Merge branch 'pci/aspm'
[linux-2.6-block.git] / drivers / md / dm-table.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
d5816876 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
1da177e4
LT
4 *
5 * This file is released under the GPL.
6 */
7
4cc96131 8#include "dm-core.h"
1da177e4
LT
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
e7d2860b 15#include <linux/string.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/interrupt.h>
48c9c27b 18#include <linux/mutex.h>
d5816876 19#include <linux/delay.h>
60063497 20#include <linux/atomic.h>
bfebd1cd 21#include <linux/blk-mq.h>
644bda6f 22#include <linux/mount.h>
273752c9 23#include <linux/dax.h>
1da177e4 24
72d94861
AK
25#define DM_MSG_PREFIX "table"
26
1da177e4
LT
27#define MAX_DEPTH 16
28#define NODE_SIZE L1_CACHE_BYTES
29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32struct dm_table {
1134e5ae 33 struct mapped_device *md;
7e0d574f 34 enum dm_queue_mode type;
1da177e4
LT
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
36a0456f 46 struct target_type *immutable_target_type;
e83068a5
MS
47
48 bool integrity_supported:1;
49 bool singleton:1;
9b4b5a79 50 unsigned integrity_added:1;
5ae89a87 51
1da177e4
LT
52 /*
53 * Indicates the rw permissions for the new logical
54 * device. This should be a combination of FMODE_READ
55 * and FMODE_WRITE.
56 */
aeb5d727 57 fmode_t mode;
1da177e4
LT
58
59 /* a list of devices used by this table */
60 struct list_head devices;
61
1da177e4
LT
62 /* events get handed up using this callback */
63 void (*event_fn)(void *);
64 void *event_context;
e6ee8c0b
KU
65
66 struct dm_md_mempools *mempools;
9d357b07
N
67
68 struct list_head target_callbacks;
1da177e4
LT
69};
70
71/*
72 * Similar to ceiling(log_size(n))
73 */
74static unsigned int int_log(unsigned int n, unsigned int base)
75{
76 int result = 0;
77
78 while (n > 1) {
79 n = dm_div_up(n, base);
80 result++;
81 }
82
83 return result;
84}
85
1da177e4
LT
86/*
87 * Calculate the index of the child node of the n'th node k'th key.
88 */
89static inline unsigned int get_child(unsigned int n, unsigned int k)
90{
91 return (n * CHILDREN_PER_NODE) + k;
92}
93
94/*
95 * Return the n'th node of level l from table t.
96 */
97static inline sector_t *get_node(struct dm_table *t,
98 unsigned int l, unsigned int n)
99{
100 return t->index[l] + (n * KEYS_PER_NODE);
101}
102
103/*
104 * Return the highest key that you could lookup from the n'th
105 * node on level l of the btree.
106 */
107static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108{
109 for (; l < t->depth - 1; l++)
110 n = get_child(n, CHILDREN_PER_NODE - 1);
111
112 if (n >= t->counts[l])
113 return (sector_t) - 1;
114
115 return get_node(t, l, n)[KEYS_PER_NODE - 1];
116}
117
118/*
119 * Fills in a level of the btree based on the highs of the level
120 * below it.
121 */
122static int setup_btree_index(unsigned int l, struct dm_table *t)
123{
124 unsigned int n, k;
125 sector_t *node;
126
127 for (n = 0U; n < t->counts[l]; n++) {
128 node = get_node(t, l, n);
129
130 for (k = 0U; k < KEYS_PER_NODE; k++)
131 node[k] = high(t, l + 1, get_child(n, k));
132 }
133
134 return 0;
135}
136
137void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138{
139 unsigned long size;
140 void *addr;
141
142 /*
143 * Check that we're not going to overflow.
144 */
145 if (nmemb > (ULONG_MAX / elem_size))
146 return NULL;
147
148 size = nmemb * elem_size;
e29e65aa 149 addr = vzalloc(size);
1da177e4
LT
150
151 return addr;
152}
08649012 153EXPORT_SYMBOL(dm_vcalloc);
1da177e4
LT
154
155/*
156 * highs, and targets are managed as dynamic arrays during a
157 * table load.
158 */
159static int alloc_targets(struct dm_table *t, unsigned int num)
160{
161 sector_t *n_highs;
162 struct dm_target *n_targets;
1da177e4
LT
163
164 /*
165 * Allocate both the target array and offset array at once.
512875bd
JN
166 * Append an empty entry to catch sectors beyond the end of
167 * the device.
1da177e4 168 */
512875bd 169 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
1da177e4
LT
170 sizeof(sector_t));
171 if (!n_highs)
172 return -ENOMEM;
173
174 n_targets = (struct dm_target *) (n_highs + num);
175
57a2f238 176 memset(n_highs, -1, sizeof(*n_highs) * num);
1da177e4
LT
177 vfree(t->highs);
178
179 t->num_allocated = num;
180 t->highs = n_highs;
181 t->targets = n_targets;
182
183 return 0;
184}
185
aeb5d727 186int dm_table_create(struct dm_table **result, fmode_t mode,
1134e5ae 187 unsigned num_targets, struct mapped_device *md)
1da177e4 188{
094262db 189 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
1da177e4
LT
190
191 if (!t)
192 return -ENOMEM;
193
1da177e4 194 INIT_LIST_HEAD(&t->devices);
9d357b07 195 INIT_LIST_HEAD(&t->target_callbacks);
1da177e4
LT
196
197 if (!num_targets)
198 num_targets = KEYS_PER_NODE;
199
200 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
201
5b2d0657
MP
202 if (!num_targets) {
203 kfree(t);
204 return -ENOMEM;
205 }
206
1da177e4
LT
207 if (alloc_targets(t, num_targets)) {
208 kfree(t);
1da177e4
LT
209 return -ENOMEM;
210 }
211
e83068a5 212 t->type = DM_TYPE_NONE;
1da177e4 213 t->mode = mode;
1134e5ae 214 t->md = md;
1da177e4
LT
215 *result = t;
216 return 0;
217}
218
86f1152b 219static void free_devices(struct list_head *devices, struct mapped_device *md)
1da177e4
LT
220{
221 struct list_head *tmp, *next;
222
afb24528 223 list_for_each_safe(tmp, next, devices) {
82b1519b
MP
224 struct dm_dev_internal *dd =
225 list_entry(tmp, struct dm_dev_internal, list);
86f1152b
BM
226 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
227 dm_device_name(md), dd->dm_dev->name);
228 dm_put_table_device(md, dd->dm_dev);
1da177e4
LT
229 kfree(dd);
230 }
231}
232
d5816876 233void dm_table_destroy(struct dm_table *t)
1da177e4
LT
234{
235 unsigned int i;
236
a7940155
AK
237 if (!t)
238 return;
239
26803b9f 240 /* free the indexes */
1da177e4
LT
241 if (t->depth >= 2)
242 vfree(t->index[t->depth - 2]);
243
244 /* free the targets */
245 for (i = 0; i < t->num_targets; i++) {
246 struct dm_target *tgt = t->targets + i;
247
248 if (tgt->type->dtr)
249 tgt->type->dtr(tgt);
250
251 dm_put_target_type(tgt->type);
252 }
253
254 vfree(t->highs);
255
256 /* free the device list */
86f1152b 257 free_devices(&t->devices, t->md);
1da177e4 258
e6ee8c0b
KU
259 dm_free_md_mempools(t->mempools);
260
1da177e4
LT
261 kfree(t);
262}
263
1da177e4
LT
264/*
265 * See if we've already got a device in the list.
266 */
82b1519b 267static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
1da177e4 268{
82b1519b 269 struct dm_dev_internal *dd;
1da177e4
LT
270
271 list_for_each_entry (dd, l, list)
86f1152b 272 if (dd->dm_dev->bdev->bd_dev == dev)
1da177e4
LT
273 return dd;
274
275 return NULL;
276}
277
1da177e4 278/*
f6a1ed10 279 * If possible, this checks an area of a destination device is invalid.
1da177e4 280 */
f6a1ed10
MP
281static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
282 sector_t start, sector_t len, void *data)
1da177e4 283{
f4808ca9 284 struct request_queue *q;
754c5fc7
MS
285 struct queue_limits *limits = data;
286 struct block_device *bdev = dev->bdev;
287 sector_t dev_size =
288 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
02acc3a4 289 unsigned short logical_block_size_sectors =
754c5fc7 290 limits->logical_block_size >> SECTOR_SHIFT;
02acc3a4 291 char b[BDEVNAME_SIZE];
2cd54d9b 292
f4808ca9
MB
293 /*
294 * Some devices exist without request functions,
295 * such as loop devices not yet bound to backing files.
296 * Forbid the use of such devices.
