Merge branch 'linus' into locking/core, to pick up fixes
[linux-2.6-block.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
3f07c014 40
109e3765 41#include <trace/events/block.h>
3f07c014 42
43b2e5d8 43#include "md.h"
ef740c37 44#include "raid1.h"
935fe098 45#include "md-bitmap.h"
191ea9b2 46
394ed8e4
SL
47#define UNSUPPORTED_MDDEV_FLAGS \
48 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 49 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
50 (1L << MD_HAS_PPL) | \
51 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 52
1da177e4
LT
53/*
54 * Number of guaranteed r1bios in case of extreme VM load:
55 */
56#define NR_RAID1_BIOS 256
57
473e87ce
JB
58/* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62 */
63#define IO_BLOCKED ((struct bio *)1)
64/* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
67 */
68#define IO_MADE_GOOD ((struct bio *)2)
69
70#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
34db0cd6
N
72/* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
75 */
76static int max_queued_requests = 1024;
1da177e4 77
fd76863e 78static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 80
578b54ad
N
81#define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
fb0eb5df
ML
84#include "raid1-10.c"
85
98d30c58
ML
86/*
87 * for resync bio, r1bio pointer can be retrieved from the per-bio
88 * 'struct resync_pages'.
89 */
90static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91{
92 return get_resync_pages(bio)->raid_bio;
93}
94
dd0fc66f 95static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
99
100 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 101 return kzalloc(size, gfp_flags);
1da177e4
LT
102}
103
104static void r1bio_pool_free(void *r1_bio, void *data)
105{
106 kfree(r1_bio);
107}
108
8e005f7c 109#define RESYNC_DEPTH 32
1da177e4 110#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 111#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
113#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 115
dd0fc66f 116static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
117{
118 struct pool_info *pi = data;
9f2c9d12 119 struct r1bio *r1_bio;
1da177e4 120 struct bio *bio;
da1aab3d 121 int need_pages;
98d30c58
ML
122 int j;
123 struct resync_pages *rps;
1da177e4
LT
124
125 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 126 if (!r1_bio)
1da177e4 127 return NULL;
1da177e4 128
98d30c58
ML
129 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130 gfp_flags);
131 if (!rps)
132 goto out_free_r1bio;
133
1da177e4
LT
134 /*
135 * Allocate bios : 1 for reading, n-1 for writing
136 */
137 for (j = pi->raid_disks ; j-- ; ) {
6746557f 138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
139 if (!bio)
140 goto out_free_bio;
141 r1_bio->bios[j] = bio;
142 }
143 /*
144 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
145 * the first bio.
146 * If this is a user-requested check/repair, allocate
147 * RESYNC_PAGES for each bio.
1da177e4 148 */
d11c171e 149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 150 need_pages = pi->raid_disks;
d11c171e 151 else
da1aab3d 152 need_pages = 1;
98d30c58
ML
153 for (j = 0; j < pi->raid_disks; j++) {
154 struct resync_pages *rp = &rps[j];
155
d11c171e 156 bio = r1_bio->bios[j];
d11c171e 157
98d30c58
ML
158 if (j < need_pages) {
159 if (resync_alloc_pages(rp, gfp_flags))
160 goto out_free_pages;
161 } else {
162 memcpy(rp, &rps[0], sizeof(*rp));
163 resync_get_all_pages(rp);
164 }
165
98d30c58
ML
166 rp->raid_bio = r1_bio;
167 bio->bi_private = rp;
1da177e4
LT
168 }
169
170 r1_bio->master_bio = NULL;
171
172 return r1_bio;
173
da1aab3d 174out_free_pages:
491221f8 175 while (--j >= 0)
98d30c58 176 resync_free_pages(&rps[j]);
da1aab3d 177
1da177e4 178out_free_bio:
8f19ccb2 179 while (++j < pi->raid_disks)
1da177e4 180 bio_put(r1_bio->bios[j]);
98d30c58
ML
181 kfree(rps);
182
183out_free_r1bio:
1da177e4
LT
184 r1bio_pool_free(r1_bio, data);
185 return NULL;
186}
187
188static void r1buf_pool_free(void *__r1_bio, void *data)
189{
190 struct pool_info *pi = data;
98d30c58 191 int i;
9f2c9d12 192 struct r1bio *r1bio = __r1_bio;
98d30c58 193 struct resync_pages *rp = NULL;
1da177e4 194
98d30c58
ML
195 for (i = pi->raid_disks; i--; ) {
196 rp = get_resync_pages(r1bio->bios[i]);
197 resync_free_pages(rp);
1da177e4 198 bio_put(r1bio->bios[i]);
98d30c58
ML
199 }
200
201 /* resync pages array stored in the 1st bio's .bi_private */
202 kfree(rp);
1da177e4
LT
203
204 r1bio_pool_free(r1bio, data);
205}
206
e8096360 207static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
208{
209 int i;
210
8f19ccb2 211 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 212 struct bio **bio = r1_bio->bios + i;
4367af55 213 if (!BIO_SPECIAL(*bio))
1da177e4
LT
214 bio_put(*bio);
215 *bio = NULL;
216 }
217}
218
9f2c9d12 219static void free_r1bio(struct r1bio *r1_bio)
1da177e4 220{
e8096360 221 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 222
1da177e4
LT
223 put_all_bios(conf, r1_bio);
224 mempool_free(r1_bio, conf->r1bio_pool);
225}
226
9f2c9d12 227static void put_buf(struct r1bio *r1_bio)
1da177e4 228{
e8096360 229 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 230 sector_t sect = r1_bio->sector;
3e198f78
N
231 int i;
232
8f19ccb2 233 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
234 struct bio *bio = r1_bio->bios[i];
235 if (bio->bi_end_io)
236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 }
1da177e4
LT
238
239 mempool_free(r1_bio, conf->r1buf_pool);
240
af5f42a7 241 lower_barrier(conf, sect);
1da177e4
LT
242}
243
9f2c9d12 244static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
245{
246 unsigned long flags;
fd01b88c 247 struct mddev *mddev = r1_bio->mddev;
e8096360 248 struct r1conf *conf = mddev->private;
fd76863e 249 int idx;
1da177e4 250
fd76863e 251 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
252 spin_lock_irqsave(&conf->device_lock, flags);
253 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 254 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
255 spin_unlock_irqrestore(&conf->device_lock, flags);
256
17999be4 257 wake_up(&conf->wait_barrier);
1da177e4
LT
258 md_wakeup_thread(mddev->thread);
259}
260
261/*
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
264 * cache layer.
265 */
9f2c9d12 266static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
267{
268 struct bio *bio = r1_bio->master_bio;
e8096360 269 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
270
271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 272 bio->bi_status = BLK_STS_IOERR;
4246a0b6 273
37011e3a
N
274 bio_endio(bio);
275 /*
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
278 */
279 allow_barrier(conf, r1_bio->sector);
d2eb35ac
N
280}
281
9f2c9d12 282static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
283{
284 struct bio *bio = r1_bio->master_bio;
285
4b6d287f
N
286 /* if nobody has done the final endio yet, do it now */
287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
290 (unsigned long long) bio->bi_iter.bi_sector,
291 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 292
d2eb35ac 293 call_bio_endio(r1_bio);
4b6d287f 294 }
1da177e4
LT
295 free_r1bio(r1_bio);
296}
297
298/*
299 * Update disk head position estimator based on IRQ completion info.
300 */
9f2c9d12 301static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 302{
e8096360 303 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
304
305 conf->mirrors[disk].head_position =
306 r1_bio->sector + (r1_bio->sectors);
307}
308
ba3ae3be
NK
309/*
310 * Find the disk number which triggered given bio
311 */
9f2c9d12 312static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
313{
314 int mirror;
30194636
N
315 struct r1conf *conf = r1_bio->mddev->private;
316 int raid_disks = conf->raid_disks;
ba3ae3be 317
8f19ccb2 318 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
319 if (r1_bio->bios[mirror] == bio)
320 break;
321
8f19ccb2 322 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
323 update_head_pos(mirror, r1_bio);
324
325 return mirror;
326}
327
4246a0b6 328static void raid1_end_read_request(struct bio *bio)
1da177e4 329{
4e4cbee9 330 int uptodate = !bio->bi_status;
9f2c9d12 331 struct r1bio *r1_bio = bio->bi_private;
e8096360 332 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 334
1da177e4
LT
335 /*
336 * this branch is our 'one mirror IO has finished' event handler:
337 */
e5872d58 338 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 339
dd00a99e
N
340 if (uptodate)
341 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
342 else if (test_bit(FailFast, &rdev->flags) &&
343 test_bit(R1BIO_FailFast, &r1_bio->state))
344 /* This was a fail-fast read so we definitely
345 * want to retry */
346 ;
dd00a99e
N
347 else {
348 /* If all other devices have failed, we want to return
349 * the error upwards rather than fail the last device.
350 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 351 */
dd00a99e
N
352 unsigned long flags;
353 spin_lock_irqsave(&conf->device_lock, flags);
354 if (r1_bio->mddev->degraded == conf->raid_disks ||
355 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 356 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
357 uptodate = 1;
358 spin_unlock_irqrestore(&conf->device_lock, flags);
359 }
1da177e4 360
7ad4d4a6 361 if (uptodate) {
1da177e4 362 raid_end_bio_io(r1_bio);
e5872d58 363 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 364 } else {
1da177e4
LT
365 /*
366 * oops, read error:
367 */
368 char b[BDEVNAME_SIZE];
1d41c216
N
369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 mdname(conf->mddev),
371 bdevname(rdev->bdev, b),
372 (unsigned long long)r1_bio->sector);
d2eb35ac 373 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 374 reschedule_retry(r1_bio);
7ad4d4a6 375 /* don't drop the reference on read_disk yet */
1da177e4 376 }
1da177e4
LT
377}
378
9f2c9d12 379static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
380{
381 /* it really is the end of this request */
382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
383 bio_free_pages(r1_bio->behind_master_bio);
384 bio_put(r1_bio->behind_master_bio);
385 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
386 }
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 test_bit(R1BIO_BehindIO, &r1_bio->state));
392 md_write_end(r1_bio->mddev);
393}
394
9f2c9d12 395static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 396{
cd5ff9a1
N
397 if (!atomic_dec_and_test(&r1_bio->remaining))
398 return;
399
400 if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 reschedule_retry(r1_bio);
402 else {
403 close_write(r1_bio);
4367af55
N
404 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 reschedule_retry(r1_bio);
406 else
407 raid_end_bio_io(r1_bio);
4e78064f
N
408 }
409}
410
4246a0b6 411static void raid1_end_write_request(struct bio *bio)
1da177e4 412{
9f2c9d12 413 struct r1bio *r1_bio = bio->bi_private;
e5872d58 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 415 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 416 struct bio *to_put = NULL;
e5872d58
N
417 int mirror = find_bio_disk(r1_bio, bio);
418 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
419 bool discard_error;
420
4e4cbee9 421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 422
e9c7469b
TH
423 /*
424 * 'one mirror IO has finished' event handler:
425 */
4e4cbee9 426 if (bio->bi_status && !discard_error) {
e5872d58
N
427 set_bit(WriteErrorSeen, &rdev->flags);
428 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
429 set_bit(MD_RECOVERY_NEEDED, &
430 conf->mddev->recovery);
431
212e7eb7
N
432 if (test_bit(FailFast, &rdev->flags) &&
433 (bio->bi_opf & MD_FAILFAST) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly, &rdev->flags)) {
436 md_error(r1_bio->mddev, rdev);
437 if (!test_bit(Faulty, &rdev->flags))
438 /* This is the only remaining device,
439 * We need to retry the write without
440 * FailFast
441 */
442 set_bit(R1BIO_WriteError, &r1_bio->state);
443 else {
444 /* Finished with this branch */
445 r1_bio->bios[mirror] = NULL;
446 to_put = bio;
447 }
448 } else
449 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 450 } else {
1da177e4 451 /*
e9c7469b
TH
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
455 * fails.
456 *
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
1da177e4 460 */
4367af55
N
461 sector_t first_bad;
462 int bad_sectors;
463
cd5ff9a1
N
464 r1_bio->bios[mirror] = NULL;
465 to_put = bio;
3056e3ae
AL
466 /*
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
472 * check this here.
473 */
e5872d58
N
474 if (test_bit(In_sync, &rdev->flags) &&
475 !test_bit(Faulty, &rdev->flags))
3056e3ae 476 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 477
4367af55 478 /* Maybe we can clear some bad blocks. */
e5872d58 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 480 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
481 r1_bio->bios[mirror] = IO_MADE_GOOD;
482 set_bit(R1BIO_MadeGood, &r1_bio->state);
483 }
484 }
485
e9c7469b 486 if (behind) {
e5872d58 487 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
488 atomic_dec(&r1_bio->behind_remaining);
489
490 /*
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
496 */
497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
502 pr_debug("raid1: behind end write sectors"
503 " %llu-%llu\n",
4f024f37
KO
504 (unsigned long long) mbio->bi_iter.bi_sector,
505 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 506 call_bio_endio(r1_bio);
4b6d287f
N
507 }
508 }
509 }
4367af55 510 if (r1_bio->bios[mirror] == NULL)
e5872d58 511 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 512
1da177e4 513 /*
1da177e4
LT
514 * Let's see if all mirrored write operations have finished
515 * already.
516 */
af6d7b76 517 r1_bio_write_done(r1_bio);
c70810b3 518
04b857f7
N
519 if (to_put)
520 bio_put(to_put);
1da177e4
LT
521}
522
fd76863e 523static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 sector_t sectors)
525{
526 sector_t len;
527
528 WARN_ON(sectors == 0);
529 /*
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
532 */
533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 start_sector;
535
536 if (len > sectors)
537 len = sectors;
538
539 return len;
540}
541
1da177e4
LT
542/*
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
550 *
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
553 *
554 * The rdev for the device selected will have nr_pending incremented.
