fd76863e 1047 * This is called in two situations:
1048 * 1) management command handlers (reshape, remove disk, quiesce).
1049 * 2) one normal I/O request failed.
1050
1051 * After array_frozen is set to 1, new sync IO will be blocked at
1052 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1053 * or wait_read_barrier(). The flying I/Os will either complete or be
1054 * queued. When everything goes quite, there are only queued I/Os left.
1055
1056 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1057 * barrier bucket index which this I/O request hits. When all sync and
1058 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1059 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1060 * in handle_read_error(), we may call freeze_array() before trying to
1061 * fix the read error. In this case, the error read I/O is not queued,
1062 * so get_unqueued_pending() == 1.
1063 *
1064 * Therefore before this function returns, we need to wait until
1065 * get_unqueued_pendings(conf) gets equal to extra. For
1066 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1067 */
1068 spin_lock_irq(&conf->resync_lock);
b364e3d0 1069 conf->array_frozen = 1;
578b54ad 1070 raid1_log(conf->mddev, "wait freeze");
fd76863e 1071 wait_event_lock_irq_cmd(
1072 conf->wait_barrier,
1073 get_unqueued_pending(conf) == extra,
1074 conf->resync_lock,
1075 flush_pending_writes(conf));
ddaf22ab
N
1076 spin_unlock_irq(&conf->resync_lock);
1077}
e8096360 1078static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1079{
1080 /* reverse the effect of the freeze */
1081 spin_lock_irq(&conf->resync_lock);
b364e3d0 1082 conf->array_frozen = 0;
ddaf22ab 1083 spin_unlock_irq(&conf->resync_lock);
824e47da 1084 wake_up(&conf->wait_barrier);
ddaf22ab
N
1085}
1086
841c1316 1087static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1088 struct bio *bio)
4b6d287f 1089{
cb83efcf 1090 int size = bio->bi_iter.bi_size;
841c1316
ML
1091 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092 int i = 0;
1093 struct bio *behind_bio = NULL;
1094
1095 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1096 if (!behind_bio)
1097 goto fail;
4b6d287f 1098
41743c1f
SL
1099 /* discard op, we don't support writezero/writesame yet */
1100 if (!bio_has_data(bio))
1101 goto skip_copy;
1102
841c1316
ML
1103 while (i < vcnt && size) {
1104 struct page *page;
1105 int len = min_t(int, PAGE_SIZE, size);
1106
1107 page = alloc_page(GFP_NOIO);
1108 if (unlikely(!page))
1109 goto free_pages;
1110
1111 bio_add_page(behind_bio, page, len, 0);
1112
1113 size -= len;
1114 i++;
4b6d287f 1115 }
841c1316 1116
cb83efcf 1117 bio_copy_data(behind_bio, bio);
41743c1f 1118skip_copy:
841c1316 1119 r1_bio->behind_master_bio = behind_bio;;
af6d7b76 1120 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1121
841c1316
ML
1122 return behind_bio;
1123
1124free_pages:
4f024f37
KO
1125 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1126 bio->bi_iter.bi_size);
841c1316
ML
1127 bio_free_pages(behind_bio);
1128fail:
1129 return behind_bio;
4b6d287f
N
1130}
1131
f54a9d0e
N
1132struct raid1_plug_cb {
1133 struct blk_plug_cb cb;
1134 struct bio_list pending;
1135 int pending_cnt;
1136};
1137
1138static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1139{
1140 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1141 cb);
1142 struct mddev *mddev = plug->cb.data;
1143 struct r1conf *conf = mddev->private;
1144 struct bio *bio;
1145
874807a8 1146 if (from_schedule || current->bio_list) {
f54a9d0e
N
1147 spin_lock_irq(&conf->device_lock);
1148 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1149 conf->pending_count += plug->pending_cnt;
1150 spin_unlock_irq(&conf->device_lock);
ee0b0244 1151 wake_up(&conf->wait_barrier);
f54a9d0e
N
1152 md_wakeup_thread(mddev->thread);
1153 kfree(plug);
1154 return;
1155 }
1156
1157 /* we aren't scheduling, so we can do the write-out directly. */
1158 bio = bio_list_get(&plug->pending);
673ca68d 1159 flush_bio_list(conf, bio);
f54a9d0e
N
1160 kfree(plug);
1161}
1162
689389a0
N
1163static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1164{
1165 r1_bio->master_bio = bio;
1166 r1_bio->sectors = bio_sectors(bio);
1167 r1_bio->state = 0;
1168 r1_bio->mddev = mddev;
1169 r1_bio->sector = bio->bi_iter.bi_sector;
1170}
1171
fd76863e 1172static inline struct r1bio *
689389a0 1173alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1174{
1175 struct r1conf *conf = mddev->private;
1176 struct r1bio *r1_bio;
1177
1178 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
689389a0
N
1179 /* Ensure no bio records IO_BLOCKED */
1180 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1181 init_r1bio(r1_bio, mddev, bio);
fd76863e 1182 return r1_bio;
1183}
1184
c230e7e5 1185static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1186 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1187{
e8096360 1188 struct r1conf *conf = mddev->private;
0eaf822c 1189 struct raid1_info *mirror;
1da177e4 1190 struct bio *read_bio;
3b046a97
RL
1191 struct bitmap *bitmap = mddev->bitmap;
1192 const int op = bio_op(bio);
1193 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1194 int max_sectors;
1195 int rdisk;
689389a0
N
1196 bool print_msg = !!r1_bio;
1197 char b[BDEVNAME_SIZE];
1198
1199 /*
1200 * If r1_bio is set, we are blocking the raid1d thread
1201 * so there is a tiny risk of deadlock. So ask for
1202 * emergency memory if needed.
1203 */
1204 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1205
1206 if (print_msg) {
1207 /* Need to get the block device name carefully */
1208 struct md_rdev *rdev;
1209 rcu_read_lock();
1210 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1211 if (rdev)
1212 bdevname(rdev->bdev, b);
1213 else
1214 strcpy(b, "???");
1215 rcu_read_unlock();
1216 }
3b046a97 1217
fd76863e 1218 /*
1219 * Still need barrier for READ in case that whole
1220 * array is frozen.
1221 */
1222 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1223
689389a0
N
1224 if (!r1_bio)
1225 r1_bio = alloc_r1bio(mddev, bio);
1226 else
1227 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1228 r1_bio->sectors = max_read_sectors;
3b046a97 1229
fd76863e 1230 /*
1231 * make_request() can abort the operation when read-ahead is being
1232 * used and no empty request is available.
1233 */
3b046a97
RL
1234 rdisk = read_balance(conf, r1_bio, &max_sectors);
1235
1236 if (rdisk < 0) {
1237 /* couldn't find anywhere to read from */
689389a0
N
1238 if (print_msg) {
1239 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1240 mdname(mddev),
1241 b,
1242 (unsigned long long)r1_bio->sector);
1243 }
3b046a97
RL
1244 raid_end_bio_io(r1_bio);
1245 return;
1246 }
1247 mirror = conf->mirrors + rdisk;
1248
689389a0
N
1249 if (print_msg)
1250 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1251 mdname(mddev),
1252 (unsigned long long)r1_bio->sector,
1253 bdevname(mirror->rdev->bdev, b));
1254
3b046a97
RL
1255 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1256 bitmap) {
1257 /*
1258 * Reading from a write-mostly device must take care not to
1259 * over-take any writes that are 'behind'
1260 */
1261 raid1_log(mddev, "wait behind writes");
1262 wait_event(bitmap->behind_wait,
1263 atomic_read(&bitmap->behind_writes) == 0);
1264 }
c230e7e5
N
1265
1266 if (max_sectors < bio_sectors(bio)) {
1267 struct bio *split = bio_split(bio, max_sectors,
689389a0 1268 gfp, conf->bio_split);
c230e7e5
N
1269 bio_chain(split, bio);
1270 generic_make_request(bio);
1271 bio = split;
1272 r1_bio->master_bio = bio;
1273 r1_bio->sectors = max_sectors;
1274 }
1275
3b046a97 1276 r1_bio->read_disk = rdisk;
3b046a97 1277
689389a0 1278 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
3b046a97
RL
1279
1280 r1_bio->bios[rdisk] = read_bio;
1281
1282 read_bio->bi_iter.bi_sector = r1_bio->sector +
1283 mirror->rdev->data_offset;
1284 read_bio->bi_bdev = mirror->rdev->bdev;
1285 read_bio->bi_end_io = raid1_end_read_request;
1286 bio_set_op_attrs(read_bio, op, do_sync);
1287 if (test_bit(FailFast, &mirror->rdev->flags) &&
1288 test_bit(R1BIO_FailFast, &r1_bio->state))
1289 read_bio->bi_opf |= MD_FAILFAST;
1290 read_bio->bi_private = r1_bio;
1291
1292 if (mddev->gendisk)
1293 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1294 read_bio, disk_devt(mddev->gendisk),
1295 r1_bio->sector);
1296
c230e7e5 1297 generic_make_request(read_bio);
3b046a97
RL
1298}
1299
c230e7e5
N
1300static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1301 int max_write_sectors)
3b046a97
RL
1302{
1303 struct r1conf *conf = mddev->private;
fd76863e 1304 struct r1bio *r1_bio;
1f68f0c4 1305 int i, disks;
3b046a97 1306 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1307 unsigned long flags;
3cb03002 1308 struct md_rdev *blocked_rdev;
f54a9d0e
N
1309 struct blk_plug_cb *cb;
1310 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1311 int first_clone;
1f68f0c4 1312 int max_sectors;
191ea9b2 1313
1da177e4
LT
1314 /*
1315 * Register the new request and wait if the reconstruction
1316 * thread has put up a bar for new requests.
1317 * Continue immediately if no resync is active currently.
1318 */
62de608d 1319
3d310eb7
N
1320 md_write_start(mddev, bio); /* wait on superblock update early */
1321
3b046a97 1322 if ((bio_end_sector(bio) > mddev->suspend_lo &&
589a1c49
GR
1323 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1324 (mddev_is_clustered(mddev) &&
90382ed9 1325 md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1326 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1327
1328 /*
1329 * As the suspend_* range is controlled by userspace, we want
1330 * an interruptible wait.
