Merge tag 'ntfs3_for_6.4' of https://github.com/Paragon-Software-Group/linux-ntfs3
[linux-block.git] / drivers / md / raid1.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
96de0e25 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
191ea9b2
N
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
1da177e4
LT
24 */
25
5a0e3ad6 26#include <linux/slab.h>
25570727 27#include <linux/delay.h>
bff61975 28#include <linux/blkdev.h>
056075c7 29#include <linux/module.h>
bff61975 30#include <linux/seq_file.h>
8bda470e 31#include <linux/ratelimit.h>
69b00b5b 32#include <linux/interval_tree_generic.h>
3f07c014 33
109e3765 34#include <trace/events/block.h>
3f07c014 35
43b2e5d8 36#include "md.h"
ef740c37 37#include "raid1.h"
935fe098 38#include "md-bitmap.h"
191ea9b2 39
394ed8e4
SL
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 42 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 45
fd76863e 46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 48
578b54ad
N
49#define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
fb0eb5df
ML
52#include "raid1-10.c"
53
69b00b5b
GJ
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
d0d2d8ba
GJ
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
3e148a32 61{
3e148a32
GJ
62 unsigned long flags;
63 int ret = 0;
d0d2d8ba
GJ
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
025471f9 66 struct serial_in_rdev *serial = &rdev->serial[idx];
3e148a32 67
69b00b5b
GJ
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
d0d2d8ba 72 else {
69b00b5b
GJ
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
d0d2d8ba 76 }
69b00b5b 77 spin_unlock_irqrestore(&serial->serial_lock, flags);
3e148a32
GJ
78
79 return ret;
80}
81
d0d2d8ba
GJ
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
404659cf 96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
3e148a32 97{
69b00b5b 98 struct serial_info *si;
3e148a32
GJ
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
025471f9
GJ
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
69b00b5b
GJ
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
3e148a32
GJ
111 found = 1;
112 break;
113 }
69b00b5b 114 }
3e148a32 115 if (!found)
404659cf 116 WARN(1, "The write IO is not recorded for serialization\n");
69b00b5b
GJ
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
3e148a32
GJ
119}
120
98d30c58
ML
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127 return get_resync_pages(bio)->raid_bio;
128}
129
dd0fc66f 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
131{
132 struct pool_info *pi = data;
9f2c9d12 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 136 return kzalloc(size, gfp_flags);
1da177e4
LT
137}
138
8e005f7c 139#define RESYNC_DEPTH 32
1da177e4 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 145
dd0fc66f 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
147{
148 struct pool_info *pi = data;
9f2c9d12 149 struct r1bio *r1_bio;
1da177e4 150 struct bio *bio;
da1aab3d 151 int need_pages;
98d30c58
ML
152 int j;
153 struct resync_pages *rps;
1da177e4
LT
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 156 if (!r1_bio)
1da177e4 157 return NULL;
1da177e4 158
6da2ec56
KC
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
98d30c58
ML
161 if (!rps)
162 goto out_free_r1bio;
163
1da177e4
LT
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
066ff571 168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
1da177e4
LT
169 if (!bio)
170 goto out_free_bio;
066ff571 171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
1da177e4
LT
172 r1_bio->bios[j] = bio;
173 }
174 /*
175 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
176 * the first bio.
177 * If this is a user-requested check/repair, allocate
178 * RESYNC_PAGES for each bio.
1da177e4 179 */
d11c171e 180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 181 need_pages = pi->raid_disks;
d11c171e 182 else
da1aab3d 183 need_pages = 1;
98d30c58
ML
184 for (j = 0; j < pi->raid_disks; j++) {
185 struct resync_pages *rp = &rps[j];
186
d11c171e 187 bio = r1_bio->bios[j];
d11c171e 188
98d30c58
ML
189 if (j < need_pages) {
190 if (resync_alloc_pages(rp, gfp_flags))
191 goto out_free_pages;
192 } else {
193 memcpy(rp, &rps[0], sizeof(*rp));
194 resync_get_all_pages(rp);
195 }
196
98d30c58
ML
197 rp->raid_bio = r1_bio;
198 bio->bi_private = rp;
1da177e4
LT
199 }
200
201 r1_bio->master_bio = NULL;
202
203 return r1_bio;
204
da1aab3d 205out_free_pages:
491221f8 206 while (--j >= 0)
98d30c58 207 resync_free_pages(&rps[j]);
da1aab3d 208
1da177e4 209out_free_bio:
066ff571
CH
210 while (++j < pi->raid_disks) {
211 bio_uninit(r1_bio->bios[j]);
212 kfree(r1_bio->bios[j]);
213 }
98d30c58
ML
214 kfree(rps);
215
216out_free_r1bio:
c7afa803 217 rbio_pool_free(r1_bio, data);
1da177e4
LT
218 return NULL;
219}
220
221static void r1buf_pool_free(void *__r1_bio, void *data)
222{
223 struct pool_info *pi = data;
98d30c58 224 int i;
9f2c9d12 225 struct r1bio *r1bio = __r1_bio;
98d30c58 226 struct resync_pages *rp = NULL;
1da177e4 227
98d30c58
ML
228 for (i = pi->raid_disks; i--; ) {
229 rp = get_resync_pages(r1bio->bios[i]);
230 resync_free_pages(rp);
066ff571
CH
231 bio_uninit(r1bio->bios[i]);
232 kfree(r1bio->bios[i]);
98d30c58
ML
233 }
234
235 /* resync pages array stored in the 1st bio's .bi_private */
236 kfree(rp);
1da177e4 237
c7afa803 238 rbio_pool_free(r1bio, data);
1da177e4
LT
239}
240
e8096360 241static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
242{
243 int i;
244
8f19ccb2 245 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 246 struct bio **bio = r1_bio->bios + i;
4367af55 247 if (!BIO_SPECIAL(*bio))
1da177e4
LT
248 bio_put(*bio);
249 *bio = NULL;
250 }
251}
252
9f2c9d12 253static void free_r1bio(struct r1bio *r1_bio)
1da177e4 254{
e8096360 255 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 256
1da177e4 257 put_all_bios(conf, r1_bio);
afeee514 258 mempool_free(r1_bio, &conf->r1bio_pool);
1da177e4
LT
259}
260
9f2c9d12 261static void put_buf(struct r1bio *r1_bio)
1da177e4 262{
e8096360 263 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 264 sector_t sect = r1_bio->sector;
3e198f78
N
265 int i;
266
8f19ccb2 267 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
268 struct bio *bio = r1_bio->bios[i];
269 if (bio->bi_end_io)
270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 }
1da177e4 272
afeee514 273 mempool_free(r1_bio, &conf->r1buf_pool);
1da177e4 274
af5f42a7 275 lower_barrier(conf, sect);
1da177e4
LT
276}
277
9f2c9d12 278static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
279{
280 unsigned long flags;
fd01b88c 281 struct mddev *mddev = r1_bio->mddev;
e8096360 282 struct r1conf *conf = mddev->private;
fd76863e 283 int idx;
1da177e4 284
fd76863e 285 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
286 spin_lock_irqsave(&conf->device_lock, flags);
287 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 288 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
289 spin_unlock_irqrestore(&conf->device_lock, flags);
290
17999be4 291 wake_up(&conf->wait_barrier);
1da177e4
LT
292 md_wakeup_thread(mddev->thread);
293}
294
295/*
296 * raid_end_bio_io() is called when we have finished servicing a mirrored
297 * operation and are ready to return a success/failure code to the buffer
298 * cache layer.
299 */
9f2c9d12 300static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
301{
302 struct bio *bio = r1_bio->master_bio;
d2eb35ac
N
303
304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 305 bio->bi_status = BLK_STS_IOERR;
4246a0b6 306
a0159832
GJ
307 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
308 bio_end_io_acct(bio, r1_bio->start_time);
37011e3a 309 bio_endio(bio);
d2eb35ac
N
310}
311
9f2c9d12 312static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
313{
314 struct bio *bio = r1_bio->master_bio;
c91114c2 315 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 316
4b6d287f
N
317 /* if nobody has done the final endio yet, do it now */
318 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
319 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
320 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
321 (unsigned long long) bio->bi_iter.bi_sector,
322 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 323
d2eb35ac 324 call_bio_endio(r1_bio);
4b6d287f 325 }
c91114c2
DJ
326 /*
327 * Wake up any possible resync thread that waits for the device
328 * to go idle. All I/Os, even write-behind writes, are done.
329 */
330 allow_barrier(conf, r1_bio->sector);
331
1da177e4
LT
332 free_r1bio(r1_bio);
333}
334
335/*
336 * Update disk head position estimator based on IRQ completion info.
337 */
9f2c9d12 338static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 339{
e8096360 340 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
341
342 conf->mirrors[disk].head_position =
343 r1_bio->sector + (r1_bio->sectors);
344}
345
ba3ae3be
NK
346/*
347 * Find the disk number which triggered given bio
348 */
9f2c9d12 349static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
350{
351 int mirror;
30194636
N
352 struct r1conf *conf = r1_bio->mddev->private;
353 int raid_disks = conf->raid_disks;
ba3ae3be 354
8f19ccb2 355 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
356 if (r1_bio->bios[mirror] == bio)
357 break;
358
8f19ccb2 359 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
360 update_head_pos(mirror, r1_bio);
361
362 return mirror;
363}
364
4246a0b6 365static void raid1_end_read_request(struct bio *bio)
1da177e4 366{
4e4cbee9 367 int uptodate = !bio->bi_status;
9f2c9d12 368 struct r1bio *r1_bio = bio->bi_private;
e8096360 369 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 370 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 371
1da177e4
LT
372 /*
373 * this branch is our 'one mirror IO has finished' event handler:
374 */
e5872d58 375 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 376
dd00a99e
N
377 if (uptodate)
378 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
379 else if (test_bit(FailFast, &rdev->flags) &&
380 test_bit(R1BIO_FailFast, &r1_bio->state))
381 /* This was a fail-fast read so we definitely
382 * want to retry */
383 ;
dd00a99e
N
384 else {
385 /* If all other devices have failed, we want to return
386 * the error upwards rather than fail the last device.
387 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 388 */
dd00a99e
N
389 unsigned long flags;
390 spin_lock_irqsave(&conf->device_lock, flags);
391 if (r1_bio->mddev->degraded == conf->raid_disks ||
392 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 393 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
394 uptodate = 1;
395 spin_unlock_irqrestore(&conf->device_lock, flags);
396 }
1da177e4 397
7ad4d4a6 398 if (uptodate) {
1da177e4 399 raid_end_bio_io(r1_bio);
e5872d58 400 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 401 } else {
1da177e4
LT
402 /*
403 * oops, read error:
404 */
913cce5a 405 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
1d41c216 406 mdname(conf->mddev),
913cce5a 407 rdev->bdev,
1d41c216 408 (unsigned long long)r1_bio->sector);
d2eb35ac 409 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 410 reschedule_retry(r1_bio);
7ad4d4a6 411 /* don't drop the reference on read_disk yet */
1da177e4 412 }
1da177e4
LT
413}
414
9f2c9d12 415static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
416{
417 /* it really is the end of this request */
418 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
419 bio_free_pages(r1_bio->behind_master_bio);
420 bio_put(r1_bio->behind_master_bio);
421 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
422 }
423 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
424 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
425 r1_bio->sectors,
426 !test_bit(R1BIO_Degraded, &r1_bio->state),
427 test_bit(R1BIO_BehindIO, &r1_bio->state));
cd5ff9a1
N
428 md_write_end(r1_bio->mddev);
429}
430
9f2c9d12 431static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 432{
cd5ff9a1
N
433 if (!atomic_dec_and_test(&r1_bio->remaining))
434 return;
435
436 if (test_bit(R1BIO_WriteError, &r1_bio->state))
437 reschedule_retry(r1_bio);
438 else {
439 close_write(r1_bio);
4367af55
N
440 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
441 reschedule_retry(r1_bio);
442 else
443 raid_end_bio_io(r1_bio);
4e78064f
N
444 }
445}
446
4246a0b6 447static void raid1_end_write_request(struct bio *bio)
1da177e4 448{
9f2c9d12 449 struct r1bio *r1_bio = bio->bi_private;
e5872d58 450 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 451 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 452 struct bio *to_put = NULL;
e5872d58
N
453 int mirror = find_bio_disk(r1_bio, bio);
454 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd 455 bool discard_error;
69df9cfc
GJ
456 sector_t lo = r1_bio->sector;
457 sector_t hi = r1_bio->sector + r1_bio->sectors;
e3f948cd 458
4e4cbee9 459 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 460
e9c7469b
TH
461 /*
462 * 'one mirror IO has finished' event handler:
463 */
4e4cbee9 464 if (bio->bi_status && !discard_error) {
e5872d58
N
465 set_bit(WriteErrorSeen, &rdev->flags);
466 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
467 set_bit(MD_RECOVERY_NEEDED, &
468 conf->mddev->recovery);
469
212e7eb7
N
470 if (test_bit(FailFast, &rdev->flags) &&
471 (bio->bi_opf & MD_FAILFAST) &&
472 /* We never try FailFast to WriteMostly devices */
473 !test_bit(WriteMostly, &rdev->flags)) {
474 md_error(r1_bio->mddev, rdev);
eeba6809
YY
475 }
476
477 /*
478 * When the device is faulty, it is not necessary to
479 * handle write error.
eeba6809
YY
480 */
481 if (!test_bit(Faulty, &rdev->flags))
212e7eb7 482 set_bit(R1BIO_WriteError, &r1_bio->state);
eeba6809 483 else {
2417b986
PC
484 /* Fail the request */
485 set_bit(R1BIO_Degraded, &r1_bio->state);
eeba6809
YY
486 /* Finished with this branch */
487 r1_bio->bios[mirror] = NULL;
488 to_put = bio;
489 }
4367af55 490 } else {
1da177e4 491 /*
e9c7469b
TH
492 * Set R1BIO_Uptodate in our master bio, so that we
493 * will return a good error code for to the higher
494 * levels even if IO on some other mirrored buffer
495 * fails.
496 *
497 * The 'master' represents the composite IO operation
498 * to user-side. So if something waits for IO, then it
499 * will wait for the 'master' bio.
1da177e4 500 */
4367af55
N
501 sector_t first_bad;
502 int bad_sectors;
503
cd5ff9a1
N
504 r1_bio->bios[mirror] = NULL;
505 to_put = bio;
3056e3ae
AL
506 /*
507 * Do not set R1BIO_Uptodate if the current device is
508 * rebuilding or Faulty. This is because we cannot use
509 * such device for properly reading the data back (we could
510 * potentially use it, if the current write would have felt
511 * before rdev->recovery_offset, but for simplicity we don't
512 * check this here.
