block: pass a block_device and opf to blk_next_bio
[linux-block.git] / drivers / md / raid1.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
96de0e25 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
191ea9b2
N
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
1da177e4
LT
24 */
25
5a0e3ad6 26#include <linux/slab.h>
25570727 27#include <linux/delay.h>
bff61975 28#include <linux/blkdev.h>
056075c7 29#include <linux/module.h>
bff61975 30#include <linux/seq_file.h>
8bda470e 31#include <linux/ratelimit.h>
69b00b5b 32#include <linux/interval_tree_generic.h>
3f07c014 33
109e3765 34#include <trace/events/block.h>
3f07c014 35
43b2e5d8 36#include "md.h"
ef740c37 37#include "raid1.h"
935fe098 38#include "md-bitmap.h"
191ea9b2 39
394ed8e4
SL
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 42 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 45
fd76863e 46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 48
578b54ad
N
49#define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
fb0eb5df
ML
52#include "raid1-10.c"
53
69b00b5b
GJ
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
d0d2d8ba
GJ
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
3e148a32 61{
3e148a32
GJ
62 unsigned long flags;
63 int ret = 0;
d0d2d8ba
GJ
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
025471f9 66 struct serial_in_rdev *serial = &rdev->serial[idx];
3e148a32 67
69b00b5b
GJ
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
d0d2d8ba 72 else {
69b00b5b
GJ
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
d0d2d8ba 76 }
69b00b5b 77 spin_unlock_irqrestore(&serial->serial_lock, flags);
3e148a32
GJ
78
79 return ret;
80}
81
d0d2d8ba
GJ
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
404659cf 96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
3e148a32 97{
69b00b5b 98 struct serial_info *si;
3e148a32
GJ
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
025471f9
GJ
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
69b00b5b
GJ
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
3e148a32
GJ
111 found = 1;
112 break;
113 }
69b00b5b 114 }
3e148a32 115 if (!found)
404659cf 116 WARN(1, "The write IO is not recorded for serialization\n");
69b00b5b
GJ
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
3e148a32
GJ
119}
120
98d30c58
ML
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127 return get_resync_pages(bio)->raid_bio;
128}
129
dd0fc66f 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
131{
132 struct pool_info *pi = data;
9f2c9d12 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 136 return kzalloc(size, gfp_flags);
1da177e4
LT
137}
138
8e005f7c 139#define RESYNC_DEPTH 32
1da177e4 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 145
dd0fc66f 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
147{
148 struct pool_info *pi = data;
9f2c9d12 149 struct r1bio *r1_bio;
1da177e4 150 struct bio *bio;
da1aab3d 151 int need_pages;
98d30c58
ML
152 int j;
153 struct resync_pages *rps;
1da177e4
LT
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 156 if (!r1_bio)
1da177e4 157 return NULL;
1da177e4 158
6da2ec56
KC
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
98d30c58
ML
161 if (!rps)
162 goto out_free_r1bio;
163
1da177e4
LT
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
6746557f 168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
169 if (!bio)
170 goto out_free_bio;
171 r1_bio->bios[j] = bio;
172 }
173 /*
174 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
175 * the first bio.
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
1da177e4 178 */
d11c171e 179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 180 need_pages = pi->raid_disks;
d11c171e 181 else
da1aab3d 182 need_pages = 1;
98d30c58
ML
183 for (j = 0; j < pi->raid_disks; j++) {
184 struct resync_pages *rp = &rps[j];
185
d11c171e 186 bio = r1_bio->bios[j];
d11c171e 187
98d30c58
ML
188 if (j < need_pages) {
189 if (resync_alloc_pages(rp, gfp_flags))
190 goto out_free_pages;
191 } else {
192 memcpy(rp, &rps[0], sizeof(*rp));
193 resync_get_all_pages(rp);
194 }
195
98d30c58
ML
196 rp->raid_bio = r1_bio;
197 bio->bi_private = rp;
1da177e4
LT
198 }
199
200 r1_bio->master_bio = NULL;
201
202 return r1_bio;
203
da1aab3d 204out_free_pages:
491221f8 205 while (--j >= 0)
98d30c58 206 resync_free_pages(&rps[j]);
da1aab3d 207
1da177e4 208out_free_bio:
8f19ccb2 209 while (++j < pi->raid_disks)
1da177e4 210 bio_put(r1_bio->bios[j]);
98d30c58
ML
211 kfree(rps);
212
213out_free_r1bio:
c7afa803 214 rbio_pool_free(r1_bio, data);
1da177e4
LT
215 return NULL;
216}
217
218static void r1buf_pool_free(void *__r1_bio, void *data)
219{
220 struct pool_info *pi = data;
98d30c58 221 int i;
9f2c9d12 222 struct r1bio *r1bio = __r1_bio;
98d30c58 223 struct resync_pages *rp = NULL;
1da177e4 224
98d30c58
ML
225 for (i = pi->raid_disks; i--; ) {
226 rp = get_resync_pages(r1bio->bios[i]);
227 resync_free_pages(rp);
1da177e4 228 bio_put(r1bio->bios[i]);
98d30c58
ML
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
1da177e4 233
c7afa803 234 rbio_pool_free(r1bio, data);
1da177e4
LT
235}
236
e8096360 237static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
238{
239 int i;
240
8f19ccb2 241 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 242 struct bio **bio = r1_bio->bios + i;
4367af55 243 if (!BIO_SPECIAL(*bio))
1da177e4
LT
244 bio_put(*bio);
245 *bio = NULL;
246 }
247}
248
9f2c9d12 249static void free_r1bio(struct r1bio *r1_bio)
1da177e4 250{
e8096360 251 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 252
1da177e4 253 put_all_bios(conf, r1_bio);
afeee514 254 mempool_free(r1_bio, &conf->r1bio_pool);
1da177e4
LT
255}
256
9f2c9d12 257static void put_buf(struct r1bio *r1_bio)
1da177e4 258{
e8096360 259 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 260 sector_t sect = r1_bio->sector;
3e198f78
N
261 int i;
262
8f19ccb2 263 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
264 struct bio *bio = r1_bio->bios[i];
265 if (bio->bi_end_io)
266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 }
1da177e4 268
afeee514 269 mempool_free(r1_bio, &conf->r1buf_pool);
1da177e4 270
af5f42a7 271 lower_barrier(conf, sect);
1da177e4
LT
272}
273
9f2c9d12 274static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
275{
276 unsigned long flags;
fd01b88c 277 struct mddev *mddev = r1_bio->mddev;
e8096360 278 struct r1conf *conf = mddev->private;
fd76863e 279 int idx;
1da177e4 280
fd76863e 281 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
282 spin_lock_irqsave(&conf->device_lock, flags);
283 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 284 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
285 spin_unlock_irqrestore(&conf->device_lock, flags);
286
17999be4 287 wake_up(&conf->wait_barrier);
1da177e4
LT
288 md_wakeup_thread(mddev->thread);
289}
290
291/*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
9f2c9d12 296static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
297{
298 struct bio *bio = r1_bio->master_bio;
d2eb35ac
N
299
300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 301 bio->bi_status = BLK_STS_IOERR;
4246a0b6 302
a0159832
GJ
303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
304 bio_end_io_acct(bio, r1_bio->start_time);
37011e3a 305 bio_endio(bio);
d2eb35ac
N
306}
307
9f2c9d12 308static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
309{
310 struct bio *bio = r1_bio->master_bio;
c91114c2 311 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 312
4b6d287f
N
313 /* if nobody has done the final endio yet, do it now */
314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
316 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
317 (unsigned long long) bio->bi_iter.bi_sector,
318 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 319
d2eb35ac 320 call_bio_endio(r1_bio);
4b6d287f 321 }
c91114c2
DJ
322 /*
323 * Wake up any possible resync thread that waits for the device
324 * to go idle. All I/Os, even write-behind writes, are done.
325 */
326 allow_barrier(conf, r1_bio->sector);
327
1da177e4
LT
328 free_r1bio(r1_bio);
329}
330
331/*
332 * Update disk head position estimator based on IRQ completion info.
333 */
9f2c9d12 334static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 335{
e8096360 336 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
337
338 conf->mirrors[disk].head_position =
339 r1_bio->sector + (r1_bio->sectors);
340}
341
ba3ae3be
NK
342/*
343 * Find the disk number which triggered given bio
344 */
9f2c9d12 345static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
346{
347 int mirror;
30194636
N
348 struct r1conf *conf = r1_bio->mddev->private;
349 int raid_disks = conf->raid_disks;
ba3ae3be 350
8f19ccb2 351 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
352 if (r1_bio->bios[mirror] == bio)
353 break;
354
8f19ccb2 355 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
356 update_head_pos(mirror, r1_bio);
357
358 return mirror;
359}
360
4246a0b6 361static void raid1_end_read_request(struct bio *bio)
1da177e4 362{
4e4cbee9 363 int uptodate = !bio->bi_status;
9f2c9d12 364 struct r1bio *r1_bio = bio->bi_private;
e8096360 365 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 367
1da177e4
LT
368 /*
369 * this branch is our 'one mirror IO has finished' event handler:
370 */
e5872d58 371 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 372
dd00a99e
N
373 if (uptodate)
374 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
375 else if (test_bit(FailFast, &rdev->flags) &&
376 test_bit(R1BIO_FailFast, &r1_bio->state))
377 /* This was a fail-fast read so we definitely
378 * want to retry */
379 ;
dd00a99e
N
380 else {
381 /* If all other devices have failed, we want to return
382 * the error upwards rather than fail the last device.
383 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 384 */
dd00a99e
N
385 unsigned long flags;
386 spin_lock_irqsave(&conf->device_lock, flags);
387 if (r1_bio->mddev->degraded == conf->raid_disks ||
388 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 389 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
390 uptodate = 1;
391 spin_unlock_irqrestore(&conf->device_lock, flags);
392 }
1da177e4 393
7ad4d4a6 394 if (uptodate) {
1da177e4 395 raid_end_bio_io(r1_bio);
e5872d58 396 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 397 } else {
1da177e4
LT
398 /*
399 * oops, read error:
400 */
401 char b[BDEVNAME_SIZE];
1d41c216
N
402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
403 mdname(conf->mddev),
404 bdevname(rdev->bdev, b),
405 (unsigned long long)r1_bio->sector);
d2eb35ac 406 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 407 reschedule_retry(r1_bio);
7ad4d4a6 408 /* don't drop the reference on read_disk yet */
1da177e4 409 }
1da177e4
LT
410}
411
9f2c9d12 412static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
413{
414 /* it really is the end of this request */
415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
416 bio_free_pages(r1_bio->behind_master_bio);
417 bio_put(r1_bio->behind_master_bio);
418 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
419 }
420 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422 r1_bio->sectors,
423 !test_bit(R1BIO_Degraded, &r1_bio->state),
424 test_bit(R1BIO_BehindIO, &r1_bio->state));
cd5ff9a1
N
425 md_write_end(r1_bio->mddev);
426}
427
9f2c9d12 428static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 429{
cd5ff9a1
N
430 if (!atomic_dec_and_test(&r1_bio->remaining))
431 return;
432
433 if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 reschedule_retry(r1_bio);
435 else {
436 close_write(r1_bio);
4367af55
N
437 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 reschedule_retry(r1_bio);
439 else
440 raid_end_bio_io(r1_bio);
4e78064f
N
441 }
442}
443
4246a0b6 444static void raid1_end_write_request(struct bio *bio)
1da177e4 445{
9f2c9d12 446 struct r1bio *r1_bio = bio->bi_private;
e5872d58 447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 448 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 449 struct bio *to_put = NULL;
e5872d58
N
450 int mirror = find_bio_disk(r1_bio, bio);
451 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd 452 bool discard_error;
69df9cfc
GJ
453 sector_t lo = r1_bio->sector;
454 sector_t hi = r1_bio->sector + r1_bio->sectors;
e3f948cd 455
4e4cbee9 456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 457
e9c7469b
TH
458 /*
459 * 'one mirror IO has finished' event handler:
460 */
4e4cbee9 461 if (bio->bi_status && !discard_error) {
e5872d58
N
462 set_bit(WriteErrorSeen, &rdev->flags);
463 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
464 set_bit(MD_RECOVERY_NEEDED, &
465 conf->mddev->recovery);
466
212e7eb7
N
467 if (test_bit(FailFast, &rdev->flags) &&
468 (bio->bi_opf & MD_FAILFAST) &&
469 /* We never try FailFast to WriteMostly devices */
470 !test_bit(WriteMostly, &rdev->flags)) {
471 md_error(r1_bio->mddev, rdev);
eeba6809
YY
472 }
473
474 /*
475 * When the device is faulty, it is not necessary to
476 * handle write error.
eeba6809
YY
477 */
478 if (!test_bit(Faulty, &rdev->flags))
212e7eb7 479 set_bit(R1BIO_WriteError, &r1_bio->state);
eeba6809 480 else {
2417b986
PC
481 /* Fail the request */
482 set_bit(R1BIO_Degraded, &r1_bio->state);
eeba6809
YY
483 /* Finished with this branch */
484 r1_bio->bios[mirror] = NULL;
485 to_put = bio;
486 }
4367af55 487 } else {
1da177e4 488 /*
e9c7469b
TH
489 * Set R1BIO_Uptodate in our master bio, so that we
490 * will return a good error code for to the higher
491 * levels even if IO on some other mirrored buffer
492 * fails.
493 *
494 * The 'master' represents the composite IO operation
495 * to user-side. So if something waits for IO, then it
496 * will wait for the 'master' bio.
1da177e4 497 */
4367af55
N
498 sector_t first_bad;
499 int bad_sectors;
500
cd5ff9a1
N
501 r1_bio->bios[mirror] = NULL;
502 to_put = bio;
3056e3ae
AL
503 /*
504 * Do not set R1BIO_Uptodate if the current device is
505 * rebuilding or Faulty. This is because we cannot use
506 * such device for properly reading the data back (we could
507 * potentially use it, if the current write would have felt
508 * before rdev->recovery_offset, but for simplicity we don't
509 * check this here.
510 */
e5872d58
N
511 if (test_bit(In_sync, &rdev->flags) &&
512 !test_bit(Faulty, &rdev->flags))
3056e3ae 513 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 514
4367af55 515 /* Maybe we can clear some bad blocks. */
e5872d58 516 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 517 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
518 r1_bio->bios[mirror] = IO_MADE_GOOD;
519 set_bit(R1BIO_MadeGood, &r1_bio->state);
520 }
521 }
522
e9c7469b 523 if (behind) {
69df9cfc 524 if (test_bit(CollisionCheck, &rdev->flags))
404659cf 525 remove_serial(rdev, lo, hi);
e5872d58 526 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
527 atomic_dec(&r1_bio->behind_remaining);
528
529 /*
530 * In behind mode, we ACK the master bio once the I/O
531 * has safely reached all non-writemostly
532 * disks. Setting the Returned bit ensures that this
533 * gets done only once -- we don't ever want to return
534 * -EIO here, instead we'll wait
535 */
536 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
537 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
538 /* Maybe we can return now */
539 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
540 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
541 pr_debug("raid1: behind end write sectors"
542 " %llu-%llu\n",
4f024f37
KO
543 (unsigned long long) mbio->bi_iter.bi_sector,
544 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 545 call_bio_endio(r1_bio);
4b6d287f
N
546 }
547 }
69df9cfc
GJ
548 } else if (rdev->mddev->serialize_policy)
549 remove_serial(rdev, lo, hi);
4367af55 550 if (r1_bio->bios[mirror] == NULL)
e5872d58 551 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 552
1da177e4 553 /*
1da177e4
LT
554 * Let's see if all mirrored write operations have finished
555 * already.
