Merge tag 'devicetree-fixes-for-6.6-1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / drivers / md / raid1.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
96de0e25 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
191ea9b2
N
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
1da177e4
LT
24 */
25
5a0e3ad6 26#include <linux/slab.h>
25570727 27#include <linux/delay.h>
bff61975 28#include <linux/blkdev.h>
056075c7 29#include <linux/module.h>
bff61975 30#include <linux/seq_file.h>
8bda470e 31#include <linux/ratelimit.h>
69b00b5b 32#include <linux/interval_tree_generic.h>
3f07c014 33
109e3765 34#include <trace/events/block.h>
3f07c014 35
43b2e5d8 36#include "md.h"
ef740c37 37#include "raid1.h"
935fe098 38#include "md-bitmap.h"
191ea9b2 39
394ed8e4
SL
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 42 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 45
fd76863e 46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 48
578b54ad
N
49#define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
fb0eb5df
ML
52#include "raid1-10.c"
53
69b00b5b
GJ
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
d0d2d8ba
GJ
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
3e148a32 61{
3e148a32
GJ
62 unsigned long flags;
63 int ret = 0;
d0d2d8ba
GJ
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
025471f9 66 struct serial_in_rdev *serial = &rdev->serial[idx];
3e148a32 67
69b00b5b
GJ
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 ret = -EBUSY;
d0d2d8ba 72 else {
69b00b5b
GJ
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(si, &serial->serial_rb);
d0d2d8ba 76 }
69b00b5b 77 spin_unlock_irqrestore(&serial->serial_lock, flags);
3e148a32
GJ
78
79 return ret;
80}
81
d0d2d8ba
GJ
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
404659cf 96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
3e148a32 97{
69b00b5b 98 struct serial_info *si;
3e148a32
GJ
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
025471f9
GJ
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
69b00b5b
GJ
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
3e148a32
GJ
111 found = 1;
112 break;
113 }
69b00b5b 114 }
3e148a32 115 if (!found)
404659cf 116 WARN(1, "The write IO is not recorded for serialization\n");
69b00b5b
GJ
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
3e148a32
GJ
119}
120
98d30c58
ML
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127 return get_resync_pages(bio)->raid_bio;
128}
129
dd0fc66f 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
131{
132 struct pool_info *pi = data;
9f2c9d12 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 136 return kzalloc(size, gfp_flags);
1da177e4
LT
137}
138
8e005f7c 139#define RESYNC_DEPTH 32
1da177e4 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 145
dd0fc66f 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
147{
148 struct pool_info *pi = data;
9f2c9d12 149 struct r1bio *r1_bio;
1da177e4 150 struct bio *bio;
da1aab3d 151 int need_pages;
98d30c58
ML
152 int j;
153 struct resync_pages *rps;
1da177e4
LT
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 156 if (!r1_bio)
1da177e4 157 return NULL;
1da177e4 158
6da2ec56
KC
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 gfp_flags);
98d30c58
ML
161 if (!rps)
162 goto out_free_r1bio;
163
1da177e4
LT
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
066ff571 168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
1da177e4
LT
169 if (!bio)
170 goto out_free_bio;
066ff571 171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
1da177e4
LT
172 r1_bio->bios[j] = bio;
173 }
174 /*
175 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
176 * the first bio.
177 * If this is a user-requested check/repair, allocate
178 * RESYNC_PAGES for each bio.
1da177e4 179 */
d11c171e 180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 181 need_pages = pi->raid_disks;
d11c171e 182 else
da1aab3d 183 need_pages = 1;
98d30c58
ML
184 for (j = 0; j < pi->raid_disks; j++) {
185 struct resync_pages *rp = &rps[j];
186
d11c171e 187 bio = r1_bio->bios[j];
d11c171e 188
98d30c58
ML
189 if (j < need_pages) {
190 if (resync_alloc_pages(rp, gfp_flags))
191 goto out_free_pages;
192 } else {
193 memcpy(rp, &rps[0], sizeof(*rp));
194 resync_get_all_pages(rp);
195 }
196
98d30c58
ML
197 rp->raid_bio = r1_bio;
198 bio->bi_private = rp;
1da177e4
LT
199 }
200
201 r1_bio->master_bio = NULL;
202
203 return r1_bio;
204
da1aab3d 205out_free_pages:
491221f8 206 while (--j >= 0)
98d30c58 207 resync_free_pages(&rps[j]);
da1aab3d 208
1da177e4 209out_free_bio:
066ff571
CH
210 while (++j < pi->raid_disks) {
211 bio_uninit(r1_bio->bios[j]);
212 kfree(r1_bio->bios[j]);
213 }
98d30c58
ML
214 kfree(rps);
215
216out_free_r1bio:
c7afa803 217 rbio_pool_free(r1_bio, data);
1da177e4
LT
218 return NULL;
219}
220
221static void r1buf_pool_free(void *__r1_bio, void *data)
222{
223 struct pool_info *pi = data;
98d30c58 224 int i;
9f2c9d12 225 struct r1bio *r1bio = __r1_bio;
98d30c58 226 struct resync_pages *rp = NULL;
1da177e4 227
98d30c58
ML
228 for (i = pi->raid_disks; i--; ) {
229 rp = get_resync_pages(r1bio->bios[i]);
230 resync_free_pages(rp);
066ff571
CH
231 bio_uninit(r1bio->bios[i]);
232 kfree(r1bio->bios[i]);
98d30c58
ML
233 }
234
235 /* resync pages array stored in the 1st bio's .bi_private */
236 kfree(rp);
1da177e4 237
c7afa803 238 rbio_pool_free(r1bio, data);
1da177e4
LT
239}
240
e8096360 241static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
242{
243 int i;
244
8f19ccb2 245 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 246 struct bio **bio = r1_bio->bios + i;
4367af55 247 if (!BIO_SPECIAL(*bio))
1da177e4
LT
248 bio_put(*bio);
249 *bio = NULL;
250 }
251}
252
9f2c9d12 253static void free_r1bio(struct r1bio *r1_bio)
1da177e4 254{
e8096360 255 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 256
1da177e4 257 put_all_bios(conf, r1_bio);
afeee514 258 mempool_free(r1_bio, &conf->r1bio_pool);
1da177e4
LT
259}
260
9f2c9d12 261static void put_buf(struct r1bio *r1_bio)
1da177e4 262{
e8096360 263 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 264 sector_t sect = r1_bio->sector;
3e198f78
N
265 int i;
266
8f19ccb2 267 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
268 struct bio *bio = r1_bio->bios[i];
269 if (bio->bi_end_io)
270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 }
1da177e4 272
afeee514 273 mempool_free(r1_bio, &conf->r1buf_pool);
1da177e4 274
af5f42a7 275 lower_barrier(conf, sect);
1da177e4
LT
276}
277
9f2c9d12 278static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
279{
280 unsigned long flags;
fd01b88c 281 struct mddev *mddev = r1_bio->mddev;
e8096360 282 struct r1conf *conf = mddev->private;
fd76863e 283 int idx;
1da177e4 284
fd76863e 285 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
286 spin_lock_irqsave(&conf->device_lock, flags);
287 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 288 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
289 spin_unlock_irqrestore(&conf->device_lock, flags);
290
17999be4 291 wake_up(&conf->wait_barrier);
1da177e4
LT
292 md_wakeup_thread(mddev->thread);
293}
294
295/*
296 * raid_end_bio_io() is called when we have finished servicing a mirrored
297 * operation and are ready to return a success/failure code to the buffer
298 * cache layer.
299 */
9f2c9d12 300static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
301{
302 struct bio *bio = r1_bio->master_bio;
d2eb35ac
N
303
304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 305 bio->bi_status = BLK_STS_IOERR;
4246a0b6 306
37011e3a 307 bio_endio(bio);
d2eb35ac
N
308}
309
9f2c9d12 310static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
311{
312 struct bio *bio = r1_bio->master_bio;
c91114c2 313 struct r1conf *conf = r1_bio->mddev->private;
c5d736f5 314 sector_t sector = r1_bio->sector;
1da177e4 315
4b6d287f
N
316 /* if nobody has done the final endio yet, do it now */
317 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
318 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
320 (unsigned long long) bio->bi_iter.bi_sector,
321 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 322
d2eb35ac 323 call_bio_endio(r1_bio);
4b6d287f 324 }
c5d736f5
XH
325
326 free_r1bio(r1_bio);
c91114c2
DJ
327 /*
328 * Wake up any possible resync thread that waits for the device
329 * to go idle. All I/Os, even write-behind writes, are done.
330 */
c5d736f5 331 allow_barrier(conf, sector);
1da177e4
LT
332}
333
334/*
335 * Update disk head position estimator based on IRQ completion info.
336 */
9f2c9d12 337static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 338{
e8096360 339 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
340
341 conf->mirrors[disk].head_position =
342 r1_bio->sector + (r1_bio->sectors);
343}
344
ba3ae3be
NK
345/*
346 * Find the disk number which triggered given bio
347 */
9f2c9d12 348static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
349{
350 int mirror;
30194636
N
351 struct r1conf *conf = r1_bio->mddev->private;
352 int raid_disks = conf->raid_disks;
ba3ae3be 353
8f19ccb2 354 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
355 if (r1_bio->bios[mirror] == bio)
356 break;
357
8f19ccb2 358 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
359 update_head_pos(mirror, r1_bio);
360
361 return mirror;
362}
363
4246a0b6 364static void raid1_end_read_request(struct bio *bio)
1da177e4 365{
4e4cbee9 366 int uptodate = !bio->bi_status;
9f2c9d12 367 struct r1bio *r1_bio = bio->bi_private;
e8096360 368 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 369 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 370
1da177e4
LT
371 /*
372 * this branch is our 'one mirror IO has finished' event handler:
373 */
e5872d58 374 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 375
dd00a99e
N
376 if (uptodate)
377 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
378 else if (test_bit(FailFast, &rdev->flags) &&
379 test_bit(R1BIO_FailFast, &r1_bio->state))
380 /* This was a fail-fast read so we definitely
381 * want to retry */
382 ;
dd00a99e
N
383 else {
384 /* If all other devices have failed, we want to return
385 * the error upwards rather than fail the last device.
386 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 387 */
dd00a99e
N
388 unsigned long flags;
389 spin_lock_irqsave(&conf->device_lock, flags);
390 if (r1_bio->mddev->degraded == conf->raid_disks ||
391 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 392 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
393 uptodate = 1;
394 spin_unlock_irqrestore(&conf->device_lock, flags);
395 }
1da177e4 396
7ad4d4a6 397 if (uptodate) {
1da177e4 398 raid_end_bio_io(r1_bio);
e5872d58 399 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 400 } else {
1da177e4
LT
401 /*
402 * oops, read error:
403 */
913cce5a 404 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
1d41c216 405 mdname(conf->mddev),
913cce5a 406 rdev->bdev,
1d41c216 407 (unsigned long long)r1_bio->sector);
d2eb35ac 408 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 409 reschedule_retry(r1_bio);
7ad4d4a6 410 /* don't drop the reference on read_disk yet */
1da177e4 411 }
1da177e4
LT
412}
413
9f2c9d12 414static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
415{
416 /* it really is the end of this request */
417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
418 bio_free_pages(r1_bio->behind_master_bio);
419 bio_put(r1_bio->behind_master_bio);
420 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
421 }
422 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
423 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
424 r1_bio->sectors,
425 !test_bit(R1BIO_Degraded, &r1_bio->state),
426 test_bit(R1BIO_BehindIO, &r1_bio->state));
cd5ff9a1
N
427 md_write_end(r1_bio->mddev);
428}
429
9f2c9d12 430static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 431{
cd5ff9a1
N
432 if (!atomic_dec_and_test(&r1_bio->remaining))
433 return;
434
435 if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else {
438 close_write(r1_bio);
4367af55
N
439 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 reschedule_retry(r1_bio);
441 else
442 raid_end_bio_io(r1_bio);
4e78064f
N
443 }
444}
445
4246a0b6 446static void raid1_end_write_request(struct bio *bio)
1da177e4 447{
9f2c9d12 448 struct r1bio *r1_bio = bio->bi_private;
e5872d58 449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 450 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 451 struct bio *to_put = NULL;
e5872d58
N
452 int mirror = find_bio_disk(r1_bio, bio);
453 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd 454 bool discard_error;
69df9cfc
GJ
455 sector_t lo = r1_bio->sector;
456 sector_t hi = r1_bio->sector + r1_bio->sectors;
e3f948cd 457
4e4cbee9 458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 459
e9c7469b
TH
460 /*
461 * 'one mirror IO has finished' event handler:
462 */
4e4cbee9 463 if (bio->bi_status && !discard_error) {
e5872d58
N
464 set_bit(WriteErrorSeen, &rdev->flags);
465 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
466 set_bit(MD_RECOVERY_NEEDED, &
467 conf->mddev->recovery);
468
212e7eb7
N
469 if (test_bit(FailFast, &rdev->flags) &&
470 (bio->bi_opf & MD_FAILFAST) &&
471 /* We never try FailFast to WriteMostly devices */
472 !test_bit(WriteMostly, &rdev->flags)) {
473 md_error(r1_bio->mddev, rdev);
eeba6809
YY
474 }
475
476 /*
477 * When the device is faulty, it is not necessary to
478 * handle write error.
eeba6809
YY
479 */
480 if (!test_bit(Faulty, &rdev->flags))
212e7eb7 481 set_bit(R1BIO_WriteError, &r1_bio->state);
eeba6809 482 else {
2417b986
PC
483 /* Fail the request */
484 set_bit(R1BIO_Degraded, &r1_bio->state);
eeba6809
YY
485 /* Finished with this branch */
486 r1_bio->bios[mirror] = NULL;
487 to_put = bio;
488 }
4367af55 489 } else {
1da177e4 490 /*
e9c7469b
TH
491 * Set R1BIO_Uptodate in our master bio, so that we
492 * will return a good error code for to the higher
493 * levels even if IO on some other mirrored buffer
494 * fails.
495 *
496 * The 'master' represents the composite IO operation
497 * to user-side. So if something waits for IO, then it
498 * will wait for the 'master' bio.
1da177e4 499 */
4367af55
N
500 sector_t first_bad;
501 int bad_sectors;
502
cd5ff9a1
N
503 r1_bio->bios[mirror] = NULL;
504 to_put = bio;
3056e3ae
AL
505 /*
506 * Do not set R1BIO_Uptodate if the current device is
507 * rebuilding or Faulty. This is because we cannot use
508 * such device for properly reading the data back (we could
509 * potentially use it, if the current write would have felt
510 * before rdev->recovery_offset, but for simplicity we don't
511 * check this here.