6eef4b21
N
1331 */
1332 DEFINE_WAIT(w);
1333 for (;;) {
1334 flush_signals(current);
1335 prepare_to_wait(&conf->wait_barrier,
1336 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1337 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1338 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1339 (mddev_is_clustered(mddev) &&
90382ed9 1340 !md_cluster_ops->area_resyncing(mddev, WRITE,
3b046a97
RL
1341 bio->bi_iter.bi_sector,
1342 bio_end_sector(bio))))
6eef4b21
N
1343 break;
1344 schedule();
1345 }
1346 finish_wait(&conf->wait_barrier, &w);
1347 }
fd76863e 1348 wait_barrier(conf, bio->bi_iter.bi_sector);
1349
689389a0 1350 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1351 r1_bio->sectors = max_write_sectors;
fd76863e 1352
34db0cd6
N
1353 if (conf->pending_count >= max_queued_requests) {
1354 md_wakeup_thread(mddev->thread);
578b54ad 1355 raid1_log(mddev, "wait queued");
34db0cd6
N
1356 wait_event(conf->wait_barrier,
1357 conf->pending_count < max_queued_requests);
1358 }
1f68f0c4 1359 /* first select target devices under rcu_lock and
1da177e4
LT
1360 * inc refcount on their rdev. Record them by setting
1361 * bios[x] to bio
1f68f0c4
N
1362 * If there are known/acknowledged bad blocks on any device on
1363 * which we have seen a write error, we want to avoid writing those
1364 * blocks.
1365 * This potentially requires several writes to write around
1366 * the bad blocks. Each set of writes gets it's own r1bio
1367 * with a set of bios attached.
1da177e4 1368 */
c3b328ac 1369
8f19ccb2 1370 disks = conf->raid_disks * 2;
6bfe0b49
DW
1371 retry_write:
1372 blocked_rdev = NULL;
1da177e4 1373 rcu_read_lock();
1f68f0c4 1374 max_sectors = r1_bio->sectors;
1da177e4 1375 for (i = 0; i < disks; i++) {
3cb03002 1376 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1377 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1378 atomic_inc(&rdev->nr_pending);
1379 blocked_rdev = rdev;
1380 break;
1381 }
1f68f0c4 1382 r1_bio->bios[i] = NULL;
8ae12666 1383 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1384 if (i < conf->raid_disks)
1385 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1386 continue;
1387 }
1388
1389 atomic_inc(&rdev->nr_pending);
1390 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1391 sector_t first_bad;
1392 int bad_sectors;
1393 int is_bad;
1394
3b046a97 1395 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1396 &first_bad, &bad_sectors);
1397 if (is_bad < 0) {
1398 /* mustn't write here until the bad block is
1399 * acknowledged*/
1400 set_bit(BlockedBadBlocks, &rdev->flags);
1401 blocked_rdev = rdev;
1402 break;
1403 }
1404 if (is_bad && first_bad <= r1_bio->sector) {
1405 /* Cannot write here at all */
1406 bad_sectors -= (r1_bio->sector - first_bad);
1407 if (bad_sectors < max_sectors)
1408 /* mustn't write more than bad_sectors
1409 * to other devices yet
1410 */
1411 max_sectors = bad_sectors;
03c902e1 1412 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1413 /* We don't set R1BIO_Degraded as that
1414 * only applies if the disk is
1415 * missing, so it might be re-added,
1416 * and we want to know to recover this
1417 * chunk.
1418 * In this case the device is here,
1419 * and the fact that this chunk is not
1420 * in-sync is recorded in the bad
1421 * block log
1422 */
1423 continue;
964147d5 1424 }
1f68f0c4
N
1425 if (is_bad) {
1426 int good_sectors = first_bad - r1_bio->sector;
1427 if (good_sectors < max_sectors)
1428 max_sectors = good_sectors;
1429 }
1430 }
1431 r1_bio->bios[i] = bio;
1da177e4
LT
1432 }
1433 rcu_read_unlock();
1434
6bfe0b49
DW
1435 if (unlikely(blocked_rdev)) {
1436 /* Wait for this device to become unblocked */
1437 int j;
1438
1439 for (j = 0; j < i; j++)
1440 if (r1_bio->bios[j])
1441 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1442 r1_bio->state = 0;
fd76863e 1443 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1444 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1445 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1446 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1447 goto retry_write;
1448 }
1449
c230e7e5
N
1450 if (max_sectors < bio_sectors(bio)) {
1451 struct bio *split = bio_split(bio, max_sectors,
1452 GFP_NOIO, conf->bio_split);
1453 bio_chain(split, bio);
1454 generic_make_request(bio);
1455 bio = split;
1456 r1_bio->master_bio = bio;
1f68f0c4 1457 r1_bio->sectors = max_sectors;
c230e7e5 1458 }
4b6d287f 1459
4e78064f 1460 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1461 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1462
1f68f0c4 1463 first_clone = 1;
d8c84c4f 1464
1da177e4 1465 for (i = 0; i < disks; i++) {
8e58e327 1466 struct bio *mbio = NULL;
1da177e4
LT
1467 if (!r1_bio->bios[i])
1468 continue;
1469
1f68f0c4
N
1470
1471 if (first_clone) {
1472 /* do behind I/O ?
1473 * Not if there are too many, or cannot
1474 * allocate memory, or a reader on WriteMostly
1475 * is waiting for behind writes to flush */
1476 if (bitmap &&
1477 (atomic_read(&bitmap->behind_writes)
1478 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1479 !waitqueue_active(&bitmap->behind_wait)) {
cb83efcf 1480 mbio = alloc_behind_master_bio(r1_bio, bio);
8e58e327 1481 }
1f68f0c4
N
1482
1483 bitmap_startwrite(bitmap, r1_bio->sector,
1484 r1_bio->sectors,
1485 test_bit(R1BIO_BehindIO,
1486 &r1_bio->state));
1487 first_clone = 0;
1488 }
8e58e327
ML
1489
1490 if (!mbio) {
841c1316
ML
1491 if (r1_bio->behind_master_bio)
1492 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1493 GFP_NOIO,
1494 mddev->bio_set);
c230e7e5 1495 else
1ec49223 1496 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
8e58e327
ML
1497 }
1498
841c1316 1499 if (r1_bio->behind_master_bio) {
4b6d287f
N
1500 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1501 atomic_inc(&r1_bio->behind_remaining);
1502 }
1503
1f68f0c4
N
1504 r1_bio->bios[i] = mbio;
1505
4f024f37 1506 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1507 conf->mirrors[i].rdev->data_offset);
109e3765 1508 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1f68f0c4 1509 mbio->bi_end_io = raid1_end_write_request;
a682e003 1510 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1511 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1512 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1513 conf->raid_disks - mddev->degraded > 1)
1514 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1515 mbio->bi_private = r1_bio;
1516
1da177e4 1517 atomic_inc(&r1_bio->remaining);
f54a9d0e 1518
109e3765
N
1519 if (mddev->gendisk)
1520 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1521 mbio, disk_devt(mddev->gendisk),
1522 r1_bio->sector);
1523 /* flush_pending_writes() needs access to the rdev so...*/
1524 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1525
f54a9d0e
N
1526 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1527 if (cb)
1528 plug = container_of(cb, struct raid1_plug_cb, cb);
1529 else
1530 plug = NULL;
4e78064f 1531 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1532 if (plug) {
1533 bio_list_add(&plug->pending, mbio);
1534 plug->pending_cnt++;
1535 } else {
1536 bio_list_add(&conf->pending_bio_list, mbio);
1537 conf->pending_count++;
1538 }
4e78064f 1539 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1540 if (!plug)
b357f04a 1541 md_wakeup_thread(mddev->thread);
1da177e4 1542 }
1f68f0c4 1543
079fa166
N
1544 r1_bio_write_done(r1_bio);
1545
1546 /* In case raid1d snuck in to freeze_array */
1547 wake_up(&conf->wait_barrier);
1da177e4
LT
1548}
1549
3b046a97
RL
1550static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1551{
fd76863e 1552 sector_t sectors;
3b046a97 1553
aff8da09
SL
1554 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1555 md_flush_request(mddev, bio);
1556 return;
1557 }
3b046a97 1558
c230e7e5
N
1559 /*
1560 * There is a limit to the maximum size, but
1561 * the read/write handler might find a lower limit
1562 * due to bad blocks. To avoid multiple splits,
1563 * we pass the maximum number of sectors down
1564 * and let the lower level perform the split.
1565 */
1566 sectors = align_to_barrier_unit_end(
1567 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1568
c230e7e5 1569 if (bio_data_dir(bio) == READ)
689389a0 1570 raid1_read_request(mddev, bio, sectors, NULL);
c230e7e5
N
1571 else
1572 raid1_write_request(mddev, bio, sectors);
3b046a97
RL
1573}
1574
849674e4 1575static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1576{
e8096360 1577 struct r1conf *conf = mddev->private;
1da177e4
LT
1578 int i;
1579
1580 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1581 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1582 rcu_read_lock();
1583 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1584 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1585 seq_printf(seq, "%s",
ddac7c7e
N
1586 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1587 }
1588 rcu_read_unlock();
1da177e4
LT
1589 seq_printf(seq, "]");
1590}
1591
849674e4 1592static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1593{
1594 char b[BDEVNAME_SIZE];
e8096360 1595 struct r1conf *conf = mddev->private;
423f04d6 1596 unsigned long flags;
1da177e4
LT
1597
1598 /*
1599 * If it is not operational, then we have already marked it as dead
1600 * else if it is the last working disks, ignore the error, let the
1601 * next level up know.
1602 * else mark the drive as failed
1603 */
2e52d449 1604 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1605 if (test_bit(In_sync, &rdev->flags)
4044ba58 1606 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1607 /*
1608 * Don't fail the drive, act as though we were just a
4044ba58
N
1609 * normal single drive.
1610 * However don't try a recovery from this drive as
1611 * it is very likely to fail.
1da177e4 1612 */
5389042f 1613 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1614 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1615 return;
4044ba58 1616 }
de393cde 1617 set_bit(Blocked, &rdev->flags);
c04be0aa 1618 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1619 mddev->degraded++;
dd00a99e 1620 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1621 } else
1622 set_bit(Faulty, &rdev->flags);
423f04d6 1623 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1624 /*
1625 * if recovery is running, make sure it aborts.