555 */
e8096360 556static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 557{
af3a2cd6 558 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
559 int sectors;
560 int best_good_sectors;
9dedf603
SL
561 int best_disk, best_dist_disk, best_pending_disk;
562 int has_nonrot_disk;
be4d3280 563 int disk;
76073054 564 sector_t best_dist;
9dedf603 565 unsigned int min_pending;
3cb03002 566 struct md_rdev *rdev;
f3ac8bf7 567 int choose_first;
12cee5a8 568 int choose_next_idle;
1da177e4
LT
569
570 rcu_read_lock();
571 /*
8ddf9efe 572 * Check if we can balance. We can balance on the whole
1da177e4
LT
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
575 */
576 retry:
d2eb35ac 577 sectors = r1_bio->sectors;
76073054 578 best_disk = -1;
9dedf603 579 best_dist_disk = -1;
76073054 580 best_dist = MaxSector;
9dedf603
SL
581 best_pending_disk = -1;
582 min_pending = UINT_MAX;
d2eb35ac 583 best_good_sectors = 0;
9dedf603 584 has_nonrot_disk = 0;
12cee5a8 585 choose_next_idle = 0;
2e52d449 586 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 587
7d49ffcf
GR
588 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 (mddev_is_clustered(conf->mddev) &&
90382ed9 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
591 this_sector + sectors)))
592 choose_first = 1;
593 else
594 choose_first = 0;
1da177e4 595
be4d3280 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 597 sector_t dist;
d2eb35ac
N
598 sector_t first_bad;
599 int bad_sectors;
9dedf603 600 unsigned int pending;
12cee5a8 601 bool nonrot;
d2eb35ac 602
f3ac8bf7
N
603 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 if (r1_bio->bios[disk] == IO_BLOCKED
605 || rdev == NULL
76073054 606 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 607 continue;
76073054
N
608 if (!test_bit(In_sync, &rdev->flags) &&
609 rdev->recovery_offset < this_sector + sectors)
1da177e4 610 continue;
76073054
N
611 if (test_bit(WriteMostly, &rdev->flags)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
d1901ef0 614 if (best_dist_disk < 0) {
307729c8
N
615 if (is_badblock(rdev, this_sector, sectors,
616 &first_bad, &bad_sectors)) {
816b0acf 617 if (first_bad <= this_sector)
307729c8
N
618 /* Cannot use this */
619 continue;
620 best_good_sectors = first_bad - this_sector;
621 } else
622 best_good_sectors = sectors;
d1901ef0
TH
623 best_dist_disk = disk;
624 best_pending_disk = disk;
307729c8 625 }
76073054
N
626 continue;
627 }
628 /* This is a reasonable device to use. It might
629 * even be best.
630 */
d2eb35ac
N
631 if (is_badblock(rdev, this_sector, sectors,
632 &first_bad, &bad_sectors)) {
633 if (best_dist < MaxSector)
634 /* already have a better device */
635 continue;
636 if (first_bad <= this_sector) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
640 */
641 bad_sectors -= (this_sector - first_bad);
642 if (choose_first && sectors > bad_sectors)
643 sectors = bad_sectors;
644 if (best_good_sectors > sectors)
645 best_good_sectors = sectors;
646
647 } else {
648 sector_t good_sectors = first_bad - this_sector;
649 if (good_sectors > best_good_sectors) {
650 best_good_sectors = good_sectors;
651 best_disk = disk;
652 }
653 if (choose_first)
654 break;
655 }
656 continue;
d82dd0e3
TM
657 } else {
658 if ((sectors > best_good_sectors) && (best_disk >= 0))
659 best_disk = -1;
d2eb35ac 660 best_good_sectors = sectors;
d82dd0e3 661 }
d2eb35ac 662
2e52d449
N
663 if (best_disk >= 0)
664 /* At least two disks to choose from so failfast is OK */
665 set_bit(R1BIO_FailFast, &r1_bio->state);
666
12cee5a8
SL
667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 has_nonrot_disk |= nonrot;
9dedf603 669 pending = atomic_read(&rdev->nr_pending);
76073054 670 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 671 if (choose_first) {
76073054 672 best_disk = disk;
1da177e4
LT
673 break;
674 }
12cee5a8
SL
675 /* Don't change to another disk for sequential reads */
676 if (conf->mirrors[disk].next_seq_sect == this_sector
677 || dist == 0) {
678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 struct raid1_info *mirror = &conf->mirrors[disk];
680
681 best_disk = disk;
682 /*
683 * If buffered sequential IO size exceeds optimal
684 * iosize, check if there is idle disk. If yes, choose
685 * the idle disk. read_balance could already choose an
686 * idle disk before noticing it's a sequential IO in
687 * this disk. This doesn't matter because this disk
688 * will idle, next time it will be utilized after the
689 * first disk has IO size exceeds optimal iosize. In
690 * this way, iosize of the first disk will be optimal
691 * iosize at least. iosize of the second disk might be
692 * small, but not a big deal since when the second disk
693 * starts IO, the first disk is likely still busy.
694 */
695 if (nonrot && opt_iosize > 0 &&
696 mirror->seq_start != MaxSector &&
697 mirror->next_seq_sect > opt_iosize &&
698 mirror->next_seq_sect - opt_iosize >=
699 mirror->seq_start) {
700 choose_next_idle = 1;
701 continue;
702 }
703 break;
704 }
12cee5a8
SL
705
706 if (choose_next_idle)
707 continue;
9dedf603
SL
708
709 if (min_pending > pending) {
710 min_pending = pending;
711 best_pending_disk = disk;
712 }
713
76073054
N
714 if (dist < best_dist) {
715 best_dist = dist;
9dedf603 716 best_dist_disk = disk;
1da177e4 717 }
f3ac8bf7 718 }
1da177e4 719
9dedf603
SL
720 /*
721 * If all disks are rotational, choose the closest disk. If any disk is
722 * non-rotational, choose the disk with less pending request even the
723 * disk is rotational, which might/might not be optimal for raids with
724 * mixed ratation/non-rotational disks depending on workload.
725 */
726 if (best_disk == -1) {
2e52d449 727 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
728 best_disk = best_pending_disk;
729 else
730 best_disk = best_dist_disk;
731 }
732
76073054
N
733 if (best_disk >= 0) {
734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
735 if (!rdev)
736 goto retry;
737 atomic_inc(&rdev->nr_pending);
d2eb35ac 738 sectors = best_good_sectors;
12cee5a8
SL
739
740 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 conf->mirrors[best_disk].seq_start = this_sector;
742
be4d3280 743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
744 }
745 rcu_read_unlock();
d2eb35ac 746 *max_sectors = sectors;
1da177e4 747
76073054 748 return best_disk;
1da177e4
LT
749}
750
5c675f83 751static int raid1_congested(struct mddev *mddev, int bits)
0d129228 752{
e8096360 753 struct r1conf *conf = mddev->private;
0d129228
N
754 int i, ret = 0;
755
4452226e 756 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
757 conf->pending_count >= max_queued_requests)
758 return 1;
759
0d129228 760 rcu_read_lock();
f53e29fc 761 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 763 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 764 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 765
1ed7242e
JB
766 BUG_ON(!q);
767
0d129228
N
768 /* Note the '|| 1' - when read_balance prefers
769 * non-congested targets, it can be removed
770 */
4452226e 771 if ((bits & (1 << WB_async_congested)) || 1)
dc3b17cc 772 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228 773 else
dc3b17cc 774 ret &= bdi_congested(q->backing_dev_info, bits);
0d129228
N
775 }
776 }
777 rcu_read_unlock();
778 return ret;
779}
0d129228 780
673ca68d
N
781static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782{
783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 bitmap_unplug(conf->mddev->bitmap);
785 wake_up(&conf->wait_barrier);
786
787 while (bio) { /* submit pending writes */
788 struct bio *next = bio->bi_next;
74d46992 789 struct md_rdev *rdev = (void *)bio->bi_disk;
673ca68d 790 bio->bi_next = NULL;
74d46992 791 bio_set_dev(bio, rdev->bdev);
673ca68d 792 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 793 bio_io_error(bio);
673ca68d 794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 795 !blk_queue_discard(bio->bi_disk->queue)))
673ca68d
N
796 /* Just ignore it */
797 bio_endio(bio);
798 else
799 generic_make_request(bio);
800 bio = next;
801 }
802}
803
e8096360 804static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
805{
806 /* Any writes that have been queued but are awaiting
807 * bitmap updates get flushed here.
a35e63ef 808 */
a35e63ef
N
809 spin_lock_irq(&conf->device_lock);
810
811 if (conf->pending_bio_list.head) {
18022a1b 812 struct blk_plug plug;
a35e63ef 813 struct bio *bio;
18022a1b 814
a35e63ef 815 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 816 conf->pending_count = 0;
a35e63ef 817 spin_unlock_irq(&conf->device_lock);
474beb57
N
818
819 /*
820 * As this is called in a wait_event() loop (see freeze_array),
821 * current->state might be TASK_UNINTERRUPTIBLE which will
822 * cause a warning when we prepare to wait again. As it is
823 * rare that this path is taken, it is perfectly safe to force
824 * us to go around the wait_event() loop again, so the warning
825 * is a false-positive. Silence the warning by resetting
826 * thread state
827 */
828 __set_current_state(TASK_RUNNING);
18022a1b 829 blk_start_plug(&plug);
673ca68d 830 flush_bio_list(conf, bio);
18022a1b 831 blk_finish_plug(&plug);
a35e63ef
N
832 } else
833 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
834}
835
17999be4
N
836/* Barriers....
837 * Sometimes we need to suspend IO while we do something else,
838 * either some resync/recovery, or reconfigure the array.
839 * To do this we raise a 'barrier'.
840 * The 'barrier' is a counter that can be raised multiple times
841 * to count how many activities are happening which preclude
842 * normal IO.
843 * We can only raise the barrier if there is no pending IO.
844 * i.e. if nr_pending == 0.
845 * We choose only to raise the barrier if no-one is waiting for the
846 * barrier to go down. This means that as soon as an IO request
847 * is ready, no other operations which require a barrier will start
848 * until the IO request has had a chance.
849 *
850 * So: regular IO calls 'wait_barrier'. When that returns there
851 * is no backgroup IO happening, It must arrange to call
852 * allow_barrier when it has finished its IO.
853 * backgroup IO calls must call raise_barrier. Once that returns
854 * there is no normal IO happeing. It must arrange to call
855 * lower_barrier when the particular background IO completes.
1da177e4 856 */
c2fd4c94 857static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 858{
fd76863e 859 int idx = sector_to_idx(sector_nr);
860
1da177e4 861 spin_lock_irq(&conf->resync_lock);
17999be4
N
862
863 /* Wait until no block IO is waiting */
824e47da 864 wait_event_lock_irq(conf->wait_barrier,
865 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 866 conf->resync_lock);
17999be4
N
867
868 /* block any new IO from starting */
824e47da 869 atomic_inc(&conf->barrier[idx]);
870 /*
871 * In raise_barrier() we firstly increase conf->barrier[idx] then
872 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
873 * increase conf->nr_pending[idx] then check conf->barrier[idx].
874 * A memory barrier here to make sure conf->nr_pending[idx] won't
875 * be fetched before conf->barrier[idx] is increased. Otherwise
876 * there will be a race between raise_barrier() and _wait_barrier().
877 */
878 smp_mb__after_atomic();
17999be4 879
79ef3a8a 880 /* For these conditions we must wait:
881 * A: while the array is in frozen state
fd76863e 882 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
883 * existing in corresponding I/O barrier bucket.
884 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
885 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 886 */
17999be4 887 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 888 !conf->array_frozen &&
824e47da 889 !atomic_read(&conf->nr_pending[idx]) &&
890 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
eed8c02e 891 conf->resync_lock);
17999be4 892
43ac9b84 893 atomic_inc(&conf->nr_sync_pending);
17999be4
N
894 spin_unlock_irq(&conf->resync_lock);
895}
896
fd76863e 897static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 898{
fd76863e 899 int idx = sector_to_idx(sector_nr);
900
824e47da 901 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 902
824e47da 903 atomic_dec(&conf->barrier[idx]);
43ac9b84 904 atomic_dec(&conf->nr_sync_pending);
17999be4
N
905 wake_up(&conf->wait_barrier);
906}
907
fd76863e 908static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 909{
824e47da 910 /*
911 * We need to increase conf->nr_pending[idx] very early here,
912 * then raise_barrier() can be blocked when it waits for
913 * conf->nr_pending[idx] to be 0. Then we can avoid holding
914 * conf->resync_lock when there is no barrier raised in same
915 * barrier unit bucket. Also if the array is frozen, I/O
916 * should be blocked until array is unfrozen.
917 */
918 atomic_inc(&conf->nr_pending[idx]);
919 /*
920 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
921 * check conf->barrier[idx]. In raise_barrier() we firstly increase
922 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
923 * barrier is necessary here to make sure conf->barrier[idx] won't be
924 * fetched before conf->nr_pending[idx] is increased. Otherwise there
925 * will be a race between _wait_barrier() and raise_barrier().
926 */
927 smp_mb__after_atomic();
79ef3a8a 928
824e47da 929 /*
930 * Don't worry about checking two atomic_t variables at same time
931 * here. If during we check conf->barrier[idx], the array is
932 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
933 * 0, it is safe to return and make the I/O continue. Because the
934 * array is frozen, all I/O returned here will eventually complete
935 * or be queued, no race will happen. See code comment in
936 * frozen_array().
937 */
938 if (!READ_ONCE(conf->array_frozen) &&
939 !atomic_read(&conf->barrier[idx]))
940 return;
79ef3a8a 941
824e47da 942 /*
943 * After holding conf->resync_lock, conf->nr_pending[idx]
944 * should be decreased before waiting for barrier to drop.
945 * Otherwise, we may encounter a race condition because
946 * raise_barrer() might be waiting for conf->nr_pending[idx]
947 * to be 0 at same time.