513 */
e5872d58
N
514 if (test_bit(In_sync, &rdev->flags) &&
515 !test_bit(Faulty, &rdev->flags))
3056e3ae 516 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 517
4367af55 518 /* Maybe we can clear some bad blocks. */
e5872d58 519 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 520 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
521 r1_bio->bios[mirror] = IO_MADE_GOOD;
522 set_bit(R1BIO_MadeGood, &r1_bio->state);
523 }
524 }
525
e9c7469b 526 if (behind) {
69df9cfc 527 if (test_bit(CollisionCheck, &rdev->flags))
404659cf 528 remove_serial(rdev, lo, hi);
e5872d58 529 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
530 atomic_dec(&r1_bio->behind_remaining);
531
532 /*
533 * In behind mode, we ACK the master bio once the I/O
534 * has safely reached all non-writemostly
535 * disks. Setting the Returned bit ensures that this
536 * gets done only once -- we don't ever want to return
537 * -EIO here, instead we'll wait
538 */
539 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
540 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
541 /* Maybe we can return now */
542 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
543 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
544 pr_debug("raid1: behind end write sectors"
545 " %llu-%llu\n",
4f024f37
KO
546 (unsigned long long) mbio->bi_iter.bi_sector,
547 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 548 call_bio_endio(r1_bio);
4b6d287f
N
549 }
550 }
69df9cfc
GJ
551 } else if (rdev->mddev->serialize_policy)
552 remove_serial(rdev, lo, hi);
4367af55 553 if (r1_bio->bios[mirror] == NULL)
e5872d58 554 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 555
1da177e4 556 /*
1da177e4
LT
557 * Let's see if all mirrored write operations have finished
558 * already.
559 */
af6d7b76 560 r1_bio_write_done(r1_bio);
c70810b3 561
04b857f7
N
562 if (to_put)
563 bio_put(to_put);
1da177e4
LT
564}
565
fd76863e 566static sector_t align_to_barrier_unit_end(sector_t start_sector,
567 sector_t sectors)
568{
569 sector_t len;
570
571 WARN_ON(sectors == 0);
572 /*
573 * len is the number of sectors from start_sector to end of the
574 * barrier unit which start_sector belongs to.
575 */
576 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
577 start_sector;
578
579 if (len > sectors)
580 len = sectors;
581
582 return len;
583}
584
1da177e4
LT
585/*
586 * This routine returns the disk from which the requested read should
587 * be done. There is a per-array 'next expected sequential IO' sector
588 * number - if this matches on the next IO then we use the last disk.
589 * There is also a per-disk 'last know head position' sector that is
590 * maintained from IRQ contexts, both the normal and the resync IO
591 * completion handlers update this position correctly. If there is no
592 * perfect sequential match then we pick the disk whose head is closest.
593 *
594 * If there are 2 mirrors in the same 2 devices, performance degrades
595 * because position is mirror, not device based.
596 *
597 * The rdev for the device selected will have nr_pending incremented.
598 */
e8096360 599static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 600{
af3a2cd6 601 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
602 int sectors;
603 int best_good_sectors;
9dedf603
SL
604 int best_disk, best_dist_disk, best_pending_disk;
605 int has_nonrot_disk;
be4d3280 606 int disk;
76073054 607 sector_t best_dist;
9dedf603 608 unsigned int min_pending;
3cb03002 609 struct md_rdev *rdev;
f3ac8bf7 610 int choose_first;
12cee5a8 611 int choose_next_idle;
1da177e4
LT
612
613 rcu_read_lock();
614 /*
8ddf9efe 615 * Check if we can balance. We can balance on the whole
1da177e4
LT
616 * device if no resync is going on, or below the resync window.
617 * We take the first readable disk when above the resync window.
618 */
619 retry:
d2eb35ac 620 sectors = r1_bio->sectors;
76073054 621 best_disk = -1;
9dedf603 622 best_dist_disk = -1;
76073054 623 best_dist = MaxSector;
9dedf603
SL
624 best_pending_disk = -1;
625 min_pending = UINT_MAX;
d2eb35ac 626 best_good_sectors = 0;
9dedf603 627 has_nonrot_disk = 0;
12cee5a8 628 choose_next_idle = 0;
2e52d449 629 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 630
7d49ffcf
GR
631 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
632 (mddev_is_clustered(conf->mddev) &&
90382ed9 633 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
634 this_sector + sectors)))
635 choose_first = 1;
636 else
637 choose_first = 0;
1da177e4 638
be4d3280 639 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 640 sector_t dist;
d2eb35ac
N
641 sector_t first_bad;
642 int bad_sectors;
9dedf603 643 unsigned int pending;
12cee5a8 644 bool nonrot;
d2eb35ac 645
f3ac8bf7
N
646 rdev = rcu_dereference(conf->mirrors[disk].rdev);
647 if (r1_bio->bios[disk] == IO_BLOCKED
648 || rdev == NULL
76073054 649 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 650 continue;
76073054
N
651 if (!test_bit(In_sync, &rdev->flags) &&
652 rdev->recovery_offset < this_sector + sectors)
1da177e4 653 continue;
76073054
N
654 if (test_bit(WriteMostly, &rdev->flags)) {
655 /* Don't balance among write-mostly, just
656 * use the first as a last resort */
d1901ef0 657 if (best_dist_disk < 0) {
307729c8
N
658 if (is_badblock(rdev, this_sector, sectors,
659 &first_bad, &bad_sectors)) {
816b0acf 660 if (first_bad <= this_sector)
307729c8
N
661 /* Cannot use this */
662 continue;
663 best_good_sectors = first_bad - this_sector;
664 } else
665 best_good_sectors = sectors;
d1901ef0
TH
666 best_dist_disk = disk;
667 best_pending_disk = disk;
307729c8 668 }
76073054
N
669 continue;
670 }
671 /* This is a reasonable device to use. It might
672 * even be best.
673 */
d2eb35ac
N
674 if (is_badblock(rdev, this_sector, sectors,
675 &first_bad, &bad_sectors)) {
676 if (best_dist < MaxSector)
677 /* already have a better device */
678 continue;
679 if (first_bad <= this_sector) {
680 /* cannot read here. If this is the 'primary'
681 * device, then we must not read beyond
682 * bad_sectors from another device..
683 */
684 bad_sectors -= (this_sector - first_bad);
685 if (choose_first && sectors > bad_sectors)
686 sectors = bad_sectors;
687 if (best_good_sectors > sectors)
688 best_good_sectors = sectors;
689
690 } else {
691 sector_t good_sectors = first_bad - this_sector;
692 if (good_sectors > best_good_sectors) {
693 best_good_sectors = good_sectors;
694 best_disk = disk;
695 }
696 if (choose_first)
697 break;
698 }
699 continue;
d82dd0e3
TM
700 } else {
701 if ((sectors > best_good_sectors) && (best_disk >= 0))
702 best_disk = -1;
d2eb35ac 703 best_good_sectors = sectors;
d82dd0e3 704 }
d2eb35ac 705
2e52d449
N
706 if (best_disk >= 0)
707 /* At least two disks to choose from so failfast is OK */
708 set_bit(R1BIO_FailFast, &r1_bio->state);
709
10f0d2a5 710 nonrot = bdev_nonrot(rdev->bdev);
12cee5a8 711 has_nonrot_disk |= nonrot;
9dedf603 712 pending = atomic_read(&rdev->nr_pending);
76073054 713 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 714 if (choose_first) {
76073054 715 best_disk = disk;
1da177e4
LT
716 break;
717 }
12cee5a8
SL
718 /* Don't change to another disk for sequential reads */
719 if (conf->mirrors[disk].next_seq_sect == this_sector
720 || dist == 0) {
721 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
722 struct raid1_info *mirror = &conf->mirrors[disk];
723
724 best_disk = disk;
725 /*
726 * If buffered sequential IO size exceeds optimal
727 * iosize, check if there is idle disk. If yes, choose
728 * the idle disk. read_balance could already choose an
729 * idle disk before noticing it's a sequential IO in
730 * this disk. This doesn't matter because this disk
731 * will idle, next time it will be utilized after the
732 * first disk has IO size exceeds optimal iosize. In
733 * this way, iosize of the first disk will be optimal
734 * iosize at least. iosize of the second disk might be
735 * small, but not a big deal since when the second disk
736 * starts IO, the first disk is likely still busy.
737 */
738 if (nonrot && opt_iosize > 0 &&
739 mirror->seq_start != MaxSector &&
740 mirror->next_seq_sect > opt_iosize &&
741 mirror->next_seq_sect - opt_iosize >=
742 mirror->seq_start) {
743 choose_next_idle = 1;
744 continue;
745 }
746 break;
747 }
12cee5a8
SL
748
749 if (choose_next_idle)
750 continue;
9dedf603
SL
751
752 if (min_pending > pending) {
753 min_pending = pending;
754 best_pending_disk = disk;
755 }
756
76073054
N
757 if (dist < best_dist) {
758 best_dist = dist;
9dedf603 759 best_dist_disk = disk;
1da177e4 760 }
f3ac8bf7 761 }
1da177e4 762
9dedf603
SL
763 /*
764 * If all disks are rotational, choose the closest disk. If any disk is
765 * non-rotational, choose the disk with less pending request even the
766 * disk is rotational, which might/might not be optimal for raids with
767 * mixed ratation/non-rotational disks depending on workload.
768 */
769 if (best_disk == -1) {
2e52d449 770 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
771 best_disk = best_pending_disk;
772 else
773 best_disk = best_dist_disk;
774 }
775
76073054
N
776 if (best_disk >= 0) {
777 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
778 if (!rdev)
779 goto retry;
780 atomic_inc(&rdev->nr_pending);
d2eb35ac 781 sectors = best_good_sectors;
12cee5a8
SL
782
783 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
784 conf->mirrors[best_disk].seq_start = this_sector;
785
be4d3280 786 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
787 }
788 rcu_read_unlock();
d2eb35ac 789 *max_sectors = sectors;
1da177e4 790
76073054 791 return best_disk;
1da177e4
LT
792}
793
673ca68d
N
794static void flush_bio_list(struct r1conf *conf, struct bio *bio)
795{
796 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
e64e4018 797 md_bitmap_unplug(conf->mddev->bitmap);
673ca68d
N
798 wake_up(&conf->wait_barrier);
799
800 while (bio) { /* submit pending writes */
801 struct bio *next = bio->bi_next;
309dca30 802 struct md_rdev *rdev = (void *)bio->bi_bdev;
673ca68d 803 bio->bi_next = NULL;
74d46992 804 bio_set_dev(bio, rdev->bdev);
673ca68d 805 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 806 bio_io_error(bio);
673ca68d 807 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
70200574 808 !bdev_max_discard_sectors(bio->bi_bdev)))
673ca68d
N
809 /* Just ignore it */
810 bio_endio(bio);
811 else
ed00aabd 812 submit_bio_noacct(bio);
673ca68d 813 bio = next;
5fa4f8ba 814 cond_resched();
673ca68d
N
815 }
816}
817
e8096360 818static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
819{
820 /* Any writes that have been queued but are awaiting
821 * bitmap updates get flushed here.
a35e63ef 822 */
a35e63ef
N
823 spin_lock_irq(&conf->device_lock);
824
825 if (conf->pending_bio_list.head) {
18022a1b 826 struct blk_plug plug;
a35e63ef 827 struct bio *bio;
18022a1b 828
a35e63ef 829 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef 830 spin_unlock_irq(&conf->device_lock);
474beb57
N
831
832 /*
833 * As this is called in a wait_event() loop (see freeze_array),
834 * current->state might be TASK_UNINTERRUPTIBLE which will
835 * cause a warning when we prepare to wait again. As it is
836 * rare that this path is taken, it is perfectly safe to force
837 * us to go around the wait_event() loop again, so the warning
838 * is a false-positive. Silence the warning by resetting
839 * thread state
840 */
841 __set_current_state(TASK_RUNNING);
18022a1b 842 blk_start_plug(&plug);
673ca68d 843 flush_bio_list(conf, bio);
18022a1b 844 blk_finish_plug(&plug);
a35e63ef
N
845 } else
846 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
847}
848
17999be4
N
849/* Barriers....
850 * Sometimes we need to suspend IO while we do something else,
851 * either some resync/recovery, or reconfigure the array.
852 * To do this we raise a 'barrier'.
853 * The 'barrier' is a counter that can be raised multiple times
854 * to count how many activities are happening which preclude
855 * normal IO.
856 * We can only raise the barrier if there is no pending IO.
857 * i.e. if nr_pending == 0.
858 * We choose only to raise the barrier if no-one is waiting for the
859 * barrier to go down. This means that as soon as an IO request
860 * is ready, no other operations which require a barrier will start
861 * until the IO request has had a chance.
862 *
863 * So: regular IO calls 'wait_barrier'. When that returns there
864 * is no backgroup IO happening, It must arrange to call
865 * allow_barrier when it has finished its IO.
866 * backgroup IO calls must call raise_barrier. Once that returns
867 * there is no normal IO happeing. It must arrange to call
868 * lower_barrier when the particular background IO completes.
4675719d
HT
869 *
870 * If resync/recovery is interrupted, returns -EINTR;
871 * Otherwise, returns 0.
1da177e4 872 */
4675719d 873static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 874{
fd76863e 875 int idx = sector_to_idx(sector_nr);
876
1da177e4 877 spin_lock_irq(&conf->resync_lock);
17999be4
N
878
879 /* Wait until no block IO is waiting */
824e47da 880 wait_event_lock_irq(conf->wait_barrier,
881 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 882 conf->resync_lock);
17999be4
N
883
884 /* block any new IO from starting */
824e47da 885 atomic_inc(&conf->barrier[idx]);
886 /*
887 * In raise_barrier() we firstly increase conf->barrier[idx] then
888 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
889 * increase conf->nr_pending[idx] then check conf->barrier[idx].
890 * A memory barrier here to make sure conf->nr_pending[idx] won't
891 * be fetched before conf->barrier[idx] is increased. Otherwise
892 * there will be a race between raise_barrier() and _wait_barrier().
893 */
894 smp_mb__after_atomic();
17999be4 895
79ef3a8a 896 /* For these conditions we must wait:
897 * A: while the array is in frozen state
fd76863e 898 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
899 * existing in corresponding I/O barrier bucket.
900 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
901 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 902 */
17999be4 903 wait_event_lock_irq(conf->wait_barrier,
8c242593 904 (!conf->array_frozen &&
824e47da 905 !atomic_read(&conf->nr_pending[idx]) &&
8c242593
YY
906 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
907 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
eed8c02e 908 conf->resync_lock);
17999be4 909
8c242593
YY
910 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
911 atomic_dec(&conf->barrier[idx]);
912 spin_unlock_irq(&conf->resync_lock);
913 wake_up(&conf->wait_barrier);
914 return -EINTR;
915 }
916
43ac9b84 917 atomic_inc(&conf->nr_sync_pending);
17999be4 918 spin_unlock_irq(&conf->resync_lock);
8c242593
YY
919
920 return 0;
17999be4
N
921}
922
fd76863e 923static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 924{
fd76863e 925 int idx = sector_to_idx(sector_nr);
926
824e47da 927 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 928
824e47da 929 atomic_dec(&conf->barrier[idx]);
43ac9b84 930 atomic_dec(&conf->nr_sync_pending);
17999be4
N
931 wake_up(&conf->wait_barrier);
932}
933
5aa70503 934static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
17999be4 935{
5aa70503
VV
936 bool ret = true;
937
824e47da 938 /*
939 * We need to increase conf->nr_pending[idx] very early here,
940 * then raise_barrier() can be blocked when it waits for
941 * conf->nr_pending[idx] to be 0. Then we can avoid holding
942 * conf->resync_lock when there is no barrier raised in same
943 * barrier unit bucket. Also if the array is frozen, I/O
944 * should be blocked until array is unfrozen.