512 */
e5872d58
N
513 if (test_bit(In_sync, &rdev->flags) &&
514 !test_bit(Faulty, &rdev->flags))
3056e3ae 515 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 516
4367af55 517 /* Maybe we can clear some bad blocks. */
e5872d58 518 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 519 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
520 r1_bio->bios[mirror] = IO_MADE_GOOD;
521 set_bit(R1BIO_MadeGood, &r1_bio->state);
522 }
523 }
524
e9c7469b 525 if (behind) {
69df9cfc 526 if (test_bit(CollisionCheck, &rdev->flags))
404659cf 527 remove_serial(rdev, lo, hi);
e5872d58 528 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
529 atomic_dec(&r1_bio->behind_remaining);
530
531 /*
532 * In behind mode, we ACK the master bio once the I/O
533 * has safely reached all non-writemostly
534 * disks. Setting the Returned bit ensures that this
535 * gets done only once -- we don't ever want to return
536 * -EIO here, instead we'll wait
537 */
538 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
539 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
540 /* Maybe we can return now */
541 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
542 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
543 pr_debug("raid1: behind end write sectors"
544 " %llu-%llu\n",
4f024f37
KO
545 (unsigned long long) mbio->bi_iter.bi_sector,
546 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 547 call_bio_endio(r1_bio);
4b6d287f
N
548 }
549 }
69df9cfc
GJ
550 } else if (rdev->mddev->serialize_policy)
551 remove_serial(rdev, lo, hi);
4367af55 552 if (r1_bio->bios[mirror] == NULL)
e5872d58 553 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 554
1da177e4 555 /*
1da177e4
LT
556 * Let's see if all mirrored write operations have finished
557 * already.
558 */
af6d7b76 559 r1_bio_write_done(r1_bio);
c70810b3 560
04b857f7
N
561 if (to_put)
562 bio_put(to_put);
1da177e4
LT
563}
564
fd76863e 565static sector_t align_to_barrier_unit_end(sector_t start_sector,
566 sector_t sectors)
567{
568 sector_t len;
569
570 WARN_ON(sectors == 0);
571 /*
572 * len is the number of sectors from start_sector to end of the
573 * barrier unit which start_sector belongs to.
574 */
575 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
576 start_sector;
577
578 if (len > sectors)
579 len = sectors;
580
581 return len;
582}
583
1da177e4
LT
584/*
585 * This routine returns the disk from which the requested read should
586 * be done. There is a per-array 'next expected sequential IO' sector
587 * number - if this matches on the next IO then we use the last disk.
588 * There is also a per-disk 'last know head position' sector that is
589 * maintained from IRQ contexts, both the normal and the resync IO
590 * completion handlers update this position correctly. If there is no
591 * perfect sequential match then we pick the disk whose head is closest.
592 *
593 * If there are 2 mirrors in the same 2 devices, performance degrades
594 * because position is mirror, not device based.
595 *
596 * The rdev for the device selected will have nr_pending incremented.
597 */
e8096360 598static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 599{
af3a2cd6 600 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
601 int sectors;
602 int best_good_sectors;
9dedf603
SL
603 int best_disk, best_dist_disk, best_pending_disk;
604 int has_nonrot_disk;
be4d3280 605 int disk;
76073054 606 sector_t best_dist;
9dedf603 607 unsigned int min_pending;
3cb03002 608 struct md_rdev *rdev;
f3ac8bf7 609 int choose_first;
12cee5a8 610 int choose_next_idle;
1da177e4
LT
611
612 rcu_read_lock();
613 /*
8ddf9efe 614 * Check if we can balance. We can balance on the whole
1da177e4
LT
615 * device if no resync is going on, or below the resync window.
616 * We take the first readable disk when above the resync window.
617 */
618 retry:
d2eb35ac 619 sectors = r1_bio->sectors;
76073054 620 best_disk = -1;
9dedf603 621 best_dist_disk = -1;
76073054 622 best_dist = MaxSector;
9dedf603
SL
623 best_pending_disk = -1;
624 min_pending = UINT_MAX;
d2eb35ac 625 best_good_sectors = 0;
9dedf603 626 has_nonrot_disk = 0;
12cee5a8 627 choose_next_idle = 0;
2e52d449 628 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 629
7d49ffcf
GR
630 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
631 (mddev_is_clustered(conf->mddev) &&
90382ed9 632 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
633 this_sector + sectors)))
634 choose_first = 1;
635 else
636 choose_first = 0;
1da177e4 637
be4d3280 638 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 639 sector_t dist;
d2eb35ac
N
640 sector_t first_bad;
641 int bad_sectors;
9dedf603 642 unsigned int pending;
12cee5a8 643 bool nonrot;
d2eb35ac 644
f3ac8bf7
N
645 rdev = rcu_dereference(conf->mirrors[disk].rdev);
646 if (r1_bio->bios[disk] == IO_BLOCKED
647 || rdev == NULL
76073054 648 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 649 continue;
76073054
N
650 if (!test_bit(In_sync, &rdev->flags) &&
651 rdev->recovery_offset < this_sector + sectors)
1da177e4 652 continue;
76073054
N
653 if (test_bit(WriteMostly, &rdev->flags)) {
654 /* Don't balance among write-mostly, just
655 * use the first as a last resort */
d1901ef0 656 if (best_dist_disk < 0) {
307729c8
N
657 if (is_badblock(rdev, this_sector, sectors,
658 &first_bad, &bad_sectors)) {
816b0acf 659 if (first_bad <= this_sector)
307729c8
N
660 /* Cannot use this */
661 continue;
662 best_good_sectors = first_bad - this_sector;
663 } else
664 best_good_sectors = sectors;
d1901ef0
TH
665 best_dist_disk = disk;
666 best_pending_disk = disk;
307729c8 667 }
76073054
N
668 continue;
669 }
670 /* This is a reasonable device to use. It might
671 * even be best.
672 */
d2eb35ac
N
673 if (is_badblock(rdev, this_sector, sectors,
674 &first_bad, &bad_sectors)) {
675 if (best_dist < MaxSector)
676 /* already have a better device */
677 continue;
678 if (first_bad <= this_sector) {
679 /* cannot read here. If this is the 'primary'
680 * device, then we must not read beyond
681 * bad_sectors from another device..
682 */
683 bad_sectors -= (this_sector - first_bad);
684 if (choose_first && sectors > bad_sectors)
685 sectors = bad_sectors;
686 if (best_good_sectors > sectors)
687 best_good_sectors = sectors;
688
689 } else {
690 sector_t good_sectors = first_bad - this_sector;
691 if (good_sectors > best_good_sectors) {
692 best_good_sectors = good_sectors;
693 best_disk = disk;
694 }
695 if (choose_first)
696 break;
697 }
698 continue;
d82dd0e3
TM
699 } else {
700 if ((sectors > best_good_sectors) && (best_disk >= 0))
701 best_disk = -1;
d2eb35ac 702 best_good_sectors = sectors;
d82dd0e3 703 }
d2eb35ac 704
2e52d449
N
705 if (best_disk >= 0)
706 /* At least two disks to choose from so failfast is OK */
707 set_bit(R1BIO_FailFast, &r1_bio->state);
708
10f0d2a5 709 nonrot = bdev_nonrot(rdev->bdev);
12cee5a8 710 has_nonrot_disk |= nonrot;
9dedf603 711 pending = atomic_read(&rdev->nr_pending);
76073054 712 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 713 if (choose_first) {
76073054 714 best_disk = disk;
1da177e4
LT
715 break;
716 }
12cee5a8
SL
717 /* Don't change to another disk for sequential reads */
718 if (conf->mirrors[disk].next_seq_sect == this_sector
719 || dist == 0) {
720 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
721 struct raid1_info *mirror = &conf->mirrors[disk];
722
723 best_disk = disk;
724 /*
725 * If buffered sequential IO size exceeds optimal
726 * iosize, check if there is idle disk. If yes, choose
727 * the idle disk. read_balance could already choose an
728 * idle disk before noticing it's a sequential IO in
729 * this disk. This doesn't matter because this disk
730 * will idle, next time it will be utilized after the
731 * first disk has IO size exceeds optimal iosize. In
732 * this way, iosize of the first disk will be optimal
733 * iosize at least. iosize of the second disk might be
734 * small, but not a big deal since when the second disk
735 * starts IO, the first disk is likely still busy.
736 */
737 if (nonrot && opt_iosize > 0 &&
738 mirror->seq_start != MaxSector &&
739 mirror->next_seq_sect > opt_iosize &&
740 mirror->next_seq_sect - opt_iosize >=
741 mirror->seq_start) {
742 choose_next_idle = 1;
743 continue;
744 }
745 break;
746 }
12cee5a8
SL
747
748 if (choose_next_idle)
749 continue;
9dedf603
SL
750
751 if (min_pending > pending) {
752 min_pending = pending;
753 best_pending_disk = disk;
754 }
755
76073054
N
756 if (dist < best_dist) {
757 best_dist = dist;
9dedf603 758 best_dist_disk = disk;
1da177e4 759 }
f3ac8bf7 760 }
1da177e4 761
9dedf603
SL
762 /*
763 * If all disks are rotational, choose the closest disk. If any disk is
764 * non-rotational, choose the disk with less pending request even the
765 * disk is rotational, which might/might not be optimal for raids with
766 * mixed ratation/non-rotational disks depending on workload.
767 */
768 if (best_disk == -1) {
2e52d449 769 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
770 best_disk = best_pending_disk;
771 else
772 best_disk = best_dist_disk;
773 }
774
76073054
N
775 if (best_disk >= 0) {
776 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
777 if (!rdev)
778 goto retry;
779 atomic_inc(&rdev->nr_pending);
d2eb35ac 780 sectors = best_good_sectors;
12cee5a8
SL
781
782 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
783 conf->mirrors[best_disk].seq_start = this_sector;
784
be4d3280 785 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
786 }
787 rcu_read_unlock();
d2eb35ac 788 *max_sectors = sectors;
1da177e4 789
76073054 790 return best_disk;
1da177e4
LT
791}
792
21bd9a68
JW
793static void wake_up_barrier(struct r1conf *conf)
794{
795 if (wq_has_sleeper(&conf->wait_barrier))
796 wake_up(&conf->wait_barrier);
797}
798
673ca68d
N
799static void flush_bio_list(struct r1conf *conf, struct bio *bio)
800{
801 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
9efcc2c3 802 raid1_prepare_flush_writes(conf->mddev->bitmap);
21bd9a68 803 wake_up_barrier(conf);
673ca68d
N
804
805 while (bio) { /* submit pending writes */
806 struct bio *next = bio->bi_next;
8295efbe
YK
807
808 raid1_submit_write(bio);
673ca68d 809 bio = next;
5fa4f8ba 810 cond_resched();
673ca68d
N
811 }
812}
813
e8096360 814static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
815{
816 /* Any writes that have been queued but are awaiting
817 * bitmap updates get flushed here.
a35e63ef 818 */
a35e63ef
N
819 spin_lock_irq(&conf->device_lock);
820
821 if (conf->pending_bio_list.head) {
18022a1b 822 struct blk_plug plug;
a35e63ef 823 struct bio *bio;
18022a1b 824
a35e63ef 825 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef 826 spin_unlock_irq(&conf->device_lock);
474beb57
N
827
828 /*
829 * As this is called in a wait_event() loop (see freeze_array),
830 * current->state might be TASK_UNINTERRUPTIBLE which will
831 * cause a warning when we prepare to wait again. As it is
832 * rare that this path is taken, it is perfectly safe to force
833 * us to go around the wait_event() loop again, so the warning
834 * is a false-positive. Silence the warning by resetting
835 * thread state
836 */
837 __set_current_state(TASK_RUNNING);
18022a1b 838 blk_start_plug(&plug);
673ca68d 839 flush_bio_list(conf, bio);
18022a1b 840 blk_finish_plug(&plug);
a35e63ef
N
841 } else
842 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
843}
844
17999be4
N
845/* Barriers....
846 * Sometimes we need to suspend IO while we do something else,
847 * either some resync/recovery, or reconfigure the array.
848 * To do this we raise a 'barrier'.
849 * The 'barrier' is a counter that can be raised multiple times
850 * to count how many activities are happening which preclude
851 * normal IO.
852 * We can only raise the barrier if there is no pending IO.
853 * i.e. if nr_pending == 0.
854 * We choose only to raise the barrier if no-one is waiting for the
855 * barrier to go down. This means that as soon as an IO request
856 * is ready, no other operations which require a barrier will start
857 * until the IO request has had a chance.
858 *
859 * So: regular IO calls 'wait_barrier'. When that returns there
860 * is no backgroup IO happening, It must arrange to call
861 * allow_barrier when it has finished its IO.
862 * backgroup IO calls must call raise_barrier. Once that returns
863 * there is no normal IO happeing. It must arrange to call
864 * lower_barrier when the particular background IO completes.
4675719d
HT
865 *
866 * If resync/recovery is interrupted, returns -EINTR;
867 * Otherwise, returns 0.
1da177e4 868 */
4675719d 869static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 870{
fd76863e 871 int idx = sector_to_idx(sector_nr);
872
1da177e4 873 spin_lock_irq(&conf->resync_lock);
17999be4
N
874
875 /* Wait until no block IO is waiting */
824e47da 876 wait_event_lock_irq(conf->wait_barrier,
877 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 878 conf->resync_lock);
17999be4
N
879
880 /* block any new IO from starting */
824e47da 881 atomic_inc(&conf->barrier[idx]);
882 /*
883 * In raise_barrier() we firstly increase conf->barrier[idx] then
884 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886 * A memory barrier here to make sure conf->nr_pending[idx] won't
887 * be fetched before conf->barrier[idx] is increased. Otherwise
888 * there will be a race between raise_barrier() and _wait_barrier().
889 */
890 smp_mb__after_atomic();
17999be4 891
79ef3a8a 892 /* For these conditions we must wait:
893 * A: while the array is in frozen state
fd76863e 894 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895 * existing in corresponding I/O barrier bucket.
896 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 898 */
17999be4 899 wait_event_lock_irq(conf->wait_barrier,
8c242593 900 (!conf->array_frozen &&
824e47da 901 !atomic_read(&conf->nr_pending[idx]) &&
8c242593
YY
902 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
eed8c02e 904 conf->resync_lock);
17999be4 905
8c242593
YY
906 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907 atomic_dec(&conf->barrier[idx]);
908 spin_unlock_irq(&conf->resync_lock);
909 wake_up(&conf->wait_barrier);
910 return -EINTR;
911 }
912
43ac9b84 913 atomic_inc(&conf->nr_sync_pending);
17999be4 914 spin_unlock_irq(&conf->resync_lock);
8c242593
YY
915
916 return 0;
17999be4
N
917}
918
fd76863e 919static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 920{
fd76863e 921 int idx = sector_to_idx(sector_nr);
922
824e47da 923 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 924
824e47da 925 atomic_dec(&conf->barrier[idx]);
43ac9b84 926 atomic_dec(&conf->nr_sync_pending);
17999be4
N
927 wake_up(&conf->wait_barrier);
928}
929
5aa70503 930static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
17999be4 931{
5aa70503
VV
932 bool ret = true;
933
824e47da 934 /*
935 * We need to increase conf->nr_pending[idx] very early here,
936 * then raise_barrier() can be blocked when it waits for
937 * conf->nr_pending[idx] to be 0. Then we can avoid holding
938 * conf->resync_lock when there is no barrier raised in same
939 * barrier unit bucket. Also if the array is frozen, I/O
940 * should be blocked until array is unfrozen.
