bcache: Rip out pkey()/pbtree()
[linux-2.6-block.git] / drivers / md / bcache / util.h
CommitLineData
cafe5635
KO
1
2#ifndef _BCACHE_UTIL_H
3#define _BCACHE_UTIL_H
4
5#include <linux/errno.h>
6#include <linux/kernel.h>
7#include <linux/llist.h>
8#include <linux/ratelimit.h>
9#include <linux/vmalloc.h>
10#include <linux/workqueue.h>
11
12#include "closure.h"
13
14#define PAGE_SECTORS (PAGE_SIZE / 512)
15
16struct closure;
17
cafe5635
KO
18#ifdef CONFIG_BCACHE_EDEBUG
19
20#define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
21#define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
22
23#else /* EDEBUG */
24
25#define atomic_dec_bug(v) atomic_dec(v)
26#define atomic_inc_bug(v, i) atomic_inc(v)
27
28#endif
29
30#define BITMASK(name, type, field, offset, size) \
31static inline uint64_t name(const type *k) \
32{ return (k->field >> offset) & ~(((uint64_t) ~0) << size); } \
33 \
34static inline void SET_##name(type *k, uint64_t v) \
35{ \
36 k->field &= ~(~((uint64_t) ~0 << size) << offset); \
37 k->field |= v << offset; \
38}
39
40#define DECLARE_HEAP(type, name) \
41 struct { \
42 size_t size, used; \
43 type *data; \
44 } name
45
46#define init_heap(heap, _size, gfp) \
47({ \
48 size_t _bytes; \
49 (heap)->used = 0; \
50 (heap)->size = (_size); \
51 _bytes = (heap)->size * sizeof(*(heap)->data); \
52 (heap)->data = NULL; \
53 if (_bytes < KMALLOC_MAX_SIZE) \
54 (heap)->data = kmalloc(_bytes, (gfp)); \
55 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \
56 (heap)->data = vmalloc(_bytes); \
57 (heap)->data; \
58})
59
60#define free_heap(heap) \
61do { \
62 if (is_vmalloc_addr((heap)->data)) \
63 vfree((heap)->data); \
64 else \
65 kfree((heap)->data); \
66 (heap)->data = NULL; \
67} while (0)
68
69#define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
70
71#define heap_sift(h, i, cmp) \
72do { \
73 size_t _r, _j = i; \
74 \
75 for (; _j * 2 + 1 < (h)->used; _j = _r) { \
76 _r = _j * 2 + 1; \
77 if (_r + 1 < (h)->used && \
78 cmp((h)->data[_r], (h)->data[_r + 1])) \
79 _r++; \
80 \
81 if (cmp((h)->data[_r], (h)->data[_j])) \
82 break; \
83 heap_swap(h, _r, _j); \
84 } \
85} while (0)
86
87#define heap_sift_down(h, i, cmp) \
88do { \
89 while (i) { \
90 size_t p = (i - 1) / 2; \
91 if (cmp((h)->data[i], (h)->data[p])) \
92 break; \
93 heap_swap(h, i, p); \
94 i = p; \
95 } \
96} while (0)
97
98#define heap_add(h, d, cmp) \
99({ \
100 bool _r = !heap_full(h); \
101 if (_r) { \
102 size_t _i = (h)->used++; \
103 (h)->data[_i] = d; \
104 \
105 heap_sift_down(h, _i, cmp); \
106 heap_sift(h, _i, cmp); \
107 } \
108 _r; \
109})
110
111#define heap_pop(h, d, cmp) \
112({ \
113 bool _r = (h)->used; \
114 if (_r) { \
115 (d) = (h)->data[0]; \
116 (h)->used--; \
117 heap_swap(h, 0, (h)->used); \
118 heap_sift(h, 0, cmp); \
119 } \
120 _r; \
121})
122
123#define heap_peek(h) ((h)->size ? (h)->data[0] : NULL)
124
125#define heap_full(h) ((h)->used == (h)->size)
126
127#define DECLARE_FIFO(type, name) \
128 struct { \
129 size_t front, back, size, mask; \
130 type *data; \
131 } name
132
133#define fifo_for_each(c, fifo, iter) \
134 for (iter = (fifo)->front; \
135 c = (fifo)->data[iter], iter != (fifo)->back; \
136 iter = (iter + 1) & (fifo)->mask)
137
138#define __init_fifo(fifo, gfp) \
139({ \
140 size_t _allocated_size, _bytes; \
141 BUG_ON(!(fifo)->size); \