945 */
946 atomic_inc(&conf->nr_pending[idx]);
947 /*
948 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
949 * check conf->barrier[idx]. In raise_barrier() we firstly increase
950 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
951 * barrier is necessary here to make sure conf->barrier[idx] won't be
952 * fetched before conf->nr_pending[idx] is increased. Otherwise there
953 * will be a race between _wait_barrier() and raise_barrier().
954 */
955 smp_mb__after_atomic();
79ef3a8a 956
824e47da 957 /*
958 * Don't worry about checking two atomic_t variables at same time
959 * here. If during we check conf->barrier[idx], the array is
960 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
961 * 0, it is safe to return and make the I/O continue. Because the
962 * array is frozen, all I/O returned here will eventually complete
963 * or be queued, no race will happen. See code comment in
964 * frozen_array().
965 */
966 if (!READ_ONCE(conf->array_frozen) &&
967 !atomic_read(&conf->barrier[idx]))
5aa70503 968 return ret;
79ef3a8a 969
824e47da 970 /*
971 * After holding conf->resync_lock, conf->nr_pending[idx]
972 * should be decreased before waiting for barrier to drop.
973 * Otherwise, we may encounter a race condition because
974 * raise_barrer() might be waiting for conf->nr_pending[idx]
975 * to be 0 at same time.
976 */
977 spin_lock_irq(&conf->resync_lock);
978 atomic_inc(&conf->nr_waiting[idx]);
979 atomic_dec(&conf->nr_pending[idx]);
980 /*
981 * In case freeze_array() is waiting for
982 * get_unqueued_pending() == extra
983 */
984 wake_up(&conf->wait_barrier);
985 /* Wait for the barrier in same barrier unit bucket to drop. */
5aa70503
VV
986
987 /* Return false when nowait flag is set */
988 if (nowait) {
989 ret = false;
990 } else {
991 wait_event_lock_irq(conf->wait_barrier,
992 !conf->array_frozen &&
993 !atomic_read(&conf->barrier[idx]),
994 conf->resync_lock);
995 atomic_inc(&conf->nr_pending[idx]);
996 }
997
824e47da 998 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 999 spin_unlock_irq(&conf->resync_lock);
5aa70503 1000 return ret;
79ef3a8a 1001}
1002
5aa70503 1003static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
79ef3a8a 1004{
fd76863e 1005 int idx = sector_to_idx(sector_nr);
5aa70503 1006 bool ret = true;
79ef3a8a 1007
824e47da 1008 /*
1009 * Very similar to _wait_barrier(). The difference is, for read
1010 * I/O we don't need wait for sync I/O, but if the whole array
1011 * is frozen, the read I/O still has to wait until the array is
1012 * unfrozen. Since there is no ordering requirement with
1013 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1014 */
1015 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 1016
824e47da 1017 if (!READ_ONCE(conf->array_frozen))
5aa70503 1018 return ret;
824e47da 1019
1020 spin_lock_irq(&conf->resync_lock);
1021 atomic_inc(&conf->nr_waiting[idx]);
1022 atomic_dec(&conf->nr_pending[idx]);
1023 /*
1024 * In case freeze_array() is waiting for
1025 * get_unqueued_pending() == extra
1026 */
1027 wake_up(&conf->wait_barrier);
1028 /* Wait for array to be unfrozen */
5aa70503
VV
1029
1030 /* Return false when nowait flag is set */
1031 if (nowait) {
1032 /* Return false when nowait flag is set */
1033 ret = false;
1034 } else {
1035 wait_event_lock_irq(conf->wait_barrier,
1036 !conf->array_frozen,
1037 conf->resync_lock);
1038 atomic_inc(&conf->nr_pending[idx]);
1039 }
1040
824e47da 1041 atomic_dec(&conf->nr_waiting[idx]);
1da177e4 1042 spin_unlock_irq(&conf->resync_lock);
5aa70503 1043 return ret;
1da177e4
LT
1044}
1045
5aa70503 1046static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
17999be4 1047{
fd76863e 1048 int idx = sector_to_idx(sector_nr);
79ef3a8a 1049
5aa70503 1050 return _wait_barrier(conf, idx, nowait);
fd76863e 1051}
1052
fd76863e 1053static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1054{
824e47da 1055 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
1056 wake_up(&conf->wait_barrier);
1057}
1058
fd76863e 1059static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1060{
1061 int idx = sector_to_idx(sector_nr);
1062
1063 _allow_barrier(conf, idx);
1064}
1065
fd76863e 1066/* conf->resync_lock should be held */
1067static int get_unqueued_pending(struct r1conf *conf)
1068{
1069 int idx, ret;
1070
43ac9b84
XN
1071 ret = atomic_read(&conf->nr_sync_pending);
1072 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1073 ret += atomic_read(&conf->nr_pending[idx]) -
1074 atomic_read(&conf->nr_queued[idx]);
fd76863e 1075
1076 return ret;
1077}
1078
e2d59925 1079static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1080{
fd76863e 1081 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1082 * go quiet.
fd76863e 1083 * This is called in two situations:
1084 * 1) management command handlers (reshape, remove disk, quiesce).
1085 * 2) one normal I/O request failed.
1086
1087 * After array_frozen is set to 1, new sync IO will be blocked at
1088 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1089 * or wait_read_barrier(). The flying I/Os will either complete or be
1090 * queued. When everything goes quite, there are only queued I/Os left.
1091
1092 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1093 * barrier bucket index which this I/O request hits. When all sync and
1094 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1095 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1096 * in handle_read_error(), we may call freeze_array() before trying to
1097 * fix the read error. In this case, the error read I/O is not queued,
1098 * so get_unqueued_pending() == 1.
1099 *
1100 * Therefore before this function returns, we need to wait until
1101 * get_unqueued_pendings(conf) gets equal to extra. For
1102 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1103 */
1104 spin_lock_irq(&conf->resync_lock);
b364e3d0 1105 conf->array_frozen = 1;
578b54ad 1106 raid1_log(conf->mddev, "wait freeze");
fd76863e 1107 wait_event_lock_irq_cmd(
1108 conf->wait_barrier,
1109 get_unqueued_pending(conf) == extra,
1110 conf->resync_lock,
1111 flush_pending_writes(conf));
ddaf22ab
N
1112 spin_unlock_irq(&conf->resync_lock);
1113}
e8096360 1114static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1115{
1116 /* reverse the effect of the freeze */
1117 spin_lock_irq(&conf->resync_lock);
b364e3d0 1118 conf->array_frozen = 0;
ddaf22ab 1119 spin_unlock_irq(&conf->resync_lock);
824e47da 1120 wake_up(&conf->wait_barrier);
ddaf22ab
N
1121}
1122
16d56e2f 1123static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1124 struct bio *bio)
4b6d287f 1125{
cb83efcf 1126 int size = bio->bi_iter.bi_size;
841c1316
ML
1127 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1128 int i = 0;
1129 struct bio *behind_bio = NULL;
1130
609be106
CH
1131 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1132 &r1_bio->mddev->bio_set);
841c1316 1133 if (!behind_bio)
16d56e2f 1134 return;
4b6d287f 1135
41743c1f 1136 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1137 if (!bio_has_data(bio)) {
1138 behind_bio->bi_iter.bi_size = size;
41743c1f 1139 goto skip_copy;
16d56e2f 1140 }
41743c1f 1141
841c1316
ML
1142 while (i < vcnt && size) {
1143 struct page *page;
1144 int len = min_t(int, PAGE_SIZE, size);
1145
1146 page = alloc_page(GFP_NOIO);
1147 if (unlikely(!page))
1148 goto free_pages;
1149
1150 bio_add_page(behind_bio, page, len, 0);
1151
1152 size -= len;
1153 i++;
4b6d287f 1154 }
841c1316 1155
cb83efcf 1156 bio_copy_data(behind_bio, bio);
41743c1f 1157skip_copy:
56a64c17 1158 r1_bio->behind_master_bio = behind_bio;
af6d7b76 1159 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1160
16d56e2f 1161 return;
841c1316
ML
1162
1163free_pages:
4f024f37
KO
1164 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1165 bio->bi_iter.bi_size);
841c1316 1166 bio_free_pages(behind_bio);
16d56e2f 1167 bio_put(behind_bio);
4b6d287f
N
1168}
1169
f54a9d0e
N
1170static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1171{
1172 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1173 cb);
1174 struct mddev *mddev = plug->cb.data;
1175 struct r1conf *conf = mddev->private;
1176 struct bio *bio;
1177
874807a8 1178 if (from_schedule || current->bio_list) {
f54a9d0e
N
1179 spin_lock_irq(&conf->device_lock);
1180 bio_list_merge(&conf->pending_bio_list, &plug->pending);
f54a9d0e 1181 spin_unlock_irq(&conf->device_lock);
ee0b0244 1182 wake_up(&conf->wait_barrier);
f54a9d0e
N
1183 md_wakeup_thread(mddev->thread);
1184 kfree(plug);
1185 return;
1186 }
1187
1188 /* we aren't scheduling, so we can do the write-out directly. */
1189 bio = bio_list_get(&plug->pending);
673ca68d 1190 flush_bio_list(conf, bio);
f54a9d0e
N
1191 kfree(plug);
1192}
1193
689389a0
N
1194static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1195{
1196 r1_bio->master_bio = bio;
1197 r1_bio->sectors = bio_sectors(bio);
1198 r1_bio->state = 0;
1199 r1_bio->mddev = mddev;
1200 r1_bio->sector = bio->bi_iter.bi_sector;
1201}
1202
fd76863e 1203static inline struct r1bio *
689389a0 1204alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1205{
1206 struct r1conf *conf = mddev->private;
1207 struct r1bio *r1_bio;
1208
afeee514 1209 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
689389a0
N
1210 /* Ensure no bio records IO_BLOCKED */
1211 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1212 init_r1bio(r1_bio, mddev, bio);
fd76863e 1213 return r1_bio;
1214}
1215
c230e7e5 1216static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1217 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1218{
e8096360 1219 struct r1conf *conf = mddev->private;
0eaf822c 1220 struct raid1_info *mirror;
1da177e4 1221 struct bio *read_bio;
3b046a97 1222 struct bitmap *bitmap = mddev->bitmap;
3c5e514d
BVA
1223 const enum req_op op = bio_op(bio);
1224 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
3b046a97
RL
1225 int max_sectors;
1226 int rdisk;
9b8ae7b9 1227 bool r1bio_existed = !!r1_bio;
689389a0 1228 char b[BDEVNAME_SIZE];
3b046a97 1229
fd76863e 1230 /*
689389a0
N
1231 * If r1_bio is set, we are blocking the raid1d thread
1232 * so there is a tiny risk of deadlock. So ask for
1233 * emergency memory if needed.
fd76863e 1234 */
689389a0 1235 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1236
9b8ae7b9 1237 if (r1bio_existed) {
689389a0
N
1238 /* Need to get the block device name carefully */
1239 struct md_rdev *rdev;
1240 rcu_read_lock();
1241 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1242 if (rdev)
900d156b 1243 snprintf(b, sizeof(b), "%pg", rdev->bdev);
689389a0
N
1244 else
1245 strcpy(b, "???");
1246 rcu_read_unlock();
1247 }
3b046a97 1248
fd76863e 1249 /*
fd76863e 1250 * Still need barrier for READ in case that whole
1251 * array is frozen.
fd76863e 1252 */
5aa70503
VV
1253 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1254 bio->bi_opf & REQ_NOWAIT)) {
1255 bio_wouldblock_error(bio);
1256 return;
1257 }
fd76863e 1258
689389a0
N
1259 if (!r1_bio)
1260 r1_bio = alloc_r1bio(mddev, bio);
1261 else
1262 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1263 r1_bio->sectors = max_read_sectors;
fd76863e 1264
1265 /*
1266 * make_request() can abort the operation when read-ahead is being
1267 * used and no empty request is available.
1268 */
3b046a97
RL
1269 rdisk = read_balance(conf, r1_bio, &max_sectors);
1270
1271 if (rdisk < 0) {
1272 /* couldn't find anywhere to read from */
9b8ae7b9 1273 if (r1bio_existed) {
689389a0
N
1274 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1275 mdname(mddev),
1276 b,
1277 (unsigned long long)r1_bio->sector);
1278 }
3b046a97
RL
1279 raid_end_bio_io(r1_bio);
1280 return;
1281 }
1282 mirror = conf->mirrors + rdisk;
1283
9b8ae7b9 1284 if (r1bio_existed)
913cce5a 1285 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
689389a0
N
1286 mdname(mddev),
1287 (unsigned long long)r1_bio->sector,
913cce5a 1288 mirror->rdev->bdev);
689389a0 1289
3b046a97
RL
1290 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1291 bitmap) {
1292 /*
1293 * Reading from a write-mostly device must take care not to
1294 * over-take any writes that are 'behind'
1295 */
1296 raid1_log(mddev, "wait behind writes");
1297 wait_event(bitmap->behind_wait,
1298 atomic_read(&bitmap->behind_writes) == 0);
1299 }
c230e7e5
N
1300
1301 if (max_sectors < bio_sectors(bio)) {
1302 struct bio *split = bio_split(bio, max_sectors,
afeee514 1303 gfp, &conf->bio_split);
c230e7e5 1304 bio_chain(split, bio);
ed00aabd 1305 submit_bio_noacct(bio);
c230e7e5
N
1306 bio = split;
1307 r1_bio->master_bio = bio;
1308 r1_bio->sectors = max_sectors;
1309 }
1310
3b046a97 1311 r1_bio->read_disk = rdisk;
3b046a97 1312
a0159832
GJ
1313 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1314 r1_bio->start_time = bio_start_io_acct(bio);
1315
abfc426d
CH
1316 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1317 &mddev->bio_set);
3b046a97
RL
1318
1319 r1_bio->bios[rdisk] = read_bio;
1320
1321 read_bio->bi_iter.bi_sector = r1_bio->sector +
1322 mirror->rdev->data_offset;
3b046a97 1323 read_bio->bi_end_io = raid1_end_read_request;
c34b7ac6 1324 read_bio->bi_opf = op | do_sync;
3b046a97
RL
1325 if (test_bit(FailFast, &mirror->rdev->flags) &&
1326 test_bit(R1BIO_FailFast, &r1_bio->state))
1327 read_bio->bi_opf |= MD_FAILFAST;
1328 read_bio->bi_private = r1_bio;
1329
1330 if (mddev->gendisk)
1c02fca6
CH
1331 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1332 r1_bio->sector);
3b046a97 1333
ed00aabd 1334 submit_bio_noacct(read_bio);
3b046a97
RL
1335}
1336
c230e7e5
N
1337static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1338 int max_write_sectors)
3b046a97
RL
1339{
1340 struct r1conf *conf = mddev->private;
fd76863e 1341 struct r1bio *r1_bio;
1f68f0c4 1342 int i, disks;
3b046a97 1343 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1344 unsigned long flags;
3cb03002 1345 struct md_rdev *blocked_rdev;
f54a9d0e
N
1346 struct blk_plug_cb *cb;
1347 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1348 int first_clone;
1f68f0c4 1349 int max_sectors;
6607cd31 1350 bool write_behind = false;
191ea9b2 1351
b3143b9a 1352 if (mddev_is_clustered(mddev) &&
90382ed9 1353 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1354 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1355
6eef4b21 1356 DEFINE_WAIT(w);
5aa70503
VV
1357 if (bio->bi_opf & REQ_NOWAIT) {
1358 bio_wouldblock_error(bio);
1359 return;
1360 }
6eef4b21 1361 for (;;) {
6eef4b21 1362 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1363 &w, TASK_IDLE);
f81f7302 1364 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1365 bio->bi_iter.bi_sector,
b3143b9a 1366 bio_end_sector(bio)))
6eef4b21
N
1367 break;
1368 schedule();
1369 }
1370 finish_wait(&conf->wait_barrier, &w);
1371 }
f81f7302
GJ
1372
1373 /*
1374 * Register the new request and wait if the reconstruction
1375 * thread has put up a bar for new requests.