948 */
949 spin_lock_irq(&conf->resync_lock);
950 atomic_inc(&conf->nr_waiting[idx]);
951 atomic_dec(&conf->nr_pending[idx]);
952 /*
953 * In case freeze_array() is waiting for
954 * get_unqueued_pending() == extra
955 */
956 wake_up(&conf->wait_barrier);
957 /* Wait for the barrier in same barrier unit bucket to drop. */
958 wait_event_lock_irq(conf->wait_barrier,
959 !conf->array_frozen &&
960 !atomic_read(&conf->barrier[idx]),
961 conf->resync_lock);
962 atomic_inc(&conf->nr_pending[idx]);
963 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 964 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 965}
966
fd76863e 967static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 968{
fd76863e 969 int idx = sector_to_idx(sector_nr);
79ef3a8a 970
824e47da 971 /*
972 * Very similar to _wait_barrier(). The difference is, for read
973 * I/O we don't need wait for sync I/O, but if the whole array
974 * is frozen, the read I/O still has to wait until the array is
975 * unfrozen. Since there is no ordering requirement with
976 * conf->barrier[idx] here, memory barrier is unnecessary as well.
977 */
978 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 979
824e47da 980 if (!READ_ONCE(conf->array_frozen))
981 return;
982
983 spin_lock_irq(&conf->resync_lock);
984 atomic_inc(&conf->nr_waiting[idx]);
985 atomic_dec(&conf->nr_pending[idx]);
986 /*
987 * In case freeze_array() is waiting for
988 * get_unqueued_pending() == extra
989 */
990 wake_up(&conf->wait_barrier);
991 /* Wait for array to be unfrozen */
992 wait_event_lock_irq(conf->wait_barrier,
993 !conf->array_frozen,
994 conf->resync_lock);
995 atomic_inc(&conf->nr_pending[idx]);
996 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
997 spin_unlock_irq(&conf->resync_lock);
998}
999
fd76863e 1000static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 1001{
fd76863e 1002 int idx = sector_to_idx(sector_nr);
79ef3a8a 1003
fd76863e 1004 _wait_barrier(conf, idx);
1005}
1006
fd76863e 1007static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1008{
824e47da 1009 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
1010 wake_up(&conf->wait_barrier);
1011}
1012
fd76863e 1013static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1014{
1015 int idx = sector_to_idx(sector_nr);
1016
1017 _allow_barrier(conf, idx);
1018}
1019
fd76863e 1020/* conf->resync_lock should be held */
1021static int get_unqueued_pending(struct r1conf *conf)
1022{
1023 int idx, ret;
1024
43ac9b84
XN
1025 ret = atomic_read(&conf->nr_sync_pending);
1026 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1027 ret += atomic_read(&conf->nr_pending[idx]) -
1028 atomic_read(&conf->nr_queued[idx]);
fd76863e 1029
1030 return ret;
1031}
1032
e2d59925 1033static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1034{
fd76863e 1035 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1036 * go quiet.
fd76863e 1037 * This is called in two situations:
1038 * 1) management command handlers (reshape, remove disk, quiesce).
1039 * 2) one normal I/O request failed.
1040
1041 * After array_frozen is set to 1, new sync IO will be blocked at
1042 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1043 * or wait_read_barrier(). The flying I/Os will either complete or be
1044 * queued. When everything goes quite, there are only queued I/Os left.
1045
1046 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1047 * barrier bucket index which this I/O request hits. When all sync and
1048 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1049 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1050 * in handle_read_error(), we may call freeze_array() before trying to
1051 * fix the read error. In this case, the error read I/O is not queued,
1052 * so get_unqueued_pending() == 1.
1053 *
1054 * Therefore before this function returns, we need to wait until
1055 * get_unqueued_pendings(conf) gets equal to extra. For
1056 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1057 */
1058 spin_lock_irq(&conf->resync_lock);
b364e3d0 1059 conf->array_frozen = 1;
578b54ad 1060 raid1_log(conf->mddev, "wait freeze");
fd76863e 1061 wait_event_lock_irq_cmd(
1062 conf->wait_barrier,
1063 get_unqueued_pending(conf) == extra,
1064 conf->resync_lock,
1065 flush_pending_writes(conf));
ddaf22ab
N
1066 spin_unlock_irq(&conf->resync_lock);
1067}
e8096360 1068static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1069{
1070 /* reverse the effect of the freeze */
1071 spin_lock_irq(&conf->resync_lock);
b364e3d0 1072 conf->array_frozen = 0;
ddaf22ab 1073 spin_unlock_irq(&conf->resync_lock);
824e47da 1074 wake_up(&conf->wait_barrier);
ddaf22ab
N
1075}
1076
16d56e2f 1077static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1078 struct bio *bio)
4b6d287f 1079{
cb83efcf 1080 int size = bio->bi_iter.bi_size;
841c1316
ML
1081 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1082 int i = 0;
1083 struct bio *behind_bio = NULL;
1084
1085 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1086 if (!behind_bio)
16d56e2f 1087 return;
4b6d287f 1088
41743c1f 1089 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1090 if (!bio_has_data(bio)) {
1091 behind_bio->bi_iter.bi_size = size;
41743c1f 1092 goto skip_copy;
16d56e2f 1093 }
41743c1f 1094
841c1316
ML
1095 while (i < vcnt && size) {
1096 struct page *page;
1097 int len = min_t(int, PAGE_SIZE, size);
1098
1099 page = alloc_page(GFP_NOIO);
1100 if (unlikely(!page))
1101 goto free_pages;
1102
1103 bio_add_page(behind_bio, page, len, 0);
1104
1105 size -= len;
1106 i++;
4b6d287f 1107 }
841c1316 1108
cb83efcf 1109 bio_copy_data(behind_bio, bio);
41743c1f 1110skip_copy:
56a64c17 1111 r1_bio->behind_master_bio = behind_bio;
af6d7b76 1112 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1113
16d56e2f 1114 return;
841c1316
ML
1115
1116free_pages:
4f024f37
KO
1117 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1118 bio->bi_iter.bi_size);
841c1316 1119 bio_free_pages(behind_bio);
16d56e2f 1120 bio_put(behind_bio);
4b6d287f
N
1121}
1122
f54a9d0e
N
1123struct raid1_plug_cb {
1124 struct blk_plug_cb cb;
1125 struct bio_list pending;
1126 int pending_cnt;
1127};
1128
1129static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1130{
1131 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1132 cb);
1133 struct mddev *mddev = plug->cb.data;
1134 struct r1conf *conf = mddev->private;
1135 struct bio *bio;
1136
874807a8 1137 if (from_schedule || current->bio_list) {
f54a9d0e
N
1138 spin_lock_irq(&conf->device_lock);
1139 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1140 conf->pending_count += plug->pending_cnt;
1141 spin_unlock_irq(&conf->device_lock);
ee0b0244 1142 wake_up(&conf->wait_barrier);
f54a9d0e
N
1143 md_wakeup_thread(mddev->thread);
1144 kfree(plug);
1145 return;
1146 }
1147
1148 /* we aren't scheduling, so we can do the write-out directly. */
1149 bio = bio_list_get(&plug->pending);
673ca68d 1150 flush_bio_list(conf, bio);
f54a9d0e
N
1151 kfree(plug);
1152}
1153
689389a0
N
1154static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1155{
1156 r1_bio->master_bio = bio;
1157 r1_bio->sectors = bio_sectors(bio);
1158 r1_bio->state = 0;
1159 r1_bio->mddev = mddev;
1160 r1_bio->sector = bio->bi_iter.bi_sector;
1161}
1162
fd76863e 1163static inline struct r1bio *
689389a0 1164alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1165{
1166 struct r1conf *conf = mddev->private;
1167 struct r1bio *r1_bio;
1168
1169 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
689389a0
N
1170 /* Ensure no bio records IO_BLOCKED */
1171 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1172 init_r1bio(r1_bio, mddev, bio);
fd76863e 1173 return r1_bio;
1174}
1175
c230e7e5 1176static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1177 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1178{
e8096360 1179 struct r1conf *conf = mddev->private;
0eaf822c 1180 struct raid1_info *mirror;
1da177e4 1181 struct bio *read_bio;
3b046a97
RL
1182 struct bitmap *bitmap = mddev->bitmap;
1183 const int op = bio_op(bio);
1184 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1185 int max_sectors;
1186 int rdisk;
689389a0
N
1187 bool print_msg = !!r1_bio;
1188 char b[BDEVNAME_SIZE];
3b046a97 1189
fd76863e 1190 /*
689389a0
N
1191 * If r1_bio is set, we are blocking the raid1d thread
1192 * so there is a tiny risk of deadlock. So ask for
1193 * emergency memory if needed.
fd76863e 1194 */
689389a0 1195 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1196
689389a0
N
1197 if (print_msg) {
1198 /* Need to get the block device name carefully */
1199 struct md_rdev *rdev;
1200 rcu_read_lock();
1201 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1202 if (rdev)
1203 bdevname(rdev->bdev, b);
1204 else
1205 strcpy(b, "???");
1206 rcu_read_unlock();
1207 }
3b046a97 1208
fd76863e 1209 /*
fd76863e 1210 * Still need barrier for READ in case that whole
1211 * array is frozen.
fd76863e 1212 */
fd76863e 1213 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1214
689389a0
N
1215 if (!r1_bio)
1216 r1_bio = alloc_r1bio(mddev, bio);
1217 else
1218 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1219 r1_bio->sectors = max_read_sectors;
fd76863e 1220
1221 /*
1222 * make_request() can abort the operation when read-ahead is being
1223 * used and no empty request is available.
1224 */
3b046a97
RL
1225 rdisk = read_balance(conf, r1_bio, &max_sectors);
1226
1227 if (rdisk < 0) {
1228 /* couldn't find anywhere to read from */
689389a0
N
1229 if (print_msg) {
1230 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1231 mdname(mddev),
1232 b,
1233 (unsigned long long)r1_bio->sector);
1234 }
3b046a97
RL
1235 raid_end_bio_io(r1_bio);
1236 return;
1237 }
1238 mirror = conf->mirrors + rdisk;
1239
689389a0
N
1240 if (print_msg)
1241 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1242 mdname(mddev),
1243 (unsigned long long)r1_bio->sector,
1244 bdevname(mirror->rdev->bdev, b));
1245
3b046a97
RL
1246 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1247 bitmap) {
1248 /*
1249 * Reading from a write-mostly device must take care not to
1250 * over-take any writes that are 'behind'
1251 */
1252 raid1_log(mddev, "wait behind writes");
1253 wait_event(bitmap->behind_wait,
1254 atomic_read(&bitmap->behind_writes) == 0);
1255 }
c230e7e5
N
1256
1257 if (max_sectors < bio_sectors(bio)) {
1258 struct bio *split = bio_split(bio, max_sectors,
689389a0 1259 gfp, conf->bio_split);
c230e7e5
N
1260 bio_chain(split, bio);
1261 generic_make_request(bio);
1262 bio = split;
1263 r1_bio->master_bio = bio;
1264 r1_bio->sectors = max_sectors;
1265 }
1266
3b046a97 1267 r1_bio->read_disk = rdisk;
3b046a97 1268
689389a0 1269 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
3b046a97
RL
1270
1271 r1_bio->bios[rdisk] = read_bio;
1272
1273 read_bio->bi_iter.bi_sector = r1_bio->sector +
1274 mirror->rdev->data_offset;
74d46992 1275 bio_set_dev(read_bio, mirror->rdev->bdev);
3b046a97
RL
1276 read_bio->bi_end_io = raid1_end_read_request;
1277 bio_set_op_attrs(read_bio, op, do_sync);
1278 if (test_bit(FailFast, &mirror->rdev->flags) &&
1279 test_bit(R1BIO_FailFast, &r1_bio->state))
1280 read_bio->bi_opf |= MD_FAILFAST;
1281 read_bio->bi_private = r1_bio;
1282
1283 if (mddev->gendisk)
74d46992
CH
1284 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1285 disk_devt(mddev->gendisk), r1_bio->sector);
3b046a97 1286
c230e7e5 1287 generic_make_request(read_bio);
3b046a97
RL
1288}
1289
c230e7e5
N
1290static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1291 int max_write_sectors)
3b046a97
RL
1292{
1293 struct r1conf *conf = mddev->private;
fd76863e 1294 struct r1bio *r1_bio;
1f68f0c4 1295 int i, disks;
3b046a97 1296 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1297 unsigned long flags;
3cb03002 1298 struct md_rdev *blocked_rdev;
f54a9d0e
N
1299 struct blk_plug_cb *cb;
1300 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1301 int first_clone;
1f68f0c4 1302 int max_sectors;
191ea9b2 1303
b3143b9a 1304 if (mddev_is_clustered(mddev) &&
90382ed9 1305 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1306 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1307
6eef4b21
N
1308 DEFINE_WAIT(w);
1309 for (;;) {
6eef4b21 1310 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1311 &w, TASK_IDLE);
f81f7302 1312 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1313 bio->bi_iter.bi_sector,
b3143b9a 1314 bio_end_sector(bio)))
6eef4b21
N
1315 break;
1316 schedule();
1317 }
1318 finish_wait(&conf->wait_barrier, &w);
1319 }
f81f7302
GJ
1320
1321 /*
1322 * Register the new request and wait if the reconstruction
1323 * thread has put up a bar for new requests.
1324 * Continue immediately if no resync is active currently.
1325 */
fd76863e 1326 wait_barrier(conf, bio->bi_iter.bi_sector);
1327
689389a0 1328 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1329 r1_bio->sectors = max_write_sectors;
1da177e4 1330
34db0cd6
N
1331 if (conf->pending_count >= max_queued_requests) {
1332 md_wakeup_thread(mddev->thread);
578b54ad 1333 raid1_log(mddev, "wait queued");
34db0cd6
N
1334 wait_event(conf->wait_barrier,
1335 conf->pending_count < max_queued_requests);
1336 }
1f68f0c4 1337 /* first select target devices under rcu_lock and
1da177e4
LT
1338 * inc refcount on their rdev. Record them by setting
1339 * bios[x] to bio
1f68f0c4
N
1340 * If there are known/acknowledged bad blocks on any device on
1341 * which we have seen a write error, we want to avoid writing those
1342 * blocks.