556 */
af6d7b76 557 r1_bio_write_done(r1_bio);
c70810b3 558
04b857f7
N
559 if (to_put)
560 bio_put(to_put);
1da177e4
LT
561}
562
fd76863e 563static sector_t align_to_barrier_unit_end(sector_t start_sector,
564 sector_t sectors)
565{
566 sector_t len;
567
568 WARN_ON(sectors == 0);
569 /*
570 * len is the number of sectors from start_sector to end of the
571 * barrier unit which start_sector belongs to.
572 */
573 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
574 start_sector;
575
576 if (len > sectors)
577 len = sectors;
578
579 return len;
580}
581
1da177e4
LT
582/*
583 * This routine returns the disk from which the requested read should
584 * be done. There is a per-array 'next expected sequential IO' sector
585 * number - if this matches on the next IO then we use the last disk.
586 * There is also a per-disk 'last know head position' sector that is
587 * maintained from IRQ contexts, both the normal and the resync IO
588 * completion handlers update this position correctly. If there is no
589 * perfect sequential match then we pick the disk whose head is closest.
590 *
591 * If there are 2 mirrors in the same 2 devices, performance degrades
592 * because position is mirror, not device based.
593 *
594 * The rdev for the device selected will have nr_pending incremented.
595 */
e8096360 596static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 597{
af3a2cd6 598 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
599 int sectors;
600 int best_good_sectors;
9dedf603
SL
601 int best_disk, best_dist_disk, best_pending_disk;
602 int has_nonrot_disk;
be4d3280 603 int disk;
76073054 604 sector_t best_dist;
9dedf603 605 unsigned int min_pending;
3cb03002 606 struct md_rdev *rdev;
f3ac8bf7 607 int choose_first;
12cee5a8 608 int choose_next_idle;
1da177e4
LT
609
610 rcu_read_lock();
611 /*
8ddf9efe 612 * Check if we can balance. We can balance on the whole
1da177e4
LT
613 * device if no resync is going on, or below the resync window.
614 * We take the first readable disk when above the resync window.
615 */
616 retry:
d2eb35ac 617 sectors = r1_bio->sectors;
76073054 618 best_disk = -1;
9dedf603 619 best_dist_disk = -1;
76073054 620 best_dist = MaxSector;
9dedf603
SL
621 best_pending_disk = -1;
622 min_pending = UINT_MAX;
d2eb35ac 623 best_good_sectors = 0;
9dedf603 624 has_nonrot_disk = 0;
12cee5a8 625 choose_next_idle = 0;
2e52d449 626 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 627
7d49ffcf
GR
628 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
629 (mddev_is_clustered(conf->mddev) &&
90382ed9 630 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
631 this_sector + sectors)))
632 choose_first = 1;
633 else
634 choose_first = 0;
1da177e4 635
be4d3280 636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 637 sector_t dist;
d2eb35ac
N
638 sector_t first_bad;
639 int bad_sectors;
9dedf603 640 unsigned int pending;
12cee5a8 641 bool nonrot;
d2eb35ac 642
f3ac8bf7
N
643 rdev = rcu_dereference(conf->mirrors[disk].rdev);
644 if (r1_bio->bios[disk] == IO_BLOCKED
645 || rdev == NULL
76073054 646 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 647 continue;
76073054
N
648 if (!test_bit(In_sync, &rdev->flags) &&
649 rdev->recovery_offset < this_sector + sectors)
1da177e4 650 continue;
76073054
N
651 if (test_bit(WriteMostly, &rdev->flags)) {
652 /* Don't balance among write-mostly, just
653 * use the first as a last resort */
d1901ef0 654 if (best_dist_disk < 0) {
307729c8
N
655 if (is_badblock(rdev, this_sector, sectors,
656 &first_bad, &bad_sectors)) {
816b0acf 657 if (first_bad <= this_sector)
307729c8
N
658 /* Cannot use this */
659 continue;
660 best_good_sectors = first_bad - this_sector;
661 } else
662 best_good_sectors = sectors;
d1901ef0
TH
663 best_dist_disk = disk;
664 best_pending_disk = disk;
307729c8 665 }
76073054
N
666 continue;
667 }
668 /* This is a reasonable device to use. It might
669 * even be best.
670 */
d2eb35ac
N
671 if (is_badblock(rdev, this_sector, sectors,
672 &first_bad, &bad_sectors)) {
673 if (best_dist < MaxSector)
674 /* already have a better device */
675 continue;
676 if (first_bad <= this_sector) {
677 /* cannot read here. If this is the 'primary'
678 * device, then we must not read beyond
679 * bad_sectors from another device..
680 */
681 bad_sectors -= (this_sector - first_bad);
682 if (choose_first && sectors > bad_sectors)
683 sectors = bad_sectors;
684 if (best_good_sectors > sectors)
685 best_good_sectors = sectors;
686
687 } else {
688 sector_t good_sectors = first_bad - this_sector;
689 if (good_sectors > best_good_sectors) {
690 best_good_sectors = good_sectors;
691 best_disk = disk;
692 }
693 if (choose_first)
694 break;
695 }
696 continue;
d82dd0e3
TM
697 } else {
698 if ((sectors > best_good_sectors) && (best_disk >= 0))
699 best_disk = -1;
d2eb35ac 700 best_good_sectors = sectors;
d82dd0e3 701 }
d2eb35ac 702
2e52d449
N
703 if (best_disk >= 0)
704 /* At least two disks to choose from so failfast is OK */
705 set_bit(R1BIO_FailFast, &r1_bio->state);
706
12cee5a8
SL
707 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
708 has_nonrot_disk |= nonrot;
9dedf603 709 pending = atomic_read(&rdev->nr_pending);
76073054 710 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 711 if (choose_first) {
76073054 712 best_disk = disk;
1da177e4
LT
713 break;
714 }
12cee5a8
SL
715 /* Don't change to another disk for sequential reads */
716 if (conf->mirrors[disk].next_seq_sect == this_sector
717 || dist == 0) {
718 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
719 struct raid1_info *mirror = &conf->mirrors[disk];
720
721 best_disk = disk;
722 /*
723 * If buffered sequential IO size exceeds optimal
724 * iosize, check if there is idle disk. If yes, choose
725 * the idle disk. read_balance could already choose an
726 * idle disk before noticing it's a sequential IO in
727 * this disk. This doesn't matter because this disk
728 * will idle, next time it will be utilized after the
729 * first disk has IO size exceeds optimal iosize. In
730 * this way, iosize of the first disk will be optimal
731 * iosize at least. iosize of the second disk might be
732 * small, but not a big deal since when the second disk
733 * starts IO, the first disk is likely still busy.
734 */
735 if (nonrot && opt_iosize > 0 &&
736 mirror->seq_start != MaxSector &&
737 mirror->next_seq_sect > opt_iosize &&
738 mirror->next_seq_sect - opt_iosize >=
739 mirror->seq_start) {
740 choose_next_idle = 1;
741 continue;
742 }
743 break;
744 }
12cee5a8
SL
745
746 if (choose_next_idle)
747 continue;
9dedf603
SL
748
749 if (min_pending > pending) {
750 min_pending = pending;
751 best_pending_disk = disk;
752 }
753
76073054
N
754 if (dist < best_dist) {
755 best_dist = dist;
9dedf603 756 best_dist_disk = disk;
1da177e4 757 }
f3ac8bf7 758 }
1da177e4 759
9dedf603
SL
760 /*
761 * If all disks are rotational, choose the closest disk. If any disk is
762 * non-rotational, choose the disk with less pending request even the
763 * disk is rotational, which might/might not be optimal for raids with
764 * mixed ratation/non-rotational disks depending on workload.
765 */
766 if (best_disk == -1) {
2e52d449 767 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
768 best_disk = best_pending_disk;
769 else
770 best_disk = best_dist_disk;
771 }
772
76073054
N
773 if (best_disk >= 0) {
774 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
775 if (!rdev)
776 goto retry;
777 atomic_inc(&rdev->nr_pending);
d2eb35ac 778 sectors = best_good_sectors;
12cee5a8
SL
779
780 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
781 conf->mirrors[best_disk].seq_start = this_sector;
782
be4d3280 783 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
784 }
785 rcu_read_unlock();
d2eb35ac 786 *max_sectors = sectors;
1da177e4 787
76073054 788 return best_disk;
1da177e4
LT
789}
790
673ca68d
N
791static void flush_bio_list(struct r1conf *conf, struct bio *bio)
792{
793 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
e64e4018 794 md_bitmap_unplug(conf->mddev->bitmap);
673ca68d
N
795 wake_up(&conf->wait_barrier);
796
797 while (bio) { /* submit pending writes */
798 struct bio *next = bio->bi_next;
309dca30 799 struct md_rdev *rdev = (void *)bio->bi_bdev;
673ca68d 800 bio->bi_next = NULL;
74d46992 801 bio_set_dev(bio, rdev->bdev);
673ca68d 802 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 803 bio_io_error(bio);
673ca68d 804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
309dca30 805 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
673ca68d
N
806 /* Just ignore it */
807 bio_endio(bio);
808 else
ed00aabd 809 submit_bio_noacct(bio);
673ca68d 810 bio = next;
5fa4f8ba 811 cond_resched();
673ca68d
N
812 }
813}
814
e8096360 815static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
816{
817 /* Any writes that have been queued but are awaiting
818 * bitmap updates get flushed here.
a35e63ef 819 */
a35e63ef
N
820 spin_lock_irq(&conf->device_lock);
821
822 if (conf->pending_bio_list.head) {
18022a1b 823 struct blk_plug plug;
a35e63ef 824 struct bio *bio;
18022a1b 825
a35e63ef 826 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 827 conf->pending_count = 0;
a35e63ef 828 spin_unlock_irq(&conf->device_lock);
474beb57
N
829
830 /*
831 * As this is called in a wait_event() loop (see freeze_array),
832 * current->state might be TASK_UNINTERRUPTIBLE which will
833 * cause a warning when we prepare to wait again. As it is
834 * rare that this path is taken, it is perfectly safe to force
835 * us to go around the wait_event() loop again, so the warning
836 * is a false-positive. Silence the warning by resetting
837 * thread state
838 */
839 __set_current_state(TASK_RUNNING);
18022a1b 840 blk_start_plug(&plug);
673ca68d 841 flush_bio_list(conf, bio);
18022a1b 842 blk_finish_plug(&plug);
a35e63ef
N
843 } else
844 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
845}
846
17999be4
N
847/* Barriers....
848 * Sometimes we need to suspend IO while we do something else,
849 * either some resync/recovery, or reconfigure the array.
850 * To do this we raise a 'barrier'.
851 * The 'barrier' is a counter that can be raised multiple times
852 * to count how many activities are happening which preclude
853 * normal IO.
854 * We can only raise the barrier if there is no pending IO.
855 * i.e. if nr_pending == 0.
856 * We choose only to raise the barrier if no-one is waiting for the
857 * barrier to go down. This means that as soon as an IO request
858 * is ready, no other operations which require a barrier will start
859 * until the IO request has had a chance.
860 *
861 * So: regular IO calls 'wait_barrier'. When that returns there
862 * is no backgroup IO happening, It must arrange to call
863 * allow_barrier when it has finished its IO.
864 * backgroup IO calls must call raise_barrier. Once that returns
865 * there is no normal IO happeing. It must arrange to call
866 * lower_barrier when the particular background IO completes.
4675719d
HT
867 *
868 * If resync/recovery is interrupted, returns -EINTR;
869 * Otherwise, returns 0.
1da177e4 870 */
4675719d 871static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 872{
fd76863e 873 int idx = sector_to_idx(sector_nr);
874
1da177e4 875 spin_lock_irq(&conf->resync_lock);
17999be4
N
876
877 /* Wait until no block IO is waiting */
824e47da 878 wait_event_lock_irq(conf->wait_barrier,
879 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 880 conf->resync_lock);
17999be4
N
881
882 /* block any new IO from starting */
824e47da 883 atomic_inc(&conf->barrier[idx]);
884 /*
885 * In raise_barrier() we firstly increase conf->barrier[idx] then
886 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
887 * increase conf->nr_pending[idx] then check conf->barrier[idx].
888 * A memory barrier here to make sure conf->nr_pending[idx] won't
889 * be fetched before conf->barrier[idx] is increased. Otherwise
890 * there will be a race between raise_barrier() and _wait_barrier().
891 */
892 smp_mb__after_atomic();
17999be4 893
79ef3a8a 894 /* For these conditions we must wait:
895 * A: while the array is in frozen state
fd76863e 896 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
897 * existing in corresponding I/O barrier bucket.
898 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
899 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 900 */
17999be4 901 wait_event_lock_irq(conf->wait_barrier,
8c242593 902 (!conf->array_frozen &&
824e47da 903 !atomic_read(&conf->nr_pending[idx]) &&
8c242593
YY
904 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
905 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
eed8c02e 906 conf->resync_lock);
17999be4 907
8c242593
YY
908 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
909 atomic_dec(&conf->barrier[idx]);
910 spin_unlock_irq(&conf->resync_lock);
911 wake_up(&conf->wait_barrier);
912 return -EINTR;
913 }
914
43ac9b84 915 atomic_inc(&conf->nr_sync_pending);
17999be4 916 spin_unlock_irq(&conf->resync_lock);
8c242593
YY
917
918 return 0;
17999be4
N
919}
920
fd76863e 921static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 922{
fd76863e 923 int idx = sector_to_idx(sector_nr);
924
824e47da 925 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 926
824e47da 927 atomic_dec(&conf->barrier[idx]);
43ac9b84 928 atomic_dec(&conf->nr_sync_pending);
17999be4
N
929 wake_up(&conf->wait_barrier);
930}
931
5aa70503 932static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
17999be4 933{
5aa70503
VV
934 bool ret = true;
935
824e47da 936 /*
937 * We need to increase conf->nr_pending[idx] very early here,
938 * then raise_barrier() can be blocked when it waits for
939 * conf->nr_pending[idx] to be 0. Then we can avoid holding
940 * conf->resync_lock when there is no barrier raised in same
941 * barrier unit bucket. Also if the array is frozen, I/O
942 * should be blocked until array is unfrozen.
