bcache: fix sequential large write IO bypass
[linux-2.6-block.git] / drivers / md / bcache / request.c
CommitLineData
cafe5635
KO
1/*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "request.h"
279afbad 13#include "writeback.h"
cafe5635 14
cafe5635
KO
15#include <linux/module.h>
16#include <linux/hash.h>
17#include <linux/random.h>
66114cad 18#include <linux/backing-dev.h>
cafe5635
KO
19
20#include <trace/events/bcache.h>
21
22#define CUTOFF_CACHE_ADD 95
23#define CUTOFF_CACHE_READA 90
cafe5635
KO
24
25struct kmem_cache *bch_search_cache;
26
a34a8bfd
KO
27static void bch_data_insert_start(struct closure *);
28
cafe5635
KO
29static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
30{
cafe5635
KO
31 return BDEV_CACHE_MODE(&dc->sb);
32}
33
34static bool verify(struct cached_dev *dc, struct bio *bio)
35{
cafe5635
KO
36 return dc->verify;
37}
38
39static void bio_csum(struct bio *bio, struct bkey *k)
40{
7988613b
KO
41 struct bio_vec bv;
42 struct bvec_iter iter;
cafe5635 43 uint64_t csum = 0;
cafe5635 44
7988613b
KO
45 bio_for_each_segment(bv, bio, iter) {
46 void *d = kmap(bv.bv_page) + bv.bv_offset;
47 csum = bch_crc64_update(csum, d, bv.bv_len);
48 kunmap(bv.bv_page);
cafe5635
KO
49 }
50
51 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
52}
53
54/* Insert data into cache */
55
a34a8bfd 56static void bch_data_insert_keys(struct closure *cl)
cafe5635 57{
220bb38c 58 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
c18536a7 59 atomic_t *journal_ref = NULL;
220bb38c 60 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
6054c6d4 61 int ret;
cafe5635 62
a34a8bfd
KO
63 /*
64 * If we're looping, might already be waiting on
65 * another journal write - can't wait on more than one journal write at
66 * a time
67 *
68 * XXX: this looks wrong
69 */
70#if 0
71 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72 closure_sync(&s->cl);
73#endif
cafe5635 74
220bb38c
KO
75 if (!op->replace)
76 journal_ref = bch_journal(op->c, &op->insert_keys,
77 op->flush_journal ? cl : NULL);
cafe5635 78
220bb38c 79 ret = bch_btree_insert(op->c, &op->insert_keys,
6054c6d4
KO
80 journal_ref, replace_key);
81 if (ret == -ESRCH) {
220bb38c 82 op->replace_collision = true;
6054c6d4 83 } else if (ret) {
4e4cbee9 84 op->status = BLK_STS_RESOURCE;
220bb38c 85 op->insert_data_done = true;
a34a8bfd 86 }
cafe5635 87
c18536a7
KO
88 if (journal_ref)
89 atomic_dec_bug(journal_ref);
cafe5635 90
77b5a084 91 if (!op->insert_data_done) {
da415a09 92 continue_at(cl, bch_data_insert_start, op->wq);
77b5a084
JA
93 return;
94 }
cafe5635 95
220bb38c 96 bch_keylist_free(&op->insert_keys);
a34a8bfd 97 closure_return(cl);
cafe5635
KO
98}
99
085d2a3d
KO
100static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
101 struct cache_set *c)
102{
103 size_t oldsize = bch_keylist_nkeys(l);
104 size_t newsize = oldsize + u64s;
105
106 /*
107 * The journalling code doesn't handle the case where the keys to insert
108 * is bigger than an empty write: If we just return -ENOMEM here,
109 * bio_insert() and bio_invalidate() will insert the keys created so far
110 * and finish the rest when the keylist is empty.
111 */
112 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
113 return -ENOMEM;
114
115 return __bch_keylist_realloc(l, u64s);
116}
117
a34a8bfd
KO
118static void bch_data_invalidate(struct closure *cl)
119{
220bb38c
KO
120 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
121 struct bio *bio = op->bio;
a34a8bfd
KO
122
123 pr_debug("invalidating %i sectors from %llu",
4f024f37 124 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
a34a8bfd
KO
125
126 while (bio_sectors(bio)) {
81ab4190
KO
127 unsigned sectors = min(bio_sectors(bio),
128 1U << (KEY_SIZE_BITS - 1));
a34a8bfd 129
085d2a3d 130 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
a34a8bfd
KO
131 goto out;
132
4f024f37
KO
133 bio->bi_iter.bi_sector += sectors;
134 bio->bi_iter.bi_size -= sectors << 9;
a34a8bfd 135
220bb38c 136 bch_keylist_add(&op->insert_keys,
4f024f37 137 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
a34a8bfd
KO
138 }
139
220bb38c 140 op->insert_data_done = true;
a34a8bfd
KO
141 bio_put(bio);
142out:
da415a09 143 continue_at(cl, bch_data_insert_keys, op->wq);
a34a8bfd
KO
144}
145
146static void bch_data_insert_error(struct closure *cl)
cafe5635 147{
220bb38c 148 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635
KO
149
150 /*
151 * Our data write just errored, which means we've got a bunch of keys to
152 * insert that point to data that wasn't succesfully written.
153 *
154 * We don't have to insert those keys but we still have to invalidate
155 * that region of the cache - so, if we just strip off all the pointers
156 * from the keys we'll accomplish just that.