1626 */
1627 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1628 set_mask_bits(&mddev->sb_flags, 0,
1629 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1630 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1631 "md/raid1:%s: Operation continuing on %d devices.\n",
1632 mdname(mddev), bdevname(rdev->bdev, b),
1633 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1634}
1635
e8096360 1636static void print_conf(struct r1conf *conf)
1da177e4
LT
1637{
1638 int i;
1da177e4 1639
1d41c216 1640 pr_debug("RAID1 conf printout:\n");
1da177e4 1641 if (!conf) {
1d41c216 1642 pr_debug("(!conf)\n");
1da177e4
LT
1643 return;
1644 }
1d41c216
N
1645 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1646 conf->raid_disks);
1da177e4 1647
ddac7c7e 1648 rcu_read_lock();
1da177e4
LT
1649 for (i = 0; i < conf->raid_disks; i++) {
1650 char b[BDEVNAME_SIZE];
3cb03002 1651 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1652 if (rdev)
1d41c216
N
1653 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1654 i, !test_bit(In_sync, &rdev->flags),
1655 !test_bit(Faulty, &rdev->flags),
1656 bdevname(rdev->bdev,b));
1da177e4 1657 }
ddac7c7e 1658 rcu_read_unlock();
1da177e4
LT
1659}
1660
e8096360 1661static void close_sync(struct r1conf *conf)
1da177e4 1662{
fd76863e 1663 wait_all_barriers(conf);
1664 allow_all_barriers(conf);
1da177e4
LT
1665
1666 mempool_destroy(conf->r1buf_pool);
1667 conf->r1buf_pool = NULL;
1668}
1669
fd01b88c 1670static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1671{
1672 int i;
e8096360 1673 struct r1conf *conf = mddev->private;
6b965620
N
1674 int count = 0;
1675 unsigned long flags;
1da177e4
LT
1676
1677 /*
f72ffdd6 1678 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1679 * and mark them readable.
1680 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1681 * device_lock used to avoid races with raid1_end_read_request
1682 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1683 */
423f04d6 1684 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1685 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1686 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1687 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1688 if (repl
1aee41f6 1689 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1690 && repl->recovery_offset == MaxSector
1691 && !test_bit(Faulty, &repl->flags)
1692 && !test_and_set_bit(In_sync, &repl->flags)) {
1693 /* replacement has just become active */
1694 if (!rdev ||
1695 !test_and_clear_bit(In_sync, &rdev->flags))
1696 count++;
1697 if (rdev) {
1698 /* Replaced device not technically
1699 * faulty, but we need to be sure
1700 * it gets removed and never re-added
1701 */
1702 set_bit(Faulty, &rdev->flags);
1703 sysfs_notify_dirent_safe(
1704 rdev->sysfs_state);
1705 }
1706 }
ddac7c7e 1707 if (rdev
61e4947c 1708 && rdev->recovery_offset == MaxSector
ddac7c7e 1709 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1710 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1711 count++;
654e8b5a 1712 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1713 }
1714 }
6b965620
N
1715 mddev->degraded -= count;
1716 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1717
1718 print_conf(conf);
6b965620 1719 return count;
1da177e4
LT
1720}
1721
fd01b88c 1722static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1723{
e8096360 1724 struct r1conf *conf = mddev->private;
199050ea 1725 int err = -EEXIST;
41158c7e 1726 int mirror = 0;
0eaf822c 1727 struct raid1_info *p;
6c2fce2e 1728 int first = 0;
30194636 1729 int last = conf->raid_disks - 1;
1da177e4 1730
5389042f
N
1731 if (mddev->recovery_disabled == conf->recovery_disabled)
1732 return -EBUSY;
1733
1501efad
DW
1734 if (md_integrity_add_rdev(rdev, mddev))
1735 return -ENXIO;
1736
6c2fce2e
NB
1737 if (rdev->raid_disk >= 0)
1738 first = last = rdev->raid_disk;
1739
70bcecdb
GR
1740 /*
1741 * find the disk ... but prefer rdev->saved_raid_disk
1742 * if possible.
1743 */
1744 if (rdev->saved_raid_disk >= 0 &&
1745 rdev->saved_raid_disk >= first &&
1746 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1747 first = last = rdev->saved_raid_disk;
1748
7ef449d1
N
1749 for (mirror = first; mirror <= last; mirror++) {
1750 p = conf->mirrors+mirror;
1751 if (!p->rdev) {
1da177e4 1752
9092c02d
JB
1753 if (mddev->gendisk)
1754 disk_stack_limits(mddev->gendisk, rdev->bdev,
1755 rdev->data_offset << 9);
1da177e4
LT
1756
1757 p->head_position = 0;
1758 rdev->raid_disk = mirror;
199050ea 1759 err = 0;
6aea114a
N
1760 /* As all devices are equivalent, we don't need a full recovery
1761 * if this was recently any drive of the array
1762 */
1763 if (rdev->saved_raid_disk < 0)
41158c7e 1764 conf->fullsync = 1;
d6065f7b 1765 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1766 break;
1767 }
7ef449d1
N
1768 if (test_bit(WantReplacement, &p->rdev->flags) &&
1769 p[conf->raid_disks].rdev == NULL) {
1770 /* Add this device as a replacement */
1771 clear_bit(In_sync, &rdev->flags);
1772 set_bit(Replacement, &rdev->flags);
1773 rdev->raid_disk = mirror;
1774 err = 0;
1775 conf->fullsync = 1;
1776 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1777 break;
1778 }
1779 }
9092c02d 1780 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1781 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1782 print_conf(conf);
199050ea 1783 return err;
1da177e4
LT
1784}
1785
b8321b68 1786static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1787{
e8096360 1788 struct r1conf *conf = mddev->private;
1da177e4 1789 int err = 0;
b8321b68 1790 int number = rdev->raid_disk;
0eaf822c 1791 struct raid1_info *p = conf->mirrors + number;
1da177e4 1792
b014f14c
N
1793 if (rdev != p->rdev)
1794 p = conf->mirrors + conf->raid_disks + number;
1795
1da177e4 1796 print_conf(conf);
b8321b68 1797 if (rdev == p->rdev) {
b2d444d7 1798 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1799 atomic_read(&rdev->nr_pending)) {
1800 err = -EBUSY;
1801 goto abort;
1802 }
046abeed 1803 /* Only remove non-faulty devices if recovery
dfc70645
N
1804 * is not possible.
1805 */
1806 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1807 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1808 mddev->degraded < conf->raid_disks) {
1809 err = -EBUSY;
1810 goto abort;
1811 }
1da177e4 1812 p->rdev = NULL;
d787be40
N
1813 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1814 synchronize_rcu();
1815 if (atomic_read(&rdev->nr_pending)) {
1816 /* lost the race, try later */
1817 err = -EBUSY;
1818 p->rdev = rdev;
1819 goto abort;
1820 }
1821 }
1822 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1823 /* We just removed a device that is being replaced.
1824 * Move down the replacement. We drain all IO before
1825 * doing this to avoid confusion.
1826 */
1827 struct md_rdev *repl =
1828 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1829 freeze_array(conf, 0);
8c7a2c2b
N
1830 clear_bit(Replacement, &repl->flags);
1831 p->rdev = repl;
1832 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1833 unfreeze_array(conf);
8c7a2c2b
N
1834 clear_bit(WantReplacement, &rdev->flags);
1835 } else
b014f14c 1836 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1837 err = md_integrity_register(mddev);
1da177e4
LT
1838 }
1839abort:
1840
1841 print_conf(conf);
1842 return err;
1843}
1844
4246a0b6 1845static void end_sync_read(struct bio *bio)
1da177e4 1846{
98d30c58 1847 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1848
0fc280f6 1849 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1850
1da177e4
LT
1851 /*
1852 * we have read a block, now it needs to be re-written,
1853 * or re-read if the read failed.
1854 * We don't do much here, just schedule handling by raid1d
1855 */
4246a0b6 1856 if (!bio->bi_error)
1da177e4 1857 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1858
1859 if (atomic_dec_and_test(&r1_bio->remaining))
1860 reschedule_retry(r1_bio);
1da177e4
LT
1861}
1862
4246a0b6 1863static void end_sync_write(struct bio *bio)
1da177e4 1864{
4246a0b6 1865 int uptodate = !bio->bi_error;
98d30c58 1866 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1867 struct mddev *mddev = r1_bio->mddev;
e8096360 1868 struct r1conf *conf = mddev->private;
4367af55
N
1869 sector_t first_bad;
1870 int bad_sectors;
854abd75 1871 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1872
6b1117d5 1873 if (!uptodate) {
57dab0bd 1874 sector_t sync_blocks = 0;
6b1117d5
N
1875 sector_t s = r1_bio->sector;
1876 long sectors_to_go = r1_bio->sectors;
1877 /* make sure these bits doesn't get cleared. */
1878 do {
5e3db645 1879 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1880 &sync_blocks, 1);
1881 s += sync_blocks;
1882 sectors_to_go -= sync_blocks;
1883 } while (sectors_to_go > 0);
854abd75
N
1884 set_bit(WriteErrorSeen, &rdev->flags);
1885 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1886 set_bit(MD_RECOVERY_NEEDED, &
1887 mddev->recovery);
d8f05d29 1888 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1889 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1890 &first_bad, &bad_sectors) &&
1891 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1892 r1_bio->sector,
1893 r1_bio->sectors,
1894 &first_bad, &bad_sectors)
1895 )
4367af55 1896 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1897
1da177e4 1898 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1899 int s = r1_bio->sectors;
d8f05d29
N
1900 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1901 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1902 reschedule_retry(r1_bio);
1903 else {
1904 put_buf(r1_bio);
1905 md_done_sync(mddev, s, uptodate);
1906 }
1da177e4 1907 }
1da177e4
LT
1908}
1909
3cb03002 1910static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1911 int sectors, struct page *page, int rw)
1912{
796a5cf0 1913 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1914 /* success */
1915 return 1;
19d67169 1916 if (rw == WRITE) {
d8f05d29 1917 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1918 if (!test_and_set_bit(WantReplacement,
1919 &rdev->flags))
1920 set_bit(MD_RECOVERY_NEEDED, &
1921 rdev->mddev->recovery);
1922 }
d8f05d29
N
1923 /* need to record an error - either for the block or the device */
1924 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1925 md_error(rdev->mddev, rdev);
1926 return 0;
1927}
1928
9f2c9d12 1929static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1930{
a68e5870
N
1931 /* Try some synchronous reads of other devices to get
1932 * good data, much like with normal read errors. Only
1933 * read into the pages we already have so we don't
1934 * need to re-issue the read request.
