md: perform async updates for metadata where possible.
[linux-block.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
8e005f7c 95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 96
dd0fc66f 97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
98{
99 struct pool_info *pi = data;
9f2c9d12 100 struct r1bio *r1_bio;
1da177e4 101 struct bio *bio;
da1aab3d 102 int need_pages;
1da177e4
LT
103 int i, j;
104
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 106 if (!r1_bio)
1da177e4 107 return NULL;
1da177e4
LT
108
109 /*
110 * Allocate bios : 1 for reading, n-1 for writing
111 */
112 for (j = pi->raid_disks ; j-- ; ) {
6746557f 113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
1da177e4 123 */
d11c171e 124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 125 need_pages = pi->raid_disks;
d11c171e 126 else
da1aab3d
N
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
d11c171e 129 bio = r1_bio->bios[j];
a0787606 130 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 131
a0787606 132 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 133 goto out_free_pages;
d11c171e
N
134 }
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
141 }
142
143 r1_bio->master_bio = NULL;
144
145 return r1_bio;
146
da1aab3d 147out_free_pages:
491221f8
GJ
148 while (--j >= 0)
149 bio_free_pages(r1_bio->bios[j]);
da1aab3d 150
1da177e4 151out_free_bio:
8f19ccb2 152 while (++j < pi->raid_disks)
1da177e4
LT
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156}
157
158static void r1buf_pool_free(void *__r1_bio, void *data)
159{
160 struct pool_info *pi = data;
d11c171e 161 int i,j;
9f2c9d12 162 struct r1bio *r1bio = __r1_bio;
1da177e4 163
d11c171e
N
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 170 }
1da177e4
LT
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175}
176
e8096360 177static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
178{
179 int i;
180
8f19ccb2 181 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 182 struct bio **bio = r1_bio->bios + i;
4367af55 183 if (!BIO_SPECIAL(*bio))
1da177e4
LT
184 bio_put(*bio);
185 *bio = NULL;
186 }
187}
188
9f2c9d12 189static void free_r1bio(struct r1bio *r1_bio)
1da177e4 190{
e8096360 191 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 192
1da177e4
LT
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195}
196
9f2c9d12 197static void put_buf(struct r1bio *r1_bio)
1da177e4 198{
e8096360 199 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
200 int i;
201
8f19ccb2 202 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
1da177e4
LT
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
17999be4 210 lower_barrier(conf);
1da177e4
LT
211}
212
9f2c9d12 213static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
214{
215 unsigned long flags;
fd01b88c 216 struct mddev *mddev = r1_bio->mddev;
e8096360 217 struct r1conf *conf = mddev->private;
1da177e4
LT
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
9f2c9d12 233static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
234{
235 struct bio *bio = r1_bio->master_bio;
236 int done;
e8096360 237 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 238 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 239 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
240
241 if (bio->bi_phys_segments) {
242 unsigned long flags;
243 spin_lock_irqsave(&conf->device_lock, flags);
244 bio->bi_phys_segments--;
245 done = (bio->bi_phys_segments == 0);
246 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 247 /*
248 * make_request() might be waiting for
249 * bi_phys_segments to decrease
250 */
251 wake_up(&conf->wait_barrier);
d2eb35ac
N
252 } else
253 done = 1;
254
255 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
256 bio->bi_error = -EIO;
257
d2eb35ac 258 if (done) {
4246a0b6 259 bio_endio(bio);
d2eb35ac
N
260 /*
261 * Wake up any possible resync thread that waits for the device
262 * to go idle.
263 */
79ef3a8a 264 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
265 }
266}
267
9f2c9d12 268static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
269{
270 struct bio *bio = r1_bio->master_bio;
271
4b6d287f
N
272 /* if nobody has done the final endio yet, do it now */
273 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
274 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
275 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
276 (unsigned long long) bio->bi_iter.bi_sector,
277 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 278
d2eb35ac 279 call_bio_endio(r1_bio);
4b6d287f 280 }
1da177e4
LT
281 free_r1bio(r1_bio);
282}
283
284/*
285 * Update disk head position estimator based on IRQ completion info.
286 */
9f2c9d12 287static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 288{
e8096360 289 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
290
291 conf->mirrors[disk].head_position =
292 r1_bio->sector + (r1_bio->sectors);
293}
294
ba3ae3be
NK
295/*
296 * Find the disk number which triggered given bio
297 */
9f2c9d12 298static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
299{
300 int mirror;
30194636
N
301 struct r1conf *conf = r1_bio->mddev->private;
302 int raid_disks = conf->raid_disks;
ba3ae3be 303
8f19ccb2 304 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
305 if (r1_bio->bios[mirror] == bio)
306 break;
307
8f19ccb2 308 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
309 update_head_pos(mirror, r1_bio);
310
311 return mirror;
312}
313
4246a0b6 314static void raid1_end_read_request(struct bio *bio)
1da177e4 315{
4246a0b6 316 int uptodate = !bio->bi_error;
9f2c9d12 317 struct r1bio *r1_bio = bio->bi_private;
e8096360 318 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 319 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 320
1da177e4
LT
321 /*
322 * this branch is our 'one mirror IO has finished' event handler:
323 */
e5872d58 324 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 325
dd00a99e
N
326 if (uptodate)
327 set_bit(R1BIO_Uptodate, &r1_bio->state);
328 else {
329 /* If all other devices have failed, we want to return
330 * the error upwards rather than fail the last device.
331 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 332 */
dd00a99e
N
333 unsigned long flags;
334 spin_lock_irqsave(&conf->device_lock, flags);
335 if (r1_bio->mddev->degraded == conf->raid_disks ||
336 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 337 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
338 uptodate = 1;
339 spin_unlock_irqrestore(&conf->device_lock, flags);
340 }
1da177e4 341
7ad4d4a6 342 if (uptodate) {
1da177e4 343 raid_end_bio_io(r1_bio);
e5872d58 344 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 345 } else {
1da177e4
LT
346 /*
347 * oops, read error:
348 */
349 char b[BDEVNAME_SIZE];
1d41c216
N
350 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
351 mdname(conf->mddev),
352 bdevname(rdev->bdev, b),
353 (unsigned long long)r1_bio->sector);
d2eb35ac 354 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 355 reschedule_retry(r1_bio);
7ad4d4a6 356 /* don't drop the reference on read_disk yet */
1da177e4 357 }
1da177e4
LT
358}
359
9f2c9d12 360static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
361{
362 /* it really is the end of this request */
363 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
364 /* free extra copy of the data pages */
365 int i = r1_bio->behind_page_count;
366 while (i--)
367 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
368 kfree(r1_bio->behind_bvecs);
369 r1_bio->behind_bvecs = NULL;
370 }
371 /* clear the bitmap if all writes complete successfully */
372 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
373 r1_bio->sectors,
374 !test_bit(R1BIO_Degraded, &r1_bio->state),
375 test_bit(R1BIO_BehindIO, &r1_bio->state));
376 md_write_end(r1_bio->mddev);
377}
378
9f2c9d12 379static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 380{
cd5ff9a1
N
381 if (!atomic_dec_and_test(&r1_bio->remaining))
382 return;
383
384 if (test_bit(R1BIO_WriteError, &r1_bio->state))
385 reschedule_retry(r1_bio);
386 else {
387 close_write(r1_bio);
4367af55
N
388 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
389 reschedule_retry(r1_bio);
390 else
391 raid_end_bio_io(r1_bio);
4e78064f
N
392 }
393}
394
4246a0b6 395static void raid1_end_write_request(struct bio *bio)
1da177e4 396{
9f2c9d12 397 struct r1bio *r1_bio = bio->bi_private;
e5872d58 398 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 399 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 400 struct bio *to_put = NULL;
e5872d58
N
401 int mirror = find_bio_disk(r1_bio, bio);
402 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
403 bool discard_error;
404
405 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 406
e9c7469b
TH
407 /*
408 * 'one mirror IO has finished' event handler:
409 */
e3f948cd 410 if (bio->bi_error && !discard_error) {
e5872d58
N
411 set_bit(WriteErrorSeen, &rdev->flags);
412 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
413 set_bit(MD_RECOVERY_NEEDED, &
414 conf->mddev->recovery);
415
cd5ff9a1 416 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 417 } else {
1da177e4 418 /*
e9c7469b
TH
419 * Set R1BIO_Uptodate in our master bio, so that we
420 * will return a good error code for to the higher
421 * levels even if IO on some other mirrored buffer
422 * fails.
423 *
424 * The 'master' represents the composite IO operation
425 * to user-side. So if something waits for IO, then it
426 * will wait for the 'master' bio.
1da177e4 427 */
4367af55
N
428 sector_t first_bad;
429 int bad_sectors;
430
cd5ff9a1
N
431 r1_bio->bios[mirror] = NULL;
432 to_put = bio;
3056e3ae
AL
433 /*
434 * Do not set R1BIO_Uptodate if the current device is
435 * rebuilding or Faulty. This is because we cannot use
436 * such device for properly reading the data back (we could
437 * potentially use it, if the current write would have felt
438 * before rdev->recovery_offset, but for simplicity we don't
439 * check this here.
440 */
e5872d58
N
441 if (test_bit(In_sync, &rdev->flags) &&
442 !test_bit(Faulty, &rdev->flags))
3056e3ae 443 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 444
4367af55 445 /* Maybe we can clear some bad blocks. */
e5872d58 446 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 447 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
448 r1_bio->bios[mirror] = IO_MADE_GOOD;
449 set_bit(R1BIO_MadeGood, &r1_bio->state);
450 }
451 }
452
e9c7469b 453 if (behind) {
e5872d58 454 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
455 atomic_dec(&r1_bio->behind_remaining);
456
457 /*
458 * In behind mode, we ACK the master bio once the I/O
459 * has safely reached all non-writemostly
460 * disks. Setting the Returned bit ensures that this
461 * gets done only once -- we don't ever want to return
462 * -EIO here, instead we'll wait
463 */
464 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
465 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
466 /* Maybe we can return now */
467 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
468 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
469 pr_debug("raid1: behind end write sectors"
470 " %llu-%llu\n",
4f024f37
KO
471 (unsigned long long) mbio->bi_iter.bi_sector,
472 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 473 call_bio_endio(r1_bio);
4b6d287f
N
474 }
475 }
476 }
4367af55 477 if (r1_bio->bios[mirror] == NULL)
e5872d58 478 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 479
1da177e4 480 /*
1da177e4
LT
481 * Let's see if all mirrored write operations have finished
482 * already.
483 */
af6d7b76 484 r1_bio_write_done(r1_bio);
c70810b3 485
04b857f7
N
486 if (to_put)
487 bio_put(to_put);
1da177e4
LT
488}
489
1da177e4
LT
490/*
491 * This routine returns the disk from which the requested read should
492 * be done. There is a per-array 'next expected sequential IO' sector
493 * number - if this matches on the next IO then we use the last disk.
494 * There is also a per-disk 'last know head position' sector that is
495 * maintained from IRQ contexts, both the normal and the resync IO
496 * completion handlers update this position correctly. If there is no
497 * perfect sequential match then we pick the disk whose head is closest.
498 *
499 * If there are 2 mirrors in the same 2 devices, performance degrades
500 * because position is mirror, not device based.
501 *
502 * The rdev for the device selected will have nr_pending incremented.
503 */
e8096360 504static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 505{
af3a2cd6 506 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
507 int sectors;
508 int best_good_sectors;
9dedf603
SL
509 int best_disk, best_dist_disk, best_pending_disk;
510 int has_nonrot_disk;
be4d3280 511 int disk;
76073054 512 sector_t best_dist;
9dedf603 513 unsigned int min_pending;
3cb03002 514 struct md_rdev *rdev;
f3ac8bf7 515 int choose_first;
12cee5a8 516 int choose_next_idle;
1da177e4
LT
517
518 rcu_read_lock();
519 /*
8ddf9efe 520 * Check if we can balance. We can balance on the whole
1da177e4
LT
521 * device if no resync is going on, or below the resync window.
522 * We take the first readable disk when above the resync window.
523 */
524 retry:
d2eb35ac 525 sectors = r1_bio->sectors;
76073054 526 best_disk = -1;
9dedf603 527 best_dist_disk = -1;
76073054 528 best_dist = MaxSector;
9dedf603
SL
529 best_pending_disk = -1;
530 min_pending = UINT_MAX;
d2eb35ac 531 best_good_sectors = 0;
9dedf603 532 has_nonrot_disk = 0;
12cee5a8 533 choose_next_idle = 0;
d2eb35ac 534
7d49ffcf
GR
535 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
536 (mddev_is_clustered(conf->mddev) &&
90382ed9 537 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
538 this_sector + sectors)))
539 choose_first = 1;
540 else
541 choose_first = 0;
1da177e4 542
be4d3280 543 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 544 sector_t dist;
d2eb35ac
N
545 sector_t first_bad;
546 int bad_sectors;
9dedf603 547 unsigned int pending;
12cee5a8 548 bool nonrot;
d2eb35ac 549
f3ac8bf7
N
550 rdev = rcu_dereference(conf->mirrors[disk].rdev);
551 if (r1_bio->bios[disk] == IO_BLOCKED
552 || rdev == NULL
76073054 553 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 554 continue;
76073054
N
555 if (!test_bit(In_sync, &rdev->flags) &&
556 rdev->recovery_offset < this_sector + sectors)
1da177e4 557 continue;
76073054
N
558 if (test_bit(WriteMostly, &rdev->flags)) {
559 /* Don't balance among write-mostly, just
560 * use the first as a last resort */
d1901ef0 561 if (best_dist_disk < 0) {
307729c8
N
562 if (is_badblock(rdev, this_sector, sectors,
563 &first_bad, &bad_sectors)) {
816b0acf 564 if (first_bad <= this_sector)
307729c8
N
565 /* Cannot use this */
566 continue;
567 best_good_sectors = first_bad - this_sector;
568 } else
569 best_good_sectors = sectors;
d1901ef0
TH
570 best_dist_disk = disk;
571 best_pending_disk = disk;
307729c8 572 }
76073054
N
573 continue;
574 }
575 /* This is a reasonable device to use. It might
576 * even be best.