157 */
158
220bb38c 159 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
cafe5635 160
220bb38c 161 while (src != op->insert_keys.top) {
cafe5635
KO
162 struct bkey *n = bkey_next(src);
163
164 SET_KEY_PTRS(src, 0);
c2f95ae2 165 memmove(dst, src, bkey_bytes(src));
cafe5635
KO
166
167 dst = bkey_next(dst);
168 src = n;
169 }
170
220bb38c 171 op->insert_keys.top = dst;
cafe5635 172
a34a8bfd 173 bch_data_insert_keys(cl);
cafe5635
KO
174}
175
4246a0b6 176static void bch_data_insert_endio(struct bio *bio)
cafe5635
KO
177{
178 struct closure *cl = bio->bi_private;
220bb38c 179 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635 180
4e4cbee9 181 if (bio->bi_status) {
cafe5635 182 /* TODO: We could try to recover from this. */
220bb38c 183 if (op->writeback)
4e4cbee9 184 op->status = bio->bi_status;
220bb38c 185 else if (!op->replace)
da415a09 186 set_closure_fn(cl, bch_data_insert_error, op->wq);
cafe5635
KO
187 else
188 set_closure_fn(cl, NULL, NULL);
189 }
190
4e4cbee9 191 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
cafe5635
KO
192}
193
a34a8bfd 194static void bch_data_insert_start(struct closure *cl)
cafe5635 195{
220bb38c
KO
196 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
197 struct bio *bio = op->bio, *n;
cafe5635 198
be628be0 199 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
220bb38c 200 wake_up_gc(op->c);
cafe5635 201
e3b4825b
NS
202 if (op->bypass)
203 return bch_data_invalidate(cl);
204
54d12f2b 205 /*
28a8f0d3 206 * Journal writes are marked REQ_PREFLUSH; if the original write was a
54d12f2b
KO
207 * flush, it'll wait on the journal write.
208 */
1eff9d32 209 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
54d12f2b 210
cafe5635
KO
211 do {
212 unsigned i;
213 struct bkey *k;
220bb38c 214 struct bio_set *split = op->c->bio_split;
cafe5635
KO
215
216 /* 1 for the device pointer and 1 for the chksum */
220bb38c 217 if (bch_keylist_realloc(&op->insert_keys,
085d2a3d 218 3 + (op->csum ? 1 : 0),
77b5a084 219 op->c)) {
da415a09 220 continue_at(cl, bch_data_insert_keys, op->wq);
77b5a084
JA
221 return;
222 }
cafe5635 223
220bb38c 224 k = op->insert_keys.top;
cafe5635 225 bkey_init(k);
220bb38c 226 SET_KEY_INODE(k, op->inode);
4f024f37 227 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
cafe5635 228
2599b53b
KO
229 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
230 op->write_point, op->write_prio,
231 op->writeback))
cafe5635
KO
232 goto err;
233
20d0189b 234 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
cafe5635 235
a34a8bfd 236 n->bi_end_io = bch_data_insert_endio;
cafe5635
KO
237 n->bi_private = cl;
238
220bb38c 239 if (op->writeback) {
cafe5635
KO
240 SET_KEY_DIRTY(k, true);
241
242 for (i = 0; i < KEY_PTRS(k); i++)
220bb38c 243 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
cafe5635
KO
244 GC_MARK_DIRTY);
245 }
246
220bb38c 247 SET_KEY_CSUM(k, op->csum);
cafe5635
KO
248 if (KEY_CSUM(k))
249 bio_csum(n, k);
250
c37511b8 251 trace_bcache_cache_insert(k);
220bb38c 252 bch_keylist_push(&op->insert_keys);
cafe5635 253
ad0d9e76 254 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
220bb38c 255 bch_submit_bbio(n, op->c, k, 0);
cafe5635
KO
256 } while (n != bio);
257
220bb38c 258 op->insert_data_done = true;
da415a09 259 continue_at(cl, bch_data_insert_keys, op->wq);
77b5a084 260 return;
cafe5635
KO
261err:
262 /* bch_alloc_sectors() blocks if s->writeback = true */
220bb38c 263 BUG_ON(op->writeback);
cafe5635
KO
264
265 /*
266 * But if it's not a writeback write we'd rather just bail out if
267 * there aren't any buckets ready to write to - it might take awhile and
268 * we might be starving btree writes for gc or something.
269 */
270
220bb38c 271 if (!op->replace) {
cafe5635
KO
272 /*
273 * Writethrough write: We can't complete the write until we've
274 * updated the index. But we don't want to delay the write while
275 * we wait for buckets to be freed up, so just invalidate the
276 * rest of the write.
277 */
220bb38c 278 op->bypass = true;
a34a8bfd 279 return bch_data_invalidate(cl);
cafe5635
KO
280 } else {
281 /*
282 * From a cache miss, we can just insert the keys for the data
283 * we have written or bail out if we didn't do anything.
284 */
220bb38c 285 op->insert_data_done = true;
cafe5635
KO
286 bio_put(bio);
287
220bb38c 288 if (!bch_keylist_empty(&op->insert_keys))
da415a09 289 continue_at(cl, bch_data_insert_keys, op->wq);
cafe5635
KO
290 else
291 closure_return(cl);
292 }
293}
294
295/**
a34a8bfd 296 * bch_data_insert - stick some data in the cache
cafe5635
KO
297 *
298 * This is the starting point for any data to end up in a cache device; it could
299 * be from a normal write, or a writeback write, or a write to a flash only
300 * volume - it's also used by the moving garbage collector to compact data in
301 * mostly empty buckets.