1935 * We don't need to freeze the array, because being in an
1936 * active sync request, there is no normal IO, and
1937 * no overlapping syncs.
06f60385
N
1938 * We don't need to check is_badblock() again as we
1939 * made sure that anything with a bad block in range
1940 * will have bi_end_io clear.
a68e5870 1941 */
fd01b88c 1942 struct mddev *mddev = r1_bio->mddev;
e8096360 1943 struct r1conf *conf = mddev->private;
a68e5870 1944 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 1945 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
1946 sector_t sect = r1_bio->sector;
1947 int sectors = r1_bio->sectors;
1948 int idx = 0;
2e52d449
N
1949 struct md_rdev *rdev;
1950
1951 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1952 if (test_bit(FailFast, &rdev->flags)) {
1953 /* Don't try recovering from here - just fail it
1954 * ... unless it is the last working device of course */
1955 md_error(mddev, rdev);
1956 if (test_bit(Faulty, &rdev->flags))
1957 /* Don't try to read from here, but make sure
1958 * put_buf does it's thing
1959 */
1960 bio->bi_end_io = end_sync_write;
1961 }
a68e5870
N
1962
1963 while(sectors) {
1964 int s = sectors;
1965 int d = r1_bio->read_disk;
1966 int success = 0;
78d7f5f7 1967 int start;
a68e5870
N
1968
1969 if (s > (PAGE_SIZE>>9))
1970 s = PAGE_SIZE >> 9;
1971 do {
1972 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1973 /* No rcu protection needed here devices
1974 * can only be removed when no resync is
1975 * active, and resync is currently active
1976 */
1977 rdev = conf->mirrors[d].rdev;
9d3d8011 1978 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 1979 pages[idx],
796a5cf0 1980 REQ_OP_READ, 0, false)) {
a68e5870
N
1981 success = 1;
1982 break;
1983 }
1984 }
1985 d++;
8f19ccb2 1986 if (d == conf->raid_disks * 2)
a68e5870
N
1987 d = 0;
1988 } while (!success && d != r1_bio->read_disk);
1989
78d7f5f7 1990 if (!success) {
a68e5870 1991 char b[BDEVNAME_SIZE];
3a9f28a5
N
1992 int abort = 0;
1993 /* Cannot read from anywhere, this block is lost.
1994 * Record a bad block on each device. If that doesn't
1995 * work just disable and interrupt the recovery.
1996 * Don't fail devices as that won't really help.
1997 */
1d41c216
N
1998 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1999 mdname(mddev),
2000 bdevname(bio->bi_bdev, b),
2001 (unsigned long long)r1_bio->sector);
8f19ccb2 2002 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
2003 rdev = conf->mirrors[d].rdev;
2004 if (!rdev || test_bit(Faulty, &rdev->flags))
2005 continue;
2006 if (!rdev_set_badblocks(rdev, sect, s, 0))
2007 abort = 1;
2008 }
2009 if (abort) {
d890fa2b
N
2010 conf->recovery_disabled =
2011 mddev->recovery_disabled;
3a9f28a5
N
2012 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2013 md_done_sync(mddev, r1_bio->sectors, 0);
2014 put_buf(r1_bio);
2015 return 0;
2016 }
2017 /* Try next page */
2018 sectors -= s;
2019 sect += s;
2020 idx++;
2021 continue;
d11c171e 2022 }
78d7f5f7
N
2023
2024 start = d;
2025 /* write it back and re-read */
2026 while (d != r1_bio->read_disk) {
2027 if (d == 0)
8f19ccb2 2028 d = conf->raid_disks * 2;
78d7f5f7
N
2029 d--;
2030 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2031 continue;
2032 rdev = conf->mirrors[d].rdev;
d8f05d29 2033 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2034 pages[idx],
d8f05d29 2035 WRITE) == 0) {
78d7f5f7
N
2036 r1_bio->bios[d]->bi_end_io = NULL;
2037 rdev_dec_pending(rdev, mddev);
9d3d8011 2038 }
78d7f5f7
N
2039 }
2040 d = start;
2041 while (d != r1_bio->read_disk) {
2042 if (d == 0)
8f19ccb2 2043 d = conf->raid_disks * 2;
78d7f5f7
N
2044 d--;
2045 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2046 continue;
2047 rdev = conf->mirrors[d].rdev;
d8f05d29 2048 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2049 pages[idx],
d8f05d29 2050 READ) != 0)
9d3d8011 2051 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2052 }
a68e5870
N
2053 sectors -= s;
2054 sect += s;
2055 idx ++;
2056 }
78d7f5f7 2057 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 2058 bio->bi_error = 0;
a68e5870
N
2059 return 1;
2060}
2061
c95e6385 2062static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2063{
2064 /* We have read all readable devices. If we haven't
2065 * got the block, then there is no hope left.
2066 * If we have, then we want to do a comparison
2067 * and skip the write if everything is the same.
2068 * If any blocks failed to read, then we need to
2069 * attempt an over-write
2070 */
fd01b88c 2071 struct mddev *mddev = r1_bio->mddev;
e8096360 2072 struct r1conf *conf = mddev->private;
a68e5870
N
2073 int primary;
2074 int i;
f4380a91 2075 int vcnt;
a68e5870 2076
30bc9b53
N
2077 /* Fix variable parts of all bios */
2078 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2079 for (i = 0; i < conf->raid_disks * 2; i++) {
2080 int j;
2081 int size;
4246a0b6 2082 int error;
60928a91 2083 struct bio_vec *bi;
30bc9b53 2084 struct bio *b = r1_bio->bios[i];
98d30c58 2085 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2086 if (b->bi_end_io != end_sync_read)
2087 continue;
4246a0b6
CH
2088 /* fixup the bio for reuse, but preserve errno */
2089 error = b->bi_error;
30bc9b53 2090 bio_reset(b);
4246a0b6 2091 b->bi_error = error;
30bc9b53 2092 b->bi_vcnt = vcnt;
4f024f37
KO
2093 b->bi_iter.bi_size = r1_bio->sectors << 9;
2094 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
2095 conf->mirrors[i].rdev->data_offset;
2096 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2097 b->bi_end_io = end_sync_read;
98d30c58
ML
2098 rp->raid_bio = r1_bio;
2099 b->bi_private = rp;
30bc9b53 2100
4f024f37 2101 size = b->bi_iter.bi_size;
60928a91 2102 bio_for_each_segment_all(bi, b, j) {
30bc9b53
N
2103 bi->bv_offset = 0;
2104 if (size > PAGE_SIZE)
2105 bi->bv_len = PAGE_SIZE;
2106 else
2107 bi->bv_len = size;
2108 size -= PAGE_SIZE;
2109 }
2110 }
8f19ccb2 2111 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2112 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 2113 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
2114 r1_bio->bios[primary]->bi_end_io = NULL;
2115 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2116 break;
2117 }
2118 r1_bio->read_disk = primary;
8f19ccb2 2119 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2120 int j;
78d7f5f7
N
2121 struct bio *pbio = r1_bio->bios[primary];
2122 struct bio *sbio = r1_bio->bios[i];
4246a0b6 2123 int error = sbio->bi_error;
44cf0f4d
ML
2124 struct page **ppages = get_resync_pages(pbio)->pages;
2125 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2126 struct bio_vec *bi;
8fc04e6e 2127 int page_len[RESYNC_PAGES] = { 0 };
a68e5870 2128
2aabaa65 2129 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2130 continue;
4246a0b6
CH
2131 /* Now we can 'fixup' the error value */
2132 sbio->bi_error = 0;
78d7f5f7 2133
60928a91
ML
2134 bio_for_each_segment_all(bi, sbio, j)
2135 page_len[j] = bi->bv_len;
2136
4246a0b6 2137 if (!error) {
78d7f5f7 2138 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2139 if (memcmp(page_address(ppages[j]),
2140 page_address(spages[j]),
60928a91 2141 page_len[j]))
78d7f5f7 2142 break;
69382e85 2143 }
78d7f5f7
N
2144 } else
2145 j = 0;
2146 if (j >= 0)
7f7583d4 2147 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2148 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 2149 && !error)) {
78d7f5f7
N
2150 /* No need to write to this device. */
2151 sbio->bi_end_io = NULL;
2152 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2153 continue;
2154 }
d3b45c2a
KO
2155
2156 bio_copy_data(sbio, pbio);
78d7f5f7 2157 }
a68e5870
N
2158}
2159
9f2c9d12 2160static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2161{
e8096360 2162 struct r1conf *conf = mddev->private;
a68e5870 2163 int i;
8f19ccb2 2164 int disks = conf->raid_disks * 2;
a68e5870
N
2165 struct bio *bio, *wbio;
2166
2167 bio = r1_bio->bios[r1_bio->read_disk];
2168
a68e5870
N
2169 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2170 /* ouch - failed to read all of that. */
2171 if (!fix_sync_read_error(r1_bio))
2172 return;
7ca78d57
N
2173
2174 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2175 process_checks(r1_bio);
2176
d11c171e
N
2177 /*
2178 * schedule writes
2179 */
1da177e4
LT
2180 atomic_set(&r1_bio->remaining, 1);
2181 for (i = 0; i < disks ; i++) {
2182 wbio = r1_bio->bios[i];
3e198f78
N
2183 if (wbio->bi_end_io == NULL ||
2184 (wbio->bi_end_io == end_sync_read &&
2185 (i == r1_bio->read_disk ||
2186 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2187 continue;
0c9d5b12
N
2188 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2189 continue;
1da177e4 2190
796a5cf0 2191 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2192 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2193 wbio->bi_opf |= MD_FAILFAST;
2194
3e198f78 2195 wbio->bi_end_io = end_sync_write;
1da177e4 2196 atomic_inc(&r1_bio->remaining);
aa8b57aa 2197 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2198
1da177e4
LT
2199 generic_make_request(wbio);
2200 }
2201
2202 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2203 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2204 int s = r1_bio->sectors;
2205 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2206 test_bit(R1BIO_WriteError, &r1_bio->state))
2207 reschedule_retry(r1_bio);
2208 else {
2209 put_buf(r1_bio);
2210 md_done_sync(mddev, s, 1);
2211 }
1da177e4
LT
2212 }
2213}
2214
2215/*
2216 * This is a kernel thread which:
2217 *
2218 * 1. Retries failed read operations on working mirrors.