941 */
942 atomic_inc(&conf->nr_pending[idx]);
943 /*
944 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
945 * check conf->barrier[idx]. In raise_barrier() we firstly increase
946 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
947 * barrier is necessary here to make sure conf->barrier[idx] won't be
948 * fetched before conf->nr_pending[idx] is increased. Otherwise there
949 * will be a race between _wait_barrier() and raise_barrier().
950 */
951 smp_mb__after_atomic();
79ef3a8a 952
824e47da 953 /*
954 * Don't worry about checking two atomic_t variables at same time
955 * here. If during we check conf->barrier[idx], the array is
956 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
957 * 0, it is safe to return and make the I/O continue. Because the
958 * array is frozen, all I/O returned here will eventually complete
959 * or be queued, no race will happen. See code comment in
960 * frozen_array().
961 */
962 if (!READ_ONCE(conf->array_frozen) &&
963 !atomic_read(&conf->barrier[idx]))
5aa70503 964 return ret;
79ef3a8a 965
824e47da 966 /*
967 * After holding conf->resync_lock, conf->nr_pending[idx]
968 * should be decreased before waiting for barrier to drop.
969 * Otherwise, we may encounter a race condition because
970 * raise_barrer() might be waiting for conf->nr_pending[idx]
971 * to be 0 at same time.
972 */
973 spin_lock_irq(&conf->resync_lock);
974 atomic_inc(&conf->nr_waiting[idx]);
975 atomic_dec(&conf->nr_pending[idx]);
976 /*
977 * In case freeze_array() is waiting for
978 * get_unqueued_pending() == extra
979 */
21bd9a68 980 wake_up_barrier(conf);
824e47da 981 /* Wait for the barrier in same barrier unit bucket to drop. */
5aa70503
VV
982
983 /* Return false when nowait flag is set */
984 if (nowait) {
985 ret = false;
986 } else {
987 wait_event_lock_irq(conf->wait_barrier,
988 !conf->array_frozen &&
989 !atomic_read(&conf->barrier[idx]),
990 conf->resync_lock);
991 atomic_inc(&conf->nr_pending[idx]);
992 }
993
824e47da 994 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 995 spin_unlock_irq(&conf->resync_lock);
5aa70503 996 return ret;
79ef3a8a 997}
998
5aa70503 999static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
79ef3a8a 1000{
fd76863e 1001 int idx = sector_to_idx(sector_nr);
5aa70503 1002 bool ret = true;
79ef3a8a 1003
824e47da 1004 /*
1005 * Very similar to _wait_barrier(). The difference is, for read
1006 * I/O we don't need wait for sync I/O, but if the whole array
1007 * is frozen, the read I/O still has to wait until the array is
1008 * unfrozen. Since there is no ordering requirement with
1009 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1010 */
1011 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 1012
824e47da 1013 if (!READ_ONCE(conf->array_frozen))
5aa70503 1014 return ret;
824e47da 1015
1016 spin_lock_irq(&conf->resync_lock);
1017 atomic_inc(&conf->nr_waiting[idx]);
1018 atomic_dec(&conf->nr_pending[idx]);
1019 /*
1020 * In case freeze_array() is waiting for
1021 * get_unqueued_pending() == extra
1022 */
21bd9a68 1023 wake_up_barrier(conf);
824e47da 1024 /* Wait for array to be unfrozen */
5aa70503
VV
1025
1026 /* Return false when nowait flag is set */
1027 if (nowait) {
1028 /* Return false when nowait flag is set */
1029 ret = false;
1030 } else {
1031 wait_event_lock_irq(conf->wait_barrier,
1032 !conf->array_frozen,
1033 conf->resync_lock);
1034 atomic_inc(&conf->nr_pending[idx]);
1035 }
1036
824e47da 1037 atomic_dec(&conf->nr_waiting[idx]);
1da177e4 1038 spin_unlock_irq(&conf->resync_lock);
5aa70503 1039 return ret;
1da177e4
LT
1040}
1041
5aa70503 1042static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
17999be4 1043{
fd76863e 1044 int idx = sector_to_idx(sector_nr);
79ef3a8a 1045
5aa70503 1046 return _wait_barrier(conf, idx, nowait);
fd76863e 1047}
1048
fd76863e 1049static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1050{
824e47da 1051 atomic_dec(&conf->nr_pending[idx]);
21bd9a68 1052 wake_up_barrier(conf);
17999be4
N
1053}
1054
fd76863e 1055static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1056{
1057 int idx = sector_to_idx(sector_nr);
1058
1059 _allow_barrier(conf, idx);
1060}
1061
fd76863e 1062/* conf->resync_lock should be held */
1063static int get_unqueued_pending(struct r1conf *conf)
1064{
1065 int idx, ret;
1066
43ac9b84
XN
1067 ret = atomic_read(&conf->nr_sync_pending);
1068 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1069 ret += atomic_read(&conf->nr_pending[idx]) -
1070 atomic_read(&conf->nr_queued[idx]);
fd76863e 1071
1072 return ret;
1073}
1074
e2d59925 1075static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1076{
fd76863e 1077 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1078 * go quiet.
fd76863e 1079 * This is called in two situations:
1080 * 1) management command handlers (reshape, remove disk, quiesce).
1081 * 2) one normal I/O request failed.
1082
1083 * After array_frozen is set to 1, new sync IO will be blocked at
1084 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1085 * or wait_read_barrier(). The flying I/Os will either complete or be
1086 * queued. When everything goes quite, there are only queued I/Os left.
1087
1088 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1089 * barrier bucket index which this I/O request hits. When all sync and
1090 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1091 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1092 * in handle_read_error(), we may call freeze_array() before trying to
1093 * fix the read error. In this case, the error read I/O is not queued,
1094 * so get_unqueued_pending() == 1.
1095 *
1096 * Therefore before this function returns, we need to wait until
1097 * get_unqueued_pendings(conf) gets equal to extra. For
1098 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1099 */
1100 spin_lock_irq(&conf->resync_lock);
b364e3d0 1101 conf->array_frozen = 1;
578b54ad 1102 raid1_log(conf->mddev, "wait freeze");
fd76863e 1103 wait_event_lock_irq_cmd(
1104 conf->wait_barrier,
1105 get_unqueued_pending(conf) == extra,
1106 conf->resync_lock,
1107 flush_pending_writes(conf));
ddaf22ab
N
1108 spin_unlock_irq(&conf->resync_lock);
1109}
e8096360 1110static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1111{
1112 /* reverse the effect of the freeze */
1113 spin_lock_irq(&conf->resync_lock);
b364e3d0 1114 conf->array_frozen = 0;
ddaf22ab 1115 spin_unlock_irq(&conf->resync_lock);
824e47da 1116 wake_up(&conf->wait_barrier);
ddaf22ab
N
1117}
1118
16d56e2f 1119static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1120 struct bio *bio)
4b6d287f 1121{
cb83efcf 1122 int size = bio->bi_iter.bi_size;
841c1316
ML
1123 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1124 int i = 0;
1125 struct bio *behind_bio = NULL;
1126
609be106
CH
1127 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1128 &r1_bio->mddev->bio_set);
841c1316 1129 if (!behind_bio)
16d56e2f 1130 return;
4b6d287f 1131
41743c1f 1132 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1133 if (!bio_has_data(bio)) {
1134 behind_bio->bi_iter.bi_size = size;
41743c1f 1135 goto skip_copy;
16d56e2f 1136 }
41743c1f 1137
841c1316
ML
1138 while (i < vcnt && size) {
1139 struct page *page;
1140 int len = min_t(int, PAGE_SIZE, size);
1141
1142 page = alloc_page(GFP_NOIO);
1143 if (unlikely(!page))
1144 goto free_pages;
1145
b42473cd
JT
1146 if (!bio_add_page(behind_bio, page, len, 0)) {
1147 put_page(page);
1148 goto free_pages;
1149 }
841c1316
ML
1150
1151 size -= len;
1152 i++;
4b6d287f 1153 }
841c1316 1154
cb83efcf 1155 bio_copy_data(behind_bio, bio);
41743c1f 1156skip_copy:
56a64c17 1157 r1_bio->behind_master_bio = behind_bio;
af6d7b76 1158 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1159
16d56e2f 1160 return;
841c1316
ML
1161
1162free_pages:
4f024f37
KO
1163 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1164 bio->bi_iter.bi_size);
841c1316 1165 bio_free_pages(behind_bio);
16d56e2f 1166 bio_put(behind_bio);
4b6d287f
N
1167}
1168
f54a9d0e
N
1169static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1170{
1171 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1172 cb);
1173 struct mddev *mddev = plug->cb.data;
1174 struct r1conf *conf = mddev->private;
1175 struct bio *bio;
1176
9efcc2c3 1177 if (from_schedule) {
f54a9d0e
N
1178 spin_lock_irq(&conf->device_lock);
1179 bio_list_merge(&conf->pending_bio_list, &plug->pending);
f54a9d0e 1180 spin_unlock_irq(&conf->device_lock);
21bd9a68 1181 wake_up_barrier(conf);
f54a9d0e
N
1182 md_wakeup_thread(mddev->thread);
1183 kfree(plug);
1184 return;
1185 }
1186
1187 /* we aren't scheduling, so we can do the write-out directly. */
1188 bio = bio_list_get(&plug->pending);
673ca68d 1189 flush_bio_list(conf, bio);
f54a9d0e
N
1190 kfree(plug);
1191}
1192
689389a0
N
1193static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1194{
1195 r1_bio->master_bio = bio;
1196 r1_bio->sectors = bio_sectors(bio);
1197 r1_bio->state = 0;
1198 r1_bio->mddev = mddev;
1199 r1_bio->sector = bio->bi_iter.bi_sector;
1200}
1201
fd76863e 1202static inline struct r1bio *
689389a0 1203alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1204{
1205 struct r1conf *conf = mddev->private;
1206 struct r1bio *r1_bio;
1207
afeee514 1208 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
689389a0
N
1209 /* Ensure no bio records IO_BLOCKED */
1210 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1211 init_r1bio(r1_bio, mddev, bio);
fd76863e 1212 return r1_bio;
1213}
1214
c230e7e5 1215static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1216 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1217{
e8096360 1218 struct r1conf *conf = mddev->private;
0eaf822c 1219 struct raid1_info *mirror;
1da177e4 1220 struct bio *read_bio;
3b046a97 1221 struct bitmap *bitmap = mddev->bitmap;
3c5e514d
BVA
1222 const enum req_op op = bio_op(bio);
1223 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
3b046a97
RL
1224 int max_sectors;
1225 int rdisk;
9b8ae7b9 1226 bool r1bio_existed = !!r1_bio;
689389a0 1227 char b[BDEVNAME_SIZE];
3b046a97 1228
fd76863e 1229 /*
689389a0
N
1230 * If r1_bio is set, we are blocking the raid1d thread
1231 * so there is a tiny risk of deadlock. So ask for
1232 * emergency memory if needed.
fd76863e 1233 */
689389a0 1234 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1235
9b8ae7b9 1236 if (r1bio_existed) {
689389a0
N
1237 /* Need to get the block device name carefully */
1238 struct md_rdev *rdev;
1239 rcu_read_lock();
1240 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1241 if (rdev)
900d156b 1242 snprintf(b, sizeof(b), "%pg", rdev->bdev);
689389a0
N
1243 else
1244 strcpy(b, "???");
1245 rcu_read_unlock();
1246 }
3b046a97 1247
fd76863e 1248 /*
fd76863e 1249 * Still need barrier for READ in case that whole
1250 * array is frozen.
fd76863e 1251 */
5aa70503
VV
1252 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1253 bio->bi_opf & REQ_NOWAIT)) {
1254 bio_wouldblock_error(bio);
1255 return;
1256 }
fd76863e 1257
689389a0
N
1258 if (!r1_bio)
1259 r1_bio = alloc_r1bio(mddev, bio);
1260 else
1261 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1262 r1_bio->sectors = max_read_sectors;
fd76863e 1263
1264 /*
1265 * make_request() can abort the operation when read-ahead is being
1266 * used and no empty request is available.
1267 */
3b046a97
RL
1268 rdisk = read_balance(conf, r1_bio, &max_sectors);
1269
1270 if (rdisk < 0) {
1271 /* couldn't find anywhere to read from */
9b8ae7b9 1272 if (r1bio_existed) {
689389a0
N
1273 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1274 mdname(mddev),
1275 b,
1276 (unsigned long long)r1_bio->sector);
1277 }
3b046a97
RL
1278 raid_end_bio_io(r1_bio);
1279 return;
1280 }
1281 mirror = conf->mirrors + rdisk;
1282
9b8ae7b9 1283 if (r1bio_existed)
913cce5a 1284 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
689389a0
N
1285 mdname(mddev),
1286 (unsigned long long)r1_bio->sector,
913cce5a 1287 mirror->rdev->bdev);
689389a0 1288
3b046a97
RL
1289 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1290 bitmap) {
1291 /*
1292 * Reading from a write-mostly device must take care not to
1293 * over-take any writes that are 'behind'
1294 */
1295 raid1_log(mddev, "wait behind writes");
1296 wait_event(bitmap->behind_wait,
1297 atomic_read(&bitmap->behind_writes) == 0);
1298 }
c230e7e5
N
1299
1300 if (max_sectors < bio_sectors(bio)) {
1301 struct bio *split = bio_split(bio, max_sectors,
afeee514 1302 gfp, &conf->bio_split);
c230e7e5 1303 bio_chain(split, bio);
ed00aabd 1304 submit_bio_noacct(bio);
c230e7e5
N
1305 bio = split;
1306 r1_bio->master_bio = bio;
1307 r1_bio->sectors = max_sectors;
1308 }
1309
3b046a97 1310 r1_bio->read_disk = rdisk;
bb2a9ace
YK
1311 if (!r1bio_existed) {
1312 md_account_bio(mddev, &bio);
1313 r1_bio->master_bio = bio;
1314 }
abfc426d
CH
1315 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1316 &mddev->bio_set);
3b046a97
RL
1317
1318 r1_bio->bios[rdisk] = read_bio;
1319
1320 read_bio->bi_iter.bi_sector = r1_bio->sector +
1321 mirror->rdev->data_offset;
3b046a97 1322 read_bio->bi_end_io = raid1_end_read_request;
c34b7ac6 1323 read_bio->bi_opf = op | do_sync;
3b046a97
RL
1324 if (test_bit(FailFast, &mirror->rdev->flags) &&
1325 test_bit(R1BIO_FailFast, &r1_bio->state))
1326 read_bio->bi_opf |= MD_FAILFAST;
1327 read_bio->bi_private = r1_bio;
1328
1329 if (mddev->gendisk)
1c02fca6
CH
1330 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1331 r1_bio->sector);
3b046a97 1332
ed00aabd 1333 submit_bio_noacct(read_bio);
3b046a97
RL
1334}
1335
c230e7e5
N
1336static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1337 int max_write_sectors)
3b046a97
RL
1338{
1339 struct r1conf *conf = mddev->private;
fd76863e 1340 struct r1bio *r1_bio;
1f68f0c4 1341 int i, disks;
3b046a97 1342 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1343 unsigned long flags;
3cb03002 1344 struct md_rdev *blocked_rdev;
1f68f0c4 1345 int first_clone;
1f68f0c4 1346 int max_sectors;
6607cd31 1347 bool write_behind = false;
191ea9b2 1348
b3143b9a 1349 if (mddev_is_clustered(mddev) &&
90382ed9 1350 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1351 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1352
6eef4b21 1353 DEFINE_WAIT(w);
5aa70503
VV
1354 if (bio->bi_opf & REQ_NOWAIT) {
1355 bio_wouldblock_error(bio);
1356 return;
1357 }
6eef4b21 1358 for (;;) {
6eef4b21 1359 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1360 &w, TASK_IDLE);
f81f7302 1361 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1362 bio->bi_iter.bi_sector,
b3143b9a 1363 bio_end_sector(bio)))
6eef4b21
N
1364 break;
1365 schedule();
1366 }
1367 finish_wait(&conf->wait_barrier, &w);
1368 }
f81f7302
GJ
1369
1370 /*
1371 * Register the new request and wait if the reconstruction
1372 * thread has put up a bar for new requests.