1343 * This potentially requires several writes to write around
1344 * the bad blocks. Each set of writes gets it's own r1bio
1345 * with a set of bios attached.
1da177e4 1346 */
c3b328ac 1347
8f19ccb2 1348 disks = conf->raid_disks * 2;
6bfe0b49
DW
1349 retry_write:
1350 blocked_rdev = NULL;
1da177e4 1351 rcu_read_lock();
1f68f0c4 1352 max_sectors = r1_bio->sectors;
1da177e4 1353 for (i = 0; i < disks; i++) {
3cb03002 1354 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1355 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1356 atomic_inc(&rdev->nr_pending);
1357 blocked_rdev = rdev;
1358 break;
1359 }
1f68f0c4 1360 r1_bio->bios[i] = NULL;
8ae12666 1361 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1362 if (i < conf->raid_disks)
1363 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1364 continue;
1365 }
1366
1367 atomic_inc(&rdev->nr_pending);
1368 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1369 sector_t first_bad;
1370 int bad_sectors;
1371 int is_bad;
1372
3b046a97 1373 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1374 &first_bad, &bad_sectors);
1375 if (is_bad < 0) {
1376 /* mustn't write here until the bad block is
1377 * acknowledged*/
1378 set_bit(BlockedBadBlocks, &rdev->flags);
1379 blocked_rdev = rdev;
1380 break;
1381 }
1382 if (is_bad && first_bad <= r1_bio->sector) {
1383 /* Cannot write here at all */
1384 bad_sectors -= (r1_bio->sector - first_bad);
1385 if (bad_sectors < max_sectors)
1386 /* mustn't write more than bad_sectors
1387 * to other devices yet
1388 */
1389 max_sectors = bad_sectors;
03c902e1 1390 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1391 /* We don't set R1BIO_Degraded as that
1392 * only applies if the disk is
1393 * missing, so it might be re-added,
1394 * and we want to know to recover this
1395 * chunk.
1396 * In this case the device is here,
1397 * and the fact that this chunk is not
1398 * in-sync is recorded in the bad
1399 * block log
1400 */
1401 continue;
964147d5 1402 }
1f68f0c4
N
1403 if (is_bad) {
1404 int good_sectors = first_bad - r1_bio->sector;
1405 if (good_sectors < max_sectors)
1406 max_sectors = good_sectors;
1407 }
1408 }
1409 r1_bio->bios[i] = bio;
1da177e4
LT
1410 }
1411 rcu_read_unlock();
1412
6bfe0b49
DW
1413 if (unlikely(blocked_rdev)) {
1414 /* Wait for this device to become unblocked */
1415 int j;
1416
1417 for (j = 0; j < i; j++)
1418 if (r1_bio->bios[j])
1419 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1420 r1_bio->state = 0;
fd76863e 1421 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1422 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1423 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1424 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1425 goto retry_write;
1426 }
1427
c230e7e5
N
1428 if (max_sectors < bio_sectors(bio)) {
1429 struct bio *split = bio_split(bio, max_sectors,
1430 GFP_NOIO, conf->bio_split);
1431 bio_chain(split, bio);
1432 generic_make_request(bio);
1433 bio = split;
1434 r1_bio->master_bio = bio;
1f68f0c4 1435 r1_bio->sectors = max_sectors;
191ea9b2 1436 }
4b6d287f 1437
4e78064f 1438 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1439 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1440
1f68f0c4 1441 first_clone = 1;
d8c84c4f 1442
1da177e4 1443 for (i = 0; i < disks; i++) {
8e58e327 1444 struct bio *mbio = NULL;
1da177e4
LT
1445 if (!r1_bio->bios[i])
1446 continue;
1447
1f68f0c4
N
1448
1449 if (first_clone) {
1450 /* do behind I/O ?
1451 * Not if there are too many, or cannot
1452 * allocate memory, or a reader on WriteMostly
1453 * is waiting for behind writes to flush */
1454 if (bitmap &&
1455 (atomic_read(&bitmap->behind_writes)
1456 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1457 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1458 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1459 }
1f68f0c4
N
1460
1461 bitmap_startwrite(bitmap, r1_bio->sector,
1462 r1_bio->sectors,
1463 test_bit(R1BIO_BehindIO,
1464 &r1_bio->state));
1465 first_clone = 0;
1466 }
8e58e327 1467
16d56e2f
SL
1468 if (r1_bio->behind_master_bio)
1469 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1470 GFP_NOIO, mddev->bio_set);
1471 else
1472 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
8e58e327 1473
841c1316 1474 if (r1_bio->behind_master_bio) {
4b6d287f
N
1475 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1476 atomic_inc(&r1_bio->behind_remaining);
1477 }
1478
1f68f0c4
N
1479 r1_bio->bios[i] = mbio;
1480
4f024f37 1481 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1482 conf->mirrors[i].rdev->data_offset);
74d46992 1483 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1f68f0c4 1484 mbio->bi_end_io = raid1_end_write_request;
a682e003 1485 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1486 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1487 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1488 conf->raid_disks - mddev->degraded > 1)
1489 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1490 mbio->bi_private = r1_bio;
1491
1da177e4 1492 atomic_inc(&r1_bio->remaining);
f54a9d0e 1493
109e3765 1494 if (mddev->gendisk)
74d46992 1495 trace_block_bio_remap(mbio->bi_disk->queue,
109e3765
N
1496 mbio, disk_devt(mddev->gendisk),
1497 r1_bio->sector);
1498 /* flush_pending_writes() needs access to the rdev so...*/
74d46992 1499 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
109e3765 1500
f54a9d0e
N
1501 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1502 if (cb)
1503 plug = container_of(cb, struct raid1_plug_cb, cb);
1504 else
1505 plug = NULL;
f54a9d0e
N
1506 if (plug) {
1507 bio_list_add(&plug->pending, mbio);
1508 plug->pending_cnt++;
1509 } else {
23b245c0 1510 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1511 bio_list_add(&conf->pending_bio_list, mbio);
1512 conf->pending_count++;
23b245c0 1513 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1514 md_wakeup_thread(mddev->thread);
23b245c0 1515 }
1da177e4 1516 }
1f68f0c4 1517
079fa166
N
1518 r1_bio_write_done(r1_bio);
1519
1520 /* In case raid1d snuck in to freeze_array */
1521 wake_up(&conf->wait_barrier);
1da177e4
LT
1522}
1523
cc27b0c7 1524static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1525{
fd76863e 1526 sector_t sectors;
3b046a97 1527
aff8da09
SL
1528 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1529 md_flush_request(mddev, bio);
cc27b0c7 1530 return true;
aff8da09 1531 }
3b046a97 1532
c230e7e5
N
1533 /*
1534 * There is a limit to the maximum size, but
1535 * the read/write handler might find a lower limit
1536 * due to bad blocks. To avoid multiple splits,
1537 * we pass the maximum number of sectors down
1538 * and let the lower level perform the split.
1539 */
1540 sectors = align_to_barrier_unit_end(
1541 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1542
c230e7e5 1543 if (bio_data_dir(bio) == READ)
689389a0 1544 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1545 else {
1546 if (!md_write_start(mddev,bio))
1547 return false;
c230e7e5 1548 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1549 }
1550 return true;
3b046a97
RL
1551}
1552
849674e4 1553static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1554{
e8096360 1555 struct r1conf *conf = mddev->private;
1da177e4
LT
1556 int i;
1557
1558 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1559 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1560 rcu_read_lock();
1561 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1562 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1563 seq_printf(seq, "%s",
ddac7c7e
N
1564 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1565 }
1566 rcu_read_unlock();
1da177e4
LT
1567 seq_printf(seq, "]");
1568}
1569
849674e4 1570static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1571{
1572 char b[BDEVNAME_SIZE];
e8096360 1573 struct r1conf *conf = mddev->private;
423f04d6 1574 unsigned long flags;
1da177e4
LT
1575
1576 /*
1577 * If it is not operational, then we have already marked it as dead
1578 * else if it is the last working disks, ignore the error, let the
1579 * next level up know.
1580 * else mark the drive as failed
1581 */
2e52d449 1582 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1583 if (test_bit(In_sync, &rdev->flags)
4044ba58 1584 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1585 /*
1586 * Don't fail the drive, act as though we were just a
4044ba58
N
1587 * normal single drive.
1588 * However don't try a recovery from this drive as
1589 * it is very likely to fail.
1da177e4 1590 */
5389042f 1591 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1592 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1593 return;
4044ba58 1594 }
de393cde 1595 set_bit(Blocked, &rdev->flags);
c04be0aa 1596 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1597 mddev->degraded++;
dd00a99e 1598 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1599 } else
1600 set_bit(Faulty, &rdev->flags);
423f04d6 1601 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1602 /*
1603 * if recovery is running, make sure it aborts.
1604 */
1605 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1606 set_mask_bits(&mddev->sb_flags, 0,
1607 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1608 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1609 "md/raid1:%s: Operation continuing on %d devices.\n",
1610 mdname(mddev), bdevname(rdev->bdev, b),
1611 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1612}
1613
e8096360 1614static void print_conf(struct r1conf *conf)
1da177e4
LT
1615{
1616 int i;
1da177e4 1617
1d41c216 1618 pr_debug("RAID1 conf printout:\n");
1da177e4 1619 if (!conf) {
1d41c216 1620 pr_debug("(!conf)\n");
1da177e4
LT
1621 return;
1622 }
1d41c216
N
1623 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1624 conf->raid_disks);
1da177e4 1625
ddac7c7e 1626 rcu_read_lock();
1da177e4
LT
1627 for (i = 0; i < conf->raid_disks; i++) {
1628 char b[BDEVNAME_SIZE];
3cb03002 1629 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1630 if (rdev)
1d41c216
N
1631 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1632 i, !test_bit(In_sync, &rdev->flags),
1633 !test_bit(Faulty, &rdev->flags),
1634 bdevname(rdev->bdev,b));
1da177e4 1635 }
ddac7c7e 1636 rcu_read_unlock();
1da177e4
LT
1637}
1638
e8096360 1639static void close_sync(struct r1conf *conf)
1da177e4 1640{
f6eca2d4
ND
1641 int idx;
1642
1643 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1644 _wait_barrier(conf, idx);
1645 _allow_barrier(conf, idx);
1646 }
1da177e4
LT
1647
1648 mempool_destroy(conf->r1buf_pool);
1649 conf->r1buf_pool = NULL;
1650}
1651
fd01b88c 1652static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1653{
1654 int i;
e8096360 1655 struct r1conf *conf = mddev->private;
6b965620
N
1656 int count = 0;
1657 unsigned long flags;
1da177e4
LT
1658
1659 /*
f72ffdd6 1660 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1661 * and mark them readable.
1662 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1663 * device_lock used to avoid races with raid1_end_read_request
1664 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1665 */
423f04d6 1666 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1667 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1668 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1669 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1670 if (repl
1aee41f6 1671 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1672 && repl->recovery_offset == MaxSector
1673 && !test_bit(Faulty, &repl->flags)
1674 && !test_and_set_bit(In_sync, &repl->flags)) {
1675 /* replacement has just become active */
1676 if (!rdev ||
1677 !test_and_clear_bit(In_sync, &rdev->flags))
1678 count++;
1679 if (rdev) {
1680 /* Replaced device not technically
1681 * faulty, but we need to be sure
1682 * it gets removed and never re-added
1683 */
1684 set_bit(Faulty, &rdev->flags);
1685 sysfs_notify_dirent_safe(
1686 rdev->sysfs_state);
1687 }
1688 }
ddac7c7e 1689 if (rdev
61e4947c 1690 && rdev->recovery_offset == MaxSector
ddac7c7e 1691 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1692 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1693 count++;
654e8b5a 1694 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1695 }
1696 }
6b965620
N
1697 mddev->degraded -= count;
1698 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1699
1700 print_conf(conf);
6b965620 1701 return count;
1da177e4
LT
1702}
1703
fd01b88c 1704static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1705{
e8096360 1706 struct r1conf *conf = mddev->private;
199050ea 1707 int err = -EEXIST;
41158c7e 1708 int mirror = 0;
0eaf822c 1709 struct raid1_info *p;
6c2fce2e 1710 int first = 0;
30194636 1711 int last = conf->raid_disks - 1;
1da177e4 1712
5389042f
N
1713 if (mddev->recovery_disabled == conf->recovery_disabled)
1714 return -EBUSY;
1715
1501efad
DW
1716 if (md_integrity_add_rdev(rdev, mddev))
1717 return -ENXIO;
1718
6c2fce2e
NB
1719 if (rdev->raid_disk >= 0)
1720 first = last = rdev->raid_disk;
1721
70bcecdb
GR
1722 /*
1723 * find the disk ... but prefer rdev->saved_raid_disk
1724 * if possible.