297 */
298 q = bdev_get_queue(bdev);
299 if (!q || !q->make_request_fn) {
300 DMWARN("%s: %s is not yet initialised: "
301 "start=%llu, len=%llu, dev_size=%llu",
302 dm_device_name(ti->table->md), bdevname(bdev, b),
303 (unsigned long long)start,
304 (unsigned long long)len,
305 (unsigned long long)dev_size);
306 return 1;
307 }
308
2cd54d9b 309 if (!dev_size)
f6a1ed10 310 return 0;
2cd54d9b 311
5dea271b 312 if ((start >= dev_size) || (start + len > dev_size)) {
a963a956
MS
313 DMWARN("%s: %s too small for target: "
314 "start=%llu, len=%llu, dev_size=%llu",
315 dm_device_name(ti->table->md), bdevname(bdev, b),
316 (unsigned long long)start,
317 (unsigned long long)len,
318 (unsigned long long)dev_size);
f6a1ed10 319 return 1;
02acc3a4
MS
320 }
321
dd88d313
DLM
322 /*
323 * If the target is mapped to zoned block device(s), check
324 * that the zones are not partially mapped.
325 */
326 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
327 unsigned int zone_sectors = bdev_zone_sectors(bdev);
328
329 if (start & (zone_sectors - 1)) {
330 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
331 dm_device_name(ti->table->md),
332 (unsigned long long)start,
333 zone_sectors, bdevname(bdev, b));
334 return 1;
335 }
336
337 /*
338 * Note: The last zone of a zoned block device may be smaller
339 * than other zones. So for a target mapping the end of a
340 * zoned block device with such a zone, len would not be zone
341 * aligned. We do not allow such last smaller zone to be part
342 * of the mapping here to ensure that mappings with multiple
343 * devices do not end up with a smaller zone in the middle of
344 * the sector range.
345 */
346 if (len & (zone_sectors - 1)) {
347 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
348 dm_device_name(ti->table->md),
349 (unsigned long long)len,
350 zone_sectors, bdevname(bdev, b));
351 return 1;
352 }
353 }
354
02acc3a4 355 if (logical_block_size_sectors <= 1)
f6a1ed10 356 return 0;
02acc3a4
MS
357
358 if (start & (logical_block_size_sectors - 1)) {
359 DMWARN("%s: start=%llu not aligned to h/w "
a963a956 360 "logical block size %u of %s",
02acc3a4
MS
361 dm_device_name(ti->table->md),
362 (unsigned long long)start,
754c5fc7 363 limits->logical_block_size, bdevname(bdev, b));
f6a1ed10 364 return 1;
02acc3a4
MS
365 }
366
5dea271b 367 if (len & (logical_block_size_sectors - 1)) {
02acc3a4 368 DMWARN("%s: len=%llu not aligned to h/w "
a963a956 369 "logical block size %u of %s",
02acc3a4 370 dm_device_name(ti->table->md),
5dea271b 371 (unsigned long long)len,
754c5fc7 372 limits->logical_block_size, bdevname(bdev, b));
f6a1ed10 373 return 1;
02acc3a4
MS
374 }
375
f6a1ed10 376 return 0;
1da177e4
LT
377}
378
379/*
570b9d96 380 * This upgrades the mode on an already open dm_dev, being
1da177e4 381 * careful to leave things as they were if we fail to reopen the
570b9d96
AK
382 * device and not to touch the existing bdev field in case
383 * it is accessed concurrently inside dm_table_any_congested().
1da177e4 384 */
aeb5d727 385static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
82b1519b 386 struct mapped_device *md)
1da177e4
LT
387{
388 int r;
86f1152b 389 struct dm_dev *old_dev, *new_dev;
1da177e4 390
86f1152b 391 old_dev = dd->dm_dev;
570b9d96 392
86f1152b
BM
393 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
394 dd->dm_dev->mode | new_mode, &new_dev);
570b9d96
AK
395 if (r)
396 return r;
1da177e4 397
86f1152b
BM
398 dd->dm_dev = new_dev;
399 dm_put_table_device(md, old_dev);
1da177e4 400
570b9d96 401 return 0;
1da177e4
LT
402}
403
4df2bf46
D
404/*
405 * Convert the path to a device
406 */
407dev_t dm_get_dev_t(const char *path)
408{
3c120169 409 dev_t dev;
4df2bf46
D
410 struct block_device *bdev;
411
412 bdev = lookup_bdev(path);
413 if (IS_ERR(bdev))
414 dev = name_to_dev_t(path);
415 else {
416 dev = bdev->bd_dev;
417 bdput(bdev);
418 }
419
420 return dev;
421}
422EXPORT_SYMBOL_GPL(dm_get_dev_t);
423
1da177e4
LT
424/*
425 * Add a device to the list, or just increment the usage count if
426 * it's already present.
427 */
08649012
MS
428int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
429 struct dm_dev **result)
1da177e4
LT
430{
431 int r;
4df2bf46 432 dev_t dev;
82b1519b 433 struct dm_dev_internal *dd;
08649012 434 struct dm_table *t = ti->table;
1da177e4 435
547bc926 436 BUG_ON(!t);
1da177e4 437
4df2bf46
D
438 dev = dm_get_dev_t(path);
439 if (!dev)
440 return -ENODEV;
1da177e4
LT
441
442 dd = find_device(&t->devices, dev);
443 if (!dd) {
444 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
445 if (!dd)
446 return -ENOMEM;
447
86f1152b 448 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
1da177e4
LT
449 kfree(dd);
450 return r;
451 }
452
2a0b4682 453 refcount_set(&dd->count, 1);
1da177e4 454 list_add(&dd->list, &t->devices);
afc567a4 455 goto out;
1da177e4 456
86f1152b 457 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
f165921d 458 r = upgrade_mode(dd, mode, t->md);
1da177e4
LT
459 if (r)
460 return r;
461 }
afc567a4
MS
462 refcount_inc(&dd->count);
463out:
86f1152b 464 *result = dd->dm_dev;
1da177e4
LT
465 return 0;
466}
08649012 467EXPORT_SYMBOL(dm_get_device);
1da177e4 468
11f0431b
MS
469static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
470 sector_t start, sector_t len, void *data)
1da177e4 471{
754c5fc7
MS
472 struct queue_limits *limits = data;
473 struct block_device *bdev = dev->bdev;
165125e1 474 struct request_queue *q = bdev_get_queue(bdev);
0c2322e4
AK
475 char b[BDEVNAME_SIZE];
476
477 if (unlikely(!q)) {
478 DMWARN("%s: Cannot set limits for nonexistent device %s",
479 dm_device_name(ti->table->md), bdevname(bdev, b));
754c5fc7 480 return 0;
0c2322e4 481 }
3cb40214 482
b27d7f16
MP
483 if (bdev_stack_limits(limits, bdev, start) < 0)
484 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
a963a956
MS
485 "physical_block_size=%u, logical_block_size=%u, "
486 "alignment_offset=%u, start=%llu",
487 dm_device_name(ti->table->md), bdevname(bdev, b),
488 q->limits.physical_block_size,
489 q->limits.logical_block_size,
490 q->limits.alignment_offset,
b27d7f16 491 (unsigned long long) start << SECTOR_SHIFT);
3cb40214 492
dd88d313
DLM
493 limits->zoned = blk_queue_zoned_model(q);
494
754c5fc7 495 return 0;
3cb40214 496}
969429b5 497
1da177e4 498/*
08649012 499 * Decrement a device's use count and remove it if necessary.
1da177e4 500 */
82b1519b 501void dm_put_device(struct dm_target *ti, struct dm_dev *d)
1da177e4 502{
86f1152b
BM
503 int found = 0;
504 struct list_head *devices = &ti->table->devices;
505 struct dm_dev_internal *dd;
82b1519b 506
86f1152b
BM
507 list_for_each_entry(dd, devices, list) {
508 if (dd->dm_dev == d) {
509 found = 1;
510 break;
511 }
512 }
513 if (!found) {
514 DMWARN("%s: device %s not in table devices list",
515 dm_device_name(ti->table->md), d->name);
516 return;
517 }
2a0b4682 518 if (refcount_dec_and_test(&dd->count)) {
86f1152b 519 dm_put_table_device(ti->table->md, d);
1da177e4
LT
520 list_del(&dd->list);
521 kfree(dd);
522 }
523}
08649012 524EXPORT_SYMBOL(dm_put_device);
1da177e4
LT
525
526/*
527 * Checks to see if the target joins onto the end of the table.
528 */
529static int adjoin(struct dm_table *table, struct dm_target *ti)
530{
531 struct dm_target *prev;
532
533 if (!table->num_targets)
534 return !ti->begin;
535
536 prev = &table->targets[table->num_targets - 1];
537 return (ti->begin == (prev->begin + prev->len));
538}
539
540/*
541 * Used to dynamically allocate the arg array.
f36afb39
MP
542 *
543 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
544 * process messages even if some device is suspended. These messages have a
545 * small fixed number of arguments.
546 *
547 * On the other hand, dm-switch needs to process bulk data using messages and
548 * excessive use of GFP_NOIO could cause trouble.
