libnvdimm/altmap: Track namespace boundaries in altmap
[linux-2.6-block.git] / drivers / md / raid1.c
CommitLineData
af1a8899 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
96de0e25 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
191ea9b2
N
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
1da177e4
LT
24 */
25
5a0e3ad6 26#include <linux/slab.h>
25570727 27#include <linux/delay.h>
bff61975 28#include <linux/blkdev.h>
056075c7 29#include <linux/module.h>
bff61975 30#include <linux/seq_file.h>
8bda470e 31#include <linux/ratelimit.h>
3f07c014 32
109e3765 33#include <trace/events/block.h>
3f07c014 34
43b2e5d8 35#include "md.h"
ef740c37 36#include "raid1.h"
935fe098 37#include "md-bitmap.h"
191ea9b2 38
394ed8e4
SL
39#define UNSUPPORTED_MDDEV_FLAGS \
40 ((1L << MD_HAS_JOURNAL) | \
ea0213e0 41 (1L << MD_JOURNAL_CLEAN) | \
ddc08823
PB
42 (1L << MD_HAS_PPL) | \
43 (1L << MD_HAS_MULTIPLE_PPLS))
394ed8e4 44
fd76863e 45static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
46static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
1da177e4 47
578b54ad
N
48#define raid1_log(md, fmt, args...) \
49 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
50
fb0eb5df
ML
51#include "raid1-10.c"
52
3e148a32
GJ
53static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
54{
55 struct wb_info *wi, *temp_wi;
56 unsigned long flags;
57 int ret = 0;
58 struct mddev *mddev = rdev->mddev;
59
60 wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO);
61
62 spin_lock_irqsave(&rdev->wb_list_lock, flags);
63 list_for_each_entry(temp_wi, &rdev->wb_list, list) {
64 /* collision happened */
65 if (hi > temp_wi->lo && lo < temp_wi->hi) {
66 ret = -EBUSY;
67 break;
68 }
69 }
70
71 if (!ret) {
72 wi->lo = lo;
73 wi->hi = hi;
74 list_add(&wi->list, &rdev->wb_list);
75 } else
76 mempool_free(wi, mddev->wb_info_pool);
77 spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
78
79 return ret;
80}
81
82static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
83{
84 struct wb_info *wi;
85 unsigned long flags;
86 int found = 0;
87 struct mddev *mddev = rdev->mddev;
88
89 spin_lock_irqsave(&rdev->wb_list_lock, flags);
90 list_for_each_entry(wi, &rdev->wb_list, list)
91 if (hi == wi->hi && lo == wi->lo) {
92 list_del(&wi->list);
93 mempool_free(wi, mddev->wb_info_pool);
94 found = 1;
95 break;
96 }
97
98 if (!found)
16d4b746 99 WARN(1, "The write behind IO is not recorded\n");
3e148a32
GJ
100 spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
101 wake_up(&rdev->wb_io_wait);
102}
103
98d30c58
ML
104/*
105 * for resync bio, r1bio pointer can be retrieved from the per-bio
106 * 'struct resync_pages'.
107 */
108static inline struct r1bio *get_resync_r1bio(struct bio *bio)
109{
110 return get_resync_pages(bio)->raid_bio;
111}
112
dd0fc66f 113static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
114{
115 struct pool_info *pi = data;
9f2c9d12 116 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
117
118 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 119 return kzalloc(size, gfp_flags);
1da177e4
LT
120}
121
8e005f7c 122#define RESYNC_DEPTH 32
1da177e4 123#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
8e005f7c 124#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
125#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
126#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
127#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
1da177e4 128
dd0fc66f 129static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
130{
131 struct pool_info *pi = data;
9f2c9d12 132 struct r1bio *r1_bio;
1da177e4 133 struct bio *bio;
da1aab3d 134 int need_pages;
98d30c58
ML
135 int j;
136 struct resync_pages *rps;
1da177e4
LT
137
138 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 139 if (!r1_bio)
1da177e4 140 return NULL;
1da177e4 141
6da2ec56
KC
142 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
143 gfp_flags);
98d30c58
ML
144 if (!rps)
145 goto out_free_r1bio;
146
1da177e4
LT
147 /*
148 * Allocate bios : 1 for reading, n-1 for writing
149 */
150 for (j = pi->raid_disks ; j-- ; ) {
6746557f 151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
152 if (!bio)
153 goto out_free_bio;
154 r1_bio->bios[j] = bio;
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
158 * the first bio.
159 * If this is a user-requested check/repair, allocate
160 * RESYNC_PAGES for each bio.
1da177e4 161 */
d11c171e 162 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 163 need_pages = pi->raid_disks;
d11c171e 164 else
da1aab3d 165 need_pages = 1;
98d30c58
ML
166 for (j = 0; j < pi->raid_disks; j++) {
167 struct resync_pages *rp = &rps[j];
168
d11c171e 169 bio = r1_bio->bios[j];
d11c171e 170
98d30c58
ML
171 if (j < need_pages) {
172 if (resync_alloc_pages(rp, gfp_flags))
173 goto out_free_pages;
174 } else {
175 memcpy(rp, &rps[0], sizeof(*rp));
176 resync_get_all_pages(rp);
177 }
178
98d30c58
ML
179 rp->raid_bio = r1_bio;
180 bio->bi_private = rp;
1da177e4
LT
181 }
182
183 r1_bio->master_bio = NULL;
184
185 return r1_bio;
186
da1aab3d 187out_free_pages:
491221f8 188 while (--j >= 0)
98d30c58 189 resync_free_pages(&rps[j]);
da1aab3d 190
1da177e4 191out_free_bio:
8f19ccb2 192 while (++j < pi->raid_disks)
1da177e4 193 bio_put(r1_bio->bios[j]);
98d30c58
ML
194 kfree(rps);
195
196out_free_r1bio:
c7afa803 197 rbio_pool_free(r1_bio, data);
1da177e4
LT
198 return NULL;
199}
200
201static void r1buf_pool_free(void *__r1_bio, void *data)
202{
203 struct pool_info *pi = data;
98d30c58 204 int i;
9f2c9d12 205 struct r1bio *r1bio = __r1_bio;
98d30c58 206 struct resync_pages *rp = NULL;
1da177e4 207
98d30c58
ML
208 for (i = pi->raid_disks; i--; ) {
209 rp = get_resync_pages(r1bio->bios[i]);
210 resync_free_pages(rp);
1da177e4 211 bio_put(r1bio->bios[i]);
98d30c58
ML
212 }
213
214 /* resync pages array stored in the 1st bio's .bi_private */
215 kfree(rp);
1da177e4 216
c7afa803 217 rbio_pool_free(r1bio, data);
1da177e4
LT
218}
219
e8096360 220static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
221{
222 int i;
223
8f19ccb2 224 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 225 struct bio **bio = r1_bio->bios + i;
4367af55 226 if (!BIO_SPECIAL(*bio))
1da177e4
LT
227 bio_put(*bio);
228 *bio = NULL;
229 }
230}
231
9f2c9d12 232static void free_r1bio(struct r1bio *r1_bio)
1da177e4 233{
e8096360 234 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 235
1da177e4 236 put_all_bios(conf, r1_bio);
afeee514 237 mempool_free(r1_bio, &conf->r1bio_pool);
1da177e4
LT
238}
239
9f2c9d12 240static void put_buf(struct r1bio *r1_bio)
1da177e4 241{
e8096360 242 struct r1conf *conf = r1_bio->mddev->private;
af5f42a7 243 sector_t sect = r1_bio->sector;
3e198f78
N
244 int i;
245
8f19ccb2 246 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
247 struct bio *bio = r1_bio->bios[i];
248 if (bio->bi_end_io)
249 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
250 }
1da177e4 251
afeee514 252 mempool_free(r1_bio, &conf->r1buf_pool);
1da177e4 253
af5f42a7 254 lower_barrier(conf, sect);
1da177e4
LT
255}
256
9f2c9d12 257static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
258{
259 unsigned long flags;
fd01b88c 260 struct mddev *mddev = r1_bio->mddev;
e8096360 261 struct r1conf *conf = mddev->private;
fd76863e 262 int idx;
1da177e4 263
fd76863e 264 idx = sector_to_idx(r1_bio->sector);
1da177e4
LT
265 spin_lock_irqsave(&conf->device_lock, flags);
266 list_add(&r1_bio->retry_list, &conf->retry_list);
824e47da 267 atomic_inc(&conf->nr_queued[idx]);
1da177e4
LT
268 spin_unlock_irqrestore(&conf->device_lock, flags);
269
17999be4 270 wake_up(&conf->wait_barrier);
1da177e4
LT
271 md_wakeup_thread(mddev->thread);
272}
273
274/*
275 * raid_end_bio_io() is called when we have finished servicing a mirrored
276 * operation and are ready to return a success/failure code to the buffer
277 * cache layer.
278 */
9f2c9d12 279static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
280{
281 struct bio *bio = r1_bio->master_bio;
e8096360 282 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
283
284 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4e4cbee9 285 bio->bi_status = BLK_STS_IOERR;
4246a0b6 286
37011e3a
N
287 bio_endio(bio);
288 /*
289 * Wake up any possible resync thread that waits for the device
290 * to go idle.
291 */
292 allow_barrier(conf, r1_bio->sector);
d2eb35ac
N
293}
294
9f2c9d12 295static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
296{
297 struct bio *bio = r1_bio->master_bio;
298
4b6d287f
N
299 /* if nobody has done the final endio yet, do it now */
300 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
301 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
302 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
303 (unsigned long long) bio->bi_iter.bi_sector,
304 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 305
d2eb35ac 306 call_bio_endio(r1_bio);
4b6d287f 307 }
1da177e4
LT
308 free_r1bio(r1_bio);
309}
310
311/*
312 * Update disk head position estimator based on IRQ completion info.
313 */
9f2c9d12 314static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 315{
e8096360 316 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
317
318 conf->mirrors[disk].head_position =
319 r1_bio->sector + (r1_bio->sectors);
320}
321
ba3ae3be
NK
322/*
323 * Find the disk number which triggered given bio
324 */
9f2c9d12 325static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
326{
327 int mirror;
30194636
N
328 struct r1conf *conf = r1_bio->mddev->private;
329 int raid_disks = conf->raid_disks;
ba3ae3be 330
8f19ccb2 331 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
332 if (r1_bio->bios[mirror] == bio)
333 break;
334
8f19ccb2 335 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
336 update_head_pos(mirror, r1_bio);
337
338 return mirror;
339}
340
4246a0b6 341static void raid1_end_read_request(struct bio *bio)
1da177e4 342{
4e4cbee9 343 int uptodate = !bio->bi_status;
9f2c9d12 344 struct r1bio *r1_bio = bio->bi_private;
e8096360 345 struct r1conf *conf = r1_bio->mddev->private;
e5872d58 346 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1da177e4 347
1da177e4
LT
348 /*
349 * this branch is our 'one mirror IO has finished' event handler:
350 */
e5872d58 351 update_head_pos(r1_bio->read_disk, r1_bio);
ddaf22ab 352
dd00a99e
N
353 if (uptodate)
354 set_bit(R1BIO_Uptodate, &r1_bio->state);
2e52d449
N
355 else if (test_bit(FailFast, &rdev->flags) &&
356 test_bit(R1BIO_FailFast, &r1_bio->state))
357 /* This was a fail-fast read so we definitely
358 * want to retry */
359 ;
dd00a99e
N
360 else {
361 /* If all other devices have failed, we want to return
362 * the error upwards rather than fail the last device.
363 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 364 */
dd00a99e
N
365 unsigned long flags;
366 spin_lock_irqsave(&conf->device_lock, flags);
367 if (r1_bio->mddev->degraded == conf->raid_disks ||
368 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
e5872d58 369 test_bit(In_sync, &rdev->flags)))
dd00a99e
N
370 uptodate = 1;
371 spin_unlock_irqrestore(&conf->device_lock, flags);
372 }
1da177e4 373
7ad4d4a6 374 if (uptodate) {
1da177e4 375 raid_end_bio_io(r1_bio);
e5872d58 376 rdev_dec_pending(rdev, conf->mddev);
7ad4d4a6 377 } else {
1da177e4
LT
378 /*
379 * oops, read error:
380 */
381 char b[BDEVNAME_SIZE];
1d41c216
N
382 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
383 mdname(conf->mddev),
384 bdevname(rdev->bdev, b),
385 (unsigned long long)r1_bio->sector);
d2eb35ac 386 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 387 reschedule_retry(r1_bio);
7ad4d4a6 388 /* don't drop the reference on read_disk yet */
1da177e4 389 }
1da177e4
LT
390}
391
9f2c9d12 392static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
393{
394 /* it really is the end of this request */
395 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
396 bio_free_pages(r1_bio->behind_master_bio);
397 bio_put(r1_bio->behind_master_bio);
398 r1_bio->behind_master_bio = NULL;
cd5ff9a1
N
399 }
400 /* clear the bitmap if all writes complete successfully */
e64e4018
AS
401 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
402 r1_bio->sectors,
403 !test_bit(R1BIO_Degraded, &r1_bio->state),
404 test_bit(R1BIO_BehindIO, &r1_bio->state));
cd5ff9a1
N
405 md_write_end(r1_bio->mddev);
406}
407
9f2c9d12 408static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 409{
cd5ff9a1
N
410 if (!atomic_dec_and_test(&r1_bio->remaining))
411 return;
412
413 if (test_bit(R1BIO_WriteError, &r1_bio->state))
414 reschedule_retry(r1_bio);
415 else {
416 close_write(r1_bio);
4367af55
N
417 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
418 reschedule_retry(r1_bio);
419 else
420 raid_end_bio_io(r1_bio);
4e78064f
N
421 }
422}
423
4246a0b6 424static void raid1_end_write_request(struct bio *bio)
1da177e4 425{
9f2c9d12 426 struct r1bio *r1_bio = bio->bi_private;
e5872d58 427 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 428 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 429 struct bio *to_put = NULL;
e5872d58
N
430 int mirror = find_bio_disk(r1_bio, bio);
431 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
e3f948cd
SL
432 bool discard_error;
433
4e4cbee9 434 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
1da177e4 435
e9c7469b
TH
436 /*
437 * 'one mirror IO has finished' event handler:
438 */
4e4cbee9 439 if (bio->bi_status && !discard_error) {
e5872d58
N
440 set_bit(WriteErrorSeen, &rdev->flags);
441 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
442 set_bit(MD_RECOVERY_NEEDED, &
443 conf->mddev->recovery);
444
212e7eb7
N
445 if (test_bit(FailFast, &rdev->flags) &&
446 (bio->bi_opf & MD_FAILFAST) &&
447 /* We never try FailFast to WriteMostly devices */
448 !test_bit(WriteMostly, &rdev->flags)) {
449 md_error(r1_bio->mddev, rdev);
450 if (!test_bit(Faulty, &rdev->flags))
451 /* This is the only remaining device,
452 * We need to retry the write without
453 * FailFast
454 */
455 set_bit(R1BIO_WriteError, &r1_bio->state);
456 else {
457 /* Finished with this branch */
458 r1_bio->bios[mirror] = NULL;
459 to_put = bio;
460 }
461 } else
462 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 463 } else {
1da177e4 464 /*
e9c7469b
TH
465 * Set R1BIO_Uptodate in our master bio, so that we
466 * will return a good error code for to the higher
467 * levels even if IO on some other mirrored buffer
468 * fails.
469 *
470 * The 'master' represents the composite IO operation
471 * to user-side. So if something waits for IO, then it
472 * will wait for the 'master' bio.
1da177e4 473 */
4367af55
N
474 sector_t first_bad;
475 int bad_sectors;
476
cd5ff9a1
N
477 r1_bio->bios[mirror] = NULL;
478 to_put = bio;
3056e3ae
AL
479 /*
480 * Do not set R1BIO_Uptodate if the current device is
481 * rebuilding or Faulty. This is because we cannot use
482 * such device for properly reading the data back (we could
483 * potentially use it, if the current write would have felt
484 * before rdev->recovery_offset, but for simplicity we don't
485 * check this here.