577 */
d2eb35ac
N
578 if (is_badblock(rdev, this_sector, sectors,
579 &first_bad, &bad_sectors)) {
580 if (best_dist < MaxSector)
581 /* already have a better device */
582 continue;
583 if (first_bad <= this_sector) {
584 /* cannot read here. If this is the 'primary'
585 * device, then we must not read beyond
586 * bad_sectors from another device..
587 */
588 bad_sectors -= (this_sector - first_bad);
589 if (choose_first && sectors > bad_sectors)
590 sectors = bad_sectors;
591 if (best_good_sectors > sectors)
592 best_good_sectors = sectors;
593
594 } else {
595 sector_t good_sectors = first_bad - this_sector;
596 if (good_sectors > best_good_sectors) {
597 best_good_sectors = good_sectors;
598 best_disk = disk;
599 }
600 if (choose_first)
601 break;
602 }
603 continue;
604 } else
605 best_good_sectors = sectors;
606
12cee5a8
SL
607 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
608 has_nonrot_disk |= nonrot;
9dedf603 609 pending = atomic_read(&rdev->nr_pending);
76073054 610 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 611 if (choose_first) {
76073054 612 best_disk = disk;
1da177e4
LT
613 break;
614 }
12cee5a8
SL
615 /* Don't change to another disk for sequential reads */
616 if (conf->mirrors[disk].next_seq_sect == this_sector
617 || dist == 0) {
618 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
619 struct raid1_info *mirror = &conf->mirrors[disk];
620
621 best_disk = disk;
622 /*
623 * If buffered sequential IO size exceeds optimal
624 * iosize, check if there is idle disk. If yes, choose
625 * the idle disk. read_balance could already choose an
626 * idle disk before noticing it's a sequential IO in
627 * this disk. This doesn't matter because this disk
628 * will idle, next time it will be utilized after the
629 * first disk has IO size exceeds optimal iosize. In
630 * this way, iosize of the first disk will be optimal
631 * iosize at least. iosize of the second disk might be
632 * small, but not a big deal since when the second disk
633 * starts IO, the first disk is likely still busy.
634 */
635 if (nonrot && opt_iosize > 0 &&
636 mirror->seq_start != MaxSector &&
637 mirror->next_seq_sect > opt_iosize &&
638 mirror->next_seq_sect - opt_iosize >=
639 mirror->seq_start) {
640 choose_next_idle = 1;
641 continue;
642 }
643 break;
644 }
645 /* If device is idle, use it */
646 if (pending == 0) {
647 best_disk = disk;
648 break;
649 }
650
651 if (choose_next_idle)
652 continue;
9dedf603
SL
653
654 if (min_pending > pending) {
655 min_pending = pending;
656 best_pending_disk = disk;
657 }
658
76073054
N
659 if (dist < best_dist) {
660 best_dist = dist;
9dedf603 661 best_dist_disk = disk;
1da177e4 662 }
f3ac8bf7 663 }
1da177e4 664
9dedf603
SL
665 /*
666 * If all disks are rotational, choose the closest disk. If any disk is
667 * non-rotational, choose the disk with less pending request even the
668 * disk is rotational, which might/might not be optimal for raids with
669 * mixed ratation/non-rotational disks depending on workload.
670 */
671 if (best_disk == -1) {
672 if (has_nonrot_disk)
673 best_disk = best_pending_disk;
674 else
675 best_disk = best_dist_disk;
676 }
677
76073054
N
678 if (best_disk >= 0) {
679 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
680 if (!rdev)
681 goto retry;
682 atomic_inc(&rdev->nr_pending);
d2eb35ac 683 sectors = best_good_sectors;
12cee5a8
SL
684
685 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
686 conf->mirrors[best_disk].seq_start = this_sector;
687
be4d3280 688 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
689 }
690 rcu_read_unlock();
d2eb35ac 691 *max_sectors = sectors;
1da177e4 692
76073054 693 return best_disk;
1da177e4
LT
694}
695
5c675f83 696static int raid1_congested(struct mddev *mddev, int bits)
0d129228 697{
e8096360 698 struct r1conf *conf = mddev->private;
0d129228
N
699 int i, ret = 0;
700
4452226e 701 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
702 conf->pending_count >= max_queued_requests)
703 return 1;
704
0d129228 705 rcu_read_lock();
f53e29fc 706 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 707 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 708 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 709 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 710
1ed7242e
JB
711 BUG_ON(!q);
712
0d129228
N
713 /* Note the '|| 1' - when read_balance prefers
714 * non-congested targets, it can be removed
715 */
4452226e 716 if ((bits & (1 << WB_async_congested)) || 1)
0d129228
N
717 ret |= bdi_congested(&q->backing_dev_info, bits);
718 else
719 ret &= bdi_congested(&q->backing_dev_info, bits);
720 }
721 }
722 rcu_read_unlock();
723 return ret;
724}
0d129228 725
e8096360 726static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
727{
728 /* Any writes that have been queued but are awaiting
729 * bitmap updates get flushed here.
a35e63ef 730 */
a35e63ef
N
731 spin_lock_irq(&conf->device_lock);
732
733 if (conf->pending_bio_list.head) {
734 struct bio *bio;
735 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 736 conf->pending_count = 0;
a35e63ef
N
737 spin_unlock_irq(&conf->device_lock);
738 /* flush any pending bitmap writes to
739 * disk before proceeding w/ I/O */
740 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 741 wake_up(&conf->wait_barrier);
a35e63ef
N
742
743 while (bio) { /* submit pending writes */
744 struct bio *next = bio->bi_next;
745 bio->bi_next = NULL;
796a5cf0 746 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
2ff8cc2c
SL
747 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
748 /* Just ignore it */
4246a0b6 749 bio_endio(bio);
2ff8cc2c
SL
750 else
751 generic_make_request(bio);
a35e63ef
N
752 bio = next;
753 }
a35e63ef
N
754 } else
755 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
756}
757
17999be4
N
758/* Barriers....
759 * Sometimes we need to suspend IO while we do something else,
760 * either some resync/recovery, or reconfigure the array.
761 * To do this we raise a 'barrier'.
762 * The 'barrier' is a counter that can be raised multiple times
763 * to count how many activities are happening which preclude
764 * normal IO.
765 * We can only raise the barrier if there is no pending IO.
766 * i.e. if nr_pending == 0.
767 * We choose only to raise the barrier if no-one is waiting for the
768 * barrier to go down. This means that as soon as an IO request
769 * is ready, no other operations which require a barrier will start
770 * until the IO request has had a chance.
771 *
772 * So: regular IO calls 'wait_barrier'. When that returns there
773 * is no backgroup IO happening, It must arrange to call
774 * allow_barrier when it has finished its IO.
775 * backgroup IO calls must call raise_barrier. Once that returns
776 * there is no normal IO happeing. It must arrange to call
777 * lower_barrier when the particular background IO completes.
1da177e4 778 */
c2fd4c94 779static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
780{
781 spin_lock_irq(&conf->resync_lock);
17999be4
N
782
783 /* Wait until no block IO is waiting */
784 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 785 conf->resync_lock);
17999be4
N
786
787 /* block any new IO from starting */
788 conf->barrier++;
c2fd4c94 789 conf->next_resync = sector_nr;
17999be4 790
79ef3a8a 791 /* For these conditions we must wait:
792 * A: while the array is in frozen state
793 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
794 * the max count which allowed.
795 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
796 * next resync will reach to the window which normal bios are
797 * handling.
2f73d3c5 798 * D: while there are any active requests in the current window.
79ef3a8a 799 */
17999be4 800 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 801 !conf->array_frozen &&
79ef3a8a 802 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 803 conf->current_window_requests == 0 &&
79ef3a8a 804 (conf->start_next_window >=
805 conf->next_resync + RESYNC_SECTORS),
eed8c02e 806 conf->resync_lock);
17999be4 807
34e97f17 808 conf->nr_pending++;
17999be4
N
809 spin_unlock_irq(&conf->resync_lock);
810}
811
e8096360 812static void lower_barrier(struct r1conf *conf)
17999be4
N
813{
814 unsigned long flags;
709ae487 815 BUG_ON(conf->barrier <= 0);
17999be4
N
816 spin_lock_irqsave(&conf->resync_lock, flags);
817 conf->barrier--;
34e97f17 818 conf->nr_pending--;
17999be4
N
819 spin_unlock_irqrestore(&conf->resync_lock, flags);
820 wake_up(&conf->wait_barrier);
821}
822
79ef3a8a 823static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 824{
79ef3a8a 825 bool wait = false;
826
827 if (conf->array_frozen || !bio)
828 wait = true;
829 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
830 if ((conf->mddev->curr_resync_completed
831 >= bio_end_sector(bio)) ||
832 (conf->next_resync + NEXT_NORMALIO_DISTANCE
833 <= bio->bi_iter.bi_sector))
79ef3a8a 834 wait = false;
835 else
836 wait = true;
837 }
838
839 return wait;
840}
841
842static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
843{
844 sector_t sector = 0;
845
17999be4 846 spin_lock_irq(&conf->resync_lock);
79ef3a8a 847 if (need_to_wait_for_sync(conf, bio)) {
17999be4 848 conf->nr_waiting++;
d6b42dcb
N
849 /* Wait for the barrier to drop.
850 * However if there are already pending
851 * requests (preventing the barrier from
852 * rising completely), and the
5965b642 853 * per-process bio queue isn't empty,
d6b42dcb 854 * then don't wait, as we need to empty
5965b642
N
855 * that queue to allow conf->start_next_window
856 * to increase.
d6b42dcb
N
857 */
858 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 859 !conf->array_frozen &&
860 (!conf->barrier ||
5965b642
N
861 ((conf->start_next_window <
862 conf->next_resync + RESYNC_SECTORS) &&
863 current->bio_list &&
864 !bio_list_empty(current->bio_list))),
eed8c02e 865 conf->resync_lock);
17999be4 866 conf->nr_waiting--;
1da177e4 867 }
79ef3a8a 868
869 if (bio && bio_data_dir(bio) == WRITE) {
e8ff8bf0 870 if (bio->bi_iter.bi_sector >= conf->next_resync) {
79ef3a8a 871 if (conf->start_next_window == MaxSector)
872 conf->start_next_window =
873 conf->next_resync +
874 NEXT_NORMALIO_DISTANCE;
875
876 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 877 <= bio->bi_iter.bi_sector)
79ef3a8a 878 conf->next_window_requests++;
879 else
880 conf->current_window_requests++;
79ef3a8a 881 sector = conf->start_next_window;
41a336e0 882 }
79ef3a8a 883 }
884
17999be4 885 conf->nr_pending++;
1da177e4 886 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 887 return sector;
1da177e4
LT
888}
889
79ef3a8a 890static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
891 sector_t bi_sector)
17999be4
N
892{
893 unsigned long flags;
79ef3a8a 894
17999be4
N
895 spin_lock_irqsave(&conf->resync_lock, flags);
896 conf->nr_pending--;
79ef3a8a 897 if (start_next_window) {
898 if (start_next_window == conf->start_next_window) {
899 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
900 <= bi_sector)
901 conf->next_window_requests--;
902 else
903 conf->current_window_requests--;
904 } else
905 conf->current_window_requests--;
906
907 if (!conf->current_window_requests) {
908 if (conf->next_window_requests) {
909 conf->current_window_requests =
910 conf->next_window_requests;
911 conf->next_window_requests = 0;
912 conf->start_next_window +=
913 NEXT_NORMALIO_DISTANCE;
914 } else
915 conf->start_next_window = MaxSector;
916 }
917 }
17999be4
N
918 spin_unlock_irqrestore(&conf->resync_lock, flags);
919 wake_up(&conf->wait_barrier);
920}
921
e2d59925 922static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
923{
924 /* stop syncio and normal IO and wait for everything to
925 * go quite.
b364e3d0 926 * We wait until nr_pending match nr_queued+extra
1c830532
N
927 * This is called in the context of one normal IO request
928 * that has failed. Thus any sync request that might be pending
929 * will be blocked by nr_pending, and we need to wait for
930 * pending IO requests to complete or be queued for re-try.
e2d59925 931 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
932 * must match the number of pending IOs (nr_pending) before
933 * we continue.