1da177e4 549 */
610b15c5 550static char **realloc_argv(unsigned *size, char **old_argv)
1da177e4
LT
551{
552 char **argv;
553 unsigned new_size;
f36afb39 554 gfp_t gfp;
1da177e4 555
610b15c5
KC
556 if (*size) {
557 new_size = *size * 2;
f36afb39
MP
558 gfp = GFP_KERNEL;
559 } else {
560 new_size = 8;
561 gfp = GFP_NOIO;
562 }
6da2ec56 563 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
a0651926 564 if (argv && old_argv) {
610b15c5
KC
565 memcpy(argv, old_argv, *size * sizeof(*argv));
566 *size = new_size;
1da177e4
LT
567 }
568
569 kfree(old_argv);
570 return argv;
571}
572
573/*
574 * Destructively splits up the argument list to pass to ctr.
575 */
576int dm_split_args(int *argc, char ***argvp, char *input)
577{
578 char *start, *end = input, *out, **argv = NULL;
579 unsigned array_size = 0;
580
581 *argc = 0;
814d6862
DT
582
583 if (!input) {
584 *argvp = NULL;
585 return 0;
586 }
587
1da177e4
LT
588 argv = realloc_argv(&array_size, argv);
589 if (!argv)
590 return -ENOMEM;
591
592 while (1) {
1da177e4 593 /* Skip whitespace */
e7d2860b 594 start = skip_spaces(end);
1da177e4
LT
595
596 if (!*start)
597 break; /* success, we hit the end */
598
599 /* 'out' is used to remove any back-quotes */
600 end = out = start;
601 while (*end) {
602 /* Everything apart from '\0' can be quoted */
603 if (*end == '\\' && *(end + 1)) {
604 *out++ = *(end + 1);
605 end += 2;
606 continue;
607 }
608
609 if (isspace(*end))
610 break; /* end of token */
611
612 *out++ = *end++;
613 }
614
615 /* have we already filled the array ? */
616 if ((*argc + 1) > array_size) {
617 argv = realloc_argv(&array_size, argv);
618 if (!argv)
619 return -ENOMEM;
620 }
621
622 /* we know this is whitespace */
623 if (*end)
624 end++;
625
626 /* terminate the string and put it in the array */
627 *out = '\0';
628 argv[*argc] = start;
629 (*argc)++;
630 }
631
632 *argvp = argv;
633 return 0;
634}
635
be6d4305
MS
636/*
637 * Impose necessary and sufficient conditions on a devices's table such
638 * that any incoming bio which respects its logical_block_size can be
639 * processed successfully. If it falls across the boundary between
640 * two or more targets, the size of each piece it gets split into must
641 * be compatible with the logical_block_size of the target processing it.
642 */
754c5fc7
MS
643static int validate_hardware_logical_block_alignment(struct dm_table *table,
644 struct queue_limits *limits)
be6d4305
MS
645{
646 /*
647 * This function uses arithmetic modulo the logical_block_size
648 * (in units of 512-byte sectors).
649 */
650 unsigned short device_logical_block_size_sects =
754c5fc7 651 limits->logical_block_size >> SECTOR_SHIFT;
be6d4305
MS
652
653 /*
654 * Offset of the start of the next table entry, mod logical_block_size.
655 */
656 unsigned short next_target_start = 0;
657
658 /*
659 * Given an aligned bio that extends beyond the end of a
660 * target, how many sectors must the next target handle?
661 */
662 unsigned short remaining = 0;
663
664 struct dm_target *uninitialized_var(ti);
754c5fc7 665 struct queue_limits ti_limits;
3c120169 666 unsigned i;
be6d4305
MS
667
668 /*
669 * Check each entry in the table in turn.
670 */
3c120169
MP
671 for (i = 0; i < dm_table_get_num_targets(table); i++) {
672 ti = dm_table_get_target(table, i);
be6d4305 673
b1bd055d 674 blk_set_stacking_limits(&ti_limits);
754c5fc7
MS
675
676 /* combine all target devices' limits */
677 if (ti->type->iterate_devices)
678 ti->type->iterate_devices(ti, dm_set_device_limits,
679 &ti_limits);
680
be6d4305
MS
681 /*
682 * If the remaining sectors fall entirely within this
683 * table entry are they compatible with its logical_block_size?
684 */
685 if (remaining < ti->len &&
754c5fc7 686 remaining & ((ti_limits.logical_block_size >>
be6d4305
MS
687 SECTOR_SHIFT) - 1))
688 break; /* Error */
689
690 next_target_start =
691 (unsigned short) ((next_target_start + ti->len) &
692 (device_logical_block_size_sects - 1));
693 remaining = next_target_start ?
694 device_logical_block_size_sects - next_target_start : 0;
695 }
696
697 if (remaining) {
698 DMWARN("%s: table line %u (start sect %llu len %llu) "
a963a956 699 "not aligned to h/w logical block size %u",
be6d4305
MS
700 dm_device_name(table->md), i,
701 (unsigned long long) ti->begin,
702 (unsigned long long) ti->len,
754c5fc7 703 limits->logical_block_size);
be6d4305
MS
704 return -EINVAL;
705 }
706
707 return 0;
708}
709
1da177e4
LT
710int dm_table_add_target(struct dm_table *t, const char *type,
711 sector_t start, sector_t len, char *params)
712{
713 int r = -EINVAL, argc;
714 char **argv;
715 struct dm_target *tgt;
716
3791e2fc
AK
717 if (t->singleton) {
718 DMERR("%s: target type %s must appear alone in table",
719 dm_device_name(t->md), t->targets->type->name);
720 return -EINVAL;
721 }
722
57a2f238 723 BUG_ON(t->num_targets >= t->num_allocated);
1da177e4
LT
724
725 tgt = t->targets + t->num_targets;
726 memset(tgt, 0, sizeof(*tgt));
727
728 if (!len) {
72d94861 729 DMERR("%s: zero-length target", dm_device_name(t->md));
1da177e4
LT
730 return -EINVAL;
731 }
732
733 tgt->type = dm_get_target_type(type);
734 if (!tgt->type) {
dafa724b 735 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
1da177e4
LT
736 return -EINVAL;
737 }
738
3791e2fc
AK
739 if (dm_target_needs_singleton(tgt->type)) {
740 if (t->num_targets) {
dafa724b 741 tgt->error = "singleton target type must appear alone in table";
742 goto bad;
3791e2fc 743 }
e83068a5 744 t->singleton = true;
3791e2fc
AK
745 }
746
cc6cbe14 747 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
dafa724b 748 tgt->error = "target type may not be included in a read-only table";
749 goto bad;
cc6cbe14
AK
750 }
751
36a0456f
AK
752 if (t->immutable_target_type) {
753 if (t->immutable_target_type != tgt->type) {
dafa724b 754 tgt->error = "immutable target type cannot be mixed with other target types";
755 goto bad;
36a0456f
AK
756 }
757 } else if (dm_target_is_immutable(tgt->type)) {
758 if (t->num_targets) {
dafa724b 759 tgt->error = "immutable target type cannot be mixed with other target types";
760 goto bad;
36a0456f
AK
761 }
762 t->immutable_target_type = tgt->type;
763 }
764
9b4b5a79
MB
765 if (dm_target_has_integrity(tgt->type))
766 t->integrity_added = 1;
767
1da177e4
LT
768 tgt->table = t;
769 tgt->begin = start;
770 tgt->len = len;
771 tgt->error = "Unknown error";
772
773 /*
774 * Does this target adjoin the previous one ?
775 */
776 if (!adjoin(t, tgt)) {
777 tgt->error = "Gap in table";
1da177e4
LT
778 goto bad;
779 }
780
781 r = dm_split_args(&argc, &argv, params);
782 if (r) {
783 tgt->error = "couldn't split parameters (insufficient memory)";
784 goto bad;
785 }
786
787 r = tgt->type->ctr(tgt, argc, argv);
788 kfree(argv);
789 if (r)
790 goto bad;
791
792 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
793
55a62eef
AK
794 if (!tgt->num_discard_bios && tgt->discards_supported)
795 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
936688d7 796 dm_device_name(t->md), type);
5ae89a87 797
1da177e4
LT
798 return 0;
799
800 bad:
72d94861 801 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
1da177e4
LT
802 dm_put_target_type(tgt->type);
803 return r;
804}
805
498f0103
MS
806/*
807 * Target argument parsing helpers.