1373 * Continue immediately if no resync is active currently.
1374 */
5aa70503
VV
1375 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1376 bio->bi_opf & REQ_NOWAIT)) {
1377 bio_wouldblock_error(bio);
1378 return;
1379 }
fd76863e 1380
992db13a 1381 retry_write:
689389a0 1382 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1383 r1_bio->sectors = max_write_sectors;
1da177e4 1384
1f68f0c4 1385 /* first select target devices under rcu_lock and
1da177e4
LT
1386 * inc refcount on their rdev. Record them by setting
1387 * bios[x] to bio
1f68f0c4
N
1388 * If there are known/acknowledged bad blocks on any device on
1389 * which we have seen a write error, we want to avoid writing those
1390 * blocks.
1391 * This potentially requires several writes to write around
1392 * the bad blocks. Each set of writes gets it's own r1bio
1393 * with a set of bios attached.
1da177e4 1394 */
c3b328ac 1395
8f19ccb2 1396 disks = conf->raid_disks * 2;
6bfe0b49 1397 blocked_rdev = NULL;
1da177e4 1398 rcu_read_lock();
1f68f0c4 1399 max_sectors = r1_bio->sectors;
1da177e4 1400 for (i = 0; i < disks; i++) {
3cb03002 1401 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6607cd31
GJ
1402
1403 /*
1404 * The write-behind io is only attempted on drives marked as
1405 * write-mostly, which means we could allocate write behind
1406 * bio later.
1407 */
1408 if (rdev && test_bit(WriteMostly, &rdev->flags))
1409 write_behind = true;
1410
6bfe0b49
DW
1411 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1412 atomic_inc(&rdev->nr_pending);
1413 blocked_rdev = rdev;
1414 break;
1415 }
1f68f0c4 1416 r1_bio->bios[i] = NULL;
8ae12666 1417 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1418 if (i < conf->raid_disks)
1419 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1420 continue;
1421 }
1422
1423 atomic_inc(&rdev->nr_pending);
1424 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1425 sector_t first_bad;
1426 int bad_sectors;
1427 int is_bad;
1428
3b046a97 1429 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1430 &first_bad, &bad_sectors);
1431 if (is_bad < 0) {
1432 /* mustn't write here until the bad block is
1433 * acknowledged*/
1434 set_bit(BlockedBadBlocks, &rdev->flags);
1435 blocked_rdev = rdev;
1436 break;
1437 }
1438 if (is_bad && first_bad <= r1_bio->sector) {
1439 /* Cannot write here at all */
1440 bad_sectors -= (r1_bio->sector - first_bad);
1441 if (bad_sectors < max_sectors)
1442 /* mustn't write more than bad_sectors
1443 * to other devices yet
1444 */
1445 max_sectors = bad_sectors;
03c902e1 1446 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1447 /* We don't set R1BIO_Degraded as that
1448 * only applies if the disk is
1449 * missing, so it might be re-added,
1450 * and we want to know to recover this
1451 * chunk.
1452 * In this case the device is here,
1453 * and the fact that this chunk is not
1454 * in-sync is recorded in the bad
1455 * block log
1456 */
1457 continue;
964147d5 1458 }
1f68f0c4
N
1459 if (is_bad) {
1460 int good_sectors = first_bad - r1_bio->sector;
1461 if (good_sectors < max_sectors)
1462 max_sectors = good_sectors;
1463 }
1464 }
1465 r1_bio->bios[i] = bio;
1da177e4
LT
1466 }
1467 rcu_read_unlock();
1468
6bfe0b49
DW
1469 if (unlikely(blocked_rdev)) {
1470 /* Wait for this device to become unblocked */
1471 int j;
1472
1473 for (j = 0; j < i; j++)
1474 if (r1_bio->bios[j])
1475 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
992db13a 1476 free_r1bio(r1_bio);
fd76863e 1477 allow_barrier(conf, bio->bi_iter.bi_sector);
5aa70503
VV
1478
1479 if (bio->bi_opf & REQ_NOWAIT) {
1480 bio_wouldblock_error(bio);
1481 return;
1482 }
578b54ad 1483 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1484 md_wait_for_blocked_rdev(blocked_rdev, mddev);
5aa70503 1485 wait_barrier(conf, bio->bi_iter.bi_sector, false);
6bfe0b49
DW
1486 goto retry_write;
1487 }
1488
6607cd31
GJ
1489 /*
1490 * When using a bitmap, we may call alloc_behind_master_bio below.
1491 * alloc_behind_master_bio allocates a copy of the data payload a page
1492 * at a time and thus needs a new bio that can fit the whole payload
1493 * this bio in page sized chunks.
1494 */
1495 if (write_behind && bitmap)
1496 max_sectors = min_t(int, max_sectors,
1497 BIO_MAX_VECS * (PAGE_SIZE >> 9));
c230e7e5
N
1498 if (max_sectors < bio_sectors(bio)) {
1499 struct bio *split = bio_split(bio, max_sectors,
afeee514 1500 GFP_NOIO, &conf->bio_split);
c230e7e5 1501 bio_chain(split, bio);
ed00aabd 1502 submit_bio_noacct(bio);
c230e7e5
N
1503 bio = split;
1504 r1_bio->master_bio = bio;
1f68f0c4 1505 r1_bio->sectors = max_sectors;
191ea9b2 1506 }
4b6d287f 1507
bb2a9ace
YK
1508 md_account_bio(mddev, &bio);
1509 r1_bio->master_bio = bio;
4e78064f 1510 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1511 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1512
1f68f0c4 1513 first_clone = 1;
d8c84c4f 1514
1da177e4 1515 for (i = 0; i < disks; i++) {
8e58e327 1516 struct bio *mbio = NULL;
69df9cfc 1517 struct md_rdev *rdev = conf->mirrors[i].rdev;
1da177e4
LT
1518 if (!r1_bio->bios[i])
1519 continue;
1520
46669e86 1521 if (first_clone) {
1f68f0c4
N
1522 /* do behind I/O ?
1523 * Not if there are too many, or cannot
1524 * allocate memory, or a reader on WriteMostly
1525 * is waiting for behind writes to flush */
6b2460e6 1526 if (bitmap && write_behind &&
1f68f0c4
N
1527 (atomic_read(&bitmap->behind_writes)
1528 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1529 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1530 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1531 }
1f68f0c4 1532
e64e4018
AS
1533 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1534 test_bit(R1BIO_BehindIO, &r1_bio->state));
1f68f0c4
N
1535 first_clone = 0;
1536 }
8e58e327 1537
841c1316 1538 if (r1_bio->behind_master_bio) {
abfc426d
CH
1539 mbio = bio_alloc_clone(rdev->bdev,
1540 r1_bio->behind_master_bio,
1541 GFP_NOIO, &mddev->bio_set);
69df9cfc 1542 if (test_bit(CollisionCheck, &rdev->flags))
d0d2d8ba 1543 wait_for_serialization(rdev, r1_bio);
3e148a32 1544 if (test_bit(WriteMostly, &rdev->flags))
4b6d287f 1545 atomic_inc(&r1_bio->behind_remaining);
abfc426d
CH
1546 } else {
1547 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1548 &mddev->bio_set);
1549
1550 if (mddev->serialize_policy)
1551 wait_for_serialization(rdev, r1_bio);
1552 }
4b6d287f 1553
1f68f0c4
N
1554 r1_bio->bios[i] = mbio;
1555
2e94275e 1556 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1f68f0c4 1557 mbio->bi_end_io = raid1_end_write_request;
a682e003 1558 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
2e94275e
GJ
1559 if (test_bit(FailFast, &rdev->flags) &&
1560 !test_bit(WriteMostly, &rdev->flags) &&
212e7eb7
N
1561 conf->raid_disks - mddev->degraded > 1)
1562 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1563 mbio->bi_private = r1_bio;
1564
1da177e4 1565 atomic_inc(&r1_bio->remaining);
f54a9d0e 1566
109e3765 1567 if (mddev->gendisk)
1c02fca6 1568 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
109e3765
N
1569 r1_bio->sector);
1570 /* flush_pending_writes() needs access to the rdev so...*/
2e94275e 1571 mbio->bi_bdev = (void *)rdev;
460af1f9 1572 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
23b245c0 1573 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e 1574 bio_list_add(&conf->pending_bio_list, mbio);
23b245c0 1575 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1576 md_wakeup_thread(mddev->thread);
23b245c0 1577 }
1da177e4 1578 }
1f68f0c4 1579
079fa166
N
1580 r1_bio_write_done(r1_bio);
1581
1582 /* In case raid1d snuck in to freeze_array */
21bd9a68 1583 wake_up_barrier(conf);
1da177e4
LT
1584}
1585
cc27b0c7 1586static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1587{
fd76863e 1588 sector_t sectors;
3b046a97 1589
775d7831
DJ
1590 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1591 && md_flush_request(mddev, bio))
cc27b0c7 1592 return true;
3b046a97 1593
c230e7e5
N
1594 /*
1595 * There is a limit to the maximum size, but
1596 * the read/write handler might find a lower limit
1597 * due to bad blocks. To avoid multiple splits,
1598 * we pass the maximum number of sectors down
1599 * and let the lower level perform the split.
1600 */
1601 sectors = align_to_barrier_unit_end(
1602 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1603
c230e7e5 1604 if (bio_data_dir(bio) == READ)
689389a0 1605 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1606 else {
1607 if (!md_write_start(mddev,bio))
1608 return false;
c230e7e5 1609 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1610 }
1611 return true;
3b046a97
RL
1612}
1613
849674e4 1614static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1615{
e8096360 1616 struct r1conf *conf = mddev->private;
1da177e4
LT
1617 int i;
1618
1619 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1620 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1621 rcu_read_lock();
1622 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1623 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1624 seq_printf(seq, "%s",
ddac7c7e
N
1625 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1626 }
1627 rcu_read_unlock();
1da177e4
LT
1628 seq_printf(seq, "]");
1629}
1630
9631abdb
MT
1631/**
1632 * raid1_error() - RAID1 error handler.
1633 * @mddev: affected md device.
1634 * @rdev: member device to fail.
1635 *
1636 * The routine acknowledges &rdev failure and determines new @mddev state.
1637 * If it failed, then:
1638 * - &MD_BROKEN flag is set in &mddev->flags.
1639 * - recovery is disabled.
1640 * Otherwise, it must be degraded:
1641 * - recovery is interrupted.
1642 * - &mddev->degraded is bumped.
1643 *
1644 * @rdev is marked as &Faulty excluding case when array is failed and
1645 * &mddev->fail_last_dev is off.
1646 */
849674e4 1647static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1648{
e8096360 1649 struct r1conf *conf = mddev->private;
423f04d6 1650 unsigned long flags;
1da177e4 1651
2e52d449 1652 spin_lock_irqsave(&conf->device_lock, flags);
9631abdb
MT
1653
1654 if (test_bit(In_sync, &rdev->flags) &&
1655 (conf->raid_disks - mddev->degraded) == 1) {
1656 set_bit(MD_BROKEN, &mddev->flags);
1657
1658 if (!mddev->fail_last_dev) {
1659 conf->recovery_disabled = mddev->recovery_disabled;
1660 spin_unlock_irqrestore(&conf->device_lock, flags);
1661 return;
1662 }
4044ba58 1663 }
de393cde 1664 set_bit(Blocked, &rdev->flags);
ebda52fa 1665 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1666 mddev->degraded++;
ebda52fa 1667 set_bit(Faulty, &rdev->flags);
423f04d6 1668 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1669 /*
1670 * if recovery is running, make sure it aborts.
1671 */
1672 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1673 set_mask_bits(&mddev->sb_flags, 0,
1674 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
913cce5a 1675 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1d41c216 1676 "md/raid1:%s: Operation continuing on %d devices.\n",
913cce5a 1677 mdname(mddev), rdev->bdev,
1d41c216 1678 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1679}
1680
e8096360 1681static void print_conf(struct r1conf *conf)
1da177e4
LT
1682{
1683 int i;
1da177e4 1684
1d41c216 1685 pr_debug("RAID1 conf printout:\n");
1da177e4 1686 if (!conf) {
1d41c216 1687 pr_debug("(!conf)\n");
1da177e4
LT
1688 return;
1689 }
1d41c216
N
1690 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1691 conf->raid_disks);
1da177e4 1692
ddac7c7e 1693 rcu_read_lock();
1da177e4 1694 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1695 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1696 if (rdev)
913cce5a 1697 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1d41c216
N
1698 i, !test_bit(In_sync, &rdev->flags),
1699 !test_bit(Faulty, &rdev->flags),
913cce5a 1700 rdev->bdev);
1da177e4 1701 }
ddac7c7e 1702 rcu_read_unlock();
1da177e4
LT
1703}
1704
e8096360 1705static void close_sync(struct r1conf *conf)
1da177e4 1706{
f6eca2d4
ND
1707 int idx;
1708
1709 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
5aa70503 1710 _wait_barrier(conf, idx, false);
f6eca2d4
ND
1711 _allow_barrier(conf, idx);
1712 }
1da177e4 1713
afeee514 1714 mempool_exit(&conf->r1buf_pool);
1da177e4
LT
1715}
1716
fd01b88c 1717static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1718{
1719 int i;
e8096360 1720 struct r1conf *conf = mddev->private;
6b965620
N
1721 int count = 0;
1722 unsigned long flags;
1da177e4
LT
1723
1724 /*
f72ffdd6 1725 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1726 * and mark them readable.