943 */
944 atomic_inc(&conf->nr_pending[idx]);
945 /*
946 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
947 * check conf->barrier[idx]. In raise_barrier() we firstly increase
948 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
949 * barrier is necessary here to make sure conf->barrier[idx] won't be
950 * fetched before conf->nr_pending[idx] is increased. Otherwise there
951 * will be a race between _wait_barrier() and raise_barrier().
952 */
953 smp_mb__after_atomic();
79ef3a8a 954
824e47da 955 /*
956 * Don't worry about checking two atomic_t variables at same time
957 * here. If during we check conf->barrier[idx], the array is
958 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
959 * 0, it is safe to return and make the I/O continue. Because the
960 * array is frozen, all I/O returned here will eventually complete
961 * or be queued, no race will happen. See code comment in
962 * frozen_array().
963 */
964 if (!READ_ONCE(conf->array_frozen) &&
965 !atomic_read(&conf->barrier[idx]))
5aa70503 966 return ret;
79ef3a8a 967
824e47da 968 /*
969 * After holding conf->resync_lock, conf->nr_pending[idx]
970 * should be decreased before waiting for barrier to drop.
971 * Otherwise, we may encounter a race condition because
972 * raise_barrer() might be waiting for conf->nr_pending[idx]
973 * to be 0 at same time.
974 */
975 spin_lock_irq(&conf->resync_lock);
976 atomic_inc(&conf->nr_waiting[idx]);
977 atomic_dec(&conf->nr_pending[idx]);
978 /*
979 * In case freeze_array() is waiting for
980 * get_unqueued_pending() == extra
981 */
982 wake_up(&conf->wait_barrier);
983 /* Wait for the barrier in same barrier unit bucket to drop. */
5aa70503
VV
984
985 /* Return false when nowait flag is set */
986 if (nowait) {
987 ret = false;
988 } else {
989 wait_event_lock_irq(conf->wait_barrier,
990 !conf->array_frozen &&
991 !atomic_read(&conf->barrier[idx]),
992 conf->resync_lock);
993 atomic_inc(&conf->nr_pending[idx]);
994 }
995
824e47da 996 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 997 spin_unlock_irq(&conf->resync_lock);
5aa70503 998 return ret;
79ef3a8a 999}
1000
5aa70503 1001static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
79ef3a8a 1002{
fd76863e 1003 int idx = sector_to_idx(sector_nr);
5aa70503 1004 bool ret = true;
79ef3a8a 1005
824e47da 1006 /*
1007 * Very similar to _wait_barrier(). The difference is, for read
1008 * I/O we don't need wait for sync I/O, but if the whole array
1009 * is frozen, the read I/O still has to wait until the array is
1010 * unfrozen. Since there is no ordering requirement with
1011 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1012 */
1013 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 1014
824e47da 1015 if (!READ_ONCE(conf->array_frozen))
5aa70503 1016 return ret;
824e47da 1017
1018 spin_lock_irq(&conf->resync_lock);
1019 atomic_inc(&conf->nr_waiting[idx]);
1020 atomic_dec(&conf->nr_pending[idx]);
1021 /*
1022 * In case freeze_array() is waiting for
1023 * get_unqueued_pending() == extra
1024 */
1025 wake_up(&conf->wait_barrier);
1026 /* Wait for array to be unfrozen */
5aa70503
VV
1027
1028 /* Return false when nowait flag is set */
1029 if (nowait) {
1030 /* Return false when nowait flag is set */
1031 ret = false;
1032 } else {
1033 wait_event_lock_irq(conf->wait_barrier,
1034 !conf->array_frozen,
1035 conf->resync_lock);
1036 atomic_inc(&conf->nr_pending[idx]);
1037 }
1038
824e47da 1039 atomic_dec(&conf->nr_waiting[idx]);
1da177e4 1040 spin_unlock_irq(&conf->resync_lock);
5aa70503 1041 return ret;
1da177e4
LT
1042}
1043
5aa70503 1044static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
17999be4 1045{
fd76863e 1046 int idx = sector_to_idx(sector_nr);
79ef3a8a 1047
5aa70503 1048 return _wait_barrier(conf, idx, nowait);
fd76863e 1049}
1050
fd76863e 1051static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1052{
824e47da 1053 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
1054 wake_up(&conf->wait_barrier);
1055}
1056
fd76863e 1057static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1058{
1059 int idx = sector_to_idx(sector_nr);
1060
1061 _allow_barrier(conf, idx);
1062}
1063
fd76863e 1064/* conf->resync_lock should be held */
1065static int get_unqueued_pending(struct r1conf *conf)
1066{
1067 int idx, ret;
1068
43ac9b84
XN
1069 ret = atomic_read(&conf->nr_sync_pending);
1070 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1071 ret += atomic_read(&conf->nr_pending[idx]) -
1072 atomic_read(&conf->nr_queued[idx]);
fd76863e 1073
1074 return ret;
1075}
1076
e2d59925 1077static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1078{
fd76863e 1079 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1080 * go quiet.
fd76863e 1081 * This is called in two situations:
1082 * 1) management command handlers (reshape, remove disk, quiesce).
1083 * 2) one normal I/O request failed.
1084
1085 * After array_frozen is set to 1, new sync IO will be blocked at
1086 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1087 * or wait_read_barrier(). The flying I/Os will either complete or be
1088 * queued. When everything goes quite, there are only queued I/Os left.
1089
1090 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1091 * barrier bucket index which this I/O request hits. When all sync and
1092 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1093 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1094 * in handle_read_error(), we may call freeze_array() before trying to
1095 * fix the read error. In this case, the error read I/O is not queued,
1096 * so get_unqueued_pending() == 1.
1097 *
1098 * Therefore before this function returns, we need to wait until
1099 * get_unqueued_pendings(conf) gets equal to extra. For
1100 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1101 */
1102 spin_lock_irq(&conf->resync_lock);
b364e3d0 1103 conf->array_frozen = 1;
578b54ad 1104 raid1_log(conf->mddev, "wait freeze");
fd76863e 1105 wait_event_lock_irq_cmd(
1106 conf->wait_barrier,
1107 get_unqueued_pending(conf) == extra,
1108 conf->resync_lock,
1109 flush_pending_writes(conf));
ddaf22ab
N
1110 spin_unlock_irq(&conf->resync_lock);
1111}
e8096360 1112static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1113{
1114 /* reverse the effect of the freeze */
1115 spin_lock_irq(&conf->resync_lock);
b364e3d0 1116 conf->array_frozen = 0;
ddaf22ab 1117 spin_unlock_irq(&conf->resync_lock);
824e47da 1118 wake_up(&conf->wait_barrier);
ddaf22ab
N
1119}
1120
16d56e2f 1121static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1122 struct bio *bio)
4b6d287f 1123{
cb83efcf 1124 int size = bio->bi_iter.bi_size;
841c1316
ML
1125 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1126 int i = 0;
1127 struct bio *behind_bio = NULL;
1128
a78f18da 1129 behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
841c1316 1130 if (!behind_bio)
16d56e2f 1131 return;
4b6d287f 1132
41743c1f 1133 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1134 if (!bio_has_data(bio)) {
1135 behind_bio->bi_iter.bi_size = size;
41743c1f 1136 goto skip_copy;
16d56e2f 1137 }
41743c1f 1138
dba40d46
MD
1139 behind_bio->bi_write_hint = bio->bi_write_hint;
1140
841c1316
ML
1141 while (i < vcnt && size) {
1142 struct page *page;
1143 int len = min_t(int, PAGE_SIZE, size);
1144
1145 page = alloc_page(GFP_NOIO);
1146 if (unlikely(!page))
1147 goto free_pages;
1148
1149 bio_add_page(behind_bio, page, len, 0);
1150
1151 size -= len;
1152 i++;
4b6d287f 1153 }
841c1316 1154
cb83efcf 1155 bio_copy_data(behind_bio, bio);
41743c1f 1156skip_copy:
56a64c17 1157 r1_bio->behind_master_bio = behind_bio;
af6d7b76 1158 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1159
16d56e2f 1160 return;
841c1316
ML
1161
1162free_pages:
4f024f37
KO
1163 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1164 bio->bi_iter.bi_size);
841c1316 1165 bio_free_pages(behind_bio);
16d56e2f 1166 bio_put(behind_bio);
4b6d287f
N
1167}
1168
f54a9d0e
N
1169struct raid1_plug_cb {
1170 struct blk_plug_cb cb;
1171 struct bio_list pending;
1172 int pending_cnt;
1173};
1174
1175static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1176{
1177 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1178 cb);
1179 struct mddev *mddev = plug->cb.data;
1180 struct r1conf *conf = mddev->private;
1181 struct bio *bio;
1182
874807a8 1183 if (from_schedule || current->bio_list) {
f54a9d0e
N
1184 spin_lock_irq(&conf->device_lock);
1185 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1186 conf->pending_count += plug->pending_cnt;
1187 spin_unlock_irq(&conf->device_lock);
ee0b0244 1188 wake_up(&conf->wait_barrier);
f54a9d0e
N
1189 md_wakeup_thread(mddev->thread);
1190 kfree(plug);
1191 return;
1192 }
1193
1194 /* we aren't scheduling, so we can do the write-out directly. */
1195 bio = bio_list_get(&plug->pending);
673ca68d 1196 flush_bio_list(conf, bio);
f54a9d0e
N
1197 kfree(plug);
1198}
1199
689389a0
N
1200static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1201{
1202 r1_bio->master_bio = bio;
1203 r1_bio->sectors = bio_sectors(bio);
1204 r1_bio->state = 0;
1205 r1_bio->mddev = mddev;
1206 r1_bio->sector = bio->bi_iter.bi_sector;
1207}
1208
fd76863e 1209static inline struct r1bio *
689389a0 1210alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1211{
1212 struct r1conf *conf = mddev->private;
1213 struct r1bio *r1_bio;
1214
afeee514 1215 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
689389a0
N
1216 /* Ensure no bio records IO_BLOCKED */
1217 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1218 init_r1bio(r1_bio, mddev, bio);
fd76863e 1219 return r1_bio;
1220}
1221
c230e7e5 1222static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1223 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1224{
e8096360 1225 struct r1conf *conf = mddev->private;
0eaf822c 1226 struct raid1_info *mirror;
1da177e4 1227 struct bio *read_bio;
3b046a97
RL
1228 struct bitmap *bitmap = mddev->bitmap;
1229 const int op = bio_op(bio);
1230 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1231 int max_sectors;
1232 int rdisk;
9b8ae7b9 1233 bool r1bio_existed = !!r1_bio;
689389a0 1234 char b[BDEVNAME_SIZE];
3b046a97 1235
fd76863e 1236 /*
689389a0
N
1237 * If r1_bio is set, we are blocking the raid1d thread
1238 * so there is a tiny risk of deadlock. So ask for
1239 * emergency memory if needed.
fd76863e 1240 */
689389a0 1241 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1242
9b8ae7b9 1243 if (r1bio_existed) {
689389a0
N
1244 /* Need to get the block device name carefully */
1245 struct md_rdev *rdev;
1246 rcu_read_lock();
1247 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1248 if (rdev)
1249 bdevname(rdev->bdev, b);
1250 else
1251 strcpy(b, "???");
1252 rcu_read_unlock();
1253 }
3b046a97 1254
fd76863e 1255 /*
fd76863e 1256 * Still need barrier for READ in case that whole
1257 * array is frozen.
fd76863e 1258 */
5aa70503
VV
1259 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1260 bio->bi_opf & REQ_NOWAIT)) {
1261 bio_wouldblock_error(bio);
1262 return;
1263 }
fd76863e 1264
689389a0
N
1265 if (!r1_bio)
1266 r1_bio = alloc_r1bio(mddev, bio);
1267 else
1268 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1269 r1_bio->sectors = max_read_sectors;
fd76863e 1270
1271 /*
1272 * make_request() can abort the operation when read-ahead is being
1273 * used and no empty request is available.
1274 */
3b046a97
RL
1275 rdisk = read_balance(conf, r1_bio, &max_sectors);
1276
1277 if (rdisk < 0) {
1278 /* couldn't find anywhere to read from */
9b8ae7b9 1279 if (r1bio_existed) {
689389a0
N
1280 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1281 mdname(mddev),
1282 b,
1283 (unsigned long long)r1_bio->sector);
1284 }
3b046a97
RL
1285 raid_end_bio_io(r1_bio);
1286 return;
1287 }
1288 mirror = conf->mirrors + rdisk;
1289
9b8ae7b9 1290 if (r1bio_existed)
689389a0
N
1291 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1292 mdname(mddev),
1293 (unsigned long long)r1_bio->sector,
1294 bdevname(mirror->rdev->bdev, b));
1295
3b046a97
RL
1296 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1297 bitmap) {
1298 /*
1299 * Reading from a write-mostly device must take care not to
1300 * over-take any writes that are 'behind'
1301 */
1302 raid1_log(mddev, "wait behind writes");
1303 wait_event(bitmap->behind_wait,
1304 atomic_read(&bitmap->behind_writes) == 0);
1305 }
c230e7e5
N
1306
1307 if (max_sectors < bio_sectors(bio)) {
1308 struct bio *split = bio_split(bio, max_sectors,
afeee514 1309 gfp, &conf->bio_split);
c230e7e5 1310 bio_chain(split, bio);
ed00aabd 1311 submit_bio_noacct(bio);
c230e7e5
N
1312 bio = split;
1313 r1_bio->master_bio = bio;
1314 r1_bio->sectors = max_sectors;
1315 }
1316
3b046a97 1317 r1_bio->read_disk = rdisk;
3b046a97 1318
a0159832
GJ
1319 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1320 r1_bio->start_time = bio_start_io_acct(bio);
1321
afeee514 1322 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
3b046a97
RL
1323
1324 r1_bio->bios[rdisk] = read_bio;
1325
1326 read_bio->bi_iter.bi_sector = r1_bio->sector +
1327 mirror->rdev->data_offset;
74d46992 1328 bio_set_dev(read_bio, mirror->rdev->bdev);
3b046a97
RL
1329 read_bio->bi_end_io = raid1_end_read_request;
1330 bio_set_op_attrs(read_bio, op, do_sync);
1331 if (test_bit(FailFast, &mirror->rdev->flags) &&
1332 test_bit(R1BIO_FailFast, &r1_bio->state))
1333 read_bio->bi_opf |= MD_FAILFAST;
1334 read_bio->bi_private = r1_bio;
1335
1336 if (mddev->gendisk)
1c02fca6
CH
1337 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1338 r1_bio->sector);
3b046a97 1339
ed00aabd 1340 submit_bio_noacct(read_bio);
3b046a97
RL
1341}
1342
c230e7e5
N
1343static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1344 int max_write_sectors)
3b046a97
RL
1345{
1346 struct r1conf *conf = mddev->private;
fd76863e 1347 struct r1bio *r1_bio;
1f68f0c4 1348 int i, disks;
3b046a97 1349 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1350 unsigned long flags;
3cb03002 1351 struct md_rdev *blocked_rdev;
f54a9d0e
N
1352 struct blk_plug_cb *cb;
1353 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1354 int first_clone;
1f68f0c4 1355 int max_sectors;
6607cd31 1356 bool write_behind = false;
191ea9b2 1357
b3143b9a 1358 if (mddev_is_clustered(mddev) &&
90382ed9 1359 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1360 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1361
6eef4b21 1362 DEFINE_WAIT(w);
5aa70503
VV
1363 if (bio->bi_opf & REQ_NOWAIT) {
1364 bio_wouldblock_error(bio);
1365 return;
1366 }
6eef4b21 1367 for (;;) {
6eef4b21 1368 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1369 &w, TASK_IDLE);
f81f7302 1370 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1371 bio->bi_iter.bi_sector,
b3143b9a 1372 bio_end_sector(bio)))
6eef4b21
N
1373 break;
1374 schedule();
1375 }
1376 finish_wait(&conf->wait_barrier, &w);
1377 }
f81f7302
GJ
1378
1379 /*
1380 * Register the new request and wait if the reconstruction
1381 * thread has put up a bar for new requests.