1725 */
1726 if (rdev->saved_raid_disk >= 0 &&
1727 rdev->saved_raid_disk >= first &&
1728 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1729 first = last = rdev->saved_raid_disk;
1730
7ef449d1
N
1731 for (mirror = first; mirror <= last; mirror++) {
1732 p = conf->mirrors+mirror;
1733 if (!p->rdev) {
1da177e4 1734
9092c02d
JB
1735 if (mddev->gendisk)
1736 disk_stack_limits(mddev->gendisk, rdev->bdev,
1737 rdev->data_offset << 9);
1da177e4
LT
1738
1739 p->head_position = 0;
1740 rdev->raid_disk = mirror;
199050ea 1741 err = 0;
6aea114a
N
1742 /* As all devices are equivalent, we don't need a full recovery
1743 * if this was recently any drive of the array
1744 */
1745 if (rdev->saved_raid_disk < 0)
41158c7e 1746 conf->fullsync = 1;
d6065f7b 1747 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1748 break;
1749 }
7ef449d1
N
1750 if (test_bit(WantReplacement, &p->rdev->flags) &&
1751 p[conf->raid_disks].rdev == NULL) {
1752 /* Add this device as a replacement */
1753 clear_bit(In_sync, &rdev->flags);
1754 set_bit(Replacement, &rdev->flags);
1755 rdev->raid_disk = mirror;
1756 err = 0;
1757 conf->fullsync = 1;
1758 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1759 break;
1760 }
1761 }
9092c02d 1762 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1763 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1764 print_conf(conf);
199050ea 1765 return err;
1da177e4
LT
1766}
1767
b8321b68 1768static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1769{
e8096360 1770 struct r1conf *conf = mddev->private;
1da177e4 1771 int err = 0;
b8321b68 1772 int number = rdev->raid_disk;
0eaf822c 1773 struct raid1_info *p = conf->mirrors + number;
1da177e4 1774
b014f14c
N
1775 if (rdev != p->rdev)
1776 p = conf->mirrors + conf->raid_disks + number;
1777
1da177e4 1778 print_conf(conf);
b8321b68 1779 if (rdev == p->rdev) {
b2d444d7 1780 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1781 atomic_read(&rdev->nr_pending)) {
1782 err = -EBUSY;
1783 goto abort;
1784 }
046abeed 1785 /* Only remove non-faulty devices if recovery
dfc70645
N
1786 * is not possible.
1787 */
1788 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1789 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1790 mddev->degraded < conf->raid_disks) {
1791 err = -EBUSY;
1792 goto abort;
1793 }
1da177e4 1794 p->rdev = NULL;
d787be40
N
1795 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1796 synchronize_rcu();
1797 if (atomic_read(&rdev->nr_pending)) {
1798 /* lost the race, try later */
1799 err = -EBUSY;
1800 p->rdev = rdev;
1801 goto abort;
1802 }
1803 }
1804 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1805 /* We just removed a device that is being replaced.
1806 * Move down the replacement. We drain all IO before
1807 * doing this to avoid confusion.
1808 */
1809 struct md_rdev *repl =
1810 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1811 freeze_array(conf, 0);
3de59bb9
YY
1812 if (atomic_read(&repl->nr_pending)) {
1813 /* It means that some queued IO of retry_list
1814 * hold repl. Thus, we cannot set replacement
1815 * as NULL, avoiding rdev NULL pointer
1816 * dereference in sync_request_write and
1817 * handle_write_finished.
1818 */
1819 err = -EBUSY;
1820 unfreeze_array(conf);
1821 goto abort;
1822 }
8c7a2c2b
N
1823 clear_bit(Replacement, &repl->flags);
1824 p->rdev = repl;
1825 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1826 unfreeze_array(conf);
e5bc9c3c
GJ
1827 }
1828
1829 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1830 err = md_integrity_register(mddev);
1da177e4
LT
1831 }
1832abort:
1833
1834 print_conf(conf);
1835 return err;
1836}
1837
4246a0b6 1838static void end_sync_read(struct bio *bio)
1da177e4 1839{
98d30c58 1840 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1841
0fc280f6 1842 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1843
1da177e4
LT
1844 /*
1845 * we have read a block, now it needs to be re-written,
1846 * or re-read if the read failed.
1847 * We don't do much here, just schedule handling by raid1d
1848 */
4e4cbee9 1849 if (!bio->bi_status)
1da177e4 1850 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1851
1852 if (atomic_dec_and_test(&r1_bio->remaining))
1853 reschedule_retry(r1_bio);
1da177e4
LT
1854}
1855
4246a0b6 1856static void end_sync_write(struct bio *bio)
1da177e4 1857{
4e4cbee9 1858 int uptodate = !bio->bi_status;
98d30c58 1859 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1860 struct mddev *mddev = r1_bio->mddev;
e8096360 1861 struct r1conf *conf = mddev->private;
4367af55
N
1862 sector_t first_bad;
1863 int bad_sectors;
854abd75 1864 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1865
6b1117d5 1866 if (!uptodate) {
57dab0bd 1867 sector_t sync_blocks = 0;
6b1117d5
N
1868 sector_t s = r1_bio->sector;
1869 long sectors_to_go = r1_bio->sectors;
1870 /* make sure these bits doesn't get cleared. */
1871 do {
5e3db645 1872 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1873 &sync_blocks, 1);
1874 s += sync_blocks;
1875 sectors_to_go -= sync_blocks;
1876 } while (sectors_to_go > 0);
854abd75
N
1877 set_bit(WriteErrorSeen, &rdev->flags);
1878 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1879 set_bit(MD_RECOVERY_NEEDED, &
1880 mddev->recovery);
d8f05d29 1881 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1882 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1883 &first_bad, &bad_sectors) &&
1884 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1885 r1_bio->sector,
1886 r1_bio->sectors,
1887 &first_bad, &bad_sectors)
1888 )
4367af55 1889 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1890
1da177e4 1891 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1892 int s = r1_bio->sectors;
d8f05d29
N
1893 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1894 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1895 reschedule_retry(r1_bio);
1896 else {
1897 put_buf(r1_bio);
1898 md_done_sync(mddev, s, uptodate);
1899 }
1da177e4 1900 }
1da177e4
LT
1901}
1902
3cb03002 1903static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1904 int sectors, struct page *page, int rw)
1905{
796a5cf0 1906 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1907 /* success */
1908 return 1;
19d67169 1909 if (rw == WRITE) {
d8f05d29 1910 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1911 if (!test_and_set_bit(WantReplacement,
1912 &rdev->flags))
1913 set_bit(MD_RECOVERY_NEEDED, &
1914 rdev->mddev->recovery);
1915 }
d8f05d29
N
1916 /* need to record an error - either for the block or the device */
1917 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1918 md_error(rdev->mddev, rdev);
1919 return 0;
1920}
1921
9f2c9d12 1922static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1923{
a68e5870
N
1924 /* Try some synchronous reads of other devices to get
1925 * good data, much like with normal read errors. Only
1926 * read into the pages we already have so we don't
1927 * need to re-issue the read request.
1928 * We don't need to freeze the array, because being in an
1929 * active sync request, there is no normal IO, and
1930 * no overlapping syncs.
06f60385
N
1931 * We don't need to check is_badblock() again as we
1932 * made sure that anything with a bad block in range
1933 * will have bi_end_io clear.
a68e5870 1934 */
fd01b88c 1935 struct mddev *mddev = r1_bio->mddev;
e8096360 1936 struct r1conf *conf = mddev->private;
a68e5870 1937 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 1938 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
1939 sector_t sect = r1_bio->sector;
1940 int sectors = r1_bio->sectors;
1941 int idx = 0;
2e52d449
N
1942 struct md_rdev *rdev;
1943
1944 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1945 if (test_bit(FailFast, &rdev->flags)) {
1946 /* Don't try recovering from here - just fail it
1947 * ... unless it is the last working device of course */
1948 md_error(mddev, rdev);
1949 if (test_bit(Faulty, &rdev->flags))
1950 /* Don't try to read from here, but make sure
1951 * put_buf does it's thing
1952 */
1953 bio->bi_end_io = end_sync_write;
1954 }
a68e5870
N
1955
1956 while(sectors) {
1957 int s = sectors;
1958 int d = r1_bio->read_disk;
1959 int success = 0;
78d7f5f7 1960 int start;
a68e5870
N
1961
1962 if (s > (PAGE_SIZE>>9))
1963 s = PAGE_SIZE >> 9;
1964 do {
1965 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1966 /* No rcu protection needed here devices
1967 * can only be removed when no resync is
1968 * active, and resync is currently active
1969 */
1970 rdev = conf->mirrors[d].rdev;
9d3d8011 1971 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 1972 pages[idx],
796a5cf0 1973 REQ_OP_READ, 0, false)) {
a68e5870
N
1974 success = 1;
1975 break;
1976 }
1977 }
1978 d++;
8f19ccb2 1979 if (d == conf->raid_disks * 2)
a68e5870
N
1980 d = 0;
1981 } while (!success && d != r1_bio->read_disk);
1982
78d7f5f7 1983 if (!success) {
a68e5870 1984 char b[BDEVNAME_SIZE];
3a9f28a5
N
1985 int abort = 0;
1986 /* Cannot read from anywhere, this block is lost.
1987 * Record a bad block on each device. If that doesn't
1988 * work just disable and interrupt the recovery.
1989 * Don't fail devices as that won't really help.
1990 */
1d41c216 1991 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
74d46992 1992 mdname(mddev), bio_devname(bio, b),
1d41c216 1993 (unsigned long long)r1_bio->sector);
8f19ccb2 1994 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1995 rdev = conf->mirrors[d].rdev;
1996 if (!rdev || test_bit(Faulty, &rdev->flags))
1997 continue;
1998 if (!rdev_set_badblocks(rdev, sect, s, 0))
1999 abort = 1;
2000 }
2001 if (abort) {
d890fa2b
N
2002 conf->recovery_disabled =
2003 mddev->recovery_disabled;
3a9f28a5
N
2004 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2005 md_done_sync(mddev, r1_bio->sectors, 0);
2006 put_buf(r1_bio);
2007 return 0;
2008 }
2009 /* Try next page */
2010 sectors -= s;
2011 sect += s;
2012 idx++;
2013 continue;
d11c171e 2014 }
78d7f5f7
N
2015
2016 start = d;
2017 /* write it back and re-read */
2018 while (d != r1_bio->read_disk) {
2019 if (d == 0)
8f19ccb2 2020 d = conf->raid_disks * 2;
78d7f5f7
N
2021 d--;
2022 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2023 continue;
2024 rdev = conf->mirrors[d].rdev;
d8f05d29 2025 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2026 pages[idx],
d8f05d29 2027 WRITE) == 0) {
78d7f5f7
N
2028 r1_bio->bios[d]->bi_end_io = NULL;
2029 rdev_dec_pending(rdev, mddev);
9d3d8011 2030 }
78d7f5f7
N
2031 }
2032 d = start;
2033 while (d != r1_bio->read_disk) {
2034 if (d == 0)
8f19ccb2 2035 d = conf->raid_disks * 2;
78d7f5f7
N
2036 d--;
2037 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2038 continue;
2039 rdev = conf->mirrors[d].rdev;
d8f05d29 2040 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2041 pages[idx],
d8f05d29 2042 READ) != 0)
9d3d8011 2043 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2044 }
a68e5870
N
2045 sectors -= s;
2046 sect += s;
2047 idx ++;
2048 }
78d7f5f7 2049 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2050 bio->bi_status = 0;
a68e5870
N
2051 return 1;
2052}
2053
c95e6385 2054static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2055{
2056 /* We have read all readable devices. If we haven't
2057 * got the block, then there is no hope left.
2058 * If we have, then we want to do a comparison
2059 * and skip the write if everything is the same.
2060 * If any blocks failed to read, then we need to
2061 * attempt an over-write
2062 */
fd01b88c 2063 struct mddev *mddev = r1_bio->mddev;
e8096360 2064 struct r1conf *conf = mddev->private;
a68e5870
N
2065 int primary;
2066 int i;
f4380a91 2067 int vcnt;
a68e5870 2068
30bc9b53
N
2069 /* Fix variable parts of all bios */
2070 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2071 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2072 blk_status_t status;
30bc9b53 2073 struct bio *b = r1_bio->bios[i];
98d30c58 2074 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2075 if (b->bi_end_io != end_sync_read)
2076 continue;
4246a0b6 2077 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2078 status = b->bi_status;
30bc9b53 2079 bio_reset(b);
4e4cbee9 2080 b->bi_status = status;
4f024f37 2081 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2082 conf->mirrors[i].rdev->data_offset;
74d46992 2083 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
30bc9b53 2084 b->bi_end_io = end_sync_read;
98d30c58
ML
2085 rp->raid_bio = r1_bio;
2086 b->bi_private = rp;
30bc9b53 2087
fb0eb5df
ML
2088 /* initialize bvec table again */
2089 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2090 }
8f19ccb2 2091 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2092 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2093 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2094 r1_bio->bios[primary]->bi_end_io = NULL;
2095 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2096 break;
2097 }
2098 r1_bio->read_disk = primary;
8f19ccb2 2099 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2100 int j;
78d7f5f7
N
2101 struct bio *pbio = r1_bio->bios[primary];
2102 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2103 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2104 struct page **ppages = get_resync_pages(pbio)->pages;
2105 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2106 struct bio_vec *bi;
8fc04e6e 2107 int page_len[RESYNC_PAGES] = { 0 };
a68e5870 2108
2aabaa65 2109 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2110 continue;
4246a0b6 2111 /* Now we can 'fixup' the error value */
4e4cbee9 2112 sbio->bi_status = 0;
78d7f5f7 2113
60928a91
ML
2114 bio_for_each_segment_all(bi, sbio, j)
2115 page_len[j] = bi->bv_len;
2116
4e4cbee9 2117 if (!status) {
78d7f5f7 2118 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2119 if (memcmp(page_address(ppages[j]),
2120 page_address(spages[j]),
60928a91 2121 page_len[j]))
78d7f5f7 2122 break;
69382e85 2123 }
78d7f5f7
N
2124 } else
2125 j = 0;
2126 if (j >= 0)
7f7583d4 2127 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2128 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2129 && !status)) {
78d7f5f7
N
2130 /* No need to write to this device. */
2131 sbio->bi_end_io = NULL;
2132 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2133 continue;
2134 }
d3b45c2a
KO
2135
2136 bio_copy_data(sbio, pbio);
78d7f5f7 2137 }
a68e5870
N
2138}
2139
9f2c9d12 2140static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2141{
e8096360 2142 struct r1conf *conf = mddev->private;
a68e5870 2143 int i;
8f19ccb2 2144 int disks = conf->raid_disks * 2;
037d2ff6 2145 struct bio *wbio;
a68e5870 2146
a68e5870
N
2147 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2148 /* ouch - failed to read all of that. */
2149 if (!fix_sync_read_error(r1_bio))
2150 return;
7ca78d57
N
2151
2152 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2153 process_checks(r1_bio);
2154
d11c171e
N
2155 /*
2156 * schedule writes
2157 */
1da177e4
LT
2158 atomic_set(&r1_bio->remaining, 1);
2159 for (i = 0; i < disks ; i++) {
2160 wbio = r1_bio->bios[i];
3e198f78
N
2161 if (wbio->bi_end_io == NULL ||
2162 (wbio->bi_end_io == end_sync_read &&
2163 (i == r1_bio->read_disk ||
2164 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2165 continue;
0c9d5b12
N
2166 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2167 continue;
1da177e4 2168
796a5cf0 2169 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2170 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2171 wbio->bi_opf |= MD_FAILFAST;
2172
3e198f78 2173 wbio->bi_end_io = end_sync_write;
1da177e4 2174 atomic_inc(&r1_bio->remaining);
aa8b57aa 2175 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2176
1da177e4
LT
2177 generic_make_request(wbio);
2178 }
2179
2180 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2181 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2182 int s = r1_bio->sectors;
2183 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2184 test_bit(R1BIO_WriteError, &r1_bio->state))
2185 reschedule_retry(r1_bio);
2186 else {
2187 put_buf(r1_bio);
2188 md_done_sync(mddev, s, 1);
2189 }
1da177e4
LT
2190 }
2191}
2192
2193/*
2194 * This is a kernel thread which:
2195 *
2196 * 1. Retries failed read operations on working mirrors.