486 */
e5872d58
N
487 if (test_bit(In_sync, &rdev->flags) &&
488 !test_bit(Faulty, &rdev->flags))
3056e3ae 489 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 490
4367af55 491 /* Maybe we can clear some bad blocks. */
e5872d58 492 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
e3f948cd 493 &first_bad, &bad_sectors) && !discard_error) {
4367af55
N
494 r1_bio->bios[mirror] = IO_MADE_GOOD;
495 set_bit(R1BIO_MadeGood, &r1_bio->state);
496 }
497 }
498
e9c7469b 499 if (behind) {
3e148a32
GJ
500 if (test_bit(WBCollisionCheck, &rdev->flags)) {
501 sector_t lo = r1_bio->sector;
502 sector_t hi = r1_bio->sector + r1_bio->sectors;
503
504 remove_wb(rdev, lo, hi);
505 }
e5872d58 506 if (test_bit(WriteMostly, &rdev->flags))
e9c7469b
TH
507 atomic_dec(&r1_bio->behind_remaining);
508
509 /*
510 * In behind mode, we ACK the master bio once the I/O
511 * has safely reached all non-writemostly
512 * disks. Setting the Returned bit ensures that this
513 * gets done only once -- we don't ever want to return
514 * -EIO here, instead we'll wait
515 */
516 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
517 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
518 /* Maybe we can return now */
519 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
520 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
521 pr_debug("raid1: behind end write sectors"
522 " %llu-%llu\n",
4f024f37
KO
523 (unsigned long long) mbio->bi_iter.bi_sector,
524 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 525 call_bio_endio(r1_bio);
4b6d287f
N
526 }
527 }
528 }
4367af55 529 if (r1_bio->bios[mirror] == NULL)
e5872d58 530 rdev_dec_pending(rdev, conf->mddev);
e9c7469b 531
1da177e4 532 /*
1da177e4
LT
533 * Let's see if all mirrored write operations have finished
534 * already.
535 */
af6d7b76 536 r1_bio_write_done(r1_bio);
c70810b3 537
04b857f7
N
538 if (to_put)
539 bio_put(to_put);
1da177e4
LT
540}
541
fd76863e 542static sector_t align_to_barrier_unit_end(sector_t start_sector,
543 sector_t sectors)
544{
545 sector_t len;
546
547 WARN_ON(sectors == 0);
548 /*
549 * len is the number of sectors from start_sector to end of the
550 * barrier unit which start_sector belongs to.
551 */
552 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
553 start_sector;
554
555 if (len > sectors)
556 len = sectors;
557
558 return len;
559}
560
1da177e4
LT
561/*
562 * This routine returns the disk from which the requested read should
563 * be done. There is a per-array 'next expected sequential IO' sector
564 * number - if this matches on the next IO then we use the last disk.
565 * There is also a per-disk 'last know head position' sector that is
566 * maintained from IRQ contexts, both the normal and the resync IO
567 * completion handlers update this position correctly. If there is no
568 * perfect sequential match then we pick the disk whose head is closest.
569 *
570 * If there are 2 mirrors in the same 2 devices, performance degrades
571 * because position is mirror, not device based.
572 *
573 * The rdev for the device selected will have nr_pending incremented.
574 */
e8096360 575static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 576{
af3a2cd6 577 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
578 int sectors;
579 int best_good_sectors;
9dedf603
SL
580 int best_disk, best_dist_disk, best_pending_disk;
581 int has_nonrot_disk;
be4d3280 582 int disk;
76073054 583 sector_t best_dist;
9dedf603 584 unsigned int min_pending;
3cb03002 585 struct md_rdev *rdev;
f3ac8bf7 586 int choose_first;
12cee5a8 587 int choose_next_idle;
1da177e4
LT
588
589 rcu_read_lock();
590 /*
8ddf9efe 591 * Check if we can balance. We can balance on the whole
1da177e4
LT
592 * device if no resync is going on, or below the resync window.
593 * We take the first readable disk when above the resync window.
594 */
595 retry:
d2eb35ac 596 sectors = r1_bio->sectors;
76073054 597 best_disk = -1;
9dedf603 598 best_dist_disk = -1;
76073054 599 best_dist = MaxSector;
9dedf603
SL
600 best_pending_disk = -1;
601 min_pending = UINT_MAX;
d2eb35ac 602 best_good_sectors = 0;
9dedf603 603 has_nonrot_disk = 0;
12cee5a8 604 choose_next_idle = 0;
2e52d449 605 clear_bit(R1BIO_FailFast, &r1_bio->state);
d2eb35ac 606
7d49ffcf
GR
607 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
608 (mddev_is_clustered(conf->mddev) &&
90382ed9 609 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
610 this_sector + sectors)))
611 choose_first = 1;
612 else
613 choose_first = 0;
1da177e4 614
be4d3280 615 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 616 sector_t dist;
d2eb35ac
N
617 sector_t first_bad;
618 int bad_sectors;
9dedf603 619 unsigned int pending;
12cee5a8 620 bool nonrot;
d2eb35ac 621
f3ac8bf7
N
622 rdev = rcu_dereference(conf->mirrors[disk].rdev);
623 if (r1_bio->bios[disk] == IO_BLOCKED
624 || rdev == NULL
76073054 625 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 626 continue;
76073054
N
627 if (!test_bit(In_sync, &rdev->flags) &&
628 rdev->recovery_offset < this_sector + sectors)
1da177e4 629 continue;
76073054
N
630 if (test_bit(WriteMostly, &rdev->flags)) {
631 /* Don't balance among write-mostly, just
632 * use the first as a last resort */
d1901ef0 633 if (best_dist_disk < 0) {
307729c8
N
634 if (is_badblock(rdev, this_sector, sectors,
635 &first_bad, &bad_sectors)) {
816b0acf 636 if (first_bad <= this_sector)
307729c8
N
637 /* Cannot use this */
638 continue;
639 best_good_sectors = first_bad - this_sector;
640 } else
641 best_good_sectors = sectors;
d1901ef0
TH
642 best_dist_disk = disk;
643 best_pending_disk = disk;
307729c8 644 }
76073054
N
645 continue;
646 }
647 /* This is a reasonable device to use. It might
648 * even be best.
649 */
d2eb35ac
N
650 if (is_badblock(rdev, this_sector, sectors,
651 &first_bad, &bad_sectors)) {
652 if (best_dist < MaxSector)
653 /* already have a better device */
654 continue;
655 if (first_bad <= this_sector) {
656 /* cannot read here. If this is the 'primary'
657 * device, then we must not read beyond
658 * bad_sectors from another device..
659 */
660 bad_sectors -= (this_sector - first_bad);
661 if (choose_first && sectors > bad_sectors)
662 sectors = bad_sectors;
663 if (best_good_sectors > sectors)
664 best_good_sectors = sectors;
665
666 } else {
667 sector_t good_sectors = first_bad - this_sector;
668 if (good_sectors > best_good_sectors) {
669 best_good_sectors = good_sectors;
670 best_disk = disk;
671 }
672 if (choose_first)
673 break;
674 }
675 continue;
d82dd0e3
TM
676 } else {
677 if ((sectors > best_good_sectors) && (best_disk >= 0))
678 best_disk = -1;
d2eb35ac 679 best_good_sectors = sectors;
d82dd0e3 680 }
d2eb35ac 681
2e52d449
N
682 if (best_disk >= 0)
683 /* At least two disks to choose from so failfast is OK */
684 set_bit(R1BIO_FailFast, &r1_bio->state);
685
12cee5a8
SL
686 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
687 has_nonrot_disk |= nonrot;
9dedf603 688 pending = atomic_read(&rdev->nr_pending);
76073054 689 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 690 if (choose_first) {
76073054 691 best_disk = disk;
1da177e4
LT
692 break;
693 }
12cee5a8
SL
694 /* Don't change to another disk for sequential reads */
695 if (conf->mirrors[disk].next_seq_sect == this_sector
696 || dist == 0) {
697 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
698 struct raid1_info *mirror = &conf->mirrors[disk];
699
700 best_disk = disk;
701 /*
702 * If buffered sequential IO size exceeds optimal
703 * iosize, check if there is idle disk. If yes, choose
704 * the idle disk. read_balance could already choose an
705 * idle disk before noticing it's a sequential IO in
706 * this disk. This doesn't matter because this disk
707 * will idle, next time it will be utilized after the
708 * first disk has IO size exceeds optimal iosize. In
709 * this way, iosize of the first disk will be optimal
710 * iosize at least. iosize of the second disk might be
711 * small, but not a big deal since when the second disk
712 * starts IO, the first disk is likely still busy.
713 */
714 if (nonrot && opt_iosize > 0 &&
715 mirror->seq_start != MaxSector &&
716 mirror->next_seq_sect > opt_iosize &&
717 mirror->next_seq_sect - opt_iosize >=
718 mirror->seq_start) {
719 choose_next_idle = 1;
720 continue;
721 }
722 break;
723 }
12cee5a8
SL
724
725 if (choose_next_idle)
726 continue;
9dedf603
SL
727
728 if (min_pending > pending) {
729 min_pending = pending;
730 best_pending_disk = disk;
731 }
732
76073054
N
733 if (dist < best_dist) {
734 best_dist = dist;
9dedf603 735 best_dist_disk = disk;
1da177e4 736 }
f3ac8bf7 737 }
1da177e4 738
9dedf603
SL
739 /*
740 * If all disks are rotational, choose the closest disk. If any disk is
741 * non-rotational, choose the disk with less pending request even the
742 * disk is rotational, which might/might not be optimal for raids with
743 * mixed ratation/non-rotational disks depending on workload.
744 */
745 if (best_disk == -1) {
2e52d449 746 if (has_nonrot_disk || min_pending == 0)
9dedf603
SL
747 best_disk = best_pending_disk;
748 else
749 best_disk = best_dist_disk;
750 }
751
76073054
N
752 if (best_disk >= 0) {
753 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
754 if (!rdev)
755 goto retry;
756 atomic_inc(&rdev->nr_pending);
d2eb35ac 757 sectors = best_good_sectors;
12cee5a8
SL
758
759 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
760 conf->mirrors[best_disk].seq_start = this_sector;
761
be4d3280 762 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
763 }
764 rcu_read_unlock();
d2eb35ac 765 *max_sectors = sectors;
1da177e4 766
76073054 767 return best_disk;
1da177e4
LT
768}
769
5c675f83 770static int raid1_congested(struct mddev *mddev, int bits)
0d129228 771{
e8096360 772 struct r1conf *conf = mddev->private;
0d129228
N
773 int i, ret = 0;
774
4452226e 775 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
776 conf->pending_count >= max_queued_requests)
777 return 1;
778
0d129228 779 rcu_read_lock();
f53e29fc 780 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 781 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 782 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 783 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 784
1ed7242e
JB
785 BUG_ON(!q);
786
0d129228
N
787 /* Note the '|| 1' - when read_balance prefers
788 * non-congested targets, it can be removed
789 */
4452226e 790 if ((bits & (1 << WB_async_congested)) || 1)
dc3b17cc 791 ret |= bdi_congested(q->backing_dev_info, bits);
0d129228 792 else
dc3b17cc 793 ret &= bdi_congested(q->backing_dev_info, bits);
0d129228
N
794 }
795 }
796 rcu_read_unlock();
797 return ret;
798}
0d129228 799
673ca68d
N
800static void flush_bio_list(struct r1conf *conf, struct bio *bio)
801{
802 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
e64e4018 803 md_bitmap_unplug(conf->mddev->bitmap);
673ca68d
N
804 wake_up(&conf->wait_barrier);
805
806 while (bio) { /* submit pending writes */
807 struct bio *next = bio->bi_next;
74d46992 808 struct md_rdev *rdev = (void *)bio->bi_disk;
673ca68d 809 bio->bi_next = NULL;
74d46992 810 bio_set_dev(bio, rdev->bdev);
673ca68d 811 if (test_bit(Faulty, &rdev->flags)) {
6308d8e3 812 bio_io_error(bio);
673ca68d 813 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
74d46992 814 !blk_queue_discard(bio->bi_disk->queue)))
673ca68d
N
815 /* Just ignore it */
816 bio_endio(bio);
817 else
818 generic_make_request(bio);
819 bio = next;
820 }
821}
822
e8096360 823static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
824{
825 /* Any writes that have been queued but are awaiting
826 * bitmap updates get flushed here.
a35e63ef 827 */
a35e63ef
N
828 spin_lock_irq(&conf->device_lock);
829
830 if (conf->pending_bio_list.head) {
18022a1b 831 struct blk_plug plug;
a35e63ef 832 struct bio *bio;
18022a1b 833
a35e63ef 834 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 835 conf->pending_count = 0;
a35e63ef 836 spin_unlock_irq(&conf->device_lock);
474beb57
N
837
838 /*
839 * As this is called in a wait_event() loop (see freeze_array),
840 * current->state might be TASK_UNINTERRUPTIBLE which will
841 * cause a warning when we prepare to wait again. As it is
842 * rare that this path is taken, it is perfectly safe to force
843 * us to go around the wait_event() loop again, so the warning
844 * is a false-positive. Silence the warning by resetting
845 * thread state
846 */
847 __set_current_state(TASK_RUNNING);
18022a1b 848 blk_start_plug(&plug);
673ca68d 849 flush_bio_list(conf, bio);
18022a1b 850 blk_finish_plug(&plug);
a35e63ef
N
851 } else
852 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
853}
854
17999be4
N
855/* Barriers....
856 * Sometimes we need to suspend IO while we do something else,
857 * either some resync/recovery, or reconfigure the array.
858 * To do this we raise a 'barrier'.
859 * The 'barrier' is a counter that can be raised multiple times
860 * to count how many activities are happening which preclude
861 * normal IO.
862 * We can only raise the barrier if there is no pending IO.
863 * i.e. if nr_pending == 0.
864 * We choose only to raise the barrier if no-one is waiting for the
865 * barrier to go down. This means that as soon as an IO request
866 * is ready, no other operations which require a barrier will start
867 * until the IO request has had a chance.
868 *
869 * So: regular IO calls 'wait_barrier'. When that returns there
870 * is no backgroup IO happening, It must arrange to call
871 * allow_barrier when it has finished its IO.
872 * backgroup IO calls must call raise_barrier. Once that returns
873 * there is no normal IO happeing. It must arrange to call
874 * lower_barrier when the particular background IO completes.
1da177e4 875 */
8c242593 876static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4 877{
fd76863e 878 int idx = sector_to_idx(sector_nr);
879
1da177e4 880 spin_lock_irq(&conf->resync_lock);
17999be4
N
881
882 /* Wait until no block IO is waiting */
824e47da 883 wait_event_lock_irq(conf->wait_barrier,
884 !atomic_read(&conf->nr_waiting[idx]),
eed8c02e 885 conf->resync_lock);
17999be4
N
886
887 /* block any new IO from starting */
824e47da 888 atomic_inc(&conf->barrier[idx]);
889 /*
890 * In raise_barrier() we firstly increase conf->barrier[idx] then
891 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
892 * increase conf->nr_pending[idx] then check conf->barrier[idx].
893 * A memory barrier here to make sure conf->nr_pending[idx] won't
894 * be fetched before conf->barrier[idx] is increased. Otherwise
895 * there will be a race between raise_barrier() and _wait_barrier().
896 */
897 smp_mb__after_atomic();
17999be4 898
79ef3a8a 899 /* For these conditions we must wait:
900 * A: while the array is in frozen state
fd76863e 901 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
902 * existing in corresponding I/O barrier bucket.
903 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
904 * max resync count which allowed on current I/O barrier bucket.