302 *
303 * It first writes the data to the cache, creating a list of keys to be inserted
304 * (if the data had to be fragmented there will be multiple keys); after the
305 * data is written it calls bch_journal, and after the keys have been added to
306 * the next journal write they're inserted into the btree.
307 *
c18536a7 308 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
cafe5635
KO
309 * and op->inode is used for the key inode.
310 *
c18536a7
KO
311 * If s->bypass is true, instead of inserting the data it invalidates the
312 * region of the cache represented by s->cache_bio and op->inode.
cafe5635 313 */
a34a8bfd 314void bch_data_insert(struct closure *cl)
cafe5635 315{
220bb38c 316 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
cafe5635 317
60ae81ee
SP
318 trace_bcache_write(op->c, op->inode, op->bio,
319 op->writeback, op->bypass);
220bb38c
KO
320
321 bch_keylist_init(&op->insert_keys);
322 bio_get(op->bio);
a34a8bfd 323 bch_data_insert_start(cl);
cafe5635
KO
324}
325
220bb38c
KO
326/* Congested? */
327
328unsigned bch_get_congested(struct cache_set *c)
329{
330 int i;
331 long rand;
332
333 if (!c->congested_read_threshold_us &&
334 !c->congested_write_threshold_us)
335 return 0;
336
337 i = (local_clock_us() - c->congested_last_us) / 1024;
338 if (i < 0)
339 return 0;
340
341 i += atomic_read(&c->congested);
342 if (i >= 0)
343 return 0;
344
345 i += CONGESTED_MAX;
346
347 if (i > 0)
348 i = fract_exp_two(i, 6);
349
350 rand = get_random_int();
351 i -= bitmap_weight(&rand, BITS_PER_LONG);
352
353 return i > 0 ? i : 1;
354}
355
356static void add_sequential(struct task_struct *t)
357{
358 ewma_add(t->sequential_io_avg,
359 t->sequential_io, 8, 0);
360
361 t->sequential_io = 0;
362}
363
364static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
365{
366 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
367}
368
369static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
370{
371 struct cache_set *c = dc->disk.c;
372 unsigned mode = cache_mode(dc, bio);
373 unsigned sectors, congested = bch_get_congested(c);
374 struct task_struct *task = current;
8aee1220 375 struct io *i;
220bb38c 376
c4d951dd 377 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
220bb38c 378 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
ad0d9e76 379 (bio_op(bio) == REQ_OP_DISCARD))
220bb38c
KO
380 goto skip;
381
382 if (mode == CACHE_MODE_NONE ||
383 (mode == CACHE_MODE_WRITEAROUND &&
c8d93247 384 op_is_write(bio_op(bio))))
220bb38c
KO
385 goto skip;
386
4f024f37 387 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
220bb38c
KO
388 bio_sectors(bio) & (c->sb.block_size - 1)) {
389 pr_debug("skipping unaligned io");
390 goto skip;
391 }
392
5ceaaad7
KO
393 if (bypass_torture_test(dc)) {
394 if ((get_random_int() & 3) == 3)
395 goto skip;
396 else
397 goto rescale;
398 }
399
220bb38c
KO
400 if (!congested && !dc->sequential_cutoff)
401 goto rescale;
402
8aee1220 403 spin_lock(&dc->io_lock);
220bb38c 404
4f024f37
KO
405 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
406 if (i->last == bio->bi_iter.bi_sector &&
8aee1220
KO
407 time_before(jiffies, i->jiffies))
408 goto found;
220bb38c 409
8aee1220 410 i = list_first_entry(&dc->io_lru, struct io, lru);
220bb38c 411
8aee1220
KO
412 add_sequential(task);
413 i->sequential = 0;
220bb38c 414found:
4f024f37
KO
415 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
416 i->sequential += bio->bi_iter.bi_size;
220bb38c 417
8aee1220
KO
418 i->last = bio_end_sector(bio);
419 i->jiffies = jiffies + msecs_to_jiffies(5000);
420 task->sequential_io = i->sequential;
220bb38c 421
8aee1220
KO
422 hlist_del(&i->hash);
423 hlist_add_head(&i->hash, iohash(dc, i->last));
424 list_move_tail(&i->lru, &dc->io_lru);
220bb38c 425
8aee1220 426 spin_unlock(&dc->io_lock);
220bb38c
KO
427
428 sectors = max(task->sequential_io,
429 task->sequential_io_avg) >> 9;
430
431 if (dc->sequential_cutoff &&
432 sectors >= dc->sequential_cutoff >> 9) {
433 trace_bcache_bypass_sequential(bio);
434 goto skip;
435 }
436
437 if (congested && sectors >= congested) {
438 trace_bcache_bypass_congested(bio);
439 goto skip;
440 }
441
442rescale:
443 bch_rescale_priorities(c, bio_sectors(bio));
444 return false;
445skip:
446 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
447 return true;
448}
449
2c1953e2 450/* Cache lookup */
cafe5635 451
220bb38c
KO
452struct search {
453 /* Stack frame for bio_complete */
454 struct closure cl;
455
220bb38c
KO
456 struct bbio bio;
457 struct bio *orig_bio;
458 struct bio *cache_miss;
a5ae4300 459 struct bcache_device *d;
220bb38c
KO
460
461 unsigned insert_bio_sectors;
220bb38c 462 unsigned recoverable:1;
220bb38c 463 unsigned write:1;
5ceaaad7 464 unsigned read_dirty_data:1;
220bb38c
KO
465
466 unsigned long start_time;
467
468 struct btree_op op;
469 struct data_insert_op iop;
470};
471
4246a0b6 472static void bch_cache_read_endio(struct bio *bio)
cafe5635
KO
473{
474 struct bbio *b = container_of(bio, struct bbio, bio);
475 struct closure *cl = bio->bi_private;
476 struct search *s = container_of(cl, struct search, cl);
477
478 /*
479 * If the bucket was reused while our bio was in flight, we might have
480 * read the wrong data. Set s->error but not error so it doesn't get
481 * counted against the cache device, but we'll still reread the data
482 * from the backing device.