808 */
5916a22b
EB
809static int validate_next_arg(const struct dm_arg *arg,
810 struct dm_arg_set *arg_set,
498f0103
MS
811 unsigned *value, char **error, unsigned grouped)
812{
813 const char *arg_str = dm_shift_arg(arg_set);
31998ef1 814 char dummy;
498f0103
MS
815
816 if (!arg_str ||
31998ef1 817 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
498f0103
MS
818 (*value < arg->min) ||
819 (*value > arg->max) ||
820 (grouped && arg_set->argc < *value)) {
821 *error = arg->error;
822 return -EINVAL;
823 }
824
825 return 0;
826}
827
5916a22b 828int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
498f0103
MS
829 unsigned *value, char **error)
830{
831 return validate_next_arg(arg, arg_set, value, error, 0);
832}
833EXPORT_SYMBOL(dm_read_arg);
834
5916a22b 835int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
498f0103
MS
836 unsigned *value, char **error)
837{
838 return validate_next_arg(arg, arg_set, value, error, 1);
839}
840EXPORT_SYMBOL(dm_read_arg_group);
841
842const char *dm_shift_arg(struct dm_arg_set *as)
843{
844 char *r;
845
846 if (as->argc) {
847 as->argc--;
848 r = *as->argv;
849 as->argv++;
850 return r;
851 }
852
853 return NULL;
854}
855EXPORT_SYMBOL(dm_shift_arg);
856
857void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
858{
859 BUG_ON(as->argc < num_args);
860 as->argc -= num_args;
861 as->argv += num_args;
862}
863EXPORT_SYMBOL(dm_consume_args);
864
7e0d574f 865static bool __table_type_bio_based(enum dm_queue_mode table_type)
545ed20e
TK
866{
867 return (table_type == DM_TYPE_BIO_BASED ||
22c11858
MS
868 table_type == DM_TYPE_DAX_BIO_BASED ||
869 table_type == DM_TYPE_NVME_BIO_BASED);
545ed20e
TK
870}
871
7e0d574f 872static bool __table_type_request_based(enum dm_queue_mode table_type)
15b94a69 873{
953923c0 874 return table_type == DM_TYPE_REQUEST_BASED;
15b94a69
JN
875}
876
7e0d574f 877void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
e83068a5
MS
878{
879 t->type = type;
880}
881EXPORT_SYMBOL_GPL(dm_table_set_type);
882
7bf7eac8 883/* validate the dax capability of the target device span */
2e9ee095 884int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
7bf7eac8 885 sector_t start, sector_t len, void *data)
545ed20e 886{
7bf7eac8
DW
887 int blocksize = *(int *) data;
888
889 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
890 start, len);
545ed20e
TK
891}
892
2e9ee095
PG
893/* Check devices support synchronous DAX */
894static int device_synchronous(struct dm_target *ti, struct dm_dev *dev,
895 sector_t start, sector_t len, void *data)
896{
897 return dax_synchronous(dev->dax_dev);
898}
899
900bool dm_table_supports_dax(struct dm_table *t,
901 iterate_devices_callout_fn iterate_fn, int *blocksize)
545ed20e
TK
902{
903 struct dm_target *ti;
3c120169 904 unsigned i;
545ed20e
TK
905
906 /* Ensure that all targets support DAX. */
3c120169
MP
907 for (i = 0; i < dm_table_get_num_targets(t); i++) {
908 ti = dm_table_get_target(t, i);
545ed20e
TK
909
910 if (!ti->type->direct_access)
911 return false;
912
913 if (!ti->type->iterate_devices ||
2e9ee095 914 !ti->type->iterate_devices(ti, iterate_fn, blocksize))
545ed20e
TK
915 return false;
916 }
917
918 return true;
919}
920
22c11858
MS
921static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
922
eaa160ed
MS
923struct verify_rq_based_data {
924 unsigned sq_count;
925 unsigned mq_count;
926};
927
928static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
929 sector_t start, sector_t len, void *data)
930{
931 struct request_queue *q = bdev_get_queue(dev->bdev);
932 struct verify_rq_based_data *v = data;
933
344e9ffc 934 if (queue_is_mq(q))
eaa160ed
MS
935 v->mq_count++;
936 else
937 v->sq_count++;
938
344e9ffc 939 return queue_is_mq(q);
eaa160ed
MS
940}
941
e83068a5 942static int dm_table_determine_type(struct dm_table *t)
e6ee8c0b
KU
943{
944 unsigned i;
169e2cc2 945 unsigned bio_based = 0, request_based = 0, hybrid = 0;
eaa160ed 946 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
e6ee8c0b 947 struct dm_target *tgt;
e83068a5 948 struct list_head *devices = dm_table_get_devices(t);
7e0d574f 949 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
2e9ee095 950 int page_size = PAGE_SIZE;
e6ee8c0b 951
e83068a5
MS
952 if (t->type != DM_TYPE_NONE) {
953 /* target already set the table's type */
c934edad
MS
954 if (t->type == DM_TYPE_BIO_BASED) {
955 /* possibly upgrade to a variant of bio-based */
956 goto verify_bio_based;
22c11858 957 }
545ed20e 958 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
c934edad 959 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
e83068a5
MS
960 goto verify_rq_based;
961 }
962
e6ee8c0b
KU
963 for (i = 0; i < t->num_targets; i++) {
964 tgt = t->targets + i;
169e2cc2
MS
965 if (dm_target_hybrid(tgt))
966 hybrid = 1;
967 else if (dm_target_request_based(tgt))
e6ee8c0b
KU
968 request_based = 1;
969 else
970 bio_based = 1;
971
972 if (bio_based && request_based) {
22c11858
MS
973 DMERR("Inconsistent table: different target types"
974 " can't be mixed up");
e6ee8c0b
KU
975 return -EINVAL;
976 }
977 }
978
169e2cc2
MS
979 if (hybrid && !bio_based && !request_based) {
980 /*
981 * The targets can work either way.
982 * Determine the type from the live device.
983 * Default to bio-based if device is new.
984 */
15b94a69 985 if (__table_type_request_based(live_md_type))
169e2cc2
MS
986 request_based = 1;
987 else
988 bio_based = 1;
989 }
990
e6ee8c0b 991 if (bio_based) {
c934edad 992verify_bio_based:
e6ee8c0b
KU
993 /* We must use this table as bio-based */
994 t->type = DM_TYPE_BIO_BASED;
2e9ee095 995 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
22c11858 996 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
545ed20e 997 t->type = DM_TYPE_DAX_BIO_BASED;
eaa160ed
MS
998 } else {
999 /* Check if upgrading to NVMe bio-based is valid or required */
1000 tgt = dm_table_get_immutable_target(t);
1001 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
1002 t->type = DM_TYPE_NVME_BIO_BASED;
1003 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
1004 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
1005 t->type = DM_TYPE_NVME_BIO_BASED;
1006 }
22c11858 1007 }
e6ee8c0b
KU
1008 return 0;
1009 }
1010
1011 BUG_ON(!request_based); /* No targets in this table */
1012
e83068a5
MS
1013 t->type = DM_TYPE_REQUEST_BASED;
1014
1015verify_rq_based:
65803c20
MS
1016 /*
1017 * Request-based dm supports only tables that have a single target now.
1018 * To support multiple targets, request splitting support is needed,
1019 * and that needs lots of changes in the block-layer.
1020 * (e.g. request completion process for partial completion.)