142 \
143 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
144 _bytes = _allocated_size * sizeof(*(fifo)->data); \
145 \
146 (fifo)->mask = _allocated_size - 1; \
147 (fifo)->front = (fifo)->back = 0; \
148 (fifo)->data = NULL; \
149 \
150 if (_bytes < KMALLOC_MAX_SIZE) \
151 (fifo)->data = kmalloc(_bytes, (gfp)); \
152 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \
153 (fifo)->data = vmalloc(_bytes); \
154 (fifo)->data; \
155})
156
157#define init_fifo_exact(fifo, _size, gfp) \
158({ \
159 (fifo)->size = (_size); \
160 __init_fifo(fifo, gfp); \
161})
162
163#define init_fifo(fifo, _size, gfp) \
164({ \
165 (fifo)->size = (_size); \
166 if ((fifo)->size > 4) \
167 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
168 __init_fifo(fifo, gfp); \
169})
170
171#define free_fifo(fifo) \
172do { \
173 if (is_vmalloc_addr((fifo)->data)) \
174 vfree((fifo)->data); \
175 else \
176 kfree((fifo)->data); \
177 (fifo)->data = NULL; \
178} while (0)
179
180#define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
181#define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
182
183#define fifo_empty(fifo) (!fifo_used(fifo))
184#define fifo_full(fifo) (!fifo_free(fifo))
185
186#define fifo_front(fifo) ((fifo)->data[(fifo)->front])
187#define fifo_back(fifo) \
188 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
189
190#define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
191
192#define fifo_push_back(fifo, i) \
193({ \
194 bool _r = !fifo_full((fifo)); \
195 if (_r) { \
196 (fifo)->data[(fifo)->back++] = (i); \
197 (fifo)->back &= (fifo)->mask; \
198 } \
199 _r; \
200})
201
202#define fifo_pop_front(fifo, i) \
203({ \
204 bool _r = !fifo_empty((fifo)); \
205 if (_r) { \
206 (i) = (fifo)->data[(fifo)->front++]; \
207 (fifo)->front &= (fifo)->mask; \
208 } \
209 _r; \
210})
211
212#define fifo_push_front(fifo, i) \
213({ \
214 bool _r = !fifo_full((fifo)); \
215 if (_r) { \
216 --(fifo)->front; \
217 (fifo)->front &= (fifo)->mask; \
218 (fifo)->data[(fifo)->front] = (i); \
219 } \
220 _r; \
221})
222
223#define fifo_pop_back(fifo, i) \
224({ \
225 bool _r = !fifo_empty((fifo)); \
226 if (_r) { \
227 --(fifo)->back; \
228 (fifo)->back &= (fifo)->mask; \
229 (i) = (fifo)->data[(fifo)->back] \
230 } \
231 _r; \
232})
233
234#define fifo_push(fifo, i) fifo_push_back(fifo, (i))
235#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
236
237#define fifo_swap(l, r) \
238do { \
239 swap((l)->front, (r)->front); \
240 swap((l)->back, (r)->back); \
241 swap((l)->size, (r)->size); \
242 swap((l)->mask, (r)->mask); \
243 swap((l)->data, (r)->data); \
244} while (0)
245
246#define fifo_move(dest, src) \
247do { \
248 typeof(*((dest)->data)) _t; \
249 while (!fifo_full(dest) && \
250 fifo_pop(src, _t)) \
251 fifo_push(dest, _t); \
252} while (0)
253
254/*
255 * Simple array based allocator - preallocates a number of elements and you can
256 * never allocate more than that, also has no locking.
257 *
258 * Handy because if you know you only need a fixed number of elements you don't
259 * have to worry about memory allocation failure, and sometimes a mempool isn't
260 * what you want.
261 *
262 * We treat the free elements as entries in a singly linked list, and the
263 * freelist as a stack - allocating and freeing push and pop off the freelist.
