dm persistent data: eliminate unnecessary return values
[linux-2.6-block.git] / drivers / md / persistent-data / dm-btree.c
CommitLineData
3241b1d3
JT
1/*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-btree-internal.h"
8#include "dm-space-map.h"
9#include "dm-transaction-manager.h"
10
1944ce60 11#include <linux/export.h>
3241b1d3
JT
12#include <linux/device-mapper.h>
13
14#define DM_MSG_PREFIX "btree"
15
16/*----------------------------------------------------------------
17 * Array manipulation
18 *--------------------------------------------------------------*/
19static void memcpy_disk(void *dest, const void *src, size_t len)
20 __dm_written_to_disk(src)
21{
22 memcpy(dest, src, len);
23 __dm_unbless_for_disk(src);
24}
25
26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27 unsigned index, void *elt)
28 __dm_written_to_disk(elt)
29{
30 if (index < nr_elts)
31 memmove(base + (elt_size * (index + 1)),
32 base + (elt_size * index),
33 (nr_elts - index) * elt_size);
34
35 memcpy_disk(base + (elt_size * index), elt, elt_size);
36}
37
38/*----------------------------------------------------------------*/
39
40/* makes the assumption that no two keys are the same. */
550929fa 41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
3241b1d3
JT
42{
43 int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45 while (hi - lo > 1) {
46 int mid = lo + ((hi - lo) / 2);
47 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49 if (mid_key == key)
50 return mid;
51
52 if (mid_key < key)
53 lo = mid;
54 else
55 hi = mid;
56 }
57
58 return want_hi ? hi : lo;
59}
60
550929fa 61int lower_bound(struct btree_node *n, uint64_t key)
3241b1d3
JT
62{
63 return bsearch(n, key, 0);
64}
65
550929fa 66void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
3241b1d3
JT
67 struct dm_btree_value_type *vt)
68{
69 unsigned i;
70 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
71
72 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
73 for (i = 0; i < nr_entries; i++)
74 dm_tm_inc(tm, value64(n, i));
75 else if (vt->inc)
76 for (i = 0; i < nr_entries; i++)
a3aefb39 77 vt->inc(vt->context, value_ptr(n, i));
3241b1d3
JT
78}
79
550929fa 80static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
3241b1d3
JT
81 uint64_t key, void *value)
82 __dm_written_to_disk(value)
83{
84 uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
85 __le64 key_le = cpu_to_le64(key);
86
87 if (index > nr_entries ||
88 index >= le32_to_cpu(node->header.max_entries)) {
89 DMERR("too many entries in btree node for insert");
90 __dm_unbless_for_disk(value);
91 return -ENOMEM;
92 }
93
94 __dm_bless_for_disk(&key_le);
95
96 array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
97 array_insert(value_base(node), value_size, nr_entries, index, value);
98 node->header.nr_entries = cpu_to_le32(nr_entries + 1);
99
100 return 0;
101}
102
103/*----------------------------------------------------------------*/
104
105/*
106 * We want 3n entries (for some n). This works more nicely for repeated
107 * insert remove loops than (2n + 1).
108 */
109static uint32_t calc_max_entries(size_t value_size, size_t block_size)
110{
111 uint32_t total, n;
112 size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
113
114 block_size -= sizeof(struct node_header);
115 total = block_size / elt_size;
116 n = total / 3; /* rounds down */
117
118 return 3 * n;
119}
120
121int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
122{
123 int r;
124 struct dm_block *b;
550929fa 125 struct btree_node *n;
3241b1d3
JT
126 size_t block_size;
127 uint32_t max_entries;
128
129 r = new_block(info, &b);
130 if (r < 0)
131 return r;
132
133 block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
134 max_entries = calc_max_entries(info->value_type.size, block_size);
135
136 n = dm_block_data(b);
137 memset(n, 0, block_size);
138 n->header.flags = cpu_to_le32(LEAF_NODE);
139 n->header.nr_entries = cpu_to_le32(0);
140 n->header.max_entries = cpu_to_le32(max_entries);
141 n->header.value_size = cpu_to_le32(info->value_type.size);
142
143 *root = dm_block_location(b);
4c7da06f
MP
144 unlock_block(info, b);
145
146 return 0;
3241b1d3
JT
147}
148EXPORT_SYMBOL_GPL(dm_btree_empty);
149
150/*----------------------------------------------------------------*/
151
152/*
153 * Deletion uses a recursive algorithm, since we have limited stack space
154 * we explicitly manage our own stack on the heap.