2219 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2220 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2221 */
2222
e8096360 2223static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2224 sector_t sect, int sectors)
2225{
fd01b88c 2226 struct mddev *mddev = conf->mddev;
867868fb
N
2227 while(sectors) {
2228 int s = sectors;
2229 int d = read_disk;
2230 int success = 0;
2231 int start;
3cb03002 2232 struct md_rdev *rdev;
867868fb
N
2233
2234 if (s > (PAGE_SIZE>>9))
2235 s = PAGE_SIZE >> 9;
2236
2237 do {
d2eb35ac
N
2238 sector_t first_bad;
2239 int bad_sectors;
2240
707a6a42
N
2241 rcu_read_lock();
2242 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2243 if (rdev &&
da8840a7 2244 (test_bit(In_sync, &rdev->flags) ||
2245 (!test_bit(Faulty, &rdev->flags) &&
2246 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2247 is_badblock(rdev, sect, s,
707a6a42
N
2248 &first_bad, &bad_sectors) == 0) {
2249 atomic_inc(&rdev->nr_pending);
2250 rcu_read_unlock();
2251 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2252 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2253 success = 1;
2254 rdev_dec_pending(rdev, mddev);
2255 if (success)
2256 break;
2257 } else
2258 rcu_read_unlock();
2259 d++;
2260 if (d == conf->raid_disks * 2)
2261 d = 0;
867868fb
N
2262 } while (!success && d != read_disk);
2263
2264 if (!success) {
d8f05d29 2265 /* Cannot read from anywhere - mark it bad */
3cb03002 2266 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2267 if (!rdev_set_badblocks(rdev, sect, s, 0))
2268 md_error(mddev, rdev);
867868fb
N
2269 break;
2270 }
2271 /* write it back and re-read */
2272 start = d;
2273 while (d != read_disk) {
2274 if (d==0)
8f19ccb2 2275 d = conf->raid_disks * 2;
867868fb 2276 d--;
707a6a42
N
2277 rcu_read_lock();
2278 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2279 if (rdev &&
707a6a42
N
2280 !test_bit(Faulty, &rdev->flags)) {
2281 atomic_inc(&rdev->nr_pending);
2282 rcu_read_unlock();
d8f05d29
N
2283 r1_sync_page_io(rdev, sect, s,
2284 conf->tmppage, WRITE);
707a6a42
N
2285 rdev_dec_pending(rdev, mddev);
2286 } else
2287 rcu_read_unlock();
867868fb
N
2288 }
2289 d = start;
2290 while (d != read_disk) {
2291 char b[BDEVNAME_SIZE];
2292 if (d==0)
8f19ccb2 2293 d = conf->raid_disks * 2;
867868fb 2294 d--;
707a6a42
N
2295 rcu_read_lock();
2296 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2297 if (rdev &&
b8cb6b4c 2298 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2299 atomic_inc(&rdev->nr_pending);
2300 rcu_read_unlock();
d8f05d29
N
2301 if (r1_sync_page_io(rdev, sect, s,
2302 conf->tmppage, READ)) {
867868fb 2303 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2304 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2305 mdname(mddev), s,
2306 (unsigned long long)(sect +
2307 rdev->data_offset),
2308 bdevname(rdev->bdev, b));
867868fb 2309 }
707a6a42
N
2310 rdev_dec_pending(rdev, mddev);
2311 } else
2312 rcu_read_unlock();
867868fb
N
2313 }
2314 sectors -= s;
2315 sect += s;
2316 }
2317}
2318
9f2c9d12 2319static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2320{
fd01b88c 2321 struct mddev *mddev = r1_bio->mddev;
e8096360 2322 struct r1conf *conf = mddev->private;
3cb03002 2323 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2324
2325 /* bio has the data to be written to device 'i' where
2326 * we just recently had a write error.
2327 * We repeatedly clone the bio and trim down to one block,
2328 * then try the write. Where the write fails we record
2329 * a bad block.
2330 * It is conceivable that the bio doesn't exactly align with
2331 * blocks. We must handle this somehow.
2332 *
2333 * We currently own a reference on the rdev.
2334 */
2335
2336 int block_sectors;
2337 sector_t sector;
2338 int sectors;
2339 int sect_to_write = r1_bio->sectors;
2340 int ok = 1;
2341
2342 if (rdev->badblocks.shift < 0)
2343 return 0;
2344
ab713cdc
ND
2345 block_sectors = roundup(1 << rdev->badblocks.shift,
2346 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2347 sector = r1_bio->sector;
2348 sectors = ((sector + block_sectors)
2349 & ~(sector_t)(block_sectors - 1))
2350 - sector;
2351
cd5ff9a1
N
2352 while (sect_to_write) {
2353 struct bio *wbio;
2354 if (sectors > sect_to_write)
2355 sectors = sect_to_write;
2356 /* Write at 'sector' for 'sectors'*/
2357
b783863f 2358 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2359 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2360 GFP_NOIO,
2361 mddev->bio_set);
2362 /* We really need a _all clone */
2363 wbio->bi_iter = (struct bvec_iter){ 0 };
b783863f 2364 } else {
d7a10308
ML
2365 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2366 mddev->bio_set);
b783863f
KO
2367 }
2368
796a5cf0 2369 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2370 wbio->bi_iter.bi_sector = r1_bio->sector;
2371 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2372
6678d83f 2373 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2374 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1 2375 wbio->bi_bdev = rdev->bdev;
4e49ea4a
MC
2376
2377 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2378 /* failure! */
2379 ok = rdev_set_badblocks(rdev, sector,
2380 sectors, 0)
2381 && ok;
2382
2383 bio_put(wbio);
2384 sect_to_write -= sectors;
2385 sector += sectors;
2386 sectors = block_sectors;
2387 }
2388 return ok;
2389}
2390
e8096360 2391static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2392{
2393 int m;
2394 int s = r1_bio->sectors;
8f19ccb2 2395 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2396 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2397 struct bio *bio = r1_bio->bios[m];
2398 if (bio->bi_end_io == NULL)
2399 continue;
4246a0b6 2400 if (!bio->bi_error &&
62096bce 2401 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2402 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2403 }
4246a0b6 2404 if (bio->bi_error &&
62096bce
N
2405 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2406 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2407 md_error(conf->mddev, rdev);
2408 }
2409 }
2410 put_buf(r1_bio);
2411 md_done_sync(conf->mddev, s, 1);
2412}
2413
e8096360 2414static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2415{
fd76863e 2416 int m, idx;
55ce74d4 2417 bool fail = false;
fd76863e 2418
8f19ccb2 2419 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2420 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2421 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2422 rdev_clear_badblocks(rdev,
2423 r1_bio->sector,
c6563a8c 2424 r1_bio->sectors, 0);
62096bce
N
2425 rdev_dec_pending(rdev, conf->mddev);
2426 } else if (r1_bio->bios[m] != NULL) {
2427 /* This drive got a write error. We need to
2428 * narrow down and record precise write
2429 * errors.
2430 */
55ce74d4 2431 fail = true;
62096bce
N
2432 if (!narrow_write_error(r1_bio, m)) {
2433 md_error(conf->mddev,
2434 conf->mirrors[m].rdev);
2435 /* an I/O failed, we can't clear the bitmap */
2436 set_bit(R1BIO_Degraded, &r1_bio->state);
2437 }
2438 rdev_dec_pending(conf->mirrors[m].rdev,
2439 conf->mddev);
2440 }
55ce74d4
N
2441 if (fail) {
2442 spin_lock_irq(&conf->device_lock);
2443 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2444 idx = sector_to_idx(r1_bio->sector);
824e47da 2445 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2446 spin_unlock_irq(&conf->device_lock);
824e47da 2447 /*
2448 * In case freeze_array() is waiting for condition
2449 * get_unqueued_pending() == extra to be true.
2450 */
2451 wake_up(&conf->wait_barrier);
55ce74d4 2452 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2453 } else {
2454 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2455 close_write(r1_bio);
55ce74d4 2456 raid_end_bio_io(r1_bio);
bd8688a1 2457 }
62096bce
N
2458}
2459
e8096360 2460static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2461{
fd01b88c 2462 struct mddev *mddev = conf->mddev;
62096bce 2463 struct bio *bio;
3cb03002 2464 struct md_rdev *rdev;
109e3765
N
2465 dev_t bio_dev;
2466 sector_t bio_sector;
62096bce
N
2467
2468 clear_bit(R1BIO_ReadError, &r1_bio->state);
2469 /* we got a read error. Maybe the drive is bad. Maybe just
2470 * the block and we can fix it.
2471 * We freeze all other IO, and try reading the block from
2472 * other devices. When we find one, we re-write
2473 * and check it that fixes the read error.