79ef3a8a 905 */
17999be4 906 wait_event_lock_irq(conf->wait_barrier,
8c242593 907 (!conf->array_frozen &&
824e47da 908 !atomic_read(&conf->nr_pending[idx]) &&
8c242593
YY
909 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
910 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
eed8c02e 911 conf->resync_lock);
17999be4 912
8c242593
YY
913 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
914 atomic_dec(&conf->barrier[idx]);
915 spin_unlock_irq(&conf->resync_lock);
916 wake_up(&conf->wait_barrier);
917 return -EINTR;
918 }
919
43ac9b84 920 atomic_inc(&conf->nr_sync_pending);
17999be4 921 spin_unlock_irq(&conf->resync_lock);
8c242593
YY
922
923 return 0;
17999be4
N
924}
925
fd76863e 926static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 927{
fd76863e 928 int idx = sector_to_idx(sector_nr);
929
824e47da 930 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
fd76863e 931
824e47da 932 atomic_dec(&conf->barrier[idx]);
43ac9b84 933 atomic_dec(&conf->nr_sync_pending);
17999be4
N
934 wake_up(&conf->wait_barrier);
935}
936
fd76863e 937static void _wait_barrier(struct r1conf *conf, int idx)
17999be4 938{
824e47da 939 /*
940 * We need to increase conf->nr_pending[idx] very early here,
941 * then raise_barrier() can be blocked when it waits for
942 * conf->nr_pending[idx] to be 0. Then we can avoid holding
943 * conf->resync_lock when there is no barrier raised in same
944 * barrier unit bucket. Also if the array is frozen, I/O
945 * should be blocked until array is unfrozen.
946 */
947 atomic_inc(&conf->nr_pending[idx]);
948 /*
949 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
950 * check conf->barrier[idx]. In raise_barrier() we firstly increase
951 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
952 * barrier is necessary here to make sure conf->barrier[idx] won't be
953 * fetched before conf->nr_pending[idx] is increased. Otherwise there
954 * will be a race between _wait_barrier() and raise_barrier().
955 */
956 smp_mb__after_atomic();
79ef3a8a 957
824e47da 958 /*
959 * Don't worry about checking two atomic_t variables at same time
960 * here. If during we check conf->barrier[idx], the array is
961 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
962 * 0, it is safe to return and make the I/O continue. Because the
963 * array is frozen, all I/O returned here will eventually complete
964 * or be queued, no race will happen. See code comment in
965 * frozen_array().
966 */
967 if (!READ_ONCE(conf->array_frozen) &&
968 !atomic_read(&conf->barrier[idx]))
969 return;
79ef3a8a 970
824e47da 971 /*
972 * After holding conf->resync_lock, conf->nr_pending[idx]
973 * should be decreased before waiting for barrier to drop.
974 * Otherwise, we may encounter a race condition because
975 * raise_barrer() might be waiting for conf->nr_pending[idx]
976 * to be 0 at same time.
977 */
978 spin_lock_irq(&conf->resync_lock);
979 atomic_inc(&conf->nr_waiting[idx]);
980 atomic_dec(&conf->nr_pending[idx]);
981 /*
982 * In case freeze_array() is waiting for
983 * get_unqueued_pending() == extra
984 */
985 wake_up(&conf->wait_barrier);
986 /* Wait for the barrier in same barrier unit bucket to drop. */
987 wait_event_lock_irq(conf->wait_barrier,
988 !conf->array_frozen &&
989 !atomic_read(&conf->barrier[idx]),
990 conf->resync_lock);
991 atomic_inc(&conf->nr_pending[idx]);
992 atomic_dec(&conf->nr_waiting[idx]);
fd76863e 993 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 994}
995
fd76863e 996static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
79ef3a8a 997{
fd76863e 998 int idx = sector_to_idx(sector_nr);
79ef3a8a 999
824e47da 1000 /*
1001 * Very similar to _wait_barrier(). The difference is, for read
1002 * I/O we don't need wait for sync I/O, but if the whole array
1003 * is frozen, the read I/O still has to wait until the array is
1004 * unfrozen. Since there is no ordering requirement with
1005 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1006 */
1007 atomic_inc(&conf->nr_pending[idx]);
79ef3a8a 1008
824e47da 1009 if (!READ_ONCE(conf->array_frozen))
1010 return;
1011
1012 spin_lock_irq(&conf->resync_lock);
1013 atomic_inc(&conf->nr_waiting[idx]);
1014 atomic_dec(&conf->nr_pending[idx]);
1015 /*
1016 * In case freeze_array() is waiting for
1017 * get_unqueued_pending() == extra
1018 */
1019 wake_up(&conf->wait_barrier);
1020 /* Wait for array to be unfrozen */
1021 wait_event_lock_irq(conf->wait_barrier,
1022 !conf->array_frozen,
1023 conf->resync_lock);
1024 atomic_inc(&conf->nr_pending[idx]);
1025 atomic_dec(&conf->nr_waiting[idx]);
1da177e4
LT
1026 spin_unlock_irq(&conf->resync_lock);
1027}
1028
fd76863e 1029static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
17999be4 1030{
fd76863e 1031 int idx = sector_to_idx(sector_nr);
79ef3a8a 1032
fd76863e 1033 _wait_barrier(conf, idx);
1034}
1035
fd76863e 1036static void _allow_barrier(struct r1conf *conf, int idx)
17999be4 1037{
824e47da 1038 atomic_dec(&conf->nr_pending[idx]);
17999be4
N
1039 wake_up(&conf->wait_barrier);
1040}
1041
fd76863e 1042static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1043{
1044 int idx = sector_to_idx(sector_nr);
1045
1046 _allow_barrier(conf, idx);
1047}
1048
fd76863e 1049/* conf->resync_lock should be held */
1050static int get_unqueued_pending(struct r1conf *conf)
1051{
1052 int idx, ret;
1053
43ac9b84
XN
1054 ret = atomic_read(&conf->nr_sync_pending);
1055 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
824e47da 1056 ret += atomic_read(&conf->nr_pending[idx]) -
1057 atomic_read(&conf->nr_queued[idx]);
fd76863e 1058
1059 return ret;
1060}
1061
e2d59925 1062static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab 1063{
fd76863e 1064 /* Stop sync I/O and normal I/O and wait for everything to
11353b9d 1065 * go quiet.
fd76863e 1066 * This is called in two situations:
1067 * 1) management command handlers (reshape, remove disk, quiesce).
1068 * 2) one normal I/O request failed.
1069
1070 * After array_frozen is set to 1, new sync IO will be blocked at
1071 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1072 * or wait_read_barrier(). The flying I/Os will either complete or be
1073 * queued. When everything goes quite, there are only queued I/Os left.
1074
1075 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1076 * barrier bucket index which this I/O request hits. When all sync and
1077 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1078 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1079 * in handle_read_error(), we may call freeze_array() before trying to
1080 * fix the read error. In this case, the error read I/O is not queued,
1081 * so get_unqueued_pending() == 1.
1082 *
1083 * Therefore before this function returns, we need to wait until
1084 * get_unqueued_pendings(conf) gets equal to extra. For
1085 * normal I/O context, extra is 1, in rested situations extra is 0.
ddaf22ab
N
1086 */
1087 spin_lock_irq(&conf->resync_lock);
b364e3d0 1088 conf->array_frozen = 1;
578b54ad 1089 raid1_log(conf->mddev, "wait freeze");
fd76863e 1090 wait_event_lock_irq_cmd(
1091 conf->wait_barrier,
1092 get_unqueued_pending(conf) == extra,
1093 conf->resync_lock,
1094 flush_pending_writes(conf));
ddaf22ab
N
1095 spin_unlock_irq(&conf->resync_lock);
1096}
e8096360 1097static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
1098{
1099 /* reverse the effect of the freeze */
1100 spin_lock_irq(&conf->resync_lock);
b364e3d0 1101 conf->array_frozen = 0;
ddaf22ab 1102 spin_unlock_irq(&conf->resync_lock);
824e47da 1103 wake_up(&conf->wait_barrier);
ddaf22ab
N
1104}
1105
16d56e2f 1106static void alloc_behind_master_bio(struct r1bio *r1_bio,
cb83efcf 1107 struct bio *bio)
4b6d287f 1108{
cb83efcf 1109 int size = bio->bi_iter.bi_size;
841c1316
ML
1110 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1111 int i = 0;
1112 struct bio *behind_bio = NULL;
1113
1114 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1115 if (!behind_bio)
16d56e2f 1116 return;
4b6d287f 1117
41743c1f 1118 /* discard op, we don't support writezero/writesame yet */
16d56e2f
SL
1119 if (!bio_has_data(bio)) {
1120 behind_bio->bi_iter.bi_size = size;
41743c1f 1121 goto skip_copy;
16d56e2f 1122 }
41743c1f 1123
dba40d46
MD
1124 behind_bio->bi_write_hint = bio->bi_write_hint;
1125
841c1316
ML
1126 while (i < vcnt && size) {
1127 struct page *page;
1128 int len = min_t(int, PAGE_SIZE, size);
1129
1130 page = alloc_page(GFP_NOIO);
1131 if (unlikely(!page))
1132 goto free_pages;
1133
1134 bio_add_page(behind_bio, page, len, 0);
1135
1136 size -= len;
1137 i++;
4b6d287f 1138 }
841c1316 1139
cb83efcf 1140 bio_copy_data(behind_bio, bio);
41743c1f 1141skip_copy:
56a64c17 1142 r1_bio->behind_master_bio = behind_bio;
af6d7b76 1143 set_bit(R1BIO_BehindIO, &r1_bio->state);
4b6d287f 1144
16d56e2f 1145 return;
841c1316
ML
1146
1147free_pages:
4f024f37
KO
1148 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1149 bio->bi_iter.bi_size);
841c1316 1150 bio_free_pages(behind_bio);
16d56e2f 1151 bio_put(behind_bio);
4b6d287f
N
1152}
1153
f54a9d0e
N
1154struct raid1_plug_cb {
1155 struct blk_plug_cb cb;
1156 struct bio_list pending;
1157 int pending_cnt;
1158};
1159
1160static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1161{
1162 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1163 cb);
1164 struct mddev *mddev = plug->cb.data;
1165 struct r1conf *conf = mddev->private;
1166 struct bio *bio;
1167
874807a8 1168 if (from_schedule || current->bio_list) {
f54a9d0e
N
1169 spin_lock_irq(&conf->device_lock);
1170 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1171 conf->pending_count += plug->pending_cnt;
1172 spin_unlock_irq(&conf->device_lock);
ee0b0244 1173 wake_up(&conf->wait_barrier);
f54a9d0e
N
1174 md_wakeup_thread(mddev->thread);
1175 kfree(plug);
1176 return;
1177 }
1178
1179 /* we aren't scheduling, so we can do the write-out directly. */
1180 bio = bio_list_get(&plug->pending);
673ca68d 1181 flush_bio_list(conf, bio);
f54a9d0e
N
1182 kfree(plug);
1183}
1184
689389a0
N
1185static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1186{
1187 r1_bio->master_bio = bio;
1188 r1_bio->sectors = bio_sectors(bio);
1189 r1_bio->state = 0;
1190 r1_bio->mddev = mddev;
1191 r1_bio->sector = bio->bi_iter.bi_sector;
1192}
1193
fd76863e 1194static inline struct r1bio *
689389a0 1195alloc_r1bio(struct mddev *mddev, struct bio *bio)
fd76863e 1196{
1197 struct r1conf *conf = mddev->private;
1198 struct r1bio *r1_bio;
1199
afeee514 1200 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
689389a0
N
1201 /* Ensure no bio records IO_BLOCKED */
1202 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1203 init_r1bio(r1_bio, mddev, bio);
fd76863e 1204 return r1_bio;
1205}
1206
c230e7e5 1207static void raid1_read_request(struct mddev *mddev, struct bio *bio,
689389a0 1208 int max_read_sectors, struct r1bio *r1_bio)
1da177e4 1209{
e8096360 1210 struct r1conf *conf = mddev->private;
0eaf822c 1211 struct raid1_info *mirror;
1da177e4 1212 struct bio *read_bio;
3b046a97
RL
1213 struct bitmap *bitmap = mddev->bitmap;
1214 const int op = bio_op(bio);
1215 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
3b046a97
RL
1216 int max_sectors;
1217 int rdisk;
689389a0
N
1218 bool print_msg = !!r1_bio;
1219 char b[BDEVNAME_SIZE];
3b046a97 1220
fd76863e 1221 /*
689389a0
N
1222 * If r1_bio is set, we are blocking the raid1d thread
1223 * so there is a tiny risk of deadlock. So ask for
1224 * emergency memory if needed.
fd76863e 1225 */
689389a0 1226 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
fd76863e 1227
689389a0
N
1228 if (print_msg) {
1229 /* Need to get the block device name carefully */
1230 struct md_rdev *rdev;
1231 rcu_read_lock();
1232 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1233 if (rdev)
1234 bdevname(rdev->bdev, b);
1235 else
1236 strcpy(b, "???");
1237 rcu_read_unlock();
1238 }
3b046a97 1239
fd76863e 1240 /*
fd76863e 1241 * Still need barrier for READ in case that whole
1242 * array is frozen.
fd76863e 1243 */
fd76863e 1244 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1245
689389a0
N
1246 if (!r1_bio)
1247 r1_bio = alloc_r1bio(mddev, bio);
1248 else
1249 init_r1bio(r1_bio, mddev, bio);
c230e7e5 1250 r1_bio->sectors = max_read_sectors;
fd76863e 1251
1252 /*
1253 * make_request() can abort the operation when read-ahead is being
1254 * used and no empty request is available.
1255 */
3b046a97
RL
1256 rdisk = read_balance(conf, r1_bio, &max_sectors);
1257
1258 if (rdisk < 0) {
1259 /* couldn't find anywhere to read from */
689389a0
N
1260 if (print_msg) {
1261 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1262 mdname(mddev),
1263 b,
1264 (unsigned long long)r1_bio->sector);
1265 }
3b046a97
RL
1266 raid_end_bio_io(r1_bio);
1267 return;
1268 }
1269 mirror = conf->mirrors + rdisk;
1270
689389a0
N
1271 if (print_msg)
1272 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1273 mdname(mddev),
1274 (unsigned long long)r1_bio->sector,
1275 bdevname(mirror->rdev->bdev, b));
1276
3b046a97
RL
1277 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1278 bitmap) {
1279 /*
1280 * Reading from a write-mostly device must take care not to
1281 * over-take any writes that are 'behind'
1282 */
1283 raid1_log(mddev, "wait behind writes");
1284 wait_event(bitmap->behind_wait,
1285 atomic_read(&bitmap->behind_writes) == 0);
1286 }
c230e7e5
N
1287
1288 if (max_sectors < bio_sectors(bio)) {
1289 struct bio *split = bio_split(bio, max_sectors,
afeee514 1290 gfp, &conf->bio_split);
c230e7e5
N
1291 bio_chain(split, bio);
1292 generic_make_request(bio);
1293 bio = split;
1294 r1_bio->master_bio = bio;
1295 r1_bio->sectors = max_sectors;
1296 }
1297
3b046a97 1298 r1_bio->read_disk = rdisk;
3b046a97 1299
afeee514 1300 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
3b046a97
RL
1301
1302 r1_bio->bios[rdisk] = read_bio;
1303
1304 read_bio->bi_iter.bi_sector = r1_bio->sector +
1305 mirror->rdev->data_offset;
74d46992 1306 bio_set_dev(read_bio, mirror->rdev->bdev);
3b046a97
RL
1307 read_bio->bi_end_io = raid1_end_read_request;
1308 bio_set_op_attrs(read_bio, op, do_sync);
1309 if (test_bit(FailFast, &mirror->rdev->flags) &&
1310 test_bit(R1BIO_FailFast, &r1_bio->state))
1311 read_bio->bi_opf |= MD_FAILFAST;
1312 read_bio->bi_private = r1_bio;
1313
1314 if (mddev->gendisk)
74d46992
CH
1315 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1316 disk_devt(mddev->gendisk), r1_bio->sector);
3b046a97 1317
c230e7e5 1318 generic_make_request(read_bio);
3b046a97
RL
1319}
1320
c230e7e5
N
1321static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1322 int max_write_sectors)
3b046a97
RL
1323{
1324 struct r1conf *conf = mddev->private;
fd76863e 1325 struct r1bio *r1_bio;
1f68f0c4 1326 int i, disks;
3b046a97 1327 struct bitmap *bitmap = mddev->bitmap;
191ea9b2 1328 unsigned long flags;
3cb03002 1329 struct md_rdev *blocked_rdev;
f54a9d0e
N
1330 struct blk_plug_cb *cb;
1331 struct raid1_plug_cb *plug = NULL;
1f68f0c4 1332 int first_clone;
1f68f0c4 1333 int max_sectors;
191ea9b2 1334
b3143b9a 1335 if (mddev_is_clustered(mddev) &&
90382ed9 1336 md_cluster_ops->area_resyncing(mddev, WRITE,
b3143b9a 1337 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
3b046a97 1338
6eef4b21
N
1339 DEFINE_WAIT(w);
1340 for (;;) {
6eef4b21 1341 prepare_to_wait(&conf->wait_barrier,
ae89fd3d 1342 &w, TASK_IDLE);
f81f7302 1343 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
385f4d7f 1344 bio->bi_iter.bi_sector,
b3143b9a 1345 bio_end_sector(bio)))
6eef4b21
N
1346 break;
1347 schedule();
1348 }
1349 finish_wait(&conf->wait_barrier, &w);
1350 }
f81f7302
GJ
1351
1352 /*
1353 * Register the new request and wait if the reconstruction
1354 * thread has put up a bar for new requests.