ddaf22ab
N
934 */
935 spin_lock_irq(&conf->resync_lock);
b364e3d0 936 conf->array_frozen = 1;
eed8c02e 937 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 938 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
939 conf->resync_lock,
940 flush_pending_writes(conf));
ddaf22ab
N
941 spin_unlock_irq(&conf->resync_lock);
942}
e8096360 943static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
944{
945 /* reverse the effect of the freeze */
946 spin_lock_irq(&conf->resync_lock);
b364e3d0 947 conf->array_frozen = 0;
ddaf22ab
N
948 wake_up(&conf->wait_barrier);
949 spin_unlock_irq(&conf->resync_lock);
950}
951
f72ffdd6 952/* duplicate the data pages for behind I/O
4e78064f 953 */
9f2c9d12 954static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
955{
956 int i;
957 struct bio_vec *bvec;
2ca68f5e 958 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 959 GFP_NOIO);
2ca68f5e 960 if (unlikely(!bvecs))
af6d7b76 961 return;
4b6d287f 962
cb34e057 963 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
964 bvecs[i] = *bvec;
965 bvecs[i].bv_page = alloc_page(GFP_NOIO);
966 if (unlikely(!bvecs[i].bv_page))
4b6d287f 967 goto do_sync_io;
2ca68f5e
N
968 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
969 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
970 kunmap(bvecs[i].bv_page);
4b6d287f
N
971 kunmap(bvec->bv_page);
972 }
2ca68f5e 973 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
974 r1_bio->behind_page_count = bio->bi_vcnt;
975 set_bit(R1BIO_BehindIO, &r1_bio->state);
976 return;
4b6d287f
N
977
978do_sync_io:
af6d7b76 979 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
980 if (bvecs[i].bv_page)
981 put_page(bvecs[i].bv_page);
982 kfree(bvecs);
4f024f37
KO
983 pr_debug("%dB behind alloc failed, doing sync I/O\n",
984 bio->bi_iter.bi_size);
4b6d287f
N
985}
986
f54a9d0e
N
987struct raid1_plug_cb {
988 struct blk_plug_cb cb;
989 struct bio_list pending;
990 int pending_cnt;
991};
992
993static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
994{
995 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
996 cb);
997 struct mddev *mddev = plug->cb.data;
998 struct r1conf *conf = mddev->private;
999 struct bio *bio;
1000
874807a8 1001 if (from_schedule || current->bio_list) {
f54a9d0e
N
1002 spin_lock_irq(&conf->device_lock);
1003 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1004 conf->pending_count += plug->pending_cnt;
1005 spin_unlock_irq(&conf->device_lock);
ee0b0244 1006 wake_up(&conf->wait_barrier);
f54a9d0e
N
1007 md_wakeup_thread(mddev->thread);
1008 kfree(plug);
1009 return;
1010 }
1011
1012 /* we aren't scheduling, so we can do the write-out directly. */
1013 bio = bio_list_get(&plug->pending);
1014 bitmap_unplug(mddev->bitmap);
1015 wake_up(&conf->wait_barrier);
1016
1017 while (bio) { /* submit pending writes */
1018 struct bio *next = bio->bi_next;
1019 bio->bi_next = NULL;
796a5cf0 1020 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
32f9f570
SL
1021 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1022 /* Just ignore it */
4246a0b6 1023 bio_endio(bio);
32f9f570
SL
1024 else
1025 generic_make_request(bio);
f54a9d0e
N
1026 bio = next;
1027 }
1028 kfree(plug);
1029}
1030
849674e4 1031static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1032{
e8096360 1033 struct r1conf *conf = mddev->private;
0eaf822c 1034 struct raid1_info *mirror;
9f2c9d12 1035 struct r1bio *r1_bio;
1da177e4 1036 struct bio *read_bio;
1f68f0c4 1037 int i, disks;
84255d10 1038 struct bitmap *bitmap;
191ea9b2 1039 unsigned long flags;
796a5cf0 1040 const int op = bio_op(bio);
a362357b 1041 const int rw = bio_data_dir(bio);
1eff9d32
JA
1042 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1043 const unsigned long do_flush_fua = (bio->bi_opf &
28a8f0d3 1044 (REQ_PREFLUSH | REQ_FUA));
3cb03002 1045 struct md_rdev *blocked_rdev;
f54a9d0e
N
1046 struct blk_plug_cb *cb;
1047 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1048 int first_clone;
1049 int sectors_handled;
1050 int max_sectors;
79ef3a8a 1051 sector_t start_next_window;
191ea9b2 1052
1da177e4
LT
1053 /*
1054 * Register the new request and wait if the reconstruction
1055 * thread has put up a bar for new requests.
1056 * Continue immediately if no resync is active currently.
1057 */
62de608d 1058
3d310eb7
N
1059 md_write_start(mddev, bio); /* wait on superblock update early */
1060
6eef4b21 1061 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1062 ((bio_end_sector(bio) > mddev->suspend_lo &&
1063 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1064 (mddev_is_clustered(mddev) &&
90382ed9
GR
1065 md_cluster_ops->area_resyncing(mddev, WRITE,
1066 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1067 /* As the suspend_* range is controlled by
1068 * userspace, we want an interruptible
1069 * wait.
1070 */
1071 DEFINE_WAIT(w);
1072 for (;;) {
1073 flush_signals(current);
1074 prepare_to_wait(&conf->wait_barrier,
1075 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1076 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1077 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1078 (mddev_is_clustered(mddev) &&
90382ed9 1079 !md_cluster_ops->area_resyncing(mddev, WRITE,
589a1c49 1080 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1081 break;
1082 schedule();
1083 }
1084 finish_wait(&conf->wait_barrier, &w);
1085 }
62de608d 1086
79ef3a8a 1087 start_next_window = wait_barrier(conf, bio);
1da177e4 1088
84255d10
N
1089 bitmap = mddev->bitmap;
1090
1da177e4 1091 /*
70246286 1092 * make_request() can abort the operation when read-ahead is being
1da177e4
LT
1093 * used and no empty request is available.
1094 *
1095 */
1096 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1097
1098 r1_bio->master_bio = bio;
aa8b57aa 1099 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1100 r1_bio->state = 0;
1da177e4 1101 r1_bio->mddev = mddev;
4f024f37 1102 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1103
d2eb35ac
N
1104 /* We might need to issue multiple reads to different
1105 * devices if there are bad blocks around, so we keep
1106 * track of the number of reads in bio->bi_phys_segments.
1107 * If this is 0, there is only one r1_bio and no locking
1108 * will be needed when requests complete. If it is
1109 * non-zero, then it is the number of not-completed requests.
1110 */
1111 bio->bi_phys_segments = 0;
b7c44ed9 1112 bio_clear_flag(bio, BIO_SEG_VALID);
d2eb35ac 1113
a362357b 1114 if (rw == READ) {
1da177e4
LT
1115 /*
1116 * read balancing logic:
1117 */
d2eb35ac
N
1118 int rdisk;
1119
1120read_again:
1121 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1122
1123 if (rdisk < 0) {
1124 /* couldn't find anywhere to read from */
1125 raid_end_bio_io(r1_bio);
5a7bbad2 1126 return;
1da177e4
LT
1127 }
1128 mirror = conf->mirrors + rdisk;
1129
e555190d
N
1130 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1131 bitmap) {
1132 /* Reading from a write-mostly device must
1133 * take care not to over-take any writes
1134 * that are 'behind'
1135 */
1136 wait_event(bitmap->behind_wait,
1137 atomic_read(&bitmap->behind_writes) == 0);
1138 }
1da177e4 1139 r1_bio->read_disk = rdisk;
f0cc9a05 1140 r1_bio->start_next_window = 0;
1da177e4 1141
a167f663 1142 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1143 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1144 max_sectors);
1da177e4
LT
1145
1146 r1_bio->bios[rdisk] = read_bio;
1147
4f024f37
KO
1148 read_bio->bi_iter.bi_sector = r1_bio->sector +
1149 mirror->rdev->data_offset;
1da177e4
LT
1150 read_bio->bi_bdev = mirror->rdev->bdev;
1151 read_bio->bi_end_io = raid1_end_read_request;
796a5cf0 1152 bio_set_op_attrs(read_bio, op, do_sync);
1da177e4
LT
1153 read_bio->bi_private = r1_bio;
1154
d2eb35ac
N
1155 if (max_sectors < r1_bio->sectors) {
1156 /* could not read all from this device, so we will
1157 * need another r1_bio.
1158 */
d2eb35ac
N
1159
1160 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1161 - bio->bi_iter.bi_sector);
d2eb35ac
N
1162 r1_bio->sectors = max_sectors;
1163 spin_lock_irq(&conf->device_lock);
1164 if (bio->bi_phys_segments == 0)
1165 bio->bi_phys_segments = 2;
1166 else
1167 bio->bi_phys_segments++;
1168 spin_unlock_irq(&conf->device_lock);
1169 /* Cannot call generic_make_request directly
1170 * as that will be queued in __make_request
1171 * and subsequent mempool_alloc might block waiting
1172 * for it. So hand bio over to raid1d.
1173 */
1174 reschedule_retry(r1_bio);
1175
1176 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1177
1178 r1_bio->master_bio = bio;
aa8b57aa 1179 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1180 r1_bio->state = 0;
1181 r1_bio->mddev = mddev;
4f024f37
KO
1182 r1_bio->sector = bio->bi_iter.bi_sector +
1183 sectors_handled;
d2eb35ac
N
1184 goto read_again;
1185 } else
1186 generic_make_request(read_bio);
5a7bbad2 1187 return;
1da177e4
LT
1188 }
1189
1190 /*
1191 * WRITE:
1192 */
34db0cd6
N
1193 if (conf->pending_count >= max_queued_requests) {
1194 md_wakeup_thread(mddev->thread);
1195 wait_event(conf->wait_barrier,
1196 conf->pending_count < max_queued_requests);
1197 }
1f68f0c4 1198 /* first select target devices under rcu_lock and
1da177e4
LT
1199 * inc refcount on their rdev. Record them by setting
1200 * bios[x] to bio
1f68f0c4
N
1201 * If there are known/acknowledged bad blocks on any device on
1202 * which we have seen a write error, we want to avoid writing those
1203 * blocks.
1204 * This potentially requires several writes to write around
1205 * the bad blocks. Each set of writes gets it's own r1bio
1206 * with a set of bios attached.
1da177e4 1207 */
c3b328ac 1208
8f19ccb2 1209 disks = conf->raid_disks * 2;
6bfe0b49 1210 retry_write:
79ef3a8a 1211 r1_bio->start_next_window = start_next_window;
6bfe0b49 1212 blocked_rdev = NULL;
1da177e4 1213 rcu_read_lock();
1f68f0c4 1214 max_sectors = r1_bio->sectors;
1da177e4 1215 for (i = 0; i < disks; i++) {
3cb03002 1216 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1217 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1218 atomic_inc(&rdev->nr_pending);
1219 blocked_rdev = rdev;
1220 break;
1221 }
1f68f0c4 1222 r1_bio->bios[i] = NULL;
8ae12666 1223 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1224 if (i < conf->raid_disks)
1225 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1226 continue;
1227 }
1228
1229 atomic_inc(&rdev->nr_pending);
1230 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1231 sector_t first_bad;
1232 int bad_sectors;
1233 int is_bad;
1234
1235 is_bad = is_badblock(rdev, r1_bio->sector,
1236 max_sectors,
1237 &first_bad, &bad_sectors);
1238 if (is_bad < 0) {
1239 /* mustn't write here until the bad block is
1240 * acknowledged*/
1241 set_bit(BlockedBadBlocks, &rdev->flags);
1242 blocked_rdev = rdev;
1243 break;
1244 }
1245 if (is_bad && first_bad <= r1_bio->sector) {
1246 /* Cannot write here at all */
1247 bad_sectors -= (r1_bio->sector - first_bad);
1248 if (bad_sectors < max_sectors)
1249 /* mustn't write more than bad_sectors
1250 * to other devices yet
1251 */
1252 max_sectors = bad_sectors;
03c902e1 1253 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1254 /* We don't set R1BIO_Degraded as that
1255 * only applies if the disk is
1256 * missing, so it might be re-added,
1257 * and we want to know to recover this
1258 * chunk.
1259 * In this case the device is here,
1260 * and the fact that this chunk is not
1261 * in-sync is recorded in the bad
1262 * block log
1263 */
1264 continue;
964147d5 1265 }
1f68f0c4
N
1266 if (is_bad) {
1267 int good_sectors = first_bad - r1_bio->sector;
1268 if (good_sectors < max_sectors)
1269 max_sectors = good_sectors;
1270 }
1271 }
1272 r1_bio->bios[i] = bio;
1da177e4
LT
1273 }
1274 rcu_read_unlock();
1275
6bfe0b49
DW
1276 if (unlikely(blocked_rdev)) {
1277 /* Wait for this device to become unblocked */
1278 int j;
79ef3a8a 1279 sector_t old = start_next_window;
6bfe0b49
DW
1280
1281 for (j = 0; j < i; j++)
1282 if (r1_bio->bios[j])
1283 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1284 r1_bio->state = 0;
4f024f37 1285 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1286 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1287 start_next_window = wait_barrier(conf, bio);
1288 /*
1289 * We must make sure the multi r1bios of bio have
1290 * the same value of bi_phys_segments
1291 */
1292 if (bio->bi_phys_segments && old &&
1293 old != start_next_window)
1294 /* Wait for the former r1bio(s) to complete */
1295 wait_event(conf->wait_barrier,
1296 bio->bi_phys_segments == 1);
6bfe0b49
DW
1297 goto retry_write;
1298 }
1299
1f68f0c4
N
1300 if (max_sectors < r1_bio->sectors) {
1301 /* We are splitting this write into multiple parts, so
1302 * we need to prepare for allocating another r1_bio.