264 */
265
266#define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
267 struct { \
268 type *freelist; \
269 type data[size]; \
270 } name
271
272#define array_alloc(array) \
273({ \
274 typeof((array)->freelist) _ret = (array)->freelist; \
275 \
276 if (_ret) \
277 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
278 \
279 _ret; \
280})
281
282#define array_free(array, ptr) \
283do { \
284 typeof((array)->freelist) _ptr = ptr; \
285 \
286 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
287 (array)->freelist = _ptr; \
288} while (0)
289
290#define array_allocator_init(array) \
291do { \
292 typeof((array)->freelist) _i; \
293 \
294 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
295 (array)->freelist = NULL; \
296 \
297 for (_i = (array)->data; \
298 _i < (array)->data + ARRAY_SIZE((array)->data); \
299 _i++) \
300 array_free(array, _i); \
301} while (0)
302
303#define array_freelist_empty(array) ((array)->freelist == NULL)
304
305#define ANYSINT_MAX(t) \
306 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
307
169ef1cf
KO
308int bch_strtoint_h(const char *, int *);
309int bch_strtouint_h(const char *, unsigned int *);
310int bch_strtoll_h(const char *, long long *);
311int bch_strtoull_h(const char *, unsigned long long *);
cafe5635 312
169ef1cf 313static inline int bch_strtol_h(const char *cp, long *res)
cafe5635
KO
314{
315#if BITS_PER_LONG == 32
169ef1cf 316 return bch_strtoint_h(cp, (int *) res);
cafe5635 317#else
169ef1cf 318 return bch_strtoll_h(cp, (long long *) res);
cafe5635
KO
319#endif
320}
321
169ef1cf 322static inline int bch_strtoul_h(const char *cp, long *res)
cafe5635
KO
323{
324#if BITS_PER_LONG == 32
169ef1cf 325 return bch_strtouint_h(cp, (unsigned int *) res);
cafe5635 326#else
169ef1cf 327 return bch_strtoull_h(cp, (unsigned long long *) res);
cafe5635
KO
328#endif
329}
330
331#define strtoi_h(cp, res) \
332 (__builtin_types_compatible_p(typeof(*res), int) \
169ef1cf 333 ? bch_strtoint_h(cp, (void *) res) \
cafe5635 334 : __builtin_types_compatible_p(typeof(*res), long) \
169ef1cf 335 ? bch_strtol_h(cp, (void *) res) \
cafe5635 336 : __builtin_types_compatible_p(typeof(*res), long long) \
169ef1cf 337 ? bch_strtoll_h(cp, (void *) res) \
cafe5635 338 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
169ef1cf 339 ? bch_strtouint_h(cp, (void *) res) \
cafe5635 340 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
169ef1cf 341 ? bch_strtoul_h(cp, (void *) res) \
cafe5635 342 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
169ef1cf 343 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
cafe5635
KO
344
345#define strtoul_safe(cp, var) \
346({ \
347 unsigned long _v; \
348 int _r = kstrtoul(cp, 10, &_v); \
349 if (!_r) \
350 var = _v; \
351 _r; \
352})
353
354#define strtoul_safe_clamp(cp, var, min, max) \
355({ \
356 unsigned long _v; \
357 int _r = kstrtoul(cp, 10, &_v); \
358 if (!_r) \
359 var = clamp_t(typeof(var), _v, min, max); \
360 _r; \
361})
362
363#define snprint(buf, size, var) \
364 snprintf(buf, size, \
365 __builtin_types_compatible_p(typeof(var), int) \
366 ? "%i\n" : \
367 __builtin_types_compatible_p(typeof(var), unsigned) \
368 ? "%u\n" : \
369 __builtin_types_compatible_p(typeof(var), long) \
370 ? "%li\n" : \
371 __builtin_types_compatible_p(typeof(var), unsigned long)\
372 ? "%lu\n" : \
373 __builtin_types_compatible_p(typeof(var), int64_t) \
374 ? "%lli\n" : \
375 __builtin_types_compatible_p(typeof(var), uint64_t) \
376 ? "%llu\n" : \
377 __builtin_types_compatible_p(typeof(var), const char *) \
378 ? "%s\n" : "%i\n", var)
379
169ef1cf 380ssize_t bch_hprint(char *buf, int64_t v);
cafe5635 381
169ef1cf
KO
382bool bch_is_zero(const char *p, size_t n);
383int bch_parse_uuid(const char *s, char *uuid);
cafe5635 384
169ef1cf 385ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
cafe5635
KO
386 size_t selected);
387
169ef1cf 388ssize_t bch_read_string_list(const char *buf, const char * const list[]);
cafe5635
KO
389
390struct time_stats {
391 /*
392 * all fields are in nanoseconds, averages are ewmas stored left shifted
393 * by 8
394 */
395 uint64_t max_duration;
396 uint64_t average_duration;
397 uint64_t average_frequency;
398 uint64_t last;
399};
400
169ef1cf 401void bch_time_stats_update(struct time_stats *stats, uint64_t time);
cafe5635
KO
402
403#define NSEC_PER_ns 1L
404#define NSEC_PER_us NSEC_PER_USEC
405#define NSEC_PER_ms NSEC_PER_MSEC
406#define NSEC_PER_sec NSEC_PER_SEC
407
408#define __print_time_stat(stats, name, stat, units) \
409 sysfs_print(name ## _ ## stat ## _ ## units, \
410 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
411
412#define sysfs_print_time_stats(stats, name, \