1382 * Continue immediately if no resync is active currently.
1383 */
5aa70503
VV
1384 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1385 bio->bi_opf & REQ_NOWAIT)) {
1386 bio_wouldblock_error(bio);
1387 return;
1388 }
fd76863e 1389
689389a0 1390 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1391 r1_bio->sectors = max_write_sectors;
1da177e4 1392
1f68f0c4 1393 /* first select target devices under rcu_lock and
1da177e4
LT
1394 * inc refcount on their rdev. Record them by setting
1395 * bios[x] to bio
1f68f0c4
N
1396 * If there are known/acknowledged bad blocks on any device on
1397 * which we have seen a write error, we want to avoid writing those
1398 * blocks.
1399 * This potentially requires several writes to write around
1400 * the bad blocks. Each set of writes gets it's own r1bio
1401 * with a set of bios attached.
1da177e4 1402 */
c3b328ac 1403
8f19ccb2 1404 disks = conf->raid_disks * 2;
6bfe0b49
DW
1405 retry_write:
1406 blocked_rdev = NULL;
1da177e4 1407 rcu_read_lock();
1f68f0c4 1408 max_sectors = r1_bio->sectors;
1da177e4 1409 for (i = 0; i < disks; i++) {
3cb03002 1410 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6607cd31
GJ
1411
1412 /*
1413 * The write-behind io is only attempted on drives marked as
1414 * write-mostly, which means we could allocate write behind
1415 * bio later.
1416 */
1417 if (rdev && test_bit(WriteMostly, &rdev->flags))
1418 write_behind = true;
1419
6bfe0b49
DW
1420 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1421 atomic_inc(&rdev->nr_pending);
1422 blocked_rdev = rdev;
1423 break;
1424 }
1f68f0c4 1425 r1_bio->bios[i] = NULL;
8ae12666 1426 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1427 if (i < conf->raid_disks)
1428 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1429 continue;
1430 }
1431
1432 atomic_inc(&rdev->nr_pending);
1433 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1434 sector_t first_bad;
1435 int bad_sectors;
1436 int is_bad;
1437
3b046a97 1438 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1439 &first_bad, &bad_sectors);
1440 if (is_bad < 0) {
1441 /* mustn't write here until the bad block is
1442 * acknowledged*/
1443 set_bit(BlockedBadBlocks, &rdev->flags);
1444 blocked_rdev = rdev;
1445 break;
1446 }
1447 if (is_bad && first_bad <= r1_bio->sector) {
1448 /* Cannot write here at all */
1449 bad_sectors -= (r1_bio->sector - first_bad);
1450 if (bad_sectors < max_sectors)
1451 /* mustn't write more than bad_sectors
1452 * to other devices yet
1453 */
1454 max_sectors = bad_sectors;
03c902e1 1455 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1456 /* We don't set R1BIO_Degraded as that
1457 * only applies if the disk is
1458 * missing, so it might be re-added,
1459 * and we want to know to recover this
1460 * chunk.
1461 * In this case the device is here,
1462 * and the fact that this chunk is not
1463 * in-sync is recorded in the bad
1464 * block log
1465 */
1466 continue;
964147d5 1467 }
1f68f0c4
N
1468 if (is_bad) {
1469 int good_sectors = first_bad - r1_bio->sector;
1470 if (good_sectors < max_sectors)
1471 max_sectors = good_sectors;
1472 }
1473 }
1474 r1_bio->bios[i] = bio;
1da177e4
LT
1475 }
1476 rcu_read_unlock();
1477
6bfe0b49
DW
1478 if (unlikely(blocked_rdev)) {
1479 /* Wait for this device to become unblocked */
1480 int j;
1481
1482 for (j = 0; j < i; j++)
1483 if (r1_bio->bios[j])
1484 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1485 r1_bio->state = 0;
fd76863e 1486 allow_barrier(conf, bio->bi_iter.bi_sector);
5aa70503
VV
1487
1488 if (bio->bi_opf & REQ_NOWAIT) {
1489 bio_wouldblock_error(bio);
1490 return;
1491 }
578b54ad 1492 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1493 md_wait_for_blocked_rdev(blocked_rdev, mddev);
5aa70503 1494 wait_barrier(conf, bio->bi_iter.bi_sector, false);
6bfe0b49
DW
1495 goto retry_write;
1496 }
1497
6607cd31
GJ
1498 /*
1499 * When using a bitmap, we may call alloc_behind_master_bio below.
1500 * alloc_behind_master_bio allocates a copy of the data payload a page
1501 * at a time and thus needs a new bio that can fit the whole payload
1502 * this bio in page sized chunks.
1503 */
1504 if (write_behind && bitmap)
1505 max_sectors = min_t(int, max_sectors,
1506 BIO_MAX_VECS * (PAGE_SIZE >> 9));
c230e7e5
N
1507 if (max_sectors < bio_sectors(bio)) {
1508 struct bio *split = bio_split(bio, max_sectors,
afeee514 1509 GFP_NOIO, &conf->bio_split);
c230e7e5 1510 bio_chain(split, bio);
ed00aabd 1511 submit_bio_noacct(bio);
c230e7e5
N
1512 bio = split;
1513 r1_bio->master_bio = bio;
1f68f0c4 1514 r1_bio->sectors = max_sectors;
191ea9b2 1515 }
4b6d287f 1516
a0159832
GJ
1517 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1518 r1_bio->start_time = bio_start_io_acct(bio);
4e78064f 1519 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1520 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1521
1f68f0c4 1522 first_clone = 1;
d8c84c4f 1523
1da177e4 1524 for (i = 0; i < disks; i++) {
8e58e327 1525 struct bio *mbio = NULL;
69df9cfc 1526 struct md_rdev *rdev = conf->mirrors[i].rdev;
1da177e4
LT
1527 if (!r1_bio->bios[i])
1528 continue;
1529
46669e86 1530 if (first_clone) {
1f68f0c4
N
1531 /* do behind I/O ?
1532 * Not if there are too many, or cannot
1533 * allocate memory, or a reader on WriteMostly
1534 * is waiting for behind writes to flush */
1535 if (bitmap &&
46669e86 1536 test_bit(WriteMostly, &rdev->flags) &&
1f68f0c4
N
1537 (atomic_read(&bitmap->behind_writes)
1538 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1539 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1540 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1541 }
1f68f0c4 1542
e64e4018
AS
1543 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1544 test_bit(R1BIO_BehindIO, &r1_bio->state));
1f68f0c4
N
1545 first_clone = 0;
1546 }
8e58e327 1547
16d56e2f
SL
1548 if (r1_bio->behind_master_bio)
1549 mbio = bio_clone_fast(r1_bio->behind_master_bio,
afeee514 1550 GFP_NOIO, &mddev->bio_set);
16d56e2f 1551 else
afeee514 1552 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
8e58e327 1553
841c1316 1554 if (r1_bio->behind_master_bio) {
69df9cfc 1555 if (test_bit(CollisionCheck, &rdev->flags))
d0d2d8ba 1556 wait_for_serialization(rdev, r1_bio);
3e148a32 1557 if (test_bit(WriteMostly, &rdev->flags))
4b6d287f 1558 atomic_inc(&r1_bio->behind_remaining);
69df9cfc 1559 } else if (mddev->serialize_policy)
d0d2d8ba 1560 wait_for_serialization(rdev, r1_bio);
4b6d287f 1561
1f68f0c4
N
1562 r1_bio->bios[i] = mbio;
1563
2e94275e
GJ
1564 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1565 bio_set_dev(mbio, rdev->bdev);
1f68f0c4 1566 mbio->bi_end_io = raid1_end_write_request;
a682e003 1567 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
2e94275e
GJ
1568 if (test_bit(FailFast, &rdev->flags) &&
1569 !test_bit(WriteMostly, &rdev->flags) &&
212e7eb7
N
1570 conf->raid_disks - mddev->degraded > 1)
1571 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1572 mbio->bi_private = r1_bio;
1573
1da177e4 1574 atomic_inc(&r1_bio->remaining);
f54a9d0e 1575
109e3765 1576 if (mddev->gendisk)
1c02fca6 1577 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
109e3765
N
1578 r1_bio->sector);
1579 /* flush_pending_writes() needs access to the rdev so...*/
2e94275e 1580 mbio->bi_bdev = (void *)rdev;
109e3765 1581
f54a9d0e
N
1582 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1583 if (cb)
1584 plug = container_of(cb, struct raid1_plug_cb, cb);
1585 else
1586 plug = NULL;
f54a9d0e
N
1587 if (plug) {
1588 bio_list_add(&plug->pending, mbio);
1589 plug->pending_cnt++;
1590 } else {
23b245c0 1591 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1592 bio_list_add(&conf->pending_bio_list, mbio);
1593 conf->pending_count++;
23b245c0 1594 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1595 md_wakeup_thread(mddev->thread);
23b245c0 1596 }
1da177e4 1597 }
1f68f0c4 1598
079fa166
N
1599 r1_bio_write_done(r1_bio);
1600
1601 /* In case raid1d snuck in to freeze_array */
1602 wake_up(&conf->wait_barrier);
1da177e4
LT
1603}
1604
cc27b0c7 1605static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1606{
fd76863e 1607 sector_t sectors;
3b046a97 1608
775d7831
DJ
1609 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1610 && md_flush_request(mddev, bio))
cc27b0c7 1611 return true;
3b046a97 1612
c230e7e5
N
1613 /*
1614 * There is a limit to the maximum size, but
1615 * the read/write handler might find a lower limit
1616 * due to bad blocks. To avoid multiple splits,
1617 * we pass the maximum number of sectors down
1618 * and let the lower level perform the split.
1619 */
1620 sectors = align_to_barrier_unit_end(
1621 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1622
c230e7e5 1623 if (bio_data_dir(bio) == READ)
689389a0 1624 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1625 else {
1626 if (!md_write_start(mddev,bio))
1627 return false;
c230e7e5 1628 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1629 }
1630 return true;
3b046a97
RL
1631}
1632
849674e4 1633static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1634{
e8096360 1635 struct r1conf *conf = mddev->private;
1da177e4
LT
1636 int i;
1637
1638 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1639 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1640 rcu_read_lock();
1641 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1642 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1643 seq_printf(seq, "%s",
ddac7c7e
N
1644 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1645 }
1646 rcu_read_unlock();
1da177e4
LT
1647 seq_printf(seq, "]");
1648}
1649
849674e4 1650static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1651{
1652 char b[BDEVNAME_SIZE];
e8096360 1653 struct r1conf *conf = mddev->private;
423f04d6 1654 unsigned long flags;
1da177e4
LT
1655
1656 /*
1657 * If it is not operational, then we have already marked it as dead
9a567843
GJ
1658 * else if it is the last working disks with "fail_last_dev == false",
1659 * ignore the error, let the next level up know.
1da177e4
LT
1660 * else mark the drive as failed
1661 */
2e52d449 1662 spin_lock_irqsave(&conf->device_lock, flags);
9a567843 1663 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
4044ba58 1664 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1665 /*
1666 * Don't fail the drive, act as though we were just a
4044ba58
N
1667 * normal single drive.
1668 * However don't try a recovery from this drive as
1669 * it is very likely to fail.
1da177e4 1670 */
5389042f 1671 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1672 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1673 return;
4044ba58 1674 }
de393cde 1675 set_bit(Blocked, &rdev->flags);
ebda52fa 1676 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1677 mddev->degraded++;
ebda52fa 1678 set_bit(Faulty, &rdev->flags);
423f04d6 1679 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1680 /*
1681 * if recovery is running, make sure it aborts.
1682 */
1683 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1684 set_mask_bits(&mddev->sb_flags, 0,
1685 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1686 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1687 "md/raid1:%s: Operation continuing on %d devices.\n",
1688 mdname(mddev), bdevname(rdev->bdev, b),
1689 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1690}
1691
e8096360 1692static void print_conf(struct r1conf *conf)
1da177e4
LT
1693{
1694 int i;
1da177e4 1695
1d41c216 1696 pr_debug("RAID1 conf printout:\n");
1da177e4 1697 if (!conf) {
1d41c216 1698 pr_debug("(!conf)\n");
1da177e4
LT
1699 return;
1700 }
1d41c216
N
1701 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1702 conf->raid_disks);
1da177e4 1703
ddac7c7e 1704 rcu_read_lock();
1da177e4
LT
1705 for (i = 0; i < conf->raid_disks; i++) {
1706 char b[BDEVNAME_SIZE];
3cb03002 1707 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1708 if (rdev)
1d41c216
N
1709 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1710 i, !test_bit(In_sync, &rdev->flags),
1711 !test_bit(Faulty, &rdev->flags),
1712 bdevname(rdev->bdev,b));
1da177e4 1713 }
ddac7c7e 1714 rcu_read_unlock();
1da177e4
LT
1715}
1716
e8096360 1717static void close_sync(struct r1conf *conf)
1da177e4 1718{
f6eca2d4
ND
1719 int idx;
1720
1721 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
5aa70503 1722 _wait_barrier(conf, idx, false);
f6eca2d4
ND
1723 _allow_barrier(conf, idx);
1724 }
1da177e4 1725
afeee514 1726 mempool_exit(&conf->r1buf_pool);
1da177e4
LT
1727}
1728
fd01b88c 1729static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1730{
1731 int i;
e8096360 1732 struct r1conf *conf = mddev->private;
6b965620
N
1733 int count = 0;
1734 unsigned long flags;
1da177e4
LT
1735
1736 /*
f72ffdd6 1737 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1738 * and mark them readable.