1355 * Continue immediately if no resync is active currently.
1356 */
fd76863e 1357 wait_barrier(conf, bio->bi_iter.bi_sector);
1358
689389a0 1359 r1_bio = alloc_r1bio(mddev, bio);
c230e7e5 1360 r1_bio->sectors = max_write_sectors;
1da177e4 1361
34db0cd6
N
1362 if (conf->pending_count >= max_queued_requests) {
1363 md_wakeup_thread(mddev->thread);
578b54ad 1364 raid1_log(mddev, "wait queued");
34db0cd6
N
1365 wait_event(conf->wait_barrier,
1366 conf->pending_count < max_queued_requests);
1367 }
1f68f0c4 1368 /* first select target devices under rcu_lock and
1da177e4
LT
1369 * inc refcount on their rdev. Record them by setting
1370 * bios[x] to bio
1f68f0c4
N
1371 * If there are known/acknowledged bad blocks on any device on
1372 * which we have seen a write error, we want to avoid writing those
1373 * blocks.
1374 * This potentially requires several writes to write around
1375 * the bad blocks. Each set of writes gets it's own r1bio
1376 * with a set of bios attached.
1da177e4 1377 */
c3b328ac 1378
8f19ccb2 1379 disks = conf->raid_disks * 2;
6bfe0b49
DW
1380 retry_write:
1381 blocked_rdev = NULL;
1da177e4 1382 rcu_read_lock();
1f68f0c4 1383 max_sectors = r1_bio->sectors;
1da177e4 1384 for (i = 0; i < disks; i++) {
3cb03002 1385 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1386 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1387 atomic_inc(&rdev->nr_pending);
1388 blocked_rdev = rdev;
1389 break;
1390 }
1f68f0c4 1391 r1_bio->bios[i] = NULL;
8ae12666 1392 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1393 if (i < conf->raid_disks)
1394 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1395 continue;
1396 }
1397
1398 atomic_inc(&rdev->nr_pending);
1399 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1400 sector_t first_bad;
1401 int bad_sectors;
1402 int is_bad;
1403
3b046a97 1404 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1f68f0c4
N
1405 &first_bad, &bad_sectors);
1406 if (is_bad < 0) {
1407 /* mustn't write here until the bad block is
1408 * acknowledged*/
1409 set_bit(BlockedBadBlocks, &rdev->flags);
1410 blocked_rdev = rdev;
1411 break;
1412 }
1413 if (is_bad && first_bad <= r1_bio->sector) {
1414 /* Cannot write here at all */
1415 bad_sectors -= (r1_bio->sector - first_bad);
1416 if (bad_sectors < max_sectors)
1417 /* mustn't write more than bad_sectors
1418 * to other devices yet
1419 */
1420 max_sectors = bad_sectors;
03c902e1 1421 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1422 /* We don't set R1BIO_Degraded as that
1423 * only applies if the disk is
1424 * missing, so it might be re-added,
1425 * and we want to know to recover this
1426 * chunk.
1427 * In this case the device is here,
1428 * and the fact that this chunk is not
1429 * in-sync is recorded in the bad
1430 * block log
1431 */
1432 continue;
964147d5 1433 }
1f68f0c4
N
1434 if (is_bad) {
1435 int good_sectors = first_bad - r1_bio->sector;
1436 if (good_sectors < max_sectors)
1437 max_sectors = good_sectors;
1438 }
1439 }
1440 r1_bio->bios[i] = bio;
1da177e4
LT
1441 }
1442 rcu_read_unlock();
1443
6bfe0b49
DW
1444 if (unlikely(blocked_rdev)) {
1445 /* Wait for this device to become unblocked */
1446 int j;
1447
1448 for (j = 0; j < i; j++)
1449 if (r1_bio->bios[j])
1450 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1451 r1_bio->state = 0;
fd76863e 1452 allow_barrier(conf, bio->bi_iter.bi_sector);
578b54ad 1453 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
6bfe0b49 1454 md_wait_for_blocked_rdev(blocked_rdev, mddev);
fd76863e 1455 wait_barrier(conf, bio->bi_iter.bi_sector);
6bfe0b49
DW
1456 goto retry_write;
1457 }
1458
c230e7e5
N
1459 if (max_sectors < bio_sectors(bio)) {
1460 struct bio *split = bio_split(bio, max_sectors,
afeee514 1461 GFP_NOIO, &conf->bio_split);
c230e7e5
N
1462 bio_chain(split, bio);
1463 generic_make_request(bio);
1464 bio = split;
1465 r1_bio->master_bio = bio;
1f68f0c4 1466 r1_bio->sectors = max_sectors;
191ea9b2 1467 }
4b6d287f 1468
4e78064f 1469 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1470 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1471
1f68f0c4 1472 first_clone = 1;
d8c84c4f 1473
1da177e4 1474 for (i = 0; i < disks; i++) {
8e58e327 1475 struct bio *mbio = NULL;
1da177e4
LT
1476 if (!r1_bio->bios[i])
1477 continue;
1478
1f68f0c4
N
1479 if (first_clone) {
1480 /* do behind I/O ?
1481 * Not if there are too many, or cannot
1482 * allocate memory, or a reader on WriteMostly
1483 * is waiting for behind writes to flush */
1484 if (bitmap &&
1485 (atomic_read(&bitmap->behind_writes)
1486 < mddev->bitmap_info.max_write_behind) &&
8e58e327 1487 !waitqueue_active(&bitmap->behind_wait)) {
16d56e2f 1488 alloc_behind_master_bio(r1_bio, bio);
8e58e327 1489 }
1f68f0c4 1490
e64e4018
AS
1491 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1492 test_bit(R1BIO_BehindIO, &r1_bio->state));
1f68f0c4
N
1493 first_clone = 0;
1494 }
8e58e327 1495
16d56e2f
SL
1496 if (r1_bio->behind_master_bio)
1497 mbio = bio_clone_fast(r1_bio->behind_master_bio,
afeee514 1498 GFP_NOIO, &mddev->bio_set);
16d56e2f 1499 else
afeee514 1500 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
8e58e327 1501
841c1316 1502 if (r1_bio->behind_master_bio) {
3e148a32
GJ
1503 struct md_rdev *rdev = conf->mirrors[i].rdev;
1504
1505 if (test_bit(WBCollisionCheck, &rdev->flags)) {
1506 sector_t lo = r1_bio->sector;
1507 sector_t hi = r1_bio->sector + r1_bio->sectors;
1508
1509 wait_event(rdev->wb_io_wait,
1510 check_and_add_wb(rdev, lo, hi) == 0);
1511 }
1512 if (test_bit(WriteMostly, &rdev->flags))
4b6d287f
N
1513 atomic_inc(&r1_bio->behind_remaining);
1514 }
1515
1f68f0c4
N
1516 r1_bio->bios[i] = mbio;
1517
4f024f37 1518 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4 1519 conf->mirrors[i].rdev->data_offset);
74d46992 1520 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1f68f0c4 1521 mbio->bi_end_io = raid1_end_write_request;
a682e003 1522 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
212e7eb7
N
1523 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1524 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1525 conf->raid_disks - mddev->degraded > 1)
1526 mbio->bi_opf |= MD_FAILFAST;
1f68f0c4
N
1527 mbio->bi_private = r1_bio;
1528
1da177e4 1529 atomic_inc(&r1_bio->remaining);
f54a9d0e 1530
109e3765 1531 if (mddev->gendisk)
74d46992 1532 trace_block_bio_remap(mbio->bi_disk->queue,
109e3765
N
1533 mbio, disk_devt(mddev->gendisk),
1534 r1_bio->sector);
1535 /* flush_pending_writes() needs access to the rdev so...*/
74d46992 1536 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
109e3765 1537
f54a9d0e
N
1538 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1539 if (cb)
1540 plug = container_of(cb, struct raid1_plug_cb, cb);
1541 else
1542 plug = NULL;
f54a9d0e
N
1543 if (plug) {
1544 bio_list_add(&plug->pending, mbio);
1545 plug->pending_cnt++;
1546 } else {
23b245c0 1547 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1548 bio_list_add(&conf->pending_bio_list, mbio);
1549 conf->pending_count++;
23b245c0 1550 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a 1551 md_wakeup_thread(mddev->thread);
23b245c0 1552 }
1da177e4 1553 }
1f68f0c4 1554
079fa166
N
1555 r1_bio_write_done(r1_bio);
1556
1557 /* In case raid1d snuck in to freeze_array */
1558 wake_up(&conf->wait_barrier);
1da177e4
LT
1559}
1560
cc27b0c7 1561static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
3b046a97 1562{
fd76863e 1563 sector_t sectors;
3b046a97 1564
aff8da09
SL
1565 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1566 md_flush_request(mddev, bio);
cc27b0c7 1567 return true;
aff8da09 1568 }
3b046a97 1569
c230e7e5
N
1570 /*
1571 * There is a limit to the maximum size, but
1572 * the read/write handler might find a lower limit
1573 * due to bad blocks. To avoid multiple splits,
1574 * we pass the maximum number of sectors down
1575 * and let the lower level perform the split.
1576 */
1577 sectors = align_to_barrier_unit_end(
1578 bio->bi_iter.bi_sector, bio_sectors(bio));
61eb2b43 1579
c230e7e5 1580 if (bio_data_dir(bio) == READ)
689389a0 1581 raid1_read_request(mddev, bio, sectors, NULL);
cc27b0c7
N
1582 else {
1583 if (!md_write_start(mddev,bio))
1584 return false;
c230e7e5 1585 raid1_write_request(mddev, bio, sectors);
cc27b0c7
N
1586 }
1587 return true;
3b046a97
RL
1588}
1589
849674e4 1590static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1591{
e8096360 1592 struct r1conf *conf = mddev->private;
1da177e4
LT
1593 int i;
1594
1595 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1596 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1597 rcu_read_lock();
1598 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1599 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1600 seq_printf(seq, "%s",
ddac7c7e
N
1601 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1602 }
1603 rcu_read_unlock();
1da177e4
LT
1604 seq_printf(seq, "]");
1605}
1606
849674e4 1607static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1608{
1609 char b[BDEVNAME_SIZE];
e8096360 1610 struct r1conf *conf = mddev->private;
423f04d6 1611 unsigned long flags;
1da177e4
LT
1612
1613 /*
1614 * If it is not operational, then we have already marked it as dead
1615 * else if it is the last working disks, ignore the error, let the
1616 * next level up know.
1617 * else mark the drive as failed
1618 */
2e52d449 1619 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1620 if (test_bit(In_sync, &rdev->flags)
4044ba58 1621 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1622 /*
1623 * Don't fail the drive, act as though we were just a
4044ba58
N
1624 * normal single drive.
1625 * However don't try a recovery from this drive as
1626 * it is very likely to fail.
1da177e4 1627 */
5389042f 1628 conf->recovery_disabled = mddev->recovery_disabled;
2e52d449 1629 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1630 return;
4044ba58 1631 }
de393cde 1632 set_bit(Blocked, &rdev->flags);
ebda52fa 1633 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1634 mddev->degraded++;
ebda52fa 1635 set_bit(Faulty, &rdev->flags);
423f04d6 1636 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1637 /*
1638 * if recovery is running, make sure it aborts.
1639 */
1640 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2953079c
SL
1641 set_mask_bits(&mddev->sb_flags, 0,
1642 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1d41c216
N
1643 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1644 "md/raid1:%s: Operation continuing on %d devices.\n",
1645 mdname(mddev), bdevname(rdev->bdev, b),
1646 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1647}
1648
e8096360 1649static void print_conf(struct r1conf *conf)
1da177e4
LT
1650{
1651 int i;
1da177e4 1652
1d41c216 1653 pr_debug("RAID1 conf printout:\n");
1da177e4 1654 if (!conf) {
1d41c216 1655 pr_debug("(!conf)\n");
1da177e4
LT
1656 return;
1657 }
1d41c216
N
1658 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1659 conf->raid_disks);
1da177e4 1660
ddac7c7e 1661 rcu_read_lock();
1da177e4
LT
1662 for (i = 0; i < conf->raid_disks; i++) {
1663 char b[BDEVNAME_SIZE];
3cb03002 1664 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1665 if (rdev)
1d41c216
N
1666 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1667 i, !test_bit(In_sync, &rdev->flags),
1668 !test_bit(Faulty, &rdev->flags),
1669 bdevname(rdev->bdev,b));
1da177e4 1670 }
ddac7c7e 1671 rcu_read_unlock();
1da177e4
LT
1672}
1673
e8096360 1674static void close_sync(struct r1conf *conf)
1da177e4 1675{
f6eca2d4
ND
1676 int idx;
1677
1678 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1679 _wait_barrier(conf, idx);
1680 _allow_barrier(conf, idx);
1681 }
1da177e4 1682
afeee514 1683 mempool_exit(&conf->r1buf_pool);
1da177e4
LT
1684}
1685
fd01b88c 1686static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1687{
1688 int i;
e8096360 1689 struct r1conf *conf = mddev->private;
6b965620
N
1690 int count = 0;
1691 unsigned long flags;
1da177e4
LT
1692
1693 /*
f72ffdd6 1694 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1695 * and mark them readable.