1303 */
1304 r1_bio->sectors = max_sectors;
1305 spin_lock_irq(&conf->device_lock);
1306 if (bio->bi_phys_segments == 0)
1307 bio->bi_phys_segments = 2;
1308 else
1309 bio->bi_phys_segments++;
1310 spin_unlock_irq(&conf->device_lock);
191ea9b2 1311 }
4f024f37 1312 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1313
4e78064f 1314 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1315 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1316
1f68f0c4 1317 first_clone = 1;
1da177e4
LT
1318 for (i = 0; i < disks; i++) {
1319 struct bio *mbio;
1320 if (!r1_bio->bios[i])
1321 continue;
1322
a167f663 1323 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1324 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1325
1326 if (first_clone) {
1327 /* do behind I/O ?
1328 * Not if there are too many, or cannot
1329 * allocate memory, or a reader on WriteMostly
1330 * is waiting for behind writes to flush */
1331 if (bitmap &&
1332 (atomic_read(&bitmap->behind_writes)
1333 < mddev->bitmap_info.max_write_behind) &&
1334 !waitqueue_active(&bitmap->behind_wait))
1335 alloc_behind_pages(mbio, r1_bio);
1336
1337 bitmap_startwrite(bitmap, r1_bio->sector,
1338 r1_bio->sectors,
1339 test_bit(R1BIO_BehindIO,
1340 &r1_bio->state));
1341 first_clone = 0;
1342 }
2ca68f5e 1343 if (r1_bio->behind_bvecs) {
4b6d287f
N
1344 struct bio_vec *bvec;
1345 int j;
1346
cb34e057
KO
1347 /*
1348 * We trimmed the bio, so _all is legit
4b6d287f 1349 */
d74c6d51 1350 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1351 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1352 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1353 atomic_inc(&r1_bio->behind_remaining);
1354 }
1355
1f68f0c4
N
1356 r1_bio->bios[i] = mbio;
1357
4f024f37 1358 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1359 conf->mirrors[i].rdev->data_offset);
1360 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1361 mbio->bi_end_io = raid1_end_write_request;
288dab8a 1362 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1f68f0c4
N
1363 mbio->bi_private = r1_bio;
1364
1da177e4 1365 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1366
1367 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1368 if (cb)
1369 plug = container_of(cb, struct raid1_plug_cb, cb);
1370 else
1371 plug = NULL;
4e78064f 1372 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1373 if (plug) {
1374 bio_list_add(&plug->pending, mbio);
1375 plug->pending_cnt++;
1376 } else {
1377 bio_list_add(&conf->pending_bio_list, mbio);
1378 conf->pending_count++;
1379 }
4e78064f 1380 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1381 if (!plug)
b357f04a 1382 md_wakeup_thread(mddev->thread);
1da177e4 1383 }
079fa166
N
1384 /* Mustn't call r1_bio_write_done before this next test,
1385 * as it could result in the bio being freed.
1386 */
aa8b57aa 1387 if (sectors_handled < bio_sectors(bio)) {
079fa166 1388 r1_bio_write_done(r1_bio);
1f68f0c4
N
1389 /* We need another r1_bio. It has already been counted
1390 * in bio->bi_phys_segments
1391 */
1392 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1393 r1_bio->master_bio = bio;
aa8b57aa 1394 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1395 r1_bio->state = 0;
1396 r1_bio->mddev = mddev;
4f024f37 1397 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1398 goto retry_write;
1399 }
1400
079fa166
N
1401 r1_bio_write_done(r1_bio);
1402
1403 /* In case raid1d snuck in to freeze_array */
1404 wake_up(&conf->wait_barrier);
1da177e4
LT
1405}
1406
849674e4 1407static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1408{
e8096360 1409 struct r1conf *conf = mddev->private;
1da177e4
LT
1410 int i;
1411
1412 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1413 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1414 rcu_read_lock();
1415 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1416 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1417 seq_printf(seq, "%s",
ddac7c7e
N
1418 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1419 }
1420 rcu_read_unlock();
1da177e4
LT
1421 seq_printf(seq, "]");
1422}
1423
849674e4 1424static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1425{
1426 char b[BDEVNAME_SIZE];
e8096360 1427 struct r1conf *conf = mddev->private;
423f04d6 1428 unsigned long flags;
1da177e4
LT
1429
1430 /*
1431 * If it is not operational, then we have already marked it as dead
1432 * else if it is the last working disks, ignore the error, let the
1433 * next level up know.
1434 * else mark the drive as failed
1435 */
b2d444d7 1436 if (test_bit(In_sync, &rdev->flags)
4044ba58 1437 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1438 /*
1439 * Don't fail the drive, act as though we were just a
4044ba58
N
1440 * normal single drive.
1441 * However don't try a recovery from this drive as
1442 * it is very likely to fail.
1da177e4 1443 */
5389042f 1444 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1445 return;
4044ba58 1446 }
de393cde 1447 set_bit(Blocked, &rdev->flags);
423f04d6 1448 spin_lock_irqsave(&conf->device_lock, flags);
c04be0aa 1449 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1450 mddev->degraded++;
dd00a99e 1451 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1452 } else
1453 set_bit(Faulty, &rdev->flags);
423f04d6 1454 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1455 /*
1456 * if recovery is running, make sure it aborts.
1457 */
1458 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
85ad1d13
GJ
1459 set_mask_bits(&mddev->flags, 0,
1460 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1d41c216
N
1461 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1462 "md/raid1:%s: Operation continuing on %d devices.\n",
1463 mdname(mddev), bdevname(rdev->bdev, b),
1464 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1465}
1466
e8096360 1467static void print_conf(struct r1conf *conf)
1da177e4
LT
1468{
1469 int i;
1da177e4 1470
1d41c216 1471 pr_debug("RAID1 conf printout:\n");
1da177e4 1472 if (!conf) {
1d41c216 1473 pr_debug("(!conf)\n");
1da177e4
LT
1474 return;
1475 }
1d41c216
N
1476 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1477 conf->raid_disks);
1da177e4 1478
ddac7c7e 1479 rcu_read_lock();
1da177e4
LT
1480 for (i = 0; i < conf->raid_disks; i++) {
1481 char b[BDEVNAME_SIZE];
3cb03002 1482 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1483 if (rdev)
1d41c216
N
1484 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1485 i, !test_bit(In_sync, &rdev->flags),
1486 !test_bit(Faulty, &rdev->flags),
1487 bdevname(rdev->bdev,b));
1da177e4 1488 }
ddac7c7e 1489 rcu_read_unlock();
1da177e4
LT
1490}
1491
e8096360 1492static void close_sync(struct r1conf *conf)
1da177e4 1493{
79ef3a8a 1494 wait_barrier(conf, NULL);
1495 allow_barrier(conf, 0, 0);
1da177e4
LT
1496
1497 mempool_destroy(conf->r1buf_pool);
1498 conf->r1buf_pool = NULL;
79ef3a8a 1499
669cc7ba 1500 spin_lock_irq(&conf->resync_lock);
e8ff8bf0 1501 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
79ef3a8a 1502 conf->start_next_window = MaxSector;
669cc7ba
N
1503 conf->current_window_requests +=
1504 conf->next_window_requests;
1505 conf->next_window_requests = 0;
1506 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1507}
1508
fd01b88c 1509static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1510{
1511 int i;
e8096360 1512 struct r1conf *conf = mddev->private;
6b965620
N
1513 int count = 0;
1514 unsigned long flags;
1da177e4
LT
1515
1516 /*
f72ffdd6 1517 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1518 * and mark them readable.
1519 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1520 * device_lock used to avoid races with raid1_end_read_request
1521 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1522 */
423f04d6 1523 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1524 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1525 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1526 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1527 if (repl
1aee41f6 1528 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1529 && repl->recovery_offset == MaxSector
1530 && !test_bit(Faulty, &repl->flags)
1531 && !test_and_set_bit(In_sync, &repl->flags)) {
1532 /* replacement has just become active */
1533 if (!rdev ||
1534 !test_and_clear_bit(In_sync, &rdev->flags))
1535 count++;
1536 if (rdev) {
1537 /* Replaced device not technically
1538 * faulty, but we need to be sure
1539 * it gets removed and never re-added
1540 */
1541 set_bit(Faulty, &rdev->flags);
1542 sysfs_notify_dirent_safe(
1543 rdev->sysfs_state);
1544 }
1545 }
ddac7c7e 1546 if (rdev
61e4947c 1547 && rdev->recovery_offset == MaxSector
ddac7c7e 1548 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1549 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1550 count++;
654e8b5a 1551 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1552 }
1553 }
6b965620
N
1554 mddev->degraded -= count;
1555 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1556
1557 print_conf(conf);
6b965620 1558 return count;
1da177e4
LT
1559}
1560
fd01b88c 1561static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1562{
e8096360 1563 struct r1conf *conf = mddev->private;
199050ea 1564 int err = -EEXIST;
41158c7e 1565 int mirror = 0;
0eaf822c 1566 struct raid1_info *p;
6c2fce2e 1567 int first = 0;
30194636 1568 int last = conf->raid_disks - 1;
1da177e4 1569
5389042f
N
1570 if (mddev->recovery_disabled == conf->recovery_disabled)
1571 return -EBUSY;
1572
1501efad
DW
1573 if (md_integrity_add_rdev(rdev, mddev))
1574 return -ENXIO;
1575
6c2fce2e
NB
1576 if (rdev->raid_disk >= 0)
1577 first = last = rdev->raid_disk;
1578
70bcecdb
GR
1579 /*
1580 * find the disk ... but prefer rdev->saved_raid_disk
1581 * if possible.
1582 */
1583 if (rdev->saved_raid_disk >= 0 &&
1584 rdev->saved_raid_disk >= first &&
1585 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1586 first = last = rdev->saved_raid_disk;
1587
7ef449d1
N
1588 for (mirror = first; mirror <= last; mirror++) {
1589 p = conf->mirrors+mirror;
1590 if (!p->rdev) {
1da177e4 1591
9092c02d
JB
1592 if (mddev->gendisk)
1593 disk_stack_limits(mddev->gendisk, rdev->bdev,
1594 rdev->data_offset << 9);
1da177e4
LT
1595
1596 p->head_position = 0;
1597 rdev->raid_disk = mirror;
199050ea 1598 err = 0;
6aea114a
N
1599 /* As all devices are equivalent, we don't need a full recovery
1600 * if this was recently any drive of the array
1601 */
1602 if (rdev->saved_raid_disk < 0)
41158c7e 1603 conf->fullsync = 1;
d6065f7b 1604 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1605 break;
1606 }
7ef449d1
N
1607 if (test_bit(WantReplacement, &p->rdev->flags) &&
1608 p[conf->raid_disks].rdev == NULL) {
1609 /* Add this device as a replacement */
1610 clear_bit(In_sync, &rdev->flags);
1611 set_bit(Replacement, &rdev->flags);
1612 rdev->raid_disk = mirror;
1613 err = 0;
1614 conf->fullsync = 1;
1615 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1616 break;
1617 }
1618 }
9092c02d 1619 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1620 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1621 print_conf(conf);
199050ea 1622 return err;
1da177e4
LT
1623}
1624
b8321b68 1625static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1626{
e8096360 1627 struct r1conf *conf = mddev->private;
1da177e4 1628 int err = 0;
b8321b68 1629 int number = rdev->raid_disk;
0eaf822c 1630 struct raid1_info *p = conf->mirrors + number;
1da177e4 1631
b014f14c
N
1632 if (rdev != p->rdev)
1633 p = conf->mirrors + conf->raid_disks + number;
1634
1da177e4 1635 print_conf(conf);
b8321b68 1636 if (rdev == p->rdev) {
b2d444d7 1637 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1638 atomic_read(&rdev->nr_pending)) {
1639 err = -EBUSY;
1640 goto abort;
1641 }
046abeed 1642 /* Only remove non-faulty devices if recovery
dfc70645
N
1643 * is not possible.
1644 */
1645 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1646 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1647 mddev->degraded < conf->raid_disks) {
1648 err = -EBUSY;
1649 goto abort;
1650 }
1da177e4 1651 p->rdev = NULL;
d787be40
N
1652 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1653 synchronize_rcu();
1654 if (atomic_read(&rdev->nr_pending)) {
1655 /* lost the race, try later */
1656 err = -EBUSY;
1657 p->rdev = rdev;
1658 goto abort;
1659 }
1660 }
1661 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1662 /* We just removed a device that is being replaced.
1663 * Move down the replacement. We drain all IO before
1664 * doing this to avoid confusion.
1665 */
1666 struct md_rdev *repl =
1667 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1668 freeze_array(conf, 0);
8c7a2c2b
N
1669 clear_bit(Replacement, &repl->flags);
1670 p->rdev = repl;
1671 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1672 unfreeze_array(conf);
8c7a2c2b
N
1673 clear_bit(WantReplacement, &rdev->flags);
1674 } else
b014f14c 1675 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1676 err = md_integrity_register(mddev);
1da177e4
LT
1677 }
1678abort:
1679
1680 print_conf(conf);
1681 return err;
1682}
1683
4246a0b6 1684static void end_sync_read(struct bio *bio)
1da177e4 1685{
9f2c9d12 1686 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1687
0fc280f6 1688 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1689
1da177e4
LT
1690 /*
1691 * we have read a block, now it needs to be re-written,
1692 * or re-read if the read failed.