1376 * Continue immediately if no resync is active currently.
1377 */
5aa70503
VV
1378 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1379 bio->bi_opf & REQ_NOWAIT)) {
1380 bio_wouldblock_error(bio);
1381 return;
1382 }
fd76863e 1383
689389a0 1384 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1385 r1_bio->sectors = max_write_sectors;
1da177e4 1386
1f68f0c4 1387 /* first select target devices under rcu_lock and
1da177e4
LT
1388 * inc refcount on their rdev. Record them by setting
1389 * bios[x] to bio
1f68f0c4
N
1390 * If there are known/acknowledged bad blocks on any device on
1391 * which we have seen a write error, we want to avoid writing those
1392 * blocks.
1393 * This potentially requires several writes to write around
1394 * the bad blocks. Each set of writes gets it's own r1bio
1395 * with a set of bios attached.
1da177e4 1396 */
c3b328ac 1397
8f19ccb2 1398 disks = conf->raid_disks * 2;
6bfe0b49
DW
1399 retry_write:
1400 blocked_rdev = NULL;
1da177e4 1401 rcu_read_lock();
1f68f0c4 1402 max_sectors = r1_bio->sectors;
1da177e4 1403 for (i = 0; i < disks; i++) {
3cb03002 1404 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6607cd31
GJ
1405
1406 /*
1407 * The write-behind io is only attempted on drives marked as
1408 * write-mostly, which means we could allocate write behind
1409 * bio later.
1410 */
1411 if (rdev && test_bit(WriteMostly, &rdev->flags))
1412 write_behind = true;
1413
6bfe0b49
DW
1414 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1415 atomic_inc(&rdev->nr_pending);
1416 blocked_rdev = rdev;
1417 break;
1418 }
1f68f0c4 1419 r1_bio->bios[i] = NULL;
8ae12666 1420 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1421 if (i < conf->raid_disks)
1422 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1423 continue;
1424 }
1425
1426 atomic_inc(&rdev->nr_pending);
1427 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1428 sector_t first_bad;
1429 int bad_sectors;
1430 int is_bad;
1431
3b046a97 1432 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1433 &first_bad, &bad_sectors);
1434 if (is_bad < 0) {
1435 /* mustn't write here until the bad block is
1436 * acknowledged*/
1437 set_bit(BlockedBadBlocks, &rdev->flags);
1438 blocked_rdev = rdev;
1439 break;
1440 }
1441 if (is_bad && first_bad <= r1_bio->sector) {
1442 /* Cannot write here at all */
1443 bad_sectors -= (r1_bio->sector - first_bad);
1444 if (bad_sectors < max_sectors)
1445 /* mustn't write more than bad_sectors
1446 * to other devices yet
1447 */
1448 max_sectors = bad_sectors;
03c902e1 1449 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1450 /* We don't set R1BIO_Degraded as that
1451 * only applies if the disk is
1452 * missing, so it might be re-added,
1453 * and we want to know to recover this
1454 * chunk.
1455 * In this case the device is here,
1456 * and the fact that this chunk is not
1457 * in-sync is recorded in the bad
1458 * block log
1459 */
1460 continue;
964147d5 1461 }
1f68f0c4
N
1462 if (is_bad) {
1463 int good_sectors = first_bad - r1_bio->sector;
1464 if (good_sectors < max_sectors)
1465 max_sectors = good_sectors;
1466 }
1467 }
1468 r1_bio->bios[i] = bio;
1da177e4
LT
1469 }
1470 rcu_read_unlock();
1471
6bfe0b49
DW
1472 if (unlikely(blocked_rdev)) {
1473 /* Wait for this device to become unblocked */
1474 int j;
1475
1476 for (j = 0; j < i; j++)
1477 if (r1_bio->bios[j])
1478 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1479 r1_bio->state = 0;
fd76863e 1480 allow_barrier(conf, bio->bi_iter.bi_sector);
5aa70503
VV
1481
1482 if (bio->bi_opf & REQ_NOWAIT) {
1483 bio_wouldblock_error(bio);
1484 return;
1485 }
578b54ad 1486 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1487 md_wait_for_blocked_rdev(blocked_rdev, mddev);
5aa70503 1488 wait_barrier(conf, bio->bi_iter.bi_sector, false);
6bfe0b49
DW
1489 goto retry_write;
1490 }
1491
6607cd31
GJ
1492 /*
1493 * When using a bitmap, we may call alloc_behind_master_bio below.
1494 * alloc_behind_master_bio allocates a copy of the data payload a page
1495 * at a time and thus needs a new bio that can fit the whole payload
1496 * this bio in page sized chunks.
1497 */
1498 if (write_behind && bitmap)
1499 max_sectors = min_t(int, max_sectors,
1500 BIO_MAX_VECS * (PAGE_SIZE >> 9));
c230e7e5
N
1501 if (max_sectors < bio_sectors(bio)) {
1502 struct bio *split = bio_split(bio, max_sectors,
afeee514 1503 GFP_NOIO, &conf->bio_split);
c230e7e5 1504 bio_chain(split, bio);
ed00aabd 1505 submit_bio_noacct(bio);
c230e7e5
N
1506 bio = split;
1507 r1_bio->master_bio = bio;
1f68f0c4 1508 r1_bio->sectors = max_sectors;
191ea9b2 1509 }
4b6d287f 1510
a0159832
GJ
1511 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1512 r1_bio->start_time = bio_start_io_acct(bio);
4e78064f 1513 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1514 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1515
1f68f0c4 1516 first_clone = 1;
d8c84c4f 1517
1da177e4 1518 for (i = 0; i < disks; i++) {
8e58e327 1519 struct bio *mbio = NULL;
69df9cfc 1520 struct md_rdev *rdev = conf->mirrors[i].rdev;
1da177e4
LT
1521 if (!r1_bio->bios[i])
1522 continue;
1523
46669e86 1524 if (first_clone) {
1f68f0c4
N
1525 /* do behind I/O ?
1526 * Not if there are too many, or cannot
1527 * allocate memory, or a reader on WriteMostly
1528 * is waiting for behind writes to flush */
1529 if (bitmap &&
46669e86 1530 test_bit(WriteMostly, &rdev->flags) &&
1f68f0c4
N
1531 (atomic_read(&bitmap->behind_writes)
1532 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1533 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1534 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1535 }
1f68f0c4 1536
e64e4018
AS
1537 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1538 test_bit(R1BIO_BehindIO, &r1_bio->state));
1f68f0c4
N
1539 first_clone = 0;
1540 }
8e58e327 1541
841c1316 1542 if (r1_bio->behind_master_bio) {
abfc426d
CH
1543 mbio = bio_alloc_clone(rdev->bdev,
1544 r1_bio->behind_master_bio,
1545 GFP_NOIO, &mddev->bio_set);
69df9cfc 1546 if (test_bit(CollisionCheck, &rdev->flags))
d0d2d8ba 1547 wait_for_serialization(rdev, r1_bio);
3e148a32 1548 if (test_bit(WriteMostly, &rdev->flags))
4b6d287f 1549 atomic_inc(&r1_bio->behind_remaining);
abfc426d
CH
1550 } else {
1551 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1552 &mddev->bio_set);
1553
1554 if (mddev->serialize_policy)
1555 wait_for_serialization(rdev, r1_bio);
1556 }
4b6d287f 1557
1f68f0c4
N
1558 r1_bio->bios[i] = mbio;
1559
2e94275e 1560 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1f68f0c4 1561 mbio->bi_end_io = raid1_end_write_request;
a682e003 1562 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
2e94275e
GJ
1563 if (test_bit(FailFast, &rdev->flags) &&
1564 !test_bit(WriteMostly, &rdev->flags) &&
212e7eb7
N
1565 conf->raid_disks - mddev->degraded > 1)
1566 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1567 mbio->bi_private = r1_bio;
1568
1da177e4 1569 atomic_inc(&r1_bio->remaining);
f54a9d0e 1570
109e3765 1571 if (mddev->gendisk)
1c02fca6 1572 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
109e3765
N
1573 r1_bio->sector);
1574 /* flush_pending_writes() needs access to the rdev so...*/
2e94275e 1575 mbio->bi_bdev = (void *)rdev;
109e3765 1576
f54a9d0e
N
1577 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1578 if (cb)
1579 plug = container_of(cb, struct raid1_plug_cb, cb);
1580 else
1581 plug = NULL;
f54a9d0e
N
1582 if (plug) {
1583 bio_list_add(&plug->pending, mbio);
f54a9d0e 1584 } else {
23b245c0 1585 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e 1586 bio_list_add(&conf->pending_bio_list, mbio);
23b245c0 1587 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1588 md_wakeup_thread(mddev->thread);
23b245c0 1589 }
1da177e4 1590 }
1f68f0c4 1591
079fa166
N
1592 r1_bio_write_done(r1_bio);
1593
1594 /* In case raid1d snuck in to freeze_array */
1595 wake_up(&conf->wait_barrier);
1da177e4
LT
1596}
1597
cc27b0c7 1598static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1599{
fd76863e 1600 sector_t sectors;
3b046a97 1601
775d7831
DJ
1602 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1603 && md_flush_request(mddev, bio))
cc27b0c7 1604 return true;
3b046a97 1605
c230e7e5
N
1606 /*
1607 * There is a limit to the maximum size, but
1608 * the read/write handler might find a lower limit
1609 * due to bad blocks. To avoid multiple splits,
1610 * we pass the maximum number of sectors down
1611 * and let the lower level perform the split.
1612 */
1613 sectors = align_to_barrier_unit_end(
1614 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1615
c230e7e5 1616 if (bio_data_dir(bio) == READ)
689389a0 1617 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1618 else {
1619 if (!md_write_start(mddev,bio))
1620 return false;
c230e7e5 1621 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1622 }
1623 return true;
3b046a97
RL
1624}
1625
849674e4 1626static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1627{
e8096360 1628 struct r1conf *conf = mddev->private;
1da177e4
LT
1629 int i;
1630
1631 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1632 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1633 rcu_read_lock();
1634 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1635 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1636 seq_printf(seq, "%s",
ddac7c7e
N
1637 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1638 }
1639 rcu_read_unlock();
1da177e4
LT
1640 seq_printf(seq, "]");
1641}
1642
9631abdb
MT
1643/**
1644 * raid1_error() - RAID1 error handler.
1645 * @mddev: affected md device.
1646 * @rdev: member device to fail.
1647 *
1648 * The routine acknowledges &rdev failure and determines new @mddev state.
1649 * If it failed, then:
1650 * - &MD_BROKEN flag is set in &mddev->flags.
1651 * - recovery is disabled.
1652 * Otherwise, it must be degraded:
1653 * - recovery is interrupted.
1654 * - &mddev->degraded is bumped.
1655 *
1656 * @rdev is marked as &Faulty excluding case when array is failed and
1657 * &mddev->fail_last_dev is off.
1658 */
849674e4 1659static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1660{
e8096360 1661 struct r1conf *conf = mddev->private;
423f04d6 1662 unsigned long flags;
1da177e4 1663
2e52d449 1664 spin_lock_irqsave(&conf->device_lock, flags);
9631abdb
MT
1665
1666 if (test_bit(In_sync, &rdev->flags) &&
1667 (conf->raid_disks - mddev->degraded) == 1) {
1668 set_bit(MD_BROKEN, &mddev->flags);
1669
1670 if (!mddev->fail_last_dev) {
1671 conf->recovery_disabled = mddev->recovery_disabled;
1672 spin_unlock_irqrestore(&conf->device_lock, flags);
1673 return;
1674 }
4044ba58 1675 }
de393cde 1676 set_bit(Blocked, &rdev->flags);
ebda52fa 1677 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1678 mddev->degraded++;
ebda52fa 1679 set_bit(Faulty, &rdev->flags);
423f04d6 1680 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1681 /*
1682 * if recovery is running, make sure it aborts.
1683 */
1684 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1685 set_mask_bits(&mddev->sb_flags, 0,
1686 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
913cce5a 1687 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1d41c216 1688 "md/raid1:%s: Operation continuing on %d devices.\n",
913cce5a 1689 mdname(mddev), rdev->bdev,
1d41c216 1690 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1691}
1692
e8096360 1693static void print_conf(struct r1conf *conf)
1da177e4
LT
1694{
1695 int i;
1da177e4 1696
1d41c216 1697 pr_debug("RAID1 conf printout:\n");
1da177e4 1698 if (!conf) {
1d41c216 1699 pr_debug("(!conf)\n");
1da177e4
LT
1700 return;
1701 }
1d41c216
N
1702 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1703 conf->raid_disks);
1da177e4 1704
ddac7c7e 1705 rcu_read_lock();
1da177e4 1706 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1707 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1708 if (rdev)
913cce5a 1709 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1d41c216
N
1710 i, !test_bit(In_sync, &rdev->flags),
1711 !test_bit(Faulty, &rdev->flags),
913cce5a 1712 rdev->bdev);
1da177e4 1713 }
ddac7c7e 1714 rcu_read_unlock();
1da177e4
LT
1715}
1716
e8096360 1717static void close_sync(struct r1conf *conf)
1da177e4 1718{
f6eca2d4
ND
1719 int idx;
1720
1721 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
5aa70503 1722 _wait_barrier(conf, idx, false);
f6eca2d4
ND
1723 _allow_barrier(conf, idx);
1724 }
1da177e4 1725
afeee514 1726 mempool_exit(&conf->r1buf_pool);
1da177e4
LT
1727}
1728
fd01b88c 1729static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1730{
1731 int i;
e8096360 1732 struct r1conf *conf = mddev->private;
6b965620
N
1733 int count = 0;
1734 unsigned long flags;
1da177e4
LT
1735
1736 /*
f72ffdd6 1737 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1738 * and mark them readable.