2197 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2198 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2199 */
2200
e8096360 2201static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2202 sector_t sect, int sectors)
2203{
fd01b88c 2204 struct mddev *mddev = conf->mddev;
867868fb
N
2205 while(sectors) {
2206 int s = sectors;
2207 int d = read_disk;
2208 int success = 0;
2209 int start;
3cb03002 2210 struct md_rdev *rdev;
867868fb
N
2211
2212 if (s > (PAGE_SIZE>>9))
2213 s = PAGE_SIZE >> 9;
2214
2215 do {
d2eb35ac
N
2216 sector_t first_bad;
2217 int bad_sectors;
2218
707a6a42
N
2219 rcu_read_lock();
2220 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2221 if (rdev &&
da8840a7 2222 (test_bit(In_sync, &rdev->flags) ||
2223 (!test_bit(Faulty, &rdev->flags) &&
2224 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2225 is_badblock(rdev, sect, s,
707a6a42
N
2226 &first_bad, &bad_sectors) == 0) {
2227 atomic_inc(&rdev->nr_pending);
2228 rcu_read_unlock();
2229 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2230 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2231 success = 1;
2232 rdev_dec_pending(rdev, mddev);
2233 if (success)
2234 break;
2235 } else
2236 rcu_read_unlock();
2237 d++;
2238 if (d == conf->raid_disks * 2)
2239 d = 0;
867868fb
N
2240 } while (!success && d != read_disk);
2241
2242 if (!success) {
d8f05d29 2243 /* Cannot read from anywhere - mark it bad */
3cb03002 2244 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2245 if (!rdev_set_badblocks(rdev, sect, s, 0))
2246 md_error(mddev, rdev);
867868fb
N
2247 break;
2248 }
2249 /* write it back and re-read */
2250 start = d;
2251 while (d != read_disk) {
2252 if (d==0)
8f19ccb2 2253 d = conf->raid_disks * 2;
867868fb 2254 d--;
707a6a42
N
2255 rcu_read_lock();
2256 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2257 if (rdev &&
707a6a42
N
2258 !test_bit(Faulty, &rdev->flags)) {
2259 atomic_inc(&rdev->nr_pending);
2260 rcu_read_unlock();
d8f05d29
N
2261 r1_sync_page_io(rdev, sect, s,
2262 conf->tmppage, WRITE);
707a6a42
N
2263 rdev_dec_pending(rdev, mddev);
2264 } else
2265 rcu_read_unlock();
867868fb
N
2266 }
2267 d = start;
2268 while (d != read_disk) {
2269 char b[BDEVNAME_SIZE];
2270 if (d==0)
8f19ccb2 2271 d = conf->raid_disks * 2;
867868fb 2272 d--;
707a6a42
N
2273 rcu_read_lock();
2274 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2275 if (rdev &&
b8cb6b4c 2276 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2277 atomic_inc(&rdev->nr_pending);
2278 rcu_read_unlock();
d8f05d29
N
2279 if (r1_sync_page_io(rdev, sect, s,
2280 conf->tmppage, READ)) {
867868fb 2281 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2282 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2283 mdname(mddev), s,
2284 (unsigned long long)(sect +
2285 rdev->data_offset),
2286 bdevname(rdev->bdev, b));
867868fb 2287 }
707a6a42
N
2288 rdev_dec_pending(rdev, mddev);
2289 } else
2290 rcu_read_unlock();
867868fb
N
2291 }
2292 sectors -= s;
2293 sect += s;
2294 }
2295}
2296
9f2c9d12 2297static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2298{
fd01b88c 2299 struct mddev *mddev = r1_bio->mddev;
e8096360 2300 struct r1conf *conf = mddev->private;
3cb03002 2301 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2302
2303 /* bio has the data to be written to device 'i' where
2304 * we just recently had a write error.
2305 * We repeatedly clone the bio and trim down to one block,
2306 * then try the write. Where the write fails we record
2307 * a bad block.
2308 * It is conceivable that the bio doesn't exactly align with
2309 * blocks. We must handle this somehow.
2310 *
2311 * We currently own a reference on the rdev.
2312 */
2313
2314 int block_sectors;
2315 sector_t sector;
2316 int sectors;
2317 int sect_to_write = r1_bio->sectors;
2318 int ok = 1;
2319
2320 if (rdev->badblocks.shift < 0)
2321 return 0;
2322
ab713cdc
ND
2323 block_sectors = roundup(1 << rdev->badblocks.shift,
2324 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2325 sector = r1_bio->sector;
2326 sectors = ((sector + block_sectors)
2327 & ~(sector_t)(block_sectors - 1))
2328 - sector;
2329
cd5ff9a1
N
2330 while (sect_to_write) {
2331 struct bio *wbio;
2332 if (sectors > sect_to_write)
2333 sectors = sect_to_write;
2334 /* Write at 'sector' for 'sectors'*/
2335
b783863f 2336 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2337 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2338 GFP_NOIO,
2339 mddev->bio_set);
b783863f 2340 } else {
d7a10308
ML
2341 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2342 mddev->bio_set);
b783863f
KO
2343 }
2344
796a5cf0 2345 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2346 wbio->bi_iter.bi_sector = r1_bio->sector;
2347 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2348
6678d83f 2349 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2350 wbio->bi_iter.bi_sector += rdev->data_offset;
74d46992 2351 bio_set_dev(wbio, rdev->bdev);
4e49ea4a
MC
2352
2353 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2354 /* failure! */
2355 ok = rdev_set_badblocks(rdev, sector,
2356 sectors, 0)
2357 && ok;
2358
2359 bio_put(wbio);
2360 sect_to_write -= sectors;
2361 sector += sectors;
2362 sectors = block_sectors;
2363 }
2364 return ok;
2365}
2366
e8096360 2367static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2368{
2369 int m;
2370 int s = r1_bio->sectors;
8f19ccb2 2371 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2372 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2373 struct bio *bio = r1_bio->bios[m];
2374 if (bio->bi_end_io == NULL)
2375 continue;
4e4cbee9 2376 if (!bio->bi_status &&
62096bce 2377 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2378 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2379 }
4e4cbee9 2380 if (bio->bi_status &&
62096bce
N
2381 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2382 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2383 md_error(conf->mddev, rdev);
2384 }
2385 }
2386 put_buf(r1_bio);
2387 md_done_sync(conf->mddev, s, 1);
2388}
2389
e8096360 2390static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2391{
fd76863e 2392 int m, idx;
55ce74d4 2393 bool fail = false;
fd76863e 2394
8f19ccb2 2395 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2396 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2397 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2398 rdev_clear_badblocks(rdev,
2399 r1_bio->sector,
c6563a8c 2400 r1_bio->sectors, 0);
62096bce
N
2401 rdev_dec_pending(rdev, conf->mddev);
2402 } else if (r1_bio->bios[m] != NULL) {
2403 /* This drive got a write error. We need to
2404 * narrow down and record precise write
2405 * errors.
2406 */
55ce74d4 2407 fail = true;
62096bce
N
2408 if (!narrow_write_error(r1_bio, m)) {
2409 md_error(conf->mddev,
2410 conf->mirrors[m].rdev);
2411 /* an I/O failed, we can't clear the bitmap */
2412 set_bit(R1BIO_Degraded, &r1_bio->state);
2413 }
2414 rdev_dec_pending(conf->mirrors[m].rdev,
2415 conf->mddev);
2416 }
55ce74d4
N
2417 if (fail) {
2418 spin_lock_irq(&conf->device_lock);
2419 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2420 idx = sector_to_idx(r1_bio->sector);
824e47da 2421 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2422 spin_unlock_irq(&conf->device_lock);
824e47da 2423 /*
2424 * In case freeze_array() is waiting for condition
2425 * get_unqueued_pending() == extra to be true.
2426 */
2427 wake_up(&conf->wait_barrier);
55ce74d4 2428 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2429 } else {
2430 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2431 close_write(r1_bio);
55ce74d4 2432 raid_end_bio_io(r1_bio);
bd8688a1 2433 }
62096bce
N
2434}
2435
e8096360 2436static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2437{
fd01b88c 2438 struct mddev *mddev = conf->mddev;
62096bce 2439 struct bio *bio;
3cb03002 2440 struct md_rdev *rdev;
109e3765 2441 sector_t bio_sector;
62096bce
N
2442
2443 clear_bit(R1BIO_ReadError, &r1_bio->state);
2444 /* we got a read error. Maybe the drive is bad. Maybe just
2445 * the block and we can fix it.
2446 * We freeze all other IO, and try reading the block from
2447 * other devices. When we find one, we re-write
2448 * and check it that fixes the read error.
2449 * This is all done synchronously while the array is
2450 * frozen
2451 */
7449f699
TM
2452
2453 bio = r1_bio->bios[r1_bio->read_disk];
109e3765 2454 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
7449f699
TM
2455 bio_put(bio);
2456 r1_bio->bios[r1_bio->read_disk] = NULL;
2457
2e52d449
N
2458 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2459 if (mddev->ro == 0
2460 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2461 freeze_array(conf, 1);
62096bce
N
2462 fix_read_error(conf, r1_bio->read_disk,
2463 r1_bio->sector, r1_bio->sectors);
2464 unfreeze_array(conf);
7449f699
TM
2465 } else {
2466 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2467 }
2468
2e52d449 2469 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2470 allow_barrier(conf, r1_bio->sector);
2471 bio = r1_bio->master_bio;
62096bce 2472
689389a0
N
2473 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2474 r1_bio->state = 0;
2475 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2476}
2477
4ed8731d 2478static void raid1d(struct md_thread *thread)
1da177e4 2479{
4ed8731d 2480 struct mddev *mddev = thread->mddev;
9f2c9d12 2481 struct r1bio *r1_bio;
1da177e4 2482 unsigned long flags;
e8096360 2483 struct r1conf *conf = mddev->private;
1da177e4 2484 struct list_head *head = &conf->retry_list;
e1dfa0a2 2485 struct blk_plug plug;
fd76863e 2486 int idx;
1da177e4
LT
2487
2488 md_check_recovery(mddev);
e1dfa0a2 2489
55ce74d4 2490 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2491 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2492 LIST_HEAD(tmp);
2493 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2494 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2495 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2496 spin_unlock_irqrestore(&conf->device_lock, flags);
2497 while (!list_empty(&tmp)) {
a452744b
MP
2498 r1_bio = list_first_entry(&tmp, struct r1bio,
2499 retry_list);
55ce74d4 2500 list_del(&r1_bio->retry_list);
fd76863e 2501 idx = sector_to_idx(r1_bio->sector);
824e47da 2502 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2503 if (mddev->degraded)
2504 set_bit(R1BIO_Degraded, &r1_bio->state);
2505 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2506 close_write(r1_bio);
55ce74d4
N
2507 raid_end_bio_io(r1_bio);
2508 }
2509 }
2510
e1dfa0a2 2511 blk_start_plug(&plug);
1da177e4 2512 for (;;) {
191ea9b2 2513
0021b7bc 2514 flush_pending_writes(conf);
191ea9b2 2515
a35e63ef
N
2516 spin_lock_irqsave(&conf->device_lock, flags);
2517 if (list_empty(head)) {
2518 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2519 break;
a35e63ef 2520 }
9f2c9d12 2521 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2522 list_del(head->prev);
fd76863e 2523 idx = sector_to_idx(r1_bio->sector);
824e47da 2524 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2525 spin_unlock_irqrestore(&conf->device_lock, flags);
2526
2527 mddev = r1_bio->mddev;
070ec55d 2528 conf = mddev->private;
4367af55 2529 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2530 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2531 test_bit(R1BIO_WriteError, &r1_bio->state))
2532 handle_sync_write_finished(conf, r1_bio);
2533 else
4367af55 2534 sync_request_write(mddev, r1_bio);
cd5ff9a1 2535 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2536 test_bit(R1BIO_WriteError, &r1_bio->state))
2537 handle_write_finished(conf, r1_bio);
2538 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2539 handle_read_error(conf, r1_bio);
2540 else
c230e7e5 2541 WARN_ON_ONCE(1);
62096bce 2542
1d9d5241 2543 cond_resched();
2953079c 2544 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2545 md_check_recovery(mddev);
1da177e4 2546 }
e1dfa0a2 2547 blk_finish_plug(&plug);
1da177e4
LT
2548}
2549
e8096360 2550static int init_resync(struct r1conf *conf)
1da177e4
LT
2551{
2552 int buffs;
2553
2554 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2555 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2556 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2557 conf->poolinfo);
2558 if (!conf->r1buf_pool)
2559 return -ENOMEM;
1da177e4
LT
2560 return 0;
2561}
2562
208410b5
SL
2563static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2564{
2565 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2566 struct resync_pages *rps;
2567 struct bio *bio;
2568 int i;
2569
2570 for (i = conf->poolinfo->raid_disks; i--; ) {
2571 bio = r1bio->bios[i];
2572 rps = bio->bi_private;
2573 bio_reset(bio);
2574 bio->bi_private = rps;
2575 }
2576 r1bio->master_bio = NULL;
2577 return r1bio;
2578}
2579
1da177e4
LT
2580/*
2581 * perform a "sync" on one "block"
2582 *
2583 * We need to make sure that no normal I/O request - particularly write
2584 * requests - conflict with active sync requests.