1739 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1740 * device_lock used to avoid races with raid1_end_read_request
1741 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1742 */
423f04d6 1743 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1744 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1745 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1746 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1747 if (repl
1aee41f6 1748 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1749 && repl->recovery_offset == MaxSector
1750 && !test_bit(Faulty, &repl->flags)
1751 && !test_and_set_bit(In_sync, &repl->flags)) {
1752 /* replacement has just become active */
1753 if (!rdev ||
1754 !test_and_clear_bit(In_sync, &rdev->flags))
1755 count++;
1756 if (rdev) {
1757 /* Replaced device not technically
1758 * faulty, but we need to be sure
1759 * it gets removed and never re-added
1760 */
1761 set_bit(Faulty, &rdev->flags);
1762 sysfs_notify_dirent_safe(
1763 rdev->sysfs_state);
1764 }
1765 }
ddac7c7e 1766 if (rdev
61e4947c 1767 && rdev->recovery_offset == MaxSector
ddac7c7e 1768 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1769 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1770 count++;
654e8b5a 1771 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1772 }
1773 }
6b965620
N
1774 mddev->degraded -= count;
1775 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1776
1777 print_conf(conf);
6b965620 1778 return count;
1da177e4
LT
1779}
1780
fd01b88c 1781static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1782{
e8096360 1783 struct r1conf *conf = mddev->private;
199050ea 1784 int err = -EEXIST;
41158c7e 1785 int mirror = 0;
0eaf822c 1786 struct raid1_info *p;
6c2fce2e 1787 int first = 0;
30194636 1788 int last = conf->raid_disks - 1;
1da177e4 1789
5389042f
N
1790 if (mddev->recovery_disabled == conf->recovery_disabled)
1791 return -EBUSY;
1792
1501efad
DW
1793 if (md_integrity_add_rdev(rdev, mddev))
1794 return -ENXIO;
1795
6c2fce2e
NB
1796 if (rdev->raid_disk >= 0)
1797 first = last = rdev->raid_disk;
1798
70bcecdb
GR
1799 /*
1800 * find the disk ... but prefer rdev->saved_raid_disk
1801 * if possible.
1802 */
1803 if (rdev->saved_raid_disk >= 0 &&
1804 rdev->saved_raid_disk >= first &&
9e753ba9 1805 rdev->saved_raid_disk < conf->raid_disks &&
70bcecdb
GR
1806 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807 first = last = rdev->saved_raid_disk;
1808
7ef449d1 1809 for (mirror = first; mirror <= last; mirror++) {
ebfeb444 1810 p = conf->mirrors + mirror;
7ef449d1 1811 if (!p->rdev) {
9092c02d
JB
1812 if (mddev->gendisk)
1813 disk_stack_limits(mddev->gendisk, rdev->bdev,
1814 rdev->data_offset << 9);
1da177e4
LT
1815
1816 p->head_position = 0;
1817 rdev->raid_disk = mirror;
199050ea 1818 err = 0;
6aea114a
N
1819 /* As all devices are equivalent, we don't need a full recovery
1820 * if this was recently any drive of the array
1821 */
1822 if (rdev->saved_raid_disk < 0)
41158c7e 1823 conf->fullsync = 1;
d6065f7b 1824 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1825 break;
1826 }
7ef449d1
N
1827 if (test_bit(WantReplacement, &p->rdev->flags) &&
1828 p[conf->raid_disks].rdev == NULL) {
1829 /* Add this device as a replacement */
1830 clear_bit(In_sync, &rdev->flags);
1831 set_bit(Replacement, &rdev->flags);
1832 rdev->raid_disk = mirror;
1833 err = 0;
1834 conf->fullsync = 1;
1835 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1836 break;
1837 }
1838 }
9092c02d 1839 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
8b904b5b 1840 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1841 print_conf(conf);
199050ea 1842 return err;
1da177e4
LT
1843}
1844
b8321b68 1845static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1846{
e8096360 1847 struct r1conf *conf = mddev->private;
1da177e4 1848 int err = 0;
b8321b68 1849 int number = rdev->raid_disk;
0eaf822c 1850 struct raid1_info *p = conf->mirrors + number;
1da177e4 1851
b014f14c
N
1852 if (rdev != p->rdev)
1853 p = conf->mirrors + conf->raid_disks + number;
1854
1da177e4 1855 print_conf(conf);
b8321b68 1856 if (rdev == p->rdev) {
b2d444d7 1857 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1858 atomic_read(&rdev->nr_pending)) {
1859 err = -EBUSY;
1860 goto abort;
1861 }
046abeed 1862 /* Only remove non-faulty devices if recovery
dfc70645
N
1863 * is not possible.
1864 */
1865 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1866 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1867 mddev->degraded < conf->raid_disks) {
1868 err = -EBUSY;
1869 goto abort;
1870 }
1da177e4 1871 p->rdev = NULL;
d787be40
N
1872 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1873 synchronize_rcu();
1874 if (atomic_read(&rdev->nr_pending)) {
1875 /* lost the race, try later */
1876 err = -EBUSY;
1877 p->rdev = rdev;
1878 goto abort;
1879 }
1880 }
1881 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1882 /* We just removed a device that is being replaced.
1883 * Move down the replacement. We drain all IO before
1884 * doing this to avoid confusion.
1885 */
1886 struct md_rdev *repl =
1887 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1888 freeze_array(conf, 0);
3de59bb9
YY
1889 if (atomic_read(&repl->nr_pending)) {
1890 /* It means that some queued IO of retry_list
1891 * hold repl. Thus, we cannot set replacement
1892 * as NULL, avoiding rdev NULL pointer
1893 * dereference in sync_request_write and
1894 * handle_write_finished.
1895 */
1896 err = -EBUSY;
1897 unfreeze_array(conf);
1898 goto abort;
1899 }
8c7a2c2b
N
1900 clear_bit(Replacement, &repl->flags);
1901 p->rdev = repl;
1902 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1903 unfreeze_array(conf);
e5bc9c3c
GJ
1904 }
1905
1906 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1907 err = md_integrity_register(mddev);
1da177e4
LT
1908 }
1909abort:
1910
1911 print_conf(conf);
1912 return err;
1913}
1914
4246a0b6 1915static void end_sync_read(struct bio *bio)
1da177e4 1916{
98d30c58 1917 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1918
0fc280f6 1919 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1920
1da177e4
LT
1921 /*
1922 * we have read a block, now it needs to be re-written,
1923 * or re-read if the read failed.
1924 * We don't do much here, just schedule handling by raid1d
1925 */
4e4cbee9 1926 if (!bio->bi_status)
1da177e4 1927 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1928
1929 if (atomic_dec_and_test(&r1_bio->remaining))
1930 reschedule_retry(r1_bio);
1da177e4
LT
1931}
1932
dfcc34c9
ND
1933static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1934{
1935 sector_t sync_blocks = 0;
1936 sector_t s = r1_bio->sector;
1937 long sectors_to_go = r1_bio->sectors;
1938
1939 /* make sure these bits don't get cleared. */
1940 do {
1941 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1942 s += sync_blocks;
1943 sectors_to_go -= sync_blocks;
1944 } while (sectors_to_go > 0);
1945}
1946
449808a2
HT
1947static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1948{
1949 if (atomic_dec_and_test(&r1_bio->remaining)) {
1950 struct mddev *mddev = r1_bio->mddev;
1951 int s = r1_bio->sectors;
1952
1953 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1954 test_bit(R1BIO_WriteError, &r1_bio->state))
1955 reschedule_retry(r1_bio);
1956 else {
1957 put_buf(r1_bio);
1958 md_done_sync(mddev, s, uptodate);
1959 }
1960 }
1961}
1962
4246a0b6 1963static void end_sync_write(struct bio *bio)
1da177e4 1964{
4e4cbee9 1965 int uptodate = !bio->bi_status;
98d30c58 1966 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1967 struct mddev *mddev = r1_bio->mddev;
e8096360 1968 struct r1conf *conf = mddev->private;
4367af55
N
1969 sector_t first_bad;
1970 int bad_sectors;
854abd75 1971 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1972
6b1117d5 1973 if (!uptodate) {
dfcc34c9 1974 abort_sync_write(mddev, r1_bio);
854abd75
N
1975 set_bit(WriteErrorSeen, &rdev->flags);
1976 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1977 set_bit(MD_RECOVERY_NEEDED, &
1978 mddev->recovery);
d8f05d29 1979 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1980 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1981 &first_bad, &bad_sectors) &&
1982 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1983 r1_bio->sector,
1984 r1_bio->sectors,
1985 &first_bad, &bad_sectors)
1986 )
4367af55 1987 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1988
449808a2 1989 put_sync_write_buf(r1_bio, uptodate);
1da177e4
LT
1990}
1991
3cb03002 1992static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1993 int sectors, struct page *page, int rw)
1994{
796a5cf0 1995 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1996 /* success */
1997 return 1;
19d67169 1998 if (rw == WRITE) {
d8f05d29 1999 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
2000 if (!test_and_set_bit(WantReplacement,
2001 &rdev->flags))
2002 set_bit(MD_RECOVERY_NEEDED, &
2003 rdev->mddev->recovery);
2004 }
d8f05d29
N
2005 /* need to record an error - either for the block or the device */
2006 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2007 md_error(rdev->mddev, rdev);
2008 return 0;
2009}
2010
9f2c9d12 2011static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 2012{
a68e5870
N
2013 /* Try some synchronous reads of other devices to get
2014 * good data, much like with normal read errors. Only
2015 * read into the pages we already have so we don't
2016 * need to re-issue the read request.
2017 * We don't need to freeze the array, because being in an
2018 * active sync request, there is no normal IO, and
2019 * no overlapping syncs.
06f60385
N
2020 * We don't need to check is_badblock() again as we
2021 * made sure that anything with a bad block in range
2022 * will have bi_end_io clear.
a68e5870 2023 */
fd01b88c 2024 struct mddev *mddev = r1_bio->mddev;
e8096360 2025 struct r1conf *conf = mddev->private;
a68e5870 2026 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 2027 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
2028 sector_t sect = r1_bio->sector;
2029 int sectors = r1_bio->sectors;
2030 int idx = 0;
2e52d449
N
2031 struct md_rdev *rdev;
2032
2033 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2034 if (test_bit(FailFast, &rdev->flags)) {
2035 /* Don't try recovering from here - just fail it
2036 * ... unless it is the last working device of course */
2037 md_error(mddev, rdev);
2038 if (test_bit(Faulty, &rdev->flags))
2039 /* Don't try to read from here, but make sure
2040 * put_buf does it's thing
2041 */
2042 bio->bi_end_io = end_sync_write;
2043 }
a68e5870
N
2044
2045 while(sectors) {
2046 int s = sectors;
2047 int d = r1_bio->read_disk;
2048 int success = 0;
78d7f5f7 2049 int start;
a68e5870
N
2050
2051 if (s > (PAGE_SIZE>>9))
2052 s = PAGE_SIZE >> 9;
2053 do {
2054 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2055 /* No rcu protection needed here devices
2056 * can only be removed when no resync is
2057 * active, and resync is currently active
2058 */
2059 rdev = conf->mirrors[d].rdev;
9d3d8011 2060 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 2061 pages[idx],
796a5cf0 2062 REQ_OP_READ, 0, false)) {
a68e5870
N
2063 success = 1;
2064 break;
2065 }
2066 }
2067 d++;
8f19ccb2 2068 if (d == conf->raid_disks * 2)
a68e5870
N
2069 d = 0;
2070 } while (!success && d != r1_bio->read_disk);
2071
78d7f5f7 2072 if (!success) {
a68e5870 2073 char b[BDEVNAME_SIZE];
3a9f28a5
N
2074 int abort = 0;
2075 /* Cannot read from anywhere, this block is lost.
2076 * Record a bad block on each device. If that doesn't
2077 * work just disable and interrupt the recovery.
2078 * Don't fail devices as that won't really help.
2079 */
1d41c216 2080 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
74d46992 2081 mdname(mddev), bio_devname(bio, b),
1d41c216 2082 (unsigned long long)r1_bio->sector);
8f19ccb2 2083 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
2084 rdev = conf->mirrors[d].rdev;
2085 if (!rdev || test_bit(Faulty, &rdev->flags))
2086 continue;
2087 if (!rdev_set_badblocks(rdev, sect, s, 0))
2088 abort = 1;
2089 }
2090 if (abort) {
d890fa2b
N
2091 conf->recovery_disabled =
2092 mddev->recovery_disabled;
3a9f28a5
N
2093 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2094 md_done_sync(mddev, r1_bio->sectors, 0);
2095 put_buf(r1_bio);
2096 return 0;
2097 }
2098 /* Try next page */
2099 sectors -= s;
2100 sect += s;
2101 idx++;
2102 continue;
d11c171e 2103 }
78d7f5f7
N
2104
2105 start = d;
2106 /* write it back and re-read */
2107 while (d != r1_bio->read_disk) {
2108 if (d == 0)
8f19ccb2 2109 d = conf->raid_disks * 2;
78d7f5f7
N
2110 d--;
2111 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2112 continue;
2113 rdev = conf->mirrors[d].rdev;
d8f05d29 2114 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2115 pages[idx],
d8f05d29 2116 WRITE) == 0) {
78d7f5f7
N
2117 r1_bio->bios[d]->bi_end_io = NULL;
2118 rdev_dec_pending(rdev, mddev);
9d3d8011 2119 }
78d7f5f7
N
2120 }
2121 d = start;
2122 while (d != r1_bio->read_disk) {
2123 if (d == 0)
8f19ccb2 2124 d = conf->raid_disks * 2;
78d7f5f7
N
2125 d--;
2126 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2127 continue;
2128 rdev = conf->mirrors[d].rdev;
d8f05d29 2129 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2130 pages[idx],
d8f05d29 2131 READ) != 0)
9d3d8011 2132 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2133 }
a68e5870
N
2134 sectors -= s;
2135 sect += s;
2136 idx ++;
2137 }
78d7f5f7 2138 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2139 bio->bi_status = 0;
a68e5870
N
2140 return 1;
2141}
2142
c95e6385 2143static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2144{
2145 /* We have read all readable devices. If we haven't
2146 * got the block, then there is no hope left.
2147 * If we have, then we want to do a comparison
2148 * and skip the write if everything is the same.