1021 */
1022 if (t->num_targets > 1) {
22c11858
MS
1023 DMERR("%s DM doesn't support multiple targets",
1024 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
65803c20
MS
1025 return -EINVAL;
1026 }
1027
6936c12c
MS
1028 if (list_empty(devices)) {
1029 int srcu_idx;
1030 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1031
6a23e05c
JA
1032 /* inherit live table's type */
1033 if (live_table)
6936c12c 1034 t->type = live_table->type;
6936c12c
MS
1035 dm_put_live_table(t->md, srcu_idx);
1036 return 0;
1037 }
1038
22c11858
MS
1039 tgt = dm_table_get_immutable_target(t);
1040 if (!tgt) {
1041 DMERR("table load rejected: immutable target is required");
1042 return -EINVAL;
1043 } else if (tgt->max_io_len) {
1044 DMERR("table load rejected: immutable target that splits IO is not supported");
1045 return -EINVAL;
1046 }
1047
e6ee8c0b 1048 /* Non-request-stackable devices can't be used for request-based dm */
eaa160ed
MS
1049 if (!tgt->type->iterate_devices ||
1050 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1051 DMERR("table load rejected: including non-request-stackable devices");
1052 return -EINVAL;
e5863d9a 1053 }
cef6f55a 1054 if (v.sq_count > 0) {
5b8c01f7
BVA
1055 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1056 return -EINVAL;
e83068a5 1057 }
301fc3f5 1058
e6ee8c0b
KU
1059 return 0;
1060}
1061
7e0d574f 1062enum dm_queue_mode dm_table_get_type(struct dm_table *t)
e6ee8c0b
KU
1063{
1064 return t->type;
1065}
1066
36a0456f
AK
1067struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1068{
1069 return t->immutable_target_type;
1070}
1071
16f12266
MS
1072struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1073{
1074 /* Immutable target is implicitly a singleton */
1075 if (t->num_targets > 1 ||
1076 !dm_target_is_immutable(t->targets[0].type))
1077 return NULL;
1078
1079 return t->targets;
1080}
1081
f083b09b
MS
1082struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1083{
3c120169
MP
1084 struct dm_target *ti;
1085 unsigned i;
f083b09b 1086
3c120169
MP
1087 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1088 ti = dm_table_get_target(t, i);
f083b09b
MS
1089 if (dm_target_is_wildcard(ti->type))
1090 return ti;
1091 }
1092
1093 return NULL;
1094}
1095
545ed20e
TK
1096bool dm_table_bio_based(struct dm_table *t)
1097{
1098 return __table_type_bio_based(dm_table_get_type(t));
1099}
1100
e6ee8c0b
KU
1101bool dm_table_request_based(struct dm_table *t)
1102{
15b94a69 1103 return __table_type_request_based(dm_table_get_type(t));
e5863d9a
MS
1104}
1105
17e149b8 1106static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
e6ee8c0b 1107{
7e0d574f 1108 enum dm_queue_mode type = dm_table_get_type(t);
30187e1d 1109 unsigned per_io_data_size = 0;
0776aa0e
MS
1110 unsigned min_pool_size = 0;
1111 struct dm_target *ti;
c0820cf5 1112 unsigned i;
e6ee8c0b 1113
78d8e58a 1114 if (unlikely(type == DM_TYPE_NONE)) {
e6ee8c0b
KU
1115 DMWARN("no table type is set, can't allocate mempools");
1116 return -EINVAL;
1117 }
1118
545ed20e 1119 if (__table_type_bio_based(type))
78d8e58a 1120 for (i = 0; i < t->num_targets; i++) {
0776aa0e
MS
1121 ti = t->targets + i;
1122 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1123 min_pool_size = max(min_pool_size, ti->num_flush_bios);
78d8e58a
MS
1124 }
1125
0776aa0e
MS
1126 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1127 per_io_data_size, min_pool_size);
4e6e36c3
MS
1128 if (!t->mempools)
1129 return -ENOMEM;
e6ee8c0b
KU
1130
1131 return 0;
1132}
1133
1134void dm_table_free_md_mempools(struct dm_table *t)
1135{
1136 dm_free_md_mempools(t->mempools);
1137 t->mempools = NULL;
1138}
1139
1140struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1141{
1142 return t->mempools;
1143}
1144
1da177e4
LT
1145static int setup_indexes(struct dm_table *t)
1146{
1147 int i;
1148 unsigned int total = 0;
1149 sector_t *indexes;
1150
1151 /* allocate the space for *all* the indexes */
1152 for (i = t->depth - 2; i >= 0; i--) {
1153 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1154 total += t->counts[i];
1155 }
1156
1157 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1158 if (!indexes)
1159 return -ENOMEM;
1160
1161 /* set up internal nodes, bottom-up */
82d601dc 1162 for (i = t->depth - 2; i >= 0; i--) {
1da177e4
LT
1163 t->index[i] = indexes;
1164 indexes += (KEYS_PER_NODE * t->counts[i]);
1165 setup_btree_index(i, t);
1166 }
1167
1168 return 0;
1169}
1170
1171/*
1172 * Builds the btree to index the map.
1173 */
26803b9f 1174static int dm_table_build_index(struct dm_table *t)
1da177e4
LT
1175{
1176 int r = 0;
1177 unsigned int leaf_nodes;
1178
1da177e4
LT
1179 /* how many indexes will the btree have ? */
1180 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1181 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1182
1183 /* leaf layer has already been set up */
1184 t->counts[t->depth - 1] = leaf_nodes;
1185 t->index[t->depth - 1] = t->highs;
1186
1187 if (t->depth >= 2)
1188 r = setup_indexes(t);
1189
1190 return r;
1191}
1192
25520d55
MP
1193static bool integrity_profile_exists(struct gendisk *disk)
1194{
1195 return !!blk_get_integrity(disk);
1196}
1197
a63a5cf8
MS
1198/*
1199 * Get a disk whose integrity profile reflects the table's profile.
a63a5cf8
MS
1200 * Returns NULL if integrity support was inconsistent or unavailable.
1201 */
25520d55 1202static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
a63a5cf8
MS
1203{
1204 struct list_head *devices = dm_table_get_devices(t);
1205 struct dm_dev_internal *dd = NULL;
1206 struct gendisk *prev_disk = NULL, *template_disk = NULL;
e2460f2a
MP
1207 unsigned i;
1208
1209 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1210 struct dm_target *ti = dm_table_get_target(t, i);
1211 if (!dm_target_passes_integrity(ti->type))
1212 goto no_integrity;
1213 }
a63a5cf8
MS
1214
1215 list_for_each_entry(dd, devices, list) {
86f1152b 1216 template_disk = dd->dm_dev->bdev->bd_disk;
25520d55 1217 if (!integrity_profile_exists(template_disk))
a63a5cf8 1218 goto no_integrity;
a63a5cf8
MS
1219 else if (prev_disk &&
1220 blk_integrity_compare(prev_disk, template_disk) < 0)
1221 goto no_integrity;
1222 prev_disk = template_disk;
1223 }
1224
1225 return template_disk;
1226
1227no_integrity:
1228 if (prev_disk)
1229 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1230 dm_device_name(t->md),
1231 prev_disk->disk_name,
1232 template_disk->disk_name);
1233 return NULL;
1234}
1235
26803b9f 1236/*
25520d55
MP
1237 * Register the mapped device for blk_integrity support if the
1238 * underlying devices have an integrity profile. But all devices may
1239 * not have matching profiles (checking all devices isn't reliable
a63a5cf8 1240 * during table load because this table may use other DM device(s) which
25520d55
MP
1241 * must be resumed before they will have an initialized integity
1242 * profile). Consequently, stacked DM devices force a 2 stage integrity
1243 * profile validation: First pass during table load, final pass during
1244 * resume.
26803b9f 1245 */
25520d55 1246static int dm_table_register_integrity(struct dm_table *t)
26803b9f 1247{
25520d55 1248 struct mapped_device *md = t->md;
a63a5cf8 1249 struct gendisk *template_disk = NULL;
26803b9f 1250
9b4b5a79
MB
1251 /* If target handles integrity itself do not register it here. */
1252 if (t->integrity_added)
1253 return 0;
1254
25520d55 1255 template_disk = dm_table_get_integrity_disk(t);
a63a5cf8
MS
1256 if (!template_disk)
1257 return 0;
26803b9f 1258
25520d55 1259 if (!integrity_profile_exists(dm_disk(md))) {
e83068a5 1260 t->integrity_supported = true;
25520d55
MP
1261 /*
1262 * Register integrity profile during table load; we can do
1263 * this because the final profile must match during resume.
1264 */
1265 blk_integrity_register(dm_disk(md),
1266 blk_get_integrity(template_disk));
1267 return 0;
a63a5cf8
MS
1268 }
1269
1270 /*
25520d55 1271 * If DM device already has an initialized integrity
a63a5cf8
MS
1272 * profile the new profile should not conflict.
1273 */
25520d55 1274 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
a63a5cf8
MS
1275 DMWARN("%s: conflict with existing integrity profile: "
1276 "%s profile mismatch",
1277 dm_device_name(t->md),
1278 template_disk->disk_name);
1279 return 1;
1280 }
1281
25520d55 1282 /* Preserve existing integrity profile */
e83068a5 1283 t->integrity_supported = true;
26803b9f
WD
1284 return 0;
1285}
1286
1287/*
1288 * Prepares the table for use by building the indices,
1289 * setting the type, and allocating mempools.
1290 */
1291int dm_table_complete(struct dm_table *t)
1292{
1293 int r;
1294
e83068a5 1295 r = dm_table_determine_type(t);
26803b9f 1296 if (r) {
e83068a5 1297 DMERR("unable to determine table type");
26803b9f
WD
1298 return r;
1299 }
1300
1301 r = dm_table_build_index(t);
1302 if (r) {
1303 DMERR("unable to build btrees");
1304 return r;
1305 }
1306
25520d55 1307 r = dm_table_register_integrity(t);
26803b9f
WD
1308 if (r) {
1309 DMERR("could not register integrity profile.");
1310 return r;
1311 }
1312
17e149b8 1313 r = dm_table_alloc_md_mempools(t, t->md);
26803b9f
WD
1314 if (r)
1315 DMERR("unable to allocate mempools");
1316
1317 return r;
1318}
1319
48c9c27b 1320static DEFINE_MUTEX(_event_lock);
1da177e4
LT
1321void dm_table_event_callback(struct dm_table *t,
1322 void (*fn)(void *), void *context)
1323{
48c9c27b 1324 mutex_lock(&_event_lock);
1da177e4
LT
1325 t->event_fn = fn;
1326 t->event_context = context;
48c9c27b 1327 mutex_unlock(&_event_lock);
1da177e4
LT
1328}
1329
1330void dm_table_event(struct dm_table *t)
1331{
1332 /*
1333 * You can no longer call dm_table_event() from interrupt
1334 * context, use a bottom half instead.