2585 *
2586 * This is achieved by tracking pending requests and a 'barrier' concept
2587 * that can be installed to exclude normal IO requests.
2588 */
2589
849674e4
SL
2590static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2591 int *skipped)
1da177e4 2592{
e8096360 2593 struct r1conf *conf = mddev->private;
9f2c9d12 2594 struct r1bio *r1_bio;
1da177e4
LT
2595 struct bio *bio;
2596 sector_t max_sector, nr_sectors;
3e198f78 2597 int disk = -1;
1da177e4 2598 int i;
3e198f78
N
2599 int wonly = -1;
2600 int write_targets = 0, read_targets = 0;
57dab0bd 2601 sector_t sync_blocks;
e3b9703e 2602 int still_degraded = 0;
06f60385
N
2603 int good_sectors = RESYNC_SECTORS;
2604 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2605 int idx = sector_to_idx(sector_nr);
022e510f 2606 int page_idx = 0;
1da177e4
LT
2607
2608 if (!conf->r1buf_pool)
2609 if (init_resync(conf))
57afd89f 2610 return 0;
1da177e4 2611
58c0fed4 2612 max_sector = mddev->dev_sectors;
1da177e4 2613 if (sector_nr >= max_sector) {
191ea9b2
N
2614 /* If we aborted, we need to abort the
2615 * sync on the 'current' bitmap chunk (there will
2616 * only be one in raid1 resync.
2617 * We can find the current addess in mddev->curr_resync
2618 */
6a806c51
N
2619 if (mddev->curr_resync < max_sector) /* aborted */
2620 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2621 &sync_blocks, 1);
6a806c51 2622 else /* completed sync */
191ea9b2 2623 conf->fullsync = 0;
6a806c51
N
2624
2625 bitmap_close_sync(mddev->bitmap);
1da177e4 2626 close_sync(conf);
c40f341f
GR
2627
2628 if (mddev_is_clustered(mddev)) {
2629 conf->cluster_sync_low = 0;
2630 conf->cluster_sync_high = 0;
c40f341f 2631 }
1da177e4
LT
2632 return 0;
2633 }
2634
07d84d10
N
2635 if (mddev->bitmap == NULL &&
2636 mddev->recovery_cp == MaxSector &&
6394cca5 2637 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2638 conf->fullsync == 0) {
2639 *skipped = 1;
2640 return max_sector - sector_nr;
2641 }
6394cca5
N
2642 /* before building a request, check if we can skip these blocks..
2643 * This call the bitmap_start_sync doesn't actually record anything
2644 */
e3b9703e 2645 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2646 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2647 /* We can skip this block, and probably several more */
2648 *skipped = 1;
2649 return sync_blocks;
2650 }
17999be4 2651
7ac50447
TM
2652 /*
2653 * If there is non-resync activity waiting for a turn, then let it
2654 * though before starting on this new sync request.
2655 */
824e47da 2656 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2657 schedule_timeout_uninterruptible(1);
2658
c40f341f
GR
2659 /* we are incrementing sector_nr below. To be safe, we check against
2660 * sector_nr + two times RESYNC_SECTORS
2661 */
2662
2663 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2664 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
208410b5 2665 r1_bio = raid1_alloc_init_r1buf(conf);
17999be4 2666
c2fd4c94 2667 raise_barrier(conf, sector_nr);
1da177e4 2668
3e198f78 2669 rcu_read_lock();
1da177e4 2670 /*
3e198f78
N
2671 * If we get a correctably read error during resync or recovery,
2672 * we might want to read from a different device. So we
2673 * flag all drives that could conceivably be read from for READ,
2674 * and any others (which will be non-In_sync devices) for WRITE.
2675 * If a read fails, we try reading from something else for which READ
2676 * is OK.
1da177e4 2677 */
1da177e4 2678
1da177e4
LT
2679 r1_bio->mddev = mddev;
2680 r1_bio->sector = sector_nr;
191ea9b2 2681 r1_bio->state = 0;
1da177e4 2682 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2683 /* make sure good_sectors won't go across barrier unit boundary */
2684 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2685
8f19ccb2 2686 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2687 struct md_rdev *rdev;
1da177e4 2688 bio = r1_bio->bios[i];
1da177e4 2689
3e198f78
N
2690 rdev = rcu_dereference(conf->mirrors[i].rdev);
2691 if (rdev == NULL ||
06f60385 2692 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2693 if (i < conf->raid_disks)
2694 still_degraded = 1;
3e198f78 2695 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2696 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2697 bio->bi_end_io = end_sync_write;
2698 write_targets ++;
3e198f78
N
2699 } else {
2700 /* may need to read from here */
06f60385
N
2701 sector_t first_bad = MaxSector;
2702 int bad_sectors;
2703
2704 if (is_badblock(rdev, sector_nr, good_sectors,
2705 &first_bad, &bad_sectors)) {
2706 if (first_bad > sector_nr)
2707 good_sectors = first_bad - sector_nr;
2708 else {
2709 bad_sectors -= (sector_nr - first_bad);
2710 if (min_bad == 0 ||
2711 min_bad > bad_sectors)
2712 min_bad = bad_sectors;
2713 }
2714 }
2715 if (sector_nr < first_bad) {
2716 if (test_bit(WriteMostly, &rdev->flags)) {
2717 if (wonly < 0)
2718 wonly = i;
2719 } else {
2720 if (disk < 0)
2721 disk = i;
2722 }
796a5cf0 2723 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2724 bio->bi_end_io = end_sync_read;
2725 read_targets++;
d57368af
AL
2726 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2727 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2728 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2729 /*
2730 * The device is suitable for reading (InSync),
2731 * but has bad block(s) here. Let's try to correct them,
2732 * if we are doing resync or repair. Otherwise, leave
2733 * this device alone for this sync request.
2734 */
796a5cf0 2735 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2736 bio->bi_end_io = end_sync_write;
2737 write_targets++;
3e198f78 2738 }
3e198f78 2739 }
06f60385
N
2740 if (bio->bi_end_io) {
2741 atomic_inc(&rdev->nr_pending);
4f024f37 2742 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2743 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2744 if (test_bit(FailFast, &rdev->flags))
2745 bio->bi_opf |= MD_FAILFAST;
06f60385 2746 }
1da177e4 2747 }
3e198f78
N
2748 rcu_read_unlock();
2749 if (disk < 0)
2750 disk = wonly;
2751 r1_bio->read_disk = disk;
191ea9b2 2752
06f60385
N
2753 if (read_targets == 0 && min_bad > 0) {
2754 /* These sectors are bad on all InSync devices, so we
2755 * need to mark them bad on all write targets
2756 */
2757 int ok = 1;
8f19ccb2 2758 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2759 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2760 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2761 ok = rdev_set_badblocks(rdev, sector_nr,
2762 min_bad, 0
2763 ) && ok;
2764 }
2953079c 2765 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2766 *skipped = 1;
2767 put_buf(r1_bio);
2768
2769 if (!ok) {
2770 /* Cannot record the badblocks, so need to
2771 * abort the resync.
2772 * If there are multiple read targets, could just
2773 * fail the really bad ones ???
2774 */
2775 conf->recovery_disabled = mddev->recovery_disabled;
2776 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2777 return 0;
2778 } else
2779 return min_bad;
2780
2781 }
2782 if (min_bad > 0 && min_bad < good_sectors) {
2783 /* only resync enough to reach the next bad->good
2784 * transition */
2785 good_sectors = min_bad;
2786 }
2787
3e198f78
N
2788 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2789 /* extra read targets are also write targets */
2790 write_targets += read_targets-1;
2791
2792 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2793 /* There is nowhere to write, so all non-sync
2794 * drives must be failed - so we are finished
2795 */
b7219ccb
N
2796 sector_t rv;
2797 if (min_bad > 0)
2798 max_sector = sector_nr + min_bad;
2799 rv = max_sector - sector_nr;
57afd89f 2800 *skipped = 1;
1da177e4 2801 put_buf(r1_bio);
1da177e4
LT
2802 return rv;
2803 }
2804
c6207277
N
2805 if (max_sector > mddev->resync_max)
2806 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2807 if (max_sector > sector_nr + good_sectors)
2808 max_sector = sector_nr + good_sectors;
1da177e4 2809 nr_sectors = 0;
289e99e8 2810 sync_blocks = 0;
1da177e4
LT
2811 do {
2812 struct page *page;
2813 int len = PAGE_SIZE;
2814 if (sector_nr + (len>>9) > max_sector)
2815 len = (max_sector - sector_nr) << 9;
2816 if (len == 0)
2817 break;
6a806c51
N
2818 if (sync_blocks == 0) {
2819 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2820 &sync_blocks, still_degraded) &&
2821 !conf->fullsync &&
2822 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2823 break;
7571ae88 2824 if ((len >> 9) > sync_blocks)
6a806c51 2825 len = sync_blocks<<9;
ab7a30c7 2826 }
191ea9b2 2827
8f19ccb2 2828 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2829 struct resync_pages *rp;
2830
1da177e4 2831 bio = r1_bio->bios[i];
98d30c58 2832 rp = get_resync_pages(bio);
1da177e4 2833 if (bio->bi_end_io) {
022e510f 2834 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2835
2836 /*
2837 * won't fail because the vec table is big
2838 * enough to hold all these pages
2839 */
2840 bio_add_page(bio, page, len, 0);
1da177e4
LT
2841 }
2842 }
2843 nr_sectors += len>>9;
2844 sector_nr += len>>9;
191ea9b2 2845 sync_blocks -= (len>>9);
022e510f 2846 } while (++page_idx < RESYNC_PAGES);
98d30c58 2847
1da177e4
LT
2848 r1_bio->sectors = nr_sectors;
2849
c40f341f
GR
2850 if (mddev_is_clustered(mddev) &&
2851 conf->cluster_sync_high < sector_nr + nr_sectors) {
2852 conf->cluster_sync_low = mddev->curr_resync_completed;
2853 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2854 /* Send resync message */
2855 md_cluster_ops->resync_info_update(mddev,
2856 conf->cluster_sync_low,
2857 conf->cluster_sync_high);
2858 }
2859
d11c171e
N
2860 /* For a user-requested sync, we read all readable devices and do a
2861 * compare
2862 */
2863 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2864 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2865 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2866 bio = r1_bio->bios[i];
2867 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2868 read_targets--;
74d46992 2869 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2870 if (read_targets == 1)
2871 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2872 generic_make_request(bio);
2873 }
2874 }
2875 } else {
2876 atomic_set(&r1_bio->remaining, 1);
2877 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2878 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2879 if (read_targets == 1)
2880 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2881 generic_make_request(bio);
1da177e4 2882
d11c171e 2883 }
1da177e4
LT
2884 return nr_sectors;
2885}
2886
fd01b88c 2887static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2888{
2889 if (sectors)
2890 return sectors;
2891
2892 return mddev->dev_sectors;
2893}
2894
e8096360 2895static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2896{
e8096360 2897 struct r1conf *conf;
709ae487 2898 int i;
0eaf822c 2899 struct raid1_info *disk;
3cb03002 2900 struct md_rdev *rdev;
709ae487 2901 int err = -ENOMEM;
1da177e4 2902
e8096360 2903 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2904 if (!conf)
709ae487 2905 goto abort;
1da177e4 2906
fd76863e 2907 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2908 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2909 if (!conf->nr_pending)
2910 goto abort;
2911
2912 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2913 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2914 if (!conf->nr_waiting)
2915 goto abort;
2916
2917 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2918 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2919 if (!conf->nr_queued)
2920 goto abort;
2921
2922 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2923 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2924 if (!conf->barrier)
2925 goto abort;
2926
0eaf822c 2927 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2928 * mddev->raid_disks * 2,
1da177e4
LT
2929 GFP_KERNEL);
2930 if (!conf->mirrors)
709ae487 2931 goto abort;
1da177e4 2932
ddaf22ab
N
2933 conf->tmppage = alloc_page(GFP_KERNEL);
2934 if (!conf->tmppage)
709ae487 2935 goto abort;
ddaf22ab 2936
709ae487 2937 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2938 if (!conf->poolinfo)
709ae487 2939 goto abort;
8f19ccb2 2940 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2941 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2942 r1bio_pool_free,
2943 conf->poolinfo);
2944 if (!conf->r1bio_pool)
709ae487
N
2945 goto abort;
2946
011067b0 2947 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
c230e7e5
N
2948 if (!conf->bio_split)
2949 goto abort;
2950
ed9bfdf1 2951 conf->poolinfo->mddev = mddev;
1da177e4 2952
c19d5798 2953 err = -EINVAL;
e7e72bf6 2954 spin_lock_init(&conf->device_lock);
dafb20fa 2955 rdev_for_each(rdev, mddev) {
709ae487 2956 int disk_idx = rdev->raid_disk;
1da177e4
LT
2957 if (disk_idx >= mddev->raid_disks
2958 || disk_idx < 0)
2959 continue;
c19d5798 2960 if (test_bit(Replacement, &rdev->flags))
02b898f2 2961 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2962 else