1727 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1728 * device_lock used to avoid races with raid1_end_read_request
1729 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1730 */
423f04d6 1731 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1732 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1733 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1734 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1735 if (repl
1aee41f6 1736 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1737 && repl->recovery_offset == MaxSector
1738 && !test_bit(Faulty, &repl->flags)
1739 && !test_and_set_bit(In_sync, &repl->flags)) {
1740 /* replacement has just become active */
1741 if (!rdev ||
1742 !test_and_clear_bit(In_sync, &rdev->flags))
1743 count++;
1744 if (rdev) {
1745 /* Replaced device not technically
1746 * faulty, but we need to be sure
1747 * it gets removed and never re-added
1748 */
1749 set_bit(Faulty, &rdev->flags);
1750 sysfs_notify_dirent_safe(
1751 rdev->sysfs_state);
1752 }
1753 }
ddac7c7e 1754 if (rdev
61e4947c 1755 && rdev->recovery_offset == MaxSector
ddac7c7e 1756 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1757 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1758 count++;
654e8b5a 1759 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1760 }
1761 }
6b965620
N
1762 mddev->degraded -= count;
1763 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1764
1765 print_conf(conf);
6b965620 1766 return count;
1da177e4
LT
1767}
1768
fd01b88c 1769static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1770{
e8096360 1771 struct r1conf *conf = mddev->private;
199050ea 1772 int err = -EEXIST;
ffb1e7a0 1773 int mirror = 0, repl_slot = -1;
0eaf822c 1774 struct raid1_info *p;
6c2fce2e 1775 int first = 0;
30194636 1776 int last = conf->raid_disks - 1;
1da177e4 1777
5389042f
N
1778 if (mddev->recovery_disabled == conf->recovery_disabled)
1779 return -EBUSY;
1780
1501efad
DW
1781 if (md_integrity_add_rdev(rdev, mddev))
1782 return -ENXIO;
1783
6c2fce2e
NB
1784 if (rdev->raid_disk >= 0)
1785 first = last = rdev->raid_disk;
1786
70bcecdb
GR
1787 /*
1788 * find the disk ... but prefer rdev->saved_raid_disk
1789 * if possible.
1790 */
1791 if (rdev->saved_raid_disk >= 0 &&
1792 rdev->saved_raid_disk >= first &&
9e753ba9 1793 rdev->saved_raid_disk < conf->raid_disks &&
70bcecdb
GR
1794 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1795 first = last = rdev->saved_raid_disk;
1796
7ef449d1 1797 for (mirror = first; mirror <= last; mirror++) {
ebfeb444 1798 p = conf->mirrors + mirror;
7ef449d1 1799 if (!p->rdev) {
9092c02d
JB
1800 if (mddev->gendisk)
1801 disk_stack_limits(mddev->gendisk, rdev->bdev,
1802 rdev->data_offset << 9);
1da177e4
LT
1803
1804 p->head_position = 0;
1805 rdev->raid_disk = mirror;
199050ea 1806 err = 0;
6aea114a
N
1807 /* As all devices are equivalent, we don't need a full recovery
1808 * if this was recently any drive of the array
1809 */
1810 if (rdev->saved_raid_disk < 0)
41158c7e 1811 conf->fullsync = 1;
d6065f7b 1812 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1813 break;
1814 }
7ef449d1 1815 if (test_bit(WantReplacement, &p->rdev->flags) &&
ffb1e7a0
LN
1816 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1817 repl_slot = mirror;
7ef449d1 1818 }
ffb1e7a0
LN
1819
1820 if (err && repl_slot >= 0) {
1821 /* Add this device as a replacement */
1822 p = conf->mirrors + repl_slot;
1823 clear_bit(In_sync, &rdev->flags);
1824 set_bit(Replacement, &rdev->flags);
1825 rdev->raid_disk = repl_slot;
1826 err = 0;
1827 conf->fullsync = 1;
1828 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1829 }
1830
1da177e4 1831 print_conf(conf);
199050ea 1832 return err;
1da177e4
LT
1833}
1834
b8321b68 1835static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1836{
e8096360 1837 struct r1conf *conf = mddev->private;
1da177e4 1838 int err = 0;
b8321b68 1839 int number = rdev->raid_disk;
8b0472b5
ZS
1840
1841 if (unlikely(number >= conf->raid_disks))
1842 goto abort;
1843
0eaf822c 1844 struct raid1_info *p = conf->mirrors + number;
1da177e4 1845
b014f14c
N
1846 if (rdev != p->rdev)
1847 p = conf->mirrors + conf->raid_disks + number;
1848
1da177e4 1849 print_conf(conf);
b8321b68 1850 if (rdev == p->rdev) {
b2d444d7 1851 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1852 atomic_read(&rdev->nr_pending)) {
1853 err = -EBUSY;
1854 goto abort;
1855 }
046abeed 1856 /* Only remove non-faulty devices if recovery
dfc70645
N
1857 * is not possible.
1858 */
1859 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1860 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1861 mddev->degraded < conf->raid_disks) {
1862 err = -EBUSY;
1863 goto abort;
1864 }
1da177e4 1865 p->rdev = NULL;
d787be40
N
1866 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1867 synchronize_rcu();
1868 if (atomic_read(&rdev->nr_pending)) {
1869 /* lost the race, try later */
1870 err = -EBUSY;
1871 p->rdev = rdev;
1872 goto abort;
1873 }
1874 }
1875 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1876 /* We just removed a device that is being replaced.
1877 * Move down the replacement. We drain all IO before
1878 * doing this to avoid confusion.
1879 */
1880 struct md_rdev *repl =
1881 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1882 freeze_array(conf, 0);
3de59bb9
YY
1883 if (atomic_read(&repl->nr_pending)) {
1884 /* It means that some queued IO of retry_list
1885 * hold repl. Thus, we cannot set replacement
1886 * as NULL, avoiding rdev NULL pointer
1887 * dereference in sync_request_write and
1888 * handle_write_finished.
1889 */
1890 err = -EBUSY;
1891 unfreeze_array(conf);
1892 goto abort;
1893 }
8c7a2c2b
N
1894 clear_bit(Replacement, &repl->flags);
1895 p->rdev = repl;
1896 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1897 unfreeze_array(conf);
e5bc9c3c
GJ
1898 }
1899
1900 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1901 err = md_integrity_register(mddev);
1da177e4
LT
1902 }
1903abort:
1904
1905 print_conf(conf);
1906 return err;
1907}
1908
4246a0b6 1909static void end_sync_read(struct bio *bio)
1da177e4 1910{
98d30c58 1911 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1912
0fc280f6 1913 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1914
1da177e4
LT
1915 /*
1916 * we have read a block, now it needs to be re-written,
1917 * or re-read if the read failed.
1918 * We don't do much here, just schedule handling by raid1d
1919 */
4e4cbee9 1920 if (!bio->bi_status)
1da177e4 1921 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1922
1923 if (atomic_dec_and_test(&r1_bio->remaining))
1924 reschedule_retry(r1_bio);
1da177e4
LT
1925}
1926
dfcc34c9
ND
1927static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1928{
1929 sector_t sync_blocks = 0;
1930 sector_t s = r1_bio->sector;
1931 long sectors_to_go = r1_bio->sectors;
1932
1933 /* make sure these bits don't get cleared. */
1934 do {
1935 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1936 s += sync_blocks;
1937 sectors_to_go -= sync_blocks;
1938 } while (sectors_to_go > 0);
1939}
1940
449808a2
HT
1941static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1942{
1943 if (atomic_dec_and_test(&r1_bio->remaining)) {
1944 struct mddev *mddev = r1_bio->mddev;
1945 int s = r1_bio->sectors;
1946
1947 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1948 test_bit(R1BIO_WriteError, &r1_bio->state))
1949 reschedule_retry(r1_bio);
1950 else {
1951 put_buf(r1_bio);
1952 md_done_sync(mddev, s, uptodate);
1953 }
1954 }
1955}
1956
4246a0b6 1957static void end_sync_write(struct bio *bio)
1da177e4 1958{
4e4cbee9 1959 int uptodate = !bio->bi_status;
98d30c58 1960 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1961 struct mddev *mddev = r1_bio->mddev;
e8096360 1962 struct r1conf *conf = mddev->private;
4367af55
N
1963 sector_t first_bad;
1964 int bad_sectors;
854abd75 1965 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1966
6b1117d5 1967 if (!uptodate) {
dfcc34c9 1968 abort_sync_write(mddev, r1_bio);
854abd75
N
1969 set_bit(WriteErrorSeen, &rdev->flags);
1970 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1971 set_bit(MD_RECOVERY_NEEDED, &
1972 mddev->recovery);
d8f05d29 1973 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1974 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1975 &first_bad, &bad_sectors) &&
1976 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1977 r1_bio->sector,
1978 r1_bio->sectors,
1979 &first_bad, &bad_sectors)
1980 )
4367af55 1981 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1982
449808a2 1983 put_sync_write_buf(r1_bio, uptodate);
1da177e4
LT
1984}
1985
3cb03002 1986static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
4ce4c73f 1987 int sectors, struct page *page, int rw)
d8f05d29 1988{
4ce4c73f 1989 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
d8f05d29
N
1990 /* success */
1991 return 1;
19d67169 1992 if (rw == WRITE) {
d8f05d29 1993 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1994 if (!test_and_set_bit(WantReplacement,
1995 &rdev->flags))
1996 set_bit(MD_RECOVERY_NEEDED, &
1997 rdev->mddev->recovery);
1998 }
d8f05d29
N
1999 /* need to record an error - either for the block or the device */
2000 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2001 md_error(rdev->mddev, rdev);
2002 return 0;
2003}
2004
9f2c9d12 2005static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 2006{
a68e5870
N
2007 /* Try some synchronous reads of other devices to get
2008 * good data, much like with normal read errors. Only
2009 * read into the pages we already have so we don't
2010 * need to re-issue the read request.
2011 * We don't need to freeze the array, because being in an
2012 * active sync request, there is no normal IO, and
2013 * no overlapping syncs.
06f60385
N
2014 * We don't need to check is_badblock() again as we
2015 * made sure that anything with a bad block in range
2016 * will have bi_end_io clear.
a68e5870 2017 */
fd01b88c 2018 struct mddev *mddev = r1_bio->mddev;
e8096360 2019 struct r1conf *conf = mddev->private;
a68e5870 2020 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 2021 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
2022 sector_t sect = r1_bio->sector;
2023 int sectors = r1_bio->sectors;
2024 int idx = 0;
2e52d449
N
2025 struct md_rdev *rdev;
2026
2027 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2028 if (test_bit(FailFast, &rdev->flags)) {
2029 /* Don't try recovering from here - just fail it
2030 * ... unless it is the last working device of course */
2031 md_error(mddev, rdev);
2032 if (test_bit(Faulty, &rdev->flags))
2033 /* Don't try to read from here, but make sure
2034 * put_buf does it's thing
2035 */
2036 bio->bi_end_io = end_sync_write;
2037 }
a68e5870
N
2038
2039 while(sectors) {
2040 int s = sectors;
2041 int d = r1_bio->read_disk;
2042 int success = 0;
78d7f5f7 2043 int start;
a68e5870
N
2044
2045 if (s > (PAGE_SIZE>>9))
2046 s = PAGE_SIZE >> 9;
2047 do {
2048 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2049 /* No rcu protection needed here devices
2050 * can only be removed when no resync is
2051 * active, and resync is currently active
2052 */
2053 rdev = conf->mirrors[d].rdev;
9d3d8011 2054 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 2055 pages[idx],
4ce4c73f 2056 REQ_OP_READ, false)) {
a68e5870
N
2057 success = 1;
2058 break;
2059 }
2060 }
2061 d++;
8f19ccb2 2062 if (d == conf->raid_disks * 2)
a68e5870
N
2063 d = 0;
2064 } while (!success && d != r1_bio->read_disk);
2065
78d7f5f7 2066 if (!success) {
3a9f28a5
N
2067 int abort = 0;
2068 /* Cannot read from anywhere, this block is lost.
2069 * Record a bad block on each device. If that doesn't
2070 * work just disable and interrupt the recovery.
2071 * Don't fail devices as that won't really help.
2072 */
ac483eb3
CH
2073 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2074 mdname(mddev), bio->bi_bdev,
1d41c216 2075 (unsigned long long)r1_bio->sector);
8f19ccb2 2076 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
2077 rdev = conf->mirrors[d].rdev;
2078 if (!rdev || test_bit(Faulty, &rdev->flags))
2079 continue;
2080 if (!rdev_set_badblocks(rdev, sect, s, 0))
2081 abort = 1;
2082 }
2083 if (abort) {
d890fa2b
N
2084 conf->recovery_disabled =
2085 mddev->recovery_disabled;
3a9f28a5
N
2086 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2087 md_done_sync(mddev, r1_bio->sectors, 0);
2088 put_buf(r1_bio);
2089 return 0;
2090 }
2091 /* Try next page */
2092 sectors -= s;
2093 sect += s;
2094 idx++;
2095 continue;
d11c171e 2096 }
78d7f5f7
N
2097
2098 start = d;
2099 /* write it back and re-read */
2100 while (d != r1_bio->read_disk) {
2101 if (d == 0)
8f19ccb2 2102 d = conf->raid_disks * 2;
78d7f5f7
N
2103 d--;
2104 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2105 continue;
2106 rdev = conf->mirrors[d].rdev;
d8f05d29 2107 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2108 pages[idx],
d8f05d29 2109 WRITE) == 0) {
78d7f5f7
N
2110 r1_bio->bios[d]->bi_end_io = NULL;
2111 rdev_dec_pending(rdev, mddev);
9d3d8011 2112 }
78d7f5f7
N
2113 }
2114 d = start;
2115 while (d != r1_bio->read_disk) {
2116 if (d == 0)
8f19ccb2 2117 d = conf->raid_disks * 2;
78d7f5f7
N
2118 d--;
2119 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2120 continue;
2121 rdev = conf->mirrors[d].rdev;
d8f05d29 2122 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2123 pages[idx],
d8f05d29 2124 READ) != 0)
9d3d8011 2125 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2126 }
a68e5870
N
2127 sectors -= s;
2128 sect += s;
2129 idx ++;
2130 }
78d7f5f7 2131 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2132 bio->bi_status = 0;
a68e5870
N
2133 return 1;
2134}
2135
c95e6385 2136static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2137{
2138 /* We have read all readable devices. If we haven't
2139 * got the block, then there is no hope left.
2140 * If we have, then we want to do a comparison
2141 * and skip the write if everything is the same.