1696 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1697 * device_lock used to avoid races with raid1_end_read_request
1698 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1699 */
423f04d6 1700 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1701 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1702 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1703 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1704 if (repl
1aee41f6 1705 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1706 && repl->recovery_offset == MaxSector
1707 && !test_bit(Faulty, &repl->flags)
1708 && !test_and_set_bit(In_sync, &repl->flags)) {
1709 /* replacement has just become active */
1710 if (!rdev ||
1711 !test_and_clear_bit(In_sync, &rdev->flags))
1712 count++;
1713 if (rdev) {
1714 /* Replaced device not technically
1715 * faulty, but we need to be sure
1716 * it gets removed and never re-added
1717 */
1718 set_bit(Faulty, &rdev->flags);
1719 sysfs_notify_dirent_safe(
1720 rdev->sysfs_state);
1721 }
1722 }
ddac7c7e 1723 if (rdev
61e4947c 1724 && rdev->recovery_offset == MaxSector
ddac7c7e 1725 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1726 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1727 count++;
654e8b5a 1728 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1729 }
1730 }
6b965620
N
1731 mddev->degraded -= count;
1732 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1733
1734 print_conf(conf);
6b965620 1735 return count;
1da177e4
LT
1736}
1737
fd01b88c 1738static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1739{
e8096360 1740 struct r1conf *conf = mddev->private;
199050ea 1741 int err = -EEXIST;
41158c7e 1742 int mirror = 0;
0eaf822c 1743 struct raid1_info *p;
6c2fce2e 1744 int first = 0;
30194636 1745 int last = conf->raid_disks - 1;
1da177e4 1746
5389042f
N
1747 if (mddev->recovery_disabled == conf->recovery_disabled)
1748 return -EBUSY;
1749
1501efad
DW
1750 if (md_integrity_add_rdev(rdev, mddev))
1751 return -ENXIO;
1752
6c2fce2e
NB
1753 if (rdev->raid_disk >= 0)
1754 first = last = rdev->raid_disk;
1755
70bcecdb
GR
1756 /*
1757 * find the disk ... but prefer rdev->saved_raid_disk
1758 * if possible.
1759 */
1760 if (rdev->saved_raid_disk >= 0 &&
1761 rdev->saved_raid_disk >= first &&
9e753ba9 1762 rdev->saved_raid_disk < conf->raid_disks &&
70bcecdb
GR
1763 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1764 first = last = rdev->saved_raid_disk;
1765
7ef449d1 1766 for (mirror = first; mirror <= last; mirror++) {
ebfeb444 1767 p = conf->mirrors + mirror;
7ef449d1 1768 if (!p->rdev) {
9092c02d
JB
1769 if (mddev->gendisk)
1770 disk_stack_limits(mddev->gendisk, rdev->bdev,
1771 rdev->data_offset << 9);
1da177e4
LT
1772
1773 p->head_position = 0;
1774 rdev->raid_disk = mirror;
199050ea 1775 err = 0;
6aea114a
N
1776 /* As all devices are equivalent, we don't need a full recovery
1777 * if this was recently any drive of the array
1778 */
1779 if (rdev->saved_raid_disk < 0)
41158c7e 1780 conf->fullsync = 1;
d6065f7b 1781 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1782 break;
1783 }
7ef449d1
N
1784 if (test_bit(WantReplacement, &p->rdev->flags) &&
1785 p[conf->raid_disks].rdev == NULL) {
1786 /* Add this device as a replacement */
1787 clear_bit(In_sync, &rdev->flags);
1788 set_bit(Replacement, &rdev->flags);
1789 rdev->raid_disk = mirror;
1790 err = 0;
1791 conf->fullsync = 1;
1792 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1793 break;
1794 }
1795 }
9092c02d 1796 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
8b904b5b 1797 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1798 print_conf(conf);
199050ea 1799 return err;
1da177e4
LT
1800}
1801
b8321b68 1802static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1803{
e8096360 1804 struct r1conf *conf = mddev->private;
1da177e4 1805 int err = 0;
b8321b68 1806 int number = rdev->raid_disk;
0eaf822c 1807 struct raid1_info *p = conf->mirrors + number;
1da177e4 1808
b014f14c
N
1809 if (rdev != p->rdev)
1810 p = conf->mirrors + conf->raid_disks + number;
1811
1da177e4 1812 print_conf(conf);
b8321b68 1813 if (rdev == p->rdev) {
b2d444d7 1814 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1815 atomic_read(&rdev->nr_pending)) {
1816 err = -EBUSY;
1817 goto abort;
1818 }
046abeed 1819 /* Only remove non-faulty devices if recovery
dfc70645
N
1820 * is not possible.
1821 */
1822 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1823 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1824 mddev->degraded < conf->raid_disks) {
1825 err = -EBUSY;
1826 goto abort;
1827 }
1da177e4 1828 p->rdev = NULL;
d787be40
N
1829 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1830 synchronize_rcu();
1831 if (atomic_read(&rdev->nr_pending)) {
1832 /* lost the race, try later */
1833 err = -EBUSY;
1834 p->rdev = rdev;
1835 goto abort;
1836 }
1837 }
1838 if (conf->mirrors[conf->raid_disks + number].rdev) {
8c7a2c2b
N
1839 /* We just removed a device that is being replaced.
1840 * Move down the replacement. We drain all IO before
1841 * doing this to avoid confusion.
1842 */
1843 struct md_rdev *repl =
1844 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1845 freeze_array(conf, 0);
3de59bb9
YY
1846 if (atomic_read(&repl->nr_pending)) {
1847 /* It means that some queued IO of retry_list
1848 * hold repl. Thus, we cannot set replacement
1849 * as NULL, avoiding rdev NULL pointer
1850 * dereference in sync_request_write and
1851 * handle_write_finished.
1852 */
1853 err = -EBUSY;
1854 unfreeze_array(conf);
1855 goto abort;
1856 }
8c7a2c2b
N
1857 clear_bit(Replacement, &repl->flags);
1858 p->rdev = repl;
1859 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1860 unfreeze_array(conf);
e5bc9c3c
GJ
1861 }
1862
1863 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1864 err = md_integrity_register(mddev);
1da177e4
LT
1865 }
1866abort:
1867
1868 print_conf(conf);
1869 return err;
1870}
1871
4246a0b6 1872static void end_sync_read(struct bio *bio)
1da177e4 1873{
98d30c58 1874 struct r1bio *r1_bio = get_resync_r1bio(bio);
1da177e4 1875
0fc280f6 1876 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1877
1da177e4
LT
1878 /*
1879 * we have read a block, now it needs to be re-written,
1880 * or re-read if the read failed.
1881 * We don't do much here, just schedule handling by raid1d
1882 */
4e4cbee9 1883 if (!bio->bi_status)
1da177e4 1884 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1885
1886 if (atomic_dec_and_test(&r1_bio->remaining))
1887 reschedule_retry(r1_bio);
1da177e4
LT
1888}
1889
dfcc34c9
ND
1890static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1891{
1892 sector_t sync_blocks = 0;
1893 sector_t s = r1_bio->sector;
1894 long sectors_to_go = r1_bio->sectors;
1895
1896 /* make sure these bits don't get cleared. */
1897 do {
1898 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1899 s += sync_blocks;
1900 sectors_to_go -= sync_blocks;
1901 } while (sectors_to_go > 0);
1902}
1903
4246a0b6 1904static void end_sync_write(struct bio *bio)
1da177e4 1905{
4e4cbee9 1906 int uptodate = !bio->bi_status;
98d30c58 1907 struct r1bio *r1_bio = get_resync_r1bio(bio);
fd01b88c 1908 struct mddev *mddev = r1_bio->mddev;
e8096360 1909 struct r1conf *conf = mddev->private;
4367af55
N
1910 sector_t first_bad;
1911 int bad_sectors;
854abd75 1912 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
ba3ae3be 1913
6b1117d5 1914 if (!uptodate) {
dfcc34c9 1915 abort_sync_write(mddev, r1_bio);
854abd75
N
1916 set_bit(WriteErrorSeen, &rdev->flags);
1917 if (!test_and_set_bit(WantReplacement, &rdev->flags))
19d67169
N
1918 set_bit(MD_RECOVERY_NEEDED, &
1919 mddev->recovery);
d8f05d29 1920 set_bit(R1BIO_WriteError, &r1_bio->state);
854abd75 1921 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
3a9f28a5
N
1922 &first_bad, &bad_sectors) &&
1923 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1924 r1_bio->sector,
1925 r1_bio->sectors,
1926 &first_bad, &bad_sectors)
1927 )
4367af55 1928 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1929
1da177e4 1930 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1931 int s = r1_bio->sectors;
d8f05d29
N
1932 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1933 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1934 reschedule_retry(r1_bio);
1935 else {
1936 put_buf(r1_bio);
1937 md_done_sync(mddev, s, uptodate);
1938 }
1da177e4 1939 }
1da177e4
LT
1940}
1941
3cb03002 1942static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1943 int sectors, struct page *page, int rw)
1944{
796a5cf0 1945 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
d8f05d29
N
1946 /* success */
1947 return 1;
19d67169 1948 if (rw == WRITE) {
d8f05d29 1949 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1950 if (!test_and_set_bit(WantReplacement,
1951 &rdev->flags))
1952 set_bit(MD_RECOVERY_NEEDED, &
1953 rdev->mddev->recovery);
1954 }
d8f05d29
N
1955 /* need to record an error - either for the block or the device */
1956 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1957 md_error(rdev->mddev, rdev);
1958 return 0;
1959}
1960
9f2c9d12 1961static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1962{
a68e5870
N
1963 /* Try some synchronous reads of other devices to get
1964 * good data, much like with normal read errors. Only
1965 * read into the pages we already have so we don't
1966 * need to re-issue the read request.
1967 * We don't need to freeze the array, because being in an
1968 * active sync request, there is no normal IO, and
1969 * no overlapping syncs.
06f60385
N
1970 * We don't need to check is_badblock() again as we
1971 * made sure that anything with a bad block in range
1972 * will have bi_end_io clear.
a68e5870 1973 */
fd01b88c 1974 struct mddev *mddev = r1_bio->mddev;
e8096360 1975 struct r1conf *conf = mddev->private;
a68e5870 1976 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
44cf0f4d 1977 struct page **pages = get_resync_pages(bio)->pages;
a68e5870
N
1978 sector_t sect = r1_bio->sector;
1979 int sectors = r1_bio->sectors;
1980 int idx = 0;
2e52d449
N
1981 struct md_rdev *rdev;
1982
1983 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1984 if (test_bit(FailFast, &rdev->flags)) {
1985 /* Don't try recovering from here - just fail it
1986 * ... unless it is the last working device of course */
1987 md_error(mddev, rdev);
1988 if (test_bit(Faulty, &rdev->flags))
1989 /* Don't try to read from here, but make sure
1990 * put_buf does it's thing
1991 */
1992 bio->bi_end_io = end_sync_write;
1993 }
a68e5870
N
1994
1995 while(sectors) {
1996 int s = sectors;
1997 int d = r1_bio->read_disk;
1998 int success = 0;
78d7f5f7 1999 int start;
a68e5870
N
2000
2001 if (s > (PAGE_SIZE>>9))
2002 s = PAGE_SIZE >> 9;
2003 do {
2004 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2005 /* No rcu protection needed here devices
2006 * can only be removed when no resync is
2007 * active, and resync is currently active
2008 */
2009 rdev = conf->mirrors[d].rdev;
9d3d8011 2010 if (sync_page_io(rdev, sect, s<<9,
44cf0f4d 2011 pages[idx],
796a5cf0 2012 REQ_OP_READ, 0, false)) {
a68e5870
N
2013 success = 1;
2014 break;
2015 }
2016 }
2017 d++;
8f19ccb2 2018 if (d == conf->raid_disks * 2)
a68e5870
N
2019 d = 0;
2020 } while (!success && d != r1_bio->read_disk);
2021
78d7f5f7 2022 if (!success) {
a68e5870 2023 char b[BDEVNAME_SIZE];
3a9f28a5
N
2024 int abort = 0;
2025 /* Cannot read from anywhere, this block is lost.
2026 * Record a bad block on each device. If that doesn't
2027 * work just disable and interrupt the recovery.
2028 * Don't fail devices as that won't really help.
2029 */
1d41c216 2030 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
74d46992 2031 mdname(mddev), bio_devname(bio, b),
1d41c216 2032 (unsigned long long)r1_bio->sector);
8f19ccb2 2033 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
2034 rdev = conf->mirrors[d].rdev;
2035 if (!rdev || test_bit(Faulty, &rdev->flags))
2036 continue;
2037 if (!rdev_set_badblocks(rdev, sect, s, 0))
2038 abort = 1;
2039 }
2040 if (abort) {
d890fa2b
N
2041 conf->recovery_disabled =
2042 mddev->recovery_disabled;
3a9f28a5
N
2043 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2044 md_done_sync(mddev, r1_bio->sectors, 0);
2045 put_buf(r1_bio);
2046 return 0;
2047 }
2048 /* Try next page */
2049 sectors -= s;
2050 sect += s;
2051 idx++;
2052 continue;
d11c171e 2053 }
78d7f5f7
N
2054
2055 start = d;
2056 /* write it back and re-read */
2057 while (d != r1_bio->read_disk) {
2058 if (d == 0)
8f19ccb2 2059 d = conf->raid_disks * 2;
78d7f5f7
N
2060 d--;
2061 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2062 continue;
2063 rdev = conf->mirrors[d].rdev;
d8f05d29 2064 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2065 pages[idx],
d8f05d29 2066 WRITE) == 0) {
78d7f5f7
N
2067 r1_bio->bios[d]->bi_end_io = NULL;
2068 rdev_dec_pending(rdev, mddev);
9d3d8011 2069 }
78d7f5f7
N
2070 }
2071 d = start;
2072 while (d != r1_bio->read_disk) {
2073 if (d == 0)
8f19ccb2 2074 d = conf->raid_disks * 2;
78d7f5f7
N
2075 d--;
2076 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2077 continue;
2078 rdev = conf->mirrors[d].rdev;
d8f05d29 2079 if (r1_sync_page_io(rdev, sect, s,
44cf0f4d 2080 pages[idx],
d8f05d29 2081 READ) != 0)
9d3d8011 2082 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 2083 }
a68e5870
N
2084 sectors -= s;
2085 sect += s;
2086 idx ++;
2087 }
78d7f5f7 2088 set_bit(R1BIO_Uptodate, &r1_bio->state);
4e4cbee9 2089 bio->bi_status = 0;
a68e5870
N
2090 return 1;
2091}
2092
c95e6385 2093static void process_checks(struct r1bio *r1_bio)
a68e5870
N
2094{
2095 /* We have read all readable devices. If we haven't
2096 * got the block, then there is no hope left.
2097 * If we have, then we want to do a comparison
2098 * and skip the write if everything is the same.