483 */
484
4e4cbee9
CH
485 if (bio->bi_status)
486 s->iop.status = bio->bi_status;
d56d000a
KO
487 else if (!KEY_DIRTY(&b->key) &&
488 ptr_stale(s->iop.c, &b->key, 0)) {
220bb38c 489 atomic_long_inc(&s->iop.c->cache_read_races);
4e4cbee9 490 s->iop.status = BLK_STS_IOERR;
cafe5635
KO
491 }
492
4e4cbee9 493 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
cafe5635
KO
494}
495
2c1953e2
KO
496/*
497 * Read from a single key, handling the initial cache miss if the key starts in
498 * the middle of the bio
499 */
cc231966 500static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
2c1953e2
KO
501{
502 struct search *s = container_of(op, struct search, op);
cc231966
KO
503 struct bio *n, *bio = &s->bio.bio;
504 struct bkey *bio_key;
2c1953e2 505 unsigned ptr;
2c1953e2 506
4f024f37 507 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
cc231966
KO
508 return MAP_CONTINUE;
509
220bb38c 510 if (KEY_INODE(k) != s->iop.inode ||
4f024f37 511 KEY_START(k) > bio->bi_iter.bi_sector) {
cc231966 512 unsigned bio_sectors = bio_sectors(bio);
220bb38c 513 unsigned sectors = KEY_INODE(k) == s->iop.inode
cc231966 514 ? min_t(uint64_t, INT_MAX,
4f024f37 515 KEY_START(k) - bio->bi_iter.bi_sector)
cc231966
KO
516 : INT_MAX;
517
518 int ret = s->d->cache_miss(b, s, bio, sectors);
519 if (ret != MAP_CONTINUE)
520 return ret;
521
522 /* if this was a complete miss we shouldn't get here */
523 BUG_ON(bio_sectors <= sectors);
524 }
525
526 if (!KEY_SIZE(k))
527 return MAP_CONTINUE;
2c1953e2
KO
528
529 /* XXX: figure out best pointer - for multiple cache devices */
530 ptr = 0;
531
532 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
533
5ceaaad7
KO
534 if (KEY_DIRTY(k))
535 s->read_dirty_data = true;
536
20d0189b
KO
537 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
538 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
539 GFP_NOIO, s->d->bio_split);
2c1953e2 540
cc231966
KO
541 bio_key = &container_of(n, struct bbio, bio)->key;
542 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2c1953e2 543
4f024f37 544 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
220bb38c 545 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
2c1953e2 546
cc231966
KO
547 n->bi_end_io = bch_cache_read_endio;
548 n->bi_private = &s->cl;
2c1953e2 549
cc231966
KO
550 /*
551 * The bucket we're reading from might be reused while our bio
552 * is in flight, and we could then end up reading the wrong
553 * data.
554 *
555 * We guard against this by checking (in cache_read_endio()) if
556 * the pointer is stale again; if so, we treat it as an error
557 * and reread from the backing device (but we don't pass that
558 * error up anywhere).