1739 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1740 * device_lock used to avoid races with raid1_end_read_request
1741 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1742 */
423f04d6 1743 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1744 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1745 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1746 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1747 if (repl
1aee41f6 1748 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1749 && repl->recovery_offset == MaxSector
1750 && !test_bit(Faulty, &repl->flags)
1751 && !test_and_set_bit(In_sync, &repl->flags)) {
1752 /* replacement has just become active */
1753 if (!rdev ||
1754 !test_and_clear_bit(In_sync, &rdev->flags))
1755 count++;
1756 if (rdev) {
1757 /* Replaced device not technically
1758 * faulty, but we need to be sure
1759 * it gets removed and never re-added
1760 */
1761 set_bit(Faulty, &rdev->flags);
1762 sysfs_notify_dirent_safe(
1763 rdev->sysfs_state);
1764 }
1765 }
ddac7c7e 1766 if (rdev
61e4947c 1767 && rdev->recovery_offset == MaxSector
ddac7c7e 1768 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1769 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1770 count++;
654e8b5a 1771 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1772 }
1773 }
6b965620
N
1774 mddev->degraded -= count;
1775 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1776
1777 print_conf(conf);
6b965620 1778 return count;
1da177e4
LT
1779}
1780
fd01b88c 1781static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1782{
e8096360 1783 struct r1conf *conf = mddev->private;
199050ea 1784 int err = -EEXIST;
41158c7e 1785 int mirror = 0;
0eaf822c 1786 struct raid1_info *p;
6c2fce2e 1787 int first = 0;
30194636 1788 int last = conf->raid_disks - 1;
1da177e4 1789
5389042f
N
1790 if (mddev->recovery_disabled == conf->recovery_disabled)
1791 return -EBUSY;
1792
1501efad
DW
1793 if (md_integrity_add_rdev(rdev, mddev))
1794 return -ENXIO;
1795
6c2fce2e
NB
1796 if (rdev->raid_disk >= 0)
1797 first = last = rdev->raid_disk;
1798
70bcecdb
GR
1799 /*
1800 * find the disk ... but prefer rdev->saved_raid_disk
1801 * if possible.
1802 */
1803 if (rdev->saved_raid_disk >= 0 &&
1804 rdev->saved_raid_disk >= first &&
9e753ba9 1805 rdev->saved_raid_disk < conf->raid_disks &&
70bcecdb
GR
1806 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807 first = last = rdev->saved_raid_disk;
1808
7ef449d1 1809 for (mirror = first; mirror <= last; mirror++) {
ebfeb444 1810 p = conf->mirrors + mirror;
7ef449d1 1811 if (!p->rdev) {
9092c02d
JB
1812 if (mddev->gendisk)
1813 disk_stack_limits(mddev->gendisk, rdev->bdev,
1814 rdev->data_offset << 9);
1da177e4
LT
1815
1816 p->head_position = 0;
1817 rdev->raid_disk = mirror;
199050ea 1818 err = 0;
6aea114a
N
1819 /* As all devices are equivalent, we don't need a full recovery
1820 * if this was recently any drive of the array
1821 */
1822 if (rdev->saved_raid_disk < 0)
41158c7e 1823 conf->fullsync = 1;
d6065f7b 1824 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1825 break;
1826 }
7ef449d1
N
1827 if (test_bit(WantReplacement, &p->rdev->flags) &&
1828 p[conf->raid_disks].rdev == NULL) {
1829 /* Add this device as a replacement */
1830 clear_bit(In_sync, &rdev->flags);
1831 set_bit(Replacement, &rdev->flags);
1832 rdev->raid_disk = mirror;
1833 err = 0;
1834 conf->fullsync = 1;
1835 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1836 break;
1837 }
1838 }
1da177e4 1839 print_conf(conf);
199050ea 1840 return err;
1da177e4
LT
1841}
1842
b8321b68 1843static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1844{
e8096360 1845 struct r1conf *conf = mddev->private;
1da177e4 1846 int err = 0;
b8321b68 1847 int number = rdev->raid_disk;
0eaf822c 1848 struct raid1_info *p = conf->mirrors + number;
1da177e4 1849
b014f14c
N
1850 if (rdev != p->rdev)
1851 p = conf->mirrors + conf->raid_disks + number;
1852
1da177e4 1853 print_conf(conf);
b8321b68 1854 if (rdev == p->rdev) {
b2d444d7 1855 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1856 atomic_read(&rdev->nr_pending)) {
1857 err = -EBUSY;
1858 goto abort;
1859 }
046abeed 1860 /* Only remove non-faulty devices if recovery
dfc70645
N
1861 * is not possible.
1862 */
1863 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1864 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1865 mddev->degraded < conf->raid_disks) {
1866 err = -EBUSY;
1867 goto abort;
1868 }
1da177e4 1869 p->rdev = NULL;
d787be40
N
1870 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1871 synchronize_rcu();
1872 if (atomic_read(&rdev->nr_pending)) {
1873 /* lost the race, try later */
1874 err = -EBUSY;
1875 p->rdev = rdev;
1876 goto abort;
1877 }
1878 }
1879 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1880 /* We just removed a device that is being replaced.
1881 * Move down the replacement. We drain all IO before
1882 * doing this to avoid confusion.
1883 */
1884 struct md_rdev *repl =
1885 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1886 freeze_array(conf, 0);
3de59bb9
YY
1887 if (atomic_read(&repl->nr_pending)) {
1888 /* It means that some queued IO of retry_list
1889 * hold repl. Thus, we cannot set replacement
1890 * as NULL, avoiding rdev NULL pointer
1891 * dereference in sync_request_write and
1892 * handle_write_finished.
1893 */
1894 err = -EBUSY;
1895 unfreeze_array(conf);
1896 goto abort;
1897 }
8c7a2c2b
N
1898 clear_bit(Replacement, &repl->flags);
1899 p->rdev = repl;
1900 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1901 unfreeze_array(conf);
e5bc9c3c
GJ
1902 }
1903
1904 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1905 err = md_integrity_register(mddev);
1da177e4
LT
1906 }
1907abort:
1908
1909 print_conf(conf);
1910 return err;
1911}
1912
4246a0b6 1913static void end_sync_read(struct bio *bio)
1da177e4 1914{
98d30c58 1915 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1916
0fc280f6 1917 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1918
1da177e4
LT
1919 /*
1920 * we have read a block, now it needs to be re-written,
1921 * or re-read if the read failed.
1922 * We don't do much here, just schedule handling by raid1d
1923 */
4e4cbee9 1924 if (!bio->bi_status)
1da177e4 1925 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1926
1927 if (atomic_dec_and_test(&r1_bio->remaining))
1928 reschedule_retry(r1_bio);
1da177e4
LT
1929}
1930
dfcc34c9
ND
1931static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1932{
1933 sector_t sync_blocks = 0;
1934 sector_t s = r1_bio->sector;
1935 long sectors_to_go = r1_bio->sectors;
1936
1937 /* make sure these bits don't get cleared. */
1938 do {
1939 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1940 s += sync_blocks;
1941 sectors_to_go -= sync_blocks;
1942 } while (sectors_to_go > 0);
1943}
1944
449808a2
HT
1945static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1946{
1947 if (atomic_dec_and_test(&r1_bio->remaining)) {
1948 struct mddev *mddev = r1_bio->mddev;
1949 int s = r1_bio->sectors;
1950
1951 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1952 test_bit(R1BIO_WriteError, &r1_bio->state))
1953 reschedule_retry(r1_bio);
1954 else {
1955 put_buf(r1_bio);
1956 md_done_sync(mddev, s, uptodate);
1957 }
1958 }
1959}
1960
4246a0b6 1961static void end_sync_write(struct bio *bio)
1da177e4 1962{
4e4cbee9 1963 int uptodate = !bio->bi_status;
98d30c58 1964 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1965 struct mddev *mddev = r1_bio->mddev;
e8096360 1966 struct r1conf *conf = mddev->private;
4367af55
N
1967 sector_t first_bad;
1968 int bad_sectors;
854abd75 1969 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1970
6b1117d5 1971 if (!uptodate) {
dfcc34c9 1972 abort_sync_write(mddev, r1_bio);
854abd75
N
1973 set_bit(WriteErrorSeen, &rdev->flags);
1974 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1975 set_bit(MD_RECOVERY_NEEDED, &
1976 mddev->recovery);
d8f05d29 1977 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1978 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1979 &first_bad, &bad_sectors) &&
1980 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1981 r1_bio->sector,
1982 r1_bio->sectors,
1983 &first_bad, &bad_sectors)
1984 )
4367af55 1985 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1986
449808a2 1987 put_sync_write_buf(r1_bio, uptodate);
1da177e4
LT
1988}
1989
3cb03002 1990static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
4ce4c73f 1991 int sectors, struct page *page, int rw)
d8f05d29 1992{
4ce4c73f 1993 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
d8f05d29
N
1994 /* success */
1995 return 1;
19d67169 1996 if (rw == WRITE) {
d8f05d29 1997 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1998 if (!test_and_set_bit(WantReplacement,
1999 &rdev->flags))
2000 set_bit(MD_RECOVERY_NEEDED, &
2001 rdev->mddev->recovery);
2002 }
d8f05d29
N
2003 /* need to record an error - either for the block or the device */
2004 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2005 md_error(rdev->mddev, rdev);
2006 return 0;
2007}
2008
9f2c9d12 2009static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 2010{
a68e5870
N
2011 /* Try some synchronous reads of other devices to get
2012 * good data, much like with normal read errors. Only
2013 * read into the pages we already have so we don't
2014 * need to re-issue the read request.
2015 * We don't need to freeze the array, because being in an
2016 * active sync request, there is no normal IO, and
2017 * no overlapping syncs.
06f60385
N
2018 * We don't need to check is_badblock() again as we
2019 * made sure that anything with a bad block in range
2020 * will have bi_end_io clear.
a68e5870 2021 */
fd01b88c 2022 struct mddev *mddev = r1_bio->mddev;
e8096360 2023 struct r1conf *conf = mddev->private;
a68e5870 2024 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 2025 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
2026 sector_t sect = r1_bio->sector;
2027 int sectors = r1_bio->sectors;
2028 int idx = 0;
2e52d449
N
2029 struct md_rdev *rdev;
2030
2031 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2032 if (test_bit(FailFast, &rdev->flags)) {
2033 /* Don't try recovering from here - just fail it
2034 * ... unless it is the last working device of course */
2035 md_error(mddev, rdev);
2036 if (test_bit(Faulty, &rdev->flags))
2037 /* Don't try to read from here, but make sure
2038 * put_buf does it's thing
2039 */
2040 bio->bi_end_io = end_sync_write;
2041 }
a68e5870
N
2042
2043 while(sectors) {
2044 int s = sectors;
2045 int d = r1_bio->read_disk;
2046 int success = 0;
78d7f5f7 2047 int start;
a68e5870
N
2048
2049 if (s > (PAGE_SIZE>>9))
2050 s = PAGE_SIZE >> 9;
2051 do {
2052 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2053 /* No rcu protection needed here devices
2054 * can only be removed when no resync is
2055 * active, and resync is currently active
2056 */
2057 rdev = conf->mirrors[d].rdev;
9d3d8011 2058 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 2059 pages[idx],
4ce4c73f 2060 REQ_OP_READ, false)) {
a68e5870
N
2061 success = 1;
2062 break;
2063 }
2064 }
2065 d++;
8f19ccb2 2066 if (d == conf->raid_disks * 2)
a68e5870
N
2067 d = 0;
2068 } while (!success && d != r1_bio->read_disk);
2069
78d7f5f7 2070 if (!success) {
3a9f28a5
N
2071 int abort = 0;
2072 /* Cannot read from anywhere, this block is lost.
2073 * Record a bad block on each device. If that doesn't
2074 * work just disable and interrupt the recovery.
2075 * Don't fail devices as that won't really help.
2076 */
ac483eb3
CH
2077 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2078 mdname(mddev), bio->bi_bdev,
1d41c216 2079 (unsigned long long)r1_bio->sector);
8f19ccb2 2080 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
2081 rdev = conf->mirrors[d].rdev;
2082 if (!rdev || test_bit(Faulty, &rdev->flags))
2083 continue;
2084 if (!rdev_set_badblocks(rdev, sect, s, 0))
2085 abort = 1;
2086 }
2087 if (abort) {
d890fa2b
N
2088 conf->recovery_disabled =
2089 mddev->recovery_disabled;
3a9f28a5
N
2090 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2091 md_done_sync(mddev, r1_bio->sectors, 0);
2092 put_buf(r1_bio);
2093 return 0;
2094 }
2095 /* Try next page */
2096 sectors -= s;
2097 sect += s;
2098 idx++;
2099 continue;
d11c171e 2100 }
78d7f5f7
N
2101
2102 start = d;
2103 /* write it back and re-read */
2104 while (d != r1_bio->read_disk) {
2105 if (d == 0)
8f19ccb2 2106 d = conf->raid_disks * 2;
78d7f5f7
N
2107 d--;
2108 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2109 continue;
2110 rdev = conf->mirrors[d].rdev;
d8f05d29 2111 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2112 pages[idx],
d8f05d29 2113 WRITE) == 0) {
78d7f5f7
N
2114 r1_bio->bios[d]->bi_end_io = NULL;
2115 rdev_dec_pending(rdev, mddev);
9d3d8011 2116 }
78d7f5f7
N
2117 }
2118 d = start;
2119 while (d != r1_bio->read_disk) {
2120 if (d == 0)
8f19ccb2 2121 d = conf->raid_disks * 2;
78d7f5f7
N
2122 d--;
2123 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2124 continue;
2125 rdev = conf->mirrors[d].rdev;
d8f05d29 2126 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2127 pages[idx],
d8f05d29 2128 READ) != 0)
9d3d8011 2129 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2130 }
a68e5870
N
2131 sectors -= s;
2132 sect += s;
2133 idx ++;
2134 }
78d7f5f7 2135 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2136 bio->bi_status = 0;
a68e5870
N
2137 return 1;
2138}
2139
c95e6385 2140static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2141{
2142 /* We have read all readable devices. If we haven't
2143 * got the block, then there is no hope left.
2144 * If we have, then we want to do a comparison
2145 * and skip the write if everything is the same.