2099 * If any blocks failed to read, then we need to
2100 * attempt an over-write
2101 */
fd01b88c 2102 struct mddev *mddev = r1_bio->mddev;
e8096360 2103 struct r1conf *conf = mddev->private;
a68e5870
N
2104 int primary;
2105 int i;
f4380a91 2106 int vcnt;
a68e5870 2107
30bc9b53
N
2108 /* Fix variable parts of all bios */
2109 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2110 for (i = 0; i < conf->raid_disks * 2; i++) {
4e4cbee9 2111 blk_status_t status;
30bc9b53 2112 struct bio *b = r1_bio->bios[i];
98d30c58 2113 struct resync_pages *rp = get_resync_pages(b);
30bc9b53
N
2114 if (b->bi_end_io != end_sync_read)
2115 continue;
4246a0b6 2116 /* fixup the bio for reuse, but preserve errno */
4e4cbee9 2117 status = b->bi_status;
30bc9b53 2118 bio_reset(b);
4e4cbee9 2119 b->bi_status = status;
4f024f37 2120 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53 2121 conf->mirrors[i].rdev->data_offset;
74d46992 2122 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
30bc9b53 2123 b->bi_end_io = end_sync_read;
98d30c58
ML
2124 rp->raid_bio = r1_bio;
2125 b->bi_private = rp;
30bc9b53 2126
fb0eb5df
ML
2127 /* initialize bvec table again */
2128 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
30bc9b53 2129 }
8f19ccb2 2130 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 2131 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4e4cbee9 2132 !r1_bio->bios[primary]->bi_status) {
a68e5870
N
2133 r1_bio->bios[primary]->bi_end_io = NULL;
2134 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2135 break;
2136 }
2137 r1_bio->read_disk = primary;
8f19ccb2 2138 for (i = 0; i < conf->raid_disks * 2; i++) {
2b070cfe 2139 int j = 0;
78d7f5f7
N
2140 struct bio *pbio = r1_bio->bios[primary];
2141 struct bio *sbio = r1_bio->bios[i];
4e4cbee9 2142 blk_status_t status = sbio->bi_status;
44cf0f4d
ML
2143 struct page **ppages = get_resync_pages(pbio)->pages;
2144 struct page **spages = get_resync_pages(sbio)->pages;
60928a91 2145 struct bio_vec *bi;
8fc04e6e 2146 int page_len[RESYNC_PAGES] = { 0 };
6dc4f100 2147 struct bvec_iter_all iter_all;
a68e5870 2148
2aabaa65 2149 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2150 continue;
4246a0b6 2151 /* Now we can 'fixup' the error value */
4e4cbee9 2152 sbio->bi_status = 0;
78d7f5f7 2153
2b070cfe
CH
2154 bio_for_each_segment_all(bi, sbio, iter_all)
2155 page_len[j++] = bi->bv_len;
60928a91 2156
4e4cbee9 2157 if (!status) {
78d7f5f7 2158 for (j = vcnt; j-- ; ) {
44cf0f4d
ML
2159 if (memcmp(page_address(ppages[j]),
2160 page_address(spages[j]),
60928a91 2161 page_len[j]))
78d7f5f7 2162 break;
69382e85 2163 }
78d7f5f7
N
2164 } else
2165 j = 0;
2166 if (j >= 0)
7f7583d4 2167 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2168 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4e4cbee9 2169 && !status)) {
78d7f5f7
N
2170 /* No need to write to this device. */
2171 sbio->bi_end_io = NULL;
2172 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2173 continue;
2174 }
d3b45c2a
KO
2175
2176 bio_copy_data(sbio, pbio);
78d7f5f7 2177 }
a68e5870
N
2178}
2179
9f2c9d12 2180static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2181{
e8096360 2182 struct r1conf *conf = mddev->private;
a68e5870 2183 int i;
8f19ccb2 2184 int disks = conf->raid_disks * 2;
037d2ff6 2185 struct bio *wbio;
a68e5870 2186
a68e5870
N
2187 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2188 /* ouch - failed to read all of that. */
2189 if (!fix_sync_read_error(r1_bio))
2190 return;
7ca78d57
N
2191
2192 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2193 process_checks(r1_bio);
2194
d11c171e
N
2195 /*
2196 * schedule writes
2197 */
1da177e4
LT
2198 atomic_set(&r1_bio->remaining, 1);
2199 for (i = 0; i < disks ; i++) {
2200 wbio = r1_bio->bios[i];
3e198f78
N
2201 if (wbio->bi_end_io == NULL ||
2202 (wbio->bi_end_io == end_sync_read &&
2203 (i == r1_bio->read_disk ||
2204 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4 2205 continue;
dfcc34c9
ND
2206 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2207 abort_sync_write(mddev, r1_bio);
0c9d5b12 2208 continue;
dfcc34c9 2209 }
1da177e4 2210
796a5cf0 2211 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
212e7eb7
N
2212 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2213 wbio->bi_opf |= MD_FAILFAST;
2214
3e198f78 2215 wbio->bi_end_io = end_sync_write;
1da177e4 2216 atomic_inc(&r1_bio->remaining);
aa8b57aa 2217 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2218
1da177e4
LT
2219 generic_make_request(wbio);
2220 }
2221
2222 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2223 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2224 int s = r1_bio->sectors;
2225 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2226 test_bit(R1BIO_WriteError, &r1_bio->state))
2227 reschedule_retry(r1_bio);
2228 else {
2229 put_buf(r1_bio);
2230 md_done_sync(mddev, s, 1);
2231 }
1da177e4
LT
2232 }
2233}
2234
2235/*
2236 * This is a kernel thread which:
2237 *
2238 * 1. Retries failed read operations on working mirrors.
2239 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2240 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2241 */
2242
e8096360 2243static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2244 sector_t sect, int sectors)
2245{
fd01b88c 2246 struct mddev *mddev = conf->mddev;
867868fb
N
2247 while(sectors) {
2248 int s = sectors;
2249 int d = read_disk;
2250 int success = 0;
2251 int start;
3cb03002 2252 struct md_rdev *rdev;
867868fb
N
2253
2254 if (s > (PAGE_SIZE>>9))
2255 s = PAGE_SIZE >> 9;
2256
2257 do {
d2eb35ac
N
2258 sector_t first_bad;
2259 int bad_sectors;
2260
707a6a42
N
2261 rcu_read_lock();
2262 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2263 if (rdev &&
da8840a7 2264 (test_bit(In_sync, &rdev->flags) ||
2265 (!test_bit(Faulty, &rdev->flags) &&
2266 rdev->recovery_offset >= sect + s)) &&
d2eb35ac 2267 is_badblock(rdev, sect, s,
707a6a42
N
2268 &first_bad, &bad_sectors) == 0) {
2269 atomic_inc(&rdev->nr_pending);
2270 rcu_read_unlock();
2271 if (sync_page_io(rdev, sect, s<<9,
796a5cf0 2272 conf->tmppage, REQ_OP_READ, 0, false))
707a6a42
N
2273 success = 1;
2274 rdev_dec_pending(rdev, mddev);
2275 if (success)
2276 break;
2277 } else
2278 rcu_read_unlock();
2279 d++;
2280 if (d == conf->raid_disks * 2)
2281 d = 0;
867868fb
N
2282 } while (!success && d != read_disk);
2283
2284 if (!success) {
d8f05d29 2285 /* Cannot read from anywhere - mark it bad */
3cb03002 2286 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2287 if (!rdev_set_badblocks(rdev, sect, s, 0))
2288 md_error(mddev, rdev);
867868fb
N
2289 break;
2290 }
2291 /* write it back and re-read */
2292 start = d;
2293 while (d != read_disk) {
2294 if (d==0)
8f19ccb2 2295 d = conf->raid_disks * 2;
867868fb 2296 d--;
707a6a42
N
2297 rcu_read_lock();
2298 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2299 if (rdev &&
707a6a42
N
2300 !test_bit(Faulty, &rdev->flags)) {
2301 atomic_inc(&rdev->nr_pending);
2302 rcu_read_unlock();
d8f05d29
N
2303 r1_sync_page_io(rdev, sect, s,
2304 conf->tmppage, WRITE);
707a6a42
N
2305 rdev_dec_pending(rdev, mddev);
2306 } else
2307 rcu_read_unlock();
867868fb
N
2308 }
2309 d = start;
2310 while (d != read_disk) {
2311 char b[BDEVNAME_SIZE];
2312 if (d==0)
8f19ccb2 2313 d = conf->raid_disks * 2;
867868fb 2314 d--;
707a6a42
N
2315 rcu_read_lock();
2316 rdev = rcu_dereference(conf->mirrors[d].rdev);
867868fb 2317 if (rdev &&
b8cb6b4c 2318 !test_bit(Faulty, &rdev->flags)) {
707a6a42
N
2319 atomic_inc(&rdev->nr_pending);
2320 rcu_read_unlock();
d8f05d29
N
2321 if (r1_sync_page_io(rdev, sect, s,
2322 conf->tmppage, READ)) {
867868fb 2323 atomic_add(s, &rdev->corrected_errors);
1d41c216
N
2324 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2325 mdname(mddev), s,
2326 (unsigned long long)(sect +
2327 rdev->data_offset),
2328 bdevname(rdev->bdev, b));
867868fb 2329 }
707a6a42
N
2330 rdev_dec_pending(rdev, mddev);
2331 } else
2332 rcu_read_unlock();
867868fb
N
2333 }
2334 sectors -= s;
2335 sect += s;
2336 }
2337}
2338
9f2c9d12 2339static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2340{
fd01b88c 2341 struct mddev *mddev = r1_bio->mddev;
e8096360 2342 struct r1conf *conf = mddev->private;
3cb03002 2343 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2344
2345 /* bio has the data to be written to device 'i' where
2346 * we just recently had a write error.
2347 * We repeatedly clone the bio and trim down to one block,
2348 * then try the write. Where the write fails we record
2349 * a bad block.
2350 * It is conceivable that the bio doesn't exactly align with
2351 * blocks. We must handle this somehow.
2352 *
2353 * We currently own a reference on the rdev.
2354 */
2355
2356 int block_sectors;
2357 sector_t sector;
2358 int sectors;
2359 int sect_to_write = r1_bio->sectors;
2360 int ok = 1;
2361
2362 if (rdev->badblocks.shift < 0)
2363 return 0;
2364
ab713cdc
ND
2365 block_sectors = roundup(1 << rdev->badblocks.shift,
2366 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2367 sector = r1_bio->sector;
2368 sectors = ((sector + block_sectors)
2369 & ~(sector_t)(block_sectors - 1))
2370 - sector;
2371
cd5ff9a1
N
2372 while (sect_to_write) {
2373 struct bio *wbio;
2374 if (sectors > sect_to_write)
2375 sectors = sect_to_write;
2376 /* Write at 'sector' for 'sectors'*/
2377
b783863f 2378 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
841c1316
ML
2379 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2380 GFP_NOIO,
afeee514 2381 &mddev->bio_set);
b783863f 2382 } else {
d7a10308 2383 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
afeee514 2384 &mddev->bio_set);
b783863f
KO
2385 }
2386
796a5cf0 2387 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
4f024f37
KO
2388 wbio->bi_iter.bi_sector = r1_bio->sector;
2389 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2390
6678d83f 2391 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2392 wbio->bi_iter.bi_sector += rdev->data_offset;
74d46992 2393 bio_set_dev(wbio, rdev->bdev);
4e49ea4a
MC
2394
2395 if (submit_bio_wait(wbio) < 0)
cd5ff9a1
N
2396 /* failure! */
2397 ok = rdev_set_badblocks(rdev, sector,
2398 sectors, 0)
2399 && ok;
2400
2401 bio_put(wbio);
2402 sect_to_write -= sectors;
2403 sector += sectors;
2404 sectors = block_sectors;
2405 }
2406 return ok;
2407}
2408
e8096360 2409static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2410{
2411 int m;
2412 int s = r1_bio->sectors;
8f19ccb2 2413 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2414 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2415 struct bio *bio = r1_bio->bios[m];
2416 if (bio->bi_end_io == NULL)
2417 continue;
4e4cbee9 2418 if (!bio->bi_status &&
62096bce 2419 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2420 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2421 }
4e4cbee9 2422 if (bio->bi_status &&
62096bce
N
2423 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2424 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2425 md_error(conf->mddev, rdev);
2426 }
2427 }
2428 put_buf(r1_bio);
2429 md_done_sync(conf->mddev, s, 1);
2430}
2431
e8096360 2432static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2433{
fd76863e 2434 int m, idx;
55ce74d4 2435 bool fail = false;
fd76863e 2436
8f19ccb2 2437 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2438 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2439 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2440 rdev_clear_badblocks(rdev,
2441 r1_bio->sector,
c6563a8c 2442 r1_bio->sectors, 0);
62096bce
N
2443 rdev_dec_pending(rdev, conf->mddev);
2444 } else if (r1_bio->bios[m] != NULL) {
2445 /* This drive got a write error. We need to
2446 * narrow down and record precise write
2447 * errors.
2448 */
55ce74d4 2449 fail = true;
62096bce
N
2450 if (!narrow_write_error(r1_bio, m)) {
2451 md_error(conf->mddev,
2452 conf->mirrors[m].rdev);
2453 /* an I/O failed, we can't clear the bitmap */
2454 set_bit(R1BIO_Degraded, &r1_bio->state);
2455 }
2456 rdev_dec_pending(conf->mirrors[m].rdev,
2457 conf->mddev);
2458 }
55ce74d4
N
2459 if (fail) {
2460 spin_lock_irq(&conf->device_lock);
2461 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
fd76863e 2462 idx = sector_to_idx(r1_bio->sector);
824e47da 2463 atomic_inc(&conf->nr_queued[idx]);
55ce74d4 2464 spin_unlock_irq(&conf->device_lock);
824e47da 2465 /*
2466 * In case freeze_array() is waiting for condition
2467 * get_unqueued_pending() == extra to be true.
2468 */
2469 wake_up(&conf->wait_barrier);
55ce74d4 2470 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2471 } else {
2472 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2473 close_write(r1_bio);
55ce74d4 2474 raid_end_bio_io(r1_bio);
bd8688a1 2475 }
62096bce
N
2476}
2477
e8096360 2478static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce 2479{
fd01b88c 2480 struct mddev *mddev = conf->mddev;
62096bce 2481 struct bio *bio;
3cb03002 2482 struct md_rdev *rdev;
62096bce
N
2483
2484 clear_bit(R1BIO_ReadError, &r1_bio->state);
2485 /* we got a read error. Maybe the drive is bad. Maybe just
2486 * the block and we can fix it.
2487 * We freeze all other IO, and try reading the block from
2488 * other devices. When we find one, we re-write
2489 * and check it that fixes the read error.
2490 * This is all done synchronously while the array is
2491 * frozen
2492 */
7449f699
TM
2493
2494 bio = r1_bio->bios[r1_bio->read_disk];
7449f699
TM
2495 bio_put(bio);
2496 r1_bio->bios[r1_bio->read_disk] = NULL;
2497
2e52d449
N
2498 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2499 if (mddev->ro == 0
2500 && !test_bit(FailFast, &rdev->flags)) {
e2d59925 2501 freeze_array(conf, 1);
62096bce
N
2502 fix_read_error(conf, r1_bio->read_disk,
2503 r1_bio->sector, r1_bio->sectors);
2504 unfreeze_array(conf);
b33d1062
GK
2505 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2506 md_error(mddev, rdev);
7449f699
TM
2507 } else {
2508 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2509 }
2510
2e52d449 2511 rdev_dec_pending(rdev, conf->mddev);
689389a0
N
2512 allow_barrier(conf, r1_bio->sector);
2513 bio = r1_bio->master_bio;
62096bce 2514
689389a0
N
2515 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2516 r1_bio->state = 0;
2517 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
62096bce
N
2518}
2519
4ed8731d 2520static void raid1d(struct md_thread *thread)
1da177e4 2521{
4ed8731d 2522 struct mddev *mddev = thread->mddev;
9f2c9d12 2523 struct r1bio *r1_bio;
1da177e4 2524 unsigned long flags;
e8096360 2525 struct r1conf *conf = mddev->private;
1da177e4 2526 struct list_head *head = &conf->retry_list;
e1dfa0a2 2527 struct blk_plug plug;
fd76863e 2528 int idx;
1da177e4
LT
2529
2530 md_check_recovery(mddev);
e1dfa0a2 2531
55ce74d4 2532 if (!list_empty_careful(&conf->bio_end_io_list) &&
2953079c 2533 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
55ce74d4
N
2534 LIST_HEAD(tmp);
2535 spin_lock_irqsave(&conf->device_lock, flags);
fd76863e 2536 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2537 list_splice_init(&conf->bio_end_io_list, &tmp);
55ce74d4
N
2538 spin_unlock_irqrestore(&conf->device_lock, flags);
2539 while (!list_empty(&tmp)) {
a452744b
MP
2540 r1_bio = list_first_entry(&tmp, struct r1bio,
2541 retry_list);
55ce74d4 2542 list_del(&r1_bio->retry_list);
fd76863e 2543 idx = sector_to_idx(r1_bio->sector);
824e47da 2544 atomic_dec(&conf->nr_queued[idx]);
bd8688a1
N
2545 if (mddev->degraded)
2546 set_bit(R1BIO_Degraded, &r1_bio->state);
2547 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2548 close_write(r1_bio);
55ce74d4
N
2549 raid_end_bio_io(r1_bio);
2550 }
2551 }
2552
e1dfa0a2 2553 blk_start_plug(&plug);
1da177e4 2554 for (;;) {
191ea9b2 2555
0021b7bc 2556 flush_pending_writes(conf);
191ea9b2 2557
a35e63ef
N
2558 spin_lock_irqsave(&conf->device_lock, flags);
2559 if (list_empty(head)) {
2560 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2561 break;
a35e63ef 2562 }
9f2c9d12 2563 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2564 list_del(head->prev);
fd76863e 2565 idx = sector_to_idx(r1_bio->sector);
824e47da 2566 atomic_dec(&conf->nr_queued[idx]);
1da177e4
LT
2567 spin_unlock_irqrestore(&conf->device_lock, flags);
2568
2569 mddev = r1_bio->mddev;
070ec55d 2570 conf = mddev->private;
4367af55 2571 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2572 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2573 test_bit(R1BIO_WriteError, &r1_bio->state))
2574 handle_sync_write_finished(conf, r1_bio);
2575 else
4367af55 2576 sync_request_write(mddev, r1_bio);
cd5ff9a1 2577 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2578 test_bit(R1BIO_WriteError, &r1_bio->state))
2579 handle_write_finished(conf, r1_bio);
2580 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2581 handle_read_error(conf, r1_bio);
2582 else
c230e7e5 2583 WARN_ON_ONCE(1);
62096bce 2584
1d9d5241 2585 cond_resched();
2953079c 2586 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
de393cde 2587 md_check_recovery(mddev);
1da177e4 2588 }
e1dfa0a2 2589 blk_finish_plug(&plug);
1da177e4
LT
2590}
2591
e8096360 2592static int init_resync(struct r1conf *conf)
1da177e4
LT
2593{
2594 int buffs;
2595
2596 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
afeee514
KO
2597 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2598
2599 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2600 r1buf_pool_free, conf->poolinfo);
1da177e4
LT
2601}
2602
208410b5
SL
2603static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2604{
afeee514 2605 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
208410b5
SL
2606 struct resync_pages *rps;
2607 struct bio *bio;
2608 int i;
2609
2610 for (i = conf->poolinfo->raid_disks; i--; ) {
2611 bio = r1bio->bios[i];
2612 rps = bio->bi_private;
2613 bio_reset(bio);
2614 bio->bi_private = rps;
2615 }
2616 r1bio->master_bio = NULL;
2617 return r1bio;
2618}
2619
1da177e4
LT
2620/*
2621 * perform a "sync" on one "block"
2622 *
2623 * We need to make sure that no normal I/O request - particularly write
2624 * requests - conflict with active sync requests.