559 */
2c1953e2 560
cc231966
KO
561 __bch_submit_bbio(n, b->c);
562 return n == bio ? MAP_DONE : MAP_CONTINUE;
2c1953e2
KO
563}
564
565static void cache_lookup(struct closure *cl)
566{
220bb38c 567 struct search *s = container_of(cl, struct search, iop.cl);
2c1953e2 568 struct bio *bio = &s->bio.bio;
a5ae4300 569 int ret;
2c1953e2 570
a5ae4300 571 bch_btree_op_init(&s->op, -1);
2c1953e2 572
a5ae4300
KO
573 ret = bch_btree_map_keys(&s->op, s->iop.c,
574 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
575 cache_lookup_fn, MAP_END_KEY);
77b5a084 576 if (ret == -EAGAIN) {
2c1953e2 577 continue_at(cl, cache_lookup, bcache_wq);
77b5a084
JA
578 return;
579 }
2c1953e2
KO
580
581 closure_return(cl);
582}
583
584/* Common code for the make_request functions */
585
4246a0b6 586static void request_endio(struct bio *bio)
2c1953e2
KO
587{
588 struct closure *cl = bio->bi_private;
589
4e4cbee9 590 if (bio->bi_status) {
2c1953e2 591 struct search *s = container_of(cl, struct search, cl);
4e4cbee9 592 s->iop.status = bio->bi_status;
2c1953e2
KO
593 /* Only cache read errors are recoverable */
594 s->recoverable = false;
595 }
596
597 bio_put(bio);
598 closure_put(cl);
599}
600
cafe5635
KO
601static void bio_complete(struct search *s)
602{
603 if (s->orig_bio) {
74d46992 604 struct request_queue *q = s->orig_bio->bi_disk->queue;
d62e26b3 605 generic_end_io_acct(q, bio_data_dir(s->orig_bio),
aae4933d 606 &s->d->disk->part0, s->start_time);
cafe5635 607
220bb38c 608 trace_bcache_request_end(s->d, s->orig_bio);
4e4cbee9 609 s->orig_bio->bi_status = s->iop.status;
4246a0b6 610 bio_endio(s->orig_bio);
cafe5635
KO
611 s->orig_bio = NULL;
612 }
613}
614
a5ae4300 615static void do_bio_hook(struct search *s, struct bio *orig_bio)
cafe5635
KO
616{
617 struct bio *bio = &s->bio.bio;
cafe5635 618
3a83f467 619 bio_init(bio, NULL, 0);
a5ae4300 620 __bio_clone_fast(bio, orig_bio);
cafe5635
KO
621 bio->bi_end_io = request_endio;
622 bio->bi_private = &s->cl;
ed9c47be 623
dac56212 624 bio_cnt_set(bio, 3);
cafe5635
KO
625}
626
627static void search_free(struct closure *cl)
628{
629 struct search *s = container_of(cl, struct search, cl);
630 bio_complete(s);
631
220bb38c
KO
632 if (s->iop.bio)
633 bio_put(s->iop.bio);
cafe5635 634
cafe5635
KO
635 closure_debug_destroy(cl);
636 mempool_free(s, s->d->c->search);
637}
638
a5ae4300
KO
639static inline struct search *search_alloc(struct bio *bio,
640 struct bcache_device *d)
cafe5635 641{
0b93207a 642 struct search *s;
0b93207a
KO
643
644 s = mempool_alloc(d->c->search, GFP_NOIO);
cafe5635 645
a5ae4300
KO
646 closure_init(&s->cl, NULL);
647 do_bio_hook(s, bio);
cafe5635 648
cafe5635 649 s->orig_bio = bio;
a5ae4300
KO
650 s->cache_miss = NULL;
651 s->d = d;
cafe5635 652 s->recoverable = 1;
c8d93247 653 s->write = op_is_write(bio_op(bio));
a5ae4300 654 s->read_dirty_data = 0;
cafe5635 655 s->start_time = jiffies;
a5ae4300
KO
656
657 s->iop.c = d->c;
658 s->iop.bio = NULL;
659 s->iop.inode = d->id;
660 s->iop.write_point = hash_long((unsigned long) current, 16);
661 s->iop.write_prio = 0;
4e4cbee9 662 s->iop.status = 0;
a5ae4300 663 s->iop.flags = 0;
f73f44eb 664 s->iop.flush_journal = op_is_flush(bio->bi_opf);
da415a09 665 s->iop.wq = bcache_wq;
cafe5635 666
cafe5635
KO
667 return s;
668}
669
cafe5635
KO
670/* Cached devices */
671
672static void cached_dev_bio_complete(struct closure *cl)
673{
674 struct search *s = container_of(cl, struct search, cl);
675 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
676
677 search_free(cl);
678 cached_dev_put(dc);
679}
680
681/* Process reads */
682
cdd972b1 683static void cached_dev_cache_miss_done(struct closure *cl)
cafe5635
KO
684{
685 struct search *s = container_of(cl, struct search, cl);
686
220bb38c
KO
687 if (s->iop.replace_collision)
688 bch_mark_cache_miss_collision(s->iop.c, s->d);
cafe5635 689
491221f8
GJ
690 if (s->iop.bio)
691 bio_free_pages(s->iop.bio);
cafe5635
KO
692
693 cached_dev_bio_complete(cl);
694}
695
cdd972b1 696static void cached_dev_read_error(struct closure *cl)
cafe5635
KO
697{
698 struct search *s = container_of(cl, struct search, cl);
cdd972b1 699 struct bio *bio = &s->bio.bio;
cafe5635
KO
700
701 if (s->recoverable) {
c37511b8
KO
702 /* Retry from the backing device: */
703 trace_bcache_read_retry(s->orig_bio);
cafe5635 704
4e4cbee9 705 s->iop.status = 0;
a5ae4300 706 do_bio_hook(s, s->orig_bio);
cafe5635
KO
707
708 /* XXX: invalidate cache */
709
749b61da 710 closure_bio_submit(bio, cl);
cafe5635
KO
711 }
712
cdd972b1 713 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
714}
715
cdd972b1 716static void cached_dev_read_done(struct closure *cl)
cafe5635
KO
717{
718 struct search *s = container_of(cl, struct search, cl);
719 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
720
721 /*
cdd972b1
KO
722 * We had a cache miss; cache_bio now contains data ready to be inserted
723 * into the cache.