2146 * If any blocks failed to read, then we need to
2147 * attempt an over-write
2148 */
fd01b88c 2149 struct mddev *mddev = r1_bio->mddev;
e8096360 2150 struct r1conf *conf = mddev->private;
a68e5870
N
2151 int primary;
2152 int i;
f4380a91 2153 int vcnt;
a68e5870 2154
30bc9b53
N
2155 /* Fix variable parts of all bios */
2156 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2157 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2158 blk_status_t status;
30bc9b53 2159 struct bio *b = r1_bio->bios[i];
98d30c58 2160 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2161 if (b->bi_end_io != end_sync_read)
2162 continue;
4246a0b6 2163 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2164 status = b->bi_status;
a7c50c94 2165 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
4e4cbee9 2166 b->bi_status = status;
4f024f37 2167 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2168 conf->mirrors[i].rdev->data_offset;
30bc9b53 2169 b->bi_end_io = end_sync_read;
98d30c58
ML
2170 rp->raid_bio = r1_bio;
2171 b->bi_private = rp;
30bc9b53 2172
fb0eb5df
ML
2173 /* initialize bvec table again */
2174 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2175 }
8f19ccb2 2176 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2177 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2178 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2179 r1_bio->bios[primary]->bi_end_io = NULL;
2180 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2181 break;
2182 }
2183 r1_bio->read_disk = primary;
8f19ccb2 2184 for (i = 0; i < conf->raid_disks * 2; i++) {
2b070cfe 2185 int j = 0;
78d7f5f7
N
2186 struct bio *pbio = r1_bio->bios[primary];
2187 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2188 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2189 struct page **ppages = get_resync_pages(pbio)->pages;
2190 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2191 struct bio_vec *bi;
8fc04e6e 2192 int page_len[RESYNC_PAGES] = { 0 };
6dc4f100 2193 struct bvec_iter_all iter_all;
a68e5870 2194
2aabaa65 2195 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2196 continue;
4246a0b6 2197 /* Now we can 'fixup' the error value */
4e4cbee9 2198 sbio->bi_status = 0;
78d7f5f7 2199
2b070cfe
CH
2200 bio_for_each_segment_all(bi, sbio, iter_all)
2201 page_len[j++] = bi->bv_len;
60928a91 2202
4e4cbee9 2203 if (!status) {
78d7f5f7 2204 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2205 if (memcmp(page_address(ppages[j]),
2206 page_address(spages[j]),
60928a91 2207 page_len[j]))
78d7f5f7 2208 break;
69382e85 2209 }
78d7f5f7
N
2210 } else
2211 j = 0;
2212 if (j >= 0)
7f7583d4 2213 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2214 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2215 && !status)) {
78d7f5f7
N
2216 /* No need to write to this device. */
2217 sbio->bi_end_io = NULL;
2218 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2219 continue;
2220 }
d3b45c2a
KO
2221
2222 bio_copy_data(sbio, pbio);
78d7f5f7 2223 }
a68e5870
N
2224}
2225
9f2c9d12 2226static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2227{
e8096360 2228 struct r1conf *conf = mddev->private;
a68e5870 2229 int i;
8f19ccb2 2230 int disks = conf->raid_disks * 2;
037d2ff6 2231 struct bio *wbio;
a68e5870 2232
a68e5870
N
2233 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2234 /* ouch - failed to read all of that. */
2235 if (!fix_sync_read_error(r1_bio))
2236 return;
7ca78d57
N
2237
2238 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2239 process_checks(r1_bio);
2240
d11c171e
N
2241 /*
2242 * schedule writes
2243 */
1da177e4
LT
2244 atomic_set(&r1_bio->remaining, 1);
2245 for (i = 0; i < disks ; i++) {
2246 wbio = r1_bio->bios[i];
3e198f78
N
2247 if (wbio->bi_end_io == NULL ||
2248 (wbio->bi_end_io == end_sync_read &&
2249 (i == r1_bio->read_disk ||
2250 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2251 continue;
dfcc34c9
ND
2252 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2253 abort_sync_write(mddev, r1_bio);
0c9d5b12 2254 continue;
dfcc34c9 2255 }
1da177e4 2256
c34b7ac6 2257 wbio->bi_opf = REQ_OP_WRITE;
212e7eb7
N
2258 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2259 wbio->bi_opf |= MD_FAILFAST;
2260
3e198f78 2261 wbio->bi_end_io = end_sync_write;
1da177e4 2262 atomic_inc(&r1_bio->remaining);
aa8b57aa 2263 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2264
ed00aabd 2265 submit_bio_noacct(wbio);
1da177e4
LT
2266 }
2267
449808a2 2268 put_sync_write_buf(r1_bio, 1);
1da177e4
LT
2269}
2270
2271/*
2272 * This is a kernel thread which:
2273 *
2274 * 1. Retries failed read operations on working mirrors.
2275 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2276 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2277 */
2278
e8096360 2279static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2280 sector_t sect, int sectors)
2281{
fd01b88c 2282 struct mddev *mddev = conf->mddev;
867868fb
N
2283 while(sectors) {
2284 int s = sectors;
2285 int d = read_disk;
2286 int success = 0;
2287 int start;
3cb03002 2288 struct md_rdev *rdev;
867868fb
N
2289
2290 if (s > (PAGE_SIZE>>9))
2291 s = PAGE_SIZE >> 9;
2292
2293 do {
d2eb35ac
N
2294 sector_t first_bad;
2295 int bad_sectors;
2296
707a6a42
N
2297 rcu_read_lock();
2298 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2299 if (rdev &&
da8840a7 2300 (test_bit(In_sync, &rdev->flags) ||
2301 (!test_bit(Faulty, &rdev->flags) &&
2302 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2303 is_badblock(rdev, sect, s,
707a6a42
N
2304 &first_bad, &bad_sectors) == 0) {
2305 atomic_inc(&rdev->nr_pending);
2306 rcu_read_unlock();
2307 if (sync_page_io(rdev, sect, s<<9,
4ce4c73f 2308 conf->tmppage, REQ_OP_READ, false))
707a6a42
N
2309 success = 1;
2310 rdev_dec_pending(rdev, mddev);
2311 if (success)
2312 break;
2313 } else
2314 rcu_read_unlock();
2315 d++;
2316 if (d == conf->raid_disks * 2)
2317 d = 0;
867868fb
N
2318 } while (!success && d != read_disk);
2319
2320 if (!success) {
d8f05d29 2321 /* Cannot read from anywhere - mark it bad */
3cb03002 2322 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2323 if (!rdev_set_badblocks(rdev, sect, s, 0))
2324 md_error(mddev, rdev);
867868fb
N
2325 break;
2326 }
2327 /* write it back and re-read */
2328 start = d;
2329 while (d != read_disk) {
2330 if (d==0)
8f19ccb2 2331 d = conf->raid_disks * 2;
867868fb 2332 d--;
707a6a42
N
2333 rcu_read_lock();
2334 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2335 if (rdev &&
707a6a42
N
2336 !test_bit(Faulty, &rdev->flags)) {
2337 atomic_inc(&rdev->nr_pending);
2338 rcu_read_unlock();
d8f05d29
N
2339 r1_sync_page_io(rdev, sect, s,
2340 conf->tmppage, WRITE);
707a6a42
N
2341 rdev_dec_pending(rdev, mddev);
2342 } else
2343 rcu_read_unlock();
867868fb
N
2344 }
2345 d = start;
2346 while (d != read_disk) {
867868fb 2347 if (d==0)
8f19ccb2 2348 d = conf->raid_disks * 2;
867868fb 2349 d--;
707a6a42
N
2350 rcu_read_lock();
2351 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2352 if (rdev &&
b8cb6b4c 2353 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2354 atomic_inc(&rdev->nr_pending);
2355 rcu_read_unlock();
d8f05d29
N
2356 if (r1_sync_page_io(rdev, sect, s,
2357 conf->tmppage, READ)) {
867868fb 2358 atomic_add(s, &rdev->corrected_errors);
913cce5a 2359 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
1d41c216
N
2360 mdname(mddev), s,
2361 (unsigned long long)(sect +
2362 rdev->data_offset),
913cce5a 2363 rdev->bdev);
867868fb 2364 }
707a6a42
N
2365 rdev_dec_pending(rdev, mddev);
2366 } else
2367 rcu_read_unlock();
867868fb
N
2368 }
2369 sectors -= s;
2370 sect += s;
2371 }
2372}
2373
9f2c9d12 2374static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2375{
fd01b88c 2376 struct mddev *mddev = r1_bio->mddev;
e8096360 2377 struct r1conf *conf = mddev->private;
3cb03002 2378 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2379
2380 /* bio has the data to be written to device 'i' where
2381 * we just recently had a write error.
2382 * We repeatedly clone the bio and trim down to one block,
2383 * then try the write. Where the write fails we record
2384 * a bad block.
2385 * It is conceivable that the bio doesn't exactly align with
2386 * blocks. We must handle this somehow.
2387 *
2388 * We currently own a reference on the rdev.
2389 */
2390
2391 int block_sectors;
2392 sector_t sector;
2393 int sectors;
2394 int sect_to_write = r1_bio->sectors;
2395 int ok = 1;
2396
2397 if (rdev->badblocks.shift < 0)
2398 return 0;
2399
ab713cdc
ND
2400 block_sectors = roundup(1 << rdev->badblocks.shift,
2401 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2402 sector = r1_bio->sector;
2403 sectors = ((sector + block_sectors)
2404 & ~(sector_t)(block_sectors - 1))
2405 - sector;
2406
cd5ff9a1
N
2407 while (sect_to_write) {
2408 struct bio *wbio;
2409 if (sectors > sect_to_write)
2410 sectors = sect_to_write;
2411 /* Write at 'sector' for 'sectors'*/
2412
b783863f 2413 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
abfc426d
CH
2414 wbio = bio_alloc_clone(rdev->bdev,
2415 r1_bio->behind_master_bio,
2416 GFP_NOIO, &mddev->bio_set);
b783863f 2417 } else {
abfc426d
CH
2418 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2419 GFP_NOIO, &mddev->bio_set);
b783863f
KO
2420 }
2421
c34b7ac6 2422 wbio->bi_opf = REQ_OP_WRITE;
4f024f37
KO
2423 wbio->bi_iter.bi_sector = r1_bio->sector;
2424 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2425
6678d83f 2426 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2427 wbio->bi_iter.bi_sector += rdev->data_offset;
4e49ea4a
MC
2428
2429 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2430 /* failure! */
2431 ok = rdev_set_badblocks(rdev, sector,
2432 sectors, 0)
2433 && ok;
2434
2435 bio_put(wbio);
2436 sect_to_write -= sectors;
2437 sector += sectors;
2438 sectors = block_sectors;
2439 }
2440 return ok;
2441}
2442
e8096360 2443static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2444{
2445 int m;
2446 int s = r1_bio->sectors;
8f19ccb2 2447 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2448 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2449 struct bio *bio = r1_bio->bios[m];
2450 if (bio->bi_end_io == NULL)
2451 continue;
4e4cbee9 2452 if (!bio->bi_status &&
62096bce 2453 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2454 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2455 }
4e4cbee9 2456 if (bio->bi_status &&
62096bce
N
2457 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2458 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2459 md_error(conf->mddev, rdev);
2460 }
2461 }
2462 put_buf(r1_bio);
2463 md_done_sync(conf->mddev, s, 1);
2464}
2465
e8096360 2466static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2467{
fd76863e 2468 int m, idx;
55ce74d4 2469 bool fail = false;
fd76863e 2470
8f19ccb2 2471 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2472 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2473 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2474 rdev_clear_badblocks(rdev,
2475 r1_bio->sector,
c6563a8c 2476 r1_bio->sectors, 0);
62096bce
N
2477 rdev_dec_pending(rdev, conf->mddev);
2478 } else if (r1_bio->bios[m] != NULL) {
2479 /* This drive got a write error. We need to
2480 * narrow down and record precise write
2481 * errors.
2482 */
55ce74d4 2483 fail = true;
62096bce
N
2484 if (!narrow_write_error(r1_bio, m)) {
2485 md_error(conf->mddev,
2486 conf->mirrors[m].rdev);
2487 /* an I/O failed, we can't clear the bitmap */
2488 set_bit(R1BIO_Degraded, &r1_bio->state);
2489 }
2490 rdev_dec_pending(conf->mirrors[m].rdev,
2491 conf->mddev);
2492 }
55ce74d4
N
2493 if (fail) {
2494 spin_lock_irq(&conf->device_lock);
2495 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2496 idx = sector_to_idx(r1_bio->sector);
824e47da 2497 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2498 spin_unlock_irq(&conf->device_lock);
824e47da 2499 /*
2500 * In case freeze_array() is waiting for condition
2501 * get_unqueued_pending() == extra to be true.
2502 */
2503 wake_up(&conf->wait_barrier);
55ce74d4 2504 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2505 } else {
2506 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2507 close_write(r1_bio);
55ce74d4 2508 raid_end_bio_io(r1_bio);
bd8688a1 2509 }
62096bce
N
2510}
2511
e8096360 2512static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2513{
fd01b88c 2514 struct mddev *mddev = conf->mddev;
62096bce 2515 struct bio *bio;
3cb03002 2516 struct md_rdev *rdev;
62096bce
N
2517
2518 clear_bit(R1BIO_ReadError, &r1_bio->state);
2519 /* we got a read error. Maybe the drive is bad. Maybe just
2520 * the block and we can fix it.
2521 * We freeze all other IO, and try reading the block from
2522 * other devices. When we find one, we re-write
2523 * and check it that fixes the read error.