2963 disk = conf->mirrors + disk_idx;
1da177e4 2964
c19d5798
N
2965 if (disk->rdev)
2966 goto abort;
1da177e4 2967 disk->rdev = rdev;
1da177e4 2968 disk->head_position = 0;
12cee5a8 2969 disk->seq_start = MaxSector;
1da177e4
LT
2970 }
2971 conf->raid_disks = mddev->raid_disks;
2972 conf->mddev = mddev;
1da177e4 2973 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2974 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2975
2976 spin_lock_init(&conf->resync_lock);
17999be4 2977 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2978
191ea9b2 2979 bio_list_init(&conf->pending_bio_list);
34db0cd6 2980 conf->pending_count = 0;
d890fa2b 2981 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2982
c19d5798 2983 err = -EIO;
8f19ccb2 2984 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2985
2986 disk = conf->mirrors + i;
2987
c19d5798
N
2988 if (i < conf->raid_disks &&
2989 disk[conf->raid_disks].rdev) {
2990 /* This slot has a replacement. */
2991 if (!disk->rdev) {
2992 /* No original, just make the replacement
2993 * a recovering spare
2994 */
2995 disk->rdev =
2996 disk[conf->raid_disks].rdev;
2997 disk[conf->raid_disks].rdev = NULL;
2998 } else if (!test_bit(In_sync, &disk->rdev->flags))
2999 /* Original is not in_sync - bad */
3000 goto abort;
3001 }
3002
5fd6c1dc
N
3003 if (!disk->rdev ||
3004 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3005 disk->head_position = 0;
4f0a5e01
JB
3006 if (disk->rdev &&
3007 (disk->rdev->saved_raid_disk < 0))
918f0238 3008 conf->fullsync = 1;
be4d3280 3009 }
1da177e4 3010 }
709ae487 3011
709ae487 3012 err = -ENOMEM;
0232605d 3013 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3014 if (!conf->thread)
709ae487 3015 goto abort;
1da177e4 3016
709ae487
N
3017 return conf;
3018
3019 abort:
3020 if (conf) {
644df1a8 3021 mempool_destroy(conf->r1bio_pool);
709ae487
N
3022 kfree(conf->mirrors);
3023 safe_put_page(conf->tmppage);
3024 kfree(conf->poolinfo);
fd76863e 3025 kfree(conf->nr_pending);
3026 kfree(conf->nr_waiting);
3027 kfree(conf->nr_queued);
3028 kfree(conf->barrier);
c230e7e5
N
3029 if (conf->bio_split)
3030 bioset_free(conf->bio_split);
709ae487
N
3031 kfree(conf);
3032 }
3033 return ERR_PTR(err);
3034}
3035
afa0f557 3036static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3037static int raid1_run(struct mddev *mddev)
709ae487 3038{
e8096360 3039 struct r1conf *conf;
709ae487 3040 int i;
3cb03002 3041 struct md_rdev *rdev;
5220ea1e 3042 int ret;
2ff8cc2c 3043 bool discard_supported = false;
709ae487
N
3044
3045 if (mddev->level != 1) {
1d41c216
N
3046 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3047 mdname(mddev), mddev->level);
709ae487
N
3048 return -EIO;
3049 }
3050 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3051 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3052 mdname(mddev));
709ae487
N
3053 return -EIO;
3054 }
a415c0f1
N
3055 if (mddev_init_writes_pending(mddev) < 0)
3056 return -ENOMEM;
1da177e4 3057 /*
709ae487
N
3058 * copy the already verified devices into our private RAID1
3059 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3060 * should be freed in raid1_free()]
1da177e4 3061 */
709ae487
N
3062 if (mddev->private == NULL)
3063 conf = setup_conf(mddev);
3064 else
3065 conf = mddev->private;
1da177e4 3066
709ae487
N
3067 if (IS_ERR(conf))
3068 return PTR_ERR(conf);
1da177e4 3069
3deff1a7 3070 if (mddev->queue) {
5026d7a9 3071 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7
CH
3072 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3073 }
5026d7a9 3074
dafb20fa 3075 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3076 if (!mddev->gendisk)
3077 continue;
709ae487
N
3078 disk_stack_limits(mddev->gendisk, rdev->bdev,
3079 rdev->data_offset << 9);
2ff8cc2c
SL
3080 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3081 discard_supported = true;
1da177e4 3082 }
191ea9b2 3083
709ae487
N
3084 mddev->degraded = 0;
3085 for (i=0; i < conf->raid_disks; i++)
3086 if (conf->mirrors[i].rdev == NULL ||
3087 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3088 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3089 mddev->degraded++;
3090
3091 if (conf->raid_disks - mddev->degraded == 1)
3092 mddev->recovery_cp = MaxSector;
3093
8c6ac868 3094 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3095 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3096 mdname(mddev));
3097 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3098 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3099 mddev->raid_disks);
709ae487 3100
1da177e4
LT
3101 /*
3102 * Ok, everything is just fine now
3103 */
709ae487
N
3104 mddev->thread = conf->thread;
3105 conf->thread = NULL;
3106 mddev->private = conf;
46533ff7 3107 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3108
1f403624 3109 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3110
1ed7242e 3111 if (mddev->queue) {
2ff8cc2c
SL
3112 if (discard_supported)
3113 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3114 mddev->queue);
3115 else
3116 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3117 mddev->queue);
1ed7242e 3118 }
5220ea1e 3119
3120 ret = md_integrity_register(mddev);
5aa61f42
N
3121 if (ret) {
3122 md_unregister_thread(&mddev->thread);
afa0f557 3123 raid1_free(mddev, conf);
5aa61f42 3124 }
5220ea1e 3125 return ret;
1da177e4
LT
3126}
3127
afa0f557 3128static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3129{
afa0f557 3130 struct r1conf *conf = priv;
409c57f3 3131
644df1a8 3132 mempool_destroy(conf->r1bio_pool);
990a8baf 3133 kfree(conf->mirrors);
0fea7ed8 3134 safe_put_page(conf->tmppage);
990a8baf 3135 kfree(conf->poolinfo);
fd76863e 3136 kfree(conf->nr_pending);
3137 kfree(conf->nr_waiting);
3138 kfree(conf->nr_queued);
3139 kfree(conf->barrier);
c230e7e5
N
3140 if (conf->bio_split)
3141 bioset_free(conf->bio_split);
1da177e4 3142 kfree(conf);
1da177e4
LT
3143}
3144
fd01b88c 3145static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3146{
3147 /* no resync is happening, and there is enough space
3148 * on all devices, so we can resize.
3149 * We need to make sure resync covers any new space.
3150 * If the array is shrinking we should possibly wait until
3151 * any io in the removed space completes, but it hardly seems
3152 * worth it.
3153 */
a4a6125a
N
3154 sector_t newsize = raid1_size(mddev, sectors, 0);
3155 if (mddev->external_size &&
3156 mddev->array_sectors > newsize)
b522adcd 3157 return -EINVAL;
a4a6125a
N
3158 if (mddev->bitmap) {
3159 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3160 if (ret)
3161 return ret;
3162 }
3163 md_set_array_sectors(mddev, newsize);
b522adcd 3164 if (sectors > mddev->dev_sectors &&
b098636c 3165 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3166 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3167 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3168 }
b522adcd 3169 mddev->dev_sectors = sectors;
4b5c7ae8 3170 mddev->resync_max_sectors = sectors;
1da177e4
LT
3171 return 0;
3172}
3173
fd01b88c 3174static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3175{
3176 /* We need to:
3177 * 1/ resize the r1bio_pool
3178 * 2/ resize conf->mirrors
3179 *
3180 * We allocate a new r1bio_pool if we can.
3181 * Then raise a device barrier and wait until all IO stops.
3182 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3183 *
3184 * At the same time, we "pack" the devices so that all the missing
3185 * devices have the higher raid_disk numbers.
1da177e4
LT
3186 */
3187 mempool_t *newpool, *oldpool;
3188 struct pool_info *newpoolinfo;
0eaf822c 3189 struct raid1_info *newmirrors;
e8096360 3190 struct r1conf *conf = mddev->private;
63c70c4f 3191 int cnt, raid_disks;
c04be0aa 3192 unsigned long flags;
2214c260 3193 int d, d2;
1da177e4 3194
63c70c4f 3195 /* Cannot change chunk_size, layout, or level */
664e7c41 3196 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3197 mddev->layout != mddev->new_layout ||
3198 mddev->level != mddev->new_level) {
664e7c41 3199 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3200 mddev->new_layout = mddev->layout;
3201 mddev->new_level = mddev->level;
3202 return -EINVAL;
3203 }
3204
2214c260
AP
3205 if (!mddev_is_clustered(mddev))
3206 md_allow_write(mddev);
2a2275d6 3207
63c70c4f
N
3208 raid_disks = mddev->raid_disks + mddev->delta_disks;
3209
6ea9c07c
N
3210 if (raid_disks < conf->raid_disks) {
3211 cnt=0;
3212 for (d= 0; d < conf->raid_disks; d++)
3213 if (conf->mirrors[d].rdev)
3214 cnt++;
3215 if (cnt > raid_disks)
1da177e4 3216 return -EBUSY;
6ea9c07c 3217 }
1da177e4
LT
3218
3219 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3220 if (!newpoolinfo)
3221 return -ENOMEM;
3222 newpoolinfo->mddev = mddev;
8f19ccb2 3223 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3224
3225 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3226 r1bio_pool_free, newpoolinfo);
3227 if (!newpool) {
3228 kfree(newpoolinfo);
3229 return -ENOMEM;
3230 }
0eaf822c 3231 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3232 GFP_KERNEL);
1da177e4
LT
3233 if (!newmirrors) {
3234 kfree(newpoolinfo);
3235 mempool_destroy(newpool);
3236 return -ENOMEM;
3237 }
1da177e4 3238
e2d59925 3239 freeze_array(conf, 0);
1da177e4
LT
3240
3241 /* ok, everything is stopped */
3242 oldpool = conf->r1bio_pool;
3243 conf->r1bio_pool = newpool;
6ea9c07c 3244
a88aa786 3245 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3246 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3247 if (rdev && rdev->raid_disk != d2) {
36fad858 3248 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3249 rdev->raid_disk = d2;
36fad858
NK
3250 sysfs_unlink_rdev(mddev, rdev);
3251 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3252 pr_warn("md/raid1:%s: cannot register rd%d\n",
3253 mdname(mddev), rdev->raid_disk);
6ea9c07c 3254 }
a88aa786
N
3255 if (rdev)
3256 newmirrors[d2++].rdev = rdev;
3257 }
1da177e4
LT
3258 kfree(conf->mirrors);
3259 conf->mirrors = newmirrors;
3260 kfree(conf->poolinfo);
3261 conf->poolinfo = newpoolinfo;
3262
c04be0aa 3263 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3264 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3265 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3266 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3267 mddev->delta_disks = 0;
1da177e4 3268
e2d59925 3269 unfreeze_array(conf);
1da177e4 3270
985ca973 3271 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3272 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3273 md_wakeup_thread(mddev->thread);
3274
3275 mempool_destroy(oldpool);
3276 return 0;
3277}
3278
b03e0ccb 3279static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3280{
e8096360 3281 struct r1conf *conf = mddev->private;
36fa3063 3282
b03e0ccb 3283 if (quiesce)
07169fd4 3284 freeze_array(conf, 0);
b03e0ccb 3285 else
07169fd4 3286 unfreeze_array(conf);
36fa3063
N
3287}
3288
fd01b88c 3289static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3290{
3291 /* raid1 can take over:
3292 * raid5 with 2 devices, any layout or chunk size
3293 */
3294 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3295 struct r1conf *conf;
709ae487
N
3296 mddev->new_level = 1;
3297 mddev->new_layout = 0;
3298 mddev->new_chunk_sectors = 0;
3299 conf = setup_conf(mddev);
6995f0b2 3300 if (!IS_ERR(conf)) {
07169fd4 3301 /* Array must appear to be quiesced */
3302 conf->array_frozen = 1;
394ed8e4
SL
3303 mddev_clear_unsupported_flags(mddev,
3304 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3305 }
709ae487
N
3306 return conf;
3307 }
3308 return ERR_PTR(-EINVAL);
3309}
1da177e4 3310
84fc4b56 3311static struct md_personality raid1_personality =
1da177e4
LT
3312{
3313 .name = "raid1",
2604b703 3314 .level = 1,
1da177e4 3315 .owner = THIS_MODULE,
849674e4
SL
3316 .make_request = raid1_make_request,
3317 .run = raid1_run,
afa0f557 3318 .free = raid1_free,
849674e4
SL
3319 .status = raid1_status,
3320 .error_handler = raid1_error,
1da177e4
LT
3321 .hot_add_disk = raid1_add_disk,
3322 .hot_remove_disk= raid1_remove_disk,
3323 .spare_active = raid1_spare_active,
849674e4 3324 .sync_request = raid1_sync_request,
1da177e4 3325 .resize = raid1_resize,
80c3a6ce 3326 .size = raid1_size,
63c70c4f 3327 .check_reshape = raid1_reshape,
36fa3063 3328 .quiesce = raid1_quiesce,
709ae487 3329 .takeover = raid1_takeover,
5c675f83 3330 .congested = raid1_congested,
1da177e4
LT
3331};
3332
3333static int __init raid_init(void)
3334{
2604b703 3335 return register_md_personality(&raid1_personality);
1da177e4
LT
3336}
3337
3338static void raid_exit(void)
3339{
2604b703 3340 unregister_md_personality(&raid1_personality);
1da177e4
LT
3341}
3342
3343module_init(raid_init);
3344module_exit(raid_exit);
3345MODULE_LICENSE("GPL");
0efb9e61 3346MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3347MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3348MODULE_ALIAS("md-raid1");
2604b703 3349MODULE_ALIAS("md-level-1");
34db0cd6
N
3350
3351module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);