155 */
156#define MAX_SPINE_DEPTH 64
157struct frame {
158 struct dm_block *b;
550929fa 159 struct btree_node *n;
3241b1d3
JT
160 unsigned level;
161 unsigned nr_children;
162 unsigned current_child;
163};
164
165struct del_stack {
04f17c80 166 struct dm_btree_info *info;
3241b1d3
JT
167 struct dm_transaction_manager *tm;
168 int top;
169 struct frame spine[MAX_SPINE_DEPTH];
170};
171
172static int top_frame(struct del_stack *s, struct frame **f)
173{
174 if (s->top < 0) {
175 DMERR("btree deletion stack empty");
176 return -EINVAL;
177 }
178
179 *f = s->spine + s->top;
180
181 return 0;
182}
183
184static int unprocessed_frames(struct del_stack *s)
185{
186 return s->top >= 0;
187}
188
04f17c80
JT
189static void prefetch_children(struct del_stack *s, struct frame *f)
190{
191 unsigned i;
192 struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
193
194 for (i = 0; i < f->nr_children; i++)
195 dm_bm_prefetch(bm, value64(f->n, i));
196}
197
198static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
199{
200 return f->level < (info->levels - 1);
201}
202
3241b1d3
JT
203static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
204{
205 int r;
206 uint32_t ref_count;
207
208 if (s->top >= MAX_SPINE_DEPTH - 1) {
209 DMERR("btree deletion stack out of memory");
210 return -ENOMEM;
211 }
212
213 r = dm_tm_ref(s->tm, b, &ref_count);
214 if (r)
215 return r;
216
217 if (ref_count > 1)
218 /*
219 * This is a shared node, so we can just decrement it's
220 * reference counter and leave the children.
221 */
222 dm_tm_dec(s->tm, b);
223
224 else {
04f17c80 225 uint32_t flags;
3241b1d3
JT
226 struct frame *f = s->spine + ++s->top;
227
228 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
229 if (r) {
230 s->top--;
231 return r;
232 }
233
234 f->n = dm_block_data(f->b);
235 f->level = level;
236 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
237 f->current_child = 0;
04f17c80
JT
238
239 flags = le32_to_cpu(f->n->header.flags);
240 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
241 prefetch_children(s, f);
3241b1d3
JT
242 }
243
244 return 0;
245}
246
247static void pop_frame(struct del_stack *s)
248{
249 struct frame *f = s->spine + s->top--;
250
251 dm_tm_dec(s->tm, dm_block_location(f->b));
252 dm_tm_unlock(s->tm, f->b);
253}
254
255int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
256{
257 int r;
258 struct del_stack *s;
259
1c751879 260 s = kmalloc(sizeof(*s), GFP_NOIO);
3241b1d3
JT
261 if (!s)
262 return -ENOMEM;
04f17c80 263 s->info = info;
3241b1d3
JT
264 s->tm = info->tm;
265 s->top = -1;
266
e3cbf945 267 r = push_frame(s, root, 0);
3241b1d3
JT
268 if (r)
269 goto out;
270
271 while (unprocessed_frames(s)) {
272 uint32_t flags;
273 struct frame *f;
274 dm_block_t b;
275
276 r = top_frame(s, &f);
277 if (r)
278 goto out;
279
280 if (f->current_child >= f->nr_children) {
281 pop_frame(s);
282 continue;
283 }
284
285 flags = le32_to_cpu(f->n->header.flags);
286 if (flags & INTERNAL_NODE) {
287 b = value64(f->n, f->current_child);
288 f->current_child++;
289 r = push_frame(s, b, f->level);
290 if (r)
291 goto out;
292
e3cbf945 293 } else if (is_internal_level(info, f)) {
3241b1d3
JT
294 b = value64(f->n, f->current_child);
295 f->current_child++;
296 r = push_frame(s, b, f->level + 1);
297 if (r)
298 goto out;
299
300 } else {
301 if (info->value_type.dec) {
302 unsigned i;
303
304 for (i = 0; i < f->nr_children; i++)
305 info->value_type.dec(info->value_type.context,
a3aefb39 306 value_ptr(f->n, i));
3241b1d3 307 }
cd5acf0b 308 pop_frame(s);
3241b1d3
JT
309 }
310 }
311
312out:
313 kfree(s);
314 return r;
315}
316EXPORT_SYMBOL_GPL(dm_btree_del);
317
318/*----------------------------------------------------------------*/
319
320static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
550929fa 321 int (*search_fn)(struct btree_node *, uint64_t),
3241b1d3
JT
322 uint64_t *result_key, void *v, size_t value_size)
323{
324 int i, r;
325 uint32_t flags, nr_entries;
326
327 do {