413 frequency_units, \
414 duration_units) \
415do { \
416 __print_time_stat(stats, name, \
417 average_frequency, frequency_units); \
418 __print_time_stat(stats, name, \
419 average_duration, duration_units); \
420 __print_time_stat(stats, name, \
421 max_duration, duration_units); \
422 \
423 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
424 ? div_s64(local_clock() - (stats)->last, \
425 NSEC_PER_ ## frequency_units) \
426 : -1LL); \
427} while (0)
428
429#define sysfs_time_stats_attribute(name, \
430 frequency_units, \
431 duration_units) \
432read_attribute(name ## _average_frequency_ ## frequency_units); \
433read_attribute(name ## _average_duration_ ## duration_units); \
434read_attribute(name ## _max_duration_ ## duration_units); \
435read_attribute(name ## _last_ ## frequency_units)
436
437#define sysfs_time_stats_attribute_list(name, \
438 frequency_units, \
439 duration_units) \
440&sysfs_ ## name ## _average_frequency_ ## frequency_units, \
441&sysfs_ ## name ## _average_duration_ ## duration_units, \
442&sysfs_ ## name ## _max_duration_ ## duration_units, \
443&sysfs_ ## name ## _last_ ## frequency_units,
444
445#define ewma_add(ewma, val, weight, factor) \
446({ \
447 (ewma) *= (weight) - 1; \
448 (ewma) += (val) << factor; \
449 (ewma) /= (weight); \
450 (ewma) >> factor; \
451})
452
453struct ratelimit {
454 uint64_t next;
455 unsigned rate;
456};
457
458static inline void ratelimit_reset(struct ratelimit *d)
459{
460 d->next = local_clock();
461}
462
169ef1cf 463unsigned bch_next_delay(struct ratelimit *d, uint64_t done);
cafe5635
KO
464
465#define __DIV_SAFE(n, d, zero) \
466({ \
467 typeof(n) _n = (n); \
468 typeof(d) _d = (d); \
469 _d ? _n / _d : zero; \
470})
471
472#define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
473
474#define container_of_or_null(ptr, type, member) \
475({ \
476 typeof(ptr) _ptr = ptr; \
477 _ptr ? container_of(_ptr, type, member) : NULL; \
478})
479
480#define RB_INSERT(root, new, member, cmp) \
481({ \
482 __label__ dup; \
483 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
484 typeof(new) this; \
485 int res, ret = -1; \
486 \
487 while (*n) { \
488 parent = *n; \
489 this = container_of(*n, typeof(*(new)), member); \
490 res = cmp(new, this); \
491 if (!res) \
492 goto dup; \
493 n = res < 0 \
494 ? &(*n)->rb_left \
495 : &(*n)->rb_right; \
496 } \
497 \
498 rb_link_node(&(new)->member, parent, n); \
499 rb_insert_color(&(new)->member, root); \
500 ret = 0; \
501dup: \
502 ret; \
503})
504
505#define RB_SEARCH(root, search, member, cmp) \
506({ \
507 struct rb_node *n = (root)->rb_node; \
508 typeof(&(search)) this, ret = NULL; \
509 int res; \
510 \
511 while (n) { \
512 this = container_of(n, typeof(search), member); \
513 res = cmp(&(search), this); \
514 if (!res) { \
515 ret = this; \
516 break; \
517 } \
518 n = res < 0 \
519 ? n->rb_left \
520 : n->rb_right; \
521 } \
522 ret; \
523})
524
525#define RB_GREATER(root, search, member, cmp) \
526({ \
527 struct rb_node *n = (root)->rb_node; \
528 typeof(&(search)) this, ret = NULL; \
529 int res; \
530 \
531 while (n) { \
532 this = container_of(n, typeof(search), member); \
533 res = cmp(&(search), this); \
534 if (res < 0) { \
535 ret = this; \
536 n = n->rb_left; \
537 } else \
538 n = n->rb_right; \
539 } \
540 ret; \
541})
542
543#define RB_FIRST(root, type, member) \
544 container_of_or_null(rb_first(root), type, member)
545
546#define RB_LAST(root, type, member) \
547 container_of_or_null(rb_last(root), type, member)
548
549#define RB_NEXT(ptr, member) \
550 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
551
552#define RB_PREV(ptr, member) \
553 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
554
555/* Does linear interpolation between powers of two */
556static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
557{
558 unsigned fract = x & ~(~0 << fract_bits);
559
560 x >>= fract_bits;
561 x = 1 << x;
562 x += (x * fract) >> fract_bits;
563
564 return x;
565}
566
567#define bio_end(bio) ((bio)->bi_sector + bio_sectors(bio))
568
169ef1cf 569void bch_bio_map(struct bio *bio, void *base);
cafe5635 570
169ef1cf 571int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp);
cafe5635
KO
572
573static inline sector_t bdev_sectors(struct block_device *bdev)
574{
575 return bdev->bd_inode->i_size >> 9;
576}
577
578#define closure_bio_submit(bio, cl, dev) \
579do { \
580 closure_get(cl); \
581 bch_generic_make_request(bio, &(dev)->bio_split_hook); \
582} while (0)
583
169ef1cf
KO
584uint64_t bch_crc64_update(uint64_t, const void *, size_t);
585uint64_t bch_crc64(const void *, size_t);
cafe5635
KO
586
587#endif /* _BCACHE_UTIL_H */