cafe5635
KO
724 *
725 * First, we copy the data we just read from cache_bio's bounce buffers
726 * to the buffers the original bio pointed to:
727 */
728
220bb38c
KO
729 if (s->iop.bio) {
730 bio_reset(s->iop.bio);
4f024f37 731 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
74d46992 732 bio_copy_dev(s->iop.bio, s->cache_miss);
4f024f37 733 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
220bb38c 734 bch_bio_map(s->iop.bio, NULL);
cafe5635 735
220bb38c 736 bio_copy_data(s->cache_miss, s->iop.bio);
cafe5635
KO
737
738 bio_put(s->cache_miss);
739 s->cache_miss = NULL;
740 }
741
ed9c47be 742 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
220bb38c 743 bch_data_verify(dc, s->orig_bio);
cafe5635
KO
744
745 bio_complete(s);
746
220bb38c
KO
747 if (s->iop.bio &&
748 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
749 BUG_ON(!s->iop.replace);
750 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635
KO
751 }
752
cdd972b1 753 continue_at(cl, cached_dev_cache_miss_done, NULL);
cafe5635
KO
754}
755
cdd972b1 756static void cached_dev_read_done_bh(struct closure *cl)
cafe5635
KO
757{
758 struct search *s = container_of(cl, struct search, cl);
759 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
760
220bb38c
KO
761 bch_mark_cache_accounting(s->iop.c, s->d,
762 !s->cache_miss, s->iop.bypass);
763 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
cafe5635 764
4e4cbee9 765 if (s->iop.status)
cdd972b1 766 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
220bb38c 767 else if (s->iop.bio || verify(dc, &s->bio.bio))
cdd972b1 768 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
cafe5635 769 else
cdd972b1 770 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
cafe5635
KO
771}
772
773static int cached_dev_cache_miss(struct btree *b, struct search *s,
774 struct bio *bio, unsigned sectors)
775{
2c1953e2 776 int ret = MAP_CONTINUE;
e7c590eb 777 unsigned reada = 0;
cafe5635 778 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
cdd972b1 779 struct bio *miss, *cache_bio;
cafe5635 780
220bb38c 781 if (s->cache_miss || s->iop.bypass) {
20d0189b 782 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2 783 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
e7c590eb
KO
784 goto out_submit;
785 }
cafe5635 786
1eff9d32
JA
787 if (!(bio->bi_opf & REQ_RAHEAD) &&
788 !(bio->bi_opf & REQ_META) &&
220bb38c 789 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
e7c590eb 790 reada = min_t(sector_t, dc->readahead >> 9,
74d46992 791 get_capacity(bio->bi_disk) - bio_end_sector(bio));
cafe5635 792
220bb38c 793 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
cafe5635 794
220bb38c 795 s->iop.replace_key = KEY(s->iop.inode,
4f024f37 796 bio->bi_iter.bi_sector + s->insert_bio_sectors,
220bb38c 797 s->insert_bio_sectors);
e7c590eb 798
220bb38c 799 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
e7c590eb
KO
800 if (ret)
801 return ret;
802
220bb38c 803 s->iop.replace = true;
1b207d80 804
20d0189b 805 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2c1953e2
KO
806
807 /* btree_search_recurse()'s btree iterator is no good anymore */
808 ret = miss == bio ? MAP_DONE : -EINTR;
cafe5635 809
cdd972b1 810 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
220bb38c 811 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
cafe5635 812 dc->disk.bio_split);
cdd972b1 813 if (!cache_bio)
cafe5635
KO
814 goto out_submit;
815
4f024f37 816 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
74d46992 817 bio_copy_dev(cache_bio, miss);
4f024f37 818 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
cafe5635 819
cdd972b1
KO
820 cache_bio->bi_end_io = request_endio;
821 cache_bio->bi_private = &s->cl;
cafe5635 822
cdd972b1
KO
823 bch_bio_map(cache_bio, NULL);
824 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
cafe5635
KO
825 goto out_put;
826
220bb38c
KO
827 if (reada)
828 bch_mark_cache_readahead(s->iop.c, s->d);
829
cdd972b1 830 s->cache_miss = miss;
220bb38c 831 s->iop.bio = cache_bio;
cdd972b1 832 bio_get(cache_bio);
749b61da 833 closure_bio_submit(cache_bio, &s->cl);
cafe5635
KO
834
835 return ret;
836out_put:
cdd972b1 837 bio_put(cache_bio);
cafe5635 838out_submit:
e7c590eb
KO
839 miss->bi_end_io = request_endio;
840 miss->bi_private = &s->cl;
749b61da 841 closure_bio_submit(miss, &s->cl);
cafe5635
KO
842 return ret;
843}
844
cdd972b1 845static void cached_dev_read(struct cached_dev *dc, struct search *s)
cafe5635
KO
846{
847 struct closure *cl = &s->cl;
848
220bb38c 849 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
cdd972b1 850 continue_at(cl, cached_dev_read_done_bh, NULL);
cafe5635
KO
851}
852
853/* Process writes */
854
855static void cached_dev_write_complete(struct closure *cl)
856{
857 struct search *s = container_of(cl, struct search, cl);
858 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
859
860 up_read_non_owner(&dc->writeback_lock);
861 cached_dev_bio_complete(cl);
862}
863
cdd972b1 864static void cached_dev_write(struct cached_dev *dc, struct search *s)
cafe5635
KO
865{
866 struct closure *cl = &s->cl;
867 struct bio *bio = &s->bio.bio;
4f024f37 868 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
84f0db03 869 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
cafe5635 870
220bb38c 871 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
cafe5635 872
cafe5635 873 down_read_non_owner(&dc->writeback_lock);
cafe5635 874 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
84f0db03
KO
875 /*
876 * We overlap with some dirty data undergoing background
877 * writeback, force this write to writeback
878 */
220bb38c
KO
879 s->iop.bypass = false;
880 s->iop.writeback = true;
cafe5635
KO
881 }
882
84f0db03
KO
883 /*
884 * Discards aren't _required_ to do anything, so skipping if
885 * check_overlapping returned true is ok
886 *
887 * But check_overlapping drops dirty keys for which io hasn't started,
888 * so we still want to call it.