328 r = ro_step(s, block);
329 if (r < 0)
330 return r;
331
332 i = search_fn(ro_node(s), key);
333
334 flags = le32_to_cpu(ro_node(s)->header.flags);
335 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
336 if (i < 0 || i >= nr_entries)
337 return -ENODATA;
338
339 if (flags & INTERNAL_NODE)
340 block = value64(ro_node(s), i);
341
342 } while (!(flags & LEAF_NODE));
343
344 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
a3aefb39 345 memcpy(v, value_ptr(ro_node(s), i), value_size);
3241b1d3
JT
346
347 return 0;
348}
349
350int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
351 uint64_t *keys, void *value_le)
352{
353 unsigned level, last_level = info->levels - 1;
354 int r = -ENODATA;
355 uint64_t rkey;
356 __le64 internal_value_le;
357 struct ro_spine spine;
358
359 init_ro_spine(&spine, info);
360 for (level = 0; level < info->levels; level++) {
361 size_t size;
362 void *value_p;
363
364 if (level == last_level) {
365 value_p = value_le;
366 size = info->value_type.size;
367
368 } else {
369 value_p = &internal_value_le;
370 size = sizeof(uint64_t);
371 }
372
373 r = btree_lookup_raw(&spine, root, keys[level],
374 lower_bound, &rkey,
375 value_p, size);
376
377 if (!r) {
378 if (rkey != keys[level]) {
379 exit_ro_spine(&spine);
380 return -ENODATA;
381 }
382 } else {
383 exit_ro_spine(&spine);
384 return r;
385 }
386
387 root = le64_to_cpu(internal_value_le);
388 }
389 exit_ro_spine(&spine);
390
391 return r;
392}
393EXPORT_SYMBOL_GPL(dm_btree_lookup);
394
395/*
396 * Splits a node by creating a sibling node and shifting half the nodes
397 * contents across. Assumes there is a parent node, and it has room for
398 * another child.
399 *
400 * Before:
401 * +--------+
402 * | Parent |
403 * +--------+
404 * |
405 * v
406 * +----------+
407 * | A ++++++ |
408 * +----------+
409 *
410 *
411 * After:
412 * +--------+
413 * | Parent |
414 * +--------+
415 * | |
416 * v +------+
417 * +---------+ |
418 * | A* +++ | v
419 * +---------+ +-------+
420 * | B +++ |
421 * +-------+
422 *
423 * Where A* is a shadow of A.
424 */
0a8d4c3e
VG
425static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
426 uint64_t key)
3241b1d3
JT
427{
428 int r;
429 size_t size;
430 unsigned nr_left, nr_right;
431 struct dm_block *left, *right, *parent;
550929fa 432 struct btree_node *ln, *rn, *pn;
3241b1d3
JT
433 __le64 location;
434
435 left = shadow_current(s);
436
437 r = new_block(s->info, &right);
438 if (r < 0)
439 return r;
440
441 ln = dm_block_data(left);
442 rn = dm_block_data(right);
443
444 nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
445 nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
446
447 ln->header.nr_entries = cpu_to_le32(nr_left);
448
449 rn->header.flags = ln->header.flags;
450 rn->header.nr_entries = cpu_to_le32(nr_right);
451 rn->header.max_entries = ln->header.max_entries;
452 rn->header.value_size = ln->header.value_size;
453 memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
454
455 size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
456 sizeof(uint64_t) : s->info->value_type.size;
a3aefb39 457 memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
3241b1d3
JT
458 size * nr_right);
459
460 /*
461 * Patch up the parent
462 */
463 parent = shadow_parent(s);
464
465 pn = dm_block_data(parent);
466 location = cpu_to_le64(dm_block_location(left));
467 __dm_bless_for_disk(&location);
a3aefb39 468 memcpy_disk(value_ptr(pn, parent_index),
3241b1d3
JT
469 &location, sizeof(__le64));
470
471 location = cpu_to_le64(dm_block_location(right));
472 __dm_bless_for_disk(&location);
473
474 r = insert_at(sizeof(__le64), pn, parent_index + 1,
475 le64_to_cpu(rn->keys[0]), &location);
476 if (r)
477 return r;
478
479 if (key < le64_to_cpu(rn->keys[0])) {
480 unlock_block(s->info, right);
481 s->nodes[1] = left;
482 } else {
483 unlock_block(s->info, left);
484 s->nodes[1] = right;
485 }
486
487 return 0;
488}
489
490/*
491 * Splits a node by creating two new children beneath the given node.