2524 * This is all done synchronously while the array is
2525 * frozen
2526 */
7449f699
TM
2527
2528 bio = r1_bio->bios[r1_bio->read_disk];
7449f699
TM
2529 bio_put(bio);
2530 r1_bio->bios[r1_bio->read_disk] = NULL;
2531
2e52d449
N
2532 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2533 if (mddev->ro == 0
2534 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2535 freeze_array(conf, 1);
62096bce
N
2536 fix_read_error(conf, r1_bio->read_disk,
2537 r1_bio->sector, r1_bio->sectors);
2538 unfreeze_array(conf);
b33d1062
GK
2539 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2540 md_error(mddev, rdev);
7449f699
TM
2541 } else {
2542 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2543 }
2544
2e52d449 2545 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2546 allow_barrier(conf, r1_bio->sector);
2547 bio = r1_bio->master_bio;
62096bce 2548
689389a0
N
2549 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2550 r1_bio->state = 0;
2551 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2552}
2553
4ed8731d 2554static void raid1d(struct md_thread *thread)
1da177e4 2555{
4ed8731d 2556 struct mddev *mddev = thread->mddev;
9f2c9d12 2557 struct r1bio *r1_bio;
1da177e4 2558 unsigned long flags;
e8096360 2559 struct r1conf *conf = mddev->private;
1da177e4 2560 struct list_head *head = &conf->retry_list;
e1dfa0a2 2561 struct blk_plug plug;
fd76863e 2562 int idx;
1da177e4
LT
2563
2564 md_check_recovery(mddev);
e1dfa0a2 2565
55ce74d4 2566 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2567 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2568 LIST_HEAD(tmp);
2569 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2570 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2571 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2572 spin_unlock_irqrestore(&conf->device_lock, flags);
2573 while (!list_empty(&tmp)) {
a452744b
MP
2574 r1_bio = list_first_entry(&tmp, struct r1bio,
2575 retry_list);
55ce74d4 2576 list_del(&r1_bio->retry_list);
fd76863e 2577 idx = sector_to_idx(r1_bio->sector);
824e47da 2578 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2579 if (mddev->degraded)
2580 set_bit(R1BIO_Degraded, &r1_bio->state);
2581 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2582 close_write(r1_bio);
55ce74d4
N
2583 raid_end_bio_io(r1_bio);
2584 }
2585 }
2586
e1dfa0a2 2587 blk_start_plug(&plug);
1da177e4 2588 for (;;) {
191ea9b2 2589
0021b7bc 2590 flush_pending_writes(conf);
191ea9b2 2591
a35e63ef
N
2592 spin_lock_irqsave(&conf->device_lock, flags);
2593 if (list_empty(head)) {
2594 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2595 break;
a35e63ef 2596 }
9f2c9d12 2597 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2598 list_del(head->prev);
fd76863e 2599 idx = sector_to_idx(r1_bio->sector);
824e47da 2600 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2601 spin_unlock_irqrestore(&conf->device_lock, flags);
2602
2603 mddev = r1_bio->mddev;
070ec55d 2604 conf = mddev->private;
4367af55 2605 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2606 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2607 test_bit(R1BIO_WriteError, &r1_bio->state))
2608 handle_sync_write_finished(conf, r1_bio);
2609 else
4367af55 2610 sync_request_write(mddev, r1_bio);
cd5ff9a1 2611 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2612 test_bit(R1BIO_WriteError, &r1_bio->state))
2613 handle_write_finished(conf, r1_bio);
2614 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2615 handle_read_error(conf, r1_bio);
2616 else
c230e7e5 2617 WARN_ON_ONCE(1);
62096bce 2618
1d9d5241 2619 cond_resched();
2953079c 2620 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2621 md_check_recovery(mddev);
1da177e4 2622 }
e1dfa0a2 2623 blk_finish_plug(&plug);
1da177e4
LT
2624}
2625
e8096360 2626static int init_resync(struct r1conf *conf)
1da177e4
LT
2627{
2628 int buffs;
2629
2630 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514
KO
2631 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2632
2633 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2634 r1buf_pool_free, conf->poolinfo);
1da177e4
LT
2635}
2636
208410b5
SL
2637static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2638{
afeee514 2639 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
208410b5
SL
2640 struct resync_pages *rps;
2641 struct bio *bio;
2642 int i;
2643
2644 for (i = conf->poolinfo->raid_disks; i--; ) {
2645 bio = r1bio->bios[i];
2646 rps = bio->bi_private;
a7c50c94 2647 bio_reset(bio, NULL, 0);
208410b5
SL
2648 bio->bi_private = rps;
2649 }
2650 r1bio->master_bio = NULL;
2651 return r1bio;
2652}
2653
1da177e4
LT
2654/*
2655 * perform a "sync" on one "block"
2656 *
2657 * We need to make sure that no normal I/O request - particularly write
2658 * requests - conflict with active sync requests.
2659 *
2660 * This is achieved by tracking pending requests and a 'barrier' concept
2661 * that can be installed to exclude normal IO requests.
2662 */
2663
849674e4
SL
2664static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2665 int *skipped)
1da177e4 2666{
e8096360 2667 struct r1conf *conf = mddev->private;
9f2c9d12 2668 struct r1bio *r1_bio;
1da177e4
LT
2669 struct bio *bio;
2670 sector_t max_sector, nr_sectors;
3e198f78 2671 int disk = -1;
1da177e4 2672 int i;
3e198f78
N
2673 int wonly = -1;
2674 int write_targets = 0, read_targets = 0;
57dab0bd 2675 sector_t sync_blocks;
e3b9703e 2676 int still_degraded = 0;
06f60385
N
2677 int good_sectors = RESYNC_SECTORS;
2678 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2679 int idx = sector_to_idx(sector_nr);
022e510f 2680 int page_idx = 0;
1da177e4 2681
afeee514 2682 if (!mempool_initialized(&conf->r1buf_pool))
1da177e4 2683 if (init_resync(conf))
57afd89f 2684 return 0;
1da177e4 2685
58c0fed4 2686 max_sector = mddev->dev_sectors;
1da177e4 2687 if (sector_nr >= max_sector) {
191ea9b2
N
2688 /* If we aborted, we need to abort the
2689 * sync on the 'current' bitmap chunk (there will
2690 * only be one in raid1 resync.
2691 * We can find the current addess in mddev->curr_resync
2692 */
6a806c51 2693 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
2694 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2695 &sync_blocks, 1);
6a806c51 2696 else /* completed sync */
191ea9b2 2697 conf->fullsync = 0;
6a806c51 2698
e64e4018 2699 md_bitmap_close_sync(mddev->bitmap);
1da177e4 2700 close_sync(conf);
c40f341f
GR
2701
2702 if (mddev_is_clustered(mddev)) {
2703 conf->cluster_sync_low = 0;
2704 conf->cluster_sync_high = 0;
c40f341f 2705 }
1da177e4
LT
2706 return 0;
2707 }
2708
07d84d10
N
2709 if (mddev->bitmap == NULL &&
2710 mddev->recovery_cp == MaxSector &&
6394cca5 2711 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2712 conf->fullsync == 0) {
2713 *skipped = 1;
2714 return max_sector - sector_nr;
2715 }
6394cca5
N
2716 /* before building a request, check if we can skip these blocks..
2717 * This call the bitmap_start_sync doesn't actually record anything
2718 */
e64e4018 2719 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2720 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2721 /* We can skip this block, and probably several more */
2722 *skipped = 1;
2723 return sync_blocks;
2724 }
17999be4 2725
7ac50447
TM
2726 /*
2727 * If there is non-resync activity waiting for a turn, then let it
2728 * though before starting on this new sync request.
2729 */
824e47da 2730 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2731 schedule_timeout_uninterruptible(1);
2732
c40f341f
GR
2733 /* we are incrementing sector_nr below. To be safe, we check against
2734 * sector_nr + two times RESYNC_SECTORS
2735 */
2736
e64e4018 2737 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
c40f341f 2738 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
17999be4 2739
8c242593
YY
2740
2741 if (raise_barrier(conf, sector_nr))
2742 return 0;
2743
2744 r1_bio = raid1_alloc_init_r1buf(conf);
1da177e4 2745
3e198f78 2746 rcu_read_lock();
1da177e4 2747 /*
3e198f78
N
2748 * If we get a correctably read error during resync or recovery,
2749 * we might want to read from a different device. So we
2750 * flag all drives that could conceivably be read from for READ,
2751 * and any others (which will be non-In_sync devices) for WRITE.
2752 * If a read fails, we try reading from something else for which READ
2753 * is OK.
1da177e4 2754 */
1da177e4 2755
1da177e4
LT
2756 r1_bio->mddev = mddev;
2757 r1_bio->sector = sector_nr;
191ea9b2 2758 r1_bio->state = 0;
1da177e4 2759 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2760 /* make sure good_sectors won't go across barrier unit boundary */
2761 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2762
8f19ccb2 2763 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2764 struct md_rdev *rdev;
1da177e4 2765 bio = r1_bio->bios[i];
1da177e4 2766
3e198f78
N
2767 rdev = rcu_dereference(conf->mirrors[i].rdev);
2768 if (rdev == NULL ||
06f60385 2769 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2770 if (i < conf->raid_disks)
2771 still_degraded = 1;
3e198f78 2772 } else if (!test_bit(In_sync, &rdev->flags)) {
c34b7ac6 2773 bio->bi_opf = REQ_OP_WRITE;
1da177e4
LT
2774 bio->bi_end_io = end_sync_write;
2775 write_targets ++;
3e198f78
N
2776 } else {
2777 /* may need to read from here */
06f60385
N
2778 sector_t first_bad = MaxSector;
2779 int bad_sectors;
2780
2781 if (is_badblock(rdev, sector_nr, good_sectors,
2782 &first_bad, &bad_sectors)) {
2783 if (first_bad > sector_nr)
2784 good_sectors = first_bad - sector_nr;
2785 else {
2786 bad_sectors -= (sector_nr - first_bad);
2787 if (min_bad == 0 ||
2788 min_bad > bad_sectors)
2789 min_bad = bad_sectors;
2790 }
2791 }
2792 if (sector_nr < first_bad) {
2793 if (test_bit(WriteMostly, &rdev->flags)) {
2794 if (wonly < 0)
2795 wonly = i;
2796 } else {
2797 if (disk < 0)
2798 disk = i;
2799 }
c34b7ac6 2800 bio->bi_opf = REQ_OP_READ;
06f60385
N
2801 bio->bi_end_io = end_sync_read;
2802 read_targets++;
d57368af
AL
2803 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2804 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2805 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2806 /*
2807 * The device is suitable for reading (InSync),
2808 * but has bad block(s) here. Let's try to correct them,
2809 * if we are doing resync or repair. Otherwise, leave
2810 * this device alone for this sync request.
2811 */
c34b7ac6 2812 bio->bi_opf = REQ_OP_WRITE;
d57368af
AL
2813 bio->bi_end_io = end_sync_write;
2814 write_targets++;
3e198f78 2815 }
3e198f78 2816 }
028288df 2817 if (rdev && bio->bi_end_io) {
06f60385 2818 atomic_inc(&rdev->nr_pending);
4f024f37 2819 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2820 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2821 if (test_bit(FailFast, &rdev->flags))
2822 bio->bi_opf |= MD_FAILFAST;
06f60385 2823 }
1da177e4 2824 }
3e198f78
N
2825 rcu_read_unlock();
2826 if (disk < 0)
2827 disk = wonly;
2828 r1_bio->read_disk = disk;
191ea9b2 2829
06f60385
N
2830 if (read_targets == 0 && min_bad > 0) {
2831 /* These sectors are bad on all InSync devices, so we
2832 * need to mark them bad on all write targets
2833 */
2834 int ok = 1;
8f19ccb2 2835 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2836 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2837 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2838 ok = rdev_set_badblocks(rdev, sector_nr,
2839 min_bad, 0
2840 ) && ok;
2841 }
2953079c 2842 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2843 *skipped = 1;
2844 put_buf(r1_bio);
2845
2846 if (!ok) {
2847 /* Cannot record the badblocks, so need to
2848 * abort the resync.
2849 * If there are multiple read targets, could just
2850 * fail the really bad ones ???
2851 */
2852 conf->recovery_disabled = mddev->recovery_disabled;
2853 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2854 return 0;
2855 } else
2856 return min_bad;
2857
2858 }
2859 if (min_bad > 0 && min_bad < good_sectors) {
2860 /* only resync enough to reach the next bad->good
2861 * transition */
2862 good_sectors = min_bad;
2863 }
2864
3e198f78
N
2865 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2866 /* extra read targets are also write targets */
2867 write_targets += read_targets-1;
2868
2869 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2870 /* There is nowhere to write, so all non-sync
2871 * drives must be failed - so we are finished
2872 */
b7219ccb
N
2873 sector_t rv;
2874 if (min_bad > 0)
2875 max_sector = sector_nr + min_bad;
2876 rv = max_sector - sector_nr;
57afd89f 2877 *skipped = 1;
1da177e4 2878 put_buf(r1_bio);
1da177e4
LT
2879 return rv;
2880 }
2881
c6207277
N
2882 if (max_sector > mddev->resync_max)
2883 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2884 if (max_sector > sector_nr + good_sectors)
2885 max_sector = sector_nr + good_sectors;
1da177e4 2886 nr_sectors = 0;
289e99e8 2887 sync_blocks = 0;
1da177e4
LT
2888 do {
2889 struct page *page;
2890 int len = PAGE_SIZE;
2891 if (sector_nr + (len>>9) > max_sector)
2892 len = (max_sector - sector_nr) << 9;
2893 if (len == 0)
2894 break;
6a806c51 2895 if (sync_blocks == 0) {
e64e4018
AS
2896 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2897 &sync_blocks, still_degraded) &&
e5de485f
N
2898 !conf->fullsync &&
2899 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2900 break;
7571ae88 2901 if ((len >> 9) > sync_blocks)
6a806c51 2902 len = sync_blocks<<9;
ab7a30c7 2903 }
191ea9b2 2904
8f19ccb2 2905 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2906 struct resync_pages *rp;
2907
1da177e4 2908 bio = r1_bio->bios[i];
98d30c58 2909 rp = get_resync_pages(bio);
1da177e4 2910 if (bio->bi_end_io) {
022e510f 2911 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2912
2913 /*
2914 * won't fail because the vec table is big
2915 * enough to hold all these pages
2916 */
2917 bio_add_page(bio, page, len, 0);
1da177e4
LT
2918 }
2919 }
2920 nr_sectors += len>>9;
2921 sector_nr += len>>9;
191ea9b2 2922 sync_blocks -= (len>>9);
022e510f 2923 } while (++page_idx < RESYNC_PAGES);
98d30c58 2924
1da177e4
LT
2925 r1_bio->sectors = nr_sectors;
2926
c40f341f
GR
2927 if (mddev_is_clustered(mddev) &&
2928 conf->cluster_sync_high < sector_nr + nr_sectors) {
2929 conf->cluster_sync_low = mddev->curr_resync_completed;
2930 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2931 /* Send resync message */
2932 md_cluster_ops->resync_info_update(mddev,
2933 conf->cluster_sync_low,
2934 conf->cluster_sync_high);
2935 }
2936
d11c171e
N
2937 /* For a user-requested sync, we read all readable devices and do a
2938 * compare
2939 */
2940 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2941 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2942 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2943 bio = r1_bio->bios[i];
2944 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2945 read_targets--;
74d46992 2946 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2947 if (read_targets == 1)
2948 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 2949 submit_bio_noacct(bio);
d11c171e
N
2950 }
2951 }
2952 } else {
2953 atomic_set(&r1_bio->remaining, 1);
2954 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2955 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2956 if (read_targets == 1)
2957 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 2958 submit_bio_noacct(bio);