2474 * This is all done synchronously while the array is
2475 * frozen
2476 */
7449f699
TM
2477
2478 bio = r1_bio->bios[r1_bio->read_disk];
109e3765
N
2479 bio_dev = bio->bi_bdev->bd_dev;
2480 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
7449f699
TM
2481 bio_put(bio);
2482 r1_bio->bios[r1_bio->read_disk] = NULL;
2483
2e52d449
N
2484 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2485 if (mddev->ro == 0
2486 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2487 freeze_array(conf, 1);
62096bce
N
2488 fix_read_error(conf, r1_bio->read_disk,
2489 r1_bio->sector, r1_bio->sectors);
2490 unfreeze_array(conf);
7449f699
TM
2491 } else {
2492 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2493 }
2494
2e52d449 2495 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2496 allow_barrier(conf, r1_bio->sector);
2497 bio = r1_bio->master_bio;
62096bce 2498
689389a0
N
2499 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2500 r1_bio->state = 0;
2501 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2502}
2503
4ed8731d 2504static void raid1d(struct md_thread *thread)
1da177e4 2505{
4ed8731d 2506 struct mddev *mddev = thread->mddev;
9f2c9d12 2507 struct r1bio *r1_bio;
1da177e4 2508 unsigned long flags;
e8096360 2509 struct r1conf *conf = mddev->private;
1da177e4 2510 struct list_head *head = &conf->retry_list;
e1dfa0a2 2511 struct blk_plug plug;
fd76863e 2512 int idx;
1da177e4
LT
2513
2514 md_check_recovery(mddev);
e1dfa0a2 2515
55ce74d4 2516 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2517 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2518 LIST_HEAD(tmp);
2519 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2520 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2521 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2522 spin_unlock_irqrestore(&conf->device_lock, flags);
2523 while (!list_empty(&tmp)) {
a452744b
MP
2524 r1_bio = list_first_entry(&tmp, struct r1bio,
2525 retry_list);
55ce74d4 2526 list_del(&r1_bio->retry_list);
fd76863e 2527 idx = sector_to_idx(r1_bio->sector);
824e47da 2528 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2529 if (mddev->degraded)
2530 set_bit(R1BIO_Degraded, &r1_bio->state);
2531 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2532 close_write(r1_bio);
55ce74d4
N
2533 raid_end_bio_io(r1_bio);
2534 }
2535 }
2536
e1dfa0a2 2537 blk_start_plug(&plug);
1da177e4 2538 for (;;) {
191ea9b2 2539
0021b7bc 2540 flush_pending_writes(conf);
191ea9b2 2541
a35e63ef
N
2542 spin_lock_irqsave(&conf->device_lock, flags);
2543 if (list_empty(head)) {
2544 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2545 break;
a35e63ef 2546 }
9f2c9d12 2547 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2548 list_del(head->prev);
fd76863e 2549 idx = sector_to_idx(r1_bio->sector);
824e47da 2550 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2551 spin_unlock_irqrestore(&conf->device_lock, flags);
2552
2553 mddev = r1_bio->mddev;
070ec55d 2554 conf = mddev->private;
4367af55 2555 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2556 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2557 test_bit(R1BIO_WriteError, &r1_bio->state))
2558 handle_sync_write_finished(conf, r1_bio);
2559 else
4367af55 2560 sync_request_write(mddev, r1_bio);
cd5ff9a1 2561 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2562 test_bit(R1BIO_WriteError, &r1_bio->state))
2563 handle_write_finished(conf, r1_bio);
2564 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2565 handle_read_error(conf, r1_bio);
2566 else
c230e7e5 2567 WARN_ON_ONCE(1);
62096bce 2568
1d9d5241 2569 cond_resched();
2953079c 2570 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2571 md_check_recovery(mddev);
1da177e4 2572 }
e1dfa0a2 2573 blk_finish_plug(&plug);
1da177e4
LT
2574}
2575
e8096360 2576static int init_resync(struct r1conf *conf)
1da177e4
LT
2577{
2578 int buffs;
2579
2580 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2581 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2582 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2583 conf->poolinfo);
2584 if (!conf->r1buf_pool)
2585 return -ENOMEM;
1da177e4
LT
2586 return 0;
2587}
2588
2589/*
2590 * perform a "sync" on one "block"
2591 *
2592 * We need to make sure that no normal I/O request - particularly write
2593 * requests - conflict with active sync requests.
2594 *
2595 * This is achieved by tracking pending requests and a 'barrier' concept
2596 * that can be installed to exclude normal IO requests.
2597 */
2598
849674e4
SL
2599static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2600 int *skipped)
1da177e4 2601{
e8096360 2602 struct r1conf *conf = mddev->private;
9f2c9d12 2603 struct r1bio *r1_bio;
1da177e4
LT
2604 struct bio *bio;
2605 sector_t max_sector, nr_sectors;
3e198f78 2606 int disk = -1;
1da177e4 2607 int i;
3e198f78
N
2608 int wonly = -1;
2609 int write_targets = 0, read_targets = 0;
57dab0bd 2610 sector_t sync_blocks;
e3b9703e 2611 int still_degraded = 0;
06f60385
N
2612 int good_sectors = RESYNC_SECTORS;
2613 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2614 int idx = sector_to_idx(sector_nr);
1da177e4
LT
2615
2616 if (!conf->r1buf_pool)
2617 if (init_resync(conf))
57afd89f 2618 return 0;
1da177e4 2619
58c0fed4 2620 max_sector = mddev->dev_sectors;
1da177e4 2621 if (sector_nr >= max_sector) {
191ea9b2
N
2622 /* If we aborted, we need to abort the
2623 * sync on the 'current' bitmap chunk (there will
2624 * only be one in raid1 resync.
2625 * We can find the current addess in mddev->curr_resync
2626 */
6a806c51
N
2627 if (mddev->curr_resync < max_sector) /* aborted */
2628 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2629 &sync_blocks, 1);
6a806c51 2630 else /* completed sync */
191ea9b2 2631 conf->fullsync = 0;
6a806c51
N
2632
2633 bitmap_close_sync(mddev->bitmap);
1da177e4 2634 close_sync(conf);
c40f341f
GR
2635
2636 if (mddev_is_clustered(mddev)) {
2637 conf->cluster_sync_low = 0;
2638 conf->cluster_sync_high = 0;
c40f341f 2639 }
1da177e4
LT
2640 return 0;
2641 }
2642
07d84d10
N
2643 if (mddev->bitmap == NULL &&
2644 mddev->recovery_cp == MaxSector &&
6394cca5 2645 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2646 conf->fullsync == 0) {
2647 *skipped = 1;
2648 return max_sector - sector_nr;
2649 }
6394cca5
N
2650 /* before building a request, check if we can skip these blocks..
2651 * This call the bitmap_start_sync doesn't actually record anything
2652 */
e3b9703e 2653 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2654 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2655 /* We can skip this block, and probably several more */
2656 *skipped = 1;
2657 return sync_blocks;
2658 }
17999be4 2659
7ac50447
TM
2660 /*
2661 * If there is non-resync activity waiting for a turn, then let it
2662 * though before starting on this new sync request.
2663 */
824e47da 2664 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2665 schedule_timeout_uninterruptible(1);
2666
c40f341f
GR
2667 /* we are incrementing sector_nr below. To be safe, we check against
2668 * sector_nr + two times RESYNC_SECTORS
2669 */
2670
2671 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2672 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
1c4588e9 2673 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2674
c2fd4c94 2675 raise_barrier(conf, sector_nr);
1da177e4 2676
3e198f78 2677 rcu_read_lock();
1da177e4 2678 /*
3e198f78
N
2679 * If we get a correctably read error during resync or recovery,
2680 * we might want to read from a different device. So we
2681 * flag all drives that could conceivably be read from for READ,
2682 * and any others (which will be non-In_sync devices) for WRITE.
2683 * If a read fails, we try reading from something else for which READ
2684 * is OK.
1da177e4 2685 */
1da177e4 2686
1da177e4
LT
2687 r1_bio->mddev = mddev;
2688 r1_bio->sector = sector_nr;
191ea9b2 2689 r1_bio->state = 0;
1da177e4 2690 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2691 /* make sure good_sectors won't go across barrier unit boundary */
2692 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2693
8f19ccb2 2694 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2695 struct md_rdev *rdev;
1da177e4 2696 bio = r1_bio->bios[i];
1da177e4 2697
3e198f78
N
2698 rdev = rcu_dereference(conf->mirrors[i].rdev);
2699 if (rdev == NULL ||
06f60385 2700 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2701 if (i < conf->raid_disks)
2702 still_degraded = 1;
3e198f78 2703 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2704 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2705 bio->bi_end_io = end_sync_write;
2706 write_targets ++;
3e198f78
N
2707 } else {
2708 /* may need to read from here */
06f60385
N
2709 sector_t first_bad = MaxSector;
2710 int bad_sectors;
2711
2712 if (is_badblock(rdev, sector_nr, good_sectors,
2713 &first_bad, &bad_sectors)) {
2714 if (first_bad > sector_nr)
2715 good_sectors = first_bad - sector_nr;
2716 else {
2717 bad_sectors -= (sector_nr - first_bad);
2718 if (min_bad == 0 ||
2719 min_bad > bad_sectors)
2720 min_bad = bad_sectors;
2721 }
2722 }
2723 if (sector_nr < first_bad) {
2724 if (test_bit(WriteMostly, &rdev->flags)) {
2725 if (wonly < 0)
2726 wonly = i;
2727 } else {
2728 if (disk < 0)
2729 disk = i;
2730 }
796a5cf0 2731 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2732 bio->bi_end_io = end_sync_read;
2733 read_targets++;
d57368af
AL
2734 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2735 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2736 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2737 /*
2738 * The device is suitable for reading (InSync),
2739 * but has bad block(s) here. Let's try to correct them,
2740 * if we are doing resync or repair. Otherwise, leave
2741 * this device alone for this sync request.
2742 */
796a5cf0 2743 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2744 bio->bi_end_io = end_sync_write;
2745 write_targets++;
3e198f78 2746 }
3e198f78 2747 }
06f60385
N
2748 if (bio->bi_end_io) {
2749 atomic_inc(&rdev->nr_pending);
4f024f37 2750 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385 2751 bio->bi_bdev = rdev->bdev;
2e52d449
N
2752 if (test_bit(FailFast, &rdev->flags))
2753 bio->bi_opf |= MD_FAILFAST;
06f60385 2754 }
1da177e4 2755 }
3e198f78
N
2756 rcu_read_unlock();
2757 if (disk < 0)
2758 disk = wonly;
2759 r1_bio->read_disk = disk;
191ea9b2 2760
06f60385
N
2761 if (read_targets == 0 && min_bad > 0) {
2762 /* These sectors are bad on all InSync devices, so we
2763 * need to mark them bad on all write targets
2764 */
2765 int ok = 1;
8f19ccb2 2766 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2767 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2768 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2769 ok = rdev_set_badblocks(rdev, sector_nr,
2770 min_bad, 0
2771 ) && ok;
2772 }
2953079c 2773 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2774 *skipped = 1;
2775 put_buf(r1_bio);
2776
2777 if (!ok) {
2778 /* Cannot record the badblocks, so need to
2779 * abort the resync.