492 *
493 * Before:
494 * +----------+
495 * | A ++++++ |
496 * +----------+
497 *
498 *
499 * After:
500 * +------------+
501 * | A (shadow) |
502 * +------------+
503 * | |
504 * +------+ +----+
505 * | |
506 * v v
507 * +-------+ +-------+
508 * | B +++ | | C +++ |
509 * +-------+ +-------+
510 */
511static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
512{
513 int r;
514 size_t size;
515 unsigned nr_left, nr_right;
516 struct dm_block *left, *right, *new_parent;
550929fa 517 struct btree_node *pn, *ln, *rn;
3241b1d3
JT
518 __le64 val;
519
520 new_parent = shadow_current(s);
521
522 r = new_block(s->info, &left);
523 if (r < 0)
524 return r;
525
526 r = new_block(s->info, &right);
527 if (r < 0) {
528 /* FIXME: put left */
529 return r;
530 }
531
532 pn = dm_block_data(new_parent);
533 ln = dm_block_data(left);
534 rn = dm_block_data(right);
535
536 nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
537 nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
538
539 ln->header.flags = pn->header.flags;
540 ln->header.nr_entries = cpu_to_le32(nr_left);
541 ln->header.max_entries = pn->header.max_entries;
542 ln->header.value_size = pn->header.value_size;
543
544 rn->header.flags = pn->header.flags;
545 rn->header.nr_entries = cpu_to_le32(nr_right);
546 rn->header.max_entries = pn->header.max_entries;
547 rn->header.value_size = pn->header.value_size;
548
549 memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
550 memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
551
552 size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
553 sizeof(__le64) : s->info->value_type.size;
a3aefb39
JT
554 memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
555 memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
3241b1d3
JT
556 nr_right * size);
557
558 /* new_parent should just point to l and r now */
559 pn->header.flags = cpu_to_le32(INTERNAL_NODE);
560 pn->header.nr_entries = cpu_to_le32(2);
561 pn->header.max_entries = cpu_to_le32(
562 calc_max_entries(sizeof(__le64),
563 dm_bm_block_size(
564 dm_tm_get_bm(s->info->tm))));
565 pn->header.value_size = cpu_to_le32(sizeof(__le64));
566
567 val = cpu_to_le64(dm_block_location(left));
568 __dm_bless_for_disk(&val);
569 pn->keys[0] = ln->keys[0];
a3aefb39 570 memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
3241b1d3
JT
571
572 val = cpu_to_le64(dm_block_location(right));
573 __dm_bless_for_disk(&val);
574 pn->keys[1] = rn->keys[0];
a3aefb39 575 memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
3241b1d3
JT
576
577 /*
578 * rejig the spine. This is ugly, since it knows too
579 * much about the spine
580 */
581 if (s->nodes[0] != new_parent) {
582 unlock_block(s->info, s->nodes[0]);
583 s->nodes[0] = new_parent;
584 }
585 if (key < le64_to_cpu(rn->keys[0])) {
586 unlock_block(s->info, right);
587 s->nodes[1] = left;
588 } else {
589 unlock_block(s->info, left);
590 s->nodes[1] = right;
591 }
592 s->count = 2;
593
594 return 0;
595}
596
597static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
598 struct dm_btree_value_type *vt,
599 uint64_t key, unsigned *index)
600{
601 int r, i = *index, top = 1;
550929fa 602 struct btree_node *node;
3241b1d3
JT
603
604 for (;;) {
605 r = shadow_step(s, root, vt);
606 if (r < 0)
607 return r;
608
609 node = dm_block_data(shadow_current(s));
610
611 /*
612 * We have to patch up the parent node, ugly, but I don't
613 * see a way to do this automatically as part of the spine
614 * op.