2142 * If any blocks failed to read, then we need to
2143 * attempt an over-write
2144 */
fd01b88c 2145 struct mddev *mddev = r1_bio->mddev;
e8096360 2146 struct r1conf *conf = mddev->private;
a68e5870
N
2147 int primary;
2148 int i;
f4380a91 2149 int vcnt;
a68e5870 2150
30bc9b53
N
2151 /* Fix variable parts of all bios */
2152 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2153 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2154 blk_status_t status;
30bc9b53 2155 struct bio *b = r1_bio->bios[i];
98d30c58 2156 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2157 if (b->bi_end_io != end_sync_read)
2158 continue;
4246a0b6 2159 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2160 status = b->bi_status;
a7c50c94 2161 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
4e4cbee9 2162 b->bi_status = status;
4f024f37 2163 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2164 conf->mirrors[i].rdev->data_offset;
30bc9b53 2165 b->bi_end_io = end_sync_read;
98d30c58
ML
2166 rp->raid_bio = r1_bio;
2167 b->bi_private = rp;
30bc9b53 2168
fb0eb5df
ML
2169 /* initialize bvec table again */
2170 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2171 }
8f19ccb2 2172 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2173 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2174 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2175 r1_bio->bios[primary]->bi_end_io = NULL;
2176 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2177 break;
2178 }
2179 r1_bio->read_disk = primary;
8f19ccb2 2180 for (i = 0; i < conf->raid_disks * 2; i++) {
2b070cfe 2181 int j = 0;
78d7f5f7
N
2182 struct bio *pbio = r1_bio->bios[primary];
2183 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2184 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2185 struct page **ppages = get_resync_pages(pbio)->pages;
2186 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2187 struct bio_vec *bi;
8fc04e6e 2188 int page_len[RESYNC_PAGES] = { 0 };
6dc4f100 2189 struct bvec_iter_all iter_all;
a68e5870 2190
2aabaa65 2191 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2192 continue;
4246a0b6 2193 /* Now we can 'fixup' the error value */
4e4cbee9 2194 sbio->bi_status = 0;
78d7f5f7 2195
2b070cfe
CH
2196 bio_for_each_segment_all(bi, sbio, iter_all)
2197 page_len[j++] = bi->bv_len;
60928a91 2198
4e4cbee9 2199 if (!status) {
78d7f5f7 2200 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2201 if (memcmp(page_address(ppages[j]),
2202 page_address(spages[j]),
60928a91 2203 page_len[j]))
78d7f5f7 2204 break;
69382e85 2205 }
78d7f5f7
N
2206 } else
2207 j = 0;
2208 if (j >= 0)
7f7583d4 2209 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2210 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2211 && !status)) {
78d7f5f7
N
2212 /* No need to write to this device. */
2213 sbio->bi_end_io = NULL;
2214 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2215 continue;
2216 }
d3b45c2a
KO
2217
2218 bio_copy_data(sbio, pbio);
78d7f5f7 2219 }
a68e5870
N
2220}
2221
9f2c9d12 2222static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2223{
e8096360 2224 struct r1conf *conf = mddev->private;
a68e5870 2225 int i;
8f19ccb2 2226 int disks = conf->raid_disks * 2;
037d2ff6 2227 struct bio *wbio;
a68e5870 2228
a68e5870
N
2229 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2230 /* ouch - failed to read all of that. */
2231 if (!fix_sync_read_error(r1_bio))
2232 return;
7ca78d57
N
2233
2234 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2235 process_checks(r1_bio);
2236
d11c171e
N
2237 /*
2238 * schedule writes
2239 */
1da177e4
LT
2240 atomic_set(&r1_bio->remaining, 1);
2241 for (i = 0; i < disks ; i++) {
2242 wbio = r1_bio->bios[i];
3e198f78
N
2243 if (wbio->bi_end_io == NULL ||
2244 (wbio->bi_end_io == end_sync_read &&
2245 (i == r1_bio->read_disk ||
2246 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2247 continue;
dfcc34c9
ND
2248 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2249 abort_sync_write(mddev, r1_bio);
0c9d5b12 2250 continue;
dfcc34c9 2251 }
1da177e4 2252
c34b7ac6 2253 wbio->bi_opf = REQ_OP_WRITE;
212e7eb7
N
2254 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2255 wbio->bi_opf |= MD_FAILFAST;
2256
3e198f78 2257 wbio->bi_end_io = end_sync_write;
1da177e4 2258 atomic_inc(&r1_bio->remaining);
aa8b57aa 2259 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2260
ed00aabd 2261 submit_bio_noacct(wbio);
1da177e4
LT
2262 }
2263
449808a2 2264 put_sync_write_buf(r1_bio, 1);
1da177e4
LT
2265}
2266
2267/*
2268 * This is a kernel thread which:
2269 *
2270 * 1. Retries failed read operations on working mirrors.
2271 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2272 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2273 */
2274
e8096360 2275static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2276 sector_t sect, int sectors)
2277{
fd01b88c 2278 struct mddev *mddev = conf->mddev;
867868fb
N
2279 while(sectors) {
2280 int s = sectors;
2281 int d = read_disk;
2282 int success = 0;
2283 int start;
3cb03002 2284 struct md_rdev *rdev;
867868fb
N
2285
2286 if (s > (PAGE_SIZE>>9))
2287 s = PAGE_SIZE >> 9;
2288
2289 do {
d2eb35ac
N
2290 sector_t first_bad;
2291 int bad_sectors;
2292
707a6a42
N
2293 rcu_read_lock();
2294 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2295 if (rdev &&
da8840a7 2296 (test_bit(In_sync, &rdev->flags) ||
2297 (!test_bit(Faulty, &rdev->flags) &&
2298 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2299 is_badblock(rdev, sect, s,
707a6a42
N
2300 &first_bad, &bad_sectors) == 0) {
2301 atomic_inc(&rdev->nr_pending);
2302 rcu_read_unlock();
2303 if (sync_page_io(rdev, sect, s<<9,
4ce4c73f 2304 conf->tmppage, REQ_OP_READ, false))
707a6a42
N
2305 success = 1;
2306 rdev_dec_pending(rdev, mddev);
2307 if (success)
2308 break;
2309 } else
2310 rcu_read_unlock();
2311 d++;
2312 if (d == conf->raid_disks * 2)
2313 d = 0;
02c67a3b 2314 } while (d != read_disk);
867868fb
N
2315
2316 if (!success) {
d8f05d29 2317 /* Cannot read from anywhere - mark it bad */
3cb03002 2318 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2319 if (!rdev_set_badblocks(rdev, sect, s, 0))
2320 md_error(mddev, rdev);
867868fb
N
2321 break;
2322 }
2323 /* write it back and re-read */
2324 start = d;
2325 while (d != read_disk) {
2326 if (d==0)
8f19ccb2 2327 d = conf->raid_disks * 2;
867868fb 2328 d--;
707a6a42
N
2329 rcu_read_lock();
2330 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2331 if (rdev &&
707a6a42
N
2332 !test_bit(Faulty, &rdev->flags)) {
2333 atomic_inc(&rdev->nr_pending);
2334 rcu_read_unlock();
d8f05d29
N
2335 r1_sync_page_io(rdev, sect, s,
2336 conf->tmppage, WRITE);
707a6a42
N
2337 rdev_dec_pending(rdev, mddev);
2338 } else
2339 rcu_read_unlock();
867868fb
N
2340 }
2341 d = start;
2342 while (d != read_disk) {
867868fb 2343 if (d==0)
8f19ccb2 2344 d = conf->raid_disks * 2;
867868fb 2345 d--;
707a6a42
N
2346 rcu_read_lock();
2347 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2348 if (rdev &&
b8cb6b4c 2349 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2350 atomic_inc(&rdev->nr_pending);
2351 rcu_read_unlock();
d8f05d29
N
2352 if (r1_sync_page_io(rdev, sect, s,
2353 conf->tmppage, READ)) {
867868fb 2354 atomic_add(s, &rdev->corrected_errors);
913cce5a 2355 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
1d41c216
N
2356 mdname(mddev), s,
2357 (unsigned long long)(sect +
2358 rdev->data_offset),
913cce5a 2359 rdev->bdev);
867868fb 2360 }
707a6a42
N
2361 rdev_dec_pending(rdev, mddev);
2362 } else
2363 rcu_read_unlock();
867868fb
N
2364 }
2365 sectors -= s;
2366 sect += s;
2367 }
2368}
2369
9f2c9d12 2370static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2371{
fd01b88c 2372 struct mddev *mddev = r1_bio->mddev;
e8096360 2373 struct r1conf *conf = mddev->private;
3cb03002 2374 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2375
2376 /* bio has the data to be written to device 'i' where
2377 * we just recently had a write error.
2378 * We repeatedly clone the bio and trim down to one block,
2379 * then try the write. Where the write fails we record
2380 * a bad block.
2381 * It is conceivable that the bio doesn't exactly align with
2382 * blocks. We must handle this somehow.
2383 *
2384 * We currently own a reference on the rdev.
2385 */
2386
2387 int block_sectors;
2388 sector_t sector;
2389 int sectors;
2390 int sect_to_write = r1_bio->sectors;
2391 int ok = 1;
2392
2393 if (rdev->badblocks.shift < 0)
2394 return 0;
2395
ab713cdc
ND
2396 block_sectors = roundup(1 << rdev->badblocks.shift,
2397 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2398 sector = r1_bio->sector;
2399 sectors = ((sector + block_sectors)
2400 & ~(sector_t)(block_sectors - 1))
2401 - sector;
2402
cd5ff9a1
N
2403 while (sect_to_write) {
2404 struct bio *wbio;
2405 if (sectors > sect_to_write)
2406 sectors = sect_to_write;
2407 /* Write at 'sector' for 'sectors'*/
2408
b783863f 2409 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
abfc426d
CH
2410 wbio = bio_alloc_clone(rdev->bdev,
2411 r1_bio->behind_master_bio,
2412 GFP_NOIO, &mddev->bio_set);
b783863f 2413 } else {
abfc426d
CH
2414 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2415 GFP_NOIO, &mddev->bio_set);
b783863f
KO
2416 }
2417
c34b7ac6 2418 wbio->bi_opf = REQ_OP_WRITE;
4f024f37
KO
2419 wbio->bi_iter.bi_sector = r1_bio->sector;
2420 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2421
6678d83f 2422 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2423 wbio->bi_iter.bi_sector += rdev->data_offset;
4e49ea4a
MC
2424
2425 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2426 /* failure! */
2427 ok = rdev_set_badblocks(rdev, sector,
2428 sectors, 0)
2429 && ok;
2430
2431 bio_put(wbio);
2432 sect_to_write -= sectors;
2433 sector += sectors;
2434 sectors = block_sectors;
2435 }
2436 return ok;
2437}
2438
e8096360 2439static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2440{
2441 int m;
2442 int s = r1_bio->sectors;
8f19ccb2 2443 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2444 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2445 struct bio *bio = r1_bio->bios[m];
2446 if (bio->bi_end_io == NULL)
2447 continue;
4e4cbee9 2448 if (!bio->bi_status &&
62096bce 2449 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2450 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2451 }
4e4cbee9 2452 if (bio->bi_status &&
62096bce
N
2453 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2454 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2455 md_error(conf->mddev, rdev);
2456 }
2457 }
2458 put_buf(r1_bio);
2459 md_done_sync(conf->mddev, s, 1);
2460}
2461
e8096360 2462static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2463{
fd76863e 2464 int m, idx;
55ce74d4 2465 bool fail = false;
fd76863e 2466
8f19ccb2 2467 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2468 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2469 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2470 rdev_clear_badblocks(rdev,
2471 r1_bio->sector,
c6563a8c 2472 r1_bio->sectors, 0);
62096bce
N
2473 rdev_dec_pending(rdev, conf->mddev);
2474 } else if (r1_bio->bios[m] != NULL) {
2475 /* This drive got a write error. We need to
2476 * narrow down and record precise write
2477 * errors.
2478 */
55ce74d4 2479 fail = true;
62096bce
N
2480 if (!narrow_write_error(r1_bio, m)) {
2481 md_error(conf->mddev,
2482 conf->mirrors[m].rdev);
2483 /* an I/O failed, we can't clear the bitmap */
2484 set_bit(R1BIO_Degraded, &r1_bio->state);
2485 }
2486 rdev_dec_pending(conf->mirrors[m].rdev,
2487 conf->mddev);
2488 }
55ce74d4
N
2489 if (fail) {
2490 spin_lock_irq(&conf->device_lock);
2491 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2492 idx = sector_to_idx(r1_bio->sector);
824e47da 2493 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2494 spin_unlock_irq(&conf->device_lock);
824e47da 2495 /*
2496 * In case freeze_array() is waiting for condition
2497 * get_unqueued_pending() == extra to be true.
2498 */
2499 wake_up(&conf->wait_barrier);
55ce74d4 2500 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2501 } else {
2502 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2503 close_write(r1_bio);
55ce74d4 2504 raid_end_bio_io(r1_bio);
bd8688a1 2505 }
62096bce
N
2506}
2507
e8096360 2508static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2509{
fd01b88c 2510 struct mddev *mddev = conf->mddev;
62096bce 2511 struct bio *bio;
3cb03002 2512 struct md_rdev *rdev;
c069da44 2513 sector_t sector;
62096bce
N
2514
2515 clear_bit(R1BIO_ReadError, &r1_bio->state);
2516 /* we got a read error. Maybe the drive is bad. Maybe just
2517 * the block and we can fix it.
2518 * We freeze all other IO, and try reading the block from
2519 * other devices. When we find one, we re-write
2520 * and check it that fixes the read error.
2521 * This is all done synchronously while the array is
2522 * frozen
2523 */
7449f699
TM
2524
2525 bio = r1_bio->bios[r1_bio->read_disk];
7449f699
TM
2526 bio_put(bio);
2527 r1_bio->bios[r1_bio->read_disk] = NULL;
2528
2e52d449
N
2529 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2530 if (mddev->ro == 0
2531 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2532 freeze_array(conf, 1);
62096bce
N
2533 fix_read_error(conf, r1_bio->read_disk,
2534 r1_bio->sector, r1_bio->sectors);
2535 unfreeze_array(conf);
b33d1062
GK
2536 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2537 md_error(mddev, rdev);
7449f699
TM
2538 } else {
2539 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2540 }
2541
2e52d449 2542 rdev_dec_pending(rdev, conf->mddev);
c069da44 2543 sector = r1_bio->sector;
689389a0 2544 bio = r1_bio->master_bio;
62096bce 2545
689389a0
N
2546 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2547 r1_bio->state = 0;
2548 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
c069da44 2549 allow_barrier(conf, sector);
62096bce
N
2550}
2551
4ed8731d 2552static void raid1d(struct md_thread *thread)
1da177e4 2553{
4ed8731d 2554 struct mddev *mddev = thread->mddev;
9f2c9d12 2555 struct r1bio *r1_bio;
1da177e4 2556 unsigned long flags;
e8096360 2557 struct r1conf *conf = mddev->private;
1da177e4 2558 struct list_head *head = &conf->retry_list;
e1dfa0a2 2559 struct blk_plug plug;
fd76863e 2560 int idx;
1da177e4
LT
2561
2562 md_check_recovery(mddev);
e1dfa0a2 2563
55ce74d4 2564 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2565 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2566 LIST_HEAD(tmp);
2567 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2568 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2569 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2570 spin_unlock_irqrestore(&conf->device_lock, flags);
2571 while (!list_empty(&tmp)) {
a452744b
MP
2572 r1_bio = list_first_entry(&tmp, struct r1bio,
2573 retry_list);
55ce74d4 2574 list_del(&r1_bio->retry_list);
fd76863e 2575 idx = sector_to_idx(r1_bio->sector);
824e47da 2576 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2577 if (mddev->degraded)
2578 set_bit(R1BIO_Degraded, &r1_bio->state);
2579 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2580 close_write(r1_bio);
55ce74d4
N
2581 raid_end_bio_io(r1_bio);
2582 }
2583 }
2584
e1dfa0a2 2585 blk_start_plug(&plug);
1da177e4 2586 for (;;) {
191ea9b2 2587
0021b7bc 2588 flush_pending_writes(conf);
191ea9b2 2589
a35e63ef
N
2590 spin_lock_irqsave(&conf->device_lock, flags);
2591 if (list_empty(head)) {
2592 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2593 break;
a35e63ef 2594 }
9f2c9d12 2595 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2596 list_del(head->prev);
fd76863e 2597 idx = sector_to_idx(r1_bio->sector);
824e47da 2598 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2599 spin_unlock_irqrestore(&conf->device_lock, flags);
2600
2601 mddev = r1_bio->mddev;
070ec55d 2602 conf = mddev->private;
4367af55 2603 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2604 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2605 test_bit(R1BIO_WriteError, &r1_bio->state))
2606 handle_sync_write_finished(conf, r1_bio);
2607 else
4367af55 2608 sync_request_write(mddev, r1_bio);
cd5ff9a1 2609 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2610 test_bit(R1BIO_WriteError, &r1_bio->state))
2611 handle_write_finished(conf, r1_bio);
2612 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2613 handle_read_error(conf, r1_bio);
2614 else
c230e7e5 2615 WARN_ON_ONCE(1);
62096bce 2616
1d9d5241 2617 cond_resched();
2953079c 2618 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2619 md_check_recovery(mddev);
1da177e4 2620 }
e1dfa0a2 2621 blk_finish_plug(&plug);
1da177e4
LT
2622}
2623
e8096360 2624static int init_resync(struct r1conf *conf)
1da177e4
LT
2625{
2626 int buffs;
2627
2628 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514
KO
2629 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2630
2631 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2632 r1buf_pool_free, conf->poolinfo);
1da177e4
LT
2633}
2634
208410b5
SL
2635static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2636{
afeee514 2637 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
208410b5
SL
2638 struct resync_pages *rps;
2639 struct bio *bio;
2640 int i;
2641
2642 for (i = conf->poolinfo->raid_disks; i--; ) {
2643 bio = r1bio->bios[i];
2644 rps = bio->bi_private;
a7c50c94 2645 bio_reset(bio, NULL, 0);
208410b5
SL
2646 bio->bi_private = rps;
2647 }
2648 r1bio->master_bio = NULL;
2649 return r1bio;
2650}
2651
1da177e4
LT
2652/*
2653 * perform a "sync" on one "block"
2654 *
2655 * We need to make sure that no normal I/O request - particularly write
2656 * requests - conflict with active sync requests.