1693 * We don't do much here, just schedule handling by raid1d
1694 */
4246a0b6 1695 if (!bio->bi_error)
1da177e4 1696 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1697
1698 if (atomic_dec_and_test(&r1_bio->remaining))
1699 reschedule_retry(r1_bio);
1da177e4
LT
1700}
1701
4246a0b6 1702static void end_sync_write(struct bio *bio)
1da177e4 1703{
4246a0b6 1704 int uptodate = !bio->bi_error;
9f2c9d12 1705 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1706 struct mddev *mddev = r1_bio->mddev;
e8096360 1707 struct r1conf *conf = mddev->private;
4367af55
N
1708 sector_t first_bad;
1709 int bad_sectors;
854abd75 1710 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1711
6b1117d5 1712 if (!uptodate) {
57dab0bd 1713 sector_t sync_blocks = 0;
6b1117d5
N
1714 sector_t s = r1_bio->sector;
1715 long sectors_to_go = r1_bio->sectors;
1716 /* make sure these bits doesn't get cleared. */
1717 do {
5e3db645 1718 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1719 &sync_blocks, 1);
1720 s += sync_blocks;
1721 sectors_to_go -= sync_blocks;
1722 } while (sectors_to_go > 0);
854abd75
N
1723 set_bit(WriteErrorSeen, &rdev->flags);
1724 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1725 set_bit(MD_RECOVERY_NEEDED, &
1726 mddev->recovery);
d8f05d29 1727 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1728 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1729 &first_bad, &bad_sectors) &&
1730 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1731 r1_bio->sector,
1732 r1_bio->sectors,
1733 &first_bad, &bad_sectors)
1734 )
4367af55 1735 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1736
1da177e4 1737 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1738 int s = r1_bio->sectors;
d8f05d29
N
1739 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1740 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1741 reschedule_retry(r1_bio);
1742 else {
1743 put_buf(r1_bio);
1744 md_done_sync(mddev, s, uptodate);
1745 }
1da177e4 1746 }
1da177e4
LT
1747}
1748
3cb03002 1749static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1750 int sectors, struct page *page, int rw)
1751{
796a5cf0 1752 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1753 /* success */
1754 return 1;
19d67169 1755 if (rw == WRITE) {
d8f05d29 1756 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1757 if (!test_and_set_bit(WantReplacement,
1758 &rdev->flags))
1759 set_bit(MD_RECOVERY_NEEDED, &
1760 rdev->mddev->recovery);
1761 }
d8f05d29
N
1762 /* need to record an error - either for the block or the device */
1763 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1764 md_error(rdev->mddev, rdev);
1765 return 0;
1766}
1767
9f2c9d12 1768static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1769{
a68e5870
N
1770 /* Try some synchronous reads of other devices to get
1771 * good data, much like with normal read errors. Only
1772 * read into the pages we already have so we don't
1773 * need to re-issue the read request.
1774 * We don't need to freeze the array, because being in an
1775 * active sync request, there is no normal IO, and
1776 * no overlapping syncs.
06f60385
N
1777 * We don't need to check is_badblock() again as we
1778 * made sure that anything with a bad block in range
1779 * will have bi_end_io clear.
a68e5870 1780 */
fd01b88c 1781 struct mddev *mddev = r1_bio->mddev;
e8096360 1782 struct r1conf *conf = mddev->private;
a68e5870
N
1783 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1784 sector_t sect = r1_bio->sector;
1785 int sectors = r1_bio->sectors;
1786 int idx = 0;
1787
1788 while(sectors) {
1789 int s = sectors;
1790 int d = r1_bio->read_disk;
1791 int success = 0;
3cb03002 1792 struct md_rdev *rdev;
78d7f5f7 1793 int start;
a68e5870
N
1794
1795 if (s > (PAGE_SIZE>>9))
1796 s = PAGE_SIZE >> 9;
1797 do {
1798 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1799 /* No rcu protection needed here devices
1800 * can only be removed when no resync is
1801 * active, and resync is currently active
1802 */
1803 rdev = conf->mirrors[d].rdev;
9d3d8011 1804 if (sync_page_io(rdev, sect, s<<9,
a68e5870 1805 bio->bi_io_vec[idx].bv_page,
796a5cf0 1806 REQ_OP_READ, 0, false)) {
a68e5870
N
1807 success = 1;
1808 break;
1809 }
1810 }
1811 d++;
8f19ccb2 1812 if (d == conf->raid_disks * 2)
a68e5870
N
1813 d = 0;
1814 } while (!success && d != r1_bio->read_disk);
1815
78d7f5f7 1816 if (!success) {
a68e5870 1817 char b[BDEVNAME_SIZE];
3a9f28a5
N
1818 int abort = 0;
1819 /* Cannot read from anywhere, this block is lost.
1820 * Record a bad block on each device. If that doesn't
1821 * work just disable and interrupt the recovery.
1822 * Don't fail devices as that won't really help.
1823 */
1d41c216
N
1824 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1825 mdname(mddev),
1826 bdevname(bio->bi_bdev, b),
1827 (unsigned long long)r1_bio->sector);
8f19ccb2 1828 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1829 rdev = conf->mirrors[d].rdev;
1830 if (!rdev || test_bit(Faulty, &rdev->flags))
1831 continue;
1832 if (!rdev_set_badblocks(rdev, sect, s, 0))
1833 abort = 1;
1834 }
1835 if (abort) {
d890fa2b
N
1836 conf->recovery_disabled =
1837 mddev->recovery_disabled;
3a9f28a5
N
1838 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1839 md_done_sync(mddev, r1_bio->sectors, 0);
1840 put_buf(r1_bio);
1841 return 0;
1842 }
1843 /* Try next page */
1844 sectors -= s;
1845 sect += s;
1846 idx++;
1847 continue;
d11c171e 1848 }
78d7f5f7
N
1849
1850 start = d;
1851 /* write it back and re-read */
1852 while (d != r1_bio->read_disk) {
1853 if (d == 0)
8f19ccb2 1854 d = conf->raid_disks * 2;
78d7f5f7
N
1855 d--;
1856 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1857 continue;
1858 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1859 if (r1_sync_page_io(rdev, sect, s,
1860 bio->bi_io_vec[idx].bv_page,
1861 WRITE) == 0) {
78d7f5f7
N
1862 r1_bio->bios[d]->bi_end_io = NULL;
1863 rdev_dec_pending(rdev, mddev);
9d3d8011 1864 }
78d7f5f7
N
1865 }
1866 d = start;
1867 while (d != r1_bio->read_disk) {
1868 if (d == 0)
8f19ccb2 1869 d = conf->raid_disks * 2;
78d7f5f7
N
1870 d--;
1871 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1872 continue;
1873 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1874 if (r1_sync_page_io(rdev, sect, s,
1875 bio->bi_io_vec[idx].bv_page,
1876 READ) != 0)
9d3d8011 1877 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1878 }
a68e5870
N
1879 sectors -= s;
1880 sect += s;
1881 idx ++;
1882 }
78d7f5f7 1883 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 1884 bio->bi_error = 0;
a68e5870
N
1885 return 1;
1886}
1887
c95e6385 1888static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1889{
1890 /* We have read all readable devices. If we haven't
1891 * got the block, then there is no hope left.
1892 * If we have, then we want to do a comparison
1893 * and skip the write if everything is the same.
1894 * If any blocks failed to read, then we need to
1895 * attempt an over-write
1896 */
fd01b88c 1897 struct mddev *mddev = r1_bio->mddev;
e8096360 1898 struct r1conf *conf = mddev->private;
a68e5870
N
1899 int primary;
1900 int i;
f4380a91 1901 int vcnt;
a68e5870 1902
30bc9b53
N
1903 /* Fix variable parts of all bios */
1904 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1905 for (i = 0; i < conf->raid_disks * 2; i++) {
1906 int j;
1907 int size;
4246a0b6 1908 int error;
30bc9b53
N
1909 struct bio *b = r1_bio->bios[i];
1910 if (b->bi_end_io != end_sync_read)
1911 continue;
4246a0b6
CH
1912 /* fixup the bio for reuse, but preserve errno */
1913 error = b->bi_error;
30bc9b53 1914 bio_reset(b);
4246a0b6 1915 b->bi_error = error;
30bc9b53 1916 b->bi_vcnt = vcnt;
4f024f37
KO
1917 b->bi_iter.bi_size = r1_bio->sectors << 9;
1918 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1919 conf->mirrors[i].rdev->data_offset;
1920 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1921 b->bi_end_io = end_sync_read;
1922 b->bi_private = r1_bio;
1923
4f024f37 1924 size = b->bi_iter.bi_size;
30bc9b53
N
1925 for (j = 0; j < vcnt ; j++) {
1926 struct bio_vec *bi;
1927 bi = &b->bi_io_vec[j];
1928 bi->bv_offset = 0;
1929 if (size > PAGE_SIZE)
1930 bi->bv_len = PAGE_SIZE;
1931 else
1932 bi->bv_len = size;
1933 size -= PAGE_SIZE;
1934 }
1935 }
8f19ccb2 1936 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 1937 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 1938 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
1939 r1_bio->bios[primary]->bi_end_io = NULL;
1940 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1941 break;
1942 }
1943 r1_bio->read_disk = primary;
8f19ccb2 1944 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1945 int j;
78d7f5f7
N
1946 struct bio *pbio = r1_bio->bios[primary];
1947 struct bio *sbio = r1_bio->bios[i];
4246a0b6 1948 int error = sbio->bi_error;
a68e5870 1949
2aabaa65 1950 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 1951 continue;
4246a0b6
CH
1952 /* Now we can 'fixup' the error value */
1953 sbio->bi_error = 0;
78d7f5f7 1954
4246a0b6 1955 if (!error) {
78d7f5f7
N
1956 for (j = vcnt; j-- ; ) {
1957 struct page *p, *s;
1958 p = pbio->bi_io_vec[j].bv_page;
1959 s = sbio->bi_io_vec[j].bv_page;
1960 if (memcmp(page_address(p),
1961 page_address(s),
5020ad7d 1962 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1963 break;
69382e85 1964 }
78d7f5f7
N
1965 } else
1966 j = 0;
1967 if (j >= 0)
7f7583d4 1968 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 1969 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 1970 && !error)) {
78d7f5f7
N
1971 /* No need to write to this device. */
1972 sbio->bi_end_io = NULL;
1973 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1974 continue;
1975 }
d3b45c2a
KO
1976
1977 bio_copy_data(sbio, pbio);
78d7f5f7 1978 }
a68e5870
N
1979}
1980
9f2c9d12 1981static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1982{
e8096360 1983 struct r1conf *conf = mddev->private;
a68e5870 1984 int i;
8f19ccb2 1985 int disks = conf->raid_disks * 2;
a68e5870
N
1986 struct bio *bio, *wbio;
1987
1988 bio = r1_bio->bios[r1_bio->read_disk];
1989
a68e5870
N
1990 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1991 /* ouch - failed to read all of that. */
1992 if (!fix_sync_read_error(r1_bio))
1993 return;
7ca78d57
N
1994
1995 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
1996 process_checks(r1_bio);
1997
d11c171e
N
1998 /*
1999 * schedule writes
2000 */
1da177e4
LT
2001 atomic_set(&r1_bio->remaining, 1);
2002 for (i = 0; i < disks ; i++) {
2003 wbio = r1_bio->bios[i];
3e198f78
N
2004 if (wbio->bi_end_io == NULL ||
2005 (wbio->bi_end_io == end_sync_read &&
2006 (i == r1_bio->read_disk ||
2007 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2008 continue;
2009
796a5cf0 2010 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
3e198f78 2011 wbio->bi_end_io = end_sync_write;
1da177e4 2012 atomic_inc(&r1_bio->remaining);
aa8b57aa 2013 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2014
1da177e4
LT
2015 generic_make_request(wbio);
2016 }
2017
2018 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2019 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2020 int s = r1_bio->sectors;
2021 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2022 test_bit(R1BIO_WriteError, &r1_bio->state))
2023 reschedule_retry(r1_bio);
2024 else {
2025 put_buf(r1_bio);
2026 md_done_sync(mddev, s, 1);
2027 }
1da177e4
LT
2028 }
2029}
2030
2031/*
2032 * This is a kernel thread which:
2033 *
2034 * 1. Retries failed read operations on working mirrors.