615 */
616 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
617 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
618
619 __dm_bless_for_disk(&location);
a3aefb39 620 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
3241b1d3
JT
621 &location, sizeof(__le64));
622 }
623
624 node = dm_block_data(shadow_current(s));
625
626 if (node->header.nr_entries == node->header.max_entries) {
627 if (top)
628 r = btree_split_beneath(s, key);
629 else
0a8d4c3e 630 r = btree_split_sibling(s, i, key);
3241b1d3
JT
631
632 if (r < 0)
633 return r;
634 }
635
636 node = dm_block_data(shadow_current(s));
637
638 i = lower_bound(node, key);
639
640 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
641 break;
642
643 if (i < 0) {
644 /* change the bounds on the lowest key */
645 node->keys[0] = cpu_to_le64(key);
646 i = 0;
647 }
648
649 root = value64(node, i);
650 top = 0;
651 }
652
653 if (i < 0 || le64_to_cpu(node->keys[i]) != key)
654 i++;
655
656 *index = i;
657 return 0;
658}
659
660static int insert(struct dm_btree_info *info, dm_block_t root,
661 uint64_t *keys, void *value, dm_block_t *new_root,
662 int *inserted)
663 __dm_written_to_disk(value)
664{
665 int r, need_insert;
666 unsigned level, index = -1, last_level = info->levels - 1;
667 dm_block_t block = root;
668 struct shadow_spine spine;
550929fa 669 struct btree_node *n;
3241b1d3
JT
670 struct dm_btree_value_type le64_type;
671
b0dc3c8b 672 init_le64_type(info->tm, &le64_type);
3241b1d3
JT
673 init_shadow_spine(&spine, info);
674
675 for (level = 0; level < (info->levels - 1); level++) {
676 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
677 if (r < 0)
678 goto bad;
679
680 n = dm_block_data(shadow_current(&spine));
681 need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
682 (le64_to_cpu(n->keys[index]) != keys[level]));
683
684 if (need_insert) {
685 dm_block_t new_tree;
686 __le64 new_le;
687
688 r = dm_btree_empty(info, &new_tree);
689 if (r < 0)
690 goto bad;
691
692 new_le = cpu_to_le64(new_tree);
693 __dm_bless_for_disk(&new_le);
694
695 r = insert_at(sizeof(uint64_t), n, index,
696 keys[level], &new_le);
697 if (r)
698 goto bad;
699 }
700
701 if (level < last_level)
702 block = value64(n, index);
703 }
704
705 r = btree_insert_raw(&spine, block, &info->value_type,
706 keys[level], &index);
707 if (r < 0)
708 goto bad;
709
710 n = dm_block_data(shadow_current(&spine));
711 need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
712 (le64_to_cpu(n->keys[index]) != keys[level]));
713
714 if (need_insert) {
715 if (inserted)
716 *inserted = 1;
717
718 r = insert_at(info->value_type.size, n, index,
719 keys[level], value);
720 if (r)
721 goto bad_unblessed;
722 } else {
723 if (inserted)
724 *inserted = 0;
725
726 if (info->value_type.dec &&
727 (!info->value_type.equal ||
728 !info->value_type.equal(
729 info->value_type.context,
a3aefb39 730 value_ptr(n, index),
3241b1d3
JT
731 value))) {
732 info->value_type.dec(info->value_type.context,
a3aefb39 733 value_ptr(n, index));
3241b1d3 734 }
a3aefb39 735 memcpy_disk(value_ptr(n, index),
3241b1d3
JT
736 value, info->value_type.size);
737 }
738
739 *new_root = shadow_root(&spine);
740 exit_shadow_spine(&spine);
741
742 return 0;
743
744bad:
745 __dm_unbless_for_disk(value);
746bad_unblessed:
747 exit_shadow_spine(&spine);
748 return r;
749}
750
751int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
752 uint64_t *keys, void *value, dm_block_t *new_root)
753 __dm_written_to_disk(value)
754{
755 return insert(info, root, keys, value, new_root, NULL);
756}
757EXPORT_SYMBOL_GPL(dm_btree_insert);
758