1335 */
1336 BUG_ON(in_interrupt());
1337
48c9c27b 1338 mutex_lock(&_event_lock);
1da177e4
LT
1339 if (t->event_fn)
1340 t->event_fn(t->event_context);
48c9c27b 1341 mutex_unlock(&_event_lock);
1da177e4 1342}
08649012 1343EXPORT_SYMBOL(dm_table_event);
1da177e4
LT
1344
1345sector_t dm_table_get_size(struct dm_table *t)
1346{
1347 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1348}
08649012 1349EXPORT_SYMBOL(dm_table_get_size);
1da177e4
LT
1350
1351struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1352{
14353539 1353 if (index >= t->num_targets)
1da177e4
LT
1354 return NULL;
1355
1356 return t->targets + index;
1357}
1358
1359/*
1360 * Search the btree for the correct target.
512875bd
JN
1361 *
1362 * Caller should check returned pointer with dm_target_is_valid()
1363 * to trap I/O beyond end of device.
1da177e4
LT
1364 */
1365struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1366{
1367 unsigned int l, n = 0, k = 0;
1368 sector_t *node;
1369
1370 for (l = 0; l < t->depth; l++) {
1371 n = get_child(n, k);
1372 node = get_node(t, l, n);
1373
1374 for (k = 0; k < KEYS_PER_NODE; k++)
1375 if (node[k] >= sector)
1376 break;
1377 }
1378
1379 return &t->targets[(KEYS_PER_NODE * n) + k];
1380}
1381
3ae70656
MS
1382static int count_device(struct dm_target *ti, struct dm_dev *dev,
1383 sector_t start, sector_t len, void *data)
1384{
1385 unsigned *num_devices = data;
1386
1387 (*num_devices)++;
1388
1389 return 0;
1390}
1391
1392/*
1393 * Check whether a table has no data devices attached using each
1394 * target's iterate_devices method.
1395 * Returns false if the result is unknown because a target doesn't
1396 * support iterate_devices.
1397 */
1398bool dm_table_has_no_data_devices(struct dm_table *table)
1399{
3c120169
MP
1400 struct dm_target *ti;
1401 unsigned i, num_devices;
3ae70656 1402
3c120169
MP
1403 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1404 ti = dm_table_get_target(table, i);
3ae70656
MS
1405
1406 if (!ti->type->iterate_devices)
1407 return false;
1408
3c120169 1409 num_devices = 0;
3ae70656
MS
1410 ti->type->iterate_devices(ti, count_device, &num_devices);
1411 if (num_devices)
1412 return false;
1413 }
1414
1415 return true;
1416}
1417
dd88d313
DLM
1418static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1419 sector_t start, sector_t len, void *data)
1420{
1421 struct request_queue *q = bdev_get_queue(dev->bdev);
1422 enum blk_zoned_model *zoned_model = data;
1423
1424 return q && blk_queue_zoned_model(q) == *zoned_model;
1425}
1426
1427static bool dm_table_supports_zoned_model(struct dm_table *t,
1428 enum blk_zoned_model zoned_model)
1429{
1430 struct dm_target *ti;
1431 unsigned i;
1432
1433 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1434 ti = dm_table_get_target(t, i);
1435
1436 if (zoned_model == BLK_ZONED_HM &&
1437 !dm_target_supports_zoned_hm(ti->type))
1438 return false;
1439
1440 if (!ti->type->iterate_devices ||
1441 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1442 return false;
1443 }
1444
1445 return true;
1446}
1447
1448static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1449 sector_t start, sector_t len, void *data)
1450{
1451 struct request_queue *q = bdev_get_queue(dev->bdev);
1452 unsigned int *zone_sectors = data;
1453
1454 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1455}
1456
1457static bool dm_table_matches_zone_sectors(struct dm_table *t,
1458 unsigned int zone_sectors)
1459{
1460 struct dm_target *ti;
1461 unsigned i;
1462
1463 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1464 ti = dm_table_get_target(t, i);
1465
1466 if (!ti->type->iterate_devices ||
1467 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1468 return false;
1469 }
1470
1471 return true;
1472}
1473
1474static int validate_hardware_zoned_model(struct dm_table *table,
1475 enum blk_zoned_model zoned_model,
1476 unsigned int zone_sectors)
1477{
1478 if (zoned_model == BLK_ZONED_NONE)
1479 return 0;
1480
1481 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1482 DMERR("%s: zoned model is not consistent across all devices",
1483 dm_device_name(table->md));
1484 return -EINVAL;
1485 }
1486
1487 /* Check zone size validity and compatibility */
1488 if (!zone_sectors || !is_power_of_2(zone_sectors))
1489 return -EINVAL;
1490
1491 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1492 DMERR("%s: zone sectors is not consistent across all devices",
1493 dm_device_name(table->md));
1494 return -EINVAL;
1495 }
1496
1497 return 0;
1498}
1499
754c5fc7
MS
1500/*
1501 * Establish the new table's queue_limits and validate them.
1502 */
1503int dm_calculate_queue_limits(struct dm_table *table,
1504 struct queue_limits *limits)
1505{
3c120169 1506 struct dm_target *ti;
754c5fc7 1507 struct queue_limits ti_limits;
3c120169 1508 unsigned i;
dd88d313
DLM
1509 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1510 unsigned int zone_sectors = 0;
754c5fc7 1511
b1bd055d 1512 blk_set_stacking_limits(limits);
754c5fc7 1513
3c120169 1514 for (i = 0; i < dm_table_get_num_targets(table); i++) {
b1bd055d 1515 blk_set_stacking_limits(&ti_limits);
754c5fc7 1516
3c120169 1517 ti = dm_table_get_target(table, i);
754c5fc7
MS
1518
1519 if (!ti->type->iterate_devices)
1520 goto combine_limits;
1521
1522 /*
1523 * Combine queue limits of all the devices this target uses.
1524 */
1525 ti->type->iterate_devices(ti, dm_set_device_limits,
1526 &ti_limits);
1527
dd88d313
DLM
1528 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1529 /*
1530 * After stacking all limits, validate all devices
1531 * in table support this zoned model and zone sectors.
1532 */
1533 zoned_model = ti_limits.zoned;
1534 zone_sectors = ti_limits.chunk_sectors;
1535 }
1536
40bea431
MS
1537 /* Set I/O hints portion of queue limits */
1538 if (ti->type->io_hints)
1539 ti->type->io_hints(ti, &ti_limits);
1540
754c5fc7
MS
1541 /*
1542 * Check each device area is consistent with the target's
1543 * overall queue limits.
1544 */
f6a1ed10
MP
1545 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1546 &ti_limits))
754c5fc7
MS
1547 return -EINVAL;
1548
1549combine_limits:
1550 /*
1551 * Merge this target's queue limits into the overall limits
1552 * for the table.
1553 */
1554 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
b27d7f16 1555 DMWARN("%s: adding target device "
754c5fc7 1556 "(start sect %llu len %llu) "
b27d7f16 1557 "caused an alignment inconsistency",
754c5fc7
MS
1558 dm_device_name(table->md),
1559 (unsigned long long) ti->begin,
1560 (unsigned long long) ti->len);
dd88d313
DLM
1561
1562 /*
1563 * FIXME: this should likely be moved to blk_stack_limits(), would
1564 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1565 */
1566 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1567 /*
1568 * By default, the stacked limits zoned model is set to
1569 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1570 * this model using the first target model reported
1571 * that is not BLK_ZONED_NONE. This will be either the
1572 * first target device zoned model or the model reported
1573 * by the target .io_hints.
1574 */
1575 limits->zoned = ti_limits.zoned;
1576 }
754c5fc7
MS
1577 }
1578
dd88d313
DLM
1579 /*
1580 * Verify that the zoned model and zone sectors, as determined before
1581 * any .io_hints override, are the same across all devices in the table.
1582 * - this is especially relevant if .io_hints is emulating a disk-managed
1583 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1584 * BUT...
1585 */
1586 if (limits->zoned != BLK_ZONED_NONE) {
1587 /*
1588 * ...IF the above limits stacking determined a zoned model
1589 * validate that all of the table's devices conform to it.
1590 */
1591 zoned_model = limits->zoned;
1592 zone_sectors = limits->chunk_sectors;
1593 }
1594 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1595 return -EINVAL;
1596
754c5fc7
MS
1597 return validate_hardware_logical_block_alignment(table, limits);
1598}
1599
9c47008d 1600/*
25520d55
MP
1601 * Verify that all devices have an integrity profile that matches the
1602 * DM device's registered integrity profile. If the profiles don't
1603 * match then unregister the DM device's integrity profile.