2035 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2036 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2037 */
2038
e8096360 2039static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2040 sector_t sect, int sectors)
2041{
fd01b88c 2042 struct mddev *mddev = conf->mddev;
867868fb
N
2043 while(sectors) {
2044 int s = sectors;
2045 int d = read_disk;
2046 int success = 0;
2047 int start;
3cb03002 2048 struct md_rdev *rdev;
867868fb
N
2049
2050 if (s > (PAGE_SIZE>>9))
2051 s = PAGE_SIZE >> 9;
2052
2053 do {
d2eb35ac
N
2054 sector_t first_bad;
2055 int bad_sectors;
2056
707a6a42
N
2057 rcu_read_lock();
2058 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2059 if (rdev &&
da8840a7 2060 (test_bit(In_sync, &rdev->flags) ||
2061 (!test_bit(Faulty, &rdev->flags) &&
2062 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2063 is_badblock(rdev, sect, s,
707a6a42
N
2064 &first_bad, &bad_sectors) == 0) {
2065 atomic_inc(&rdev->nr_pending);
2066 rcu_read_unlock();
2067 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2068 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2069 success = 1;
2070 rdev_dec_pending(rdev, mddev);
2071 if (success)
2072 break;
2073 } else
2074 rcu_read_unlock();
2075 d++;
2076 if (d == conf->raid_disks * 2)
2077 d = 0;
867868fb
N
2078 } while (!success && d != read_disk);
2079
2080 if (!success) {
d8f05d29 2081 /* Cannot read from anywhere - mark it bad */
3cb03002 2082 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2083 if (!rdev_set_badblocks(rdev, sect, s, 0))
2084 md_error(mddev, rdev);
867868fb
N
2085 break;
2086 }
2087 /* write it back and re-read */
2088 start = d;
2089 while (d != read_disk) {
2090 if (d==0)
8f19ccb2 2091 d = conf->raid_disks * 2;
867868fb 2092 d--;
707a6a42
N
2093 rcu_read_lock();
2094 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2095 if (rdev &&
707a6a42
N
2096 !test_bit(Faulty, &rdev->flags)) {
2097 atomic_inc(&rdev->nr_pending);
2098 rcu_read_unlock();
d8f05d29
N
2099 r1_sync_page_io(rdev, sect, s,
2100 conf->tmppage, WRITE);
707a6a42
N
2101 rdev_dec_pending(rdev, mddev);
2102 } else
2103 rcu_read_unlock();
867868fb
N
2104 }
2105 d = start;
2106 while (d != read_disk) {
2107 char b[BDEVNAME_SIZE];
2108 if (d==0)
8f19ccb2 2109 d = conf->raid_disks * 2;
867868fb 2110 d--;
707a6a42
N
2111 rcu_read_lock();
2112 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2113 if (rdev &&
b8cb6b4c 2114 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2115 atomic_inc(&rdev->nr_pending);
2116 rcu_read_unlock();
d8f05d29
N
2117 if (r1_sync_page_io(rdev, sect, s,
2118 conf->tmppage, READ)) {
867868fb 2119 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2120 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2121 mdname(mddev), s,
2122 (unsigned long long)(sect +
2123 rdev->data_offset),
2124 bdevname(rdev->bdev, b));
867868fb 2125 }
707a6a42
N
2126 rdev_dec_pending(rdev, mddev);
2127 } else
2128 rcu_read_unlock();
867868fb
N
2129 }
2130 sectors -= s;
2131 sect += s;
2132 }
2133}
2134
9f2c9d12 2135static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2136{
fd01b88c 2137 struct mddev *mddev = r1_bio->mddev;
e8096360 2138 struct r1conf *conf = mddev->private;
3cb03002 2139 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2140
2141 /* bio has the data to be written to device 'i' where
2142 * we just recently had a write error.
2143 * We repeatedly clone the bio and trim down to one block,
2144 * then try the write. Where the write fails we record
2145 * a bad block.
2146 * It is conceivable that the bio doesn't exactly align with
2147 * blocks. We must handle this somehow.
2148 *
2149 * We currently own a reference on the rdev.
2150 */
2151
2152 int block_sectors;
2153 sector_t sector;
2154 int sectors;
2155 int sect_to_write = r1_bio->sectors;
2156 int ok = 1;
2157
2158 if (rdev->badblocks.shift < 0)
2159 return 0;
2160
ab713cdc
ND
2161 block_sectors = roundup(1 << rdev->badblocks.shift,
2162 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2163 sector = r1_bio->sector;
2164 sectors = ((sector + block_sectors)
2165 & ~(sector_t)(block_sectors - 1))
2166 - sector;
2167
cd5ff9a1
N
2168 while (sect_to_write) {
2169 struct bio *wbio;
2170 if (sectors > sect_to_write)
2171 sectors = sect_to_write;
2172 /* Write at 'sector' for 'sectors'*/
2173
b783863f
KO
2174 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2175 unsigned vcnt = r1_bio->behind_page_count;
2176 struct bio_vec *vec = r1_bio->behind_bvecs;
2177
2178 while (!vec->bv_page) {
2179 vec++;
2180 vcnt--;
2181 }
2182
2183 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2184 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2185
2186 wbio->bi_vcnt = vcnt;
2187 } else {
2188 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2189 }
2190
796a5cf0 2191 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2192 wbio->bi_iter.bi_sector = r1_bio->sector;
2193 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2194
6678d83f 2195 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2196 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1 2197 wbio->bi_bdev = rdev->bdev;
4e49ea4a
MC
2198
2199 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2200 /* failure! */
2201 ok = rdev_set_badblocks(rdev, sector,
2202 sectors, 0)
2203 && ok;
2204
2205 bio_put(wbio);
2206 sect_to_write -= sectors;
2207 sector += sectors;
2208 sectors = block_sectors;
2209 }
2210 return ok;
2211}
2212
e8096360 2213static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2214{
2215 int m;
2216 int s = r1_bio->sectors;
8f19ccb2 2217 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2218 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2219 struct bio *bio = r1_bio->bios[m];
2220 if (bio->bi_end_io == NULL)
2221 continue;
4246a0b6 2222 if (!bio->bi_error &&
62096bce 2223 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2224 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2225 }
4246a0b6 2226 if (bio->bi_error &&
62096bce
N
2227 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2228 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2229 md_error(conf->mddev, rdev);
2230 }
2231 }
2232 put_buf(r1_bio);
2233 md_done_sync(conf->mddev, s, 1);
2234}
2235
e8096360 2236static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2237{
2238 int m;
55ce74d4 2239 bool fail = false;
8f19ccb2 2240 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2241 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2242 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2243 rdev_clear_badblocks(rdev,
2244 r1_bio->sector,
c6563a8c 2245 r1_bio->sectors, 0);
62096bce
N
2246 rdev_dec_pending(rdev, conf->mddev);
2247 } else if (r1_bio->bios[m] != NULL) {
2248 /* This drive got a write error. We need to
2249 * narrow down and record precise write
2250 * errors.
2251 */
55ce74d4 2252 fail = true;
62096bce
N
2253 if (!narrow_write_error(r1_bio, m)) {
2254 md_error(conf->mddev,
2255 conf->mirrors[m].rdev);
2256 /* an I/O failed, we can't clear the bitmap */
2257 set_bit(R1BIO_Degraded, &r1_bio->state);
2258 }
2259 rdev_dec_pending(conf->mirrors[m].rdev,
2260 conf->mddev);
2261 }
55ce74d4
N
2262 if (fail) {
2263 spin_lock_irq(&conf->device_lock);
2264 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
ccfc7bf1 2265 conf->nr_queued++;
55ce74d4
N
2266 spin_unlock_irq(&conf->device_lock);
2267 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2268 } else {
2269 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2270 close_write(r1_bio);
55ce74d4 2271 raid_end_bio_io(r1_bio);
bd8688a1 2272 }
62096bce
N
2273}
2274
e8096360 2275static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2276{
2277 int disk;
2278 int max_sectors;
fd01b88c 2279 struct mddev *mddev = conf->mddev;
62096bce
N
2280 struct bio *bio;
2281 char b[BDEVNAME_SIZE];
3cb03002 2282 struct md_rdev *rdev;
62096bce
N
2283
2284 clear_bit(R1BIO_ReadError, &r1_bio->state);
2285 /* we got a read error. Maybe the drive is bad. Maybe just
2286 * the block and we can fix it.
2287 * We freeze all other IO, and try reading the block from
2288 * other devices. When we find one, we re-write
2289 * and check it that fixes the read error.
2290 * This is all done synchronously while the array is
2291 * frozen
2292 */
7449f699
TM
2293
2294 bio = r1_bio->bios[r1_bio->read_disk];
2295 bdevname(bio->bi_bdev, b);
2296 bio_put(bio);
2297 r1_bio->bios[r1_bio->read_disk] = NULL;
2298
62096bce 2299 if (mddev->ro == 0) {
e2d59925 2300 freeze_array(conf, 1);
62096bce
N
2301 fix_read_error(conf, r1_bio->read_disk,
2302 r1_bio->sector, r1_bio->sectors);
2303 unfreeze_array(conf);
7449f699
TM
2304 } else {
2305 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2306 }
2307
7ad4d4a6 2308 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce 2309
62096bce
N
2310read_more:
2311 disk = read_balance(conf, r1_bio, &max_sectors);
2312 if (disk == -1) {
1d41c216
N
2313 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2314 mdname(mddev), b, (unsigned long long)r1_bio->sector);
62096bce
N
2315 raid_end_bio_io(r1_bio);
2316 } else {
2317 const unsigned long do_sync
1eff9d32 2318 = r1_bio->master_bio->bi_opf & REQ_SYNC;
62096bce
N
2319 r1_bio->read_disk = disk;
2320 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2321 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2322 max_sectors);
62096bce
N
2323 r1_bio->bios[r1_bio->read_disk] = bio;
2324 rdev = conf->mirrors[disk].rdev;
1d41c216
N
2325 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2326 mdname(mddev),
2327 (unsigned long long)r1_bio->sector,
2328 bdevname(rdev->bdev, b));
4f024f37 2329 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2330 bio->bi_bdev = rdev->bdev;
2331 bio->bi_end_io = raid1_end_read_request;
796a5cf0 2332 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
62096bce
N
2333 bio->bi_private = r1_bio;
2334 if (max_sectors < r1_bio->sectors) {
2335 /* Drat - have to split this up more */
2336 struct bio *mbio = r1_bio->master_bio;
2337 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2338 - mbio->bi_iter.bi_sector);
62096bce
N
2339 r1_bio->sectors = max_sectors;
2340 spin_lock_irq(&conf->device_lock);
2341 if (mbio->bi_phys_segments == 0)
2342 mbio->bi_phys_segments = 2;
2343 else
2344 mbio->bi_phys_segments++;
2345 spin_unlock_irq(&conf->device_lock);
2346 generic_make_request(bio);
2347 bio = NULL;
2348
2349 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2350
2351 r1_bio->master_bio = mbio;
aa8b57aa 2352 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2353 r1_bio->state = 0;
2354 set_bit(R1BIO_ReadError, &r1_bio->state);
2355 r1_bio->mddev = mddev;
4f024f37
KO
2356 r1_bio->sector = mbio->bi_iter.bi_sector +
2357 sectors_handled;
62096bce
N
2358
2359 goto read_more;
2360 } else
2361 generic_make_request(bio);
2362 }
2363}
2364
4ed8731d 2365static void raid1d(struct md_thread *thread)
1da177e4 2366{
4ed8731d 2367 struct mddev *mddev = thread->mddev;
9f2c9d12 2368 struct r1bio *r1_bio;
1da177e4 2369 unsigned long flags;
e8096360 2370 struct r1conf *conf = mddev->private;
1da177e4 2371 struct list_head *head = &conf->retry_list;
e1dfa0a2 2372 struct blk_plug plug;
1da177e4
LT
2373
2374 md_check_recovery(mddev);
e1dfa0a2 2375
55ce74d4
N
2376 if (!list_empty_careful(&conf->bio_end_io_list) &&
2377 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2378 LIST_HEAD(tmp);
2379 spin_lock_irqsave(&conf->device_lock, flags);
2380 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
ccfc7bf1
ND
2381 while (!list_empty(&conf->bio_end_io_list)) {
2382 list_move(conf->bio_end_io_list.prev, &tmp);
2383 conf->nr_queued--;
2384 }
55ce74d4
N
2385 }
2386 spin_unlock_irqrestore(&conf->device_lock, flags);
2387 while (!list_empty(&tmp)) {
a452744b
MP
2388 r1_bio = list_first_entry(&tmp, struct r1bio,
2389 retry_list);
55ce74d4 2390 list_del(&r1_bio->retry_list);
bd8688a1
N
2391 if (mddev->degraded)
2392 set_bit(R1BIO_Degraded, &r1_bio->state);
2393 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2394 close_write(r1_bio);
55ce74d4
N
2395 raid_end_bio_io(r1_bio);
2396 }
2397 }
2398
e1dfa0a2 2399 blk_start_plug(&plug);
1da177e4 2400 for (;;) {
191ea9b2 2401
0021b7bc 2402 flush_pending_writes(conf);
191ea9b2 2403
a35e63ef
N
2404 spin_lock_irqsave(&conf->device_lock, flags);
2405 if (list_empty(head)) {
2406 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2407 break;
a35e63ef 2408 }
9f2c9d12 2409 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2410 list_del(head->prev);
ddaf22ab 2411 conf->nr_queued--;
1da177e4
LT
2412 spin_unlock_irqrestore(&conf->device_lock, flags);
2413
2414 mddev = r1_bio->mddev;
070ec55d 2415 conf = mddev->private;
4367af55 2416 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2417 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2418 test_bit(R1BIO_WriteError, &r1_bio->state))
2419 handle_sync_write_finished(conf, r1_bio);
2420 else
4367af55 2421 sync_request_write(mddev, r1_bio);
cd5ff9a1 2422 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2423 test_bit(R1BIO_WriteError, &r1_bio->state))
2424 handle_write_finished(conf, r1_bio);
2425 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2426 handle_read_error(conf, r1_bio);
2427 else
d2eb35ac
N
2428 /* just a partial read to be scheduled from separate
2429 * context
2430 */
2431 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2432
1d9d5241 2433 cond_resched();
de393cde
N
2434 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2435 md_check_recovery(mddev);
1da177e4 2436 }
e1dfa0a2 2437 blk_finish_plug(&plug);
1da177e4
LT
2438}
2439
e8096360 2440static int init_resync(struct r1conf *conf)
1da177e4
LT
2441{
2442 int buffs;
2443
2444 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2445 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2446 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2447 conf->poolinfo);
2448 if (!conf->r1buf_pool)
2449 return -ENOMEM;
2450 conf->next_resync = 0;
2451 return 0;
2452}
2453
2454/*
2455 * perform a "sync" on one "block"
2456 *
2457 * We need to make sure that no normal I/O request - particularly write
2458 * requests - conflict with active sync requests.