2657 *
2658 * This is achieved by tracking pending requests and a 'barrier' concept
2659 * that can be installed to exclude normal IO requests.
2660 */
2661
849674e4
SL
2662static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2663 int *skipped)
1da177e4 2664{
e8096360 2665 struct r1conf *conf = mddev->private;
9f2c9d12 2666 struct r1bio *r1_bio;
1da177e4
LT
2667 struct bio *bio;
2668 sector_t max_sector, nr_sectors;
3e198f78 2669 int disk = -1;
1da177e4 2670 int i;
3e198f78
N
2671 int wonly = -1;
2672 int write_targets = 0, read_targets = 0;
57dab0bd 2673 sector_t sync_blocks;
e3b9703e 2674 int still_degraded = 0;
06f60385
N
2675 int good_sectors = RESYNC_SECTORS;
2676 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2677 int idx = sector_to_idx(sector_nr);
022e510f 2678 int page_idx = 0;
1da177e4 2679
afeee514 2680 if (!mempool_initialized(&conf->r1buf_pool))
1da177e4 2681 if (init_resync(conf))
57afd89f 2682 return 0;
1da177e4 2683
58c0fed4 2684 max_sector = mddev->dev_sectors;
1da177e4 2685 if (sector_nr >= max_sector) {
191ea9b2
N
2686 /* If we aborted, we need to abort the
2687 * sync on the 'current' bitmap chunk (there will
2688 * only be one in raid1 resync.
2689 * We can find the current addess in mddev->curr_resync
2690 */
6a806c51 2691 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
2692 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2693 &sync_blocks, 1);
6a806c51 2694 else /* completed sync */
191ea9b2 2695 conf->fullsync = 0;
6a806c51 2696
e64e4018 2697 md_bitmap_close_sync(mddev->bitmap);
1da177e4 2698 close_sync(conf);
c40f341f
GR
2699
2700 if (mddev_is_clustered(mddev)) {
2701 conf->cluster_sync_low = 0;
2702 conf->cluster_sync_high = 0;
c40f341f 2703 }
1da177e4
LT
2704 return 0;
2705 }
2706
07d84d10
N
2707 if (mddev->bitmap == NULL &&
2708 mddev->recovery_cp == MaxSector &&
6394cca5 2709 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2710 conf->fullsync == 0) {
2711 *skipped = 1;
2712 return max_sector - sector_nr;
2713 }
6394cca5
N
2714 /* before building a request, check if we can skip these blocks..
2715 * This call the bitmap_start_sync doesn't actually record anything
2716 */
e64e4018 2717 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2718 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2719 /* We can skip this block, and probably several more */
2720 *skipped = 1;
2721 return sync_blocks;
2722 }
17999be4 2723
7ac50447
TM
2724 /*
2725 * If there is non-resync activity waiting for a turn, then let it
2726 * though before starting on this new sync request.
2727 */
824e47da 2728 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2729 schedule_timeout_uninterruptible(1);
2730
c40f341f
GR
2731 /* we are incrementing sector_nr below. To be safe, we check against
2732 * sector_nr + two times RESYNC_SECTORS
2733 */
2734
e64e4018 2735 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
c40f341f 2736 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
17999be4 2737
8c242593
YY
2738
2739 if (raise_barrier(conf, sector_nr))
2740 return 0;
2741
2742 r1_bio = raid1_alloc_init_r1buf(conf);
1da177e4 2743
3e198f78 2744 rcu_read_lock();
1da177e4 2745 /*
3e198f78
N
2746 * If we get a correctably read error during resync or recovery,
2747 * we might want to read from a different device. So we
2748 * flag all drives that could conceivably be read from for READ,
2749 * and any others (which will be non-In_sync devices) for WRITE.
2750 * If a read fails, we try reading from something else for which READ
2751 * is OK.
1da177e4 2752 */
1da177e4 2753
1da177e4
LT
2754 r1_bio->mddev = mddev;
2755 r1_bio->sector = sector_nr;
191ea9b2 2756 r1_bio->state = 0;
1da177e4 2757 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2758 /* make sure good_sectors won't go across barrier unit boundary */
2759 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2760
8f19ccb2 2761 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2762 struct md_rdev *rdev;
1da177e4 2763 bio = r1_bio->bios[i];
1da177e4 2764
3e198f78
N
2765 rdev = rcu_dereference(conf->mirrors[i].rdev);
2766 if (rdev == NULL ||
06f60385 2767 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2768 if (i < conf->raid_disks)
2769 still_degraded = 1;
3e198f78 2770 } else if (!test_bit(In_sync, &rdev->flags)) {
c34b7ac6 2771 bio->bi_opf = REQ_OP_WRITE;
1da177e4
LT
2772 bio->bi_end_io = end_sync_write;
2773 write_targets ++;
3e198f78
N
2774 } else {
2775 /* may need to read from here */
06f60385
N
2776 sector_t first_bad = MaxSector;
2777 int bad_sectors;
2778
2779 if (is_badblock(rdev, sector_nr, good_sectors,
2780 &first_bad, &bad_sectors)) {
2781 if (first_bad > sector_nr)
2782 good_sectors = first_bad - sector_nr;
2783 else {
2784 bad_sectors -= (sector_nr - first_bad);
2785 if (min_bad == 0 ||
2786 min_bad > bad_sectors)
2787 min_bad = bad_sectors;
2788 }
2789 }
2790 if (sector_nr < first_bad) {
2791 if (test_bit(WriteMostly, &rdev->flags)) {
2792 if (wonly < 0)
2793 wonly = i;
2794 } else {
2795 if (disk < 0)
2796 disk = i;
2797 }
c34b7ac6 2798 bio->bi_opf = REQ_OP_READ;
06f60385
N
2799 bio->bi_end_io = end_sync_read;
2800 read_targets++;
d57368af
AL
2801 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2802 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2803 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2804 /*
2805 * The device is suitable for reading (InSync),
2806 * but has bad block(s) here. Let's try to correct them,
2807 * if we are doing resync or repair. Otherwise, leave
2808 * this device alone for this sync request.
2809 */
c34b7ac6 2810 bio->bi_opf = REQ_OP_WRITE;
d57368af
AL
2811 bio->bi_end_io = end_sync_write;
2812 write_targets++;
3e198f78 2813 }
3e198f78 2814 }
028288df 2815 if (rdev && bio->bi_end_io) {
06f60385 2816 atomic_inc(&rdev->nr_pending);
4f024f37 2817 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2818 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2819 if (test_bit(FailFast, &rdev->flags))
2820 bio->bi_opf |= MD_FAILFAST;
06f60385 2821 }
1da177e4 2822 }
3e198f78
N
2823 rcu_read_unlock();
2824 if (disk < 0)
2825 disk = wonly;
2826 r1_bio->read_disk = disk;
191ea9b2 2827
06f60385
N
2828 if (read_targets == 0 && min_bad > 0) {
2829 /* These sectors are bad on all InSync devices, so we
2830 * need to mark them bad on all write targets
2831 */
2832 int ok = 1;
8f19ccb2 2833 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2834 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2835 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2836 ok = rdev_set_badblocks(rdev, sector_nr,
2837 min_bad, 0
2838 ) && ok;
2839 }
2953079c 2840 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2841 *skipped = 1;
2842 put_buf(r1_bio);
2843
2844 if (!ok) {
2845 /* Cannot record the badblocks, so need to
2846 * abort the resync.
2847 * If there are multiple read targets, could just
2848 * fail the really bad ones ???
2849 */
2850 conf->recovery_disabled = mddev->recovery_disabled;
2851 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2852 return 0;
2853 } else
2854 return min_bad;
2855
2856 }
2857 if (min_bad > 0 && min_bad < good_sectors) {
2858 /* only resync enough to reach the next bad->good
2859 * transition */
2860 good_sectors = min_bad;
2861 }
2862
3e198f78
N
2863 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2864 /* extra read targets are also write targets */
2865 write_targets += read_targets-1;
2866
2867 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2868 /* There is nowhere to write, so all non-sync
2869 * drives must be failed - so we are finished
2870 */
b7219ccb
N
2871 sector_t rv;
2872 if (min_bad > 0)
2873 max_sector = sector_nr + min_bad;
2874 rv = max_sector - sector_nr;
57afd89f 2875 *skipped = 1;
1da177e4 2876 put_buf(r1_bio);
1da177e4
LT
2877 return rv;
2878 }
2879
c6207277
N
2880 if (max_sector > mddev->resync_max)
2881 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2882 if (max_sector > sector_nr + good_sectors)
2883 max_sector = sector_nr + good_sectors;
1da177e4 2884 nr_sectors = 0;
289e99e8 2885 sync_blocks = 0;
1da177e4
LT
2886 do {
2887 struct page *page;
2888 int len = PAGE_SIZE;
2889 if (sector_nr + (len>>9) > max_sector)
2890 len = (max_sector - sector_nr) << 9;
2891 if (len == 0)
2892 break;
6a806c51 2893 if (sync_blocks == 0) {
e64e4018
AS
2894 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2895 &sync_blocks, still_degraded) &&
e5de485f
N
2896 !conf->fullsync &&
2897 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2898 break;
7571ae88 2899 if ((len >> 9) > sync_blocks)
6a806c51 2900 len = sync_blocks<<9;
ab7a30c7 2901 }
191ea9b2 2902
8f19ccb2 2903 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2904 struct resync_pages *rp;
2905
1da177e4 2906 bio = r1_bio->bios[i];
98d30c58 2907 rp = get_resync_pages(bio);
1da177e4 2908 if (bio->bi_end_io) {
022e510f 2909 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2910
2911 /*
2912 * won't fail because the vec table is big
2913 * enough to hold all these pages
2914 */
f8312322 2915 __bio_add_page(bio, page, len, 0);
1da177e4
LT
2916 }
2917 }
2918 nr_sectors += len>>9;
2919 sector_nr += len>>9;
191ea9b2 2920 sync_blocks -= (len>>9);
022e510f 2921 } while (++page_idx < RESYNC_PAGES);
98d30c58 2922
1da177e4
LT
2923 r1_bio->sectors = nr_sectors;
2924
c40f341f
GR
2925 if (mddev_is_clustered(mddev) &&
2926 conf->cluster_sync_high < sector_nr + nr_sectors) {
2927 conf->cluster_sync_low = mddev->curr_resync_completed;
2928 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2929 /* Send resync message */
2930 md_cluster_ops->resync_info_update(mddev,
2931 conf->cluster_sync_low,
2932 conf->cluster_sync_high);
2933 }
2934
d11c171e
N
2935 /* For a user-requested sync, we read all readable devices and do a
2936 * compare
2937 */
2938 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2939 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2940 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2941 bio = r1_bio->bios[i];
2942 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2943 read_targets--;
74d46992 2944 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2945 if (read_targets == 1)
2946 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 2947 submit_bio_noacct(bio);
d11c171e
N
2948 }
2949 }
2950 } else {
2951 atomic_set(&r1_bio->remaining, 1);
2952 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2953 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2954 if (read_targets == 1)
2955 bio->bi_opf &= ~MD_FAILFAST;
ed00aabd 2956 submit_bio_noacct(bio);
d11c171e 2957 }
1da177e4
LT
2958 return nr_sectors;
2959}
2960
fd01b88c 2961static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2962{
2963 if (sectors)
2964 return sectors;
2965
2966 return mddev->dev_sectors;
2967}
2968
e8096360 2969static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2970{
e8096360 2971 struct r1conf *conf;
709ae487 2972 int i;
0eaf822c 2973 struct raid1_info *disk;
3cb03002 2974 struct md_rdev *rdev;
709ae487 2975 int err = -ENOMEM;
1da177e4 2976
e8096360 2977 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2978 if (!conf)
709ae487 2979 goto abort;
1da177e4 2980
fd76863e 2981 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2982 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2983 if (!conf->nr_pending)
2984 goto abort;
2985
2986 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2987 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2988 if (!conf->nr_waiting)
2989 goto abort;
2990
2991 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2992 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2993 if (!conf->nr_queued)
2994 goto abort;
2995
2996 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2997 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2998 if (!conf->barrier)
2999 goto abort;
3000
6396bb22
KC
3001 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3002 mddev->raid_disks, 2),
3003 GFP_KERNEL);
1da177e4 3004 if (!conf->mirrors)
709ae487 3005 goto abort;
1da177e4 3006
ddaf22ab
N
3007 conf->tmppage = alloc_page(GFP_KERNEL);
3008 if (!conf->tmppage)
709ae487 3009 goto abort;
ddaf22ab 3010
709ae487 3011 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 3012 if (!conf->poolinfo)
709ae487 3013 goto abort;
8f19ccb2 3014 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3f677f9c 3015 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3016 rbio_pool_free, conf->poolinfo);
afeee514 3017 if (err)
709ae487
N
3018 goto abort;
3019
afeee514
KO
3020 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3021 if (err)
c230e7e5
N
3022 goto abort;
3023
ed9bfdf1 3024 conf->poolinfo->mddev = mddev;
1da177e4 3025
c19d5798 3026 err = -EINVAL;
e7e72bf6 3027 spin_lock_init(&conf->device_lock);
dafb20fa 3028 rdev_for_each(rdev, mddev) {
709ae487 3029 int disk_idx = rdev->raid_disk;
1da177e4
LT
3030 if (disk_idx >= mddev->raid_disks
3031 || disk_idx < 0)
3032 continue;
c19d5798 3033 if (test_bit(Replacement, &rdev->flags))
02b898f2 3034 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