2149 * If any blocks failed to read, then we need to
2150 * attempt an over-write
2151 */
fd01b88c 2152 struct mddev *mddev = r1_bio->mddev;
e8096360 2153 struct r1conf *conf = mddev->private;
a68e5870
N
2154 int primary;
2155 int i;
f4380a91 2156 int vcnt;
a68e5870 2157
30bc9b53
N
2158 /* Fix variable parts of all bios */
2159 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2160 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2161 blk_status_t status;
30bc9b53 2162 struct bio *b = r1_bio->bios[i];
98d30c58 2163 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2164 if (b->bi_end_io != end_sync_read)
2165 continue;
4246a0b6 2166 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2167 status = b->bi_status;
30bc9b53 2168 bio_reset(b);
4e4cbee9 2169 b->bi_status = status;
4f024f37 2170 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2171 conf->mirrors[i].rdev->data_offset;
74d46992 2172 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
30bc9b53 2173 b->bi_end_io = end_sync_read;
98d30c58
ML
2174 rp->raid_bio = r1_bio;
2175 b->bi_private = rp;
30bc9b53 2176
fb0eb5df
ML
2177 /* initialize bvec table again */
2178 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2179 }
8f19ccb2 2180 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2181 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2182 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2183 r1_bio->bios[primary]->bi_end_io = NULL;
2184 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2185 break;
2186 }
2187 r1_bio->read_disk = primary;
8f19ccb2 2188 for (i = 0; i < conf->raid_disks * 2; i++) {
2b070cfe 2189 int j = 0;
78d7f5f7
N
2190 struct bio *pbio = r1_bio->bios[primary];
2191 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2192 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2193 struct page **ppages = get_resync_pages(pbio)->pages;
2194 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2195 struct bio_vec *bi;
8fc04e6e 2196 int page_len[RESYNC_PAGES] = { 0 };
6dc4f100 2197 struct bvec_iter_all iter_all;
a68e5870 2198
2aabaa65 2199 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2200 continue;
4246a0b6 2201 /* Now we can 'fixup' the error value */
4e4cbee9 2202 sbio->bi_status = 0;
78d7f5f7 2203
2b070cfe
CH
2204 bio_for_each_segment_all(bi, sbio, iter_all)
2205 page_len[j++] = bi->bv_len;
60928a91 2206
4e4cbee9 2207 if (!status) {
78d7f5f7 2208 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2209 if (memcmp(page_address(ppages[j]),
2210 page_address(spages[j]),
60928a91 2211 page_len[j]))
78d7f5f7 2212 break;
69382e85 2213 }
78d7f5f7
N
2214 } else
2215 j = 0;
2216 if (j >= 0)
7f7583d4 2217 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2218 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2219 && !status)) {
78d7f5f7
N
2220 /* No need to write to this device. */
2221 sbio->bi_end_io = NULL;
2222 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2223 continue;
2224 }
d3b45c2a
KO
2225
2226 bio_copy_data(sbio, pbio);
78d7f5f7 2227 }
a68e5870
N
2228}
2229
9f2c9d12 2230static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2231{
e8096360 2232 struct r1conf *conf = mddev->private;
a68e5870 2233 int i;
8f19ccb2 2234 int disks = conf->raid_disks * 2;
037d2ff6 2235 struct bio *wbio;
a68e5870 2236
a68e5870
N
2237 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2238 /* ouch - failed to read all of that. */
2239 if (!fix_sync_read_error(r1_bio))
2240 return;
7ca78d57
N
2241
2242 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2243 process_checks(r1_bio);
2244
d11c171e
N
2245 /*
2246 * schedule writes
2247 */
1da177e4
LT
2248 atomic_set(&r1_bio->remaining, 1);
2249 for (i = 0; i < disks ; i++) {
2250 wbio = r1_bio->bios[i];
3e198f78
N
2251 if (wbio->bi_end_io == NULL ||
2252 (wbio->bi_end_io == end_sync_read &&
2253 (i == r1_bio->read_disk ||
2254 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2255 continue;
dfcc34c9
ND
2256 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2257 abort_sync_write(mddev, r1_bio);
0c9d5b12 2258 continue;
dfcc34c9 2259 }
1da177e4 2260
796a5cf0 2261 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2262 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2263 wbio->bi_opf |= MD_FAILFAST;
2264
3e198f78 2265 wbio->bi_end_io = end_sync_write;
1da177e4 2266 atomic_inc(&r1_bio->remaining);
aa8b57aa 2267 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2268
ed00aabd 2269 submit_bio_noacct(wbio);
1da177e4
LT
2270 }
2271
449808a2 2272 put_sync_write_buf(r1_bio, 1);
1da177e4
LT
2273}
2274
2275/*
2276 * This is a kernel thread which:
2277 *
2278 * 1. Retries failed read operations on working mirrors.
2279 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2280 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2281 */
2282
e8096360 2283static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2284 sector_t sect, int sectors)
2285{
fd01b88c 2286 struct mddev *mddev = conf->mddev;
867868fb
N
2287 while(sectors) {
2288 int s = sectors;
2289 int d = read_disk;
2290 int success = 0;
2291 int start;
3cb03002 2292 struct md_rdev *rdev;
867868fb
N
2293
2294 if (s > (PAGE_SIZE>>9))
2295 s = PAGE_SIZE >> 9;
2296
2297 do {
d2eb35ac
N
2298 sector_t first_bad;
2299 int bad_sectors;
2300
707a6a42
N
2301 rcu_read_lock();
2302 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2303 if (rdev &&
da8840a7 2304 (test_bit(In_sync, &rdev->flags) ||
2305 (!test_bit(Faulty, &rdev->flags) &&
2306 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2307 is_badblock(rdev, sect, s,
707a6a42
N
2308 &first_bad, &bad_sectors) == 0) {
2309 atomic_inc(&rdev->nr_pending);
2310 rcu_read_unlock();
2311 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2312 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2313 success = 1;
2314 rdev_dec_pending(rdev, mddev);
2315 if (success)
2316 break;
2317 } else
2318 rcu_read_unlock();
2319 d++;
2320 if (d == conf->raid_disks * 2)
2321 d = 0;
867868fb
N
2322 } while (!success && d != read_disk);
2323
2324 if (!success) {
d8f05d29 2325 /* Cannot read from anywhere - mark it bad */
3cb03002 2326 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2327 if (!rdev_set_badblocks(rdev, sect, s, 0))
2328 md_error(mddev, rdev);
867868fb
N
2329 break;
2330 }
2331 /* write it back and re-read */
2332 start = d;
2333 while (d != read_disk) {
2334 if (d==0)
8f19ccb2 2335 d = conf->raid_disks * 2;
867868fb 2336 d--;
707a6a42
N
2337 rcu_read_lock();
2338 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2339 if (rdev &&
707a6a42
N
2340 !test_bit(Faulty, &rdev->flags)) {
2341 atomic_inc(&rdev->nr_pending);
2342 rcu_read_unlock();
d8f05d29
N
2343 r1_sync_page_io(rdev, sect, s,
2344 conf->tmppage, WRITE);
707a6a42
N
2345 rdev_dec_pending(rdev, mddev);
2346 } else
2347 rcu_read_unlock();
867868fb
N
2348 }
2349 d = start;
2350 while (d != read_disk) {
2351 char b[BDEVNAME_SIZE];
2352 if (d==0)
8f19ccb2 2353 d = conf->raid_disks * 2;
867868fb 2354 d--;
707a6a42
N
2355 rcu_read_lock();
2356 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2357 if (rdev &&
b8cb6b4c 2358 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2359 atomic_inc(&rdev->nr_pending);
2360 rcu_read_unlock();
d8f05d29
N
2361 if (r1_sync_page_io(rdev, sect, s,
2362 conf->tmppage, READ)) {
867868fb 2363 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2364 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2365 mdname(mddev), s,
2366 (unsigned long long)(sect +
2367 rdev->data_offset),
2368 bdevname(rdev->bdev, b));
867868fb 2369 }
707a6a42
N
2370 rdev_dec_pending(rdev, mddev);
2371 } else
2372 rcu_read_unlock();
867868fb
N
2373 }
2374 sectors -= s;
2375 sect += s;
2376 }
2377}
2378
9f2c9d12 2379static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2380{
fd01b88c 2381 struct mddev *mddev = r1_bio->mddev;
e8096360 2382 struct r1conf *conf = mddev->private;
3cb03002 2383 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2384
2385 /* bio has the data to be written to device 'i' where
2386 * we just recently had a write error.
2387 * We repeatedly clone the bio and trim down to one block,
2388 * then try the write. Where the write fails we record
2389 * a bad block.
2390 * It is conceivable that the bio doesn't exactly align with
2391 * blocks. We must handle this somehow.
2392 *
2393 * We currently own a reference on the rdev.
2394 */
2395
2396 int block_sectors;
2397 sector_t sector;
2398 int sectors;
2399 int sect_to_write = r1_bio->sectors;
2400 int ok = 1;
2401
2402 if (rdev->badblocks.shift < 0)
2403 return 0;
2404
ab713cdc
ND
2405 block_sectors = roundup(1 << rdev->badblocks.shift,
2406 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2407 sector = r1_bio->sector;
2408 sectors = ((sector + block_sectors)
2409 & ~(sector_t)(block_sectors - 1))
2410 - sector;
2411
cd5ff9a1
N
2412 while (sect_to_write) {
2413 struct bio *wbio;
2414 if (sectors > sect_to_write)
2415 sectors = sect_to_write;
2416 /* Write at 'sector' for 'sectors'*/
2417
b783863f 2418 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2419 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2420 GFP_NOIO,
afeee514 2421 &mddev->bio_set);
b783863f 2422 } else {
d7a10308 2423 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
afeee514 2424 &mddev->bio_set);
b783863f
KO
2425 }
2426
796a5cf0 2427 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2428 wbio->bi_iter.bi_sector = r1_bio->sector;
2429 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2430
6678d83f 2431 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2432 wbio->bi_iter.bi_sector += rdev->data_offset;
74d46992 2433 bio_set_dev(wbio, rdev->bdev);
4e49ea4a
MC
2434
2435 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2436 /* failure! */
2437 ok = rdev_set_badblocks(rdev, sector,
2438 sectors, 0)
2439 && ok;
2440
2441 bio_put(wbio);
2442 sect_to_write -= sectors;
2443 sector += sectors;
2444 sectors = block_sectors;
2445 }
2446 return ok;
2447}
2448
e8096360 2449static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2450{
2451 int m;
2452 int s = r1_bio->sectors;
8f19ccb2 2453 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2454 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2455 struct bio *bio = r1_bio->bios[m];
2456 if (bio->bi_end_io == NULL)
2457 continue;
4e4cbee9 2458 if (!bio->bi_status &&
62096bce 2459 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2460 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2461 }
4e4cbee9 2462 if (bio->bi_status &&
62096bce
N
2463 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2464 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2465 md_error(conf->mddev, rdev);
2466 }
2467 }
2468 put_buf(r1_bio);
2469 md_done_sync(conf->mddev, s, 1);
2470}
2471
e8096360 2472static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2473{
fd76863e 2474 int m, idx;
55ce74d4 2475 bool fail = false;
fd76863e 2476
8f19ccb2 2477 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2478 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2479 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2480 rdev_clear_badblocks(rdev,
2481 r1_bio->sector,
c6563a8c 2482 r1_bio->sectors, 0);
62096bce
N
2483 rdev_dec_pending(rdev, conf->mddev);
2484 } else if (r1_bio->bios[m] != NULL) {
2485 /* This drive got a write error. We need to
2486 * narrow down and record precise write
2487 * errors.
2488 */
55ce74d4 2489 fail = true;
62096bce
N
2490 if (!narrow_write_error(r1_bio, m)) {
2491 md_error(conf->mddev,
2492 conf->mirrors[m].rdev);
2493 /* an I/O failed, we can't clear the bitmap */
2494 set_bit(R1BIO_Degraded, &r1_bio->state);
2495 }
2496 rdev_dec_pending(conf->mirrors[m].rdev,
2497 conf->mddev);
2498 }
55ce74d4
N
2499 if (fail) {
2500 spin_lock_irq(&conf->device_lock);
2501 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2502 idx = sector_to_idx(r1_bio->sector);
824e47da 2503 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2504 spin_unlock_irq(&conf->device_lock);
824e47da 2505 /*
2506 * In case freeze_array() is waiting for condition
2507 * get_unqueued_pending() == extra to be true.
2508 */
2509 wake_up(&conf->wait_barrier);
55ce74d4 2510 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2511 } else {
2512 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2513 close_write(r1_bio);
55ce74d4 2514 raid_end_bio_io(r1_bio);
bd8688a1 2515 }
62096bce
N
2516}
2517
e8096360 2518static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2519{
fd01b88c 2520 struct mddev *mddev = conf->mddev;
62096bce 2521 struct bio *bio;
3cb03002 2522 struct md_rdev *rdev;
62096bce
N
2523
2524 clear_bit(R1BIO_ReadError, &r1_bio->state);
2525 /* we got a read error. Maybe the drive is bad. Maybe just
2526 * the block and we can fix it.
2527 * We freeze all other IO, and try reading the block from
2528 * other devices. When we find one, we re-write
2529 * and check it that fixes the read error.
2530 * This is all done synchronously while the array is
2531 * frozen
2532 */
7449f699
TM
2533
2534 bio = r1_bio->bios[r1_bio->read_disk];
7449f699
TM
2535 bio_put(bio);
2536 r1_bio->bios[r1_bio->read_disk] = NULL;
2537
2e52d449
N
2538 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2539 if (mddev->ro == 0
2540 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2541 freeze_array(conf, 1);
62096bce
N
2542 fix_read_error(conf, r1_bio->read_disk,
2543 r1_bio->sector, r1_bio->sectors);
2544 unfreeze_array(conf);
b33d1062
GK
2545 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2546 md_error(mddev, rdev);
7449f699
TM
2547 } else {
2548 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2549 }
2550
2e52d449 2551 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2552 allow_barrier(conf, r1_bio->sector);
2553 bio = r1_bio->master_bio;
62096bce 2554
689389a0
N
2555 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2556 r1_bio->state = 0;
2557 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2558}
2559
4ed8731d 2560static void raid1d(struct md_thread *thread)
1da177e4 2561{
4ed8731d 2562 struct mddev *mddev = thread->mddev;
9f2c9d12 2563 struct r1bio *r1_bio;
1da177e4 2564 unsigned long flags;
e8096360 2565 struct r1conf *conf = mddev->private;
1da177e4 2566 struct list_head *head = &conf->retry_list;
e1dfa0a2 2567 struct blk_plug plug;
fd76863e 2568 int idx;
1da177e4
LT
2569
2570 md_check_recovery(mddev);
e1dfa0a2 2571
55ce74d4 2572 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2573 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2574 LIST_HEAD(tmp);
2575 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2576 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2577 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2578 spin_unlock_irqrestore(&conf->device_lock, flags);
2579 while (!list_empty(&tmp)) {
a452744b
MP
2580 r1_bio = list_first_entry(&tmp, struct r1bio,
2581 retry_list);
55ce74d4 2582 list_del(&r1_bio->retry_list);
fd76863e 2583 idx = sector_to_idx(r1_bio->sector);
824e47da 2584 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2585 if (mddev->degraded)
2586 set_bit(R1BIO_Degraded, &r1_bio->state);
2587 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2588 close_write(r1_bio);
55ce74d4
N
2589 raid_end_bio_io(r1_bio);
2590 }
2591 }
2592
e1dfa0a2 2593 blk_start_plug(&plug);
1da177e4 2594 for (;;) {
191ea9b2 2595
0021b7bc 2596 flush_pending_writes(conf);
191ea9b2 2597
a35e63ef
N
2598 spin_lock_irqsave(&conf->device_lock, flags);
2599 if (list_empty(head)) {
2600 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2601 break;
a35e63ef 2602 }
9f2c9d12 2603 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2604 list_del(head->prev);
fd76863e 2605 idx = sector_to_idx(r1_bio->sector);
824e47da 2606 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2607 spin_unlock_irqrestore(&conf->device_lock, flags);
2608
2609 mddev = r1_bio->mddev;
070ec55d 2610 conf = mddev->private;
4367af55 2611 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2612 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2613 test_bit(R1BIO_WriteError, &r1_bio->state))
2614 handle_sync_write_finished(conf, r1_bio);
2615 else
4367af55 2616 sync_request_write(mddev, r1_bio);
cd5ff9a1 2617 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2618 test_bit(R1BIO_WriteError, &r1_bio->state))
2619 handle_write_finished(conf, r1_bio);
2620 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2621 handle_read_error(conf, r1_bio);
2622 else
c230e7e5 2623 WARN_ON_ONCE(1);
62096bce 2624
1d9d5241 2625 cond_resched();
2953079c 2626 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2627 md_check_recovery(mddev);
1da177e4 2628 }
e1dfa0a2 2629 blk_finish_plug(&plug);
1da177e4
LT
2630}
2631
e8096360 2632static int init_resync(struct r1conf *conf)
1da177e4
LT
2633{
2634 int buffs;
2635
2636 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514
KO
2637 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2638
2639 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2640 r1buf_pool_free, conf->poolinfo);
1da177e4
LT
2641}
2642
208410b5
SL
2643static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2644{
afeee514 2645 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
208410b5
SL
2646 struct resync_pages *rps;
2647 struct bio *bio;
2648 int i;
2649
2650 for (i = conf->poolinfo->raid_disks; i--; ) {
2651 bio = r1bio->bios[i];
2652 rps = bio->bi_private;
2653 bio_reset(bio);
2654 bio->bi_private = rps;
2655 }
2656 r1bio->master_bio = NULL;
2657 return r1bio;
2658}
2659
1da177e4
LT
2660/*
2661 * perform a "sync" on one "block"
2662 *
2663 * We need to make sure that no normal I/O request - particularly write
2664 * requests - conflict with active sync requests.