759int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
760 uint64_t *keys, void *value, dm_block_t *new_root,
761 int *inserted)
762 __dm_written_to_disk(value)
763{
764 return insert(info, root, keys, value, new_root, inserted);
765}
766EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
767
768/*----------------------------------------------------------------*/
769
f164e690
JT
770static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
771 uint64_t *result_key, dm_block_t *next_block)
3241b1d3
JT
772{
773 int i, r;
774 uint32_t flags;
775
776 do {
777 r = ro_step(s, block);
778 if (r < 0)
779 return r;
780
781 flags = le32_to_cpu(ro_node(s)->header.flags);
782 i = le32_to_cpu(ro_node(s)->header.nr_entries);
783 if (!i)
784 return -ENODATA;
785 else
786 i--;
787
f164e690
JT
788 if (find_highest)
789 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
790 else
791 *result_key = le64_to_cpu(ro_node(s)->keys[0]);
792
3241b1d3
JT
793 if (next_block || flags & INTERNAL_NODE)
794 block = value64(ro_node(s), i);
795
796 } while (flags & INTERNAL_NODE);
797
798 if (next_block)
799 *next_block = block;
800 return 0;
801}
802
f164e690
JT
803static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
804 bool find_highest, uint64_t *result_keys)
3241b1d3
JT
805{
806 int r = 0, count = 0, level;
807 struct ro_spine spine;
808
809 init_ro_spine(&spine, info);
810 for (level = 0; level < info->levels; level++) {
f164e690
JT
811 r = find_key(&spine, root, find_highest, result_keys + level,
812 level == info->levels - 1 ? NULL : &root);
3241b1d3
JT
813 if (r == -ENODATA) {
814 r = 0;
815 break;
816
817 } else if (r)
818 break;
819
820 count++;
821 }
822 exit_ro_spine(&spine);
823
824 return r ? r : count;
825}
f164e690
JT
826
827int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
828 uint64_t *result_keys)
829{
830 return dm_btree_find_key(info, root, true, result_keys);
831}
3241b1d3 832EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
4e7f1f90 833
f164e690
JT
834int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
835 uint64_t *result_keys)
836{
837 return dm_btree_find_key(info, root, false, result_keys);
838}
839EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
840
841/*----------------------------------------------------------------*/
842
4e7f1f90
JT
843/*
844 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
845 * space. Also this only works for single level trees.
846 */
9b460d36 847static int walk_node(struct dm_btree_info *info, dm_block_t block,
4e7f1f90
JT
848 int (*fn)(void *context, uint64_t *keys, void *leaf),
849 void *context)
850{
851 int r;
852 unsigned i, nr;
9b460d36 853 struct dm_block *node;
4e7f1f90
JT
854 struct btree_node *n;
855 uint64_t keys;
856
9b460d36
JT
857 r = bn_read_lock(info, block, &node);
858 if (r)
859 return r;
860
861 n = dm_block_data(node);
4e7f1f90
JT
862
863 nr = le32_to_cpu(n->header.nr_entries);
864 for (i = 0; i < nr; i++) {
865 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
9b460d36 866 r = walk_node(info, value64(n, i), fn, context);
4e7f1f90
JT
867 if (r)
868 goto out;
869 } else {
870 keys = le64_to_cpu(*key_ptr(n, i));
871 r = fn(context, &keys, value_ptr(n, i));
872 if (r)
873 goto out;
874 }
875 }
876
877out:
9b460d36 878 dm_tm_unlock(info->tm, node);
4e7f1f90
JT
879 return r;
880}
881
882int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
883 int (*fn)(void *context, uint64_t *keys, void *leaf),
884 void *context)
885{
4e7f1f90 886 BUG_ON(info->levels > 1);
9b460d36 887 return walk_node(info, root, fn, context);
4e7f1f90
JT
888}
889EXPORT_SYMBOL_GPL(dm_btree_walk);