2780 * If there are multiple read targets, could just
2781 * fail the really bad ones ???
2782 */
2783 conf->recovery_disabled = mddev->recovery_disabled;
2784 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2785 return 0;
2786 } else
2787 return min_bad;
2788
2789 }
2790 if (min_bad > 0 && min_bad < good_sectors) {
2791 /* only resync enough to reach the next bad->good
2792 * transition */
2793 good_sectors = min_bad;
2794 }
2795
3e198f78
N
2796 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2797 /* extra read targets are also write targets */
2798 write_targets += read_targets-1;
2799
2800 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2801 /* There is nowhere to write, so all non-sync
2802 * drives must be failed - so we are finished
2803 */
b7219ccb
N
2804 sector_t rv;
2805 if (min_bad > 0)
2806 max_sector = sector_nr + min_bad;
2807 rv = max_sector - sector_nr;
57afd89f 2808 *skipped = 1;
1da177e4 2809 put_buf(r1_bio);
1da177e4
LT
2810 return rv;
2811 }
2812
c6207277
N
2813 if (max_sector > mddev->resync_max)
2814 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2815 if (max_sector > sector_nr + good_sectors)
2816 max_sector = sector_nr + good_sectors;
1da177e4 2817 nr_sectors = 0;
289e99e8 2818 sync_blocks = 0;
1da177e4
LT
2819 do {
2820 struct page *page;
2821 int len = PAGE_SIZE;
2822 if (sector_nr + (len>>9) > max_sector)
2823 len = (max_sector - sector_nr) << 9;
2824 if (len == 0)
2825 break;
6a806c51
N
2826 if (sync_blocks == 0) {
2827 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2828 &sync_blocks, still_degraded) &&
2829 !conf->fullsync &&
2830 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2831 break;
7571ae88 2832 if ((len >> 9) > sync_blocks)
6a806c51 2833 len = sync_blocks<<9;
ab7a30c7 2834 }
191ea9b2 2835
8f19ccb2 2836 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2837 struct resync_pages *rp;
2838
1da177e4 2839 bio = r1_bio->bios[i];
98d30c58 2840 rp = get_resync_pages(bio);
1da177e4 2841 if (bio->bi_end_io) {
98d30c58 2842 page = resync_fetch_page(rp, rp->idx++);
c85ba149
ML
2843
2844 /*
2845 * won't fail because the vec table is big
2846 * enough to hold all these pages
2847 */
2848 bio_add_page(bio, page, len, 0);
1da177e4
LT
2849 }
2850 }
2851 nr_sectors += len>>9;
2852 sector_nr += len>>9;
191ea9b2 2853 sync_blocks -= (len>>9);
98d30c58
ML
2854 } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2855
1da177e4
LT
2856 r1_bio->sectors = nr_sectors;
2857
c40f341f
GR
2858 if (mddev_is_clustered(mddev) &&
2859 conf->cluster_sync_high < sector_nr + nr_sectors) {
2860 conf->cluster_sync_low = mddev->curr_resync_completed;
2861 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2862 /* Send resync message */
2863 md_cluster_ops->resync_info_update(mddev,
2864 conf->cluster_sync_low,
2865 conf->cluster_sync_high);
2866 }
2867
d11c171e
N
2868 /* For a user-requested sync, we read all readable devices and do a
2869 * compare
2870 */
2871 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2872 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2873 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2874 bio = r1_bio->bios[i];
2875 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2876 read_targets--;
ddac7c7e 2877 md_sync_acct(bio->bi_bdev, nr_sectors);
2e52d449
N
2878 if (read_targets == 1)
2879 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2880 generic_make_request(bio);
2881 }
2882 }
2883 } else {
2884 atomic_set(&r1_bio->remaining, 1);
2885 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2886 md_sync_acct(bio->bi_bdev, nr_sectors);
2e52d449
N
2887 if (read_targets == 1)
2888 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2889 generic_make_request(bio);
1da177e4 2890
d11c171e 2891 }
1da177e4
LT
2892 return nr_sectors;
2893}
2894
fd01b88c 2895static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2896{
2897 if (sectors)
2898 return sectors;
2899
2900 return mddev->dev_sectors;
2901}
2902
e8096360 2903static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2904{
e8096360 2905 struct r1conf *conf;
709ae487 2906 int i;
0eaf822c 2907 struct raid1_info *disk;
3cb03002 2908 struct md_rdev *rdev;
709ae487 2909 int err = -ENOMEM;
1da177e4 2910
e8096360 2911 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2912 if (!conf)
709ae487 2913 goto abort;
1da177e4 2914
fd76863e 2915 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2916 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2917 if (!conf->nr_pending)
2918 goto abort;
2919
2920 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2921 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2922 if (!conf->nr_waiting)
2923 goto abort;
2924
2925 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2926 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2927 if (!conf->nr_queued)
2928 goto abort;
2929
2930 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2931 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2932 if (!conf->barrier)
2933 goto abort;
2934
0eaf822c 2935 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2936 * mddev->raid_disks * 2,
1da177e4
LT
2937 GFP_KERNEL);
2938 if (!conf->mirrors)
709ae487 2939 goto abort;
1da177e4 2940
ddaf22ab
N
2941 conf->tmppage = alloc_page(GFP_KERNEL);
2942 if (!conf->tmppage)
709ae487 2943 goto abort;
ddaf22ab 2944
709ae487 2945 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2946 if (!conf->poolinfo)
709ae487 2947 goto abort;
8f19ccb2 2948 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2949 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2950 r1bio_pool_free,
2951 conf->poolinfo);
2952 if (!conf->r1bio_pool)
709ae487
N
2953 goto abort;
2954
c230e7e5
N
2955 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
2956 if (!conf->bio_split)
2957 goto abort;
2958
ed9bfdf1 2959 conf->poolinfo->mddev = mddev;
1da177e4 2960
c19d5798 2961 err = -EINVAL;
e7e72bf6 2962 spin_lock_init(&conf->device_lock);
dafb20fa 2963 rdev_for_each(rdev, mddev) {
709ae487 2964 int disk_idx = rdev->raid_disk;
1da177e4
LT
2965 if (disk_idx >= mddev->raid_disks
2966 || disk_idx < 0)
2967 continue;
c19d5798 2968 if (test_bit(Replacement, &rdev->flags))
02b898f2 2969 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2970 else
2971 disk = conf->mirrors + disk_idx;
1da177e4 2972
c19d5798
N
2973 if (disk->rdev)
2974 goto abort;
1da177e4 2975 disk->rdev = rdev;
1da177e4 2976 disk->head_position = 0;
12cee5a8 2977 disk->seq_start = MaxSector;
1da177e4
LT
2978 }
2979 conf->raid_disks = mddev->raid_disks;
2980 conf->mddev = mddev;
1da177e4 2981 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2982 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2983
2984 spin_lock_init(&conf->resync_lock);
17999be4 2985 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2986
191ea9b2 2987 bio_list_init(&conf->pending_bio_list);
34db0cd6 2988 conf->pending_count = 0;
d890fa2b 2989 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2990
c19d5798 2991 err = -EIO;
8f19ccb2 2992 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2993
2994 disk = conf->mirrors + i;
2995
c19d5798
N
2996 if (i < conf->raid_disks &&
2997 disk[conf->raid_disks].rdev) {
2998 /* This slot has a replacement. */
2999 if (!disk->rdev) {
3000 /* No original, just make the replacement
3001 * a recovering spare
3002 */
3003 disk->rdev =
3004 disk[conf->raid_disks].rdev;
3005 disk[conf->raid_disks].rdev = NULL;
3006 } else if (!test_bit(In_sync, &disk->rdev->flags))
3007 /* Original is not in_sync - bad */
3008 goto abort;
3009 }
3010
5fd6c1dc
N
3011 if (!disk->rdev ||
3012 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3013 disk->head_position = 0;
4f0a5e01
JB
3014 if (disk->rdev &&
3015 (disk->rdev->saved_raid_disk < 0))
918f0238 3016 conf->fullsync = 1;
be4d3280 3017 }
1da177e4 3018 }
709ae487 3019
709ae487 3020 err = -ENOMEM;
0232605d 3021 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3022 if (!conf->thread)
709ae487 3023 goto abort;
1da177e4 3024
709ae487
N
3025 return conf;
3026
3027 abort:
3028 if (conf) {
644df1a8 3029 mempool_destroy(conf->r1bio_pool);
709ae487
N
3030 kfree(conf->mirrors);
3031 safe_put_page(conf->tmppage);
3032 kfree(conf->poolinfo);
fd76863e 3033 kfree(conf->nr_pending);
3034 kfree(conf->nr_waiting);
3035 kfree(conf->nr_queued);
3036 kfree(conf->barrier);
c230e7e5
N
3037 if (conf->bio_split)
3038 bioset_free(conf->bio_split);
709ae487
N
3039 kfree(conf);
3040 }
3041 return ERR_PTR(err);
3042}
3043
afa0f557 3044static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3045static int raid1_run(struct mddev *mddev)
709ae487 3046{
e8096360 3047 struct r1conf *conf;
709ae487 3048 int i;
3cb03002 3049 struct md_rdev *rdev;
5220ea1e 3050 int ret;
2ff8cc2c 3051 bool discard_supported = false;
709ae487
N
3052
3053 if (mddev->level != 1) {
1d41c216
N
3054 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3055 mdname(mddev), mddev->level);
709ae487
N
3056 return -EIO;
3057 }
3058 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3059 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3060 mdname(mddev));
709ae487
N
3061 return -EIO;
3062 }
1da177e4 3063 /*
709ae487
N
3064 * copy the already verified devices into our private RAID1
3065 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3066 * should be freed in raid1_free()]
1da177e4 3067 */
709ae487
N
3068 if (mddev->private == NULL)
3069 conf = setup_conf(mddev);
3070 else
3071 conf = mddev->private;
1da177e4 3072
709ae487
N
3073 if (IS_ERR(conf))
3074 return PTR_ERR(conf);
1da177e4 3075
c8dc9c65 3076 if (mddev->queue)
5026d7a9
PA
3077 blk_queue_max_write_same_sectors(mddev->queue, 0);
3078
dafb20fa 3079 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3080 if (!mddev->gendisk)
3081 continue;
709ae487
N
3082 disk_stack_limits(mddev->gendisk, rdev->bdev,
3083 rdev->data_offset << 9);
2ff8cc2c
SL
3084 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3085 discard_supported = true;
1da177e4 3086 }
191ea9b2 3087
709ae487
N
3088 mddev->degraded = 0;
3089 for (i=0; i < conf->raid_disks; i++)
3090 if (conf->mirrors[i].rdev == NULL ||
3091 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3092 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3093 mddev->degraded++;
3094
3095 if (conf->raid_disks - mddev->degraded == 1)
3096 mddev->recovery_cp = MaxSector;
3097
8c6ac868 3098 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3099 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3100 mdname(mddev));
3101 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3102 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3103 mddev->raid_disks);
709ae487 3104
1da177e4
LT
3105 /*
3106 * Ok, everything is just fine now
3107 */
709ae487
N
3108 mddev->thread = conf->thread;
3109 conf->thread = NULL;
3110 mddev->private = conf;
46533ff7 3111 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3112
1f403624 3113 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3114
1ed7242e 3115 if (mddev->queue) {
2ff8cc2c
SL
3116 if (discard_supported)
3117 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3118 mddev->queue);
3119 else
3120 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3121 mddev->queue);
1ed7242e 3122 }
5220ea1e 3123
3124 ret = md_integrity_register(mddev);
5aa61f42
N
3125 if (ret) {
3126 md_unregister_thread(&mddev->thread);
afa0f557 3127 raid1_free(mddev, conf);
5aa61f42 3128 }
5220ea1e 3129 return ret;
1da177e4
LT
3130}
3131
afa0f557 3132static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3133{
afa0f557 3134 struct r1conf *conf = priv;
409c57f3 3135
644df1a8 3136 mempool_destroy(conf->r1bio_pool);
990a8baf 3137 kfree(conf->mirrors);
0fea7ed8 3138 safe_put_page(conf->tmppage);
990a8baf 3139 kfree(conf->poolinfo);
fd76863e 3140 kfree(conf->nr_pending);
3141 kfree(conf->nr_waiting);
3142 kfree(conf->nr_queued);
3143 kfree(conf->barrier);
c230e7e5
N
3144 if (conf->bio_split)
3145 bioset_free(conf->bio_split);
1da177e4 3146 kfree(conf);
1da177e4
LT
3147}
3148
fd01b88c 3149static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3150{
3151 /* no resync is happening, and there is enough space
3152 * on all devices, so we can resize.