d11c171e 2959 }
1da177e4
LT
2960 return nr_sectors;
2961}
2962
fd01b88c 2963static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2964{
2965 if (sectors)
2966 return sectors;
2967
2968 return mddev->dev_sectors;
2969}
2970
e8096360 2971static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2972{
e8096360 2973 struct r1conf *conf;
709ae487 2974 int i;
0eaf822c 2975 struct raid1_info *disk;
3cb03002 2976 struct md_rdev *rdev;
709ae487 2977 int err = -ENOMEM;
1da177e4 2978
e8096360 2979 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2980 if (!conf)
709ae487 2981 goto abort;
1da177e4 2982
fd76863e 2983 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2984 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2985 if (!conf->nr_pending)
2986 goto abort;
2987
2988 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2989 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2990 if (!conf->nr_waiting)
2991 goto abort;
2992
2993 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2994 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2995 if (!conf->nr_queued)
2996 goto abort;
2997
2998 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2999 sizeof(atomic_t), GFP_KERNEL);
fd76863e 3000 if (!conf->barrier)
3001 goto abort;
3002
6396bb22
KC
3003 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3004 mddev->raid_disks, 2),
3005 GFP_KERNEL);
1da177e4 3006 if (!conf->mirrors)
709ae487 3007 goto abort;
1da177e4 3008
ddaf22ab
N
3009 conf->tmppage = alloc_page(GFP_KERNEL);
3010 if (!conf->tmppage)
709ae487 3011 goto abort;
ddaf22ab 3012
709ae487 3013 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 3014 if (!conf->poolinfo)
709ae487 3015 goto abort;
8f19ccb2 3016 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3f677f9c 3017 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3018 rbio_pool_free, conf->poolinfo);
afeee514 3019 if (err)
709ae487
N
3020 goto abort;
3021
afeee514
KO
3022 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3023 if (err)
c230e7e5
N
3024 goto abort;
3025
ed9bfdf1 3026 conf->poolinfo->mddev = mddev;
1da177e4 3027
c19d5798 3028 err = -EINVAL;
e7e72bf6 3029 spin_lock_init(&conf->device_lock);
dafb20fa 3030 rdev_for_each(rdev, mddev) {
709ae487 3031 int disk_idx = rdev->raid_disk;
1da177e4
LT
3032 if (disk_idx >= mddev->raid_disks
3033 || disk_idx < 0)
3034 continue;
c19d5798 3035 if (test_bit(Replacement, &rdev->flags))
02b898f2 3036 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
3037 else
3038 disk = conf->mirrors + disk_idx;
1da177e4 3039
c19d5798
N
3040 if (disk->rdev)
3041 goto abort;
1da177e4 3042 disk->rdev = rdev;
1da177e4 3043 disk->head_position = 0;
12cee5a8 3044 disk->seq_start = MaxSector;
1da177e4
LT
3045 }
3046 conf->raid_disks = mddev->raid_disks;
3047 conf->mddev = mddev;
1da177e4 3048 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 3049 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
3050
3051 spin_lock_init(&conf->resync_lock);
17999be4 3052 init_waitqueue_head(&conf->wait_barrier);
1da177e4 3053
191ea9b2 3054 bio_list_init(&conf->pending_bio_list);
d890fa2b 3055 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 3056
c19d5798 3057 err = -EIO;
8f19ccb2 3058 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
3059
3060 disk = conf->mirrors + i;
3061
c19d5798
N
3062 if (i < conf->raid_disks &&
3063 disk[conf->raid_disks].rdev) {
3064 /* This slot has a replacement. */
3065 if (!disk->rdev) {
3066 /* No original, just make the replacement
3067 * a recovering spare
3068 */
3069 disk->rdev =
3070 disk[conf->raid_disks].rdev;
3071 disk[conf->raid_disks].rdev = NULL;
3072 } else if (!test_bit(In_sync, &disk->rdev->flags))
3073 /* Original is not in_sync - bad */
3074 goto abort;
3075 }
3076
5fd6c1dc
N
3077 if (!disk->rdev ||
3078 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3079 disk->head_position = 0;
4f0a5e01
JB
3080 if (disk->rdev &&
3081 (disk->rdev->saved_raid_disk < 0))
918f0238 3082 conf->fullsync = 1;
be4d3280 3083 }
1da177e4 3084 }
709ae487 3085
709ae487 3086 err = -ENOMEM;
0232605d 3087 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3088 if (!conf->thread)
709ae487 3089 goto abort;
1da177e4 3090
709ae487
N
3091 return conf;
3092
3093 abort:
3094 if (conf) {
afeee514 3095 mempool_exit(&conf->r1bio_pool);
709ae487
N
3096 kfree(conf->mirrors);
3097 safe_put_page(conf->tmppage);
3098 kfree(conf->poolinfo);
fd76863e 3099 kfree(conf->nr_pending);
3100 kfree(conf->nr_waiting);
3101 kfree(conf->nr_queued);
3102 kfree(conf->barrier);
afeee514 3103 bioset_exit(&conf->bio_split);
709ae487
N
3104 kfree(conf);
3105 }
3106 return ERR_PTR(err);
3107}
3108
afa0f557 3109static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3110static int raid1_run(struct mddev *mddev)
709ae487 3111{
e8096360 3112 struct r1conf *conf;
709ae487 3113 int i;
3cb03002 3114 struct md_rdev *rdev;
5220ea1e 3115 int ret;
709ae487
N
3116
3117 if (mddev->level != 1) {
1d41c216
N
3118 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3119 mdname(mddev), mddev->level);
709ae487
N
3120 return -EIO;
3121 }
3122 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3123 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3124 mdname(mddev));
709ae487
N
3125 return -EIO;
3126 }
a415c0f1
N
3127 if (mddev_init_writes_pending(mddev) < 0)
3128 return -ENOMEM;
1da177e4 3129 /*
709ae487
N
3130 * copy the already verified devices into our private RAID1
3131 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3132 * should be freed in raid1_free()]
1da177e4 3133 */
709ae487
N
3134 if (mddev->private == NULL)
3135 conf = setup_conf(mddev);
3136 else
3137 conf = mddev->private;
1da177e4 3138
709ae487
N
3139 if (IS_ERR(conf))
3140 return PTR_ERR(conf);
1da177e4 3141
10fa225c 3142 if (mddev->queue)
3deff1a7 3143 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 3144
dafb20fa 3145 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3146 if (!mddev->gendisk)
3147 continue;
709ae487
N
3148 disk_stack_limits(mddev->gendisk, rdev->bdev,
3149 rdev->data_offset << 9);
1da177e4 3150 }
191ea9b2 3151
709ae487 3152 mddev->degraded = 0;
ebfeb444 3153 for (i = 0; i < conf->raid_disks; i++)
709ae487
N
3154 if (conf->mirrors[i].rdev == NULL ||
3155 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3156 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3157 mddev->degraded++;
07f1a685
YY
3158 /*
3159 * RAID1 needs at least one disk in active
3160 */
3161 if (conf->raid_disks - mddev->degraded < 1) {
b611ad14 3162 md_unregister_thread(&conf->thread);
07f1a685
YY
3163 ret = -EINVAL;
3164 goto abort;
3165 }
709ae487
N
3166
3167 if (conf->raid_disks - mddev->degraded == 1)
3168 mddev->recovery_cp = MaxSector;
3169
8c6ac868 3170 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3171 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3172 mdname(mddev));
3173 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3174 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3175 mddev->raid_disks);
709ae487 3176
1da177e4
LT
3177 /*
3178 * Ok, everything is just fine now
3179 */
709ae487
N
3180 mddev->thread = conf->thread;
3181 conf->thread = NULL;
3182 mddev->private = conf;
46533ff7 3183 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3184
1f403624 3185 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3186
ebfeb444 3187 ret = md_integrity_register(mddev);
5aa61f42
N
3188 if (ret) {
3189 md_unregister_thread(&mddev->thread);
07f1a685 3190 goto abort;
5aa61f42 3191 }
07f1a685
YY
3192 return 0;
3193
3194abort:
3195 raid1_free(mddev, conf);
5220ea1e 3196 return ret;
1da177e4
LT
3197}
3198
afa0f557 3199static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3200{
afa0f557 3201 struct r1conf *conf = priv;
409c57f3 3202
afeee514 3203 mempool_exit(&conf->r1bio_pool);
990a8baf 3204 kfree(conf->mirrors);
0fea7ed8 3205 safe_put_page(conf->tmppage);
990a8baf 3206 kfree(conf->poolinfo);
fd76863e 3207 kfree(conf->nr_pending);
3208 kfree(conf->nr_waiting);
3209 kfree(conf->nr_queued);
3210 kfree(conf->barrier);
afeee514 3211 bioset_exit(&conf->bio_split);
1da177e4 3212 kfree(conf);
1da177e4
LT
3213}
3214
fd01b88c 3215static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3216{
3217 /* no resync is happening, and there is enough space
3218 * on all devices, so we can resize.
3219 * We need to make sure resync covers any new space.
3220 * If the array is shrinking we should possibly wait until
3221 * any io in the removed space completes, but it hardly seems
3222 * worth it.
3223 */
a4a6125a
N
3224 sector_t newsize = raid1_size(mddev, sectors, 0);
3225 if (mddev->external_size &&
3226 mddev->array_sectors > newsize)
b522adcd 3227 return -EINVAL;
a4a6125a 3228 if (mddev->bitmap) {
e64e4018 3229 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
a4a6125a
N
3230 if (ret)
3231 return ret;
3232 }
3233 md_set_array_sectors(mddev, newsize);
b522adcd 3234 if (sectors > mddev->dev_sectors &&
b098636c 3235 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3236 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3237 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3238 }
b522adcd 3239 mddev->dev_sectors = sectors;
4b5c7ae8 3240 mddev->resync_max_sectors = sectors;
1da177e4
LT
3241 return 0;
3242}
3243
fd01b88c 3244static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3245{
3246 /* We need to:
3247 * 1/ resize the r1bio_pool
3248 * 2/ resize conf->mirrors
3249 *
3250 * We allocate a new r1bio_pool if we can.
3251 * Then raise a device barrier and wait until all IO stops.
3252 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3253 *
3254 * At the same time, we "pack" the devices so that all the missing
3255 * devices have the higher raid_disk numbers.
1da177e4 3256 */
afeee514 3257 mempool_t newpool, oldpool;
1da177e4 3258 struct pool_info *newpoolinfo;
0eaf822c 3259 struct raid1_info *newmirrors;
e8096360 3260 struct r1conf *conf = mddev->private;
63c70c4f 3261 int cnt, raid_disks;
c04be0aa 3262 unsigned long flags;
2214c260 3263 int d, d2;
afeee514
KO
3264 int ret;
3265
3266 memset(&newpool, 0, sizeof(newpool));
3267 memset(&oldpool, 0, sizeof(oldpool));
1da177e4 3268
63c70c4f 3269 /* Cannot change chunk_size, layout, or level */
664e7c41 3270 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3271 mddev->layout != mddev->new_layout ||
3272 mddev->level != mddev->new_level) {
664e7c41 3273 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3274 mddev->new_layout = mddev->layout;
3275 mddev->new_level = mddev->level;
3276 return -EINVAL;
3277 }
3278
2214c260
AP
3279 if (!mddev_is_clustered(mddev))
3280 md_allow_write(mddev);
2a2275d6 3281
63c70c4f
N
3282 raid_disks = mddev->raid_disks + mddev->delta_disks;
3283
6ea9c07c
N
3284 if (raid_disks < conf->raid_disks) {
3285 cnt=0;
3286 for (d= 0; d < conf->raid_disks; d++)
3287 if (conf->mirrors[d].rdev)
3288 cnt++;
3289 if (cnt > raid_disks)
1da177e4 3290 return -EBUSY;
6ea9c07c 3291 }
1da177e4
LT
3292
3293 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3294 if (!newpoolinfo)
3295 return -ENOMEM;
3296 newpoolinfo->mddev = mddev;
8f19ccb2 3297 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4 3298
3f677f9c 3299 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3300 rbio_pool_free, newpoolinfo);
afeee514 3301 if (ret) {
1da177e4 3302 kfree(newpoolinfo);
afeee514 3303 return ret;
1da177e4 3304 }
6396bb22
KC
3305 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3306 raid_disks, 2),
8f19ccb2 3307 GFP_KERNEL);
1da177e4
LT
3308 if (!newmirrors) {
3309 kfree(newpoolinfo);
afeee514 3310 mempool_exit(&newpool);
1da177e4
LT
3311 return -ENOMEM;
3312 }
1da177e4 3313
e2d59925 3314 freeze_array(conf, 0);
1da177e4
LT
3315
3316 /* ok, everything is stopped */
3317 oldpool = conf->r1bio_pool;
3318 conf->r1bio_pool = newpool;
6ea9c07c 3319
a88aa786 3320 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3321 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3322 if (rdev && rdev->raid_disk != d2) {
36fad858 3323 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3324 rdev->raid_disk = d2;
36fad858
NK
3325 sysfs_unlink_rdev(mddev, rdev);
3326 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3327 pr_warn("md/raid1:%s: cannot register rd%d\n",
3328 mdname(mddev), rdev->raid_disk);
6ea9c07c 3329 }
a88aa786
N
3330 if (rdev)
3331 newmirrors[d2++].rdev = rdev;
3332 }
1da177e4
LT
3333 kfree(conf->mirrors);
3334 conf->mirrors = newmirrors;
3335 kfree(conf->poolinfo);
3336 conf->poolinfo = newpoolinfo;
3337
c04be0aa 3338 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3339 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3340 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3341 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3342 mddev->delta_disks = 0;
1da177e4 3343
e2d59925 3344 unfreeze_array(conf);
1da177e4 3345
985ca973 3346 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3347 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3348 md_wakeup_thread(mddev->thread);
3349
afeee514 3350 mempool_exit(&oldpool);
1da177e4
LT
3351 return 0;
3352}
3353
b03e0ccb 3354static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3355{
e8096360 3356 struct r1conf *conf = mddev->private;
36fa3063 3357
b03e0ccb 3358 if (quiesce)
07169fd4 3359 freeze_array(conf, 0);
b03e0ccb 3360 else
07169fd4 3361 unfreeze_array(conf);
36fa3063
N
3362}
3363
fd01b88c 3364static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3365{
3366 /* raid1 can take over:
3367 * raid5 with 2 devices, any layout or chunk size
3368 */
3369 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3370 struct r1conf *conf;
709ae487
N
3371 mddev->new_level = 1;
3372 mddev->new_layout = 0;
3373 mddev->new_chunk_sectors = 0;
3374 conf = setup_conf(mddev);
6995f0b2 3375 if (!IS_ERR(conf)) {
07169fd4 3376 /* Array must appear to be quiesced */
3377 conf->array_frozen = 1;
394ed8e4
SL
3378 mddev_clear_unsupported_flags(mddev,
3379 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3380 }
709ae487
N
3381 return conf;
3382 }
3383 return ERR_PTR(-EINVAL);
3384}
1da177e4 3385
84fc4b56 3386static struct md_personality raid1_personality =
1da177e4
LT
3387{
3388 .name = "raid1",
2604b703 3389 .level = 1,
1da177e4 3390 .owner = THIS_MODULE,
849674e4
SL
3391 .make_request = raid1_make_request,
3392 .run = raid1_run,
afa0f557 3393 .free = raid1_free,
849674e4
SL
3394 .status = raid1_status,
3395 .error_handler = raid1_error,
1da177e4
LT
3396 .hot_add_disk = raid1_add_disk,
3397 .hot_remove_disk= raid1_remove_disk,
3398 .spare_active = raid1_spare_active,
849674e4 3399 .sync_request = raid1_sync_request,
1da177e4 3400 .resize = raid1_resize,
80c3a6ce 3401 .size = raid1_size,
63c70c4f 3402 .check_reshape = raid1_reshape,
36fa3063 3403 .quiesce = raid1_quiesce,
709ae487 3404 .takeover = raid1_takeover,
1da177e4
LT
3405};
3406
3407static int __init raid_init(void)
3408{
2604b703 3409 return register_md_personality(&raid1_personality);
1da177e4
LT
3410}
3411
3412static void raid_exit(void)
3413{
2604b703 3414 unregister_md_personality(&raid1_personality);
1da177e4
LT
3415}
3416
3417module_init(raid_init);
3418module_exit(raid_exit);
3419MODULE_LICENSE("GPL");
0efb9e61 3420MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3421MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3422MODULE_ALIAS("md-raid1");
2604b703 3423MODULE_ALIAS("md-level-1");