9c47008d 1604 */
25520d55 1605static void dm_table_verify_integrity(struct dm_table *t)
9c47008d 1606{
a63a5cf8 1607 struct gendisk *template_disk = NULL;
9c47008d 1608
9b4b5a79
MB
1609 if (t->integrity_added)
1610 return;
1611
25520d55
MP
1612 if (t->integrity_supported) {
1613 /*
1614 * Verify that the original integrity profile
1615 * matches all the devices in this table.
1616 */
1617 template_disk = dm_table_get_integrity_disk(t);
1618 if (template_disk &&
1619 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1620 return;
1621 }
9c47008d 1622
25520d55 1623 if (integrity_profile_exists(dm_disk(t->md))) {
876fbba1
MS
1624 DMWARN("%s: unable to establish an integrity profile",
1625 dm_device_name(t->md));
25520d55
MP
1626 blk_integrity_unregister(dm_disk(t->md));
1627 }
9c47008d
MP
1628}
1629
ed8b752b
MS
1630static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1631 sector_t start, sector_t len, void *data)
1632{
c888a8f9 1633 unsigned long flush = (unsigned long) data;
ed8b752b
MS
1634 struct request_queue *q = bdev_get_queue(dev->bdev);
1635
c888a8f9 1636 return q && (q->queue_flags & flush);
ed8b752b
MS
1637}
1638
c888a8f9 1639static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
ed8b752b
MS
1640{
1641 struct dm_target *ti;
3c120169 1642 unsigned i;
ed8b752b
MS
1643
1644 /*
1645 * Require at least one underlying device to support flushes.
1646 * t->devices includes internal dm devices such as mirror logs
1647 * so we need to use iterate_devices here, which targets
1648 * supporting flushes must provide.
1649 */
3c120169
MP
1650 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1651 ti = dm_table_get_target(t, i);
ed8b752b 1652
55a62eef 1653 if (!ti->num_flush_bios)
ed8b752b
MS
1654 continue;
1655
0e9c24ed 1656 if (ti->flush_supported)
7f61f5a0 1657 return true;
0e9c24ed 1658
ed8b752b 1659 if (ti->type->iterate_devices &&
c888a8f9 1660 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
7f61f5a0 1661 return true;
ed8b752b
MS
1662 }
1663
7f61f5a0 1664 return false;
ed8b752b
MS
1665}
1666
273752c9
VG
1667static int device_dax_write_cache_enabled(struct dm_target *ti,
1668 struct dm_dev *dev, sector_t start,
1669 sector_t len, void *data)
1670{
1671 struct dax_device *dax_dev = dev->dax_dev;
1672
1673 if (!dax_dev)
1674 return false;
1675
1676 if (dax_write_cache_enabled(dax_dev))
1677 return true;
1678 return false;
1679}
1680
1681static int dm_table_supports_dax_write_cache(struct dm_table *t)
1682{
1683 struct dm_target *ti;
1684 unsigned i;
1685
1686 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1687 ti = dm_table_get_target(t, i);
1688
1689 if (ti->type->iterate_devices &&
1690 ti->type->iterate_devices(ti,
1691 device_dax_write_cache_enabled, NULL))
1692 return true;
1693 }
1694
1695 return false;
1696}
1697
4693c966
MSB
1698static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1699 sector_t start, sector_t len, void *data)
1700{
1701 struct request_queue *q = bdev_get_queue(dev->bdev);
1702
1703 return q && blk_queue_nonrot(q);
1704}
1705
c3c4555e
MB
1706static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1707 sector_t start, sector_t len, void *data)
1708{
1709 struct request_queue *q = bdev_get_queue(dev->bdev);
1710
1711 return q && !blk_queue_add_random(q);
1712}
1713
1714static bool dm_table_all_devices_attribute(struct dm_table *t,
1715 iterate_devices_callout_fn func)
4693c966
MSB
1716{
1717 struct dm_target *ti;
3c120169 1718 unsigned i;
4693c966 1719
3c120169
MP
1720 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1721 ti = dm_table_get_target(t, i);
4693c966
MSB
1722
1723 if (!ti->type->iterate_devices ||
c3c4555e 1724 !ti->type->iterate_devices(ti, func, NULL))
7f61f5a0 1725 return false;
4693c966
MSB
1726 }
1727
7f61f5a0 1728 return true;
4693c966
MSB
1729}
1730
22c11858
MS
1731static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1732 sector_t start, sector_t len, void *data)
1733{
1734 char b[BDEVNAME_SIZE];
1735
1736 /* For now, NVMe devices are the only devices of this class */
99243b92 1737 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
22c11858
MS
1738}
1739
1740static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1741{
1742 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1743}
1744
d54eaa5a
MS
1745static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1746 sector_t start, sector_t len, void *data)
1747{
1748 struct request_queue *q = bdev_get_queue(dev->bdev);
1749
1750 return q && !q->limits.max_write_same_sectors;
1751}
1752
1753static bool dm_table_supports_write_same(struct dm_table *t)
1754{
1755 struct dm_target *ti;
3c120169 1756 unsigned i;
d54eaa5a 1757
3c120169
MP
1758 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1759 ti = dm_table_get_target(t, i);
d54eaa5a 1760
55a62eef 1761 if (!ti->num_write_same_bios)
d54eaa5a
MS
1762 return false;
1763
1764 if (!ti->type->iterate_devices ||
dc019b21 1765 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
d54eaa5a
MS
1766 return false;
1767 }
1768
1769 return true;
1770}
1771
ac62d620
CH
1772static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1773 sector_t start, sector_t len, void *data)
1774{
1775 struct request_queue *q = bdev_get_queue(dev->bdev);
1776
1777 return q && !q->limits.max_write_zeroes_sectors;
1778}
1779
1780static bool dm_table_supports_write_zeroes(struct dm_table *t)
1781{
1782 struct dm_target *ti;
1783 unsigned i = 0;
1784
1785 while (i < dm_table_get_num_targets(t)) {
1786 ti = dm_table_get_target(t, i++);
1787
1788 if (!ti->num_write_zeroes_bios)
1789 return false;
1790
1791 if (!ti->type->iterate_devices ||
1792 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1793 return false;
1794 }
1795
1796 return true;
1797}
1798
8a74d29d
MS
1799static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1800 sector_t start, sector_t len, void *data)
a7ffb6a5
MP
1801{
1802 struct request_queue *q = bdev_get_queue(dev->bdev);
1803
8a74d29d 1804 return q && !blk_queue_discard(q);
a7ffb6a5
MP
1805}
1806
1807static bool dm_table_supports_discards(struct dm_table *t)
1808{
1809 struct dm_target *ti;
3c120169 1810 unsigned i;
a7ffb6a5 1811
3c120169
MP
1812 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1813 ti = dm_table_get_target(t, i);
a7ffb6a5
MP
1814
1815 if (!ti->num_discard_bios)
8a74d29d 1816 return false;
a7ffb6a5 1817
8a74d29d
MS
1818 /*
1819 * Either the target provides discard support (as implied by setting
1820 * 'discards_supported') or it relies on _all_ data devices having
1821 * discard support.
1822 */
1823 if (!ti->discards_supported &&
1824 (!ti->type->iterate_devices ||
1825 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1826 return false;
a7ffb6a5
MP
1827 }
1828
8a74d29d 1829 return true;
a7ffb6a5
MP
1830}
1831
00716545
DS
1832static int device_not_secure_erase_capable(struct dm_target *ti,
1833 struct dm_dev *dev, sector_t start,
1834 sector_t len, void *data)
1835{
1836 struct request_queue *q = bdev_get_queue(dev->bdev);
1837
1838 return q && !blk_queue_secure_erase(q);
1839}
1840
1841static bool dm_table_supports_secure_erase(struct dm_table *t)
1842{
1843 struct dm_target *ti;
1844 unsigned int i;
1845
1846 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1847 ti = dm_table_get_target(t, i);
1848
1849 if (!ti->num_secure_erase_bios)
1850 return false;
1851
1852 if (!ti->type->iterate_devices ||
1853 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1854 return false;
1855 }
1856
1857 return true;
1858}
1859
eb40c0ac
ID
1860static int device_requires_stable_pages(struct dm_target *ti,
1861 struct dm_dev *dev, sector_t start,
1862 sector_t len, void *data)
1863{
1864 struct request_queue *q = bdev_get_queue(dev->bdev);
1865
1866 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1867}
1868
1869/*
1870 * If any underlying device requires stable pages, a table must require
1871 * them as well. Only targets that support iterate_devices are considered:
1872 * don't want error, zero, etc to require stable pages.