2665 *
2666 * This is achieved by tracking pending requests and a 'barrier' concept
2667 * that can be installed to exclude normal IO requests.
2668 */
2669
849674e4
SL
2670static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2671 int *skipped)
1da177e4 2672{
e8096360 2673 struct r1conf *conf = mddev->private;
9f2c9d12 2674 struct r1bio *r1_bio;
1da177e4
LT
2675 struct bio *bio;
2676 sector_t max_sector, nr_sectors;
3e198f78 2677 int disk = -1;
1da177e4 2678 int i;
3e198f78
N
2679 int wonly = -1;
2680 int write_targets = 0, read_targets = 0;
57dab0bd 2681 sector_t sync_blocks;
e3b9703e 2682 int still_degraded = 0;
06f60385
N
2683 int good_sectors = RESYNC_SECTORS;
2684 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2685 int idx = sector_to_idx(sector_nr);
022e510f 2686 int page_idx = 0;
1da177e4 2687
afeee514 2688 if (!mempool_initialized(&conf->r1buf_pool))
1da177e4 2689 if (init_resync(conf))
57afd89f 2690 return 0;
1da177e4 2691
58c0fed4 2692 max_sector = mddev->dev_sectors;
1da177e4 2693 if (sector_nr >= max_sector) {
191ea9b2
N
2694 /* If we aborted, we need to abort the
2695 * sync on the 'current' bitmap chunk (there will
2696 * only be one in raid1 resync.
2697 * We can find the current addess in mddev->curr_resync
2698 */
6a806c51 2699 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
2700 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2701 &sync_blocks, 1);
6a806c51 2702 else /* completed sync */
191ea9b2 2703 conf->fullsync = 0;
6a806c51 2704
e64e4018 2705 md_bitmap_close_sync(mddev->bitmap);
1da177e4 2706 close_sync(conf);
c40f341f
GR
2707
2708 if (mddev_is_clustered(mddev)) {
2709 conf->cluster_sync_low = 0;
2710 conf->cluster_sync_high = 0;
c40f341f 2711 }
1da177e4
LT
2712 return 0;
2713 }
2714
07d84d10
N
2715 if (mddev->bitmap == NULL &&
2716 mddev->recovery_cp == MaxSector &&
6394cca5 2717 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2718 conf->fullsync == 0) {
2719 *skipped = 1;
2720 return max_sector - sector_nr;
2721 }
6394cca5
N
2722 /* before building a request, check if we can skip these blocks..
2723 * This call the bitmap_start_sync doesn't actually record anything
2724 */
e64e4018 2725 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2726 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2727 /* We can skip this block, and probably several more */
2728 *skipped = 1;
2729 return sync_blocks;
2730 }
17999be4 2731
7ac50447
TM
2732 /*
2733 * If there is non-resync activity waiting for a turn, then let it
2734 * though before starting on this new sync request.
2735 */
824e47da 2736 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2737 schedule_timeout_uninterruptible(1);
2738
c40f341f
GR
2739 /* we are incrementing sector_nr below. To be safe, we check against
2740 * sector_nr + two times RESYNC_SECTORS
2741 */
2742
e64e4018 2743 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
c40f341f 2744 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
17999be4 2745
8c242593
YY
2746
2747 if (raise_barrier(conf, sector_nr))
2748 return 0;
2749
2750 r1_bio = raid1_alloc_init_r1buf(conf);
1da177e4 2751
3e198f78 2752 rcu_read_lock();
1da177e4 2753 /*
3e198f78
N
2754 * If we get a correctably read error during resync or recovery,
2755 * we might want to read from a different device. So we
2756 * flag all drives that could conceivably be read from for READ,
2757 * and any others (which will be non-In_sync devices) for WRITE.
2758 * If a read fails, we try reading from something else for which READ
2759 * is OK.
1da177e4 2760 */
1da177e4 2761
1da177e4
LT
2762 r1_bio->mddev = mddev;
2763 r1_bio->sector = sector_nr;
191ea9b2 2764 r1_bio->state = 0;
1da177e4 2765 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2766 /* make sure good_sectors won't go across barrier unit boundary */
2767 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2768
8f19ccb2 2769 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2770 struct md_rdev *rdev;
1da177e4 2771 bio = r1_bio->bios[i];
1da177e4 2772
3e198f78
N
2773 rdev = rcu_dereference(conf->mirrors[i].rdev);
2774 if (rdev == NULL ||
06f60385 2775 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2776 if (i < conf->raid_disks)
2777 still_degraded = 1;
3e198f78 2778 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2779 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2780 bio->bi_end_io = end_sync_write;
2781 write_targets ++;
3e198f78
N
2782 } else {
2783 /* may need to read from here */
06f60385
N
2784 sector_t first_bad = MaxSector;
2785 int bad_sectors;
2786
2787 if (is_badblock(rdev, sector_nr, good_sectors,
2788 &first_bad, &bad_sectors)) {
2789 if (first_bad > sector_nr)
2790 good_sectors = first_bad - sector_nr;
2791 else {
2792 bad_sectors -= (sector_nr - first_bad);
2793 if (min_bad == 0 ||
2794 min_bad > bad_sectors)
2795 min_bad = bad_sectors;
2796 }
2797 }
2798 if (sector_nr < first_bad) {
2799 if (test_bit(WriteMostly, &rdev->flags)) {
2800 if (wonly < 0)
2801 wonly = i;
2802 } else {
2803 if (disk < 0)
2804 disk = i;
2805 }
796a5cf0 2806 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2807 bio->bi_end_io = end_sync_read;
2808 read_targets++;
d57368af
AL
2809 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2810 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2811 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2812 /*
2813 * The device is suitable for reading (InSync),
2814 * but has bad block(s) here. Let's try to correct them,
2815 * if we are doing resync or repair. Otherwise, leave
2816 * this device alone for this sync request.
2817 */
796a5cf0 2818 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2819 bio->bi_end_io = end_sync_write;
2820 write_targets++;
3e198f78 2821 }
3e198f78 2822 }
028288df 2823 if (rdev && bio->bi_end_io) {
06f60385 2824 atomic_inc(&rdev->nr_pending);
4f024f37 2825 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2826 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2827 if (test_bit(FailFast, &rdev->flags))
2828 bio->bi_opf |= MD_FAILFAST;
06f60385 2829 }
1da177e4 2830 }
3e198f78
N
2831 rcu_read_unlock();
2832 if (disk < 0)
2833 disk = wonly;
2834 r1_bio->read_disk = disk;
191ea9b2 2835
06f60385
N
2836 if (read_targets == 0 && min_bad > 0) {
2837 /* These sectors are bad on all InSync devices, so we
2838 * need to mark them bad on all write targets
2839 */
2840 int ok = 1;
8f19ccb2 2841 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2842 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2843 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2844 ok = rdev_set_badblocks(rdev, sector_nr,
2845 min_bad, 0
2846 ) && ok;
2847 }
2953079c 2848 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2849 *skipped = 1;
2850 put_buf(r1_bio);
2851
2852 if (!ok) {
2853 /* Cannot record the badblocks, so need to
2854 * abort the resync.
2855 * If there are multiple read targets, could just
2856 * fail the really bad ones ???
2857 */
2858 conf->recovery_disabled = mddev->recovery_disabled;
2859 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2860 return 0;
2861 } else
2862 return min_bad;
2863
2864 }
2865 if (min_bad > 0 && min_bad < good_sectors) {
2866 /* only resync enough to reach the next bad->good
2867 * transition */
2868 good_sectors = min_bad;
2869 }
2870
3e198f78
N
2871 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2872 /* extra read targets are also write targets */
2873 write_targets += read_targets-1;
2874
2875 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2876 /* There is nowhere to write, so all non-sync
2877 * drives must be failed - so we are finished
2878 */
b7219ccb
N
2879 sector_t rv;
2880 if (min_bad > 0)
2881 max_sector = sector_nr + min_bad;
2882 rv = max_sector - sector_nr;
57afd89f 2883 *skipped = 1;
1da177e4 2884 put_buf(r1_bio);
1da177e4
LT
2885 return rv;
2886 }
2887
c6207277
N
2888 if (max_sector > mddev->resync_max)
2889 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2890 if (max_sector > sector_nr + good_sectors)
2891 max_sector = sector_nr + good_sectors;
1da177e4 2892 nr_sectors = 0;
289e99e8 2893 sync_blocks = 0;
1da177e4
LT
2894 do {
2895 struct page *page;
2896 int len = PAGE_SIZE;
2897 if (sector_nr + (len>>9) > max_sector)
2898 len = (max_sector - sector_nr) << 9;
2899 if (len == 0)
2900 break;
6a806c51 2901 if (sync_blocks == 0) {
e64e4018
AS
2902 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2903 &sync_blocks, still_degraded) &&
e5de485f
N
2904 !conf->fullsync &&
2905 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2906 break;
7571ae88 2907 if ((len >> 9) > sync_blocks)
6a806c51 2908 len = sync_blocks<<9;
ab7a30c7 2909 }
191ea9b2 2910
8f19ccb2 2911 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2912 struct resync_pages *rp;
2913
1da177e4 2914 bio = r1_bio->bios[i];
98d30c58 2915 rp = get_resync_pages(bio);
1da177e4 2916 if (bio->bi_end_io) {
022e510f 2917 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2918
2919 /*
2920 * won't fail because the vec table is big
2921 * enough to hold all these pages
2922 */
2923 bio_add_page(bio, page, len, 0);
1da177e4
LT
2924 }
2925 }
2926 nr_sectors += len>>9;
2927 sector_nr += len>>9;
191ea9b2 2928 sync_blocks -= (len>>9);
022e510f 2929 } while (++page_idx < RESYNC_PAGES);
98d30c58 2930
1da177e4
LT
2931 r1_bio->sectors = nr_sectors;
2932
c40f341f
GR
2933 if (mddev_is_clustered(mddev) &&
2934 conf->cluster_sync_high < sector_nr + nr_sectors) {
2935 conf->cluster_sync_low = mddev->curr_resync_completed;
2936 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2937 /* Send resync message */
2938 md_cluster_ops->resync_info_update(mddev,
2939 conf->cluster_sync_low,
2940 conf->cluster_sync_high);
2941 }
2942
d11c171e
N
2943 /* For a user-requested sync, we read all readable devices and do a
2944 * compare
2945 */
2946 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2947 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2948 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2949 bio = r1_bio->bios[i];
2950 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2951 read_targets--;
74d46992 2952 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2953 if (read_targets == 1)
2954 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 2955 submit_bio_noacct(bio);
d11c171e
N
2956 }
2957 }
2958 } else {
2959 atomic_set(&r1_bio->remaining, 1);
2960 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2961 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2962 if (read_targets == 1)
2963 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 2964 submit_bio_noacct(bio);
d11c171e 2965 }
1da177e4
LT
2966 return nr_sectors;
2967}
2968
fd01b88c 2969static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2970{
2971 if (sectors)
2972 return sectors;
2973
2974 return mddev->dev_sectors;
2975}
2976
e8096360 2977static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2978{
e8096360 2979 struct r1conf *conf;
709ae487 2980 int i;
0eaf822c 2981 struct raid1_info *disk;
3cb03002 2982 struct md_rdev *rdev;
709ae487 2983 int err = -ENOMEM;
1da177e4 2984
e8096360 2985 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2986 if (!conf)
709ae487 2987 goto abort;
1da177e4 2988
fd76863e 2989 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2990 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2991 if (!conf->nr_pending)
2992 goto abort;
2993
2994 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2995 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2996 if (!conf->nr_waiting)
2997 goto abort;
2998
2999 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 3000 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3001 if (!conf->nr_queued)
3002 goto abort;
3003
3004 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 3005 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3006 if (!conf->barrier)
3007 goto abort;
3008
6396bb22
KC
3009 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3010 mddev->raid_disks, 2),
3011 GFP_KERNEL);
1da177e4 3012 if (!conf->mirrors)
709ae487 3013 goto abort;
1da177e4 3014
ddaf22ab
N
3015 conf->tmppage = alloc_page(GFP_KERNEL);
3016 if (!conf->tmppage)
709ae487 3017 goto abort;
ddaf22ab 3018
709ae487 3019 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 3020 if (!conf->poolinfo)
709ae487 3021 goto abort;
8f19ccb2 3022 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3f677f9c 3023 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3024 rbio_pool_free, conf->poolinfo);
afeee514 3025 if (err)
709ae487
N
3026 goto abort;
3027
afeee514
KO
3028 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3029 if (err)
c230e7e5
N
3030 goto abort;
3031
ed9bfdf1 3032 conf->poolinfo->mddev = mddev;
1da177e4 3033
c19d5798 3034 err = -EINVAL;
e7e72bf6 3035 spin_lock_init(&conf->device_lock);
dafb20fa 3036 rdev_for_each(rdev, mddev) {
709ae487 3037 int disk_idx = rdev->raid_disk;
1da177e4
LT
3038 if (disk_idx >= mddev->raid_disks
3039 || disk_idx < 0)
3040 continue;
c19d5798 3041 if (test_bit(Replacement, &rdev->flags))
02b898f2 3042 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
3043 else
3044 disk = conf->mirrors + disk_idx;
1da177e4 3045
c19d5798
N
3046 if (disk->rdev)
3047 goto abort;
1da177e4 3048 disk->rdev = rdev;