3035 else
3036 disk = conf->mirrors + disk_idx;
1da177e4 3037
c19d5798
N
3038 if (disk->rdev)
3039 goto abort;
1da177e4 3040 disk->rdev = rdev;
1da177e4 3041 disk->head_position = 0;
12cee5a8 3042 disk->seq_start = MaxSector;
1da177e4
LT
3043 }
3044 conf->raid_disks = mddev->raid_disks;
3045 conf->mddev = mddev;
1da177e4 3046 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 3047 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
3048
3049 spin_lock_init(&conf->resync_lock);
17999be4 3050 init_waitqueue_head(&conf->wait_barrier);
1da177e4 3051
191ea9b2 3052 bio_list_init(&conf->pending_bio_list);
d890fa2b 3053 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 3054
c19d5798 3055 err = -EIO;
8f19ccb2 3056 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
3057
3058 disk = conf->mirrors + i;
3059
c19d5798
N
3060 if (i < conf->raid_disks &&
3061 disk[conf->raid_disks].rdev) {
3062 /* This slot has a replacement. */
3063 if (!disk->rdev) {
3064 /* No original, just make the replacement
3065 * a recovering spare
3066 */
3067 disk->rdev =
3068 disk[conf->raid_disks].rdev;
3069 disk[conf->raid_disks].rdev = NULL;
3070 } else if (!test_bit(In_sync, &disk->rdev->flags))
3071 /* Original is not in_sync - bad */
3072 goto abort;
3073 }
3074
5fd6c1dc
N
3075 if (!disk->rdev ||
3076 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3077 disk->head_position = 0;
4f0a5e01
JB
3078 if (disk->rdev &&
3079 (disk->rdev->saved_raid_disk < 0))
918f0238 3080 conf->fullsync = 1;
be4d3280 3081 }
1da177e4 3082 }
709ae487 3083
709ae487 3084 err = -ENOMEM;
44693154
YK
3085 rcu_assign_pointer(conf->thread,
3086 md_register_thread(raid1d, mddev, "raid1"));
1d41c216 3087 if (!conf->thread)
709ae487 3088 goto abort;
1da177e4 3089
709ae487
N
3090 return conf;
3091
3092 abort:
3093 if (conf) {
afeee514 3094 mempool_exit(&conf->r1bio_pool);
709ae487
N
3095 kfree(conf->mirrors);
3096 safe_put_page(conf->tmppage);
3097 kfree(conf->poolinfo);
fd76863e 3098 kfree(conf->nr_pending);
3099 kfree(conf->nr_waiting);
3100 kfree(conf->nr_queued);
3101 kfree(conf->barrier);
afeee514 3102 bioset_exit(&conf->bio_split);
709ae487
N
3103 kfree(conf);
3104 }
3105 return ERR_PTR(err);
3106}
3107
afa0f557 3108static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3109static int raid1_run(struct mddev *mddev)
709ae487 3110{
e8096360 3111 struct r1conf *conf;
709ae487 3112 int i;
3cb03002 3113 struct md_rdev *rdev;
5220ea1e 3114 int ret;
709ae487
N
3115
3116 if (mddev->level != 1) {
1d41c216
N
3117 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3118 mdname(mddev), mddev->level);
709ae487
N
3119 return -EIO;
3120 }
3121 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3122 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3123 mdname(mddev));
709ae487
N
3124 return -EIO;
3125 }
a415c0f1
N
3126 if (mddev_init_writes_pending(mddev) < 0)
3127 return -ENOMEM;
1da177e4 3128 /*
709ae487
N
3129 * copy the already verified devices into our private RAID1
3130 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3131 * should be freed in raid1_free()]
1da177e4 3132 */
709ae487
N
3133 if (mddev->private == NULL)
3134 conf = setup_conf(mddev);
3135 else
3136 conf = mddev->private;
1da177e4 3137
709ae487
N
3138 if (IS_ERR(conf))
3139 return PTR_ERR(conf);
1da177e4 3140
10fa225c 3141 if (mddev->queue)
3deff1a7 3142 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
5026d7a9 3143
dafb20fa 3144 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3145 if (!mddev->gendisk)
3146 continue;
709ae487
N
3147 disk_stack_limits(mddev->gendisk, rdev->bdev,
3148 rdev->data_offset << 9);
1da177e4 3149 }
191ea9b2 3150
709ae487 3151 mddev->degraded = 0;
ebfeb444 3152 for (i = 0; i < conf->raid_disks; i++)
709ae487
N
3153 if (conf->mirrors[i].rdev == NULL ||
3154 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3155 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3156 mddev->degraded++;
07f1a685
YY
3157 /*
3158 * RAID1 needs at least one disk in active
3159 */
3160 if (conf->raid_disks - mddev->degraded < 1) {
7eb8ff02 3161 md_unregister_thread(mddev, &conf->thread);
07f1a685
YY
3162 ret = -EINVAL;
3163 goto abort;
3164 }
709ae487
N
3165
3166 if (conf->raid_disks - mddev->degraded == 1)
3167 mddev->recovery_cp = MaxSector;
3168
8c6ac868 3169 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3170 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3171 mdname(mddev));
3172 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3173 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3174 mddev->raid_disks);
709ae487 3175
1da177e4
LT
3176 /*
3177 * Ok, everything is just fine now
3178 */
44693154
YK
3179 rcu_assign_pointer(mddev->thread, conf->thread);
3180 rcu_assign_pointer(conf->thread, NULL);
709ae487 3181 mddev->private = conf;
46533ff7 3182 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3183
1f403624 3184 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3185
ebfeb444 3186 ret = md_integrity_register(mddev);
5aa61f42 3187 if (ret) {
7eb8ff02 3188 md_unregister_thread(mddev, &mddev->thread);
07f1a685 3189 goto abort;
5aa61f42 3190 }
07f1a685
YY
3191 return 0;
3192
3193abort:
3194 raid1_free(mddev, conf);
5220ea1e 3195 return ret;
1da177e4
LT
3196}
3197
afa0f557 3198static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3199{
afa0f557 3200 struct r1conf *conf = priv;
409c57f3 3201
afeee514 3202 mempool_exit(&conf->r1bio_pool);
990a8baf 3203 kfree(conf->mirrors);
0fea7ed8 3204 safe_put_page(conf->tmppage);
990a8baf 3205 kfree(conf->poolinfo);
fd76863e 3206 kfree(conf->nr_pending);
3207 kfree(conf->nr_waiting);
3208 kfree(conf->nr_queued);
3209 kfree(conf->barrier);
afeee514 3210 bioset_exit(&conf->bio_split);
1da177e4 3211 kfree(conf);
1da177e4
LT
3212}
3213
fd01b88c 3214static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3215{
3216 /* no resync is happening, and there is enough space
3217 * on all devices, so we can resize.
3218 * We need to make sure resync covers any new space.
3219 * If the array is shrinking we should possibly wait until
3220 * any io in the removed space completes, but it hardly seems
3221 * worth it.
3222 */
a4a6125a
N
3223 sector_t newsize = raid1_size(mddev, sectors, 0);
3224 if (mddev->external_size &&
3225 mddev->array_sectors > newsize)
b522adcd 3226 return -EINVAL;
a4a6125a 3227 if (mddev->bitmap) {
e64e4018 3228 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
a4a6125a
N
3229 if (ret)
3230 return ret;
3231 }
3232 md_set_array_sectors(mddev, newsize);
b522adcd 3233 if (sectors > mddev->dev_sectors &&
b098636c 3234 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3235 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3236 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3237 }
b522adcd 3238 mddev->dev_sectors = sectors;
4b5c7ae8 3239 mddev->resync_max_sectors = sectors;
1da177e4
LT
3240 return 0;
3241}
3242
fd01b88c 3243static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3244{
3245 /* We need to:
3246 * 1/ resize the r1bio_pool
3247 * 2/ resize conf->mirrors
3248 *
3249 * We allocate a new r1bio_pool if we can.
3250 * Then raise a device barrier and wait until all IO stops.
3251 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3252 *
3253 * At the same time, we "pack" the devices so that all the missing
3254 * devices have the higher raid_disk numbers.
1da177e4 3255 */
afeee514 3256 mempool_t newpool, oldpool;
1da177e4 3257 struct pool_info *newpoolinfo;
0eaf822c 3258 struct raid1_info *newmirrors;
e8096360 3259 struct r1conf *conf = mddev->private;
63c70c4f 3260 int cnt, raid_disks;
c04be0aa 3261 unsigned long flags;
2214c260 3262 int d, d2;
afeee514
KO
3263 int ret;
3264
3265 memset(&newpool, 0, sizeof(newpool));
3266 memset(&oldpool, 0, sizeof(oldpool));
1da177e4 3267
63c70c4f 3268 /* Cannot change chunk_size, layout, or level */
664e7c41 3269 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3270 mddev->layout != mddev->new_layout ||
3271 mddev->level != mddev->new_level) {
664e7c41 3272 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3273 mddev->new_layout = mddev->layout;
3274 mddev->new_level = mddev->level;
3275 return -EINVAL;
3276 }
3277
2214c260
AP
3278 if (!mddev_is_clustered(mddev))
3279 md_allow_write(mddev);
2a2275d6 3280
63c70c4f
N
3281 raid_disks = mddev->raid_disks + mddev->delta_disks;
3282
6ea9c07c
N
3283 if (raid_disks < conf->raid_disks) {
3284 cnt=0;
3285 for (d= 0; d < conf->raid_disks; d++)
3286 if (conf->mirrors[d].rdev)
3287 cnt++;
3288 if (cnt > raid_disks)
1da177e4 3289 return -EBUSY;
6ea9c07c 3290 }
1da177e4
LT
3291
3292 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3293 if (!newpoolinfo)
3294 return -ENOMEM;
3295 newpoolinfo->mddev = mddev;
8f19ccb2 3296 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4 3297
3f677f9c 3298 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3299 rbio_pool_free, newpoolinfo);
afeee514 3300 if (ret) {
1da177e4 3301 kfree(newpoolinfo);
afeee514 3302 return ret;
1da177e4 3303 }
6396bb22
KC
3304 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3305 raid_disks, 2),
8f19ccb2 3306 GFP_KERNEL);
1da177e4
LT
3307 if (!newmirrors) {
3308 kfree(newpoolinfo);
afeee514 3309 mempool_exit(&newpool);
1da177e4
LT
3310 return -ENOMEM;
3311 }
1da177e4 3312
e2d59925 3313 freeze_array(conf, 0);
1da177e4
LT
3314
3315 /* ok, everything is stopped */
3316 oldpool = conf->r1bio_pool;
3317 conf->r1bio_pool = newpool;
6ea9c07c 3318
a88aa786 3319 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3320 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3321 if (rdev && rdev->raid_disk != d2) {
36fad858 3322 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3323 rdev->raid_disk = d2;
36fad858
NK
3324 sysfs_unlink_rdev(mddev, rdev);
3325 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3326 pr_warn("md/raid1:%s: cannot register rd%d\n",
3327 mdname(mddev), rdev->raid_disk);
6ea9c07c 3328 }
a88aa786
N
3329 if (rdev)
3330 newmirrors[d2++].rdev = rdev;
3331 }
1da177e4
LT
3332 kfree(conf->mirrors);
3333 conf->mirrors = newmirrors;
3334 kfree(conf->poolinfo);
3335 conf->poolinfo = newpoolinfo;
3336
c04be0aa 3337 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3338 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3339 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3340 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3341 mddev->delta_disks = 0;
1da177e4 3342
e2d59925 3343 unfreeze_array(conf);
1da177e4 3344
985ca973 3345 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3346 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3347 md_wakeup_thread(mddev->thread);
3348
afeee514 3349 mempool_exit(&oldpool);
1da177e4
LT
3350 return 0;
3351}
3352
b03e0ccb 3353static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3354{
e8096360 3355 struct r1conf *conf = mddev->private;
36fa3063 3356
b03e0ccb 3357 if (quiesce)
07169fd4 3358 freeze_array(conf, 0);
b03e0ccb 3359 else
07169fd4 3360 unfreeze_array(conf);
36fa3063
N
3361}
3362
fd01b88c 3363static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3364{
3365 /* raid1 can take over:
3366 * raid5 with 2 devices, any layout or chunk size
3367 */
3368 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3369 struct r1conf *conf;
709ae487
N
3370 mddev->new_level = 1;
3371 mddev->new_layout = 0;
3372 mddev->new_chunk_sectors = 0;
3373 conf = setup_conf(mddev);
6995f0b2 3374 if (!IS_ERR(conf)) {
07169fd4 3375 /* Array must appear to be quiesced */
3376 conf->array_frozen = 1;
394ed8e4
SL
3377 mddev_clear_unsupported_flags(mddev,
3378 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3379 }
709ae487
N
3380 return conf;
3381 }
3382 return ERR_PTR(-EINVAL);
3383}
1da177e4 3384
84fc4b56 3385static struct md_personality raid1_personality =
1da177e4
LT
3386{
3387 .name = "raid1",
2604b703 3388 .level = 1,
1da177e4 3389 .owner = THIS_MODULE,
849674e4
SL
3390 .make_request = raid1_make_request,
3391 .run = raid1_run,
afa0f557 3392 .free = raid1_free,
849674e4
SL
3393 .status = raid1_status,
3394 .error_handler = raid1_error,
1da177e4
LT
3395 .hot_add_disk = raid1_add_disk,
3396 .hot_remove_disk= raid1_remove_disk,
3397 .spare_active = raid1_spare_active,
849674e4 3398 .sync_request = raid1_sync_request,
1da177e4 3399 .resize = raid1_resize,
80c3a6ce 3400 .size = raid1_size,
63c70c4f 3401 .check_reshape = raid1_reshape,
36fa3063 3402 .quiesce = raid1_quiesce,
709ae487 3403 .takeover = raid1_takeover,
1da177e4
LT
3404};
3405
3406static int __init raid_init(void)
3407{
2604b703 3408 return register_md_personality(&raid1_personality);
1da177e4
LT
3409}
3410
3411static void raid_exit(void)
3412{
2604b703 3413 unregister_md_personality(&raid1_personality);
1da177e4
LT
3414}
3415
3416module_init(raid_init);
3417module_exit(raid_exit);
3418MODULE_LICENSE("GPL");
0efb9e61 3419MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3420MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3421MODULE_ALIAS("md-raid1");
2604b703 3422MODULE_ALIAS("md-level-1");