2459 *
2460 * This is achieved by tracking pending requests and a 'barrier' concept
2461 * that can be installed to exclude normal IO requests.
2462 */
2463
849674e4
SL
2464static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2465 int *skipped)
1da177e4 2466{
e8096360 2467 struct r1conf *conf = mddev->private;
9f2c9d12 2468 struct r1bio *r1_bio;
1da177e4
LT
2469 struct bio *bio;
2470 sector_t max_sector, nr_sectors;
3e198f78 2471 int disk = -1;
1da177e4 2472 int i;
3e198f78
N
2473 int wonly = -1;
2474 int write_targets = 0, read_targets = 0;
57dab0bd 2475 sector_t sync_blocks;
e3b9703e 2476 int still_degraded = 0;
06f60385
N
2477 int good_sectors = RESYNC_SECTORS;
2478 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2479
2480 if (!conf->r1buf_pool)
2481 if (init_resync(conf))
57afd89f 2482 return 0;
1da177e4 2483
58c0fed4 2484 max_sector = mddev->dev_sectors;
1da177e4 2485 if (sector_nr >= max_sector) {
191ea9b2
N
2486 /* If we aborted, we need to abort the
2487 * sync on the 'current' bitmap chunk (there will
2488 * only be one in raid1 resync.
2489 * We can find the current addess in mddev->curr_resync
2490 */
6a806c51
N
2491 if (mddev->curr_resync < max_sector) /* aborted */
2492 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2493 &sync_blocks, 1);
6a806c51 2494 else /* completed sync */
191ea9b2 2495 conf->fullsync = 0;
6a806c51
N
2496
2497 bitmap_close_sync(mddev->bitmap);
1da177e4 2498 close_sync(conf);
c40f341f
GR
2499
2500 if (mddev_is_clustered(mddev)) {
2501 conf->cluster_sync_low = 0;
2502 conf->cluster_sync_high = 0;
c40f341f 2503 }
1da177e4
LT
2504 return 0;
2505 }
2506
07d84d10
N
2507 if (mddev->bitmap == NULL &&
2508 mddev->recovery_cp == MaxSector &&
6394cca5 2509 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2510 conf->fullsync == 0) {
2511 *skipped = 1;
2512 return max_sector - sector_nr;
2513 }
6394cca5
N
2514 /* before building a request, check if we can skip these blocks..
2515 * This call the bitmap_start_sync doesn't actually record anything
2516 */
e3b9703e 2517 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2518 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2519 /* We can skip this block, and probably several more */
2520 *skipped = 1;
2521 return sync_blocks;
2522 }
17999be4 2523
7ac50447
TM
2524 /*
2525 * If there is non-resync activity waiting for a turn, then let it
2526 * though before starting on this new sync request.
2527 */
2528 if (conf->nr_waiting)
2529 schedule_timeout_uninterruptible(1);
2530
c40f341f
GR
2531 /* we are incrementing sector_nr below. To be safe, we check against
2532 * sector_nr + two times RESYNC_SECTORS
2533 */
2534
2535 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2536 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
1c4588e9 2537 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2538
c2fd4c94 2539 raise_barrier(conf, sector_nr);
1da177e4 2540
3e198f78 2541 rcu_read_lock();
1da177e4 2542 /*
3e198f78
N
2543 * If we get a correctably read error during resync or recovery,
2544 * we might want to read from a different device. So we
2545 * flag all drives that could conceivably be read from for READ,
2546 * and any others (which will be non-In_sync devices) for WRITE.
2547 * If a read fails, we try reading from something else for which READ
2548 * is OK.
1da177e4 2549 */
1da177e4 2550
1da177e4
LT
2551 r1_bio->mddev = mddev;
2552 r1_bio->sector = sector_nr;
191ea9b2 2553 r1_bio->state = 0;
1da177e4 2554 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2555
8f19ccb2 2556 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2557 struct md_rdev *rdev;
1da177e4 2558 bio = r1_bio->bios[i];
2aabaa65 2559 bio_reset(bio);
1da177e4 2560
3e198f78
N
2561 rdev = rcu_dereference(conf->mirrors[i].rdev);
2562 if (rdev == NULL ||
06f60385 2563 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2564 if (i < conf->raid_disks)
2565 still_degraded = 1;
3e198f78 2566 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2567 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2568 bio->bi_end_io = end_sync_write;
2569 write_targets ++;
3e198f78
N
2570 } else {
2571 /* may need to read from here */
06f60385
N
2572 sector_t first_bad = MaxSector;
2573 int bad_sectors;
2574
2575 if (is_badblock(rdev, sector_nr, good_sectors,
2576 &first_bad, &bad_sectors)) {
2577 if (first_bad > sector_nr)
2578 good_sectors = first_bad - sector_nr;
2579 else {
2580 bad_sectors -= (sector_nr - first_bad);
2581 if (min_bad == 0 ||
2582 min_bad > bad_sectors)
2583 min_bad = bad_sectors;
2584 }
2585 }
2586 if (sector_nr < first_bad) {
2587 if (test_bit(WriteMostly, &rdev->flags)) {
2588 if (wonly < 0)
2589 wonly = i;
2590 } else {
2591 if (disk < 0)
2592 disk = i;
2593 }
796a5cf0 2594 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2595 bio->bi_end_io = end_sync_read;
2596 read_targets++;
d57368af
AL
2597 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2598 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2599 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2600 /*
2601 * The device is suitable for reading (InSync),
2602 * but has bad block(s) here. Let's try to correct them,
2603 * if we are doing resync or repair. Otherwise, leave
2604 * this device alone for this sync request.
2605 */
796a5cf0 2606 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2607 bio->bi_end_io = end_sync_write;
2608 write_targets++;
3e198f78 2609 }
3e198f78 2610 }
06f60385
N
2611 if (bio->bi_end_io) {
2612 atomic_inc(&rdev->nr_pending);
4f024f37 2613 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2614 bio->bi_bdev = rdev->bdev;
2615 bio->bi_private = r1_bio;
2616 }
1da177e4 2617 }
3e198f78
N
2618 rcu_read_unlock();
2619 if (disk < 0)
2620 disk = wonly;
2621 r1_bio->read_disk = disk;
191ea9b2 2622
06f60385
N
2623 if (read_targets == 0 && min_bad > 0) {
2624 /* These sectors are bad on all InSync devices, so we
2625 * need to mark them bad on all write targets
2626 */
2627 int ok = 1;
8f19ccb2 2628 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2629 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2630 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2631 ok = rdev_set_badblocks(rdev, sector_nr,
2632 min_bad, 0
2633 ) && ok;
2634 }
2635 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2636 *skipped = 1;
2637 put_buf(r1_bio);
2638
2639 if (!ok) {
2640 /* Cannot record the badblocks, so need to
2641 * abort the resync.
2642 * If there are multiple read targets, could just
2643 * fail the really bad ones ???
2644 */
2645 conf->recovery_disabled = mddev->recovery_disabled;
2646 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2647 return 0;
2648 } else
2649 return min_bad;
2650
2651 }
2652 if (min_bad > 0 && min_bad < good_sectors) {
2653 /* only resync enough to reach the next bad->good
2654 * transition */
2655 good_sectors = min_bad;
2656 }
2657
3e198f78
N
2658 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2659 /* extra read targets are also write targets */
2660 write_targets += read_targets-1;
2661
2662 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2663 /* There is nowhere to write, so all non-sync
2664 * drives must be failed - so we are finished
2665 */
b7219ccb
N
2666 sector_t rv;
2667 if (min_bad > 0)
2668 max_sector = sector_nr + min_bad;
2669 rv = max_sector - sector_nr;
57afd89f 2670 *skipped = 1;
1da177e4 2671 put_buf(r1_bio);
1da177e4
LT
2672 return rv;
2673 }
2674
c6207277
N
2675 if (max_sector > mddev->resync_max)
2676 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2677 if (max_sector > sector_nr + good_sectors)
2678 max_sector = sector_nr + good_sectors;
1da177e4 2679 nr_sectors = 0;
289e99e8 2680 sync_blocks = 0;
1da177e4
LT
2681 do {
2682 struct page *page;
2683 int len = PAGE_SIZE;
2684 if (sector_nr + (len>>9) > max_sector)
2685 len = (max_sector - sector_nr) << 9;
2686 if (len == 0)
2687 break;
6a806c51
N
2688 if (sync_blocks == 0) {
2689 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2690 &sync_blocks, still_degraded) &&
2691 !conf->fullsync &&
2692 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2693 break;
7571ae88 2694 if ((len >> 9) > sync_blocks)
6a806c51 2695 len = sync_blocks<<9;
ab7a30c7 2696 }
191ea9b2 2697
8f19ccb2 2698 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2699 bio = r1_bio->bios[i];
2700 if (bio->bi_end_io) {
d11c171e 2701 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2702 if (bio_add_page(bio, page, len, 0) == 0) {
2703 /* stop here */
d11c171e 2704 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2705 while (i > 0) {
2706 i--;
2707 bio = r1_bio->bios[i];
6a806c51
N
2708 if (bio->bi_end_io==NULL)
2709 continue;
1da177e4
LT
2710 /* remove last page from this bio */
2711 bio->bi_vcnt--;
4f024f37 2712 bio->bi_iter.bi_size -= len;
b7c44ed9 2713 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4
LT
2714 }
2715 goto bio_full;
2716 }
2717 }
2718 }
2719 nr_sectors += len>>9;
2720 sector_nr += len>>9;
191ea9b2 2721 sync_blocks -= (len>>9);
1da177e4
LT
2722 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2723 bio_full:
1da177e4
LT
2724 r1_bio->sectors = nr_sectors;
2725
c40f341f
GR
2726 if (mddev_is_clustered(mddev) &&
2727 conf->cluster_sync_high < sector_nr + nr_sectors) {
2728 conf->cluster_sync_low = mddev->curr_resync_completed;
2729 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2730 /* Send resync message */
2731 md_cluster_ops->resync_info_update(mddev,
2732 conf->cluster_sync_low,
2733 conf->cluster_sync_high);
2734 }
2735
d11c171e
N
2736 /* For a user-requested sync, we read all readable devices and do a
2737 * compare
2738 */
2739 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2740 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2741 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2742 bio = r1_bio->bios[i];
2743 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2744 read_targets--;
ddac7c7e 2745 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2746 generic_make_request(bio);
2747 }
2748 }
2749 } else {
2750 atomic_set(&r1_bio->remaining, 1);
2751 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2752 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2753 generic_make_request(bio);
1da177e4 2754
d11c171e 2755 }
1da177e4
LT
2756 return nr_sectors;
2757}
2758
fd01b88c 2759static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2760{
2761 if (sectors)
2762 return sectors;
2763
2764 return mddev->dev_sectors;
2765}
2766
e8096360 2767static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2768{
e8096360 2769 struct r1conf *conf;
709ae487 2770 int i;
0eaf822c 2771 struct raid1_info *disk;
3cb03002 2772 struct md_rdev *rdev;
709ae487 2773 int err = -ENOMEM;
1da177e4 2774
e8096360 2775 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2776 if (!conf)
709ae487 2777 goto abort;
1da177e4 2778
0eaf822c 2779 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2780 * mddev->raid_disks * 2,
1da177e4
LT
2781 GFP_KERNEL);
2782 if (!conf->mirrors)
709ae487 2783 goto abort;
1da177e4 2784
ddaf22ab
N
2785 conf->tmppage = alloc_page(GFP_KERNEL);
2786 if (!conf->tmppage)
709ae487 2787 goto abort;
ddaf22ab 2788
709ae487 2789 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2790 if (!conf->poolinfo)
709ae487 2791 goto abort;
8f19ccb2 2792 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2793 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2794 r1bio_pool_free,
2795 conf->poolinfo);
2796 if (!conf->r1bio_pool)
709ae487
N
2797 goto abort;
2798
ed9bfdf1 2799 conf->poolinfo->mddev = mddev;
1da177e4 2800
c19d5798 2801 err = -EINVAL;
e7e72bf6 2802 spin_lock_init(&conf->device_lock);
dafb20fa 2803 rdev_for_each(rdev, mddev) {
aba336bd 2804 struct request_queue *q;
709ae487 2805 int disk_idx = rdev->raid_disk;
1da177e4
LT
2806 if (disk_idx >= mddev->raid_disks
2807 || disk_idx < 0)
2808 continue;
c19d5798 2809 if (test_bit(Replacement, &rdev->flags))
02b898f2 2810 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2811 else
2812 disk = conf->mirrors + disk_idx;
1da177e4 2813
c19d5798
N
2814 if (disk->rdev)
2815 goto abort;
1da177e4 2816 disk->rdev = rdev;
aba336bd 2817 q = bdev_get_queue(rdev->bdev);
1da177e4
LT
2818
2819 disk->head_position = 0;
12cee5a8 2820 disk->seq_start = MaxSector;
1da177e4
LT
2821 }
2822 conf->raid_disks = mddev->raid_disks;
2823 conf->mddev = mddev;