2625 *
2626 * This is achieved by tracking pending requests and a 'barrier' concept
2627 * that can be installed to exclude normal IO requests.
2628 */
2629
849674e4
SL
2630static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2631 int *skipped)
1da177e4 2632{
e8096360 2633 struct r1conf *conf = mddev->private;
9f2c9d12 2634 struct r1bio *r1_bio;
1da177e4
LT
2635 struct bio *bio;
2636 sector_t max_sector, nr_sectors;
3e198f78 2637 int disk = -1;
1da177e4 2638 int i;
3e198f78
N
2639 int wonly = -1;
2640 int write_targets = 0, read_targets = 0;
57dab0bd 2641 sector_t sync_blocks;
e3b9703e 2642 int still_degraded = 0;
06f60385
N
2643 int good_sectors = RESYNC_SECTORS;
2644 int min_bad = 0; /* number of sectors that are bad in all devices */
fd76863e 2645 int idx = sector_to_idx(sector_nr);
022e510f 2646 int page_idx = 0;
1da177e4 2647
afeee514 2648 if (!mempool_initialized(&conf->r1buf_pool))
1da177e4 2649 if (init_resync(conf))
57afd89f 2650 return 0;
1da177e4 2651
58c0fed4 2652 max_sector = mddev->dev_sectors;
1da177e4 2653 if (sector_nr >= max_sector) {
191ea9b2
N
2654 /* If we aborted, we need to abort the
2655 * sync on the 'current' bitmap chunk (there will
2656 * only be one in raid1 resync.
2657 * We can find the current addess in mddev->curr_resync
2658 */
6a806c51 2659 if (mddev->curr_resync < max_sector) /* aborted */
e64e4018
AS
2660 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2661 &sync_blocks, 1);
6a806c51 2662 else /* completed sync */
191ea9b2 2663 conf->fullsync = 0;
6a806c51 2664
e64e4018 2665 md_bitmap_close_sync(mddev->bitmap);
1da177e4 2666 close_sync(conf);
c40f341f
GR
2667
2668 if (mddev_is_clustered(mddev)) {
2669 conf->cluster_sync_low = 0;
2670 conf->cluster_sync_high = 0;
c40f341f 2671 }
1da177e4
LT
2672 return 0;
2673 }
2674
07d84d10
N
2675 if (mddev->bitmap == NULL &&
2676 mddev->recovery_cp == MaxSector &&
6394cca5 2677 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2678 conf->fullsync == 0) {
2679 *skipped = 1;
2680 return max_sector - sector_nr;
2681 }
6394cca5
N
2682 /* before building a request, check if we can skip these blocks..
2683 * This call the bitmap_start_sync doesn't actually record anything
2684 */
e64e4018 2685 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2686 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2687 /* We can skip this block, and probably several more */
2688 *skipped = 1;
2689 return sync_blocks;
2690 }
17999be4 2691
7ac50447
TM
2692 /*
2693 * If there is non-resync activity waiting for a turn, then let it
2694 * though before starting on this new sync request.
2695 */
824e47da 2696 if (atomic_read(&conf->nr_waiting[idx]))
7ac50447
TM
2697 schedule_timeout_uninterruptible(1);
2698
c40f341f
GR
2699 /* we are incrementing sector_nr below. To be safe, we check against
2700 * sector_nr + two times RESYNC_SECTORS
2701 */
2702
e64e4018 2703 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
c40f341f 2704 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
17999be4 2705
8c242593
YY
2706
2707 if (raise_barrier(conf, sector_nr))
2708 return 0;
2709
2710 r1_bio = raid1_alloc_init_r1buf(conf);
1da177e4 2711
3e198f78 2712 rcu_read_lock();
1da177e4 2713 /*
3e198f78
N
2714 * If we get a correctably read error during resync or recovery,
2715 * we might want to read from a different device. So we
2716 * flag all drives that could conceivably be read from for READ,
2717 * and any others (which will be non-In_sync devices) for WRITE.
2718 * If a read fails, we try reading from something else for which READ
2719 * is OK.
1da177e4 2720 */
1da177e4 2721
1da177e4
LT
2722 r1_bio->mddev = mddev;
2723 r1_bio->sector = sector_nr;
191ea9b2 2724 r1_bio->state = 0;
1da177e4 2725 set_bit(R1BIO_IsSync, &r1_bio->state);
fd76863e 2726 /* make sure good_sectors won't go across barrier unit boundary */
2727 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
1da177e4 2728
8f19ccb2 2729 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2730 struct md_rdev *rdev;
1da177e4 2731 bio = r1_bio->bios[i];
1da177e4 2732
3e198f78
N
2733 rdev = rcu_dereference(conf->mirrors[i].rdev);
2734 if (rdev == NULL ||
06f60385 2735 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2736 if (i < conf->raid_disks)
2737 still_degraded = 1;
3e198f78 2738 } else if (!test_bit(In_sync, &rdev->flags)) {
796a5cf0 2739 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1da177e4
LT
2740 bio->bi_end_io = end_sync_write;
2741 write_targets ++;
3e198f78
N
2742 } else {
2743 /* may need to read from here */
06f60385
N
2744 sector_t first_bad = MaxSector;
2745 int bad_sectors;
2746
2747 if (is_badblock(rdev, sector_nr, good_sectors,
2748 &first_bad, &bad_sectors)) {
2749 if (first_bad > sector_nr)
2750 good_sectors = first_bad - sector_nr;
2751 else {
2752 bad_sectors -= (sector_nr - first_bad);
2753 if (min_bad == 0 ||
2754 min_bad > bad_sectors)
2755 min_bad = bad_sectors;
2756 }
2757 }
2758 if (sector_nr < first_bad) {
2759 if (test_bit(WriteMostly, &rdev->flags)) {
2760 if (wonly < 0)
2761 wonly = i;
2762 } else {
2763 if (disk < 0)
2764 disk = i;
2765 }
796a5cf0 2766 bio_set_op_attrs(bio, REQ_OP_READ, 0);
06f60385
N
2767 bio->bi_end_io = end_sync_read;
2768 read_targets++;
d57368af
AL
2769 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2770 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2771 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2772 /*
2773 * The device is suitable for reading (InSync),
2774 * but has bad block(s) here. Let's try to correct them,
2775 * if we are doing resync or repair. Otherwise, leave
2776 * this device alone for this sync request.
2777 */
796a5cf0 2778 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
d57368af
AL
2779 bio->bi_end_io = end_sync_write;
2780 write_targets++;
3e198f78 2781 }
3e198f78 2782 }
06f60385
N
2783 if (bio->bi_end_io) {
2784 atomic_inc(&rdev->nr_pending);
4f024f37 2785 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
74d46992 2786 bio_set_dev(bio, rdev->bdev);
2e52d449
N
2787 if (test_bit(FailFast, &rdev->flags))
2788 bio->bi_opf |= MD_FAILFAST;
06f60385 2789 }
1da177e4 2790 }
3e198f78
N
2791 rcu_read_unlock();
2792 if (disk < 0)
2793 disk = wonly;
2794 r1_bio->read_disk = disk;
191ea9b2 2795
06f60385
N
2796 if (read_targets == 0 && min_bad > 0) {
2797 /* These sectors are bad on all InSync devices, so we
2798 * need to mark them bad on all write targets
2799 */
2800 int ok = 1;
8f19ccb2 2801 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2802 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2803 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2804 ok = rdev_set_badblocks(rdev, sector_nr,
2805 min_bad, 0
2806 ) && ok;
2807 }
2953079c 2808 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
06f60385
N
2809 *skipped = 1;
2810 put_buf(r1_bio);
2811
2812 if (!ok) {
2813 /* Cannot record the badblocks, so need to
2814 * abort the resync.
2815 * If there are multiple read targets, could just
2816 * fail the really bad ones ???
2817 */
2818 conf->recovery_disabled = mddev->recovery_disabled;
2819 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2820 return 0;
2821 } else
2822 return min_bad;
2823
2824 }
2825 if (min_bad > 0 && min_bad < good_sectors) {
2826 /* only resync enough to reach the next bad->good
2827 * transition */
2828 good_sectors = min_bad;
2829 }
2830
3e198f78
N
2831 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2832 /* extra read targets are also write targets */
2833 write_targets += read_targets-1;
2834
2835 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2836 /* There is nowhere to write, so all non-sync
2837 * drives must be failed - so we are finished
2838 */
b7219ccb
N
2839 sector_t rv;
2840 if (min_bad > 0)
2841 max_sector = sector_nr + min_bad;
2842 rv = max_sector - sector_nr;
57afd89f 2843 *skipped = 1;
1da177e4 2844 put_buf(r1_bio);
1da177e4
LT
2845 return rv;
2846 }
2847
c6207277
N
2848 if (max_sector > mddev->resync_max)
2849 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2850 if (max_sector > sector_nr + good_sectors)
2851 max_sector = sector_nr + good_sectors;
1da177e4 2852 nr_sectors = 0;
289e99e8 2853 sync_blocks = 0;
1da177e4
LT
2854 do {
2855 struct page *page;
2856 int len = PAGE_SIZE;
2857 if (sector_nr + (len>>9) > max_sector)
2858 len = (max_sector - sector_nr) << 9;
2859 if (len == 0)
2860 break;
6a806c51 2861 if (sync_blocks == 0) {
e64e4018
AS
2862 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2863 &sync_blocks, still_degraded) &&
e5de485f
N
2864 !conf->fullsync &&
2865 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2866 break;
7571ae88 2867 if ((len >> 9) > sync_blocks)
6a806c51 2868 len = sync_blocks<<9;
ab7a30c7 2869 }
191ea9b2 2870
8f19ccb2 2871 for (i = 0 ; i < conf->raid_disks * 2; i++) {
98d30c58
ML
2872 struct resync_pages *rp;
2873
1da177e4 2874 bio = r1_bio->bios[i];
98d30c58 2875 rp = get_resync_pages(bio);
1da177e4 2876 if (bio->bi_end_io) {
022e510f 2877 page = resync_fetch_page(rp, page_idx);
c85ba149
ML
2878
2879 /*
2880 * won't fail because the vec table is big
2881 * enough to hold all these pages
2882 */
2883 bio_add_page(bio, page, len, 0);
1da177e4
LT
2884 }
2885 }
2886 nr_sectors += len>>9;
2887 sector_nr += len>>9;
191ea9b2 2888 sync_blocks -= (len>>9);
022e510f 2889 } while (++page_idx < RESYNC_PAGES);
98d30c58 2890
1da177e4
LT
2891 r1_bio->sectors = nr_sectors;
2892
c40f341f
GR
2893 if (mddev_is_clustered(mddev) &&
2894 conf->cluster_sync_high < sector_nr + nr_sectors) {
2895 conf->cluster_sync_low = mddev->curr_resync_completed;
2896 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2897 /* Send resync message */
2898 md_cluster_ops->resync_info_update(mddev,
2899 conf->cluster_sync_low,
2900 conf->cluster_sync_high);
2901 }
2902
d11c171e
N
2903 /* For a user-requested sync, we read all readable devices and do a
2904 * compare
2905 */
2906 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2907 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2908 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2909 bio = r1_bio->bios[i];
2910 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2911 read_targets--;
74d46992 2912 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2913 if (read_targets == 1)
2914 bio->bi_opf &= ~MD_FAILFAST;
d11c171e
N
2915 generic_make_request(bio);
2916 }
2917 }
2918 } else {
2919 atomic_set(&r1_bio->remaining, 1);
2920 bio = r1_bio->bios[r1_bio->read_disk];
74d46992 2921 md_sync_acct_bio(bio, nr_sectors);
2e52d449
N
2922 if (read_targets == 1)
2923 bio->bi_opf &= ~MD_FAILFAST;
d11c171e 2924 generic_make_request(bio);
d11c171e 2925 }
1da177e4
LT
2926 return nr_sectors;
2927}
2928
fd01b88c 2929static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2930{
2931 if (sectors)
2932 return sectors;
2933
2934 return mddev->dev_sectors;
2935}
2936
e8096360 2937static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2938{
e8096360 2939 struct r1conf *conf;
709ae487 2940 int i;
0eaf822c 2941 struct raid1_info *disk;
3cb03002 2942 struct md_rdev *rdev;
709ae487 2943 int err = -ENOMEM;
1da177e4 2944
e8096360 2945 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2946 if (!conf)
709ae487 2947 goto abort;
1da177e4 2948
fd76863e 2949 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2950 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2951 if (!conf->nr_pending)
2952 goto abort;
2953
2954 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2955 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2956 if (!conf->nr_waiting)
2957 goto abort;
2958
2959 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2960 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2961 if (!conf->nr_queued)
2962 goto abort;
2963
2964 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
824e47da 2965 sizeof(atomic_t), GFP_KERNEL);
fd76863e 2966 if (!conf->barrier)
2967 goto abort;
2968
6396bb22
KC
2969 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2970 mddev->raid_disks, 2),
2971 GFP_KERNEL);
1da177e4 2972 if (!conf->mirrors)
709ae487 2973 goto abort;
1da177e4 2974
ddaf22ab
N
2975 conf->tmppage = alloc_page(GFP_KERNEL);
2976 if (!conf->tmppage)
709ae487 2977 goto abort;
ddaf22ab 2978
709ae487 2979 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2980 if (!conf->poolinfo)
709ae487 2981 goto abort;
8f19ccb2 2982 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3f677f9c 2983 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 2984 rbio_pool_free, conf->poolinfo);
afeee514 2985 if (err)
709ae487
N
2986 goto abort;
2987
afeee514
KO
2988 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2989 if (err)
c230e7e5
N
2990 goto abort;
2991
ed9bfdf1 2992 conf->poolinfo->mddev = mddev;
1da177e4 2993
c19d5798 2994 err = -EINVAL;
e7e72bf6 2995 spin_lock_init(&conf->device_lock);
dafb20fa 2996 rdev_for_each(rdev, mddev) {
709ae487 2997 int disk_idx = rdev->raid_disk;
1da177e4
LT
2998 if (disk_idx >= mddev->raid_disks
2999 || disk_idx < 0)
3000 continue;
c19d5798 3001 if (test_bit(Replacement, &rdev->flags))
02b898f2 3002 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
3003 else
3004 disk = conf->mirrors + disk_idx;
1da177e4 3005
c19d5798
N
3006 if (disk->rdev)