1da177e4 3049 disk->head_position = 0;
12cee5a8 3050 disk->seq_start = MaxSector;
1da177e4
LT
3051 }
3052 conf->raid_disks = mddev->raid_disks;
3053 conf->mddev = mddev;
1da177e4 3054 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 3055 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
3056
3057 spin_lock_init(&conf->resync_lock);
17999be4 3058 init_waitqueue_head(&conf->wait_barrier);
1da177e4 3059
191ea9b2 3060 bio_list_init(&conf->pending_bio_list);
34db0cd6 3061 conf->pending_count = 0;
d890fa2b 3062 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 3063
c19d5798 3064 err = -EIO;
8f19ccb2 3065 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
3066
3067 disk = conf->mirrors + i;
3068
c19d5798
N
3069 if (i < conf->raid_disks &&
3070 disk[conf->raid_disks].rdev) {
3071 /* This slot has a replacement. */
3072 if (!disk->rdev) {
3073 /* No original, just make the replacement
3074 * a recovering spare
3075 */
3076 disk->rdev =
3077 disk[conf->raid_disks].rdev;
3078 disk[conf->raid_disks].rdev = NULL;
3079 } else if (!test_bit(In_sync, &disk->rdev->flags))
3080 /* Original is not in_sync - bad */
3081 goto abort;
3082 }
3083
5fd6c1dc
N
3084 if (!disk->rdev ||
3085 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3086 disk->head_position = 0;
4f0a5e01
JB
3087 if (disk->rdev &&
3088 (disk->rdev->saved_raid_disk < 0))
918f0238 3089 conf->fullsync = 1;
be4d3280 3090 }
1da177e4 3091 }
709ae487 3092
709ae487 3093 err = -ENOMEM;
0232605d 3094 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3095 if (!conf->thread)
709ae487 3096 goto abort;
1da177e4 3097
709ae487
N
3098 return conf;
3099
3100 abort:
3101 if (conf) {
afeee514 3102 mempool_exit(&conf->r1bio_pool);
709ae487
N
3103 kfree(conf->mirrors);
3104 safe_put_page(conf->tmppage);
3105 kfree(conf->poolinfo);
fd76863e 3106 kfree(conf->nr_pending);
3107 kfree(conf->nr_waiting);
3108 kfree(conf->nr_queued);
3109 kfree(conf->barrier);
afeee514 3110 bioset_exit(&conf->bio_split);
709ae487
N
3111 kfree(conf);
3112 }
3113 return ERR_PTR(err);
3114}
3115
afa0f557 3116static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3117static int raid1_run(struct mddev *mddev)
709ae487 3118{
e8096360 3119 struct r1conf *conf;
709ae487 3120 int i;
3cb03002 3121 struct md_rdev *rdev;
5220ea1e 3122 int ret;
2ff8cc2c 3123 bool discard_supported = false;
709ae487
N
3124
3125 if (mddev->level != 1) {
1d41c216
N
3126 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3127 mdname(mddev), mddev->level);
709ae487
N
3128 return -EIO;
3129 }
3130 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3131 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3132 mdname(mddev));
709ae487
N
3133 return -EIO;
3134 }
a415c0f1
N
3135 if (mddev_init_writes_pending(mddev) < 0)
3136 return -ENOMEM;
1da177e4 3137 /*
709ae487
N
3138 * copy the already verified devices into our private RAID1
3139 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3140 * should be freed in raid1_free()]
1da177e4 3141 */
709ae487
N
3142 if (mddev->private == NULL)
3143 conf = setup_conf(mddev);
3144 else
3145 conf = mddev->private;
1da177e4 3146
709ae487
N
3147 if (IS_ERR(conf))
3148 return PTR_ERR(conf);
1da177e4 3149
3deff1a7 3150 if (mddev->queue) {
5026d7a9 3151 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7
CH
3152 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3153 }
5026d7a9 3154
dafb20fa 3155 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3156 if (!mddev->gendisk)
3157 continue;
709ae487
N
3158 disk_stack_limits(mddev->gendisk, rdev->bdev,
3159 rdev->data_offset << 9);
2ff8cc2c
SL
3160 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3161 discard_supported = true;
1da177e4 3162 }
191ea9b2 3163
709ae487 3164 mddev->degraded = 0;
ebfeb444 3165 for (i = 0; i < conf->raid_disks; i++)
709ae487
N
3166 if (conf->mirrors[i].rdev == NULL ||
3167 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3168 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3169 mddev->degraded++;
07f1a685
YY
3170 /*
3171 * RAID1 needs at least one disk in active
3172 */
3173 if (conf->raid_disks - mddev->degraded < 1) {
3174 ret = -EINVAL;
3175 goto abort;
3176 }
709ae487
N
3177
3178 if (conf->raid_disks - mddev->degraded == 1)
3179 mddev->recovery_cp = MaxSector;
3180
8c6ac868 3181 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3182 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3183 mdname(mddev));
3184 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3185 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3186 mddev->raid_disks);
709ae487 3187
1da177e4
LT
3188 /*
3189 * Ok, everything is just fine now
3190 */
709ae487
N
3191 mddev->thread = conf->thread;
3192 conf->thread = NULL;
3193 mddev->private = conf;
46533ff7 3194 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3195
1f403624 3196 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3197
1ed7242e 3198 if (mddev->queue) {
2ff8cc2c 3199 if (discard_supported)
8b904b5b 3200 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
2ff8cc2c
SL
3201 mddev->queue);
3202 else
8b904b5b 3203 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
2ff8cc2c 3204 mddev->queue);
1ed7242e 3205 }
5220ea1e 3206
ebfeb444 3207 ret = md_integrity_register(mddev);
5aa61f42
N
3208 if (ret) {
3209 md_unregister_thread(&mddev->thread);
07f1a685 3210 goto abort;
5aa61f42 3211 }
07f1a685
YY
3212 return 0;
3213
3214abort:
3215 raid1_free(mddev, conf);
5220ea1e 3216 return ret;
1da177e4
LT
3217}
3218
afa0f557 3219static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3220{
afa0f557 3221 struct r1conf *conf = priv;
409c57f3 3222
afeee514 3223 mempool_exit(&conf->r1bio_pool);
990a8baf 3224 kfree(conf->mirrors);
0fea7ed8 3225 safe_put_page(conf->tmppage);
990a8baf 3226 kfree(conf->poolinfo);
fd76863e 3227 kfree(conf->nr_pending);
3228 kfree(conf->nr_waiting);
3229 kfree(conf->nr_queued);
3230 kfree(conf->barrier);
afeee514 3231 bioset_exit(&conf->bio_split);
1da177e4 3232 kfree(conf);
1da177e4
LT
3233}
3234
fd01b88c 3235static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3236{
3237 /* no resync is happening, and there is enough space
3238 * on all devices, so we can resize.
3239 * We need to make sure resync covers any new space.
3240 * If the array is shrinking we should possibly wait until
3241 * any io in the removed space completes, but it hardly seems
3242 * worth it.
3243 */
a4a6125a
N
3244 sector_t newsize = raid1_size(mddev, sectors, 0);
3245 if (mddev->external_size &&
3246 mddev->array_sectors > newsize)
b522adcd 3247 return -EINVAL;
a4a6125a 3248 if (mddev->bitmap) {
e64e4018 3249 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
a4a6125a
N
3250 if (ret)
3251 return ret;
3252 }
3253 md_set_array_sectors(mddev, newsize);
b522adcd 3254 if (sectors > mddev->dev_sectors &&
b098636c 3255 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3256 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3257 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3258 }
b522adcd 3259 mddev->dev_sectors = sectors;
4b5c7ae8 3260 mddev->resync_max_sectors = sectors;
1da177e4
LT
3261 return 0;
3262}
3263
fd01b88c 3264static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3265{
3266 /* We need to:
3267 * 1/ resize the r1bio_pool
3268 * 2/ resize conf->mirrors
3269 *
3270 * We allocate a new r1bio_pool if we can.
3271 * Then raise a device barrier and wait until all IO stops.
3272 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3273 *
3274 * At the same time, we "pack" the devices so that all the missing
3275 * devices have the higher raid_disk numbers.
1da177e4 3276 */
afeee514 3277 mempool_t newpool, oldpool;
1da177e4 3278 struct pool_info *newpoolinfo;
0eaf822c 3279 struct raid1_info *newmirrors;
e8096360 3280 struct r1conf *conf = mddev->private;
63c70c4f 3281 int cnt, raid_disks;
c04be0aa 3282 unsigned long flags;
2214c260 3283 int d, d2;
afeee514
KO
3284 int ret;
3285
3286 memset(&newpool, 0, sizeof(newpool));
3287 memset(&oldpool, 0, sizeof(oldpool));
1da177e4 3288
63c70c4f 3289 /* Cannot change chunk_size, layout, or level */
664e7c41 3290 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3291 mddev->layout != mddev->new_layout ||
3292 mddev->level != mddev->new_level) {
664e7c41 3293 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3294 mddev->new_layout = mddev->layout;
3295 mddev->new_level = mddev->level;
3296 return -EINVAL;
3297 }
3298
2214c260
AP
3299 if (!mddev_is_clustered(mddev))
3300 md_allow_write(mddev);
2a2275d6 3301
63c70c4f
N
3302 raid_disks = mddev->raid_disks + mddev->delta_disks;
3303
6ea9c07c
N
3304 if (raid_disks < conf->raid_disks) {
3305 cnt=0;
3306 for (d= 0; d < conf->raid_disks; d++)
3307 if (conf->mirrors[d].rdev)
3308 cnt++;
3309 if (cnt > raid_disks)
1da177e4 3310 return -EBUSY;
6ea9c07c 3311 }
1da177e4
LT
3312
3313 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3314 if (!newpoolinfo)
3315 return -ENOMEM;
3316 newpoolinfo->mddev = mddev;
8f19ccb2 3317 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4 3318
3f677f9c 3319 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3320 rbio_pool_free, newpoolinfo);
afeee514 3321 if (ret) {
1da177e4 3322 kfree(newpoolinfo);
afeee514 3323 return ret;
1da177e4 3324 }
6396bb22
KC
3325 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3326 raid_disks, 2),
8f19ccb2 3327 GFP_KERNEL);
1da177e4
LT
3328 if (!newmirrors) {
3329 kfree(newpoolinfo);
afeee514 3330 mempool_exit(&newpool);
1da177e4
LT
3331 return -ENOMEM;
3332 }
1da177e4 3333
e2d59925 3334 freeze_array(conf, 0);
1da177e4
LT
3335
3336 /* ok, everything is stopped */
3337 oldpool = conf->r1bio_pool;
3338 conf->r1bio_pool = newpool;
6ea9c07c 3339
a88aa786 3340 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3341 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3342 if (rdev && rdev->raid_disk != d2) {
36fad858 3343 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3344 rdev->raid_disk = d2;
36fad858
NK
3345 sysfs_unlink_rdev(mddev, rdev);
3346 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3347 pr_warn("md/raid1:%s: cannot register rd%d\n",
3348 mdname(mddev), rdev->raid_disk);
6ea9c07c 3349 }
a88aa786
N
3350 if (rdev)
3351 newmirrors[d2++].rdev = rdev;
3352 }
1da177e4
LT
3353 kfree(conf->mirrors);
3354 conf->mirrors = newmirrors;
3355 kfree(conf->poolinfo);
3356 conf->poolinfo = newpoolinfo;
3357
c04be0aa 3358 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3359 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3360 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3361 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3362 mddev->delta_disks = 0;
1da177e4 3363
e2d59925 3364 unfreeze_array(conf);
1da177e4 3365
985ca973 3366 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3367 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3368 md_wakeup_thread(mddev->thread);
3369
afeee514 3370 mempool_exit(&oldpool);
1da177e4
LT
3371 return 0;
3372}
3373
b03e0ccb 3374static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3375{
e8096360 3376 struct r1conf *conf = mddev->private;
36fa3063 3377
b03e0ccb 3378 if (quiesce)
07169fd4 3379 freeze_array(conf, 0);
b03e0ccb 3380 else
07169fd4 3381 unfreeze_array(conf);
36fa3063
N
3382}
3383
fd01b88c 3384static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3385{
3386 /* raid1 can take over:
3387 * raid5 with 2 devices, any layout or chunk size
3388 */
3389 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3390 struct r1conf *conf;
709ae487
N
3391 mddev->new_level = 1;
3392 mddev->new_layout = 0;
3393 mddev->new_chunk_sectors = 0;
3394 conf = setup_conf(mddev);
6995f0b2 3395 if (!IS_ERR(conf)) {
07169fd4 3396 /* Array must appear to be quiesced */
3397 conf->array_frozen = 1;
394ed8e4
SL
3398 mddev_clear_unsupported_flags(mddev,
3399 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3400 }
709ae487
N
3401 return conf;
3402 }
3403 return ERR_PTR(-EINVAL);
3404}
1da177e4 3405
84fc4b56 3406static struct md_personality raid1_personality =
1da177e4
LT
3407{
3408 .name = "raid1",
2604b703 3409 .level = 1,
1da177e4 3410 .owner = THIS_MODULE,
849674e4
SL
3411 .make_request = raid1_make_request,
3412 .run = raid1_run,
afa0f557 3413 .free = raid1_free,
849674e4
SL
3414 .status = raid1_status,
3415 .error_handler = raid1_error,
1da177e4
LT
3416 .hot_add_disk = raid1_add_disk,
3417 .hot_remove_disk= raid1_remove_disk,
3418 .spare_active = raid1_spare_active,
849674e4 3419 .sync_request = raid1_sync_request,
1da177e4 3420 .resize = raid1_resize,
80c3a6ce 3421 .size = raid1_size,
63c70c4f 3422 .check_reshape = raid1_reshape,
36fa3063 3423 .quiesce = raid1_quiesce,
709ae487 3424 .takeover = raid1_takeover,
1da177e4
LT
3425};
3426
3427static int __init raid_init(void)
3428{
2604b703 3429 return register_md_personality(&raid1_personality);
1da177e4
LT
3430}
3431
3432static void raid_exit(void)
3433{
2604b703 3434 unregister_md_personality(&raid1_personality);
1da177e4
LT
3435}
3436
3437module_init(raid_init);
3438module_exit(raid_exit);
3439MODULE_LICENSE("GPL");
0efb9e61 3440MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3441MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3442MODULE_ALIAS("md-raid1");
2604b703 3443MODULE_ALIAS("md-level-1");