3153 * We need to make sure resync covers any new space.
3154 * If the array is shrinking we should possibly wait until
3155 * any io in the removed space completes, but it hardly seems
3156 * worth it.
3157 */
a4a6125a
N
3158 sector_t newsize = raid1_size(mddev, sectors, 0);
3159 if (mddev->external_size &&
3160 mddev->array_sectors > newsize)
b522adcd 3161 return -EINVAL;
a4a6125a
N
3162 if (mddev->bitmap) {
3163 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3164 if (ret)
3165 return ret;
3166 }
3167 md_set_array_sectors(mddev, newsize);
b522adcd 3168 if (sectors > mddev->dev_sectors &&
b098636c 3169 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3170 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3171 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3172 }
b522adcd 3173 mddev->dev_sectors = sectors;
4b5c7ae8 3174 mddev->resync_max_sectors = sectors;
1da177e4
LT
3175 return 0;
3176}
3177
fd01b88c 3178static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3179{
3180 /* We need to:
3181 * 1/ resize the r1bio_pool
3182 * 2/ resize conf->mirrors
3183 *
3184 * We allocate a new r1bio_pool if we can.
3185 * Then raise a device barrier and wait until all IO stops.
3186 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3187 *
3188 * At the same time, we "pack" the devices so that all the missing
3189 * devices have the higher raid_disk numbers.
1da177e4
LT
3190 */
3191 mempool_t *newpool, *oldpool;
3192 struct pool_info *newpoolinfo;
0eaf822c 3193 struct raid1_info *newmirrors;
e8096360 3194 struct r1conf *conf = mddev->private;
63c70c4f 3195 int cnt, raid_disks;
c04be0aa 3196 unsigned long flags;
b5470dc5 3197 int d, d2, err;
1da177e4 3198
63c70c4f 3199 /* Cannot change chunk_size, layout, or level */
664e7c41 3200 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3201 mddev->layout != mddev->new_layout ||
3202 mddev->level != mddev->new_level) {
664e7c41 3203 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3204 mddev->new_layout = mddev->layout;
3205 mddev->new_level = mddev->level;
3206 return -EINVAL;
3207 }
3208
28c1b9fd
GR
3209 if (!mddev_is_clustered(mddev)) {
3210 err = md_allow_write(mddev);
3211 if (err)
3212 return err;
3213 }
2a2275d6 3214
63c70c4f
N
3215 raid_disks = mddev->raid_disks + mddev->delta_disks;
3216
6ea9c07c
N
3217 if (raid_disks < conf->raid_disks) {
3218 cnt=0;
3219 for (d= 0; d < conf->raid_disks; d++)
3220 if (conf->mirrors[d].rdev)
3221 cnt++;
3222 if (cnt > raid_disks)
1da177e4 3223 return -EBUSY;
6ea9c07c 3224 }
1da177e4
LT
3225
3226 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3227 if (!newpoolinfo)
3228 return -ENOMEM;
3229 newpoolinfo->mddev = mddev;
8f19ccb2 3230 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3231
3232 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3233 r1bio_pool_free, newpoolinfo);
3234 if (!newpool) {
3235 kfree(newpoolinfo);
3236 return -ENOMEM;
3237 }
0eaf822c 3238 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3239 GFP_KERNEL);
1da177e4
LT
3240 if (!newmirrors) {
3241 kfree(newpoolinfo);
3242 mempool_destroy(newpool);
3243 return -ENOMEM;
3244 }
1da177e4 3245
e2d59925 3246 freeze_array(conf, 0);
1da177e4
LT
3247
3248 /* ok, everything is stopped */
3249 oldpool = conf->r1bio_pool;
3250 conf->r1bio_pool = newpool;
6ea9c07c 3251
a88aa786 3252 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3253 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3254 if (rdev && rdev->raid_disk != d2) {
36fad858 3255 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3256 rdev->raid_disk = d2;
36fad858
NK
3257 sysfs_unlink_rdev(mddev, rdev);
3258 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3259 pr_warn("md/raid1:%s: cannot register rd%d\n",
3260 mdname(mddev), rdev->raid_disk);
6ea9c07c 3261 }
a88aa786
N
3262 if (rdev)
3263 newmirrors[d2++].rdev = rdev;
3264 }
1da177e4
LT
3265 kfree(conf->mirrors);
3266 conf->mirrors = newmirrors;
3267 kfree(conf->poolinfo);
3268 conf->poolinfo = newpoolinfo;
3269
c04be0aa 3270 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3271 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3272 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3273 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3274 mddev->delta_disks = 0;
1da177e4 3275
e2d59925 3276 unfreeze_array(conf);
1da177e4 3277
985ca973 3278 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3279 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3280 md_wakeup_thread(mddev->thread);
3281
3282 mempool_destroy(oldpool);
3283 return 0;
3284}
3285
fd01b88c 3286static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3287{
e8096360 3288 struct r1conf *conf = mddev->private;
36fa3063
N
3289
3290 switch(state) {
6eef4b21
N
3291 case 2: /* wake for suspend */
3292 wake_up(&conf->wait_barrier);
3293 break;
9e6603da 3294 case 1:
07169fd4 3295 freeze_array(conf, 0);
36fa3063 3296 break;
9e6603da 3297 case 0:
07169fd4 3298 unfreeze_array(conf);
36fa3063
N
3299 break;
3300 }
36fa3063
N
3301}
3302
fd01b88c 3303static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3304{
3305 /* raid1 can take over:
3306 * raid5 with 2 devices, any layout or chunk size
3307 */
3308 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3309 struct r1conf *conf;
709ae487
N
3310 mddev->new_level = 1;
3311 mddev->new_layout = 0;
3312 mddev->new_chunk_sectors = 0;
3313 conf = setup_conf(mddev);
6995f0b2 3314 if (!IS_ERR(conf)) {
07169fd4 3315 /* Array must appear to be quiesced */
3316 conf->array_frozen = 1;
394ed8e4
SL
3317 mddev_clear_unsupported_flags(mddev,
3318 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3319 }
709ae487
N
3320 return conf;
3321 }
3322 return ERR_PTR(-EINVAL);
3323}
1da177e4 3324
84fc4b56 3325static struct md_personality raid1_personality =
1da177e4
LT
3326{
3327 .name = "raid1",
2604b703 3328 .level = 1,
1da177e4 3329 .owner = THIS_MODULE,
849674e4
SL
3330 .make_request = raid1_make_request,
3331 .run = raid1_run,
afa0f557 3332 .free = raid1_free,
849674e4
SL
3333 .status = raid1_status,
3334 .error_handler = raid1_error,
1da177e4
LT
3335 .hot_add_disk = raid1_add_disk,
3336 .hot_remove_disk= raid1_remove_disk,
3337 .spare_active = raid1_spare_active,
849674e4 3338 .sync_request = raid1_sync_request,
1da177e4 3339 .resize = raid1_resize,
80c3a6ce 3340 .size = raid1_size,
63c70c4f 3341 .check_reshape = raid1_reshape,
36fa3063 3342 .quiesce = raid1_quiesce,
709ae487 3343 .takeover = raid1_takeover,
5c675f83 3344 .congested = raid1_congested,
1da177e4
LT
3345};
3346
3347static int __init raid_init(void)
3348{
2604b703 3349 return register_md_personality(&raid1_personality);
1da177e4
LT
3350}
3351
3352static void raid_exit(void)
3353{
2604b703 3354 unregister_md_personality(&raid1_personality);
1da177e4
LT
3355}
3356
3357module_init(raid_init);
3358module_exit(raid_exit);
3359MODULE_LICENSE("GPL");
0efb9e61 3360MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3361MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3362MODULE_ALIAS("md-raid1");
2604b703 3363MODULE_ALIAS("md-level-1");
34db0cd6
N
3364
3365module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);