889 */
ad0d9e76 890 if (bio_op(bio) == REQ_OP_DISCARD)
220bb38c 891 s->iop.bypass = true;
cafe5635 892
72c27061
KO
893 if (should_writeback(dc, s->orig_bio,
894 cache_mode(dc, bio),
220bb38c
KO
895 s->iop.bypass)) {
896 s->iop.bypass = false;
897 s->iop.writeback = true;
72c27061
KO
898 }
899
220bb38c
KO
900 if (s->iop.bypass) {
901 s->iop.bio = s->orig_bio;
902 bio_get(s->iop.bio);
cafe5635 903
ad0d9e76 904 if ((bio_op(bio) != REQ_OP_DISCARD) ||
84f0db03 905 blk_queue_discard(bdev_get_queue(dc->bdev)))
749b61da 906 closure_bio_submit(bio, cl);
220bb38c 907 } else if (s->iop.writeback) {
279afbad 908 bch_writeback_add(dc);
220bb38c 909 s->iop.bio = bio;
e49c7c37 910
1eff9d32 911 if (bio->bi_opf & REQ_PREFLUSH) {
e49c7c37 912 /* Also need to send a flush to the backing device */
d4eddd42 913 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
c0f04d88 914 dc->disk.bio_split);
e49c7c37 915
74d46992 916 bio_copy_dev(flush, bio);
c0f04d88
KO
917 flush->bi_end_io = request_endio;
918 flush->bi_private = cl;
70fd7614 919 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
c0f04d88 920
749b61da 921 closure_bio_submit(flush, cl);
e49c7c37 922 }
84f0db03 923 } else {
59d276fe 924 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
84f0db03 925
749b61da 926 closure_bio_submit(bio, cl);
cafe5635 927 }
84f0db03 928
220bb38c 929 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635 930 continue_at(cl, cached_dev_write_complete, NULL);
cafe5635
KO
931}
932
a34a8bfd 933static void cached_dev_nodata(struct closure *cl)
cafe5635 934{
a34a8bfd 935 struct search *s = container_of(cl, struct search, cl);
cafe5635
KO
936 struct bio *bio = &s->bio.bio;
937
220bb38c
KO
938 if (s->iop.flush_journal)
939 bch_journal_meta(s->iop.c, cl);
cafe5635 940
84f0db03 941 /* If it's a flush, we send the flush to the backing device too */
749b61da 942 closure_bio_submit(bio, cl);
cafe5635
KO
943
944 continue_at(cl, cached_dev_bio_complete, NULL);
945}
946
947/* Cached devices - read & write stuff */
948
dece1635
JA
949static blk_qc_t cached_dev_make_request(struct request_queue *q,
950 struct bio *bio)
cafe5635
KO
951{
952 struct search *s;
74d46992 953 struct bcache_device *d = bio->bi_disk->private_data;
cafe5635 954 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
aae4933d 955 int rw = bio_data_dir(bio);
cafe5635 956
d62e26b3 957 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
cafe5635 958
74d46992 959 bio_set_dev(bio, dc->bdev);
4f024f37 960 bio->bi_iter.bi_sector += dc->sb.data_offset;
cafe5635
KO
961
962 if (cached_dev_get(dc)) {
963 s = search_alloc(bio, d);
220bb38c 964 trace_bcache_request_start(s->d, bio);
cafe5635 965
4f024f37 966 if (!bio->bi_iter.bi_size) {
a34a8bfd
KO
967 /*
968 * can't call bch_journal_meta from under
969 * generic_make_request
970 */
971 continue_at_nobarrier(&s->cl,
972 cached_dev_nodata,
973 bcache_wq);
974 } else {
220bb38c 975 s->iop.bypass = check_should_bypass(dc, bio);
84f0db03
KO
976
977 if (rw)
cdd972b1 978 cached_dev_write(dc, s);
84f0db03 979 else
cdd972b1 980 cached_dev_read(dc, s);
84f0db03 981 }
cafe5635 982 } else {
ad0d9e76 983 if ((bio_op(bio) == REQ_OP_DISCARD) &&
cafe5635 984 !blk_queue_discard(bdev_get_queue(dc->bdev)))
4246a0b6 985 bio_endio(bio);
cafe5635 986 else
749b61da 987 generic_make_request(bio);
cafe5635 988 }
dece1635
JA
989
990 return BLK_QC_T_NONE;
cafe5635
KO
991}
992
993static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
994 unsigned int cmd, unsigned long arg)
995{
996 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
997 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
998}
999
1000static int cached_dev_congested(void *data, int bits)
1001{
1002 struct bcache_device *d = data;
1003 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1004 struct request_queue *q = bdev_get_queue(dc->bdev);
1005 int ret = 0;
1006
dc3b17cc 1007 if (bdi_congested(q->backing_dev_info, bits))
cafe5635
KO
1008 return 1;
1009
1010 if (cached_dev_get(dc)) {
1011 unsigned i;
1012 struct cache *ca;