3007 goto abort;
1da177e4 3008 disk->rdev = rdev;
1da177e4 3009 disk->head_position = 0;
12cee5a8 3010 disk->seq_start = MaxSector;
1da177e4
LT
3011 }
3012 conf->raid_disks = mddev->raid_disks;
3013 conf->mddev = mddev;
1da177e4 3014 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 3015 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
3016
3017 spin_lock_init(&conf->resync_lock);
17999be4 3018 init_waitqueue_head(&conf->wait_barrier);
1da177e4 3019
191ea9b2 3020 bio_list_init(&conf->pending_bio_list);
34db0cd6 3021 conf->pending_count = 0;
d890fa2b 3022 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 3023
c19d5798 3024 err = -EIO;
8f19ccb2 3025 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
3026
3027 disk = conf->mirrors + i;
3028
c19d5798
N
3029 if (i < conf->raid_disks &&
3030 disk[conf->raid_disks].rdev) {
3031 /* This slot has a replacement. */
3032 if (!disk->rdev) {
3033 /* No original, just make the replacement
3034 * a recovering spare
3035 */
3036 disk->rdev =
3037 disk[conf->raid_disks].rdev;
3038 disk[conf->raid_disks].rdev = NULL;
3039 } else if (!test_bit(In_sync, &disk->rdev->flags))
3040 /* Original is not in_sync - bad */
3041 goto abort;
3042 }
3043
5fd6c1dc
N
3044 if (!disk->rdev ||
3045 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 3046 disk->head_position = 0;
4f0a5e01
JB
3047 if (disk->rdev &&
3048 (disk->rdev->saved_raid_disk < 0))
918f0238 3049 conf->fullsync = 1;
be4d3280 3050 }
1da177e4 3051 }
709ae487 3052
709ae487 3053 err = -ENOMEM;
0232605d 3054 conf->thread = md_register_thread(raid1d, mddev, "raid1");
1d41c216 3055 if (!conf->thread)
709ae487 3056 goto abort;
1da177e4 3057
709ae487
N
3058 return conf;
3059
3060 abort:
3061 if (conf) {
afeee514 3062 mempool_exit(&conf->r1bio_pool);
709ae487
N
3063 kfree(conf->mirrors);
3064 safe_put_page(conf->tmppage);
3065 kfree(conf->poolinfo);
fd76863e 3066 kfree(conf->nr_pending);
3067 kfree(conf->nr_waiting);
3068 kfree(conf->nr_queued);
3069 kfree(conf->barrier);
afeee514 3070 bioset_exit(&conf->bio_split);
709ae487
N
3071 kfree(conf);
3072 }
3073 return ERR_PTR(err);
3074}
3075
afa0f557 3076static void raid1_free(struct mddev *mddev, void *priv);
849674e4 3077static int raid1_run(struct mddev *mddev)
709ae487 3078{
e8096360 3079 struct r1conf *conf;
709ae487 3080 int i;
3cb03002 3081 struct md_rdev *rdev;
5220ea1e 3082 int ret;
2ff8cc2c 3083 bool discard_supported = false;
709ae487
N
3084
3085 if (mddev->level != 1) {
1d41c216
N
3086 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3087 mdname(mddev), mddev->level);
709ae487
N
3088 return -EIO;
3089 }
3090 if (mddev->reshape_position != MaxSector) {
1d41c216
N
3091 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3092 mdname(mddev));
709ae487
N
3093 return -EIO;
3094 }
a415c0f1
N
3095 if (mddev_init_writes_pending(mddev) < 0)
3096 return -ENOMEM;
1da177e4 3097 /*
709ae487
N
3098 * copy the already verified devices into our private RAID1
3099 * bookkeeping area. [whatever we allocate in run(),
afa0f557 3100 * should be freed in raid1_free()]
1da177e4 3101 */
709ae487
N
3102 if (mddev->private == NULL)
3103 conf = setup_conf(mddev);
3104 else
3105 conf = mddev->private;
1da177e4 3106
709ae487
N
3107 if (IS_ERR(conf))
3108 return PTR_ERR(conf);
1da177e4 3109
3deff1a7 3110 if (mddev->queue) {
5026d7a9 3111 blk_queue_max_write_same_sectors(mddev->queue, 0);
3deff1a7
CH
3112 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3113 }
5026d7a9 3114
dafb20fa 3115 rdev_for_each(rdev, mddev) {
1ed7242e
JB
3116 if (!mddev->gendisk)
3117 continue;
709ae487
N
3118 disk_stack_limits(mddev->gendisk, rdev->bdev,
3119 rdev->data_offset << 9);
2ff8cc2c
SL
3120 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3121 discard_supported = true;
1da177e4 3122 }
191ea9b2 3123
709ae487 3124 mddev->degraded = 0;
ebfeb444 3125 for (i = 0; i < conf->raid_disks; i++)
709ae487
N
3126 if (conf->mirrors[i].rdev == NULL ||
3127 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3128 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3129 mddev->degraded++;
3130
3131 if (conf->raid_disks - mddev->degraded == 1)
3132 mddev->recovery_cp = MaxSector;
3133
8c6ac868 3134 if (mddev->recovery_cp != MaxSector)
1d41c216
N
3135 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3136 mdname(mddev));
3137 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 3138 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 3139 mddev->raid_disks);
709ae487 3140
1da177e4
LT
3141 /*
3142 * Ok, everything is just fine now
3143 */
709ae487
N
3144 mddev->thread = conf->thread;
3145 conf->thread = NULL;
3146 mddev->private = conf;
46533ff7 3147 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
709ae487 3148
1f403624 3149 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 3150
1ed7242e 3151 if (mddev->queue) {
2ff8cc2c 3152 if (discard_supported)
8b904b5b 3153 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
2ff8cc2c
SL
3154 mddev->queue);
3155 else
8b904b5b 3156 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
2ff8cc2c 3157 mddev->queue);
1ed7242e 3158 }
5220ea1e 3159
ebfeb444 3160 ret = md_integrity_register(mddev);
5aa61f42
N
3161 if (ret) {
3162 md_unregister_thread(&mddev->thread);
afa0f557 3163 raid1_free(mddev, conf);
5aa61f42 3164 }
5220ea1e 3165 return ret;
1da177e4
LT
3166}
3167
afa0f557 3168static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 3169{
afa0f557 3170 struct r1conf *conf = priv;
409c57f3 3171
afeee514 3172 mempool_exit(&conf->r1bio_pool);
990a8baf 3173 kfree(conf->mirrors);
0fea7ed8 3174 safe_put_page(conf->tmppage);
990a8baf 3175 kfree(conf->poolinfo);
fd76863e 3176 kfree(conf->nr_pending);
3177 kfree(conf->nr_waiting);
3178 kfree(conf->nr_queued);
3179 kfree(conf->barrier);
afeee514 3180 bioset_exit(&conf->bio_split);
1da177e4 3181 kfree(conf);
1da177e4
LT
3182}
3183
fd01b88c 3184static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
3185{
3186 /* no resync is happening, and there is enough space
3187 * on all devices, so we can resize.
3188 * We need to make sure resync covers any new space.
3189 * If the array is shrinking we should possibly wait until
3190 * any io in the removed space completes, but it hardly seems
3191 * worth it.
3192 */
a4a6125a
N
3193 sector_t newsize = raid1_size(mddev, sectors, 0);
3194 if (mddev->external_size &&
3195 mddev->array_sectors > newsize)
b522adcd 3196 return -EINVAL;
a4a6125a 3197 if (mddev->bitmap) {
e64e4018 3198 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
a4a6125a
N
3199 if (ret)
3200 return ret;
3201 }
3202 md_set_array_sectors(mddev, newsize);
b522adcd 3203 if (sectors > mddev->dev_sectors &&
b098636c 3204 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3205 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3206 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3207 }
b522adcd 3208 mddev->dev_sectors = sectors;
4b5c7ae8 3209 mddev->resync_max_sectors = sectors;
1da177e4
LT
3210 return 0;
3211}
3212
fd01b88c 3213static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3214{
3215 /* We need to:
3216 * 1/ resize the r1bio_pool
3217 * 2/ resize conf->mirrors
3218 *
3219 * We allocate a new r1bio_pool if we can.
3220 * Then raise a device barrier and wait until all IO stops.
3221 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3222 *
3223 * At the same time, we "pack" the devices so that all the missing
3224 * devices have the higher raid_disk numbers.
1da177e4 3225 */
afeee514 3226 mempool_t newpool, oldpool;
1da177e4 3227 struct pool_info *newpoolinfo;
0eaf822c 3228 struct raid1_info *newmirrors;
e8096360 3229 struct r1conf *conf = mddev->private;
63c70c4f 3230 int cnt, raid_disks;
c04be0aa 3231 unsigned long flags;
2214c260 3232 int d, d2;
afeee514
KO
3233 int ret;
3234
3235 memset(&newpool, 0, sizeof(newpool));
3236 memset(&oldpool, 0, sizeof(oldpool));
1da177e4 3237
63c70c4f 3238 /* Cannot change chunk_size, layout, or level */
664e7c41 3239 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3240 mddev->layout != mddev->new_layout ||
3241 mddev->level != mddev->new_level) {
664e7c41 3242 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3243 mddev->new_layout = mddev->layout;
3244 mddev->new_level = mddev->level;
3245 return -EINVAL;
3246 }
3247
2214c260
AP
3248 if (!mddev_is_clustered(mddev))
3249 md_allow_write(mddev);
2a2275d6 3250
63c70c4f
N
3251 raid_disks = mddev->raid_disks + mddev->delta_disks;
3252
6ea9c07c
N
3253 if (raid_disks < conf->raid_disks) {
3254 cnt=0;
3255 for (d= 0; d < conf->raid_disks; d++)
3256 if (conf->mirrors[d].rdev)
3257 cnt++;
3258 if (cnt > raid_disks)
1da177e4 3259 return -EBUSY;
6ea9c07c 3260 }
1da177e4
LT
3261
3262 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3263 if (!newpoolinfo)
3264 return -ENOMEM;
3265 newpoolinfo->mddev = mddev;
8f19ccb2 3266 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4 3267
3f677f9c 3268 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
c7afa803 3269 rbio_pool_free, newpoolinfo);
afeee514 3270 if (ret) {
1da177e4 3271 kfree(newpoolinfo);
afeee514 3272 return ret;
1da177e4 3273 }
6396bb22
KC
3274 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3275 raid_disks, 2),
8f19ccb2 3276 GFP_KERNEL);
1da177e4
LT
3277 if (!newmirrors) {
3278 kfree(newpoolinfo);
afeee514 3279 mempool_exit(&newpool);
1da177e4
LT
3280 return -ENOMEM;
3281 }
1da177e4 3282
e2d59925 3283 freeze_array(conf, 0);
1da177e4
LT
3284
3285 /* ok, everything is stopped */
3286 oldpool = conf->r1bio_pool;
3287 conf->r1bio_pool = newpool;
6ea9c07c 3288
a88aa786 3289 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3290 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3291 if (rdev && rdev->raid_disk != d2) {
36fad858 3292 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3293 rdev->raid_disk = d2;
36fad858
NK
3294 sysfs_unlink_rdev(mddev, rdev);
3295 if (sysfs_link_rdev(mddev, rdev))
1d41c216
N
3296 pr_warn("md/raid1:%s: cannot register rd%d\n",
3297 mdname(mddev), rdev->raid_disk);
6ea9c07c 3298 }
a88aa786
N
3299 if (rdev)
3300 newmirrors[d2++].rdev = rdev;
3301 }
1da177e4
LT
3302 kfree(conf->mirrors);
3303 conf->mirrors = newmirrors;
3304 kfree(conf->poolinfo);
3305 conf->poolinfo = newpoolinfo;
3306
c04be0aa 3307 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3308 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3309 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3310 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3311 mddev->delta_disks = 0;
1da177e4 3312
e2d59925 3313 unfreeze_array(conf);
1da177e4 3314
985ca973 3315 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3316 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3317 md_wakeup_thread(mddev->thread);
3318
afeee514 3319 mempool_exit(&oldpool);
1da177e4
LT
3320 return 0;
3321}
3322
b03e0ccb 3323static void raid1_quiesce(struct mddev *mddev, int quiesce)
36fa3063 3324{
e8096360 3325 struct r1conf *conf = mddev->private;
36fa3063 3326
b03e0ccb 3327 if (quiesce)
07169fd4 3328 freeze_array(conf, 0);
b03e0ccb 3329 else
07169fd4 3330 unfreeze_array(conf);
36fa3063
N
3331}
3332
fd01b88c 3333static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3334{
3335 /* raid1 can take over:
3336 * raid5 with 2 devices, any layout or chunk size
3337 */
3338 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3339 struct r1conf *conf;
709ae487
N
3340 mddev->new_level = 1;
3341 mddev->new_layout = 0;
3342 mddev->new_chunk_sectors = 0;
3343 conf = setup_conf(mddev);
6995f0b2 3344 if (!IS_ERR(conf)) {
07169fd4 3345 /* Array must appear to be quiesced */
3346 conf->array_frozen = 1;
394ed8e4
SL
3347 mddev_clear_unsupported_flags(mddev,
3348 UNSUPPORTED_MDDEV_FLAGS);
6995f0b2 3349 }
709ae487
N
3350 return conf;
3351 }
3352 return ERR_PTR(-EINVAL);
3353}
1da177e4 3354
84fc4b56 3355static struct md_personality raid1_personality =
1da177e4
LT
3356{
3357 .name = "raid1",
2604b703 3358 .level = 1,
1da177e4 3359 .owner = THIS_MODULE,
849674e4
SL
3360 .make_request = raid1_make_request,
3361 .run = raid1_run,
afa0f557 3362 .free = raid1_free,
849674e4
SL
3363 .status = raid1_status,
3364 .error_handler = raid1_error,
1da177e4
LT
3365 .hot_add_disk = raid1_add_disk,
3366 .hot_remove_disk= raid1_remove_disk,
3367 .spare_active = raid1_spare_active,
849674e4 3368 .sync_request = raid1_sync_request,
1da177e4 3369 .resize = raid1_resize,
80c3a6ce 3370 .size = raid1_size,
63c70c4f 3371 .check_reshape = raid1_reshape,
36fa3063 3372 .quiesce = raid1_quiesce,
709ae487 3373 .takeover = raid1_takeover,
5c675f83 3374 .congested = raid1_congested,
1da177e4
LT
3375};
3376
3377static int __init raid_init(void)
3378{
2604b703 3379 return register_md_personality(&raid1_personality);
1da177e4
LT
3380}
3381
3382static void raid_exit(void)
3383{
2604b703 3384 unregister_md_personality(&raid1_personality);
1da177e4
LT
3385}
3386
3387module_init(raid_init);
3388module_exit(raid_exit);
3389MODULE_LICENSE("GPL");
0efb9e61 3390MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3391MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3392MODULE_ALIAS("md-raid1");
2604b703 3393MODULE_ALIAS("md-level-1");
34db0cd6
N
3394
3395module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);