1da177e4 2824 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2825 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2826
2827 spin_lock_init(&conf->resync_lock);
17999be4 2828 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2829
191ea9b2 2830 bio_list_init(&conf->pending_bio_list);
34db0cd6 2831 conf->pending_count = 0;
d890fa2b 2832 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2833
79ef3a8a 2834 conf->start_next_window = MaxSector;
2835 conf->current_window_requests = conf->next_window_requests = 0;
2836
c19d5798 2837 err = -EIO;
8f19ccb2 2838 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2839
2840 disk = conf->mirrors + i;
2841
c19d5798
N
2842 if (i < conf->raid_disks &&
2843 disk[conf->raid_disks].rdev) {
2844 /* This slot has a replacement. */
2845 if (!disk->rdev) {
2846 /* No original, just make the replacement
2847 * a recovering spare
2848 */
2849 disk->rdev =
2850 disk[conf->raid_disks].rdev;
2851 disk[conf->raid_disks].rdev = NULL;
2852 } else if (!test_bit(In_sync, &disk->rdev->flags))
2853 /* Original is not in_sync - bad */
2854 goto abort;
2855 }
2856
5fd6c1dc
N
2857 if (!disk->rdev ||
2858 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2859 disk->head_position = 0;
4f0a5e01
JB
2860 if (disk->rdev &&
2861 (disk->rdev->saved_raid_disk < 0))
918f0238 2862 conf->fullsync = 1;
be4d3280 2863 }
1da177e4 2864 }
709ae487 2865
709ae487 2866 err = -ENOMEM;
0232605d 2867 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 2868 if (!conf->thread)
709ae487 2869 goto abort;
1da177e4 2870
709ae487
N
2871 return conf;
2872
2873 abort:
2874 if (conf) {
644df1a8 2875 mempool_destroy(conf->r1bio_pool);
709ae487
N
2876 kfree(conf->mirrors);
2877 safe_put_page(conf->tmppage);
2878 kfree(conf->poolinfo);
2879 kfree(conf);
2880 }
2881 return ERR_PTR(err);
2882}
2883
afa0f557 2884static void raid1_free(struct mddev *mddev, void *priv);
849674e4 2885static int raid1_run(struct mddev *mddev)
709ae487 2886{
e8096360 2887 struct r1conf *conf;
709ae487 2888 int i;
3cb03002 2889 struct md_rdev *rdev;
5220ea1e 2890 int ret;
2ff8cc2c 2891 bool discard_supported = false;
709ae487
N
2892
2893 if (mddev->level != 1) {
1d41c216
N
2894 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
2895 mdname(mddev), mddev->level);
709ae487
N
2896 return -EIO;
2897 }
2898 if (mddev->reshape_position != MaxSector) {
1d41c216
N
2899 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
2900 mdname(mddev));
709ae487
N
2901 return -EIO;
2902 }
1da177e4 2903 /*
709ae487
N
2904 * copy the already verified devices into our private RAID1
2905 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2906 * should be freed in raid1_free()]
1da177e4 2907 */
709ae487
N
2908 if (mddev->private == NULL)
2909 conf = setup_conf(mddev);
2910 else
2911 conf = mddev->private;
1da177e4 2912
709ae487
N
2913 if (IS_ERR(conf))
2914 return PTR_ERR(conf);
1da177e4 2915
c8dc9c65 2916 if (mddev->queue)
5026d7a9
PA
2917 blk_queue_max_write_same_sectors(mddev->queue, 0);
2918
dafb20fa 2919 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2920 if (!mddev->gendisk)
2921 continue;
709ae487
N
2922 disk_stack_limits(mddev->gendisk, rdev->bdev,
2923 rdev->data_offset << 9);
2ff8cc2c
SL
2924 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2925 discard_supported = true;
1da177e4 2926 }
191ea9b2 2927
709ae487
N
2928 mddev->degraded = 0;
2929 for (i=0; i < conf->raid_disks; i++)
2930 if (conf->mirrors[i].rdev == NULL ||
2931 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2932 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2933 mddev->degraded++;
2934
2935 if (conf->raid_disks - mddev->degraded == 1)
2936 mddev->recovery_cp = MaxSector;
2937
8c6ac868 2938 if (mddev->recovery_cp != MaxSector)
1d41c216
N
2939 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
2940 mdname(mddev));
2941 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2942 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2943 mddev->raid_disks);
709ae487 2944
1da177e4
LT
2945 /*
2946 * Ok, everything is just fine now
2947 */
709ae487
N
2948 mddev->thread = conf->thread;
2949 conf->thread = NULL;
2950 mddev->private = conf;
2951
1f403624 2952 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2953
1ed7242e 2954 if (mddev->queue) {
2ff8cc2c
SL
2955 if (discard_supported)
2956 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2957 mddev->queue);
2958 else
2959 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2960 mddev->queue);
1ed7242e 2961 }
5220ea1e 2962
2963 ret = md_integrity_register(mddev);
5aa61f42
N
2964 if (ret) {
2965 md_unregister_thread(&mddev->thread);
afa0f557 2966 raid1_free(mddev, conf);
5aa61f42 2967 }
5220ea1e 2968 return ret;
1da177e4
LT
2969}
2970
afa0f557 2971static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2972{
afa0f557 2973 struct r1conf *conf = priv;
409c57f3 2974
644df1a8 2975 mempool_destroy(conf->r1bio_pool);
990a8baf 2976 kfree(conf->mirrors);
0fea7ed8 2977 safe_put_page(conf->tmppage);
990a8baf 2978 kfree(conf->poolinfo);
1da177e4 2979 kfree(conf);
1da177e4
LT
2980}
2981
fd01b88c 2982static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2983{
2984 /* no resync is happening, and there is enough space
2985 * on all devices, so we can resize.
2986 * We need to make sure resync covers any new space.
2987 * If the array is shrinking we should possibly wait until
2988 * any io in the removed space completes, but it hardly seems
2989 * worth it.
2990 */
a4a6125a
N
2991 sector_t newsize = raid1_size(mddev, sectors, 0);
2992 if (mddev->external_size &&
2993 mddev->array_sectors > newsize)
b522adcd 2994 return -EINVAL;
a4a6125a
N
2995 if (mddev->bitmap) {
2996 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2997 if (ret)
2998 return ret;
2999 }
3000 md_set_array_sectors(mddev, newsize);
f233ea5c 3001 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3002 revalidate_disk(mddev->gendisk);
b522adcd 3003 if (sectors > mddev->dev_sectors &&
b098636c 3004 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3005 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3006 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3007 }
b522adcd 3008 mddev->dev_sectors = sectors;
4b5c7ae8 3009 mddev->resync_max_sectors = sectors;
1da177e4
LT
3010 return 0;
3011}
3012
fd01b88c 3013static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3014{
3015 /* We need to:
3016 * 1/ resize the r1bio_pool
3017 * 2/ resize conf->mirrors
3018 *
3019 * We allocate a new r1bio_pool if we can.
3020 * Then raise a device barrier and wait until all IO stops.
3021 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3022 *
3023 * At the same time, we "pack" the devices so that all the missing
3024 * devices have the higher raid_disk numbers.
1da177e4
LT
3025 */
3026 mempool_t *newpool, *oldpool;
3027 struct pool_info *newpoolinfo;
0eaf822c 3028 struct raid1_info *newmirrors;
e8096360 3029 struct r1conf *conf = mddev->private;
63c70c4f 3030 int cnt, raid_disks;
c04be0aa 3031 unsigned long flags;
b5470dc5 3032 int d, d2, err;
1da177e4 3033
63c70c4f 3034 /* Cannot change chunk_size, layout, or level */
664e7c41 3035 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3036 mddev->layout != mddev->new_layout ||
3037 mddev->level != mddev->new_level) {
664e7c41 3038 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3039 mddev->new_layout = mddev->layout;
3040 mddev->new_level = mddev->level;
3041 return -EINVAL;
3042 }
3043
28c1b9fd
GR
3044 if (!mddev_is_clustered(mddev)) {
3045 err = md_allow_write(mddev);
3046 if (err)
3047 return err;
3048 }
2a2275d6 3049
63c70c4f
N
3050 raid_disks = mddev->raid_disks + mddev->delta_disks;
3051
6ea9c07c
N
3052 if (raid_disks < conf->raid_disks) {
3053 cnt=0;
3054 for (d= 0; d < conf->raid_disks; d++)
3055 if (conf->mirrors[d].rdev)
3056 cnt++;
3057 if (cnt > raid_disks)
1da177e4 3058 return -EBUSY;
6ea9c07c 3059 }
1da177e4
LT
3060
3061 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3062 if (!newpoolinfo)
3063 return -ENOMEM;
3064 newpoolinfo->mddev = mddev;
8f19ccb2 3065 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3066
3067 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3068 r1bio_pool_free, newpoolinfo);
3069 if (!newpool) {
3070 kfree(newpoolinfo);
3071 return -ENOMEM;
3072 }
0eaf822c 3073 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3074 GFP_KERNEL);
1da177e4
LT
3075 if (!newmirrors) {
3076 kfree(newpoolinfo);
3077 mempool_destroy(newpool);
3078 return -ENOMEM;
3079 }
1da177e4 3080
e2d59925 3081 freeze_array(conf, 0);
1da177e4
LT
3082
3083 /* ok, everything is stopped */
3084 oldpool = conf->r1bio_pool;
3085 conf->r1bio_pool = newpool;
6ea9c07c 3086
a88aa786 3087 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3088 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3089 if (rdev && rdev->raid_disk != d2) {
36fad858 3090 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3091 rdev->raid_disk = d2;
36fad858
NK
3092 sysfs_unlink_rdev(mddev, rdev);
3093 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3094 pr_warn("md/raid1:%s: cannot register rd%d\n",
3095 mdname(mddev), rdev->raid_disk);
6ea9c07c 3096 }
a88aa786
N
3097 if (rdev)
3098 newmirrors[d2++].rdev = rdev;
3099 }
1da177e4
LT
3100 kfree(conf->mirrors);
3101 conf->mirrors = newmirrors;
3102 kfree(conf->poolinfo);
3103 conf->poolinfo = newpoolinfo;
3104
c04be0aa 3105 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3106 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3107 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3108 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3109 mddev->delta_disks = 0;
1da177e4 3110
e2d59925 3111 unfreeze_array(conf);
1da177e4 3112
985ca973 3113 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3114 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3115 md_wakeup_thread(mddev->thread);
3116
3117 mempool_destroy(oldpool);
3118 return 0;
3119}
3120
fd01b88c 3121static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3122{
e8096360 3123 struct r1conf *conf = mddev->private;
36fa3063
N
3124
3125 switch(state) {
6eef4b21
N
3126 case 2: /* wake for suspend */
3127 wake_up(&conf->wait_barrier);
3128 break;
9e6603da 3129 case 1:
07169fd4 3130 freeze_array(conf, 0);
36fa3063 3131 break;
9e6603da 3132 case 0:
07169fd4 3133 unfreeze_array(conf);
36fa3063
N
3134 break;
3135 }
36fa3063
N
3136}
3137
fd01b88c 3138static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3139{
3140 /* raid1 can take over:
3141 * raid5 with 2 devices, any layout or chunk size
3142 */
3143 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3144 struct r1conf *conf;
709ae487
N
3145 mddev->new_level = 1;
3146 mddev->new_layout = 0;
3147 mddev->new_chunk_sectors = 0;
3148 conf = setup_conf(mddev);
3149 if (!IS_ERR(conf))
07169fd4 3150 /* Array must appear to be quiesced */
3151 conf->array_frozen = 1;
709ae487
N
3152 return conf;
3153 }
3154 return ERR_PTR(-EINVAL);
3155}
1da177e4 3156
84fc4b56 3157static struct md_personality raid1_personality =
1da177e4
LT
3158{
3159 .name = "raid1",
2604b703 3160 .level = 1,
1da177e4 3161 .owner = THIS_MODULE,
849674e4
SL
3162 .make_request = raid1_make_request,
3163 .run = raid1_run,
afa0f557 3164 .free = raid1_free,
849674e4
SL
3165 .status = raid1_status,
3166 .error_handler = raid1_error,
1da177e4
LT
3167 .hot_add_disk = raid1_add_disk,
3168 .hot_remove_disk= raid1_remove_disk,
3169 .spare_active = raid1_spare_active,
849674e4 3170 .sync_request = raid1_sync_request,
1da177e4 3171 .resize = raid1_resize,
80c3a6ce 3172 .size = raid1_size,
63c70c4f 3173 .check_reshape = raid1_reshape,
36fa3063 3174 .quiesce = raid1_quiesce,
709ae487 3175 .takeover = raid1_takeover,
5c675f83 3176 .congested = raid1_congested,
1da177e4
LT
3177};
3178
3179static int __init raid_init(void)
3180{
2604b703 3181 return register_md_personality(&raid1_personality);
1da177e4
LT
3182}
3183
3184static void raid_exit(void)
3185{
2604b703 3186 unregister_md_personality(&raid1_personality);
1da177e4
LT
3187}
3188
3189module_init(raid_init);
3190module_exit(raid_exit);
3191MODULE_LICENSE("GPL");
0efb9e61 3192MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3193MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3194MODULE_ALIAS("md-raid1");
2604b703 3195MODULE_ALIAS("md-level-1");
34db0cd6
N
3196
3197module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);