1873 */
1874static bool dm_table_requires_stable_pages(struct dm_table *t)
1875{
1876 struct dm_target *ti;
1877 unsigned i;
1878
1879 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1880 ti = dm_table_get_target(t, i);
1881
1882 if (ti->type->iterate_devices &&
1883 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1884 return true;
1885 }
1886
1887 return false;
1888}
1889
754c5fc7
MS
1890void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1891 struct queue_limits *limits)
1da177e4 1892{
519a7e16 1893 bool wc = false, fua = false;
2e9ee095 1894 int page_size = PAGE_SIZE;
ed8b752b 1895
1da177e4 1896 /*
1197764e 1897 * Copy table's limits to the DM device's request_queue
1da177e4 1898 */
754c5fc7 1899 q->limits = *limits;
c9a3f6d6 1900
5d47c89f 1901 if (!dm_table_supports_discards(t)) {
8b904b5b 1902 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
5d47c89f
MS
1903 /* Must also clear discard limits... */
1904 q->limits.max_discard_sectors = 0;
1905 q->limits.max_hw_discard_sectors = 0;
1906 q->limits.discard_granularity = 0;
1907 q->limits.discard_alignment = 0;
1908 q->limits.discard_misaligned = 0;
1909 } else
8b904b5b 1910 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5ae89a87 1911
00716545 1912 if (dm_table_supports_secure_erase(t))
83c7c18b 1913 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
00716545 1914
c888a8f9 1915 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
519a7e16 1916 wc = true;
c888a8f9 1917 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
519a7e16 1918 fua = true;
ed8b752b 1919 }
519a7e16 1920 blk_queue_write_cache(q, wc, fua);
ed8b752b 1921
2e9ee095 1922 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
8b904b5b 1923 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2e9ee095
PG
1924 if (dm_table_supports_dax(t, device_synchronous, NULL))
1925 set_dax_synchronous(t->md->dax_dev);
1926 }
dbc62659
RZ
1927 else
1928 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1929
273752c9
VG
1930 if (dm_table_supports_dax_write_cache(t))
1931 dax_write_cache(t->md->dax_dev, true);
1932
c3c4555e
MB
1933 /* Ensure that all underlying devices are non-rotational. */
1934 if (dm_table_all_devices_attribute(t, device_is_nonrot))
8b904b5b 1935 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4693c966 1936 else
8b904b5b 1937 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
4693c966 1938
d54eaa5a
MS
1939 if (!dm_table_supports_write_same(t))
1940 q->limits.max_write_same_sectors = 0;
ac62d620
CH
1941 if (!dm_table_supports_write_zeroes(t))
1942 q->limits.max_write_zeroes_sectors = 0;
c1a94672 1943
25520d55 1944 dm_table_verify_integrity(t);
e6ee8c0b 1945
eb40c0ac
ID
1946 /*
1947 * Some devices don't use blk_integrity but still want stable pages
1948 * because they do their own checksumming.
1949 */
1950 if (dm_table_requires_stable_pages(t))
1951 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1952 else
1953 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1954
c3c4555e
MB
1955 /*
1956 * Determine whether or not this queue's I/O timings contribute
1957 * to the entropy pool, Only request-based targets use this.
1958 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1959 * have it set.
1960 */
1961 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
8b904b5b 1962 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
bf505456
DLM
1963
1964 /*
1965 * For a zoned target, the number of zones should be updated for the
1966 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1967 * target, this is all that is needed. For a request based target, the
1968 * queue zone bitmaps must also be updated.
1969 * Use blk_revalidate_disk_zones() to handle this.
1970 */
1971 if (blk_queue_is_zoned(q))
1972 blk_revalidate_disk_zones(t->md->disk);
c6d6e9b0
JK
1973
1974 /* Allow reads to exceed readahead limits */
1975 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1da177e4
LT
1976}
1977
1978unsigned int dm_table_get_num_targets(struct dm_table *t)
1979{
1980 return t->num_targets;
1981}
1982
1983struct list_head *dm_table_get_devices(struct dm_table *t)
1984{
1985 return &t->devices;
1986}
1987
aeb5d727 1988fmode_t dm_table_get_mode(struct dm_table *t)
1da177e4
LT
1989{
1990 return t->mode;
1991}
08649012 1992EXPORT_SYMBOL(dm_table_get_mode);
1da177e4 1993
d67ee213
MS
1994enum suspend_mode {
1995 PRESUSPEND,
1996 PRESUSPEND_UNDO,
1997 POSTSUSPEND,
1998};
1999
2000static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1da177e4
LT
2001{
2002 int i = t->num_targets;
2003 struct dm_target *ti = t->targets;
2004
1ea0654e
BVA
2005 lockdep_assert_held(&t->md->suspend_lock);
2006
1da177e4 2007 while (i--) {
d67ee213
MS
2008 switch (mode) {
2009 case PRESUSPEND:
2010 if (ti->type->presuspend)
2011 ti->type->presuspend(ti);
2012 break;
2013 case PRESUSPEND_UNDO:
2014 if (ti->type->presuspend_undo)
2015 ti->type->presuspend_undo(ti);
2016 break;
2017 case POSTSUSPEND:
1da177e4
LT
2018 if (ti->type->postsuspend)
2019 ti->type->postsuspend(ti);
d67ee213
MS
2020 break;
2021 }
1da177e4
LT
2022 ti++;
2023 }
2024}
2025
2026void dm_table_presuspend_targets(struct dm_table *t)
2027{
cf222b37
AK
2028 if (!t)
2029 return;
2030
d67ee213
MS
2031 suspend_targets(t, PRESUSPEND);
2032}
2033
2034void dm_table_presuspend_undo_targets(struct dm_table *t)
2035{
2036 if (!t)
2037 return;
2038
2039 suspend_targets(t, PRESUSPEND_UNDO);
1da177e4
LT
2040}
2041
2042void dm_table_postsuspend_targets(struct dm_table *t)
2043{
cf222b37
AK
2044 if (!t)
2045 return;
2046
d67ee213 2047 suspend_targets(t, POSTSUSPEND);
1da177e4
LT
2048}
2049
8757b776 2050int dm_table_resume_targets(struct dm_table *t)
1da177e4 2051{
8757b776
MB
2052 int i, r = 0;
2053
1ea0654e
BVA
2054 lockdep_assert_held(&t->md->suspend_lock);
2055
8757b776
MB
2056 for (i = 0; i < t->num_targets; i++) {
2057 struct dm_target *ti = t->targets + i;
2058
2059 if (!ti->type->preresume)
2060 continue;
2061
2062 r = ti->type->preresume(ti);
7833b08e
MS
2063 if (r) {
2064 DMERR("%s: %s: preresume failed, error = %d",
2065 dm_device_name(t->md), ti->type->name, r);
8757b776 2066 return r;
7833b08e 2067 }
8757b776 2068 }
1da177e4
LT
2069
2070 for (i = 0; i < t->num_targets; i++) {
2071 struct dm_target *ti = t->targets + i;
2072
2073 if (ti->type->resume)
2074 ti->type->resume(ti);
2075 }
8757b776
MB
2076
2077 return 0;
1da177e4
LT
2078}
2079
9d357b07
N
2080void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2081{
2082 list_add(&cb->list, &t->target_callbacks);
2083}
2084EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2085
1da177e4
LT
2086int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2087{
82b1519b 2088 struct dm_dev_internal *dd;
afb24528 2089 struct list_head *devices = dm_table_get_devices(t);
9d357b07 2090 struct dm_target_callbacks *cb;
1da177e4
LT
2091 int r = 0;
2092
afb24528 2093 list_for_each_entry(dd, devices, list) {
86f1152b 2094 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
0c2322e4
AK
2095 char b[BDEVNAME_SIZE];
2096
2097 if (likely(q))
dc3b17cc 2098 r |= bdi_congested(q->backing_dev_info, bdi_bits);
0c2322e4
AK
2099 else
2100 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2101 dm_device_name(t->md),
86f1152b 2102 bdevname(dd->dm_dev->bdev, b));
1da177e4
LT
2103 }
2104
9d357b07
N
2105 list_for_each_entry(cb, &t->target_callbacks, list)
2106 if (cb->congested_fn)
2107 r |= cb->congested_fn(cb, bdi_bits);
2108
1da177e4
LT
2109 return r;
2110}
2111
1134e5ae
MA
2112struct mapped_device *dm_table_get_md(struct dm_table *t)
2113{
1134e5ae
MA
2114 return t->md;
2115}
08649012 2116EXPORT_SYMBOL(dm_table_get_md);
1134e5ae 2117
f349b0a3
MM
2118const char *dm_table_device_name(struct dm_table *t)
2119{
2120 return dm_device_name(t->md);
2121}
2122EXPORT_SYMBOL_GPL(dm_table_device_name);
2123
9974fa2c
MS
2124void dm_table_run_md_queue_async(struct dm_table *t)
2125{
2126 struct mapped_device *md;
2127 struct request_queue *queue;
9974fa2c
MS
2128
2129 if (!dm_table_request_based(t))
2130 return;
2131
2132 md = dm_table_get_md(t);
2133 queue = dm_get_md_queue(md);
6a23e05c
JA
2134 if (queue)
2135 blk_mq_run_hw_queues(queue, true);
9974fa2c
MS
2136}
2137EXPORT_SYMBOL(dm_table_run_md_queue_async);
2138