1013
1014 for_each_cache(ca, d->c, i) {
1015 q = bdev_get_queue(ca->bdev);
dc3b17cc 1016 ret |= bdi_congested(q->backing_dev_info, bits);
cafe5635
KO
1017 }
1018
1019 cached_dev_put(dc);
1020 }
1021
1022 return ret;
1023}
1024
1025void bch_cached_dev_request_init(struct cached_dev *dc)
1026{
1027 struct gendisk *g = dc->disk.disk;
1028
1029 g->queue->make_request_fn = cached_dev_make_request;
dc3b17cc 1030 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
cafe5635
KO
1031 dc->disk.cache_miss = cached_dev_cache_miss;
1032 dc->disk.ioctl = cached_dev_ioctl;
1033}
1034
1035/* Flash backed devices */
1036
1037static int flash_dev_cache_miss(struct btree *b, struct search *s,
1038 struct bio *bio, unsigned sectors)
1039{
1b4eaf3d 1040 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
cafe5635 1041
1b4eaf3d
KO
1042 swap(bio->bi_iter.bi_size, bytes);
1043 zero_fill_bio(bio);
1044 swap(bio->bi_iter.bi_size, bytes);
cafe5635 1045
1b4eaf3d 1046 bio_advance(bio, bytes);
8e51e414 1047
4f024f37 1048 if (!bio->bi_iter.bi_size)
2c1953e2 1049 return MAP_DONE;
cafe5635 1050
2c1953e2 1051 return MAP_CONTINUE;
cafe5635
KO
1052}
1053
a34a8bfd
KO
1054static void flash_dev_nodata(struct closure *cl)
1055{
1056 struct search *s = container_of(cl, struct search, cl);
1057
220bb38c
KO
1058 if (s->iop.flush_journal)
1059 bch_journal_meta(s->iop.c, cl);
a34a8bfd
KO
1060
1061 continue_at(cl, search_free, NULL);
1062}
1063
dece1635
JA
1064static blk_qc_t flash_dev_make_request(struct request_queue *q,
1065 struct bio *bio)
cafe5635
KO
1066{
1067 struct search *s;
1068 struct closure *cl;
74d46992 1069 struct bcache_device *d = bio->bi_disk->private_data;
aae4933d 1070 int rw = bio_data_dir(bio);
cafe5635 1071
d62e26b3 1072 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
cafe5635
KO
1073
1074 s = search_alloc(bio, d);
1075 cl = &s->cl;
1076 bio = &s->bio.bio;
1077
220bb38c 1078 trace_bcache_request_start(s->d, bio);
cafe5635 1079
4f024f37 1080 if (!bio->bi_iter.bi_size) {
a34a8bfd
KO
1081 /*
1082 * can't call bch_journal_meta from under
1083 * generic_make_request
1084 */
1085 continue_at_nobarrier(&s->cl,
1086 flash_dev_nodata,
1087 bcache_wq);
dece1635 1088 return BLK_QC_T_NONE;
84f0db03 1089 } else if (rw) {
220bb38c 1090 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
4f024f37 1091 &KEY(d->id, bio->bi_iter.bi_sector, 0),
8e51e414 1092 &KEY(d->id, bio_end_sector(bio), 0));
cafe5635 1093
ad0d9e76 1094 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
220bb38c
KO
1095 s->iop.writeback = true;
1096 s->iop.bio = bio;
cafe5635 1097
220bb38c 1098 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
cafe5635 1099 } else {
220bb38c 1100 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
cafe5635
KO
1101 }
1102
1103 continue_at(cl, search_free, NULL);
dece1635 1104 return BLK_QC_T_NONE;
cafe5635
KO
1105}
1106
1107static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1108 unsigned int cmd, unsigned long arg)
1109{
1110 return -ENOTTY;
1111}
1112
1113static int flash_dev_congested(void *data, int bits)
1114{
1115 struct bcache_device *d = data;
1116 struct request_queue *q;
1117 struct cache *ca;
1118 unsigned i;
1119 int ret = 0;
1120
1121 for_each_cache(ca, d->c, i) {
1122 q = bdev_get_queue(ca->bdev);
dc3b17cc 1123 ret |= bdi_congested(q->backing_dev_info, bits);
cafe5635
KO
1124 }
1125
1126 return ret;
1127}
1128
1129void bch_flash_dev_request_init(struct bcache_device *d)
1130{
1131 struct gendisk *g = d->disk;
1132
1133 g->queue->make_request_fn = flash_dev_make_request;
dc3b17cc 1134 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
cafe5635
KO
1135 d->cache_miss = flash_dev_cache_miss;
1136 d->ioctl = flash_dev_ioctl;
1137}
1138
1139void bch_request_exit(void)
1140{
cafe5635
KO
1141 if (bch_search_cache)
1142 kmem_cache_destroy(bch_search_cache);
1143}
1144
1145int __init bch_request_init(void)
1146{
1147 bch_search_cache = KMEM_CACHE(search, 0);
1148 if (!bch_search_cache)
1149 return -ENOMEM;
1150
cafe5635
KO
1151 return 0;
1152}